
Lecture Notes in Social Networks

Panagiotis Karampelas
Jalal Kawash
Tansel Özyer Editors

From Security
to Community
Detection in
Social Networking
Platforms

Lecture Notes in Social Networks

Series editors

Reda Alhajj, University of Calgary, Calgary, AB, Canada
Uwe Glässer, Simon Fraser University, Burnaby, BC, Canada
Huan Liu, Arizona State University, Tempe, AZ, USA
Rafael Wittek, University of Groningen, Groningen, The Netherlands
Daniel Zeng, University of Arizona, Tucson, AZ, USA

Advisory Board

Charu C. Aggarwal, Yorktown Heights, NY, USA
Patricia L. Brantingham, Simon Fraser University, Burnaby, BC, Canada
Thilo Gross, University of Bristol, Bristol, UK
Jiawei Han, University of Illinois at Urbana-Champaign, Urbana, IL, USA
Raúl Manásevich, University of Chile, Santiago, Chile
Anthony J. Masys, University of Leicester, Ottawa, ON, Canada
Carlo Morselli, School of Criminology, Montreal, QC, Canada

More information about this series at http://www.springer.com/series/8768

http://www.springer.com/series/8768

Panagiotis Karampelas • Jalal Kawash
Tansel Özyer
Editors

From Security to Community
Detection in Social
Networking Platforms

123

Editors
Panagiotis Karampelas
Department of Informatics & Computers
Hellenic Air Force Academy
Dekelia, Greece

Jalal Kawash
Department of Computer Science
University of Calgary
Calgary, AB, Canada

Tansel Özyer
Department of Computer Engineering
TOBB University of Economics
and Technology
Ankara, Turkey

ISSN 2190-5428 ISSN 2190-5436 (electronic)
Lecture Notes in Social Networks
ISBN 978-3-030-11285-1 ISBN 978-3-030-11286-8 (eBook)
https://doi.org/10.1007/978-3-030-11286-8

Library of Congress Control Number: 2019935126

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-11286-8

Preface

Introduction

This volume is a compilation of the best papers presented at the IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM-2017), held in Sydney, Australia, August 2017. The authors of the
selected papers were kindly asked to provide extended versions of the papers that
were then subjected to an additional refereeing process. Within the broader context
of online social networks, the volume focuses on important and state-of-the-art work
in the area of detection and prediction techniques using information found generally
in graphs and particularly in social networks.

From Security to Community Detection in Social Networking
Platforms

Social networks have not only been under the light due to the vast participation
of users but also because they are a very reliable source of information either for
collecting security-related information, such as malicious IP addresses, or detecting
online communities in diverse contexts using innovative techniques, such as genetic
algorithms or surface tension analysis. Additionally, the absence of authentic data
due to privacy concerns is addressed. This absence complicates testing novel
methodologies in various areas such as financial analysis or mining of unstructured
data. Two other chapters present solutions for creating synthetic though realistic
data for the aforementioned cases. The rest of the chapters presented in this book
propose innovative methods to explore graphs and social networks in an attempt
to provide timely, reliable, and useful results in a continuously increasing data-
intensive environment. The variety of approaches adopted in the research presented
in the book demonstrates the diversity of the application contexts and can act as a
source for further research not only in the designated areas presented but in other
areas of application.

v

vi Preface

The first chapter examines how social network analysis can be applied in a com-
plex environment where numerous actors are involved in preserving biodiversity
in a protected area. By applying social networking metrics in two ego networks,
the authors study the role of the management actors for the preservation of the
area at stake and how these metrics can assist in improving the cooperation of
environmental conservation in Natura 2000 areas.

In the second chapter, the authors propose a novel methodology to detect social
network communities without estimating the number of communities beforehand
using a modified genetic algorithm. The reported results have shown that the
proposed methodology performs very well even in large datasets.

In the third chapter, the authors recognizing the proliferation of the multidimen-
sionality of current social networks propose a novel Multidimensional Communities
Detection Algorithm that is capable of handling outliers and at the same time is
able to detect multidimensional communities. The proposed technique can also
automatically unfold the hidden communities in a multidimensional context, by
creating a novel propagation rule that exploits the most frequently used interaction
dimensions among neighbors as an additional constraint for membership selections.

The fourth chapter proposes two methods for detecting local communities. The
first one proposes finding derivatives in graph space and, as a result, takes advantage
of derivative-based methods into graph theory. The second is inspired by the active
contour algorithm in computer vision and explores the concepts of curvature and
gradient of the community’s boundary. The proposed methods are enhanced by
applying the principles of surface tension from chemistry in dynamic networks by
adding new nodes. The experiments presented provide promising results regarding
the performance of the proposed methods.

In the fifth chapter, the authors propose a new graph embedding approach
for attributed graph clustering since nowadays rich and heterogeneous attribute
information has become widely available especially in social networks user profiles.
By applying the proposed methodology, the authors demonstrate that it is possible
to transform the challenging attributed graph clustering problem into a multi-
dimensional data clustering problem. This transformation outperforms traditional
attributed graph clustering techniques in terms of effectiveness and efficiency.

The sixth chapter elaborates on the problem of big graph analytics in dynamic
graphs. Traditional methods rely on tracking the added or the removed nodes in
a graph. The proposed technique takes advantage of additional information that is
available by creating the Edge Sample and by employing the discard algorithm,
which generates an unbiased estimate of the total number of triangles that may need
to be updated due to dynamic changes. The proposed method is evaluated against
traditional methods providing promising results.

In the seventh chapter, the authors focus on the problem of semi-structured and
structured data that are used in decision-making. Even though there are several data
quality management approaches, it is not always feasible to compare or assess the
performance of the specific approaches since there are no public datasets available to
be used for such purpose. The chapter addresses the specific challenge by proposing
a system that is able to produce synthetic semi-structured and structured data

Preface vii

satisfying a set of integrity constraints to be used for the assessment of the data
quality management methods.

In the eighth chapter, the authors propose a novel methodology for randomly
generating entire financial systems while diagnosing the absence of real financial
trade datasets for analyzing the impact of financial regulation concerning the
collateralization of derivative trades. Based on a novel open-source risk engine,
the authors enable data scientists to apply diverse techniques such as data mining,
anomaly detection, and visualization to run simulations.

The ninth chapter identifies the need for mining unstructured information, such
as in hackers’ forums, and proposes a novel methodology and a corresponding tool
based on matrix decomposition method to extract latent features of the behavioral
information of the users. These features are then used along with some keywords
from any language to classify malicious IP addresses found in the forums. Based
on the experimental analysis, the authors are able to detect up to three times more
malicious IP address than the blacklist of Virus Total.

The tenth and final chapter proposes a method for detecting topic changes
between different time periods. The proposed method is based on two techniques:
one is from an information-theoretic analysis of the terms distributions, and the
second is based on document clustering in periods under review. The validity of the
proposed method is tested against various Twitter datasets.

Dekelia, Greece Panagiotis Karampelas
Calgary, AB, Canada Jalal Kawash
Ankara, Turkey Tansel Özyer

Contents

Real-World Application of Ego-Network Analysis to Evaluate
Environmental Management Structures . 1
Andreea Nita, Steluta Manolache, Cristiana M. Ciocanea,
and Laurentiu Rozylowicz

An Evolutionary Approach for Detecting Communities in Social
Networks . 17
Koray Ozturk, Faruk Polat, and Tansel Özyer

On Detecting Multidimensional Communities . 45
Amani Chouchane, Oualid Boutemine, and Mohamed Bouguessa

Derivatives in Graph Space with Applications for Finding
and Tracking Local Communities . 79
M. Amin Rigi, Irene Moser, and M. Mehdi Farhangi

Graph Clustering Based on Attribute-Aware Graph Embedding 109
Esra Akbas and Peixiang Zhao

On Counting Triangles Through Edge Sampling in Large
Dynamic Graphs . 133
Guyue Han and Harish Sethu

Generation and Corruption of Semi-Structured and Structured Data 159
Samir Al-janabi and Ryszard Janicki

A Data Science Approach to Predict the Impact of Collateralization
on Systemic Risk . 171
Sharyn O’Halloran, Nikolai Nowaczyk, Donal Gallagher,
and Vivek Subramaniam

ix

x Contents

Mining Actionable Information from Security Forums: The Case
of Malicious IP Addresses . 193
Joobin Gharibshah, Tai Ching Li, Andre Castro, Konstantinos Pelechrinis,
Evangelos E. Papalexakis, and Michalis Faloutsos

Temporal Methods to Detect Content-Based Anomalies
in Social Media . 213
Jacek Skryzalin, Richard Field Jr., Andrew Fisher, and Travis Bauer

Index . 231

Real-World Application of Ego-Network
Analysis to Evaluate Environmental
Management Structures

Andreea Nita, Steluta Manolache, Cristiana M. Ciocanea,
and Laurentiu Rozylowicz

Abstract In a world in a constant need for development, preserving biodiversity
is a daunting task for both governments and NGOs. The centerpiece of successful
biodiversity conservation is ensuring cooperation among countless actors involved
in the management of protected areas. Social network analysis is a suitable tool for
securing essential information for interactions during the management process. To
contribute to the debate in the field of governance of protected areas, we illustrate
an approach in investigating management of Natura 2000 sites, by considering
two real-world management settings in Romania. We evaluate the characteristics
of two ego-networks established for the management of two European Union
Natura 2000 protected areas in Romania Iron Gates Natural Park administrated
by public body owned by state and Lower Siret Floodplain administrated by a
regional NGO. The networks were created around administrative bodies of protected
area (ego), and include actors directly connected to the ego. After evaluating the
most common ego-network metrics that demonstrate the characteristics of each
network, we analyzed the strong ties by using Simmelian ties within protected areas
management ego-networks and clustered the embedded links in Girvan–Newman
groups. The findings suggest that the ego (administrative bodies of protected area)
has a critical role in bridging other management actors. The paper tries to identify
models of management control by comparing two ego-networks and showing how
well connected the administrative bodies of protected areas are. The study provides
insights regarding several means to improve the cooperation of environmental
conservation in Natura 2000 areas.

Keywords Governance · Natura 2000 network · Simmelian ties · Clusters ·
Ego-networks · Romania

A. Nita (�) · S. Manolache · C. M. Ciocanea · L. Rozylowicz
University of Bucharest, Center for Environmental Research and Impact Studies,
Bucharest, Romania
e-mail: andreea.nita@cc.unibuc.ro

© Springer Nature Switzerland AG 2019
P. Karampelas et al. (eds.), From Security to Community Detection in Social
Networking Platforms, Lecture Notes in Social Networks,
https://doi.org/10.1007/978-3-030-11286-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11286-8_1&domain=pdf
mailto:andreea.nita@cc.unibuc.ro
https://doi.org/10.1007/978-3-030-11286-8_1

2 A. Nita et al.

1 Introduction

Natura 2000 was established at European Union level as a network of protected
areas which includes a representative sample of wildlife and natural habitats of
community interest. The selection, designation, and management of Natura 2000
sites are governed by two European Union Directives: Habitats Directive for Sites
of Community Interest and Birds Directive for Special Protection Areas [1, 2]. The
expansion of Natura 2000 network in EU countries is nearly complete; however,
obstacles remain in the implementation and enforcement of the both directives,
mostly due to the lack of streamlined management models [3]. The management
of these protected sites must consider that a Natura 2000 site is primarily a tool
for conservation of social–ecological systems and not focused solely on strictly
ecological protection. Given that it is such a complex social–ecological arena,
collaborative partnerships may be the key to succeed in implementing conservation
goals [4, 5].

Most of the scientific literature focused on Natura 2000 analyzes environmental
issues without considering co-management as a key strategy to improve environ-
mental protection and conservation [6, 7]. Considering that Natura 2000 should
be focused on human–nature relationships [8], there is the necessity to investigate
means to improve and support the effective management of these sites [9], including
the investigation of different models of collaboration in the management processes.

While social network literature is extensive regarding global properties of a
network [10], relatively few studies discuss the importance of this field in correlating
the benefits and constrains within a governance arena in a complex framework [11,
12], such as Natura 2000 [13]. Identifying the actors that are involved in man-
agement networks by analyzing network properties at actors level (such as degree
and betweenness centrality metrics) may inform about key players; however, the
validity of conclusions depends on the quality of data [14]. Management networks
are also analyzed at network-level metrics such as network density and clustering
informing about interactions of organizations in the entire network [15]. Compared
to a full network, analyzing an ego-network presumes the investigation of the
personal network, namely, the first order zone or first neighborhood [16]. This
analysis focused on the investigation of a particular management actor (ego) and
all other organizations (alters) connected to the ego can reveal the importance of the
collaborative management of protected areas.

Simmelian ties are usually used to extract the interaction structure of each
network, in our case the interaction of the management actors, making them easier
to visualize and analyze [17]. Borgatti et al. [18] defines a Simmelian tie as a
reciprocally connected pair with mutual ties to third parties and hence, it is an
edge embedded in a clique or triple. Simmelian ties help to identify actors with
shared interests and common goals by mitigating competition [19]. By providing a
conditional triadic interpretation of both network structures helps to get an insight to
the social structures of the protected area management networks by highlighting the
most redundant and strong ties between the protected area management actors [17].

Real-World Application of Ego-Networks 3

Romania, a member of the European Union since 2007, designated over 600
Natura 2000 sites, covering more than 22% of its terrestrial surface [20, 21].
However, at national level, a proper implementation of the Habitats and Birds
Directives’ provisions is still lacking, the main issues being related to deficiency
of adaptive conservation planning and management [9, 22].

Given the social focus of Natura 2000 protected areas and large size of sites,
the management of Romanian sites is a task managed by many actors including
local, regional, and national environmental protection authorities, local and regional
administrative authorities, custodians of Natura 2000 sites, local inhabitants, indus-
try, advisory boards, and other local, regional, or national partners (e.g., NGOs) [21].
Romanian protected areas management system (i.e., delegated management to
organizations governed by different jurisdictions [23]) might be a good case study
to analyze the interaction of protected areas administrators with other organizations
involved in management.

To gain insight into how protected areas network relational structure develops
around two different types of leading management organizations, our study focuses
on two protected sites, namely, Iron Gates Natural Park (administrated by a state-
owned enterprise with a public body statute) and Lower Siret Floodplain Natura
2000 (administrated by an NGO) [21]. NGOs are known to have a significant impact
on environmental conservation actions and in helping to integrate environmental
objectives into policy and practice [24], hence, we hypothesize that the main
characteristics of the two analyzed networks differ because they are driven by two
different types of egos (public body versus NGO). Furthermore, we hypothesize
that the NGO ego-net would be denser than the one driven by a public body, with
consequences in the efficiency of any management process.

Obtaining data on the different structural characteristics of each ego-network will
help to understand the different patterns of management in terms of cooperation.
Furthermore, this paper focuses on the evaluation of protected areas management by
considering social patterns of cooperation and highlighting best practices to further
contribute to biodiversity conservation [25].

This chapter represents an extension of our previous conference paper [25],
in which we briefly described the benefits of characterizing protected areas man-
agement using ego-networks. The data-sets used for the ego-network analyses
were previously used to describe the current state of the governance network
structure [26].

2 Methods

2.1 Study Areas

In 2007, Iron Gates Natural Park became part of Natura 2000 due to its richness
of biodiversity of European importance. The park overlaps two Special Protection
Areas (SPAs) and one Site of Community Importance (SCIs) [27]. Lower Siret

4 A. Nita et al.

Fig. 1 The location of Iron Gates Natural Park (Southwest) and Lower Siret Floodplain Natura
2000 site (East) within Romania

Floodplain Natura 2000 protects 22 bird species of European interest that are found
in Annex I of the Birds Directive, representing a significant hot spot for migratory
birds [28].

We selected these two protected areas because they cover the two most common
management regimes in Romania, namely, a natural park overlapping Natura 2000
sites, administrated by a public body owned by state (Iron Gates Natural Park,
hereinafter, IGNP, administrated by Iron Gates Natural Park Administration) and a
Natura 2000 site managed by a regional NGO (Lower Siret Floodplain Natura 2000
site, hereinafter, LSF, administrated by Association for Biodiversity Conservation)
(Fig. 1) [25].

2.2 Research Design and Data Collection

We considered as members of the management networks the stakeholders involved
in or affected by decisions related with analyzed Natura 2000 sites (nodes) and the
links between them (edges or links).

Initially, we identified potential members of the two networks by analyzing the
management plans of the two protected areas. Then, between April and June 2016
we surveyed the representatives of 60 organizations from Iron Gates Natural Park
and 65 organizations from Lower Siret Floodplain. The survey gathered data on
the collaborative relationships established during the management activities. We
found that the Iron Gates Natural Park and Lower Siret Floodplain management
networks include 99 and 120 organizations, respectively. The difference between
the number of actors is mostly because Iron Gates Natural Park is located in two

Real-World Application of Ego-Networks 5

Fig. 2 Case study 1—Iron Gates Natural Park management network (blue circle—ego Iron Gates
Natural Park Administration, dark blue circles—alters, grey circles—organizations directly linked
with the ego, and grey arrows—connections between actors)

counties (Mehedinti and Caras-Severin), while Lower Siret Floodplain in three
counties (Vrancea, Galati, and Braila) [25].

Secondly, we encoded each organization and created, for both sites, adjacency
matrices of the directed graphs, with actors and connections between them. We
used UCINET 6.620 [18] for all network analyses. Given the fact that the two
protected areas are coordinated by distinct types of organizations, we further
extracted the ego-networks for the public body Iron Gates Natural Park Admin-
istration, hereinafter IGNPA (case study 1—Fig. 2) and for non-governmental
organization—Association for Biodiversity Conservation, hereinafter ACDB (case
study 2—Fig. 3).

We considered ego-nets as appropriate for our analyses because of their con-
strained and simpler structure [16]. To reduce the size of the networks, and better
identify the potential differences between the two case studies, we further analyzed
the structures created around the egos.

Conclusively, our study brings into discussion and analyzes the ego-networks
composed of the most important players in the protected areas management.

3 Concepts and Methodology

We analyzed the two case studies by:

1. Comparing the ego-networks structural metrics lead by different types of organi-
zation (i.e., NGO versus public body);

6 A. Nita et al.

Fig. 3 Case study 2—Lower Siret Floodplain Natura 2000 site management network (blue
circle—ego Association for Biodiversity Conservation, dark blue circles—alters, grey circles—
organizations not directly linked with the ego, and grey arrows—connections between actors)

2. Correlating the indegree and betweenness values of the networks in three case
scenarios:

(a) before extracting the ego-networks;
(b) after extracting the ego-networks of the main management organizations;
(c) after removing the ego from both networks.

3. Analyzing the consequences after removing the ego by applying the Simmelian
ties algorithm and Girvan–Newman clustering.

By using UCINET software [18], we calculated for both case studies the main
important properties of the ego-network. Hence, we determined the cohesiveness
of cooperation among the network management actors. Table 1 summarizes the
description of analyzed ego-metrics [34].

The follow-up analysis considers the interpretation of betweenness and indegree
values for management actors in the two case studies. Betweenness centrality
represents the number of shortest paths that pass through a node, and thus, can
be a measure of centrality of an organization, and the indegree represents the
number of receiving ties, and can be interpreted as a measure of popularity of an
organization [10]. We correlated the indegree and betweenness values and drew
conclusions on the properties of each case study, in three distinct forms:

– the complete management network;
– the ego-network of the main administrative management organization;
– the remaining management actors after removing the ego.

Real-World Application of Ego-Networks 7

Table 1 Interpretation of analyzed ego-networks metrics

Metrics Interpretation in our analysis

Network size Number of management actors directly connected with the protected area
administration organization [29]

Number of ties Number of links among all management actors in the ego-network [30]

Network density Number of connections divided by the number of pairs, namely, the
percentage of all possible links in each ego-network [31]

Weak components A weak component is the largest number of management actors that are
connected, disregarding the direction of the link [32]

EgoBetweenness The percentage of all geodesic paths from neighbor to neighbor that pass
through the protected area administration organization [33]

Normalized EgoBe-
tweenness

Compares the actual betweenness of the protected area administration
organization to the maximum possible betweenness in neighborhood of
the size and connectivity of ego’s. The maximum value for betweenness
would be achieved where ego is the center of a “star” network, that is,
no neighbors communicate directly with one another, and all directed
communications between pairs of neighbors go through ego [16]

We carried out this three-step analysis to demonstrate how actors migrate and
establish a distinct position within the network when changing the size of the
network by removing the egos.

The final step focuses on the consequences of removing the ego by analyzing
the role of Simmelian ties in the networks and clustering using Girvan–Newman
algorithm, which describes a hierarchical method regularly used to detect commu-
nities in complex systems based on edges betweenness [25, 35]. Although slower
than other clustering techniques, we choose to use Girvan–Newman algorithm to
investigate our ego-networks because it is well documented and often used in
popular network analysis programs [36], thus serving well our aim to demonstrate
a real-world application of ego-network analysis to differentiate environmental
management structures. Giving the potential to transfer the results obtained for
an ego-net to a complete network [29], we further extracted substructures for
each case study consisting of ties that are strong and redundant [17]. To learn
what would happen with the management networks (thus, the whole management
of the protected area) if the egos (i.e., protected areas administration) would
disappear, we applied the Simmelian ties algorithm, using the triples method
“mutual friends” [37] between each pair of actors, before and after removing the
protected area management administration main actor (ego of each case study).
Social ties embedded within triads are more stable over time, stronger, and more
durable [35]. In our case, analyzing this is important, because informational flow
can be obstructed if involved management organizations are not being proactive or
are acting opportunistically and avoid exchanging knowledge and information with
other actors of the network [19].

We illustrate the results of this application using NetDraw [18] and
VosViewer [23]. Additionally, to identify community structure in both networks, we
grouped the actors in clusters using Girvan–Newman algorithm [38]. Typically,

8 A. Nita et al.

this hierarchical clustering is used to remove the highest betweenness edges
until the network falls apart; however, our principal objective is to compare the
two managements of the protected areas by removing the ego. In our paper, we
reported the results of the Girvan–Newman algorithm by grouping the management
actors in clusters (i.e., corresponding to maximum three counties overlapping the
protected areas), without specifying how many groups shall be formed or assigning
restrictions on their size [38].

4 Research Findings and Discussion

4.1 Structure of the Ego-Networks

After the extraction of the ego from both analyzed management networks (i.e.,
organizations in charge with administration), we observed that the size of Lower
Siret Floodplain management ego-network (case study 2) registered a significant
reduction, from 120 to 78, because 35% of the network actors were not directly
connected with the ego (ACDB). In terms of ego-network size (Table 2), Iron Gates
Natural Park management network (case study 1) retains more than 87% of the
actors of the initial network including a larger number of ties, reduction from 99 to
87 actors.

Our results indicate that the ego-network of the Iron Gates Natural Park is denser
with lesser number of weak components. Conversely, Lower Siret Floodplain ego-
network has a higher betweenness, whereas the weighted overall graph clustering
coefficient appears to be similar for both analyzed cases (see Table 2).

Even though the number of organizations participating in the management of
Lower Siret Floodplain is higher than in the Iron Gates Natural Park, the ego is less
connected with the other management actors from the territory. This is expected

Table 2 Properties of the ego-network case studies

Case study 1: Iron Gates Case study 2: Lower Siret
Metrics Natural Park Floodplain

Initial size of the management
network

99 120

Size of management EgoNet
(including ego)

87 78

Directed ties 1236 844

Network density 16.91 14.42

Weak components 2 3

Number of weak components
divided by sizes

2.33 3.90

EgoBetweenness 1571.07 1903.81

Normalized EgoBetweenness 21.39 32.53

Real-World Application of Ego-Networks 9

since most organizations involved in or affected by decisions related to management
of analyzed protected areas are public bodies, and usually organizations with
different jurisdictions (i.e., public bodies vs. NGOs have a lower tendency to
cooperate, mostly due to the difference between governing norms) [39, 40].

4.2 Correlation Between the Indegree and Betweenness Values
of the Networks

By plotting indegree versus betweenness for the two case studies, we observed a
dissimilar pattern of movement of the most important actors in terms of betweenness
and indegree while changing the network magnitude (Figs. 4 and 5). Thus, for
Iron Gates Natural Park (Fig. 4, we detected several actors that have redundant
connections and significant impact within the communication flow (e.g., EPA MH—
Environmental Protection Agency Mehedinti county and EPA CS—Environmental
Protection Agency Caras-Severin county)), while for the Lower Siret Floodplain
(Fig. 5) there are actors (e.g., Adjud Town Hall) that appear to establish a crucial
position when analyzing the hole network but lose importance when extracting the
ego-network.

Fig. 4 Indegree versus betweenness of organizations active in Iron Gates management network:
IGNP 1—before extracting the ego-network; IGNP 2—after extracting the ego-network; IGNP
3—after removing the ego [25]

10 A. Nita et al.

Fig. 5 Indegree versus betweenness of organizations active in Lower Siret management network:
LSF 1—before extracting the ego-network; LSF 2—after extracting the ego-network; LSF 3—after
removing the ego

This confirms the potential weakness of Lower Siret Floodplain management
network, where actors are connected only with protected area administration and
do not communicate directly. In the case of Iron Gates Natural Park network,
the communication between actors can be efficient even if the protected area
administrator is not responsive. This can be interpreted as an ability of other public
bodies from the respective management network to act as redundant connections
for a public body protected area administration, while the NGOs administrating a
protected area must communicate actor by actor to perform management activities in
their area of interest, particularly in environmental protection and conservation. This
analysis confirms the pattern resulted from interpreting the ego-networks properties,
and most importantly, underlines that the NGOs administrating a protected area
must strengthen the cooperation with key public body actors, such as environmental
protection agencies and local and regional administrative authorities.

4.3 Consequences of Removing the Ego: Role of Simmelian
Ties and Girvan–Newman Clustering

Figures 6 and 7 illustrate the results after the integration of the Simmelian ties
analysis and filtering the clusters using Girvan–Newman algorithm for both case
studies and with and without egos. By analyzing case study 2 (Lower Siret

Real-World Application of Ego-Networks 11

Fig. 6 Simmelian ties and Girvan–Newman clustering of Iron Gates Natural Park management
network (a) before and (b) after removing ego. Size of the nodes is given by the total links strength

Fig. 7 Simmelian ties and Girvan Newman clustering of Lower Siret Floodplain management
network (a) before and (b) after removing ego. Size of the nodes is given by the total links
strength [25]

Floodplain), we found out that our hypotheses are contradicted by the results.
Unexpectedly, Lower Siret Floodplain network, which has an NGO as an ego, has a
greater potential for falling apart (Fig. 7a, b).

