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Department of Electronics and

Communication Engineering

Istanbul Technical University

Istanbul, Turkey

Nicolas Sklavos/Wireless Security and Cryptography 8771_C000 Final Proof page ix 8.2.2007 12:34pm



Norbert Pramstaller

Institute for Applied Information

Processing and Communications

(IAIK)—Krypto Group

Graz University of Technology

Graz, Austria

Bart Preneel

Department of Electrical

Engineering

Catholic University of Leuven

SCD=COSIC, Belgium

Vincent Rijmen

Institute for Applied Information

Processing and Communications

(IAIK)–Krypto Group

Graz University of Technology

Graz, Austria

Palash Sarkar

Applied Statistics Unit

Indian Statistical Institute

Kolkata, India

Erkay Savas

Faculty of Engineering and Natural

Sciences

Sabanci University

Istanbul, Turkey

Nicolas Sklavos

Telecommunication Systems

and Networks Department

Technological Educational Institute

of Messolonghi

Nafpaktos, Greece

Neil Smyth

Conescant Systems Inc.

Belfast, Northern Ireland

Lo’ai A. Tawalbeh

Computer Engineering Department

Jordan University of Science and

Technology (JUST)

Irbid, Jordan

Ingrid Verbauwhede

Department of Electrical

Engineering

Catholic University of Leuven

SCD=COSIC, Belgium

Xinmiao Zhang

Department of Electrical

Engineering and

Computer Science

Case Western Reserve University

Cleveland, Ohio

Nicolas Sklavos/Wireless Security and Cryptography 8771_C000 Final Proof page x 8.2.2007 12:34pm



Introduction

Wireless communications have become a very attractive and interesting

sector for the provision of electronic services. Mobile networks are available

almost anytime and anywhere, and the popularity of wireless handheld

devices is high. The services offered are strongly increasing because of the

wide range of the users’ needs. They vary from simple communication

services to applications for special and sensitive purposes such as electronic

commerce and digital cash.

As wireless devices are used in offices and houses, the need for strong

and secure transport protocols seems to be one of the most important issues

in mobile standards. It is obvious that in future wireless protocols and

communication environments (networks), security will play a key role in

transmitted information operations. From e-mail services to cellular-provided

applications and from secure internet possibilities to banking operations,

cryptography is an essential part of today’s users’ needs. Recent and future

mobile communication systems have special needs for cryptography. They

must support the three basic types of cryptography: bulk encryption, message

authentication, and data integrity. Most of the widely used wireless systems

support all the three different types of encryption. Additionally, some sys-

tems offer users the choice to select from two or three alternative ciphers for

each encryption operation. The user can select the best-suited algorithm for

the needs of the application. In most of the cases, implementation of the same

encryption system supports all the three different types of cryptography.

The standards for mobile applications and services are maturing, and new

specifications in security systems are defined. This leads to a huge set of

possible technologies that a service provider can choose. Although organiza-

tions and forums seem to agree with the increasing need for secure and strong

systems cryptography is still troublesome for wireless networks because of

the difficulties in implementation. The security layers of many wireless

protocols use outdated encryption algorithms, which have proved unsuitable

for hardware implementations, especially for wireless handheld devices. In

general, the ciphers use large arithmetic and algebraic modifications, which

are not appropriate for hardware implementations. That is why cipher imple-

mentations allocate many of the system resources, in hardware terms, to be

used as components. Therefore, in many cases, software applications have

been developed to support the needs of security and cryptography. However,

the software solution is not acceptable in the case of handheld devices and
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mobile communications with high-speed and low-power consumption

requirements.

This book summarizes key issues that should be solved to achieve the

desirable performance in security implementations and to focus on alternative

integration approaches for wireless communication security. It gives an

overview of the current security layer of wireless protocols and presents

the performance characteristics of implementations in both software and

hardware.

This book also proposes efficient and novel methods to implement secur-

ity schemes in wireless protocols with high performance. The purpose of this

book is to provide the state-of-the-art research trends in implementations of

wireless protocol security for current and future wireless communications.

This book contains 13 chapters in total.

The introduction is by Nicolas Sklavos and Xinmiao Zhang. The basic

security primitives relevant to all communication protocols are dealt with in

Chapter 1, by Palash Sarkar. The main scope of this chapter is to explain the

underlying ideas of the described complete solutions, which are given in the

subsequent chapters of this book.

Chapter 2, by Vesna Hassler, addresses the basic communication security

concepts. It first explains the threats that are encountered in a communication

network of any type, such as a LAN, wireless local area networking (WLAN),

or Universal Mobile Telecommunication System (UMTS), and then presents

the security services that protect against those threats as well as the security

mechanisms and techniques to implement the services.

In Chapter 3, Xinmiao Zhang addresses various algorithmic and architec-

tural optimization approaches for efficient hardware implementation of the

advanced encryption standard (AES) algorithm. Three architectural-level

optimization techniques, as well as the speedup factor and area consumption

of each technique, are presented in this chapter. In addition, various algorith-

mic modifications of the AES algorithm are introduced. Finally, resource

sharing between encryptors and decryptors is explored.

Chapter 4 is dedicated to hardware design issues in elliptic curve crypto-

graphy for wireless systems. Design problems of elliptic curve cryptosys-

tems (ECCs) are presented. The authors Apostolos P. Fournaris and

O. Koufopavlou deal with it along with algorithms and methods of solving

such problems.

Chapter 5, by Lo’ai A. Tawalbeh and Çetin Kaya Koç, presents an

efficient elliptic curve cryptographic hardware design for wireless security.

It is based on a new algorithm called unified division=multiplication algo-

rithm (UDMA). The scalability feature of the proposed cryptoprocessor

allows the adjustment of the word size used in the datapath to meet area

and performance requirements.

Vincent Rijmen and Norbert Pramstaller, in Chapter 6, discusses crypto-

graphic primitives and the security services they can deliver and argues that
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by using only a block cipher it is possible to deliver a wide range of security

services. In this chapter, the implementation of the AES, which is used for

symmetric encryption and authentication, and Whirlpool, which is a dedi-

cated hash function standardized in ISO=IEC 10118-3, is also presented.

In Chapter 7, the authors Siddika Berna Örs et al. deal with side-channel

analysis attacks on hardware implementations. The chapter introduces the

passive attacks that the authors have conducted on the hardware implemen-

tations of an ECC over GF( p), the AES, and the data encryption standard

(DES). The chapter also summarizes the previous work on these side-channel

attacks.

Panu Hämäläinen et al., in Chapter 8, present a novel enhanced security

layer (ESL) for Bluetooth. As ESL is placed on top of the standard controller

interface, it can be integrated into any standard Bluetooth implementation. A

full-scale embedded prototype implementation of ESL is also presented. AES

and its operation modes are implemented in hardware for high performance.

The easy-to-use programming interface supports straightforward application

development.

In Chapter 9, Neil Smyth et al. discuss two contrasting approaches that

may be taken in the design of a hardware accelerator targeted at IEEE

802.11i. The first approach is a programmable design that comprises the

authors’ own primitive reduced instruction set computer (RISC) processor

design and two hardware accelerators, which perform AES and RC4 encryp-

tions. The WLAN processor has been designed specifically to perform the

frame processing requirements of WEP, TKIP, WRAP, and CCMP, as speci-

fied in Draft 3.0 of the IEEE 802.11i standard. The second approach evaluates

the performance of a fixed-functionality WLAN security design.

Paris Kitsos and Nicolas Sklavos, in Chapter 10, propose a hardware

implementation of the UMTS security mechanism. The proposed system

supports the authentication and key agreement (AKA) procedure and the

data confidentiality and integrity protection procedures. The AKA procedure

is based on AES. The data confidentiality and integrity protection procedures

are based on the Kasumi block cipher.

In Chapter 11, by Nicolas Sklavos, a security processor for the wireless

application protocol (WAP) is presented. Wireless transport layer security

(WTLS) is dedicated to the security of WAP. In this chapter, an efficient

architecture and the implementation of WTLS are introduced. The proposed

processor supports privacy, authentication, and data integrity.

In Chapter 12 of this handbook, Erkay Savas proposes different algo-

rithms for GF(p). Their performances from the perspectives of both software

and hardware implementations are discussed. Inversion algorithms for GF(2n)

are also presented.

Last but not the least, in Chapter 13, Martin Manninger describes smart

card technology. To achieve better security on the technical level, secure

hardware such as smart cards can be employed. The chapter explains the
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basics of smart card technology, and it further shows how smart cards can

help in establishing end-to-end transaction security in wireless environments.

We would like to thank Allison Taub of CRC Press=Taylor & Francis for

her personal interest in this book and for her help. We also wish to thank

everyone connected with the CRC Press=Taylor & Francis team, including
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production of this book.
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1.1 INTRODUCTION

Cryptography is essentially the art of secret writing. To most people, this is

confined to the pages of a detective story (remember the ‘‘dancing figures’’

faced by Sherlock Holmes) or is something that is relevant in the context of

military communication. In a war, messages need to be exchanged between

units of the same army to coordinate joint maneuvers. Since such messages

can easily fall into enemy hands, it should be ensured that none but the

intended recipient can read the message. In fact, a system of exchanging

secret messages was practiced in the time of Julius Caesar, and the system is

called ‘‘Caesar shift’’ after him.

The subject of cryptology has an ancient history. Interested persons can

read the encyclopedic book by D. Kahn called The Codebreakers. The book

covers cryptology from its initial use by the Egyptians some 4000 years ago

to the twentieth century where it played an important role in the outcome of

both the World Wars. Another equally fascinating book is the Code Book by

Simon Singh, which covers the development of modern cryptology.

In the present day, secure communication is no longer confined to the pages

of a story book or to military communication. In the modern business world,

vital information needs to be exchanged between parties for the successful

completion of a transaction. Moreover, current business practices are depen-

dent on extensive use of computers and the Internet. In fact, in e-commerce

applications, whole business transactions are completed over the Internet.

This possibility gives rise to various kinds of subtle security problems.

This chapter attempts to provide an overview of some of the fundamental

primitives used in modern cryptography. In symmetric key cryptography, we

cover block and stream ciphers as well as hash functions. In public key

cryptography, we cover key agreement, public key encryption (PKE), digital

signatures, and the current research topic of identity-based encryption (IBE).

We believe the above primitives to be of fundamental importance to

modern cryptography. While discussing these topics we also discuss related

topics. For example, in the discussion on block ciphers we deal with message

authentication code (MAC) and various modes of operations.

For each of the topics, we present the basic concept, sketch some con-

struction methods, and describe the formal model and security notions. None

of the constructions and protocols described here are meant to be used directly

in practice. They are presented for illustrating the underlying ideas rather than

for providing complete description of ready-to-use protocols. The latter is not

the goal of this chapter. This chapter is intended to serve as an introduction

to the main ideas of cryptography and should be accessible to a general

engineering audience. Lastly, we must add that our selection of topics,

constructions, and formalism is based on our knowledge and belief of what

is important in cryptography. We make no claims of providing a complete and

comprehensive treatment of cryptography. The subject is too vast to be
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condensed to a few pages. There are several books on cryptology [1,2,3],

which may be consulted for further reading. Though a little old, the handbook

of applied cryptography [4] is an excellent source of reference.

1.2 BLOCK CIPHERS

In general terms, a block cipher is a map E:K�M!M, where for each

K 2 K, the map EK:M!M, defined by EK(M)¼E(K,M), is a bijection. In

other words, EK() is a permutation of M. The set K is called the key space

and the setM is called the message space. The output of EK() lies in the cipher

space and in our definition, the cipher space is the same as the message space.

The inverse of EK is a map D:K�M!M and we write DK(M )¼D(K,M).

By the inverse property we have M¼DK(EK (M)). Practical block ciphers

have M¼ {0,1}n and K ¼ {0,1}k. The values of n and k need not be equal,

but both of them must be large enough such that exhaustive search requiring

2n and 2k operations is infeasible. Typical values of k and n are 128, 192,

and 256.

In basic terms, a sender and a receiver share an element K of K. This K is

known to both of them and is not known to anybody else, that is, K is a secret

key shared by the sender and the receiver. This key is shared between the two

parties using a secure channel. To encrypt a message (or plaintext) M 2 M,

the sender computes C¼EK(M) and transmits C to the receiver over a public

channel. The receiver decrypts by computing DK(C).

The security of a block cipher has been defined precisely in the literature.

We discuss it a little later. At this point, let us try to intuitively understand

what it means for a block cipher to be secure. It is usually assumed that the

adversary who is trying to crack (or break) the cipher knows the particular

block cipher that is used, though he does not know the value of K. Further, the

adversary has access to the public channel and hence knows C. The target of

the adversary is to find K or M. Thus, for security, it must be infeasible to find

K or M from C. The same K may be used to encrypt many messages, say,

M1, . . . , Mt and the adversary knows the corresponding ciphertexts C1, . . . , Ct.

Knowing more than one ciphertexts may possibly provide the adversary with

more information about the key. However, for a secure block cipher, it should

still be infeasible for the adversary to find K or any of the Mi.

The scenario just described assumes that the adversary gets to know only

the ciphertexts. This is called a ciphertext only attack. A stronger attack is

when the adversary knows a few plaintext–ciphertext pairs, that is, it knows

a few pairs of inputs and outputs of EK(). This is called a known plaintext

attack. Since the adversary has access to more information, the attack is

stronger than a ciphertext only attack. An even stronger attack assumes that

the adversary is able to choose (as opposed to simply knowing) a few

plaintexts and gets to know the corresponding ciphertexts. This scenario is

called a chosen plaintext attack. The goal of the adversary in both the known

Nicolas Sklavos/Wireless Security and Cryptography 8771_C001 Final Proof page 3 27.1.2007 11:29am

Overview of Cryptographic Primitives for Secure Communication 3



and chosen plaintext attacks is to either find K or to find the plaintext

corresponding to a ciphertext it has not seen earlier.

The design of practical block ciphers has a long history. Many ciphers

have been proposed and analyzed in the literature. In the process, certain

design principles have become accepted. The basic structure of almost all

proposed block ciphers can be described in the following manner. The

encryption process consists of several rounds that are applied to the plaintext

one after another. The key K is expanded using a key schedule algorithm into

a set of round keys K1, . . . , Kr. Each round takes the round key as input and

the output of the previous round and produces an output. For a fixed round

key, the round function is a bijective map. For a plaintext M, let M0, M1, . . . ,

Mr�1 denote the inputs to the r rounds. The input M0 to the first round is M
itself and let Mr¼C be the final output of EK(). If we denote the ith round

function by Ri, then we have Mi¼Ri(Ki, Mi�1).

This reduces the task of designing a block cipher to the task of designing a

key-scheduling algorithm and that of designing the round functions. Usually

for a cipher, the round functions are same or very similar. Here, we briefly

describe two methods for designing round functions.

1.2.1 FEISTEL STRUCTURE

In a Feistel structure, the input Mi�1 to the ith round is divided into two equal

halves Li�1 and Ri�1, that is, Mi�1¼ Li�1 kRi�1. The output Mi¼ Li kRi is

defined as follows:

Li ¼ Ri�1,

Ri ¼ Li�1 � f (Ri�1, Ki):

This defines an invertible map, that is, from Li kRi, it is possible (and easy) to

obtain Li�1 kRi�1. Invertibility does not depend on the function f(.,.). In fact,

it is this function f that one has to design to obtain a specific algorithm and

the security of the algorithm depends on the design of f(.,.) (and the key-

scheduling algorithm). Among several properties, f must be a nonlinear map.

The data encryption standard (DES) is the most famous example of a block

cipher based on the Feistel structure.

1.2.2 SUBSTITUTION–PERMUTATION NETWORK

In a substitution–permutation network (SPN), each round function consists of

a few alternating layers called substitution and permutation layers. The input

to a substitution layer is divided into small blocks of bits, say blocks of 8 bits

each. An S-box (or substitution box) is applied to each block. The S-box

substitutes its input bits by an equal number of bits. Each S-box is a bijective

map, so that the entire substitution layer is also a bijective map. (In general,
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an S-box replaces t1 bits by t2 bits where t1 and t2 can be unequal. Hence, an

S-box is not necessarily a bijection.) The effect of a substitution layer is local

in the sense that an output bit in a particular position depends only on a few of

the input bits in its nearby positions. This local effect is compensated with a

permutation layer, which performs a permutation of its input bits. The round

key is usually incorporated in between a substitution and a permutation layer.

The advanced encryption standard (AES) employs the SPN style of design

with the following modification. In the permutation layer, instead of applying

a bit permutation it applies a carefully designed affine transformation. See [5]

for a detailed description of the algorithm.

1.2.3 MODES OF OPERATIONS

As mentioned earlier, a block cipher is a fundamental primitive in crypto-

graphy. A block cipher by itself can encrypt only fixed-length strings

of length n. Applications in general require encryption of long and arbi-

trary-length strings. A mode of operation of a block cipher is used to extend

the domain of applicability from fixed-length strings to long and variable-

length strings. The four classical modes of operations are as follows. Let the

long message consist of n-bit blocks denoted by M1, . . . , Mm. The ciphertext

blocks C1, . . . , Cm in the different modes of operations are obtained as

follows. Some of the modes of operations require the use of an initialization

vector (IV).

Electronic codebook (ECB) mode: Ci¼EK(Mi).

Cipher block chaining (CBC) mode: Let C0¼ IV and for i� 1, define

Ci¼EK(Ci�1 � Mi).

Cipher feedback (CFB) mode: Let C0¼ IV and for i� 1, define

Zi¼EK(Ci�1); Ci¼Mi � Zi.

Output feedback (OFB) mode: Let Z0¼ IV and for i� 1, define

Zi¼EK(Zi�1); Ci¼Mi � Zi.

A mode of operation must be secure in the sense that one should be able to

prove that the only way of attacking a mode of operation is to attack the

underlying block cipher. The ECB is not a secure mode of operation. This is

because if two of the Mis are equal the corresponding ciphertext blocks are

also equal. This is undesirable from a security standpoint.

There are several different goals of a mode of operation. The basic goal is

privacy or confidentiality of the message. Another equally important goal

is to provide authentication. This means that instead of encrypting a message,

we produce a tag (which is a fixed-length string), such that if the message is

tampered, then the tag of the tampered message will not equal the original tag.

Such a feature allows tamper detection and is important in many practical

applications. The tag is also called a MAC.
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Very often, applications require both privacy and authentication. A mode

of operation providing both is called authenticated encryption (AE). The

problem of designing a secure AE mode of operation has been a topic

of intense research. A simple way to achieve AE is to use a two-pass algorithm.

In the first pass, the message is encrypted and the ciphertext is produced. The

second pass computes a tag of the ciphertext and the final output is the

ciphertext followed by the tag. Using two passes makes the scheme inefficient.

Jutla [6] was the first to point out that both encryption and authentication can be

achieved by a one-pass algorithm. Other one-pass algorithms include a design

named offset codebook (OCB) by Rogaway [7]. Unfortunately, all previous

one-pass algorithms have pending patent applications, which severely restrict

their widespread adoption. Very recently, several new one-pass algorithms

have been proposed [52] without fresh patent claims.

There are several other interesting modes of operations. Consider the

application of disk encryption. This capability is built into the disk controller.

All data kept on the disk are encrypted. The atomicity of encryption is at the

sector level, that is, a sector is considered to be a single message and encrypted.

The same key is, however, used to encrypt all the sectors. The basic goal of

such a mode of operation is to provide privacy. A secondary (but also import-

ant) goal is to achieve tamper resistance or nonmalleability. An adversary may

change a few bits of an encrypted sector in such a manner that a decryption of

the tampered sector leads to a valid but different data from what was originally

encrypted. If this is possible, then the mode of operation is malleable. One

way to achieve nonmalleability is to use a MAC as described earlier. The

problem is that we will need to store the tag on the disk and hence waste disk

space. Another option is to design a mode of encryption, such that decrypting

a tampered sector provides a message that looks entirely random (it will

be computationally indistinguishable from a random message). This also

provides a limited form of authentication and achieves nonmalleability. In

some sense, this is the maximum authentication one can hope to achieve

without storing a tag. Work on this problem has led to several interesting

designs [8].

1.2.4 FORMAL SECURITY MODEL

The formal model of security for a block cipher is a pseudorandom permu-

tation (PRP) [9,10]. This notion is defined in terms of an adversarial game.

The adversary interacts with an oracle, that is, the adversary provides an input

and is provided with an output corresponding to the input. The queries can be

made in an adaptive manner, that is, a particular query can depend on the

previous queries and its outputs. At the end of the interaction, the adversary

outputs a bit. By instantiating the oracle in two ways, we obtain two games. In

the real game, a random secret key is chosen and the oracle is instantiated

with EK(), whereas in the random game the oracle is instantiated with a
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random permutation. Let p0 (resp. p1) be the probability that the adversary

outputs 1 in the real (resp. random) game. The difference j p0� p1 j is the

adversary’s advantage in distinguishing EK() from a random permutation.

We say that EK() is a PRP, if this advantage is negligible. A stronger

notion is that of a strong pseudorandom permutation (SPRP). In this notion,

the adversary interacts with two oracles—the encryption and the decryption

oracles in the real game; and a random permutation and its inverse in the

random game. The advantage is defined as given previously and the block

cipher is said to be an SPRP if this advantage is negligible.

At this point, we should remark on the utility of the formal model. None

of the practical block ciphers (including AES) can be actually proved to be a

PRP or an SPRP. On the other hand, one usually constructs protocols where

the block cipher is a component. For example, a mode of operation can be

considered to be a protocol to encrypt long messages using a block cipher.

Such protocols have their own appropriate notion of security. To show that a

particular protocol satisfies this notion of security one requires the underlying

block cipher (and other components) to be a PRP or an SPRP. Another way of

viewing this situation is to consider a PRP or an SPRP to be an idealization

of practical block ciphers.

1.3 STREAM CIPHERS

Stream ciphers are the second basic cryptographic primitives for encryption.

They are used widely for both defense communications and industrial appli-

cations. The basic principle behind stream cipher encryption is quite simple.

Assume that for t � 0, z(t) is a random-bit sequence, which is known both to

the sender and the receiver. Suppose the sender wants to transmit a message-

bit sequence m(t). The cipher-bit sequence is computed as c(t)¼m(t) � z(t),

which is then transmitted. Since the receiver knows z(t), it is possible for him

to compute m(t) as m(t)¼ c(t) � z(t). This simple scheme satisfies a strongest

possible notion of secrecy called perfect secrecy [11]. In other words, access

to the cipher-bit sequence provides no information about the message-bit

sequence. This property arises because the masking sequence z(t) (also called

key sequence) is a true random sequence. Since it is a random sequence, it

cannot be reused and hence this scheme is also called a one-time pad.

The main problem with the one-time pad is that the key sequence, which

is a true random sequence, is as long as the message sequence. Since the key

sequence is required at both the sender and the receiver ends, the entire

key sequence must be transmitted securely before its use in encryption and

decryption. Since the key sequence has to be transmitted through a secure

channel, the problem of securely transmitting a long sequence remains. Note

that the main issue here is the fact that a true random sequence cannot

be produced by a deterministic method. In fact, extracting true random bits

from electronic devices is a difficult problem.
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One way of getting around the above problem is to use a pseudoran-

dom generator (PRG) as a key sequence. (PRG is different from a PRP

discussed earlier.) A PRG is a deterministic algorithm, which extends a

short fixed-length bit string (called a seed) into a long sequence of bits.

The seed is the secret key, which is shared between the sender and the

receiver. Consequently, both the sender and the receiver can generate the

same key sequence.

The security of the system depends on the security of the PRG. There are

several ways of defining a PRG. Here we consider the notion of computa-

tional security. Informally, a PRG is said to be secure if the knowledge of a

segment of the key sequence does not allow an adversary with practical

computational resources to guess the next bit with probability significantly

more than half. Alternatively, it should not be possible to computationally

distinguish the output of a PRG from a true random sequence. Both these

notions have been formalized and shown to be equivalent [12,13].

Practical stream ciphers have been around for a very long time and

certainly before the notion of computational pseudorandomness came to be

formalized. The goal of practical stream ciphers is essentially to construct a

secure PRG. As in the case of block ciphers, it is not possible to prove any

practical stream cipher to be a secure PRG. Thus, the theoretical concept

must be seen as an idealization of practical stream ciphers. We, however,

note that there are certain constructions [14], which can be proved to be a

secure PRG assuming the hardness of certain computational problem such

as determining quadratic residues. Though interesting from a theoretical

point of view, such designs are usually too slow to meet the application

requirements.

1.3.1 LINEAR FEEDBACK SHIFT REGISTER

One of the most important structures used in the construction of practical

stream ciphers is that of a linear feedback shift register (LFSR). This is

essentially a register consisting of k bits. At each clock, the register changes

state. The next state is determined from the current state using a simple linear

transformation. Let a(i)¼ (ak�1
(i) , . . . , a0

(i)) be a sequence of k-bit vectors pro-

viding the successive states of an LFSR. The linear mapping is given by

a(iþ1)
j ¼ a(i)

jþ1 for 0� j� k�2;

a(iþ1)
k�1 ¼ t1a(i)

k�1� t2a(i)
k�2��� �� tk�1a(i)

1 � tka(i)
0 :

�
(1:1)

Let pðxÞ ¼ tkxk � tk�1xk�1 � t1x� 1. The polynomial p(x) is called the con-

nection polynomial and completely determines the next state function. The

output of an LFSR is usually taken to be the least significant bit of each a(i).

Of special interest is the case when p(x) is a primitive polynomial. If a(0) is not
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the zero vector, then the sequence a(i) has a period 2k� 1. In this case, the

output also has a period 2k� 1 and is called an m-sequence. There is an

extensive literature on LFSRs [15] and other linear finite state machines.

Since sequences produced by LFSRs satisfy linear recurrences, these cannot

be directly used for cryptographic purposes. They are used as building blocks

of secure stream ciphers.

There are two classical models of stream ciphers—the nonlinear-filter

model and the nonlinear-combiner model. Both the models are built using

LFSRs and Boolean functions. In the nonlinear-combiner model, exactly

one bit sequence is extracted from each LFSR and all the bit sequences

are combined using a Boolean function to generate the key sequence. In the

nonlinear-filter model, several bit sequences are generated from a single

LFSR and these are then combined using a Boolean function to generate

the key sequence. See [4] for more details on these models and other classical

stream ciphers. Extensive research on these models has shown that the

Boolean functions used must have certain necessary properties. Construction

methods and bounds for suitable functions are known [16].

LFSRs are also used in several different ways to design stream ciphers.

Examples are the shrinking generator and the A5 stream cipher. The LFSRs

described earlier are also called bit-oriented LFSRs. Such LFSRs are well

suited for hardware implementation, but their software implementation is not

efficient. For efficient software implementation one usually uses a word- or

block-oriented LFSR [17,18].

Another important design principle for software-efficient stream cipher

is the exchange-shuffle paradigm. This is based on the following idea.

Consider an array of length 2k, such that the array contains all possible k-bit

strings. For example, [0, . . . , 255] is such an array where k¼ 8. We now

repeatedly perform the following operation on the array. Choose two random

locations of the array and exchange the elements contained in those positions.

If we perform this operation sufficiently large number of times (usually a

small multiple of 2k times) then we obtain an array, which is a random

permutation of the k-bit strings. From this point onward, it is possible to

extract a k-bit string at each step by the following principle: Select two

positions, swap their contents, and extract one k-bit string. To make this

idea more concrete, we need to specify the method of choosing the positions

to swap and the position from which to extract the k-bit string. RC4 is a

stream cipher designed by Rivest and is the first cipher that is based on

this principle.

Most modern stream ciphers use an IV. The role of the IV is not to

increase security but to provide variability. In this case, the PRG is seeded

by the (key, IV) pair rather than only by the key itself. While the key is secret

and not known to the adversary, the IV is not secret and the adversary gets to

know it. The same key may be used with distinct IVs and the constraint on the

protocol usage is that a (key, IV) pair should not be repeated.
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At present, stream ciphers have a similar structure, which can be described

as follows. A stream cipher has an internal state that evolves under a state

update map. An output function is applied to the current internal state to extract

a fixed number of pseudorandom bits. The cipher goes through an initialization

or key setup phase before the actual extraction of pseudorandom bits begins.

In this phase, the (key, IV) pair is placed into the internal state and an

initialization function is applied to the state without extracting any output.

This initialization function may consist of applying the state update function a

fixed number of times or it may be a different function. The aim of the

initialization phase is to ensure that the internal state from which the key

extraction starts becomes a complex nonlinear function of the initial internal

state. On the other hand, this phase should not be too long, since during this

phase no key stream is produced and there can be no encryption.

Currently, there are many stream cipher proposals as part of the Ecrypt call

for stream cipher primitives [19]. Most of the proposals follow the methodology

described earlier; an exception is Salsa 20, which uses a different principle.

The home page contains a great deal of information and is a must-read for

anybody who is seriously interested in the design and analysis of stream ciphers.

1.3.2 SELF-SYNCHRONIZING STREAM CIPHER (SSSC)

Consider the use of a stream cipher in an error-prone channel. The channel

errors may result in bit flips or in bit inserts and bit slips. The latter two errors

are more serious since they destroy alignment and result in loss of synchron-

ization between sender and receiver. In a bit-oriented stream cipher, a bit flip

due to channel error causes a single bit of the received sequence to be

erroneous. On the other hand, a bit slip or a bit insert causes all subsequent

bits to be erroneous until the alignment is restored by a complementary error.

Channels with noisy characteristics are quite common in defense appli-

cations. Moreover, such channels usually have low bandwidth so that the

employment of error-correcting codes is not feasible owing to the redundancy

introduced by such codes. Yet we require secure communication on such

channels. The solution is to design a cipher satisfying the following require-

ment. Starting from any point in the ciphertext, if a fixed number of bits are

properly received, then all subsequent bits can be properly decrypted. This

allows automatic synchronization between the sender and the receiver without

them sharing a common clock. Hence, such ciphers are also called asynchronous

stream ciphers. Apart from recovery from errors, other possible uses of self-

synchronizing stream cipher (SSSC) are

1. The receiver can switch at any time into an ongoing enciphered

message without knowing the current bit position in the message

and decrypt from within a few bits of the time of their joining.

2. Users can join a broadcast at any point of time and be able to decrypt

from within a few bits of the time of their joining.
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Currently, the only known secure SSSC is to use a block cipher in a 1-bit CFB

mode (see [4]). This method is inefficient since it requires a block cipher call

per bit of encryption. There have been other direct proposals of SSSC.

Unfortunately, all such proposals have turned out to be insecure.

1.4 HASH FUNCTIONS

A hash function maps a long message to a fixed-length bit string. The

domain of a hash function is the set of all binary strings. (Actually, the

domain is the set of all binary strings of a maximum possible length, such as

the set of all binary strings of length less than 264.) The range consists of

all binary strings of a fixed length. For example, the range can be the set

of all binary strings of length equal to 128. The output of a hash function on

a particular message is often called the digest of the message or simply the

message digest.

Hash functions are extensively used in cryptographic protocols. One of

the main uses of hash functions is in digital signature protocols, where the

message digest produced by the hash function is signed. Because of the

central importance of hash functions in cryptography, there has been a lot

of work in this area. See [20] for a slightly outdated survey.

For a hash function H to be used in cryptographic protocols, it must

satisfy certain well-known necessary properties. In a recent paper [21],

Stinson provides a comprehensive discussion of these properties and also

relations among them. Depending on a particular application, a secure hash

function must satisfy some or all of the following properties:

1. Preimage Resistance: Finding a preimage of a given message digest

must be computationally infeasible. In other words, given z it

should be computationally infeasible to find x such that H(x)¼ z.

A function satisfying this property is also called a one-way func-

tion. Such functions are of central importance in cryptography and

were introduced by Diffie–Hellman in their seminal paper on modern

cryptology [22].

2. Second Preimage Resistance: Finding a second preimage of a digest

given one preimage of the same digest must be computationally

infeasible. In other words, given x and z such that H(x)¼ z, it should

be computationally infeasible to find y such that x 6¼ y and H(y)¼ z.

The notion of second preimage resistance was introduced by Merkle

in [23].

3. Collision Resistance: Finding a collision must be computationally

infeasible. In other words, it should be computationally infeasible to

find x, y such that x 6¼ y but H(x)¼H( y). This property was first

formally defined by Damgård in [24].
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It is clear that if it is possible to find a second preimage, then it is possible to

find collisions. Hence, it is usually sufficient to study collision resistance.

However, as pointed out in [21], there is no satisfactory reduction from

collision resistance to preimage resistance or vice versa. Therefore, the goal

of a practical hash function should be to achieve both preimage and collision

resistance.

A generic attack for finding collisions uses the so-called birthday para-

dox. Suppose the hash function H() produces digests of length m. In this

method, one randomly chooses k distinct elements x1, . . . , xk from the domain

of H() and computes the corresponding digests y1, . . . , yk. If yi¼ yj for some

i 6¼ j, then we have a collision. The birthday paradox states that if k� 2m=2,

then the probability of finding a collision using this method is around 1=2. To

prevent such an attack, we must have m to be such that it is not computationally

feasible to compute 2m=2 digests in a reasonable amount of time. Consequently,

message digests are at least 128 bits long and preferably 160, 256, or 512

bits long.

It is possible to construct hash functions where one can prove that finding

collisions is equivalent to solving certain known difficult problems (see, for

example, [25]). However, from a practical point of view such hash functions

are unacceptably slow. Hence, practical hash functions are constructed from

simple arithmetic=logical operations so that they are fast. The trade-off is that

for such hash functions it is not possible to relate the difficulty of finding

collisions to known hard problems.

Research in the design of hash functions has evolved certain principles

for designing secure and practical hash functions. One of the important

papers in this area is by Damgård [26]. An important point made in [26]

is that it is easier to design a secure hash function with a short fixed

domain than a hash function with a very large (or infinite) domain.

However, for a hash function to be useful it must be possible to hash

arbitrary long messages. Hence, one must look for techniques that can

extend the domain of a hash function while preserving the relevant security

properties.

An important construction for securely extending the domain of a secure

hash function has been described by Merkle [23] and Damgård [26]. The

construction is called the Merkle–Damgård (MD) construction. The MD con-

struction is a sequential construction and provides a basic guideline for

designing practical hash functions. Many of the practical hash functions

such as SHA-256, SHA-512, and RIPEMD-160 are based on the MD method.

We provide a simplified description of this method here.

Let h be a function that maps an n-bit string to an m-bit string and n>m.

Such a function is usually called a compression function. This function is

assumed to be collision resistant. The MD algorithm uses h to construct a hash

function H, which maps long strings to the m-bit digest. Let IV be an m-bit IV.
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This can be chosen randomly, but then it becomes fixed and part of the

specification of H().

Let x be the message to be hashed. Format x into substrings x1, x2, . . . ,

xt�1, xt, where jxij ¼ n�m. If the length of x is not a multiple of (n�m), then

xt consists of the broken block padded with 1 followed by a required number

of zeros to make the length equal to (n�m). Let xtþ1 be the (n�m)-bit binary

representation of the length of x. We now define variables z0, z1, . . . , ztþ1 in

the following manner:

z0 ¼ IV,

zi ¼ h(xi, zi�1) for 1 � i � tþ 1:

The final digest of x under H() is defined to be ztþ1. It is simple to prove

by backward induction that if it is possible to find a collision for H() then

it is also possible to find a collision for h(). Thus, we have H() to be

collision resistant under the assumption that the compression function h()

is collision resistant. The hash function families MD, SHA, and RIPEMD

follow a variant of this strategy.

The cryptographic literature contains some very successful attacks on prac-

tical hash functions. The attack by Dobbertin [27] on MD4 in the mid-1990s was

extremely powerful. He could show a collision for two meaningful messages.

Partial attacks on MD5 were also reported. In the recent past, there have been

some powerful attacks on MD5, RIPEMD, SHA, and other hash functions by

Wang and others [28,29]. The hash functions RIPEMD-160 and SHA-256

survive these attacks. However, the development of the new attacks has resulted

in a serious rethinking on the design strategy of practical hash functions.

Another old theme for designing hash functions is to use block ciphers.

The MD-family of hash function proposals was developed by Rivest in

the early 1990s. Concurrently, there has been active research on designing

secure hash functions based on secure block ciphers. A basic motivation

for basing hash functions on block ciphers is that one can then put his entire

trust on a single well-studied primitive such as a block cipher. The disadvan-

tage is that hash functions designed from block ciphers are generally slower

than hash functions built from scratch.

The first systematic study of block cipher-based hash functions was made

by Preneel, Govaerts and Vandewalle (PGV) in [30]. This study considered

64 possible constructions and suggested that some of these are secure while

others are not. A formal treatment of the 64 PGV constructions was made in [31].

They proved that some of the PGV constructions are collision resistant using

either the MD paradigm or otherwise. The study in [32] develops the area by

proving some more bounds and corresponding attacks. A more recent topic

on hash function is the multicollision attack by Joux [33] and the work on

designing hash functions to avoid such attacks.
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1.5 KEY AGREEMENT

Let us consider the basic problem of secure information exchange. Consider

the scenario where n persons want to communicate with each other and the

communication between any two persons should not be intelligible to the

others. Such a situation may arise in the stock market, where any pair of

brokers may want to exchange information without any of the other brokers

knowing what is exchanged. Suppose a block or a stream cipher is used to

protect the communication between any two parties. Each person maintains a

list of n� 1 secret keys, which are used for communication with the other

n� 1 persons. When person i wants to send a message to person j, he chooses

from his list the secret key corresponding to j and uses it to construct the

cipher, which he then sends to person j. When person j gets the message from

i, he uses the key corresponding to i (which is the same key that person i has

corresponding to j) to decipher the message.

In this scenario, for each pair of communication one needs a secret key

and thus this gives rise to a total of n
2

� �
keys for the whole system. Therefore,

if there are 1000 brokers in a stock market each one of them will have a list of

999 secret keys and the system will have a total of 1000
2

� �
secret keys overall.

Clearly maintaining and managing the secrecy of so many keys is a difficult

administrative problem. In addition, a broker might need to communicate

with some other broker very infrequently (or not at all). Thus, it is not very

sensible to maintain a secret key with such a person. Moreover, if a new

broker enters the market, this person has to establish a secret key with all the

existing brokers, which is a time-consuming and costly affair.

A brilliant solution to this problem was proposed by Diffie and Hellman

in 1976 [22]; they introduced the concept of public key cryptography. Their

solution is to allow any two parties to dynamically agree on a secret key by

public discussion. First, each of the two parties chooses a random secret

that is not known to anybody else. Then the parties exchange information

using a previously agreed on protocol and also perform some private compu-

tations. The information exchange is done over a public channel and this

information is available to an adversary. Finally, the two parties agree on a

common secret key, which is known only to two of them and not to anybody

else. A protocol that achieves this is called a two-party key agreement

protocol. Clearly, this notion can be generalized to the case of more than

two parties and it is then called multiparty key agreement.

We next describe the two-party key agreement protocol developed by

Diffie–Hellmann. Let G be a cyclic group whose order is a large prime p
having a generator g. The generator g and the prime p are publicly known.

Suppose Alice and Bob wish to agree on a common secret key. They follow

the protocol in Table 1.1.

The public information consists of p, g, g1¼ gr, and g2¼ gs. From this, the

adversary has to compute grs. This is believed to be a computationally
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infeasible task and is called the Diffie–Hellman assumption. The DH problem

(DHP) is related to the discrete log problem (DLP), which is to find the value

of a given a pair (g, ga). If the DLP can be solved in G, then the DHP can also

be solved in G. The converse, however, is not known to be either true or false.

Currently, the DHP is believed to be hard for properly chosen group G.

The DH key agreement protocol can be extended to a multiparty key

agreement using a tree-based structure [34]. This requires several rounds of

interaction among the involved parties. A very interesting key agreement

protocol was proposed by Burmester–Desmedt [35]. In this protocol, any

number of parties can agree on a common secret key in just two rounds.

The protocols discussed so far are unauthenticated. The adversary is

assumed to be passive, that is, the adversary listens to what is flowing

across the public channel but does not attempt to change or alter it. A more

powerful adversary is an active adversary, who can alter or stop the flow of

information across the public channel. The DH protocol is insecure against

such an adversary because of a man-in-the-middle attack. In this attack, the

adversary establishes separate common keys with Alice and Bob without

Alice and Bob realizing it. As a result, the adversary can read (and

forward) any message that Alice sends to Bob, or vice versa. Key agree-

ment protocols that remove this problem include some kind of authentica-

tion measure. This allows Alice and Bob to verify that they are indeed

interacting with each other and not with a third party. Authenticated key

agreement protocols have appeared in the literature. Perhaps the most

important example is a generic conversion of the Burmester–Desmedt

protocol into an authenticated protocol [36].

1.6 PUBLIC KEY ENCRYPTION

The notion of PKE was introduced by Diffie–Hellman in [22]. The novel idea

is for each user to have exactly two keys—an encryption key and a decryption

key. The encryption key is made public, that is, it is made known to every-

body and the decryption key is kept secret.

TABLE 1.1
Diffie–Hellman Key Agreement Protocol

Alice-Phase 1 Bob-Phase 1

Choose r randomly from {0, . . . , p�1} Choose s randomly from {0, . . . , p� 1}

Compute g1¼ gr Compute g2¼ gs

Transmit g1 to Bob Transmit g2 to Alice

Alice-Phase 2 Bob-Phase 2

Compute h¼ g2
r ¼ (gs)r¼ grs Compute h¼ g1

s ¼ (gr)s¼ grs
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Going back to our stock market example, each broker has an encryption

key and a decryption key. The encryption keys are published in a global

(broker) directory and the decryption keys are kept secret by the respective

brokers. Again suppose that broker A wants to send a message x to broker B.

Broker A chooses the encryption key eB of broker B from the global directory

and uses the publicly known encryption method to encrypt x to obtain a

message y, that is, y¼E(eB, x), where E(.,.) is the encryption function and

the key eB and x are parameters to this function. This y is transmitted to

broker B. On receiving y, broker B uses the secret decryption key dB and

the publicly known decryption method to decrypt y and obtain x, that is,

x¼D(dB, y)¼D(dB, E(eB, x)). A little reflection will convince the reader that

such a scheme removes the difficulties explained in the previous section.

In a PKE protocol, the encryption and decryption keys are different and

hence they are sometimes called asymmetric key cryptosystems, whereas

secret key cryptosystems, where the encryption and decryption keys are

equal, are called symmetric key systems.

Let us now consider what the security requirements on such a system are.

The functions E(.,.) and D(.,.), the encryption key eB, and the cipher y are

known. From these it would be infeasible to obtain either the message x or

the secret decryption key dB. Viewed another way, it should be easy to obtain

y from x, but without the knowledge of dB it should be difficult to obtain x
from y, that is, computation in one direction is easy, whereas it is hard in the

reverse direction. As mentioned earlier in connection with hash function,

functions satisfying such a criterion are called one-way functions. However,

the encryption function used here is not exactly a one-way function, since

knowledge of dB makes it easy to go back. Therefore, dB can be considered a

sort of trapdoor that allows easy inversion. Hence, the function E(.,.) is

actually a trapdoor one-way function.

To implement a public key cryptosystem one has to design a trapdoor

one-way function. The most popular and widely used system employing a

trapdoor one-way function is the system proposed by Rivest, Shamir, and

Adleman [37] and called the RSA system after them.

To set up the RSA system each user chooses two large primes p and q
and forms the product N¼ pq. From N, find f(N)¼f( pq)¼f( p)f(q)¼
( p�1)(q�1). (Here f(N) is the number of integers between 1 and (N� 1),

which are coprime to N.) Next two positive integers e and d are chosen using

the extended Euclidean algorithm such that 1< e, d<f(N) and ed� 1 mod

f(N). Once e and d are obtained, it is no longer required to preserve the

individual values of p, q, or f(N). The public key is declared to be the pair

(e, N) and the private key that is kept secret is the pair (d, N). In fact, only d is

kept secret.

To encrypt a nonnegative integer x less than N one uses the public key

(e, N) and forms y ¼ xe mod N. This y is the cipher corresponding to x and

is transmitted. To decrypt all that is required is to form z � yd mod N. This z is
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equal to x and hence the original message has been recovered (z � xed mod

N � x1þkf(N) mod N � x mod N. Note x1þkf(N) � x mod N if and only if

N j x(xkf(N)� 1). Now use the fact that either p j x or q j x or gcd(N, x)¼ 1).

Let us now briefly try to understand the security of the system. The secret

key is (d, N), which a cryptanalyst will try to recover. If from N one can

obtain the factors p and q of N, then it is easy to find f(N) and since e is

known, one can also find d using the Euclidean algorithm. It is believed that if

N is a large composite number it is difficult to obtain the factors of N. Thus,

trying to break RSA by factoring N will be difficult. Therefore, one might try

to obtain d in other ways. However, it can be shown that if one can obtain d
or f(N) from N, then one can also find p and q, that is, factorize N. Since

all known attacks on RSA ultimately boil down to the problem of factoring N,

it is generally believed (but not proved) that breaking the RSA system is

as hard as factoring N. See [38] for a survey of attacks on the RSA crypto-

system.

An alternative method of PKE was proposed by ElGamal [39] and is

based on the Diffie–Hellman key agreement protocol. Next, we describe the

basic ElGamal protocol. There are many variants to this protocol, but the

underlying idea remains the same.

As in the case of DH key agreement protocol let G be a cyclic group of

large prime order p with g as a generator. The secret key of a user, Bob, is a

random integer a 2 {0, . . . , p� 1} and the corresponding public key is h¼ ga.

Suppose Alice wants to send a message x to Bob. She chooses a random k from

{0, . . . , p� 1} and computes g1¼ gk and y¼ hk� x. She sends (g1, y) to Bob.

To decrypt, Bob computes g2¼ g1
a¼ gka and then x¼ g2

�1y. The quantity

hk¼ gka is used to mask the message x and the auxiliary information g1 is

provided to Bob to enable him to compute the mask using his secret key a.

The main advantage of the ElGamal protocol is that it works over

any cyclic group for which the DHP is difficult. A cornerstone of modern

cryptography is the discovery that certain groups obtained from elliptic curves

can be used for building ElGamal protocols [40,41]. For properly chosen

elliptic curve groups, the only known method for solving DLP (and DHP) is

to employ a generic attack such as Pollard’s rho method [42], which is an

exponential algorithm. On the other hand, development of the number and

function field sieve algorithms has resulted in subexponential algorithms for

factoring and DLP in finite fields. The consequence of all this is that for

elliptic curves one can use smaller size parameters, leading to lesser storage

space and more efficient protocols. See [42] for more on elliptic curve

cryptography.

1.6.1 HYBRID ENCRYPTION

Public key algorithms are significantly slower than secret key algorithms. Thus,

encrypting large messages using a PKE protocol is inherently inefficient.
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One way of solving this problem is to use hybrid encryption, which couples

together a secret key and a public key algorithm. Let us illustrate this with a

simple example based on the ElGamal protocol described earlier. Recall that

g1¼ gk is the auxiliary information (also called the ephemeral key) and

the masking of the message x is done using hk¼ gak. Suppose that instead of

masking x directly, we consider hk to be the secret key of a symmetric

encryption algorithm. (The value hk may be hashed to obtain the secret

key.) The actual encryption of the message x is done using the symmetric

encryption algorithm. Even if the message x is long, the encryption will

be reasonably efficient. During decryption, Bob computes g1
a¼ gak and uses

this to obtain the secret key employed to encrypt x. He can then use the

corresponding symmetric decryption algorithm and recover the message x.

The above is a simplified description, intended to convey the basic idea.

It should not be used as described since there are several subtleties that have

not been discussed. For practical hybrid encryption algorithms, one may

consult [43].

1.6.2 FORMAL MODEL

Formally, an asymmetric encryption scheme asym is a tuple asym¼
(M, C,SK,PK, keygen, enc, dec), where M and C are, respectively, the

message and cipher spaces; SK and PK are, respectively, the secret and public

key spaces; enc(pk, M) is the encryption algorithm, which takes a key

pk 2 PK and a message M 2M as input and produces a cipher C 2 C;
dec(sk, C) is the decryption algorithm, which takes a key sk 2 SK and a

cipher C 2 C as input and either returns bad or produces a message M 2 M
such that dec(sk,enc(pk, M))¼M.

All the above algorithms are probabilistic algorithms, which run in time

upper bounded by a polynomial in the security parameter. The security

parameter specifies the level of security to be attained by the protocol. A

matching pair of private–public keys (sk, pk) is produced by invoking the key

generation algorithm keygen on the security parameter.

The notion of security for asymmetric encryption is as follows. The adver-

sary is considered to run in two stages—the find stage followed by the guess

stage. In both stages, the adversary has access to a decryption oracle, which is

the decryption algorithm instantiated by a randomly chosen secret (i.e.,

unknown to the adversary) key. In both stages, the adversary can query the

decryption oracle with ciphertexts and receive either bad or the corresponding

messages. At the end of the find stage, the adversary outputs two messages

(x0, x1). A bit b 2 {0,1} is selected at random and xb is encrypted using the

encryption oracle. The adversary then starts the guess stage. In the guess

stage, the adversary is not allowed to query the decryption oracle on the target

y. At the end of the guess stage, it outputs a bit b0. The adversary’s advantage

in breaking the system is defined to be 2 j Pr[b¼ b0]� 1=2j.
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The formal security model is useful for designing and proving protocols.

The best-known example of a secure PKE protocol is the Cramer–Shoup

protocol [43]. This protocol is proved to be secure assuming the hardness of a

variant of the Diffie–Hellman problem. Another example of a secure PKE

protocol is the RSA-OAEP [44]. However, this protocol (like many others)

uses several hash functions and assumes that the hash functions are random

functions. Thus, the proof holds under the random oracle assumption or in the

random oracle model.

1.7 DIGITAL SIGNATURES

The notion of digital signatures is almost as old as the notion of PKE itself.

The basic idea of a digital signature is that one person can sign a message,

whereas anybody can verify the correctness of the signature. Thus, a message

can be authenticated by a user and the authentication can be publicly verified.

It may be recalled that MAC also is a method of authentication. The main

difference between an MAC and a digital signature is that in an MAC

algorithm, verification can only be done by somebody who possesses a secret

key, whereas in a digital signature protocol, the verification can be done

publicly.

A digital signature protocol consists of three probabilistic algorithms—

setup, sign, and verify. The setup algorithm generates the secret signing key

and the public parameters of a user. The signing algorithm takes the signing

key, the public parameters, and a message as input and produces a signature

on the message as output. The verification algorithm takes the message,

the signature, and the public parameters as input. It outputs true if the

(message, signature) pair is valid, else it outputs false.

A method for signing messages was given by the inventors of RSA [37].

The idea is to use the public key algorithm in reverse. Let N¼ pq and e and d
be generated by the setup of the RSA algorithm. The pair (e, N) is the public

key, whereas d is the secret signing key. To sign a message x, a user computes

the signature s¼ xd mod N. The pair (x, s) constitutes a message–signature

pair. Verification can be done by computing se mod N and comparing with x.

Note that verification can be done using only the public parameters. By itself,

this protocol cannot be proved to be secure, but it illustrates the basic idea of

obtaining a digital signature protocol from a PKE protocol.

We describe a simplified version of the ElGamal signature protocol. The

cryptosystem is setup as follows. Choose p to be a prime and a to be a generator

of Zp*. Let b¼aa for some a 2 {1, . . . , p� 1}. The tuple (p, a, b) is made

public, whereas a is kept secret. A message x is an integer 1 � x � p� 1.

Signing is done in the following manner. Choose a secret k 2 Zp� 1* . The

signature is s¼ (g, d), where g¼ak mod p and d¼ (x� ag)k�1 mod (p�1).

Note that signing requires the use of the secret a. A message–signature pair

(x, s) with s¼ (g, d) is declared to be valid if and only if bggd � ax mod p.
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This verification can be done publicly. Perhaps the most widely used digital

signature protocol today is the elliptic curve digital signature algorithm

(ECDSA), which is based on a variant of the ElGamal signature protocol.

Among all the modern concepts of cryptography, digital signatures have

arguably the most number of variants. There are one-time, blind, group, ring,

unique, and proxy signatures to name a few. These concepts arise in connec-

tion with the different subtle requirements of modern business. Unfortunately,

there does not exist a good survey or textbook discussion of the various

signature protocols. This makes it very difficult for a newcomer to grasp

the different concepts, tools, and proofs used for constructing and proving the

security of the multitude of signature protocols.

1.7.1 PUBLIC KEY INFRASTRUCTURE

The widespread deployment of PKE technology requires an infrastructure that

is often called public key infrastructure (PKI). The main component of such

an infrastructure is a certifying authority (CA). The basic role of a CA in a

PKI is to issue digital certificates to individual users. A CA itself has a public

and a private key. An individual user, Alice, can approach a CA for a

certificate. The first step of the CA is to perform an extensive physical

validation of Alice’s identity. Once satisfied, the CA generates a (public

key, private key) pair for Alice. It provides Alice with the private key using

a secure channel. Alternatively, and in practice, Alice will generate her own

(public key, private key) pair, provide the CA with the public key and keep

the private key to herself. The CA uses its own private key to digitally sign a

message consisting of Alice’s identity and her public key. It next prepares a

certificate for Alice consisting of her identity, her public key, and the CA’s

signature on these two. This certificate is provided to Alice.

When Alice wants to communicate with Bob, she first presents the certificate

she obtained from the CA to Bob. Bob verifies the CA’s signature on the

certificate by using the public key of the CA. Alice performs a similar verifica-

tion of Bob’s certificate. Once both are verified, Alice and Bob can communicate

with each other using their public keys. It may happen that Alice and Bob have

obtained their certificates from two different CAs. In this situation, Alice and

Bob will trust each other if their CAs trust each other. The existence of many CAs

leads to the notion of a web of trust and complicates the implementation of PKI.

There is another problem that complicates PKI implementation. A CA issues

certificates. For certain reasons, a CA may later decide to revoke the certificate.

Since a certificate has already been issued, there is no way of taking it back.

Instead, the CA publishes a certificate revocation list (CRL), which specifies the

certificates that have been revoked by the CA. When Bob authenticates Alice’s

certificate, he must take care to ensure that Alice’s certificate is not in the CRL

published by the corresponding CA. This situation becomes more complicated

when Alice and Bob have certificates issued by separate CAs.
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1.8 IDENTITY-BASED ENCRYPTION (IBE)

IBE was proposed by Shamir [45]. An IBE is a public key protocol in which

the public key can be any binary string. There is a trusted authority called a

private key generator (PKG), which provides the private key corresponding to

an identity. In other words, the public key of Bob can be his email address

such as bob@crypto1234.com. To obtain a private key for this identity, Bob

approaches the PKG and is supplied with a corresponding private key through

a secure channel. The role of the PKG in an IBE is somewhat different from

the role of a CA in a PKI. This can potentially simplify the implementation of

PKI. An IBE also has other applications [46].

Since its introduction, there have been a few proposals for IBE, but these

were more of a theoretical nature. The first practical solutions were based on

the notion of cryptographic bilinear maps [47,46]. A proper security model

for IBE was given by Boneh and Franklin [46] and they proved their protocol

to be secure in the model using the random oracle assumption.

1.8.1 CRYPTOGRAPHIC BILINEAR MAP

Let G1 and G2 be cyclic groups of the same prime order p and G1¼hPi,
where we write G1 additively and G2 multiplicatively. A mapping e: G1�
G1 �! G2 is called a cryptographic bilinear map if it satisfies the following

properties:

. Bilinearity: e(aP, bQ)¼ e(P, Q)ab for all P, Q 2 G1 and a, b 2 Zp.

. Nondegeneracy: If G1¼hPi, then G2¼he(P, P)i.

. Computability: There exists an efficient algorithm to compute e(P, Q)

for all P, Q2G1.

Since e(aP, bP)¼ e(P, P)ab¼ e(bP, aP), e() also satisfies the symmetry prop-

erty. Modified Weil pairing [46] and Tate pairing [48,49] are examples of

cryptographic bilinear maps. These examples have G1 to be an elliptic curve

group and G2 to be a subgroup of a multiplicative group of a finite field.

1.8.2 HARDNESS ASSUMPTION

The main hardness assumption for bilinear maps is a variant of the DH

assumption and is called the decision bilinear Diffie–Hellman (DBDH)

assumption. The DBDH problem [46] in hG1, G2, ei is as follows:

Given a tuple hP, aP, bP, cP, Zi, where Z 2 G2, decide whether Z¼ e(P, P)abc,

which we denote as Z is real or Z is random.
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1.8.3 IDENTITY-BASED ENCRYPTION PROTOCOL

Following [46], an IBE scheme is specified by four probabilistic algorithms:

setup, key generation, encryption, and decryption.

Setup: It takes a security parameter as input and returns the system

parameters together with the master key. The system parameters include

a description of the message space, the ciphertext space, and the identity

space. They are publicly known, whereas the master key is known only

to the PKG.

Key Generation: It takes an identity v as input and returns a private key dv,

using the master key. The identity v is used as the public key whereas

dv is the corresponding private key.

Encryption: It takes the identity v, the public parameters of the PKG, and a

message from the message space as input. The output is a ciphertext in

the cipher space.

Decryption: It takes the ciphertext, the public parameters of the PKG, the

identity v, and the private key dv corresponding to v as input and returns

the message or bad if the ciphertext is not valid.

1.8.4 SECURITY MODEL

Security of an IBE protocol is defined using an adversarial game. An adver-

sary A is allowed to query two oracles—a decryption oracle and a key-

extraction oracle. At the initiation, it is provided with the system public

parameters. There are two query phases with a challenge phase in between.

Query Phase 1: Adversary A makes a finite number of queries and

each query is addressed either to the decryption oracle or to the key-

extraction oracle. In a query to the decryption oracle, it provides the

ciphertext as well as the identity under which it wants the decryption.

Similarly, in a query to the key-extraction oracle, it asks for the private

key of the identity it provides. Further, A is allowed to make these

queries adaptively, that is, any query may depend on the previous

queries as well as their answers.

Challenge: At this stage, A fixes an identity v* and two equal length

messages M0, M1 under the (obvious) constraint that it has not asked

for the private key of v* and gets a ciphertext C* corresponding to Mb,

where b is a random bit.

Query Phase 2: A now issues additional queries just as in Phase 1, with

the (obvious) restriction that it cannot ask the decryption oracle for the

decryption of C* under v* nor the key-extraction oracle for the private

key of v*.

Guess: A outputs a guess b0 of b.
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The advantage of A in attacking the scheme is defined as

AdvA
IBE¼ 2 jPr[(b ¼ b0)]� 1=2j. The quantity AdvIBE(t, qID, qC) denotes

the maximum of AdvA
IBE, where the maximum is taken over all adversaries

running in time at most t and making at most qC queries to the decryption

oracle and qID queries to the key-extraction oracle. Any IBE scheme secure

against such an adversary is said to be secure against chosen ciphertext

attack (CCA).

We next describe the basic Boneh–Franklin IBE [46].

Setup: Let hG1, G2, ei define the cryptographic bilinear map e(,), where

G1¼hPi and the order of both G1 and G2 is a prime p. The DBDH

assumption holds for hG1, G2, ei. The master secret of the PKG is an

integer s chosen randomly from {0, . . . , p� 1}. Let Q¼ sP. The public

parameters of the PKG consist of hP, Qi and two hash functions H1:

{0,1}*�!G1 and H2 : G2�! {0,1}n. The function H1 maps an arbitrary

string to an element of G1, while H2 maps an element of G2 into a binary

string of length n. The message space consists of all binary strings of

length n, whereas the identity space consists of all binary strings.

Key Generation by PKG: Let v be an identity. The private key correspond-

ing to v is defined to be Qv ¼ sH1(v). The PKG knows s and hence can

generate this identity.

Encryption: Let M be the message to be encrypted. Choose a random integer

r 2 {0, . . . , p� 1}. The ciphertext is C¼hrP, M � H2(e(Q, H1(v))r)i.
Decryption: Let C¼hC0, C1i be a ciphertext corresponding to an identity

v. Compute M¼C1 � H2(e(C0, Qv)):

The decryption succeeds due to the following equalities:

e(Q,H1(v))r ¼ e(sP,H1(v))r ¼ e(rP,sH1(v)) ¼ e(C0,Qv):

The above computation uses the bilinearity property of e(,). This scheme

by itself cannot be proved to be secure. It is combined with the Fujisaki–

Okamoto transformation to obtain a protocol that can be proved to be

secure. The proof of security assumes that H1() and H2() are random

functions, that is, the proof is obtained under the random oracle assumption.

Later works [50,51] have shown how to construct efficient IBE proto-

cols that can be proved to be secure without using the random oracle

assumption.

1.9 CONCLUSION

In this chapter, we have provided a brief description of some of the most

important topics in modern cryptography. There are other topics like secret

sharing, commitment protocols, multiparty computation, and so on that have
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not been covered. Even in the topics that have been discussed, we have only

sketched the basic ideas. Practical and ready-to-use algorithms are out of

scope of this paper and can be found in the references. In summary, we have

attempted to provide a quick and gentle introduction to several important

aspects of modern cryptography and will be satisfied if the reader finds the

material useful.
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2.1 INTRODUCTION

Although a number of studies on data security have been published in the last

decade, many security breaches still occur because some newly introduced

security protocols exhibit the vulnerabilities arising from the already known

security problems. For example, the initial version of the IEEE 802.11 wired

equivalent privacy (WEP) protocol allowed broadcasting of access point iden-

tifiers as cleartext so that a man-in-the-middle attack with a fake identifier was

easily possible. Or, the encryption key length used in the WEP by default did
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not fulfill the requirements of the current standards for strong cryptography,

that is, they used a 64-bit key instead of a 128-bit key. Therefore, it is of crucial

importance to study and understand the fundamental security principles

explained in this chapter.

2.2 SECURITY THREATS

This section is dedicated to the very source of our concerns about data

security, namely security threats. Who would care about security if there

were nothing to lose? Security threats are realized in the form of security

attacks, which can be encountered in any communication network. The

security threats to consider for a particular system should be determined

within a process called risk analysis. Now we take a closer look at each of

the general attacks. It must be borne in mind that today many different

devices may be used for network communication and that there may be a

network in place although you cannot see it.

Traffic analysis is probably the easiest way to carry out a security attack.

The attacker only listens to the data exchanged between two communication

partners and does not bother whether he can understand it or not, that is,

whether the data are scrambled or encrypted. However, under certain circum-

stances, the fact that two partners start to communicate or intensify their

communication may already be a valuable information. In addition, this

attack may help you physically locate somebody or something in the network.

Eavesdropping is something that we can also encounter in the nonelec-

tronic world. If you press your ear against a closed door behind which

somebody is talking and you are not supposed to listen to the conversation,

you may be accused of eavesdropping. In a similar way, if you intercept or in

other ways collect electronic data exchanged between two communication

partners in a computer network whereby the data are not meant to be read by

you, you are an eavesdropper.

Masquerading can be fun if you disguise as someone else for a party, but in

general it may be quite unpleasant if misused for cheating. In the networking

world, you would be disguising by using a false electronic user or computer

identification (ID) to obtain access to resources that you are not supposed

to use.

Infiltration is a word known from the world of secret services where

different agencies try to infiltrate each other. You can infiltrate a computer or

a local area network by masquerading as a legitimate user or by misusing an

error in a communication protocol.

Tampering with unprotected electronic messages is in general much

easier than with messages written on paper because no changes can be seen.

It may, however, cause significant damage to the sender. For example,

imagine that you send an e-mail to your bank to transfer e10 to somebody

and an interceptor changes it to transfer e10,000 instead. This type of attack is
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sometimes referred to as the man-in-the-middle attack because the adversary

places himself between the communication partners. An alternative attack in

this scenario is that the interceptor replays the same message 1000 times, with

the same negative result for your bank account.

Privacy is the ability of an individual or group to control by whom and

how their personal information is used. Browsing or shopping on the Internet

often leaves tracks of the personal activities of a user, which others may use to

spy on him. This phenomenon is referred to as invasion of privacy in the

networking world.

Social engineering methods can be misused to carry out a security attack.

For example, an attacker can phone or e-mail the employees of an enterprise

pretending to be the system administrator, which is actually a form of

masquerading. In this way, he can trick the users to tell him their passwords

or other sensitive information. Phishing is a popular name for ‘‘password

fishing’’ through social engineering.

Denial-of-service (DoS) attacks are relatively easy to carry out because in

general no knowledge of complicated math is necessary. If you keep dialing a

friend’s phone number, he will not be able to call anybody, and nobody else will

have a chance to reach him. You will effectively disable his phone service. In a

network, good knowledge of communication protocols and the way they are

implemented is necessary to carry out this type of attack, which can disable

computers and whole networks. Distributed DoS attacks are especially unpleas-

ant because they make it difficult to find where the attack originated from.

Denial-of-action can be considered a passive attack but nonetheless can

cause damage. For example, you can send a message to an online shop to

order 1000 DVDs, and later, after delivery, claim that you never ordered them.

The attacks we have described so far are general, but there are many other

specialized attacks too. For example, certain attacks may misuse a short

period of time before the computer time is switched to a daylight saving

time period. Or, some specialized attacks on smart cards measure their power

consumption to draw conclusions about the cryptographic computations

carried out on the card. Those attacks are beyond the scope of this chapter,

but be aware that clever attackers can misuse any vulnerability, no matter

where it originates from.

2.3 SECURITY SERVICES

The basic attacks described in the previous section can be prevented by

suitable security services that are described in this section.

Authentication ensures that a principal’s identity or data origin is genuine.

This service can help us prevent masquerading and infiltration attacks

because we can be sure where a message comes from, or who we are com-

municating with.
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Access control is a follow-up activity of authentication. As soon as the

identity (ID) of a principal has been determined through authentication, a

lookup table with IDs and access permissions tells us which rights the

principal is allowed to gain. For example, he may be permitted to read a

file, or to both read and write to it.

Message tampering can be prevented by a data integrity service. This service

guarantees that no unauthorized principals have modified the data. Data confi-

dentiality service is concerned with changing the electronic data in such a way

that only authorized principals can read and understand it. It can help us to

prevent eavesdropping, that is to hide the contents of a message or any other

confidential information, such as the fact that two communication partners have

started exchanging messages, which effectively prevents traffic analysis.

Nonrepudiation service, also defined in ISO=IEC 13888-1, is aimed

for protection against denial-of-action attacks. The denied action can be to

author a document, or send or receive a message. Protection of privacy

service prevents intrusion of privacy attacks that can include all possible

cases of misuse of personal data.

What can be done against replaying a message, such as in the bank

account scenario from the previous section? This is a task to be accomplished

by assuring message freshness, which can be achieved in several different

ways as explained in Section 2.4.6.

DoS attacks are difficult to defend against because, basically, for each type

of DoS attack a different defense strategy is needed. We can say that, in general,

all those strategies belong to some sort of resource consumption control services.

Finally, organizational security services, such as employee education,

can help defend against social engineering attacks and other similar soft

security attacks. They are not further discussed in this chapter. For more

information, see [1].

2.4 SECURITY MECHANISMS AND TECHNIQUES

To implement security services, we use security mechanisms, which are

in turn realized by deploying cryptographic algorithms or other security

techniques such as

. Encryption algorithms AES or RSA for encryption mechanisms

. Cryptographic hash function SHA-1 for data integrity mechanisms

. Message authentication code for data authentication mechanisms

. Authentication exchange protocols for peer entity authentication

mechanisms
. Identity-based access control for access control mechanisms
. Public key algorithms RSA, DSA, or ECDSA for digital signature

mechanisms
. Time stamps and nonces for message freshness mechanisms

Nicolas Sklavos/Wireless Security and Cryptography 8771_C002 Final Proof page 32 27.1.2007 11:31am

32 Wireless Security and Cryptography



. Random data for traffic padding mechanisms

. Trusted third parties for notarization mechanisms

. Anonymizers for anonymizing mechanisms

The following sections describe those mechanisms. For more detailed math,

see [2].

2.4.1 ENCRYPTION MECHANISMS

Encryption is a transformation that renders a message nonunderstandable

for everyone who does not know the cryptographic key that is needed for

decryption. Consequently, decryption is a transformation to bring the message

back to its original form. A family of such transformations is referred to as

the cryptosystem. Encryption is obviously perfectly suitable to ensure data

confidentiality.

In a symmetric cryptosystem, encryption and decryption are identical or

easily derived from each other. Note that the encryption key and the decryption

key are the same. Practically, we deal with one key, which is also called the

secret key, because it must remain secret to everybody except the sender and the

recipient. This also means that if you send a symmetrically encrypted message

over an insecure network, you must use another, secure, medium to communi-

cate the key to the recipient. The usual notation for symmetric encryption, which

transforms message M into ciphertext C by applying key K, is as follows:

Encryption EK(M) ¼ C,

Decryption DK(C) ¼ M:

The state-of-the-art symmetric encryption algorithm is the Advanced Encryp-

tion Standard (AES [3]), which replaced its predecessor, the Data Encryption

Standard (DES [4], still in use as 3DES). AES is a block cipher since it

encrypts data in 128-bit blocks, and its key length can vary among 128, 192,

and 256 bits. For a high security level, 128-bit keys are not recommended.

In an asymmetric or public key cryptosystem, there are two cryptographic

keys that cannot be derived from each other. For example, if you wish to

encrypt a confidential message for a specific recipient, you can look up a

public directory to find this recipient’s public encryption key and carry out the

encryption transformation. Even if an adversary intercepts the message and

finds out who is the intended recipient, it is computationally infeasible for him

to decrypt the message because only the recipient knows the corresponding

private decryption key. The notation for public key encryption, which

transforms message M into ciphertext C by applying public key PuK, and

for decryption applying private key PrK, is as follows:

Encryption EPuK(M) ¼ C,

Decryption DPrK(C) ¼ M:
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The state-of-the-art public key encryption algorithm is RSA [5] whose security

arises from the computational difficulty of factoring large composite

numbers. RSA computations are performed with a modulus, which is a

product of two large primes. These two primes are in fact the private key,

and the modulus can (and should) be known to everybody because it is the

public key. The modulus must be long enough to be secure—at the time of

this writing (April 2006) it is at least 1024 bits.

2.4.2 DATA INTEGRITY MECHANISMS

Integrity mechanisms are used to ensure message integrity. The computation-

ally fastest way to achieve this goal is to use a cryptographic hash function of

message M, h(M). Such functions are applied to an input value of nearly any

length yielding an output value of constant length, which is referred to as the

cryptographic checksum, hashsum, or message digest. However, the hash

function should be easy to compute only in one way. In other words, if you

have a hashsum, it must be practically impossible to find the original input or

any other message yielding the same hashsum. (Note that many different

messages will have the same hashsum because the input can be of nearly any

length.) Additionally, it must be extremely difficult to find two different

messages with the same hashsum.

If a message and its hashum are sent over an insecure network, message

integrity cannot be guaranteed because both the message and the hashsum can

be tampered with. Consequently, the cryptographic hash functions are usually

combined with additional mechanisms as explained in the following sections.

A popular cryptographic hash function is the Secure Hash Standard

(SHA-1 [6]). It produces a 160-bit output, whereby the input message can

be up to 264 bits long. Shorter hashsums are not considered secure from the

viewpoint of the today’s computing technology.

2.4.3 AUTHENTICATION MECHANISMS

Data authentication can be implemented by using a cryptographic hash

function. The so-called message authentication code (MAC) is based on a

combination of the cryptographic hash functions and a secret key. A sender

can send a message along with its MAC value to the recipient. If the recipient

also has the corresponding secret key, he can check the authenticity of

the message by performing the same MAC computation. Keyed hash is the

mechanism used for many Internet security protocols such as IPSec and

SSL=TLS [7].

Data authentication can also be implemented by encryption. In this way,

the authenticity of the data is proven by applying a specific encryption key.

Finally, there are some special authentication exchange mechanisms called

Nicolas Sklavos/Wireless Security and Cryptography 8771_C002 Final Proof page 34 27.1.2007 11:31am

34 Wireless Security and Cryptography



zero-knowledge protocols in which a principal proves knowledge of a secret

without revealing anything about the secret [8].

Peer entity authentication is usually carried out by applying an authenti-

cation exchange protocol based on mechanisms similar to data authentication

described earlier (see, for example, [9]). Since the protocol messages are sent

over an insecure network, they can be easily copied and resent by an intruder,

even if they are encrypted (e.g., encrypted password). To prevent this replay

attack, the protocol messages must always be fresh; this can be accomplished

by using the techniques described in Section 2.4.6.

2.4.4 ACCESS CONTROL MECHANISMS

As mentioned earlier, access control relies on the result of a successful

authentication process. An authenticated principal, be it a user or a computer

process, has been assigned an identification that is used as a basis to deter-

mine his access rights or permissions. This process is usually referred to as

authorization.

Identity-based access control uses an access control matrix, where the

principals (or subjects) are arranged in rows and the resources to be protected

(or objects) are arranged in columns. For example, if you wish to know

whether a user, Smith, can write to a file file.txt, you can find the row for

Smith and the column for file.txt. If the intersection of the row and the column

contains the access right ‘‘write,’’ Smith is allowed to write to file.txt. If the

intersection says only ‘‘read,’’ write access must be denied. Since this type of

authorization is performed at the discretion of the object owner, it is some-

times referred to as the discretionary access control.

If a system contains data with different security levels, such as, for

example, protected, secret, and top secret, security cannot be enforced by an

identity-based access control policy. This problem can be solved by a rule-

based access control policy that defines some specific sensitivity classes.

Each protected object in a system bears a security label, which defines its

sensitivity class (e.g., protected, secret, and top secret). This type of policy is

also called mandatory access control or information flow control [10].

2.4.5 DIGITAL SIGNATURE MECHANISMS

Digital signing has a similar purpose as handwritten signing, but there are some

differences in their features. A digital signature can be easily copied because it is

in electronic form, so there exist more than one original in contrast to the

handwritten signature. For this reason, the digital signature must be document-

and signer-dependent; otherwise, you could attach it to any document.

Digital signature mechanisms can be used to implement the nonrepudia-

tion service against denial-of-action attacks. For example, if you digitally sign
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a document, you cannot later deny signing it. The legal action that is denied

by denying a signature depends on the context in which the signature was

created.

Public key cryptosystems are suitable as digital signature mechanisms. As

mentioned in Section 2.4.1, a public key cryptosystem has two cryptographic

keys that cannot be derived from each other. The private key is used to create

a signature, and the public key is used to verify it. Signing is actually

encrypting with the private key, and verifying is decrypting with the public

key. However, since documents to be signed can be quite long, the signing

operation is performed over the document hashsum, h(M). The notation for

the digital signing that transforms message M into signature S by applying

private key PrK is as follows:

Signing DPrK(h(M)) ¼ S:

The public key can be published, and the private key must be kept private

by its owner. Ideally, the owner should also generate his public key pair

to guarantee the private key’s confidentiality. For example, many digital

signature cards are equipped with key generators so that the private key

never leaves the card.

The verifier receives the document and the signature. The public (verifi-

cation) key and the information about which cryptographic hash function and

which signature algorithm were used are available in a PKI directory (see also

Section 2.6). To verify the signature, the verifier first computes the document

hashsum and then applies the public key to the signature to obtain the

hashsum that was actually signed. The two hashsums must be identical,

otherwise the signature is not valid. The notation for verification of signature

S of message M is as follows:

Signature verification: compare h(M) and EPuK(S) ¼ h0(M):

The public key encryption algorithm RSA can be used to create digital

signatures, but some organizations have a problem with the fact that RSA

can be used for both encryption and signing. The Digital Signature Algorithm

(DSA) can be used for signing only, and its security is based on the discrete

logarithm problem. Another widely used DSA, Elliptic Curve Digital

Signature Algorithm (ECDSA), is based on the difficulty of the elliptic

curve discrete logarithm problem. Elliptic curve cryptography (ECC) has

been adopted by several standardization organizations such as IEEE through

the P1363 standard, ISO, and ANSI [11,12]. The ECC keys are much shorter

than RSA keys for the same security level (160 bits for ECC as opposed to

1024 bits for RSA). This makes the ECC more suitable for signature devices

with limited processing power such as smart cards. All three signature

algorithms are also recommended by the U.S. Digital Signature Standard [13].
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The date and time of signing usually play an important role too, so they

should form part of the document to be signed. However, computer time can

be easily manipulated. How can we be sure that the signature was really made

at the alleged time? There are basically two approaches to solve this problem.

One approach is to obtain a time stamp that is digitally signed by a trusted

timeserver. Another approach is to use a tamper-proof security-certified time-

stamping device connected to a computer on which the signature is created.

The time-stamping device generates a digitally signed time stamp, which can

be added to the document to be signed (e.g., TSS 400 by timeproof Time

Signature Systems GmbH).

Another problem with digital signatures is to ensure that the signature is

computed over the content shown to the signer on the computer screen. This

approach is called ‘‘what you see is what you sign’’ and is not easy to

implement. A solution can combine a so-called secure viewer program

(e.g., trustview by IT Solution GmbH) in combination with a nonrewritable

computer memory. It is also of crucial importance to secure the path between

the secure viewer component and the signature creation device (e.g., smart

card in a card reader) because otherwise the users cannot be sure that what

they saw was really sent to the smart card. Finally, the computer on which the

viewer is installed must be kept free of viruses and malicious programs.

2.4.6 MESSAGE FRESHNESS MECHANISMS

Message freshness mechanisms protect against replay attacks. Suppose

you have sent a digitally signed message to your bank to transfer e1000 to

person A’s account. If A is malicious, he can intercept your message and resend

it 10 more times. If the bank has no possibility to find out whether the message

is fresh (i.e., unused), your account balance will show e10,000 less than you

would expect. For this reason, it is of crucial importance to ensure that different

messages with identical contents can be differentiated. This can be achieved by

including a time-variant parameter before encrypting or signing:

. You can generate a random number (i.e., a nonce) and add it to the

message.
. You can add a time stamp to the message.

If a nonce is used, the bank has to store the used nonces to recognize them.

A combination of a nonce and a counter can be used as well, for example,

by including a nonce in the first message, nonceþ1 in the second message,

and so on.

If a time stamp is used, your PC clock and the bank’s computer clock

should be synchronized because a tolerance interval introduces additional

insecurity. Time critical applications may even require a time stamp from a

trusted timeserver, as explained in Section 2.4.5.
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2.4.7 TRAFFIC PADDING MECHANISMS

An adversary can obtain valuable information even if he may only learn that

two communication partners have exchanged data or that the amount of data

in transfer has suddenly changed. We mentioned earlier that such attacks are

called traffic analysis. Traffic padding mechanisms can offer some protection

against them. They keep the data traffic rate approximately constant so that

nobody can obtain information by purely observing it. For example, two

communication partners can keep exchanging network packets of constant

length whereby the packet payload contains encrypted random data.

2.4.8 NOTARIZATION MECHANISMS

Notarization mechanisms can assure integrity, origin, time, or destination of

data. They can be provided by a third party trusted by all participants and

therefore called trusted third party. For example, several times throughout

this chapter we mentioned time stamps and timeservers. Digitally signed

documents should always bear a time stamp from a trusted source. The time

stamp can be signed by the trusted time service and added to the message

before signing. An alternative approach is to send the already signed message to

the trusted timeserver, which then adds a time stamp and signs everything

together, that is, the message, its signature, and the time stamp.

2.4.9 ANONYMIZING MECHANISMS

Anonymizing mechanisms can protect our privacy. Traffic padding, as men-

tioned in Section 2.4.7, is also an anonymizing mechanism because it hides

the information about whether the communication parties have really

exchanged some meaningful messages.

A well-known example of such mechanisms are Web anonymizers.

They are implemented as Web servers that receive a request from a Web

client, remove all personal data from the request, forward it to the destin-

ation Web server, and forward the response to the client. Some anonymizers

even assign anonymized identities so that the clients can fill out Web

forms without giving away their personal data. In addition, the request

(i.e., part of the URL) can be sent encrypted by the client to the anonymizer

so that only the anonymizer can actually see which Web site the client is

looking for.

However, real anonymity in the networking world requires network

anonymity, which in turn requires a special infrastructure. There are models

of how to do it, but they have no real implementations. For example, a

network of interconnected anonymizing e-mail servers could be implemented

in such a way that each server can see only the address of the next server to

forward the message [14].
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2.5 KEY MANAGEMENT

Security of cryptographic algorithms depends on both the difficulty of the

mathematical problem they are based on, and the quality of the cryptographic

keys and the key management methods. The following sections give some

explanations about the relevant aspects.

2.5.1 KEY GENERATION

The security of cryptographic algorithms depends on the computational

complexity and not on the theoretical impossibility to find the cryptographic

key by applying the brute force attack, that is, trying out all possible keys

without any prior knowledge about the right key. Due to the constant develop-

ment of the computing power, we are forced to use longer and longer

cryptographic keys. The same applies to the hashsum length. The only

exception to that rule is the encryption algorithm called the one-time pad,

which is hardly used for practical reasons: a one-time pad key can be used

only once and it must be at least as long as the message.

The main prerequisite for generation of good cryptographic keys is a

high-quality random number generator. This requirement holds for all random

data used in cryptographic computations. Otherwise, the number of possible

keys would be seriously reduced, so that a brute force attacker would have to

try out fewer keys than there are theoretically available for a certain crypto-

graphic algorithm. However, it is difficult to provide a true source of ran-

domness, and hence the typical generators used are pseudorandom sequence

generators. Cryptographically strong sequences must be unpredictable so that

they cannot be reliably reproduced [15].

As mentioned in Section 2.4.5, private signature keys must be kept secret,

and the best way to achieve it is to never let them leave the tamper-proof

device in which they are generated. For personal signatures, the key pair can

be generated on a smart card (signature card). For server signatures, the

signature module needs more computing power, so it is usually a bigger

piece of hardware in which the key pairs are generated.

2.5.2 KEY EXCHANGE

Public key encryption is much slower than symmetric encryption and there-

fore almost never used to encrypt all data (i.e., for bulk data encryption).

Symmetric encryption keys cannot be sent over an insecure network, and

hence they are usually hidden in a message encrypted with the recipient’s

public key. If the symmetric encryption key (sometimes referred to as the

session key) is generated by one participant and sent to another participant,

then we have a key transport protocol. In some cases, however, both partici-

pants wish to participate in computing the session key to make sure that its

randomness and security are satisfactory. For this purpose, key agreement
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protocols are used. One of the most widely used key agreement protocols is

the Diffie–Hellman key exchange protocol [16]. Its security is based on the

difficulty of computing the discrete logarithm in a finite field. Key exchange

messages should also be protected against replay attacks by including time

stamps, nonces, or counters.

2.6 PUBLIC KEY INFRASTRUCTURE AND DIGITAL
CERTIFICATES

The public keys for encryption or for signature verification should be avail-

able to anybody wishing to send a confidential message or to verify a

signature, respectively. In addition, it must be somehow guaranteed that a

particular public key belongs to a particular principal (e.g., person, company,

or server). In other words, there should be some public key infrastructure

(PKI) in place to provide this functionality. A PKI is based on the following:

. Digital certificates carrying the information about the key owner, the

relevant cryptographic algorithms, the public key, key validity, and

other information [9]
. Certification authorities (CA) or certification service providers

(CSPs), trusted third parties that issue, digitally sign, and manage

digital certificates [17]
. Agreements between the CSPs about mutual recognition of digital

certificates in the form of cross certificates [9]

These are only the basic concepts because a PKI can be quite complex. For

example, if a private key has been compromised, there must be a possibility to

revoke it. A revocation is published in the so-called certificate revocation list

(CRL) by the CSP that issued the certificate.

Almost all member states of the European Union (EU) have their national

PKIs including the accredited national CSPs. PKIs are based on the national

digital signature laws, which are in compliance with the Electronic Signature

Directive issued by the European Commission in 1999 [18].

2.7 SECURITY EVALUATION

Security evaluation is a discipline ensuring that secure computing and comm-

unication systems really do what they promise. However, it is practically

impossible to prove that a system is secure because even for simple systems

the proof is extremely computing intensive. Fortunately, it is possible to build

verifiably correct secure systems if the verification is integrated into the

system’s specification, design, and implementation, as required by security

evaluation criteria.
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There have been several national collections of security evaluation

criteria, from U.S. Department of Defense Trusted Computer System Evalu-

ation Criteria (TCSEC) in the 1980s to Information Technology Security

Evaluation Criteria (ITSEC) in 1991 [19]. All those collections became

input to the state-of-the-art security evaluation criteria, the so-called Common

Criteria (CC) for information technology security evaluation. The current

version is 2.3 (2005), and version 2.2 was published as the 15408 ISO=IEC

standards series.

For a particular IT product or system under evaluation (target of evalua-

tion, TOE), the security requirements are described in the form of a security

target (ST). An implementation-independent set of security requirements for a

TOE family (e.g., operating systems, firewalls, and smart cards) is referred to

as the protection profile (PP). One of the published and evaluated PPs can be

used to write a particular ST [20]. The CC defines two types of security

requirements:

. Security functional requirements define the desired security behavior.

. Security assurance requirements ensure that the alleged security

measures are effective and implemented correctly.

Assurance is a measure of confidence that a system meets its security object-

ives. The CC defines seven evaluation assurance levels, from EAL1, which

stands for functionally tested, up to EAL7, meaning formally verified,

designed, and tested. EAL7 is military-level security; for commercial prod-

ucts the highest practical level is EAL4.

When the TOE contains security functions realized by a probabilistic or

permutational mechanism, such as passwords or cryptographic hash functions,

the function’s minimum strength level strength of function (SOF) can be

required. The SOF level (basic, medium, or high) corresponds to the minimum

effort necessary to successfully attack the underlying security mechanism.

An internationally recognized CC evaluation may be carried out by an

accredited evaluation laboratory, and the corresponding security certificate

may be issued by an accredited certification body. More information can be

found on the CC home page [20].

In Section 2.6, we mentioned the digital signature legislative in the EU.

For the digital signatures that are a priori recognized by the national laws of

the EU member states, only sufficiently evaluated hardware and software

components may be used. For more information, see [18].

2.8 SECURITY AUDIT

Information security management systems can also be certified. The ISO=IEC

27001 standard [21], which recently replaced BS 7799, can be used within

commercial or nonprofit organizations to formulate security requirements and
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objectives and as a framework for the implementation and management of

controls ensuring that the specific security objectives are met. In addition, the

standard can be applied by the internal and external auditors to determine

the degree of compliance with the policies, directives, and standards adopted

by an organization. Nationally accredited certification bodies can issue IT

security management certificates. For example, certification bodies in Austria

have to be accredited by the Federal Ministry of Economics and Labor.
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3.1 INTRODUCTION

The rapidly growing wireless communication industry faces an exploding need

for security. With the ever-increasing computing speed brought by advanced

technologies, higher and higher security level is required to counter various

attacks. The data encryption standard (DES) has been the U.S. government

standard since 1977. However, with the fast computing technology these days,

it can be cracked quickly and inexpensively. In January 1997, the National

Institute of Standards and Technology (NIST) invited proposals for new

algorithms for the advanced encryption standard (AES). Fifteen preliminary
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algorithms were proposed in response. Among these preliminary candidates,

MARS, RC6, Rijndael, Serpent, and Twofish were announced as the finalists

on August 9, 1999. After further evaluating the security, as well as both

software and hardware implementations of these finalists, NIST announced

in October 2000 that Rijndael was selected as the AES algorithm [1].

The AES algorithm has broad applications in wireless communications,

including cellular phones, smart cards, network servers, and surveillance

systems. Compared with software implementations, hardware implementa-

tions of the AES algorithm not only can achieve higher speed and lower

power consumption, but can also provide more physical security. This chapter

addresses various optimization approaches for efficient hardware implemen-

tations of the AES algorithm. Generally, optimizations can be carried out in

three levels: circuit, architectural, and algorithmic levels. Compared with

circuit-level optimizations, algorithmic- and architectural-level optimizations

can usually achieve much more significant improvements. Three architectural

optimization techniques can be employed to speed up the hardware imple-

mentations of the AES algorithm. They are pipelining, subpipelining, and

loop unrolling. The speedup factor and area consumption of each technique

are provided in this chapter. Architectural- and algorithmic-level optimiza-

tions are inseparable and interactive. Successful applications of architectural

optimization techniques depend on how the algorithm is transformed into

hardware. Various algorithmic modifications can be employed to reduce the

hardware complexity of the AES algorithm, such as substructure sharing and

composite field arithmetic. These optimization methods are also presented in

this chapter. In addition, resource-sharing issues between encryptors and

decryptors are discussed. These issues become very important when both

the encryptor and the decryptor need to be implemented in a small area.

The structure of this chapter is as follows. In Section 3.2, the AES algo-

rithm is briefly introduced. Three architectural optimization approaches are

investigated in Section 3.3. In Section 3.4, various algorithmic modifications

for the AES algorithm are presented. Section 3.5 explores resource sharing

between encryptors and decryptors and Section 3.6 concludes this chapter.

3.2 ADVANCED ENCRYPTION STANDARD ALGORITHM

The AES algorithm is a symmetric-key cipher, in which a single key is used in

both encryption and decryption. The key length of the AES algorithm can be

128, 192, or 256 bits. The AES algorithm is also a block cipher. Messages are

divided into blocks of 128 bits and the encryption or decryption is carried out

on each block. The 128-bit block can be divided into sixteen 8-bit bytes in0,

in1, in2, . . . , in15. These bytes are mapped to a 4� 4 array, called the State, as

illustrated in Figure 3.1. The encryption or decryption is performed on the

State, and at the end, the final value is mapped to the output bytes out0, out1,

out2, . . . , out15. Each byte in the State is denoted by Si, j (0 � i, j< 4) and
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is considered as an element of finite field GF(28). Although all degree

eight irreducible polynomials over GF(2) can be used to construct GF(28),

the irreducible polynomial specified by the AES algorithm is P(x) ¼ x8þ
x4þ x3þ xþ 1. The key of the AES algorithm can be mapped to four rows of

bytes in a similar way, except the number of bytes in each row, denoted by

Nk, can be 4, 6, or 8 when the length of the key is 128, 192, or 256 bits,

respectively. The AES algorithm is carried out in a number of rounds. The

total round number, Nr, is 10 when Nk ¼ 4, Nr ¼ 12 when Nk ¼ 6, and

Nr ¼ 14 when Nk ¼ 8. Figure 3.2 illustrates the block diagram of the AES

encryption and the straightforward decryption structures.

S0,0

S1,0

S2,0

S3,0

S0,3S0,2S0,1

S1,3S1,2S1,1

S2,3S2,2S2,1

S3,1 S3,2 S3,3

Input bytes Output bytesState array

in0

in13in9in5in1

in12in8in4

in2

in15in11in7in3

in14in10in6

out0

out13out9out5out1

out12out8out4

out2

out15out11out7out3

out14out10out6

FIGURE 3.1 Mapping of input bytes, State array, and output bytes. (From Zhang, X.

and Parhi, K.K., IEEE Circuits Syst. Mag., 2(4), 26, 2002. With permission.)
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(a) (b)

Roundkey (0)

Roundkey (i)

Roundkey (Nr)
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Roundkey (i)

Roundkey (0)

FIGURE 3.2 The AES algorithm. (a) Encryption structure. (b) Straightforward decryption

structure. (From Zhang, X. and Parhi, K.K., IEEE Circuits Syst. Mag., 2(4), 27, 2002. With

permission.)
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3.2.1 ENCRYPTION

The roundkeys used in encryption and decryption are generated from the key

expansion process. The details of this process are introduced in the next

subsection. In the encryption, after the initial roundkey addition, Nr rounds

are carried out. The first Nr� 1 rounds are the same. As illustrated in Figure

3.2a, each of these rounds consists of four transformations: the SubBytes, the

ShiftRows, the MixColumns, and the AddRoundKey. The only difference in

the final round is that there is no MixColumns transformation.

The SubBytes is performed on each individual byte of the State. This

transformation first computes the multiplicative inverse of each byte in GF(28),

followed by an affine transformation. The SubBytes can be described by

S0i, j ¼ MS�1
i, j þ C, (3:1)

where

M ¼

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

2
66666666664

3
77777777775

, C ¼

1

1

0

0

0

1

1

0

2
66666666664

3
77777777775
:

The ShiftRows is a simple transformation. The bytes in the first row of the

State do not change whereas those in the second, third, and fourth rows

cyclically shift 1 byte, 2 bytes, and 3 bytes to the left, respectively. This

transformation is illustrated in Figure 3.3.

The MixColumns is a columnwise transformation. The four bytes in each

column of the State are considered as the coefficients of a degree three

S0,0

S1,0

S2,0

S3,0

S0,3S0,2S0,1

S1,3S1,2S1,1

v2,3S2,2S2,1

S3,1 S3,2 S3,3

S0,0

S1,1

S2,2

S3,3

S0,3S0,2S0,1

S1,0S1,3S1,2

S2,1S2,0S2,3

S3,0 S3,1 S3,2

Shift 1 byte

Shift 2 bytes

Shift 3 bytes

No shift

FIGURE 3.3 ShiftRows transformation. (From Zhang, X. and Parhi, K.K., IEEE
Circuits Syst. Mag., 2(4), 27, 2002. With permission.)
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polynomial over GF(28). Then this polynomial is multiplied by m(x) modulo

x4þ 1, where

m(x) ¼ f03g16 x3 þ f01g16 x2 þ f01g16 xþ f02g16:

In the above equation, {y}16 denotes the number y in hexadecimal form

whereas {y}2 used later in this chapter stands for y in binary form. In matrix

form, the MixColumns can be expressed as

S00,c

S01,c

S02,c

S03,c

2
664

3
775 ¼

f02g16 f03g16 f01g16 f01g16

f01g16 f02g16 f03g16 f01g16

f01g16 f01g16 f02g16 f03g16

f03g16 f01g16 f01g16 f02g16

2
664

3
775

S0,c

S1,c

S2,c

S3,c

2
664

3
7750� c< 4: (3:2)

Finally, in the AddRoundKey transformation, a 128-bit roundkey is added to

the State by bitwise Exclusive-OR (XOR) operation.

3.2.2 KEY EXPANSION

A total of (Nrþ 1) roundkeys are needed for the encryption or decryption.

Each 128-bit roundkey can be divided into four 4-byte words. The key is used

as the initial set of Nk words, and the rest of the words are generated from the

key iteratively through the key expansion process described by the pseudo-

code in Figure 3.4 [1]. The output of the key expansion is an array of 4-byte

words denoted by w(i)(0 � i< 4(Nrþ 1)), and each roundkey can be formed

by concatenating four words: roundkey (i)¼ (w(4i), w(4iþ 1), w(4iþ 2),

w(4iþ 3)). In Figure 3.4, the function of the SubWord is to apply the Sub-

Bytes transformation to each byte in a word whereas RotWord cyclically

rotates each byte in a word one byte to the left. For example, given the input

to the RotWord as four bytes (a0, a1, a2, a3), RotWord would return

(a1, a2, a3, a0). Rcon is the round constant word vector, and only the leftmost

byte of each entry in Rcon is nonzero. The values of the leftmost bytes for

Rcon(1) through Rcon(10) are {01}16, {02}16, {04}16, {08}16, {10}16, {20}16,

{40}16, {80}16, {1b}16, and {36}16, respectively.

3.2.3 DECRYPTION

As illustrated in Figure 3.2b, a straightforward decryption structure can be

derived by inverting each transformation and the sequence of the transform-

ations in the encryption structure. The inverse transformation of the SubBytes

is the InvSubBytes, in which the following operation is performed on each

byte of the State

S0i, j ¼ (M�1(Si, j þ C))�1: (3:3)

Nicolas Sklavos/Wireless Security and Cryptography 8771_C003 Final Proof page 49 27.1.2007 3:14pm

Efficient VLSI Architectures 49



The inverse of the ShiftRows is the InvShiftRows. In this transformation, the

first row of the State does not change whereas the rest of the rows are shifted

cyclically to the right by the same offsets as those in the ShiftRows. The

InvMixColumns perform the inverse function of the MixColumns. This trans-

formation considers the four bytes in each column of the State as the coefficients

of a polynomial and multiply this polynomial by m�1(x) modulo x4þ 1, where

m�1(x) ¼ f0bg16x3 þ f0dg16x2 þ f09g16xþ f0eg16:

In matrix form, the InvMixColumns can be written as

S00,c

S01,c

S02,c

S03,c

2
664

3
775 ¼

f0eg16 f0bg16 f0dg16 f09g16

f09g16 f0eg16 f0bg16 f0dg16

f0dg16 f09g16 f0eg16 f0bg16

f0bg16 f0dg16 f09g16 f0eg16

2
664

3
775

S0,c

S1,c

S2,c

S3,c

2
664

3
7750� c< 4: (3:4)

The inverse of the AddRoundKey is still bitwise XOR operations. Hence, the

name is kept unchanged.

As can be observed from Figure 3.2a and Figure 3.2b, the straightforward

decryption structure has a totally different sequence of transformations from

that of the encryption structure. This difference puts an obstacle to resource

KeyExpansion(byte key(4Nk), word w(4(Nr +1)), Nk)
begin

i = Nk

i = 0

word temp

temp = w(i −1)
while (i < 4(Nr +1))

if (i mod Nk = 0)

end while
i = i+1

w(i) = w(i−Nk) XOR temp
end if

temp = SubWord(temp)
else if (Nk > 6 and i mod Nk = 4)

temp = SubWord(RotWord(temp)) XOR Rcon(i/Nk)

end while
i = i +1
w(i) = word(key(4i), key(4i +1), key(4i + 2), key(4i + 3))

while (i < Nk)

end

FIGURE 3.4 Pseudocode for key expansion. (From Zhang, X. and Parhi, K.K., IEEE
Circuits Syst. Mag., 2(4), 28, 2002. With permission.)
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sharing between the implementation of encryptors and decryptors. Fortu-

nately, two features of the AES algorithm can be employed to change the

sequence of the transformations in the decryption.

1. The positions of the InvShiftRows and InvSubBytes can be exchanged

without affecting the decryption.

2. The addition of the roundkeys can be moved to after the InvMix-

Columns if the InvMixColumns transformation is applied to the round-

keys before they are added up.

Applying these twoproperties, theequivalentdecryptionstructure as illustrated in

Figure 3.5 can be derived. In Figure 3.5, mixroundkeys denote the modified

roundkeys as a result of applying the InvMixColumns to the roundkeys. As can

be observed, the sequence of the transformations in the equivalent decryption

structure is exactly the same as that in the encryption structure. As a result, more

efficient implementations of joint encryptors and decryptors are enabled.

3.3 ARCHITECTURAL OPTIMIZATIONS

The AES algorithm is a block cipher. The most commonly used modes of

operation for block ciphers are electronic code book (ECB), counter (CTR),

cipher block chaining (CBC), cipher feedback (CFB), and output feedback

(OFB). The first two belong to nonfeedback modes, where the encryption or

Ciphertext (128 bits)

Roundkey (Nr)

InvSubBytes

InvSubRows

InvMixColumns

Mixroundkey (i)

F
or

 i 
=

 N
r �

1 
to

 1
 

F
in

al
 r

ou
nd

InvSubBytes

InvShiftRows

Roundkey (0)

Plaintext (128 bits)

FIGURE 3.5 Equivalent decryption structure. (From Zhang, X. and Parhi, K.K., IEEE
Circuits Syst. Mag., 2(4), 29, 2002. With permission.)
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decryption of different blocks is independent of each other and can be carried

out simultaneously. The other three modes are feedback modes. In these

modes, due to the existence of feedback loops, the processing of the next

block cannot start until the current block is completed. Architectural optimiza-

tions do not bring much improvement for feedback modes. This section focuses

on the speedups that can be brought by different architectures for nonfeedback

modes and the relative area requirements of these architectures.

For nonfeedback modes, speedups can be achieved by processing

multiple data blocks simultaneously. Three types of architectures can

be used for this purpose. They are pipelining, subpipelining, and loop

unrolling. These architectures are illustrated in Figure 3.6 together with a

(d)
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Multiplexer

Registers
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Round 2
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k 
R
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nd
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FIGURE 3.6 Three types of architecture for encryptor and decryptor with a basic

reference architecture: (a) pipelined architecture, (b) subpipelined architecture,

(c) loop-unrolled architecture, and (d) basic reference architecture. (From Zhang, X.

and Parhi, K.K., IEEE Circuits Syst. Mag., 2(4), 30, 2002. With permission.)
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basic reference architecture. The performance of these architectures is

analyzed in [2–4].

The speed of a digital system is usually measured by throughput, which is

defined as the average number of bits processed per second. For the AES

algorithm, throughput can be also computed as

Throughput ¼ 128

Average number of clock cycles to process one block� clock period
:

The basic architecture illustrated in Figure 3.6d can only process one block of

data at a time, and one round of encryption or decryption is carried out in

each clock cycle. Hence, this architecture needs Nr clock cycles to process

one block of data. In addition, the minimum achievable clock period is

decided by the path with the longest computational time, which is also called

the critical path, between each pair of adjacent registers. Therefore, the

maximum throughput that can be achieved by the basic architecture can be

computed as

Throughputbasic ¼
128

Nr� tbasic

,

where tbasic¼ troundþ tmuxþ tsetupþ tprop. tround stands for the delay of the

combinational logic in each round unit and tmux denotes the delay of a

multiplexer whereas tsetup and tprop are the setup time and propagation delay

of a register, respectively. In the following, the speedups that can be achieved

by pipelining, subpipelining, and loop unrolling over the basic architecture

are provided. In addition, the area consumptions of these architectures are

discussed.

1. Pipelining. Pipelining inserts rows of registers between each round

unit. The combinational logic between adjacent registers is called

pipelining stages. In this architecture, the number of the copies of the

round unit, k, is usually chosen to be a divisor of Nr. During each clock

cycle, the partially processed data block moves to the next pipelining

stage and its place is taken by the subsequent block. Hence, after an

initial delay of k clock cycles, k blocks of data are processed simultan-

eously. When a partially processed block reaches the kth round, it is fed

back to the first round until all the Nr rounds are performed on this

block. Therefore, after the initial delay, k blocks of data are processed

for every k� (Nr=k)¼Nr clock cycles. Accordingly, the average

number of clock cycles to process one data block is Nr=k. As shown

in Figure 3.6a and Figure 3.6d, the minimum achievable clock period of

the pipelined architecture is the same as that of the basic architecture.

As a result, the k-round pipelined architecture can achieve k times
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speedup over the basic architecture whereas the area requirement is

approximately k times of the basic reference architecture.

2. Subpipelining. Subpipelining inserts registers not only between each

round unit but also inside each round unit. Assume that the critical

path of each round unit is further broken into r segments by registers.

Then r� k blocks of data can be processed simultaneously after the

initial delay of r� k clock cycles. In addition, all the Nr rounds for

these r� k blocks can be carried out in r� k�Nr=k¼ r�Nr clock

cycles. Hence, the average number of clock cycles to process one

block of data is (r�Nr)=(r� k)¼Nr=k. Moreover, if the r substages

in each round unit have equal delay, then the minimum achievable

clock period of the r-substage subpipelining is

tsubpipelining ¼ tround=r þ tmux þ tsetup þ tprop:

Let

t ¼ tsetup þ tprop þ tmux

tround

:

Then the speedup of k-round r-substage subpipelining over the basic

architecture is

Throughputsubpipelining

Throughputbasic

¼ kr(1þ t)

1þ rt
:

Usually t is small. Hence, if each round unit can be divided into r
substages with equal delay, the k-round subpipelining can achieve

almost k� r times speedup over the basic architecture. Compared

with pipelining, subpipelining can achieve almost additional r times

speedup at the expense of slightly increased area caused by extra

registers and control logic. However, the speedup that can be achieved

by subpipelining is limited by the indivisible combinational compon-

ent with the longest delay in the round unit. Breaking the critical path

of the rest of the round unit into shorter segments does not reduce the

minimum achievable clock period. Although more blocks of data are

processed simultaneously, the average number of clock cycles to

process one block of data is increased by the same proportion. In

this case, the overall speed does not improve despite the increased area

caused by additional registers.

3. Loop Unrolling. In a loop-unrolled architecture as illustrated in Figure

3.6c, only one block of data is processed at a time. However, multiple

rounds are performed in each clock cycle. The unrolling factor, k, is
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usually chosen as a divisor of Nr also. It takes Nr=k clock cycles to

process one data block. In addition, it can be observed from Figure

3.6c that the minimum achievable clock period of the loop-unrolled

architecture is

tloop unrolling ¼ ktround þ tmux þ tsetup þ tprop:

Therefore, it can be derived that the speedup can be achieved by a

k-round loop-unrolled architecture over the basic architecture is

Throughputloop-unrolled

Throughputbasic

¼ 1þ t

1þ t=k
: (3:5)

As can be observed from Equation 3.5, since t is usually small, the

loop-unrolled architecture does not achieve much speedup over

the basic architecture, despite the almost k times area requirement.

In summary, the speed and area consumption of pipelining, subpipelining,

and loop unrolling are listed in Table 3.1. The numbers in this table are normal-

ized with respect to the speed and area of the basic architecture. The speed of the

subpipelined architecture is computed based on the assumption that each round

unit can be divided into r substages with equal delay. In addition, r and s are the

fractions of the area of a 128-bit register and a 128-bit 2-to-1 multiplexer over the

total area of a basic architecture, respectively. Usually, r and s are small. It can

be observed from Table 3.1 that the subpipelined architecture can achieve the

maximum speedup and optimum speed over area ratio in nonfeedback modes.

Employing subpipelining with 10 copies of round unit and seven substages in

each round unit, a throughput of 21.56 Gbps has been achieved on Xilinx FPGA

devices [5]. In small area applications, subpipelined architecture with only one

TABLE 3.1
Speed and Area of Pipelining, Subpipelining,

and Loop Unrolling

Architecture Speed Area

Basic 1 1

k-Round pipelining k k�s(k�1)

r-Substage k-round subpipelining
kr(1þ t)

1þ rt
k�s(k�1) þ rk(r�1)

k-Round loop unrolling
1þ t

1þ t=k
k� (k�1)(r þ s)
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round unit can be employed. If the subpipelined architecture can achieve a speed

that is higher than the application requirement, lower power supply voltage can

be employed to reduce power consumption.

3.4 ALGORITHMIC OPTIMIZATIONS

This section introduces the algorithmic strength on the optimization of individual

transformations of the AES algorithm. Since no logic operations are involved in

the ShiftRows or InvShiftRows, and the AddRoundKey only costs a bitwise

XOR operation, no optimization needs to be done on these transformations.

3.4.1 IMPLEMENTATIONS OF SUBBYTES AND INVSUBBYTES

The SubBytes and InvSubBytes can be implemented by two approaches. One

of them is based on lookup tables (LUTs) [2,3,6–10]. The inverse value of

every GF(28) element can be precomputed and stored in an LUT of 28� 8¼ 2 K

bits. Then the inverse of a given element can be read out from the LUT by

using proper addresse. Each SubBytes or InvSubBytes needs 16 such tables.

Hence, the memory requirement of this approach becomes very large when

multiple round units need to be implemented. In addition, the delay of the

memory access is unbreakable. This feature prohibits each round unit from

being divided into multiple substages with equal delay. As a result, utilizing

LUTs in SubBytes or InvSubBytes implementations prohibits taking further

advantages of subpipelining to achieve higher speed.

Another approach is to employ combinational logic only in the imple-

mentation of the multiplicative inversion. In this approach, the elements with

unbreakable delay are individual gates. Hence, each round unit can be divided

into multiple substages with equal delay. However, the computation of

multiplicative inverse in GF(28) is hardware demanding. In order to reduce

complexity, composite field arithmetic can be employed [11]. The idea of

applying composite field arithmetic to the AES algorithm is first proposed in

[12] and is explored in detail in [5,13–19]. Applying composite field arith-

metic, the elements of large-order fields are mapped to those of small-order

fields in which the field operations can be carried out in a simpler way.

3.4.1.1 Composite Field Implementations of Multiplicative
Inversion

Given an irreducible polynomial R(x) over GF( p) with degree q, the set

f1, x, x2, . . . , xq�1g forms a standard basis of GF( pq), where x is a root of

R(x). Using standard basis, an element a 2 GF( pq) can be represented in the

form of a0 þ a1xþ � � � þ aq�1xq�1, where a0, a1, . . . , aq�1 2 GF( p). Finite

fields have two associate operations: the additive operation and the multi-

plicative operation. With the field elements represented in polynomial form,

the additive operation can be defined as polynomial addition whereas the
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multiplicative operation can be defined as polynomial multiplication modulo

R(x). In this case, we say GF( pq) is constructed from GF( p) by R(x), and

R(x) is called the field polynomial of GF( pq).

The pair fGF(2n), Q( y) ¼ yn þ
Pn�1

i¼0 qiy
i, qi 2 GF(2)g and fGF((2n)m),

P(x) ¼ xm þ
Pm�1

i¼0 pix
i, pi 2 GF(2n)g is called a composite field [11] if

. GF(2n) is constructed from GF(2) by Q(y)

. GF((2n)m) is constructed from GF(2n) by P(x)

Composite fields are denoted by GF((2n)m), and a composite field GF((2n)m)

is isomorphic to the field GF(2q) for q¼ nm. Composite fields can also be

built iteratively from lower-order fields. For example, the composite field of

GF(28) can be built iteratively from GF(2) by the following irreducible

polynomials:

GF(2)) GF(22) : P0(x) ¼ x2 þ xþ 1,

GF(22)) GF((22)2) : P1(x) ¼ x2 þ xþ f,

GF((22)2)) GF(((22)2)2) : P2(x) ¼ x2 þ xþ l,

(3:6)

where f 2 GF(22) and l 2 GF((22)2). In addition, to maintain additive and

multiplicative homomorphisms, an isomorphic mapping function f (a) ¼ d� a
and its inverse need to be applied to map the representation of an element in

GF(2n) to its composite field and vice versa. Here, a ¼ [an�1, an�2, . . . , a0]T is

the n-bit column vector formed by the coefficients in the standard basis

representation of a, and d is an n� n binary matrix. The entries in d are decided

by both the irreducible polynomial used for the construction of GF(2n) from

GF(2) and those for the composite field. For example, assume f¼ {10}2 and

l¼ {1100}2, the d matrix corresponding to P(x)¼ x8þ x4þ x3þ xþ 1 and the

field polynomials in Equation 3.6 can be found as follows [13]:

d ¼

1 0 1 0 0 0 0 0

1 1 0 1 1 1 1 0

1 0 1 0 1 1 0 0

1 0 1 0 1 1 1 0

1 1 0 0 0 1 1 0

1 0 0 1 1 1 1 0

0 1 0 1 0 0 1 0

0 1 0 0 0 0 1 1

2
66666666664

3
77777777775
: (3:7)

In the composite field GF((24)2), an element can be written as S(x)¼ shxþ sl,

where sh,sl 2 GF(24) and x is a root of P2(x). Computing the multiplicative
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inverse of S(x) modulo P2(x) is equivalent to finding polynomials A(x) and

B(x) satisfying the following equation:

A(x)P2(x)þ B(x)S(x) ¼ 1: (3:8)

Then S�1(x)¼B(x). The extended Euclidean algorithm can be applied to solve

this problem. First, we need to write P2(x) in terms of the quotient and remainder

of the polynomial division by S(x). By long division, it can be derived that

P2(x) ¼ s�1
h xþ (1þ s�1

h sl)s
�1
h

� �
S(x)þ lþ (1þ s�1

h sl)s
�1
h sl

� �
: (3:9)

Multiply s2
h and Q ¼ s2

hlþ shsl þ s2
l

� ��1
to both sides of Equation 3.9; it

follows that

Qs2
hP2(x) ¼ Q(shxþ (sh þ sl))S(x)þ 1:

Comparing the above equation with Equation 3.8, it can be observed that

S�1(x) ¼ shQxþ (sh þ sl)Q: (3:10)

According to Equation 3.10, the multiplicative inversion involved in the

SubBytes and InvSubBytes can be implemented by the architecture illustrated

in Figure 3.7. For a given set of irreducible polynomials used for composite

field construction, the d matrix is fixed. Hence, we can precompute the

product of d�1 and the M matrix such that the inverse isomorphic mapping

and the affine transformation can be combined.

The multiplication in GF(24) can be further decomposed into GF((22)2)

to reduce hardware complexity. Assume two elements a,b 2 GF((22)2) can

be expressed as ahxþ al and bhxþ bl, respectively, where ah,al,bh,bl 2 GF(22)

and x is a root of P1(x). Then the product of a and b can be computed as

x2

and
affine

transformation

x −18 8

4

4

4

4

Multiplicative inversion

4
d X

d 
−1X

Xλ

FIGURE 3.7 Implementation of the SubBytes transformation. (From Zhang, X. and

Parhi, K.K., IEEE Trans. VLSI Syst., 12(9), 957, 2004. With permission.)
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(ahxþ al)(bhxþ bl) mod P1(x)

¼ ahbhx2 þ (ahbl þ albh)xþ albl mod P1(x)

¼ ahbh(xþ f)þ (ahbl þ albh)xþ albl

¼ ((ah þ bh)(al þ bl)þ albl)xþ (ahbhfþ albl):

(3:11)

Accordingly, the GF(24) multiplier can be implemented by the architecture

illustrated in Figure 3.8a. By using an equation similar to Equation 3.11, the

multiplication in GF(22) can also be decomposed. In GF(2), multiplications

are simply AND operations. Hence, the GF(22) multiplier can be implemen-

ted by the architecture shown in Figure 3.8b.

A square operation can be considered as a multiplication with two equal

operands. Compared to a general multiplier, the implementation of a squarer

is much more simple. In GF(22), ah and al can be expressed as a3yþ a2 and

a1yþ a0, respectively, where y is a root of P0(x). Replace bh and bl with ah and

al, respectively in Equation 3.11, and cancel out common terms, simple

equations can be derived for the squarer. For example, in the case of

f¼ {10}2, assume the four bits associated with a are {a3, a2, a1, a0}, the

bits in a2 ¼ fa03, a02, a01, a00g can be computed as

a03 ¼ a3,

a02 ¼ a3 þ a2,

a01 ¼ a2 þ a1,

a00 ¼ a3 þ (a1 þ a0):

(3:12)

Therefore, a squarer in GF(24) can be implemented by only four XOR gates

with two XOR gates in the critical path when f¼ {10}2. Similarly, for given

2

2

2

2
4

4
4

2

2
2

2

(a) (b)

x 2 4 4 4 4 2 2

(c) (d) (e)

f

fXλ
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FIGURE 3.8 Implementations of individual blocks: (a) multiplier in GF((22)2),

(b) multiplier in GF(22), (c) squarer in GF(24), (d) constant multiplication by l ¼
{1100}2, and (e) constant multiplication by f ¼ {10}2. (From Zhang, X. and Parhi,

K.K., IEEE Trans. VLSI Syst., 12(9), 961, 2004. With permission.)
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values of f and l, the constant multiplications by f and l can also be

simplified. For example, in the case of f¼ {10}2, f can be expressed as y,

where y is a root of P0(x). Assume that c 2 GF(22) can be expressed as

c1yþ c0 (c1,c0 2 GF(2)). Then multiplying c by f can be computed as

(c1yþ c0)y ¼ c1y2 þ c0y ¼ (c1 þ c0)yþ c1: (3:13)

Hence, the constant multiplication by f¼ {10}2 can be implemented by one

XOR gate. In addition, when l¼ {1100}2, it can be derived that the product

of l and b¼ {b3, b2, b1, b0} can be computed as

b03 ¼ (b2 þ b0),

b02 ¼ (b3 þ b1)þ (b2 þ b0),

b01 ¼ b3,

b00 ¼ b2:

(3:14)

Sharing the term b2þ b0 in Equation 3.14, the constant multiplication by

l¼ {1100}2 can be implemented by three XOR gates with two XOR gates in

the critical path. In summary, the architectures for squarer in GF(24), the

constant multiplier by f¼ {10}2, and l¼ {1100}2 are illustrated in Figure

3.8c through Figure 3.8e, respectively.

The inversion in GF(24) can be implemented by different approaches:

1. Since for s 2 GF(2q), s2q�1 ¼ 1, then s� s2q�2 ¼ 1. Hence, s�1 can

be computed as s2q�2. Therefore, the inverse of s 2 GF(24) can be

computed as s�1¼ s14¼ ((s2)2)2 (s2)2 s2. Accordingly, the inversion in

GF(24) can be implemented by repeat squaring and multiplying as

illustrated in Figure 3.9a.

2. In GF((22)2), an element can be written as S0(x) ¼ s0hxþ s0l, where

s0h, s0l 2 GF(22) and x is a root of P1(x). Similar to Equation 3.10,

S0�1(x) can be computed as

S0�1(x) ¼ s0hQ0xþ (s0h þ s0l)f, (3:15)

where Q0 ¼ (s02h fþ s0hs0l þ s02l )�1. This decomposition is illustrated in

Figure 3.9b. It can be derived that the squarer in GF(22) can be

combined with the constant multiplier block (�f), and the output

bits of the combined block are the same as the two input bits with their

bit positions switched when f ¼ {10}2. In addition, the inverse of

s0 ¼ fs01, s00g 2 GF(22) is fs01, s01 þ s00g. This inversion can be imple-

mented by one XOR gate.

3. Based on Figure 3.9b, the expressions can be derived for the output bits

in terms of the input bits, and Boolean algebra can be applied to
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simplify these expressions. For example, in the case of f¼ {10}2,

taking the four bits of s 2 GF(24) as {s3, s2, s1, s0}, it can be derived

that the bits in s�1 ¼ fs�1
3 , s�1

2 , s�1
1 , s�1

0 g can be computed by the

following equations:

s�1
3 ¼ s3 þ s3s2s1 þ s3s0 þ s2,

s�1
2 ¼ s3s2s1 þ s3s2s0 þ s3s0 þ s2 þ s2s1,

s�1
1 ¼ s3 þ s3s2s1 þ s3s1s0 þ s2 þ s2s0 þ s1,

s�1
0 ¼ s3s2s1 þ s3s2s0 þ s3s1 þ s3s1s0 þ s3s0 þ s2

þ s2s1 þ s2s1s0 þ s1 þ s0:

(3:16)

Applying substructure sharing, the number of gates needed for the implemen-

tation of Equation 3.16 can be further reduced.

The gate counts and the critical paths for the three approaches to implement

the multiplicative inversion in GF(24) are summarized in Table 3.2. As it can

be observed from the table, the third approach based on direct implementation

of the derived equation requires the least number of gates and has the shortest

critical path. Composite field decomposition may be applied to reduce the

hardware complexity when the order of the involved field is large. However,

it may not be the optimum approach when the field order is small.

The complexity of the multiplicative inversion architecture in Figure 3.7

can be further reduced by combining the GF(24) squarer block and the

x24

4

x2

4 4

2

2

2

2

(a)

(b)

xf

χ−1

x−1

x2 x2

FIGURE 3.9 Implementations of inversion in GF(24): (a) square-multiply approach

and (b) multiple decomposition approach. (From Zhang, X. and Parhi, K.K., IEEE
Trans. VLSI Syst., 12(9), 961, 2004. With permission.)
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constant multiplier (�l) block, as well as sharing common terms among the

GF((22)2) multipliers [19]. Replacing b0, b1, b2, b3 in Equation 3.14 by

a00, a01, a02, a03 in Equation 3.12, it can be derived that

b00 ¼ a2 þ a1 þ a0,

b01 ¼ a3 þ a0,

b02 ¼ a3,

b03 ¼ a3 þ a2:

(3:17)

Hence, the combined squarer and constant multiplier (�l) can be implemen-

ted by four XOR gates with two XOR gates in the critical path. In addition,

from Figure 3.7, it can be observed that each of the GF((22)2) multiplier pairs

on the right and bottom share a common operand. When two GF((22)2)

multipliers have a common operand, the result of the bitwise addition carried

out in one of the adders on the left of Figure 3.8a can be shared, and each of

the three pairs of GF(22) multiplier inside have a common input. Furthermore,

when two GF(22) multipliers have a common operand, the result of the

single-bit addition carried out in one of the XOR gates on the left of Figure

3.8b can be shared. Therefore, for each pair of GF((22)2) multipliers with a

common operand, an area reduction of five XOR gates can be achieved by

sharing the common terms.

3.4.1.2 Constructions of Optimum Composite Fields
for the Advanced Encryption Standard Algorithm

Employing composite field arithmetic in the computation of the multiplicative

inversion in the SubBytes and InvSubBytes transformations of the AES

algorithm not only reduces hardware complexity, but enables deep subpipe-

lining such that higher speed can be achieved.

TABLE 3.2
Gate Counts and Critical Paths for the Three

Implementation Approaches of Inversion

in GF(24)

Approach Total Gate Number Critical Path

1 54 XORþ 18 AND 12 XORþ 2 AND

2 17 XORþ 9 AND 7 XORþ 2 AND

3 14 XORþ 8 AND 3 XORþ 2 AND

Source: From Zhang, X. and Parhi, K.K., IEEE Trans. VLSI Syst.,

12(9), 963, 2004. With permission.
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Different irreducible polynomials can be used to construct the composite

field of the same order. References [13] and [16] proposed one way to construct

the composite field for the AES algorithm. However, there exist other construc-

tion schemes with smaller gate count and shorter critical path. In [14], different

constructions of the composite field are compared to find the one with minimum

gate count. Nevertheless, this design implements all the transformations of

the AES algorithm in composite fields. Taking the isomorphic mapping into

consideration, the complexity of the AddRoundKey does not change if the

isomorphic mapping of the key is precomputed, while the complexity of

MixColumns and InvMixColumns can be much higher. For example, using the

isomorphic mapping matrix in Equation 3.7, the constant multiplications by

{02}16 and {03}16 in the MixColumns transformation are mapped to the constant

multiplications by {5f}16 and {5e}16, respectively. Compared with {02}16 and

{03}16, there are more nonzero bits in {5f}16 and {5e}16. In addition, the nonzero

bits in {5f}16 and {5e}16 have higher weights. Therefore, the constant multipli-

cations by {5f}16 and {5e}16 require larger area and have longer critical path.

It is the same case for the constant multiplications involved in the InvMix-

Columns transformation. Although the isomorphic mapping matrix changes

with the irreducible polynomials used for composite field construction, gen-

erally the constant multiplications in the MixColumns and InvMixColumns

are mapped to more complicated multiplications in the composite field.

Therefore, it is more efficient to carry out only the multiplicative inversion

in the SubBytes and InvSubBytes in the composite field. In this case, the

construction scheme selected by Rudra et al. [14] is no longer optimum.

Optimum composite field construction schemes have been discussed in

[17–19]. The approach in [18] only considers the cases when the value of f in

Equation 3.6 is {10}2, and the optimum construction is selected based on the

number of nonzero entries in the isomorphic mapping matrices. However,

applying substructure sharing, the matrix with the least number of nonzero

entries does not always lead to minimum gate count. The approach in [19]

optimizes for overall area requirement. In addition, this work proposed to use

normal basis representation for finite field elements such that the sharing of

one extra common operand between GF((22)2) multipliers is enabled. Never-

theless, the critical path issue is not considered. Zhang and Parhi [17] intro-

duced possible schemes to construct the composite fields for the AES

algorithm by using irreducible polynomials in the form of Equation 3.6.

The complexities of field operations depend on the coefficients of the field

polynomials. Results are provided in [17] on how these coefficients affect the

complexity of each subfield operation involved in the composite field imple-

mentation of the multiplicative inversion. In addition, for each construction

scheme, there exist multiple isomorphic mappings with various complexities.

Based on the complexities of both the subfield operations and the isomorphic

mapping, the optimum constructions of the composite field for the AES

algorithm can be selected to minimize gate count and critical path.
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The composite field for GF(28) can be constructed iteratively from GF(2)

by using irreducible polynomials other than those in the form of Equation 3.6.

However, in case the coefficients for x in P1(x) and P2(x) are not identity,

higher hardware complexity is required. Therefore, we only consider the

irreducible polynomials in the form of Equation 3.6 in the construction of

the composite field. P0(x) is the only degree two irreducible polynomial over

GF(2). Hence, it is the only choice for constructing GF(22) from GF(2). The

values of f 2 GF(22) and l 2 GF((22)2) need to satisfy that P1(x) is

irreducible over GF(22) and P2(x) is irreducible over GF((22)2).

According to the definition, a polynomial is irreducible if it cannot be

factored into nontrivial polynomials over the same field. For a degree two

polynomial F(x) over GF(2q), if it can be factored into nontrivial polynomials,

it must be factored into the form of F(x)¼ (xþm)(xþ n), where m,n 2
GF(2q). Hence, for a given value f, the testing of whether P1(x) is irreducible

can be done by examining if any elements of GF(22) are roots of P1(x). In

addition, if an element t 2 GF(22) is a root of P1(x), then t2þ tþf¼ 0.

Hence, alternatively, the testing of irreducibility can be done by evaluating

x2þ x over all elements of GF(22). A list of the evaluation results can be

derived. The values of f, which make P1(x) irreducible over GF(22), consist

of all the elements of GF(22) not equaling any of the evaluation results. Using

this scheme, it can be derived that the only values of f that make x2þ xþf

irreducible over GF(22) are f¼ {10}2 and f¼ {11}2. Depending on the value

of f, the elements of GF((22)2) can be represented differently. Using the same

irreducibility testing scheme, it can be derived that there are eight possible

values of l that make P2(x) irreducible over GF((22)2) when GF(22) is

constructed by using either f¼ {10}2 or f¼ {11}2. These values of l are

l ¼ f1000g2, l ¼ f1100g2,

l ¼ f1001g2, l ¼ f1101g2,

l ¼ f1010g2, l ¼ f1110g2,

l ¼ f1011g2, l ¼ f1111g2:

(3:18)

Altogether, there are 2� 8¼ 16 ways to construct GF(((22)2)2) by using

irreducible polynomials in the form of Equation 3.6.

The values of f and l may affect the complexity of the composite field

implementation of the multiplicative inversion. Next, we analyze how the

complexity of each involved subfield operation changes with f and l.

1. (�f) block

Using standard basis representation, c2GF(22) can be written as

c1yþ c0, where c1, c02GF(2) and y is a root of P0(x). Similarly,

f¼ {11}2 can be written as yþ 1. Hence,

c� f ¼ (c1yþ c0)(yþ 1) ¼ c1y2 þ (c0 þ c1)yþ c0 ¼ c0yþ (c0 þ c1):
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Accordingly, the constant multiplier (�f) can be implemented by one

XOR gate when f¼ {11}2. From Equation 3.13, the constant multiplica-

tion by f¼ {10}2 also takes one XOR gate. Therefore, the complexity of

the (�f) block is the same for the two possible values of f.

2. Multiplier in GF(22) and GF((22)2)

From Figure 3.8a and Figure 3.8b, it can be observed that the com-

plexity of the multiplier in GF(22) is independent of the values of f

and l. In addition, the only block in the GF((22)2) multiplier that

might be affected by the values of f and l is the (�f) block. From the

previous discussion, the complexity of the (�f) block is the same for

the two possible values of f. Therefore, the complexity of the multi-

plier in GF((22)2) does not change with the construction of the com-

posite field.

3. Squarer in GF(24) and the (�l) blocks

The squarer in GF(24) and the (�l) block can be combined to reduce

hardware complexity. Hence, we consider the effects of f and l on

the complexity of the combined block. Assume that the input to the

squarer is ahxþ ah and l can be expressed by lhxþ ll (ah, al, lh, ll 2
GF(22)). Then the output of the combined block, bhxþ bl, can be

computed as

bhxþ bl ¼ (ahxþ al)
2(lhxþ ll)

¼ (a2
hx2 þ a2

l )(lhxþ ll)

¼ (a2
hxþ (a2

l þ a2
hf))(lhxþ ll)

¼ a2
hlhx2 þ (a2

hll þ (a2
l þ a2

hf)lh)xþ (a2
l þ a2

hf)ll

¼ (a2
h(ll þ lh)þ (a2

l þ a2
hf)lh)xþ (a2

l ll þ a2
hf(ll þ lh)):

(3:19)

Hence, two values need to be computed in the combined squarer and

(�l) block

bh ¼ a2
h(ll þ lh)þ (a2

l þ a2
hf)lh,

bl ¼ a2
l ll þ a2

hf(ll þ lh): (3:20)

Based on Equation 3.20, expressions can be derived for each bit in bh

and bl. Canceling common terms and applying substructure sharing, the

gate number needed for the implementation of the combined squarer

and (�l) block are listed in Table 3.3 for each possible value of f and

l. In addition, the critical path for each implementation is two XOR

gates.

4. Multiplicative inversion in GF(24)

The equations for directly computing the multiplicative inverse in

GF(24) can be derived from Figure 3.9b. As it can be observed from
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this figure, the complexity of the inversion in GF(24) is only dependent

on f. In the case of f¼ {11}2, the bits in s�1 ¼ s�1
3 , s�1

2 , s�1
1 , s�1

0

� �
can be computed by the following equation:

s�1
3 ¼ s2 þ s0s3 þ s1s2s3,

s�1
2 ¼ s3 þ s0s3 þ s1s2 þ s0s2s3 þ s1s2s3,

s�1
1 ¼ s1 þ s2 þ s0s2 þ s0s3 þ s1s2 þ s1s3 þ s1s2s3 þ s0s1s3,

s�1
0 ¼ s0 þ s1 þ s3 þ s0s2 þ s0s3 þ s1s2 þ s0s1s2

þ s0s1s3 þ s0s2s3 þ s1s2s3:

(3:21)

Applying substructure sharing, Equation 3.21 can be implemented by

14 XOR gates and 8 AND gates with 3 XOR gates and 2 AND gates in

the critical path. Compared to the complexity in the case of f¼ {10}2,

which is listed in Table 3.2, the complexity of the inversion in GF(24)

is the same when f¼ {11}2.

From the previous discussion, the only subfield operation whose com-

plexity is affected by the values of f and l is the combined squarer and the

(�l) block. In addition, the complexity of the isomorphic mapping may also

change with f and l. Isomorphic mappings are needed to map the elements in

the original field to its composite field, such that both multiplicative and

additive homomorphisms are preserved. For a fixed construction of the

composite field, there exist multiple isomorphic mappings, and the complex-

ities of these mappings vary. The entries of the isomorphic mapping matrices

are decided by the irreducible polynomials used in the construction of the

original fields and the composite fields, as well as to which elements of the

composite field the base elements in the original field are mapped.

TABLE 3.3
Gate Count for Combined Squarer and (3l)

Implementation

f l Gate Number f l Gate Number

{1000}2 3 XOR {1000}2 3 XOR

{1001}2 3 XOR {1001}2 4 XOR

{1010}2 3 XOR {1010}2 3 XOR

{10}2 {1011}2 4 XOR {11}2 {1011}2 3 XOR

{1100}2 4 XOR {1100}2 3 XOR

{1101}2 5 XOR {1101}2 4 XOR

{1110}2 3 XOR {1110}2 5 XOR

{1111}2 4 XOR {1111}2 3 XOR
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Assume the set {1, a, a2, . . . , a7} forms a standard basis for GF(28),

where a is a root of P(x)¼ x8þ x4þ x3þ xþ 1. The basic idea of finding

an isomorphic mapping between GF(28) and GF(((22)2)2) is to find eight

elements 1, b, b2, . . . , b7 of GF(((22)2)2), to which the base elements 1, a,

a2, . . . , a7 are mapped. Then the jth column of the isomorphic mapping

matrix is formed by the binary vector representation of b(8�j). Additive

homomorphism always holds for arbitrary mapping matrices. Assume

a,b,c 2 GF(28) and d is an 8� 8 binary matrix. If a¼ bþ c, then

da ¼ d(bþ c) ¼ dbþ dc, where a, b, and c are the column vectors formed

by the bits in the standard basis representation of a, b, and c, respectively.

Hence, additive homomorphism does not add any constraints to the iso-

morphic mapping matrices. However, in order for the multiplicative homo-

morphism to hold, a cannot be mapped to any b. Instead P(b)¼ 0 needs to

be satisfied [11]. Such a b can be found by exhaustive search. Nevertheless,

this approach has very high complexity. One property of finite field elem-

ents is that if b is not a root of P(x), then none of the conjugates of b are

roots of P(x). This property can be employed to reduce the number of trials

in the searching for b. Accordingly, the values of b 2 GF(2q) satisfying

P(b)¼ 0 can be found by the algorithm described by the pseudocodes listed

in Algorithm 1 [17].

Algorithm 1

Initialization: t¼ 1, stop¼ 0, flag(i)¼ 0 for i¼ 1, 2, . . . , 2q� 1

while stop¼ ¼ 0

{

v¼ dectobin(t,q)

compute P(v)

if P(v)¼ ¼ 0

mapping found, output b¼v

stop¼ 1

else

index ( j) ¼ bintodec(v2j
), for j¼ 0, 1, 2, . . . , q� 1

flag(index( j))¼ 1, for j¼ 0, 1, 2, . . . , q� 1

find the minimum integer l> t, such that flag(l)¼ 0

t¼ l
}

Algorithm 1 is based on an algorithm proposed in [11], which only considers

the cases when a is a primitive element. However, since the irreducible

polynomial P(x)¼ x8þ x4þ x3þ xþ 1 specified by the AES algorithm is

not primitive, its root, a, is not primitive. Algorithm 1 includes the testing

for nonprimitive elements. In Algorithm 1, v¼ dectobin(t,q) converts

the integer t to a q-bit binary vector and takes this vector as the standard

basis representation for v in the composite field. Similarly, t¼ bintodec(v)
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implements the reverse function. In addition, the evaluation of P(x) on v is

carried out based on the operations specified in the composite field. If v is not

a root of P(x), then none of the conjugates of v, which are v2j
for

j ¼ 1, 2, . . . , q� 1, are roots of P(x). By setting the flags for these elements,

they are excluded from the next checking. Similarly, if an element is a root of

P(x), then all its conjugates are roots of P(x), and a can be mapped to any of

them. The number of elements in a conjugacy class must be a divisor of q. It

turns out for each combination of f and l there exist eight isomorphic

mappings for GF(28).

Example 1 Find the isomorphic mapping matrices between GF(28)

constructed by P(x)¼ x8þ x4þ x3þ xþ 1 and GF(((22)2)2) constructed by

Equation 3.6 with f¼ {11}2 and l¼ {1010}2.

We start with t¼ 1. In this case, v¼ {00000001}2 and it can be computed

that P(v)¼ 1 6¼ 0. Hence, {00000001}2 is not an element a can be mapped to.

{00000001}2 does not have any other conjugates. Therefore, no other element

can be excluded from the checking as a result of this iteration.

Next, we consider t¼ 2. The corresponding v is {00000010}2. Following

the operations of the composite field, it can be computed that

v3 ¼ f00000001g2,

v4 ¼ f00000010g2,

v8 ¼ f00000011g2:

Therefore, P(v)¼ {00000011}2 6¼ 0 for t¼ 2. The only other element in the

same conjugacy class as {00000010}2 is {00000011}2. Hence, t¼ 3 can be

excluded from the checking.

Since t¼ 3 is excluded from checking, the next value that needs to be

checked is t¼ 4 with the corresponding v equals {00000100}2. In this case, it

can be computed that P({00000100}2)¼ {00001101}2. The other elements in

the same conjugacy class as {00000100}2 are {00000111}2, {00000101}2,

and {00000110}2. Therefore, t¼ 5, 6, 7 can be excluded from checking.

The process is carried on until t¼ 72, whose corresponding v is

{01001000}2. In this case,

v3 ¼ f01110101g2,

v4 ¼ f01010110g2,

v8 ¼ f01101010g2:

It can be computed that P({01001000}2)¼ 0. Hence, a can be mapped to

b¼ {01001000}2, and the corresponding isomorphic mapping matrix is
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� ¼

1 0 1 0 0 0 0 0

0 1 1 1 1 1 1 0

0 0 0 0 1 1 0 0

0 1 1 1 1 1 0 0

1 1 0 0 0 1 1 0

0 1 0 1 1 0 0 0

1 0 0 1 0 1 0 0

0 1 0 0 1 0 0 1

2
66666666664

3
77777777775
: (3:22)

a can be also mapped to the conjugates of {01001000}2, which are

{01101010}2, {01001100}2, {01111101}2, {01010011}2, {01111010}2,

{01101100}2, and {01010110}2. A different isomorphic mapping matrix can

be derived for each conjugate.

For each combination of f and l, there are eight isomorphic mapping

matrices, and the optimum one can be selected based on minimum gate

number and shortest critical path. The complexities for the optimum iso-

morphic mappings, as well as combined inverse mapping and affine are listed

in Table 3.4 for each combination of f and l. These numbers are derived after

applying substructure sharing.

TABLE 3.4
Complexity of Optimum Isomorphic Mapping and Inverse

Isomorphic Mapping Inverse Mapping 1 Affine

f l Gate Count Critical Path Gate Count Critical Path

{10}2 {1000}2 11 XOR 3 XOR 16 XOR 3 XOR

{1001}2 10 XOR 3 XOR 19 XOR 3 XOR

{1010}2 13 XOR 3 XOR 16 XOR 5 XOR

{1011}2 15 XOR 3 XOR 16 XOR 3 XOR

{1100}2 11 XOR 3 XOR 18 XOR 5 XOR

{1101}2 13 XOR 4 XOR 16 XOR 3 XOR

{1110}2 12 XOR 4 XOR 17 XOR 3 XOR

{1111}2 11 XOR 5 XOR 19 XOR 3 XOR

{11}2 {1000}2 11 XOR 5 XOR 17 XOR 4 XOR

{1001}2 12 XOR 3 XOR 17 XOR 3 XOR

{1010}2 11 XOR 3 XOR 17 XOR 3 XOR

{1011}2 11 XOR 3 XOR 17 XOR 3 XOR

{1100}2 11 XOR 3 XOR 18 XOR 3 XOR

{1101}2 13 XOR 3 XOR 16 XOR 3 XOR

{1110}2 11 XOR 3 XOR 18 XOR 4 XOR

{1111}2 12 XOR 3 XOR 17 XOR 3 XOR

Source: From Zhang, X. and Parhi, K.K., IEEE Trans. Circuits Syst. II, submitted, 53(10), 1157,

October 2006. With permission.
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In the selection of the optimum constructions of the composite fields for

the AES algorithm, both the complexity of the involved subfield operations

and that of the isomorphic mapping need to be considered. The only subfield

operation whose complexity changes with l or f is the combined squarer and

(�l) computation. Adding up the corresponding gate counts in Table 3.3

and Table 3.4, it can be derived that the construction using f¼ {10}2 and

l¼ {1000}2 is optimum. For this construction, the lowest complexity of

isomorphic mapping and inverse can be achieved when the root of P(x) is

mapped to b¼ {01111010}2. In addition, this construction also leads to the

shortest critical path.

3.4.2 IMPLEMENTATIONS OF MIXCOLUMNS AND INVMIXCOLUMNS

Architectures for the implementations of the MixColumns and InvMixCol-

umns have been proposed in [4,5,7,13,20]. In the architecture presented in [7],

MixColumns and InvMixColumns are implemented according to the bit-level

expressions derived for the involved constant multiplications. The complexity

of this approach can be reduced by applying substructure sharing to the bit-

level expressions [4]. However, in this approach, it is very hard to find the

terms that can be shared among the computations of different bytes in a

column of the State. Alternatively, substructure sharing can be applied in

byte level [5,13,20]. Any constant multiplication can be decomposed into

multiplications by integer powers of two. Hence, the multiplications by

{02}16, {04}16, {08}16 can be first computed and shared among the constant

multiplications in the MixColumns and InvMixColumns. The architecture in

[5,13] can achieve the lowest gate count and shortest critical path. The

efficiency of this architecture comes from applying substructure sharing to

both the computation of a byte and among the computations of the four bytes

in a column of the State.

In MixColumns, the constant multiplications by {02}16 and {03}16 need

to be implemented. An element of GF(28) can be represented in standard basis

as S(x)¼ s7x7þ s6x6þ s5x5þ s4x4þ s3x3þ s2x2þ s1xþ s0, where s0, s1, . . . , s72
GF(2), and x is a root of the field polynomial P(x). Hence, {02}16 can be

expressed as x and

f02g16S¼ xS¼ s7x8þ s6x7þ s5x6þ s4x5þ s3x4þ s2x3þ s1x2þ s0x mod P(x)

¼ s6x7þ s5x6þ s4x5þ (s3þ s7)x4þ (s2þ s7)x3þ s1x2þ (s0þ s7)xþ s7:

Therefore, the constant multiplication by {02}16 can be implemented by three

XOR gates with one XOR gate in the critical path. Once {02}16S has been

computed, {03}16S can be computed as {02)16Sþ S. To apply substructure

sharing, Equation 3.2 can be rewritten as
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S00,c ¼ f02g16(S0,c þ S1,c)þ (S2,c þ S3,c)þ S1,c,

S01,c ¼ f02g16(S1,c þ S2,c)þ (S3,c þ S0,c)þ S2,c,

S02,c ¼ f02g16(S2,c þ S3,c)þ (S0,c þ S1,c)þ S3,c,

S03,c ¼ f02g16(S3,c þ S0,c)þ (S1,c þ S2,c)þ S0,c:

(3:23)

According to Equation 3.23, the Mixcolumns transformation can be imple-

mented by the architecture illustrated in Figure 3.10 [5]. In this figure, the

function of the XTime is to implement the constant multiplication by {02}16.

It follows that the MixColumns can be implemented by 108 XOR gates with 3

XOR gates in the critical path.

The computations in the InvMixColumns are more complicated. Equation

3.4 can be rewritten as the equations listed below to facilitate substructure

sharing.

S00,c¼ (f02g16(S0,cþS1,c)þ (S2,cþS3,c)þS1,c)

þ (f02g16(f04g16(S0,cþS2,c)þf04g16(S1,cþS3,c))þf04g16(S0,cþS2,c)),

S01,c¼ (f02g16(S1,cþS2,c)þ (S3,cþS0,c)þS2,c)

þ (f02g16(f04g16(S0,cþS2,c)þf04g16(S1,cþS3,c))þf04g16(S1,cþS3,c)),

S02,c¼ (f02g16(S2,cþS3,c)þ (S0,cþS1,c)þS3,c)

þ (f02g16(f04g16(S0,cþS2,c)þf04g16(S1,cþS3,c))þf04g16(S0,cþS2,c)),

S03,c¼ (f02g16(S3,cþS0,c)þ (S1,cþS2,c)þS0,c)

þ (f02g16(f04g16(S0,cþS2,c)þf04g16(S1,cþS3,c))þf04g16(S1,cþS3,c)):

(3:24)

S0,c S1,c S2,c S3,c

XTime

S2,c

XTime XTime XTime

S0,c S1,cS3,c� � � �

FIGURE 3.10 An efficient implementation of the MixColumns transformation.

(From Zhang, X. and Parhi, K.K., IEEE Trans. VLSI Syst., 12(9), 963, 2004. With

permission.)
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According to Equation 3.24, the InvMixColumns can be implemented by the

architecture illustrated in Figure 3.11 [5]. The function of the X4Time block in

this figure is to compute the constant multiplication by {04}16. This block can

be implemented by two serially concatenated XTime blocks, which consist of

six XOR gates. Alternatively, bit-level expression can be directly derived for

this multiplication. In polynomial form, {04}16 can be written as x2. Hence,

f04g16S ¼ x2S ¼ s7x9 þ s6x8 þ s5x7 þ s4x6 þ s3s5 þ s2x4 þ s1x3 þ s0x2 mod P(x)

¼ s5x7 þ s4x6 þ (s3 þ s7)x5 þ (s2 þ (s6 þ s7))x4 þ (s1 þ s6)x3

þ (s0 þ s7)x2 þ (s6 þ s7)xþ s6:

In the above equation, the term s6þ s7 can be shared. Hence, the constant

multiplication by {04}16 can be implemented by five XOR gates with two

XOR gates in the critical path. Therefore, it can be derived from Figure 3.11

that the InvMixColumns can be implemented by 193 XOR gates with 7 XOR

gates in the critical path.

S0,c S1,c S2,c S3,c

XTime XTime XTime XTime

X4TimeX4Time

XTime

S2,cS1,cS0,cS3,c9 9 9 9

FIGURE 3.11 An efficient implementation of the InvMixColumns transformation.

(From Zhang, X. and Parhi, K.K., IEEE Trans. VLSI Syst., 12(9), 963, 2004. With

permission.)
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3.4.3 IMPLEMENTATIONS OF KEY EXPANSION

Roundkeys can be either generated beforehand and stored in memory or gener-

ated on the fly. In the former approach, a memory of Nr� 128 bits is required to

store all the roundkeys. The roundkeys can be read out from the memory by using

proper addresses when they are needed. In addition, there is no extra latency

associated with the roundkey generation in the decryption process. However, this

approach is not suitable for the applications where the key changes from time to

time. Furthermore, the unbreakable delay of reading the roundkeys out of

memory may offset the speedup achieved by the subpipelined round units.

Figure 3.12 illustrates a key expansion architecture suitable for subpipe-

lined AES algorithm with 128-bit key. At the ‘‘start’’ signal, the initial key is

loaded into the registers in the first column with the least significant bit in the

SubBytes4

r  Sets of registers

Rcon

32

32
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32

128

Controller
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ad
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Key
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ad

 (
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Roundkey (0)

Roundkey (1)

Roundkey (Nr)

FIGURE 3.12 The key expansion architecture for r-substage subpipelined AES algo-

rithm with 128-bit key. (From Zhang, X. and Parhi, K.K., IEEE Trans. VLSI Syst.,
12(9), 964, 2004. With permission.)
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top register, and the key expansion process begins. From the key expansion

algorithm in Figure 3.4, the computation of every fourth word needs to go

through the Rotword and SubWord function. Hence, the output from the

bottom 32-bit register is fed into the SubBytes4 block, which consists of

four copies of the SubBytes architecture as illustrated in Figure 3.7. Since the

RotWord can be implemented by switching the wire connections, it is not

explicitly shown in Figure 3.12. Assume that the critical path of this key

expansion architecture, which consists of the SubBytes4 block, five XOR

gates, and one multiplexer, is divided into r substages. Then the computation

of the words ‘‘w(i)’’ in the key expansion algorithm needs to wait for r clock

cycles until the value of ‘‘temp’’ is available. Hence, r sets of registers are

inserted after each multiplexer. In this case, at clock cycle r� i, the output of

the registers in the first column is the corresponding ‘‘roundkey (i).’’ The

controller in Figure 3.12 generates ‘‘load (i)’’ signals, which go to 1 in clock

cycle r� i, and stays at ‘‘1’’ afterward. Such a controller can be easily

implemented by two serially concatenated Johnson counters. Using these

load signals as the clock input of the top row registers, the roundkeys

are loaded into the top row registers when they are generated. After r�Nr

clock cycles, all the Nrþ 1 roundkeys are available at the output of the

top row registers and are held there for the entire encryption or decryption

process.

When the roundkeys are generated on-the-fly by architectures such as

the one illustrated in Figure 3.12, the encryption and the key expansion

processes can start simultaneously. In addition, we need to divide the key

expansion architecture into the same number of substages with the same

maximum delay as in the round unit to avoid extra buffers and delay. In

decryption, the roundkeys are used in reverse order. Hence, the decryption

process can start only after the last roundkey is generated. Furthermore, the

InvMixColumns transformation needs to be performed on the roundkeys to

derive the mixroundkeys. In the case that the path consisting of five XOR gates

and one multiplexer in Figure 3.12 needs to be divided into multiple substages,

the retiming technique [21] can be employed. For example, the key expansion

architecture can be retimed as illustrated in Figure 3.13 to break the path into

two substages. For the purpose of clarity, the irrelevant parts are excluded from

Figure 3.13. It might be noted that the number of registers in each row, r, equals

the total number of substages in the SubBytes4 block and the five XOR gates

and one multiplexer path.

3.5 JOINT IMPLEMENTATION ISSUES OF ENCRYPTORS
AND DECRYPTORS

In the applications where both the encryptor and the decryptor need to

be implemented in a small area, resource sharing between encryptors and
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decryptors becomes important. While algorithmic modifications described in the

previous section can be employed to reduce area, more significant area savings

can be achieved by sharing resources between encryptors and decryptors.

Employing the equivalent decryption structure as illustrated in Figure 3.5,

resource sharing between each of the corresponding transformations is enabled.

1. Resource sharing between SubBytes and InvSubBytes. Comparing

Equation 3.1 and Equation 3.3, it can be derived that the SubBytes

and InvSubBytes can share the multiplicative inverse computation.

Accordingly, a joint SubBytes and InvSubBytes transformation can be

implemented by the architecture illustrated in Figure 3.14. During

encryption, the multiplexers select the top branches: the multiplicative

inverse is computed for the input, then the affine transformation is

carried out on the inverse value. The computations in the bottom

branches are selected during decryption. In this case, the inverse affine

Rcon

32

128

32

32

32

32

r  Sets of registersKey

FIGURE 3.13 Retimed key expansion architecture.

M 
−1(S + C)

MS 
−1 + CMultiplicative

inversion

FIGURE 3.14 Joint implementation of SubBytes and InvSubBytes.
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transformation is first carried out on the input, then the result is input

to the multiplicative inversion block. The multiplicative inversion can

be implemented by either LUTs or the composite field arithmetic

approach as illustrated in Figure 3.7. In the latter approach, as dis-

cussed in previous sections, M� d�1 can be precomputed, such that

the inverse isomorphic mapping can be combined with the affine

transformation. Similarly, d�M�1 can be precomputed to reduce

the hardware complexity of decryption.

2. Resource sharing between MixColumns and InvMixColumns. As

shown in Equation 3.23 and Equation 3.24, Equation 3.23 can be

computed as the first part of the Equation 3.24. Accordingly, as

illustrated in Figure 3.11, the upper part of the InvMixColumns

architecture is exactly the same as the MixColumns architecture

illustrated in Figure 3.10. Therefore, a single architecture as shown in

Figure 3.11 can be used for both MixColumns and InvMixColumns in

a joint encryptor and decryptor.

3.6 CONCLUSION

Architectural and algorithmic optimization approaches for efficient hardware

implementations of the AES algorithm have been addressed in this chapter.

Among the three architectural-level optimization techniques, subpipelining

can achieve the highest speed and optimum speed over area ratio. In addition,

in a subpipelined architecture, speed and area trade-offs can be easily

achieved by changing the number of round units and the number of substages

in each round unit. In order to reduce hardware complexity and enable deep

subpipelining, composite field arithmetic can be employed to implement the

multiplicative inversion. Furthermore, this chapter analyzed how the com-

plexities of the involved subfield operations and the isomorphic mapping

change with the coefficients of the irreducible polynomials used for field

construction. Another algorithmic-level optimization technique that can be

employed is substructure sharing. This technique is applied whenever pos-

sible to further reduce the area requirement. Joint implementations of encryp-

tors and decryptors were also discussed in this chapter. Employing the

equivalent decryption structure, the SubBytes and InvSubBytes can share a

multiplicative inversion block, and a single InvMixColumns architecture can

be used to implement both the MixColumns and InvMixColumns.
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4.1 INTRODUCTION

The immense growth of wireless system applications in today’s communica-

tion environment cannot be ignored. Wireless systems are gradually replacing

many traditional communication systems because of the increasing need for

mobility in high-end technology applications. However, wireless systems

remain a relatively new trend in the communication world. A great deal of

improvement can still be made to better the functionality of those systems.

One still open issue in wireless mobile systems is security. Wireless security

is an essential factor for every wireless system. However, the very constrained

resource technological environment of a wireless system poses strict limits on

the security that such a system can support. Because of this, wireless security

in many cases is not considered adequate for enterprise needs. Attempts have

already been made to construct a more secure wireless environment by using

more recent and efficient cryptographic algorithms. Moreover, this requires

an increase in computational performance, power, and memory, factors that

are restrictive in wireless systems.

A cryptographic system should be able to provide the following for the

involved entities:

. Confidentiality of two entities’ transactions and data exchanges

. Authentication of each entity’s identity and its data transferred

through a communication channel
. Data integrity so that no unauthorized user can alter those data
. Nonrepudiation of an entity’s identity so that its transactions are

legally binding

In the communication world and especially wireless systems, cryptographic

demands are satisfied by providing a personal certificate for each communicat-

ing entity, encrypting the transmitted message, and generating an appropriate

key for initialization of this encrypted transaction and certificate generation. For

message encryption–decryption, a fast cryptographic algorithm, usually a sym-

metric key stream algorithm, is required. For the other two operations, digital

signature schemes are employed along with a corresponding key exchange suite.

The certificates must be digitally signed by a trusted third-party certificate
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authority on receiving the public key of an entity. Then, using a public key

infrastructure (PKI) implementation, the certificate authority can perform a

set of operations including registration, certification, key generation, key pair

recovery—update, and revocation [1,2]. For most of those operations, key pairs

have to be generated and a digital signature algorithm has to be chosen.

Wireless LAN networks, such as the 802.11x series, and tools that allow

access to the Internet through mobile wireless devices, such as wireless

application protocol (WAP), require a serious security status. However, the

existing proposed and used solutions on the security of those protocols are

still inadequate. For example, with relatively small CPU computation capa-

city and network traffic analysis, the secret encoded wired equivalent privacy

(WEP) keys of 802.11g protocol can be determined. WAP in the wireless

transport layer security (WTLS) uses public key cryptography. Following the

PKCS #1 standard, in WTLS, the 512-bit RSA public key exchange and

Diffie–Hellman (DH) key pairs are employed for key establishment and

certification. Additionally, in WTLS, for the first time in wireless systems,

113-bit elliptic curve digital signature algorithm (ECDSA) and elliptic curve

DH key pairs are proposed [3]. As technology in cryptanalysis evolves, the

key lengths of those algorithms will eventually increase. In the future, a

secure RSA cryptosystem would require 1024- to 2048-bit keys, meaning

that 1024- to 2048-bit numbers would have to be used for computationally

demanding mathematical operations like modular multiplication and expo-

nentiation inside the cryptographic calculations. The resulting computational

cost of such a cryptosystem would be very high thus making this public key

cryptosystem solution impractical.

The above remark highlights the major problem of public key crypto-

graphic algorithms and especially RSA. The key’s length in public key

cryptography is big and the required mathematical calculations complex.

A considerable amount of research is done on simplifying the mathematical

algorithms for achieving better performance of public key cryptographic

operations, with very promising results. However, the key-length problem

has no solution when traditional public key cryptographic algorithms, such as

RSA or El Gamal, are employed.

Recently, Koblitz [4] and Miller [5] have proposed a different solution to

the above public key problem, elliptic curve cryptography (ECC). When using

elliptic curves for representing a plain text message (not encrypted), the

required encryption key has a small length to achieve the same security level

as that of other public key cryptographic algorithms. This major decrease in

key length, shown in Table 4.1, is extremely useful in the wireless systems

environment where the computation and memory resources are limited.

Table 4.1 shows such key-length comparisons where the security strength

is evaluated by the required breaking time using the fastest known cryptana-

lytic methods (Pollard’s rho method). For example, to achieve the security

level of a 1024-bit RSA cryptosystem, ECC requires only 160-bit key length.
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In this chapter, after a brief description of the basic principles of public

key cryptography, we focus our analysis on the basic aspects of ECC. We

analyze how this cryptographic approach can be used in the design of efficient

cryptosystems that can be introduced to the future wireless security needs.

A brief mathematical analysis of elliptic curves is given along with several

required number and group theory principles. After solidifying a mathemat-

ical framework, we focus our analysis on how this mathematical framework

can be employed in designing and implementing an elliptic curve cryptosys-

tem. Design problems of elliptic curve cryptosystems are presented along

with algorithms and methods of solving such problems.

4.2 BASIC PRINCIPLES OF PUBLIC KEY CRYPTOGRAPHY

Public key cryptography was first introduced to solve two major problems of

the conventional symmetric key cryptography (secret key cryptography), key

distribution, and key management. Key distribution in symmetric key crypto-

graphy is a problem because the channel needed for key transmission has to

be secure in order to maintain the secrecy of one or many transmitted keys.

Key management in symmetric key cryptography is another major problem.

Secure communication between many entities requires management of a

considerable amount of keys especially if each entity has to communicate

with a considerable amount of other entities (requiring a different secret key

for each such communication). Instead of relying on the secrecy of one or

more keys that need to be dealt between several entities, public key protocols

suggest using a pair of keys for each involved entity. The first key, called

public key, is not secret and characterizes the involved entity, whereas the

second key, called private key, is known only to this entity and no one else. If

users want to send an encrypted message to the involved entity, they use

this entity’s public key. The decryption is performed by applying the involved

entity’s private key to the encrypted message. Therefore, no secrecy of any

shared key is involved in the whole process.

TABLE 4.1
Key Sizes (in Bits) for Various Public Key Cryptographic Systems

Key Size

RSA systems 1,024 2,048 3,072 8,192 15,360

Discrete logarithm systems 1,024 2,048 3,072 8,192 15,360

Elliptic curve systems 160 224 256 384 512
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The security strength of the public key cryptography lies in the compu-

tational infeasibility of finding each entity’s private key from information

about the public key or the public key itself. The problem of deriving the

private key from the public key is equivalent to solving a computational

problem that is considered intractable. Three such problems are used in public

key cryptography:

1. Integer factorization problem (IFP): If n is a positive integer, find its

prime factorization: meaning n ¼ pe1

1 pe2

2 . . . pek

k , where the pi are pair-

wise distinct prime integer numbers and each ei � 1.

2. Discrete logarithm problem (DLP): If p is a prime number, a is a

generator element of Zp
* (0 < a < p), and b is an element of Z

p
*, find

integer x, 0 � x � p� 2, such that ax � b (mod p).

3. Elliptic curve discrete logarithm problem (ECDLP): It is a general-

ization of the DLP. If there is an elliptic curve E defined over a field F
and if there is a point P2E(F) of order n, and a point Q2E(F), find

an integer s, 0 � s � n� 1, such that Q¼ sP, provided that such an

integer exists.

Public key algorithms use a complex mathematical background and require

a considerable amount of modular operations (addition, multiplication, and

inversion). Due to the fact that such operations are performed over very big

numbers (1024-bit length at least, in the case of RSA), a resulting public key

cryptosystem is considered slow and with considerable hardware resource

needs. This is the reason why public key cryptography is not used for

message encryption–decryption but rather in coherence with symmetric

key cryptography or for digital signature schemes. In the first case, a public

key cryptosystem is used for encryption–decryption of the secret key of a

symmetric key algorithm. Therefore, public key cryptography is employed

only once per session for encryption–decryption of a small value (the secret

key is usually 128 to 256-bits long in symmetric key cryptography). There-

fore, the time demanding message encryption–decryption handling is

appointed to the symmetric key algorithms that require less hardware

resources and are usually fast. In the case of digital signature schemes, public

key cryptography is employed for certifying the authenticity of a message and

its owner.

Digital signature is a digital string for providing authentication. Commonly,

in public key cryptography, it is a digital string that binds a public key to a

message in the following way: only the person knowing the message and the

corresponding private key can produce the string, and anyone knowing the

message and the public key can verify that the string was properly produced.

A digital signature may or may not contain the information necessary to recover

the message itself. More on public key cryptography can be found in [6,7].
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4.3 BASIC PRINCIPLES OF GROUP THEORY

We can define the additive group (G,þ) as a set of elements G and the

arithmetic operationþ. This means (G,þ) has the following properties:

. Associativity, meaning that (aþ b)þ c¼ aþ (bþ c) for all a, b, c2G.

. Identity, meaning that there is an element 02G such that

aþ 0¼ 0þ a¼ a for all a2G.
. Inverse, meaning that for every a2G there exists an element �a2G

such that

aþ (�a) ¼ �aþ a ¼ 0:

Accordingly, we can define the multiplicative group (G,�) as a set of

elements G and the arithmetic operation �. Such a group has the following

properties:

. Associativity, meaning that a� (b� c)¼ (a� b)� c for all a, b, c2G.

. Identity, meaning that there is an element 12G such that

a� 1¼ 1� a¼ a for all a2G.
. Inverse, meaning that for every a2G there exists an element a�12G

such that

a� a�1 ¼ a�1 � a ¼ 1 for all a 2 G:

A group is called abelian (commutative) if aþ b¼ bþ a or a� b¼ b� a for

all a, b2G, according to the arithmetic operation that defines that group.

A group (F, þ, �) is called a field and has a set of elements F with the

arithmetic operationsþ and �. A field has the following properties:

. (F, þ) is an abelian group with identity 0.

. � operation is associative, meaning (a� b)� c¼ a� (b� c) for all a,

b, c2F.
. There exists an identity element 12F with 1 6¼ 0 such that

1� a¼ a� 1¼ a for all a2F.
. Operation� is distributive overþ, meaning that a� (bþ c)¼ (a� b)þ

(a� c) and (bþ c)� a¼ (b� a)þ (c� a) for all a, b, c2F.
. (F, �) is abelian, meaning that a� b¼ b� a, with identity 1.
. For every a 6¼ 0, a2F, there exists an element a�12F such that

a�1� a¼ a� a�1¼ 1.

There are two types of fields, infinite and finite fields. Infinite fields use an

infinite underlined set of elements. Infinite fields are real numbers, rational
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numbers, or complex numbers. Finite fields have a finite set of elements. We

also call such fields Galois fields, GF(q), in honor of the mathematician who

first mentioned them. Finite fields are extremely useful in a variety of

different computer applications including error code detection and ECC [8].

They have the following form GF(q)¼ {0,1, . . . , q�1}.

A finite field exists only when q¼ pk, where p is a prime number, called

the characteristic Char(GF(q)) of the finite field, and k is a positive integer. If

k¼ 1 then the finite field is called prime field GF( p) and when k> 1 the finite

field is called extension finite field. When p¼ 2, the finite field, denoted as

GF(2k), is called binary extension finite field and is extremely useful in

computer applications. The arithmetic operations defined on a GF(2k) binary

extension field are significantly simpler than those defined over GF( p) prime

fields. We also define the order of a finite field, Order(GF(q)), as the number

of elements of a finite field.

In ECC, the elliptic curve E is defined over a GF(q) or GF(2k). Therefore,

E has a finite set of rational points that form the group E(GF(q)), respectively,

as is analyzed later in this chapter.

4.4 BASIC PRINCIPLES OF ELLIPTIC CURVES

While the theory of elliptic curves is very extensive, we focus our analysis

only on those elliptic curves that are useful in cryptography and are defined

over finite (GF( p) or GF(2k )) fields.

An elliptic curve E defined over a field F is the set of solutions (x, y)

where x, y2F, of the long Weierstrass equation E: y2þ a1xyþ a3y¼ x3þ
a2x2þ a4xþ a5 along with the point at infinity denoted as 1. The variables

a1, a2, a3, a4, a52F and D 6¼ 0, where D is the discriminant of E. More about

the long Weierstrass equation, its properties, and more general information on

elliptic curves can be found in [9].

We can say that two elliptic curves E1 and E2 defined over F are

isomorphic if there exists a transformation between each x and y of E1 and

each x0, y0 of E2 of the form x¼ u2x0 þ r, y¼ u3y0 þ su2x0 þ t, where u, s, r,

t2F. This transformation, referred to as admissible change in variables, leads

to a different equation defining the elliptic curve. This equation, denoted as

the short Weierstrass equation, can have several different forms according to

the field F defining the elliptic curve E.

Before we present the short Weierstrass equation of an elliptic curve

defined over finite fields, supersingular and nonsupersingular curves must

be defined. An elliptic curve E defined over a field F is supersingular if the

characteristic of the field F divides t, where t is the trace. If the characteristic

of a field F does not divide t, then E is nonsupersingular. There are evidences

that supersingular elliptic curves are weak for cryptography [10]; therefore,

we will not refer to them anymore.
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For nonsupersingular elliptic curves defined over the GF(q) field, where

q is a prime and has the characteristic Char(GF(q)) 6¼ 2 or 3, the short

Weierstrass equation has the form E: y2¼ x3þ axþ b, where a, b 2 GF(q)

and D¼�16(4a3þ 27b2) 6¼ 0.

For nonsupersingular elliptic curves defined over the GF(2k) field, the

characteristic Char(GF(2k))¼ 2 and the short Weierstrass equation has the

form E: y2þ xy¼ x3þ ax2þ b, where a, b 2 GF(2k) and D¼ b 6¼ 0.

There is also one special type of elliptic curve, called Koblitz curves, that

is defined over GF(2k) fields. Such elliptic curves have a short Weierstrass

equation of the form E: y2þ xy¼ x3þ ax2þ b, where a, b2GF(2). Koblitz

elliptic curves are anomalous binary curves that have one very interesting

property. Using Koblitz elliptic curves, point multiplication can be performed

without any point doubling operation.

The number of rational points on an elliptic curve defined over a finite

field is finite and is denoted as #E(GF(q)) or #E(GF(2k)) accordingly.

4.5 GROUP LAW

If E is an elliptic curve (EC) defined over a field F, the point addition

operation is performed by adding two points of the elliptic curve to get a

third point. The set of EC points, together with the addition rule, forms an

abelian group E(F) of type (G, þ) with the identity element the point at

infinity. Point doubling is the addition of one elliptic curve point with itself

and can be considered a special case of point addition.

There is a geometric rule for finding the sum of two EC points, called

chord and tangent rule. Suppose that we want to add EC point P1¼ (x1, y1)

to EC point P2¼ (x2, y2) to get a third EC point P3¼ (x3, y3)¼P1þP2 of

the elliptic curve E. We can find EC point P3 by drawing a line through

EC points P1 and P2, then mark the EC point on the curve that this line

intersects. The reflection of the marked point over the x-axis is the EC

point P3. Point doubling follows a similar rule. Suppose that we want to

find the double of an EC point P1¼ (x1, y1), which is P3¼P1þP1¼
2P1¼ (x3, y3) on an elliptic curve E. We draw the tangent line of P1 and

mark the EC point where this line intersects the elliptic curve. The reflection

of this EC point over the x-axis is EC point P3¼ 2P1. The above general

geometric rules are shown in Figure 4.1 for an elliptic curve defined over

real numbers.

The above geometric description can be translated into algebraic equa-

tions. Such equations describe point addition and point doubling following

analytic geometry principles. They depend on the form of the elliptic curve

equation and the field defining the curve. Since we are only interested in

ECC, our analysis is focused only on nonsupersingular elliptic curves defined

over finite fields (GF( p) or GF(2k )).
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For nonsupersingular elliptic curves defined over GF(p) fields, the char-

acteristic of the field is Char(GF( p))> 3. Therefore, the short Weierstrass

equation of the elliptic curve would be E: y2¼ x3þ axþ b, as analyzed in the

previous section. In that case, we can define point addition (P3¼P1þP2) and

point doubling (P3¼ 2P1) as follows.