After removing the ego, the Lower Siret Floodplain network falls apart, because
the management organizations, except the ego, have roles only at local level and
do not ensure communication within the entire network, failing to ensure a flow in

12 A. Nita et al.

the management processes. We were expecting that protected areas administrated
by an NGO to be better connected to other organizations than one governed by a
public body [5, 41]. From this perspective, the Iron Gates Natural Park network
has a more effective collaborative management, adopting the premise that the
managerial organizations within a protected area should not become too dominant
but recognize others as collaborative partners [42]. This, along with enhanced
communication flow, sharing responsibilities and transfer of knowledge, may be
the key for successful management of protected areas.

As it can be seen in Figs. 6 and 7, by taking Simmelian ties into account after
clustering the organizations, we defined three categories of network actors, this
way predicting the future of a management network if ego (main management
organization) would disappear. Figure 7 reinforces our prior results (structure of the
ego-networks and correlation between the indegree and betweenness values of the
networks) by identifying in Iron Gates Natural Park management network, stronger
Simmelian bridges, the most important management actors remaining connected
and thus ensuring a faster information flow and more qualitative associated man-
agement processes.

5 Conclusions and Future Work

Integrating social network and ego-network analyses within environmental man-
agement provides an overview of the actual patterns of the structure, but the results
obtained for each environmental management network could not be generalized to
all protected areas, the findings being beneficial for stakeholders and practitioners
in the field.

The current study contributes to our understanding of the linkage between
protected areas management actors. By analyzing ego-networks structural metrics,
correlating the indegree and betweenness values, and applying the Simmelian ties
algorithm and Girvan–Newman clustering after removing the ego, we successfully
achieved a diagnosis of main social structures in the management of two Natura
2000 sites, representative for the management of protected areas in Romania,
namely, Iron Gates and Lower Siret Floodplain. Using ego-network analysis,
we have succeeded in obtaining significant information and contribute to the
environmental management field by showing a way to facilitate more accurate and
efficient management analysis [43].

Our results demonstrate large variations in ego-networks metrics, indicating that
the ego-networks properties depend on the ability of the ego to connect to orga-
nization with different jurisdictions [44]. In our case, the network coordinated by
an NGO (Lower Siret Floodplain) is more fragmented, and such, the collaboration
and information flows are strongly influenced by the existence of one key actor
only. Such networks are more vulnerable to disruptions of collaborations [45], for
example, when the management body tries to enforce more strict regulations on
resource management to protect the biodiversity. Without taking in consideration

Real-World Application of Ego-Networks 13

the management performance, after comparing the two management networks, we
could consider that Iron Gates Natural Park management network is an example of
best practice in structural terms.

Examining the effect of tie strength presents an opportunity to predict what role
the stakeholders play within the management of the protected areas. Additionally,
using embedded ties and link strengths showed for Lower Siret Floodplain a higher
potential for collapse if removing the ego from the network.

Our results about network formation and structure could be further developed by
comparing network structure over time [46] and be extended to other protected area
management, presenting informative potential for managers. Considering expanding
our results to other protected areas, the level of cooperation and actions will posi-
tively change so that the conservation targets may be achieved without stimulating
social conflicts [47, 48]. In line with previous findings [15], using social network
analysis in protected area management can help involved actors to understand the
potential risks of weak network components and predict arrangements that can
undermine conservation efforts.

Interpreting Simmelian ties findings could play a defining role in training and
forming future leaders. From this point of view, this technique could have a signif-
icant potential to establish the development of future leaders within environmental
management networks.

We demonstrated that network analysis can contribute to improve protected areas
management and may be a useful tool for systematic conservation planning [49].
Our findings could be further used also to minimize the protected area network’s
vulnerabilities and predict the potential for large-scale failure. From this point of
view, using ego-network analysis within the protected areas management can be
a starting point to adapt over time and recover after a network disruption and
hence contribute to the implementation of Habitats and Birds Directive. This is
why, network analysis may play a defining role in good resources management
promotion [50, 51]. Nevertheless, further work is needed to create an accessible
streamlined methodology so that the protected areas managers use the insights that
social network analysis could provide to conservation planning.

Acknowledgements We would like to thank Iron Gates Natural Park and Lower Siret Floodplain
administrations and Iulia Viorica Miu for the data collection process, and to Edward F. Rozylowicz
for proofreading the manuscript. This work was supported by a grant of the Romanian National
Authority for Scientific Research, CNCS—UEFISCDI, PN-III-P4-ID-PCE-2016-0483 (http//
www.uefiscdi.ro).

References

1. European Commission: Council Directive 92/43/EEC of 21 May 1992 on the conservation of
natural habitats and of wild fauna and flora (Habitats Directive). Off. J. Eur. Union L. 206,
7–50 (1992)

2. European Commission Directive 2009/147/EC of the European Parliament and of the Council
of 30 November 2009 on the conservation of wild birds: Off. J. Eur. Union L. 20, 7–25 (2009)

http//www.uefiscdi.ro
http//www.uefiscdi.ro

14 A. Nita et al.

3. European Commission: Environmental impact assessment of projects: rulings of the court of
justice. Report, European Commission (2013)

4. Hanspach, J., Hartel, T., Milcu, A.I., Mikulcak, F., Dorresteijn, I., Loos, J., von Wehrden, H.,
Kuemmerle, T., Abson, D., Kovacs-Hostyanszki, A., Baldi, A., Fischer, J.: A holistic approach
to studying social-ecological systems and its application to southern Transylvania. Ecol. Soc.
19(4), art32 (2014). https://doi.org/10.5751/Es-06915-190432

5. Nita, A., Rozylowicz, L., Manolache, S., Ciocanea, C.M., Miu, I.V., Popescu, V.D.: Collabo-
ration networks in applied conservation projects across Europe. PLoS One 11(10), e0164503
(2016). https://doi.org/10.1371/journal.pone.0164503

6. Blicharska, M., Orlikowska, E.H., Roberge, J.M., Grodzinska-Jurczak, M.: Contribution of
social science to large scale biodiversity conservation: a review of research about the Natura
2000 network. Biol. Conserv. 199, 110–122 (2016). https://doi.org/10.1016/j.biocon.2016.05.
007

7. Popescu, V.D., Rozylowicz, L., Niculae, I.M., Cucu, A.L., Hartel, T.: Species, habitats, society:
an evaluation of research supporting EU’s Natura 2000 network. PLoS One 9(11), e113648
(2014). https://doi.org/10.1371/journal.pone.0113648

8. Ioja, I.C., Hossu, C.A., Nita, M.R., Onose, D.A., Badiu, D.L., Manolache, S.: Indicators for
environmental conflict monitoring in Natura 2000 sites. Procedia Environ. Sci. 32, 4–11 (2016).
https://doi.org/10.1016/j.proenv.2016.03.007

9. Pellegrino, D., Schirpke, U., Marino, D.: How to support the effective management of Natura
2000 sites? J. Environ. Plan. Manag. 60(3), 383–398 (2017). https://doi.org/10.1080/09640568.
2016.1159183

10. Borgatti, S.P., Everett, M.G., Johnson, J.C.: Analyzing Social Networks, 2nd edn. SAGE,
London (2017)

11. Bodin, O., Robins, G., McAllister, R.R.J., Guerrero, A.M., Crona, B., Tengo, M., Lubell, M.:
Theorizing benefits and constraints in collaborative environmental governance: a transdisci-
plinary social-ecological network approach for empirical investigations. Ecol. Soc. 21(1), art40
(2016). https://doi.org/10.5751/Es-08368-210140

12. Scarlett, L., McKinney, M.: Connecting people and places: the emerging role of network
governance in large landscape conservation. Front. Ecol. Environ. 14(3), 116–125 (2016).
https://doi.org/10.1002/fee.1247

13. Rey, V., Groza, O., Patroescu, M., Ianos, I.: Atlas de la Roumanie: dynamiques du territoire.
Reclus. La Documentation française (2007)

14. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.:
Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010).
https://doi.org/10.1038/Nphys1746

15. Alexander, S.M., Andrachuk, M., Armitage, D.: Navigating governance networks for
community-based conservation. Front. Ecol. Environ. 14(3), 155–164 (2016). https://doi.org/
10.1002/fee.1251

16. Everett, M., Borgatti, S.P.: Ego network betweenness. Soc. Netw. 27(1), 31–38 (2005). https://
doi.org/10.1016/j.socnet.2004.11.007

17. Nick, B., Lee, C., Cunningham, P., Brandes, U.: Simmelian backbones: amplifying hidden
homophily in Facebook networks. In: 2013 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), pp. 531–538 (2013). https://doi.org/10.
1145/2492517.2492569

18. Borgatti, S.P., Everett, M.G., Freeman, L.C.: Ucinet for Windows: Software for Social Network
Analysis. Analytic Technologies, Harvard (2002)

19. Tortoriello, M., Krackhardt, D.: Activating cross-boundary knowledge: the role of Simmelian
ties in the generation of innovations. Acad. Manage. J. 53(1), 167–181 (2010). https://doi.org/
10.5465/Amj.2010.48037420

20. Manolache, S., Ciocanea, C.M., Rozylowicz, L., Nita, A.: Natura 2000 in Romania - a decade
of governance challenges. Eur. J. Geogr. 8, 24–34 (2016)

https://doi.org/10.5751/Es-06915-190432
https://doi.org/10.1371/journal.pone.0164503
https://doi.org/10.1016/j.biocon.2016.05.007
https://doi.org/10.1016/j.biocon.2016.05.007
https://doi.org/10.1371/journal.pone.0113648
https://doi.org/10.1016/j.proenv.2016.03.007
https://doi.org/10.1080/09640568.2016.1159183
https://doi.org/10.1080/09640568.2016.1159183
https://doi.org/10.5751/Es-08368-210140
https://doi.org/10.1002/fee.1247
https://doi.org/10.1038/Nphys1746
https://doi.org/10.1002/fee.1251
https://doi.org/10.1002/fee.1251
https://doi.org/10.1016/j.socnet.2004.11.007
https://doi.org/10.1016/j.socnet.2004.11.007
https://doi.org/10.1145/2492517.2492569
https://doi.org/10.1145/2492517.2492569
https://doi.org/10.5465/Amj.2010.48037420
https://doi.org/10.5465/Amj.2010.48037420

Real-World Application of Ego-Networks 15

21. Ioja, C., Patroescu, M., Rozylowicz, L., Popescu, V., Verghelet, M., Zotta, M.L., Felciuc, M.:
The efficacy of Romania’s protected areas network in conserving biodiversity. Biol. Conserv.
143(11), 2468–2476 (2010). https://doi.org/10.1016/j.biocon.2010.06.013

22. Nita, M.R., Niculae, I.M., Vanau, G.O.: Integrating spatial planning of protected areas and
transportation infrastructures. In: Using Decision Support Systems for Transportation Planning
Efficiency, pp. 311–329. Engineering Science Reference, Hershey (2016)

23. van Eck, N.J., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric
mapping. Scientometrics 84(2), 523–538 (2010). https://doi.org/10.1007/s11192-009-0146-3

24. Runhaar, H.: Tools for integrating environmental objectives into policy and practice: what
works where? Environ. Impact Assess. Rev. 59, 1–9 (2016). https://doi.org/10.1016/j.eiar.2016.
03.003

25. Nita, A., Manolache, S., Ciocanea, C., Rozylowicz, L.: Characterizing protected areas man-
agement using ego-networks. In: 2017 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining, pp. 642–643 (2017). https://doi.org/10.1145/3110025.
3110079

26. Manolache, S., Nita, A., Ciocanea, C.M., Popescu, V.D., Rozylowicz, L.: Power, influence and
structure in Natura 2000 governance networks. A comparative analysis of two protected areas
in Romania. J. Environ. Manage. 212, 54–64 (2018). https://doi.org/10.1016/j.jenvman.2018.
01.076

27. Iron Gates Natural Park Administration: Planul de management al Parcului Natural Porţile de
Fier. Report, RNP Romsilva-Administratia Parcului Natural Portile de Fier (2013)

28. Association for Biodiversity Conservation: Planul de management al ROSPA0071 Lunca
Siretului Inferior si al ariilor naturale protejate suprapuse. Report, ACDB (2015)

29. Chang, A.X.: Analysis of Email Ego Networks. An exploratory study of ego networks in an
email network. Snap.Stanford.Edu (2010)

30. Harrigan, N., Achananuparp, P., Lim, E.P.: Influentials, novelty, and social contagion. The viral
power of average friends, close communities, and old news. Soc. Netw. 34(4), 470–480 (2012).
https://doi.org/10.1016/j.socnet.2012.02.005

31. Bellotti, E.: Getting funded. Multi-level network of physicists in Italy. Soc. Netw. 34(2), 215–
229 (2012). https://doi.org/10.1016/j.socnet.2011.12.002

32. Hertzberg, V.S., Baumgardner, J., Mehta, C.C., Elon, L.K., Cotsonis, G., Lowery-North,
D.W.: Contact networks in the emergency department: effects of time, environment, patient
characteristics, and staff role. Soc. Netw. 48, 181–191 (2017). https://doi.org/10.1016/j.socnet.
2016.08.005

33. Epasto, A., Lattanzi, S., Mirrokni, V., Sebe, I.O., Taei, A., Verma, S.: Ego-net community
mining applied to friend suggestion. Proc. VLDB Endowment 9(4), 324–335 (2015). https://
doi.org/10.14778/2856318.2856327

34. Hanneman, R., Riddle, M.: Introduction to Social Network Methods. University of California,
Riverside (2005)

35. Girvan, M., Newman, M.E.: Community structure in social and biological networks. PNAS
99(12), 7821–7826 (2002). https://doi.org/10.1073/pnas.122653799

36. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci.
103(23), 8577–82 (2006). https://doi.org/10.1073/pnas.0601602103

37. Wellington, J.F., Lewis, S.A.: A method for evaluating the funding of components of natural
resource and conservation projects. Environ. Impact Assess. Rev. 57, 40–45 (2016). https://doi.
org/10.1016/j.eiar.2015.10.009

38. Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. B Condensed
Matter Complex Syst. 38(2), 321–330 (2004)

39. Ostrom, E.: Understanding Institutional Diversity. Princeton University Press, New Jersey
(2005)

40. Ostrom, E.: Governing the Commons: The Evolution of Institutions for Collective Action.
Cambridge University Press, Cambridge (1990)

https://doi.org/10.1016/j.biocon.2010.06.013
https://doi.org/10.1007/s11192-009-0146-3
https://doi.org/10.1016/j.eiar.2016.03.003
https://doi.org/10.1016/j.eiar.2016.03.003
https://doi.org/10.1145/3110025.3110079
https://doi.org/10.1145/3110025.3110079
https://doi.org/10.1016/j.jenvman.2018.01.076
https://doi.org/10.1016/j.jenvman.2018.01.076
https://doi.org/10.1016/j.socnet.2012.02.005
https://doi.org/10.1016/j.socnet.2011.12.002
https://doi.org/10.1016/j.socnet.2016.08.005
https://doi.org/10.1016/j.socnet.2016.08.005
https://doi.org/10.14778/2856318.2856327
https://doi.org/10.14778/2856318.2856327
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1016/j.eiar.2015.10.009
https://doi.org/10.1016/j.eiar.2015.10.009

16 A. Nita et al.

41. Rozylowicz, L., Nita, A., Manolache, S., Ciocanea, C.M., Popescu, V.D.: Recipe for success: a
network perspective of partnership in nature conservation. J. Nat. Conserv. 38, 21–29 (2017).
https://doi.org/10.1016/jnc.2017.05.005

42. Fliervoet, J.M., Geerling, G.W., Mostert, E., Smits, A.J.: Analyzing collaborative governance
through social network analysis: a case study of river management along the Waal river in
The Netherlands. Environ. Manag. 57(2), 355–67 (2016). https://doi.org/10.1007/s00267-015-
0606-x

43. Li, C., Lin, S.: Egocentric information abstraction for heterogeneous social networks. In: 2009
International Conference on Advances in Social Network Analysis and Mining, pp. 255–260
(2009). https://doi.org/10.1109/ASONAM.2009.38

44. Ionita, A., Stanciu, E.: Protected area governance in Eastern Europe. Report, BfN-Skripten 360
(2015)

45. Horning, D., Bauer, B.O., Cohen, S.J.: Missing bridges: Social network (dis)connectivity in
water governance. Util. Policy 43, 59–70 (2016). https://doi.org/10.1016/j.jup.2016.06.006

46. Karsai, M., Perra, N., Vespignani, A.: Time varying networks and the weakness of strong ties.
Sci. Rep. 4, 4001 (2014). https://doi.org/10.1038/srep04001

47. Hossu, C.A., Ioja, I.C., Nita, M.R., Hartel, T., Badiu, D.L., Hersperger, A.M.: Need for a cross-
sector approach in protected area management. Land Use Policy 69, 586–597 (2017). https://
doi.org/10.1016/j.landusepol.2017.10.012

48. Hossu, C.A., Ioja, I.C., Susskind, L.E., Badiu, D.L., Hersperger, A.M.: Factors driving
collaboration in natural resource conflict management: evidence from Romania. Ambio 47,
816–830 (2018). https://doi.org/10.1007/s13280-018-1016-0

49. Sayles, J.S., Baggio, J.A.: Who collaborates and why: assessment and diagnostic of governance
network integration for salmon restoration in Puget Sound, USA. J. Environ. Manage. 186(1),
64–78 (2017). https://doi.org/10.1016/j.jenvman.2016.09.085

50. Keskitalo, E.C., Baird, J., Laszlo Ambjornsson, E., Plummer, R.: Social network analysis of
multi-level linkages: a Swedish case study on Northern Forest-Based sectors. Ambio 43(6),
745–58 (2014). https://doi.org/10.1007/s13280-014-0492-0

51. Berardo, R., Heikkila, T., Gerlak, A.K.: Interorganizational engagement in collaborative
environmental management: evidence from the South Florida ecosystem restoration task force.
J. Public Adm. Res. Theory 24(3), 697–719 (2014). https://doi.org/10.1093/jopart/muu003

https://doi.org/10.1016/jnc.2017.05.005
https://doi.org/10.1007/s00267-015-0606-x
https://doi.org/10.1007/s00267-015-0606-x
https://doi.org/10.1109/ASONAM.2009.38
https://doi.org/10.1016/j.jup.2016.06.006
https://doi.org/10.1038/srep04001
https://doi.org/10.1016/j.landusepol.2017.10.012
https://doi.org/10.1016/j.landusepol.2017.10.012
https://doi.org/10.1007/s13280-018-1016-0
https://doi.org/10.1016/j.jenvman.2016.09.085
https://doi.org/10.1007/s13280-014-0492-0
https://doi.org/10.1093/jopart/muu003

An Evolutionary Approach for Detecting
Communities in Social Networks

Koray Ozturk, Faruk Polat, and Tansel Özyer

Abstract Recent advancements and increasing use of social networking applica-
tions have made extensive amounts of data available. Because of this, exploring new
and effective methods for mining and analyzing social network data is needed. In our
work, a method inspired by evolutionary approach is proposed to find communities
in social networks. A genetic algorithm, which is able to detect communities without
needing the number of communities at the beginning of the algorithm, has been
formulated and compared with other community detection methods to prove its
accuracy, efficiency, and effectiveness. In addition, experiments using Newman’s
spectral clustering method as a preprocessing step to our modified genetic algorithm
have been done and seen producing better results for large datasets.

Keywords Social networks · Community detection · Genetic algorithms

1 Introduction

The area of social network has gained interest of researchers after websites such as
Facebook, LinkedIn, Twitter, and Google+ came out. Now, these social networking
websites have become an important part of our daily life, they are tools for not only
to know what our friends are doing but also to market products, organize events,
and spread thoughts. Social networks have two main properties called entity and
relationship forming the data. Entities might be “people” and the relationships might
be the “friendship” of these people like in Facebook and like most of the other

K. Ozturk (�) · F. Polat
Middle East Technical University, Ankara, Turkey
e-mail: koray.ozturk@ceng.metu.edu.tr; polat@ceng.metu.edu.tr

T. Özyer
Department of Computer Engineering, TOBB University of Economics and Technology,
Ankara, Turkey
e-mail: ozyer@etu.edu.tr

© Springer Nature Switzerland AG 2019
P. Karampelas et al. (eds.), From Security to Community Detection in Social
Networking Platforms, Lecture Notes in Social Networks,
https://doi.org/10.1007/978-3-030-11286-8_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11286-8_2&domain=pdf
mailto:koray.ozturk@ceng.metu.edu.tr
mailto:polat@ceng.metu.edu.tr
mailto:ozyer@etu.edu.tr
https://doi.org/10.1007/978-3-030-11286-8_2

18 K. Ozturk et al.

social websites, but they are not limited to “people” and “friendship.” For example,
organizations, websites, products could be counted as entities, while business, trade,
collaboration activities are among relationships. Relationships can be all-or-nothing
as in Facebook that if you are friend with someone or not, or can be a degree of
friendship as in Google+. Even though social networks and their analysis have been
a widespread research area in sociology [1, 2] for decades, late advancements in
Internet and computer applications have made extensive amount of real world data
accessible to analyze and process for researchers. Since real world social networks
might be very large in size, even exceeding billion of nodes, there is a need for
changing how to handle analyzing and processing networks. Therefore, a large
number of new methods are being produced to find efficient and effective methods
for analysis of real world social networks [3–8].

In a randomly created network, edges are mostly distributed equally and because
of this, the degrees of nodes are expected to be very close [9]. On the other hand,
degree distributions of real world networks are not homogeneous, within a group
of entities more edges might be placed while within some other group of entities
there might be less edges [10]. This aspect of social networks whose edges within
some specific group of entities are denser is called community structure [11]. As
may be expected, the entities of a social network are placed into communities
in which the relationships between the entities are dense, on the other hand, the
relationships between the entities of different communities are scarce. Community
detection is significant, because a community might be a small version of whole
graph, which shows the very similar characteristics of it. Therefore, examining a
few communities might enable us to understand the whole network. This feature
is very useful especially when network is a very large real world data. Community
detection is beneficial not only for detecting communities of individuals but also for
advancements in commercial and academic areas. For example, dividing citation
network into communities can help researchers who are looking for cooperation
for a specialized field [12, 13]. In the studies related to social networks, the topic
of community detection has been discussed largely in the context of block models
which are the divisions of the networks into the basic blocks according to some
criteria. If we have the block model, we can have communities [14, 15]. Our
study focuses on discovering communities in social networks, and we propose a
method for detecting communities in social networks making use of the evolutionary
approach.

Graph is an appropriate tool for modeling the discrete structures such as social
networks. If we define a graph as G = (V ,E), then V is the set of vertices, which
can be called as nodes in this work, and E is the set of edges that if an edge
exists between the vertices Vi and Vj then we can say that vertices Vi and Vj are
related to each other and the edge between them is shown as Eij . While modeling
social networks as graphs, an entity is modeled as a vertex and an edge connecting
two nodes indicates the relationship between the nodes. Undirected graphs are the
best and the most natural exhibition of the social networks, so we will be using
undirected graphs in this work to model social networks. In terms of undirected
graphs, Eij is the same as Eji . Furthermore, in our work, graphs do not include

An Evolutionary Approach for Detecting Communities in Social Networks 19

loops and are non-reflexive, meaning that vertices are not related to themselves.
Also, multiple edges from one node to another do not exist. We can represent a graph
either visually or with an adjacency matrix A, a VxV square matrix, where vertices
are in rows and columns, and numbers in the matrix indicate the existence of edges
such as if Eij exists, then the value of entry aij is 1, else 0. For unweighted graphs,
all entries are 0 or 1; for weighted graphs, the adjacency matrix contains the values
of the weights. Since our graph is non-reflexive, diagonal of the adjacency matrix
A contains only zeros. In Fig. 9, an undirected sample graph with communities is
shown.

2 Related Work

Plenty of algorithms exist partitioning networks into parts that we call these parts as
communities. Most of them work well on artificially produced datasets, or on real
world datasets of which communities are known. However, evaluating the quality
of the community structures is a significant issue in case of working on real world
datasets and not knowing the communities previously. It is generally agreeable that
edges between individuals are denser in a well-defined community structure. A node
must have most of its connections with the nodes which are in the same community
and must have none or very few connections with the nodes which belong to other
communities.

In the work of Radicchi et al. [16], a quantitative measure for evaluation of
communities is proposed. However, it is also stated that quantitative measures
are subjective and cannot be exactly accurate for now. Lately, Modularity concept
proposed by Newman and Girvan [17] is accepted as a qualification measure for
communities. This measure is based on the previous work of Newman which
focuses on assortative mixing [18]. Modularity calculation is shown in the following
equation:

Q =
∑

i

(
eii − a2

i

)
(1)

where i is the number of communities, eii is the fraction of edges to the total
number of edges in the network that have both sides inside the community, and
ai is the fraction of total number of edges that have at least one side inside the
community to the total number of edges in the network. When we are counting
edges for ai , if one side of the edge is inside the community i and the other side is
in another community, then we count that edge as 0.5. If both sides of the edge were
in the community i, then we would count it as 1. After the calculation, modularity
score Q takes a value between −1 and 1. Q values which are closer to 1 have better
community structures.

Girvan and Newman algorithm (GNA) [11] introduces the use of modularity
score to measure the efficiency and effectiveness of the algorithm. In GNA, the
edges that are most between the communities are focused and removal of the most

20 K. Ozturk et al.

between edges progressively from the original graph is aimed. To achieve this,
betweenness of each edge in the network must be found by first visiting each node
using breadth first search and then calculating shortest paths from each node to other
nodes through edges. Betweenness of an edge Eij is the number of the shortest paths
between the nodes xi and xj of the graph G = (V ,E) that pass through this edge
where xi , xj ∈ V , 1 ≤ i �= j ≤ |V |. If there is more than one shortest path
between xi and xj , then their fraction is taken. We can outline the steps of the GNA
as follows:

1. Find the betweenness scores of all edges in the network.
2. Choose the edge with the highest betweenness and remove it from the network.
3. Recalculate betweenness for all remaining edges.
4. Repeat from step 2.

Slowness of GNA, which has a running time of O(n3) in sparse graphs, is an
important difficulty, such that it is considered inefficient for networks which
have more than 10,000 nodes. Although it is inconvenient for large networks,
several successful versions of Girvan–Newman algorithm are used in different
publications by tailoring it for the datasets used. Holme et al. [19] used GNA for
metabolic networks and Gleiser and Danon [20] used itto split early jazz musicians
into communities that musicians who collaborated are aimed to be in the same
community. Guimera et al. [21] also used GNA on a dataset consisting of the e-
mail network of a university.

The algorithm of Duch and Arenas (DA) [22], accepting concept of modularity
proposed by Newman and Girvan [11] as the measurement method for defining
community structures, presents a novel method which tries to maximize the
modularity score Q of the large complex networks to detect community structures.
In the initial step, all nodes in the graph are placed into two communities randomly
such that both of the communities contain same or one different number of nodes.
In every step, the node having lower fitness value, which is the modularity score
of a node in its community, is moved from one community to the other and then
fitness of the nodes’ neighbor nodes is recalculated. This process is repeated until
a maximized modularity score is achieved. After two separate communities are
formed, all of the edges between them are removed and the same process repeated
on each community until modularity score cannot be improved further.

The algorithm proposed by Clauset et al. (CA) [23] is a kind of agglomerative
hierarchical clustering method which also uses modularity as a measure for
optimization of community structures. In the initial phase of the algorithm, n

communities are created, where n is the number of the nodes in the network.
All of the nodes are distributed randomly to communities which do not contain
another node. In other words, each community contains sole node at the beginning.
Communities are combined in pairs in each step to form one unified community,
picking out the combination that results in the greatest increase or least decrease in
modularity score. Merging process repeats until a tree that shows the order of joins
called a dendrogram is created. At the end, a cut through this dendrogram reveals
the community structures of the network. Depending on the level we cut, we might

An Evolutionary Approach for Detecting Communities in Social Networks 21

get small or large communities. Although an exact definition was not made for the
place of the cut in CA, putting the cut where it will maximize the modularity score
Q of the network is recommended to get better outcomes.

Graph partitioning is a common technique that divides the graph into groups
which have similar size, while trying to minimize the number of the edges between
these groups. Most of the graph partitioning methods are based on dividing the
graphs into two separate groups iteratively: The spectral bisection method [24, 25]
which uses Laplace matrix of the graph and eigenvectors of it and Kernighan
Lin algorithm [26] which aims to optimize community structure over an initial
partition of the graph in a greedy way. Although the main characteristic of the
spectral bisection method is partitioning the graph into two subgraphs, this is a
disadvantage when more than two communities exist. If we need to find more than
two communities, spectral bisection must be repeated iteratively on the subgraphs
that this approach does not guarantee the fulfillment of expected results. Also,
deciding where to stop dividing the graphs is important. The spectral bisection
method runs in O(n3) time. The Kernighan Lin algorithm which is a specialized
approach to spectral bisection is a greedy optimization algorithm, and it tries to
maximize a benefit function. The benefit function is the sum of edges within groups
minus the sum of the edges between groups. The Kernighan Lin algorithm is as
follows:

1. Start with the initial partition of the graph into two groups. Size of the groups
must be predefined. Nodes might be assigned to the groups randomly.

2. Consider all possible pair of nodes where one node is chosen from each group
and calculate the change in the benefit function in case if we swap them.

3. The swap that maximizes the benefit function is chosen and swap is done. Step 2
and 3 are repeated until all nodes in one of the groups have been swapped once.

4. The sequence of swaps that were made is reexamined and the point during this
sequence at which Q was highest is found. This is taken to be the bisection of the
graph.

The necessity of providing the sizes of the communities at the initialization phase
is the main disadvantage of the Kernighan Lin algorithm such that outcomes are
highly depended on the size and configurations given at the beginning, making the
Kernighan Lin algorithm unsuitable for real world datasets. In addition, it suffers the
same disadvantage with other spectral bisection methods: Network is always divided
into two communities, and although division into more than two communities can be
done iteratively, we don’t know where to stop the iteration for the best division. After
some advancements done by Blondel et al. [27] and Mucha et al. [28], Kernighan
Lin algorithm is extended that the need of predetermining the number and size
of communities at the beginning is overcome by moving a single node to other
communities at a time. However, this advancement has shortcomings causing the
algorithm to consume more time and perform poor at detecting communities.

Newman’s spectral algorithm [29] is another method for graph partitioning,
which is referred to as NSA in this work. NSA uses some important tools from
matrix theory, which can be named as spectral methods, to formulate the problem

22 K. Ozturk et al.

Fig. 1 Example of a small
social network

A

C

B D E

G F

of partitioning a graph to minimize the number of edges that connect different
components. Given a graph, we would like to divide the nodes into two sets so
that the cut, or set of edges that connect nodes in different sets, is minimized.

Newman’s spectral algorithm uses the adjacency matrix to divide a graph into
two good partitions that the adjacency matrix has a 1 in row i and column j if there
is an edge between nodes i and j , and 0 otherwise. Adjacency matrix A of a small
social network example which is presented in Fig. 1 is as follows:

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 0
1 0 1 1 0 0 0
1 1 0 0 0 0 0
0 1 0 0 1 1 1
0 0 0 1 0 1 0
0 0 0 1 1 0 1
0 0 0 1 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The second matrix we need is the degree matrix for a graph. This graph has
entries only on the diagonal. The entry for row and column i is the degree of the ith
node. The degree matrix for the graph of Fig. 1 is shown below. For instance, the
entry in row 4 and column 4 is 4 because node D has edges to four other nodes. The
entry in row 4 and column 5 is 0, because that entry is not on the diagonal.

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 4 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 3 0
0 0 0 0 0 0 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Suppose our graph has adjacency matrix A and degree matrix D. Our third
matrix, called the Laplacian matrix, is L = D − A, the difference between the degree
matrix and the adjacency matrix. That is, the Laplacian matrix L has the same entries
as D on the diagonal. Off the diagonal, at row i and column j, L has −1 if there is
an edge between nodes i and j and 0 if not. The Laplacian matrix for the graph of

An Evolutionary Approach for Detecting Communities in Social Networks 23

Fig. 1 is shown below. Notice that each row and each column sums to zero, as must
be the case for any Laplacian matrix.

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0 0
−1 3 −1 −1 0 0 0
−1 −1 2 0 0 0 0

0 −1 0 4 −1 −1 −1
0 0 0 −1 2 −1 0
0 0 0 −1 −1 3 −1
0 0 0 −1 0 −1 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can get a good idea of the best way to partition a graph from the eigenvalues
and eigenvectors of its Laplacian matrix. The smallest eigenvalues and their eigen-
vectors of a Laplacian matrix of a graph contain the information which is beneficial
to divide the graph into two separate parts. Since the smallest eigenvalue for
Laplacian matrices is every time 0 and its corresponding eigenvector is consisting
of all ones, such that [1, 1, . . . , 1], Newman’s spectral algorithm uses the second
smallest eigenvalue of the Laplacian matrix. After that, the leading eigenvector of
the second smallest eigenvalue is computed. The graph is divided into two subgraphs
according to the signs of the elements in this vector, where nodes corresponding to
negative elements of the vector are placed into one of these subgraphs and nodes
corresponding to positive elements of the vector are placed into the other subgraph.
By this way, negative and positive nodes are grouped together. This phase repeats
recursively on newly created subgraphs until the leading eigenvector consists of
the same signed values. Many networks, on the other hand, contain more than two
communities, so the method needs to be extended to find better defined divisions
of networks into larger numbers of parts. In our study, this method is used as a
preprocess step in specific situations.

Genetic algorithm is a kind of optimization algorithm which imitates the genetic
science and natural selection [30, 31]. In real world, individuals cross over their
genes in which their genetic data are hold, and generate new offsprings. Also,
sometimes, a gene of an offspring can be mutated. If the crossovered and mutated
chromosomes of the offspring have good genetic data to adapt the environment,
then the offspring will survive. Individuals who cannot adapt the environment will
be extinct [32]. In genetic algorithms, better and high performing samplings can be
constructed from the best partial solutions of the past samplings instead of trying
every conceivable combination of which solution space consists. This is referred to
as the building block hypothesis [31]. Genetic algorithms adopt these approaches
and try to generate optimized solutions from a given initial set of solutions by
using operators of mutation, crossover, and selection. A fitness function is defined
to evaluate the fitness of the individual for the environment or the solution, and a
score is produced as an output of the fitness function. After the evaluation phase,
offsprings having the best fitness score survive for next generations. Steps of a
traditional genetic algorithm are as follows:

24 K. Ozturk et al.

1. Initially, fixed number of chromosomes are generated. Number of the chromo-
somes are called as population and it is given in the beginning.

2. New chromosomes are generated by crossover.
3. If a given probability occur, some chromosomes are affected from a mutation.
4. Genetic algorithm produces new chromosomes. Each of the chromosomes is

evaluated through a cost function which is always referred to as fitness function.
5. Chromosomes with better fitness score are replaced with worst ones because the

population needs to be fixed. This step is called as selection.
6. If aimed fitness score is reached, then stop else go to step 2.

Crossover is the core process of the genetic algorithm. Two chromosomes from
the solution space are chosen randomly and one crossover point or crossover points,
depending on the crossover type we choose, is determined on each chromosome. In
one-point crossover, one point on each chromosome is selected and chromosomes
are divided into two pieces. Pieces with same location and size of the chromosomes
are exchanged within them and new offsprings are generated, as seen in Fig. 2. In
two-point crossover, chromosomes are cut from two points and middle pieces of the
chromosomes are exchanged, as seen in Fig. 3. In uniform crossover, some genes of
the one parent chromosome are chosen which is also referred to as crossover bits,
and these crossover bits are exchanged with other parents genes, as seen in Fig. 4.

Mutation is a probabilistic operation. If a predefined probability occurs, then
mutation on a randomly selected chromosome occurs and values of the mutated

Fig. 2 One-point crossover in genetic algorithms

Fig. 3 Two-point crossover in genetic algorithms

Fig. 4 Uniform crossover in genetic algorithms

An Evolutionary Approach for Detecting Communities in Social Networks 25

Fig. 5 Mutation in genetic algorithms

genes change. Mutation might be on a single random gene or might be on several
random genes. In Fig. 5, a mutation example is shown.

Inversion operator is not always applied on real datasets. It does not change the
information on the genes, it changes the presentation of the information on these
genes.

In the work of Tasgin et al. [33, 34], detecting community structures in social
networks is aimed by the help of genetic algorithms. They presented a genetic
algorithm for detecting community structures in a network, referred to as GACD,
by maximizing network modularity score. In GACD, a chromosome is encoded as
a list or an array and a gene is encoded as an element on the list. Every node in the
network is presented as a gene so the length of the list equals to the number of the
nodes in the network. Values of the elements in the list present community number
of equivalent nodes. In this encoding, places of the nodes on the list are constant,
while value of the elements which are holding community numbers can change
during the run of the algorithm. In initialization phase, all nodes in the network
assigned to a community randomly. Since number of the genes equals to number of
the nodes in the network, number of the communities is limited to the number of
nodes, n. Each node may be assigned to a separate community in the worst case,
and there will be n communities in the network in such a case. Also, during the
initialization, a predefined variable called randomization rate is defined that random
nodes are chosen according to this randomization rate and if the randomization rate
is provided, then the neighbors of the randomly chosen node are assigned the same
community number.

During the crossover stage of GACD, genes are not exchanged simply as in
traditional genetic algorithm, instead the community identifiers of the nodes in
a chromosome are moved to nodes in the destination chromosome. It should be
mentioned that because of community numbers’ being assigned randomly in each
chromosome and not having a relation between them in the beginning, different
community numbers in different chromosomes may mean the same community.
For example, community number 1 in chromosome A and community number
34 in chromosome B might own nodes, on the other hand, community number
1 in chromosome B might not have a common node with community number
1 in chromosome A. To eliminate the disadvantage of this encoding, one way
crossover is implemented in GACD. For mutation, a node is transferred into a
different community randomly in the network. A random node is chosen and a new
community number is generated by modifying a digit in its binary representation.

Furthermore, a novel operator named Clean-up is introduced by Tasgin et al.
[33, 34] which is based on a new metric called community variance intending
to reduce misplacement of the community numbers caused by encoding of the
chromosomes. Clean-up is added as a next step after crossover and mutation. If

26 K. Ozturk et al.

the number of such misplacement is high, it is detected by the mechanisms of
genetic algorithm via fitness evaluation. However, although the overall fitness value
is good for a community split, there may be a small number of misplaced nodes
that does not affect the overall fitness value very much. Although Clean-up step
produces accurate results, the experiments are done only on small datasets[33, 34]
like Zachary’s Karate Club Network [35] and American College Football Network
[11].

3 Methodology

In this section, our method for community detection in social networks based on
genetic algorithms is introduced. For large real world datasets, a spectral method
proposed by Newman [36] is used as a preprocess step for the initialization stage of
the genetic algorithm. Each node of a network is accepted as a member of sole
community, meaning that overlapping communities [37, 38] are not considered.
Next subsections give detailed information about the steps of our algorithm, its
encoding, operators, fitness function, and selection.

3.1 The Algorithm

We first define the following variables:

• N is the population size.
• pcr is the probability parameter for the randomness to reinsert nodes after a

crossover operation. If a randomly generated number is less than the pcr , then
idle nodes are placed into communities randomly, else they are inserted to
communities in which they will have more neighbors.

• pm is the probability for the mutation. If a randomly generated number is less
than pm, then mutation is applied.

• pmr is the probability for the randomness to reinsert nodes after mutation. If a
randomly generated number is less than the pmr , then idle nodes are placed into
communities randomly, else they are inserted to a community where they have
more neighbors.

• QF is the desired modularity score. If it is reached, the algorithm terminates.
• IF is the number of iterations to terminate the program, it creates an upper limit

for the iteration count.

Steps of the algorithm to detect communities in social networks are as follows:

1. Preprocess: An optional step that a selected community detection algorithm is
run on the large dataset up to predefined number of iterations to generate a good
initial pool.

An Evolutionary Approach for Detecting Communities in Social Networks 27

2. Initialization: If a preprocess step is applied, then community structures that
are output of the preprocess step are used as input for the initialization. Nodes
that are not assigned to a community after preprocess are assigned to newly
created communities which can be very large. Input values do not constrain the
algorithm since community structures evolve and number of communities can
change through the run of the algorithm. If a preprocess is not applied, then each
node is assigned to a community number randomly and community structures
are created for the nodes assigned to these community numbers.

3. Evaluation: Evaluate the fitness value of all chromosomes.
4. Selection: Choose first N chromosomes with highest modularity score to survive

for the next steps. Remove the others from the solution space.
5. Crossover: Crossover is applied N/2 times to randomly selected pair of chromo-

somes. For the probability of pcr , reinsert idle nodes to communities randomly,
else reinsert them to communities where they have largest number of neighbors.

6. Mutation: Mutation is applied to each chromosome with a probability of pm. For
the probability of pmr , reinsert idle nodes to communities randomly, else reinsert
them to communities where they have largest number of neighbors.

7. Control: If the best fitness value (i.e., modularity value) reaches to QF or
iteration count reaches to IF , then program terminates, else proceed to step 3.

3.2 Encoding and Initialization

Encoding of the genetic algorithm is inspired by the grouping genetic algorithms
(GGA) which is proposed by Falkenauer [39]. Our focus is shifted from individuals
of the network to communities of the network. In our encoding, communities are
represented as the genes of the chromosomes. Every gene in the chromosome
represents a community. The data that is held in the genes contains nodes belonging
to that community. During crossover and mutation processes, nodes can change their
communities. Figure 6 contains an example for encoding of two chromosomes.
Chromosome 1 consists of three communities which are shown as genes, and the
data held in genes contains their nodes. In chromosome 1, nodes 3, 7, and 4 belong to
community E, 2 and 4 belong to community C, and 1, 6, and 8 belong to community
F. Chromosome 2 is also similar, community A has nodes 3 and 5, community H
has 2, 7, and 8, and community D has 1, 4, and 6.

In the initialization step, communities are generated and the nodes are assigned.
If we use preprocessing step, communities coming from the preprocessing step are
generated and the nodes belonging to these communities are assigned. For each node
that does not belong to a community, a new community is generated and the node
is assigned to that community. The preprocessing step can be skipped when size of
the network is small: n communities are generated where n is the number of nodes
in the network and each node is assigned to a sole community so that no more than
one node is assigned to the same community.

28 K. Ozturk et al.

Fig. 6 Example of encoding

3 7

E

DHA

C F

4 1 6 82

Chromosome 1

Chromosome 2

5

3 5 2 7 8 1 4 6

3.3 Fitness Function

The network modularity metric (Eq. (1)) proposed by Newman et al. [29] and
introduced in Section 2 is used as fitness function in our work, since it is a wide
used way to evaluate the quality of community structures in networks. Also, network
modularity is applied by Tasgin et al. [33] to their genetic algorithm as fitness
function.

Concerning community i, let mi be the total number of edges that have at
least one side inside the community and let E be the number of edges in the
network. Initial value of mi is set to zero and we calculate mi as follows: each
edge incident with two nodes/one node belonging to community i increases mi by
1/0.5, respectively. Finally, we compute mi/E, and find ai . We find the modularity
scores Qi for each community i and their summation gives as the modularity score
of the network, Q as given in Eq. (2).

Q =
∑

i

Qi (2)

After each iteration, the fitness score of each chromosome is recalculated and the
chromosomes having higher modularity score are advantageous for survival at the
next iteration.

3.4 Crossover

Crossover is done between two randomly selected chromosomes and an offspring
chromosome is produced. Our crossover method differentiates from traditional
crossover methods: Nodes will be exchanged between the communities. With two
parents it is possible to create two children by inserting the selected communities of
the first parent into the second one, and by doing the opposite (Fig. 7).

The crossover consists of four steps:

1. Two crossover points are selected on each parent randomly and the parts between
these points are chosen as crossing sites.

An Evolutionary Approach for Detecting Communities in Social Networks 29

Fig. 7 Crossover

1 4

E

B

B

B E D

E A C D

A C D

F G

5 3 6 82 7

Parent 1

Parent 2

Step 1:
This example shows
insertion of E from
Parent1 to Parent2

Genes consisting of
recurring values are
eliminated

Nodes not belonging to
any community are
reinserted

Crossing Sites

Step 2:

Step 3:
Reinsertion

New Offspring

Elimination

Appear also in E

Left Aside

3 7 1 5 6 84 2

3 7 1 1 4 52 6 84 5

3 7 1 6 8 24 5

B E H
3 7 1 6 8 24 5

2. The communities selected by the crossing site of one parent are inserted at the
crossing site of the second parent. At this stage, some nodes may appear in more
than one community.

3. The communities which already exist in the second parent and contain nodes
that are already in the inserted communities are eliminated, for example,
some nodes do not belong to any community anymore. If some communities
become empty after this elimination process, they are also removed from the
solution.

30 K. Ozturk et al.

4. The nodes left aside are reinserted into the solution. According to a predefined
probability rate, the node is put in a community randomly, or put in a community
in which it will increase the network modularity of that community the most or
decrease it least.

3.5 Mutation

The role of a mutation operator is to insert new characteristics into a population
to enhance the search space of the genetic algorithm. In the case of our method,
randomly a few communities are selected according to a predefined probability
rate and the selected communities are eliminated from the chromosome. After
the elimination, there will be nodes which do not belong to any community. The
nodes are put in a community randomly or put in a community in which it will
increase the modularity score of that community. If a predefined random value for
node reinsertion is met, then the node will be put in a community to increase the
modularity score of that community. On the other hand, if the predefined random
value is not met or there are not any community that increase its modularity score,
then the node put in a community randomly, or put in a newly created community.

In Fig. 8, mutation step is exemplified: genes A and D are selected randomly
from the chromosome and they are eliminated. Nodes in communities A and D are
reassigned to other communities. With the probability p1, nodes put in a community
in which they have more neighbors and if we cannot find a community in which
node has neighbors, we generate a new community with the probability p2 or put
in a community randomly with the probability 1 − p2. With the probability 1 − p1,
they are placed in a community randomly.

Fig. 8 Mutation

3

Step 1:

Step 2:
Reinsertion

Choose a few genes
randomly and remove
them

Reinsert missing
nodes

New Offspring

Elimination

Left Aside

7

B

B C

A DC

1 5 6 84

3 7 2 5 1

2

3 7

B C F
4 1 6 82 5

4 6 8

An Evolutionary Approach for Detecting Communities in Social Networks 31

3.6 Selection

After the generation of new offsprings which are produced by crossover and muta-
tion operators to the chromosomes, chromosome number exceeds the predefined
population. Chromosomes must be chosen at the number of predefined population
for the next iteration. First, fitness value of all chromosomes and newly generated
offsprings are evaluated, and then they are sorted in decreasing order according to
their fitness values. We take the chromosomes with best fitness values and place
them in the population. This selection can be referred to as elite selection, only
selecting the chromosomes with best fitness values.

3.7 Preprocess

We realize that our algorithm performs well if the number of nodes is not larger than
1000. However, for large real world dataset, chromosomes in the initial population
make a significant difference. Starting the algorithm with the good community
structures and doing operations on these well-defined structures help the evolving of
the community structures of the network rapidly and accurately, as it is mentioned
in the building block hypothesis [15, 31]. Therefore, we decided to use an algorithm
to build a good initial pool in order to generate good results, which means producing
higher network modularity scores, for detecting communities in a network. We use
several of the communities produced from these algorithms as building block inputs.

Spectral algorithm for partitioning graph of a social network [29] and the Girvan–
Newman algorithm [11] are used as a preprocessing step. These methods are run for
limited number of steps. The network modularity functions used by these algorithms
and our specialized genetic algorithm are the same. Communities generated by this
step are used as initial communities for the genetic algorithm. We do not use all the
community structures produced by them. If the size of the community is bigger than
one third of the network size, it is not used as an input because it can dominate the
result. Also, when getting inputs, overlapping communities are not used, every node
must be in a sole community.

4 Experimental Results and Discussion

We used well-known datasets given in Table 1 to evaluate performance of our
algorithm and existing ones.

While defining the parameters for each method for comparison, we get the
parameters which are giving the maximum modularity scores. After the replacement
of the optimal values of the parameters we found for each algorithm, we run each of

32 K. Ozturk et al.

Table 1 Datasets used in
experiments

Network Size Cited from

Zachary’s Karate Club 34 [35]

Collaboration in Jazz 198 [20]

Metabolic 453 [22]

E-mail 1133 [21]

Facebook(NIPS) data 2888 [40]

PGP 10,680 [41]

Cond-Mat 27,519 [42]

them 50 times and take their highest modularity Q value for comparison. Each run
is done for 500 iterations to let them reach their peak points.

4.1 Datasets

In this section, the datasets that are used through the experiments are introduced
and their main characteristics are explained. Zachary’s Karate Club [35] is a very
popular network used by many researchers. It shows a university karate club which
is divided into two communities after a conflict. The network consists of 34 nodes
and 78 edges.

Collaboration in Jazz network [20] dataset was obtained from The Red Hot Jazz
Archive digital database. The data consists of 198 bands that performed between
1912 and 1940, that most of them were seen performing in the 1920s. Each node
in this dataset matches to a band, and an edge between two bands exists if at least
one musician exists who played at both bands in any time. The network consists
of 198 nodes and 2742 edges. In Fig. 9, outcome of our modified genetic algorithm
presented in this paper is shown that it separates Collaboration in Jazz network into
three communities. Nodes belonging to the same community colored with the same
color.

emphMetabolic network [22] is the graph that showing the metabolic pathways
of a multicellular organism, Elegans [3]. This network consists of 453 nodes and
2032 edges.

E-mail network dataset [21] is the network of e-mail interchanges between the
members of the University of Rovira i Virgili in Tarragona. This network consists
of 1133 nodes and 5451 edges.

Facebook(NIPS) dataset [40] It has the data of the Facebook users who installed
the application of a Facebook Social API. This undirected network contains
Facebook user to user friendships. A node represents a user. This network consists
of 2888 nodes and 2981 edges.

PGP network [41] is the graph of a component of a network, consisting the
users of the pretty-good-privacy algorithm for secure information interchange. PGP
network contains 10,680 nodes and 24,316 edges.

An Evolutionary Approach for Detecting Communities in Social Networks 33

Fig. 9 Communities of Collaboration in Jazz Social network found by our method

Cond-Mat network [42] shows the relationships between the authors that shared
any paper on Condense Matters. Cond-Mat network consists of 27,519 nodes.

4.2 Comparison Between Genetic Algorithms

Comparison between genetic algorithms is done within three different algorithms.
First one is the traditional genetic algorithm, referred to as TGA, is a plain genetic
algorithm that uses modularity for fitness function. Second one is the algorithm of
Tasgin et al, referred to as GACD, and the last one is our modified genetic algorithm
proposed in this work, referred to as MGA.

As you can see in Table 2, MGA gives accurate and satisfactory results when
modularity scores compared to TGA and GACD. Especially, significant differences
between maximum modularity scores reached on e-mail and PGP datasets can be
seen.

In the results shown in Fig. 10, you can see how modularity scores evolve over
each iteration on the Zachary’s Karate Club dataset. Modularity scores are shown
for every 10 turns. As you can see from the graphics, modularity scores obtained

34 K. Ozturk et al.

Table 2 Comparison of
modularity scores of GA
technics

Network TGA GACD MGA

Zachary’s Karate Club 0.4198 0.4198 0.4198

Collaboration in Jazz 0.4393 0.4444 0.4444

Metabolic 0.3341 0.4338 0.4373

E-mail 0.2555 0.4339 0.5654

Facebook(NIPS) data 0.7980 0.8086 0.8087

PGP 0.7893 0.8071 0.8557

Fig. 10 Comparison on Zachary Karate Club over iterations

from MGA evolve better and reach higher values quickly although GACD and TGA
have a good start.

In Fig. 11, comparison is made on the dataset of Collaboration in Jazz Social
network. Modularity scores are again shown for every 10 turns. Only after 20 turns,
our method reaches the peak modularity score while GACD needs around 80 turns
for the same performance. Also, in Fig. 12, evolution of the modularity scores of all
algorithms is plotted for every 5 s. Our algorithm approaches the peak point in about
5 s while GACD needs 10 more seconds and TGA needs 130 more seconds to catch
up.

In Fig. 13, comparison is made on the metabolic network. The graph shows the
runs of the algorithms up to maximum modularity scores. Modularity score values
are taken from each iteration. Also, Fig. 14 shows the modularity score values taken
for each 5 s. As you can see, there are not any important difference between GACD
and MGA on metabolic network dataset.