When P1 6¼P2 (point addition) the slope l of the line between P1 and P2

would be l¼ (y2� y1)=(x2� x1) for x2 6¼ x1 and the point P3¼P1þ
P2¼ (x3, y3) would be

x3 ¼ l2 � x1 � x2,

y3 ¼ l(x1 � x3)� y1 ¼ l(2x1 þ x2 � l2)� y1:

When P1 6¼P2 but x2¼ x1 the slope is 1, meaning that the line between P1

and P2 is vertical to the x-axis and, therefore, intersects the elliptic curve in

point at infinity. In this case, P3¼P1þP2¼1.

When P1¼P2 (point doubling) and y1 6¼ 0, the slope of the tangent line in

P1 would be l ¼ 3x2
1 þ a=2y1 and the point P3¼P1þP2¼ 2P1¼ (x3, y3)

would be

x3 ¼ l2 � x1 � x2 ¼ l2 � 2x1,

y3 ¼ l(x1 � x3)þ y1 ¼ l(3x1 � l2)� y1:

P1

P2

2P1

P1 + P2

FIGURE 4.1 EC geometrical point addition and doubling for elliptic curve y3¼ x2�
3xþ 3 defined over real numbers.
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When P1¼P2 (point doubling) and y1¼ 0, the tangent line is vertical to the

x-axis and therefore, P3¼ 2P1¼1.

Since the point at infinity is the identity element of the E(F) group,

P3¼P1þ1¼P1. Point subtraction can be performed using the point �P2

instead of P2, where �P2¼ (x2, �y2).

For nonsupersingular elliptic curves defined over binary extension fields

GF(2k), the characteristic of the field is Char(GF(2k))¼ 2. Therefore, the

short Weierstrass equation of the elliptic curve would be E:

y2þ xy¼ x3þ ax2þ b, as analyzed in the previous section. In that case, we

can define point addition (P3¼P1þP2) and point doubling (P3¼ 2P1) as

follows:

When P1 6¼P2 (point addition) the slope l of the line between P1

and P2 would be l¼ y2þ y1=x2þ x1 for x2 6¼ x1 and the point

P3¼P1þP2¼ (x3, y3) would be

x3 ¼ l2 þ lþ aþ x1 þ x2,

y3 ¼ l(x1 þ x3)þ x3 þ y1:

When P1 6¼P2 but x2¼ x1 the slope is 1, meaning that the line between P1

and P2 is vertical to the x-axis and, therefore, intersects the elliptic curve in

point at infinity. In this case, P3¼P1þP2¼1.

When P1¼P2 (point doubling) and y1 6¼ 0, the slope of the tangent line

in P1 would be l ¼ x2
1 þ y1=x1 and the point P3¼P1þP2¼ 2P1¼ (x3, y3)

would be

x3 ¼ l2 þ lþ a ¼ x2
1 þ

b

x2
1

,

y3 ¼ l(x1 þ x3)þ x3 þ y1 ¼ x2
1 þ lx3 þ x3:

When P1¼P2 (point doubling) and y1¼ 0, the tangent line is vertical to the

x-axis and therefore, P3¼ 2P1¼1.

Since the point at infinity is the identity element of the E(F) group,

P3¼P1þ1¼P1. Point subtraction can be performed using the point �P2

instead of P2, where �P2¼ (x2, x2þ y2).

4.6 POINT MULTIPLICATION

If E is an elliptic curve defined over a field F, multiplication between an

integer s and an EC point P results in a new EC point Q¼ sP. This operation

is called point multiplication or scalar multiplication. Point multiplication is a

repeated process that can be analyzed in a series of point additions and point

doublings using Algorithm 1.
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4.7 GENERAL ECC DESIGN METHODOLOGY

In this section, a general plan for designing an elliptic curve cryptosystem

is described. First of all, an appropriate ECC protocol and algorithm for

encryption–decryption, digital signature, or authentication scheme must be

chosen. This algorithm is based on ECDLP and as a result requires the use of

point multiplication operation once or multiple times.

Point multiplication is the major design bottleneck in ECC. It requires a

series of other mathematical operations that have increased mathematical

complexity. As presented in the previous section, point multiplication uses

other EC point operations. Those operations are point addition (P1þP2) and

point doubling (P2¼ 2P1).

Point addition and doubling follow the Group Law and use the math-

ematical framework of the finite field on which the EC is defined (GF(q) or

GF(2k)). Therefore, all mathematical operations between the coordinates (x, y)

of EC points P1, P2, as dictated by the Group Law, are performed using GF(q)

or GF(2k) field arithmetic.

In finite field arithmetic four mathematical operations can be identified.

Those operations are addition–subtraction, multiplication, squaring, and in-

version–division. Each such operation has a different computational and

hardware resources cost (measured in throughput, critical path delay, gate—

storage element number, and power dissipation). Such cost is higher

for inversion–division, whereas addition–subtraction has the lowest. The

notable cost of multiplication in finite fields is of great importance since

this mathematical operation can also be used under certain circumstances for

inversion–division.

Following the above remarks, a design plan for an elliptic curve crypto-

system is presented in the pyramid of Figure 4.2. There are four different

design levels, each one depending on the lower level’s mathematic frame-

work. The base of the pyramid is formed by the finite field mathematic

framework that includes operations between elements of a finite field. On

top of the finite field mathematic framework, the point addition–doubling

layer is located, using the finite field mathematic framework for EC point

operation following the Group Law. This layer is used for the calculation of

the point multiplication product that forms the homonymous design layer.

The point multiplication layer is employed in the highest design level of

the ECC algorithm and protocols. The design methodology begins from the

construction of the lowest design layer and proceeds gradually toward the top

of the pyramid.

The pyramidal scheme of Figure 4.2 also symbolizes the frequency of the

used operations in each design layer. For one EC protocol (the highest design

layer), few EC point multiplications would be required. For each point

multiplication, many point additions and doublings (depending on the integer

s of Q¼ sP) would have to be performed and for each such operation a series
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of finite field calculations are needed as described by the Group Law.

Therefore, the number of required arithmetic operations of each design

layer increases dramatically as we move toward the base of the pyramid.

Efficient designing in terms of power consumption, speed, and hardware

component number has an increasing effect on the overall system as we

move toward the base of the pyramid. The finite field mathematical frame-

work design layer, forming the base of the pyramid, plays a crucial role in the

design of the overall ECC system.

In the rest of this chapter, we address problems and solutions in efficient

designing of the design layers of the pyramid in Figure 4.2, with special

interest in the lowest design layers. Those layers are usually designed in

hardware, leaving the more abstract higher layers (ECC algorithms and

protocols) to software.

4.8 FINITE FIELDS

Finite fields fit into two major categories, as described earlier, prime fields,

denoted as GF( p) fields and extension fields, denoted as GF(pk ) fields. Each

GF( pk) field can be described as a vector space of k dimension with each

vector element belonging to GF( p) field. When k¼ 1, each element is a one-

dimensional vector of GF( p). A specific type of GF( pk) fields that has p¼ 2

stands out among all the extension fields. These finite fields, called binary

extension fields or GF(2k) fields, are described as k-dimensional vectors over

GF(2). They have some very interesting properties that fit well into the binary

ECC
algorithms

and
protocols

Point multiplication

Point addition
and

point doubling

Finite field mathematic framework

FIGURE 4.2 The ECC design methodology pyramid.
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logic of modern computer applications. For that reason, GF(2k) fields are the

dominant kind of extension fields used in ECC. In this section, we focus

our analysis on GF( p) and GF(2k) fields. The mathematic operations of each

finite field category are analyzed and methods for optimizing those operations

are presented.

4.8.1 GF(p) FIELDS

An element a of a GF( p) field, also called prime field, is a 2 {0,1,2, . . . ,

p�1}. Therefore, each mathematical operation defined in GF( p) fields must

follow the following principle. If the outcome of any such operation exceeds

the range of the GF( p) field, this outcome is returned into the field by

applying a modular reduction operation (mod p). Each element a of the

GF( p) field is considered a binary vector number a¼ {an�1, an�2, . . . , a1,

a0}, where ai 2 GF(2) and 0 � a � p �1.

4.8.1.1 GF(p) Field Addition–Subtraction

If a, b are elements of a GF( p) field, a, b 2 {0, 1, 2, . . . , p� 1} and a> b, then

addition and subtraction between those two elements have the following form

(modular addition–subtraction):

(aþ b) mod p ¼ aþ b if aþ b < p
aþ b� p if aþ b � p

�
(a� b) mod p ¼ a� b:

The two operations involved in modular addition–subtraction are integer

addition–subtraction. Modular subtraction is identical to integer subtraction

while modular addition requires at most one integer addition and one integer

subtraction. Since subtraction between integers in binary form can be per-

formed by additions using two’s complement numbers [11], integer addition

is the key operation in modular addition–subtraction.

Many hardware designs exist for integer addition, like ripple carry, carry

lookahead, carry-save, carry-select, or carry-skip adders. Additional informa-

tion on the topic can be found in well-known books for computer arithmetic

or hardware design [11,12].

4.8.1.2 GF(p) Field Multiplication

Multiplication in GF( p) fields is always performed on modulus p,

((a � b) mod p). There are two different approaches to modular multiplication

design. The first approach consists of two steps:

Step 1. Perform integer multiplication.

Step 2. Perform mod p reduction of the integer multiplication product of

step 1.
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In step 1, integer multiplication algorithms can be used for obtaining the

multiplication product, which is not in the GF( p) field. Such algorithms can

be taken from general computer arithmetic theory and resulting multiplier

architectures can be designed. One such algorithm, used extensively in ECC

applications, is the Karatsuba–Ofman multiplication method.

In step 2, where reduction is performed, the classic approach of test

division [11] cannot be applied in efficient modular multiplication architec-

tures. The dominant algorithms for modular reduction are Barret’s reduction

and Montgomery modular reduction method. However, by applying rules of

special prime numbers p, such as those proposed by NIST [13] and IEEE

1362 [14] (NIST Primes), reduction can be simplified.

The second approach consists of only one step where both multiplication

and modular reduction are performed. Montgomery modular multipli-

cation algorithm is a well-known method that is employed in efficient modu-

lar multiplication architectures and therefore is widely used in GF( p) elliptic

curve applications.

All the modular multipliers in GF( p) fields are of bit serial or digit serial

nature, meaning that they perform multiplication by processing bits or digits

of data per round at a given number of multiplication rounds greater than 1.

4.8.1.2.1 Karatsuba–Ofman Multiplication
The Karatsuba–Ofman multiplication algorithm employs a divide and con-

quer technique for performing multiplication [15]. It is especially useful when

multiplying very large numbers; this makes the method extremely beneficial

in cryptography where big numbers are involved.

Suppose that A, B are integer numbers in n-bit binary form, where A¼ {an�1,

an�2, . . . , a1, a0},B¼ {bn�1, bn�2, . . . , b1, b0}, and n¼ 2m. Wecan rewrite A, B as

A¼A12mþA2 and B¼B12mþB2, where A1, A2, B1, and B2 are m-bit num-

bers of the form A1¼ {an�1, an�2, . . . , amþ 1, am}, A2¼ {am�1, am�2, . . . , a1,

a0} and B1¼ {bn�1, bn�2, . . . , bmþ 1, bm}, B2¼ {bm�1, . . . , b1, b0}. In that case,

multiplying A � B becomes

A � B ¼ (A12m þ A2) � (B12m þ B2)

¼ (A1 � B1)22m þ (A1 � B2 þ A2 � B1)2m þ (A2 � B2):

Instead of performing one multiplication between n-bit numbers, using

Karatsuba–Ofman method three parallel multiplications, two parallel add-

itions, and two subtractions of m-bit numbers are required, where m¼ n=2.

We compute C ¼ A1 � B1, D ¼ A2 � B2 and then

(A1þA2) � (B1þB2)¼ A1 �B2þA2 �B1þA1 �B1þA2 �B2, A1 �B2þA2 �B1

¼ (A1þA2) � (B1þB2)�C�D:
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Multiplication between the m-bit numbers can not only be performed using

the long multiplication method (the well-known school method) [11], but can

also be performed using again the Karatsuba–Ofman method. In the second

case, the Karatsuba–Ofman method is used recursively until a multiplication

bit length is reached, beyond which this method is not affordable. This

method works even if n is not even. By padding with zeros, the multiplicand

or multiplier can fit to the appropriate bit length.

4.8.1.2.2 Barrett’s Reduction
Barrett’s reduction method is a fast way for modular reduction when many

reductions are required with a single modulus. That makes this method highly

applicable in GF( p) fields where all modular calculations are performed with

the modulus p (mod p). A special value has to be precomputed in Barrett’s

reduction algorithm denoted as m ¼ bb2n=pc, where b is the chosen radix

(base) of the involved numbers (Algorithm 2).

It has to be noted that Algorithm 2 is highly efficient for high radix

values, b> 3. This does not mean that it cannot be used for radix 2 hardware

architectures. Barrett’s reduction algorithm does not employ any division but

more simple operations (addition and subtraction) and many shiftings that can

be performed with minimal computational cost.

4.8.1.2.3 Montgomery Reduction and Montgomery Multiplication
In 1985, Peter Montgomery introduced a new method for modular reduction

and multiplication [16]. Montgomery’s approach avoids the time-consuming

trial division, which is the common bottleneck of other algorithms. His

method has been proven to be efficient in terms of computational speed and

hardware resources. Thus, it has been used in many implementations of

modular multiplication in hardware as well as software.

The Montgomery modular reduction [16] is used for calculation of the

value MontR(x, p)¼ c¼ x � r�1 mod p, where r is a constant number (usually

r¼ bn) and b is the base (radix) of the involved numbers. The n-bit value p has

to be an integer filling the condition gcd(r, p)¼ 1. Since p is a prime, the above

constraint is always true. There is a one-to-one correspondence between each

element x 2 GF(p) and its representation c ¼ x � r�1 mod p (Algorithm 3).

The Montgomery modular reduction is usually not used independently but as

a part of the Montgomery modular multiplication method (Algorithm 4).

As shown earlier, the resulting Montgomery multiplication product

MontM(x, y, p) includes the r�1 number in the multiplication product. In order

to get a result free of the r�1 factor, a precomputated procedure has to be

followed. To compute x � y mod p, the value x0 ¼ x � r mod p has to be calcu-

lated by performing MontM(x, r 2, p). We say then that x0 is in the Montgomery

or p-residue domain. Using x0 in the Montgomery modular multiplication

method, the correct result x � y mod p is calculated by MontM(x0, y).
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One of the problems in the Montgomery multiplication algorithm is the

calculation of p0. Depending on the base b, on which the involved numbers are

defined, the p0 value might require the use of inversion operation. To simplify

this operation or avoid it completely, there are several bases that can be used.

The most commonly used base is binary representation (b¼ 2) or similar

higher-order radix representations (b¼ 22, b¼ 24). In the case of b¼ 2, p0 ¼ 1

and MontM(x, y, p) is greatly simplified (Algorithm 5).

4.8.1.2.4 NIST Special Primes for Multiplication–Reduction
NIST proposes in FIPS 186-2 standard [13] the use of some special GF( p)

fields for simplifying the reduction process in multiplication. This happens

because the proposed prime p can be extended to a sum or difference of

powers of 2. This special ability leads to fast reduction (faster than Mont-

gomery’s method) and is especially applicable to machines with word size of

32-bits. Those fields are

GF( p192): p192 ¼ 2192 ¼ 264 � 1,

GF( p224): p224 ¼ 2224 � 296 þ 1,

GF( p256): p256 ¼ 2256 � 2224 þ 2192 þ 296 � 1,

GF( p384): p384 ¼ 2384 � 2128 � 296 þ 232 � 1,

GF( p521): p521 ¼ 2521 � 1:

More on this topic can be found in [13,14,17].

4.8.1.2.5 Hardware Design of Modular Multipliers in GF(p) Fields
In the area of modular multiplication for GF( p) fields, Montgomery modular

multiplication dominates among the other offered alternatives. In this algo-

rithm, through correct choice of r (r¼ 2n) the multiplication process is fast

and unmatched by any other method when multiplying many times with

the same modulus. Among the first proposed hardware architectures on

Montgomery modular multiplication method is the work of Eldridge and

Walter [18], in which they prove the advantage of the Montgomery algorithm

when compared with other techniques in speed because of its small critical

path. From this point on, Montgomery modular multiplication became one

of the most widely analyzed and researched computer algebra algorithms

because of the advantages presented here. Therefore, in this subsection we

focus our analysis on how hardware architectures are designed based on the

Montgomery modular multiplication algorithm.

Two methods are employed for designing Montgomery multipliers, sys-

tolic arrays using various different encoding methods (redundant schemes

[19], Booth encoding [20]) and residue number system (RNS) arithmetic.

Nicolas Sklavos/Wireless Security and Cryptography 8771_C004 Final Proof page 94 31.1.2007 6:55pm

94 Wireless Security and Cryptography



A systolic array can be defined as a set of processing elements (PEs)

arranged in an n-dimensional array formation. In every clock cycle, each such

PE receives data from its neighboring PEs, uses those data for a specific

function, and pumps the results to its neighboring PEs that perform similar or

the same function. Through this procedure throughput can be increased

dramatically.

Systolic arrays fit well with the Montgomery modular multiplication

algorithm. The MontMb(x, y, p) algorithm is a repeated loop of step 2.1 and

step 2.2, which can be easily represented by a series of 1-bit input–output PEs

calculating those steps. A two-dimensional systolic array can be constructed

in that fashion, as shown in Figure 4.3. This architecture is a typical example

of carry-save redundancy used for Montgomery multipliers. Every processing

element has to perform 5 to 3 additions using the current x and q value.

However, the processing element of bit 0 has an additional role to perform

(the calculation of q value) and requires two more gates. Every different column

of the systolic array represents the value of the same bit through the algorithmic

calculations, whereas each different row of the systolic array represents the

values on another round of the MontMcs(x, y, p) algorithm. The carry2 (C(2))

signal of a PE is connected with the next PE of the next row. Carry1 (C(1)) signal

is connected with the same PE of the next row (the same column), whereas the

sum (S) signal is connected with the previous PE of the next row starting from

bit 0. The outcome is in carry-save format through the signals carry2, carry1,

and sum. This outcome is checked for the c> p condition to subtract p, and a

final addition is performed using an adder so as to return from the carry-save to

normal number format.

There exist many designs, similar to that in Figure 4.3, achieving opti-

mization using carry-save logic and relevant adders [22–24] because carry-

save adders reduce the critical path delay significantly when employed in

systolic Montgomery multipliers.

In addition, to decrease the critical path of the PE and increase the speed,

many researchers propose a precomputation phase where certain values are

calculated once to be used in all the rounds of the MontMb(x, y, p) algorithm,

like in [22] where instead of y, the yþ p value is used. The combination of a

different choice of r along with precomputation has also been employed for

optimizing MontMb(x, y, p) algorithm. In [25], combining r¼ 2nþ 8 and pre-

computation of the value T ¼ (((8� p2p1p0)�1 mod 8)Pþ 1)=8, a fully pipe-

lined systolic multiplier is designed with increased parallelism. However,

more multiplication rounds in such a design are needed.

High radix Montgomery multipliers (b¼ 2k, k> 1) have also been pro-

posed [19,26,27], using MontM(x, y, p) algorithm with a change of the

p0 ¼�p�1 mod b into ~pp ¼ p0p ¼ (�p�1 mod b)p, r ¼ bn and a replacement

of y with b � y ¼ 2k � y. The problem with the above designs lies in the fact

that digit adders have to be constructed for calculating each high radix

sum. To solve this problem, in [19] a different approach is undertaken.
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The multiplier uses the MontMb(x, y, p) with b¼ 2 but processes values of

word length.

Concerning systolic arrays, it should be remarked that the achieved high

throughput comes as a result of a considerable hardware resource increase.

That tradeoff is not always affordable especially in wireless design where

system resources are limited. To delegate the problem in the above case, one-

dimensional instead of two-dimensional systolic arrays could be used, like the

one presented in Figure 4.4.

Another approach to modular multiplication is the use of the RNS system

deriving from the Chinese Remainder Theorem (CRT). In RNS an integer x is

described by a series of positive integers xi as xRNS¼ {x0, x1, x2, . . . , xk}

defined over an RNS base of relatively prime mi numbers B¼ {m0, m1,

m2, . . . , mk}. Each xi is defined as xi¼ x mod mi for i¼ 0,1,2, . . . , k. To

reconstruct x from its RNS equivalent, CRT is used in the equation

x ¼
Xk

i¼0
xi �Mi � M�1

i

�� ��
mi

mod M,

where M ¼
Qk

i¼0 mi, Mi ¼ M=mi, and M�1
i are the invert of Mi mod mi.

The arithmetic operations of addition–subtraction and multiplication can be

defined in RNS representation as follows:

xRNS � yRNS ¼ f x0 � y0j jm0
, x1 � y1j jm1

, . . . , xk � ykj jmk
g,

xRNS � yRNS ¼ f x0 � y0j jm0
, x1 � y1j jm1

, . . . , xk � ykj jmk
g:

The benefit of the RNS system lies in the inherent parallelism of this system.

Instead of calculating one modular multiplication with modulus p, RNS uses

k parallel multiplications with modulus mi, where each mi is a smaller number

than p. The problem of this approach lies in the conversion from RNS to

non-RNS format, which requires modulus M reduction. Since M> p, modulus

M reduction can be time and resource consuming. However, in case

many modular multiplications are needed to be performed (such as GF( p)

ECC) this drawback is counterbalanced by the overall gain in the RNS

multiplication process.

qPE0
PE1 PE2

y 0

xi

p 0 y 1 p 1 y 2 p 2

c-s c-s c-s

PEn−1

qqq
XiXiXi

CCC

y n
−1

p n
−1

……..
……..
……..

c-s

FIGURE 4.4 One-dimensional systolic array for Montgomery multiplier.
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In [28], an elliptic curve cryptosystem is proposed taking advantage of

the above remarks with considerable performance gain in comparison with

non-RNS designs.

Bajard has proposed several Montgomery multipliers in RNS [29,30]. The

choice of r¼M is proposed in those designs and two different RNS bases, B1

and B2, are used for calculating q value. The above RNS Montgomery

multiplication method, however, requires two base transformations, from

base B1 to B2 and from B2 to B1, after certain calculations are done. Those

transformations can be time consuming.

4.8.1.3 GF(p) Field Squaring

Squaring in GF( p) fields follows the general principles of modular multi-

plication. The methods described in Section 4.8.1.2 apply for a squaring

operation with appropriate simplification due to the fact that in c¼ x � y
mod p both x, y are the same (x¼ y).

4.8.1.4 GF(p) Field Inversion

Consider two elements x, a of GF( p) such that a � x � 1 (mod p). If such an x
exists, then it is unique, and a is said to be invertible, or a unit. The inverse of

a is denoted by a�1 and is called multiplicative inverse of a. The process of

finding a multiplicative inverse is called inversion. The multiplicative inverse

a�1 exists as long as p and a are coprime, and since p is prime the above

constraint is always valid.

Finding multiplicative inverses involves a considerable number of com-

putations and ways of bypassing that operation are always examined, espe-

cially in ECC design. However, inversion cannot always be avoided, so

several methods have been proposed for performing this operation with

reduced computational and resource cost.

The dominant technique of calculating a multiplicative inverse of a

number is the extended Euclidean algorithm (EEA) for greater common

divisor (GCD). Kaliski in [31] proposes another approach by using the

mathematical background of the Montgomery modular multiplication

method. This approach results in the Montgomery inversion algorithm for

calculating the multiplicative inverse in the Montgomery domain.

4.8.1.4.1 Extended Euclidean Algorithm
Equation a � x � 1 (mod p) can be rewritten as a � a�1 þ p̂p � p ¼ 1. This

equation is a direct representation of the outcome of the EEA for GCD,

with inputs a, p. The EEA for GCD calculates d¼ gcd(a, p), x and y
values of a � xþ y � p¼ d. However, when we work in GF( p) fields there is

d¼ 1 since p is prime and a � xþ y � p ¼ d , a � xþ y � p ¼ 1, which is the

equation of inversion.
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The EEA is a repeated process of divisions and subtractions. Suppose that

ri, qi, ui 2 GF(p), where i is an integer (i¼ {0,1, 2, . . . }) representing the

current round number of the algorithm. Initially, r�1¼ p, r�2¼ a, u�2¼ 1,

and u�1¼ 0. In each round of the algorithm, ri�1 divides ri�2 giving a quotient

qi and a remainder ri, ri�1¼ qi � ri�2þ ri. Those values are used in the calcu-

lation of ui¼ qi � ui�1þ ui�2. The process is repeated until the remainder ri is

zero (Algorithm 6).

At first glance, the main design problem in the ExEucl(a, p) algorithm is

the extended number of required divisions. However, several researchers have

described the algorithm in binary form where the division operation has been

replaced by a number of shift operations (division or multiplication by 2). The

binary EEA uses the theory of long division for integers in binary form

(Algorithm 7).

4.8.1.4.2 Montgomery Inversion Algorithm
A number a converted in the Montgomery domain or p-residue domain

becomes a � r mod p. If r¼ 2n then a number in the Montgomery

domain becomes a2n mod p. To convert a number in the Montgomery domain,

one Montgomery multiplication of number a with r2 mod p is required

(MontMb(a, r2 mod p, p)). Following the above definitions, a multiplicative

inverse of a number a in the Montgomery domain would be a�1 � r mod p. In

the Montgomery inverse algorithm, proposed by Kaliski [31], a procedure

similar to the EEA is employed for calculating the multiplicative inverse of a

number a in the Montgomery domain. The algorithm consists of two phases

(Algorithm 8 and Algorithm 9). In phase I, usually denoted as Montgomery

almost inverse phase, the value a�12k mod p, where k is an integer and n �
k � 2k is calculated. However, this outcome is not a valid value in the

Montgomery domain; therefore, a correction phase is required. This is

phase II of the Montgomery inversion algorithm (Algorithm 9).

While the number of rounds in MontAI(a, p) is not constant, it is well

constrained between (nþ 1) and (2nþ 2) rounds. Phase II of the Montgomery

inverse algorithm is completed after k–n rounds.

If the input a of MontAI(a, p) is in the Montgomery domain, then the

outcome of phase II is not in the Montgomery domain but rather a�1 mod p. If

the input a of MontAI(a, p) is not in the Montgomery domain, then the final

result after phase II would have to be multiplied using Montgomery multi-

plication with 1. However, by taking a result in phase II after k�1 rounds

instead of k�m rounds, no final multiplication is required for obtaining a

result not in the Montgomery domain (Algorithm 10).

4.8.1.4.3 GF(p) Field Division
Division in GF( p) fields can be considered a combination of inversion and

multiplication following the form d¼ a=b¼ a � (1=b), where a, b, d 2 GF( p).

Therefore, performing one GF( p) inversion operation and using its output for
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GF( p) modular multiplication, the division outcome can be calculated.

These two operations can be either in normal domain or in the Montgomery

domain following a combination of Montgomery inversion algorithm and

Montgomery modular multiplication algorithm as presented in [32].

There are, however, modifications of the EEA that can be employed to

support modular division. Takagi [33] proposes such a modified extended

Euclidean algorithm (MEEA) for modular division (Algorithm 11).

Modular inversion or division is difficult to design in hardware as well as

software since they require the use of all the other GF( p) operations. The fact

that the outcome is not calculated after a constant number of iterations

prohibits the use of systolic arrays and limits the use of pipelining. Few

hardware architectures exist for modular inversion and most of them are

direct designing of the corresponding algorithms using architectures for

modular reduction multiplication, addition, and subtraction, as those pre-

sented earlier. Redundant, signed digit and two’s complement representation,

high radix bases (radix 4=2), and carry-save or carry-select addition–

subtraction architectures are employed in such designs [34–36] to achieve

high computational speed and reduced hardware resources.

4.8.2 GF(2K) FIELDS

An element a2GF(2k) field is defined over a base B of the form B¼ {bk�1,

bk�2, . . . , b1, b0}. Therefore, the element a can be written as a linear combin-

ation of the bi of the base B as

a ¼ ak�1bk�1 þ ak�2bk�2 þ ak�3bk�3 þ � � � þ a1b1 þ a0b0:

Since the characteristic of the GF(2k) field is Char(GF(2k))¼ 2, the coeffi-

cients ai of a represented in the base B are defined in the GF(2) field. The

element a can also be described in vector notation as a¼ {ak�1, ak�2,

ak�3, . . . , a1, a0}.

The base B element representation of the GF(2k) field can have many

different forms. Each base form specifies the interaction of a field element

with the other field elements. Therefore, the choice of the GF(2k) field base

drastically affects the mathematic operations in the GF(2k) field. For this

reason, the element representation choice in GF(2k) fields plays an important

role in the design of efficient architectures for the various GF(2k) field

mathematic operations.

The most prominent bases for representing GF(2k) field elements are poly-

nomial basis (standard basis) representation, normal basis representation, or

double basis representation. Among those bases, widely used in modern appli-

cations are polynomial basis representation and a special case of normal basis

representation called optimal normal basis (ONB). In the following subsections
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we analyze those two element representations of GF(2k) fields and describe

the corresponding mathematic operations for each such representation.

4.8.2.1 Polynomial Basis Representation

The GF(2k) field is isomorphic to GF(2)[x]=( f(x)), where f(x) is a degree k
monic irreducible polynomial of the form

f (x) ¼ xk þ
Xk�1

i¼0
fix

i

with coefficients fi 2 GF(2).

According to the polynomial basis representation, an element a of a

GF(2k) field is a polynomial of degree at most k� 1 defined over a basis

{xk�1, . . . , x3, x2, x, 1} with coefficients ai 2 GF(2), where x is a root of the

irreducible polynomial f(x). This can be written as

a(x) ¼
Xk�1

i¼0
aix

i ¼ ak�1xk�1 þ ak�2xk�2 þ � � � þ a1xþ a0:

4.8.2.1.1 GF(2k) Field Addition–Subtraction in Polynomial
Basis Representation

Suppose that a(x), b(x) polynomials are elements of a GF(2k) field defined

over the irreducible polynomial f(x) in polynomial basis representation. Then,

we define addition as s(x) ¼ a(x)þ b(x) ¼
Pk�1

i¼0 six
i, where s(x)2GF(2k)

and si2GF(2). Since each element in GF(2k) fields can be described as a

k-dimensional vector over GF(2), each si would be si¼ (aiþ bi) mod 2.

Similarly, subtraction can be defined as r(x) ¼ a(x)� b(x) ¼
Pk�1

i¼0 rix
i,

where r(x)2GF(2k), ri2GF(2), and ri¼ (ai� bi) mod 2. It can be noted that

(ai� bi) mod 2¼ (aiþ bi) mod 2, so subtraction is identical to addition while

both operations can be interpreted as an XOR operation between a(x) and

b(x). As a result, no carry value exists for addition–subtraction in GF(2k)

fields. The above fact makes GF(2k) fields highly advantageous when compared

with other types of finite fields and affects all mathematic operations of this

field regardless of the element representation base.

4.8.2.1.2 GF(2k) Field Multiplication in Polynomial
Basis Representation

Suppose that a(x), b(x) polynomials are elements of a GF(2k) field defined

over the irreducible polynomial f(x) in polynomial basis representation.

Then, we define multiplication as c(x)¼
Pk�1

i¼0 cix
i¼ a(x) �b(x)¼ a(x) �b(x)

mod f(x), where c(x)2GF(2k) and ci2GF(2). GF(2k) field multiplication is a

modular operation.
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Following the principles of modular multiplication, there are two

approaches in performing GF(2k) field multiplication. The first approach

consists of two steps:

Step 1. Perform polynomial multiplication resulting in a 2k�1 degree

polynomial.

Step 2. Perform mod f(x) reduction of the polynomial multiplication

product of step 1.

In step 1, similarly to GF( p) multiplication, polynomial multiplication algo-

rithms can be used for obtaining the product that is not in the GF(2k) field.

Such algorithms can be taken from general computer arithmetic theory and

resulting multiplier architectures can be designed. As in the case of GF(p)

fields, the Karatsuba–Ofman multiplication method has been used extensively

in finding the product of step 1, adapted to the carry-free GF(2k) field

arithmetic.

In step 2, where reduction is performed, the classic approach of test

division [11] is excluded as a possible design solution. Reduction is per-

formed using the definition of polynomial basis GF(2k) fields. We know that

the GF(2k) field is defined over an irreducible polynomial f(x) and that x is a

root of f(x). In that case, f (x) ¼ xk þ
Pk�1

i¼0 fix
i ¼ 0) xk ¼

Pk�1
i¼0 fix

i, since

addition is identical to subtraction. Then, x � xk ¼ xkþ1 ¼ x �
Pk�1

i¼0 fix
i ¼

fk�1 � xk þ
Pk�1

i¼1 fi�1xi, but since xk ¼
Pk�1

i¼0 fix
i we can find xkþ 1 as

xkþ1 ¼ fk�1 �
Pk�1

i¼0 fix
i þ
Pk�1

i¼1 fi�1xi ¼
Pk�1

i¼1 ( fk�1fi þ fi�1)xi þ fk�1f0.

Following the above procedure, we can gradually replace all xi, where k�
i � 2k� 1, with combinations of xi and coefficients fi of the irreducible

polynomial f(x), where 0 � i � k� 1, thus reducing the product of step 1

into a polynomial with k� 1 degree of the GF(2k) field.

To represent the reduction process, a k� k reduction matrix R can be

constructed, as proposed by Mastrovito in [8]. Each row of R can be con-

structed recursively from the irreducible polynomial f(x) following the form:

ri, j ¼
fj

ri�1, k�1

ri�1, j�1þ ri�1, k�1 � r0, j

for i ¼ 0, j ¼ 0, 1, . . . , k � 1,

for i ¼ 1, 2, . . . , k � 2, j ¼ 0,

for i ¼ 1, 2, . . . , k � 2, j ¼ 1, 2, . . . , k � 1:

8><
>:

The resulting R matrix can then be used for mapping all the xi, where k � i �
2k� 1, to xi, where 0 � i � k� 1 as follows:

xk

xkþ1

� � �
x2k�1

2
64

3
75 �

r0, 0 r0, 1 . . . :: r0, k�1

r1, 0 r1, 1 . . . :: r1, k�1

. . . . . . . . . :: . . . :
rk�1, 0 rk�1, 0 . . . :: rk�1, k�1

2
64

3
75 �

x0

x1

. . .
xk�1

2
64

3
75 mod f (x):
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The second approach to polynomial GF(2k) field multiplication consists of

only one step where both polynomial multiplication and reduction are

performed.

Multipliers in GF(2k) fields can be categorized in bit serial, digit serial,

and bit parallel designs. Bit serial multipliers require k clock cycles to come

up with a multiplication product and process data bit by bit. Digit serial

multipliers require D< k clock cycles to come up with a multiplication

product and process data in d-bit digits. Bit parallel multipliers require one

clock cycle to come up with a multiplication product and process data in k-bit

values. Several different GF(2k) field multiplication algorithms exist for each

type of multipliers. Such algorithms are summarized in Figure 4.5 and

analyzed independently in the following subsections.

Before we proceed with the analysis, some important aspects of GF(2k)

field multiplication should be highlighted. The form of the irreducible poly-

nomial plays a very important role in the efficiency of the multiplication

Polynomial basis 
GF(2k ) multipliers

Bit serial 
GF(2k ) multipliers

Bit parallel 
GF(2k ) multipliers

Digit serial
GF(2k ) multipliers

LSbit multiplier

Mastrovito 
multiplier

MSbit multiplier

Montgomery 
multiplier

Karatsuba–Ofman 
multiplier

Composite fields 
multiplier

FIGURE 4.5 Categorization of polynomial basis GF(2k) field multipliers.
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process. A great deal of research has been undertaken in finding an appropri-

ate irreducible polynomial that can optimize the multiplication process. Irre-

ducible trinomials, equally spaced polynomials (ESP), or all one polynomials

(AOP) have special properties that result in important optimizations in hard-

ware as well as software multiplier designs [8].

Suppose that we have an irreducible polynomial f (x) ¼ xnm þ xnm�1þ
xnm�2 þ � � � þ xn1 þ xn0 then nm¼ k and ni� ni� 1¼ ti. If ni� ni�1¼ t for all

i¼ {0,1, 2, . . . , m}, then the polynomial f(x) is called ESP. If all ti¼ 1 the

polynomial f(x) is called AOP. Trinomials are the polynomials that have only

three nonzero terms. NIST proposes some specific special type irreducible

polynomials for cryptographic use in GF(2k) fields with prime k. More can be

found in [13,14].

However, the use of special irreducible polynomials restricts the reusability

of a resulting multiplier. To avoid this problem, the notion of reconfigurability

has been introduced in the GF(2k) field multiplication process. Assume that a

GF(2k) field multiplier is able to handle generic type of irreducible polynomials

and be able to perform multiplication not only for the underlined GF(2k) field but

for all GF(2m) fields, where 0<m< k. In that case, the multiplier is called

reconfigurable, versatile, or that it can handle arbitrary GF(2k) fields and

generic irreducible polynomials [37]. Not all the GF(2k) field multipliers

shown in Figure 4.5 can easily be made versatile.

4.8.2.1.2.1 Bit Serial Least Significant Bit and Most Significant Bit Multipliers

Using the polynomial reduction method in GF(2k) fields along with the bit

serial multiplication process, two well-known modular GF(2k) field multipli-

cation algorithms are obtained [38]. These algorithms follow the shift and add

principle but process the multiplier b(x) beginning from the least significant

bit (LSB) or the most significant bit (MSB). Thus, those multipliers are called

LSB or MSB multiplier, respectively (Algorithm 12 and Algorithm 13).

Algorithm 12 and Algorithm 13 consist only of shift operations (x � a),

XOR operations (þ), and AND operations (bi � a). A bit serial architecture can

easily be designed following these algorithms. Such a design for the MSB

multiplication algorithm is shown in Figure 4.6, consisting of two input AND,

XOR gates and 1-bit registers.

The use of special type irreducible polynomial can simplify the multiplication

process. However, reconfigurability cannot be easily achieved in MSB and LSB

multiplication algorithms since both algorithms use the MSB of a or c. Special

circuitry is required for finding the MSB if we are to use a GF(2k) field multiplier

for GF(2m) field multiplication with polynomials of degree m less than k�1.

4.8.2.1.2.2 Bit Serial Montgomery Multiplication for GF(2k) Fields

Koç and Acar in [39] proposed a bit serial and digit serial version of the

Montgomery multiplication algorithm for GF(2k) fields. This algorithm is simi-

lar to the well-known algorithm for GF( p) fields. Instead of a(x)b(x) mod f(x)
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the algorithm calculates a(x)b(x)r�1(x) mod f(x), where r(x) is a constant

value. It is required that gcd(r(x), f(x))¼ 1. Since f(x) is irreducible the

above condition is always valid.

Through the correct choosing of the value r(x), the algorithm becomes

less complex and can give efficient hardware architectures. The more appro-

priate choice would be r(x)¼ xk. Then, the bit serial Montgomery multiplica-

tion algorithm for GF(2k) fields can be presented (Algorithm 14).

The Montgomery multiplication algorithm for GF(2k) fields is similar to

the original algorithm of P. Montgomery, however, is more simple because

of the GF(2k) field carry-free logic and the lack of final subtraction. Its space

and time complexity is similar to that of the LSB and MSB multipliers [40],

and the algorithm can be simplified using special irreducible polynomials

[41,42]. However, the removal of the factor x�k in the Montgomery multipli-

cation product in order to get the correct multiplication product adds an extra

computational cost in the algorithm. Therefore, the Montgomery multiplica-

tion algorithm for GF(2k) fields is useful in applications that require many

multiplications without conversion from Montgomery representation to nor-

mal representation.

However, this algorithm is easily made reconfigurable. By padding the

unused bits with zeros, a GF(2k) field Montgomery multiplier can calculate a

multiplication product for any GF(2m) field, where 0<m< k. A bit serial

GF(2k) field Montgomery multiplier is shown in Figure 4.7.

4.8.2.1.2.3 Bit Parallel Mastrovito Multiplier

Suppose that a(x), b(x) are polynomials of the GF(2k) field defined over

the irreducible polynomial f(x). Then, as already described, c(x)¼ a(x)b(x)

mod f(x). The polynomials c(x) and b(x) can also be represented as column

vectors C and B. Mastrovito in [8] introduced a k� k Matrix Z with elements

zi, j defined as a function of the coefficients fi and ai, so that C¼ Z �B.

ak−1 …. a1 a0 …. b1 b0

rk−1 rk−2 rk−3 …. r1 r0

……………… 0

0ak−2 ak−3 bk−1 bk−2 bk−3

Ck−1 Ck−2 Ck−3 C1 C0

FIGURE 4.6 Bit serial MSB GF(2k) field multiplier architecture.
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C ¼ Z � B)

c0

c1

. . .
ck�1

2
664

3
775 ¼

z0, 0 z0, 1 . . . :: z0, k�1

z1, 0 z1, 1 . . . :: z1, k�1

. . . . . . . . . :: . . . :
zk�1, 0 zk�1, 0 . . . :: zk�1, k�1

2
664

3
775 �

b0

b1

. . .
bk�1

2
664

3
775:

This Z matrix, called product matrix, can be constructed by using the reduc-

tion matrix R and the multiplier polynomial a(x), following the formula:

zi, j¼
ai

u(i� j) �ai�jþ
Xj�1

t¼0
rj�1�t,i �ak�1�t

for i¼0, 1, . . . ,k�1, j¼0,

for i¼0, 1, . . . ,k�2, j¼1, 2, . . . ,k�1:

(

The function u(s) is defined as

u(s) ¼ 1 s � 0,

0 s < 0:

�

Using equation C¼ Z �B, each coefficient ci of the multiplication product

C(x) can be written as a linear combination of the coefficients of b(x) and the

elements of the product matrix. From a hardware design perspective, each ci

can be calculated as a combination of AND gates and relevant XOR trees.

This calculation is completed in one clock cycle. A generic architecture of a

Mastrovito multiplier is shown in Figure 4.8.

A close inspection of the product matrix shows that it is highly depen-

dent on the form of the irreducible polynomial defining the GF(2k) field.

Mastrovito was the first to perform a thorough analysis on the effect of f(x)

in the resulting design of a bit parallel multiplier in GF(2k) fields. It has

been found that irreducible trinomials, AOPs, and ESPs greatly improve the

Mastrovito multiplier. More information can be found in [43].

b0 b1 b2 …. bk−2 ak−1 …. a1 a0

C0 C1 C2 Ck−2

f1 f2 f3 …. fk−1 fk

……

f0

0bk−1

Ck−1

ak−2 ak−3

FIGURE 4.7 Bit serial GF(2k) field Montgomery multiplier architecture.
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4.8.2.1.2.4 Bit Parallel Karatsuba GF(2k) Field Multiplier

The Karatsuba–Ofman multiplication algorithm applied in GF( p) fields can

be successfully utilized for GF(2k) fields. Suppose that a(x), b(x) are

polynomials of a GF(2k) field defined over an irreducible polynomial f(x),

and k¼ 2m. We can rewrite a(x), b(x) as a(x)¼A1(x)xmþA2(x) and

b(x)¼ b1(x)xmþB2(x) where A1(x), A2(x), B1(x), and B2(x) are polynomials

of m� 1 degree. In that case, multiplying a(x) � b(x) becomes

a(x) � b(x) ¼ (A1(x)xm þ A2(x)) � (B1(x)xm þ B2(x))

¼ (A1(x) � B1(x))x2m þ (A1(x) � B2(x)þ A2(x) � B1(x))xm þ (A2(x) � B2(x)):

Instead of performing one multiplication between k-bit polynomials, using

Karatsuba–Ofman method three parallel multiplications and four parallel

additions of m-bit polynomials are required, where m¼ k=2. We compute

C(x)¼A1(x) �B1(x), D(x)¼A2(x) �B2(x), and then

(A1(x)þ A2(x)) � (B1(x)þ B2(x)) ¼ A1(x) � B2(x)þ A2(x) � B1(x)

þ A1(x) � B1(x)þ A2(x) � B2(x),
A1(x) � B2(x)þ A2(x) � B1(x) ¼ (A1(x)þ A2(x)) � (B1(x)þ B2(x))

þ C(x)þ D(x):

Multiplication between the m degree polynomials can be performed using

some other bit parallel or bit serial multiplier but it can also be performed

using again the Karatsuba–Ofman method. In the second case, the Karatsuba–

Ofman method is used recursively until a multiplication bit length is reached

beyond which this method is not affordable. This method works even if k is

not even. By padding with zeros, the multiplicand or multiplier can fit to the

appropriate bit length.

The output of the Karatsuba–Ofman multiplier is a polynomial of 2k� 1

degree and has to be reduced using the reduction matrix R. Some research-

ers propose integrating both operations (multiplication and reduction) into

one architecture [44], thus improving the speed and hardware resources of

the design.

4.8.2.1.2.5 Finite Field Multipliers Based on Composite Finite Fields

Knowing a GF(2k) field with k¼ n �m, we can create the extension GF((2n)m)

field defined over the irreducible polynomial f(x). This field has polynomial

elements a(x) with coefficients ai, fi2GF(2n) defined over the irreducible

polynomial n(x) and is also called composite finite field.

Suppose that we have the a(x), b(x) elements of GF((2n)m) field, where

a(x)¼
Pm�1

i¼0 aix
i¼ am�1xm�1þam�2xm�2þ�� �þa1xþa0, b(x)¼

Pm�1
i¼0 bix

i¼
bm�1xm�1þbm�2xm�2þ�� �þb1xþb0 and each ai, bi are elements of the

GF(2n) field. Then multiplication between those elements would be
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c(x) ¼
Xm�1

i¼0
cix

i ¼ a(x) � b(x) ¼ a(x) � b(x) mod f (x)

¼ (a(x) � bm�1xm�1 þ a(x) � bm�2xm�2 þ � � � � þ a(x) � b0) mod f (x)

¼ ((am�1bm�1x2m�2 þ am�2bm�1x2m�3 þ � � � � þ a1bm�1xm þ a0bm�1)

� � � þ (am�1b0 þ am�2b0 þ � � � � þ a1b0 þ a0b0)) mod f (x):

Each product ai � bj in GF((2n)m) fields is not a simple AND operation as

in GF(2k) fields but rather a full GF(2n) field multiplication, ai(x) � bj(x)

mod n(x). Therefore, multiplication in GF((2n)m) fields can be analyzed to

multiplication in two different finite fields, a GF(2m) field defined over f(x)

and a GF(2n) field defined over n(x). However, these multiplication oper-

ations of a GF(2n) field can be carried out in parallel and since n, m< k, the

overall multiplication delay is reduced.

A usual design approach for multiplication in GF((2n)m) fields is the

choice of an appropriate bit parallel multiplier type for GF(2n) field opera-

tions and a different multiplier type for the overlaid GF(2m) field. For

example, in [45] a Mastrovito multiplier is chosen for GF(2n) field multipli-

cation and a Karatsuba–Ofman multiplier for GF(2m) field multiplication.

4.8.2.1.2.6 Digit Serial GF(2k) Field Multipliers

Suppose that b(x) is an element in digit format of a GF(2k) field defined over

f(x) and assign the digit size as d. Then, the number of digits would be

D ¼ dk=de and the b(x) element in polynomial format would be

b(x) ¼
XD�1

i¼0
Bi(x)xdi ¼ BD�1(x)xd(D�1) þ BD�2(x)xd(D�2) þ � � � þ B1(x)xd þ B0(x),

where each Bi(x) would be

Bi(x) ¼
Xd�1

j¼0
bDiþjx

j ¼ bDiþd�1xd�1 þ bDiþd�2xd�2 þ � � � þ bDiþ1x1 þ bDi:

Suppose that we want to multiply two elements a(x), b(x) of a GF(2k) field

defined over f(x). Then, by representing one or both of those elements in digit

format, all the bit serial multipliers presented earlier can be adjusted to

process digits instead of bits in each clock cycle. For LSB multiplication

we use the following equation:

a(x) � b(x) mod f (x)¼
�
a(x) �

XD�1

i¼0
Bi(x)xdi

�
mod f (x)¼

�
(a(x)B0(x)

þB1(x)(a(x)xd mod f (x))þB2(x)(a(x)xd � xd mod f (x))

� � � þBD�1(a(x)xd(D�2) � xd mod f (x))
�

mod f (x):
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while for MSB multiplication we follow the equation:

a(x) � b(x) mod f (x) ¼
�
a(x) �

XD�1

i¼0
Bi(x)xdi

�
mod f (x)

¼
�
((( � � � �(((BD�1(x)a(x) mod f (x))xd þ a(x)BD�2(x))

mod f (x))xd þ � � � )xd þB1(x)a(x)Þ mod f (x))xd

þ B0(x)a(x)
�

mod f (x):

As a result of the above, a digit serial version of LSB, MSB algorithm for

GF(2k) fields can be presented (Algorithm 15 and Algorithm 16).

The digit serial versions of LSB and MSB algorithms involve modular

reduction with the irreducible polynomial f(x). Reduction can be performed

using the reduction matrix R. This operation is less complex than bit parallel

reduction because d< k. Several approaches for optimizing this process exist,

such as [37,46–48].

Koç and Acar in [39] proposed a word-level version of Montgomery

multiplication algorithm for a GF(2k) field. This version can be considered

digit serial, assuming that a(x), b(x), f(x) are in digit format (Algorithm 17).

The above algorithm requires inversion of the irreducible polynomial f(x)

and multiplication between d degree polynomials. In hardware design, most

of the multiplications between digits can be done in parallel and the inversion

can be optimized significantly since the modulus is xd, a power of the base.

However, the algorithm remains more efficient in software designs [39].

4.8.2.1.2.7 Hardware Design of GF(2k) Field Multipliers

Systolic arrays are widely used in bit serial and digit serial multipliers to

increase the multiplication throughput. However, the latency remains un-

changed. The use of two-dimensional systolic arrays bears high cost in

hardware area resources and can be used in applications where such resources

are unimportant. In wireless handheld applications, this cost usually cannot be

ignored. Therefore, like in the case of GF( p) fields, one-dimensional systolic

arrays are used in the design of GF(2k) field multipliers.

In the case of bit parallel GF(2k) field multipliers, the use of special type of

irreducible polynomials is inevitable in designing efficient multipliers in speed

and hardware resources. Many such designs have been proposed [43,49] giving

promising results. Bit parallel versions of Montgomery multiplication have

also been proposed for irreducible trinomials [41,42] [50] that manage to

achieve results comparable to other types of bit parallel multipliers.

Some researchers have also proposed the use of polynomial residue

arithmetic, the polynomial equivalent of RNS. Halbuto�ggullari in [51] pro-

poses such a multiplier in polynomial residue arithmetic, which uses the MSB

multiplication algorithm and lookup table reduction method to speed up

the multiplication process. Similarly, Bajard in [52] proposes a Montgomery

multiplication algorithm in trinomial residue arithmetic.

An overview of the time delay and area resources required in various

GF(2k) field multipliers is shown in Table 4.2.
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The notation in Table 4.2 is identical to the definitions of the special type

of polynomials presented in Section 4.8.2.1.2. The subset S is the set of

indices k, kþ t, kþ tþ 1, . . . , 2k� 3, 2k� 2, while the subset S* is

(S�min(S)). TA is the delay of an AND gate, TX is the delay of an XOR

gate, and TM is the delay of an MUX.

4.8.2.1.3 GF(2k) Field Squaring in Polynomial Basis Representation
Suppose that a(x) is an element of a GF(2k) field defined over an irreducible

polynomial f(x). Then, the square of a(x) would be A2¼ a2(x) mod f(x).

However, squaring the polynomial a(x) without reduction would give us

a2(x) ¼ ak�1x2k�2 þ ak�2x2k�4 þ � � � þ a1x2 þ a0. The vector of a2(x) would

be a2¼ {0, ak�1, 0, ak�2, 0, ak�3, 0, . . . , a1, 0, a0}. Therefore, a2(x) can be

created from a(x) element by placing zero values between two consecutive

coefficients of a(x). The outcome is a 2k� 2 degree polynomial extended from

a k� 1 degree polynomial. In order to get the correct GF(2k) field squaring

result, a reduction operation is applied to the resulting polynomial using the

reduction matrix R. Knowing the structure of a2(x), the bit serial multiplication

algorithms can be greatly simplified and can perform GF(2k) field squaring

with reduced computation cost in comparison with GF(2k) field multiplication.

4.8.2.1.4 GF(2k) Field Inversion–Division in Polynomial Basis
Representation

Consider a polynomial a(x) of a GF(2k) field defined over an irreducible

polynomial f(x). There exists a polynomial s(x)2GF(2k) so that

a(x) � s(x) � 1(mod f (x)). This polynomial s(x) is denoted as a�1(x) and is

called multiplicative inverse of a(x). The process of finding a multiplicative

inverse is called inversion. The multiplicative inverse a�1(x) exists as long as

f(x) and a(x) are coprime and since f(x) is irreducible, the above constraint is

always valid.

Inversion in a GF(2k) field is performed using algorithms similar to the

ones presented for GF( p) fields, adjusted accordingly using carry-free logic.

The dominant inversion algorithm is the EEA for GF(2k) fields, especially in

its binary form. Another approach to inversion is the use of consecutive

multiplication and squaring operations following Fermat’s Little Theorem.

4.8.2.1.4.1 EEA for GF(2k) Field Inversion

The operation a(x) � a�1(x) � 1(mod f (x)) can be written as a(x) � a�1(x)þ
f (x)f̂f (x) ¼ 1 and can be calculated using the EEA for GF(2k) fields through

proper initialization (Algorithm 18).

In the EEA(a, f ), four operations are performed in every round:

. Division of the s and r variables. Its remainder is s� q � r and is used

as the r value of the following step and its quotient q is needed for the

calculation of v� q � u.
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. Multiplication for the calculation of v� q � u.

. Subtraction operation, which is identical to addition in GF(2k) fields.

. Swap operation where the values of r and u are exchanged with s and

v, respectively.

While the swap and subtraction operations have trivial computation complex-

ity, multiplication and especially division are complex, time-consuming

operations. Additionally, the number of repetitions until r¼ 0 (when a result

is reached) is not constant and probing the progress of r at every round

requires extra computational effort. Therefore, EEA(a, f ), in this form, is

unsuitable for hardware design because it cannot achieve small critical path

delay and high throughput. Techniques like pipelining cannot be efficiently

employed and systolic arrays that could dramatically decrease the critical path

delay and increase throughput are inapplicable because of the nonconstant

loop number.

To avoid these problems, modified versions of the EEA(a, f ) have been

proposed [56–61]. These algorithms use a different division process in order to

find the ‘‘remainders’’ s� q � r and v� q � u without calculating the quotient q.

We usually denote those algorithms as MEEA [60] (Algorithm 19). In

Algorithm 19, all the values are k degree polynomials and d is an integer.

While MEEA(a, f ) is attractive for bit serial or systolic design, Yan et al.

[58] have found that it can be further optimized when analyzed bit by bit,

resulting in a binary variation of the algorithm (Algorithm 20). In Algorithm

20 all the values are k degree polynomials and the superscripts (i) indicate the

current round (round i).
Using this algorithm, an inversion operation can be designed in hardware

by one-dimensional (bit serial approach) or two-dimensional systolic arrays,

as proposed in [59].

4.8.2.1.4.2 Inversion In GF(2k) Fields Using Fermat’s Little Theorem

For every element a of GF(2k) field regardless of the field basis representa-

tion, the power a2k
can be calculated using Fermat’s Little Theorem as

a2k ¼ a. In that case, the multiplicative inverse can be found by multiplying

both sides of a2k ¼ a with a�2. Then a2k�2 ¼ a�1 and 2k�2 is analyzed

into 2k�2¼ 2þ 22þ 23 þ � � � þ 2k�1. The multiplicative inverse becomes

a�1 ¼ a2þ22þ���þ2k�1 ¼ a2 � a22 � . . . � a2k�1

and can be calculated through a

process of repeated squarings and multiplications. Such algorithmic processes

for performing inversion can be applied to any GF(2k) field base representa-

tion (Algorithm 21).

In polynomial basis representation of a GF(2k) field the above iterative

algorithm is considered slower than other inversion algorithms. The reason is

the high number of multiplications and squaring operations. Although squar-

ing is less computationally complex than multiplication, it still employs

reduction with the irreducible polynomial. Because of this, this inversion
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method is not chosen for efficient design of polynomial basis GF(2k)

field inversion.

4.8.2.1.4.3 Other GF(2k) Field Inversion Methods

Variations of the above inversion algorithms have been proposed by some

researchers to reduce the number of computational rounds or increase the

hardware efficiency (speed and hardware resources). A well-known variation

of the EEA was proposed by Schroeppel et al. in [62]. This method, called

almost inverse, achieves similar results and performs inversion in less com-

putation rounds compared with the EEA for GF(2k) fields.

Another approach in inversion is the Montgomery invert algorithm for

GF(2k) fields as a direct transformation of the Montgomery invert algorithm

described in Section 4.8.1.4.2 from GF( p) fields to GF(2k) fields. In the

GF(2k) field version of the algorithm, addition is identical to subtraction, all

the values are polynomials, and the output is the modulus of the irreducible

polynomial f(x) instead of p. More on GF(2k) inversion can be found in [63].

4.8.2.1.4.4 GF(2k) Field Division

Division in GF(2k) fields consists of two operations. One inversion and one

multiplication are employed to calculate the division output, following the

methodology presented for division in GF(p) fields. Such designs include a

GF(2k) systolic inverter concatenated with a GF(2k) systolic multiplier

[58,61].

By proper initialization, the EEA for GF(2k) fields can be used for

division although the resulting hardware architecture does not achieve opti-

mistic results in terms of speed and hardware resources. Another approach is

the reusability of functions used for both inversion and multiplication so as to

design a reconfigurable architecture that can perform the two operations with

small extra cost [64].

4.8.2.2 Normal Basis Representation

Massey and Omura in [65] proposed a new way of representing the elements

of a GF(2k) field. Normal basis (NB) element representation of a GF(2k)

field over GF(2) uses the base B ¼
�
x, x2, x22

, x23

, x24

, . . . , x2k�1�
, where we

say that x generates the normal basis or that x is a normal element of

GF(2k) over GF(2).

Every GF(2k) field has an NB [66,67] and each element A of that GF(2k)

field can be represented using that NB as

A ¼
Xk�1

i¼0
aix

2i ¼ a0x20 þ a1x21 þ a2x22 þ � � � þ ak�1x2k�1

,

where ai2GF(2) or in vector format as A¼ (ak�1, ak�2, . . . , a1, a0).
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4.8.2.2.1 GF(2k) Field Addition–Subtraction in Normal
Basis Representation

As presented in Section 4.8.2.1.1, addition and subtraction in GF(2k) fields are

identical operations and can both be interpreted as an XOR operation between

the GF(2k) field elements A and B regardless of the representation base used

in this field.

4.8.2.2.2 GF(2k) Field Multiplication in Normal Basis Representation
Suppose that A, B are elements of a GF(2k) field using normal basis repre-

sentation. If the result of multiplying those two elements is C¼A �B, then C
would be

C ¼
Xk�1

m¼1
cmx2m ¼ A � B ¼

Xk�1

i¼1
aix

2i �
Xk�1

j¼1
bjx

2j

¼
Xk�1

i¼1

Xk�1

j¼1
aibjx

2i

x2j

,

0 � i, j, l � k � 1:

If we define t(m)
i, j 2 GF(2) as x2i � x2j ¼

Pk�1
m¼0 t(m)

i, j x2m
, then each cm coefficient

of C can be represented as

cm ¼
Xk�1

i¼1

Xk�1

j¼1
aibjt

(m)
i, j ¼ ATmBT, 0 � m � k � 1:

where A, B are the multiplier and multiplicand in vector format, BT is the

transpose of B and Tm ¼ (t(m)
i, j )(()) is a k� k matrix, called multiplication table

matrix, with t(m)
i, j elements of a specific m value corresponding to x2m

. The

multiplication table matrix can be considered a mapping of all the x2i � x2j

combinations for a certain m. If a x2i � x2j
combination is not zero for a given

m, then t(m)
i, j ¼ 1 and since cm¼ATm BT the corresponding aibj partial product

exists in cm. The collection of matrixes {Tm} is called a multiplication table of

a GF(2k) field over GF(2).

Massey and Omura [65] have found that each coefficient cm can be

calculated from the multiplication table matrix T0 by rotating m bits the vectors

A and B. Each coefficient of the multiplication product C can be found as

cm ¼
Xk�1

i¼1

Xk�1

j¼1
aiþmbjþmt(0)

i, j , 0 � m � k � 1,

where all the subscripts are considered modulus k.

The number of nonzero elements in the multiplication table matrix Tm of a

GF(2k) field using normal basis representation is called the complexity of the

normal basis CN and is CN � 2k� 1. The complexity of a normal basis plays a

crucial role in the design of a hardware architecture since each nonzero

element of Tm corresponds to a partial product aibj (an AND operation) in cm.
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The normal basis that has the lowest complexity of CN¼ 2k�1 is called

ONB. Those normal bases are special cases of the Gaussian normal basis of

type t, for t¼ 1 and t¼ 2 [68]. Therefore, two ONB types exist, Type I ONB

(Gaussian normal basis Type 1) and Type II ONB (Gaussian normal basis

Type II).

If kþ 1 is prime and 2 is primitive in GF(kþ 1) (meaning that 2s

mod(kþ 1) is a number in the range {0, 1, . . . , k}, where 0 � s � k�1),

then the nontrivial (kþ 1) roots of unity form an ONB of GF(2k) field over

GF(2) called Type I ONB.

If 2kþ 1 is prime and 2 is primitive over GF(2kþ 1) or 2k þ 1 �
3(mod 4) and the multiplicative order of 2 in GF(2kþ 1) is k, then

x¼ gþ g�1 generates an ONB of a GF(2k) field over GF(2), where g is a

primitive (2kþ 1) root of unity. This ONB is called Type II ONB.

Following the above definitions all t(0)
i, j can be found by solving appropriate

systems of equation [66]. Whenever an i, j pair satisfying the equation system

is found, then t(0)
i, j ¼ 1. The system of equations for Type I ONB would be

2i þ 2j � 1 mod k þ 1,

2i þ 2j � 0 mod k þ 1,

and the system of equations for Type II ONB would be

2i þ 2j � �1 mod 2k þ 1,

2i � 2j � �1 mod 2k þ 1:

As a result of the above remarks, a multiplier architecture in a normal basis

representation GF(2k) field can be designed by a series of AND operations

(one for each aibj partial product of the coefficient cm of the product C) and a

series of XOR operations. The AND operations are performed in parallel and

the XOR operations are used for adding all the aibj partial products to

calculate each coefficient cm. The multiplication process depends heavily on

the complexity CN and structure of the multiplication table matrix T0.

There are various normal basis GF(2k) field multiplier designs. Bit serial

multipliers process the input 1-bit per clock cycle but can give the product C
either in parallel after k clock cycles (serial multiplier parallel output, SMPO)

or in a serial way by calculating one coefficient cm per clock cycle (serial

multiplier serial output, SMSO). There are also bit parallel normal basis

multiplier designs that calculate the multiplication product in one clock

cycle at the expense of extra hardware resources. Most of the different NB

multipliers are also extended for ONBs, especially bit parallel designs. Those

systems achieve far better hardware resource efficiency and speed compared

with general normal basis designs.
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4.8.2.2.2.1 SMPO Normal Basis Multipliers

Agnew et al. in [69] first proposed the SMPO normal basis design following

a principle somewhat different from the classical Massey Omura multipli-

cation approach. Rewriting the Massey Omura equation cm ¼
Pk�1

i¼1Pk�1
j¼1 aiþmbjþmt(0)

i, j we can obtain cm ¼
Pk�1

j¼1 bjþm

Pk�1
i¼1 aiþmt(0)

i, j ¼
Pk�1

j¼1 F(m)
j ,

where F(m)
j ¼ bjþm

Pk�1
i¼1 aiþmt(0)

i, j . Assuming that we work in t clock cycle, the

above function can be defined as F(m)
j (t) ¼ bjþmþt

Pk�1
i¼1 aiþmþtt

(0)
i, j . The coeffi-

cient c0 using the above equations would be c0 ¼
Pk�1

j¼1 F(m)
j (�m). In each clock

cycle t a collection of F(m)
j (t) can be calculated, where 0�m, t� k�1, using A, B

rotated by t bits. Each F(m)
j (t) corresponds to a coefficient cm. The resulting value

of each F(m)
j (t) is stored in the T(m) D Flip Flop of register T after adding to it

the output of T(m�1). When t¼ k� 1 (after k clock cycles), the output of the

T register is the multiplication product C. A generic hardware architecture

following the design methodology of Agnew is shown in Figure 4.9.

By optimizing the F(m)
j (t) function some researchers [70–72] have man-

aged to reduce the required hardware resources and critical path delay of a

resulting multiplier.

SMPO architectures are designed for general normal basis representation.

However, if the theory of ONB is applied to SMPO then that type of

multiplier becomes very fast and requires reduced hardware resources com-

pared with other designs.

4.8.2.2.2.2 SMSO Normal Basis Multipliers

Massey and Omura in [65] proposed an SMSO multiplier architecture as a

direct implementation of equation cm ¼
Pk�1

i¼1

Pk�1
j¼1 aiþmbjþmt(0)

i, j . To design

an architecture so as to calculate the coefficient c0 of the multiplication

product C using c0 ¼
Pk�1

i¼1

Pk�1
j¼1 aibjt

(0)
i, j , a series of AND gates arranged

in parallel are required for calculating the partial products aibj and an XOR

tree for adding all the resulting partial product results. To find the remaining

cm coefficients of C, cycle shifting of the A, B inputs by m is required for the

correct result to reach the output of the XOR Tree. Therefore, after calculating

c0, to find the coefficient c1, cycle shifting A, B by 1-bit to the left is needed.

Using the Massey Omura methodology the resulting multiplier calculates one

coefficient of the multiplication product per clock cycle. A general design of

the SMSO Massey Omura multiplier is shown in Figure 4.10.

SMSO architectures depend heavily on the complexity CN of the multi-

plication table matrix, because they employ an XOR tree for adding all the

aibj partial products. They have a very high critical path delay and are

relatively slow compared to SMPO designs. To overcome this problem,

ONBs are used in the design of SMSO architectures.

4.8.2.2.2.3 Bit Parallel Normal Basis Multipliers

The simpler approach in designing a bit parallel NB multiplier is to

use k different Massey Omura multipliers in parallel, fitting equation
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cm ¼
Pk�1

i¼1

Pk�1
j¼1 aiþmbjþmt(0)

i, j for 0 � m � k� 1 accordingly to every one of

them. Such multipliers are called Massey Omura parallel multipliers and are

useful only in ONB representation where we have low complexity CN¼ 2k� 1.

Many researchers propose optimizations that increase the performance of

parallel ONB multipliers. In [73,74] the structure of the multiplication table

matrix is analyzed, and redundancy is found when ONBs are used (especially

Type I ONBs). Some aibj partial products are used more than once in the

multiplication process. Using appropriate transformation of the NB multipli-

cation table, this redundancy is removed and the hardware resources along

with the critical path delay are reduced.

In other approaches, optimizations consist of an increase in the degree of

parallelism by employing composite fields [75] or the definition of the NB as

an extension of polynomial basis representation for the same GF(2k) field

[76]. Table 4.3 is an overview of GF(2k) field ONB multiplication results for

each type of multiplier described in the Section 4.8.2.2.2.

4.8.2.2.3 GF(2k) Field Squaring in Normal Basis Representation
One of the main advantages in the use of normal basis representation for

GF(2k) field elements is the simplicity of the squaring operation in this

representation. Suppose that A¼ {ak�1, ak�2, . . . , a1, a0} is an element of a

GF(2k) field. Then, the square of A, denoted as A2, would be

A2 ¼
Xk�1

i¼0

(aix
2i

)2 ¼ a0(x20

)2 þ a1(x21

)2 þ a2(x22

)2 þ � � � þ ak�1(x2k�1

)2

a0 ... ak−2

b0 b1 ... bk−2

...
...

...
...

...

... cm

bk−1

a1 ak−1

FIGURE 4.10 General SMSO Massey Omura normal basis multiplier architecture.
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and since (x2i
)2 ¼ x2iþ1

from Fermat’s Little Theorem (x2k ¼ x), the above

equation becomes

A2 ¼ ak�1x20 þ a0x21 þ a1x22 þ � � � þ ak�2x2k�1

:

Therefore, A2 can be found by shifting each coefficient ai to the x2iþ1

base

power and rotating the last coefficient to x20

. The square of A in vector format

is A2¼ (ak�2, ak�3, . . . , a0, ak�1).

4.8.2.2.4 GF(2k) Field Inversion–Division in Normal
Basis Representation

Inversion in GF(2k) fields using normal basis representation follows the same

basic principles as in polynomial basis representation GF(2k) fields. The

algorithms applied to polynomial basis GF(2k) fields have been proposed

for normal basis GF(2k) fields. However, because of the different ways in

which multiplication and squaring operations are performed in NB, some

inversion algorithms are more easily applicable than others.

The EEA for GF(2k) fields can be used for normal basis inversion through

an intermediate state conversion to polynomial basis representation, which is

applicable only for specific irreducible polynomials, such as AOP, and is

usually not affordable in comparison with other normal basis inversion

TABLE 4.3
Critical Path, Latency, and Gate Number of ONB GF(2k) Field

Multipliers

GF(2k) Field

ONB Multiplier

Gates

DFF Latency Critical PathAND XOR

SMSO ONB Multipliers

M.O. [65] 2k�1 2k�2 2k k TAND þ (1þ log2 (k � 1)d e)TXOR

Gao [77] k 2k�2 2k k TAND þ (1þ log2 (k � 1)d e)TXOR

SMPO ONB Multipliers

Agnew [69] k 2k�1 3k k þ 1 TAND þ 2TXOR

Masoleh [70]

�
k

2

�
þ 1 2k�1 3k k TAND þ 3TXOR

Yang [71] k
3k � 1

2
3k k TAND þ 2TXOR

Bit Parallel ONB Multipliers

Gao [77] k2 2k2�2k 0 1 TAND þ (1þ log2 (k � 1)d e)TXOR

Hasan [74] k2 k2�1 0 1 TAND þ (1þ log2 (k � 1)d e)TXOR

Sunar & Koc [76] k2 k2�1 0 1 TAND þ (2þ log2 (k � 1)d e)TXOR

Masoleh [73] k2 k2�1 0 1 TAND þ (1þ log2 (k � 1)d e)TXOR
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methods. Very recently, a different approach to the Euclidean algorithm for

normal basis has been proposed [78], which does not use conversion to and from

polynomial basis representation but its efficiency remains to be investigated.

On the other hand, inversion using Fermat’s Little Theorem gives optimis-

tic results in terms of speed and required hardware resources because of the

trivial cost of squaring operations in normal basis. Itoh and Tsujii [79] proposed

several algorithmic solutions for inversion using Fermat’s Little Theorem.

The general case of those algorithms is called Itoh–Tsujii inversion algorithm.

Suppose that A is an element of a GF(2k) field in normal basis represen-

tation and A�1 is its multiplicative inverse, then using Fermat’s Little The-

orem we can find A�1 as

A�1 ¼ A2k�2 ¼ (A2k�1�1)2:

If we write k� 1 as a sum of powers of 2, meaning k � 1 ¼
Pt

i¼1 2ni where

n0< n1< n2 � � �< nt, then

A�1 ¼ (A2k�1�1)2

¼ (A22nt�1) � A22nt�1�1
� �

� � � A22n1�1
� �

A22n0�1
� �22n1	 
22n2

� � �

0
@

1
A

22nt2
64

3
75

2

:

From a design point of view, this equation has an important feature. If

the quantity (A22ni�1) is calculated, then all the similar quantities of n0,

n1, . . . , ni�1 are also calculated. This methodology requires (blog2 (k � 1)cþ
Ham min g Weight(k � 1)� 1) multiplication and k�1 squaring operations and

can be generalized for any extension finite field (GF(pk) field) (Algorithm 22).

This version of the algorithm uses calculation in the subfield GF(p). Such

calculation can be made using a look up table or the EEA. As shown above,

the Itoh–Tsujii algorithm can also be used for polynomial basis representation

GF(2k) fields and composite fields although it is not as efficient as in normal

basis representation GF(2k) fields.

4.9 ELLIPTIC CURVE POINT OPERATIONS

From the analysis of mathematical operations in GF( p) fields and GF(2k)

fields, the overall cost of elliptic curve point operations can be more exten-

sively studied. One obvious result of the finite field analysis is the extensive

cost in hardware resources and speed of the inversion–division operation.

Inversion algorithms need many rounds to calculate a result and in some cases

the number of rounds is not constant, requiring control logic for manipula-

ting the data stream. However, inversion is an essential operation for point
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addition and doubling as described in Section 4.5, whether we work in GF(2k)

fields or GF( p) fields. A solution to the problem is the use of basic projective

geometry principles so as to change the coordinate system of each elliptic

curve point from affine coordinates to projective coordinates.

Design problems are also traced in point multiplication, when the algo-

rithm described in Section 4.6 is used. Translating this algorithm in binary

form and reducing the required number of point addition and doubling

operations can enhance the performance of a resulting design.

In addition, special consideration should be given in efficient design of

point operations for cryptographic use so that the performed point operations

are undistinguished in an overall cryptographic system to avoid side channel

attacks (SCAs). SCA for braking ECC [80] is based on measuring the behavior

of an ECC system to identify point addition and doubling operations performed

in a period of time in order to extract information about the secret key s.

4.9.1 POINT ADDITION AND POINT DOUBLING USING

PROJECTIVE COORDINATES

Suppose that we have an elliptic curve E defined over a finite field F. Each

EC point is described by two coordinates x, y2F. In this case, we say that

the EC points belong to the two-dimensional affine plane AF¼ {(x, y)2
F�F}. However, there is a mapping between the affine plane A2

F and the

two-dimensional projective plane PF¼ {(X: Y: Z)2F�F�F}.

The equivalence class in the projective plane is {(X: Y: Z)¼ (ucX, udY,

ueZ): X, Y, Z, u2F} although we usually choose e¼ 0 so that {(X: Y:

Z)¼ (ucX, udY, Z): X, Y, Z, u2F}. The c, d values are integers. If Z¼ 0 in

the projective plane then (X: Y: 0) is the line at infinity, which is identical

to the point at infinity in the affine plane. In any other case (Z 6¼ 0) we can

map the coordinates (x, y) of the affine plane to the coordinates of the

projective plane as (X, Y, Z)¼ (x � Zc, y � Zd, 1) or else x¼X=Zc and y¼ Y=Zd.

Suppose that E is the equation of the elliptic curve in the affine plane, the

equivalent equation E in the projective plane can be found by replacing x, y
with their projective coordinate equivalent X=Zc and Y=Zd, respectively.

According to the values of c and d, various types of projective coordinates

can be specified. Among them, the more important variations are the standard

projective coordinates (c¼ 1 and d¼ 1), the Jacobian projective coordinates

(c¼ 2 and d¼ 3), Chudnovsky projective coordinates ((X: Y: Z: Z2: Z3) repre-

sentation) [81], the Lopez–Dahab projective coordinates (c¼ 1 and d¼ 2) [82],

and several different mixes of affine and projective coordinates (mixed affine–

projective coordinates). Since the equation E of the elliptic curve in the

projective plane is different from the one in the affine plane, the Group Law

in its algebraic form will also be different. In the rest of this subsection we

analyze the Group Law in the projective plane for GF( p) and GF(2k) fields

using Jacobian projective coordinates.
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4.9.1.1 Point Addition–Doubling in Elliptic Curves over GF(p) Fields
Using Projective Coordinates

Suppose that we have an elliptic curve defined over GF(p) fields. Then, the

short Weierstrass equation of this curve in the affine plane would be

E: y2 ¼ x3 þ axþ b and after applying the projective coordinates trans-

formation it becomes E: Y2¼X3Z2d�3cþ aXZ2d�cþ bZ2d when 2d> 3c and

E: Y2Z3c�2d¼X3þ aXZ2cþ bZ3c when 2d< 3c. For c¼ 2 and d¼ 1 (Jacobian

projective coordinates), we have E: Y2¼X3þ aXZ4þ bZ6.

Suppose that we have two EC points in the projective plane P1¼ (X1, Y1,

Z1) and P2¼ (X2, Y2, Z2). Point addition (P3¼ (X3, Y3, Z3)¼P1þP2) and

point doubling (P3¼ 2P1) can be described as follows.

Each EC point in affine coordinates can be written as (X=Zc, Y=Zd), where

X, Y, Z are projective coordinates. Then, by replacing x, y accordingly in the

equations of the Group Law for affine coordinates we would have when

P1 6¼P2 (point addition)

l ¼ y2 � y1

x2 � x1

¼

Y2

Zd
2

� Y1

Zd
1

X2

Zc
2

� X1

Zc
1

¼
Y2Zd

1 � Y1Zd
2

� �
Zc

2Zc
1

X2Zc
1 � X1Zc

2

� �
Zd

2Zd
1

for x2 6¼ x1 and the point P3 would be

x3 ¼ l2 � x1 � x2 ¼
Y2Zd

1 � Y1Zd
2

� �
Zc

2Zc
1

X2Zc
1 � X1Zc

2

� �
Zd

2Zd
1

 !2

� ðX1Zc
2 þ X2Zc

1Þ
Zc

2Zc
1

¼
�
Y2Zd

1 � Y1Zd
2

�2
Z3c

2 Z3c
1 �

�
X1Zc

2 þ X2Zc
1

��
X2Zc

1 � X1Zc
2

�2
Z2d

2 Z2d
1�

X2Zc
1 � X1Zc

2

�2
Z2dþc

2 Z2dþc
1

,

y3¼l(x1�x3)�y1¼

¼ (Y2Zd
1�Y1Zd

2 )Zc
2Zc

1

(X2Zc
1�X1Zc

2)Zd
2 Zd

1

X1

Zc
1

�(Y2Zd
1�Y1Zd

2 )2Z3c
2 Z3c

1 �(X1Zc
2þX2Zc

1)(X2Zc
1�X1Zc

2)2Z2d
2 Z2d

1

(X2Zc
1�X1Zc

2)2Z2dþc
2 Z2dþc

1

� �
�Y1

Zd
1

¼ (Y2Zd
1�Y1Zd

2 )Zc
2Zc

1

(X2Zc
1�X1Zc

2)Zd
2 Zd

1

(2X1Zc
2þX2Zc

1)(X2Zc
1�X1Zc

2)2Z2d
2 Z2d

1 �(Y2Zd
1�Y1Zd

2 )2Z3c
2 Z3c

1

(X2Zc
1�X1Zc

2)2Z2dþc
2 Z2dþc

1

� �
�Y1

Zd
1

¼(Y2Zd
1�Y1Zd

2 )(2X1Zc
2þX2Zc

1)(X2Zc
1�X1Zc

2)2Z2dþc
2 Z2dþc

1 �(Y2Zd
1�Y1Zd

2 )3Z4c
2 Z4c

1

(X2Zc
1�X1Zc

2)3Z3dþc
2 Z3dþc

1

�Y1

Zd
1

¼
(Y2Zd

1�Y1Zd
2 )(2X1Zc

2þX2Zc
1)�Y1Zd

2 (X2Zc
1�X1Zc

2)
� �

(X2Zc
1�X1Zc

2)2Z2d
2 Z2d

1 �(Y2Zd
1�Y1Zd

2 )3Z3c
2 Z3c

1

(X2Zc
1�X1Zc

2)3Z3d
2 Z3d

1

:

By defining the denominators of x3 and y3 as Zc
3 and Zd

3 , X3 and Y3 would be

the numerators of x3 and y3, respectively. When using Jacobian projective

coordinates (c¼ 2, d¼ 3), the EC point P3 would be

X3 ¼
�
Y2Z3

1 � Y1Z3
2

�2 �
�
X1Z2

2 þ X2Z2
1

��
X2Z2

1 � X1Z2
2

�2
,

Y3 ¼
��

Y2Z3
1 � Y1Z3

2

��
2X1Z2

2 þ X2Z2
1

�
� Y1Z3

2

�
X2Z2

1 � X1Z2
2

���
X2Z2

1 � X1Z2
2

�2 �
�
Y2Z3

1 � Y1Z3
2

�3
,

Z3 ¼
�
X2Z2

1 � X1Z2
2

�
Z2Z1:
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When P1 6¼P2 but x2¼ x1 then P3¼P1þP2¼1, where 1 is the point at

infinity of the elliptic curve E in projective coordinates. Its form is dependent

on the type of the used projective coordinates (c, d values). For Jacobian

projective coordinates, the point at infinity has the form (1: 1: 0).

When P1¼P2 (point doubling) and y1 6¼ 0, by replacing x, y accordingly,

P3¼P1þP2¼ 2P1¼ (X3, Y3, Z3) would be

l ¼ 3x2
1 þ a

2y1

¼ 3X2
1Zd

1 þ aZ2cþd
1

2Z2c
1 Y1

,

x3 ¼ l2 � 2x1 ¼
(3X2

1 þ aZ2c
1 )2Z2d

1

4Z4c
1 Y2

1

� 2
X1

Zc
1

¼ (3X2
1 þ aZ2c

1 )2Z2d
1 � 8Z3c

1 X1Y2
1

4Z4c
1 Y2

1

,

y3 ¼ l(x1 � x3)� y1 ¼ l(3x1 � l2)� y1

¼ (3X2
1 þ aZ2c

1 )Zd
1

2Z2c
1 Y1

3
X1

Zc
1

� (3X2
1 þ aZ2c

1 )2Z2d
1

4Z4c
1 Y2

1

� �
� Y1

Zd
1

¼ 12X1Y2
1(3X2

1 þ aZ2c
1 )Z3cþ2d

1 � (3X2
1 þ aZ2c

1 )3Z4d
1 � 8Z6c

1 Y4
1

8Z6cþd
1 Y3

1

:

By defining the denominators of x3 and y3 as Zc
3 and Zd

3 , X3 and Y3 would be

the numerators of x3 and y3, respectively. When using Jacobian projective

coordinates (c¼ 2, d¼ 3), the EC point P3 for point doubling would be

X3 ¼ (3X2
1 þ aZ4

1)2 � 8X1Y2
1 ,

Y3 ¼ 12X1Y2
1(3X2

1 þ aZ4
1)� (3X2

1 þ aZ4
1)3 � 8Y4

1 ,

Z3 ¼ 2Z1Y1:

Point subtraction can be performed by using the point �P2 instead of P2,

where the additive inverse of an EC point (X, Y, Z) has the form (X:�Y: Z) in

the projective plane for EC over GF( p) fields.

It can be noted that no inversion–division operation in finite fields is

required for calculating EC point P3 in the projective plane. Only one

inversion is needed for moving from the projective plane to the affine

plane. Moreover, some intermediate multiplication products and intermediate

equations are used more than once in the overall point addition and multipli-

cation process. In a design, such intermediate results can be calculated only

once and then be stored in some memory unit or register to reduce the

required number of finite field operations (multiplications and additions).

For example, the calculation of the EC point P3¼ 2P1¼ (X3, Y3, Z3) can be

performed using two intermediate values [14,17].
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W ¼ 3X2
1 þ aZ4

1,

S ¼ 4X1Y2
1 ,

X3 ¼ W2 � 2S,

Y3 ¼ W(S� X3)� 8Y4
1 ,

Z3 ¼ 2Z1Y1:

The overall number of required GF(p) field operations in the above calcula-

tions is four multiplications and six squarings.