In Fig. 15, comparison is made on the e-mail network dataset that each of the
algorithms is run with their optimal parameters. The figure depicts the values of the
modularity score Q for every 10 iterations. As you can see, all three algorithms start
from a point which is very close to each other. MGA evolves better and approaches

An Evolutionary Approach for Detecting Communities in Social Networks 35

Fig. 11 Comparison on Collaboration in Jazz over iterations

Fig. 12 Comparison on Collaboration in Jazz over time

to peak point quicker than the other algorithms. It can also be seen from the graph
that when our algorithm reaches 0.4940, the highest modularity Q value for this
dataset, at the iteration 300, modularity score of the TGA is around 0.26 and that
of the work of GACD is around 0.42. In Fig. 16, we run these three algorithms 50
times and use the values from their best results to compare their execution times. We
plot the evolution of the modularity scores for every 5 s. As you can see, MGA takes
a large step after fifth second while TGA and GACD perform poorly. At 200, our
algorithm reaches the value of 0.4940 while modularity score of the TGA is around
0.24 and that of GACD is around 0.32.

36 K. Ozturk et al.

Fig. 13 Comparison on metabolic over iterations

Fig. 14 Comparison on metabolic over time

In Fig. 17, comparison is made on the Facebook (NIPS) network. The graph
shows the runs of the algorithms up to maximum modularity scores. Modularity
score values are taken from each iteration. Also, Fig. 18 shows the modularity score
values taken for each 5 s. After the initialization phase, algorithms begin with high
modularity scores because of the structure of the dataset, then MGA reaches the
value 0.8087 earlier.

In Fig. 19, comparison is made on the PGP network which has 10,680 nodes and
is larger than the previously used datasets in terms of size. The graph shows the best
performing runs of each of three algorithms throughout the iterations. Modularity

An Evolutionary Approach for Detecting Communities in Social Networks 37

Fig. 15 Comparison on e-mail network over iterations

Fig. 16 Comparison on e-mail network over time

score values are taken from every 10 iterations. After the initialization phase, it is
seen that all three algorithms have close modularity scores. After that MGA reaches
the higher values at earlier iterations. In Fig. 20, we see how modularity scores of
the algorithms evolve over the time on the PGP network. When we looked at the
modularity scores obtained in first 200 min, it is seen that MGA performs better
when compared to TGA and GACD.

38 K. Ozturk et al.

Fig. 17 Comparison on Facebook (NIPS) dataset over iterations

Fig. 18 Comparison on Facebook (NIPS) dataset over time

4.3 Comparison with Different Community Detection
Algorithms for Social Networks

We compare our genetic algorithm with other four algorithms which are accepted as
proven ways for community detection in social networks. These four algorithms
are the following: the betweenness based algorithm of Girvan and Newman
(abbreviated as GNA) [11], the greedy optimization algorithm of Clauset et. al.
(abbreviated as CNM) [23], the extremal optimization algorithm of Duch and

An Evolutionary Approach for Detecting Communities in Social Networks 39

Fig. 19 Comparison on PGP dataset over iterations

Fig. 20 Comparison on PGP dataset over time

Arenas (abbreviated as DAA) [22], and the spectral method of Newman (abbreviated
as CNM) which uses eigenvectors of similarity matrices of the networks [29].

The results of the algorithm of Duch and Arenas [22] and algorithm of Clauset
et al. [23] are taken from the experiments mentioned in other studies [22, 29].
For Girvan–Newman algorithm, the software Gephi (https://gephi.github.io/) and
its Girvan–Newman clustering plugin is used. For the experiments for Newman’s
spectral algorithm, Jmod Tool (http://tschaffter.ch/projects/jmod/) which is a toolkit
for community detection in networks is used. We did not need to find parameters for

https://gephi.github.io/
http://tschaffter.ch/projects/jmod/

40 K. Ozturk et al.

Table 3 Comparison of modularity scores of MGA and other algorithms

Dataset GNA CNM DAA NSA MGA

Zachary’s Karate Club 0.401a 0.381b 0.419b 0.420a 0.420

Collaboration in Jazz 0.405a 0.439b 0.445b 0.442a 0.445

Metabolic 0.403a 0.402b 0.434b 0.424a 0.437

E-mail 0.532a 0.494b 0.574b 0.552a 0.565

PGP 0.816a 0.733b 0.846b 0.855a 0.856

Cond-Mat Not applicableb 0.668b 0.679b 0.723a 0.723
aThis data is not found by our experiment. It is claimed in and taken from the work of Newman
bThis data is not found by our experiment. It is claimed in and taken from the work of Duch and
Arenas

Table 4 Comparison of modularity scores of MGA with preprocess step and other algorithms

Dataset GNA CNM DAA NSA MGA + Preprocess

Zachary’s Karate Club 0.401a 0.381b 0.419b 0.420a Not applied

Collaboration in Jazz 0.405a 0.439b 0.445b 0.442a Not applied

Metabolic 0.403a 0.402b 0.434b 0.424a 0.438

E-mail 0.532a 0.494b 0.574b 0.552a 0.576

PGP 0.816a 0.733b 0.846b 0.855a 0.858

Cond-Mat Not applicableb 0.668b 0.679b 0.723a 0.729
aThis data is not found by our experiment. It is claimed in and taken from the work of Newman
bThis data is not found by our experiment. It is claimed in and taken from the work of Duch and
Arenas

other algorithms since experiments are done for these algorithms on datasets we are
using and their best results are claimed in [11, 22, 23, 29].

Algorithms are run on the same datasets and their modularity scores are
calculated. In Tables 3 and 4, you can see the comparison of modularity scores of
these algorithms. Datasets are, in order, Zachary’s Karate Club [35], Collaboration
in Jazz network [20], metabolic network for the nematode C. Elegans, e-mail
network [21], PGP which is a trust network on mutual signing of cryptography
keys, and Cond-Mat which is a network showing the relations of the authors and the
papers in Condense Matters archive.

For metabolic network mutation rate is taken as 0.8, initial chromosome count
is taken as 100. pcr is taken as 0.7, pmr is taken as 0.8. For Cond-Mat network,
mutation rate is taken as 0.7, initial chromosome count is taken as 100. pcr is taken
as 0.7, pmr is taken as 0.6. For both PGP and Cond-Mat, no maximum iteration
count is defined. PGP and Cond-Mat are terminated if the modularity score does not
change for past 100 and 200 iterations, respectively.

In Table 3, maximum network modularity scores of the algorithms are shown.
Each algorithm is run on the same datasets 40 times and their largest modularity
scores are reported. GNA is not applied to Condense Matters dataset because of its
huge time requirement.

An Evolutionary Approach for Detecting Communities in Social Networks 41

4.4 Experiments with Using Preprocess Step

In Table 4, also, maximum network modularity scores of the algorithms when they
run on the same datasets are shown. Again, GNA is not applied for Condense
Matters dataset. For this time, MGA is run including the preprocess step. We did
not run MGA on Zachary’s Karate Club and Collaboration in Jazz network datasets,
because their size is too small for a preprocess step and it does not refine the
results. For the preprocess step, we have taken communities from the results of
GNA and NSA and created a pool consisting of communities. For metabolic and
e-mail datasets, all the communities given as output after the run of GNA and NSA
and communities not larger than one third of the network size are used as input.
For PGP and Cond-Mat datasets, GNA and NSA are run for 1 h and the indivisible
communities found during the first 1 h are used as input. Because of GNA is not
being applied to Condense Matters dataset, we use only results from NSA.

In Fig. 21, time comparison of the modularity scores between NSA and MGA
with preprocess is made. MGA has taken 15 different communities randomly
assigned to the communities from the community pool generated by running NSA
and GACD of Tasgin et al. for 1 h. The snapshots of the PGP network are taken when
the NSA divided it into smaller pieces. Modularity scores of the NSA and MGA with
preprocess are compared at the times when the mentioned snapshots are taken. Our
pool of communities consists of 37 communities. Quality of these communities is
determined by their modularity scores. It can be seen that modularity score of MGA
gets larger in a fast way until it reaches a point, after that its move gets slower. Also,
in Fig. 21, it is seen that MGA converges to a peak modularity score in a very short
period of time compared to NSA.

Fig. 21 Time comparison on PGP network

42 K. Ozturk et al.

5 Conclusion

In this paper, requirements and methodologies for detecting communities in social
networks are analyzed and a new method is proposed. Previous studies concentrat-
ing on the issues such as clustering, graph partitioning, and community detection
in networks and also genetic algorithms are reviewed. Eventually, a method which
benefits from genetic algorithms and specialized to detect communities in social
networks is proposed. In this method, we shifted our focus, which is inspired from
Falkenauer’s presentation of grouping genetic algorithms, from individuals of the
graph to communities of the graph. An encoding which presents communities as
genes of the chromosomes and individuals as the data of the genes is applied.
Additionally, for large real network data, a preprocess step which makes use of
the community structure outputs produced from running of other algorithms is used.
With the preprocess step, we planned to take advantage of building blocks for a more
rapid run and accurate results. To evaluate the success of the algorithm, modularity
score is used as fitness function.

First, our modified genetic algorithm is compared with other genetic algorithms:
Traditional genetic algorithm and grouping genetic algorithm of Tasgin et al. The
experiments have been done without applying a preprocess step to distinguish
performances of genetic algorithms and to show how our encoding of chromosomes
and operators perform. The outcomes were satisfactory such that our method finds
community structures faster and reaches the peak modularity score consuming less
time than the other two methods. We compared how modularity scores changed
through the iterations and changed through the time passes. Experiments done with
both traditional genetic algorithm and GACD of Tasgin et al. prove that our modified
genetic algorithm (MGA) is superior to them while detecting communities of social
networks even without using a preprocess step. Then, our method is compared to
other algorithms [11, 22, 23, 29] which are using different graph partitioning or
community detection approaches, but using modularity score, common in evaluating
the structure of the network. As it is seen in the results, our modified genetic
algorithm (MGA) produces good results when compared to others. For the need
of improving the modularity score of the network further, a preprocess step is
applied. Because the preprocess step provides building blocks to the solution space,
it enhanced the modularity scores of the networks. As a result our method is an
effective way of using building blocks.

Since our method uses a kind of genetic algorithm, it reaches the optimal solution
eventually as expected and also it has rapid refinements, although there are some
disadvantages. There are points that can be referred to as saturation points where
improvement of the modularity score gets slower when it gets closer to the peak
points. In future studies, we will look for solutions to overcome the saturation points
in a faster way. Furthermore, implementation of parallel programming to our method
can speed up the running time.

An Evolutionary Approach for Detecting Communities in Social Networks 43

References

1. Scott, J.: Social Network Analysis: A Handbook. SAGE Publications, London (2000)
2. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press, Cambridge

(1994)
3. Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(47)

(2002). https://doi.org/10.1103/RevModPhys.74.47
4. Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks.

Cambridge University Press, Cambridge (2008)
5. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure

and dynamics. Phys. Rep. 424, 175–308 (2006)
6. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet

and WWW. Oxford University Press, Oxford (2003). https://doi.org/10.1063/1.1825279
7. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256

(2003)
8. Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet: A Statistical

Physics Approach, Cambridge University Press, New York (2004)
9. Erdos, P., Renyi, A.: On random graphs I. Publ. Math. Debr. 6, 290–297 (1959)

10. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)
11. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS

99(12), 7821–7826 (2002)
12. Crane, D.: Invisible Colleges: Diffusion of Knowledge in Scientific Communities. University

of Chicago Press, Chicago (1972)
13. Egghe, L., Rousseau, R.: Introduction to Informetrics. Elsevier, Amsterdam (1990)
14. Breiger, R.L., Boorman, S.A., Arabie, P.: An algorithm for clustering relational data with

applications to social network analysis and comparison with multidimensional scaling. J. Math.
Psychol. 12(3), 328–383 (1975). https://doi.org/10.1016/0022-2496(75)90028-0

15. White, H.C., Boorman, S.A., Breiger, R.L.: Social structure from multiple networks. I.
Blockmodels of roles and positions. Am. J. Sociol. 81(4), 730–780 (1977)

16. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying
communities in networks. PNAS 101(9), 2658–2663 (2004)

17. Girvan, M., Newman, M.E.J.: Finding and evaluating community structure in networks. Phys.
Rev. E Stat. Nonlinear Soft Matter Phys. 69(2 Pt 2), 026113 (2004)

18. Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003). https://doi.
org/10.1103/PhysRevE.67.026126

19. Holme, P., Huss, M., Jeong, H.: Subnetwork hierarchies of biochemical pathways. Bioinfor-
matics 19, 532–538 (2003)

20. Gleiser, P., Danon, L.: Community structure in Jazz. Adv. Complex Syst. 6(4), 565–573 (2003)
21. Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community

structure in organisations. Phys. Rev. E 68, 065103 (2003)
22. Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization.

Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 72(2), 027104 (2005)
23. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks.

Phys. Rev. E 70, 066111 (2004)
24. Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23(2), 298–305 (1973).

Institute of Mathematics, Academy of Sciences of the Czech Republic
25. Pothen, A., Simon, H.D., Liou, K.: Partitioning sparse matrices with eigenvectors of graphs.

SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)
26. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Sys.

Tech. J. 49(2), 291–308 (1970)
27. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in

large networks. J. Stat. Mech: Theory Exp. 2008(10) (2008)

https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1063/1.1825279
https://doi.org/10.1016/0022-2496(75)90028-0
https://doi.org/10.1103/PhysRevE.67.026126
https://doi.org/10.1103/PhysRevE.67.026126

44 K. Ozturk et al.

28. Richardson, T., Mucha, P.J., Porter, M.A.: Spectral tripartitioning of networks. Phys. Rev. Lett.
E 80, 036111 (2009)

29. Newman, M.E.J.: Modularity and community structure in networks. PNAS 103(23), 8577–
8582 (2006)

30. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, Boston (1989)

31. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor (1975)

32. Darwin, C.: On the Origin of Species. John Murray, London (1859)
33. Tasgin, M., Bingol, H.: Community Detection in Complex Networks Using Genetic Algo-

rithms. arXiv:cond-mat/0604419v1 (2006)
34. Tasgin, M., Herdagdelen, A., Bingol, H.: Community Detection in Complex Networks Using

Genetic Algorithms. arXiv:0711.0491 (2007)
35. Zachary, W.W.: An information flow model for conflict and fission in small groups. J.

Anthropol. Res. 33(4), 452–473 (1977)
36. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices.

Phys. Rev. E, 74(23), 8577–8582 (2006)
37. Palla, G., Dernyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of

complex networks in nature and society. Nature 435(7043), 814–818 (2005)
38. Pissard, N., Assadi, H.: Detecting Overlapping Communities in Linear Time with PA Algo-

rithm. arXiv:physics/0509254 (2005)
39. Falkenauer, E.: Genetic Algorithms and Grouping Problems. John Wiley, New York (1998)
40. McAuley, J., Leskovec, J.: Learning to Discover Social Circles in Ego Networks, NIPS. Curran

Associates Inc., Nevada (2012)
41. Boguna, M., Pastor-Satorras, R., Diaz-Guilera, A., Arenas A.: Models of social networks based

on social distance attachment. Phys. Rev. E 70, 056122 (2004)
42. Newman, M.E.J.: Scientific collaboration networks. I. Network construction and fundamental

results. Phys. Rev. E, 64(1), 016131 (2001). American Physical Society

On Detecting Multidimensional
Communities

Amani Chouchane, Oualid Boutemine, and Mohamed Bouguessa

Abstract The study of multidimensional networks has become an active field of
research in the last few years. One of the most fundamental tasks is community
detection where the aim is to find subsets of densely connected or highly interactive
nodes. Community detection in multidimensional networks has particularly gained
a lot of attention and a number of approaches have been proposed. Still, several
aspects remain to be addressed in the current literature. In fact, besides being
parameter-laden, the majority of the proposed approaches thus far lack an outlier
detection mechanism and systematic procedures for explicit selection of the dimen-
sions associated with the detected communities. To cope with these limitations, we
introduce a novel principled approach named MCDA: multidimensional community
detection algorithm. The proposed approach comprises two phases: (1) handling
outliers and (2) mining multidimensional communities. The first phase of the
algorithm is based on a probabilistic approach that exploits the beta mixture
model to identify and eliminate outlier nodes from a network in a systematic
way. The second phase adopts a local search mechanism which is inspired from
the label propagation principle to detect communities. To this end, we design a
novel propagation rule that exploits the most frequently used interaction dimensions
among neighbors as an additional constraint for membership selections. The new
propagation rule allows MCDA to automatically unfold the hidden communities
in a multidimensional context. The detected communities are further processed for
selection of relevant dimensions using an inter-class inertia-based procedure.

Keywords Clustering · Multigraphs · Multidimensional communities

A. Chouchane · O. Boutemine · M. Bouguessa (�)
Department of Computer Science, University of Quebec at Montreal, Montreal, QC, Canada
e-mail: bouguessa.mohamed@uqam.ca

© Springer Nature Switzerland AG 2019
P. Karampelas et al. (eds.), From Security to Community Detection in Social
Networking Platforms, Lecture Notes in Social Networks,
https://doi.org/10.1007/978-3-030-11286-8_3

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11286-8_3&domain=pdf
mailto:bouguessa.mohamed@uqam.ca
https://doi.org/10.1007/978-3-030-11286-8_3

46 A. Chouchane et al.

1 Introduction

Multidimensional networks have become an emerging model for representing com-
plex interaction scenarios among entities of real world systems. A multidimensional
network can be represented as a graph where each pair of connected nodes is linked
by multiple edges that describe different types of interaction. This representation can
be described by a set of elementary networks (i.e., dimensions) sharing the same set
of nodes while capturing different kinds of interactions.

Recently, a number of research efforts have been devoted to the investigation of
multidimensional networks. Some works were directed towards the characterization
of their structural properties [1–3] while other proposals focused on the study of
dynamic processes like percolation [4] and epidemic spreading [5]. In this paper,
we focus on the problem of community detection. The goal is to automatically
find subsets of densely connected nodes across different subspaces of dimensions.
Nodes sharing membership to the same community are known to share common
characteristics and behaviors. Thus, the discovery of communities within a network
would give a better understanding of its structural features and hidden organization.

Community detection in multidimensional networks has received an increasing
interest in the last few years and a number of techniques have been proposed.
These techniques differ in the way they approach this problem and the definition
they adopt for a multidimensional community. For instance, some methods, such
as the work in [6], and in [7], consider a community as a set of densely connected
nodes across all networks’ dimensions. Accordingly, a community is supposed to
exist in each one of the network’s dimensions. However, such a definition appears
to be less realistic since in multidimensional networks a community may also
exist in different combinations of dimensions. This is why other proposals [8–
10] regard a community as a region of high density of links that only exists along
some dimensions. Such a definition implies the existence of a subset of dimensions
supporting the formation of the community. This subset of dimensions is referred
to as the relevant dimensions for the community. The remaining dimensions that do
not contribute to the formation of community are called irrelevant dimensions. Here,
it is important to note that multidimensional community detection algorithms are
not limited solely to identifying community structures and their associated relevant
dimensions. A multidimensional community detection algorithm should also be able
to identify a set of outlier nodes which, by definition, do not lie within communities
(in other words, outliers are those nodes that significantly deviate from densely
connected nodes).

To illustrate, we generated a multidimensional network that contains four
dimensions and three community structures embedded in different subspaces.
Figure 1 illustrates the adjacency matrices of the four dimensions. In each matrix
of this figure, shaded regions illustrate the presence of node-to-node connections
along a specific dimension, while white regions denote the absence of such
connections. Note that this four-dimensional network contains 400 nodes spanning
3 communities and 25 outlier nodes that are not located within any of the generated

On Detecting Multidimensional Communities 47

0

0

50

50

100

100

150

150

200

200

250

250

300

300

350

350
400

400 0 50 100 150 200 250 300 350 400

0 50 100 150 200 250 300 350 4000 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

(a) d1 (b) d2

(d) d4(c) d3

Fig. 1 An example of a four-dimensional synthetic network containing three communities across
different combination of dimensions. Subfigures illustrate the associated adjacency matrices of
each dimension. (a) d1, (b) d2, (c) d3, (d) d4

three communities. As can be seen from Fig. 1, dimensions d1, d2, and d3 contain
dense block regions describing three community structures projected along these
dimensions. The first community exists in dimensions d1 and d3, while the second
and the third communities exist in dimensions d1, d2, and d3. On the other
hand, dimension d4 is completely an irrelevant dimension that does not exhibit
any community structures. Outliers are those nodes that do not belong to any
dense regions (communities) along all the dimensions of the generated network.
Specifically, outliers are located at the top of each matrix of Fig. 1 in which no block
(dense region) exists. In this paper, we are striving to (1) identify and eliminate

48 A. Chouchane et al.

such a type of outlier nodes since they harm the community detection process,
and (2) elaborate a parameterless approach that can identify communities and
their associated relevant dimensions in a fully automatic way. In what follows,
we first describe briefly the mainstream algorithms for community detection in
multidimensional networks. Next, we discuss a number of elements that motivate
this study and describe our contributions.

1.1 Related Approaches

Thus far, the works addressing the problem of community detection in multidimen-
sional networks have adopted various exploratory modes of the networks’ structure.
For instance, several methods [11, 12] attempt to reduce the problem of community
detection to the classical setting by performing a transformation of the original
multidimensional network into a monodimensional weighted graph. Community
detection techniques for weighted graphs can thus be applied on the aggregated net-
work. Recovering communities from individual dimensions and finding a consensus
partition is another straightforward way to handle multidimensional networks. For
example, the authors in [13] suggest the use of ensemble clustering strategies
[14]. Berlingerio et al. [15] proposed an approach targeted to identifying overlaps
between communities in the same or across different dimensions. Specifically, the
work in [15] exploits a frequent closed itemsets mining algorithm [16] to process
the list of nodes’ memberships in the extracted communities. Nodes backing a
frequent closed itemset capture, thus, a multidimensional community. Here, it is
worth noting that consensus approaches are sensitive to sparse dimensions, that is,
noisy dimensions that do not exhibit any community structures. Indeed, the high
number of small communities recovered from these sparse dimensions might affect
the consensus partitioning.

Following the previous model, feature integration-based methods consider the
network’s dimensions on an individual basis. However, unlike former approaches
[13, 15] which combine the partitions obtained from each dimension, the most
important structural features are extracted and combined instead. For instance,
the PMM method (principal modularity maximization) [7] combines the spectral
features of the modularity matrices of the network’s dimensions. Singular value
decomposition is then applied to produce a lower-dimensional embedding that
serves as an input to a k-means algorithm. Several related feature integration
schemes [17, 18] have also been proposed. For example, the authors in [17] proposed
a linked matrix factorization-based approach whereas the work in [18] describes a
spectral method named SC-ML (spectral clustering on multilayer graphs) for mining
communities in multidimensional networks. Since they internally rely on k-means
clustering, feature integration-based methods suffer from their dependency on the
number of communities which should be specified by the user.

In order to handle multidimensional networks, several works have focused
on the development of multidimensional alternatives from standard approaches.

On Detecting Multidimensional Communities 49

For instance, a generalization of the well-known modularity measure was pre-
sented in [19]. The new definition was used by Carchiolo et al. [20] to design a
Louvain-inspired [21] generalized modularity maximization approach. Likewise,
De Domenico et al. [22] proposed a compression-based extension to the Infomap
algorithm [23]. The information flow is modeled as a random walk where the best
partition is recovered by minimizing a modified map equation. Multidimensional
community discovery has also been investigated using tensor decomposition-based
methods [24]. For instance, the work in [10] introduced GraphFuse, a clustering
approach for multidimensional networks which uses a tensor factorization approach.
Despite its ability to measure the relevance scores of the network’s dimensions
to the detected communities, GraphFuse’s dependence on the targeted number of
communities can limit its applicability.

Finally, it is worth noting that the output of some community detection algo-
rithms, such as the ones proposed in [15, 19, 25], differs significantly from the type
of the communities that we aim to discover in this paper. In fact, the approaches
in [15, 19, 25] strive to identify all densely connected nodes in all subspaces of
dimensions. These algorithms tend to uncover a very large number of communities
since the same node may be assigned to multiple communities across multiple
subspaces. Although, depending on the application domain, such an approach can
be an interesting tool for mining multidimensional networks; the interpretation
of their results poses a significant challenge due to the high number of detected
communities. In this paper, we focus on algorithms designed to identify disjoint
community structures which may exist in different combinations of dimensions. We
believe that partitions identified by these algorithms provide clearer interpretability
of results, as compared to reporting densely connected communities with high
overlap.

1.2 Motivations and Contributions

The approaches described in the previous section do not provide systematic mech-
anisms to select the relevant dimensions associated with the detected communities.
Besides, the majority of these approaches depend on a number of user-supplied
parameters which require a proper tuning. These parameters can affect the detection
accuracy if inappropriate values are provided. In addition, many algorithms require
the number of communities to be fixed ahead of time. In real world applications,
however, the ability to provide accurate values for these parameters is often limited
since prior knowledge about the investigated network might not be available. In
addition most existing approaches encounter difficulties when the network under
investigation contains a high number of irrelevant dimensions compared to the
number of relevant dimensions in which communities may exist. The presence of
many irrelevant dimensions severely harms the community detection process of
existing methods.

50 A. Chouchane et al.

In [8], we proposed a parameterless approach which is able to automatically
detect communities and their relevant dimensions. However, this approach is not
able to handle outliers. The lack of a systematic mechanism to identify and eliminate
outlier nodes limits the applicability of any community detection algorithm. In fact,
while communities may hide in different subspaces, multidimensional networks
are also characterized by the presence of outlier nodes that do not cluster well.
Surprisingly, existing approaches designed to detect community structures in
multidimensional networks do not include an outlier detection mechanism. Outliers
are considered as noise that must be eliminated because they reduce community
detection accuracy and impair the effectiveness of any mining techniques. We
believe that multidimensional network applications require not only a partitioning
algorithm to discover communities embedded in subspaces, but also an algorithm
capable of handling outliers.

To cope with these limitations, we introduce an effective algorithm for commu-
nity detection in multidimensional networks. The proposed approach (henceforth
MCDA, short for multidimensional community detection algorithm) is able to
automatically identify outliers and does not require any parameter setting to detect
communities and their associated dimensions. MCDA is composed of two phases:
outlier detection and community identification. In the first phase, starting from
the assumption that outliers are inconsistent or considerably different from the
remaining nodes in a network, we define a function to assess the degree to which
a node is an outlier. Then, based on the estimated degree of outlierness, we
devise a probabilistic approach to systematically discriminate outliers from nodes
that may potentially lie within a community. In the second phase, MCDA adopts
a propagation mechanism which exploits the most frequently used interaction
dimensions among neighbors as an additional constraint for membership selection.
These constraints are expressed through a weighting scheme which assigns to each
neighbor, a score that represents the importance of the dimensions connecting the
pair of nodes. These scores are then used to guide the propagation rule for the search
of the best partition. Once the communities are recovered, our approach proceeds
with the selection of their relevant dimensions. To this end, a relevance score is
estimated for each dimension based on its contribution in links to the formation
of the processed community. Relevant dimensions to a specific community will
receive high score values, while irrelevant dimensions receive low relevance score.
An inter-class inertia-based selection procedure is then applied to find the best cut
position to separate the high scoring dimensions from the irrelevant dimensions
with low score values. The following section provides a detailed description of our
approach.