4.9.1.2 Point Addition–Doubling in Elliptic Curves over GF(2k)
Fields Using Projective Coordinates

A similar methodology can be used for elliptic curves defined over GF(2k)

fields. Suppose that E is the short Weierstrass equation of an elliptic curve

defined over a GF(2k) field as described in Section 4.4. Then, by applying the

transformation from affine to projective coordinates (x¼X=Zc and y¼ Y=Zd)

this EC equation E becomes E: Y2þXYZd�c¼X3Z2d�3cþ aX2Z2d�2cþ bZ2d

when 2d> 3c and E: Y2Z3c�2dþXYZ2c�d¼X3þ aX2Zcþ bZ3c when 2d< 3c.

For c¼ 2 and d¼ 1 (Jacobian projective coordinates), we have E:

Y2þXYZ¼X3þ aX2Z2þ bZ6.

Suppose that we have two EC points in the projective plane P1¼ (X1, Y1, Z1)

and P2¼ (X2, Y2, Z2). The point addition (P3¼ (X3, Y3, Z3)¼P1þP2) and point

doubling (P3¼ 2P1) can be described as follows.

Each EC point in affine coordinates can be written as (X=Zc, Y=Zd), where

X, Y, and Z are projective coordinates. If we replace x, y accordingly in the

equations of the Group Law for affine coordinates, we would have when

P1 6¼P2 (point addition)

l ¼ y2 þ y1

x2 þ x1

¼ (Y2=Zd
2)þ (Y1=Zd

1 )

(X2=Zc
2)þ (X1=Zc

1)
¼ (Y2Zd

1 þ Y1Zd
2 )Zc

2Zc
1

(X2Zc
1 þ X1Zc

2)Zd
2Zd

1

for x2 6¼ x1 and the point P3¼P1þP2¼ (X3, Y3, Z3) would be

x3¼l2þ x1þ x2þlþa

¼ (Y2Zd
1 þY1Zd

2 )Zc
2Zc

1

(X2Zc
1þX1Zc

2)Zd
2 Zd

1

� �2

þ (X1Zc
2þX2Zc

1)

Zc
2Zc

1

þ (Y2Zd
1 þY1Zd

2 )Zc
2Zc

1

(X2Zc
1þX1Zc

2)Zd
2 Zd

1

þa

¼ (Y2Zd
1 þY1Zd

2 )2Z3c
2 Z3c

1 þ (X2Zc
1þX1Zc

2)3Z2d
2 Z2d

1 þ (X2Zc
1þX1Zc

2)(Y2Zd
1 þY1Zd

2 )Zdþ2c
2 Zdþ2c

1

(X2Zc
1þX1Zc

2)2Z2dþc
2 Z2dþc

1

þa(X2Zc
1þX1Zc

2)2Z2dþc
2 Z2dþc

1

(X2Zc
1þX1Zc

2)2Z2dþc
2 Z2dþc

1

:
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y3 ¼ l(x1þ x3)þx1þ x3

¼ l
(Y2Zd

1 þY1Zd
2 )2Z3c

2 Z3c
1 þ (X2Zc

1þX1Zc
2)3Z2d

2 Z2d
1 þ (X2Zc

1þX1Zc
2)(Y2Zd

1 þY1Zd
2 )Zdþ2c

2 Zdþ2c
1

(X2Zc
1þX1Zc

2)2Z2dþc
2 Z2dþc

1

�

þa(X2Zc
1þX1Zc

2)2Z2dþc
2 Z2dþc

1 þþX1(X2Zc
1þX1Zc

2)2Z2dþc
2 Z2d

1

(X2Zc
1þX1Zc

2)2Z2dþc
2 Z2dþc

1

�
þ (Y2Zd

1 þY1Zd
2 )2Z3c

2 Z3c
1 þ (X2Zc

1þX1Zc
2)3Z2d

2 Z2d
1

(X2Zc
1þX1Zc

2)2Z2dþc
2 Z2dþc

1

þ (X2Zc
1þX1Zc

2)(Y2Zd
1 þY1Zd

2 )Zdþ2c
2 Zdþ2c

1 þa(X2Zc
1þX1Zc

2)2Z2dþc
2 Z2dþc

1 þX1(X2Zc
1þX1Zc

2)2Z2dþc
2 Z2d

1

(X2Zc
1þX1Zc

2)2Z2dþc
2 Z2dþc

1

¼ (Y2Zd
1 þY1Zd

2 )3Z4c
2 Z4c

1 þ (Y2Zd
1 þY1Zd

2 )(X2Zc
1þX1Zc

2)3Z2dþc
2 Z2dþc

1 þ (X2Zc
1þX1Zc

2)(Y2Zd
1 þY1Zd

2 )2Zdþ3c
2 Zdþ3c

1

(X2Zc
1þX1Zc

2)3Z3dþc
2 Z3dþc

1

�

þa(Y2Zd
1 þY1Zd

2 )(X2Zc
1þX1Zc

2)2Z2dþ2c
2 Z2dþ2c

1 þX1(Y2Zd
1 þY1Zd

2 )(X2Zc
1þX1Zc

2)2Z2dþ2c
2 Z2dþc

1

(X2Zc
1þX1Zc

2)3Z3dþc
2 Z3dþc

1

�

þ (X2Zc
1þX1Zc

2)(Y2Zd
1 þY1Zd

2 )2Zdþ3c
2 Zdþ3c

1 þ (X2Zc
1þX1Zc

2)4Z3d
2 Z3d

1 þ (X2Zc
1þX1Zc

2)2(Y2Zd
1 þY1Zd

2 )Z2dþ2c
2 Z2dþ2c

1

(X2Zc
1þX1Zc

2)3Z3dþc
2 Z3dþc

1

þa(X2Zc
1þX1Zc

2)3Z3dþc
2 Z3dþc

1 þX1(X2Zc
1þX1Zc

2)3Z3dþc
2 Z3d

1

(X2Zc
1þX1Zc

2)3Z3dþc
2 Z3dþc

1

:

By defining the denominators of x3 and y3 as Zc
3 and Zd

3 , X3 and Y3 would be

the numerators of x3 and y3, respectively. When using Jacobian projective

coordinates (c¼ 2, d¼ 3), the EC point P3 would be

X3 ¼ (Y2Z3
1 þ Y1Z3

2)2 þ (X2Z2
1 þ X1Z2

2)3 þ (X2Z2
1 þ X1Z2

2)(Y2Z3
1 þ Y1Z3

2)Z2Z1

þ a(X2Z2
1 þ X1Z2

2)2Z2
2Z2

1,

Y3 ¼ (Y2Z3
1 þ Y1Z3

2)3 þ (Y2Z3
1 þ Y1Z3

2)(X2Z2
1 þ X1Z2

2)3

þ (X2Z2
1 þ X1Z2

2)(Y2Z3
1 þ Y1Z3

2)2Z2Z1

þ a(Y2Z3
1 þ Y1Z3

2)(X2Z2
1 þ X1Z2

2)2Z2
2Z2

1

þ X1(Y2Z3
1 þ Y1Z3

2)(X2Z2
1 þ X1Z2

2)2Z2
2

þ (X2Z2
1 þ X1Zc

2)(Y2Z3
1 þ Y1Z3

2)2Z2Z1 þ (X2Z2
1 þ X1Z2

2)4Z2Z1

þ (X2Z2
1 þ X1Z2

2)2(Y2Z3
1 þ Y1Z3

2)Z2
2Z2

1 þ a(X2Z2
1 þ X1Z2

2)3Z3
2Z3d

1

þ X1(X2Z2
1 þ X1Z2

2)3Z3
2Z1,

Z3 ¼ (X2Z2
1 þ X1Z2

2) Z2Z1:

When P1 6¼P2 but x2¼ x1, then P3¼P1þP2¼1, where 1 is the point at

infinity of the elliptic curve E in projective coordinates. Its form is dependent

on the type of the used projective coordinates (c, d values). For Jacobian

projective coordinates, the point at infinity has the form (1:1:0).

When P1¼P2 (point doubling) and y1 6¼ 0, by replacing x, y accordingly,

P3¼P1þP2¼ 2P1¼ (X3, Y3, Z3) would be
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l ¼ x1 þ
y1

x1

¼ X2
1Zd

1 þ Y1Z2c
1

Zdþc
1 X1

,

x3 ¼ l2 þ lþ a ¼ x2
1 þ

b

x2
1

¼ X4
1 þ bZ4c

1

X2
1Z2c

1

¼ (X1 þ
ffiffiffi
b4
p

Zc
1)4

(X1Zc
1)2

,

y3 ¼ x2
1 þ lx3 þ x3 ¼

X2
1

Z2c
1

þ (X2
1Zd

1 þ Y1Z2c
1 )

Zdþc
1 X1

� (X
4
1 þ bZ4c

1 )

X2
1Z2c

1

þ X4
1 þ bZ4c

1

X2
1Z2c

1

¼ X5
1Zdþc

1 þ (X2
1Zd

1 þ Y1Z2c
1 )(X4

1 þ bZ4c
1 )þ X5

1Zdþc
1 þ bX1Zdþ5c

1

X3
1Zdþ3c

1

¼ X6
1Zd

1 þ bX2
1Zdþ4c

1 þ X4
1Y1Z2c

1 þ bY1Z6c
1 þ bX1Zdþ5c

1

X3
1Zdþ3c

1

:

By defining the denominators of x3 and y3 as Zc
3 and Zd

3 , X3 and Y3 would be

the numerators of x3 and y3, respectively. When using Jacobian projective

coordinates (c¼ 2, d¼ 3), the EC point P3 for point doubling would be

X3 ¼ (X1 þ
ffiffiffi
b

4
p

Z2
1)4,

Y3 ¼ X6
1 þ bX2

1Z8
1 þ X4

1Y1Z1 þ bY1Z9
1 þ bX1Z10

1 ,

Z3 ¼ X1Z2
1 :

Point subtraction can be performed by using the point �P2 instead of P2,

where the additive inverse of an EC point (X, Y, Z) has the form (X: Xþ Y: Z)

in the projective plane for EC over GF(2k) fields.

As in the case of elliptic curves over GF( p) fields, point addition and

point doubling in elliptic curves over GF(2k) fields using projective coordi-

nates can be optimized by storing intermediate results that are used more than

once in the calculation process. For example, the calculation of the EC point

P3¼ 2P1¼ (X3, Y3, Z3) can be performed using one intermediate value and the

reusability of X3 and Z3 [14,17].

W ¼ Z3 þ X2
1 þ Y1Z1,

X3 ¼ (X1 þ
ffiffiffi
b

4
p

Z2
1)4,

Y3 ¼ X4
1Z3 þWX3,

Z3 ¼ X1Z2
1 :

The overall number of required GF(2k) field operations in the above calcula-

tions is five multiplications, five squarings, and four additions–subtractions.

4.9.1.3 Comparison of EC Point Operations in Affine
and Projective Coordinates

Inspecting the equations of the point operation results for the affine and

projective coordinates, a tradeoff can be noticed. Using the projective plane
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we have managed to exchange finite field inversions with a number of finite

field multiplications. In Table 4.4, the cost in finite field operations for each

coordinate system using the presented optimizations is shown.

4.9.1.4 Design Issues for Elliptic Curve Point Addition
and Point Squaring

In IEEE 1363 Draft [14] along with [17], there is an analysis of the equations

in projective coordinates for calculating point addition and doubling results,

by breaking those equations in small reusable intermediate values. Moreover,

algorithms that take advantage of this reusability to increase the parallelism of

calculations are presented.

Resulting designs of those algorithms have an increased degree of paral-

lelism, meaning that they can perform several algorithmic steps in the same

clock cycle. For this reason intermediate storage elements (registers) are

needed. Pipelining is also used in this design methodology to increase the

throughput speed of a point addition or point doubling architecture. An

example of a point addition and doubling architecture for an elliptic curve

over GF(2k) fields (with b¼ 1 of the EC equation E) [83], along with possible

pipeline stages, is presented in Figure 4.11.

However, considering the cost of a single finite field multiplier (bit

parallel architecture) the design described here requires a considerable

amount of hardware resources, such as power consumption, chip covered

area, and storage cells, and can be considered unaffordable especially for

wireless applications. The use of bit serial finite field architectures can

TABLE 4.4
Required Finite Field Operations for EC Point Operations Using Affine

and Projective Coordinates (in Inversion (Inv.), Multiplication (Mult.),

and Squaring (Sq.) Operations)

Coordinate System

Operation

Point Addition Point Doubling

Elliptic curves over GF( p) Fields

Affine 1 Inv. þ 2 Mult. þ 1 Sq. 1 Inv. þ 2 Mult. þ 2 Sq.

Jacobian projective 12 Mult. þ 4 Sq. 4 Mult. þ 6 Sq.

Standard projective 12 Mult. þ 2 Sq. 7 Mult. þ 5 Sq.

Chudnovsky projective 11 Mult. þ 3 Sq 5 Mult. þ 6 Sq.

Elliptic curves over GF(2k) Fields

Affine 1 Inv. þ 2 Mult. þ 1 Sq. 1 Inv. þ 2 Mult. þ 1 Sq.

Jacobian projective 15 Mult. þ 5 Sq. 5 Mult. þ 5 Sq.

Standard projective 15 Mult. þ 5 Sq.
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minimize the described problem but will lead to a dramatic increase in the

required clock cycle number for one point operation. Another solution could

be the use of time multiplexing by appropriate input–output registers man-

aged by a control unit. In that case, the maximum number of each GF(2k) field

operations that can be performed in parallel in each point operation is

estimated and designed. The outputs pass through a controllable register

series, which use feedback to reinsert those outputs as inputs to the architec-

ture to perform the next round of parallel GF(2k) field operations correctly or

store them for future use. Such a design is shown in Figure 4.12 for the

architectures in Figure 4.11.

4.9.2 POINT MULTIPLICATION DESIGN ISSUES

Point multiplication, as presented in Section 4.6, is the most complex of the

elliptic curve point operations. One point multiplication, Q¼ sP, requires
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FIGURE 4.11 Point addition–doubling architecture for EC over GF(2k) fields.
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many point doubling and additions depending on the integer s. Expressing s in

binary format highlights this dependency. The number of zero and nonzero

bits, their place in the binary vector s, and the bit length of s can lead to

different number of point addition and doubling operations used in one point

multiplication. This is shown in the binary version of the point multiplication

algorithm (Algorithm 23).

The Hamming Weight of s (HW(s)) determines the number of point addit-

ion operations and the bit length of s determines the number of point doubling

operations. Therefore, in the binary point multiplication algorithm there are
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GF(2k) fields.
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HW(s) point additions (pA) and t point doublings (pD). Assuming that the bit

length of s is close to k and that HW(s)¼ k=2 at average, meaning that the

number of zeros is approximately the same as the number of ones, the overall

point operations required for Q¼ sP would be k=2 pAþ k pD.

A more general approach to point multiplication concerning the form of

the integer s is to process w bits of s at a time. Such a method is called window

method and is found in several forms [17] such as the fixed window method

or the sliding window method.

The main idea of the window methodology is the use of w bits of the

multiplier s in each clock cycle to reduce the overall number of point addition

and doubling operations. Those w bits are called a window of s. Window

methods use a precomputation procedure to calculate Pj¼ jP, where j takes

odd values from 1 to 2w�1 �1. Those values are stored in order to be used in

the main multiplication process that varies according to the window method-

ology employed. In the fixed window method, the multiplier s is split into

fixed w-bit length windows with pinpointed bit beginning and end. The

sliding window method uses a window with w-bit length at most and arbitrary

beginning or end. This arbitrary window slides from the right to the left of the

s-bit vector, skipping consecutive zero si bits after a nonzero si-bit is pro-

cessed. The sliding window method is faster than the fixed window method

overcoming several problems of the second [17] (Algorithm 24).

Another approach to point multiplication derives from the properties of

the elliptic curve point addition. It can be noted that point subtraction and

point addition require approximately the same number of finite field oper-

ations; thus, they have the same computational and hardware cost. This is true

both for elliptic curves over GF(p) fields, where the additive inverse of

P¼ (x, y)2E(GF(p)) is �P¼ (x,� y) and for elliptic curves over GF(2k)

fields, where the additive inverse of P¼ (x, y)2E(GF(p)) is �P¼ (x, xþ y).

Taking advantage of this, signed digit representation of s in sP point

multiplication can be introduced to reduce the required number of

point addition and doubling operations. In signed digit representation, the

value s would be s0 ¼
Pt

i¼0 s0i2
i, where s0i 2 f0,�1g. If s0t�1 6¼ 0 and no two

consecutive digits si(s
0
i�1s0i) are nonzero, the signed digit representation of s is

called nonadjacent form (NAF) and has some interesting properties that can

be used for point multiplication. More specifically, NAF representation of s is

unique, its bit length is at most tþ 1, and a value in NAF representation has

fewer nonzero digits (t=3 at average) than in binary representation.

NAF representation construction of an integer s, denoted as NAF(s) ¼
s0 ¼

Pt
i¼0 s0i2

i, can be done by repeatedly dividing s by 2, allowing remainders

of 0 or +1. If s is odd, then the remainder r 2 {�1, 1} is chosen so that the

quotient (s� r)=2 is even, ensuring that the next NAF digit is 0 (Algorithm 25).

NAF representation can be introduced to all point multiplication algorithms.

The binary NAF point multiplication algorithm as a direct realization of the

binary point multiplication algorithm is presented in Algorithm 26.
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Assuming that the bit length of s is close to k (t	 k) and that the cost of

point addition is the same as that of point subtraction, then the HW(s0)¼ k=3

at average and the overall point operations required for Q¼ sP using the NAF

binary point multiplication algorithm would be k=3 pAþ k pD. This cost is

smaller than the one without NAF representation. There are several variations

of NAF point multiplication methods, where window or sliding window

techniques are used. More on the subject can be found in [14,17,84].

The number of point operations can be further reduced if the multiplicand

point P is known, remaining fixed for many point multiplications. In that

case, some point operations can be precomputed once and stored in a storage

element (memory and registers) if the bit length of s is known. Their result

can be added at the end of each sP point multiplication. Applying this

methodology to the binary point multiplication algorithm (in NAF format or

not) leads to elimination of all point doubling operations during the algo-

rithm’s execution. Similar optimizations can be made in other point multipli-

cation algorithms and additional techniques are introduced, such as point

multiplication comb methods that are more applicable to software designs.

More on the subject can be found in [17].

Fixed point multiplication techniques are useful for EC cryptographic

algorithms that use the same point P for many point multiplications, like the

ECDSA signature generation scheme.

4.9.2.1 Point Multiplication Design

Point multiplication is an operation that employs point addition and point

doubling. Therefore, by designing a point multiplication architecture, we

manage to complete an elliptic curve arithmetic unit that can support all

elliptic curve operations. Such an arithmetic unit can be used by an ECC

algorithm and can be extended to a fully functional elliptic curve coprocessor.

A point multiplication architecture consists of a point addition unit and a

point doubling unit that are connected to a control logic. Each point operation

unit consists of finite field adders, squarers, multipliers, and inverters inter-

connected according to the coordinate system used. The point addition and

doubling units can be constructed using time multiplexing techniques such as

the ones presented in Figure 4.12. An abstract design of a point multiplication

architecture is shown in Figure 4.13a.

There can be several other approaches to the design of point multiplica-

tion. Reusability of the finite field operations can be employed so that the

same circuitry through proper input adjustment and control can perform both

point addition and subtraction [85–87]. The point multiplication steps can be

microcoded on a general purpose processor and a finite field arithmetic unit

for both point addition and doubling can be implemented in hardware [88]. In

Figure 4.13b, a generic point multiplication architecture, taking into consid-

eration the above propositions, is shown.
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4.9.2.2 Designing Point Multiplication for SCA Resistant Elliptic
Curve Cryptosystems

SCAs are considered some of the most fruitful cryptanalytic methods. They

exploit information that can ‘‘leak’’ from a cryptographic algorithm’s imple-

mentation during this algorithm’s execution. Such information may include

computation time or power consumption traces and can be used to characterize

specific computations performed at a given time in the cryptographic execution

process. SCA cryptanalytic methods have been proposed for ECC [80], includ-

ing simple power analysis (SPA) and differential power analysis (DPA) models

[89,90], which are considered a significant cryptographic threat. In those attacks,

point addition and doubling operations are identified during the point multipli-

cation calculations by probing the power or calculation time of the system and

analyzing a specific value in the point multiplication process statistically. This

information along with the knowledge of the point multiplication algorithm

(that is not considered secret) is enough to determine integer s thus solving the

ECDLP problem easily. It must be noted, however, that SCAs are not applicable

to all possible cryptographic systems, since there must be an easy way to take

time or power consumption measurements. When a device operates in poten-

tially hostile, not trusted environments, SCA can be a serious threat. Such

unprotected devices could be smart cards, Radio frequency identification cards

(RFIDs), or other wireless handheld devices.

To avoid the SCA threat, point multiplication algorithms should be

restated so that point addition operations are indistinguishable from point

doubling operations to the external environment. Coren in [80] introduced the

SPA and DPA attack on elliptic curve cryptosystems and Okeya in [91] set

specific requirements for avoiding such attacks. SPA attacks can be avoided

by using independency of secret information and computation procedures.

DPA attacks can be avoided by randomization of computing objects. The SPA

requirement can be met by performing both point addition and doubling in

every round of the point multiplication process (point- and always-add

method) at the expense of an increase in hardware resources and a reduction

in speed. The DPA requirement can be met by randomizing the private

exponent s of Q¼ sP point multiplication, by blinding the point P and by

using randomized projective coordinates. In order to randomize the value

s in Q¼ sP, we choose a random number d (~20 bits) and calculate

d0 ¼ sþ d � #E(F), where #E(F) is the number of the EC points. Then, we

calculate Q0 ¼ d0P, which is identical to Q¼ sP, since #E(F)P¼1. Blinding

the point P involves adding to it a secret point R with known sR outcome. We

perform point multiplication with s on the addition result (PþR) and at the

end of the calculation we subtract the point sR from the outcome.

However, the most promising technique proposed in [80] is the use of

randomized projective coordinates. Using this method, we can represent the

point P as P¼ (X, Y, Z) and after the first point operation (addition, doubling,
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or multiplication) change the coordinate system using the equivalent class of

the elliptic curve {(X : Y : Z)¼ (ucX, udY, ueZ) : X, Y, Z, u2F} by appointing a

random u. Several papers exist on the appropriate choice of c, d, e values to

obtain fast point operation designs. Coron in [80] uses c¼ d¼ e¼ 1, whereas

Izu et al. [95] favor c¼ 2, d¼ 3, e¼ 1. Similar coordinate randomization can

also be used for the affine plane using isomorphism, as proposed in [92].

In order to reduce the extra cost introduced in the point- and always-add

method, a methodology introduced by Montgomery in [93], is used (Algo-

rithm 27). This algorithm possesses some interesting advantages. The differ-

ence P–Q in each iteration of this algorithm is known and equal to the initial

P point. Montgomery also observed that the x coordinate of the sum of two

points with constant difference can be computed using only the x coordinates

of those involved points. Using the above remarks, designs for computing

point multiplication using specific coordinate types were proposed. Initially,

this methodology was analyzed for elliptic curves over GF(2k) fields and point

multiplication, point addition, and point doubling were parameterized using

projective coordinates [82]. Additionally, optimistic results were given when

using a special type of elliptic curve equation of the form E: by2¼ x3þ ax2þ x
called Montgomery equation [93,94]. The method has also been proposed for

elliptic curves over GF( p) fields in projective [95] and affine coordinates [92].

By combining randomization of computing objects for DPA resistance and

Montgomery’s technique described earlier for SPA resistance, a very secure

cryptosystem can be designed, which is fully protected against SCAs.

The methodology of Montgomery for elliptic curve point multiplication

and its realization in accordance to the used coordinate system, resulting in

appropriate algorithms for point addition–doubling and multiplication, is

advantageous against the similar algorithms presented in Section 9.1 and

Section 9.2 [82,96].

4.10 ELLIPTIC CURVE CRYPTOGRAPHIC ALGORITHMS
FOR SECURE WIRELESS SYSTEMS

As explained in the introduction of this chapter, the security of wireless

devices is dependent on key pair generation and management along

with digital signature schemes. In this section, we analyze the key

generation procedure, the Elliptic Curve Diffie–Hellman (ECDH) key

exchange–establishment used in ECC and we present ECDSA digital signature

that has become a standard by many international organizations like IEEE [14],

ANSI [97]. This digital signature scheme is the only one used so far in some

wireless security protocols (WAP–WTLS [3]) and is the most promising to be

adopted by future wireless protocols employing ECC.

Before we proceed in analyzing the above issues, the elliptic curve has to

be generated and firmly described for cryptographic use through a set of
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parameters. Such parameters are called domain parameters. Suppose that we

have a finite field F and a created elliptic curve E(F) using this field. Then,

the domain parameters consist of

. Finite field order: Order(F)

. Finite field type, meaning whether it is a GF(p) or GF(2k) field, along

with the element representation of this finite field: F_R
. Value S called seed, if the elliptic curve was randomly generated
. Two coefficients a, b used in the equation E of the elliptic curve E(F)
. Point P¼ (x, y) of prime order, caller base point
. Order n of the point P
. Value h¼ #E(F)n called cofactor

Generation of the domain parameters involves the use of an elliptic

curve generation algorithm (finding S, a, b) such as the ones described in

[17,84], computation of the number of elliptic curve points #E(F), verifica-

tion that #E(F) is divisible by a large prime n (n 6¼Order(F) and not

divisible by Order(F)k� 1, where 1 � k � 20) and calculation of h and

point P 6¼1.

The domain parameters are used for generating EC public key pairs. The

key generation process with inputs of the domain parameters (Order(F), F_R,

S, a, b, P, n, h) consists of

. Selecting an integer d, where 1 � d � n� 1

. Computing Q¼ dP

The public key is the point Q, while the private key is the value d.

The generated keys are used for the ECDH key exchange and esta-

blishment protocols. In ECDH key exchange–establishment protocols an

entity A generates a key pair and sends the public key to an entity B. Similarly,

entity B generates a different key pair and sends the public key to entity A.

Each entity possessing two public keys multiplies them to get a session

key K, which can be used for encryption in symmetric key algorithms or

message authentication. Each entity can validate that the public key is

indeed a legitimately created point Q on the elliptic curve using the domain

parameters [2].

Another use of public key cryptography in wireless systems is for certi-

fication. Certification protocols require digital signature schemes. A digital

signature scheme uses the domain parameters and key pairs for the procedure of

digital signature generation and digital signature verification. Both proced-

ures involve hash functions H(G), where a hash function is a transformation

that takes a variable-size input G and returns a fixed-size string H(G). The

most widely used digital signature scheme is ECDSA and is presented in

Algorithm 28 and Algorithm 29.
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ALGORITHMS

Algorithm 1. Point Multiplication Algorithm (abstract form)

Input: P, s
Output: Q¼ sP
1. Q¼1
2. While s 6¼ 0 do

2.1. If s is even then s¼ s=2 and P¼ 2P
2.2. If s is odd then s¼ s� 1 and Q¼QþP

3. Return Q.

Algorithm 2. Barrett’s Reduction Algorithm

Input: x¼ {x2n�1, . . . , x2, x1, x0}b, p¼ {pn�1, . . . , p1, p0}b, m ¼
�

b2n

p

�
Output: x mod p

1. p0 ¼
��

x

bn�1

�
� m

bnþ1

�

2. x0 ¼ (x mod bnþ1)� (p0 � p mod bnþ1)

2. If x 0< 0 then x 0 ¼ x 0 þ bnþ1

3. While x 0 � p then x 0 ¼ x 0 � p
4. Return x 0.

Algorithm 3. Montgomery Modular Reduction Algorithm

(MontR(x, p) Function)

Input: x¼ {x2n�1, . . . , x2, x1, x0}b, p¼ {pn�1, . . . , p1, p0}b, r¼ bn, p0 ¼�p�1

mod b
Output: c¼ x � r�1 mod p
1. c¼ x
2. For i¼ 0 to n�1 do

2.1 q¼ ci � p0 mod b
2.2 c¼ cþ q � p � bi

3. c ¼ c
�

bn

4. If c � p then c¼ c� p
5. Return c.

Algorithm 4. Montgomery Modular Multiplication

(MontM(x, y, p) Function)

Input: x¼ {xn�1, . . . , x2, x1, x0}b< p, y¼ {yn�1, . . . , y2, y1, y0}b< p,

p¼ {pn�1, . . . , p1, p0}b, r¼ bn,

p0 ¼�p�1 mod b
Output: c¼ x � y � r�1 mod p
1. c¼ 0
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2. For i¼ 0 to n�1 do

2.1 q¼ (c0þ xi � y0) p0 mod b
2.2 c¼ (cþ xi � yþ q � p)=b

3. If c � p then c¼ c� p
4. Return c.

Algorithm 5. Binary Montgomery Modular Multiplication

(MontMb(x, y, p) Function)

Input: x¼ {xn�1, . . . , x2, x1, x0}2< p, y¼ {yn�1, . . . , y2, y1, y0}2< p,

p¼ {pn�1, . . . , p1, p0}2, r¼ 2n,

p0 ¼�p�1 mod 2¼ 1

Output: c¼ x � y � 2�n mod p
1. c¼ 0

2. For i¼ 0 to n�1 do

2.1 q¼ (c0þ xi � y0) mod 2

2.2 c¼ (cþ xi � yþ q � p)=2

3. If c � p then c¼ c� p
4. Return c.

Algorithm 6. Extended Euclidean Algorithm for Inversion

(ExEucl(a, p) Function)

Input: a¼ {an�1, . . . , a2, a1, a0}2< p, p¼ {pn�1, . . . , p1, p0}2

Output: a�1 mod p
1. ri�1¼ p, ri�2¼ a, ui�2¼ 1, ui�1¼ 0, i¼ 0

2. While ri 6¼ 0 do

2.1 qi ¼ ri�1

ri�2

j k
2.2 ri¼ ri�1 � qi � ri�2

2.3 ui¼ qi � ui�1þ ui�2

2.4 i¼ iþ 1

3. Return ui.

Algorithm 7. Binary Extended Euclidean Algorithm for Inversion

(ExEuclB(a, p) Function)

Input: a¼ {an�1, . . . , a2, a1, a0}2< p, p¼ {pn�1, . . . , p1, p0}2

Output: a�1 mod p
1. s¼ p, r¼ a, u¼ 1, v¼ 0

2. While (r 6¼ 0 and s 6¼ 0) do

2.1 While r0¼ 0 do

2.1.1 r¼ r=2

2.1.2 If u0¼ 0 then u¼ u=2 else u¼ (uþ p)=2

2.2 While s0¼ 0 do

2.2.1 s¼ s=2
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2.2.2 If v0¼ 0 then v¼ u=2 else v¼ (vþ p)=2

2.3 If r � s then (r¼ r� s and u¼ u� v) else (s¼ s� r and v¼ v� u)

3. If r¼ 1 then return u mod p else return v mod p.

Algorithm 8. Phase I: Montgomery Almost Inverse Algorithm

(MontAI(a, p) Function)

Input: a¼ {an�1, . . . , a2, a1, a0}2< p, p¼ {pn�1, . . . , p1, p0}2

Output: c¼ a�1 2k mod p and k
1. s¼ p, r¼ a, u¼ 1, v¼ 0, k¼ 0

2. While (s> 0) do

2.1 If s0¼ 0 then s¼ s=2, u¼ 2u
else if r0¼ 0 then r¼ r=2, v¼ 2v
else if s> r then s¼ (s� r)=2, v¼ vþ u, u¼ 2u
else if s � r then r¼ (r� s)=2, u¼ vþ u, v¼ 2v

2.2 k¼ kþ 1

3. If v � p then v¼ v� p
4. Return c¼ v¼ p� v and k.

Algorithm 9. Phase II: Montgomery Inverse Correction Algorithm

(MontIcor(c, k, p) Function)

Input: c¼ {cn�1, . . . , c2, c1, c0}2, p¼ {pn�1, . . . , p1, p0}2, k
Output: a�1 2n mod p
1. For i¼ 0 to (k� n) do

1.1 If c0¼ 0 then c¼ c=2 else c¼ (cþ p)=2

2. Return c.

Algorithm 10. Phase II: Modified Montgomery Inverse

Correction Algorithm

(MontIcor(c, k, p) Function)

Input: c¼ {cn�1, . . . , c2, c1, c0}2, p¼ {pn�1, . . . , p1, p0}2, k
Output: a�1 mod p
1. For i¼ 1 to k do

1.1 If c0¼ 0 then c¼ c=2 else c¼ (cþ p)=2

2. Return c.

Algorithm 11. Binary Extended Euclidean Algorithm for Modular

Division

(ExEuclBdiv(a, b, p) Function)

Input: a¼ {an�1, . . . , a2, a1, a0}2, a¼ {bn�1, . . . , b2, b1, b0}2, p¼ {pn�1, . . . , p1, p0}2

Output:
a

b
mod p
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1. s¼ p, r¼ b, u¼ a, v¼ 0, z¼ 0

2. While (r> 0) do

2.1 While r0¼ 0 do

2.1.1 r¼ r=2, u¼ u=2 mod p, z¼ z� 1

2.2 If z< 0 then (r $ s, u$ v, z ¼ �z)

2.3 If ((sþ r) mod 4¼ 0) then

2.3.1 r¼ (rþ s)=2, u¼ (uþ v)=2 mod p
else

2.3.2 r¼ (r� s)=2, u¼ (u� v)=2 mod p
3. If s¼ 1 then return v else return p� v.

Algorithm 14. Bit Serial Montgomery Multiplication Algorithm

for GF(2k) Fields

Input a(x), b(x), f(x)

Output c(x)¼ a(x)b(x)x�k mod f(x)

1. c(x)¼ 0

2. For i¼ 0 to k� 1 do

2.1 c(x)¼ c(x)þ ai � b(x)

2.2 c(x)¼ c(x)þ c0 � f(x)

2.3 c(x)¼ c(x)=x
3. Return c(x).

Algorithm 12.

Bit Serial LSB

Multiplication Algorithm

Algorithm 13.

Bit Serial MSB

Multiplication Algorithm

Input: a¼ {ak�1, . . . , a2, a1, a0},

b¼ {bk�1, . . . , b1, b0},

f (x) ¼ xk þ
Pk�1

i¼0 fix
i ¼ xk þ r(x),

r¼ {fk�1, . . . , f1, f0}

Input: a¼ {ak�1, . . . , a2, a1, a0},

b¼ {bk�1, . . . , b1, b0},

f (x) ¼ xk þ
Pk�1

i¼0 fix
i ¼ xk þ r(x),

r¼ {fk�1, . . . , f1, f0}

Output: c¼ a � b, c(x)

¼ a(x)b(x) mod f(x)

Output: c¼ a � b, c(x)

¼ a(x)b(x) mod f(x)

1. c¼ 0 1. c¼ 0
2. For i¼ 0 to k � 1 do 2. For i¼ k � 1 to 0 do

2.1 c¼ c þ bi � a 2.1 c¼ x � c þ ck�1 � r
2.2 a¼ x � a þ ak�1 � r 2.2 c¼ c þ bi � a

3. Return c. 3. Return c.
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Algorithm 17. Digit Serial Montgomery Multiplication Algorithm

for GF(2k) Fields

Input: a(x), b(x), f(x), f̂f (x) ¼ f�1(x) mod x d

Output: c(x)¼ a(x)b(x)x�k mod f(x)

1. c(x)¼ 0

2. For i¼ 0 to D� 1 do

2.1 c(x)¼ c(x)þAi(x) � b(x)

2.2 m(x) ¼ (C0(x) � F̂F0(x)) mod xd

2.2 c(x)¼ c(x)þm(x) � f(x)

2.3 c(x)¼ c(x)=xd

3. Return c(x).

Algorithm 18. Extended Euclidean Algorithm for GF(2k) Field Inversion

(EEA(a, f ) Function)

Input: f(x), a(x)

Output: v¼ a�1(x) mod f(x)

1. s(�1)¼ f(x), r(�1)¼ a(x), u(�1)¼ 1, v(�1)¼ 0, i¼ 0

2. While r(i) 6¼ 0 repeat

2.1 q ¼ s(i�1)

r(i�1)

j k
2.2 r(i)¼ s(i�1)� q � r(i�1)

2.3 u(i)¼ v(i�1)�q�u(i�1)

2.4 s(i)¼ r(i�1), v(i)¼ u(i�1)

2.5 i¼ iþ 1

3. Return v.

Algorithm 15. Algorithm 16.

Digit Serial LSB

Multiplication Algorithm

Digit Serial MSB

Multiplication Algorithm

Input: a¼ {ak�1, . . . , a2, a1, a0},

b¼ {BD�1, . . . , B1, B0},

Bi¼ {bDiþd�1, bDiþd�2, . . . , bDiþ1, bDi}

f (x) ¼ xk þ
Pk�1

i¼0 fix
i ¼ xk þ r(x),

r¼ {fk�1, . . . , f1, f0}

Input: a¼ {ak�1, . . . , a2, a1, a0},

b¼ {BD�1, . . . , B1, B0},

Bi¼ {bDiþd�1, bDiþd�2, . . . , bDiþ1, bDi}

f (x) ¼ xk þ
Pk�1

i¼0 fix
i ¼ xk þ r(x),

r¼ {fk�1, . . . , f1, f0}
Output: c¼ a . b,

c(x)¼ a(x)b(x) mod f(x)

Output: c¼ a . b,

c(x)¼ a(x)b(x) mod f(x)

1. c¼ 0 1. c¼ 0

2. For i¼ 0 to D � 1 do 2. For i¼D � 1 to 0 do

2.1 c¼ c þ Bi � a 2.1 c¼ (xd � c) mod f(x)

2.2 a¼ (xd � a) mod f(x) 2.2 c¼ c þ Bi � a
3. Return c. 3. Return c.
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Algorithm 19. Modified Extended Euclidean Algorithm for GF(2
k
)

Field Inversion

(MEEA(a, f ) Function)

Input: f(x), a(x)

Output: a�1(x) mod f(x)

1. s(x)¼ f(x), r(x)¼ xa(x), u(x)¼ 1, v(x)¼ 0, d¼ 0

2. For i¼ 1 to 2k do

2.1 if rk¼ 0 then

2.1.1 r(x)¼ x � r(x)

2.1.2 u(x)¼ x � u(x) mod f(x)

2.1.3 d¼ dþ 1

else

2.1.4 if sk¼ 1 then

2.1.4.1 s(x)¼ s(x)� r(x)

2.1.4.2 v(x)¼ v(x)� u(x)

2.2 s(x)¼ x � s(x)

2.3 if d¼ 0 then

2.3.1 r(x)$ s(x) (exchange r(x) with s(x))

2.3.2 u(x)$ v(x) (exchange u(x) with v(x))

2.3.3 u(x)¼ x � u(x) mod f(x)

2.3.4 d¼ 1

else

2.3.5 u(x)¼ u(x)=x mod f(x)

2.3.6 d¼ d�1

3. Return V(x).

Algorithm 20. Binary Modified Extended Euclidean Algorithm

for GF(2k) Field Inversion

(bMEEA(a, f ) Function)

Input: a(x), f(x)

Output: a�1(x) mod f(x)

1. s(0)(x)¼ f(x), r(0)(x)¼ ak�1 xkþ ak�2xk�1þ � � � þ a0x, u(0)(x)¼ 1, v(0)(x)¼ 0,

e(0)¼�1, sign(0)¼ 1

2. For i¼ 1 to 2k� 1

2.1 r(i)(x) ¼ x � r(i�1)(x)þ x � r(i�1)(x) � r(i�1)
k

2.2 u(i)(x) ¼ u(i�1)(x)þ v(i�1)(x) � r(i�1)
k

2.3 If r(i�1)
k � sign(i�1) then

2.3.1 s(i) (x)¼ s(i�1)(x)

2.3.2 v(i) (x)¼ x � v(i�1)(x)

2.3.3 e(i)¼ e(i�1) �1

else

2.3.4 s(i)(x)¼ r(i�1)(x)
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2.3.5 v(i)(x)¼ x � u(i�1)(x)

2.3.6 e(i)¼�e(i�1) �1

3. Return a�1(x) ¼
Pk�1

j¼0 t(2k�1)
k�i x j.

Algorithm 21. Square and Multiply Inversion Algorithm

Input: a(x), f(x)

Output: a�1(x) mod f(x)

1. X¼ Y¼ a2(x) mod f(x)

2. For i¼ 1 to k� 1

2.1 Y¼X2 . Y
2.2 X¼X2

3. Return Y.

Algorithm 22. Itoh–Tsujii Algorithm for GF( pk) Fields

Input: A 2 GF(pk)

Output: A�1

1. r¼ ( pk� 1)=( p� 1)

2. Ar� 1 in GF( pk)

3. Ar¼Ar� 1 �A
4. (Ar)�1 in GF(p)

6. A�1¼ (Ar)�1 �Ar� 1

7. Return A�1.

Algorithm 23. Binary Point Multiplication Algorithm (Point and
Add Method)

Input: s¼ (st�1, . . . , s1, s0)2, P2E(F)

Output: Q¼ sP
1. Q¼1
2. For i from 0 to t �1 do

2.1 If si¼ 1 then Q¼QþP
2.2 P¼ 2P

3. Return Q.

Algorithm 24. Sliding Window Point Multiplication Algorithm

Input: s ¼
Pt�1

i¼0 si2
i: (st�1, . . . , s1, s0)2, P 2 E(F)

Output: Q¼ sP
Precomputation Phase (calculation of Pe¼ eP, where e � 2w�1 is an odd

integer)

1. P1¼P, Q¼1, r¼ t �1

2. For j¼ 1 to 2w� 1 �1

2.1 P2jþ1¼P2j�1þ 2P
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Main Calculation Phase
1. While r � 0 do

1.1 If sr¼ 0 then

1.1.1 Q¼ 2Q
1.1.2 r¼ r� 1

else

1.1.3 v¼w
1.1.4 While sr�vþ1¼ 0 do v¼ v� 1 (finding the largest integer

v for odd u)

1.1.5 u¼ {sr, sr�1, . . . , sr�vþ1} (u is an odd integer)

1.1.6 Q¼ 2vQþPu

1.1.7 r¼ r� v
2. Return Q.

Algorithm 25. NAF Construction Algorithm

Input: s ¼
Pt�1

i¼0 si2
i: (st�1, . . . , s1, s0)2

Output: NAF(s) ¼ s0 ¼
Pt

i¼0 s0i2
i

1. g¼ 0

2. For i¼ 0 to k
2.1 giþ1 ¼ siþsiþ1þgi

2

� �
2.2 s0i ¼ si þ gi � 2giþ1

3. Return s0.

Algorithm 26. Binary NAF Point Multiplication Algorithm (NAF
Point and Add Method)

Input: NAF(s)¼ s0, P 2 E(F)

Output: Q¼ s0 P
1. Q¼1
2. For i¼ 0 to t

2.1 If s0i ¼ 1 then Q¼QþP
2.2 If s0i ¼ �1 then Q¼Q�P
2.3 P¼ 2P

3. Return Q.

Algorithm 27. Binary Montgomery Point Multiplication

Input: s¼ (st�1, . . . , s1, s0)2, P2E(F)

Output: Q¼ sP
1. Q¼1
2. For i¼ t� 2 to 0

2.1 If si¼ 1 then

2.1.1 Q¼QþP and P¼ 2P
else

2.1.2 P¼QþP and Q¼ 2Q
3. Return Q.
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Algorithm 28. ECDSA Signature Generation

Input: Domain parameters (Order(F), F_R, S, a, b, P, n, h), private key d,

message m.

Output: Signature (r, s).

1. Select k, where 1 � k � n�1

2. e¼H(m)

3. kP¼ (x1, y1)

4. Represent x1 2 F as an integer x01 2 Z
5. r ¼ x01 mod n. If r¼ 0 then go to step 1.

6. s¼ k�1(eþd � r) mod n. If s¼ 0 then go to step 1.

7. Return (r, s).

Algorithm 29. ECDSA Signature Verification

Input: Domain parameters D (Order(F), F_R, S, a, b, P, n, h), public key Q,

message m, signature (r, s).

Output: Valid or invalid signature.

1. If (1 � r, s � n� 1 and r, s are integers) is not true then return (Invalid

signature) else

1.2 e¼H(m).

1.3 w¼ s�1 mod n.

1.4 u1¼ e �w mod n and u2¼ r �w mod n.

1.5 X¼ u1P þu2Q¼ (x1, y1).

1.6 If X¼1 then return (‘‘Invalid signature’’);

1.7 Represent x1 2 F as an integer x01 2 Z
1.8 v¼ x1 mod n.

1.8 If v¼ r then return (‘‘Valid signature’’) else return (‘‘Invalid signa-

ture’’).
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The spread of wired and wireless communications, the continuous growth of

the Internet, and the E-commerce transactions increased the necessity for

security in applications that involve sharing or exchange of secret or private

information. Public-key cryptography is widely used in establishing secure

communication channels between the users on the Internet and in wireless

communication networks.

5.1 INTRODUCTION

A small set of public-key cryptosystems are used extensively, which includes

ElGamal cryptosystem [1], Diffie–Hellman (DH) key exchange algorithm [2],

the digital signature algorithm (DSA) [3], and elliptic curve cryptography–

based algorithms such as EC–ElGamal and ECDSA. Elliptic curve crypto-

graphy (ECC), which was introduced by Miller [4] and Koblitz [5], is based

on a more difficult mathematical problem to solve than the one used in

traditional public-key algorithms. Thus, ECC stands out from this crowd of

algorithms because of its unique property of providing the highest degree of

security with the smallest key sizes. For example, an elliptic curve system

with 313-bits can replace a certain 4096-bit key size conventional system [6].

Using smaller key sizes to gain the same level of security leads to a big

reduction in hardware resources used in implementations.

In this chapter, we mainly concentrate on efficient hardware realization of

elliptic curve cryptography for wireless applications. Elliptic curve crypto-

graphy involves huge arithmetic operations performed over finite fields (most

commonly used fields are the prime extension fields, GF(p), and the binary

extension fields, GF(2n)), and therefore, an efficient ECC system requires

efficient hardware implementations of finite field operations. Once realized,

similar hardware can also be used to support other public-key cryptographic

functions. Furthermore, long-term deployment of public-key cryptography

hardware requires flexibility in key size as better cryptanalytic techniques

are developed.

Recently, two important developments took place in this area. The first

one is called scalability which refers to the ability of the hardware to

reconfigure itself to support longer key sizes, limited only by the amount of

available input, output, and scratch memory space. The second one is about

designing a single hardware to support all kinds of elliptic curves based on

finite fields of different characteristics. This property of hardware is called

unified or dual field.

Our research starts from these premises and moves on to create better

algorithms to support long-term, efficient, scalable, and unified hardware

implementations. We address and provide solutions for dual-field Montgom-

ery multipliers, modular dividers, and unified dividers and inverters. Particu-

larly, we introduce a novel algorithm suitable for hardware design which

computes division (inverse) and multiplication in a very efficient way for
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GF(p) and GF(2n) fields. The new algorithm is called the unified

division=multiplication algorithm (UDMA). In addition, we propose the

hardware architecture that efficiently supports all operations in the UDMA

and uses carry-save unified adders for reduced critical path delay, making the

proposed architecture faster than other previously proposed designs. We

present example designs of our algorithms using field programmable gate

arrays (FPGAs) and the benchmark results of our implementations.

At the end of this chapter, we introduce an elliptic curve crypto-processor

(ECCP) architecture over GF(2n) that is based on the efficient UDMA hard-

ware implementation. The scalability feature of the proposed crypto-

processor allows the adjustment of the word size used in the datapath to

meet area and performance requirements. On the other hand, the processor

allows the user to choose the value of the field parameter (n). Finally, the

experimental results obtained for the ECCP are analyzed and compared with

other proposed designs.

5.2 ELLIPTIC CURVE THEORY

In the mid-1980s, Niel Koblitz and Victor Miller proposed the elliptic curve

cryptography (ECC) [4,5]. It is based on the discrete logarithm (DL) problem

over the points on an elliptic curve (EC). Recently, the elliptic curve crypto-

systems started to replace many known conventional public-key cryptography

algorithms. This is due to the high level of security they provide and their fast

and compact size implementations over finite fields.

Data in an ECC are represented as points on an elliptic curve. They

are called elliptic because they arose historically from the problem of

computing the solutions for an equation of an ellipse. These curves

have special characteristics and provide the base for particular arithmetic

operations.

In cryptography, we are interested in the elliptic curves defined over finite

fields. In other words, the coefficients of the defining equation (F(x,y)¼ 0)

are elements of GF(q), and the points on the curve are of the form P¼ (x,y),

where x and y are the elements of GF(q) that satisfy the equation. The general

form for an elliptic curve equation is

y2 þ axyþ by ¼ x3 þ cx2 þ dxþ e:

A point at infinity (O) is also defined [7]. O plays a role similar to zero in

ordinary addition. It is computed as the sum of three points that lie on a

straight line on the EC.

The complexity of elliptic curve arithmetic operations that includes rules

used to add two points (point addition) or add a point to itself (point doubling)

on the elliptic curves, depends on the finite field (GF(p) or GF(2n)) and on the

coordinate system (affine or projective) that is used. Moreover, choosing the
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suitable representation for the elements of the finite field may lead to more

efficient implementations of the field arithmetic in hardware or in software.

The core operation on ECC is the scalar point multiplication, which

consists of a certain number of point additions. When a point P defined on

the curve is added to itself k times, it is very difficult to find what was

P without knowing k. That is the characteristic that provides security to ECC:

Q ¼ kP ¼ Pþ Pþ � � � þ P|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
k times

: (5:1)

In the following subsections, we discuss the elliptic curves defined over

GF(p) and GF(2n) and the arithmetic algorithms defined in each field.

5.2.1 ELLIPTIC CURVES DEFINED OVER GF(P)

The elements of the field GF(p) are the integers in the set {0, 1, 2, . . . , p� 1},

where p is an n-bit prime modulus in the range of 2n�1< p< 2n. The basic

arithmetic operations defined in this field are

. Addition modulo p. The addition of elements in a prime field is a

conventional integer addition with modulo reduction (mod p). For

example, let X, Y, R 2 GF(p), then R¼Xþ Y mod p, where R is the

remainder of (Xþ Y ) divided by p.
. Multiplication modulo p. Let M¼X � Y, where X, Y, M 2 GF(p), M is

the remainder of X � Y divided by p.
. Squaring. If X 2 GF(p), then X2¼X �X is the remainder of X2 divided

by p.
. Inversion modulo p. Inversion is defined for a nonzero element X 2

GF(p) as X�1 to be the unique integer W 2 GF(p), such that X �W � 1

mod p.

The elliptic curves defined over GF(p) satisfy the following equation:

y2 ¼ x3 þ axþ b mod p,

where p> 3, 4a3þ 27b2 6¼ 0 and x, y, a, b 2 GF(p). As mentioned earlier, the

point at infinity O plays a role similar to zero in the integer domain. But, there

are some addition rules for O in this field. Assume that (x, y) is a point on an

EC, then

1. (x, y)þO¼ (x, y).

2. (x, y)þ (x,�y)¼O.

3. O¼�O.
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The points on the curves can be represented using affine or projective

coordinates. A brief description of each coordinate is given in the following

sections.

5.2.1.1 Affine Coordinates

To add two points on an elliptic curve represented in affine coordinates

as P1¼ (x1, y1) and P2¼ (x2, y2), we compute P3¼ (x3, y3)¼P1þP2 and

P1 6¼ P2 According to the addition rules,

a ¼ y2 � y1

x2 � x1

,

x3 ¼ a2 � x1 � x2,

y3 ¼ a(x1 � x3)� y1,

and when P1¼P2 (point doubling P3¼ 2P1 and P1 6¼ 0), the addition rules are

a ¼ 3x2
1 þ a

2y1

,

x3 ¼ a2 � 2x1,

y3 ¼ a(x1 � x3)� y1:

If we assumed that the squaring calculation is equivalent to a multiplication,

then the addition of two different points in GF(p) requires: six additions, one

inversion, and three multiplication operations. On the other hand, to add a

point to itself (point doubling) a total of four additions, one inversion, and

four multiplications are required [8].

5.2.1.2 Projective Coordinates

Adding or doubling points represented in affine coordinates involve modular

inversion calculations. The inversion is considered a time-consuming oper-

ation. The projective coordinates are used to almost eliminate the need for

performing inversion [8].

The elliptic point, P1¼ (x, y) defined over GF(p), is represented in

the projective coordinates as (X, Y, Z), where x¼X=Z2 and y¼ Y=Z3. This

transformation is performed at the beginning to represent the point in

projective coordinates. After performing the point addition operation, this

transformation is carried out again to get the point back in affine coordin-

ates. Algorithm 1 is used to add two points (PþQ, P 6¼ Q) in projective

coordinates:
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P ¼ (X1, Y1, Z1); Q ¼ (X2, Y2, Z2); Pþ Q ¼ (X3, Y3, Z3)

(x, y) ¼ (X=Z2, Y=Z3),

T1 ¼ X1Z2
2,

T2 ¼ X2Z2
1,

T3 ¼ T1 � T2,

T4 ¼ Y1Z3
2,

T5 ¼ Y2Z3
1,

T6 ¼ T4 � T5,

T7 ¼ T1 þ T2,

T8 ¼ T4 þ T5,

Z3 ¼ Z1Z2T3,

X3 ¼ T2
6 � T7T2

3 ,

T9 ¼ T7T2
3 � 2X3,

Y3 ¼
T9T6 � T8T3

3

2
:

The doubling point algorithm (PþP) in projective coordinates is given by

P ¼ (X1, Y1, Z1); Pþ P ¼ (X3, Y3, Z3)

(x, y) ¼ (X=Z2, Y=Z3),

T1 ¼ T3X2
1 þ aZ4

1,

Z3 ¼ 2Y1Z1,

T2 ¼ 4X1Y2
1 ,

X3 ¼ T2
1 � 2T2,

T3 ¼ 8Y4
1 ,

T4 ¼ T2 � X3,

Y3 ¼ T1T4 � X3:

From these algorithms, we found that the number of multiplication operations

needed to add 2 points is 16, whereas the number of multiplications for

doubling a point is found to be only 10 [8].

5.2.2 ELLIPTIC CURVES DEFINED OVER GF(2n)

The elliptic curves defined over GF(2n) satisfy the equation

E: y2 þ xy ¼ x3 þ ax2 þ b,
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where a,b 2 GF(2n) and b 6¼ 0. The addition law for two points in affine

coordinates involves multiplication, division, and squaring in the underlying

finite field.

5.2.2.1 Affine Coordinates

Adding two points in the affine coordinates can be achieved as follows: let

P1¼ (x1, y1) and P2¼ (x2, y2) be two points defined on the curve; then

P3¼ (x3, y3)¼P1þP2 is defined when P1 6¼ P2 as

a ¼ y1 þ y2

x1 þ x2

,

x3 ¼ a2 þ aþ x1 þ x2 þ a,

y3 ¼ (x1 þ x3)aþ x3 þ y1,

and when P1¼P2 (point doubling) as

a ¼ x1 þ
y1

x1

,

x3 ¼ a2 þ aþ a,

y3 ¼ (x1 þ x3)aþ x3 þ y1:

5.2.2.2 Projective Coordinates

To eliminate the need for performing inversion in GF(2n), the affine coord-

inates (x, y) are projected to (X, Y, Z), where x¼X=Z2 and y¼ Y=Z3 [8]. The

point doubling algorithm (PþP) in projective coordinates is given by

P ¼ (X1, Y1, Z1); Pþ P ¼ (X3, Y3, Z3),

Z3 ¼ X1Z2
1,

X3 ¼ (X1 þ bZ2
1)4,

T ¼ Z3 þ X2
1 þ Y1Z1,

Y3 ¼ X4
1Z3 þ TX3:

On the other hand, the point addition of two elliptic curve points (PþQ),

where P 6¼ Q, is given by

P ¼ (X1, Y1, Z1); Q ¼ (X2, Y2, Z2); Pþ Q ¼ (X3, Y3, Z3),

(x,y) ¼ (X=Z2, Y=Z3),

T1 ¼ X1Z2
2,
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T2 ¼ X2Z2
1,

T3 ¼ T1 þ T2,

T4 ¼ Y1Z3
2,

T5 ¼ Y2Z3
1,

T6 ¼ T4 þ T5,

T7 ¼ Z1T3,

T8 ¼ T6X2 þ T7Y2,

Z3 ¼ T7Z2,

T9 ¼ T6 þ Z3,

X3 ¼ aZ2
3 þ T6T9 þ T3

3 ,

Y3 ¼ T9X3 þ T8T2
7 :

When using GF(2n), the number of multiplication processes for adding

2 points is found to be 20, whereas it is found to be 10 for doubling a point.

5.2.3 ARITHMETIC COMPLEXITY OF AFFINE AND PROJECTIVE COORDINATES

A research was carried out by Gutub [8] to evaluate the complexity of

performing arithmetic operations in affine and projective coordinates, and

in both finite fields (GF(p) and GF(2n)). The research was based on using the

binary algorithm to compute kP from a given point P on the elliptic curve.

Assuming that k is n-bits, then the algorithm performs exactly n point

doubling. To evaluate the average point additions, we assume that k has

half ones and half zeros. This results in n=2 point additions.

Table 5.1 shows the total number of multiplications and inversions for

both GF(p) and GF(2n) needed to perform n point doubling and n=2 point

additions. The table indicates that for an affine coordinates system to be faster

than a projective system, the time to compute 1.5n inversions and 5.5n
multiplications should be less than 18n, GF(p) multiplications or 20n,

GF(2n) multiplications. But, it is worth mentioning that even using projective

coordinates did not eliminate the inversion step completely. It is still required

at the end of the computations to convert the result back to affine coordinates.

This fact motivates the research for efficient hardware implementations for

the inverse operation.

TABLE 5.1
Comparison between Affine and Projective Coordinates

Finite Field Affine Coordinates Operations Projective Coordinates Operations

GF( p) 1.5n inversions, 5.5n multiplications 18n multiplications

GF(2n) 1.5n inversions, 5.5n multiplications 20n multiplications
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5.3 ELLIPTIC CURVE CRYPTOSYSTEMS

Computing kP from the point p can be carried out easily using the algorithms

mentioned in the earlier sections, based on which field and coordinates are

used. Now, computing the value of k from the points kP and P is very hard. This

fact is used to build many elliptic curve–based cryptosystems and techniques.

To change conventional systems that are based on DL problem [9] into an

elliptic curve system, the following two rules are applied:

. Any modular multiplication operation defined in the conventional

system is replaced by the addition of points on the elliptic curve version.
. Any modular exponentiation operation is replaced by point multipli-

cation on the elliptic curve version of the conventional system.

There are many conventional systems that can be transferred to elliptic curve

systems. As an example, we mention the elliptic curve digital signature

algorithm (ECDSA) and the elliptic curve ElGamal cryptosystem (ECEC).

5.3.1 ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

The process of ECDSA is composed of three main steps: key generation, sign-

ature generation, and signature verification. Each step is described as follows.

5.3.1.1 ECDSA Key Generation

The following procedure shows how the users should generate the public and

the private keys:

1. Choose an elliptic curve E over a finite field, GF(p), for example.

Assume that n is a large prime, then the number of points on E should

be divisible by n.

2. Choose a point P¼ (x, y) 2 GF(p) of order n (see [6] for more

information about the order).

3. Choose randomly an integer d 2 [1, n� 1].

4. Compute Q¼ dP.

5. The public keys for the users are (Q, n, P, E), and the private key is d.

5.3.1.2 ECDSA Signature Generation

The following steps describe how to generate a signature for a certain

message m:

1. Choose k to be a random integer 2 [1, n� 1].

2. Compute kP¼ (x1, y1), and set x1 mod n¼ r. If r is zero then go back

to step 1.
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3. Compute k�1 mod n.

4. Compute s¼ k�1 (H(m)þ dr) mod n, where H(m) is the hash value of

the message m obtained using a suitable hash function.

5. If s¼ 0, go to step 1. This is because s�1 mod n does not exist, and the

signature cannot be verified.

6. The pair of integers (s, r) is included in the message m as a signature.

5.3.1.3 ECDSA Signature Verification

The last step is to verify the signature (s, r) on the message m, which is

executed as follows:

1. Obtain an authentic copy of the public key (Q, n, P, E).

2. Make sure that the integers r and s 2 [1, n� 1].

3. Compute w¼ s�1 mod n and H(m).

4. Compute u1¼H(m) �w mod n and u2¼ r �w mod n.

5. Compute u2Qþ u1P¼ (x0, y0) and v¼ x0 mod n.

6. If r¼ v, the signature is accepted, otherwise it is not verified.

To reduce the public-key size (Q, n, P, E), the users can agree on a fixed curve

E and a base point P as system parameters, instead of generating different E
and P for each user. After that, each user defines only the point Q.

5.3.2 ELLIPTIC CURVE ELGAMAL CRYPTOSYSTEM

First, we describe the conventional version of the ElGamal algorithm intro-

duced by ElGamal [1]. If Alice has to send a message m to Bob, Bob needs to

have both public and private keys. Bob selects a large prime p, an integer i

mod p, and a secret integer a. He computes v ¼ ia mod p. The public key for

Bob consists of (p, i, v), whereas his private key is a. Now, to encrypt the

message m, Alice chooses a random integer n and computes xB, yB such that

xB � in, yB � mvn(mod p):

After that, xB and yB are sent to Bob to be decrypted. The decryption process

is carried out by computing

m � yBxa
B(mod p):

On the other hand, the ElGamal elliptic curve version can be described as

follows: first, Bob selects an elliptic curve E mod p, a point i on E, and a

secret integer a. He computes

v ¼ ai:
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The public key consists of the two points i and v. The secret key is the integer

a. The message m is translated into a point on E by Alice. Then she chooses a

random integer n and computes

xB ¼ ni and yB ¼ mþ nv:

Then she sends xB and yB to Bob. Finally, the decryption is done by computing

m ¼ yB � axB:

5.4 SCALABLE HARDWARE DESIGN FOR ELLIPTIC
CURVE CRYPTOGRAPHY

The main operation in elliptic curve cryptography is to compute the point

multiplication that consists of point additions and point doubling. As dis-

cussed earlier, computing point multiplication involves huge arithmetic

operations done over the finite fields (mostly GF(p) and GF(2n)), and therefore,

an efficient ECC system requires efficient hardware implementations of finite

field operations. The main two operations are modular multiplication and

modular division (inverse). The proposed elliptic curve hardware design has

the following two features:

1. computing point multiplication based on efficient implementation of

UDMA and

2. meeting the most required two features of any efficient hardware

design: being scalable and unified.

In the following subsections, UDMA and its hardware implementation are

proposed.

5.4.1 UNIFIED DIVISION=MULTIPLICATION ALGORITHM

We use a novel algorithm (UDMA) [10] to compute Montgomery modular

multiplication (proved to be a very efficient modular multiplication method)

and modular division in GF(p) and GF(2n) finite fields. UDMA is presented

in Figure 5.1.

The UDMA mode of operation is controlled by input Op (div or mult), and

the finite field is controlled by the input field (GF(p) or GF(2n)). For

simplicity, the polynomials X(x), Y(x), and p(x) are denoted as X, Y, and p,

respectively, which correspond to the bit-vector representation of these

polynomials.

Most of the arithmetic operations in the algorithm are common to both

modes of operation. The initialization of variables depends on the operation.
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For a given field, all the additions or subtractions are done in the field, besides

the arithmetic operations on d (subtractions and change of sign) which are

always integer operations.

The algorithm integrates the extended binary GCD algorithm and the

Montgomery multiplication algorithm and it was verified using Maple. To

compute Montgomery multiplication using an n-bit modulus p, UDMA

performs n iterations. The counter d is initialized with value n, and in

each iteration it is decremented by 1. The variables used in the algorithm

are initialized as C¼ Y, D¼ 0, U¼ 0, and W¼X. The result is ready

(Z¼U), when d¼ 0. The partial product U is reduced mod p in each

iteration. In both fields, while multiplying, addition is used in the opera-

tions that update C and D(k¼ 1). The � operator indicates a 1-bit right

shift operation.

Function: Modular Division and Multiplication in GF (p) and GF (2n)

Inputs: 0 ≤ X < p, 0 < Y < p, 2n −1< p < 2n, Field, Op, n

Algorithm:
C = Y.

IF Op = mult THEN /∗ Multiplication Mode ∗/
D = 0, U = 0, W = X, d = n

ELSE /∗ Division Mode ∗/
D = p, U = X, W = 0, d = 0

END IF;
WHILE [(C ≠ 0 AND Op = div) OR (d ≠ 0 AND Op = mult)]

IF c0 = 0 THEN
C := C >> 1
d := d  − 1 /∗ Integer Operation ∗/

ELSE
k = 1
IF (Op = div) THEN

IF d < 0 THEN C ⇔ D, U ⇔W, d := −d END IF; /∗Swapping ∗/
IF((C + D) mod 4 ≠ 0 AND Field = GF (p))THEN k = −1
ELSE d :=  d − 1    END  IF;

d :=  d −1
ELSE /∗Op = mult ∗/

END IF;
C := (C + k  D) >> 1, U := (U + k ∗W )

END IF;
U := (U + u0 ∗ p) >> 1

END WHILE;
IF Op = div THEN Z := W ELSE Z := U
END IF;

Output: Z = XY2 −n mod p when Op = mult, Z = X
Y

mod p when Op = div.

∗

FIGURE 5.1 Unified modular division=multiplication algorithm (UDMA) for GF(p)

and GF(2n).
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UDMA computes modular division using the same structure used by the

extended binary GCD algorithm for modular division [11]. The variables are

initialized as C¼ Y, D¼ p, U¼X, W¼ 0, and d¼ 0. If the division is com-

puted in GF(p), UDMA tests the least significant 2-bits of C and D ((CþD)

mod 4 6¼ 0) to conditionally subtract C from D (set k¼�1). Otherwise, C is

always added to D in both fields. The division is completed when C¼ 0, and

the final result is available in W. For more details about the operation of

UDMA, the reader is referred to [10,12].

5.4.2 TOP LEVEL HARDWARE ARCHITECTURE IMPLEMENTING UDMA

Figure 5.2 shows the top level architecture of the unified modular divider or

multiplier (let us call it UMDM) that implements UDMA. The main func-

tional blocks are Register file, Datapath, and Control.

5.4.2.1 Register File

The register file has five registers (R1 to R5). As the computations are done in

carry-save form, each intermediate variable (C, U, D, W ) is represented in two

vectors (sum, carry). Therefore, the registers inside the register file are

designed to store two n-bit vectors. In other words, the ith register Ri is

represented as Ri¼ (sum, carry)¼ (Ris, Ric).

Control

UMDM datapathRegister  file

out1

src1src2

Load

Input
(X,Y,P )

Load

in

 Sum/carry

dst

out2

(2 Vectors)
2n

A
(2 Vectors)

2n

B
(2 Vectors)

2n

2 Vectors
2n

333

Y
n

Op
Field

n

FIGURE 5.2 Top level hardware architecture of the unified modular divider=multiplier

(UMDM).
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The register file has one input and two output ports. The control block

provides the register file with the signals necessary to perform reading or

writing operations. The 3-bit signal dst determines the destination register to

be written. The signals src1 and src2 (3-bits each) specify the registers to be

read at output ports out1 and out2, respectively.

5.4.2.2 Datapath

The n-bit datapath implementing UDMA is shown in Figure 5.3. Each

iteration of the algorithm is implemented in one clock cycle for multiplication

mode, three clock cycles for division if C is odd, and two clock cycles if C is

even, as explained later.

The proposed datapath has two inputs represented in carry-save form as

A¼ (As, Ac) and B¼ (Bs, Bc), which receive their values from the register

file ports out1 and out2, respectively. The main components of the datapath

are two (3–2) unified carry-save adders (UCSAs), which are similar in

complexity to full-adders [13]. The unified adders can perform bit addition

with or without carry depending on the input FSEL (Field Select).

The unified adder may be used to implement a redundant or nonredundant

adder. The use of nonredundant form of the operands and results reduces the

register area but increases the addition time (because of carry propagation).

We decided to use carry-save adders to make the addition time constant and

independent of the operand’s precision.

UCSAs. The first adder in the datapath is a UCSA with complement

(UCSA1). Figure 5.4a shows the bit slice diagram for this adder and

Figure 5.4b shows the connection of n slices to form an n-bit adder. The

UCSA1 outputs are (sum, carry)¼ aþ bþ c, when NEG¼C in¼ 0, and

Unified  carry-save adder1 with complement (UCSA1)
FSEL

Unified carry-save adder2  (UCSA2)

AND

C in

Complementer

FSEL

As Ac Bs Bc

NEG

N

LS-bit of U (u0)  Sel_zero

Sum Carry

Y

Control

LoadY
ShiftY

(c0)

Y shifter

Result_shifter sh Shift

a b c C in

FIGURE 5.3 Unified datapath of the modular divider=multiplier (UMDM datapath).
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(sum, carry)¼ aþ b� c, when NEG¼C in¼ 1. Addition and subtraction in

GF(2n) are the same.

The delay of the two UCSAs, and the delay of the result_shifter

(2tMUX ’ 2tXOR), mainly determines the delay of the UMDM datapath (tdatapath).

The delay of the AND gate is not considered because it was integrated with

the second adder (shown in dashed box in Figure 5.3). As each UCSA has a

delay of a full adder (tFA¼ 2tXOR), we get

tdatapath ¼ tUSCA1 þ tUCSA2 þ tresult shifter ¼ 4tXOR þ tMUX ¼ 5tXOR:

The Yshifter shown in Figure 5.3 is a shift register used to implement. The

operation (C� 1) in the multiplication mode is implemented by the shift

register Yshifter shown in Figure 5.3. The least significant bit of the shifted C
goes to the control section to be tested (c0¼ 0).

The datapath outputs (sum, carry) are shifted right 1-bit by correct wiring

using the result_shifter at the output of the UCSA2.

5.4.2.3 Control Block

The control block provides the necessary signals to control the flow of the

operations in the system. The major component in the control unit is a finite

state machine that was implemented using a hardwired control methodology.

With the intention to design a robust and reliable control unit, the state

machine was coded as a Moore machine in which the output signals depend

solely on the present state, minimizing or eliminating glitches. More imple-

mentation details can be found in [10].

The algorithm’s swap functions (C, D and U , W) are accomplished

within control unit to avoid actual data transfer between registers. An actual

data transfer would be costly in terms of time, especially for a system with

b
a

FSEL

Carry

Sum

NEG
c

Bit slice n-bit  adder

an −1 a1 b1 c1 a 0 b 0c 0bn −1 cn −1

UCSA1 
1-bit

UCSA1 
1-bit

UCSA1 
1-bit

C in

Carry 0 Sum 0 Carry 1 Sum 1 Carry n − 1Sum n − 1

NEGFSELFSELFSEL

Carry n

(a) (b)

FIGURE 5.4 Unified carry-save adder with complement (UCSA1) for 1-bit and n-bit

precision.
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large precision. Thus, the swap is performed, exchanging the addresses of the

register in question, inside the control unit.

Another important component of the control unit is the delta counter. This

counter is used to control the swapping operation and the major algorithm

control flow. The functionality for delta counter includes decrementing and

negating the count value. With the goal of implementing a fast counter, a ring

counter design was chosen [14].

5.4.3 EXPERIMENTAL RESULTS FOR UMDM

The UMDM design was implemented in ASIC and FPGAs. Therefore, we

present two sets of experimental data in this section.

5.4.3.1 ASIC Results for the UMDM Scalable Design

The experimental data presented in this section were generated using Mentor

Graphics CAD tools. The target technology was set to AMI05_fast auto

(0.5 mm CMOS with hierarchy preserved) provided in the ASIC Design Kit

(ADK) from the same company [15].

The UMDM architecture was described in VHDL and simulated in

ModelSim for functional correctness. It was synthesized using Leonardo

synthesis tool for the mentioned technology.

Figure 5.5 shows the critical path delays (in nanoseconds) of the UMDM

for the precision range from 128 to 512-bits. The maximum delay at 512-bits

is around 12.8 ns.

Table 5.2 shows the total number of gates for the UMDM design as a

function of operand size. The area for the UMDM design was extracted from

the experimental data presented in Table 5.2 as

AUMDM ¼ 236:12 � nþ 180 ¼ O(n) gates:

12
0

13

100 200 300 400 500 600

Operand size (bit)

T
im

e 
(n

s)

FIGURE 5.5 Critical path delays of the UMDM in nanoseconds (operand size from

160 to 512-bits).
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The integration of Montgomery multiplication and modular division in one

design adds extra gates when compared with a dedicated divider. In the design

proposed in this work, Montgomery multiplication is computed in almost the

same time and complexity of a separate multiplication unit. In addition to

that, this design allows the ability to compute division in the same unit with

the flexibility to choose the required finite field.

5.4.3.2 FPGA Results for the UMDM Scalable Design

The scalable divider or multiplier design was synthesized for the FPGAs VertixII

chip. The technology was set to xc2vp50� 7ff148. The following paragraphs

present the area and the critical path delay results obtained for the design.

Figure 5.6 shows the area synthesis results (in number of slices) of the

scalable UMDM. The area is presented as function of the operand size (n)

TABLE 5.2
Area of the UMDM Design in Gates

for Different Operand Sizes

Operand Size (Bits) Area (Gates)

128-bits 30,403

160-bits 37,059

192-bits 45,513

224-bits 53,075

256-bits 60,629

512-bits 121,070
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FIGURE 5.6 Area (FPGA technology) of the scalable UMDM in number of slices for

combinations of operand size (n) from 16 to 512-bits and datapath word size (w) from

16 to 256-bits.
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with different combinations of the datapath word sizes (w). The area results

were obtained for the operand size in the range from 16 to 512-bits. The

datapath word size was in the range from 16 to 256-bits. The reason why we

did not use larger operand sizes is because the machines we are using could

not handle operand size greater than 512-bits.

From the figure, we note that the area increases linearly as the operand

size increases. There is a little difference in the number of slices when using

different datapath word sizes for the same operand size.

The area for the scalable UMDM design was extracted from the experi-

mental data presented in Figure 5.6 approximately as

AscUMDM ¼ 28 � nþ 275 ¼ O(n):

The same as in the area results, the experimental data for the critical path

delay were obtained for the operand size (n) in the range from 16 to 512-bits,

and the datapath word size (w) range from 16 to 256-bits. Table 5.3 shows the

critical path delay (clock period) for all the possible combinations of the

operand size and the datapath word size. The symbol—indicates that

the combination is not possible.

The operating frequency of the UMDM design can be found by taking the

reciprocal of the clock period at any point. From the table, the lowest clock

period (19.83 ns) is at n¼ 16 and w¼ 16, and therefore, the maximum

operating frequency is around 50 MHz.

The question now is how to choose the best design points, or in other

words, the (n, w) combinations that give the lowest delay. By looking at Table

5.3, we note that at a given operand size n, the minimum delay happens at the

datapath word size w¼ n. For example, the best combination at the operand

size n¼ 256 happens when the word size w¼ 256 also, with a minimum delay

equal to 28.4 ns.

TABLE 5.3
Critical Path Delay (Clock Period) of the Scalable UMDM

in Nanoseconds for Combinations of Operand Size (16 to 512-bits)

and Datapath Word Size from 16 to 256-Bits

Datapath Word Size (w)

Operand size (n) 16 32 64 128 256

16 19.83 — — — —

32 24.55 22.13 — — —

64 25 26.55 24.7 — —

128 32 31 27.9 25.4 —

256 34.7 37.3 34.3 31.9 28.4

512 47.15 38.71 38.5 37.4 35.4
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5.5 ELLIPTIC CURVE CRYPTO-PROCESSOR OVER GF(2n)

After introducing UDMA and its efficient hardware implementation, we pro-

pose an ECCP over the binary extension field GF(2n) to compute the point

multiplication operation kP. The ECCP architecture is based on the UDMA

hardware implementation shown in the previous sections, with some simpli-

fications applied in GF(2n).

5.5.1 ECCP HARDWARE ARCHITECTURE

Figure 5.7 shows the top level diagram of the ECCP. Its components are the

arithmetic unit (AU) data section and control, and the main control block. The

AU unit represents the UDMA architecture. The main control block interacts

with the user to get the scalar multiple (k) and the point to be multiplied (P),

passing them to the AU.

The details of the main blocks in the ECCP are similar to that presented in

the previous sections, taking into consideration the simplifications applied to

the algorithm and its implementation due to the use of GF(2n).

The scalability feature of the proposed crypto-processor allows the adjustment

of the word size used in the datapath to meet area and performance requirements.

On the other hand, the processor allows the user to choose the value of the

field parameter (n).

Main control
User

AU control

Arithmetic unit  (AU)

C
ontrol 

signals

AU  control

Register 
file

Datapath

Data

Data

FIGURE 5.7 Top level diagram of the elliptic curve crypto-processor (ECCP).
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5.5.2 EXPERIMENTAL RESULTS AND ANALYSIS FOR GF(2n) ECCP

As performed for the UDMA design, the experimental data presented in this

section were generated using Mentor Graphics CAD tools with the target

technology set to AMI05_fast auto (0.5 mm CMOS with hierarchy preserved)

provided in the ADK from the same company [15]. The scalable architecture

of the ECCP was described in VHDL and simulated in ModelSim to validate

functional correctness. It was synthesized using Leonardo synthesis tool for

the available technology.

Table 5.4 shows the critical path delays (in nanoseconds) of the ECCP for

the precision range from 16 to 512-bits at different combinations of the

datapath word size (from 16 to 512-bits).

We can see in the table that the minimum delay happens when the

datapath word size is 16. When the word size increases, the delay increases

slightly for a fixed operand precision, and the delay increases as the number

of bits increases and it saturates at higher precision.

The ECCP architecture based on UDMA performs one iteration of the

algorithm in each clock cycle when computing Montgomery multiplication.

This means that we need n cycles to compute Montgomery modular multi-

plication. The ECCP has no dedicated hardware for squaring (x2), and there-

fore the multiplication algorithm is used for squaring.

On the other hand, it takes a maximum of 2 iterations=bit and on an

average 1.5 iterations=bit to compute the modular inverse in GF(2n) using the

simplified algorithm. The ECCP architecture performs each iteration of the

algorithm in two clock cycles on an average, one to compute (Cþ c0 �D) and

another to compute UþW with the modulus reduction. Therefore, the GF(2n)

inversion by the simplified algorithm takes on an average of 1.5� 2¼ 3

cycles for each bit.

TABLE 5.4
Critical Path Delay of the ECCP in Nanoseconds for Operand

Precision 16 to 512-bits and Different Datapath Word Sizes

Delay (ns) Datapath Word Size (w)

Precision (bits) 16 32 64 128 256 512

16-bits 17.2 — — — — —

32-bits 17.6 17.8 — — — —

64-bits 17.6 19.2 20.4 — — —

128-bits 17.5 19.2 20.8 20 — —

256-bits 16.5 19.1 20.7 20.4 19 —

512-bits 16.7 18.2 20.7 20.5 19.5 20.2
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In computing kP using the double-add method [7], where P¼ (X1, Y1, Z1),

Q¼ (X2, Y2, Z2) are the points on the curve in the projective coordinates, we

can assume that Z2¼ 1, computing point addition (P 6¼ Q) requires 13 field

multiplications and computing point doubling (P¼Q) requires 7 field multi-

plications [16]. To compute the scalar point multiplication (kP) using Equa-

tion 5.1, n point doubling operations are needed (n is the order of the field),

and ~n=2 point additions are needed (given that the number of ones in the

binary expansion of k is 0.5n).

Let the total average computation time of a given design to compute

multiplication or division be Tdesign, which is given by

Tdesign ¼ (cycles=bit) � n � clock period:

At operand precision of n¼ 512-bits, the time required to compute one

multiplication by the ECCP is Tmult ¼ 1 � 512 � 20:2 � 10�9 ¼ 10:3 ms.

Then, at n¼ 512-bits, the ECCP computes point addition in

TP Add ¼ 13 � Tmult � 134 ms,

and half of that time is required to compute point doubling TP Double¼ 0.5 *

TP Add. To compute the scalar point multiplication (kP), an inversion oper-

ation is required to transform back the result from the projective to the affine

coordinates. The total time to compute the modular division (inverse) by the

ECCP is Tinv ¼ 3 � Tmult � 31 ms. Then, the total time to compute kP by

the proposed ECCP is

TkP¼ 0:5n � TP Addþn � TP DoubleþTinv ¼ 13=2n � Tmultþ7n � Tmultþ3Tmult

¼ (13:5nþ3) � Tmult ¼ (13:5nþ3)(n � clock period)

¼ (13:5n2þ3n) � clock period:

At precision n¼ 512-bits, TkP¼ 71 ms. The proposed ECCP computes the kP
faster than previously proposed elliptic curve architectures. As an example,

the FPGA implementation of the elliptic curve processor presented in [17]

computes the scalar point multiplication in 80.3 ms at operand size of 163-

bits. In addition, the ECCP has an advantage over other designs by its

scalablity (i.e., the user can choose the word size to achieve the required

performance).

Table 5.5 shows the total area (in number of gates) for the ECCP design

as a function of operand precision and different datapath word sizes. The area

for the ECCP design was extracted from the experimental data presented in

Table 5.5 as

AECCP ¼ 236:12 � nþ 180 ¼ O(n) gates:
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From Table 5.5, we can see that the proposed ECCP has area complexity of

O(n) at a given datapath word size. These results are compatible with many

other designs [18,19].
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6.1 INTRODUCTION AND MOTIVATION

Building information technology applications is not possible without ensuring

security. Cryptographic algorithms are an essential part of a modern security

layer. In real-world applications, security measures have to be balanced

against their cost, as well as the value of the protected data and the probability

of attacks. In wireless applications it happens quite often that in at least one

of the devices there are severe limitations on the available computing

power, memory, chip area or code size, and electrical power or energy. This

influences the choices a designer has to make when deciding on the trade-off

between security and cost.

We begin this chapter with a discussion of cryptographic primitives

and the security services they can deliver. We argue that by using only a

block cipher it is possible to deliver a wide range of security services.

Additionally, a hash function can be included to increase the performance.

Subsequently, we discuss the implementation of the Advanced Encryption

Standard (AES), used for symmetric encryption and authentication, and

Whirlpool, a dedicated hash function standardized in ISO=IEC 10118-3.

Interest in Whirlpool has increased significantly after the recent attacks on

MD5 and SHA-1.

6.2 CRYPTOGRAPHIC PRIMITIVES FOR CONSTRAINED
ENVIRONMENTS

6.2.1 SECURITY SERVICES, MECHANISMS, AND PRIMITIVES

Before we start discussing the implementation of cryptographic primitives,

we need to determine which primitives we need. This finally depends on

the security services we want to provide. In a constrained environment, we

usually want to provide all necessary security services using a set of

primitives as small as possible. The ISO 7498-2 standard distinguishes

5 types of security services and 13 types of security mechanisms [1]. The
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five types of security services are data confidentiality, data integrity,

(entity) authentication, access control, and nonrepudiation. Examples of

security mechanisms are cryptographic techniques like encryption, data

integrity mechanisms, and digital signatures, and also other techniques like

padding and routing control. The cryptographic security mechanisms are

implemented by using one or more cryptographic primitives.

On the highest level, we distinguish between symmetric primitives and

asymmetric primitives. Most asymmetric primitives can be used to provide

data confidentiality services by means of asymmetric encryption and data

integrity services by means of digital signatures. They are also used in some

key exchange protocols. The nonrepudiation security service can be provided

only by using asymmetric primitives. The implementation of asymmetric

primitives invariably requires significantly more resources than those

required for the implementation of symmetric primitives. They are

therefore not suited for the most constrained environments. In this chapter,

we concentrate on symmetric primitives.

There are four types of symmetric primitives: block ciphers, stream

ciphers, hash functions, and message authentication codes (MACs).

They can be used to provide confidentiality and data integrity services.

Confidentiality is provided by encryption, a mechanism that is typically

implemented using stream ciphers or block ciphers. Data integrity is provided

by means of data integrity mechanisms, which can be implemented using

hash functions or MACs.

However, it is also possible to implement encryption by means of hash

functions or MACs. Likewise, block ciphers and some stream ciphers can be

used to implement a data integrity mechanism. Another way to describe this

multipurpose nature is to state that symmetric primitives can be used to

construct other symmetric primitives. For instance, when a block cipher is

used to implement a data integrity mechanism, we can also say that we use a

hash function that is constructed from a block cipher, instead of a dedicated

hash function. Figure 6.1 illustrates which symmetric primitives can

be constructed from which other primitives. It can also be observed that

Block cipher Stream cipher

Hash function MAC

FIGURE 6.1 Possibilities to use symmetric primitives to construct other symmetric

primitives.
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dedicated MAC algorithms are rare; they are usually replaced by block

cipher–based constructions.

6.2.2 TYPES OF PRIMITIVES TO INCLUDE

We discuss here the types of symmetric primitives that should be preferred to

be implemented in constrained environments. The choice depends on the

security mechanisms that are used to implement the desired security services.

6.2.3 FIRST PRIMITIVE: BLOCK CIPHERS

Two block ciphers are very popular nowadays: the Data Encryption Standard

(DES or 3-DES) and the AES. We discuss here only the latter, because it is

the most future-oriented choice. The AES design makes extensive use of

finite field arithmetic, a type of arithmetic that is less intuitive than ordinary

integer arithmetic, but suited well for hardware implementations. An n-bit

block cipher with a h-bit key can be defined formally as a family of

2h permutations in the space of n-bit vectors. Every value of the key defines

one permutation in the family.

Block ciphers are the most versatile symmetric primitives. They can be

used to provide confidentiality, data integrity, and authentication services.

Block ciphers can be considered as fundamental cryptographic building

blocks, which can be used to construct a stream cipher, a hash function, and

a MAC.

6.2.3.1 Confidentiality

Block ciphers can be used to provide confidentiality by means of encryption.

Different modes of operation have been standardized [2]. In the Electronic
Code Book (ECB) mode, the message is divided into n-bit blocks, and every

message block mi is replaced by ci¼E(k; mi). The ECB mode has several

shortcomings. The most obvious one is that repeating message blocks results

in repeating ciphertext blocks

mi ¼ mj , ci ¼ cj:

In the cipher block chaining (CBC) mode, patterns occurring in the plaintext

are hidden by introducing feedback

ci ¼ E(k; mi � ci�1), (6:1)

where ci� 1 is also called the initial value (IV), which does not have to

be secret, but should not be predictable by an attacker. When more than

2n=2 blocks are encrypted under the same key, the CBC mode starts leaking
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information in the same way as the ECB mode. A recently standardized mode

of operation is the counter (CTR) mode. Here, the ciphertext is produced

by encrypting a counter z and XORing the output with the message

ci ¼ mi � Eðk; ziÞ, with zi ¼ z0 þ i. Observe that a block cipher in this

mode of operation resembles closely a synchronous stream cipher. Other

popular block cipher modes of operation resemble self-synchronizing stream

ciphers. Hence, we conclude that the reason for the popularity of block cipher

is not that they would have superior qualities as encryption primitives, but

rather the fact that they are so versatile. The performance of block ciphers is

often inferior to the performance of dedicated stream ciphers, hash functions,

or MAC algorithms, but still acceptable in many applications.

6.2.3.2 Data Integrity

Data integrity is usually not implied by data confidentiality. For many

encryption mechanisms, it is possible for an attacker to alter even encrypted

messages in such a way that the legitimate receiver of the messages

cannot detect the modifications. When data integrity needs to be provided

together with data confidentiality, it is possible to provide the data integrity

by using a hash function. Hashing is also used as a preprocessing step

when data integrity is provided by means of asymmetric cryptography

(digital signatures).

Hash functions can easily be constructed from block ciphers. The

most popular constructions can be divided into two groups. Single-length

constructions result in hash functions with output size equal to the block

length of the block cipher. These constructions resist second preimage

attacks, but are typically not sufficiently resistant to brute-force collision

attacks. Double-length constructions result in hash functions with output

size equal to twice the block length. They resist collision attacks, but all

known constructions are much slower than the single-length constructions.

An overview of hash function constructions using block ciphers is given in [3].

When the data integrity service needs to be independent of the data

confidentiality service, a hash function alone is not sufficient to provide the

service. The solution is to use a MAC. There are very few standardized

dedicated MACs. A very popular class of data integrity mechanisms is based

on the block cipher–based CBC–MAC construction. In the simplest config-

uration, the data are first processed (encrypted) using the CBC encryption

mode (1.1). Only the last ciphertext block is returned, and possibly even that

block is truncated [4]. A number of variants to the basic configuration have

been defined to remediate weaknesses that occur when the basic scheme is

instantiated with a weak cipher like the DES. This approach has proven to be

error prone, see for example, the overview of attacks presented in [5]. When

AES is used as the underlying block cipher, the basic configuration is secure

and there is no need to implement any of the variants.
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6.2.3.3 Entity Authentication

Entity authentication or identification is a process whereby a party proves

that it possesses a certain secret key. The simplest identification method is by

using a (static) password. In many settings, passwords are vulnerable to

eavesdropping and replay attacks. Replay attacks are countered by using

dynamic passwords; if a password can be used only once, then eavesdropping

becomes useless. A very simple authentication protocol consists of encrypt-

ing the current time with a block cipher and using the resulting ciphertext as

password. The verifier decrypts the received password and checks whether

the resulting plaintext is a valid time, not too far in the past. Note that this

protocol becomes trivially breakable if the block cipher would be replaced by

a synchronous stream cipher, as is illustrated by some attacks on the wired

equivalent privacy (WEP) protocol [6].

6.2.4 ADDITIONAL PRIMITIVES

We discuss here which type of primitive is most useful when added to a

block cipher.

6.2.4.1 Stream Ciphers

A stream cipher computes the ciphertext symbols by adding to the plaintext

symbols the output of a pseudo-random number generator. If the pseudo-

random number generator operates independently of the message symbols

and the (previous) ciphertext symbols, then the stream cipher is called a

synchronous stream cipher. In a self-synchronizing stream cipher, the

pseudo-random number generator takes as input a number of previous cipher-

text symbols also besides the key.

The main advantage of stream ciphers compared with block ciphers is that

they often provide a higher performance at a lower cost, especially in hardware.

If only confidentiality is needed, then stream ciphers are sometimes preferred

over block ciphers. On the other hand, for many proposals, the increase in

performance comes at the cost of a reduced security level. While it proves to

be already difficult to combine a high performance with a high level of

confidentiality, this appears to be even more the case when data integrity also

is required; see for instance several results available from [7]. Synchronous

stream ciphers can provide only confidentiality. Because of these limitations,

we think that for many applications a stream cipher is not the best choice.

6.2.4.2 Hash Functions

A hash function takes inputs of a variable length and produces outputs of a

fixed length. Hash functions are mainly used in data integrity mechanisms,

where their most important advantages over block cipher–based constructions

are higher performance and larger output length, which increases the

resistance against brute-force collision attacks.
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The dedicated hash function widely used today is SHA-1. However,

recently there have been several breakthroughs in cryptanalysis, indicating

that the security level of SHA-1 is borderline. It can be expected that it will

soon be known how to construct collisions for SHA-1. Therefore, we discuss

here a completely different hash function, Whirlpool. It is based on similar

design principles as the AES, and its implementation can be done using

similar strategies as for the AES.

Hash functions can be used to construct MACs, for instance the HMAC

construction [8]. However, here the advantages over block cipher–based

constructions are more limited. First, the larger output length does not

lead to an increase in security and might be unwanted in applications

where the amount of bits to be stored should be minimized. Second, the

intrinsic higher performance is handicapped by a relatively long setup.

Finally, the inclusion of a dedicated hash function algorithm can offer benefits

in some applications, but it is recommended to do a careful evaluation of the

expected improvements in performance and security. For many applications,

it is better to replace the dedicated hash function by block cipher–based

constructions [9].

6.3 ON OPTIMIZATION OF HARDWARE
IMPLEMENTATIONS

The aim of this section is to give the reader a basic understanding of the

considerations under which one can optimize hardware implementations. We

present ideas for the optimization of the block cipher AES and the hash

function Whirlpool when implemented on field programable gate arrays

(FPGAs). Advanced readers may skip this section.

6.3.1 OPTIMIZATION TARGETS

We discuss in general optimization targets such as area requirements, through-

put (speed), and power or energy consumption. These three optimization

targets cannot be considered to be independent of each other but are rather

closely related. Without going into details of VLSI design, we show this

relation on a fictive example. Assume we have implemented an algorithm in

hardware. This implementation requires a certain chip area, has a certain power

consumption, and achieves a certain throughput for a fixed clock frequency.

A possible way to increase the throughput (throughput optimization) is to do

more computations of the algorithm in parallel. To do so, we need more chip

area and, therefore, the power consumption increases as well. This is due to

the fact that now we have more computations running in parallel. So, roughly

speaking, we can say that with more area resources, we can achieve higher

throughput rates but also the power consumption increases. Another possibil-

ity to increase the throughput is, for instance, to increase the clock frequency
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(assuming that this is possible). This leads again to an increase of the

throughput but also the power consumption increases. It is easy to see that

if we consider one optimization target, other parameters get modified too. The

ideal hardware design should be the smallest, the fastest, and the most power-

efficient one. Based on the short introduction given already, it is easy to see

that this is not realistic. This makes optimization a challenging process in

hardware design.

Before we concentrate on the optimization targets area and speed, we

briefly consider the power consumption of hardware implementations. Power

consumption becomes more and more important for emerging technologies

such as radio frequency identification (RFID). Let us consider two possible

target devices: FPGAs and application specific integrated circuits (ASICs).

On the one side, we have a lot of freedom for optimization strategies to reduce

the power consumption of ASIC implementations (for instance clock gating,

operand isolation, etc.). On the other side, it is difficult to control the power

consumption of FPGAs. In general, the structure of an FPGA is given and

designers can only control few parameters. In the past years, power consump-

tion of FPGAs has become more and more important, and basic strategies to

reduce power consumption have been proposed. Power consumption of

FPGAs is an ongoing research topic and is one of the main factors that

determine the future of FPGAs.

In this section, we focus on optimization at the algorithmic level, i.e., optimi-

zations that mainly focus on the algorithm we want to implement. The reason for

this is that optimizations at this level can in general be done with only little

knowledge of the target device and technology. For the first step in the design

phase, it is enough to know whether we want to use an FPGA or we want to design

an ASIC. For an easier and clearer demonstration of optimization techniques for

the two algorithms described in this chapter, we focus only on hardware imple-

mentations on FPGAs. This has the advantage that we do not require a deep

understanding of ASIC design. Since we use FPGAs, we omit optimizations

regarding the power consumption and only focus on area and speed.

6.3.2 OPTIMIZATION TECHNIQUES

We describe possible optimization techniques for the two algorithms pre-

sented in this chapter: the block cipher AES and the hash function Whirlpool.

We focus on hardware implementations on FPGAs and show how to optimize

in direction area and speed at the algorithmic level. To keep the discussion

general, we do not consider any optimization strategies that are provided by

design tools.

If we want to optimize a hardware implementation with respect to through-

put (speed), the following parameters are important: the maximum possi-

ble frequency and the required number of cycles to perform a certain number

of iterations. The higher the frequency and the lower the required number of
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cycles, the higher the throughput becomes. The maximum frequency is

determined by the maximum combinatorial path, i.e., depth of logic gates

between registers. The number of cycles is determined by how many operations

we can do within one clock cycle. Both of these requirements for high-speed

designs require a lot of hardware resources. To achieve a high frequency, we

have to introduce registers to divide the combinatorial path into several shorter

paths. This increases the area requirements. Since these additional registers

also increase the required number of cycles, it is important to find a trade-off

between these two parameters. If we want to do more operations in parallel to

reduce the number of cycles, we need additional area since we have to

implement additional components for these computations.

If we look at the two cryptographic algorithms discussed in this chapter, we

can basically divide them into two parts: the state that serves as storage for initial

and intermediate data and the transformations that are applied to the state to

compute the result of the algorithm. Let us first consider the state. The size of the

state is determined by the algorithm. Therefore, it is not possible to implement a

smaller state. For an n-bit state we need an n-bit storage. For now, it is left open

how the state is implemented. This is discussed in more detail when we present

the hardware implementation of AES and Whirlpool. Since the size of the state is

fixed, we now consider the transformations that are applied to the state. In

general, the transformations are defined for smaller bit sizes than the bit size of

the state. Therefore, one and the same transformation is applied several times

to different parts of the state. Here it becomes immediately clear that if we want to

achieve high throughput rates then it is necessary that we apply the transform-

ations in parallel. This increases the throughput and also the area requirements. If

we want to be area efficient, then it is better to implement the transformation only

once and apply it several times to the state. This decreases the area but also the

throughput, since more cycles are then required to compute the result of the

algorithm. So we see that regarding the transformations, we already have several

possibilities to optimize a hardware implementation either for speed or area

efficiency. Another important decision is how to implement the transformations.

For the two discussed algorithms, the transformations have a very nice math-

ematical structure. This gives the designer the freedom to choose whether the

transformations are implemented in such a way that only few hardware resources

are needed or whether he wants the transformations with a small combinatorial

delay. Again, the smaller the slower and the bigger the faster.

Another possibility to increase the throughput is to use pipelining, where

for instance one iteration of the algorithm is computed within one clock cycle.

To achieve this, techniques such as loop-unrolling are used. Once the pipeline

has been filled, a new result is produced in each cycle. It is clear that this

increases the throughput but it also requires more hardware resources for the

implementation. For pipelining strategies, one has to consider the target

application of the hardware implementation. If the algorithm is for instance

used in a certain mode of operation that does not support pipelining, then the
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whole effort of the hardware implementation is lost. In the following

sections, we discuss the different optimization techniques on the hardware

implementations of AES and Whirlpool.

6.4 ADVANCED ENCRYPTION STANDARD

6.4.1 DESCRIPTION

The AES encrypts plaintext blocks of 128 bits with a 128-bit, 192-bit, or

256-bit key [10]. A plaintext block is represented as a 4� 4 array of bytes,

called the state. The AES repeatedly applies a so-called round transformation

to the state. The number of iterations (Nr) depends on the key length: 10 rounds

for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys.

The round transformation consists of the following steps:

. Nonlinear layer SubBytes, where a nonlinear S-Box is applied to each

byte of the state individually. SubBytes is a multiplicative inversion in

GF(28), followed by an affine transformation.
. Cyclical permutation ShiftRows, where the bytes of row i are rotated

to the left by i positions.
. Linear diffusion layer MixColumns, where each column of the state is

multiplied by a matrix with coefficients that are elements of GF(28).
. Key addition AddRoundKey, where the round key is added to the

state. Addition corresponds to the XOR operation.

Figure 6.2 depicts the AES dataflow and the steps of the round transformation

(for encryption). As can be seen in Figure 6.2, MixColumns is omitted in the

final round. Each round uses a different round key. The round keys are
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FIGURE 6.2 AES dataflow (left) and steps of the round transformation (right).
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derived from the cipher key by applying the key schedule. The key schedule

needs the SubBytes transformation and simple XOR operations. Obtaining the

initial round key requires no transformations: the first 128 bits of the cipher

key is used for the initial key addition. All subsequent round keys are derived

from their respective predecessors.

Decryption is done by inverting the process of encryption; the round

iterations are executed in the reverse order. This requires generating round

keys in reverse order too. Additionally, the sequence of the round functions

SubBytes, ShiftRows, MixColumns, and AddRoundKey is reversed and their

inverse functions are applied: (Inv)SubBytes), (Inv)ShiftRows, and (Inv)Mix-

Columns. AddRoundKey requires no extra inverse function because the XOR

operation is its own inverse.

6.4.2 OVERVIEW OF IMPLEMENTATIONS

Numerous AES hardware implementations have been published since

the standardization of Rijndael in 2001. In the following, we give a short

overview of the most recent implementations of AES on ASICs and FPGAs.*

An overview with status quo September 2005 is given in [11].

FPGA implementations mainly focus on high throughput rates. By

using techniques like loop-unrolling and pipelining, they are able to report

throughput rates up to 21,540 Mbps [12]. Applying such techniques leads

to AES hardware implementations that require a huge amount of FPGA

resources that are only available for expensive devices and can only be used

for high-end applications [12–15]. Considering low-end applications, high

throughput rates are not always required (e.g., wireless communications), and

high-end FPGAs are too expensive. Only few hardware implementations for

low-end FPGAs have been published to date [16 –19]. In general, it is difficult

to compare the different implementations since they implement different

functionalities. For instance, some implementations omit the on-chip key

schedule [18] of AES, some only support a fixed key size [13].

Besides FPGA implementations, also numerous ASIC implementations

have been published. These implementations achieve throughput rates up to

70,000 Mbps [20]. Alternatively, also compact implementations exist, as shown

for instance in [21,22]. In general, high throughput implementations focus on

pipelining strategies, whereas compact implementations try to optimize the

implementation of (Inv)SubBytes [22–24]. The most compact implementation

of AES combines different approaches to minimize the area requirements [25].

Moreover, for ASICs, comparing the different hardware implementations is not

straightforward since different target technologies are used.

* A more detailed list on implementations of AES can be found in the AES Lounge at http://

www.iaik.tugraz.at/research/krypto/AES/
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6.4.3 COMPACT HARDWARE IMPLEMENTATION OF AES

In this section, we describe a compact AES architecture that is supported

by most of the FPGA product families and that can be implemented using

inexpensive low-end FPGAs. The design relies on an unconventional but

effective hardware architecture that was conceived to map efficiently on recon-

figurable hardware like FPGAs from Xilinx [26]. Before we discuss design

considerations, we briefly introduce the basic features provided by FPGAs.

6.4.3.1 Basic Features of FPGAs

The basic building blocks of Xilinx FPGAs are configurable logic blocks

(CLBs) [26]. CLBs are arranged in a rectangular matrix and are wired by a

programable interconnect. A CLB contains four logic cells (LUTs)

(eight LUTs for modern devices) that can be programed to have different

functionality: combinational logic (an arbitrary Boolean function of four

inputs), logic and a register, or synchronous 16� 1 bit RAM. Combining

two logic blocks allows implementing a 16� 1 bit dual-port RAM. Besides

CLBs, Xilinx FPGAs offer on-chip block RAM that can store 4096 bits.

Block RAM can be configured at ratios between 4096� 1 and 256� 16,

and may have dual-port functionality. Block RAMs are also suitable for

implementing synchronous ROMs.

When multiple, fast, and small RAMs are required, distributed (LUT-

based) RAMs offer an ideal solution. The benefit is that the RAM cell is

adjacent to the logic, and thus, the wiring from the logic to the RAM

is negligible. This improves the timing behavior. Multiple distributed

RAMs can be merged to either enlarge the address space or the word width.

Enlarging the word width is unproblematic (LUTs in parallel), but enlarging

the address space can cause performance loss. For instance, a 32� 1 bit RAM

requires two 4 input LUTs whose outputs need to be multiplexed. This leads

to a worse timing behavior and an increased amount of hardware resources. In

such cases, it makes sense to use block RAMs instead of distributed RAMs.

Using synchronous RAMs and ROMs provides more flexibility for the

implementation. Depending on the target technology and available on-chip

resources, it can be chosen whether distributed RAM or block RAM should be

used for implementing the storage elements.

6.4.3.2 Design Decisions

In the following, we describe the basic design decisions that have been made.

We give a brief reasoning and refine it in the detailed description of the

architecture. The hardware architecture should implement the complete AES

standard—all key lengths should be supported. The implementation of

AES should require as few hardware resources as possible, i.e., optimization

with respect to area such that it can be implemented on low-end FPGA

devices. To achieve this goal, we define a 32-bit architecture. This is also a
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natural decision since the steps of the round transformation of AES are

specified for 32-bit words. Furthermore, we decided in favor of precomputed

round keys. This means that the key schedule is able to compute and to store

the round keys. Precalculated round keys allow fast encryption or decryption

of different data blocks with the same cipher key because no additional key

expansion is required. Since the goal is an area-efficient hardware architecture,

we decided to implement a nonpipelined approach. Consequently, the same

performance for all modes of operations (e.g., ECB and CBC) is reached.

6.4.3.3 Architecture of the AES Implementation

The main components of the AES architecture, as shown in Figure 6.3, are the

AMBA APB interface [27], the data unit, the key unit, and the control unit. The

key unit calculates the key expansion function. All round keys are precalcu-

lated and stored in the key unit. The data unit holds the state and performs all

steps of the round transformation: AddRoundKey, (Inv)SubBytes, (Inv)Shift-

Rows, and (Inv)MixColumns. When encryption or decryption has completed,

the ciphertext (plaintext in case of decryption) is stored in the data unit. The

control unit receives commands from the AMBA interface and generates

control signals for all other modules. In addition to control round key calcula-

tion, encryption, and decryption, it also sequences data loading and unloading.

In the following, we describe the data unit and the key unit in detail.

6.4.3.3.1 Data Unit
The data unit, schematically depicted in Figure 6.4, stores the state, all

intermediate results of the round transformation applied to the state, and the

output data when encryption or decryption has completed. An interesting

property of the data unit is that the state representation consists of two states.

One state contains the actual state values and the other state stores newly

calculated values. Figure 6.4 depicts the two states, referred to as StateA

and StateB. In each cycle, 32 bits (one row or one column) of either StateA or

StateB are altered. Using a second state provides benefits without the need of

additional recourses; (Inv)ShiftRows comes for free and no state transposition

between column and row operations is required.

Storage elements in FPGAs can be efficiently implemented by using

synchronous RAMs because the basic logic elements of FPGAs, called

AMBA
interface

(APB)

Data
unit Key

unit

Control unit

Data in

Data out

FIGURE 6.3 Architecture of the AES hardware implementation.
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LUTs, can be configured as 16� 1 bit synchronous RAM. Two LUTs provide

16� 1 bit synchronous dual-port RAM functionality. Dual-port RAMs allow

concurrent reading and writing to the RAM. Due to these technology features,

the State-RAM, as depicted in Figure 6.4, is implemented as four slices of 8�
8 bit synchronous dual-port RAM to allow addressing the slices individually.

The data unit implements all steps of the round transformation: (Inv)ShiftRows,

(Inv)SubBytes, (Inv)MixColumns, and AddRoundKey. The steps AddRound-

Key and (Inv)MixColumns are applied to the state column-by-column, whereas

the step (Inv)ShiftRows is applied to the state row-by-row. Due to the slice

architecture of the State-RAM, it is not possible to read or write from or to the

RAM column-by-column. Hence, a transposition of the state is necessary if a

row-oriented operation follows a column-oriented operation, or vice

versa. Transposition would require a reorganization of the state before further

operations can be performed. With two states, transposition can be implemented

by accordingly addressing the State-RAM. Furthermore, (Inv)ShiftRows can be

combined with transposing the state. As a consequence of this, (Inv)ShiftRows

and transposition come for free. In the following, we describe the memory

organization and state transposition for encryption. The same approach can be

easily modified for decryption.

When a row-oriented operation follows a column-oriented operation (or

vice versa), the state must be transposed. Combining row and column trans-

formations minimizes the number of required transpositions: ShiftRows is

combined with SubBytes and AddRoundKey is combined with MixColumns
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FIGURE 6.4 Architecture of the data unit and the State-RAM.
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(see Figure 6.4). This approach requires only one transposition per round.

Encryption requires SubBytes followed by ShiftRows. Since ShiftRows does

not affect the byte values and SubBytes is applied to each byte of the state

individually, the order of both operations does not matter. This fact eases the

address generation for the State-RAM.

For explaining the transposition of the state, we consider the state as

a 4� 4 array: S¼ (si, j) for i, j¼ 0, . . . , 3. The ShiftRows transformation

described in [10] can then be expressed as follows:

S0 ¼ ShiftRows(S) ¼ (si,( j�i) mod 4) for i, j ¼ 0, . . . , 3: (6:2)

If we replace the state by the transposed state, we obtain

S0T ¼ ShiftRows(S0T) ¼ (s(iþj) mod 4, j) for i, j ¼ 0, . . . , 3: (6:3)

Based on Equation 6.3, the addressing of the StateB-RAM can be determined:

the indices (i, j) must be substituted with ((iþ j) mod 4, j). Due to the even

number of AES rounds for all key lengths, ShiftRows is always applied to

StateB only. Thus, the resulting index tuples can be directly mapped to the

RAMs. The first part of the tuple index specifies the RAM slice and the

second part specifies the RAM address. Since we operate on StateB, we must

add an offset of four to the index value to get the correct address. Figure 6.5

shows the transposition of the state, including ShiftRows and SubBytes for

encryption.

6.4.3.3.2 Implementation of (Inv)SubBytes
For the implementation of (Inv)SubBytes, we follow the approach presented

in [24] since it needs relatively few hardware resources. The implementation

is schematically depicted in Figure 6.6. SubBytes is an inversion in GF(28)

followed by an affine transformation. (Inv)SubBytes is the inverse affine

transformation followed by the same byte inversion. To save hardware
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FIGURE 6.5 ShiftRows and SubBytes for encryption.
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resources, the byte inversion is shared. To implement both SubBytes and

(Inv)SubBytes, the byte inversion is bypassed, as shown in Figure 6.6.

The byte inversion and the affine transformation can be described fully

combinatorially. However, based on our analysis, it is more efficient to use a

synchronous ROM to implement the byte inversion. The look-up table is

given in Table 6.5. The affine and the inverse affine transformation can be

described by Boolean equations, which are given in Table 6.6.

6.4.3.3.3 Implementation of (Inv)MixColumns
MixColumns is a multiplication of each column of the state with a constant

matrix M that is defined as follows:

M ¼

02x 03x 01x 01x

01x 02x 03x 01x

01x 01x 02x 03x

03x 01x 01x 02x

2
664

3
775:

For instance, if we compute the first byte of the first column s00,0, we write

s00,0 ¼ s0,0 � 02x � s1,0 � 03x � s2,0 � 01x � s3,0 � 01x:

So what we need is byte multiplication by 02x and by 03x ¼ 02x � 01x.

Consequently, we only need to implement multiplication by 02x. This

multiplication can be implemented by using XOR operations and shift

Inverse affine
transformation

Byte
inversion

Affine
transformation

01
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FIGURE 6.6 Implementation of (Inv)SubBytes.
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operations. To describe it in more detail, we need the irreducible polynomial

that defines the finite field for AES

m(x) ¼ x8 þ x4 þ x3 þ xþ 1:

With m(x), we can now define multiplication by 02x. The values a and b
represent bytes, ai and bi (i¼ 0, . . . , 7) denote the single bits. Multiplication of

a by 02x is then defined as follows:

b ¼ a � 02x ¼
ShiftLeft(a,1) if a7 ¼ 0,

ShiftLeft(a,1)� p0 if a7 ¼ 1,

�
(6:4)

where p0 is the 8-bit representation of x4þ x3þ xþ 1, i.e., 00011011b.

For decryption, the matrix M consists of other entries, namely 09x, 0Bx,

0Dx, and 0Ex. If we follow the approach presented in [28] to implement

MixColumns and (Inv)MixColumns, then we only need multiplication by

the following constants: 02x, 03x, 08x, and 0Cx. The multiplication by these

constants can be described based on the multiplication by 02x:

b � 03x ¼ b � 02x � b,

b � 08x ¼ ((b � 02x) � 02x) � 02x,

b � 0Cx ¼ (b � 02x � b) � 02x � 02x:

These multiplications can be implemented fully combinatorially. The Boolean

equations are given in Table 6.7 and Table 6.8.

The architecture of the core multiplier that computes 1 byte of MixCol-

umns and (Inv)MixColumns is shown on the left-hand side in Figure 6.7.
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To process one column of the state we can use four such multipliers, where

the inputs of each multiplier are rotated in the same way as the rows of the

matrix M. This is shown on the right-hand side in Figure 6.7. It is easy to see

that if the signal enc¼ 1, then the multiplication constants are 02x, 03x, 01x,

and 01x, since the constants 0Cx and 08x are masked with the AND gates. If

enc¼ 0, then the constants are 0Ex, 0Bx, 0Dx, and 09x.

6.4.3.3.4 Key Unit
The key unit performs the key expansion function and stores the round keys.

For each new cipher key, the round keys are precalculated to allow rapid

encryption of subsequent data blocks for the same cipher key—no further key

expansion has to be done. Because decryption uses the encryption round keys

in the reverse order, the key expansion function must be calculated only once.

Hence, the stored round keys are used for both encryption and decryption.

The key expansion function needs the SubBytes functionality. To keep

the required hardware resources small, SubBytes is shared between key unit

and data unit (multiplexor-input S-box_o in Figure 6.4). This can be done

easily because the four SubBytes units are not used by the data unit during the

calculation of the round keys.

The memory of the key unit is separated from the memory of the data unit,

because the access of a common memory would be a throughput bottleneck.

The key store is implemented as a 64� 32 bit synchronous single-port RAM.

The key unit supports 128-bit, 192-bit, and 256-bit keys. Compared with

supporting only 128-bit keys, only few additional hardware resources are required.

Supporting all key lengths increases the needed hardware resources for the key unit

by only 7.8%. The size of the key memory for 256-bit keys is the same as that for

128-bit keys. For 128-bit keys, the key expansion function derives 44 round key

parts of 32-bit size from the cipher key. This requires a 64� 32 bit RAM; 256-bit

keys produce 63 round key parts of size 32 bits, fitting the 64� 32 bit RAM.

6.4.3.4 Implementation Results

We implemented the AES on a Xilinx Virtex-E XCV1000EBG560-8 device.

As shown in Table 6.1, the implementation only requires 1125 CLB-slices

and does not require any block RAMs. It supports the complete AES standard

TABLE 6.1
Hardware Resources and Throughput

Throughput (ECB and CBC) (Mbps)

# CLB-Slices # BRAM AES-128 AES-192 AES-256

1125 0 215 180 156
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and supports the CBC mode. Furthermore, it is equipped with a 32-bit

AMBA APB interface that eases the integration with processors used in

System-on-Chip designs [27]. If we do not consider the CBC mode functionality

and the AMBA bus interface, the AES implementation requires about 26%

less hardware resources.

The implementation only uses 9.16% of the available logic cells on a

Xilinx Virtex-E XCV1000EBG560-8 device. The remaining 90.8% of the

logic resources and 100% of the on-chip BRAMs can be used by other

applications like a LEON2 or an ARM processor. For a stand-alone applica-

tion, a low-end FPGA (e.g., Xilinx SpartanII XC2S100-6) is sufficient for

implementing the complete AES algorithm. The maximum clock frequency

on an XCV1000 FPGA is 161 MHz. At this frequency, a throughput of

215 Mbps for AES-128, 180 Mbps for AES-192, and 156 Mbps for AES-256

is achieved for both ECB mode and CBC mode.

6.5 WHIRLPOOL

6.5.1 DESCRIPTION

The block cipher–based hash function Whirlpool [29] is an iterative hash

function. In general, the input message m is divided into i 512-bit message

blocks (after applying a padding rule such that the message is a multiple of

512 bits): m¼m1m2 . . . mi. Each of the message blocks is then processed by

applying one iteration of the hash function f. The hash value of iteration i is

given by hi¼ f(hi�1, mi), where hi�1 is the hash value of the previous iteration.

For the first message block, an IV is used. For Whirlpool, h0¼ IV¼ 0. The

underlying block cipher, referred to as W, operates in the Miyaguchi–Preneel

mode [3], as shown in Figure 6.8.

The block cipher W is strongly based on the structure of the AES. W is a

512-bit block cipher and uses a 512-bit key. The input (plaintext) is the ith
message block mi to be hashed and the cipher key is the intermediate hash

value from the previous iteration hi�1. The block cipher W can basically be

divided into two parts: the datapath and the key schedule (see also Figure 6.9).

W

mi

hi −1

hi

FIGURE 6.8 The Whirlpool hashing function.
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The datapath processes the input message mi by iteratively applying the

round transformations for 10 rounds. Each round requires a round key that is

derived by the key schedule from the cipher key. The block cipher W uses a

512-bit internal state that is organized as an 8� 8 array of bytes. The

state stores the input message, the intermediate results for each round,

and the ciphertext after 10 rounds. As can be seen in Figure 6.9, both the

datapath and the key schedule use the same round transformations. The round

transformations are

. Nonlinear layer g, where a nonlinear S-Box is applied to each byte of

the state individually
. Cyclical permutation p, where the bytes of column j are rotated

downward by j positions
. Linear diffusion layer u, where the state is multiplied by a constant

matrix
. Key addition s[k], where also round constants cr are introduced

One round r[k] of W is performed as follows:

r[k] � s[k] � u � p � g,

where the transformations are applied to the state from the right to the left.

Figure 6.10 depicts how the round transformations are applied to the state and

shows that the state is organized as an 8� 8 array of bytes.
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FIGURE 6.10 Round transformations g, p, u, and s[k].

A single input message block is processed as shown in Figure 6.9. The cipher

key (either hi�1 or h0¼ IV) is added to the message block mi and stored in the

state. Then, the round transformation r[k] is applied to the state for 10 rounds,

with the round key for each round provided by the key schedule. After 10

rounds, the state containing the ciphertext cti, the cipher key hi�1, and the

input message block mi are added (Miyaguchi–Preneel operation mode),

resulting in the cipher key hi for the next message block, or the final hash

value if the input message has been processed completely.

A closer look at Figure 6.9, confirms the fact that the block cipher W is

actually composed of two block ciphers: the datapath with round keys

provided by the key schedule and the key schedule with the round constants

cr as round keys. Therefore, we also require a 512-bit internal state for the

implementation of the key schedule. As the internal state of the datapath,

the state for the key schedule is organized as an 8� 8 array of bytes.

6.5.2 OVERVIEW OF IMPLEMENTATIONS

Different to AES, only few Whirlpool hardware implementations have been

published to date; we are only aware of three implementations on FPGAs.
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Two implementations focus on high throughput rates: a throughput of

4900 Mbps is reported in [30] and a throughput of 4480 Mbps is presented

in [31,32]. A compact implementation has been published in [33], which is

described in the following section.

6.5.3 COMPACT HARDWARE IMPLEMENTATION OF WHIRLPOOL

6.5.3.1 Design Decisions

Based on the description of Whirlpool, we see a strong similarity to AES.

Therefore, we made basically the same design decisions as for the AES

implementation. A difference is that we decided in favor of a 64-bit architec-

ture, since the transformations are defined for 64-bit words. In addition, for the

Whirlpool implementation, we require that it is area efficient. For Whirlpool,

it makes sense to implement on-the-fly round key generation, since in

each iteration a new cipher key is used. This avoids any precomputation

time that would otherwise decrease the throughput remarkably. Since the

aim is an area-efficient architecture, we decided to implement a nonpipelined

approach.

6.5.3.2 Whirlpool State

As described in Section 6.5.1, the Whirlpool state is represented as an 8� 8 array

of bytes. Therefore, we can use a LUT-based RAM approach for the implemen-

tation of the state. For implementing the Whirlpool state, we need an 8� 64 bit

RAM. Since we use LUT-based RAMs, this requires 64 LUTs. With one LUT

we can implement a 16� 1 bit RAM and therefore eight rows (addresses) of the

RAM are not used. This leads to a nice feature: we can implement a second

Whirlpool state without additional hardware requirements. By using the LUT-

based RAM approach for the implementation of the state, we have the possibility

to implement a second state for free. From the second state, we benefit that the

round transformation p can be implemented by accordingly addressing the State-

RAM in a similar way as we have done for the AES implementation. Note that

the p transformation can only be implemented through wiring in the case of a

512-bit datapath. If smaller bit sizes are used, e.g., 64 bits, this transformation

requires additional logic and additional cycles. However, by using a second state,

this transformation comes for free. To implement the p transformation by

accordingly addressing the State-RAM, it is required that we can store single

bytes in each row of the State-RAM. Considering this property, we implemented

the State-RAM as shown in Figure 6.11: Eight slices of 16� 8 bit synchronous

dual-port RAM. Dual-port RAM is used to reduce the number of cycles, which in

turn increases the throughput. This is due to the fact that dual-port RAM provides

concurrent reading and writing. By using a LUT-based RAM approach, the state

can be implemented more efficiently than a registers-based approach. For

instance, one state requires approximately 512 LUTs if implemented with

registers (without counting in additional logic like multiplexors that may be
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required). This is at least four times more than using a 16� 64 bit LUT-based

dual-port RAM (128 LUTs), with the additional advantage that the second state

comes for free.

As described in Section 6.5.1, we require a Whirlpool state for the

datapath and the key schedule. For both parts, we use the same representation

of the state. For the remainder of this section, we refer to the state of the

datapath as DataState and the state of the key schedule as KeyState. Since

we have two states, we refer to the first state as DataStateA and the second

as DataStateB, respectively, KeyStateA and KeyStateB. The labeling for the

DataState is shown in Figure 6.11.

6.5.3.3 Fully Interleaved Hash Computation

In this section, we present the overall architecture of the proposed Whirlpool

implementation. The architecture is schematically depicted in Figure 6.12. As

can be seen in Figure 6.12, the transformations g and u are reused by the

datapath and the key schedule. Note that the transformation p does not appear

in Figure 6.12, since it can be implemented by addressing the State-RAM.

This is described later in this section. In the following, we show how a 512-bit

input message is processed and why the sharing of g and u works without

the need of additional cycles. This is summarized in Table 6.2. For the

description of the architecture’s dataflow we use the following phases: data

loading, round part A, round part B, and operation mode. The pseudo-code

is given in Table 6.3, where p(data) means that data are stored according to

the p transformation:

. Phase: data loading. This mode represents the initial state of

one Whirlpool iteration. Eight 64-bit words of the 512-bit input message

block are loaded and the initial key value (hi�1) is added. The result is

then stored in DataStateA and in ModeRAM. The ModeRAM stores

the result of the addition of hi�1 and mi, which is required for the
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FIGURE 6.11 Eight slices of 16� 8 bit synchronous dual-port RAM.
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Miyaguchi–Preneel operation mode. Since we have to read the values of

the KeyStateA for the initial key addition, we can compute the

g transformation of the key schedule concurrently. After data loading

the ModeRAM contains the values for the operation mode, and the key

schedule (KeyStateB) holds the result of the g transformation.
. Phase: round part A. In this mode, the g transformation is applied to

DataStateA and at the same time we compute the u transformation for

KeyStateB. Moreover, the round constants cr are added. After eight

cycles, KeyStateA holds the next round key and DataStateB stores the

result of the g transformation.

DataStateA
DataStateB

KeyStateA
KeyStateB

ModeRAM

0 1

0 1 0 1
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FIGURE 6.12 Architecture of the Whirlpool implementation.

TABLE 6.2
Sharing of g and u between Datapath

and Key Schedule

Phase g u

Data loading KeyState —

Round part A DataState KeyState

Round part B KeyState DataState
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. Phase: round part B. Now the u transformation is applied to DataStateB

and the round keys from KeyStateA are added. Since we read the

round keys from KeyStateA for the key addition, we compute again the

g transformation for KeyStateA concurrently. After eight cycles, we start

again with round part A.
. Phase: operation mode. After 10 iterations of round part A and round

part B, DataStateA holds the ciphertext. For the mode of operation, we

read the data of DataStateA and the data of ModeRAM. These two

values are added and stored in KeyStateA, which holds the hash value

of the current iteration after eight cycles. One iteration is now

completed—for the next input message block we start again with the

mode data loading. If the input message has been processed

completely, the eight 64-bit words of KeyStateA are unloaded resulting

in the 512-bit hash value.

Based on the description of the different phases, the total number of cycles

required to process one message block (without unloading) is 8þ 10 �
(8þ 8)þ 8¼ 176. The 176 cycles result from 8 cycles required in each

phase and 10 iterations of phases round part A and round part B.

So far, we did not discuss how the ModeRAM has been implemented.

The ModeRAM has to store eight 64-bit words. Therefore, we need an

8� 64 bit array, as for the DataState and the KeyState. We decided again

to use a LUT-based RAM approach since we can save hardware resources

TABLE 6.3
Interleaved Hash Computation

Phase data loading (8 cycles)

DSA ( mi � KSA

MR ( mi � KSA

KSB ( p(g(KSA))

Phase round part A (8 cycles=iteration)

r¼ 1, . . . , 10: DSB ( p(g(DSA))

KSA ( u(KSA)� cr

Phase round part B (8 cycles=iteration)

r¼ 1, . . . , 9: DSA ( u(DSB)� KSA

KSB ( p(g(KSA))

r¼ 10: DSA ( u(DSB)� KSA

Phase operation mode (8 cycles)

KSA ( DSA�MR

Notation:

DSA, DSB . . . DataStateA, DataStateB

KSA, KSB . . . KeyStateA, KeyStateB

MR . . . ModeRAM
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compared with a register implementation. The savings are based on the

same reasoning as for the DataState and the KeyState. However, since

the ModeRAM acts only as a register, we do not need a second state or the

dual-port functionality. Therefore, we implemented the ModeRAM as an

8� 64 bit synchronous single-port RAM. The 10 round constants cr required

for the key schedule are defined as the first 10 entries of the substitu-

tion box g. For the implementation, we used a 10� 64 bit synchronous

LUT-based ROM.

6.5.3.4 Implementation of the Round Transformations

In this section, we show the implementation of the round transformations p,

g, and u. Note that the round key addition s[k] is a simple XOR operation of

the state and the round key, as described in Section 6.5.1.

6.5.3.4.1 Implementation of p

Now we show how we can implement the transformation p by accordingly

addressing the State-RAM (DataState and KeyState). An example of the state

addressing is given in Figure 6.13 for row 0, row 4, and row 7 of DataStateA.

The addressing can be expressed by the formula

DataStateB((iþ j mod 8)þ 8, j) ¼ DataStateA(i, j), (6:5)

where i, j¼ 0, . . . , 7. For instance, the byte s4,5 of DataStateA is stored in s9,5 of

DataStateB. To implement p, the data are read row-by-row from DataStateA

and stored in the DataStateB according to the index substitution given in

Equation 6.5. After all rows have been processed, the values are read row-by-row
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FIGURE 6.13 State addressing to implement p for row 0, row 4, and row 7 of

DataStateA.
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from DataStateB and the result of the u and s[k] transformation is stored in

DataStateA. The same procedure applies for the KeyState.

6.5.3.4.2 Transformation g

For the implementation of the nonlinear layer g, we chose the proposed

representation given in [29] (see Figure 6.14). The byte substitution in

the finite field GF(28) is mapped to the composite field GF((24)2). In the

smaller field GF(24), so-called mini-boxes are used. Each mini-box has a

4-bit input and a 4-bit output. A block diagram of the g transformation is

shown in Figure 6.14. The functionality of the mini-boxes can be described

by Boolean equations, i.e., g can be implemented fully combinatorially.

However, our analysis has shown that it is more efficient in terms of area

requirements and combinatorial delay to implement the five mini-boxes

with LUT-based ROMs. The look-up tables for each mini-box are given in

Table 6.10. Since g is defined for bytes, it can also be implemented by

using one look-up table with 28¼ 256 entries. This requires a storage of

2048 bits. Using only one look-up table requires more hardware resources

than the mini-boxes approach, where each mini-box is implemented using a

LUT-based ROM. This is due to the fact that each mini-box consists of

16 entries of 4-bit size, resulting in 5� 16� 4¼ 320 bits, compared with

2048 bits. Even if the mini-box approach requires 12 additional XOR gates

(see Figure 6.14), it still requires remarkably less resources than the

approach with only one look-up table. To implement g for the proposed

64-bit architecture we need 8 byte substitutions, each consisting of 5 mini-

boxes and 12 XOR gates.

R

E E −1

E E −1

a0a7 a3a4

b7 b4 b3 b0

FIGURE 6.14 Implementation of g.
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6.5.3.4.3 Transformation u

The linear transformation u is defined as the multiplication of the state with a

constant matrix C. The matrix C is defined as follows:

C ¼

01x 01x 04x 01x 08x 05x 02x 09x

09x 01x 01x 04x 01x 08x 05x 02x

02x 09x 01x 01x 04x 01x 08x 05x

05x 02x 09x 01x 01x 04x 01x 08x

08x 05x 02x 09x 01x 01x 04x 01x

01x 08x 05x 02x 09x 01x 01x 04x

04x 01x 08x 05x 02x 09x 01x 01x

01x 04x 01x 08x 05x 02x 09x 01x

2
66666666664

3
77777777775
:

Since we use a 64-bit approach, we have to process one row at a time. For

instance, the 8-bit output s00,0 is computed as follows:

s00,0 ¼ s0,0 � 01x � s0,1 � 09x � s0,2 � 02x � s0,3 � 05x�
s0,4 � 08x � s0,5 � 01x � s0,6 � 04x � s0,7 � 01x:

Therefore, to process one row (64 bits), 5 multiplications for each output byte

are required resulting in 40 multiplications. For the computation of one output

byte we use a multiplier that takes as input one row of the state (see

Figure 6.15). To process one 64-bit row, we need eight such multipliers.

Since the matrix C is circular, i.e., the coefficients of each column are rotated

downward, we can use the same multiplier eight times. For each multiplier,

the single input bytes are rotated (by accordingly wiring) in the same way as

the coefficients of the matrix.

The number of required multiplications for one 64-bit row can still be

reduced. This is due to the fact that we can reuse the multiplication with 04x

and 08x for the multiplication with 09x ¼ 08x � 01x and 05x ¼ 04x � 01x.
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FIGURE 6.15 The core multiplier (left) and u (right).
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This reduces the required multipliers from 40 to 24. This has already been

considered by the designers of Whirlpool when choosing the matrix C.

The multiplication of the state bytes with the constants 02x, 04x, and 08x can

be described fully combinatorially in the same way as for AES (see Section 6.4).

The only difference is that Whirlpool uses a different irreducible polynomial

p(x) ¼ x8 þ x4 þ x3 þ x2 þ 1: (6:6)

Therefore, the multiplication by 02x is defined as

b ¼ a � 02x ¼
ShiftLeft(a,1) if a7 ¼ 0,

ShiftLeft(a,1)� p0 if a7 ¼ 1,

�
(6:7)

where p0 is the 8-bit representation of x4þ x3þ x2þ 1, i.e., 00011101b.

Multiplication by 04x is performed by computing twice the multi-

plication with 02x, i.e., b¼ a � 04x¼ (a � 02x) � 02x. The same holds for

b¼ a � 08x¼ (a � 04x) � 02x. These multiplications can be described fully com-

binatorially. The Boolean equations are given in Table 6.9.

6.5.3.5 Implementation Results

Table 6.4 lists the required hardware resources for the proposed Whirlpool

implementation. The datapath requires most resources since it includes the

two transformations g and u. If these transformations would not be reused,

the datapath and the key schedule would require approximately the

same hardware resources. This emphasizes the importance of reusing these

expensive transformations for a compact implementation. Note that reusing

the transformations does not need any additional cycles. This works because

the datapath uses g, whereas the key schedule uses u and vice versa.

For the implementation of Whirlpool we used a Xilinx Virtex 2P

xc2vp40-7fg676 device. On this device, we achieve a throughput of 382

Mbps at a frequency of 131 MHz requiring 1456 CLB-slices and no

TABLE 6.4
Required Hardware Resources for the Whirlpool

Implementation

Module CLB-Slices % BRAMs

Datapath 679 46.6 0

Key schedule 367 25.2 0

Operation mode 128 8.8 0

Control unit 102 7.0 0

64-bit AMBA interface 180 12.4 0

Total 1456 100 0
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BRAMs. If we do not consider the AMBA bus interface, the Whirlpool

implementation requires about 12% less hardware resources.

On the given device, the implementation uses only 6% of the available

hardware resources and, most notable, 100% of the available BRAMs are free

for use by other applications such as a LEON2 or ARM processor. Nevertheless,

the proposed architecture can also be implemented as a stand-alone application

for low-end devices such as SPARTAN2.

6.6 APPENDICES

6.6.1 FURTHER IMPLEMENTATION DETAILS OF AES

In this section, we give further details of the implementation of (Inv)SubBytes

and (Inv)MixColumns.

6.6.1.1 Byte Inversion in GF(28)

As described in Section 6.4.3, the byte inversion is implemented by using a

synchronous ROM. The look-up table is given in Table 6.5.

6.6.1.2 Affine and Inverse Affine Transformation

The affine and inverse affine transformation of (Inv)SubBytes can be

described by the Boolean equations given in Table 6.6, where ai and

bi (i¼ 0, . . . , 7) represent bytes values.

TABLE 6.5
Byte Inversion b 5 bl br in GF(28) in Hexadecimal Notation

br

0 1 2 3 4 5 6 7 8 9 A B C D E F

bl 0 00 01 8D F6 CB 52 7B D1 E8 4F 29 C0 B0 E1 E5 C7

1 74 B4 AA 4B 99 2B 60 5F 58 3F FD CC FF 40 EE B2

2 3A 6E 5A F1 55 4D A8 C9 C1 0A 98 15 30 44 A2 C2

3 2C 45 92 6C F3 39 66 42 F2 35 20 6F 77 BB 59 19

4 1D FE 37 67 2D 31 F5 69 A7 64 AB 13 54 25 E9 09

5 ED 5C 05 CA 4C 24 87 BF 18 3E 22 F0 51 EC 61 17

6 16 5E AF D3 49 A6 36 43 F4 47 91 DF 33 93 21 3B

7 79 B7 97 85 10 B5 BA 3C B6 70 D0 06 A1 FA 81 82

8 83 7E 7F 80 96 73 BE 56 9B 9E 95 D9 F7 02 B9 A4

9 DE 6A 32 6D D8 8A 84 72 2A 14 9F 88 F9 DC 89 9A

A FB 7C 2E C3 8F B8 65 48 26 C8 12 4A CE E7 D2 62

B 0C E0 1F EF 11 75 78 71 A5 8E 76 3D BD BC 86 57

C 0B 28 2F A3 DA D4 E4 0F A9 27 53 04 1B FC AC E6

D 7A 07 AE 63 C5 DB E2 EA 94 8B C4 D5 9D F8 90 6B

E B1 0D D6 EB C6 0E CF AD 08 4E D7 E3 5D 50 1E B3

F 5B 23 38 34 68 46 03 8C DD 9C 7D A0 CD 1A 41 1C
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TABLE 6.6
Affine and Inverse Affine

Transformation of (Inv)SubBytes

b 5 Affine(a) b 5 Affine21(a)

b0 ¼ a0 � a4 � a5 � a6 � a7 b0 ¼ a2 � a5 � a7

b1 ¼ a0 � a1 � a5 � a6 � a7 b1 ¼ a0 � a3 � a6

b2 ¼ a0 � a1 � a2 � a6 � a7 b2 ¼ a1 � a4 � a7

b3 ¼ a0 � a1 � a2 � a3 � a7 b3 ¼ a0 � a2 � a5

b4 ¼ a0 � a1 � a2 � a3 � a4 b4 ¼ a1 � a3 � a6

b5 ¼ a1 � a2 � a3 � a4 � a5 b5 ¼ a2 � a4 � a7

b6 ¼ a2 � a3 � a4 � a5 � a6 b6 ¼ a0 � a3 � a5

b7 ¼ a3 � a4 � a5 � a6 � a7 b7 ¼ a1 � a4 � a6

TABLE 6.7
Byte Multiplication with 02x and 03x

for AES

b 5 a � 02x b 5 a � 03x

b0¼ a7 b0 ¼ a0 � a7

b1 ¼ a0 � a7 b1 ¼ a0 � a1 � a7

b2¼ a1 b2 ¼ a1 � a2

b3 ¼ a2 � a7 b3 ¼ a2 � a3 � a7

b4 ¼ a3 � a7 b4 ¼ a3 � a4 � a7

b5¼ a4 b5 ¼ a4 � a5

b6¼ a5 b6 ¼ a5 � a6

b7¼ a6 b7 ¼ a6 � a7

TABLE 6.8
Byte Multiplication with 08x and 0Cx

for AES

b 5 a � 08x b 5 a �0Cx

b0¼ a5 b0 ¼ a5 � a6

b1 ¼ a5 � a6 b1 ¼ a5 � a7

b2 ¼ a6 � a7 b2 ¼ a0 � a6

b3 ¼ a0 � a5 � a7 b3 ¼ a0 � a1 � a5 � a6 � a7

b4 ¼ a1 � a5 � a6 b4 ¼ a1 � a2 � a5 � a7

b5 ¼ a2 � a6 � a7 b5 ¼ a2 � a3 � a6

b6 ¼ a3 � a7 b6 ¼ a3 � a4 � a7

b7¼ a4 b7 ¼ a4 � a5

Nicolas Sklavos/Wireless Security and Cryptography 8771_C006 Final Proof page 207 27.1.2007 1:56pm

Cryptographic Algorithms in Constrained Environments 207



6.6.1.3 Byte Multiplication by Constants in (Inv)MixColumns

For the implementation of (Inv)MixColumns we need to implement

byte multiplication with the constants 02x, 03x, 08x, and 0Cx. These multi-

plications are described by the Boolean equations listed in Table 6.7 and

Table 6.8.

TABLE 6.9
Byte Multiplication with 02x, 04x,

and 08x for Whirlpool

b 5 a �02x b 5 a �04x b 5 a � 08x

b0¼ a7 b0¼ a6 b0¼ a5

b1¼ a0 b1¼ a7 b1¼ a6

b2 ¼ a1 � a7 b2 ¼ a0 � a6 b2 ¼ a5 � a7

b3 ¼ a2 � a7 b3 ¼ a1 � a6 � a7 b3 ¼ a0 � a5 � a6

b4 ¼ a3 � a7 b4 ¼ a2 � a6 � a7 b4 ¼ a1 � a5 � a6 � a7

b5¼ a4 b5 ¼ a3 � a7 b5 ¼ a2 � a6 � a7

b6¼ a5 b6¼ a4 b6 ¼ a3 � a7

b7¼ a6 b7¼ a5 b7¼ a4

TABLE 6.10
Look-Up Tables for Mini-Boxes E, E 21,

and R

inx E (inx) E 21(inx) R(inx)

0 1 F 7

1 B 0 C

2 9 D B

3 C 7 D

4 D B E

5 6 E 4

6 F 5 9

7 3 A F

8 E 9 6

9 8 2 3

A 7 C 8

B 4 1 A

C A 3 2

D 2 4 5

E 5 8 1

F 0 6 0
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6.6.2 FURTHER IMPLEMENTATION DETAILS FOR WHIRLPOOL

6.6.2.1 Byte Multiplication by Constants

As described in Section 6.5.3, we need byte multiplication by the constants

02x, 04x, and 08x for the implementation of the transformation u. These

multiplications can be implemented fully combinatorially by the Boolean

equations given in Table 6.9.

6.6.2.2 Look-Up Tables for g

As described in Section 6.5.3, the mini-boxes E, E�1, and R for the g

transformation are implemented using look-up tables, which are given in

Table 6.10.

REFERENCES

1. A.W. Dent and C.J. Mitchell, User’s Guide to Cryptography and Standards,

Artech House, 2005.

2. National Institute of Standards and Technology (NIST), Recommendation for

Block Cipher Modes of Operation—Methods and Techniques, NIST Special

Publication SP 800–38a, Dec. 2001, available online at http:==csrc.nist.gov=
publications=nistpubs

3. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1997.

4. C.M. Campbell Jr., Design and specification of cryptographic capabilities,

NBS Special Publication 500–27: Computer Security and the Data Encryption
Standard, U.S. Department of Commerce, National Bureau of Standards, 1977,

pp. 54–66.

5. K. Brincat and C.J. Mitchell, New CBC-MAC forgery attacks, Information
Security and Privacy —ACISP 2001, LNCS 2119, Springer-Verlag, 2001, pp. 3–14.

6. N. Borisov, I. Goldberg, and D. Wagner, Intercepting mobile communications:

the insecurity of 802.11, Seventh Annual International Conference on Mobile
Computing and Networking, ACM, 2001, pp. 180 –189.

7. eSTREAM—the ECRYPT stream cipher project, http:==www.ecrypt.eu.org=stream.

8. M. Bellare, R. Canetti, and H. Krawczyk, Keyed hash functions and message

authentication, Advances in Cryptology— CRYPTO ‘96, LNCS 1109, Springer-Ver-

lag, 1996, pp. 1–15.

9. M. Feldhofer and C. Rechberger, A case against currently used hash functions in

RFID protocols, IAIK Technical Report 2006=005, 2006.

10. National Institute of Standards and Technology (NIST), Advanced Encryption

Standard (AES), Federal Information Processing Standards Publication 197

(FIPS PUB 197), November. 2001.

11. M. Feldhofer, K. Lemke, E. Oswald, F.-X. Standaert, T. Wollinger, and

J. Wolkerstorfer, State of the Art in Hardware Architectures, ECRYPT Deliverable

No. D.VAM2, September 2005, available online at http:==www.iaik.tugraz.at=
research=krypto=AES=VAM2-IAIK-17-D.VAM2–1_0.pdf.

Nicolas Sklavos/Wireless Security and Cryptography 8771_C006 Final Proof page 209 27.1.2007 1:56pm

Cryptographic Algorithms in Constrained Environments 209



12. A. Hodjat and I. Verbauwhede, A 21.54 Gbits=s fully pipelined AES processor on

FPGA, Twelfth IEEE Symposium on Field-Programmable Custom Computing
Machines—FCCM 2004, IEEE Computer Society, 2004, pp. 308–309.

13. P. Chodowiec, P. Khuon, and K. Gaj, Fast implementations of secret-key block

ciphers using mixed inner- and outer-round pipelining, Ninth ACM=SIGDA Inter-
national Symposium on Field Programmable Gate Arrays—FPGA 2001, ACM

Press, 2001, pp. 94–102.

14. M. McLoone and J. McCanny, High performance single chip FPGA Rijndael

algorithm implementations, Workshop on Cryptographic Hardware and Embedded
Systems—CHES 2001, LNCS 2162, Springer-Verlag, 2001, pp. 65–76.

15. N.A. Saqib, F. Rodrı́guez-Henrı́quez, and A. Dı́az-Pérez, Two approaches for

a single-chip FPGA implementation of an encryptor=decryptor AES core,

Thirteenth International Conference on Field Programmable Logic and
Application—FPL 2003, LNCS 2778, Springer-Verlag, 2003, pp. 303–312.

16. P. Chodowiec and K. Gaj, Very compact FPGA implementation of the AES

algorithm, Workshop on Cryptographic Hardware and Embedded Systems—CHES
2003, LNCS 2779, Springer-Verlag, 2003, pp. 319–333.

17. A. Dandalis, V. Prasanna, and J. Rolim, A comparative study of performance of

AES final candidates using FGPAs, The Third Advanced Encryption Standard
(AES) Candidate Conference, 2000, available online at http:==csrc.nist.gov=
CryptoToolkit=aes=round2=conf3=aes3agenda.html.

18. V. Fischer and M. Drutarovsky, Two methods of Rijndael implementation in

reconfigurable hardware, Workshop on Cryptographic Hardware and Embedded
Systems— CHES 2001, LNCS 2162, Springer-Verlag, 2001, pp. 77–92.

19. N. Pramstaller and J. Wolkerstorfer, A universal and efficient AES coprocessor

for field programmable logic arrays, Fourteenth International Conference on
Field Programmable Logic and Application— FPL 2004, LNCS 3203, Springer-

Verlag, 2004, pp. 565–574.

20. A. Hodjat and I. Verbauwhede, Area-throughput trade-offs for fully pipelined 30 to

70 Gbits=s AES processors, IEEE Transactions on Computers, 55(4):366–372,

2006.

21. S. Mangard, M. Aigner, and S. Dominikus, A highly regular and scalable

AES hardware architecture, IEEE Transactions on Computers, 52(4):483– 491,

April 2003.

22. A. Satoh, S. Morioka, K. Takano, and S. Munetoh, A compact Rijndael hardware

architecture with S-box optimization, Advances in Cryptology— ASIACRYPT
2001, LNCS 2248, Springer-Verlag, 2001, pp. 239–254.

23. D. Canright, A very compact S-box for AES, Workshop on Cryptographic Hard-
ware and Embedded Systems — CHES 2005, LNCS 3659, Springer-Verlag, 2005,

pp. 441– 455.

24. J. Wolkerstorfer, E. Oswald, and M. Lamberger, An ASIC implementation of the

AES SBoxes, Cryptographer’s Track at the RSA Conference 2002, LNCS 2271,

Springer-Verlag, 2002, pp. 67–78.

25. M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, AES implementation on a grain of

sand, IEE Proceedings of Information Security, 152(1):13–20, 2005.

26. Xilinx Incorporated, Silicon Solutions —Virtex Series FPGAs, http:==www.

xilinx.com=products.

Nicolas Sklavos/Wireless Security and Cryptography 8771_C006 Final Proof page 210 27.1.2007 1:56pm

210 Wireless Security and Cryptography



27. ARM Limited, AMBA 2.0 Specification, available online at http:==www.arm.com.

28. J. Wolkerstorfer, An ASIC implementation of the AES-MixColumn operation,

Austrochip 2001, Austria, 2001, pp. 129–132.

29. P.S.L.M. Baretto and V. Rijmen, The Whirlpool Hashing Function, 2000, revised

in May 2003, available online at http:==paginas.terra.com.br=informatica=
paulobarreto=WhirlpoolPage.html.

30. M. McLoone, C. McIvor, and A. Savage, High-speed hardware architecture of the

whirlpool hash function, IEEE International Conference on Field-Programmable
Technology —FPT 2005, IEEE, 2005, pp. 147–162.

31. P. Kitsos and O. Koufopavlou, Efficient architecture and hardware implementation

of the whirlpool hash function, IEEE Transactions on Consumer Electronics,

50(1):208–213, 2004.

32. P. Kitsos and O. Koufopavlou, Whirlpool hash function: Architecture and VLSI

implementation, IEEE International Symposium on Circuits Systems —ISCAS’04,

pp. II— 893–896, Vol. 2.

33. N. Pramstaller, C. Rechberger, and V. Rijmen, A compact FPGA implementation

of the hash function whirlpool, Fourteenth ACM=SIGDA International
Symposium on Field Programmable Gate Arrays — FPGA 2006, ACM Press,

2006, pp. 159–166.

Nicolas Sklavos/Wireless Security and Cryptography 8771_C006 Final Proof page 211 27.1.2007 1:56pm

Cryptographic Algorithms in Constrained Environments 211



Nicolas Sklavos/Wireless Security and Cryptography 8771_C006 Final Proof page 212 27.1.2007 1:56pm



7 Side-Channel Analysis
Attacks on Hardware
Implementations
of Cryptographic
Algorithms
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7.1 INTRODUCTION

Traditionally, the main task of cryptographic hardware is the acceleration of

operations frequently used in cryptosystems or the acceleration of a complete

cryptographic algorithm. In applications, hardware devices are also required

to store secret or private keys securely. Hence, a cryptographic device must

prevent the extraction of any sensitive information. A side-channel analysis

(SCA) attack takes advantage of implementation-specific characteristics to

recover the secret parameters involved in the computation. It is therefore less

general, but often more powerful than classical cryptanalysis.

SCA attacks can be divided into two groups as active and passive attacks,

according to the ability of the attacker. Active attacks targeting the keys in

cryptographic devices are commonly referred to as tamper attacks; they have

a long history in the field of cryptography [1]. In these attacks, the attacker

has to reach the internal circuitry of the cryptographic device. There are two

kinds of attacks: probing attack [2] and fault induction attack [3,4]. A probing

attack consists of inserting sensors into the device, to directly examine the

content of memory zones or the data circulating on a bus. A fault induction

attack works by disturbing the behavior of the device to induce errors in the

computation.

Passive attacks were recognized in the cryptographic community as a

major threat in 1996, when the first article about timing attacks (TAs) [5] was

published. In a passive attack, the adversary uses the standard functionality of

the cryptographic device. The physical and the electrical effects of the

functionality of the device are then used for the attack. There are many

different types of effects. If these effects unintentionally deliver information

about the key that is used inside the device, then they deliver side-channel

information and are called side channels.

Passive attacks are divided into four groups according to the side-channel

information that they exploit. Timing attacks (TA) exploit the timing infor-

mation on the cryptographic hardware. Power attacks (PA) use the dynamic

power consumption of the cryptographic hardware during the execution of the

cryptographic algorithm. Electromagnetic attacks (EMA) use the electromag-

netic (EM) radiation of the cryptographic hardware during the execution of

the cryptographic algorithm. Acoustic (sound) analysis attacks exploit the

sound coming out of the cryptographic hardware during the execution of the

cryptographic algorithm. All the groups of the passive attacks have two types:

simple and differential analysis attacks.
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In this chapter, we introduce the passive attacks that we have conducted on

the hardware implementations of an elliptic curve cryptosystem (ECC) over

GF( p), the advanced encryption standard (AES), and the data encryption

standard (DES). We also summarize the previous work on these side-channel

attacks.

7.2 SIMPLE ATTACKS

In a simple analysis attack, an attacker uses the side-channel information from

one measurement directly to determine parts of the secret key. A simple

analysis attack exploits the relationship between the executed operations

and the side-channel information.

7.3 DIFFERENTIAL ATTACKS

In differential analysis attack, many measurements are used to filter out noise.

A differential analysis attack exploits the relationship between the processed

data and the side-channel information.

In differential analysis attacks, an attacker uses a so-called hypothetical

model of the attacked device. The quality of this model is dependent on the

knowledge of the attacker. The model is used to predict several values for the

side-channel information of a device.

These predictions are compared with the real, measured side-channel

information of the device. Comparisons are performed by applying statistical

methods on the data. We use the distance-of-mean test and the correlation

analysis in our attacks shown in the following sections.

7.3.1 DISTANCE-OF-MEAN TEST

A distance-of-mean test begins by running the cryptographic algorithm for N
random values of input. For each of the N inputs, Ii, a discrete time side-channel

signal, Si[ j ], is collected and the corresponding output, Oi, may also be col-

lected. The side-channel signal Si[ j ] is a sampled version of the side-channel

output of the device during the portion of the algorithm that is attacked. The

index i corresponds to the Ii that produced the signal and the index j corres-

ponds to the time of the sample. The Si[ j ] is split into two sets using a

partitioning function, D(�): S0¼ {Si[ j ]jD(�)¼ 0}, S1¼ {Si[ j ]jD(�)¼ 1}.

The next step is to compute the average side-channel signal for each set:

A0[ j ] ¼ 1

jS0j
X

Si[ j ]2S0

Si[ j ], A1[ j ] ¼ 1

jS1j
X

Si[ j ]2S1

Si[ j ],

where jS0j þ jS1j ¼N. By subtracting the two averages, a discrete time

differential side-channel bias signal, T[ j ], is obtained T[ j ]¼A0[ j ]�A1[ j].
Selecting an appropriate D function results in a differential side-channel bias

signal that can be used to verify guessed portions of the secret key.
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7.3.2 CORRELATION ANALYSIS

For the correlation analysis, the model predicts the amount of side-channel

information for a certain moment of the execution. These predictions are cor-

related to the real side-channel information. This correlation can be measured

with the Pearson correlation coefficient [6]. Let ti denote the ith measurement

data and T the set of measurements. Let pi denote the prediction of the model for

the ith measurement and P the set of such predictions. Then we calculate

C(T, P) ¼ E(T � P)� E(T) � E(P)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(T) � Var(P)
p � 1 � C(T, P) � 1: (7:1)

In Equation 8.1, E(T) denotes the expected (average) measurement data of the

set of measurements T and Var(T) denotes the variance of the set of meas-

urements T. T and P are said to be uncorrelated, if C(T, P) equals zero.

Otherwise, they are said to be correlated. If their correlation is high, that is,

if C(T, P) is close to þ1 or �1, it is usually assumed that the prediction of the

model, and thus the key hypothesis, is correct.

7.4 TIMING ATTACKS

The differences in the processing time of a hardware or a software system

may vary with the code sequence and the processed data sets. Checking time

may, in unsecured systems, retrieve secret information [5,7].

An unsecured hardware or software system shows data dependencies

because of differences in timing according to different operations executed.

Addition and multiplication may be distinguished. Assume that we want to

calculate the following operations z¼ xþ y and z¼ x� y, with x and y which

are m-bit binary numbers. The execution time of one of the implementations

of the addition operation takes TA¼m clock cycles. If we use this addition

implementation as the basis for a multiplication implementation, then its

execution time is TM¼ (3(m� 1)m)=2. Hence, for the same bit-length oper-

ands, the one with shorter execution time is an addition operation.

As the timing depends on the bit length of the operands, by just using the

timing information of one operation, even the big values with higher bit

length are distinguished from the smaller ones with smaller bit length. The

same problem arises if the test of specific values and a following dependent

branch in the program code is not secured.

7.4.1 SIMPLE TIMING ATTACK ON FPGA IMPLEMENTATION OF ECC

In this section, we conduct a simple timing attack (STA) against an field

programmable gate array (FPGA) implementation of an ECC over GF( p)

[8–10]. The basic operation for ECC algorithms is point or scalar multiplica-

tion, denoted as Q¼ [k]P, k is an integer, and P and Q are elliptic curve (EC)

Nicolas Sklavos/Wireless Security and Cryptography 8771_C007 Final Proof page 216 27.1.2007 2:40pm

216 Wireless Security and Cryptography



points. This operation can be calculated by using the double-and-add algorithm,

as shown in Algorithm 1a.

Step 5 of Algorithm 1a is an EC point addition, and Step 3 of Algorithm

1a is an EC point doubling which can be realized by Algorithm 2 and

Algorithm 3, respectively.

For EC point addition and also for EC point doubling, 14 states are

needed. Because completing one+ operation takes a shorter time than one

* operation, the latency of one state is the same as for one *. Hence, the total

execution time of an EC point addition is 14T�, with T� the latency of one *.

The total execution time of an EC point doubling is 8T� þ 6T+, with T+ the

latency of one +.

If we use Algorithm 1a for a 160-bit EC point multiplication with an ‘-bit

key with the most significant bit (MSB) of the key equals to 1, the latency of

one point multiplication is

TPMUL ¼ (‘� 1)TPDB þ (w� 1)TPAD ¼ (8‘þ 14w� 22)T� þ 6(‘� 1)T�,

where w is the Hamming weight of the binary representation of the key [11],

and TPDB and TPAD are the latency of EC point doubling and addition,

respectively. It means that somebody who knows the execution time of one

* and+ and can measure the execution time of one 160-bit EC point multi-

plication can learn the Hamming weight of the key by using the earlier

expression. Hence, Algorithm 1a is vulnerable to simple TA attack due to

the conditional branch at Step 4.

Algorithm 1. Elliptic Curve Point Multiplication: (a) Double-and-Add

(b) Always Double-and-Add

Require: EC point P¼ (x, y),

integer k, 0 < k < M,

k ¼ (k‘�1, k‘�2, . . . , k0)2, k‘�1 ¼ 1

and M

Require: EC point P¼ (x, y),

integer k, 0 < k < M,

k ¼ (k‘�1, k‘�2, . . . , k0)2, k‘�1 ¼ 1

and M
Ensure: Q¼ [k]P¼ (x0, y0) Ensure: Q¼ [k]P¼ (x0, y0)

1: Q  P 1: Q  P
2: for i from ‘� 2 down to 0 do 2: for i from ‘� 2 down to 0 do

3: Q  2Q 3: Q1  2Q
4: if ki¼ 1 then 4: Q2  Q1 þ P
5: Q  Q þ P 5: if ki¼ 0 then

6: end if 6: Q  Q1

7: end for 7: else

8: Q  Q2

9: end if

(a) 10: end for (b)
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To get rid of this weakness we use the algorithm proposed by Coron [12]:

we execute always a point doubling and a point addition, independent of the

value of the current key bit. After finishing both point operations, we select

the needed result according to the value of the current key bit, as shown in

Algorithm 1b.

Algorithm 2. Elliptic Curve Point Addition over GF(p)

Require: P1¼ (x, y, 1, a), P2¼ (X2, Y2, Z2, V2)

Ensure: P1 þ P2¼P3¼ (X3, Y3, Z3, V3)

1. T1  Z2 * Z2

2. T2  x * T1

3. T1  T1 * Z2 T3  X2 � T2

4. T1  y * T1

5. T4  T3 * T3 T5  Y2 � T1

6. T2  T2 * T4

7. T4  T4 * T3 T6  T2 þ T2

8. Z3  Z2 * T3 T6  T4 þ T6

9. T3  T5 * T5

10. T1  T1 * T4 X3  T3 � T6

11. V3  Z3 * Z3 T2  T2 � X3

12. T3  T5 * T2

13. V3  V3 * V3 Y3  T3 � T1

14. V3  a * V3

Algorithm 3. Elliptic Curve Point Doubling over GF(p)

Require: P1¼ (X1, Y1, Z1, V1)

Ensure: 2P1¼P3¼ (X3, Y3, Z3, V3)

1. T1  Y1 * Y1 T2 X1þX1

2. T3  T1 * T1 T2 T2þ T2

3. T1  T2 * T1 T3 T3þ T3

4. T2  X1 * X1 T3 T3þ T3

5. T4  Y1 * Z1 T3 T3þ T3

6. T5  T3 * V1 T6 T2þ T2

7. T2 T6þ T2

8. T2 T2þV1

9. T6  T2 * T2 Z3 T4þ T4

10. T4 T1þ T1

11. X3 T6� T4

12. T1 T1�X3

13. T2  T2 * T1 V3 T5þ T5

14. Y3 T2� T3
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If we use Algorithm 1b for a 160-bit EC point multiplication with an ‘-bit

key with the MSB of the key equals to 1, then the latency of one point

multiplication is TPMUL ¼ (‘� 1)(TPDB þ TPAD) ¼ (‘� 1) (22T� þ 6T�).

This latency depends only on the key bit length ‘, but not on the Hamming

weight of the key.

7.4.2 DIFFERENTIAL TIMING ATTACK ON IMPLEMENTATION OF AES

In this section, we conduct a differential timing attack on a hardware

implementation of AES [13]. One of the operations in AES is the S-Box()

transformation in which the output byte is calculated by Algorithm 4.

MultInv() operation in Algorithm 4 is the multiplicative inverse in the finite

field GF(28) and AffTrans() operation is an affine transformation over GF(2),

described in [13].

There are 16 S-Boxes in AES, and each takes 1 byte of the state as an

input. The input of the first S-Box operation in the first round is the first byte

of output of the AddRoundKey(Plaintext,Key)¼ Plaintext � Key. Step 2 is

executed in shorter time than Step 4 in Algorithm 4. Hence, the attacker’s

steps are as follows in a differential timing attack:

1. Feed the hardware with N plaintexts.

2. Measure the time taken for encrypting each of them and form an N� 1

matrix M1 with these timing data.

3. Calculate Plaintext15 � Key15 for N plaintexts for each possible 256

values of the first byte of the key and for each plaintext.

4. Form an N� 256 matrix M2 with the expected time of S-box

(Plaintext15 � Key15) operation.

Now the attacker should choose a statistical analysis method described in

Section 8.3 for finding the first byte of the key. If he chooses the correlation

analysis, then he should find the correlation between M1 and each column of

M2. The highest correlation gives the right first byte of the key.

Algorithm 4. S-Box Operation in AES

Require: in¼ (in1 in0)8

Ensure: out¼ S�Box(in)¼ (out1 out0)8

1: if in¼ (00)8 then

2: out¼ (00)8

3: else

4: out¼MultInv(in)

5: end if

6: out¼AffTrans(out)
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7.4.3 PREVIOUS ATTACKS

TA attacks have been important significantly in the last few years. In June

1998, a TA attack could be performed on a smart card, compromising a

software test code for the Rivest, Shamir, Adelman (RSA) [14] public key

cryptosystem. After analyzing 300,000 timing tests, a 512-bit RSA key could

be determined. The overall time for this attack has been specified to be only a

few minutes [15]. In this study, the individual bits of the RSA key were tested

sequentially.

Schindler [16] demonstrated a further evolution of TA attack, breaking

the barriers of the RSA Chinese remainder theorem (CRT) [17] applications.

The attack can only be effectively performed if the so-called Montgomery

Algorithm [18] is used for calculation of the RSA, and if CRT is used. This

attack is improved by using an error-correction strategy in [19,20].

Handschuh and Heys [21] showed that the implementations of Rivest’s

RC5 [22] that take time for a rotation that is linear in the number of left shifts,

are vulnerable to a TA attack. The attack recovers the extended secret key

table with only 220 ciphertexts from the sole knowledge of the total amount of

rotations carried out during the encryption.

Hevia and Kiwi [23] studied the vulnerability of two implementations of

the DES cryptosystem under a TA attack. They showed that a TA attack

yields the Hamming weight of the key used by the DES implementations and

that all the design characteristics of the target system could be inferred from

timing measurements.

Koeune and Quisquater [24] explained how to perform a TA attack on

Rijndael. They used the fact that MixColumn operation can be implemented

very efficiently and the execution time can depend on the data processed.

The international data encryption algorithm (IDEA) is a product block

cipher designed by Lai et al. [25]. IDEA can cryptanalyzed with a piece of

side-channel information: whether one of the inputs into one of the multipli-

cations is zero. Since the multiplication is done modulo 216þ 1, a zero operand

is treated as a special case. Some implementations bypass the multiplication

completely and simply patch in the correct value. Kelsey et al. [26] used this

information and the ciphertexts for attacking the IDEA block cipher.

7.4.4 COUNTERMEASURES

The obvious countermeasure for a timing attack is executing the operations in

constant time independent of the processed data. All the previous works in the

literature try to solve this problem.

Most timing attacks exploit the modular reduction occurring in a Mon-

tgomery multiplication [18]. Therefore, Dhem [27], Walter [28,29], and

Hachez and Quisquater [30] propose several countermeasures that typically

consist of removing the time variation in this multiplication.
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Kocher [5] suggests a countermeasure consisting of randomizing the

exponent in RSA by adding a random multiple of w(n), a modification that

does not effect the final result.

Using square-and-multiply-always algorithm during the exponentiation

allows to hide the Hamming weight of the keys. Using double-and-add-

always algorithm proposed by Coron [12] during the EC point multiplication

allows to hide the Hamming weight of the keys. This countermeasure

increases the computation time by about 30%.

As a second countermeasure against timing attack on ECC, Izu and

Takagi [31,32] propose the binary right to left point multiplication algorithm

by executing point addition and doubling in parallel.

7.5 POWER ATTACKS

Nowadays, complementary metal oxide semiconductor (CMOS) is by far the

most commonly used technology to implement digital integrated circuits. The

dominating factor for the power consumption of a CMOS gate is the dynamic

power consumption [33]. The current absorbed by one inverter from VCC

shown in Figure 7.1 is used to charge the load capacitor CL at the output of the

inverter. The voltage on the load capacitor is the output level of the inverter

either logic 0 (VCC V) or 1 (0 V). The current–voltage relation of a capacitor is

defined as iC(t)¼Cd=dt v(t). Hence, if the capacitor voltage does not change

by the time then the current flow on the capacitor is zero, otherwise different

from zero. The following transition situations can occur at the output:

0! 0 iCL
(t) ¼ 0,

0! 1 iCL
(t) ¼ CLVCC,

1! 0 iCL
(t) ¼ �CLVCC,

1! 1 iCL
(t) ¼ 0:

If we measure the current absorbed from the source by an ampermeter

connected between VCC and p-channel metal oxide semiconductor (PMOS)

transistor in Figure 7.1a, then we observe a current only during the 0!1

transition at the output of the inverter. This transition depends on the input of

the inverter, so the processed data in the gate. The power attack uses this

simple fact that by just observing the current consumption of a gate we can

learn some information about the processed data, and if this data has some

relation with the secret information then we gain some information about the

secret by power analysis of the circuit.

7.5.1 SIMPLE POWER ATTACK ON FPGA IMPLEMENTATION OF ECC

In this section, we conduct a simple power attack (SPA) against an FPGA

implementation of ECC over GF( p) [8–10]. The power consumption trace of
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a 160-bit EC point multiplication is shown in Figure 7.2. The EC point

multiplication is implemented with Algorithm 1a. It can be easily seen from

Figure 7.2 that the key used during this measurement is 1001100.

We have changed our design to work with Algorithm 1b as a counter-

measure for the attack given earlier [8]. The current consumption trace of one

EC point multiplication is shown in Figure 7.2b. It follows from Figure 7.2b

that it is no longer possible to attack this circuit by SPA.

(a) (b)

(c) (d)

aa

Vcc

CL

a

Vcc

CL

a

iC(t )

Vcc

CL

Logic 0

iC(t )

CL

Vcc

Logic 1

FIGURE 7.1 A static CMOS inverter: (a) transistor structure, (b) switch model,

(c) input¼ 1, output¼ logic 0, and (d) input¼ 1, output¼ logic 1.
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7.5.2 DIFFERENTIAL POWER ATTACK ON ASIC IMPLEMENTATION

OF AES

In this section, we present our differential power attack (DPA) on the appli-

cation specific integrated circuit (ASIC) implementation of the AES [8,34,35].

The target for our DPA was the 8 MSBs of the state after the initial key addition

operation.
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FIGURE 7.2 Power consumption trace of a 160-bit elliptic curve point multiplication

over GF( p) with (a) Algorithm 1a and (b) Algorithm 1b.
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7.5.2.1 DPA Using Simulated Data

We have tested our attack with simulated data before making real measure-

ments. This approach enabled us to estimate the difficulty of a real attack, that

is, an attack using real measurements. To predict the dynamic power con-

sumption of the state, behavioral hardware description language (HDL)

simulations of the ASIC implementation were used. An advantage of this

approach is that it allows to simulate attacks in an early stage of the design

flow. Another reason for using a HDL simulation was that we did not reset

the chip after each AES execution. At the beginning of an AES execution, the

state still contained some value related to the previous AES execution. Hence,

without the HDL simulation, we could have only predicted the Hamming

weight of the state, but not the dynamic power consumption.

In the first step of this simulated attack, we have produced a so-called

simulated power consumption file. For this purpose, we have chosen N
random plaintexts and one fixed, but random key. After each first encryption

round (clock cycle), the simulator has written the total number of bit changes

between the previous and the current values of the state to this file. Hence, the

simulator has produced a file that contains an N� 1 matrix (N¼ 10,000), M1,

with values between 0 and 128.

Then we calculated an N� 2L matrix M2. Each column of the matrix M2

contains the prediction for the bit changes in the state for a particular guess

of the L attacked key bits of the initial key addition. We calculate the

correlation coefficients between the predictions of all the possible keys and

M1 as ci¼C(M1,M2(1:N,i)), i¼ 0, . . . ,2L� 1.

We expect that only one value, corresponding to the correct L-key bits,

leads to a high correlation coefficient. Figure 7.3a shows that this is indeed

the case.

We have already demonstrated that our attack setup works well together

with our model. The only question that remains is how many measurements,

N, are needed to determine the correct key. To determine this minimum, we

have calculated the correlation coefficient between M1 and M2 for different

values of N:ci, j¼C(M1,M2(1:i, j)), i¼ 1, . . . ,10,000, j¼ 0, . . . , 2L� 1.