On Detecting Multidimensional Communities 51

2 The MCDA Approach

2.1 Problem Statement

Multidimensional networks can formally be represented by multigraphs [3]. Let
G = (V ,E,D) be an undirected and unweighted multigraph, where V is a set
of n nodes; D is a set of o dimensions; E is a set of m edges, that is, the set of
triplets (v, u, d) such that v, u ∈ V are nodes, and d ∈ D is a dimension. The triplet
(v, u, d) specifies that the two nodes v and u are connected by one edge that belongs
to dimension d ∈ D. Each pair of nodes in G can thus be connected by at most o

possible edges.
In this paper, we assume that each node v ∈ V belongs either to one community

or to the set of outlier nodes OUT . A multidimensional community Ck (k =
1, . . . , K), where K is an unknown number of communities, is defined as a pair
(Vk,Dk) where Vk is a subset of V ′ = V −OUT ; Dk ⊆ D is a subset of dimensions
such that nodes in Vk are densely connected across Dk . Dimensions in Dk are called
relevant dimensions for the community Ck . The remaining dimensions of G, that
is, D − Dk , are called the irrelevant dimensions for Ck . Note that the subsets of
relevant dimensions {Dk}k=1,...,K may or may not be disjoint and may have different
cardinalities. A dimension can be relevant to zero, one, or more communities. To
illustrate, consider the three-dimensional network depicted in Fig. 2. One would
expect two communities to result from this multidimensional network: C1 =
(V1,D1) = ({n1, n2, n3}, {d1}) and C2 = (V2,D2) = ({n4, n5, n6, n7}, {d1, d2}).

Fig. 2 A three-dimensional network with two communities embedded along two different subsets
of dimensions. Community C1 exists in one dimension d1 while community C2 exists in
dimensions d1 and d2

52 A. Chouchane et al.

As can be seen, communities may exist in different combinations of dimensions.
Nodes n0 and n8 are outliers since they exhibit atypical connections with respect
to the rest of the network’s nodes and they do not belong to any identifiable
dense structure. Finally, note that a careful visual inspection of Fig. 2 suggests that
dimension d3 is an irrelevant dimension since it does not contain any meaningful
structure in comparison to d1 and d2.

We devise in this section MCDA, a principled approach for automated discovery
of multidimensional communities. To this end, our algorithm proceeds in two
phases: (1) handling outliers, which aims to detect and eliminate outlier nodes
that do not lie within any dense region in the network under investigation and (2)
mining community structure, which aims to detect communities and their relevant
dimensions. It is worth noting that the approach we propose is independent from
any network-specific parameter such as the number of communities or a detection
threshold to discriminate outliers from normal nodes that belong to communities.
Details of each phase are given in the following.

2.2 Outlier Handling

In this phase, as mentioned previously, we focus on the problem of detecting outlier
nodes that do not belong to any dense regions across all the network dimensions of
G. To this end, we proceed in two steps. In the first phase, we investigate the network
topology in order to estimate an outlier score for each node. Outlier nodes receive
small scores, while nodes that belong to dense regions receive large score values. In
the second step, based on the estimated scores, we develop a statistical method that
exploits the beta mixture model to automatically discriminate outliers from nodes
that lie within dense regions. The two steps are described in detail below.

2.2.1 Step 1: Estimating Outlier Scores

In this subsection, we devise a method to estimate an outlier score for each node
in order to capture the difference between normal nodes (that is, nodes that lie
within communities) and outlier nodes. To this end, we first develop a function that
reflects the strength of connections between nodes in the multidimensional setting.
The proposed function is based on the assumption that normal nodes are strongly
connected across different subspaces of dimensions, whereas outliers are weakly
connected to the rest of the network’s nodes. Then, we evaluate the strength of
connection of each node with respect to its immediate neighboring nodes in order
to estimate an outlier score that helps to distinguish between normal and outlier
nodes.

Generally, normal nodes tend to form dense regions along different combinations
of dimensions, while outlier nodes are sparsely distributed across all the network
dimensions. Accordingly, nodes within dense regions share a common pattern of

On Detecting Multidimensional Communities 53

interaction in the sense that they may very likely have a relatively large number of
common neighbors, which is not the case for outlier nodes. With this intuition in
mind, we define the strength of connection between two nodes u and v as

f (v, u) = | η(u,D(v, u)) ∩ η(v,D(v, u)) |
| η(u) ∩ η(v) | (1)

where D(v, u) ⊆ D is the subset of dimensions that only connect nodes u and v. In
Eq. (1), η(u,D(v, u)) denotes the set of neighboring nodes of u with respect to the
dimensions in D(v, u), while η(u) represents the set of neighbors of u with respect
to all the network dimensions D.

To illustrate, consider again the three-dimensional network depicted in Fig. 2.
This network contains nine nodes connected along three dimensions (D =
{d1, d2, d3}). Let’s examine, for example, the neighbors of nodes n4 and n5 which
are connected through dimensions d1 and d2. For this case, D(n4, n5) = {d1, d2},
η(n4,D(n4, n5)) = {n5, n6, n7, n8} and η(n5,D(n4, n5)) = {n4, n6, n7}. On the
other hand, the neighbors of node n4 across all the network dimensions are η(n4) =
{n5, n6, n7, n8}, while neighbors of node n5 in D are η(n5) = {n4, n6, n7, n8}. In
the following, we explain the reasoning behind the definition of f (u, v) as described
by Eq. (1).

Given that u and v are connected, the term | η(u,D(u, v)) ∩ η(v,D(u, v)) |
corresponds to the number of shared neighbors between u and v along the set of
dimensions in D(u, v), while the term | η(u)∩η(v) | computes the number of shared
neighbors between nodes u and v across all the dimensions in D. The strength of
connection between u and v, as estimated by f (u, v), corresponds to the ratio of the
number of neighbor nodes common between u and v along the set of dimensions
that exclusively connects u and v (that is, D(u, v)) to the number of shared nearest
neighbors between u and v across all the network dimensions (that is, D). By
doing so, f (u, v) evaluates the connectivity between nodes u and v based on the
dimensions they use and their topological structure regarding their neighborhoods.
In such a way, the function f (u, v) reveals the connection’s strength between pairs
of nodes as it describes how they are tightly connected and how similar are their
neighborhoods.

The values of f (u, v) are always between 0 and 1. The highest value of f (u, v)

suggests that nodes u and v share a relatively large number of common neighbors
along the subset of dimensions D(u, v) ⊆ D. On the other hand, a small value
of f (u, v) indicates that u and v are sparsely connected in the sense that they
share a very few number of common neighbors with respect to D(u, v). A null
value of f (u, v) indicates that u and v do not have any neighboring nodes in
common. f (u, v) provides, thus, a relative measure to relate the connection’s
strength between nodes so that it would be easily possible to spot outlier nodes
with an irregular pattern of interactions and random connections. For the purpose
of illustration, consider nodes n0 and n8 in the network depicted in Fig. 2. The
strength of connection of these nodes to their neighbors as estimated by the
function f described by Eq. (1) is 0. That is, f (n0, n1) = f (n0, n6) = 0 and

54 A. Chouchane et al.

f (n8, n4) = f (n8, n5) = 0. On the other hand, any pair of the remaining nodes
(that is, n1, n2, n3, n4, n5, n6, and n7) that share common neighbors with respect to
their connecting dimensions are characterized by high f (u, v) values (mostly equal
to 1). Here, we can claim that the f (u, v) values help to fairly well discriminate
between closely connected nodes and loosely connected ones.

Outlier nodes tend to be weakly connected to the remaining nodes of the network
across all the dimensions. In other words, all the values of f (u, v) associated with
an outlier tend to very small values (close to 0). In this setting, for a specific node
u, calculating the average value of f (u, v) with respect to its immediate neighbors
across D is a fair indicator of an outlierness degree of u. Specifically, an outlier
score OS(u) of a node u can be estimated as

OS(u) =

∑
v∈η(u)

f (u, v)

| η(u) | (2)

As described by Eq. (2), OS(u) computes the average connection strength of the
neighbors of node u in D. Accordingly, nodes that share a large number of common
neighbors will get a large value of OS(u) in comparison to sparsely connected nodes
that do not have any (or a very low number of) common neighbors with respect to
the rest of the network nodes. As a result, for a potential outlier node, OS(u) will
be the smallest, in comparison to densely connected nodes. For example, nodes n0
and n8 in the network depicted in Fig. 2 have the lowest anomaly score: OS(n0) =
OS(n8) = 0, whereas the remaining nodes (which are closely connected) have
relatively high score values (close to 1). OS(u) provides, thus, a relative measure
of the outlier score, which in turn facilitates the discrimination between outliers and
normal nodes.

2.2.2 Step 2: Automatic Identification of Outliers

Let us focus now on how to automatically identify outlier nodes based on OS(u).
As just discussed, the values of OS(u) differ in such a way that outliers are
characterized by relatively low scores in comparison to nodes that belong to
communities. Finite mixture models are typically used to analyze data of this type
[26, 27]. Specifically, the estimated OS(u) can be considered as coming from
several underlying probability distributions. Each distribution is a component of
the mixture model representing data points with close OS(u) values, and all the
components are combined into a comprehensive model by a mixture form. In this
paper, we propose to use the beta mixture model to divide the outlier scores into a
number of components so that the smallest scores can be identified.

On Detecting Multidimensional Communities 55

We use the beta mixture model because it permits multiple modes and asymmetry
and can thus approximate a wide variety of shapes [27–29] while several other
distributions are not able to do so. For example, the Gaussian distribution permits
a symmetric bell shape only. However, in many applications, the data under
investigation is skewed with non-symmetric shapes. As observed in [30], due to
its symmetric shape restriction, the standard Gaussian distribution may lead to inac-
curate modeling (e.g., over estimation of the number of components in the mixture,
increase of misclassification errors, etc.). In contrast to several distributions, the beta
distribution is more flexible and powerful since it permits multiple symmetric and
asymmetric modes, and it may be skewed to the right, skewed to left, or symmetric
[27–29]. The shape of the Gaussian, and other distributions such as the Gamma and
uniform distributions, is thus a special case of the beta distribution. This great shape
flexibility of the beta distribution provides a better fitting of the anomaly scores,
which leads, in turn, to accurate detection of anomalous nodes.

Since the beta distribution is defined in the compact support [0,1], OS(u)

values are thus normalized between 0 and 1 without changing the main statistical
properties. Let ωi, (i = 1, . . . , n), denote the normalized scores (recall that n is the
total number of nodes in the network under investigation). Formally, we expect that
{ωi} follow a mixture density of the form

F(ω) =
p∑

l=1

αlBl(ω, xl, yl), (3)

where Bl(.) is the lth beta distribution, p denotes the number of components in
the mixture, xl and yl (xl, yl > 0) are the shape parameters of the lth component,
αl (l = 1, . . . , p) are the mixing coefficients, with the restriction that αl > 0 for
l = 1, . . . , p and

∑p

l=1 αl = 1. The density function of the lth component is given
by

Bl(ω, xl, yl) = �(xl, yl)ω
xl−1(1 − ω)yl−1 (4)

where �(xl, yl) = �(xl+yl)
�(xl)�(yl)

and �(.) is the gamma function given by �(λ) =∫ ∞
0 tλ−1 exp(−t)dt; t > 0.

A common approach for estimating the parameters xl and yl of the beta
component is the maximum likelihood technique [29]. The likelihood function of
the lth component is defined as

LBl
(xl, yl) =

∏

ω∈Bl

Bl(ω, xl, yl) =
(

�(xl + yl)

�(xl)�(yl)

)nl nl∏

i=1

(ωi)
xl−1

nl∏

i=1

(1 − ωi)
yl−1

(5)

where nl is the size of the lth component. The logarithm of the likelihood function
is given by

56 A. Chouchane et al.

log(LBl
(xl, yl)) = nl log(�(xl + yl)) − nl log(�(xl))

− nl log(�(yl)) + (xl − 1)

nl∑

i=1

log(ωi)

+ (yl − 1)

nl∑

i=1

log(1 − ωi) (6)

To find the values of xl and yl that maximize the likelihood function, we
differentiate log(LBl

(xl, yl)) with respect to each of these two parameters and set
the result equal to zero:

∂

∂xl

log(LBl
(xl, yl)) = nl�

′(xl + yl)

�(xl + yl)
− nl�

′(xl)

�(xl)
+

nl∑

i=1

log(ωi) = 0 (7)

and

∂

∂yl

log(LBl
(xl, yl)) = nl�

′(xl + yl)

�(xl + yl)
− nl�

′(yl)

�(βl)
+

nl∑

i=1

log(1 − ωi) = 0 (8)

The parameters x̂l and ŷl can be estimated by solving the system of Eqs. (7) and (8)
using the Newton–Raphson method.

The use of the beta distribution mixture yields a flexible model to describe the
distribution of the outlier scores. To form such a model, we need to estimate p,
the number of components, and the parameters for each component. One popular
approach to specifying the number of components p is to increase p from 1
to p_max (the maximal number of components in the mixture) and to compute
certain performance measures in each run, until a partition into an optimal number
of components is obtained. For this purpose, we implement a standard two-step
process. In the first step, we calculate the maximum likelihood of the parameters of
the mixture for a range of values of p (from 1 to p_max). The second step involves
calculating the associated criterion and selecting the value of p which optimizes
the criterion. A variety of approaches have been proposed to estimate the number
of components in the data [31]. In our method, we use the penalized likelihood
criterion, called the Bayesian information criterion (BIC). BIC was first introduced
by Schwarz [32] and is given by

BIC(p) = −2Lp + Nbp log(N) (9)

where Lp is the logarithm of the likelihood at the maximum likelihood solution
of the model under investigation, and Nbp is the number of parameters estimated.
The number of components that minimizes BIC(p) is considered to be the optimal
value of p.

Typically, the maximum likelihood of the parameters of the distribution is
estimated using the expectation-maximization (EM) algorithm. This algorithm

On Detecting Multidimensional Communities 57

Algorithm 1: Estimation of p

Input : {ωi}, p_max

Output: The optimal number of components p

begin
for p = 1 to p_max do

if p==1 then
Estimate x̂ and ŷ using the Newton–Raphson method based on (7) and (8);
Compute the value of BIC(p) using (9);

else
Apply FCM as an initialization of the EM algorithm;
Apply the EM to estimate the parameters of the mixture x̂l and ŷl

(l = 1, . . . , p);
Compute the value of BIC(p) using (9);

end
end
Select the number of components p̂, such that p̂ = argmin BIC(p);

end

requires the initial parameters of each component. Since EM is highly dependent
on initialization, it will be helpful to perform initialization by means of a clustering
algorithm [33]. For this purpose we implement the fuzzy C-means (FCM) algorithm
[34] to partition the set {ωi}i=1,...,n into p components. Based on this partition we
can estimate the parameters of each component and set them as initial parameters
to the EM algorithm. The procedure for estimating the number of components is
summarized in Algorithm 1.

Let’s now discuss the choice of the value of p_max. Based on extensive
experiments on various networks, we found that, in most cases, the optimal number
of components in a mixture varies from 2 to 3. This result can be explained by the
fact that the outlier score provides a relative measure on which outlier nodes are
easily distinguishable from nodes that belong to dense structures. Such a concept of
relativity between the values of the outlier scores makes the choice of p_max fairly
simple. Based on this, we believe that setting p_max = 5 is, in general, a practical
choice. However, the reader should be aware that the value of p_max is not limited
to 5 and the user can set any other value. In our experiments, we fixed p_max = 5.

2.3 Summary of Outlier Handling Procedure

Once the optimal number of components is identified, we can use the results of
the EM algorithm to derive a classification decision about the membership of ωi in
each component in the mixture. To identify outlier nodes, we are interested in the
beta component that corresponds to the smallest values of ωi . Accordingly, nodes
associated with the set of values of ωi that belong to such a component correspond
to outliers. The identified outlier nodes are then discarded from the original network
G and stored in the set OUT . Thus, phase 1 of MCDA yields a reduced network RG

58 A. Chouchane et al.

Algorithm 2: Phase 1 of MCDA
Input : G : the original multidimensional network
Output: OUT : the set of outlier nodes

RG : the multidimensional network without outliers
begin

For each node u in G estimate OS(u) using (2);
Estimate {ωi}i=1,...,n by normalizing the values OS(u) between 0 and 1;
Using Algorithm 1, estimate the probability density function of the normalized anomaly

scores with different values of p where p = 1, . . . , p_max;
Select the mixture model with the optimal number of components that minimize BIC;
Use the results of EM to derive a classification decision about the membership of ωi in

each component;
Select the beta component that corresponds to small values of ωi ;
Identify nodes in G associated with ωi that belong to the selected component and store

them in OUT ;
Extract RG such that RG ← G − OUT ;
Return OUT and RG;

end

with size z = n−|OUT |. Note that, unless otherwise specified, in the remainder of
this paper, we will focus on detecting community structures from the network RG

that does not contain outliers. Our method for eliminating outliers is described in
Algorithm 2.

For the purpose of illustration, consider the synthetic network presented in Fig. 1.
Recall that this dataset contains 400 nodes that lie within communities and 50
outlier nodes. For each node u in this network, we have first calculated OS(u) using
Eq. (2). Next, we estimated {ωi} by normalizing the values of OS(u) between 0
and 1. Finally, based on Algorithms 1 and 2, we estimated the probability density
function of {ωi} and identified the beta component that corresponds to outliers.
Figure 3 depicts the estimated density curves. As we can observe from this pictorial
illustration, the beta distribution has a great shape flexibility which allows, in turn,
accurate modeling of the outlier scores. The first component in the plot depicted in
Fig. 3 represents the lowest score values. Nodes associated with the scores grouped
in this component correspond to outlier nodes.

2.4 Mining Community Structures

The second phase of MCDA handles the recovery of the hidden community
structures from the multidimensional network RG. Here, the problem is twofold: we
must discover the communities and find the appropriate set of dimensions in which
each community exists. To tackle this “chicken-and-egg” problem, we proceed in
two steps. In the first step, we cluster the network nodes by devising a parameterless
local search algorithm. Then, based on the communities obtained in the first step,

On Detecting Multidimensional Communities 59

Fig. 3 Density curve of the
outlier score corresponding to
the synthetic network
depicted in Fig. 1. The first
component (the one close to
zero, separated by the dashed
line) corresponds to outliers
component

the second step proceeds to select relevant dimensions of the identified communities.
Below, we describe our community detection approach and then devise a method for
the automatic selection of relevant dimensions for each community.

2.4.1 Community Detection Approach

The community detection approach we propose in this paper is inspired from the
label propagation principle. In essence, a label propagation algorithm (LPA) [35–
38] is a fast local search technique that relies on the network structure as a lone
guide for its community search process. The LPA’s procedure starts from an initial
state where each node is assigned a unique numerical label that represents its
community membership. Nodes are then visited to update their memberships based
on the dominant community labels in their neighborhoods. The relabeling process
keeps repeating until all nodes are assigned the community label that dominates
their neighborhoods. Communities are then extracted from the node sets bearing
the same label. In general, each LPA variant considers the dominance of a given
membership label according to the propagation rule it adopts. For instance, the basic
LPA [35] selects the most frequent label from among the node’s neighbors. For a
simple monodimensional network G′, the propagation rule of the basic LPA can
formally be expressed as:

l′v = arg max

∑

u∈η(v)

Avu δ(lu,
) (10)

where l′v denotes the new community membership label of the processed node
v ∈ V ′; Avu an element of the binary adjacency matrix of G′; η(v) the set of v’s

60 A. Chouchane et al.

neighbors; lu is the community membership label of node u; and δ is the Kronecker
delta, a function that returns 1 if
 and lu are equal. Otherwise, the function returns
zero. In case two or more values equally maximize the sum, arg max must keep
the current label lv of v if it is already among the dominant labels or otherwise
take a random one from the dominant group. The propagation rule described by
(10) updates the membership labels so as to increase the number of edges inside a
community. This definition is based on the intuition that nodes forming a community
tend to have more neighbors internally than elsewhere.

In order to support the multidimensional setting, it is important to take into
consideration the fact that each dimension might contribute differently to the for-
mation of the communities. In fact, defining the dominance of a membership label
in a neighborhood using the same intuition used in monodimensional networks,
that is, using the number of contributed edges to the neighboring community, as
performed by LPA on the aggregated representation [12], could lead to a poor
performance. This is particularly true in the case of networks in which the number
of irrelevant dimensions is higher. Therefore, any propagation rule that operates on
a multidimensional network must consider the relevance of dimensions to which the
edges being counted belong. This raises the question of how to define the relevance
of a dimension to the neighboring community and the processed node.

Intuitively, nodes belonging to a multidimensional community are expected
to interact sufficiently within its subspace of relevant dimensions. Therefore, the
density of edges belonging to the relevant dimensions is expected to be higher
than it is with irrelevant dimensions. Nodes forming a multidimensional community
would thus predominantly use a common subset of relevant dimensions to reach
out to each other. These subsets can be recovered at the node level by locating the
most frequently used dimensions for interaction with the neighboring nodes. One
can exploit this information as an additional constraint for membership selection
in such a way that neighbors which connect with the visited node through the
maximum number of relevant edges define its new membership. This constraint can
be achieved through a weighting strategy which assigns to each neighbor an affinity
score based on the number of relevant dimensions connecting the pair. Such a rule
can be expressed as:

l′v = arg max
l

∑

u∈η(v)

as(v, u) δ(lu, l) (11)

where as(v, u) denotes the affinity score of the visited node v to its neighbor u. A
higher value of as(v, u) indicates that v is connected to u through a higher number
of relevant dimensions for v and u simultaneously, whereas a low value indicates
a low number of relevant dimensions for either of the nodes. Here, it is important
to stress that the number and the relevance of dimensions connecting the pair must
be considered for both v and u. Specifically, based on the dimensions connecting
(v, u), as(v, u) must be estimated so as to satisfy the following two constraints:
(1) the higher the number of relevant dimensions to v, the larger is the value of
as(v, u), and (2) the higher the number of relevant dimensions to its neighbor u, the

On Detecting Multidimensional Communities 61

larger is the value of as(v, u). These two constraints must be honored by as(v, u)

in order to successfully discriminate between adjacent nodes belonging to different
communities. The next sections present the strategy that we have developed for the
estimation of the as scores. The proposed strategy involves a two-stage process
in which each constraint is expressed separately. First, as(v, u) is measured by
considering the number of relevant dimensions to the node v. Next, an adjustment is
carried out to reflect the relevance of the connecting dimensions to the neighbor u.

Initial Estimation of the Affinity Scores In order to estimate the affinity score
as(v, u) for a node v to its neighbor u, we initially rely on the number of relevant
dimensions connecting the pair from v’s perspective. To this end, we adopt the
dimension relevance xOR metric (DRxOR) [3], a function that evaluates the
relevance of a group of dimensions S ⊆ D for a node v based on the ratio of v’s
neighbors that can be exclusively reached in any subset of S. Formally, the DRxOR

is defined as:

DRxOR(v, S) = |ηxOR(v, S)|
|η(v)| (12)

Recall that η(v) is the set of v’s neighbors with respect to all the network
dimensions D and ηxOR(v, S) is the set of v’s neighbors exclusively reachable
in any subset Si ⊆ S and is defined as ηxOR(v, S) = {u|∃(v, u, s) ∈ E ∧ s ∈
S ∧∀d ∈ D −S, � ∃(v, u, d) ∈ E}. The DRxOR returns values in [0, 1] and achieves
its maximum when all v’s neighbors cannot be reached outside S. This metric is
suitable for the estimation of the affinity scores since it favors larger groups of
relevant dimensions to v. In what follows, we define ias(v, u), the initial affinity
score of node v to neighbor u by:

ias(v, u) = DRxOR(v,D(v, u)) (13)

Recall that D(v, u) denotes the set of dimensions that only connect v and u. A
higher value of ias(v, u) indicates a higher number of relevant dimensions within
D(v, u) to v and, initially, a higher chance of v being in u’s community. However,
since it does not honor the second constraint, a high value of the estimated ias

does not necessarily guarantee that v would contribute a higher number of relevant
edges to the formation of u’s community. Therefore, the relevance of the connecting
dimensions to the neighbors of v must be expressed in the affinity scores. In the
following, we introduce a revision procedure for ias(v, u) to enforce the second
constraint.

Revision of the Initial Affinity Scores The second step in the estimation of
as(v, u) deals with the expression of the relevance of D(v, u) to the neighbor u.
A possible way to achieve this is to penalize the initially estimated value ias by the
distance separating D(v, u) from the relevant dimensions to the neighbor u. To this
end, we define Du ⊆ D, the set of relevant dimensions to the neighbor u. Recall that
a high value of ias reflects a high number of relevant dimensions to v. Hence, one

62 A. Chouchane et al.

possible way to recover the relevant dimensions Dv for each node v ∈ V ′, where
V ′ = V − OUT , is to select all D(v, u) for which the combined score ias is the
highest. Given a node v ∈ V ′, we define the set of relevant dimensions Dv as:

Dv = arg max
S

∑

u∈η(v)

ias(v, u) δ(D(v, u), S) (14)

In case two or more sets equally maximize the sum, arg max should take their
union. Now that Du is defined, we can estimate the revised affinity score as(v, u)

of v to u using the distance between D(v, u) and Du. To this end we rely on the
Jaccard coefficient. Formally, as(v, u) is defined as:

as(v, u) = ias(v, u) × |Du ∩ D(v, u)|
|Du ∪ D(v, u)| (15)

The higher the value of as(v, u), the higher is the number of relevant dimensions
within D(v, u) for v and u jointly. Algorithm 3 summarizes the steps for the
estimation of the affinity scores as.