As shown in Figure 7.3b, after approximately 400 plaintexts, the correct L
MSBs can be distinguished from the wrong L MSBs. Hence, for the simulated

attack, 400 measurements are sufficient to find the correct L MSBs of the key.

7.5.2.2 DPA Using Measured Data

In this section, we present the results of our DPA on the ASIC implementation

of AES using real, measured data. We have encrypted the same N plaintexts

with the same key as that used in the first step of Section 7.5.2. The initial key

addition operation occurs during the first clock cycle. The result of this

operation is written into the state at the rising edge of the second clock

Nicolas Sklavos/Wireless Security and Cryptography 8771_C007 Final Proof page 224 27.1.2007 2:40pm

224 Wireless Security and Cryptography



cycle. Hence, we have measured the current consumption during the first two

clock cycles of the encryption operation. With these measurements, we have

produced an N� 1000 matrix, M3. The power trace of one of these measure-

ments is shown in Figure 7.4.
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FIGURE 7.3 Correlation between M1 and all the columns of M2: (a) with 10,000

plaintexts (b) as a function of the number of measurements.

Nicolas Sklavos/Wireless Security and Cryptography 8771_C007 Final Proof page 225 27.1.2007 2:40pm

Side-Channel Analysis Attacks on Hardware Implementations 225



To identify the correct L MSBs of the key we have used the correlation

coefficient again. We have applied a preprocessing technique to reduce the

noise in our measurements and to reduce the amount of measurement data.

The preprocessing technique essentially consists of averaging. We have

calculated the mean value of the measurement data in the second clock

cycle as follows: M4(i)¼E(M3(i,Dþ 1:2D)), i¼ 1, . . . , N, where D is the

number of data points measured during one clock cycle. M3(i,Dþ 1:2D) is

the vector that consists of the ith row and the columns between Dþ 1 and 2D
of M3. We used these preprocessed measurements as input for our correlation

analysis ci¼C(M4,M2(1:N,i)), i¼ 0, . . . , 2L� 1. As shown in Figure 7.5a, the

highest correlation occurs at i¼ 153. This value corresponds to 0� 99, which

are the 8 MSBs of the key.

As in Section 7.5.2, N was taken as 10,000. However, we are interested

in the smallest number of measurements that allow for a successful attack.

To find the minimal number of measurements, we have calculated the follow-

ing correlation coefficients: ci, j¼C(M4(1:i),M2(1:i, j)), i¼ 1, . . . ,N, j¼ 0, . . . ,

2L� 1. It is shown in Figure 7.5b that after approximately 4000 measurements

the correct and the wrong 8 MSBs of the key can be distinguished.

The attack with simulated data in Section 7.5.2 needs about 400 meas-

urements to deduce the correct key. Taking into account that the 4000

measurements are the averages of 64,000 real measurements, we conclude

that we need 160 times more data to deduce the correct key.
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FIGURE 7.4 Power consumption trace of a measurement.
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7.5.3 DPA ON FPGA IMPLEMENTATION OF DES

We show an example for DPA against the sequential DES [36] imple-

mentation of Rouvroy et al. [37] that takes one clock cycle to perform one

round. We use correlation analysis to implement a DPA on the FPGA
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FIGURE 7.5 Correlation between all the columns of M2 and M4: (a) with 10,000

measurements (b) as a function of the number of measurements.
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implementation of DES [8,38]. This time our target is the 4 MSBs of the

register L that are affected by the 6 MSBs of the round key 16 [38]. It

corresponds to the output bits of S-box S0.

The number N of measurements for this experiment was 4096. For each

of the N encrypted plaintexts, we predict the number of bit transitions inside

our target register bits between rounds 15 and 16 for the 26 key guesses.

The result of the prediction is an N� 26 matrix M1 containing integers

between 0 and 4.

Since the same key is used for all the measurements, the power consump-

tion of the key schedule is fixed and may be considered as a DC component

that we can neglect as a first approximation.

Then we measure the power consumption of the FPGA during each

encryption for 16 clock cycles and we store the maximum value of each encryption

cycle to an N� 16 matrix M2 for 16 rounds (clock cycles) of DES.

In the correlation phase, we compute the correlation coefficient between

the column 16 of M2 and all the columns of M1. If the attack is successful, we

expect that only one value, corresponding to the correct key guess, leads to a

high correlation coefficient. As it is shown in Figure 7.6, the highest correl-

ation occurs when the key guess is 1Ehex¼ 30dec. This value corresponds to

the correct 6 MSBs of the round key 16.
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FIGURE 7.6 Correlation coefficient of all the 26 key guesses for the practical attack

on the FPGA implementation of the DES (N¼ 4096).
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7.5.4 PREVIOUS ATTACKS

The first practical implementation of a power analysis attack on the DES was

reported by Kocher et al. [39]. Since then, several companies and universities

have developed the skills to conduct these measurements in practice; these

skills include knowledge about statistics, the properties of the attacked crypto-

graphic algorithm, and the measurement setup. Koeune and Standaert [40]

present the state of the art side-channel attacks.

Schindler et al. [41] present an approach to optimize the efficiency of

differential side-channel cryptanalysis against block ciphers by advanced

stochastic methods. They demonstrate that the adaptation of probability

densities is clearly advantageous regarding the correlation method, especially,

if multiple leakage signals at different times can be jointly evaluated.

Tiri and Verbauwhede [42] point out that an actual DPA must be per-

formed with the correct accuracy on the power simulation model, as the

quality of the resistance assessment of a countermeasure is only as good as

the simulation model.

Mangard [43] describes how to determine the complete secret key in

Rijndael by using Hamming weight information from a few subkeys. Novak

[44] shows a side-channel attack on a substitution block of Rijndael, which is

usually implemented as a table lookup operation. The attack is based on

identifying equal intermediate results from power measurements, while the

actual values of these intermediates remain unknown.

Biham and Shamir [45] present an attack which can determine the secret

key of the DES uniquely by attacking several subkeys. Messerges et al. [46]

review and analyze the power analysis techniques used to attack DES.

Megarajan [47] proposes an attack based on the comparison of the repeated

parts of an algorithm. Joye et al. [48] provide an analysis of second-order DPA

and compute what one expects from second-order attacking any randomized

algorithm.

Mangard et al. [49] show that glitches occurring in circuits of masked

gates make these circuits susceptible to classical first-order DPA. They

provide a thorough theoretical analysis of the DPA resistance of masked

gates in the presence of glitches and simulation results that confirm the

theoretical elaborations. Mangard et al. [50] have mounted attacks on the

output of logic gates. Based on simulations and physical measurements, they

show that the unmasked and masked implementations leak side-channel

information because of glitches at the output of logic gates. It turns out that

masking the AES S-Boxes does not prevent DPA, if glitches occur in the

circuit.

Peeters et al. [51] describe an improvement of the previously introduced

higher-order techniques allowing to defeat masked implementations. The

proposed technique is based on the efficient use of the statistical distributions

of the power consumption in an actual design.
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7.5.5 COUNTERMEASURES

The goals of power analysis countermeasures are reducing the correlation

between the power consumption data and the secret data and obscuring the

power consumption measurements. There are two different types of counter-

measures as software and hardware. Surveys about the countermeasures are

given in [52,53].

7.5.5.1 Software Countermeasures

Time randomization was discussed in [12,32,54–63]. In this type of counter-

measures, the operations occur during random intervals in an execution.

This is done by using no-operations (NOPs), using dummy variables and

instructions, and data balancing (representation of the data is done to make

the Hamming weight constant). Permuting the execution (rearranged instruc-

tions) is proposed by Goubin and Patari [64].

Masking techniques are studied in [64–75]. Gomulkiewicz and Kutylowski

[76] show that masking is not always useful. The authors present an attack

against an addition implementation, based on the observation of the Hamming

weight of the sequence of carry that occurs during the bitwise addition. Apart

from the efficiency of this attack, of more interest is the fact that this attack

is not hindered by masking; in fact, the authors note that this could even make

the attack easier.

To obtain DPA-resistant applications, it cannot be tolerated that the

software or hardware performs many cryptographic operations on known

inputs with the same secret information. In addition, not too many crypto-

graphic operations should occur on the inputs that vary according to a known

scheme with keys that vary according to a known scheme. Borst and Bosse-

laers et al. [53,77] demonstrated how to take countermeasures at the protocol

level. They proposed to use more key levels in a typical smart card application.

7.5.5.2 Hardware Countermeasures

Increasing the measurement noise was the idea of Kocher et al. [39] by a

hardware noise generator as a random number generator (RNG). The design

of this approach may be relatively simple, and it is an effective way to resist

power analysis attacks. But it is expensive to implement and might be easy to

disable through tampering and it is not energy efficient.

Shamir [78] and Coron and Goubin [66] proposed power signal filtering to

obscure the measurements. The design of this approach may be relatively

simple and it is an effective way to resist attacks, but it requires a change to

the hardware and might be easy to disable through tampering. Two types of

filters were proposed; a passive filter in which physical limitations restrict

the size of an on-chip capacitor and an active filter in which compensation

techniques are likely to lag behind power supply changes. This countermeasure
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does not hide the EM radiation information of the device. The source of the

EM radiation of the device is the internal current flow on the wires of

the device, and this countermeasure does not change the current flow that

depends on the processed data.

There are also novel circuit designs. Shamir [78] proposed detachable

power supplies. Securing algorithm at the logic level was the idea of Tiri and

Verbauwhede [79]. The method employs logic gates with a power consump-

tion, which is independent of the data signals and therefore the technique

removes the foundation for DPA. Fischer and Gammel [80] refine the model

for the power consumption of CMOS gates, taking into account the side

channel of glitches. They propose a family of masked gates, which is theor-

etically secure in the presence of glitches if certain practically controllable

implementation constraints are imposed. Mace et al. [81] present principles

and concepts for the secured design of cryptographic integrated circuits (ICs).

To achieve a secure implementation of those structures, they propose to use a

binary decision diagrams (BDDs) approach to design and determine the

secured structures in dynamic current mode logic. Popp and Mangard [82]

describe a novel SCA-resistant logic style called masked dual-rail pre-

charged logic (MDPL). It is a masked and dual-rail precharge logic style

and can be implemented using common CMOS standard cell libraries.

Asynchronous circuits are used as a countermeasure [83,84]. The power

consumption and EM radiation are reduced, but the execution time depends

on the data processed, so they are vulnerable to timing attacks. Golic [85]

used reversible logic to reverse computation, which returns the consumed

energy during the computation back to the circuit.

Mangard [86] has identified the hardware countermeasures that influence

the number of samples needed in DPA. Based on these properties, he pro-

posed formulas that allow the calculation of lower bounds for the number of

samples needed in DPA.

7.6 ELECTROMAGNETIC ATTACKS

The sudden current pulse that occurs during the transition of the output of a

CMOS gate, mentioned in Section 7.5, causes a sudden variation of the EM

field surrounding the chip, which can be monitored by inductive probes that are

particularly sensitive to the related impulse. The electromotive force across the

sensor (Lentz law) relates to the variation of magnetic flux as follows [87]:

V ¼ � df

dt
and f ¼

ð ð
~BB � d~AA,

where V is the output voltage of the probe, f is the magnetic flux sensed by

probe, t is the time, ~BB is the magnetic field, and ~AA is the perpendicular area

that it penetrates.
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The Biot–Savart law relates magnetic fields to their current sources.

Finding the magnetic field resulting from a current distribution involves the

vector product, and is inherently a calculus problem when the distance from

the current to the field point is continuously changing:

d~BB ¼ m0Id~LL�~̂rr̂rr
4pr2

,

where d~LL is length of conductor carrying electric current I and ~̂rr̂rr is unit vector

to specify the direction of the vector distance r from the current to the

field point.

EM radiation itself consists of two components, the electrical and the

magnetic field vectors [88]. In theory, both components can be measured

individually or in their interaction. Capacitive sensors mainly capture the

electrical field components, while antennas and coils are able to acquire

both electrical and magnetic components, and Hall sensors and so-called

SQUIDs (super conducting quantum interference devices) mainly detect the

pure magnetic field components.

7.6.1 SIMPLE ELECTROMAGNETIC ATTACK ON FPGA
IMPLEMENTATION OF ECC

In this section, we conduct a simple electromagnetic analysis (SEMA) attack

on an FPGA implementation of an EC processor over GF( p) [8–10]. In our

measurement, we connect an antenna directly to an oscilloscope, as shown in

Figure 7.7 [8,89–91].

The EM radiation trace of a 160-bit EC point multiplication is shown in

Figure 7.8 [8,89,90]. The SEMA attack is implemented on an EC processor

over GF( p) [8–10], which uses Algorithm 1a for EC point multiplication. It

can be easily seen from Figure 7.8 that the key used during this measurement

is 11001100, because there is a clear difference between the traces of EC

point addition and doubling. The SEMA attack was successful because of the

conditional branch in Step 4 of Algorithm 1a.

As a countermeasure to this attack, we have implemented the EC point

multiplication with Algorithm 1b. One EM measurement of this architecture

is shown in Figure 7.9a.

7.6.2 DIFFERENTIAL ELECTROMAGNETIC ATTACK ON FPGA
IMPLEMENTATION OF ECC

In this section, we conduct a differential electromagnetic attack (DEMA) on

an FPGA implementation of an EC processor over GF( p) [10]. The EM

radiation trace of one EC point multiplication is shown in Figure 7.9a.
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FIGURE 7.7 The measurement setup. The loop antenna is placed vertically on the

FPGA.
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FIGURE 7.8 Electromagnetic radiation trace of a 160-bit elliptic curve point multi-

plication over GF( p) with Algorithm 1a.
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The target for our DEMA is the second MSB of the key, kl�2, in

Algorithm 1b. There are two temporary point registers in the design, Q1 and

Q2. These temporary points and the output point Q are updated in the

following order: Q¼P, Q1¼ 2P, Q2¼ 3P,
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FIGURE 7.9 Electromagnetic radiation trace of a 160-bit elliptic curve point multi-

plication (ECPM) over GF( p) with Algorithm 1b: (a) complete and (b) around the

attack point.
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Q ¼
2P if kl�2 ¼ 0,

3P if kl�2 ¼ 1,

�
Q1 ¼

4P if kl�2 ¼ 0:

6P if kl�2 ¼ 1:

�

Our choice for the measurement point is the fifth spike shown in Figure 7.9b.

This spike corresponds to the second update of Q1 after the second EC point

doubling.

We have produced an EM radiation file. For this purpose, we have chosen

N random points on the EC and one fixed, but random key, k. The FPGA

executes N point multiplications such that Qi¼ [k]Pi, for i ¼ 1, 2, . . . , N. We

have measured the EM radiation of the FPGA during 2400 clock cycles

around the second update of Q1. The clock frequency applied to the chip

was around 300 kHz, and the sampling frequency of the oscilloscope was

250 MHz. With these measurements, we have produced M1, in which M1(i) is

the ith measurement. The EM radiation trace of one of these measurements is

shown in Figure 7.9b.

We have applied a preprocessing technique to reduce the amount of

measurement data in every clock cycle. We have found the maximum

value of the measurement data in each clock cycle and taken the data in

20 clock cycles around the clock cycles that correspond to the five spikes in

Figure 7.9b. Thus, M2 has 100 columns and N rows. We used the discrete

Fourier transform to find the exact clock frequency and the number of

samples per clock cycle.

We have implemented the EC point multiplication with Algorithm 1b in

the C programming language. During the execution of the EC point multipli-

cations, the C program computes the number of bits that change from 0 to 1 in

some registers at the step corresponding to the fifth spike shown in Figure

7.9b. The number of transitions is used as the EM radiation prediction.

We have produced two EM radiation prediction matrices, M3 and M4, for

the kl�2¼ 0 and kl�2¼ 1 guesses, respectively. M3 and M4 have one column

for the fifth spike and N rows for the N EC points. We use the prediction

matrices M3 (for kl�2¼ 0 guess) and M4 (for kl�2¼ 1 guess) to split the

measurements in M2 into sets. For each guess, we divide the N measurements

into two sets. First, we calculate the mean value of the prediction matrix M3,

E(M3). Measurement by measurement, we check if the predicted value is

lower than the average value. If so, we put the measurement in set S1,1,

otherwise in set S1,2. Then we calculate the mean value for each of the two

sets and calculate the bias signal as T1¼E(S1,2)�E(S1,1). We do the same for

the prediction matrix M4, the sets are now called S2,1 and S2,2 and the bias

signal is T2.

The current consumption bias signals for kl�2¼ 0 and kl�2¼ 1 guesses are

shown in Figure 7.10. The figure shows a high peak on the expected spot on

the trace for the kl�2¼ 1 guess. Hence, the decision for the right key bit is

equal to 1.
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Figure 7.11 shows the change in the amplitude of all the clock cycles of

the current consumption bias signals for the kl�2¼ 1 guess. The number of

measurements on these traces is the number of measurements in the sets S2,1,

S2,2 described earlier. The number of measurements in these sets is nearly

the same. Hence, we should multiply the number of measurements seen in
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FIGURE 7.10 Electromagnetic radiation bias signals for the kl�2¼ 0 and kl�2¼ 1

guesses.
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FIGURE 7.11 Change in the amplitude of the electromagnetic radiation bias signal

for the kl�2¼ 1 guess and all clock cycles.
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Figure 7.11 by two to find the needed number of measurements. As it is

shown in Figure 7.11, 2000 measurements are needed to distinguish the right

clock cycle from the wrong ones.

7.6.3 PREVIOUS ATTACKS

It is well known that the U.S. government has been aware of EM leakage

since the 1950s. The resulting standards are called TEMPEST; partially

declassified documents can be found in [92]. The first published papers are

work of Quisquater and Samyde [93] and the Gemplus team [94]. Quisquater

and Samyde showed that it is possible to measure the EM radiation from a

smart card. Their measurement setup consisted of a sensor which was a

simple flat coil, a spectrum analyzer or an oscilloscope, and a Faraday cage.

Quisquater and Samyde also introduced the terms SEMA and DEMA. The

work of Gemplus deals with experiments on three algorithms: DES, RSA, and

COMP128. They observed the feasibility of EMAs and compared them with

PA in favor of the first. Namely, EM emanation can also exploit local

information and, although more noisy, the measurements can be performed

from a distance. This fact broadens the spectrum of targets to which SCA

attacks can be applied. They are not limited to smart cards and similar tokens

but also include secure sockets layer (SSL) accelerators and many other

cryptographic devices.

According to Agrawal et al., there are two types of emanations: inten-

tional and unintentional [95,96]. The first type results from direct current

flows. The second type is caused by various couplings, modulations (ampli-

tude modulation (AM) and frequency modulation (FM)), and so on. The two

papers mentioned earlier deal exclusively with intentional emanations. On the

contrary, the real advantage over other SCA attacks lies in exploring uninten-

tional emanations [95,96]. More precisely, EM leakage consists of multiple

channels. Therefore, compromising information can be available even for

DPA-resistant devices that can be detached from the measurement equipment.

Mangard [97] showed that near-field EM attacks can be conducted even

with a simple handmade coil. In addition, he showed that measuring the far-

field emissions of a smart card connected to a power supply unit also suffices

to determine the secret key used in the smart card.

Carlier et al. [98] showed that EM side channels from an FPGA imple-

mentation of AES can be effectively used by an attacker to retrieve some

secret information. They worked close to the FPGA and by this way were able

to get rid of the effects of other computations made at the same time. They

also introduced a new Square EM Attack.

Until now, most papers on EMA applied similar techniques as power

analysis while apparently much more information is available to be explored.

It is likely that future work also deals with combinations of EMA with other

side-channel attacks.
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7.6.4 COUNTERMEASURES

Very few articles describe countermeasures against an EMA analysis. A

complete shielding of smart card controllers, known from devices used in

electronic data processing, is possible, but an attacker could simply remove

the shield before analysis, making this countermeasure worthless [88].

With these presumptions in mind, EMA countermeasures have to reach

much further than the commonly known PA defense systems, because of the

fact that EMAs may provide information about small chip areas, whereas

the PA measurement only yields data concerning the supply current of the

complete chip.

7.7 ACOUSTIC ATTACKS

Recently, Shamir and Tromer [99] present their results using the sound of a

central processing unit (CPU) as a side-channel information. The oldest eaves-

dropping channel, namely acoustic emanations, has received little attention.

Preliminary analysis of Shamir and Tromer of acoustic emanations from

personal computers shows them to be a surprisingly rich source of information

on CPU activity.

Several desktop and laptop computers have been tested and in all cases it

was possible to distinguish an idle CPU from a busy CPU. For some com-

puters, it was also possible to distinguish various patterns of CPU operations

and memory access. This can be observed for artificial cases (e.g., loops of

various CPU instructions) and also for real-life cases (e.g., RSA decryption).

A low-frequency (kHz) acoustic source can yield information on a much

faster (GHz) CPU in two ways. First, when the CPU is carrying out a long

operation, it may create a characteristic acoustic spectral signature. Second,

temporal information about the length of each operation is learnt and this can

be used to mount TA, especially when the attacker can affect the input to the

operation.

7.7.1 COUNTERMEASURES

One obvious countermeasure is to use sound dampening equipment, such

as sound-proof boxes, that are designed to sufficiently attenuate all relevant

frequencies. Conversely, a sufficiently strong wide-band noise source can

mask the informative signals, though ergonomic concerns may render this

unattractive. Careful circuit design and high-quality electronic components

can probably reduce the emanations. Alternatively, one can employ known

algorithmic techniques to reduce the usefulness of the emanations to the

attacker. These techniques ensure the rough-scale behavior of the algorithm

is independent of the inputs it receives; they usually carry some performance

penalty, but are often already used to thwart other side-channel attacks.
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power supplies. In C. Paar and Ç.K. Koç, editors, Proceedings of the 2nd Inter-
national Workshop on Cryptographic Hardware and Embedded Systems (CHES),
volume 1965 of Lecture Notes in Computer Science, pp. 71–77, Worcester, MA,

August 17–18, 2000. Springer-Verlag.

79. K. Tiri and I. Verbauwhede. Securing encryption algorithms against DPA at the

logic level: Next generation smart card technology. In C. Walter, Ç.K. Koç, and
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8.1 INTRODUCTION

During the recent years, wireless networking technologies have achieved a

significant role as telecommunications media because of their flexibility and

convenience in numerous usage scenarios. Of the wireless technologies,

Bluetooth (Bluetooth Special Interest Group, Bellevue, Washington, USA)

[1] has become the default choice for low-cost, low-power, short-range, and

personal area communications. It is specified by Bluetooth Special Interest

Group (SIG) [2], an industry consortium established for developing and

Nicolas Sklavos/Wireless Security and Cryptography 8771_C008 Final Proof page 249 27.1.2007 2:42pm

249



advancing the wireless technology. Originally, Bluetooth was only intended

as a simple serial cable replacement for electronic devices. However, pres-

ently the technology supports various more advanced functionalities, such as

ad hoc networking and access point operation for Internet connections. The

ongoing development extends Bluetooth with new features, including support

for quality of service, higher data rates, multicasting, and lower power

consumption. Currently, Bluetooth can be found in mobile phones, personal

digital assistants (PDAs), laptops, printers, digital cameras, headsets, portable

payment terminals (e.g., for facilitating credit card payments in restaurants),

cars, and medical equipments. The application area expands as new products

with the Bluetooth capability are constantly introduced [3].

In addition to low-cost and robust operation, Bluetooth applications

often require protected communications. For example, confidential data

transfers between personal devices and transactions with payment terminals

must be protected from outsiders. Due to the wireless link, Bluetooth trans-

missions are available and devices discoverable to anyone within the radio

coverage. Therefore, the Bluetooth specification [1] defines security services

for authentication and confidentiality. Unfortunately, researchers have iden-

tified several vulnerabilities in the security design. The vulnerabilities originate

from the usage of a personal identification number (PIN) in key generation,

improper key management and authentication, and the possibility of

tracking Bluetooth devices. The security level of the Bluetooth encryption

algorithm has turn out to be significantly lower than the key sized permits to

expect. A major weakness is that transmitted data are only protected with

noncryptographic checksums instead of proper message authentication codes

(MACs) [4].

This chapter proposes a novel enhanced security layer (ESL) for improv-

ing the security of Bluetooth technology. The security level is increased

by replacing the original Bluetooth encryption scheme with a design based

on advanced encryption standard (AES) [5]. Except for Bluetooth, AES is

currently employed in all significant wireless short-range technologies, that

is, IEEE 802.11 [6] (Institute of Electrical and Electronics Engineers Inc.,

Piscataway, NJ, USA), IEEE 802.15.3 [7], IEEE 802.15.4 [8], and ZigBee [9]

(ZigBee Alliance, http:==www.zigbee.org). Furthermore, ESL adds MACs to

the transmitted data for cryptographic integrity protection and data origin

authentication. ESL includes two additional authentication and key exchange

protocols, one using public keys and the other secret keys. The protocols

can be used for agreeing on ESL keys as well as standard Bluetooth PINs.

The proposed security layer is placed on top of the standard Bluetooth

controller interface, which allows integrating it as an additional module into

any standard Bluetooth chip or as a software layer into a host device.

A prototype implementation of ESL is also presented in this chapter. AES

and the supported modes of operation are implemented in hardware for high

performance and energy efficiency [10]. In addition to the improved security,
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the ESL prototype offers an easy-to-use application programming interface

(API) for Bluetooth devices by hiding low-level management commands

from applications.

The rest of the chapter is organized as follows. Section 8.2 gives an

overview of the Bluetooth technology, its security design, and known security

problems. The design of ESL is presented in Section 8.3. Section 8.4

describes the ESL prototype implementation as well as compares its perform-

ance and resource consumption with the standard Bluetooth security design.

Finally, Section 8.5 concludes the chapter.

8.2 BLUETOOTH OVERVIEW

The Bluetooth technology consists of several protocol layers ranging

from the physical radio and link layer (baseband) to object exchange

and service discovery protocols. In addition, Bluetooth SIG has specified a

number of profiles [2], which define a selection of messages, procedures,

and protocols required for supporting a specific service. The portion of

the protocol stack considered in this work is depicted in Figure 8.1. Host

controller interface (HCI) separates the stack into two parts, Bluetooth host

and Bluetooth controller. It provides the host with a low-level, uniform

interface to the hardware capabilities of the controller. The host is connected

to the HCI firmware through a physical bus, such as universal asynchronous
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FIGURE 8.1 Bluetooth protocol stack. The stack is separated into a Bluetooth host

and a Bluetooth controller by HCI. Typically the host side stack is implemented as

software and the controller side as firmware and hardware.
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receiver transmitter (UART) or universal serial bus (USB). IEEE has also

adopted the lowest Bluetooth layers and standardized them in its IEEE

802.15.1 standard [11].

Originally, the transmission rate of the Bluetooth radio was 1 Mbit=s.

The newest specification extends the rate to 3 Mbit=s [1]. There are two

types of Bluetooth links: asynchronous connectionless (ACL) and syn-

chronous connection oriented (SCO). ACL is used for data transfers and

SCO for audio. Both the links have several network packet types of

different lengths. The host transmits and receives data in HCI data

packets. The HCI packets are fragmented to and assembled from the

ACL and SCO network packets by the Bluetooth controller. The highest

data payload rate is 723.2 kbit=s with the 1 Mbit=s radio and 2178.1

kbit=s with the 3 Mbit=s radio over an asymmetric ACL link with the

largest ACL packets [1].

Communications between Bluetooth devices can be point-to-point or

point-to-multipoint. A Bluetooth network is called a ‘‘piconet.’’ It consists

of a master and up to seven active slave devices. Piconets can be linked

together to form a larger network, ‘‘scatternet’’, as illustrated in Figure 8.2.

Link manager protocol (LMP), residing below HCI, manages piconets using

the services of the baseband. The protocol layers between HCI and standard

upper protocols are related to multiplexing, segmentation, service discovery,

and serial port emulation. Audio transmissions can bypass the higher proto-

cols and use baseband services directly through HCI.

Piconet

Master

Slave

Slave or 
master

Scatternet

FIGURE 8.2 Bluetooth network topology. A single network consisting of a master

and slaves is called a piconet. Several piconets can be connected together to form a

scatternet.
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8.2.1 STANDARD BLUETOOTH SECURITY

A Bluetooth device can operate in three security-related modes [1]. In the

nonsecure mode, the device does not initiate any security procedures. A device

operating in the service level–enforced security mode does not initiate secu-

rity procedures before the channel establishment at the logical link control

and adaptation protocol (L2CAP) layer. In the link level–enforced security

mode, security procedures are initiated before the Bluetooth link has been

established. As the service level–enforced security mode supports different

security policies for parallel applications, the link level–enforced security

mode enforces the same link layer security level for all connections [12].

In addition to the operating modes, Bluetooth specifies security levels for

devices and services [1,12]. A device is trusted if it has been previously authen-

ticated and marked as trusted. A trusted device has unrestricted access to

services. Unknown devices and devices that have previously been authenticated

but not explicitly marked as trusted are untrusted. They have only restricted

access to services. In the service level–enforced security mode, services can

choose to require authorization, authentication, and encryption. When a service

requires authorization, access is automatically granted only to trusted devices.

When security procedures are applied, Bluetooth implements key man-

agement, entity authentication, and confidentiality. The security processing is

carried out at the baseband and controlled by link manager (LM) according to

the requirements of the higher protocol layers. Due to the large number of

adjustable parameters, Bluetooth SIG has published additional recommenda-

tions for configuring the security services in different profiles [13]. Further-

more, the ambiguities of the Bluetooth specification related to the encryption

of piconet broadcasts have been clarified [14].

8.2.1.1 Entity Authentication and Key Management in Bluetooth

The Bluetooth security is based on three types of link keys: initialization keys,

combination keys, and master keys. The earlier versions of the Bluetooth

specification included a fourth type of a link key called unit key but its usage

is deprecated in the newest specification because of severe security problems.

The 128-bit link key is used in entity authentication. Depending on its type

and the desired level of protection, the link key is also used for generating an

encryption key. The Bluetooth key hierarchy is illustrated in Figure 8.3.

An initialization key is typically used only when two Bluetooth devices

establish a connection for the first time. The key is generated from a PIN code

and is supplied to both the devices. A combination key is generated from

information shared between two Bluetooth devices. The sharing of the

generation information is protected with the effective link key. A master

key is a temporary key distributed by the piconet master and used for

protecting broadcast transmissions.
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After exchanging a new link key, the devices verify its correctness and

each other’s identities by subsequently running a challenge–response authen-

tication protocol. The devices are identified by unique 48-bit Bluetooth

addresses. The procedure involving the creation of an initialization key,

using it to protect the exchange of a new link key, and running the authen-

tication protocol with the new link key is called ‘‘pairing.’’ Key generations

and the authentication protocol use algorithms referred to as E1, E21, E22, and

E3. They are all based on the SAFERþ block cipher [15].

8.2.1.2 Confidentiality and Integrity in Bluetooth

Bluetooth provides confidentiality through optionally encrypting network packet

payloads. Encryption is performed with a proprietary stream cipher called E0,

which is based on four parallel linear feedback shift registers (LFSR). It gener-

ates a key stream, which is XORed with plaintext to produce ciphertext and vice

versa. Before proceeding with encryption, devices agree on the size of the

encryption key, which can vary between 8 and 128 bits. The encryption key is

derived from the current link key and parameters are provided by the piconet

master. E0 is initialized with the encryption key and the real-time clock of

the master. The clock ensures that each key stream produced with the same

encryption key is different and thwarts the initialization vector attacks of the

wired equivalent privacy (WEP) protocol of IEEE 802.11 [16]. For integrity

verification, a keyless cyclic redundancy check (CRC) checksum is computed

and appended to the payload before encryption in the same way as in WEP.

8.2.1.3 Bluetooth Security Vulnerabilities

The Bluetooth security design has been found vulnerable to a number of

attacks. By exploiting the vulnerabilities, an attacker can, for example, obtain

PIN code

Temporary key

Master key Initialization key

Link key

Encryption key
Direct usage

Key generation

Combination key

Semipermanent key

FIGURE 8.3 Bluetooth key hierarchy. The initialization key is derived from the

PIN code and used as a link key for protecting the exchange of another type of key.

The exchanged link key is used for authentication and optionally for generating an

encryption key.
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confidential data from Bluetooth-enabled mobile phones, inject viruses, make

unauthorized phone calls, and send short messages [17–19]. Not all the exploits

are directly caused by the security design but rather by its implementation and

configuration in end products. Despite that the Bluetooth technology has been

designed for short-range communications, attackers can easily expand their

range and attempt attacking devices from the distance [19,20].

The security is completely based on the PIN code [21,22]. Therefore, the

PIN should always be long and randomly chosen. However, the Bluetooth

specification permits fixed PINs and PINs of only 8-bit long, and also defines

a default value for the code (zero). Since a method for automatically exchan-

ging PINs has not been defined, users tend to choose short (typically four

digits) and easily memorable values [22]. When the PIN code is poorly

chosen, an attacker can perform off-line search for the code after eavesdrop-

ping on pairing or after masquerading as the initiator of the pairing procedure

[21]. If the attackers have not been present during pairing, they can also claim

the link key lost and make the victim devices rerun pairing [21,23]. Due to the

weaknesses, Bluetooth SIG recommends performing pairing in a private

location [13]. Due to more robust and IEEE 802.11 WLAN-compatible

solutions, researchers have proposed the 802.1X framework [24] and

Diffie–Hellman-based key exchange mechanisms to be used for link key

establishments [25]. However, these kinds of solutions have not yet been

specified by Bluetooth SIG.

In addition to the PIN code vulnerabilities, a weakness in the entity

authentication of Bluetooth is that only devices are authenticated. For

example, it has been reported that switching the owner and the subscriber

identity module (SIM) of a mobile phone does not always require reauthenti-

cating the Bluetooth connections of the phone [26]. An attacker is also able to

fake two Bluetooth devices to believe that they are directly communicating

with each other by simply relaying traffic between them [27]. To work and be

beneficial, the relaying attack requires that the two devices do not hear each

other and that they do not invoke the optional encryption after authentication.

An adequate cryptographic integrity protection mechanism can thwart the

attack as well. More advanced man-in-the-middle attacks, which are applic-

able because of the missing integrity protection, are described [28]. The

attacker is able to compromise encrypted connections also by exploiting the

frequency-hopping mechanism of Bluetooth [1]. The clocks of the victim

devices are unsynchronized, which causes their hopping sequences to have

different offsets, preventing them from hearing each other.

The noncryptographic integrity protection based on the encrypted

CRC checksum can be attacked in the same way as that of WEP [16,28],

allowing an attacker to manipulate Bluetooth transmissions without detection.

Particularly, the usage of the stream cipher makes this applicable. If the

transmitted plaintext is known, the attackers can change the packet contents

into whatever they wish by flipping bits. For example, it is possible to convey
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higher-protocol data into a different destination by altering the higher-layer

addressing fields, which often reside at known locations in Bluetooth packets.

To prevent all the attacks described in [28], it is stated that adding MACs into

Bluetooth transmissions is inevitable. The protection should cover manage-

ment packets also to prevent denial-of-service (DoS) attacks performed by

tampering with them.

The negotiable key size is a threat to the Bluetooth encryption scheme

since a malicious party can purposely make a device use a short key and thus

alleviate attacking against encryption [28,29]. Furthermore, the applications and

users of Bluetooth devices are not aware of the negotiation procedure or agreed

encryption key sizes. In addition to the protocol attacks, weaknesses in the

Bluetooth stream cipher E0 have been exposed [21,30–33]. The cipher has

appeared to provide a significantly lower level of security than a 128-bit-key

algorithm should provide. For example, if the cipher is used outside the

Bluetooth technology and allowed to produce long key streams, it is far too

weak [32]. Within the constraints of Bluetooth, a practical attack for recovering

the encryption key can be performed after discovering the first 24 key stream bits

of about 224 packets [33]. Even though the E0 attacks have not yet been exploited

in practice, these are alerting results as they correspond to the ones that led to the

complete insecurity of WEP [34]. Generally, instead of destining to proprietary

solutions, such as E0, it is more secure to use solutions that have been developed

through a public process and those that are widely used and trusted, such as AES.

When a device has been implemented according to the older versions of

the Bluetooth specification, it may use its unit key as the link key. This

exposes all the traffic protected with the key in the past and in the future to

other devices with which the key has been shared [21–23]. It allows imper-

sonation as well.

Bluetooth-enabled devices can be tracked as they constantly advertise their

unique addresses [21,22,26]. This introduces a threat to a person’s location

privacy as Bluetooth is typically used in personal devices that people carry with

them. An anonymity scheme for thwarting the threat has been proposed [25].

Bluetooth SIG has also discussed about addressing this threat [35] but so far

support for location privacy or anonymity has not been specified [1].

8.3 ENHANCED SECURITY LAYER (ESL) FOR BLUETOOTH

To address the weaknesses of the Bluetooth security design, ESL for protect-

ing Bluetooth links is proposed in this work. ESL specifically aims at fixing

the shortcomings of the Bluetooth encryption algorithm and the lack of

cryptographic integrity protection as well as improving the entity authentica-

tion. For protecting data transfers, ESL supports four well-scrutinized oper-

ation modes from which the application can choose the preferred one

according to its security requirements. In addition, two enhanced entity

authentication and key agreement protocols are included.
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8.3.1 PLACEMENT OF ESL IN BLUETOOTH PROTOCOL STACK

The ESL architecture is presented in Figure 8.4. As shown, ESL is placed above

HCI. Generally, Bluetooth technology is provided as fixed chips, which

implement the Bluetooth functionalities below HCI. Application developers

have only access to the Bluetooth controller through the standard HCI. There-

fore, to improve the security, the most universally applicable method is to add

the enhancements above HCI. This way ESL can be integrated as an additional

module into any standard Bluetooth controller or host. Another advantage of

placing ESL on the top of HCI and not into the baseband is that the method

results in lower packet overhead. Added protocol fields, such as MACs, are

transmitted in the HCI data packets instead of every Bluetooth network packet.

Despite that tampering with the packets is still possible at the baseband layer,

the tampering attempts are detected at the ESL layer. The drawback is that only

the messages that originate from above HCI can be protected.

8.3.2 CONFIDENTIALITY AND INTEGRITY IN ESL

ESL replaces the E0 cipher with AES [5]. AES is a symmetric cipher that

encrypts data in 128-bit blocks, supporting key sizes of 128, 192, and 256 bits.

As several other block ciphers, AES consists of successive, similar iteration

rounds. Depending on the chosen key size, the number of the rounds is 10, 12,

or 14. Each round mixes the data with a round key, which is generated from

the encryption key. As in the other significant short-range wireless technolo-

gies, the 128-bit key version is used in ESL. AES decryption requires invert-

ing the iterations resulting in a different datapath. However, the operation

modes of ESL only require the forward cipher and thus save resources.

Application

Upper protocol layers
ESL API

HCI

Enhanced security layer (ESL)

Data
transfer

Bluetooth contoller

Management

Connection
list

Security 
processing

FIGURE 8.4 Architecture of Bluetooth ESL. ESL is placed on top of the standard HCI

and accessed through the ESL API.
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Applying an encryption algorithm alone without a proper encryption

mode is not secure. The counter (CTR) mode [36] is generally regarded as

a good choice and it is also used in ESL. CTR has a proven security bound

[37] and it provides most performance trade-offs for implementations [36]. In

CTR, a block cipher produces a key stream from a secret key and a counter.

The key stream is generated a block at a time by encrypting counter values

until the stream length matches the data length. After each algorithm pass

the counter is incremented. The stream is XORed with the plaintext to get the

ciphertext and vice versa. If the data length is not a multiple of the block

length, only the required bits of the last key stream block are used. It is

important that the same counter value is used only once during the lifetime of

a key. Another security requirement is that at maximum 264 counter values are

used per key.

As the CTR mode can only provide confidentiality and not integrity, it is

required that the encrypted data are accompanied with MAC. Otherwise, the

bit manipulation attacks of the standard Bluetooth encryption still apply. In

ESL, MACs are computed using the cipher block chaining MAC (CBC-

MAC) technique [38]. This allows using the same algorithm for both encryp-

tion and integrity protection. CBC [38] is a feedback encryption mode in

which the previous ciphertext block is XORed with the plaintext block before

encryption. CBC-MAC operates in the same way, except that only the result

of the last encryption is output as MAC. The security of CBC-MAC has been

proven for fixed-sized messages [39]. As a solution for protecting variable-

sized messages, it is proposed that messages are prefixed with their lengths

before the CBC-MAC computations [39]. The solution is used in ESL.

ESL supports plain CBC-MAC (MAC mode) and two combinations of

the CTR encryption and CBC-MAC computation. In the combined modes,

MAC can be computed over the plaintext (MAC-then-encrypt mode) or over

the ciphertext (encrypt-then-MAC mode). The phases use separate keys. In

the MAC-then-encrypt mode, MAC is encrypted. The MAC mode can be

used for decreasing processing requirements in applications that only require

authenticity. It has been shown that the encrypt-then-MAC mode is generally

secure [40]. However, it has also been suggested that it should be the plaintext

that is authenticated [41]. Adding the other mode to an implementation that

supports one of the modes requires only little additional resources. Thus, both

the modes are supported by ESL.

ESL also supports the special MAC-and-encrypt mode called CTR with

CBC-MAC (CCM) [42], which uses the same key for encryption and integrity

protection. Originally, CCM was proposed to the IEEE 802.11i working

group for improving the security of the IEEE 802.11 WLAN and it was

also adopted. CCM has been adopted in the other significant short-range

wireless technologies as well. The CCM components, CTR and CBC-MAC,

have been well known for decades but CCM is a new definition for their

combined usage. The security of the CCM mode has been proven [43].
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While the CTR encryption can process arbitrary length data, CBC-MAC

requires that the input is padded to match a block boundary. In ESL, the last

input data block is padded with zeroes if required in all the modes. The

padding is ignored in CTR. The MAC size can be chosen to be 64 or 128

bits, which allows trade-offs between the protection level and the communi-

cation overhead. By default, the MAC size is 64 bits, in which case the 64

least significant bits of the MAC computation output are discarded. MAC is

appended to the HCI payload data.

To prevent repeated counter values, the CTR is composed of concatenated

nonce and block counter in all the combined modes. The nonce is a constant

value for a transmission, and the block counter is incremented for each data

block within the transmission. The nonce is provided and managed by the

application. For example, recommendations for choosing the nonce in the

CCM mode are presented [42]. Good practice is to include at least the sender’s

Bluetooth address and the transmission’s sequence number in it. The nonce size

was chosen to be 96 bits to allow sufficient amount of information. Thus, the

block counter size is 32 bits. In addition to a nonce, in the CTR input of CCM,

there are fixed flags, which are regarded as a part of the nonce. When the nonce

space has been exhausted or 264 blocks encrypted, new keys must be agreed on.

In addition, it is not allowed to use the same key across the ESL operation modes.

Since ESL is located above the standard HCI, only the HCI data packet

payloads can be encrypted. However, the application can still protect the

known lower-layer header fields (e.g., Bluetooth addresses) with MAC, even

if they were not placed into the Bluetooth packets by ESL or the application

(e.g., only a connection handle is used for addressing in the HCI data

packets). The application must ensure that the nonce can be generated at the

receiving device. It can be predefined or transmitted in the HCI data packet.

The nonce does not have to be kept secret as long as it is protected with MAC.

When the protected nonce includes the sequence number of the transmission,

it can also be used for providing the freshness of transmissions.

The format of an ESL packet, placed in the HCI data payload, is presented

in Figure 8.5. The maximum size of the application data per ESL packet

depends on the chosen MAC size. It is assumed that the complete nonce is

transmitted in an ESL packet. If a combined mode is chosen, the ESL payload

field is encrypted. The HCI payload is transmitted in a Bluetooth ACL

network packet. If the HCI payload does not fit into a single network packet,

the Bluetooth controller fragments the payload across several network

packets. In the figure, the Bluetooth ACL packet is the ACL data packet

with the largest payload size [1].

8.3.3 ENTITY AUTHENTICATION AND KEY AGREEMENT IN ESL

To support different usage scenarios and processing requirements, ESL

provides two entity authentication and key agreement methods for link
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establishments, one based on public keys and the other on secret keys. The

handshake portion of the widely employed and trusted transport layer security

(TLS) protocol [44] was chosen as the public-key protocol and the authenti-

cated key exchange protocol 2 (AKEP2) [4] as the secret-key protocol.

AKEP2 has a security proof [45]. While AKEP2 requires that devices have

preshared a secret key, the TLS handshake can be used for authenticating

devices that are previously unknown to each other, using public-key certifi-

cates. The advantage of AKEP2 is that it has lower processing requirements

and can be implemented with the AES-based confidentiality and integrity

protection procedures of ESL. Both the protocols result in shared temporary

secrets that are used as keying material for generating ESL keys as well as

PIN codes. The authentication message exchanges are treated as regular HCI

data transfers by the lower protocol layers.

8.3.4 RESTRICTIONS TO STANDARD BLUETOOTH SECURITY

The support for the standard Bluetooth security is included in ESL for the

interoperability with devices that do not contain the new security features.

However, to improve the security of the standard procedures, the usage is

restricted to a subset of the supported parameter combinations. According to

the results of [23], it can be estimated that discovering a PIN code of 12

decimal digits requires about 80 d of processing for a state-of-the-art PC. This

can currently be seen as the limit for most feasible attacks. Hence, ESL

requires the PIN size to be at least 12 digits. A longer PIN should be used

if the PIN is not changed for a long period of time or if the exchanged data are

valuable enough for 80 d of processing. Authentication without invoking

encryption and protecting connections with a unit key is not allowed. Either

12

Nonce

HCI header HCI payload

2142 bits

CRCACL payloadACL header

Payload MAC

m = 8 or 160 to (216 − (12 + m))

(12 + m) to 216

(12 + m) to 339

FIGURE 8.5 ESL, HCI ACL, and Bluetooth ACL packet formats. An ESL packet is

placed in the payload of a HCI data packet, which is then transmitted in one or more

Bluetooth network packets. The figure presents the largest HCI data packet. The field

sizes without units are in bytes.
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of the ESL key exchange protocols can be used for automatic PIN exchange

to prevent poorly chosen values and to make the link setup more convenient

for users. The encryption key size negotiation cannot be improved by ESL as

this requires modifications to the standard HCI and Bluetooth controller

implementations.

8.3.5 ESL COMPONENTS

As depicted in Figure 8.4, the tasks of ESL can be divided into three

components: security processing, data transfer, and management. ESL is

accessed through the ESL API. The security-processing entity performs the

computations related to the new security features. It appends MACs to the

transmitted application data and verifies the received MACs. Packets with

failing MACs are dropped and the higher protocol layer is notified of the

failures. The security-processing entity is not used if only the standard Blue-

tooth security without the enhanced authentication protocols is applied.

The data transfer entity conveys application data between the ESL API

and the Bluetooth controller by constructing and decoding HCI data packets.

If only the standard Bluetooth security is used, in transmission the entity

places the application data into a HCI data packet payload field and forwards

the HCI packet to the Bluetooth controller. On the reception of a HCI data

packet, the entity decodes the application payload from the packet and gives it

to the ESL API. If the AES-based protection or the ESL authentication

protocols are used, the payload to be transmitted in a HCI data packet

is received from the security-processing entity. Similarly, the payload of the

received HCI data packet is first processed by the security-processing entity.

The management entity controls the other entities and Bluetooth links.

It initiates the Bluetooth controller, establishes and closes connections, and

provides keys to the security-processing entity. The entity constructs HCI

commands and receives information from the Bluetooth controller in HCI

events. The controller initiation prepares the device to function as a slave or

a master and, if the standard security is used, provides the controller with

the standard security parameters. The management entity runs the two ESL

authentication protocols using the services of the security-processing entity

as well as forces the ESL restrictions for the standard security parameters.

It maintains a connection list that contains handles to the established Bluetooth

links and their ESL parameters, including ESL keys, operation mode, and the

chosen MAC length. If the new security features are not used for a link, the

management entity sets ESL to bypass the enhanced security processing.

The ESL processing and HCI are hidden behind the ESL API. It provides

high-level procedures for device initiation, connection establishment, sending

and receiving application data, disconnecting, and handling failures. After a

connection has been established, the sent and the received application data are

transparently processed by ESL. The application only needs to provide
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nonces. The API procedures are described in more detail in the following

section.

8.4 PROTOTYPE IMPLEMENTATION OF BLUETOOTH ESL

Altera Excalibur EPXA10 DDR Development Kit [46] (Altera Corporation,

San Jose, California, USA), presented in Figure 8.6, has been used as the ESL

prototype implementation platform. The main component is the EPXA10-

F1020-C2 programmable chip, which consists of an integrated 32-bit

ARM922T (ARM Ltd., Cambridge, UK) processor core and an Altera

APEX20KE-like programmable logic device (PLD). The PLD consists of a

large number of programmable logic elements (LEs) and embedded system

blocks (ESB) for implementing a variety of memory functions. ARM9 and the

PLD are connected through two advanced microcontroller bus architecture

(AMBA) high-performance bus (AHB) bridges, a shared dual-port RAM

(DPRAM), and interrupt lines. In the implementation, a 256 megabyte

SDRAM was used as an external memory.

The daughter card of Ericsson (Telefonaktiebolaget LM Ericsson, Stockholm,

Sweden) Bluetooth Starter Kit [47] was used as the Bluetooth controller. It

provides the host with HCI via UART or USB. The radio transmits at 1 Mbit=s.

s. The card was connected to an expansion header of the development kit and

accessed via UART. The communications between Bluetooth devices use the

ACL link. The used ACL packet types can be defined with a HCI command.

The architecture of the ESL prototype is presented in Figure 8.7. The

components implemented in the hardware (PLD) are direct memory access

(DMA), UART and its control, security processing and control, and processor

Antenna

Bluetooth 
controller

Altera
Excalibur

SDRAM

FIGURE 8.6 Implementation platform of the ESL prototype.
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to PLD communications. The hardware design was captured in VHDL and the

software in C.

8.4.1 SECURITY-PROCESSING HARDWARE ARCHITECTURE

AES and its ESL modes of operation were chosen to be implemented in

hardware for high performance in the prototype. The iterative, 128-bit key

AES core published in [48] was used. The core computes the round keys

on-the-fly and one encryption round at a clock cycle. It offers high throughput

and does not require setup time for switching the key. Due to the feedback

loop of the ESL modes of operation, only iterative AES implementations are

reasonable choices for a single-core implementation. The on-the-fly key

schedule is well suited for the implementation since the processing is con-

stantly altered between encryption and MAC computation with different keys,

except in the MAC and the CCM modes. A precomputed schedule would

require setup latency and storage for the round keys.

The datapath of the security-processing hardware is presented in

Figure 8.8. Input data encoding and MAC value comparisons are performed

by ARM9. The internal signals are 128-bit wide, unless specified otherwise.

The parameter updated internally is the block counter (Register 5). The load

signal sets up the module for reading a new encryption key, MAC key, and

nonce. The keys are stored in Register 6 and Register 7, and fed to the AES

Development board (Bluetooth host)

Excalibur

ARM9

Application

ESL API

HAL

AHB bridge Interrupt lines

Control DMA

AHB bridge

SDRAM

Bluetooth 
controller

Lower 
layers

HCI 
firmware

UART
PLD

UART
Security 

processing

AHB slave

FIGURE 8.7 Architecture of the ESL prototype. Most functionalities of the prototype

are implemented as hardware in the PLD. The software on the ARM9 side contains the

HAL, the ESL API, the authentication protocols, and the test application.
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core in turns by the control logic. The nonce in Register 4 is concatenated

with the block counter for the CTR processing. The load port allows also

maintaining the old key values and updating only the nonce. The block

counter is reset by updating the encryption key or nonce.

A new data block is input through the data_in port and stored in

Register 3. The signal mode defines whether the module operates in the

MAC, MAC-then-encrypt, encrypt-then-MAC, or CCM mode and sets

the module to encrypt or decrypt. The pad_len signal is required in the

combined modes for informing the number of padding bytes in the last

input block. The data_out port is used to output the encrypted or decrypted

data blocks as well as the MAC values.

8.4.1.1 Operation Modes

In the MAC mode, MAC is computed using the MAC key. The chaining value

in Register 1, obtained after processing the previous data block, is transferred

to Register 2. Initially, the value is zero. After XORing the chaining value

with the data block in Register 3, the result is processed by the AES core and

the output is written back to Register 1. After the last data block, the contents

of Register 1 are output and the register is reset. The MAC verification is

carried out in the same way.

In the MAC-then-encrypt mode, first, the hardware performs the MAC

computation for a block with the MAC key as described. Then, the operation

Load Mode Pad_len

Mask

2

4 5

6

7

+1

32

AES

3

1

Data_out Done

Data_in Nonce

96

4

Key_in

FIGURE 8.8 Datapath architecture of the ESL prototype security-processing hardware.
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is switched to the CTR encryption with the encryption key. In CTR, the nonce

and the block counter are fed to the AES core. Initially, the block counter is

set to zero. The result is written through the mask component to Register 2

and XORed with the data block maintained in Register 3. The XOR result is

output and the block counter is incremented. After the last data block, the

nonce and the block counter are processed once more and the result is written

to Register 3 (through the mask component). The contents of Register 1 are

transferred to Register 2 and XORed with Register 3. The result is output as

the encrypted MAC.

In the encrypt-then-MAC mode, the processing order of MAC-then-

encrypt is inverted. The only difference is that after encrypting a data block

the output is also written back to Register 3 for the MAC computation.

In the MAC-then-encrypt decryption, the processing is mainly the same

as in the encrypt-then-MAC encryption. After the last data block, the received,

encrypted MAC is input through data_in to Register 3. The nonce and the

block counter are input to the AES core. XORing the AES output with Register

3 yields the decrypted MAC, which is output for comparison with the earlier

output, computed MAC. The encrypt-then-MAC decryption processing is the

same as the MAC-then-encrypt encryption processing. The received MAC is

not input since it is already in the plaintext form.

The CCM mode operation is similar to the MAC-then-encrypt mode. The

encryption and the MAC keys are set to the same value. The difference is that

in the CCM mode the block counter starts initially from one and the MAC

value is encrypted or decrypted with the block counter value zero.

If the data length is not a multiple of 16 bytes, the last output encrypted or

decrypted data block has to be truncated to the original length. This implies

the need for the mask component in the encrypt-then-MAC encryption, MAC-

then-encrypt decryption, and CCM decryption. Before XORing the last key

stream block with the data block, the bytes of the key stream block corre-

sponding to the extra bytes (zeroes) of the data block have to be masked to

zero. This way, the XOR result of the input block and the last key stream

block, which is used as the input for the MAC computation, has the correct

padding (zeroes). The mask logic is implemented with a ROM, containing 16

masking entries of size 16 byte, and an AND gate.

8.4.2 ON-BOARD COMMUNICATIONS

As shown in Figure 8.7, the external SDRAM is used for data transfers

between ARM9 and PLD in the prototype. The external memory is larger

than the fixed-size DPRAM and it can be switched, which makes the ESL

implementation scalable for processing larger amounts of data. By sharing

SDRAM, the processor does not have to transfer the data from the data

memory in SDRAM to DPRAM for the PLD usage. Instead, PLD can access

SDRAM directly, which is faster and allows ARM9 to perform other tasks
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concurrently. The DMA entity was implemented for the purpose in PLD. It

accesses the memory via an AHB bridge. An UART entity was implemented

in PLD for transferring data between the development board and the Blue-

tooth controller.

The data transferred through SDRAM consist of HCI commands and data

to the Bluetooth controller, HCI events and data from the controller, and the

data to or from the security-processing entity. Nonces, ESL keys, and

the UART initialization data are also conveyed through the memory. Nonces

and keys are only transmitted to the security-processing entity when the

values are initialized or changed.

After writing a HCI command or data to SDRAM, ARM9 uses the

other AHB bridge for initiating operations in PLD. The control entity

receives the processor requests through the AHB slave in Figure 8.7. The

slave contains logic for interfacing the AHB as well as control and memory

address registers to which ARM9 requests are written from the bus.

Depending on the request, the control entity begins an UART transmission

of a HCI command or the encryption and decryption of data. ARM9 is

interrupted after an operation is finished. The processor reads the reason

for the interrupt from the AHB slave.

When a HCI data packet is received from the Bluetooth controller, it is

written to SDRAM by DMA, and ARM9 is interrupted. If the packet payload

is not encrypted, the processor decodes the packet and gives the ESL pay-

load to the application. Otherwise, it provides the security-processing entity

with the keys and the nonce for decrypting the payload. When the payload is

decrypted, ARM9 is again interrupted. If a MAC scheme is used, the proces-

sor verifies whether the received and the locally computed MAC values

match and conveys the data to the application.

Each HCI command has a corresponding event (acknowledgment) with

which the Bluetooth controller replies to the command. In addition, the

network operations trigger events. For simplicity and removing unnecessary

memory accesses, the PLD control entity filters out the events uninteresting to

the processor.

8.4.3 SOFTWARE INTERFACES

In Figure 8.7, hardware abstraction layer (HAL) implements the ESL

functionalities on the ARM9 side. It constructs HCI commands and data to

SDRAM and reads HCI events from SDRAM as well as decodes payload

data from the HCI data packets. It also handles the interrupts initiated by

PLD. HAL controls the security-processing entity and UART by modifying the

memory mapped control and address registers in the AHB slave. HAL allows

using the Bluetooth’s own security features as well as choosing among the

enhanced security features. If an enhanced security mode is used, HAL per-

forms the MAC value comparison on the reception of a HCI data packet.
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The ESL API implementation provides procedures for initiation, connec-

tion management, and sending and receiving application data using the HAL

services. A pseudocode example of the API usage is presented in Figure 8.9.

In the example, first, the Bluetooth device is initialized. It is defined that

the standard security features are not used. The InitBd procedure returns the

unique Bluetooth address of the controller and the maximum size of

the payload for a single transmission. After the initialization, the device is

able to operate in the slave mode. Next, the role of the device is switched

to the master mode. The PrepareMaster procedure also scans for the devices

in the range and returns a list of found device addresses. Before connecting to

a device, the parameters for the enhanced security features are set. A suc-

cessful connection creation returns the handle of the created link. Application

data can be sent over the link with a single procedure call. The data size must

respect the maximum payload size defined in the initialization. Finally, the

connection is closed.

void main() {

...

// initialize Bluetooth device:

// authentication disabled, no link key 

// type defined, no PIN input

InitBd(FALSE, NULL, NULL, OwnBdAddress,

payloadMaxSize);

// set device into master and scan 

// devices nearby

PrepareMaster(numberOfResponses, deviceArray);

// set values for Bluetooth’s own link key

// and for the keys of the enhanced

// encryption and data authentication,

// choose encrypt-then-MAC

SetEncMode(NULL, encKey, macKey,

ENC_THEN_MAC);

// create connection to the first found

// device with the security parameters above

ConnectToBd(deviceArray[0], connectionHandle);

// send data to the connected device

TransmitData(connectionHandle, payloadSize,

payload, nonce);

// close connection

Disconnect(connectionHandle);

}

FIGURE 8.9 A pseudocode example of using the ESL API implementation. Values

for the parameters in italics are returned by the procedure calls.
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Even though not used in the example, each procedure returns a Boolean

value that informs whether the performed operation was successful or not. For

example, if the transmit buffer of the Bluetooth controller is full, the Trans-

mitData procedure fails. Changing the security parameters requires closing

the link and calling the InitBd and SetEncMode procedures again. The

application must implement a separate call-back procedure for receiving

data. The procedure is automatically called by the ESL API implementation

on the reception of a data packet. Connection and MAC failures also trigger a

call-back procedure, which the application can use for handling the failures.

Similar to the standard Bluetooth, the implemented software supports up to

seven simultaneously active master–slave connections.

8.4.4 ESL AUTHENTICATION PROTOCOLS

The TLS and AKEP2 authentication protocols were implemented as applica-

tion software in ARM9 in the ESL prototype. Their performance does not

have a significant effect on the overall ESL processing as the protocols are

only required during link establishments. The TLS handshake implementation

was derived from the software library [49]. Initially, an unprotected Bluetooth

connection is established with the procedures presented in Figure 8.9 and used

for running either one of the protocols. The authentication messages are

treated as regular data. After the protocol run has been finished, the connec-

tion is closed and a new, protected connection with the same peer is created

using the newly derived ESL keys or PIN code.

8.4.5 IMPLEMENTATION RESULTS AND COMPARISON

The hardware entities were tested in VHDL simulation with ModelSim SE

PLUS 5.8d 2004.06 (Mentor Graphics, San Jose, California, USA). The AES

hardware was separately verified against the AES software library [50]. The

hardware netlist was generated with Precision RTL Synthesis 2003b.41

(Mentor Graphics, San Jose, California, USA), and the netlist was synthesized

with Quartus II v4.1 (Altera Corporation, San Jose, California, USA).

The software was compiled with ARM Developer Suite 1.2 (ARM Ltd.,

Cambridge, UK). The complete ESL implementation was tested in practice

with a test application between two development boards. The hardware

synthesis results on the PLD of EPXA10-F1020-C2 are presented in Table 8.1.

The maximum clock frequency of the prototype hardware is 43.55 MHz.

At the maximum frequency, the throughput of the security-processing entity is

214 Mbit=s (26 cycles=block) in the MAC-then-encrypt, encrypt-then-MAC,

and CCM modes, and 507 Mbit=s (11 cycles=block) in the MAC mode.

Compared with the maximum Bluetooth transmission speeds, negligible

latencies are implied by the added processing.

The maximum size of the data payload that can be transmitted or received

in a HCI ACL data packet is 216 bytes [1]. However, the buffers of the Ericsson
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Bluetooth controller support only 672 byte HCI payload. Regarding this,

using 128-bit MACs and assuming that the 96-bit nonce is transmitted in

the payload and that the controller transmits at the maximum payload speed of

723.2 kbit=s, it can be computed that the maximum application data through-

put of the ESL implementation is 693 kbit=s. The total throughput of the

prototype is further limited by the fixed UART implementation of the Erics-

son Bluetooth controller. Its highest speed is 460 kbit=s.

Table 8.2 compares the hardware part of the ESL prototype with the

hardware implementation of the standard Bluetooth security [51]. The

reported throughputs are for the security-processing components of the imple-

mentations at the maximum clock frequency (in the combined modes for

ESL). Furthermore, Table 8.3 presents comparisons between the crypto-

graphic cores of the standard Bluetooth design (E0 and SAFERþ) and ESL

(AES). To evaluate the AES core used in this work, the table includes

measures for two other programmable logic designs. A compact and a fast

iterative AES design suitable for the feedback modes of ESL are presented in

[52] and [53], respectively. All the reference designs were targeted at Xilinx

(Xilinx Inc., San Jose, California, USA) field programmable gate arrays

(FPGAs) [54], which differ from the Altera PLDs. However, the basic building

TABLE 8.1
Resource Consumption of the ESL Prototype

Hardware on EPXA10-F1020-C2

Component LEs Memory (bits)

Security processing 3,527 43,008

Control 2,175 0

DMA 894 0

AHB slave 440 0

UART 208 0

Total (% of max.) 7,244 (18%) 43,008 (13%)

TABLE 8.2
Comparison of the ESL Prototype Hardware with an Implementation

of the Standard Bluetooth Security

Implementation FPGA Device Logic Units

Memory

(bits)

Clock

(MHz)

Throughput

(Mbit=s)

Standard Bluetooth

security [51]

XV2600E-FG1156 19,905 slices 38,272 15 15

ESL (this work) EPXA10-F1020-C2 7,244 LEs 43,008 44 214
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blocks of Xilinx FPGAs, logic cells (LCs), are close to the Altera LEs. Each

programmable Xilinx FPGA component, slice, contains two LCs. Thus, a

slice roughly corresponds to two LEs.

Compared with the hardware implementation of the standard Bluetooth

security [51], considerably lower LE (LC) consumption and higher encryption

throughput were achieved with the ESL prototype. However, part of the ESL

control is implemented in the ARM9, which slightly decreases the occupied

PLD resources. On the other hand, the ESL implementation includes the

additional ARM9 and Bluetooth controller interfaces. The number of memory

bits was increased but this can be reduced by modifying the AES core

according to the reference AES implementations. Compared with the works

of Rouvroy et al. and Standaert et al. [52,53], the core of this work is an

average implementation with reasonable resources and throughput. For

example, a compact CCM mode implementation using the AES architecture

[52] is presented in [55].

Instead of using E0 for encryption and SAFERþ for authentication and

key generation, in ESL all three procedures can use AES when AKEP2 is

used for authentication and key agreement. Table 8.3 shows that this reduces

the hardware resources and also implies shorter latencies because of the

higher performance.

8.5 CONCLUSIONS

In this chapter, an ESL for protecting Bluetooth data links was proposed and

implemented. ESL improves the standard security design by replacing the

proprietary encryption with an AES-based design and adding cryptographic

integrity protection. Furthermore, two authentication protocols are supported

for entity authentication and key agreement in different usage scenarios.

TABLE 8.3
Comparison of AES Hardware Implementations with Implementations

of the Cryptographic Cores of the Standard Bluetooth Security [Block

RAM (BRAM) Is a Dedicated Xilinx Memory Block of Size 18 Kbits]

Implementation Device Logic Units Memory

Clock

(MHz)

Throughput

(Mbit=s)

E0 [51] XV2600E-FG1156 895 slices 0 15 15

SAFERþ [51] XV2600E-FG1156 4,058 slices 6,272 bits 20 320

AES [52] XC2V40-6 146 slices 3 BRAMs 123 358a

AES [53] XV1000-BG560-6 2,257 slices 0 127 1,563a

AES (this work) EPXA10-F1020-C2 1,246 LEs 40,960 bits 44 507

a For nonfeedback modes of operation.
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All the components used are long-lived, generally considered secure, or they

have been proven to be secure. The easy-to-use ESL API offers an application

developer simple access to the wireless link and transparent security pro-

cessing, supporting both ESL and the standard Bluetooth design with safer

parameterization. The only security-related task for the application using ESL

is nonce management. The prototype implementation showed that ESL

implies only a negligible processing latency, which is also lower than that

of the standard Bluetooth design. A beneficial aspect of ESL is that its

low-level security-processing components are compatible with those of the

other significant short-range wireless technologies, which enables efficient

resource sharing in devices supporting multiples of these technologies. ESL

can also be extended to support the 802.1X authentication framework [24].

This allows interoperability with the IEEE 802.11i WLAN [6] authentication

architecture as well as support for a wider range of standard authentication

protocols.

REFERENCES

1. Bluetooth Special Interest Group (SIG), Specification of the Bluetooth System,

Version 2.0þEDR, 2004.

2. Official Bluetooth membership web site, Online: http:==www.bluetooth.org (visi-

ted 2=3=2006).

3. Official Bluetooth wireless info web site, Online: http:==bluetooth.com (visited

2=3=2006).

4. Menezes, A.J., van Oorschot, P.C., and Vanstone, S.A., Handbook of Applied
Cryptography, 5th printing, CRC Press, Boca Raton, FL, 2001.

5. National Institute of Standards and Technology (NIST), Advanced encryption

standard, FIPS-197, 2001.

6. Institute of Electrical and Electronics Engineers (IEEE), IEEE standards for

information technology—telecommunications and information exchange between

systems—local and metropolitan area networks—specific requirements—part 11:

wireless LAN medium access control (MAC) and physical layer (PHY) specifi-

cations—amendment 6: medium access control (MAC) security enhancements,

IEEE 802.11i, 2004.

7. Institute of Electrical and Electronics Engineers (IEEE), IEEE standards for infor-

mation technology—telecommunications and information exchange between sys-

tems—local and metropolitan area networks—specific requirements—part 15.3:

wireless medium access control (MAC) and physical layer (PHY) specifications for

high-rate wireless personal area networks (WPANs), IEEE 802.15.3, 2003.

8. Institute of Electrical and Electronics Engineers (IEEE), IEEE standards for

information technology—telecommunications and information exchange between

systems—local and metropolitan area networks—specific requirements—part

15.4: wireless medium access control (MAC) and physical layer (PHY) specifi-

cations for low-rate wireless personal area networks (WPANs), IEEE

802.15.4, 2003.

9. ZigBee Alliance, ZigBee Specification, Version 1.0, 2004.

Nicolas Sklavos/Wireless Security and Cryptography 8771_C008 Final Proof page 271 27.1.2007 2:42pm

Security Enhancement Layer for Bluetooth 271



10. Hämäläinen, P. et al., Design and implementation of an enhanced security layer

for Bluetooth, in Proceedings of 8th IEEE International Conference on Telecom-
munications (ConTEL 2005), Zagreb, Croatia, 2005, p. 575.

11. Institute of Electrical and Electronics Engineers (IEEE), IEEE standards for

information technology—telecommunications and information exchange between

systems—local and metropolitan area networks—specific requirements—part

15.1: wireless medium access control (MAC) and physical layer (PHY) specifi-

cations for wireless personal area networks (WPANs), IEEE 802.15.1, 2005.

12. Muller, T., Bluetooth Security Architecture, Version 1.C.116=1.0, Bluetooth

SIG, 1999.

13. Gehrmann, G., Bluetooth Security White Paper, Version 1.01, Bluetooth SIG

Security Expert Group, 2002.

14. Morris, S., Recommendations to Early Implementers: Encrypting Broadcast

Transmissions in Bluetooth Piconets, Version 1.0, Bluetooth SIG Security Expert

Group, 2002.

15. Cylink, SAFERþ: Cylink corporation’s submission for the advanced encryption

standard, presented at the 1st Advanced Encryption Standard Candidate Con-

ference (AES1), Ventura, CA, 1998, Online: http:==csrc.nist.gov=CryptoToolkit=
aes=round1=conf1=saferpls-slides.pdf (visited 2=9=2006).

16. Borisov, N., Goldberg, I., and Wagner, D., Intercepting mobile communications:

the insecurity of 802.11, in Proceedings of 7th Annual International Conference
on Mobile Computing and Networking, Rome, Italy, 2001, p. 180.

17. Laurie, A. and Laurie, B., Serious flaws in Bluetooth security lead to disclosure of

personal data, The Bunker, October 2004, Online: http:==www.thebunker.

com=security=Bluetooth (visited 2=9=2006).

18. Oates, J., Virus attacks mobiles via Bluetooth, The Register, June 2004, Online:

http:==www.theregister.co.uk=2004=06=15=symbian_virus (visited 2=9=2006).

19. Whitehouse, O., Bluetooth: Red Fang, Blue Fang, presented at CanSecWest=
core04, 2004, Online: http:==cansecwest.com=csw04=csw04-Whitehouse.pdf (vis-

ited 2=9=2006).

20. Long distance snarf web site, 2004, Online: http:==trifinite.org=trifinite_

stuff_lds.html (visited 2=9=2006).

21. Jakobsson, M. and Wetzel, S., Security weaknesses in Bluetooth, in Proceedings of
Cryptographer’s Track at RSA Conference 2001 (CT-RSA 2001), San Francisco,

CA, 2001, p. 176.

22. Vainio, J.T., Bluetooth security, 2000, Online: http:==www.niksula.cs.hut.

fi=~jiitv=bluesec.html (visited 2=9=2006).

23. Shaked, Y. and Wool, A., Cracking the Bluetooth PIN, in Proceedings of 3rd
Conference on Mobile Systems, Applications, and Services (MobiSys 2005),

Seattle, WA, 2005, p. 39.

24. Institute of Electrical and Electronics Engineers (IEEE), IEEE standard for local

and metropolitan area networks—port-based network access control, IEEE

802.1X-2004, 2004.

25. Gehrmann, G. and Nyberg, K., Enhancements to Bluetooth baseband security, in

Proceedings of Nordic Workshop on Secure IT-Systems (NordSec 2001), Copen-

hagen, Denmark, 2001, p. 39.

26. Whitehouse, O., War nibbling: Bluetooth insecurity, 2003, Online: http:==www.root

secure.net=content=downloads=pdf=atstake_war_nibbling.pdf (visited 2=9=2006).

Nicolas Sklavos/Wireless Security and Cryptography 8771_C008 Final Proof page 272 27.1.2007 2:42pm

272 Wireless Security and Cryptography



27. Levi, A. et al., Relay attacks on Bluetooth authentication and solutions, in

Proceedings of 19th Symposium on Computer and Information Science (ISCIS
2004), Antalaya, Turkey, 2004, p. 278.
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9.1 INTRODUCTION

The growth of wireless devices [1,2] is ever-increasing, as are the data

transmission bandwidths of the underlying technologies. However, the con-

straints on battery life and hence processing power are in contradiction to the

increased demands and complexity of data processing such as that required by

new and more robust security protocols. It is natural for security standards to

evolve as more secure methods become available and weaknesses become
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apparent. This situation necessitates the use of programmable systems to

adapt to counteract security weaknesses and provide some degree of future-

proofing to prolong the lifetime of products.

IEEE 802.11i [3] is an optional amendment to the IEEE 802.11 standard

offering enhanced security at the medium access control (MAC) layer, which

is intended to overcome the weaknesses of previous security schemes. These

enhancements include: (a) an improved RC4-based scheme for legacy

systems [4,5], (b) advanced encryption standard (AES)-based encryption

[6,7] in newer wireless local area network (WLAN) devices, and (c) a design

that has been integrated with IEEE 802.1x [8,9] to provide a system whereby

clients and access points must query an authentication server. The wired

equivalent privacy (WEP) security scheme defined in the IEEE 802.11b

amendment has been effectively enhanced to form the temporal key integrity

protocol (TKIP), designed for use in legacy systems and offered to the

consumer by the interim Wi-Fi protected access (WPA) standard as IEEE

802.11i was getting finalized. New 802.11 stations and access points are

expected to implement more secure and modern schemes described by

IEEE 802.11i, based on AES. This scheme is based on the royalty-free,

well understood, and proven counter (CTR) with cipher-block chaining

message authentication code (CBC-MAC) protocol (CCMP).

Previous research into cryptographic microprocessor architectures has

included extensions to instruction sets to increase the performance of sym-

metric key [10] and asymmetric key [11] cryptographic algorithms. More-

over, Fiskiran and Lee [12] have developed a data-scalable, general-purpose

processor architecture with cryptographic extensions. However, these previ-

ous architectures do not accelerate specific cryptographic algorithms (such as

AES) as they are generic in nature and do not target specific applications

(such as WLAN security). Commercial WLAN security solutions for inte-

gration into SoC designs do exist, such as Elliptic Semiconductor’s CCM IP

core [13] and Helion’s 802.11i CCM IP core [14]. These efficient hardware

cores integrate into ASIC=FPGA designs, but only perform one WLAN

protocol and do not offer the versatility of software. Cavium Networks

NITROX processors [15] offer impressive data throughputs and versatility

for numerous security applications, but are expensive in terms of area, being

single-chip solutions, which are unsuitable for low-power, low-cost, and

compact SoC WLAN security solutions.

In this chapter two dedicated WLAN security architectures are proposed.

The first is a programmable design that comprises the authors’ own primitive

RISC processor design [16] and two hardware accelerators, which perform

AES and RC4 encryption. The RISC processor is designed not only to execute

a standard range of arithmetic and logic instructions, but also dedicated

cryptographic instructions that are required to implement WLAN protocols.

These include 32-bit cyclic redundancy checks (CRC32) and Michael authen-

tication [3], a packet authentication algorithm developed for IEEE 802.11i.
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The WLAN processor has been designed specifically to perform the frame

processing requirements of WEP, TKIP, WRAP, and CCMP as specified in

draft 3.0 of the IEEE 802.11i standard. It should be noted that WRAP was not

adopted in the final IEEE 802.11i standard. The programmability of the

processor also provides the ability to manipulate packet types, such as AES-

CCM or AES-offset codebook mode (OCB) [17] encapsulation, which can

provide functionality for internet protocol security (IPSec) [18].

The second approach evaluates the performance of a fixed-functionality

WLAN security design. In contrast to the versatility offered by the

microcode-driven programmable processor, this architecture acts as an accel-

erator with a limited range of functionality, but is intended to be more

resource efficient and have a higher throughput. This design is also targeted

at IEEE 802.11i applications, but provides a level of generic symmetric

cryptography functionality for both the RC4 and AES ciphers. It is the

responsibility of the host processor to perform packet manipulation such as

header processing or field padding and provide data for the accelerator in such

a format that it may be processed.

In Section 9.2 a brief background of the basic operation of an IEEE

802.11 wireless network is provided. Section 9.3 provides a brief description

of the RC4 and AES silicon cores used throughout the designs. Section 9.4

provides a summary of the operation and architecture of the programmable

WLAN processor. Section 9.5 describes the alternative approach of a fixed-

functionality accelerator. The performance of both the WLAN processor and

the accelerator device are outlined in Section 9.6. Finally, conclusions are

given in Section 9.7.

9.2 BACKGROUND ON IEEE 802.11

WLAN technology is standardized by IEEE 802.11 and in particular, these

standards define the MAC and physical (PHY) layers. The original standard

has evolved with a number of amendments that adopt new technologies as

they become available. The original standard described a communication

technology that operates at 1 Mbps, whereas the IEEE 802.11b amendment

introduced in 1999 increased the maximum throughput to 11 Mbps. The IEEE

802.11a and IEEE 802.11g amendments have increased the maximum theor-

etical throughput of WLAN technology to 54 Mbps. A number of manufac-

turers have produced nonstandard solutions that increase the data throughput

further, although these implementations are not generally interoperable.

MAC service data units (MSDUs) containing data payloads are provided

to the MAC layer for transmission by the logical link control (LLC) layer. The

PHY layer interfaces with the radio and handles packetized data (known as

frames) that are modulated for transmission or demodulated when received.

This includes control and management frames used to administer the wireless

network and data encapsulated into the payload of MAC physical data units
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(MPDUs). The MAC monitors the activity on the wireless medium to deter-

mine if it is inactive and available to transmit data, otherwise the IEEE 802.11

station is configured to receive data. A basic outline of the processing layers

in an IEEE 802.11 station is illustrated in Figure 9.1.

WLAN communication disseminates information indiscriminately and

therefore does not offer the inherent security of a wired LAN. The optional

WEP amendment was introduced to overcome this security weakness. WEP

provides a means of confidentiality for the packetized data using the RC4

stream cipher. Authentication is provided through the use of cyclic redun-

dancy checksums. However, WEP has been shown to be a weak security

protocol with many flaws [19–21]. Manufacturers have improved the security

of WEP by introducing proprietary amendments and enhancements.

The IEEE 802.11i [3] standard for enhanced MAC security was devel-

oped to address the need for more robust security as the uptake of wireless

communications increases. This optional amendment provides an upgrade

path for the RC4-based WEP scheme known as the TKIP, which may be

supported by legacy systems already in the field. However, new devices are

expected to use the higher security AES block cipher with the CTR and

CCMP as described by IETF RFC 3610 [22].

Two AES schemes were proposed for adoption within the IEEE 802.11i

standard. The relatively new and licensable wireless robust authentication

protocol (WRAP) was proposed as an efficient means to provide confiden-

tiality and authentication using a block cipher. WRAP is based on Rogaway’s

OCB [17] for block ciphers. The royalty-free CCMP emerged as part of the

standard after a number of years of discussion.

All frames transferred to and from the PHY from the MAC layer are

composed of header fields, an optional data payload field, and a frame check

sequence (FCS) field. The FCS is composed of a CRC32 checksum computed

LLC LLC

MAC PHY Air 
medium

IEEE 802.11 
station

MSDUs
MPDUs

Transmitted

Received 
MPDUs

IEEE 802.11 station

FIGURE 9.1 IEEE 802.11 Device-to-device interface.
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over the data payload. This FCS allows for error detection of those frames

received. Cryptographic processing of frames occurs at the MAC layer where

the data payload may be encrypted and an integrity check is computed over

the header and data payload. The WEP, TKIP, and CCMP security schemes

alter only the data payload field and subsequently the FCS field.

IEEE 802.11i requires the use of two basic encryption primitives—AES and

RC4. WEP and TKIP use RC4 for confidentiality purposes to transform plaintext

to or from ciphertext. Michael (a Feistel-based algorithm) and CRC32 are used to

provide authentication in the form of message integrity check (MIC) and inte-

grity check value (ICV) fields in TKIP and WEP frames, respectively. These

values are appended to the MPDU of a frame, while initialization vectors and

miscellaneous control data are inserted at the start of the MPDU.

WRAP is a licensable scheme based on AES-OCB that was discussed as

part of the standardization process, but was not adopted. WRAP is more

efficient than CCMP in terms of the AES processing required as authentication

does not require an additional block cipher operation and is instead performed

in parallel to encryption. CCMP is the AES scheme adopted by IEEE 802.11i

and is defined by the CCM algorithm [22], which uses the CTR and CBC-MAC

block cipher modes. The predominant reason that CCMP prevailed over

WRAP is its status as a royalty-free scheme with a proven record of security.

9.3 CRYPTOGRAPHIC ACCELERATOR CORES

9.3.1 AES

A commercial AES core [23] has been used in both the processor and

accelerator approaches to WLAN security processing. This synthesizable

verilog core is capable of both encryption and decryption and uses a fixed

key length of 128 bits. A 32-bit datapath is used to offer a 44 clock cycle

latency when used in electronic code book (ECB) mode. An on-the-fly key

scheduler is used to negate the need to store the expanded keyspace. The basic

architecture of this core is outlined in Figure 9.2.

9.3.2 RC4

The RC4 core [23] is shown in Figure 9.3. This RC4 core comprises a

256-byte dual-port RAM to store the RC4 state array and control logic to

manipulate the contents of this state array. The control logic uses a simple

state machine to perform byte swapping operations and permutations on the

state array contents. The core must be initialized with a key of up to 256 bits

in length, an operation that requires 1152 cycles regardless of the key length

or content. The RC4 core produces a stream of pseudorandom bytes that is

exclusive-ORed with an input byte stream. The encryption and decryption of

a message are identical operations.
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9.4 WLAN SECURITY PROCESSOR ARCHITECTURE

9.4.1 DESIGN OVERVIEW

During the standardization process of IEEE 802.11i, a novel WLAN security

processor [16] was proposed. This processor was designed to reduce the risks

involved in developing a hardware implementation of a standard that had not yet

been finalized by providing a highly flexible architecture, as depicted in Figure

9.4. The design comprises the basic elements of any RISC processor such as an

instruction decode unit, an arithmetic and logic unit (ALU), and a barrel shifter.

RC4 and AES encryption accelerators were used to provide high-performance

encryption that may operate in parallel to the main execution pipeline of the

processor. In addition, IEEE 802.11i-specific instructions were provided to

enable support for CRC32 checksums and Michael authentication tags.

The use of accelerators allows the intensive encryption algorithms of

AES and RC4 to be performed in parallel to other operations, such as data

fetch=store to main memory. These accelerators are based on the commer-

cially available AES and RC4 cores [23] described previously. This use of

CLK

32-bit AES 
key 

scheduler

32-bit AES 
data 

processor
Input 
buffer

KSTAT
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QSTRB
QADDR[1:0]
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KEY[31:0]
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DADDR[1:0]

D[31:0]

FIGURE 9.2 AES block diagram.
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FIGURE 9.3 RC4 block diagram.
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high-performance accelerators within the execution pipeline overcomes the

reduced throughput inherent in a processor architecture. This is achieved while

maintaining a low clock frequency, which aids in reducing power dissipation.

9.4.2 ARCHITECTURE DESCRIPTION

The processor has been developed as a synthesizable verilog core. Synchron-

ous read RAM is used to efficiently store the microcode that defines the frame

encapsulation schemes, all input frames, and all generated output frame data.