Adopting the weighting strategy in Eq. (15) and the propagation rule in Eq. (11),
a label propagation-based process can be used to support the discovery of mul-
tidimensional communities. Specifically, the process starts by assigning a unique
community label lv to each node v. Nodes are then asynchronously processed
according to Eq. (11). Each propagation step involves the estimated scores as in
the selection of the new membership of the processed node. This iterative process
keeps running until the stop criterion is satisfied, that is, when all nodes are assigned
the community labels that support the highest affinity scores in their neighborhoods

Algorithm 3: Affinity scores estimation
Input : RG

Output: affinity scores matrix as

begin
// Initial estimation of the affinity scores
foreach v ∈ V ′ do

foreach u ∈ η(v) do
Calculate ias(v, u) according to (13);

end
Select Dv according to (14);

end
// Revision of the initial affinity scores
foreach v ∈ V ′ do

foreach u ∈ η(v) do
Calculate as(v, u) according to (15);

end
end
Return as;

end

On Detecting Multidimensional Communities 63

Algorithm 4: Communities detection procedure
Input : RG

Output: {Ck}k=1...K

begin
Estimate as according to Algorithm 3;
foreach v ∈ V ′ do

Assign a unique community label lv for v;
end
// Identification of lv for each node v ∈ V ′
while ∃v ∈ V ′ such that lv is different from the dominant label in η(v) do

foreach v ∈ V ′ do
Update lv according to Eq. (11);

end
end
// Identification of communities
Group nodes v ∈ V ′ with similar label lv into communities {Vk}k=1...K , (K is the

number of the identified groups);
Return {Ck = (Vk)}k=1...K ;

end

according to Eq. (11). In such a case, the resulting communities can be recovered
from the nodes bearing the same community label. Algorithm 4 summarizes the
proposed communities detection procedure.

Finally, we should point out that our approach is nondeterministic due to its
parallel processing of the nodes list and the random memberships selection when
more than a single membership label is equally dominating the neighborhood of
a visited (processed) node. However, as the knowledgeable reader will observe
from the experimental results, the impact that poses this nondeterministic aspect
to MCDA is not significant.

2.4.2 Selection of Relevant Dimensions of Communities

Once community structures are discovered, MCDA deals with the explicit selection
of their relevant dimensions. The idea is to define, for each dimension d ∈ D, a
relevance index R(d,Ck) that determines how well it contributes to the formation
of a community Ck formed by nodes in {Vk}. Based on the estimated relevance
scores, we propose a method to automatically discriminate relevant dimensions of
a community from irrelevant ones. As discussed earlier, nodes belonging to the
same community are densely connected across their relevant dimensions. In other
words, nodes in Ck must exhibit a higher internal density of links along relevant
dimensions. In this setting, the index R(d,Ck) for the dimension d in community
Ck can be defined as:

R(d,Ck) =
∑

v,u∈Vk
Ad

vu

|Ck| × (|Ck| − 1)
(16)

64 A. Chouchane et al.

where Ad
vu denotes an element of the binary adjacency matrix of the graph projected

along dimension d. The relevance index, as defined by Eq. (16), is based on the
formula of the internal density of links belonging to dimension d that connect
the nodes in Vk . A high value of R(d,Ck) suggests that nodes in Vk are densely
connected within dimension d. On the other hand, a small value of R(d,Ck)

suggests that nodes in Vk are sparsely connected along d. Note that in the case
of a singleton community, that is, a community with one node only, the relevant
dimensions are not defined.

Once the relevance index R(d,Ck) of each dimension is estimated, we turn our
attention to the problem of selecting the subset of relevant dimensions Dk ⊆ D

supporting the formation of Ck . As just discussed, relevant dimensions d ∈ Dk of
a community are characterized by large values of R(d,Ck) while irrelevant ones
are characterized by low values. In order to identify the set Dk supporting the
formation of Ck , we are interested in all dimensions d ∈ D with large values
of R(d,Ck). To this end, we rely on an inter-class inertia-based procedure to
automatically separate the highest relevance score values from the lowest ones.
Specifically, let RCk

= {R(d,Ck)}d∈D be the set of all relevance scores of all
dimensions d ∈ D for a community Ck . Our goal is to divide RCk

into two groups
RDk and NRDk where RDk contains the highest values of R(d,Ck), and NRDk

the lowest values. This is achieved by computing the partition into two sets which
have the maximum inter-class inertia on a subset of all possible partitions. To this
end, we implement the iterative model described in Algorithm 5. Based on the
obtained results, we select the relevant dimensions Dk associated with the values
in RDk .

Algorithm 5: Selection of relevant dimensions Dk

Input : RCk

Output: Dk

begin
Sort the relevance scores in RCk

in a descending order;
Compute μRCk

, the mean of RCk
;

for i=1 to o do
Split RCk

into two sets RDk and NRDk containing the first i and last (o − i)

relevance score values respectively;
Compute μRDk

, the mean of RDk ;
Compute μNRDk

, the mean of NRDk ;
Compute the inter-class inertia

I (i) = |RDk | × (μRCk
− μRDk

)2 + |NRDk | × (μRCk
− μNRDk

)2;

end
Select the best partitioning given by the pair (RDk,NRDk), that is, the one for which

the corresponding I (i) is the highest;
Select the dimensions corresponding to each of R(d,Ck) values in RDk and store them

in Dk ;
Return Dk ;

end

On Detecting Multidimensional Communities 65

Fig. 4 The relevance scores for the dimensions of the four-dimensional network depicted in Fig. 1
with respect to (a) C1 and (b) C2. The relevant dimensions of C1 are d1 and d3 while the relevant
dimensions of C2 and C3 are d1, d2, and d3. (a) Dimensions in C1. (b) Dimensions in C2. (c)
Dimensions in C3

Figure 4 illustrates the relevance scores of the four dimensions (sorted in
descending order) of the three communities recovered from the four-dimensional
network depicted in Fig. 1. As shown in Fig. 4, there is a clear cutoff point which
allows us to select, for each community, the dimensions with the highest relevance
score values.

2.5 Summary of the MCDA Approach

Algorithm 6 summarizes the proposed approach. The steps described in this
algorithm can be implemented to effectively identify the set OUT of outliers nodes,
the set Vk of nodes that form each community Ck , and the set Dk of its relevant
dimensions.

66 A. Chouchane et al.

Algorithm 6: The MCDA approach
Input : The multidimensional network G

Output: Communities and their relevant dimensions {Ck = (Vk,Dk)}k=1...K

begin
// Phase 1: Detect and eliminate outliers
Apply Algorithm 2 (G,OUT,RG) to detect OUT and extract RG from G;
// Phase 2: Detect communities and their relevant

dimensions
// Identify communities in RG

Apply Algorithm 4 (RG,Ck) to detect the set of communities {Ck = (Vk,Dk)}k=1...K

in RG;
// Identify the set of relevant dimensions Dk of each

community Ck

foreach Ck do
Estimate the set of relevance scores RCk

= {R(d,Ck)}d∈D using (16);
Apply Algorithm 5 (RCk

,Dk) to identify Dk ;
end
// Return communities and their selected dimensions
Return {Ck = (Vk,Dk)}k=1...K ;

end

3 Experimental Results

This section reports the performance results of MCDA on various synthetic and
real networks. To this end, four approaches were selected for comparison: PMM
[13], SC-ML [18], GraphFuse [10], and ensemble clustering [14]. For the latter, the
communities are first recovered from each dimension separately using the Louvain
method [21]. A consensus partition is then constructed from the obtained partitions
on the individual dimensions. The consensus partition is selected based on the best
results of the three consensus methods proposed in [14] namely, CSPA (cluster-
based similarity partitioning algorithm), HGPA (hyper graph partition algorithm),
and MCLA (meta clustering algorithm). It is important to note that other approaches
such as ABACUS [15] and LART [25] could not be considered in the comparison
since their outputs differ significantly from the output of the selected comparing
algorithms. In fact, as discussed in Sect. 1.1, approaches in [15, 25] return a large
number of densely overlapping communities across multiple subspaces. This makes
the comparison not obvious with MCDA, PMM, SC-ML, and ensemble clustering
since these later approaches identify disjoint multidimensional community struc-
tures.

3.1 Experiments on Synthetic Networks

The goal of the experiments conducted in this section is to evaluate the suitability
of MCDA in terms of: (1) accuracy—the aim is to test whether our algorithm, in
comparison with other existing approaches, is able to correctly identify multidimen-

On Detecting Multidimensional Communities 67

sional communities, and (2) efficiency—the aim is to determine how the running
time scales with the size and the dimensionality of the network. For this purpose,
we generated a variety of synthetic datasets to simulate various situations, using the
data generation model described below.

3.1.1 Synthetic Network Generation

Synthetic networks were artificially generated according to a procedure that is
based on the planted partitions model [39]. Specifically, the generation process
was made parametric to the number of nodes n, the number of communities K ,
the number of dimensions o, the average community dimensionality or , the range
of the intra-community densities of links [γintra_min, γintra_max], the range of the
inter-community densities of links [γextra_min, γextra_max], and the percentage of
outliers PO. Based on the provided parameters, the communities are planted across
the network’s dimensions in such a way that each community exhibits various
densities of links across its relevant dimensions. Specifically, a subset of relevant
dimensions Dr is selected such that |Dr | ≥ or . For each d ∈ Dr , the corresponding
adjacency matrix is split into K blocks Bd

k of different sizes. Each block Bk keeps
the same size regardless of d ∈ Dr . For each community Ck , a subset of blocks Bd

k

is randomly selected across Dr such that the average number of relevant dimensions
for the planted communities remains close to or . Nodes within each selected
block are then wired randomly according to a probability uniformly sampled
from [γintra_min, γintra_max]. Inter-community edges are then added according to
another probability, which is uniformly drawn from [γextra_min, γextra_max]. The
adjacency matrices of the remaining irrelevant dimensions, that is D − Dr , are
constructed following the Erdös–Rényi model with an edge generation probability
uniformly sampled from [γextra_min, γextra_max] for each dimension. Finally, note
that outliers are injected in such a way that they are sparsely distributed across
all the network dimensions and the density of their connections conforms to the
background noise density (in irrelevant dimensions), which is uniformly drawn from
[γextra_min, γextra_max].

3.1.2 Community Detection Accuracy

The main concern of this first set of experiments was to compare the detection
accuracy of MCDA to that of PMM, SC-ML, GraphFuse, and ensemble clustering.
To this end, we generated five different synthetic networks. Figure 5 summarizes the
used parameters for the generation of the synthetic networks of our experiments.
Each network exhibits a different configuration with respect to the number of
dimensions, nodes, and communities, as well as their relevant dimensions. As
we can see from Fig. 5, the number of nodes n varies from 100 to 5000, while
the average community dimensionality or varies from 6 to 100% of the whole
dimensionality o. The dimensions of Dataset 1 are all considered relevant for its

68 A. Chouchane et al.

Fig. 5 Generation parameters for the synthetic networks

Fig. 6 Performance of compared algorithms on synthetic networks. Shaded regions correspond to
the best results

three communities. On the other hand, on average, only 6% of dimensions are
relevant to the communities of Dataset 5. The generated networks allow us to study
the impact of community dimensionality on the quality of results. Note that no
outliers were generated since our goal in this first set of experiments was to evaluate
the robustness of the competing algorithms in situations that involve the presence of
a high number of irrelevant dimensions. In addition to this, as discussed in Sect. 1,
existing approaches, such as the ones considered in our experiments, do not have
an outlier detection mechanism. The outlier detection mechanism of MCDA was
therefore disabled.

The adopted generation model allows us to produce networks that capture various
configurations in a controlled way where the ground truth partitions and the relevant
dimensions are known beforehand. Therefore, it is possible to evaluate the detection
accuracy of compared algorithms using a supervised metric. To this end, we rely on
the normalized mutual information (NMI) [40], a well-known metric that evaluates
the detection accuracy by calculating the similarity between the reference partition
(that is, the ground truth) and the obtained partition (that is, the partition generated
by the community detection algorithm). The more similar the two partitions, the
larger the values of NMI. The NMI achieves its maximum, which is 1, when the
obtained partition is identical to the reference partition.

Figure 6 illustrates performance results of compared algorithms on synthetic
networks, as evaluated with NMI. Recall that PMM [13] as well as SC-ML
[18] and GraphFuse [10] require the number of communities to be set by the
user. In our experiments, the target number of communities was set to the real

On Detecting Multidimensional Communities 69

number of generated communities. Furthermore, since PMM [13], SC-ML [18],
and GraphFuse [10] are parameter-laden, we have tried several values for each input
parameter. Specifically, for PMM [13], we selected the number of structural features
in [5, 14] with 1 graded increments. For SC-ML [18] and GraphFuse [10], the values
of the regularization parameter and the sparsity penalty factor were both taken
from [0, 1] with 0.1 graded increments. In addition, due to the nondeterministic
nature of all competing approaches, including ours, we performed ten repetitive
executions for each selected parameter value. Based on the obtained partitions, the
average ± standard deviation NMI value is reported. In fact, we should point out
that our approach is nondeterministic due to its parallel processing of the nodes
list and the random memberships selection when more than a membership label is
equally dominating the neighborhood of a visited (processed) node. However, as
the knowledgeable reader will observe from the results, the impact that poses this
nondeterministic aspect to MCDA is not significant. It is also worth noting that, for
each run of ensemble clustering, the final partition is identified using the best results
reported by one of the three consensus techniques (CSPA, HGPA, and MCLA) [14].
Finally note that Fig. 6 does not show the results of GraphFuse on Dataset 3, Dataset
4, and Dataset 5. This is because the running time of GraphFuse is very high and
we were not able to obtain an output from this algorithm within a reasonable time
frame. In our experiments, we observed that its takes more than 48 h for GraphFuse
to produce a partition for a network with more than 1000 nodes.

As can be seen from Fig. 6, with the exception of ensemble clustering, all
approaches were able to recover the real partition of the first dataset, thanks to
the shared community structure where each dimension helps in compensating the
missing information from the other dimensions. Ensemble clustering on the other
hand did not succeed in unfolding the real partition of this network despite the
shared partition across its dimensions. We argue that such a result can be explained
by the fact that this approach does not properly handle the structural variations of the
network’s dimensions since they are explored separately. This can be confirmed by
the sub-par performance of this approach on the remaining datasets, and especially,
when the number of relevant dimensions is low.

In the other datasets, MCDA reports a better performance and consistent results
despite the structural variations across the networks’ dimensions. This is true even
for the datasets where the number of irrelevant dimensions is high (specifically
Dataset 4 and Dataset 5). Such a performance can be explained by the ability of the
proposed weighting schemes to efficiently discriminate between same community
neighbors when assigning new node memberships. The expressed constraints do
indeed help in guiding the propagation process towards the best possible partition of
the network. Overall, SC-ML and PMM obtain quite comparable results. However,
these two approaches were not as successful as MCDA in satisfactorily partitioning
the last four datasets (that is, Datasets 2–5). In addition, both SC-ML and PMM,
as well as ensemble clustering, report a slight performance decrease on Dataset
5 in comparison with Dataset 4. Recall that Dataset 5 was constructed by adding
25 irrelevant dimensions to Dataset 4. Therefore, the presence of a larger number
of irrelevant dimensions explains this performance drop. In contrast, our approach

70 A. Chouchane et al.

Fig. 7 Accuracy of selected
dimensions identified by
MCDA

achieves a stable performance. Our experiments suggest that, although MCDA is
a nondeterministic approach, the algorithm yields quite comparable partitions on
all synthetic networks (except Dataset 2), as can be seen from the low standard
deviation values (see Fig. 6). For Dataset 2, however, we have observed that our
approach sometimes merges two communities into a larger community. This is
likely due to the high ratio of outgoing links between these two communities.

We now turn our attention to the evaluation of the performance of the relevant
dimensions selection procedure of MCDA. Note that, in this evaluation, we did
not consider the compared algorithms, as they do not offer any mechanisms that
permit explicit selection of the relevant dimensions associated with the identified
communities. In our experiments, we used precision and recall to evaluate the
accuracy of the selected dimensions identified by MCDA. Specifically, for each
community, precision is the ratio of the number of real relevant dimensions being
selected to the number of selected dimensions. Recall is the number of real relevant
dimensions selected divided by the actual number of real relevant dimensions. The
reported value of a resulting partition is the average of all detected communities.

Figure 7 reports the obtained precision and recall values of the selected dimen-
sions for the partitions identified by our algorithm. As can be seen, the high precision
values reported by MCDA confirm its performance in disregarding irrelevant
dimensions even for low values of or which characterize specifically Dataset 4 and
Dataset 5. The same observation holds true for the recall values (with the exception
of Dataset 1). This demonstrates the capacity of our approach in selecting the real
relevant dimensions. For Dataset 1, however, we observed that MCDA, indeed,
disregards some relevant dimensions with a relatively low density, compared to
the other dimensions. This is expected since our relevant dimensions’ detection
procedure assumes the existence of irrelevant dimensions, which is not the case
with this network.

3.1.3 Outlier Immunity

The aim of this set of experiments was to test the effect of the presence of outliers
on the performance of MCDA. To this end, we generated five artificial networks
with a varied number of outliers. Specifically, for each network, we fixed the total

On Detecting Multidimensional Communities 71

Fig. 8 Performance of MCDA in the presence of outliers

number of nodes n = 3000, the number communities K = 5, the number of
dimension o = 50, and the average community dimensionality or = 6% of o, that
is, only 3 dimensions out of 50 dimensions were relevant, while the remaining 47
dimensions were noisy dimensions that did not contain any community structures.
In each generated network, the percentage of outliers PO varied from 0 to 20% of n.
Figure 8 illustrates the community detection results (evaluated with NMI) of MCDA
on these networks. Note that we did not consider competing algorithms (PMM, SC-
ML, GraphFuse, ensemble clustering) in this experiment because these methods are
not able to handle outliers.

As we can see from Fig. 8, MCDA displays consistent performance and is less
sensitive to the percentage of outliers in the investigated networks. This result
suggests that, in difficult cases, that is, when the average cluster dimensionality
is low (or = 6% of o in our experiment), the proposed algorithm withstands the
increasing value of PO and maintains high community detection accuracy. In our
experiments, we found that the outlier handling procedure of MCDA removed most
outlier nodes and did not miss any densely connected nodes, at the expense of
also selecting a few outlier nodes. This is not necessarily an error, since outlier
nodes were randomly placed throughout the entire network dimensions, and it is
probable that some of them have actually been placed inside dense regions. Under
these circumstances, it is possible that few outlier nodes will receive high outlier
score values and consequently be considered as normal nodes that may lie within
a community. This is not a serious problem, as including a few outlier nodes has
no major effect on MCDAs community detection process, whereas missing a few
community nodes might mean missing a substantial proportion of information. Our
claim is supported by the excellent accuracy of MCDA, as depicted in Fig. 8.

72 A. Chouchane et al.

3.1.4 Scalability Experiments

In this section, we study the scalability of MCDA with increasing network size
and dimensionality. It is important to note that we could not compare the running
time of competing algorithms due to the fact that some of them, such as ensemble
clustering and GraphFuse, require a lot of time and memory resources to provide an
output. Furthermore, the algorithms considered in the comparison are implemented
in various platforms (we have used the original implementation of these algorithms
as provided by their respective authors). This makes the running time comparison
not obvious and less fair.

Scalability with Respect to the Network Size Figure 9a illustrates the running
time of MCDA on networks with four dimensions while the number of nodes n

Fig. 9 Scalability experiments. (a) Scalability with the network size. (b) Scalability with the
network dimensionality

On Detecting Multidimensional Communities 73

varies from 1000 to 100,000. We fixed the number of relevant dimensions to two.
The number of communities in each network is equal to n/100. The curve in Fig. 9a
exhibits a quadratic behavior as the number of nodes increases. For a network with
100,000, the algorithm identifies communities and their relevant dimensions usually
in less than 4 min. For a parameter free algorithm that does not require any human
intervention, we believe that the execution time of MCDA is reasonable.

Scalability with Respect to the Network Dimensionality In Fig. 9b we see
that MCDA scales linearly with the increase in the network dimensionality. The
results presented are for networks with 3000 nodes grouped in 10 communities.
The number of dimensions o varies from 10 to 100. The average community
dimensionality or is equal to 40% of the whole dimensionality o. The results
depicted in Fig. 9b illustrate that our algorithm scales well as the dimensionality
of the network increases.

Finally, it is worth noting that in all the scalability experiments, the quality of the
results returned by MCDA is similar to that presented in the previous subsection.
Overall, our algorithm reports, on average (throughout all networks used to study
the scalability), a NMI value of 0.94, pointing to accurate results.

3.2 Experiments on Real Networks

We now evaluate the performance of our approach on real networks. To this end, we
selected five networks with various configurations:

DBLP1 and DBLP2 Networks These are two co-authorship three-dimensional
networks that were constructed from the DBLP online database [10]. Each
network dimension represents a different kind of interactions. Specifically, the first
dimension represents citations between authors. The second dimension describes
co-authorship relationships between authors. Finally, the third dimension connects
two authors if they publish papers that share three or more terms in their titles
or abstracts. The DBLP1 network captures a subset of 1230 authors of the
DBLP database whereas the DBLP2 network represents 3090 authors. It is worth
noting that both DBLP1 and DBLP2 networks are directed. In the context of our
experiments, however, we ignored the direction of edges.

Aarhus Computer Science Department Social Network This is an unweighted
and undirected five-dimensional social network capturing interactions between the
employees of the computer science department at Aarhus University [41]. The
dataset consists of 61 employees (admin staff, professors, associates, Ph.D. students,
and post-doctoral researchers) belonging to eight workgroups and interacting in
five different dimensions: launch together, friendship on Facebook, co-authorship,
leisure time together, and finally work together.

Caenorhabditis Elegans Genetic Interactions Network This is a multidimen-
sional network of 3879 nodes and six dimensions each of which capture a different

74 A. Chouchane et al.

type of genetic interactions of the Caenorhabditis elegans nematode roundworm
[42, 43]. The interaction types being considered are: direct interaction, physical
association, additive genetic interaction defined by inequality, suppressive genetic
interaction defined by inequality, association, and finally colocalization.

European Air Transportation Network This is a multidimensional network of
37 dimensions corresponding to different airline carriers operating between 450
European airports [44]. The network is characterized by the presence of several
sparse dimensions with a relatively low contribution of links.

Note that neither the number of communities nor their relevant dimensions are
known beforehand with these networks. Therefore we considered unsupervised met-
rics to evaluate the performance of compared algorithms. In contrast to supervised
metrics, which rely on a reference partitioning, an unsupervised metric is used
when the quality of the identified communities is evaluated in terms of measurable
quantities obtained from the available data.

In our experiments, we considered both local and global unsupervised metrics.
Generally, as suggested in [45], local metrics are based on the assumption that
a community has weak interactions with its neighboring vertices. The evaluation
of a community can thus be isolated from the rest of the network. On the other
hand, global metrics consider the quality of a community internally (through within-
community links) and with respect to its interactions with the other communities.
In what follows, we provide a high level description of the local and global metrics
that we have used. More details about these metrics can be found in their original
papers referred to below.

To evaluate the performance of community detection, we relied on the multi-
slice modularity Q [19] as a global metric. The multi-slice modularity Q returns
values in [0, 1] such that the highest values suggest a better separation of densely
connected communities. As a local metric, we have used the multidimensional
community density of links MD [15] and the redundancy of links RL [12]. For
a given community Ck , MD(Ck) measures the ratio of the number of edges found
in Ck to the maximum possible number of edges for that community. On the other
hand, RL(Ck) captures the ratio of the number of edges connecting adjacent nodes,
in at least two dimensions, to the theoretical maximum number of edges between
all connected pairs in Ck . Both MD(Ck) and RL(Ck) return values in [0,1] such
that the largest values indicate, respectively, a higher connectedness within Ck and
a higher similarity between the induced unidimensional subgraphs by Ck across
G’s dimensions. The reported values of a resulting partition are the average of all
detected communities.

Finally, we have further used local metrics to evaluate the accuracy of our pro-
posed selection procedure for the relevant dimensions. Specifically, we compared
the computed values on both the subset of selected relevant dimensions Dk and
the subset of dimensions found between nodes belonging to a single community,
which we refer to as Fk . Note that Dk ⊆ Fk; therefore, we aim at selecting a subset
Dk of Fk which induces an improvement in the originally estimated values of both
MD(Ck) and RL(Ck) with respect to Fk .

On Detecting Multidimensional Communities 75

Fig. 10 Performance of MCDA in terms of Q, MD, and RL on real networks

Since we don’t have any prior knowledge about the number of communities in
real networks, we do not consider competing algorithms that require the number of
communities as an input parameter (specifically, PMM, SC-ML, and GraphFuse).
On the other hand, we have evaluated ensemble clustering on real networks since we
used the Louvain algorithm [21] as a base detector. In fact, the Louvain approach
is parameter free and thus allows the application of ensemble clustering on real
networks without tuning any input parameters including the targeted number of
communities to be identified. In our experiments, however, we have observed that
the results of ensemble clustering using the three consensus techniques, CSPA,
HGPA, and MCLA proposed in [14], are less competitive and almost similar, in
terms of general performance, to the results reported on synthetic networks. Due to
the fact that a comparison with ensemble clustering does not provide any additional
insight to what was already observed on synthetic networks, we decided to not show
the results of ensemble clustering on real networks.

Figure 10 summarizes the performance results of MCDA on real networks. As
can be seen from the figure, the performance of the approach, as evaluated with
the three metrics Q, MD, and RL, suggests the extraction of statistically relevant
community structures. More specifically, with respect to the multi-slice modularity
Q, MCDA obtains large values on the five real datasets, which confirms its ability to
recover dense and well-separated communities. This claim is supported by the high
multidimensional community density of link MD values obtained on the subsets of
found dimensions Fk .

With respect to the redundancy of links RL, MCDA detects communities that
are similar across their relevant dimensions. This is especially the case of the DBLP
networks where the interactions between authors of the same community tend to
be correlated. In fact, it is expected that researchers who co-author papers (first
dimension) tend to specialize in the same research tracks, which could explain the
shared words on the abstract of their papers (third dimension) and the citation of
each other’s work (second dimension). This correlation of activity across the densely
connected communities suggests a track oriented organization in which each
group of researchers specializes in a single research topic. The same observation
holds true for the communities recovered for the Caenorhabditis Elegans Genetic
Interactions network which could suggest the presence of functional modules that
may characterize some biological phenomenon or support new hypotheses that can

76 A. Chouchane et al.

be verified using existing biological expertise. MCDA, on the other hand, reports
relatively low values for the redundancy RL on the European air transportation
network. This low correlation of activity might be due to the fact that low-cost
air carriers use a different business model by avoiding air fares between airports
covered by major airlines [44].

The performance of the procedure adopted by MCDA for the selection of relevant
dimensions can also be demonstrated through the improvements in the estimated
values of MD and RL on the subsets F (dimensions found within each community)
and RD (identified relevant dimensions of each community). As depicted in Fig. 10,
on average, the values of MD and RL improve by 0.1 and 0.18, respectively, on the
selected relevant dimensions (see the values of MD_F vs MD_RD and RL_F vs
RL_RD). Such a performance confirms the ability of MCDA in identifying the real
relevant dimensions that support the formation of the detected communities.