This RAM is local to the processor and may be defined to use a number of

configurations such as separate instruction and data RAM.

Figure 9.4 shows the WLAN processor’s two distinct and simple RAM-

based interfaces. The first is a 32-bit interface to an external memory contain-

ing the instruction and data. The second is a 32-bit interface to the processor’s

configuration registers, which may be used by the host processor to control

the operating parameters. This simple RAM-based interface allows bridging

to many commonly used processor buses, such as the ARM advanced per-

ipheral bus (APB) [24].

The register bank is composed of a 32-word register file with a single

register window and uses a three-port RAM with two read ports and a write

port. The 32-bit instructions are segmented into five components to control

how the execution pipeline manipulates contents of the register bank. These

components include: (a) an 8-bit instruction code, (b) a 5-bit source register

pointer, (c) a 5-bit target register pointer, (d) a 5-bit destination register

pointer, and (e) a 9-bit region used to store miscellaneous data.

When processing an instruction, the code word is initially fetched from

memory and passed to the decode logic. In the first phase of the three-stage
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processor pipeline, the 32-bit code word is extended to form a very long

instruction word (VLIW) to create control data for the execution pipeline and

to provide two register read addresses. In the second clock cycle, the VLIW is

passed to the execution pipeline alongside the source and target registers from

the register bank. In the third and final cycle of the processing pipeline, the

manipulated data is written back to a specified address of the register bank.

In terms of operation the host microprocessor must take control of the

WLAN security processor in an 802.11 MAC. The processor is ready to begin

security encapsulation once it has been initialized with microcode and the

frame to be processed has been written to local data RAM. The WLAN

security processor then operates autonomously from the host, requiring only

that a number of address pointers are programmed to indicate where the input

and output frames are located in local data RAM and that a start command is

issued to the processor. When frame encapsulation is complete, an interrupt is

generated and the output frame can then be transferred to the PHY.

9.5 WLAN SECURITY ACCELERATOR ARCHITECTURE

9.5.1 DESIGN OVERVIEW

A contrasting approach to the reprogrammable WLAN processor is provided

by a fixed-functionality solution. This fixed-functionality solution was

designed after the IEEE 802.11i standard was finalized and with knowledge

of the security schemes that must be supported. Therefore, it was designed to

be highly efficient rather than programmable. As such, a second peripheral

device to accompany a host microprocessor was realized.

The WEP, TKIP, and CCMP schemes described by IEEE 802.11i have been

implemented using specific high-performance hardware acceleration. The

encryption and authentication schemes have been accelerated using the same

RC4 and AES cores used previously. General-purpose functionality is provided

by the ECB, CTR, CBC, and CFB modes of operation for the AES block cipher.

This is achieved by reusing the same logic resources used to provide AES-CCM.

The RC4 stream cipher may be accessed directly without WEP or TKIP specific

functionality. This general-purpose functionality is at the cost of additional

silicon resources, but this is felt to be acceptable given the provided benefits in

flexibility.

The overall design of the high-performance WLAN security accelerator is

shown in Figure 9.5. This design uses the same AES and RC4 encryption

components used in the processor design. Rather than controlling these com-

ponents using a microcode-driven processor pipeline, a number of hardwired

finite state machines (FSMs) are used. These FSMs provide fixed functionality

for two stream processing pipelines that operate in parallel. This includes an

RC4 pipeline that offers key sizes from 8 to 256 bits and an AES pipeline that

provides a range of AES schemes using 128-bit keys.
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9.5.2 AHB SLAVE INTERFACE AND DATA QUEUES

The advanced high-performance bus (AHB) system bus [24] has been chosen

to provide the necessary memory bandwidth. This open standard provides for

burst access between master and slave devices, offering improved memory

bandwidth in comparison with APB, which supports only single data trans-

fers. To take advantage of burst access it is necessary to provide input and

output buffers.

A single input buffer is used to queue all data and commands to be

processed by either pipeline. When that pipeline is free to accept further

data and sufficient storage is available at the output buffer, the command

and data are pulled from the input FIFO. The accelerator operates at max-

imum throughput provided the host can maintain the fill level of the input and

output buffers so as to prevent stalling. The maximum throughput of the

accelerator is detailed later in the description of the two processing pipelines.

In addition, a host microprocessor or a dynamic memory allocation (DMA)

controller requires less frequent polling of the accelerator’s status and fewer

interrupts from which to respond. Burst access therefore increases the mem-

ory bandwidth available to other peripherals on the bus.

9.5.3 RC4 PROCESSING PIPELINE

The RC4 pipeline performs encryption of a byte-oriented packet using the RC4

stream cipher. Encryption and decryption using RC4 are identical processes. In

addition, WEP requires a CRC32 checksum to be generated over a packet

before RC4 encryption during encapsulation or after RC4 decryption during

decapsulation. It is also necessary to encrypt the CRC32 checksum itself.

TKIP is supported by replacing the CRC32 checksum with a 64-bit

Michael ICV. The accelerator provides a 2-bit control register to allow the
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host system to enable either of the two authentication methods or to disable

both entirely and perform RC4 encryption only.

The generation of keys is essential for TKIP on a per-frame basis. The key

mixing operation of TKIP involves two phases to generate a suitable key for

the RC4 stream cipher. These key mixing operations require basic arithmetic

and logical operations including XOR, AND, addition, shifting, and rotation.

The AES box is also required for byte permutation, an operation that may be

performed using a 256-byte lookup table. It should be noted that TKIP would

most likely be used for backward compatibility only in a WLAN that also

supports CCMP. Therefore, expending silicon resources for this functionality

has been determined as too expensive and the decision was taken that it

should be performed in firmware by the host microprocessor. This provides

some flexibility in the event of changes to the TKIP key selection process

brought about by situations such as security weaknesses.

9.5.4 AES PROCESSING PIPELINE

The pipeline that supports AES is required to perform CCM as described by

IETF RFC 3610 [22]. This scheme requires CTR mode encryption and CBC-

MAC authentication. The CCM encryption and decryption processes require

only the order of encryption and authentication to be reversed and that only

AES encryption functionality be provided.

An important consideration of AES-CCM is the necessity to perform two

block encryptions for each 128-bit block—one pass to encrypt and a second to

authenticate. If the accelerator simply offered CTR and CBC modes individu-

ally, this would require the host system to perform two read and write oper-

ations of the entire packet. In order to reduce the required memory bandwidth

of the accelerator, AES-CCM is performed in series. This requires the host

system to write the message once to the input buffer where the accelerator will

then perform two AES passes as necessary on the same 128-bit data block.

The silicon resources used to perform CCM have been employed to

provide the ECB, CTR, CBC, and CFB modes of operation. Whereas CCM

requires only AES encryption for full functionality, these additional modes

require AES decryption and the extra silicon resources this implies. As

discussed previously this provides functionality beyond that of IEEE

802.11i, allowing generic acceleration of those applications requiring the

AES block cipher and providing some of the general-purpose functionality

offered by the WLAN processor approach.

9.6 PERFORMANCE EVALUATION

The resulting APB slave WLAN processor and the AHB slave WLAN

accelerator architectures were developed as VERILOG RTL synthesizable

cores. Both approaches were synthesized using SYNPLIFY PRO to

create netlists for FPGA implementation. The VERILOG RTL includes
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compile-time parameters that implement technology-dependant resources,

such as RAM. ALTERA QUARTUS II and XILINX foundation series were

used to perform place and routing of the netlist onto ALTERA STRATIX and

XILINX VIRTEX II devices, respectively. In the case of ASIC implementa-

tion, SYNOPSYS DESIGN COMPILER was used to synthesize the cores

using TSMC 0.13 mm standard cell libraries under worst-case conditions.

Both devices proposed in this chapter have been described in VERILOG

and modelled with a cycle-accurate Cþþ model. They were simulated using

MODELTECH MODELSIM and the functionality of the cores was verified

against the functional Cþþ model using self-checking testbenches. Test

vectors were obtained from various sources, such as the national institute of

standards and technology (NIST) [6], the IEEE 802.11 task group I, [3] and

the IETF [22], to verify the capability of the cores to perform RC4 and AES

encryption, and the various packet encapsulation schemes. The Cþþ model

executable of the WLAN security processor allows accurate debugging of

microcode and fast-performance evaluations to be made, such as the bits per

cycle performance shown in Figure 9.6 through Figure 9.9. This allows

microcode to be tested on a hardware model and cycle counts to process

MPDUs to be rapidly collated. The following section details the performance

of both approaches in terms of data throughput and silicon resources. A

comparison to some commercial solutions is also provided.

9.6.1 WLAN SECURITY PROCESSOR

RC4 requires an initialization period of 1152 cycles regardless of data payload

length. Initialization of coprocessors and the register bank for every new packet

or key change can be expected to have a greater effect on small data fields. This is

1.2

1.0

0.8

0.6

B
its

/c
yc

le

0.4

0.2

0

Encapsulation

Decapsulation

200 400 600 800 1000 1200 1400 1600 1800

Byte length of MSDU

FIGURE 9.6 WEP performance.

Nicolas Sklavos/Wireless Security and Cryptography 8771_C009 Final Proof page 285 31.1.2007 7:08pm

WLAN Security Processing Architectures 285



1.2

1.0

0.8

0.6
B

its
/c

yc
le

0.4

0.2

0

Encapsulation

Decapsulation

200 400 600 800 1000 1200 1400 1600 1800

Byte length of MSDU

FIGURE 9.7 TKIP performance.

1.2

1.0

0.8

0.6

B
its

/c
yc

le

0.4

0.2

0

Encapsulation

Decapsulation

200 400 600 800 1000 1200 1400 1600 1800

Byte length of MSDU

FIGURE 9.8 CCMP performance.

1.2

1.0

0.8

0.6

B
its

/c
yc

le

0.4

0.2

0
200 400 600 800 1000 1200 1400 1600 1800

Byte length of MSDU

FIGURE 9.9 WRAP performance.

Nicolas Sklavos/Wireless Security and Cryptography 8771_C009 Final Proof page 286 31.1.2007 7:08pm

286 Wireless Security and Cryptography



because the number of cycles required for initialization is fixed for each security

scheme, hence contributing to larger performance degradation in smaller frames,

particularly when RC4 is used. This is illustrated in Figure 9.6 and Figure 9.7.

AES-based CCMP requires less initialization than the RC4-based WEP or

TKIP, as illustrated by Figure 9.8. This is largely attributable to the absence of

any initialization steps in AES. The degradation in performance of decryption

compared with encryption in WEP, TKIP, and CCMP is attributable to the

additional processing required for decapsulation and the reordering of pro-

cessing steps that increases the latency of each step. WRAP encryption and

decryption are largely identical and therefore have a similar processing

bandwidth as shown by the performance illustrated in Figure 9.9.

WRAP requires half the AES processing that must be performed for

CCMP. However, the more complex initialization and data processing must

be performed using the general-purpose instructions. The reduced perform-

ance of these instructions is offset to some degree by the processor’s ability to

execute such instructions in parallel to AES encryption. Therefore, although

50% less AES processing is required per data block the more complex

encryption and authentication arithmetic requires significant computation.

Overall, WRAP offers 10% greater performance throughput than CCMP.

The performance results of the WLAN security processor are illustrated

in Table 9.1. The figures quoted are considered worst case (i.e., one 256� 8

dual-port RAM for RC4 functionality and one 4096� 32 dual-port RAM for

packet buffer and instruction memory). The large instruction and frame store

RAM may optionally be single port and may be reduced in size depending on

the application and specifications.

9.6.2 WLAN SECURITY ACCELERATOR

Performance of the WLAN security accelerator has been measured using

WEP, TKIP, and CCMP frame encapsulation. The performance of the AES

modes of operation are also presented to illustrate the general-purpose

throughput that can be expected from the accelerator. The throughput figures

are presented in Table 9.2.

TABLE 9.1
WLAN Security Processor Technology Resource Usage

Technology Logic Resources RAM Resources Timing Constraint

TSMC 130 nm 60.4 k gates 405.8 k gates 250 MHz

XILINX VIRTEX 2–5 3474 slices 15 BRAM 80.3 MHz

ALTERA STRATIX

EP1S10F484C5

6873 LE 15 M4K 102.4 MHz

Nicolas Sklavos/Wireless Security and Cryptography 8771_C009 Final Proof page 287 31.1.2007 7:08pm

WLAN Security Processing Architectures 287



The effect of different frame sizes has more of an effect on those frames

to be encapsulated using RC4 in the WEP and TKIP protocols, as shown in

Figure 9.10 and Figure 9.11 compared with the performance of CCMP shown

in Figure 9.12. This is attributed to the seeding of the RC4 state array that

must be performed for every frame. This seeding operation requires 128 clock

cycles to initialize the state array and a further 1024 clock cycles to seed the

state array with a key.

The CCMP has no initialization cost beyond that of loading the key and

initialization vectors. There is typically six blocks of MPDU header fields that

are muted before CBC-MAC authentication and are not encrypted. These

blocks consume only 48 cycles per block.

TABLE 9.2
Maximum Data Throughput in Clock Cycles of WLAN Security

Accelerator

Operation Encapsulation Decapsulation Notes

WEP 12 12 Encryption and CRC32

authentication of 32-bits

TKIP 12 12 Encryption and Michael authentication

of 32-bits

CCMP=AES-CCM 88 92 Encryption and authentication of

a 128-bit block

AES-ECB 44 44 Encryption of a 128-bit block

AES-CBC 48 44 Encryption of a 128-bit block

AES-CFB 48 44 Encryption of a 128-bit block

AES-CTR 44 44 Encryption of a 128-bit block
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The resources of the hardwired WLAN accelerator are presented in Table

9.3. All input and output buffers are provided with 64 word FIFOs. It is clear

to see that the design of the accelerator approach does not require large and

dedicated local RAM resources for instruction space or storing entire MSDU

frames before encapsulation. The reduced complexity architecture of the

accelerator results in an estimated 33% reduction in logic gates in comparison

with the processor approach. Therefore, the accelerator approach results in

significantly smaller resource usage.
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9.6.3 PERFORMANCE SUMMARY

A comparison of the proposed WLAN processor and WLAN accelerator is

shown in Table 9.4. This evaluation also includes a number of commercially

available solutions that were previously outlined in Section 9.1.

The specialized and resource-efficient WLAN accelerator offers up to

twice the performance of the WLAN processor for both WEP and TKIP while

using fewer logic gates. CCMP performance can be sustained in excess of 350

Mbps, 40% faster than that offered by the processor approach. TKIP=WEP

key construction, message padding, and header field muting must be per-

formed by the host microprocessor for reasons of future-proofing. Therefore,

the host processor cycles consumed to do this must be taken into account in

the overall system.

The WLAN Security Processor offers a dedicated solution to wireless

security, providing efficient hardware acceleration for the complex operations

of encryption and a software-driven execution pipeline to provide versatility.

From Table 9.4 it is evident that while performance is more than sufficient for

high-speed WLAN the design compares only moderately with currently avail-

able solutions in terms of throughput. However, the major advantage of the

processor approach is its ability to provide backward compatibility to existing

networks as well as those required in future IEEE 802.11i compatible networks.

TABLE 9.3
WLAN Accelerator Resource Metrics

Technology Logic Resources RAM Resources Timing Constraint

TSMC 130 nm 47 k gates 28 k gates 250 MHz

XILINX VIRTEX 2–5 3264 slices 14 BRAM 92.4 MHz

ALTERA STRATIX

EP1S10F484C5

6739 LE 8 M4K 23 M512 102.9 MHz

TABLE 9.4
Performance Comparison with Commercially Available Security

Processors

Solution WEP TKIP WRAP CCMP Maximum Throughput

WLAN security processor Y Y Y Y >275 Mbps

WLAN security accelerator Y Y N Y >548 Mbps

Elliptic Semiconductor [13] Y Y N Y 300–700 Mbps

Helion 802.11 CCM IP core [14] N N N Y <2 Gbps

Cavium Networks NITROX

processors [15]

N Y N Y 50–10,000 Mbps
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A significant advantage of the processor over the accelerator approach is its

autonomous operation. The processor approach requires only minimal host

processor involvement in writing the data to the relevant address either directly

by the host processor or using a DMA controller. The programmable architec-

ture is achieved at the expense of additional logic and RAM resources.

Helion offers an AES-CCM IP core solution with a throughput of up to

2 Gbps and Elliptic Semiconductor provides a CCMP core, which runs at

300–700 Mbps and can optionally support WEP and TKIP functionalities.

However, limited design details of these commercial solutions are available.

Moreover, since the common operating frequency in commercial MAC=PHY

products is 80 MHz and the IEEE 802.11a=g standards only require a

throughput of 54 Mbps, these architectures are a very expensive solution for

wireless applications and lack the compactness of a dedicated WLAN pro-

cessor. The proposed processor’s power efficiency is lower in comparison

with the commercial solutions, due to the supplemental hardware and execu-

tion time required to process software.

9.7 CONCLUSION

In this chapter two architectures which can be used to provide WLAN

security are described. It has been recognized that there is a security process-

ing gap in wireless devices, caused by the low-power and relatively low

processing capabilities of such devices and the demands of complex security

protocols on SoC solutions. Cryptographic instructions contained in the

instruction set architecture (ISA) of microprocessor technologies can signifi-

cantly improve the performance of security protocols operating on such

microprocessors. Industrially available microprocessor technologies using

such techniques include ARM’s SecureCore [24] family, MIPS’ SmartMIPS,

[25], or ARC [26]. Another method to increase throughput is to implement a

hardware accelerator block to perform all secure packet processing for a

particular application, or provide certain functionality such as AES encryp-

tion and map this into a processor’s address space as a peripheral device.

The WLAN processor design described in this chapter combines both of

these approaches to provide a processor designed specifically to perform

efficient cryptographic processing of WLAN frames, with little intervention

from the host microprocessor. As the host microprocessor is no longer

burdened by performing bulk encryption and packet formatting of 802.11

frames, more processing power can be used to enhance and improve other

services on a wireless handset. For example, the user interface may be more

feature rich and responsive, there may be less lag experienced when using

data services and dedicated hardware can perform cryptographic functions

more efficiently than a general-purpose processor thus improving battery life.

The processor approach allows changes to be made to the method

of encapsulation while maintaining the efficiency and high throughput of

Nicolas Sklavos/Wireless Security and Cryptography 8771_C009 Final Proof page 291 31.1.2007 7:08pm

WLAN Security Processing Architectures 291



hardware encryption acceleration. Any fluctuations in IEEE 802.11i standards

may be overcome by implementing the WLAN security processor into a

system where it can be reprogrammed to accommodate any changes to packet

structure or security scheme. The security processor offers support for all

WLAN protocols and also backward compatibility together with future upgra-

deability as standards evolve. Moreover, it achieves this extra functionality at

a throughput rate required by current 802.11a=g amendments.

In contrast, the more efficient but less versatile fixed-functionality accel-

erator is targeted at specific WLAN protocols. The accelerator approach

offers flexibility by providing high-performance AES and RC4 support.

However, this is at the expense of host processor intervention and control to

provide any additional computation such as block cipher modes of operation.

This flexibility is achieved at the expense of additional silicon gates for

control purposes and the provision of AES decryption functionality that is

not required for IEEE 802.11i.
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10.1 INTRODUCTION

In universal mobile telecommunication system (UMTS) networks, security is

a vast topic. Access network connection must naturally be secure, but in

addition to this, security must be taken into account in many other aspects

as well. The various communication models, through fixed, wireless, and

satellite networks in both outdoor and indoor environments, lead to situations

in which sometimes sensitive information is transferred between different

parties and networks.
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To achieve efficient and secure roaming among different networks,

UMTS supports more complex security mechanisms than the previous mobile

systems such as global system for mobile communications (GSM) and digital

enhanced cordless telecommunications (DECT). The confidentiality of voice

calls is protected in the radio access network (RAN), as is the confidentiality

of the transmitted user data. This means that the user has control over the

choice of parties with whom he or she wants to communicate. Users also want

to know that confidentiality protection is really applied. Therefore, visibility

of applied security mechanisms is needed. Privacy of the user’s whereabouts

is generally appreciated. However, if persistent tracking of users were to

occur, they would end up anxious. On the other hand, the privacy of user

data is a critical issue when data are transferred through the network. Privacy

and confidentiality are largely synonymous in this presentation. Finally,

encryption algorithms are stronger. The application of authentication

algorithms is stricter and subscriber confidentiality is tighter.

UMTS security architecture is based on three procedures. At the

beginning, the user authenticates the network and vice versa. Then, integrity

protection of the signaling information is required, and finally the user and

signaling data must be confidentiality protected. Note that publicly available

cryptographic algorithms are used for encryption and integrity protection.

Algorithms for mutual authentication are operator-specific.

Authentication is performed by the authentication and key agreement

(AKA) procedure [1]. In this study, the AKA procedure is built on the

Rijndael block cipher [2]. In addition to authentication, the AKA procedure

also produces the cipher key (CK) and the integrity key (IK). In UMTS, only

the encryption mode of the Rijndael block cipher is used [3] as an iterated

hash function [4]. The block and key length have been set to 128 bits.

The integrity of signaling information is handled by the message

authentication code (MAC) [1] procedure implemented using the one-way

hash function f 9 and the IK [5]. The user and the signaling data confidenti-

ality protection is handled by the data confidentiality [1] procedure imple-

mented using the stream cipher f 8 and the CK [5].

Both f 8 and f 9 algorithms are based on the Kasumi block cipher [6,7]. An

implementation of the Kasumi block cipher using feedback logic and negative

edge-triggered pipeline [8] is introduced. This implementation makes the crit-

ical path shorter, without increasing the latency of the cipher execution. If the

clock frequency is determined by the system specifications, the usage of

negative edge-triggered pipelining can reduce the clock frequency of its original

value for the same data throughput. As a result, power consumption is reduced.

The remainder of this chapter is organized as follows: In Section 10.2,

the UMTS security architecture is briefly introduced and in Section 10.3, the

proposed system architecture and the hardware implementation are described.

In Section 10.4, the hardware implementation results are presented and

evaluated. Finally, the chapter ends with some conclusions.
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10.2 SECURITY IN UMTS

From the specification point of view, the major scope of the 3rd Generation

Partnership Project (3GPP) is to define and maintain the UMTS specifications. In

user equipment (UE), all the security tasks are integrated as shown in Figure

10.1. The mobile end-user’s terminal-end equipment of the radio interface is

officially called user equipment (UE) in the UMTS. From the network point of

view, the UE is responsible for those communication functions that are needed

at the other end of the radio interface, excluding any end-user applications.

Generally, the cornerstone of the authentication mechanism is a

master key K, which is shared between the USIM of the user and the home

network database. This is a permanent secret with a length of 128 bits. The

key K is never made visible between the two locations. At the time of
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authentication, keys for encryption and integrity checking are derived. These

are temporary keys with the same length (128-bit). New keys are derived from

the permanent key K during every authentication event.

The AKA is integrated in the universal subscriber identity module

(USIM). It is the most important security feature of the UMTS security

system. The other two basic processes, MAC and data confidentiality, are

integrated onto the mobile device.

The authentication procedure can be started after the user is identified in the

serving network (SN). Identification occurs when the identity of the user has

been transmitted to the visitor location register (VLR) or serving GPRS support

node (SGSN). Then, VLR or SGSN sends an authentication data request to the

authentication center (AuC) in the home network. Then, the AuC sends to

the users the appropriate authentication parameters, authentication token

(AUTN) and random challenge (RAND). These parameters with the addition

of the secret key (K) [9] are the only information that the AKA module needs to

perform the authentication procedure. The AUTN is a 176-bit value that

contains three subvalues. The first is the XOR operation product (symbolized

by �) of the sequence number (SQN) and the anonymity key (AK); the second

is the authentication management field (AMF); and the third is the MAC-A.

The main task of the AKA module is the execution of the Rijndael block

cipher algorithm (symbolized by EK). The OPc variable is computed outside

the USIM and is stored in USIM. The two necessary parameters for this

calculation are the operator variant algorithm configuration field (OP) and the

secret key K. The constants c1, c2, c3, c4, and c5 and also the integers r1, r2,

r3, r4, and r5 that define the cyclical rotation are specified in [4].

The authentication procedure is executed using the challenge-and-

response scheme. Therefore, at the beginning the received RAND and

SQN�AK with the secret key K are used to produce SQN and user authentica-

tion response (RES). Then the double concatenation (symbolized by k) of SQN

and AMF is used for the production of the expected message authentication

code (XMAC-A) and the resynchronization message code (MAC-S).

Then XMAC-A is compared with the received MAC-A and if XMAC-A

and MAC-A match, the authentication procedure continues. If these para-

meters are different, a ‘‘user authentication reject’’ is sent back to VLR=SGSN.

In all cases, for network authentication, USIM should verify if the

produced SQN is within the correct range. If it is within the correct range,

USIM continues to generate RES. RES is sent back to the VLR=SGSN and it

is compared with the expected response XRES. If they match, the user

authentication is passed, otherwise it is failed. If SQN is out of the correct

range, the authentication procedure is failed, and USIM generates a

resynchronization token (AUTS). AUTS is the concatenation of

SQNMS�AK and MAC-S. A synchronization failure message with AUTS

as parameter is sent back to VLR=SGSN. Finally, the CK and the IK are

generated by RAND and the secret key K.
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The signaling information that is sent between the user and the network is

integrity protected by the integrity algorithm f 9. Practically, the integrity

algorithm is a block cipher that works as one-way hash function. f 9 appends

the MAC-I to messages to ensure that they are generated at the claimed

identity. Based on the input parameters such as message, direction, fresh,

count-I, and IK, the hash function ( f 9) computes MAC-I. As mentioned

earlier, IK is the 128-bit IK produced in USIM. Message is the input bit-

stream and direction is a 1-bit input, which indicates the direction of trans-

mission. Fresh is a 32-bit random number and count-I is a 32-bit time variant.

MAC-I is appended to the message and is sent over the radio access link. The

receiver computes the corresponding XMAC-I and verifies the data integrity

of the message by comparing it with the received MAC-I.

User data and some signaling information are considered sensitive and

must be confidentiality protected. Based on the input parameters such as

length, direction, bearer, count-C, and CK, the stream cipher ( f 8) computes

the output keystream block, which is used to encrypt or decrypt the input

plaintext or ciphertext and produce the output ciphertext or plaintext. As

mentioned earlier, CK is the 128-bit confidentiality key produced in USIM.

Length is the number of the plaintext bits and direction is a 1-bit input that

indicates the direction of transmission (uplink or downlink). The bearer is a

5-bit input and count-C is a 32-bit time variant. This type of encryption has

the advantage that the mask data can be generated even before the actual

plaintext is known. In this case, final encryption is a fast operation.

10.3 SECURITY ARCHITECTURE AND HARDWARE
IMPLEMENTATION

For UMTS security the architecture illustrated in Figure 10.2 is proposed.

This system is a part of UE. It consists of two fragments. The first fragment

is integrated in USIM and implements the AKA. The second fragment is

integrated in the mobile device and implements the stream cipher ( f 8 algo-

rithm) and the one-way hash function ( f 9 algorithm).

The proposed system architecture is supported by a control unit, which

coordinates all system operations and processes. In the mobile device frag-

ment, a common 64-bit data bus is used for the internal data transfers. The

algorithms’ appropriate keys are stored in the RAM. The required parameters

of the f 8 and f 9 algorithms are stored in the ROM. Through the I=Os interface,

the proposed system transfers data from and to the external environment.

In the USIM fragment, a data bus of 8 bits is used for all the internal data

transfers. The appropriate parameters are stored in RAM, whereas the fixed

constants ci and integers ri are stored in ROM. The I=Os unit is used for

USIM communication with the rest of the system. The controller synchron-

izes the USIM operation. The three basic units of the system architecture are

described in detail subsequently.
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10.3.1 AUTHENTICATION AND KEY AGREEMENT UNIT

A typical implementation of the AKA procedure needs six Rijndael modules

(Figure 10.1). In the proposed system design, as shown in Figure 10.3 only

three Rijndael modules are used. In this way, a significant hardware resources

reduction is achieved, which is important in applications with strict

area limitations. In addition, from the performance measurements following,

it is obvious that the proposed architecture performs better than the UMTS

specifications demands.

In many devices, the requirement of portability places several restrictions

on the consumed power dissipation. To meet these restrictions, special attention

has been given to the design of the proposed architecture (Figure 10.2). It is

well known that a reduction in hardware resources results in a total active

capacitance reduction. Therefore, the overall system power consumption is

reduced. In addition, the use of on-chip storage resources reduces the active

capacitance significantly. This is achieved using internal memory blocks.
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The constants ci and the integers ri are stored and accessed from the

20-byte ROM blocks. The OPc value is stored and accessed from the RAM.

The required authentication parameters are produced on the output of the 2nd

Rijndael and the 3rd Rijndael modules.

10.3.1.1 Rijndael Block Cipher

The proposed hardware implementation of the Rijndael block cipher is shown

in Figure 10.4. This is similar to the implementation in [10], but uses less

hardware resources.
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The transformations of the algorithm architecture operate on the inter-

mediate result called state. The state can be pictured as a rectangular array of

bytes. This array has four rows. The number of columns (Nb) is equal to the

block length divided by 32. The key is also considered as a rectangular array

with the same number of rows as state. The number of columns (Nk) is equal

to the key length divided by 32. The number of rounds (Nr) depends on the

values Nb and Nk. For block and key length equal to 128 bits, both the values

of Nb and Nk are equal to 4 and Nr is defined as 10.

The proposed Rijndael architecture consists of the key expansion unit, the

basic block transformation round, the initial round, and the appropriate

registers. Forty-one clock cycles are needed for the completion of a 128-bit

plaintext transformation.

The basic block transformation round is composed of four building

blocks: S-boxes, data shift, mix column, and key addition. To achieve high-

speed performance, the S-boxes are implemented using ROM blocks.

In general, FPGAs devices have internal ROM (RAM) blocks available.

In the proposed implementation, four [256� 8]-bit ROM blocks were used.

The S-box delay time, implemented by ROM blocks, is 12.8 ns.

The S-boxes require the implementation of two different mathematical

functions: (i) the multiplicative inverse of each byte of the state in the finite
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FIGURE 10.4 Rijndael block cipher hardware implementation.
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field GF(28) and (ii) an affine mapping transformation over GF(2). The most

known very large scale integration (VLSI) architecture for the multiplicative

inverse in GF(2m) uses arrays of basic inversion block cells [11–13]. This

design has time and area requirements, with complexity varying from O(m2)

to O(m4) [11–13]. The execution of the multiplicative inverse in GF(2m)

needs a number of cycles per inversion in the range between m and 3mþ 2

[12,13]. These values are unacceptable for high-speed implementation of a

cryptographic algorithm. The multiplicative inverse function produces a byte,

which is the input of the affine mapping transformation function. This

function is defined by the following equation:

Out(i) ¼ In[i]xorIn[(iþ 4) mod 8]xorIn[(iþ 5) mod 8]xor

In[(iþ 6) mod 8]xorIn[(iþ 7) mod 8]xor C(i), (10:1)

where In[i] is the ith bit of the input byte and C(i) is the ith bit of the byte

constant C (¼{01100011}), as the algorithm specifications define. The round

keys are calculated on the fly by the key expansion unit. Therefore, the keys

production procedure has no additional time delay cost on the Rijndael

critical path.

10.3.2 MESSAGE AUTHENTICATION CODE AND CONFIDENTIALITY

PROTECTION UNITS

The one-way hash function f 9 [5] with the use of the IK computes MAC-I of

a message. The length of the message may be between 1 and 20,000 bits.

The f 9 algorithm is based on a Kasumi block cipher, in a variant version of

the cipher block chaining-message authentication code mode (CBC-MAC)

standard as defined in ISO 9797 [14].

First, the initial values for the hash function ( f 9) unit according to the input

parameters (Figure 10.5) are derived. Second, it computes the padding string

(PSi), which is one input of the basic feedback loop. The maximum message

length is 20,000 bits (length�20,000) and the maximum number of the PSi is

313 (�20,000=64). This value denotes the number of the iteration loops.

This implementation uses two registers to hold variables A and B. After

each loop operation, the registers A and B are updated and the new values are

the new input of the Kasumi module. Finally, the Kasumi cipher is executed

for one more time using a modified IK and the content of the register B. After

this operation, in the leftmost 32 bits of register B, the MAC-I value is stored.

The confidentiality algorithm f 8 [5] is a stream cipher that encrypts or

decrypts a block of data between 1 and 20,000 bits in length using a confiden-

tiality key. The stream cipher f 8 is based on a Kasumi cipher in the form of

output feedback mode (OFB) [15]. It generates the keystream in multiples of

64 bits. The proposed cipher ( f 8) implementation is depicted in Figure 10.6.

First, the initial Kasumi values are padded to make a 64-bit input and the

input block number (BLKCNT) is computed. During the initialization process
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(first-loop execution), the MUX subunit selects the initial input and the

Kasumi module produces the initial key stream (KS) using the modified CK.

This initial KS is stored in a register and is used for the next iterations.

After the initial iteration, in all the next iterations, MUX selects the input

produced with the XORing of the previous KS and the CK is used by the

Kasumi module. The block count (BLKCNT) counter is set initially to 0 and

is increased by 1 after each iteration. The maximum value of the counter is

(length=64) rounded up to the nearest integer, which is the number of iterations.

The input length defines the plaintext or ciphertext length (number of bits).

10.3.2.1 Kasumi Block Cipher

The Kasumi block cipher [5,6] is used both by the one-way hash function ( f 9)

and by the stream cipher ( f 8). Kasumi comprises the Feistel networks [16]
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FIGURE 10.5 One-way hash function ( f 9) unit.
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operation with eight rounds and operates on a 64-bit input. It produces a

64-bit output according to a 128-bit ciphering key. Let us denote each round

as f i. f i has two different forms depending on whether it is an even round or

an odd round. On the even rounds, the computation procedures are executed

in reverse order comparing with the odd rounds.

Let us denote the odd rounds as odd round cell (ORC) and the even

rounds as even round cell (ERC). For the implementation of the complete

algorithm, the data are applied in a repeated manner to the two basic cells, one

ORC and one ERC. This implementation structure is depicted in Figure 10.7.

The round keys are computed by the key expansion unit. The total key

schedule is constituted by hardwired right shifters that produce many subkeys,

while the remaining are generated by bitwise XOR operation with predefined

constants. About forty 16-bit subkeys are generated in total. Many of them are

used more than once to generate the round keys with the appropriate concat-

enations. The round keys are precomputed and stored in a 64� 16-bit RAM

memory. Therefore, the system does not need to generate the keys for the

decryption mode.

Kasumi

MUX

64

64

Register

Input

64

Key stream (KS)

Plaintext /
ciphertext

In
iti

al
 in

pu
t

32

CountBearer

5

Direction

128

CKLength

13

128 BLKCNT64

Ciphertext /
plaintext

Kf 8

64

64

FIGURE 10.6 Stream cipher ( f 8) unit.

Nicolas Sklavos/Wireless Security and Cryptography 8771_C010 Final Proof page 305 29.1.2007 4:16pm

Security Architecture and Implementation 305



To increase the cipher performance, the inner-round pipeline technique is

used. A negative edge-triggered register is used for the pipeline inside the

rounds. In a conventional pipeline with positive edge-triggered register design

between the rounds, the data are transferred between two successive registers

in one clock period. The use of this technique (negative edge-triggered

pipeline) results in a significant reduction of the round critical path delays.

The negative edge pipeline register is inserted in the FO function (Figure

10.7b), which is roughly in the middle of the round datapath. This technique

has been recently proposed for low-power and high-speed designs [8].

The execution time of each round is one system clock cycle. To synchronize

the processing datapaths, similar registers are inserted in the left and right

branches of each round (Figure 10.7b). The result of this insertion is the

reduction to roughly half of the clock period.

As in the Rijndael cipher, for the Kasumi cipher implementation the S-boxes

were designed using ROM blocks. Therefore, the proposed Kasumi block

cipher implementation performance is high, as the UMTS standard demands.

10.4 SYSTEM EVALUATION

The VLSI synthesizes results of the proposed UMTS security hardware

implementation they follow. The whole system (Figure 10.2) was captured

using VHDL. This code was synthesized, placed, and routed using Xilinx

FPGA devices [17]. The VHDL code was simulated and verified using the

‘‘implementors’’ test data [18–20]. The two system fragments are implemented

in two separate FPGA devices.

ORC

ERC

MUX

64

64

64

64

128

Ki

128

Ki +1

Key
expansion

128

Plaintext

Ciphertext(a)

Key

RAM

16Subkeys

Register

FIGURE 10.7 (a) Kasumi block cipher hardware implementation.
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The synthesis results for the Rijndael module and AKA unit implemen-

tations are illustrated in Table 10.1. The FPGA device XILINX V400E-

FG676 was used.

The performance measurements of the Rijndael block cipher implemen-

tation are shown in Table 10.2. Measurements from other designs are also

included in this table for comparison with previously published works.

For the completion of a 128-bit block transformation, both implementa-

tions need 41 clock cycles. With the operating frequency of 78 MHz, the

throughput is 244 Mbps. To build four S-boxes, 4� 2048 ROM bits storage is

needed.

The full 3GPP AKA algorithm set can be implemented on an integrated

circuit card, equipped with an 8-bit microprocessor, ROM, and RAM

modules. From the available hardware resources, 6-KB ROM and ~200-byte

RAM are needed for the Rijndael function. Running with a 3.25 MHz clock, the

implementation must produce AK, XMAC-A, RES, CK, and IK in <500 ms.

The Rijndael should produce the 128-bit output values in <50 ms [4]. From

the results in Table 10.1 and Table 10.2, it is obvious that both proposed

architectures meet these requirements.

TABLE 10.1
Rijndael Module and AKA Unit Implementation

Synthesis Results

Rijndael Module AKA Unit

Function generators 2387 7390

Configurable logic blocks 1194 3820

D flip-flops 715 2212

Frequency: F (MHz) 78 70

Throughput (Mbps) 243 218

TABLE 10.2
Performance Measurements of Rijndael Block Cipher

Implementation

Architecture Device CLBs Frequency (MHz)

Throughput

(Mbps)

[21] XCV1000 BG560 5,302=10,992 14.1=31.8 300=1940

[22] XILINX (not specified) 5,673 — 353

[23] Xilinx Virtex 2,902 25.9 331

[24] ASIC Approach 3.96 mm2 100 910

[25] Altera APEX1K4001 845 LE — 750 (best)

Proposed XCV200 EFG456 1603 78.3 244
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The proposed Rijndael implementation uses 128-bit data and key blocks.

This implementation is slightly slower (~10%) in terms of throughput than

other earlier works [21–25]. A high-speed reprogrammable Rijndael design is

shown in [26]. However, this is not a drawback. Rijndael implementation

performs efficiently according to the UMTS specifications. With a 78 MHz

clock frequency, the output is produced in 0.52 ms. With the clock frequency

of 3.25 MHz, the Rijndael implementation produces the output in 12.6 ms

compared with the 50 ms that the UMTS demands.

The major advantage of the proposed implementation is the minimized

covered area resources. This is important in applications with strict area

limitations. Only 1-KB ROM is used in contrast to 6 KB that 3GPP specifies.

There is also no need for RAM blocks.

In the proposed AKA procedure implementation, only 1044-byte ROM

and 128-bit RAM are needed to store the OPc values. Therefore, the required

memory locations are less than the locations that 3GPP specifies (8-KB ROM

and 300-byte RAM). In the proposed design, the parameters AK, XMAC-A,

RES, CK, and IK are calculated in 76 ms, whereas UMTS specifies 500 ms at

a clock frequency of 3.25 MHz. This reduction is important because the

AKA unit can process more messages at the same time.

The synthesis results for the Kasumi module are presented in Table 10.3

The FPGA device XCV300E-8BG432 was used. This device has 16-KB

internal ROM, divided into 32 blocks. In the proposed design, 688-byte ROM

is used. With a 105 MHz clock frequency, a throughput up to 840 Mbps is

achieved.

In [27,28], a two-round architecture with a conventional approach was

proposed. Combinational logic and lookup table (LUT) are used to implement

the Kasumi S-boxes. In [29], two implementation versions are proposed. The

first is the low-power version (Type1) and the second is the high-performance

version (Type2) with the usage of four-stage pipeline. Moreover, in [30] a

hardware implementation that reduces the hardware resources is presented.

Two synthesis results are given. The first (Synth1) was made with the speed

grade �6 and the second (Synth2) was made with a speed grade �8. Finally,

in [31] a small hardware architecture is presented. The proposed Kasumi

TABLE 10.3
Kasumi Module, f 8 Unit and f 9 Unit Synthesis Results

Kasumi Module f 8 Unit f 9 Unit Total

Function generators 1819 2064 2278 4342

Configurable logic blocks 910 1042 1158 2200

D flip-flops 1570 1788 1973 3761

Frequency: F (MHz) 105 104 104 104
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architectures outperform all the earlier (two rounds) implementations in terms

of time performance as shown in Table 10.4.

The synthesis results for the one-way hash function ( f 9) unit and the

stream cipher ( f 8) unit are also illustrated in Table 10.3. Both units were

integrated in the same FPGA device.

Table 10.5 shows the comparisons between the proposed f 8 and f 9 units

and the previous designs. It is obvious that the proposed implementations

perform better in terms of performance.

TABLE 10.4
Kasumi Time Performance Comparisons

Architecture Device Frequency (MHz) Throughput (Mbps)

Kasumi_comb in [27,28] XCV300E-6BG432 20.88 167.04

Kasumi_LUT in [27,28] XCV200E-6FG456 35.35 70.70

Kasumi_type1 in [29] — 20 110

Kasumi_type2 in [29] — 60 410

Kasumi_synth1 in [30] XCV300E-8BG432 33.14 265.12

Kasumi_synth2 in [30] XCV300E-6BG432 28.38 227.04

Kasumi in [31] XCV300E-8-BG432 42 393

Proposed XCV300E-8BG432 105 840

TABLE 10.5
f 8 and f 9 Time Performance Comparisons

Architecture Device Frequency (MHz) Throughput (Mbps)

f 8_Comb in [27] XCV300E-6BG432 20.52 162.1

f 8_LUT in [27] XCV200E-6FG432 33.14 261.8

f 8_Comb in [28] XCV300E-6BG432 16.93 135

f 8_LUT in [28] XCV600E-6FG432 46.56 372

f 8_type1 in [29] — 19.5 154

f 8_type2 in [29] — 52 411

f 8_synth1 in [30] XCV300E-8BG432 30.12 240.96

f 8_synth2 in [30] XCV300E-8BG432 25.80 206.40

Proposed XCV300E-8BG432 104 822

f 9_Comb in [27] XCV300E-6BG432 20.68 165.44

f 9_LUT in [27] XCV200E-6FG432 20.19 161.52

f 9_Comb in [28] XCV300E-6BG432 16.70 134

f 9_LUT in [28] XCV600E-6FG432 35.34 340

f 9_synth1 in [29] XCV300E-8BG432 30.12 240.96

f 9_synth2 in [29] XCV300E-8BG432 25.80 206.40

Proposed XCV300E-8BG432 104 822
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The proposed f 8 implementation achieves 75.4% (combinational-based

S-boxes) and 760% (ROM-based S-boxes) higher throughput than the

implementation in [27]. The MAC computation time in the proposed f 9

implementation gives ~88% less average time. In addition, the f 8 and f 9

implementation covered area is half of the covered area in [27]. In addition, in

[28] an area-efficient architecture for the f 8 was proposed. In this architec-

ture, the Type 1 f 8 implementation operates with 19.5 MHz, whereas Type 2

operates with 52 MHz clock frequency. Table 10.5 shows that the proposed

implementation provides much higher throughput than the Type 1 and Type 2

implementations.

10.5 CONCLUSION

A hardware implementation of the UMTS security system was presented in

this chapter. The introduced system supports the AKA, user data, signaling

information confidentiality protection, and the signaling information integrity.

With the proposed designs, a major hardware resources reduction is achieved.

The proposed AKA implementation executes the procedure within 76 ms

compared with the 500 ms that UMTS specifies. The main architectural

units of the system are based on the Rijndael and Kasumi block ciphers.

An efficient Rijndael architecture is proposed to reduce the required

hardware resources. The proposed Kasumi architecture reduces the hardware

resources and power consumption. It uses feedback logic and positive–negative

edge-triggered pipeline to make the critical path shorter without increasing

the latency of cipher execution.
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11.1 INTRODUCTION

Wireless communications have become an attractive and interesting sector for

the provision of electronic services. Mobile networks are available almost

anytime, anywhere and the user’s acceptance of wireless devices is high.

One of the major scopes of the wireless protocols and especially of wireless

application protocol (WAP) [1] is to bring the Internet applications to

mobile devices [2–5]. Security is a key issue in the world of electronic

communication, especially for services with a sensitive purpose such as
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electronic commerce and online banking. New ciphers have been developed

[6] to support the networks’ defense against the increasing range of attacks.

Optimizations of the security layer specifications have also been published in

the last year [7]. However, the time overhead due to data encryption should

not impose an intolerant penalty on the communication process. Almost all

the ciphers of today have an important drawback: the slowness of their

operation, due to the mathematic and logic transformations. Because software

implementations are too slow, even running in fast processors, the use of

specific hardware modules seems to be the only reasonable solution for

the requested high performance. Different designs have been proposed

for the hardware implementation of ciphers [8–22]. These works present the

implementation of one cipher in a hardware device at a time. Modern applied

cryptography in the wireless communications networks demands powerful

encryption engines with special purposes of privacy, authentication, and

integrity. In order to support these security needs efficiently, hardware secur-

ity engines have to be implemented in a single hardware module because of

the restricted availability of resources for mobile devices. It is necessary that a

set of ciphers is integrated in the same chip for the security layers of wireless

protocols. The implementations of ciphers in different hardware devices, one

for each algorithm, have proved to be insufficient and forbidden solutions in

the wireless world.

An efficient architecture for WAP security layer implementation is pro-

posed in this chapter. The introduced system supports six different ciphers for

both architecture and security purposes: IDEA, DES, RSA, Diffie–Hellman,

MD-5, and SHA-1, in the same hardware module. The proposed architecture

has been implemented in an field programmable gate array (FPGA) device.

The synthesis results prove that the performance of integrated ciphers is high

and better than implementations with separate ciphers [8–22], in most of the

cases. The IDEA architecture uses a modified transformation round, which

minimizes the allocated area resources by ~30% compared with the other

works [13–15]. The proposed DES implementation performs better, with a

range from 200% to 400%, than in the other related studies [16–19]. In particular,

the proposed DES architecture has been designed with a slight modification to

operate alternatively as an authorized user verification unit. The introduced

reconfigurable authentication unit performs efficiently for both RSA and

Diffie–Hellman and decreases the covered area by ~70% in total compared

with the case of two separate hardware implementations, one for each cipher.

The proposed reconfigurable integrity unit minimizes the allocated area

resources and performs efficiently for two different operation modes: SHA-1

and MD5. The performance of both SHA-1 and MD5 is better at ~50%–300%

compared with the conventional implementations [20–22]. The proposed system

can be applied as a powerful solution for the wireless transport layer security

(WTLS) implementation in wireless networks. It can be used for both server

providers and mobile devices. Furthermore, the system can be used as a powerful
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security core in wireless communications supporting privacy, authentication,

and integrity. The high-speed performance and the minimized resources make

this architecture suitable and practical, in spite of the limitations that wireless

networks impose.

This work is organized as follows: in Section 11.2 the WTLS is intro-

duced. In Section 11.3 the proposed architecture is presented. Section 11.4 is

dedicated to verification and testing. The synthesis results of the FPGA

implementation and comparisons with other published works are given

in Section 11.5. Finally, in Section 11.6 conclusions and observations are

presented.

11.2 WIRELESS TRANSPORT LAYER SECURITY

11.2.1 WAP STANDARD

Mobile networks of our days do not provide the desired flexibility when

added services are about to be introduced. Often it has proved to be a

complicated and lengthy task to launch such services. WAP offers an efficient

solution to this problem by adopting Internet capabilities as a powerful

service platform in the wireless communication world. This is based on the

fact that the Internet has proven to be an easy and efficient way of delivering

services to millions of wired users.

WAP is a completely new concept. It was specified by an industry

consortium, the WAP Forum. This forum was founded in December 1997

by Ericsson, Motorola, Nokia, and Unwired Planet. The primary goal of WAP

is to bring Internet content and advanced data services to handheld devices

and other wireless terminals. At the same time, the main attempt of the WAP

Forum is to create a global wireless protocol specification that could be

applied across all wireless existing or new technologies. A great number

of applications and services are intended to be enabled in a wide range

of wireless bearer networks and unwired devices. Generally, it is important

to note that the already existing standards will be embraced and extended.

WAP specifications have been developed for the above-described goals to be

accomplished according to the design principles of the WAP.

Today, the Internet is used mainly from personal computers and all the

common requested services such as links, searches, and downloads are easily

accessed by every user, even in the case of an amateur user. The user-friendly

interface, provided by the software tools, supports all the described requests.

Providing Internet and web services on the wireless communication protocol

or network presents many challenges to mobile service providers and appli-

cation developers.

The types of both wireless devices and communication network set

limitations on the range and the kind of the services provided. Wireless

networks have fundamental restrictions in the available spectrum, power
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consumption, and mobility. They also have less bandwidth and more latency

than the wired networks. Connection stability and predictable availability

are also less. Furthermore, possible improvements in the bandwidth rate in

the wireless communication world have power consumption penalty in the

limited battery life of handheld devices.

Low-power consumption is not the only limitation that mobile phones

tend to have. In contrast with the personal computers, mobile phones have

less powerful CPUs and less available memory of any kind. The small size of

screens in addition to the different way of data input, voice input, and a

smaller keypad requests a different user interface than the one used in

computers. The applied wireless protocol has to overcome the network and

device limitations and at the same time support an acceptable level of services

to satisfy the requests and needed applications.

The kind of services to the users is similar to the one that is used on the

Internet, with a slight difference in the way the provided services are

accessed. In the wireless world, the user needs an interface utility of the

services, at any given point of time, without having to use search engines,

special links, or full download capabilities. The supported applications

and services must be in a comparatively high level because they have to

attract a wide range of users. The provided services vary from banking

accounts and products on sale to gambling and ticketing operations. Many

other information-type applications, such as news and weather forecasts, are

also in wide use. New and different kinds of applications are introduced by

WAP such as voice mail, faxes, and e-mails in mobile phones. Today, the

WAP forum is conducting work in several areas that will facilitate mobile

value added services (VAS), such as persistent storage, smart cards, and user

agent profiles.

11.2.2 WAP ARCHITECTURE OVERVIEW

The WAP standard defines an application environment and an application

protocol. The application environment consists of the markup language,

WML, and a programming language, the WMLScript. Since WAP-supported

applications and services can be downloaded on demand and discarded when

no longer needed, the application environment also allows dynamic extension

of the terminal’s user interface.

The actual application protocol architecture provides a scalable and exten-

sible application development environment for mobile communication devices.

This is achieved through a layered architecture of the protocol stack. WAP is

designed as a layered-type protocol to be extensible, flexible, and scalable.

Based on the open system interconnection model (OSI), the WAP stack is

basically divided into five essential layers. These are (i) wireless application

environment (WAE), (ii) Wireless session protocol (WSP), (iii) wireless trans-

action protocol (WTP), (iv) WTLS, and (v) wireless datagram protocol (WDP),
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which are described in detail by the specifications of the WAP forum [1]. Each

layer of WAP provides a set of functions and services to other applications

through well-defined interfaces. This means that each of the five building layers

of WAP defines a well-specified interface to the one mentioned here and makes

the lower layers invisible to it. The protocol stack isolates the applications from

the bearer so that one application can be executed or run regardless of the actual

transport service used.

In addition to the application environment and the application protocol,

the WAP standard also defines a technology known as wireless telephony

application (WTA) specification. It is a telecom-oriented technology that

allows WAP to be integrated with the advanced services in the telecom

network, such as intelligent networks. Combined with the browser-based

user interface of WAP, the WTA allows new intelligent network services to

be introduced to users without modifying the terminals in any way.

Figure 11.1 shows the WAP stack and how it relates to the protocols on

the Internet.

The differences between the WAP and the commonly used Internet

protocol stack have been proved to be the most important parts for enabling

wireless access to mobile devices. The WAP stack does not map directly onto

other stacks but a comparison between them could take place. As illustrated

in Figure 11.1, the kind of functionality that is provided by HTML and Java

in the Internet is incorporated in the WAE layer of WAP and the wireless

Wireless application environment (WAE)

Wireless session protocol (WSP)

Wireless transaction protocol (WTP)

Wireless transport layer security (WTLS)

Wireless datagram
protocol (WDP)

Bearers

User datagram
protocol (UDP)

SMS USSD GPRS CSD CDPD RDATA ETC

HTML
Javascript

HTTP

TCP/IP
UDP/IP

TLS-SSL

Internet Wireless application protocol

FIGURE 11.1 WAP stack architecture.
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session layer (WSP). At the same time, WSP and WTP layers include the

functionality provided by HTTP. The transport layer in the wired communi-

cations is usually either TCP or user datagram protocol (UDP), whereas in the

wireless world it is UDP over IP where it is possible. WDP is provided for

networks that cannot support IP at the network layer.

Transport layer security (TLS) is basically used in Internet applications to

ensure and guarantee the desired security level. WTLS is its equivalent in the

unwired communications world. This layer includes a specification set that

implements options for authentication and encryption and is optimized for use

in the mobile environment.

11.2.3 WIRELESS TRANSPORT LAYER SECURITY

WTLS, as its name indicates, is dedicated to the security layer of the WAP.

Security is needed for the WAP to safely support the provided services,

particularly the sensitive ones such as online banking and e-commerce.

WTLS is based on the TLS 1.0, which is the security standard founded in

the Internet, but is optimized for narrowband communication channels. Fur-

thermore, a number of modifications and changes were needed according to

the nature of the wireless networks. One basic difference, compared with the

Internet, is that in wireless transmission, support for both datagram and

connection-oriented transport layer protocols is required. On the other hand,

there are many specifications in the used encryption algorithms because of

the limited processing power and memory. Furthermore, the bandwidth limit

is a fact that must be taken care of in addition to all the other restrictions of

handheld devices in the supported security.

The WTLS security layer incorporates new features such as wide range

in the selection of the used encryption algorithms, multi-operation mode

encryption, dynamic key refreshing, and handshake. The WAP has also

been optimized for low-bandwidth bearer networks with relatively

long latency. Flexible encryption algorithms with high performance have

been chosen to provide a wide available algorithm set to the users. It has to

be cleared that, in a mobile phone device, only a small set of these

algorithms is implemented efficiently because of the hardware restrictions

and limitations.

The WTLS layer is optional and can be used with both the connectionless

and the connection mode WAP stack configuration. In case it is used, it is

always placed on top of the WDP layer.

The WTLS layer, which accepts data from the upper WAP layers, applies

the appropriate compression and encryption and then transmits them. The

record protocol is divided into four protocol clients. The WTLS layer stack is

illustrated in Figure 11.2.

In this section, every part of the WTLS architecture is described

briefly. During the handshake, all the related parameters are agreed on.

Nicolas Sklavos/Wireless Security and Cryptography 8771_C011 Final Proof page 320 8.2.2007 11:16am

320 Wireless Security and Cryptography



Such parameters specify the used protocol versions, the characteristics of the

encryption algorithms, and the established connection properties. Different

handshake types can take place alternatively, according to the connection

needs. The alert protocol provides all the appropriate alert messages that are

sent each time in the established secure state. Three different types of alert

messages are specified: warning, critical, and fatal. Depending on the type

of the alert message, connections may result in termination, initiation of the

exchange, or may even continue. Further procedures could be accomplished

according to the error level. The change cipher spec is sent peer to peer

either by the client or by the server. The appropriate messages of this

protocol are sent after the handshake to set the values in the current and

the pending states of the receiver. Finally, the application data protocol is

involved with all the appropriate processes and then applied to the pure

transmitted data amount.

Security in every communication protocol or network is composed of

separate security entities of special purposes. In WTLS, three different

encryption operations have been defined: privacy, authentications, and data

integrity. These operations are fully supported by the WTLS layer, with the

availability of selection between different encryption algorithms in each kind

of security process.

With the rule of privacy, an applied transfer method that ensures a private

end-to-end transfer is defined. Privacy is also called bulk encryption in the

literature. The sender and the recipient have to use a commonly known

cryptographic algorithm to encrypt and decrypt the transmitted data. They

also have to know the used key, on which the operation of the encryption

algorithm is based. The key is determined as a block of data known only

to both parties of the communications and nobody else. It is obvious that

the used algorithm should be resistant to all known cryptanalysis attacks.

The encryption algorithms that are proposed to be used in WTLS are IDEA,

DES, and RC5.

WDP layer

Handshake
protocol

Change
cipher spec

protocol

Application
data

protocol

Alert
protocol

Record protocol

WTP layer

W
  T

  L
 S

FIGURE 11.2 WTLS internal architecture.

Nicolas Sklavos/Wireless Security and Cryptography 8771_C011 Final Proof page 321 8.2.2007 11:16am

Wireless Application Protocol Security Processor 321



Authentication is described as the security unit that ensures if the identity

of every communication part is the one that has been claimed. The two

contacting parties have to present verifications to prove their identities. This

is achieved by using digital signatures or electronic certificates. After the

authentication, the service provider is sure that the supported service is

available to the user who requests to use it. On the other hand, the user can

be confident about the service provider with the same way of authentication.

The RSA, Diffie–Hellman, and elliptic curve algorithms serve authentication

in WAP.

Integrity is used to verify that the transmitted data have not been modified

in all the travel through the network. In different words, integrity secures the

reliability of the information. This could be guaranteed by calculating check-

sums from the original information to be sent. One plain checksum is not

enough. More sender-related information mixed into these calculations is

needed. This information is signed with the user’s digital signature. Hash

functions are the most common methods used for integrity. In WTLS, the

SHA and the MD5 hash functions are introduced by the specifications.

11.3 PROPOSED WTLS ARCHITECTURE

11.3.1 PROPOSED CRYPTO-PROCESSOR ARCHITECTURE

The proposed crypto-processor architecture, for the WTLS hardware imple-

mentation is illustrated in Figure 11.3. The introduced system has been

designed like a typical processor with datapath, memory, I=O interface, and

control unit [23,24].

Six different ciphers are supported by the proposed crypto-processor. DES

and IDEA algorithms are selected for the bulk encryption unit. The reconfi-

gurable integrity unit performs efficiently in two different operation modes,

for SHA-1 and MD5 hash functions. The operations of both RSA and Diffie–

Hellman are performed by the reconfigurable authentication unit. An extra

security scheme is also supported by the proposed crypto-processor. A recon-

figurable logic block, in combination with the modified DES unit, implements

the authorized user verification unit. A common data bus of 64 bits and a

32-bit address bus are used for the internal data transfer purposes. Two

different storage units have also been integrated. The appropriate algorithm

keys are stored and loaded in the RAM blocks, whereas all the transformed

data are kept as long as it is necessary in the transformed data registers. A

common bus interface unit, which supports 32-bit input data and 32-bit

address buses, has also been implemented, for the crypto-processor to

communicate efficiently with the external environment. This environment

may be a general purpose processor or a special CPU.

It has to be mentioned that WAP is intended to be applied mainly in

mobile devices. Because of their hardware integration limitations, only a set
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of ciphers and not all specified by WTLS can be implemented in a flexible

embedded system [25,26]. The ciphers set in the proposed crypto-processor

were selected by considering security and hardware implementations param-

eters. As presented in the rest of the chapter, according to our study, the

integration units of the selected ciphers ensure the highest provided security

and the best hardware performance at the same time.

11.3.2 BULK ENCRYPTION UNIT

In the proposed crypto-processor, the bulk encryption unit provides the

capability of selection between two ciphers: IDEA and DES. According to

the opinion of the security experts, IDEA is one of the most secure block

algorithms available to the public [27]. On the other hand, DES has been

established as the data encryption standard and has proved to be a flexible

design for VLSI implementations. These algorithms have been preferred, for

several reasons, instead of RC5, which is the third cipher, specified by WTLS.

RC5 is a trademark of RSA data security [28] and it is expected to be patented

Control
unit

RAM
blocks

IDEA
algorithm

Modified DES
unit

Reconfigurable
logic block

Reconfigurable
authentication

unit (RSA, D.H.)

Common bus interface unit

Reconfigurable
integrity unit

(SHA-1, MD5)

Bulk encryption unit
Authorized user
verification unit

Transformed
data registers

Data bus

Address bus

FIGURE 11.3 Proposed architecture for a crypto-processor.
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in the near future. This cipher has a set of parameters, such as key rounds,

operation word lengths, and secret key variables, which have to be specified

during initialization. All the possible set values seem to be available and

usable in theory, but many of them in practice may be forbidden [29].

Detailed analysis is needed to prove the security level and the hardware

performance of each set. Unlike the other encryption algorithms, the para-

meterized RC5 permits upgrades in the operation, with the main goal to

increase the supported security level, but with a major disadvantage in the

performance and vice versa. In order that the proposed crypto-processor

provides alternative capabilities, both IDEA and DES have been integrated.

Because of the large amount of data, which a bulk encryption unit has to

transform, these two ciphers can operate at the same time, or only one at a

time. In the case of parallel operation, the crypto-processor performance is

increased by a great factor.

In IDEA [30], the required data confusion is achieved by using

three different and incompatible group operations. These group components

operate on pairs of 16-bit subblocks and mix them. The three algebraic

operations are (i) 16-bit XOR, (ii) modulo addition 216, and (iii) modulo

multiplication 216 [31]. The proposed IDEA architecture is illustrated in detail

in Figure 11.4.

IDEA defines four or eight basic transformation rounds and one half-

round. In the previous published works [15], both the basic transformation
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round and the half-round have been integrated separately. Such an implemen-

tation approach has a major cost in the covered area resources. The proposed

IDEA architecture is based on a feedback logic operation mode. As

Figure 11.2 illustrates, the specified IDEA transformation round architecture

is partially modified (modified data round). It operates efficiently for both the

basic and the half-round, as the specifications demand [30]. By this proposed

architecture, the allocated resources of IDEA implementation are reduced to

about two modulo multipliers area, which are the fundamental covered area

components. It has been measured that by the proposed architecture, 40%

area reduction is achieved compared with the design approach applied in [15].

The analytical synthesis results and detailed comparisons are given in

Section 11.5.

Furthermore, in the proposed IDEA architecture the key expansion unit

has also been integrated and the appropriate round keys are generated on the

fly. By the key expansion unit integration, the required dynamic key refresh-

ing of WTLS is achieved, with no extra time delay. In addition, the introduced

design has no time delay in the initialization process for the key setup like in

[15]. According to our study, the separate integrated key expansion unit has a

cost of ~7%–10% in the total IDEA implementation area resources. In the

implementation in [15] the key expansion unit has not been integrated. In our

work, such an approach is forbidden because of the WTLS specified key

refreshing. In the proposed architecture, the key refreshing process is

supported during data transformation. A design methodology like [15] causes

a great time delay cost for every new key setup. In this way, the system

performance in [15] is dramatically decreased. Analytical time delay cost

measurements for both operations (key refresh and initialization) are pre-

sented in Section 11.5.

DES cipher operation is supported by a 64-bit key [27,32,33]. The

computation of the key schedule is clearly described by the standards speci-

fications [34]. The algorithm defines 16 rounds. Each data round uses a

different key comprising 48 bits from the initial input key (64 bits). The

total key schedule process was analyzed and according to our study it is

proved that a certain combinational shift register can produce every round

key. The key expansion unit design in the proposed DES architecture is built

on 16 different shift registers and not with a full rolling design technique used

in other published works [16–19]. With this applied technique (shift regis-

ters), DES performance is increased by ~170% compared with any architec-

ture with a key expansion unit, built on the defined key scheduling logical

components [16–19]. The only drawback of the proposed architecture is the

8% increased covered area resources. According to DES specifications,

the decryption keys are the same as those used in encryption mode, if they

are processed in the reverse order. For this reason, RAM blocks are used for

the encryption keys to be stored after their generation. RAM blocks equal to

16 � 48 bits are allocated in total. In this way, the system does not generate
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extra keys for the decryption mode and no extra time for the generation of

decryption keys is needed.

The common DES architecture has been slightly modified and the pro-

posed architecture, in cooperation with a reconfigurable logic block, operates

as a bulk cipher and as an authorized user verification unit. This unit is

analyzed in detail in the following section.

11.3.3 AUTHORIZED USER VERIFICATION UNIT

In order to have only authorized users accessing to multiuser handheld

devices and provided services, personal identification numbers (passwords)

are used. In order not to allocate many extra resources for the implementation

of an authorized user verification unit, a UNIX method for password verifi-

cation [35] could be adopted in wireless devices. This method has the

advantage that it is based on DES cipher, specified by WTLS. This means

that it can be applied efficiently to the proposed crypto-processor with

minimized extra covered area resources. The proposed architecture for the

authorized user verification unit is illustrated in Figure 11.5.

The random number generator could be implemented by using the well-

known random or pseudorandom generation techniques [27]. In the proposed

architecture (Figure 11.3), the generation of the salt is based on the system

clock. In this way, no extra allocated area resources for the integration of the

random number generator are needed, compared with the resources that the

implementation of the published techniques [27] demand. After 25 iterations

of data transformation, both the encrypted password and the random salt are

stored in the storage unit.
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Particularly, the salt is used to support the modified behavior of DES

expansion function E, providing 4096 different operation modes. In this way,

the security of the authorized user authentication unit is increased dramati-

cally by a factor of 212 (¼ 4096). In systems with eight-character PINs, an

attacker has to use a database of 264� 212 possible passwords for function E

variations. In the architectural level, the desired variable operation of function

E is achieved by the proposed modified function E. The architecture of

modified function E is illustrated in Figure 11.6.

The modified function E is based on a dynamic combinational circuit,

which is called modification unit. This unit consists of 24 similar cells. By

using the 12-bit salt, 212 (¼ 4096) different modification cases on the

expanded data are achieved. Each bit of the salt is used in two basic cells.

For example, salt bit (k) is used for basic shells (k) and (kþ 12). In the

proposed architecture, every bit of modification unit output is predetermined

by a pair of input data bits (expanded data). The basic cell determines the

appropriate modification by multiplexing every pair of input bits, with the salt

bit as the select input (Figure 11.4). If the select is equal to logic one, the two

associated bits are swapped. Otherwise (select is zero), no modification takes

place in the certain pair of bits. The security strength of the encrypted

password is augmented with the use of the randomly generated salt, and so

any possible dictionary attacks become less effective.

The proposed DES architecture (Figure 11.3) is used alternatively as the

original DES cipher core with the appropriate commands of the crypto-

processor control unit. With the help of the applied design (Figure 11.4)

that was described earlier, the proposed crypto-processor is supported with

one more extra security scheme (authorized user verification) and the pro-

vided security of the system becomes higher. The major advantage of the

Expansion function E
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FIGURE 11.6 Proposed architecture for a modified function E.

Nicolas Sklavos/Wireless Security and Cryptography 8771_C011 Final Proof page 327 8.2.2007 11:16am

Wireless Application Protocol Security Processor 327



proposed authorized user verification unit is that it uses only 2% extra

resources compared with the original DES core implementation for bulk

encryption, with no performance penalty at the same time.

11.3.4 RECONFIGURABLE MESSAGE AUTHENTICATION UNIT

To support the demanded authentication in WAP, a reconfigurable authenti-

cation unit is proposed. It operates in two different modes: RSA [36] and D.H.

[37]. Owing to the fact that their major operations are in common, both

ciphers are implemented in the same unit, based on a reconfigurable design.

Elliptic-Curve (EC) algorithm [38] has no major common parts with the other

two ciphers. For this reason, EC operation is not supported in the proposed

crypto-processor, to minimize the allocated area resources.

The reconfigurable authentication unit is presented in Figure 11.7. This

proposed architecture is reconfigurable in the sense that it performs efficiently

for both RSA and D.H. on to the user selection and it is not predefined by the

crypto-processor (Figure 11.3).

This proposed reconfigurable unit is based on the array multiplier.

The most widely known algorithm for both encryption and decryption pro-

cesses of RSA to be performed is the square and multiply algorithm [39].

A number of works have been published reporting systolic array architectures
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for modular multiplication. One of the most well-known modular multiplica-

tion algorithms is the Montgomery algorithm [40]. Different architectures

have been published [9–12,41] with alternative implementation criteria (per-

formance, covered area, and run time), for modular multiplication applied to

RSA hardware integration. Based on the work of [40] and in combination

with the previous works [42,43] on systolic multiplication, Blum and Paar [9]

introduced a systolic array modular multiplication suitable for hardware

implementations. The proposed reconfigurable authentication unit, which

is illustrated in Figure 11.6, is based on the square and multiply algorithm

[39,40] and uses the modular multiplication systolic array architecture

proposed in [9].

The supported plaintext and keyword length is equal to 512 bits, defined

by the WTLS specifications. RSA uses one exponent (A) of 512 bits, whereas

D.H. architecture is based on two 512-bit exponents (A, B). Both the algo-

rithms are based on modular multiplications on an input modular base (M).

The applied multiplier architecture of [9] demands an extra precomputational

factor input. (More details on the multiplier operation could be found in [9].)

D.H. operation is based on the same array multiplier unit used in RSA.

The only basic difference is that D.H. uses two exponents compared with

the one used in RSA. This results in the doubling of the number of clock

cycles for a produced cipher of D.H. compared with the RSA requested time

for a complete encryption or decryption process. Although the operating

frequency is common for both operation modes, the proposed reconfigurable

authentication unit decreases the covered area compared with the case of two

separate implementations, one for each cipher, by ~70%. Furthermore, the

proposed WTLS crypto-processor implementation (Figure 11.3) is able, with-

out sacrificing the system performance or using extra resources, to pro-

vide two alternative operation modes for authentication (RSA and D.H.).

The analytical synthesis results of the proposed implementation of the

reconfigurable authentication unit are given in Section 11.5.

11.3.5 RECONFIGURABLE INTEGRITY UNIT

The proposed architecture for the implementation of the reconfigurable inte-

grity unit is presented in Figure 11.8.

This proposed architecture is reconfigurable in the sense that it operates

efficiently for both SHA-1 [44] and MD5 [45]. The used operation mode

(SHA-1 or MD5) is based on the users needs each time. First, in the padder,

the input data are padded to be a multiple of a 512-bit block as both MD5 and

SHA-1 specifications define. The padding process is exactly the same for both

SHA-1 and MD5 hash functions, according to the two algorithm specifica-

tions. The 512-bit padded data blocks are divided into sixteen 32-bit words

in the data manipulation unit. Then, these words are processed in order,

according to each algorithm’s specified data manipulation procedures.
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SHA-1 demands 8� 32-bit ROM, whereas MD5 requires 68 � 32-bit ROM

blocks, for the specified constants of these hash functions to be stored. The

reconfigurable data round is the most critical component of the proposed

reconfigurable integrity unit architecture. It has been designed as a mix of

both MD5 and SHA-1 specified transformation rounds. The MA (modulo

adder) component denotes modulo adder 232. The nonlinear function is a

combination of mathematical functions and digital logic. It performs in two

different ways for SHA-1 and MD5 operation modes. The multiplexers and

also the shifters (left circular shift) operate according to the control unit

commands for the two different operation modes (SHA-1, MD5) to be

performed. MD5 defines 64 data transformation rounds, whereas SHA-1

specifies 80 rounds. Finally, the last transformation modifies the data. This

unit consists of five modulo adders 232, where modulo additions between the

five data inputs and the five 32-bit constants are performed in parallel. The

160-bit SHA-1 message digest is obtained by concatenating the 32-bit outputs

of all the modulo adders. In the case of MD5 operation, the 128-bit message

digest is equal to the concatenation of the first four modulo adders’ 32-bit

outputs (MA1 to MA4).

Our proposed reconfigurable integrity unit implementation needs

~7%–10% extra covered area resources compared with a separate SHA-1 or

MD5 implementation. The critical path of this proposed unit (Figure 11.8) is

defined by the out_3 data arrival time of the reconfigurable data round. The

achieved frequency for both SHA-1 and MD5 operation modes is equal to

70 MHz for the proposed implementation. It is important to note that the
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achieved frequency is reduced by ~2% compared with one of the SHA-1 and

MD5 implementations in the case of two separate hardware devices.

11.4 VERIFICATION AND TESTING

The proposed crypto-processor architecture (Figure 11.1) has been captured

using VHDL. All the internal components of the design were synthesized,

placed, and routed using a XILINX FPGA device [46]. The system was then

simulated again for the verification of the correct functionality. To verify the

right operation of the developed system, the test board of XILINX (XSA board)

was used. This board is shown in Figure 11.9.

Initially, the developed architecture is downloaded to the FPGA device of

this board by the parallel computer port. Then, the required VHDL code that

permits emulation of the developed architecture is created and downloaded to

the FPGA device too. The values of the input or output signals were mon-

itored with the help of a logic analyzer, which is connected to the whole board

structure. (The PS=2 connector and the CRT port are not used in this case.)

The test scenarios that are applied to the board, to verify the correct func-

tionality of the system, are provided by the cipher standards. In addition,

during the test procedure a great number of test vectors were used to verify

the right operation of the received FPGA device samples. These test vectors

were mostly selected in a random manner, but some special values of the

Parallel
port

Xilinx FPGA
device

PS/2
connector

VGA

Connector pins to
logic analyzer

Power
supply

FIGURE 11.9 Used FPGA board.
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input data have been included (e.g., ‘‘FFF . . . FFF,’’ ‘‘000 . . . 000’’) to ensure

maximum test coverage.

The proposed crypto-processor architecture passed all these test vectors

correctly. In addition, the VLSI synthesis results of the crypto-processor

hardware implementation are given in Section 11.5.

11.5 SYNTHESIS RESULTS AND EVALUATION

The synthesis results of the proposed crypto-processor are shown in

Table 11.1.

In the FPGA-proposed implementation RAM, blocks are used for both

keys and specified constants storage. Many FPGAs provide embedded RAM,

whereas external RAM blocks can also be used, in cases where internal RAM

is not available. In such implementations, the switching time of the RAM is a

factor that has to be considered in the total performance timing measure-

ments. The proposed crypto-processor requirements for RAM blocks are

128 bits for IDEA, 2048 bits for the reconfigurable authentication unit

(RSA and D.H.), 16� 64 bits for DES, and finally 72� 32 bits for the

reconfigurable integrity unit (8� 32 bits for SHA-1 and 4� 16� 32 bits

for MD5). In Table 11.2 and Table 11.3, performance comparisons of the

proposed crypto-processor with other related works are presented.

The proposed ciphers’ implementations are compared with the best

implementations published in the technical literature. The introduced work

TABLE 11.1
Implementation Synthesis Analysis

Hardware Device

System Component

FPGA Device (XILINX Virtex v2000ebg560)

Covered Area

CLBs FGs DFFs F (MHz)

IDEA algorithm 1,852 3,104 380 50

DES unit 341 682 170 85

Reconfigurable integrity unit (SHA-1, MD5) 1,653 2,905 1,049 70

Reconfigurable authentication unit (RSA, D.H.) 5,421 8,303 4,056 41

Bus interface 242 413 453 70

Reconfigurable logic block 117 546 387 70

Data registers 1,952 0 680 70

Control unit 1,576 3,200 1,200 70

Crypto-processor 14,154 20,153 8,375 —

Note: D flip-flops, DFFs; Configurable logic blocks, CLBs; Function generators, FGs; Frequency,

F (MHz).
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of [13] achieves throughput values almost equal to the proposed IDEA design.

The basic drawback of this system is the doubled covered area, compared

with the proposed FPGA implementation. The presented work in [14] oper-

ates with very low frequency compared with the proposed one, whereas no

other information of the system throughput and the needed clock cycles for

the encryption=decryption process is given in [14]. These omissions in the

TABLE 11.2
Encryption Algorithms’ Performance Comparison I

Performance of Implementations

Architectures Area (CLBs) F (MHz)

Throughput

(Mbps)

IDEA [14] 40.561 gates 8 kHz —

IDEA [15] 1.2 mm 108 mm2 25 177

IDEA [13] 24,442,878 82,150 1,166,600

IDEA proposed 1,852 50 711

RSA [9] (512-bit) 25,553,413 45.6 1,446

RSA [10] 0.8 mm (512-bit) 77,988 gates 50 24 kbps

RSA [11] 0.5 mm (1024-bit) 105,000 gates 40 20 kbps

RSA [8] 2 mm (512-bit) 23,000 optimum cost 77 300 kbps

RSA [12] 1 mm (512-bit) 75,000 gates 25 100 kbps

Reconfigurable

authentication unit

(RSA, D.H.)

5,421 41 1.1 RSA 0.5 D.H.

DES [19] 11.1�11.1 mm2 105 10 Gps

DES [18] 50 k transistor 250 1 Gbps

DES [17] — — 11.6

DES [16] 262,433,741 251,811 99,148,184

DES proposed 341 85 245

TABLE 11.3
Encryption Algorithms’ Performance Comparison II

Performance of Implementations

Architectures Area (CLBs) F (MHz) Throughput (Mbps)

SHA-1 [20] 1,004 43 119

MD5 [21] — 300 256

MD5 [20] 1,004 43 146

MD5 [22] 8,804,763 2171.4 165,354

Reconfigurable

integrity unit

(SHA-1, MD5)

1,653 70 442 SHA-1 551 MD5
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reported synthesis results of [14] do not ensure a detailed comparison of this

work with the proposed and the other conventional IDEA architectures

[13,15]. In [15], the round keys are generated internally using the basic

transformation round architecture. It has to be stated that according to the

architecture of the transformation round [15], four round keys can be gener-

ated during one clock cycle at maximum. The generation of the 104 specified

subkeys demands 104=4¼ 26 extra clock cycles during initialization, and

104�16¼ 1664 bits of allocated RAM blocks are needed for key storage.

This time delay has to be considered in the total system performance [15],

in addition to the achieved 177 Mbps throughput. If the used initial key is

refreshed N times, as WAP specifies, the extra needed time is equal to N� 26

clock cycles. This time delay decreases the performance of such an

implementation dramatically [15]. In the proposed IDEA implementation,

the key expansion unit has also been integrated separately and supports the

on-the-fly key generation. Only 128-bit RAM blocks are used for the initial

key storage. In addition, the integrated key expansion unit of the proposed

IDEA architecture supports the dynamic specified key refreshing of WTLS

with no delay penalty.

The proposed reconfigurable authentication unit has an operating fre-

quency equal to 57 MHz, for both operation modes (RSA and D.H.). The

RSA algorithm performance is in general data-dependent. The performance

values are illustrated in Table 11.2 and have been measured for 512-bit key

and plaintext blocks specified by WTLS. Different test vectors were used to

measure the average value of the performance. This was done due to the

fact that RSA performance is dependent on the number of logic�1� values,

that the input key vector may have. The proposed reconfigurable authentica-

tion unit has almost the same performance compared with the introduced

work of [9]. Although, in the proposed implementation the same array

multiplier with [9] is used, our reconfigurable authentication unit allocates

18% more area resources than the conventional. This extra area is allocated

for the control logic and needed registers, for the proposed unit to perform

efficiently for the two different modes (RSA and D.H.). The other compared

architectures [8,10–12] have worst performance than the proposed, although

this result is slightly unfair. The implementation technology libraries of these

works are somehow dated (2, 1, 0.6 mm), making the comparison aspects

difficult. It is possible that these works [8,11,12] would achieve better per-

formance if they are upgraded to currently available CMOS. On the other

side, the D.H. performance is estimated to be half in terms of throughput

compared with the RSA. This is due to the fact that D.H. operation needs

double the number of performed multiplications, based on the two used

exponents, compared with the RSA. As not many hardware implementations

of D.H. have been published until now [47], the comparative study of

D.H. performance is a difficult process. In the only well-known work of D.H.

implementation [47], it is claimed that by using GF multipliers, the
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performance of this cipher could be increased by ~33%. However, no detailed

synthesis results about the operating frequency and covered area of the

implementation are given in this work [47].

For DES hardware implementation, different works have been proposed,

which focus on different implementation aspects [8,16–19]. The goals of

these implementations vary from research in the key expansion process

strength to programmable and parallelism designs. The proposed DES imple-

mentation is 400% faster than the best implementation presented in [16].

Nevertheless, this work [16] discusses a universal key-search machine based

on fast DES architectures. The achieved results related to the key search on

the DES key expansion process in [16] are very good but the used DES

implementations in this work are inferior in performance. A case study of

exploiting parallelism in hardware implementation of DES is introduced in

the work of [17], but with low performance. The proposed DES implemen-

tation has better performance at ~430%–880% compared with the work of

[17]. The major goal of the designs [18,19] is high performance. The through-

put of the implementation [19] remains the best reported in the technical

literature until now. The work [18] employs a novel methodology for the

design of GaAs architectures and has an operating frequency three times

better than the proposed implementation.

As Table 11.3 presents, the SHA-1 operation mode of the proposed

reconfigurable integrity unit is better at ~260% in terms of throughput than

the one in [20]. The proposed reconfigurable unit area resources are ~1.6

times more than in the same work [20]. The proposed reconfigurable integrity

unit, in the case of MD5 operation mode, has better throughput than the

conventional implementations [20–22], by ~260%, 115%, and 55% respect-

ively. It has to be mentioned that the work of [21] provides a performance

estimation of a theoretical MD5 hardware implementation and does not report

implementation results in detail. The estimations of [21] are still important for

the readers and researchers. The first implementation of [22] allocates less

covered area than the proposed. This is a physical result of this design rather

than a disadvantage of the proposed reconfigurable integrity unit. In this work

[22], the specified MD5 processes of both padding and data manipulation

have not been integrated. The proposed reconfigurable integrity unit supports

both these fundamental units of MD5 specifications. Their integration has

resulted in a low increase in the covered area resources. The second imple-

mentation of [22] uses full-step architecture. Although this design approach

achieves doubled performance compared with the first implementation of the

same work [22], the covered area resources are increased by a factor equal to 6.

The proposed reconfigurable integrity unit has better area-delay product than

the two implementations of [22]. The architecture introduced in [20] has

been designed like a typical digital processor with data and address buses.

This work requires 206 and 255 clock cycles to perform 64 rounds of MD5

and 80 rounds of SHA-1, respectively, with 59 MHz clock frequency.
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Our proposed unit, based on the full rolling (feedback) technique, requires for

SHA-1 and MD5 operation modes 81 and 65 clock cycles respectively, with a

clock frequency of upto 70 MHz. The shared used arithmetic units in [20],

supported by data and address buses, are a design technique with not very

good performance, compared with the applied technique in the proposed

reconfigurable integrity unit. This is because of the fact that the architecture

of [20] requires many clock cycles. However, in [20] components can be

added and removed from the system easily (scalability) and the system

performance can be increased using more arithmetic units (exploiting paral-

lelism). In the case of WAP integrity unit, the proposed full rolling loop

architecture is a design with better performance for both MD5 and SHA-1

operation modes.

The major advantage of both the reconfigurable authentication unit

and the reconfigurable integrity unit is that each one ensures the operation

of two ciphers, RSA–D.H. and MD5–SHA-1, respectively, but they allo-

cate at ~40%–60% minimized area resources compared with two separate

implementations of each pair of ciphers. This is a major issue in mobile

communications where many limitations exist in the area resources and in

the available memory. In addition, these reconfigurable units have high

operation frequency. Both authentication and integrity units achieve

throughput compatible and in many cases better than the other separate

conventional implementations. In the case of bulk encryption specified

by the WAP, ciphers have no commonality in their architecture. This

reason makes every design approach inefficient for a reconfigurable bulk

encryption unit. That is why ciphers for bulk encryption have been designed

as separate cores.

The main scope of the design of this proposed crypto-processor

architecture is to achieve the best balance as possible between the implemen-

tation parameters such as bandwidth, allocated area, energy, and so on. In the

earlier sections, the design criteria of each separate unit of the proposed

architecture are analyzed in detail. It has to be mentioned that the achieved

performance is superior to today’s WTLS specifications and it is estimated

that it could efficiently satisfy future upgrades. Concerning area and energy

issues, optimizations and better synthesis results could be achieved by

excluding security features or possibly one of the integrated units such as

authentication unit, in cases where the applications demand. Generally, such

an approach would result in reducing the supported security level of the

proposed crypto-processor, and it is not recommended from the security

point of view.

The proposed architecture can also be used as a powerful security core, in

wireless communication networks of any kind, supporting bulk encryption,

authentication, and data integrity. This means that wireless networks with

no specific security requirements could adopt the powerful WTLS as an

alternative flexible crypto-processor.

Nicolas Sklavos/Wireless Security and Cryptography 8771_C011 Final Proof page 336 8.2.2007 11:16am

336 Wireless Security and Cryptography



11.6 CONCLUSION

An efficient architecture for WTLS implementation was proposed in this

chapter. All the WTLS-specified encryption units are supported by the intro-

duced system, which guarantees a high level of security strength at the same

time. The proposed architecture performs efficiently for a great set of ciphers:

IDEA, RSA, D.H., DES, MD5, and SHA-1, integrated in the same hardware

module. In addition, an authorized user verification has also been implemen-

ted. The proposed architecture operation is mainly based on two reconfigur-

able designed units. With this applied technique, the allocated area resources

have been minimized to a great extent compared with other conventional

implementations. The introduced system has been integrated in an FPGA

hardware device and has been tested in real-time conditions, using an

FPGA board. The synthesis results prove that the system has compatible

(for RSA and D.H. operation modes) and better performance (for IDEA,

DES, MD5, and SHA-1) compared with previously published works. The

architecture proposed for IDEA is based on a modified transformation round,

which minimizes the allocated area resources by ~40%. DES implementation

performs better, with a range from 200% to 400%, compared with the

conventional works. The reconfigurable integrity unit has better performance

at ~50%–300% compared with the other conventional architectures for both

MD5 and SHA-1 operation modes.

The proposed architecture is a flexible solution for WAP security layer

implementation. The introduced system can be applied efficiently in both

servers and mobile devices of WTLS wireless networks. The implementation

of the proposed architecture achieves high-speed performance and minimized

area resources, supporting six ciphers operation.
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The basic arithmetic operations (i.e., addition, multiplication, and inversion)

in prime and binary extension fields, GF(p) and GF(2n), have several appli-

cations in cryptography, such as RSA algorithm, Diffie–Hellman key

exchange algorithm [1], the U.S. federal Digital Signature Standard [2], and

also elliptic and hyperelliptic curve cryptography [3,4]. Efficient calculation

of multiplicative inverses of elements in both fields is of utmost importance

since inversion is the most time-consuming operation in hyperelliptic curve

cryptography when affine coordinates are selected [5–10].

The majority of the currently employed inversion algorithms used to

compute inverses in both GF( p) and GF(2n) have their roots in the Euclidean
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algorithm reported by Euclid in his Elements [11]. The Euclidean algorithm

provides a simple and efficient means for computing the greatest common

divisor (GCD) denoted gcd(u,v) of two positive integers u and v, without finding

their factorizations. In many cryptographic applications, the extended version of

the Euclidean algorithm plays an important role. In addition to the GCD, the

extended Euclidean algorithm (EEA) returns two unique integers s and r. Using

these integers the GCD may be expressed as a linear combination of u and v

usþ vr ¼ gcd(u,v):

If u and v are relatively prime, it immediately follows that

vr ¼ 1(mod u):

Hence, the EEA provides an efficient method to compute modular inverse v�1

(mod u)¼ r. The EEA can easily be modified to compute multiplicative

inverses in binary extension fields, GF(2n), as shown in [12]. The major

difficulty in EEA is that it requires many integer division operations, which

are considered to be very expensive in cryptography. Therefore, a binary

extended Euclidean algorithm (b-EEA), that is attributed to Penk [13], was

proposed. The binary algorithm is remarkably suitable for implementation in

digital systems (both hardware and software), since it does not require long

integer divisions, but only relies on basic addition and subtraction operations.

Many inversion algorithms proposed in literature, both for GF( p) and GF(2n),

have similarities to the b-EEA. However, they differ in the number of basic

operations they require to compute inverses.

The organization of the chapter is as follows: in Section 12.2, we present

four different algorithms proposed for GF( p) and discuss and compare their

performances from the perspectives of both software and hardware implemen-

tations. We perform the same treatment for inversion algorithms for GF(2n) in

Section 12.3. We demonstrate that more possibilities exist for inversion

in GF(2n) than GF( p) such as systolic array implementation in this section.

Finally, we summarize our findings in Section 12.4.

12.1 INVERSION ALGORITHMS FOR PRIME FIELDS GF(p )

12.1.1 BINARY EEA

Algorithm 1 [13] directly computes a�1 mod p by maintaining the invariants

saþ xp ¼ v, raþ yp ¼ u,

where x and y are not computed. In the iteration before the last one, u¼ v¼ 1,

and thus the last iteration results in u¼ 1 and v¼ 0. Consequently, we have

raþ yp¼ 1, indicating r is the inverse of a mod p. However, since r is allowed
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to be negative and r can become larger than p in the last iteration, Step 13 and

Step 14 are necessary.

Algorithm 1. Binary Extended Euclidean Algorithm

Input: a 2 [1, p� 1] and p is prime number

Output: r 2 [1, p� 1] where r¼ a�1(mod p)

1: u :¼ p, v :¼ a, r :¼ 0, and s :¼ 1

2: while v> 0 do

3: while u is even do

4: u :¼ u=2

5: if r is even then r :¼ r=2 else r :¼ (rþ p)=2

6: end while

7: while v is even do

8: v :¼ u=2

9: if s is even then s :¼ s=2 else s :¼ (sþ p)=2

10: end while

11: if u> v is even then u :¼ u� v, r :¼ r� s else v :¼ v� u, s :¼ s� r
12: end while

13: if r � p then r :¼ r� p(mod p)

14: if r< 0 then r :¼ rþ p(mod p)

15: return r

A division algorithm to compute b=a mod p can be directly obtained by

substituting s :¼ b for s :¼ 1 in Step 1 of Algorithm 1. Since the operations

applied to r and s mostly right shifts and subtractions and occasionally

additions with the modulus, it is easier to control the magnitude of r and s
in Algorithm 1 than in the Montgomery division algorithm, as can be seen in

the next section.

12.1.2 MONTGOMERY INVERSION ALGORITHM

The Montgomery inversion algorithm, as defined in [5], computes

b ¼ a�12n(mod p), (12:1)

given a< p, where p is a prime number and n¼ [log2 p]. The algorithm

consists of two phases: the output of Phase I is the integer r such that

r¼ a�12k(mod p), where n � k � 2n, and Phase II is a correction step and

can be modified, as shown in [8], to calculate a slightly different inverse that

is a more precise definition of the Montgomery inverse

b ¼ MonInv(a2n) ¼ a�12n(mod p): (12:2)
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This new definition is more suitable since it takes an integer in so-called residue

domain and yields its multiplicative inverse, again in the residue domain.

Algorithm 2. Montgomery Inversion Algorithm—Phase I

Input: a 2 [1, p� 1] and p is prime number

Output: r 2 [1, p� 1] and k, where r¼ a�12k mod p and n � k � 2n
1: u :¼ p, v :¼ a, r :¼ 0, s :¼ 1, and k :¼ 1 (loop index)

2: while v> 0 do

3: if u is even then u :¼ u=2, s :¼ 2s
4: else if v is even then v :¼ v=2, r :¼ 2r
5: else if u> v then u :¼ (u� v)=2, r :¼ rþ s, s :¼ 2s
6: else v :¼ (v� u)=2, s :¼ rþ s, r :¼ 2r
7: k :¼ kþ 1

8: end while

9: if r � p then r :¼ r� p(mod p) end if

10: return r :¼ p� r and k

Algorithm 2 is in fact the first phase of the Montgomery inversion

algorithm and the Montgomery inverse of a mod p (i.e., a�122n mod p) can

be obtained applying 2n� k repeated multiplications of r by 2 after the first

phase. In every iteration the following operation must also be performed

if r � p then r :¼ r � p:

There are three important theorems about the algorithm, which have already

been proven in [5].

Theorem 1 If p> a> 0, then the intermediate values r, s, u, and v in the
Montgomery inversion algorithm are always in the range [1, 2p� 1].

Theorem 2 If a and p are relatively prime, p is odd, and p> a> 0, then the
number of iterations in the first phase of Montgomery inversion algorithm is
at least n and at most 2n, where n is the number of bits in p.

Theorem 3 If p and a are relatively prime, p is odd, and p> a> 0, then Phase
I of Montgomery inversion algorithm returns a�12k (mod p).
A Montgomery division algorithm to compute (b2n)=(a2n) mod p that can be

obtained from the Montgomery inversion algorithm requires substantial

modifications in the steps of Algorithm 2. First modification must be made

to Step 1 by substituting s :¼ b2n for s :¼ 1. Consequently, the variables r and

s become large numbers in the early iterations and furthermore the operations

in Step 3 through Step 6 can even result in larger values of r and s. Therefore,

after the operations in Step 3 through Step 6, r and s must be reduced (mod p)

if they become larger than p. For example, Step 3 must be modified as

if u is even then u :¼ u=2, s :¼ 2s mod p:
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As a result, the advantage of the Montgomery division algorithm over the

classical method of invert-and-multiply (i.e., b=a mod p� b(a�1 mod p) is not

obvious, if it is not worse. And finally, the second phase of the Montgomery

inversion must also be modified. Given residue numbers a2n mod p and b2n

mod p, the first phase of the Montgomery division yields b=a � 2k mod p,

where 2n � k � n. The residue form of the division, b=a � 2n mod p, can be

obtained by applying k�n repeated division of the form

if r is even then r :¼ r=2 else r :¼ (r þ p)=2:

12.1.3 LEFT-SHIFT BINARY INVERSION ALGORITHM

In Algorithm 1 and Algorithm 2 variables u or v are shifted to the right in

every iteration. The algorithm proposed in [14] given as Algorithm 3 com-

putes inversion by employing left-shift operations.

Algorithm 3. Left-Shift Inversion Algorithm

Input: a 2 [1, p� 1] and p is prime number

Output: r 2 [1, p� 1] where r¼ a�1 mod p
1: u :¼ p, v :¼ a, r :¼ 0, and s :¼ 1, cu : ¼ 0, cv :¼ 0

2: while u 6¼+2cu and v 6¼+2cv do

3: if (un¼ 0 and un�1¼ 0) or ( un¼ 1 and un�1¼ 1) and

(un�2 or, . . . , u1 or u0¼ 1) then

4: if cu � cv then u :¼ 2u, r :¼ 2r, cu :¼ cuþ 1 else u :¼ 2u,

s :¼ s=2, cu :¼ cuþ 1

5: else if (vn¼ 0 and vn�1¼ 0) or (vn¼ 1 and vn�1¼ 1) and (vn�2

or, . . . ,v1 or v0¼ 1) then

6: if cv � cu then v :¼ 2v, s :¼ 2s, cv :¼ cvþ 1 else v :¼ 2v,

r :¼ r=2, cv :¼ cvþ 1

7: else

8: if vn¼ un then

9: if cu � cv then u :¼ u� v, r :¼ r� s else v :¼ v� u, s :¼ s� r
10: else

11: if cu � cv then u :¼ uþ v, r :¼ rþ s else v :¼ vþ u, s :¼ sþ r
12: end if

13: end if

14: end while

15: if (v ¼ +2cv) then r :¼ s, un :¼ vn

16: if (un¼ 1 and r< 0) then r :¼�r else r :¼ p� r
17: if (r< 0) then r :¼ rþ p
18: return r
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Algorithm 3 is designed to be implemented in hardware. It eliminates the

need for the integer comparison operation such as u> v that is common in

other binary inversion algorithms. Instead, it includes relatively less expen-

sive operations such as ORing of bits of u and v that can be implemented

using a tree of OR gates. However, it requires comparisons such as u 6¼+2cu

that is probably more expensive to implement than the simple comparison

v 6¼ 0 used in other algorithms. The main advantage of Algorithm 3, however,

is the fact that it requires fewer number of addition operations on average

comparing with other right-shift algorithms at the expense of more shift

operations. Since shift operations are likely to be much less expensive than

additions, Algorithm 3 can be more efficient when implemented in hardware

even though the average number of iterations is higher than those of Algo-

rithm 1 and Algorithm 2. In addition, the control circuit of Algorithm 3 is

likely to be more complicated than others.

12.1.4 BINARY EEA WITH BRENT–KUNG TECHNIQUE

All algorithms presented here except Algorithm 3 require the operation of

comparing two integers, that is, u> v. To remove the comparison operation,

one can adopt the idea of Brent and Kung [15], which introduces a new

variable, d, to represent the difference between the bit lengths of u and v.

Algorithm 4 proposed in [16] uses this idea.

Algorithm 4. Binary EEA with Brent–Kung Technique

Input: a 2 [1, p� 1] and p is prime number

Output: r 2 [1, p� 1] where r¼ a�1 mod p
1: u :¼ p, v :¼ a, r :¼ 0, s :¼ 1, and d :¼ 0

2: while v 6¼ 0 do

3: if v is even then

4: v :¼ v=2, d :¼ d� 1

5: else

6: if d< 0 then u$ v, r $ s, d :¼�d

7: k :¼ 1

8: if ((uþ v) mod 4 6¼ 0) then k :¼�1 else d :¼ d� 1

9: v :¼ (vþ k � u)=2, s :¼ (sþ k � r)

10: end if

11: s :¼ (sþ s0 � p)=2

12: end while

13: if u 6¼ 1 then r :¼ p� r
14: return r
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The symbol $ indicates the swap of values between two variables.

The algorithm is a slightly different version of b-EEA and uses the following

properties to compute multiplicative inversion. If v is even and u is odd, then

gcd(u,v)¼ gcd(u,v=2). If both are odd, then 4 divides either vþ u or v� u. If

4 divides vþ u, then gcd(u,v)¼ gcd(u,(uþ v)=4). Otherwise, gcd(u,v)¼
gcd(u,(v� u)=4). In both cases, juþ vj=4, jv� uj=4�max(ju=2j, jv=2j).
Thus, if v> u, (uþ v)=4 or (v� u)=4 decrements the bit length of v by 1.

If v< u, the bit length of v may not be decremented. This may result in

negative values of v. On the other hand, when d< 0, the swap of variables is

applied, which is required for the convergence of the algorithm.

Algorithm 4 requires, on average, higher number of iterations to complete

as explained in the next section. On the other hand, it is easy to convert it to a

division algorithm by substituting s :¼ b for s :¼ 1 in Step 1 to compute b=a
mod p. However, the real advantage of the algorithm is the fact that it needs

no comparison of integers. Eliminating the integer comparison operation may

facilitate using carry-free arithmetic, where the comparison is expensive, but

shift and addition operations can be executed efficiently.

12.1.5 COMPARISON OF BINARY INVERSION ALGORITHMS FOR GF(P)

Many inversion algorithms proposed in the literature are originally designed to

be implemented in software on general-purpose processors. Recently, there has

also been considerable interest to design new algorithms favoring hardware

implementations, since software implementations are far from achieving the

time requirements of elliptic curve cryptography. The aim of this section is to

provide a fair comparison of different inversion algorithms from the perspec-

tive of both hardware and software implementations and to give designers

leverage in choosing the appropriate algorithm for the intended application.

However, it is difficult to derive criteria to assess different algorithms since

many details factor in on their efficiency. The best thing one can do in this

circumstance is to count average number of iterations and average number of

operations such as addition and shifting. Each iteration incorporates different

combinations of iterations such as additions, shifts, additions followed by shift

operations, and so on. Which combination is executed in a particular iteration

is determined using certain conditional check operations such as parity

check (e.g., Step 3 and Step 7 of Algorithm 1), comparison (e.g., Step 11 of

Algorithm 1), and so on. The expected number of these operations and certain

combinations of these operations determine the complexity of the algorithm.

Since software and hardware implementations adopt different ways to execute

these operations, we separately inspect software and hardware cases.

The software implementation of an inversion algorithm running on the

datapath of a simple general-purpose processor executes the operations in a

sequential manner since main functional units are not duplicated. For example,

Step 5 of Algorithm 2 has two additions and shift operations that can be done in
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parallel. However, a typical software implementation on a simple reduced

instruction set computer (RISC) processor fails to take advantage of these

types of concurrencies. Under these assumptions, we ran four algorithms

presented above 10,000 times with different precisions, counted the number

of shift and addition operations, and demonstrated the results in Figure 12.1.

As can be observed from the figure, while Algorithm 1 requires the

fewest number of shift operations, Algorithm 3 requires the fewest number of

additions, and Algorithm 1 and Algorithm 2 are comparable in terms of total

number of addition and shift operations. Algorithm 4 is apparently not suitable

for software implementations. Algorithm 3 is also not suitable for software

implementation because shift and addition operations are usually of equal cost

in software. From the software implementation aspect, the total number of

iterations is usually more important. Furthermore, the control flow of Algorithm

3 poses certain difficulties in software implementation. Therefore, there are two

algorithms suitable for software: Algorithm 1 and Algorithm 2. Algorithm 1 has

slightly lower total operation count than Algorithm 2. However, Algorithm 2

usually performs better than Algorithm 1 because of the unaccounted factors

such as memory efficiency and more comparison operations. For example,
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FIGURE 12.1 Comparison of four algorithms in terms of number of operations with

respect to software implementation.
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Algorithm 1 requires parity check of r or s frequently. In addition, the fifth

multiprecision variable, the modulus p, needs to be loaded from memory, which

is not necessary in the first phase of Algorithm 2.* Consequently, one can safely

conclude that Algorithm 2 is the best choice for software implementation.

To compare different inversion algorithms from the perspective of hard-

ware implementations, we take a different approach by taking into account

the operations that can be performed in parallel. We assume that it is possible

to employ more than one functional unit such as adders and shifters. We can,

thus, classify the operations to count as follows: (i) standalone shift operations

that cannot be executed along with an addition and (ii) addition operations that

are basically addition or subtraction operations. For example, shifts in Step 3

or Step 4 of Algorithm 2 are standalone shift operations, while (u – v)=2 in

Step 5 of the same algorithm is considered as an addition operation. Although

the latter has also a shift following the subtraction, it is considered as an

addition operation since this shift can be incorporated into an adder while

designing the hardware. In addition, assuming that we can employ as many

adders or shifters as we need, we consider operations that can be executed

simultaneously by different units working in parallel, as only one operation.

In case two additions and two shifts are executed in the same iteration in

parallel, we count them as a single addition and shift operation, respectively.

For example, Step 3 of Algorithm 2 is counted as a single shift operation.

Under these assumptions, we compared four algorithms. Excluding parity

check and integer comparison, we counted the number of standalone shift

operations and additions by running these four algorithms 10,000 times (with

100 different integers whose inverses to be calculated for 100 different primes).

In Figure 12.2, the statistics obtained from this experiment are displayed.

From the figure, the number of addition operations in Algorithm 3 is much

fewer than those in the other three algorithms. In total number of operations,

Algorithm 2 absolutely compares favorably with the others. However, Algo-

rithm 3 may perform better where the shift operations are much less expensive

than additions. On the other hand, since there are more complicated conditional

checks in Algorithm 3 than Algorithm 2, a better comparison based on actual

hardware implementations of both algorithms is needed to determine which

one is more efficient by considering the other factors such as area requirements

and critical path delays of the actual designs also. As also shown in the figure,

Algorithm 4 performs poorly comparing with the other three algorithms. The

algorithm does not use a comparison operation used in Algorithm 1 and

Algorithm 2 to accelerate the convergence process. Consequently, it converges

slowly resulting in higher number of iterations on average. Since it does not use

a comparison, it can be profitably used in implementations where carry-free

arithmetic is employed, examples of which are given in [17,18].

* In fact, all inversion algorithms need to perform many load and store instructions from memory.

These memory-access instructions have significant effect on performance.
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12.1.6 OTHER ALGORITHMS FOR INVERSION

Beside the four algorithms described and analyzed earlier, other alternative

algorithms for inversion have also been proposed in the literature

[7,8,10,19–22] for GF( p) inversion. Some of these algorithms can be con-

sidered as slightly different versions of the algorithms described here.

For instance, the inversion algorithms in [20] and [21] are the same as

Algorithm 1. On the other hand, some algorithms, even though are variations

of Algorithm 2, incorporate clever tricks to accelerate the computations. We

outline two algorithms in this category in the following:

. Inversion with Multibit Shifting. The algorithms in [19,22] proposed

for hardware implementations take advantage of so-called multibit

shifting technique which allows to shift the variables u and v more

than 1 bit in one clock cycle whenever it is possible. Although the

technique is originally proposed for Algorithm 2, it can also be used in

Algorithm 1 and Algorithm 4. In Step 3 and Step 4 of Algorithm 2,

instead of a simple parity check on the variables u and v, the three

least significant bits of these variables are checked. This check allows,
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FIGURE 12.2 Comparison of four algorithms in terms of number of operations with

respect to hardware implementation.
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for example, shifting these variables 3 bits to the right at once if the

three least significant bits of the variable are all zero. Checking 3 bits

instead of a parity check costs insignificant amount of time and area

overhead in hardware. The number of iterations is therefore reduced.

The overall effect of the technique is reported in [19,22] as about 15%

to 20% decrease in the number of clock cycles in actual hardware

implementations of the algorithm. The multibit shifting idea can be

extended to Step 5 and Step 6 of Algorithm 2 by slightly modifying

the subtraction operations u� v and v� u. For example, u� v can be

changed as u� 2v or u� 3v when possible. This accelerates the

convergence of u to 1, hence decreasing the number of iterations on

average. However, this technique also complicates the operations in

an iteration. Therefore, its effect needs to be further analyzed.
. Kobayashi’s Word-Based Algorithm Suitable for Software. The algo-

rithm [7] based on Algorithm 2 proposes a different variant suitable for

software implementations. The algorithm treats the variables as multi-

word integers where each word is w bits, that is usually the word size of

the underlying general-purpose processor. The algorithm proposes a

major modification in the first phase of the algorithm by nesting an

inner ‘‘for loop’’ within the while loop. The inner for loop is executed

w times and only the least and most significant words of the four

variables, u, v, r, and s, are involved in the computations. These compu-

tations are the same as those of Algorithm 2. Therefore, the inner loop

consists of only single precision operations. When the inner loop exits, a

couple of operations are performed on multiword variables. This tech-

nique combined with a postprocessing technique proposed for the sec-

ond phase of Algorithm 2 reportedly provides almost 5.5 times speedup.

12.2 INVERSION ALGORITHMS FOR BINARY EXTENSION
FIELDS GF(2n)

Although prime fields GF( p) and binary extension fields GF(2n) are quite

dissimilar mathematical structures, many inversion algorithms based on EEA

proposed for computing inverses in GF( p) also work for GF(2n) with only

minor modifications. In this section, we describe and analyze inversion

algorithms for GF(2n). In addition, we also explain new possibilities for

binary extension fields such as systolic array computation of inversions,

which is not possible for prime fields. First, we start by introducing a notation

used in all algorithms in this section. Let

p(x) ¼ xn þ pn�1xn�1 þ pn�2xn�2 þ � � � þ p1xþ p0

be an irreducible polynomial over GF(2) that is used to construct the binary

extension field GF(2n). An element of GF(2n) can be represented as a polynomial

Nicolas Sklavos/Wireless Security and Cryptography 8771_C012 Final Proof page 351 31.1.2007 9:23pm

Binary Algorithms for Multiplicative Inversion 351



a(x) ¼ an�1xn�1 þ an�2xn�2 þ � � � þ a1xþ a0

whose coefficients ais are from {0,1}. Then arithmetic on the elements in

GF(2n) is regular polynomial arithmetic modulo irreducible polynomial p(x),

where operations on coefficients are performed modulo 2.

12.2.1 BINARY EEA FOR COMPUTING INVERSES IN GF(2n)

The b-EEA for GF(2n) is quite similar to Algorithm 1, except that binary

polynomials are used instead of integers, both of which are represented in the

same manner in digital systems. Therefore, the b-EEA for GF(2n) can be

easily obtained from Algorithm 1 by using the following modifications:

. Replace all addition and subtraction operations involving u, v, r, s, and

p with addition operation in GF(2n).
. Replace all divisions by 2 with division by x and multiplication by 2

with multiplication by x. However, both division and multiplication

by 2 are implemented as right and left shifts in digital systems,

respectively. Therefore, there is no need to do any modification in

the implementation since division and multiplication by x are imple-

mented in the same manner.
. Replace the parity checks in Algorithm 1 with checks on the constant

term of polynomials. Again, there is no need to do any modification in

the implementation since both checks are done identically.

Algorithm 5. Binary Extended Euclidean Algorithm for GF(2n)

Input: a(x) and p(x) irreducible polynomial, where deg(a(x))< deg(p(x))

Output: r(x) where r(x)¼ a(x)�1 mod p(x) and deg(r(x))< deg(p(x))

1: u(x) :¼ p(x), v(x) :¼ a(x), r(x) :¼ 0, and s(x) :¼ 1

2: while v 6¼ 0 do

3: while u0¼ 0 do

4: u(x) :¼ u(x)=x
5: if r0¼ 0 then r(x) :¼ r(x)=x else r(x) :¼ (r(x)þ p(x))=x
6: end while

7: while v0¼ 0 do

8: v(x) :¼ u(x)=x
9: if s0¼ 0 then s(x) :¼ s(x)=x else s(x) :¼ (s(x)þ p(x))=x

10: end while

11: if deg(u(x))> deg(v(x)) then u(x) :¼ (u(x)þ v(x)), r(x) :¼ r(x)þ s(x)

12: else v(x) :¼ (v(x)þ u(x)), s(x)¼ s(x)þ r(x)

13: end if

14: end while

15: return r(x) mod p(x)
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. Replace integer comparison operation with degree comparison of two

polynomials. However, comparing binary representation of two poly-

nomials as integers also works.

The b-EEA for GF(2n) maintains similar invariants to those of Algorithm 1.

Similarly, a division algorithm to compute b(x)=a(x) mod p(x) can be directly

obtained by substituting s(x) :¼ b(x) for s(x) :¼ 1 in Step 1 of Algorithm 5.

12.2.2 MONTGOMERY INVERSION ALGORITHM FOR GF(2n)

Similar to b-EEA, the Montgomery inversion algorithm for GF(2n) can be

obtained by performing the same modifications proposed for b-EEA. The first

phase of the algorithm computes r(x)¼ a(x)�1xk mod p(x), where nþ 1 � k �
deg(a(x))þ nþ 1 and n is the degree of the irreducible polynomial p(x).

Moreover, if deg(p(x))> deg(a(x))> 0, where p(x) is an irreducible polyno-

mial, then the degrees of intermediate binary polynomials r(x), u(x), and

v(x) in the Montgomery inversion algorithm are always in the range of

[0, deg(p(x))], while deg(s(x)) is in the range of [0, deg(p(x))þ 1].

The second phase of the algorithm computes the Montgomery inverse

(i.e., r(x)¼ a(x)�1x2n mod p(x) given a(x)x2n) by applying 2n�k repeated

multiplication of r(x) by x after the first phase. The Montgomery division

algorithm to compute (b(x)xn)=(a(x)xn) mod p(x) necessitates the reduction of

r(x) and s(x) mod p(x) when their degrees become n. The second phase of the

Montgomery division is k�n repeated division of r(x) by x.

The almost inverse algorithm proposed in [6] is very similar to the

Montgomery inversion algorithm; therefore it is not included here.

12.2.3 COMPARISON OF INVERSION ALGORITHMS FOR GF(2n)

The binary extended Euclidean and Montgomery inversions for GF(2n) are

compared using the approach in Section 12.1.5 and the results are depicted in

Figure 12.3. The number of operations (i.e., additions and shifts) from both

software and hardware implementation perspectives is given in the figure,

where the upper two lines are from the software perspective and the lower

ones from the hardware perspective. As can be observed from the figure, the

Montgomery inversion algorithm compares favorably against b-EEA for both

software and hardware implementations.

12.2.4 IDEA OF BRENT–KUNG AND SYSTOLIC ARRAY IMPLEMENTATIONS

The b-EEA and the Montgomery inversion algorithm require the time-

consuming operation of comparing degrees of two polynomials, that is,

deg(u(x))> deg(v(x)), which may dominate the operation speed. To remedy

this problem, one can adopt the idea of Brent and Kung [15], which

introduces a new variable, d, to represent the difference between the degrees
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of u(x) and v(x).* When the need for degree comparison is eliminated, the

control circuit of the inversion unit, when implemented in hardware, requires

only generation of local signals and hence becomes quite simple to design. In

addition, there is no problem of distributing the control signals throughout the

circuit. One of the most efficient implementation techniques for VLSI circuits

is the systolic arrays [23] due to their attractive features such as regularity,

modularity, and concurrency. The systolic arrays yield high-throughput (i.e.,

the number of inversions per clock cycle) when there are many consecutive

inversion operations to be calculated.

In the following, we present three algorithms suitable for systolic array

implementations.

12.2.4.1 Stein’s EEA

Proposed by Stein [24] and improved and extended to division by Wu et al. [25],

Stein’s algorithm is the most efficient variant of b-EEA for systolic

array implementation. Unlike the algorithms discussed so far, Stein’s algorithm

executes in a loop with a fixed number of iterations, 2n�1, where n is the
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FIGURE 12.3 Comparison of two algorithms in terms of number of operations both

from software and hardware point of view.
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degree of the irreducible polynomial. This property is especially important for

two-dimensional systolic array implementation, since the number of rows in

the array is equal to the number of iterations. Moreover, Stein’s algorithm uses

only right-shift operation on variables r(x) and s(x), therefore its adaptation to

division is straightforward.* Stein’s algorithm is depicted in Algorithm 6.

In the algorithm, since u(x) :¼ p(x) and v(x) :¼ a(x) initially, we have

deg(v(x)) � deg(u(x))� 1 in the beginning, and hence, d is initialized to be

�1. Therefore, a negative value of d indicates deg(u(x))> deg(v(x)). In a

typical hardware implementation, the variable d maps onto a simple counter.

A systolic array implementation of Stein’s algorithm is shown in Figure 12.4

for n¼ 3.

In the figure, a row of cells is responsible for performing an iteration of

the algorithm; thus the superscripts represent the iteration number. In each

iteration, the variables v, s, u, and r are updated based on three control signals,

ctr0, ctr1, and ctr2, all of which can be generated using the least significant

bits of these variables and the counter d by the rightmost control cell in the

figure, as in the following equations:

Algorithm 6. Stein’s Euclidean Algorithm for GF(2n) Inversion

Input: a(x) and p(x) irreducible polynomial, where deg(a(x))< deg(p(x))

Output: r(x), where r¼ a(x)�1(mod p(x)) and deg(r(x))< deg(p(x))

1: u(x) :¼ p(x), v(x) :¼ a(x), r(x) :¼ 0, s(x) :¼ 1, and d :¼�1

2: for i from 1 to 2n do

3: if v0¼ 1 then

4: if (d< 0) then (u(x),v(x),r(x),s(x))  
(v(x), u(x)þ v(x), s(x), r(x)þ s(x)), d :¼ �d

5: else v(x) :¼ v(x)þ u(x), s(x) :¼ s(x)þ r(x)

6: end if

7: v(x) :¼ v(x)=x, s(x) :¼ (s(x)þ s0 � p(x))=x, d :¼ d� 1

8: end for

9: return r(x)

ctr0 :¼ vi
0, (12:3)

ctr1 :¼ si
0 þ vi

0 �ri
0, (12:4)

ctr2 :¼ (vi
0 ¼ 1) and (di < 0): (12:5)

The counter d is updated as follows:

* Left-Shift operations may increase the degrees of r(x) and s(x) beyond n.
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diþ1 :¼ di � 1 if ctr2 ¼ 0,

�di � 1 otherwise:

�

The control cell in Figure 12.4 is responsible for generating the three control

signals and updating d. The updates of v, s, u, and r are performed in every

iteration as follows:

Regular1
1 Control1msb1

d = −1v0
s0

r0r1g1u1v1
s1

r2g2u2v2
s2
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Control2msb2
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FIGURE 12.4 Systolic array implementation of Stein’s algorithm.
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v(x) :¼ (v(x)þ ctr0 �u(x))=x, (12:6)

s(x) :¼ (s(x)þ ctr0 �r(x)þ ctr1 �g(x))=x, (12:7)

u(x) :¼ ctr2 �u(x)þ ctr2 �v(x), (12:8)

r(x) :¼ ctr2 �r(x)þ ctr2 �s(x): (12:9)

The jth cell in the ith row performs necessary updates on the jth bit of four

variables as follows:

viþ1
j�1 :¼ vi

j þ ctr0 �ui
j, (12:10)

siþ1
j�1 :¼ si

j þ ctr0 �ri
j þ ctr1 �gj, (12:11)

uiþ1
j :¼ ctr2 �ui

j þ ctr2 �vi
j, (12:12)

riþ1
j :¼ ctr2 �ri

j þ ctr2 �si
j: (12:13)

For the msb (most significant bit) cell the equations become simpler

viþ1
m�1 :¼ ctr0 �ui

m, (12:14)

siþ1
m�1 :¼ ctr1 �gm ¼ ctr1, (12:15)

uiþ1
m :¼ ctr2 �ui

m, (12:16)

riþ1
m :¼ 0: (12:17)

As can be observed from the equations, the execution proceeds from right to

left and top to bottom. The control signals are conveyed from a cell to the next

cell in its left through flip-flops, which are represented as circles on connec-

tions in Figure 12.4. Therefore, each circle in the figure indicates one clock

cycle delay in the computations. There are two sequential flip-flops in each

connection between two cells in a column in systolic array. The values

generated in jth cell in row i have to wait for two clock cycles in these flip-

flops before they are used by the jth cell in row iþ 1, since the latter also

needs the values from jþ 1th cell in row i. Therefore, total latency to compute

an inverse in GF(2n) is 2 � (2n� 1)þ n¼ 5n� 2 clock cycles. After it per-

forms its computation, a cell becomes free for further computation for another

inverse operation. At a given time, n consecutive inverse computations

execute in the systolic array. The throughput of the systolic array is 1 inverse
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operation=clock cycle, since it outputs n bits every clock cycle even though

these n bits of result do not belong to the same computation.

12.2.4.2 Brunner’s EEA

Another inversion algorithm suitable for systolic implementations was pro-

posed by Brunner et al. [26]. Efficient implementation of the algorithm on

systolic arrays was presented in [27,28]. It is a left-shift algorithm as opposed

to right-shift Stein’s algorithm. Brunner’s algorithm yields comparable

performance to Stein’s algorithm when implemented on systolic arrays.

However, Brunner’s division algorithm that can be easily obtained from

inversion algorithm suffers from left-shift operations performed on s(x). As

a result of left-shift operations, the degree of s(x) can occasionally become n,

necessitating a reduction by p(x).

Algorithm 7. Brunner’s Euclidean Algorithm for GF(2n) Inversion

Input: a(x) and p(x) irreducible polynomial, where deg(a(x))< deg(p(x))

Output: r(x), where r¼ a(x)�1(mod p(x)) and deg(r(x))< deg(p(x))

1: u(x) :¼ p(x), v(x) :¼ a(x), r(x) :¼ 0, s(x) :¼ 1, and d :¼ 0

2: for i from 1 to 2n do

3: if vn¼ 0 then

4: v(x) :¼ xv(x), s(x) :¼ xs(x), d :¼ dþ 1

5: Else

6: if un¼ 1 then u(x) :¼ u(x)þ v(x), r(x) :¼ r(x)þ s(x)

7: u(x) :¼ xu(x)

8: if (d¼ 0)(u(x), v(x), r(x), s(x)) (v(x), u(x), s(x), xr(x)), d :¼ 1

9: else s(x) :¼ (s(x)þ s0 � p(x))=x, d :¼ d� 1

10: end if

11: end for

12: return r(x)

Montgomery Inversion Algorithm Suitable for Systolic Arrays

The Montgomery inversion suitable for systolic array implementation can be

obtained in the same manner resulting in Algorithm 8. The use of counter d

eliminates the need of degree comparison from the algorithm. There is no

need for a second phase since the first phase of the algorithm executes

exactly 2n times yielding r(x)¼ a(x)�1x2n mod p(x). Algorithm 8 provides a

comparable performance to those of Stein’s and Brunner’s algorithms. How-

ever, it also suffers from right-shift operations performed on both r(x) and s(x)

when it is converted to a division algorithm. Moreover, the Montgomery

division algorithm does not compute (a(x)=b(x))xn but (a(x)=b(x))x2n; thus it

needs a postprocessing step.
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Algorithm 8. Montgomery Inversion Algorithm for GF(2
n
)

with Brent–Kung Idea

Input: a(x) and p(x) irreducible polynomial, where deg(a(x))< deg(p(x))

Output: r(x), where r¼ a(x)�1x2n(mod p(x)) and deg(r(x))< deg(p(x))

1: u(x) :¼ p(x), v(x) :¼ a(x), r(x) :¼ 0, s(x) :¼ 1, and d :¼ �1

2: for i from 1 to 2n do

3: if u0¼ 0 then u(x) :¼ u(x)=x, s(x) :¼ xs(x), d :¼ dþ 1

4: else if v0¼ 0 then v(x) :¼ v(x)=x, r(x) :¼ xr(x), d :¼ d� 1

5: else if d< 0 then u(x) :¼ (u(x)þ v(x))=x,r(x) :¼ r(x)þ s(x),

s(x) :¼ xs(x),

d :¼ dþ 1

6: else v(x) :¼ (v(x)þ u(x))=x, s(x) :¼ s(x)þ r(x), r(x) :¼ xr(x),

d :¼ d� 1

7: end for

8: return r(x)

Comparison of Systolic Array Algorithms

Several metrics are used to compare performance of different inversion

algorithms for systolic arrays: throughput (inversions per clock cycle),

latency (number of clock cycles to compute one inversion), critical path

delay, number of flip-flops, total gate counts, and area and time complexities.

The three inversion algorithms already mentioned provide the same through-

put of 1 inversion=clock cycle and almost the same latency of about 5m. The

time complexities of all three are O(1) because of ring counters used for d

which would dominate the critical path otherwise.* Systolic arrays based on

Montgomery and Stein’s algorithms have better critical path delay than that of

systolic arrays based on Brunner’s algorithm. Stein’s algorithm usually

requires fewer number of flip-flops than others. For division, the best choice

is Stein’s algorithm since it features only right-shift operations.

Two-dimensional systolic arrays use about 2n rows with n cells each; thus

their area complexity is O(n2). This high area complexity is justified for inver-

sion-intensive computations where there are many consecutive inversion oper-

ations involved. For cases where there are not many inversion operations and the

chip area is limited, one-dimensional systolic arrays are proposed [25]. There

are two methods to construct a one-dimensional systolic array from two-

dimensional arrays: (i) horizontal projection where all rows are folded into a

single row and (ii) vertical projection where all columns are folded into a single

column. In the horizontal projection, the latency remains the same but through-

put dramatically decreases and the area complexity is O(n). In vertical projec-

tion, on the other hand, throughput is higher than that of horizontal projection.

* Note that the control cell features a counter for d, whose time complexity, O(n2), dominates

some earlier design.
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12.2.5 OTHER ALGORITHMS FOR INVERSION IN GF(2n)

In this section, we briefly mention other inversion algorithms for GF(2n).

. Algorithms for Special Binary Extension Fields GF(2n). The Itoh–

Tsuji algorithm [29] uses Fermat’s Little Theorem, which is

a(x)2n�1¼ 1 mod p(x), to compute multiplicative inverse as follows:

a(x)�1 ¼ a(x)2n�2 ¼ 1mod p(x):

Therefore, multiplicative inverse becomes a special type of exponentiation

operation, which consists of repeated multiplication and squaring. The

exponentiation can especially be performed very fast when optimal normal

basis [30] is used to represent the elements of GF(2n) since squaring is just a

shift in this basis.

. Unified Inversion Algorithms. As discussed previously, by effectively

changing addition and subtractions in GF( p) to additions in GF(2n),

GF(2n) inversion algorithms can be obtained from all four GF( p)

algorithms proposed in Section 12.1. Therefore, it is possible to design

a unified datapath to perform inversion operations in both fields,

GF( p) and GF(2n), as demonstrated in [10,16,19,22].

12.3 CONCLUSION

In this chapter, we investigated binary inversion algorithms proposed

for prime GF( p) and binary extension fields GF(2n) from the perspective

of their efficiency in both hardware and software implementations. For

arbitrary fields (i.e., fields constructed using random primes and irreducible

polynomials), Montgomery inversion algorithms for both fields turn out to

be the best choice for software implementations. In hardware, there are more

alternatives. For GF( p), the Montgomery inversion and the left-shift algo-

rithms (i.e., Algorithm 3) provide similar performance. The left-shift

algorithm requires fewer number of additions while the Montgomery

inversion algorithm requires fewer number of shifts and total operations.

Therefore, the left-shift algorithm tends to perform better in hardware imple-

mentations where shift operations are much less expensive than additions. For

GF(2n), the Montgomery inversion is still better than straightforward b-EEA.

However, systolic array implementations based on b-EEA generally outper-

form the Montgomery inversion on systolic arrays. However, further work is

needed for systolic arrays for Montgomery inversion algorithm for a better

comparison.
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8. E. Savaş and Ç.K. Koç, The Montgomery modular inverse—revisited, IEEE
Transactions on Computers, 49(7):763–766, July 2000.

9. M.A. Hasan, ‘‘Efficient computation of multiplicative inverses for cryptographic

applications,’’ Technical Report CORR 2001–03, Centre for Applied Crypto-

graphic Research, 2001.
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Discussing about security, question always arises as to where to implement

the security mechanisms? Is a mobile handset that is capable of loading and

executing Java applets secure enough as a platform for financial transactions?

This depends on the security target of the application and the overall system

architecture, but the handset is not the best choice in many cases. To achieve

better security on a technical level, we can employ secure hardware such as

smart cards. This chapter explains the basics of smart card technology, and it

also shows how smart cards can help to establish end-to-end transaction

security in wireless environments. This chapter is targeted at readers

who have acquired a basic understanding of IT security, cryptography, and

wireless technology from the previous chapters.
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13.1 TRUSTED COMPUTING BASE

Basically, an information technology system consists of several layers, in

which each layer uses services from the next lower level. A simple model of a

personal computer shows three layers: application software, operating system,

and hardware. This means that the application software depends on the

capabilities and the qualities of the operating system, and the operating

system depends on the capabilities and the qualities of the hardware. In

terms of security, this implies that it is ridiculous to implement a secure

application on top of an operating system that is prone to execute malicious

code. The malicious software can alter input and output data of the meant-

to-be-secure application, at least when the application is communicating with

humans. Unfortunately, humans are not capable of performing cryptographic

operations with their brains. Hence, they are restricted to cryptographically

unprotected communication. In addition, there is no sense in implementing a

secure operating system on top of a hardware that allows for unrestricted code

changes. Nowadays, all this is rather ancient knowledge. In 1985, the U.S.

Department of Defense issued the Trusted Computer System Evaluation

Criteria, also called the Orange Book. One key element is the definition of

a so-called trusted computing base (TCB):

The heart of a trusted computer system is the Trusted Computing Base (TCB)

which contains all of the elements of the system responsible for supporting the

security policy and supporting the isolation of objects (code and data) on which

the protection is based. ( . . . ) Thus, the TCB includes hardware, firmware, and

software critical to protection and must be designed and implemented such that

system elements excluded from it need not be trusted to maintain protection.

Department of Defense [1]

In other words, when designing security architecture, we need to start

with at least one piece of secure hardware that we can build on. This is the

entity that may hold secret keys, perform cryptographic operations, and grant

access to certain functions only after a positive authentication. Smart cards

are such pieces of secure hardware. They are designed in a way that provides

the best possible protection against attackers trying to read stored data or to

modify these data or the results of the card’s computations. Therefore, smart

cards are also counted as pieces of tamper-proof hardware.

13.2 CLASSIFICATION OF SMART CARDS

Giving an exact definition of a smart card is not feasible, because smart card

is common speech. The technical term is integrated circuit card (ICC),

denominating a (plastic) card containing a tamper-proof integrated circuit.
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Figure 13.1 shows a typical ICC with a visible electrical contact plate. The

card can communicate with the outside world through an interface device

(IFD) that connects to this contact plate. The card itself is a passive device

that needs power supply from the IFD. The IFD may be a simple card reader

that is connected to a background system, or a more complex card

terminal that may operate stand-alone and that includes a user interface for

interaction with humans.

Obviously, the existence of a contact plate does not imply that the card is

particularly smart. Regarding the internal logic of ICCs, we differentiate

between memory cards and microprocessor cards.

A memory card consists mainly of a read and write memory, usually an

electrically erasable programmable read-only memory (EEPROM), and some

hardwired communication and security logic (see Figure 13.2). Typical func-

tions of the security logic of a memory card are an optional write protection of

certain memory areas or a primitive authentication mechanism, such as

allowing read or write access to the memory only after a password or a

personal identification number (PIN) has been entered. Memory cards cap-

able of cryptographic operations with configurable keys have come up in the

last two years, but are not yet widespread.

FIGURE 13.1 Integrated circuit card (From Austria Card).

I/O including
security

EEPROM

FIGURE 13.2 Block diagram of a memory card.
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Complex ICC applications including cryptographic operations are usually

realized with microprocessor cards. Figure 13.3 shows the internal structure

of such a microprocessor card, containing a central processing unit (CPU), a

ROM, an EEPROM, a random access memory (RAM), and an input and

output peripheral unit that handles the communication with the outside world.

An optional cryptography coprocessor is used to perform the algorithms of

asymmetric cryptography, especially the RSA algorithm, with acceptable

speed. ICC microprocessors are significantly slower than CPUs of today’s

desktop computers. They operate at clock frequencies of 5 to 30 MHz. There

are also limitations to the memory size resulting directly from semicon-

ductor size restrictions. Typical ICCs offer 64 to 256 KB of ROM, 4 to 256

KB of EEPROM, and 1 to 4 KB of RAM. Employing these components, a

piece of software called card operating system (COS) provides services

that the application software can use—similar to any other operating system.

The ability to execute software has been accepted by many ICC experts

as the major criterion for giving a card the attribute smart. Throughout

this chapter, the term smart card is used synonymously for the exact term

microprocessor card.

The second distinguishing feature of ICCs is the size of the card. The

basic standard ISO 7810 defines four different formats, from which only two

are widely used. Typical credit cards are produced in the ID-1 format (see

also Figure 13.1). The smaller ID-000 format shown in Figure 13.4 is used

I/O

CPU

ROMRAM

EEPROM

Crypto
coprocessor

FIGURE 13.3 Block diagram of a microprocessor card.

FIGURE 13.4 Integrated circuit card in ID-000 format (From Austria Card).
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for SIM cards of mobile phones and many other cards built into devices. This

is also called ‘‘plug-in format.’’ Besides the formats defined in ISO 7810,

several other shapes have originated in the past few years. Credit card

organizations have come up with fancy roundings, and new applications

such as the ICC-based biometric passport require a larger ICC (or the IC

alone) to be implemented in a booklet. ICC technology is also implemented

in different shapes that do not even resemble a card. One such example is a

USB stick.

The third distinguishing feature of ICCs is their communication interface.

The first cards were restricted to communication through galvanic contacts

(see Figure 13.1). This type of communication has been standardized with

ISO 7816-3, and the industry has kept to this standard. Hence cards that are

built into devices such as mobile phones also follow this standard. Out of the

many existing communication protocols, two distinct protocols have been

standardized. T¼ 0 is a byte-oriented protocol. It was the first microproces-

sor card protocol and is still widely used. T¼ 1 is a block-oriented protocol.

It is more advanced than T¼ 0 and offers a clearly layered architecture and

good error recognition and recovery techniques. Typical bit rates range from

9600-bits=s to 156,250-bits=s, if the most usual external clock frequency of

~5 MHz is applied [2].

ICCs can directly operate wireless; hence, this is named as contactless

communication in the relevant ISO standards that are described in the next

section. In any case, the communication between the ICC and the terminal is

strictly master–slave oriented. The card receives commands from the terminal

and provides the required results.

Figure 13.5 summarizes the classification of ICCs. Additional criteria are

the memory sizes of ROM, EEPROM, and RAM, the CPU architecture and

speed, and the presence or the absence of an RSA coprocessor.

Communication interface

Logic

Shape

ID-1

ID-000

…

Memory

Microprocessor

ISO 7816 ISO 14443 ISO 15693 …

Contact Contactless

FIGURE 13.5 Classification of integrated circuit cards.
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13.3 WIRELESS CARDS

Wireless technology offers a number of benefits for the end-user and the

system operator. Wireless systems are in general more convenient to use and

they need less maintenance. This is also true with ICCs. Contactless ICCs and

contactless card readers are not prone to corrosion of contacts, and more

resistant to mechanical and electrical impact, which makes them well suited

for outdoor applications. Furthermore, because of their ability to communi-

cate over distance, they allow faster transaction times by easier handling. The

card need not be inserted into a terminal but only has to come close enough to

establish communication. The card may even remain in the wallet, if the user

decides to simply move the wallet close to the terminal.

The technical principle behind today’s contactless card systems is to keep

the card as a passive element. The card reader is supplying the power through

inductive coupling, and the data transfer is in most cases modulated onto the

same electromagnetic field. Figure 13.6 shows an example of a contactless

card, where the chip and the connected coil needed for the inductive coupling

can be clearly seen.

As there are different requirements for contactless cards, depending on

the application, a few different standards have been defined already. The first

among these was the standard of close-coupled cards according to ISO 10536.

These cards never became widespread because of their complex technology,

including an additional capacitive coupling for the data transfer. Today, the

most widespread contactless cards are the proximity cards, according to ISO

14443, with a typical operating range of 8 to 10 cm. This distance is said to

combine easy handling for the user with meeting the demand for an explicit

volition. At least the user needs to move his or her card close to a terminal to

initiate a transaction. Another standard is named vicinity cards (ISO 15693).

FIGURE 13.6 Contactless integrated circuit card (From Austria Card).
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Such cards can operate over a distance of 80 cm and more. They are used for

hands-free transactions of humans and as authentication tokens of animals

and things. However, because of restriction of the strength of the electro

magnetic field, long distance results in a limited power supply for the ICC and

in a limited data transmission speed.

In practice, there are not just contact-only and contactless-only cards.

Two different combinations are possible. The first option is to put two

independent chips into the card, one with contact and the other with contact-

less communication interface. This is a simple solution and is called a hybrid

contact and contactless card. Less development effort is required, but such a

card lacks an internal communication between the two chips. This solution is

often chosen if independently approved components have to be combined, for

example, a contactless memory chip for building access control or ticketing

applications and a contact microprocessor chip providing a personal computer

sign-on function. The advantage is that the terminals and the background

systems that have already been developed for the individual applications can

remain unchanged. The second option is to employ special dual interface

chips equipped with one contact and one contactless communication inter-

face. This requires the development of special dual interface card operating

system (COS), which are much more flexible and allow for complex com-

bined contact and contactless applications. Such an application may even use

contact and contactless communication within the same transaction. A good

example is a contact-based payment card with a contactless electronic tick-

eting function for public transport. With a hybrid card solution, the ticket-

vending machine would be responsible first for performing the payment

transaction through the contacts and then for storing the ticket through the

contactless interface. This means that the ticket-vending machine would need

both communication interfaces, but there would be another disadvantage. For

security reasons, a dual interface card is also preferred, because it can, with a

single card command, perform both the payment transaction and the ticket

loading in one step. Thus, the consumer is automatically protected from

cheating ticket-vending machines.

13.4 NEAR FIELD COMMUNICATION

Near field communication (NFC) is an extension to contactless communica-

tion. The new aspect is that this standard specifies communication between

active devices also [3]. For practical reasons, passive smart cards that comply

with ISO 14443 (Type A) are also compatible with NFC devices. A device

with full NFC functionality may either communicate with another active NFC

device, or may operate as a contactless terminal in a communication with a

smart card, or may behave like a contactless smart card itself. This allows

for different devices, such as mobile phones equipped with an additional NFC

IC, to include the functionality of contactless cards. As with ISO 14443, the
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communication distance is limited to ~10 cm. The targeted applications are

consumer devices that communicate with each other when a user has started

the communication by moving the devices close to each other. The com-

munication may remain fully at the NFC interface, but optionally two

hybrid devices may decide to continue their communication over a different

interface, for example, Bluetooth.

13.5 TYPICAL WIRELESS CARD APPLICATIONS

There are two categories of wireless card applications: contact cards con-

nected to wireless terminals and contactless cards. Typical contactless card

applications include building and parking lot access, time registration, and

ticketing applications for public transport, ski lifts, and cultural and sports

events. In many cases, the security level of memory cards is sufficient for

such applications. Since 2005, classical payment applications such as debit or

credit have been offered in a contactless version also. MasterCard has branded

this payment technology with the name PayPass. VISA has branded their

contactless cards with the name VISA Wave and adopted the PayPass tech-

nology for the second version of their contactless payment specifications.

Payment applications require a high security level; hence, they are generally

implemented on microprocessor cards. In the payment cards sector in 2006,

we experience already a strong move toward microprocessor cards that

include an RSA coprocessor, opting for dynamic data authentication

(DDA), which is the higher one of two different security levels defined in

the standard of Europay, MasterCard, and VISA (EMV) [4]. This also influ-

ences the contactless payment cards, although RSA operations are relatively

slow, and today the main argument for contactless payment is speed.

Today’s most important contact cards connected to wireless terminals are

the so-called subscriber identity modules, or SIM cards, that are plugged into

mobile phones working according to the GSM or the UMTS standards. These

cards authenticate themselves when logging into the mobile telephony net-

work, and they derive a cryptographic key that is then used by the mobile

handset to encrypt the data stream. Similar to access to mobile telephony

networks, WLAN access can also be secured with smart cards. Members of

the WLAN Smart Card Consortium [5] have submitted such an Internet Draft

named as EAP-Smart Card Protocol (EAP-SC) [6]. Another related Internet

Draft is named EAP-Support in Smart card [7].

13.6 SMART CARD OPERATING SYSTEMS

Microprocessor cards are basically one-chip computers that lack only a user

interface. Hence their architecture follows that of a conventional computer.

An operating system that is specific to the underlying hardware runs this

hardware and provides an interface for application programming. A smart
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COS is mainly responsible for the file management, maintaining the commu-

nication with the IFD, and executing the commands received through the IFD.

Unlike a personal computer’s operating system, a COS has to meet special

requirements. In particular, it must fit into the limited memory and reach

proper speed, despite the mediocre computing power of the small micropro-

cessor. As the operating system resides in most cases in a ROM, it must be

virtually error-free. Any critical error would require the replacement of all

cards issued and the destruction of all ICs produced. Hence smart COSs have

to be developed and tested much more carefully than conventional operating

systems.

Smart COSs are divided into the categories of monofunctional, multi-

functional, and multiapplication operating systems. The major advantage of

the last category is that these cards are programmable by the user (meaning

the systems integrator, not necessarily the end-user), instead of ordering each

new function at the card manufacturer. True multiapplication operating sys-

tems implemented on ICs that provide sufficient hardware security to guar-

antee separated memory areas may even allow new application code to be

loaded after the card has been issued. Today, the most widespread multi-

application operating systems are the so-called Java cards that accept Java

programs compiled into Java byte code [8].

Still the majority of smart cards issued are of the multifunctional type,

which offer different functions that are altogether implemented by the COS

developer. Such cards do not allow adding new application program code, but

they do allow adding new application data structures including the configur-

ation of the appropriate security mechanisms. The most important aspects of

how smart COSs can be used by a security systems engineer according to ISO

7816 are described in Section 13.7 through Section 13.10: file system,

cryptographic abilities, access control mechanism, and commands.

13.7 FILE SYSTEM

The file system of microprocessor cards has been standardized with ISO=IEC

7816-4 and further enhanced with later parts of the same standard. The classical

tree structure has been adopted for smart cards. There are elementary files (EFs)

that contain application data and dedicated files (DFs) that build the nodes of

the tree. Unlike a personal computer operating system, the DFs do not neces-

sarily contain a directory of all subordinate files. The root DF is named master

file (MF). Figure 13.7 gives an example of a valid smart card file system.

Within the same DF, each file is given a unique file identifier (FID) of

2 byte length. The MF is defined to have the FID¼ 3F 00 H and to be selected

after the card has received a reset signal. An EF may have an additional

short FID, which is only 5-bit long and may have a value from 1 to 30. This is

used for implicit file selection that makes it possible to apply several card

commands directly to specific files, without explicitly selecting a file before.
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A DF can have a file name in addition to its FID. This name should be unique

within the card and may be a text string or a registered application identifier

(AID) of 1 to 16 byte length, as defined in ISO=IEC 7816-5. An AID consists

of a 5-byte registered identifier (RID) denoting the (juristic) person who has

applied to register an application and a proprietary application identifier

(PIX) that is up to 11 byte long and chosen by the person who has registered

the application.

Four different internal structures are defined for EFs:

. Transparent EFs contain unstructured data.

. Linear fixed EFs are divided into records of fixed length. An index

ranging from 1 to FE H is assigned to each record.
. Linear variable EFs are divided into records of variable length. Again,

an index ranging from 1 to FE H is assigned to each record.
. Cyclic fixed EFs are divided into records of fixed length, just like

linear fixed EFs, but they have a different record numbering scheme

that makes it easy to append new records infinitely, in a way that the

oldest record is automatically overwritten.

MF

DF

EF

DF

EF

EF

DF

EF

EF

FIGURE 13.7 Example of a smart card file system.
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13.8 CRYPTOGRAPHIC ABILITIES

Microprocessor cards are generally capable of symmetric cryptography,

namely DES and Triple-DES. In most cases, these algorithms are directly

supported by the hardware; this helps to achieve fast execution times. Recent

types support AES, but as of today there are not many applications making

use of this new standard. Of course, both encryption and decryption are

supported. Thus, the card can also secure and check the integrity of (unen-

crypted) data with the use of message authentication codes (MACs). MACs

are cryptographic checksums attached to a (clear text) message. One common

method to generate a MAC is to calculate a hash value from the message and

then encrypt this hash value. Microprocessor cards are capable of performing

a number of hash algorithms. SHA-1, SHA-256, SHA-512, and different

versions of RIPE-MD are among these.

As for asymmetric cryptography, RSA is by far the most used algorithm

in the smart card world. Because most smart card CPUs are not capable of

performing RSA operations within reasonable time, most ICC used for

asymmetric cryptography comprise a distinct RSA coprocessor. Note that

cards with an RSA coprocessor are on principle also capable of generating

an RSA key pair inside the IC. This is beneficial to system security because

such an internally generated private key never leaves the card. Only the

corresponding public key is exported from the card and distributed further.

In the past few years, DSA based on elliptic curve cryptography (ECC) [9]

has been implemented as an alternative for digital signature applications. ECC

is assumed to achieve the same security level as RSA at shorter key lengths than

RSA. However, the approach to replace RSA by ECC and at the same time to

get rid of the need for a coprocessor has not yet succeeded in the industry.

13.9 ACCESS CONTROL

Some data inside a smart card, for example, the secret cryptographic keys, can

only be used for internal operations and do not allow any reading. The access

to other data and procedures can be configured as follows:

. read application data,

. write application data,

. use cryptographic keys, and

. execute commands.

The card makes the decision whether or not to grant the access based on

previous authentications. In general, authentication is the process of verifying

the identity or the group membership that a person (or a device) claims to

possess. In the area of smart card technology, it is common to handle user
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authentication and device authentication separately. For the purpose of user

authentication, there are basically three options:

. Authentication by possession of a physical item, which could be the

smart card itself or a mechanical key, is difficult to check for a device

like a smart card.
. Typical examples of knowledge-based authentication are the input of

a password or a PIN—the latter which is just a password that is

defined as being known by only one person. This is the most common

option, as such a comparison is easy to implement in a smart card.
. Authentication by biometrics requires the user to present a physical

characteristic of his body to a sensor for capturing and further processing.

Practical examples are fingerprints, face, or the iris of the eye. In many

cases, the complete processing is too complex to be done by a smart card,

but it is possible to have a terminal perform at least a part of it.

For the purpose of device authentication, only one of these options remains.

Smart cards or terminals may have knowledge, particularly knowledge

of cryptographic keys, and unlike the human user they can also perform

cryptographic operations. The basic device authentication method is called

cryptographic authentication or challenge=response authentication, because

the device that has to authenticate receives a random challenge and encrypts

it using a secret key. The cipher text is then transmitted back and can be

verified by the communication partner that holds the same secret key (in

the case of symmetric cryptography) or the corresponding public key (in the

case of asymmetric cryptography).

With such an authentication protocol, the secret information, which is the

secret key, is never transmitted and thus cannot be compromised. This is

already a major advantage over passwords or PINs that have to be transmitted

when used. However, an attacker could still get a large record of pairs of

challenges and matching responses, if he continued eavesdropping. Once a

challenge is chosen that has been in use earlier, the attacker could then take the

proper response from his list. To prevent this kind of replay attack, challenges

are generally built as concatenations of random numbers, continuously increas-

ing counter values, and=or time stamps. Thus, each challenge is unique.

There is another improvement in the challenge or response authentication

protocol. If two communication partners need to authenticate each other, this

could simply be carried out by performing two challenge or response authen-

tications, one after the other. Figure 13.8 shows the more efficient and more

secure mutual authentication protocol in an example employing symmetric

cryptography. First, communication partner P1 generates a random number

N1 and asks communication partner P2 for another random number N2.
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P1 concatenates the two random numbers to one data package and encrypts it

with the key K, resulting in the cipher text C1. P1 transmits the cipher text C1

to P2, who decrypts it and verifies that the number N2 is correct. Then P2

constructs a data package containing the same two random numbers in reverse

order and encrypts it with the key K, resulting in the cipher text C2. Note that

with a good cryptographic algorithm, C2 completely differs from C1. P2 then

transmits the encrypted data package C2 to A, who in turn decrypts it and

verifies that the number N1 is correct. Doing so, both communication partners

have authenticated each other, without giving the attacker a chance of getting

to know a clear text and cipher text pair that he might use for cryptanalysis.

In case of asymmetric cryptography, the principle remains the same. The

additional benefit is that the secret keys exist only once and that only public

keys have to be distributed between the communication partners before a

cryptographic authentication.

13.10 COMMANDS

At the application layer, the communication between ICCs and the corre-

sponding card readers or terminals consists of two types of application

protocol data units (APDUs):

Generate
random
number N1

P1

Ask for
random
number

P2

C2

Encrypt
C1 = fE(K, N1 + N2)

N1

OK

N2

?

C1 Decrypt
N1 + N2 = fD(K, C1)

Encrypt
C2 =  fE(K, N2 + N1)

N1 + N2

Decrypt
N2 + N1 = fD(K, C2)

OK

Generate
random
number N2

FIGURE 13.8 Mutual authentication.
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. Command APDUs are actively sent from the reader to the card and

cause the card to execute one of its internal procedures.
. Response APDUs are sent back from the card to the reader and

contain the result of the executed procedure.

Figure 13.9 shows the structure of a command APDU, comprising a manda-

tory header and a conditional body.

The class byte (CLA) gives a reference to the origin of the command. For

example,

. ISO commands have CLA¼ 0X H,

. GSM commands have CLA¼AX H, and

. proprietary commands have CLA¼ 8X H.

Within these examples, X defines the applied secure messaging format that is

explained later in this section.

The instruction byte (INS) specifies one command within a class. The

parameter bytes (P1, P2) are used to choose between different options that the

command offers. The body contains

. length of the command (Lc),

. data, and

. length of the expected response data (Le).

According to ISO 7816-4, Lc is not calculated over the whole command but

only over the data. Both lengths may be coded in 1 or, depending on the

operating system, 3 byte. With this extended length coding, the first byte is

used as an escape character and the other two bytes contain the length

value.

Figure 13.10 shows the structure of a response APDU, comprising a

conditional body and a mandatory status word (two status bytes SW1 and

SW2). If the command is processed straightforward, the card responds with

the status word 90 00 H, meaning OK. In any other case, various errors or

warnings are represented by different values of the status word.

CLA INS P1 P2 DataLc Le

Header Body

FIGURE 13.9 Command APDU.

Nicolas Sklavos/Wireless Security and Cryptography 8771_C013 Final Proof page 376 27.1.2007 3:51pm

376 Wireless Security and Cryptography



Few examples of typical commands help us to understand how smart

cards can be used as components of a security system. The first example is the

SELECT FILE command that is used to explicitly select one distinct file of

the file tree. Figure 13.11 shows the structure of this command and its major

options, where H indicates hexadecimal numbers. Files can be generally

selected by their FID or by stating a path, which is a concatenation of FIDs

starting from the MF or the current DF. DFs can also be selected by their

name. This name need not be fully stated in the data of the SELECT FILE

command but may be truncated. This is called partial selection and uses the

options of selecting first, last, next, or previous file with a name starting with

the stated bytes.

The response to the SELECT FILE command may contain information

such as FID, file type, file size, record length, and similar. As with any

response, a return code indicates error-free processing of the command, or

one of the various errors like parameter errors, or that the operating system

was unable to find the file.

Another example is the VERIFY command that is used to compare

verification data such as PINs with the corresponding reference data stored

in the card. Figure 13.12 shows the command’s structure and its two options

of using either global reference data, for example, a card’s master PIN, or

Data SW1

TrailerBody

SW1

FIGURE 13.10 Response APDU.

00 H A4 H P1 P2 DataLc Le

P1 options: P1 = 00 H   Select by FID

P1 = 04 H   Select DF by name

P1 = 08 H   Select from MF by path

P1 = 09 H   Select from current DF by path

P2 options:      P2 = 00 H   First occurrence

P2 = 01 H   Last occurrence

P2 = 02 H   Next occurrence

P2 = 03 H   Previous occurrence

FIGURE 13.11 SELECT FILE command.
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application-specific reference data. The least significant 5-bits of P2 denotes

the index of the reference data inside the card. The length Le is left empty, as

the response to the VERIFY command does not contain any data. If the

verification fails because of incorrect verification data, the card generally

indicates the number of remaining tries in the status word. After the last try,

the card blocks the verification of these data. Other important smart card

commands include read and write operations, change of reference data, and

security operations. Table 13.1 offers a selection of these commands.

00 H 20 H 00 H P2 Verification dataLc

P2 options:  P2 = 00 H No further information

P2 = 0X H Global reference data

P2 = 8X H Specific reference data

FIGURE 13.12 VERIFY command.

TABLE 13.1
Microprocessor Card Commands

INS Command Name Purpose

88 H INTERNAL AUTHENTICATE Authentication

84 H GET CHALLENGE Generate a random number

82 H EXTERNAL AUTHENTICATE Authentication

82 H MUTUAL AUTHENTICATE Authentication

22 H MANAGE SECURITY

ENVIRONMENT

Activate templates of algorithms and

keys for subsequent security operations

2A H PERFORM SECURITY

OPERATION

Authentication, encryption, decryption,

hashing, signature, and verification

24 H CHANGE REFERENCE

DATA

Replace reference data stored in the card

with new reference data

B0 H READ BINARY Read data from transparent EFs

B2 H READ RECORD Read data from linear or cyclic EFs

D0 H WRITE BINARY Write data to transparent EFs

D2 H WRITE RECORD Write data to linear or cyclic EFs

D6 H UPDATE BINARY Update data in transparent EFs

DC H UPDATE RECORD Update data in linear or cyclic EFs

E2 H APPEND RECORD Append a record to linear or cyclic EFs

A2 H SEARCH RECORD Search for data within linear or cyclic EFs

CA Hl GET DATA Read a specific data object

DA H PUT DATA Write a specific data object

C0 H GET RESPONSE Fetch response APDUs (needed with

the T¼ 0 protocol)
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13.11 CRYPTOGRAPHIC AUTHENTICATION AND SECURE
MESSAGING

As described in the previous section, user authentication can be performed

with the VERIFY command. Cryptographic authentication of devices, as

explained earlier in this chapter, can be applied in different ways. One-way

authentications may be used either to authenticate the smart card to the

outside world or to authenticate the outside world to the smart card. The

first procedure is named internal authentication, whereas the second proce-

dure is named external authentication. Two-way authentications are named

mutual authentication.

To perform an internal authentication, the terminal simply sends

the challenge with the command INTERNAL AUTHENTICATE to the

card. The card then performs the encryption of the challenge and responds

with the cipher text that can be verified by the terminal or the background

system.

To perform an external authentication, the terminal must first send the

command GET CHALLENGE to the card. The card responds with a random

number that the terminal or the background system encrypts. The terminal

then sends the cipher text with the command EXTERNAL AUTHENTICATE

to the card, and the card performs the verification.

To perform a mutual authentication, the terminal must first send

the command GET CHALLENGE to the card. The card responds with a

random number that the terminal or the background system combines

with a self-generated challenge and encrypts the result. The terminal then

sends the cipher text with the command MUTUAL AUTHENTICATE to the

card and the card first performs its own verification and then responds with

a different cipher text that can be verified by the terminal or the background

system.

The algorithms and the keys used in performing these cryptographic

operations may either be stated as parameters of the command or activated

beforehand with the command MANAGE SECURITY ENVIRONMENT.

This command is also used to activate templates for key agreement, hashing,

cryptographic checksums digital signatures, and confidentiality. Many of

these functions can be called with the command PERFORM SECURITY

OPERATION. This command is able to calculate hash values, MACs, and

digital signatures, and to encrypt and decrypt data with both symmetric and

asymmetric algorithms, if supported by the COS.

The confidentiality and authenticity of the messages exchanged between

the terminal and the card can be ensured with the so-called secure messaging.

When using this mechanism, the APDUs are encrypted and secured with

MACs. The type of secure messaging is coded in the upper 2-bits of the

lower nibble of the class byte. For instance,
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. CLA¼X0 H indicates that there is no secure messaging used.

. CLA¼X4 H indicates proprietary secure messaging.

. CLA¼X8 H indicates ISO-compliant secure messaging without au-

thenticated command header.
. CLA¼XC H indicates ISO-compliant secure messaging with authenti-

cated command header.

Two more terms are widely used in this context: authentic mode means

adding only MAC and combined mode means additionally encrypting the

resulting data block. Before the cryptographic algorithms are applied, suitable

padding may be needed to make the length of the data block valid.

13.12 SECURITY OF SMART CARDS IN PRACTICE

The security level of smart cards also has to be discussed, as in reality

there is no such thing like a 100% tamper-proof device. Every technology

that claims to be tamper-proof attracts the effort of attackers until one of

them succeeds. The smart card technology has also experienced several

serious attacks during the last 15 years. To name only few of the most

important attacks, there were

. deletion of EEPROM values by using UV light (1991) [2],

. stopping of the clock frequency and analyzing the RAM with the help

of electron beam testers (1993) [2],
. severing of existing connections inside the integrated circuit, estab-

lishing new connections, and changing the semiconductor doping with

a focused ion beam workstation (1996) [10],
. Bellcore attack, based on the fact that hardware, when performing

calculations, often produces incorrect results if environmental condi-

tions are causing stress, was first directed at asymmetric cryptography

using algebraic operations and succeeded in calculating the involved

secret keys with reasonable effort (1996) [11],
. differential fault analysis (DFA) that transferred the principle of the

Bellcore attack to symmetric cryptography (1997) [12],
. simple power analysis (SPA) and more elaborate differential power

analysis (DPA), which use the variation of the IC’s power consump-

tion, especially during the performance of a cryptographic algorithm,

to gain secret information through a statistical analysis (1998) [13],
. Elecromagnetic analysis (EMA) that applies the principle of SPA or

DPA to data retrieved from measuring electromagnetic radiation

emitted by the integrated circuit (2001) [14], and
. modification of RAM content by the use of light flashes (2002) [15].
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The smart card industry has continuously improved the security level of the

integrated circuits and the implemented operating systems. An up-to-date smart

card comprises protection and active countermeasures against all known

attacks. To gain confidence that these measures are effective, both hardware

and software need to undergo thorough security evaluations. Independent labora-

tories analyze the implemented security mechanisms and, after identifying

potential weaknesses, try to attack the card. Only if they do not succeed, the

product receives a positive evaluation. Thus, the customer does not have to

analyze the security level of the product, but can trust in the evaluation result.

Depending on the purpose of the card, different evaluation schemes are in place.

In general, today’s most important scheme is an evaluation according to the

Common Criteria [16], where suitable protection profiles for integrated circuits

and software such as operating systems and digital signature applications have

been defined. Payment organizations such as MasterCard and VISA have set up

their own security evaluation schemes that are tailored to the security require-

ments for payment cards. However, for other purposes such as SIM cards, no

mandatory security evaluation has been set in place yet.

The conclusion is that smart cards are practically tamper-proof devices

during a limited period, until their security level is no longer state-of-the-art.

For applications requiring high security, it is recommended to move on to

the next generation of smart cards every 2 or 3 years, depending on the time

the card remains in use. For example, if a card based on 4 years old technology

were issued with a targeted lifetime of 3 years, at the end of this lifetime the

technology would already be 7 years old. If a smart card from 1999 (from

the last century) were attacked with today’s best methods, the attacker would

be likely to succeed.

13.13 SYSTEM SECURITY

Building on this understanding of smart cards as secure hardware and soft-

ware used for device authentication and user authentication, a systems engin-

eer can design a logically secure information system. To do so, he has to

analyze the threats, the security target, and the complete system and its

environment. Then he can decide which parts of the system, be it components,

data elements, or communication channels, may be regarded as trusted, and

which parts need additional security measures.

The definition of a security target helps to clarify the desired security

level also. Generally spoken, higher security is more expensive. Thus, there is

a trade-off and a point where additional security measures cost more than the

value of the covered risk, which makes them inefficient. In the smart card

world, the most important parameters are the number of cards, the memory

size, and the cryptographic capabilities of the integrated circuit and its

operating system. One particularly important issue is how to distribute the

cryptographic keys. Secret keys shall never be stored in or transmitted over a
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medium that is less secure than the smart card. Additionally, the information

contained in one smart card shall never be sufficient for an attacker to

compromise the whole system. Therefore, there must be a differentiation

between individual component keys and master keys that may be kept only

by a few components of the highest security level. With the use of a master

key and an individual attribute of a chip, such as a hardware serial number, an

individual key is derived. This individual key is then used for communication

with this particular card only. Several nested key derivations are possible as

well, and once a secure communication has been established, a dynamically

generated session key can be exchanged and used for further operations on

transaction data.

To secure a system that includes user interaction, the following design

principles are useful:

. Each component that holds secret or private keys does this only within

a smart card or a device of equivalent security level.
. Cryptographic operations with secret or private keys are performed

only within a smart card or a device of equivalent security level.
. Components that are likely to get captured by an attacker do not hold

master keys.
. Terminals are able to deactivate stolen, copied, or otherwise com-

promised cards.
. In an off-line system, the terminals are able to check if a card is

genuine or a copy.
. Transaction security starts at the user interface.
. Each card is able to verify the authenticity of its user. (This eliminates

the need to transmit PINs or other reference data.)
. Each user’s card authenticates the user’s transactions, preferably by

the use of a digital signature.

13.14 INTEGRATED CIRCUIT CARD STANDARDS

Several standards for ICC technology have been mentioned in the previous

sections. Table 13.2 gives an overview of the most important international

standards for ICCs.

13.15 EXAMPLE: MOBILE PAYMENT SECURED
BY A SIM CARD

The subject of mobile electronic payment (m-payment) has been discussed to

a great extent, and different approaches have been implemented in commer-

cial payment applications. However, many existing implementations show a

security level that is yet to be improved. Examples of common flaws occur-

ring are listed as follows:
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. There is no end-to-end security between the client (the mobile hand-

set) and the payment server that is finally approving the transaction.

The only cryptography involved in the transaction is the standard

(GSM) encryption that is securing the air part of the transaction data

transmission, but not the (wire-based) data transmission thereafter. (In

case of SMS-based payment applications, the transaction data are

TABLE 13.2
Integrated Circuit Card Standards

ISO 7810 2003 Identification cards—Physical characteristics

ISO 7816-1 1998 Identification cards—Integrated circuit cards with contacts—Part

1: Physical characteristics

ISO 7816-2 1999 Identification cards—Integrated circuit cards with contacts—Part

2: Dimensions and locations of contacts

ISO 7816-3 1997 Identification cards—Integrated circuit cards with contacts—Part

3: Electronic signals and transmission protocols

ISO 7816-4 2005 Identification cards—Integrated circuit cards—Part 4:

Organization, security, and commands for interchange

ISO 7816-5 2004 Identification cards—Integrated circuit cards—Part 5: Registration

of application providers

ISO 7816-6 2004 Identification cards—Integrated circuit cards—Part 6: Interindustry

data elements for interchange

ISO 7816-7 1999 Identification cards—Integrated circuit cards with contacts—Part

7: Interindustry commands for structured card query language

(SCQL)

ISO 7816-8 2004 Identification cards—Integrated circuit cards—Part 8: Commands

for card management

ISO 7816-9 2004 Identification cards—Integrated circuit cards—Part 9: Commands

for card management

ISO 7816-10 1999 Identification cards—Integrated circuit cards with contacts—Part

10: Electronic signals and answer to reset for synchronous cards

ISO 7816-11 2004 Identification cards—Integrated circuit cards—Part 11: Personal

verification through biometric methods

ISO 7816-12 2005 Identification cards—Integrated circuit cards—Part 12: Cards with

contacts—USB electrical interface and operating procedures

ISO 7816-15 2004 Identification cards—Integrated circuit cards—Part 15:

Cryptographic information application

ISO 10373 1998–2001 Identification cards—Test methods, Part 1 to Part 7

ISO 10536 1995–2000 Identification cards—Contactless integrated circuit cards—

Close-coupled cards, Part 1 to Part 3

ISO 14443 2000–2001 Identification cards—Contactless integrated circuit cards—

Proximity cards, Part 1 to Part 4

ISO 15693 2000–2001 Identification cards—Contactless integrated circuit cards—

Vicinity cards, Part 1 to Part 3
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vulnerable to any modifications after the SMS has been received by

the mobile network operator.) Thus malicious people or pieces of

software inside the mobile network operator’s organization have

many opportunities to launch a successful attack. The goal of trans-

action data integrity is clearly missed.
. Transaction authentication is solely based on a static PIN that is

known to the user and also stored in a database at a server. The goal

of nonrepudiation is clearly missed.

If both flaws are combined in a system, the attacker is easily able to sniff PINs

and generate faked transactions with these PINs. This leaves room for

improvements.

When designing an improved system based on SMS, one can use a smart

card as a part of the TCB. For practical reasons, it is the SIM card that is

already built into the mobile handset. (Alternative solutions employing a

handset that includes a second card reader for another smart card are

possible.) In such a system, the SIM card is equipped with a piece of

application software (a SIM Toolkit application) that is capable of

. sending and receiving SMS,

. communicating with the user by (indirectly) controlling the display

and the keypad of the handset, and
. performing operations of symmetric and asymmetric cryptography.

The smart card holds one symmetric key and one private key of an asymmetric

key pair. The corresponding symmetric and public keys, respectively, are held

by the payment server. Note that the payment server may be located within the

mobile network operator’s organization or in a different organization. Involv-

ing a different organization has the advantage that this organization can be

specialized in payment processing. Therefore, their IT infrastructure is well

protected, and they can offer the payment service to all mobile network

operators. The consequence of this more complex system is that the crypto-

graphic keys have to be exchanged between the payment organization and the

chosen card manufacturer of the mobile network operator before the smart

cards are produced (or, in case of on-card key generation of the asymmetric

key pair, the public key has to be sent to the payment organization).

Figure 13.13 shows an example of a transaction flow of such an

m-payment transaction secured by a smart card. It is assumed that the

customer is purchasing goods or services through an Internet connection

that secures data integrity and authenticity. However, this does not matter

and can be replaced by a purchase at a shop or at a vending machine or even

through the mobile phone itself. In any case, the customer makes a purchase

request (1) and sends it to the merchant server. The purchase request must
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include the transaction amount and the customer’s mobile phone number. The

merchant server sends these data to the payment server over a connection that

secures data integrity and authenticity (2). Thus, the payment server can

generate a payment request comprising the transaction identification, the

transaction amount, the merchant’s name and unique identification, and a

MAC calculated over these data to secure their integrity and authenticity. (For

transaction security, it is unnecessary to encrypt the data; however, privacy

concerns can be answered by encrypting the data.) The payment request is

then sent to the customer’s mobile phone through the mobile network oper-

ator who uses an SMS for data transport (3). Inside the customer’s mobile

phone, the smart card receives the data. The crucial fact is that this whole data

transmission needs no additional security measures, as there is an end-to-end

security implemented between the payment server and the smart card. After

successful verification of the MAC, the card sends the transaction amount, and

the merchant’s name or unique identification to the user interface to display

it to the customer (4). The customer reads this information and confirms

the payment by entering his payment PIN. The PIN is directly verified by the

smart card (5) that can in turn generate a payment response comprising

Internet

Client
PC

Merchant
server

Mobile
phone

Smart
card

User
interface

Payment
server

Mobile
network
operator

Mobile
network

Payment
system

1. Purchase request

9. Receipt

2. Phone number
and amount8. OK

3. Payment request

6. Payment response

5. PIN
4. Amount,
 merchant

7. 
Trans-
action

Customer

FIGURE 13.13 M-payment transaction secured by a SIM.

Nicolas Sklavos/Wireless Security and Cryptography 8771_C013 Final Proof page 385 27.1.2007 3:51pm

Smart Card Technology 385



the transaction identification, its approval, and a digital signature calculated

over these data to secure integrity, authenticity, and nonrepudiation. The

payment response is sent back to the payment server through the mobile

network operator (6). The payment server verifies the digital signature and

transmits the necessary transaction data to the customer’s chosen payment

system (7), which may be a credit card organization. The merchant server is

then informed about the successful transaction (8) and can in turn generate a

receipt for the customer (9).

An evaluation of this approach shows that all important security require-

ments of an m-payment system are fulfilled:

. Integrity of the transaction data is secured during each data transmission.

. Transaction data can only be modified at the merchant server and at

the payment server. The mobile network operator does not have to

take any security measures.
. Customer gets the transaction data as provided by the payment server.

(It can be assumed that the customer has trust in the payment server, if

he enrols to this payment system.)
. Customer cannot successfully repudiate his transaction confirmation,

as it is signed with his private key that exists only in his smart card,

and the smart card has verified the PIN that is only known to the

customer (and not to any server).

13.16 CONCLUSION

Regarding security, there is no fundamental difference between the classical

wire-based Internet and wireless networks. In any case, security must be built

on trusted hardware and software. Smart cards are excellent platforms to

establish such a TCB, because they can keep secrets and perform crypto-

graphic operations. In practice, the security level of many wireless systems

can be improved by making appropriate use of smart card technology.
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