4 Conclusion

In this paper, we have addressed the problem of community detection in multidimen-
sional networks. The proposed approach tackles some of the limitations of existing
algorithms namely, the parameter tuning and the inability to recover the most
relevant dimensions associated with the detected communities. The experimental
evaluation suggests that MCDA offers a higher accuracy and usability than the com-
pared approaches. In addition, the capacity to disregard non-informative dimensions
contributes valuable input that helps in understanding the key interaction drivers
among groups. We believe that the selected relevant dimensions can also benefit
other tasks such as network compression, representation learning, and collaborative
filtering. Finally, we believe that our approach can successfully be applied for the
discovery of time evolving communities in dynamic networks. This can be achieved
by considering the snapshots or alternatively the time intervals of the network’s
time-ordered sequence as distinct dimensions. Further investigation is needed in
this direction.

Acknowledgements This work is supported by research grants from the Natural Sciences and
Engineering Research Council of Canada (NSERC).

References

1. Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E
89(3), 032804 (2014)

2. Nicosia, V., Latora, V.: Measuring and modelling correlations in multiplex networks (2014).
Preprint, arXiv: 1403.1546

3. Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., Pedreschi, D.: Multidimensional
networks: foundations of structural analysis. World Wide Web 16(5–6), 567–593 (2013)

On Detecting Multidimensional Communities 77

4. Cellai, D., López, E., Zhou, J., Gleeson, J.P., Bianconi, G.: Percolation in multiplex networks
with overlap. Phys. Rev. E 88(5), 052811 (2013)

5. Cozzo, E., Banos, R.A., Meloni, S., Moreno, Y.: Contact-based social contagion in multiplex
networks. Phys. Rev. E 88(5), 050801 (2013)

6. Amelio, A., Pizzuti, C.: A cooperative evolutionary approach to learn communities in
multilayer networks. In: Parallel Problem Solving from Nature – PPSN XIII, pp. 222–232.
Springer, Cham (2014)

7. Tang, L., Wang, X., Liu, H.: Uncovering groups via heterogeneous interaction analysis. In: 9th
IEEE International Conference on Data Mining (ICDM), pp. 503–512 (2009)

8. Boutemine, O., Bouguessa, M.: Mining community structures in multidimensional networks.
ACM Trans. Knowl. Discov. Data (TKDD) 11(4), 51 (2017)

9. Boden, B., Gunnemann, S., Hoffmann, H., Seidl, T.: Mining coherent subgraphs in multi-
layer graphs with edge labels. In: 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data mining (KDD), pp. 1258–1266 (2012)

10. Papalexakis, E.E., Akoglu, L., Ience, D.: Do more views of a graph help? Community detection
and clustering in multi-graphs. In: 16th International Conference on Information Fusion
(FUSION), pp. 899–905 (2013)

11. Cai, D., Shao, Z., He, X., Yan, X., Han, J.: Mining hidden community in heterogeneous social
networks. In: 3rd ACM International Workshop on Link Discovery (LinkKDD), pp. 58–65
(2005)

12. Berlingerio, M., Coscia, M., Giannotti, F.: Finding and characterizing communities in multi-
dimensional networks. In: International Conference on Advances in Social Networks Analysis
and Mining (ASONAM), pp. 490–494. IEEE, Piscataway (2011)

13. Tang, L., Wang, X., Liu, H.: Community detection via heterogeneous interaction analysis. Data
Min. Knowl. Discov. 25(1), 1–33 (2012)

14. Strehl, A., Ghosh, J.: Cluster ensembles—a knowledge reuse framework for combining
multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)

15. Berlingerio, M., Pinelli, F., Calabrese, F.: ABACUS: frequent pAttern mining-BAsed com-
munity discovery in mUltidimensional networkS. Data Min. Knowl. Discov. 27(3), 294–320
(2013)

16. Borgelt, C.: Efficient implementations of Apriori and Eclat. In: ICDM Workshop on Frequent
Itemset Mining Implementations (FIMI) (2003)

17. Tang, W., Lu, Z., Dhillon, I.S.: Clustering with multiple graphs. In: 9th IEEE International
Conference on Data Mining (ICDM), pp. 1016–1021 (2009)

18. Dong, X., Frossard, P., Vandergheynst, P., Nefedov, N.: Clustering on multi-layer graphs
via subspace analysis on Grassmann manifolds. IEEE Trans. Signal Process. 62(4), 905–918
(2014)

19. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in
time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)

20. Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Communities unfolding in multislice
networks. In: Complex Networks, pp. 187–195. Springer, Berlin (2011)

21. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in
large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)

22. De Domenico, M., Lancichinetti, A., Arenas, A., Rosvall, M.: Identifying modular flows on
multilayer networks reveals highly overlapping organization in interconnected systems. Phys.
Rev. X 5(1), 011027 (2015)

23. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community
structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)

24. Dunlavy, D.M., Kolda, T.G., Kegelmeyer, W.P.: Multilinear algebra for analyzing data with
multiple linkages. In: Kepner, J., Gilbert, J. (eds.) Graph Algorithms in the Language of Linear
Algebra. Fundamentals of Algorithms, pp. 85–114. SIAM, Philadelphia (2011)

25. Kuncheva, Z., Montana, G.: Community detection in multiplex networks using locally adaptive
random walks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining 2015, pp. 1308–1315. ACM, New York (2015)

78 A. Chouchane et al.

26. Bouguessa, M.: An unsupervised approach for identifying spammers in social networks. In:
Tools with Artificial Intelligence (ICTAI), 2011 23rd IEEE International Conference on, pp.
832–840. IEEE, Piscataway (2011)

27. Ji, Y., Wu, C., Liu, P., Wang, J., Coombes, K.R.: Applications of beta-mixture models in
bioinformatics. Bioinformatics 21(9), 2118–2122 (2005)

28. Bouguila, N., Ziou, D., Monga, E.: Practical Bayesian estimation of a finite beta mixture
through Gibbs sampling and its applications. Stat. Comput. 16(2), 215–225 (2006)

29. Ma, Z., Leijon, A.: Beta mixture models and the application to image classification. In: 16th
IEEE International Conference on Image Processing, pp. 2045–2048 (2009)

30. Boutemedjet, S., Ziou, D., Bouguila, N.: Model-based subspace clustering of non-Gaussian
data. Neurocomputing 73(10), 1730–1739 (2010)

31. Smyth, P.: Model selection for probabilistic clustering using cross-validated likelihood. Stat.
Comput. 10(1), 63–72 (2000)

32. Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
33. Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans.

Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)
34. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Springer

Science & Business Media, New York (2013)
35. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community

structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)
36. Barber, M.J., Clark, J.W.: Detecting network communities by propagating labels under

constraints. Phys. Rev. E 80(2), 026129 (2009)
37. Leung, I.X., Hui, P., Lio, P., Crowcroft, J.: Towards real-time community detection in large

networks. Phys. Rev. E 79(6), 066107 (2009)
38. Liu, X., Murata, T.: Advanced modularity-specialized label propagation algorithm for detecting

communities in networks. Phys. A Stat. Mech. Appl. 389(7), 1493–1500 (2010)
39. Condon, A., Karp, R.M.: Algorithms for graph partitioning on the planted partition model.

Random Struct. Algorithms 18(2), 116–140 (2001)
40. Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information Retrieval, vol. 1.

Cambridge University Press, Cambridge (2008)
41. Magnani, M., Micenkova, B., Rossi, L.: Combinatorial analysis of multiple networks. Preprint,

arXiv: 1303.4986 (2013)
42. De Domenico, M., Nicosia, V., Arenas, A., Latora, V.: Structural reducibility of multilayer

networks. Nat. Commun. 6, 6864 (2015)
43. Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a

general repository for interaction datasets. Nucleic Acids Res. 34(1), D535–D539 (2006)
44. Cardillo, A., Gómez-Gardeñes, J., Zanin, M., Romance, M., Papo, D., del Pozo, F., Boccaletti,

S.: Emergence of network features from multiplexity. Sci. Rep. 3, 1344 (2013)
45. Loe, C.W., Jensen, H.J.: Comparison of communities detection algorithms for multiplex. Phys.

A Stat. Mech. Appl. 431, 29–45 (2015)

Derivatives in Graph Space with
Applications for Finding and Tracking
Local Communities

M. Amin Rigi, Irene Moser, and M. Mehdi Farhangi

Abstract Community detection in networks has gained a lot of attention especially
after emergence of online social networks. Community detection methods in
networks can be classified into two domains: global methods and local methods.
Global methods need the whole information of the network, whereas the local ones
need information of a certain area of the network where they want to discover
communities. Real-world social networks are typically very large, making the global
community detection methods impractical due to the computation expenses. There-
fore, local community detection algorithms, which are requiring less computation
and space, have met with renewed interest. In this research two derivative-based
methods for finding and tracking local communities are proposed. Mapping the
concepts of derivatives into graph space in a practical manner poses few challenges.
For instance, in Euclidean space, every point has three dimensions, whereas in graph
space the dimension (or degree) of every node can be different. Firstly, we propose
a general framework for finding derivatives in graph space. This mentioned frame-
work enables us to bring derivative-based methods into graph theory. Secondly,
inspired by the active contour algorithm in computer vision domain, we propose
a local derivative-based community detection method. The proposed method is built
upon concepts of curvature and gradient of the community’s boundary. Curvature
and gradient comprise a velocity function to determine whether the boundary should
expand to include a candidate node in its vicinity. Finally, based on derivative-based
concept of surface tension in chemistry, we propose a model for tracking local
communities in dynamic networks where new nodes/edges are added in a stream
of atomic changes. The binding forces between the molecules of the same liquid
substance give them shape with the minimum surface tension. That is to say, if

M. A. Rigi (�) · I. Moser
Swinburne University of Technology, Melbourne, VIC, Australia
e-mail: mrigi@swin.edu.au; imoser@swin.edu.au

M. M. Farhangi
University of Louisville, Louisville, KY, USA
e-mail: m0farh03@louisville.edu

© Springer Nature Switzerland AG 2019
P. Karampelas et al. (eds.), From Security to Community Detection in Social
Networking Platforms, Lecture Notes in Social Networks,
https://doi.org/10.1007/978-3-030-11286-8_4

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11286-8_4&domain=pdf
mailto:mrigi@swin.edu.au
mailto:imoser@swin.edu.au
mailto:m0farh03@louisville.edu
https://doi.org/10.1007/978-3-030-11286-8_4

80 M. A. Rigi et al.

molecules of the same substance are added to the community, the surface tension
should not increase. In the network context, if a node can be added to a community
it reduces the surface tension of the community. Experimental results validate the
superiority of the proposed methods.

Keywords Local community detection · Tracking community · Derivatives in
networks · Surface tension

1 Introduction

One phenomenon in nature that scientist through the history tried to explain and
predict is the community. Analysing communities is a principal topic in sociology.
There exist many systems in the world that can be represented with networks where
connections, or links, show relationships between entities, or nodes, of the system.
Some examples of such systems are the Internet, social networks, and World Wide
Web. In the last decade social networks have attracted immense attention in research
and industry.

Community detection is a fundamental concept in various fields of science
like sociology, biology, computer science, etc. For example, human communities
have been studied in social sciences for decades [8, 19]. In biology, for instance,
researchers analysed communities in protein interaction networks to find some
specific actions in cells [6, 30]. Community detection has also been extensively used
in clustering web clients, to provide better services for World Wide Web clients [20].

Community detection approaches can be classified into global and local methods.
While global approaches require all information of the entire network, local methods
try to find community patterns in subsets of a graph without considering the entire
information, resulting in less computation and being more practical, especially when
they are applied to large social networks. The main drawback of global methods is
that they have to extract pairwise information for all pairs of nodes in the entire
graph. Such information might be very expensive to be extracted and impractical
for real-world applications. On top of computation expenses, the information of
the entire network is not always available, posing another difficulty for global
approaches. On the other hand, local community detection is mostly designed based
on finding a community surrounding a starting node without exploring the entire
network. As couple examples, HITS [18] and PageRank [39] are popular ranking
algorithms which can be seen as local community detections in the network of the
web.

This paper is the extension of our previous research [29] in which we briefly
introduced a framework for approximating derivatives in graphs and then we
proposed the derivate-based community detection (DCD). The method was inspired
by geometric active contours [5], an object detection algorithm extensively used in
the field of computer vision [12, 13]. The analogy between the discovery of shapes
in images and the detection of communities in graphs suggests that an application of

Derivative-Based Community Detection 81

the active contours to graph spaces might provide an efficient alternative to existing
community detection techniques. In more details, in geometric active contour, an
arbitrary curve is evolved until it accurately delineates an object boundary, locations
where image intensities change significantly. From this perspective, object boundary
can be defined in terms of gradient and curvature, both of which are computed from
the derivate of image intensities. The same principle can be translated into graph
space provided we can determine the derivatives of a function in graph space.

In this paper, we extend our approach [29] for approximating derivatives in
graph space along with mapping few concepts such as gradient and curvature
from differential geometry into graph space. In addition, we, also, introduce a
novel derivative-based approach based on the concept of surface tension from
chemistry in order to track local communities in dynamic networks. We aim to
understand and explain communities and their evolution using surface tension, a
natural phenomenon which has been comprehensively investigated in chemistry. We
know from chemistry that the binding forces between the molecules of a liquid draw
the molecules of the substance into a shape that has the least surface area. Putting
it differently, a community of similar liquid molecules tends to shape themselves
in a way that surface tension is minimised. In an analogues manner, binding forces
between nodes of a community inside a network lead to particular patterns for the
community.

We modeled surface tension of communities in networks and showed that our
model can be used for tracking local communities in networks. We use surface
tension as an objective for local communities. To show the surface tension of
a community in an acceptable representative of the community’s quality, we
compared the surface tension of several communities against the conductance, a
well-known and widely accepted quality measure for communities [24]. When
molecules of the same substance are added to a liquid, the liquid changes its shape
so that the surface tension is again minimised. Therefore, surface tension provides
a unique ability for tracking local communities in dynamic networks in which
new nodes are added over time. In other words, when a node is a candidate of
inclusion in a local community, it will be included only if the surface tension of
the community is reduced or remains unchanged. Our competitive results on finding
local communities using DCD and tracking local communities using surface tension
with ground truth datasets show the practicality of the proposed approaches and,
more importantly, the usefulness of the concepts derivatives in graph space.

2 Related Work

There are only a few studies on the derivatives in networks. Friedman and Tillich
[14] extended some concepts from calculus to networks. They mapped the concepts
such as differentiable functions, boundary, and gradient over the graph in order
to create a wave equation to investigate the changes in the connectivity of the
nodes in a given graph. In another research, Diao et al. [10] explored a bounded

82 M. A. Rigi et al.

symmetric function defined over the edges of a finite labeled graph called graphon
space. They proposed a general theory of differentiation over this space. As this
space is not a vector space, the authors refined Gateaux derivative to make it
appropriate for graphon space. Both of these studies proposed partial differential
equations (PDEs) over a continuous topology given on a graph. In an attempt to
avoid complex differential theory and to take advantage of finite dimensional linear
algebra, an alternative approach is to formulate derivatives on the original discrete
graph space. In addition, when it comes to finding higher order derivatives (second
or higher) Solomon’s framework is computationally unfeasible since it needs to
solve an exponential combinatorial problem, whereas the time complexity of the
proposed framework is polynomial. The proposed framework finds the derivatives
by solving systems of linear equations which is considerably faster than Solomon’s
exponential approach [34]. The proposed approach also does not deal with the
mathematical difficulty and limitations of Friedman and Tillich [14] and Diao et al.
[10] approaches. In another study, Van Gennip et al. proposed and derived a graph
curvature, analogous to mean curvature in continuous domain. Since the curvature
of a vector in continuum is defined as the divergence of normal vector field, the
authors first derived the normal of a vertex and then defined the curvature at that
vertex by taking the divergence of the normal vector. Their approach is valid for
unidirectional graphs and was assumed that no isolated node or self-loop exists.
Another study closely related to differentiation over graph space has been done in
image processing domain by Ta et al. [37]. They defined the directional derivative of
a function at vertex along an edge analogous to continuous domain. Similar to our
approach they derived the derivative from a numerical point of view, where it has
been approximated by difference function. Although their definition satisfies basic
derivative properties, but it only relies on inspiration from continuous. However, our
approach to extract derivatives in discrete domain follows up Taylor expansion and
satisfies many properties in continuous derivatives like additive and multiplicative
properties.

In local community detection, most algorithms try to find a community sur-
rounding a node or a seed. There exist several local community detection methods;
however, due to limited space, only the most relevant approaches are discussed.
Many algorithms in this category are extensions of global community detection
algorithms. In local modularity, one defines a quality function for one community,
and then, in an agglomerative procedure, adds nodes to the community [7, 21]. In
this class of algorithm, at each step the candidate node which has the highest quality
(based on local modularity) is added to the community until the maximum size of
community is reached. Mahoney et al. [25] proposed local spectral clustering (LSP).
Spectral clustering uses the eigenvectors of the Laplacian adjacency matrices of
graphs as a basis of a clustering algorithm such as hierarchical or K-means in order
to cluster vertices into communities [26, 28]. Andersen and Lang [2] used random
walks in order to find local communities. When random walks start with a small
number of steps from an initial seed node, the random walks are more likely to be
trapped in the same community rather than traveling to other communities.

Derivative-Based Community Detection 83

There are two main approaches for tracking communities in dynamic networks:
snapshot model and temporal smoothness. In snapshot model, using evolutionary
methods, one takes different snapshots of network, finds communities in each
snapshot with a static clustering model, and, then, interprets their change over time
[42]. In temporal smoothness, the goal is to derive the communities over time given
a stream of changes. A change can be the addition or removal of a node or edge.

Falkowski [11] use Girvan–Newman modularity-based community detection
for both finding and tracking communities. Tong et al. [38] suggested low rank
approximation for detecting dynamic networks; however, their research lacks
evaluation. Xu et al. [41] used a hidden Markov model to address dynamic networks.
In vertex-centered methods [4], which have similar concept as K-means clustering
algorithm, evolving leaders and, therefore, the communities around leaders are
found in each time step. Leskovec et al. [23] used the clique percolation method
(CPM) to identify communities at each time step, and then match them with
community evolution methods. MONIC, a framework for modeling and monitoring
clusters transitions over time, was suggested by Spiliopoulou et al. [35]. Graphscope
[36] is a parameter-free algorithm which mines time evolving graphs in order to find
communities, and their change over time. Nguyen et al. [27] developed a framework
for identifying and tracking overlapping communities by defining a global objective
function which is summation of a set of local communities. Samie and Hamzeh [31]
developed a two-phased model that is comprised of a global and local method. In
the first phase, they find global communities and, in the second phase, they find and
track local communities in the detected clusters using the global approach. Shang
et al. [32] proposed a learning based approach for tracking global communities in
dynamic networks. They train and use a classifier in order to find and inspect the
vertices that are more likely to change their community after the network is changed.

3 Derivatives in Graph Space

To facilitate the understanding of these concepts in graph space, a few definitions
are provided.

Definition 1 (Graph Space) Graph space is the world that defines the graph
G(V,E). It consists of a set edges (E), and a set of nodes (V).

Definition 2 (Dimension of a Node in the Graph Space) The degree of a node
represents the dimension of the node in the graph space. Any point in Euclidean
space has three dimensions, whereas any node in graph space has its own number
of dimensions. In Euclidean space, the three dimensions are x, y, and z, whereas in
graph space a node with ten neighbours has a dimension of ten and a node with two
neighbours has only two dimensions.

Definition 3 (A Shape in Graph) In Euclidean geometry, a shape is an object that
is limited by an external boundary, or surface. In graph G(V,E), shape χ(ν, ξ)

84 M. A. Rigi et al.

Fig. 1 Examples of shapes in
graphs

consists of set of nodes ν that are connected with the edges ξ , (ν ⊆ V, ξ ⊆ E). A
shape can also be seen as a connected subgraph. Each shape in graph space has its
own boundary.

Definition 4 (Boundary of a Shape in Graph Space) The boundary of a shape
in a graph is the set of nodes that belong to the shape and have common edge(s)
with nodes outside the shape, formally a node vi is on the boundary of shape χ if
∃eij ∈ E|vi ∈ ν∧vj ∈ V ∧vj /∈ ν. In other words, if a node has a neighbour outside
of the shape, it is on the boundary, or the edge, of the shape. Figure 1 demonstrates
two shapes in two different graphs. In Fig. 1a, the nodes in red colour compose a
shape which consists of only two nodes. Figure 1b shows a shape that is comprised
of four nodes. Nodes v2 and v4 in Fig. 1b are considered the external boundary of
the shape.

Definition 5 (Functions in Graph Space) A function defines a relation between
an input set and an output set where each input is related to exactly one output. A
function has its domain and codomain which is showed with expression f : X → Y .
In Euclidean space, the derivative of function f shows the rate of change of f at a
given point in space.

In graph space, derivative of a function shows the rate of change of the function
at a given node. More precisely, in a graph, the derivative is defined as the rate of
change of function F(v) at a given node v. The set of nodes V should appear in
the domain for the functions in the graph space. Codomain varies depending on the
definition of the function F . By adding the time dimension, rates of changes can
be tracked with respect to two criteria: structure and time. As a result, two partial
derivatives can be defined for a given node. For example, for a function F , which

returns the degree of a given node,
∂F

∂v
represents the rate of change of the degree

with respect to the structure, and
∂F

∂t
represents the rate of change of the degree of

a node with respect to time.
Mapping the concepts of derivative to graph space enables us to use varieties

of derivative-based tools in the graph space. Graphs are discrete by nature, and
like many discretised problems, to extend continuous mathematics to the graphs,
numerical analysis tools should be considered. In this section, a novel approach

Derivative-Based Community Detection 85

to determine derivatives of function in graph space, which is similar to the finite
difference methods, is proposed.

3.1 Discretisation and Finite Difference

Discretisation, a term in numerical analysis which was introduced by Ames [1] in
1965, is the process that converts continuous functions to discrete ones. Continuous
functions have a continuous domain. In the discretisation process, the function’s
domain is reduced to a set of finite values. Analytical solutions for finding
derivatives of a given function require the continuity of the function in their domain.
Numerical solutions find derivatives by using only discrete points of the domain.
That is to say to use numerical solutions, the functions must be either discrete by
nature or to be discretised. The task of discretisation and approximating derivatives
is called finite difference method.

Finite difference methods provide straightforward ways for finding derivatives
and solving differential equations by replacing partial derivatives with suitable
algebraic difference quotient. This results into algebraic system of equations.
Approximated derivatives are solutions of the systems of equations. Such systems of
equations can be easily solved by computers. This explains the rapid growth of finite
difference applications in the last few decades. Finite difference methods are used
when a space or a function is discrete by nature such as graph space. To briefly
explain how finite difference works, an example will be used. Finite difference
methods approximate derivatives by using Taylor series [9] in Eq. (1)

f (x + Δx) = f (x) + (Δx)f ′(x) + · · · + (Δx)i

i! f i(x) + · · · (1)

In Fig. 2a, the goal is to find the derivative, or rate of change, of f (x) at point x. To
find the derivative of f at point x using analytical methods, both the equation of f

and the value of x are required.

Fig. 2 (a) Approximating derivative of f at x, (b) discretising f into three points: x −Δx, x, and
x + Δx

86 M. A. Rigi et al.

In contrast, numerical methods, first, discretise the domain into finite number of
points; then, they approximate the derivative of f at x. The discretisation of f into
three points is shown in Fig. 2b.

Since function f is known, the values of f (x−Δx), f (x), and f (x+Δx) are also
known. In many real-world applications, f is not properly defined. For example, it
can be assumed that three sensors are located at x −Δx, x, and x +Δx. Each sensor
reports the temperature of that point, and the goal is to approximate the rate of
change of the temperature, or the derivative of temperature, at x using the collected
data from sensors and sensors’ locations. This means the derivative of temperature
can be calculated even though there is no clear definition for temperature’s equation.

According to the Taylor series [9], the numerical approximation of the first-order
derivative for a function f (x) is

f ′
forward(x) = f (x + Δx) − f (x)

Δx
+ O(Δx) (2)

O(Δx) refers to the omitted elements of the Taylor expansion. Similarly, the first-
order backward derivative is

f ′
backward(x) = f (x) − f (x − Δx)

Δx
+ O(Δx) (3)

Alternatively, values of f in all x − Δx, x, and x + Δx can be considered for
approximating derivative of f at point x:

f (x + Δx) = f (x) + (Δx)f ′(x) + · · · (4)

f (x − Δx) = f (x) − (Δx)f ′(x) + · · · (5)

By deducting Eq. (5) from Eq. (4), the second-order first derivative can be
approximated as follows:

f ′
central(x) = f (x + Δx) − f (x − Δx)

2Δx
+ O(Δx)2 (6)

The terms O(Δx) and O(Δx)2 in Eq. (2) and Eq. (6) are called truncation error
and represent the remaining parts on the right side of Eq. (1) which are neglected
if one wishes to approximate derivatives. Figure 3 illustrates the approximated
solutions for derivative of f at x using first-order backward, first-order forward,
and second-order central derivative approximations.

Derivative-Based Community Detection 87

Fig. 3 Approximating the derivative of f (x) using Taylor series

3.2 Approximating Derivatives in Graph Space

Figure 2b, which represents discretisation in Euclidean space, can be extended to
graph space. This can be seen in Fig. 4a. The first noticeable difference between the
proposed framework here and normal finite difference method is the dissimilarity
between Δx and the distances d1 and d2 in graph space. While a continuous space
can be easily discretised into regular intervals, the interval or distances between
different nodes in graph space are not necessarily regular. For instance, the distance
between people in a social network can be represented by their profile differences,
and, since individuals differ, the distance between individuals is not regular.

By extending Eq. (2) and Eq. (6) to graphs, first-order derivative of F at node
vi is

F ′
v(vi) = F(vi+1) − F(vi)

vi+1 − vi

(7)

where vi+1 − vi shows the distance, or dissimilarity, between these two nodes and
is equal to d1.

Following the same logic, the second-order first derivative is

F ′
v(vi) = F(vi+1) − 2F(vi) + F(vi−1)

d1 + d2
(8)

Fig. 4 (a) Example graph with three nodes, (b) derivatives of f at vc which has two neighbours

88 M. A. Rigi et al.

where d1 = vi−vi−1 and d2 = vi+1−vi . di , in general, show the difference between
the nodes in the graph. Applying this model to weighted graphs is straightforward.

If the weight of the edge that connects vi to vi−1 is w, then di(w) = di

w
.

The second derivative according to the Taylor series:

f (x + Δx) = f (x) + Δxf ′(x) + (Δx)2

2! f ′′(x) + O(Δx)3 (9)

In the rest of this section, after analysing two examples, a general model for finding
the derivatives of a given function F(v) is proposed.

Example 5 Finding first and second derivative of F at node vc with two neighbours
(Fig. 4b).

The following equations can be extracted from Taylor expansion:

F(vc + d1) = F(v1) = F(vc) + d1F
′
v(vc) + d2

1

2
F ′′

v (vc) (10)

F(vc + d2) = F(v2) = F(vc) + d2F
′
v(vc) + d2

2

2
F ′′

v (vc) (11)

This can be shown and solved as a linear system with two equations and two
unknowns:

⎡

⎢⎢⎢⎢⎣

d1
d2

1

2

d2
d2

2

2

⎤

⎥⎥⎥⎥⎦

⎡

⎣
F ′(C)

F ′′(C)

⎤

⎦ =
⎡

⎣
F(V1) − F(C)

F (V2) − F(C)

⎤

⎦ (12)

In Eq. (10), only three first elements of Taylor expansion Eq. (1) are used. The
omitted elements contribute to error of the approximation which will be extensively
discussed.

Example 6 The current node vc (the subscript c stands for the current) has three
neighbours in Fig. 5a and the goal is to approximate first and second derivatives of
F at vc.

Following equations can be extracted from Fig. 5a by expanding Taylor series up
to three elements for each neighbour of vc:

F(vc + d1) = F(v1) = F(vc) + d1F
′
v(vc) + d2

1

2
F ′′

v (vc) (13)

F(vc + d2) = F(v2) = F(vc) + d2F
′
v(vc) + d2

2

2
F ′′

v (vc) (14)

Derivative-Based Community Detection 89

Fig. 5 (a) Approximating derivatives of F at vc which has three neighbours, (b) non-central nodes

F(vc + d3) = F(v3) = F(vc) + d3F
′
v(vc) + d2

3

2
F ′′

v (vc) (15)

Accordingly, the system of equations is

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1
d2

1

2

d2
d2

2

2

d3
d3

2

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎣
F ′(vc)

F ′′(vc)

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎣

F(v1) − F(vc)

F (v2) − F(vc)

F (v3) − F(vc)

⎤

⎥⎥⎥⎥⎥⎦
(16)

This is an overdetermined system with three equations and two unknowns. Overde-
termined systems are usually inconsistent and have no unique solution. In this
case, one way of solving the problem of overdetermination is to convert an
overdetermined system to a determined one by adding more unknowns in the form
of higher derivatives, of course at the cost of additional complexity. Alternatively,
and preferably least squares approximation methods, which are discussed later, can
be used for solving overdetermined systems.

Although Example 6 did not need for higher derivatives, at the price of higher
computations, by expanding one more element of Taylor series for each neighbour
of vc and adding the third derivatives to the unknowns, the overdetermined system
is converted to a determined system.

The resulting system of equations:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1
d2

1

2

d3
1

3!

d2
d2

2

2

d3
2

3!

d3
d3

2

2

d3
3

3!

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

F ′(vc)

F ′′(vc)

F ′′′(vc)

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

F(v1) − F(vc)

F (v2) − F(vc)

F (v3) − F(vc)

⎤

⎥⎥⎥⎥⎥⎦
(17)

90 M. A. Rigi et al.

In both Examples 5 and 6, node vc was located between multiple nodes. A new
challenge is posed when derivatives at a node with only one neighbour are desired.
Approximating the derivatives of F at v3 in Fig. 5a is such an example. It will be
shown that derivatives of such nodes are also calculable. However, before that two
new definitions need to be provided.

Definition 6 (Central Node) A node is called central node, if it has more than one
neighbour; nodes vc in Figs. 4b and 5a are examples of central nodes. This definition
has no relation with the degree of centrality.

Definition 7 (Non-central Node) A node is non-central, if it is not located between
at least to other nodes. Putting differently, a non-central node has only one
neighbour.

Example 7 illustrates the approach for approximating derivative of a function at
a non-central node.

Example 7 The goal is to find first, second, and third derivatives of F at the current
node vc in Fig. 5b. Node vc is a non-central node and has only one neighbour v1. This
example shows how by using Taylor series and values of F at v2 and v3 (neighbours
of the non-central node’s neighbour).

Writing Taylor expansion for node v1 is straightforward

F(vc + m) = F(v1) = F(vc) + mF ′
v(vc) + m2

2
F ′′

v (vc) + m3

3! F ′′′
v (vc) (18)

A slightly different approach is taken to write Taylor expansions of F at nodes
v2 and v3. The Taylor expansions of F at v2 and v3 are as follows:

F(vc + m + d1) = F(v2) = F(vc) + (m + d1)F
′
v(vc)

+ (m + d1)
2

2
F ′′

v (vc) + (m + d1)
3

3! F ′′′
v (vc) (19)

F(vc + m + d2) = F(v3) = F(vc) + (m + d2)F
′
v(vc)

+ (m + d2)
2

2
F ′′

v (vc) + (m + d2)
3

3! F ′′′
v (vc) (20)

Subsequently, first, second, and third derivatives can be approximated by solving
the following system of equations:

Derivative-Based Community Detection 91

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m
m2

2

m3

3!

(m + d1)
(m + d1)

2

2

(m + d1)
3

3!

(m + d2)
(m + d2)

2

2

(m + d2)
3

3!

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

F ′(vc)

F ′′(vc)

F ′′′(vc)

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

F(v1) − F(vc)

F (v2) − F(vc)

F (v3) − F(vc)

⎤

⎥⎥⎥⎥⎥⎦
(21)

A General Framework for Approximating Derivatives of a Function in Graph
Space The approximation of the derivatives of a function at a given node in graph
space depends on the following factors:

– Position of the node: A node can central or non-central (Definitions 6 and 7).
– Number of neighbours: For a central node with n neighbours derivatives one

to n can be approximated. For a non-central node where its only neighbour has
n − 1 nodes, derivatives one to n can be approximated.

– Desired order of derivative: A general framework must answer different users’
requirements. In some cases, users may only need up to second derivative, and in
some other cases, they may need up to higher derivatives.

Based on the first factor, position of the node, the general framework is broken into
two categories. Two remaining factors, number of neighbours and desired order of
derivatives, are analysed in each category.

Derivatives at Central Nodes Figure 6a shows a central node vc that has n

neighbours. This means derivatives one to n are available for this node.
Taylor series equation for the ith (1 ≤ i ≤ n) neighbouring node of vc is

F(vc + di) = F(vi) = F(vc) + diF
1
v (vc) + · · · + dn

i

n! Fn
v (vc) (22)

Fig. 6 (a) Approximating derivative of F at node vc with n neighbours, (b) approximating
derivative of F at the non-central node vc

92 M. A. Rigi et al.

These equations result into the following system of equation:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

d1 . . .
dn

1

n!
. . .

dn . . .
dn
n

n!

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

F 1(vc)

. . .

F n(vc)

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

F(v1) − F(vc)

. . .

F (vn) − F(vc)

⎤

⎥⎥⎥⎥⎥⎦
(23)

Equation (23) is a system of linear equations with n equations and n unknowns.
This system of equations calculates first to nth derivatives of F at node vc. However,
in some applications, the higher orders of derivatives are not necessary. For example,
determining the curvature of shape at given node in graph space requires only first
and second derivatives. In other words, some applications only need up to mth
derivative (1 ≤ m ≤ n). In such cases, approximating n − m extra unknowns
is unnecessary. Considering extra unknowns becomes particularly challenging or
computationally expensive when m is a large number. In such cases, the number
of unknowns is reduced to m. This can be done by modifying Eq. (22) so that it
incorporates only m elements in expansion of Taylor series for each neighbouring
node. This resulting equation is

F(vc + di) = F(vi) = F(vc) + diF
1
v (vc) + · · · + dm

n

m! F
m
v (vc) (24)

where i (1 ≤ i ≤ n) represents an equation for each neighbour of vc, and m (1 ≤
m ≤ n) is a constant that represents the desired order of derivatives. Equation (24)
represents n equations where each equation has j unknowns. The unknowns are
determined by solving the following overdetermined systems of equations:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

d1 . . .
dm

1

m!
. . .

dn . . .
dm
n

m!

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

F 1(vc)

. . .

Fm(vc)

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

F(v1) − F(vc)

. . .

F (vn) − F(vc)

⎤

⎥⎥⎥⎥⎥⎦
(25)

In Eq. (25), the number of unknowns is less than number of equations. In such
cases, the least square approximation method is used to find the answers of Eq. (25).
Reduced QR factorisation [16] and singular value decomposition (SVD) [22] are
two well-known methods for approximating the least square solutions. While SVD
method is more accurate, QR method is faster.

In general terms of linear algebra, a system of equations is expressed as Af = b.
A system has no solution if the determinant of A is equal to zero. Considering the
constraint matrix in Eq. (23) or Eq. (25), the determinant is zero when there exist i

and j , (1 ≤ i ≤ n), (1 ≤ j ≤ n), and i �= j . In other words, there are i and j

Derivative-Based Community Detection 93

in the first matrix of Eq. (23) so that di = dj . That means node vc has exactly the
same distance to two of its neighbours vi and vj . Putting it differently, vi and vj

are equivalent to vc. For instance, in social network context, this implies that the
difference between profiles of vc and vi is exactly equal to profile difference of vc

and vj . In case of such occurrences, the approach here is to alternatively omit vi and
vj to make system of equation solvable. If the difference between two alternative
approximations is more than a given threshold (i.e., noticeable), then a new meta-

node vx is created and replaces both vi and vj , and F(vx) = F(vi)+F(vj)

2 .

Derivatives at Non-central Nodes Figure 6b shows one of the peripheral nodes as
the current node vc for which the derivative is approximated. The neighbour of the
current vc is always a central node unless it is part of a two-node component of the
graph, in which case it is only possible to calculate the first derivative.

In this case, vn has several neighbours; therefore, the derivatives of F(vc) are
approximated by solving the following system of equations:

F(vc + m) = F(vn) = F(vc) + mF ′
v(vc) + · · · + mn

n! Fn
v (vc) (26)

All other nodes vi where 1 ≤ i ≤ n − 1 have the following equation:

F(vc + m + di) = F(vi) = F(vc) + (m + di)F
′
v(vc) + · · ·

+ (m + di)
n

n! Fn
v (vc) (27)

4 Community Detection Using Derivatives

4.1 Geometric Active Contours

In the field of image processing, the problem of object detection has been addressed
in many different ways. Active contours is a method devised first in 1988 [5]. A
related approach, based on differential geometry, was devised in 1997. Due to its
efficiency, autonomy, and unsupervised nature geometric active contours [5] is used
extensively for detecting object in 2D images in the field of machine vision. In
this method, an initial contour deforms and evolves in order to find the boundary
of an object. In an image, shapes distinguish themselves from the background by
boundaries characterised by pixels whose properties are very different from those
of the adjacent pixels which form part of the background.

Initially, a curve is created at a random location of the image with the goal
of finding the boundary of an object. The curve evolves based on two concepts:
curvature and gradient. The curvature of a function f (x), defined in Eq. (28),
describes how fast the curve changes its tangent or direction

94 M. A. Rigi et al.

κ = f ′′(x)

(1 + f ′2(x))
3
2

(28)

f ′(x) and f ′′(x) are the first and second derivatives. The vector differential operator
∇ has the following definition:

∇ = ∂

∂x
i + ∂

∂y
j + ∂

∂z
k (29)

Assuming three-dimensional Euclidean space, the gradient of f (x, y, z) is obtained
by applying the vector operator ∇ to the scalar function f (x, y, z) as defined in
Eq. (30)

∇f (x, y, z) = ∂f

∂x
i + ∂f

∂y
j + ∂f

∂z
k (30)

In geometric active contours, the curve evolves in the direction that is perpendicular
to the curve. The curve is considered the current boundary, and an adjacent pixel
on the movement direction of the boundary is evaluated for inclusion based on the
magnitude of the gradient between the pixel on the boundary and the neighbouring
pixel at that direction. In images, gradient is obtained by subtraction of gray values
of neighbouring pixels. A second criterion for the inclusion of a neighbouring
pixel is the curvature of the current boundary. A straight line has a curvature
of zero. A curve that ‘recedes’ inward towards the shape has a high curvature.
Intuitively, an object is likely to strive to include ‘inserts’ into its area. Hence an
increased curvature favours the inclusion of pixels on the outside of the boundary. In
combination, gradient and curvature result in the velocity s of the curve, expressed
in Eq. (31). The velocity decides the likelihood of a pixel being included in the shape

s = gκn − (∇gn)n, where g = 1

1 + |∇I |2 (31)

where n denotes the normal direction and I the pixel values in an image with |∇I |
as the magnitude of the gradient between two pixels [5]. A community can be seen
as a shape in a graph whose nodes are highly connected while their connections to
nodes outside the shape are sparse. Since the velocity and its components gradient
and curvature are based on derivatives which use the connections between a node on
the boundary and its neighbours inside the shape as a basis for deciding the inclusion
of a candidate node outside the shape, the approach can be expected to detect good
boundaries of shapes.

Derivative-Based Community Detection 95

4.2 Finding Local Communities

Image processing is a data-intensive process which benefits from localised methods
like active contours. Graphs as encountered in social networks are similarly
demanding because of the potential sizes of graphs and their high dimensionality.

The analogy between the discovery of shapes in images and the detection
of communities in graphs suggests that an application of the active contours
method to graph spaces might provide an efficient alternative to existing clustering
techniques. Mapping the relevant concepts from Euclidean to graph space poses a
few challenges. While in image processing, the goal is to identify shapes with an
external boundary, communities in graphs are defined as sets of nodes that share
more properties with other nodes within the same community than they do with
nodes outside the community. Unlike images, where the number of dimensions
is uniform across the pixels, each node in a graph can have different numbers of
neighbours, giving rise to high fluctuations in dimensionality. An image has a clearly
defined boundary, whereas it is hard even to define the boundary of an entire graph.
As a consequence of the non-uniform dimensions of a graph, most matrix operations
used in machine vision cannot be applied to graphs.

Before describing the algorithm we need to define a proper F function. F(vi, vj)

represents the distance between vi and vj . Any suitable distance measure can be
chosen for it. The criterion used for F(vi, vj) in this research is the structural
equivalence. Nodes are structurally equivalent if they are in the same area of the
graph and have the same neighbours. So F(vi, vj) is defined as

F(vi, vj) = 1 − |N(vi) ∩ N(vj)|
|N(vi) ∪ N(vj)| (32)

where N(vi) is the set of neighbours of node vi and
|N(vi) ∩ N(vj)|
|N(vi) ∪ N(vj)| , or the

structural similarity, shows the proportion of the common neighbours.
The algorithm starts from a single node which is assumed to be part of the

shape. Initially, the seed node vi is considered the current boundary of the shape. A
second node vj , which has the minimal distance F(vi, vj), is chosen for inclusion
in the shape. As the calculation of the second derivative requires the presence of
at least three nodes, a hypothetical node, with the maximum distance of one from
the other two nodes, is added, assumed to be part of the shape. This procedure is
represented by the line initialise community in Algorithm 1. The shape χ initially
comprises these three nodes, from which it expands through the inclusion of nodes
adjacent to the boundary. Nodes adjacent to the boundary on the outside of the
shape are candidates considered for inclusion. Each node vi on the boundary which
is connected to the candidate node vp considers its inclusion based on the velocity
function Eq. (33)

96 M. A. Rigi et al.

s(vi, vp) = κ(vi, vp)

1 + α|∇F(vi, vp)|2 − arctan(|F ′(vi, vp)|) (33)

In Eq. (33), the curvature is represented by κ(vi, vp), which is defined in Eq. (34).
The magnitude of the gradient |∇F(vi, vp)| describes the difference between vi and
the candidate node vp. The parameter α moderates the difference between nodes.
The larger the alpha, the stricter the criterion for the inclusion of a node. The term
arctan(|F ′(vi, vp)|) has been added to map the value of |F ′(vi, vp)| to a value
between zero and one with the purpose of achieving a negative impact to sudden
changes in the derivative of the distance function in order to reduce noise

κ(vi, vp) = F ′′(vi, vp)
(

1 + (
F ′(vi, vp)

)2
) 3

2

(34)

As shown in Eq. (34), curvature uses first and second derivatives of the distance
function from node vi on the boundary to the candidate vp. While the gradient
bases the decision of an inclusion of node vp on the difference between vp and
the boundary node vi , curvature represents the curve of the boundary at vp—
essentially, ‘concave’ boundaries are more likely to include a node vp, because,
loosely speaking, it could be seen as ‘enclosed’ by that boundary. In Fig. 5, values
of curvature and gradient for two simple graphs are shown. Using the Eq. (33), the
velocity from v5 towards vp is −0.06 in Fig. 5a; thus, vp will not be included in
the community. In Fig. 5b, the velocity value towards vp is positive for all v3, v4,
and v5; therefore, the first one which, according to Algorithm 1, has the chance to
include vp, will include it and curvature and gradient for the rest of them will not be
computed (Fig. 7).

Algorithm 1 Derivative-based community detection
Input: seed, α

Queue Boundary = seed

Set C ← InitialiseCommunity(seed)
Boolean switch = false
while switch �= true do

switch = true
Node vx ← Deque(Boundary)
candidate_list ← OutsideNeighbours(vx)
for every vp in candidate_list do

if Velocity(vx, vp, α) > 0 then
C ← C ∪ {vp}
Boundary ← UpdateBoundary()
switch = false

end if
end for

end while
return C

Derivative-Based Community Detection 97

Fig. 7 In both (a) and (b), shape χ consists of v1, v2, v3, v4, and v5 and vp is the candidate for
the inclusion. In (a), values of curvature and gradient from v5 towards vp are shown. In (b), values
of curvature and gradient from v3, v4, and v5 towards vp are shown

Starting from a given seed node, the boundary of a shape moves until the velocity
function s no longer warrants the inclusion of further nodes. Candidate nodes are
evaluated from all nodes on the boundary they are connected to, but the evaluation
stops as soon as one of the boundary nodes favours the inclusion of the node.
This means that most of the time, the algorithm achieves a significantly better run
time than required by its worst case complexity. Figure 8 shows an example of the
proposed algorithm.

In Eq. (33), the velocity function has only one parameter, α. To give the user
control over size and quality of the desired communities α is added to the inclusion
criteria. The larger the α is, the stronger the effect of the gradient, and therefore the
sharper the edge.

5 Tracking Local Communities Using Surface Tension

To track communities, we use structural similarity defined in Eq. (32). The structural
similarity shows the proportion of the common neighbours. In investigating local
communities, a node has one of the following situations: outside of the boundary
of a community, on the boundary of a community, or inside a community (without
any neighbours in outside). This is illustrated in Fig. 9. As it is shown in Fig. 9,
two binding forces are affecting a node on the boundary. We simulated the inside
and outside pressures on the surface of a community using these pressures (binding
forces). Poutside and Pinside are modeled by structural similarity of the nodes on the
boundary of the community to the nodes inside and outside of the community

K =
n∑

i=1

κ(vi, C) (35)

98 M. A. Rigi et al.

Fig. 8 The red nodes show the current community and the green nodes are candidates for
inclusion. The number on the edges shows the velocity from a node to the candidate. When the
velocity towards all neighbouring nodes is negative, the algorithm stops

Poutside =
n∑

i=1

m∑

j=1

similarity(vi, outside_neighbourj (vi)) (36)

Pintside =
n∑

i=1

m∑

j=1

similarity(vi, inside_neighbourj (vi)) (37)

where n is the number of nodes on the surface of a community and m represents the
number of inside or outside neighbours for the ith node on the surface. In our model,
we use the radius of curvature towards inside the community. Thus, the surface
tension of a community can be represented in Eq. (38).

Derivative-Based Community Detection 99

Fig. 9 Surface of a
community and its binding
forces

γ = (Poutside − Pinside)K (38)

where κ was defined in (34). Substances are shaped in a way that the tension on their
surface in minimised. Following a similar logic, a node is added to a community
if surface tension of the community is reduced or it remained unchanged. Our
method is able to track local communities with temporal smoothness changes in
a network. In temporal smoothness, there is a stream of atomic changes. The
community updates itself triggered by a change. The criteria for adding a new node
to community is

γnew − γold ≤ α (39)

α, which is a non-negative value, is the tolerance threshold. Small values of α allow
inclusion of nodes which may slightly increase community’s surface tension and,
therefore, community’s quality. Our experiments show α = 0 is a very strict criteria
and does not allow inclusion of the nodes which their impact on worsening the
quality of community is negligible and close to zero. Because of the tolerance
threshold, some nodes may decrease the community’s quality, but the quality is
expected to increase again when new nodes are added. In other words, exclusion
of the nodes that may slightly decrease the quality (or increase the surface tension)
prevents the inclusion of some nodes which can increase the quality considerably.

As stated in Eq. (38), to track a community of three vectors keep curvature of
boundary nodes towards community, similarity to outside neighbours, and similarity
to inside neighbours. One approach is to recalculate the surface tension whenever a
new node, based on Eq. (39), is added. However, in a more efficient approach, once
a new node is added to boundary, new values for the necessary areas of the three
mentioned vectors need to be recalculated.

100 M. A. Rigi et al.

6 Experimental Evaluation

6.1 Community Detection

Comparing the outcome of local spectral clustering (LSP) [25] and derivative-
based community detection (DCD) has its challenges because both methods depend
on a parameter which leads to different combinations of quality and size in the
communities detected. The teleportation parameter of LSP defines the type of
community being developed. In the experiments, we ran LSP with teleportation set
to 20 equally spaced values as explained by Jeub et al. [17]. The parameter α in
DCD defines the stringency of the inclusion criterion, with larger values being more
restrictive. Unlike LSP, DCD stops when according to Eq. (33), no further candidate
nodes qualify for inclusion.

Some of the most widely known measures for determining the quality of local
communities are intra-cluster density, relative density, and conductance. Intra-
cluster density is the fraction of the number of edges inside the community to total
number of edges in network. Relative density is the ratio between the number of
intra-cluster edges and the number of edges that connect the community to the rest
of the graph. Conductance is defined as

Conductance(C) = vol(C, C̄)

min
(
vol(C,G), vol(C̄,G)

) (40)

In Eq. (40), C is the set of nodes which comprise the community, C̄ = V −C denotes
the nodes in the graph which are not in C, and vol(C1, C2) = ∑

i∈C1

∑
j∈C2

Aij ,
where A is the adjacency matrix. Conductance(C) has a lower value when the
community is loosely connected to the rest of the graph. Therefore, the lower the
conductance, the higher the quality of the community. Following the practice of a
number of recent studies of significance [17, 24, 25], we choose conductance as a
standard quality measure.

The graphs used in the experimentation are Facebook graph FB-JHK of John
Hopkins University with 5180 nodes and 186,572 edges, and FB-CALTC of
California Institute of Technology with 769 nodes and 33,312 edges, both captured
in September 2005 and are part of the FACEBOOK100 dataset [40].

In Fig. 10, we included the progress of the one among the 20 LSP instances that
produced the community with the best conductance (regardless of the size of the
community) for the JHK-FB network. Local geodesic spreading (LGS) [3], which
is based on PageRank, has no parameters except the seed node, hence there is no
choice in the result to include. Because of the variation in the parameter α, we
included two result graphs for DCD. Figure 10a–d represent trials starting from four
different seed nodes and were chosen because they are representative of the different
behaviours of the algorithms. Figure 10a shows a case where LSP outperforms all
others except DCD with α = 2.5 when the community has a size of around 200

Derivative-Based Community Detection 101

Community Size
0 500 1000 1500

C
on

du
ct

an
ce

0.4

0.5

0.6

0.7

0.8

0.9

1
a

Community Size
0 100 200 300 400

C
on

du
ct

an
ce

0.2

0.3

0.4

0.5

0.6
0.7
0.8
0.9

1
b

Community Size
0 50 100 150 200

C
on

du
ct

an
ce

0.3

0.4

0.5

0.6

0.7

0.8
0.9

1
c

Community Size
0 100 200 300 400

C
on

du
ct

an
ce

0.5

0.6

0.7

0.8

0.9

1
d

DCD α = 1.5
DCD α = 2.5
LGS
LSP

Fig. 10 Conductance plot for different methods and different starting nodes in FB-JHK. Initial
seed: (a) 2645, (b) 3229, (c) 3554, and (d) 3718

nodes. In Fig. 10b the smaller communities found by LSP are of slightly better
quality than those of DCD, but DCD with α = 1.5 discovers a community with
around 330 nodes with better conductance. In Fig. 10c, the performances of LSP and
DCD are almost equivalent—in most cases, DCD with α = 2.5 produces slightly
better quality than LSP, but all three algorithms produce similar results. In Fig. 10d,
DCD with α = 2.5 produces considerably better quality for smaller communities,
while DCD with α = 1.5 shows better conductance for larger communities. LGS
is not a competitive algorithm in any of the cases examined. The results shown in
Fig. 10 illustrate the difference in performance of DCD that the parameter α entails.
This raises the question how to identify the best setting for α. Further investigations,
illustrated in Fig. 11a, show that smaller values of α lead to the detection of larger
communities, while larger values of α discover small-size communities. Because
larger values of α restrict the inclusion of new nodes earlier, the algorithm stops
at a smaller community size. Table 1 shows the average sizes of the communities

102 M. A. Rigi et al.

Community Size
0 50 100 150 200 250 300 350

C
on

du
ct

an
ce

0.4

0.5

0.6

0.7

0.8

0.9

1
Initial seed: 3718

 = 1.5
 = 2
 = 2.5

(a)
Community Size

0 200 400 600 800 1000 1200

C
on

du
ct

an
ce

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LGS
DCD
LSP

(b)

Fig. 11 (a) Effect of α on finding local communities around a seed node in FB-JHK, (b)
conductance of the different detected communities in FB-JHK where α = 1.5

Table 1 Effect of α on the size of detected communities in FB-JHK for 20 different initial random
seeds

α 1.5 2 2.5

Average size 588.2 242.8 173.1

Fig. 12 (a) Average conductances of the communities in FB-JHK, (b) average conductances of
the communities in FB-CALTC

detected with different values of α. The quality of the community found, large or
small, depends on the initial seed. This property is common to DCD and most other
methods, including LSP and LGS.

Figure 12a, b compare the average conductances achieved by the different
algorithms for a community of a particular size starting from 20 different random
seeds. The size is dictated by the number of nodes included by DCD with the value
of α given. Since several restarts were used, the size is not exactly identical in each
of the restarts, but for each restart, the community with an equivalent size produced
by LSP and LGS was chosen to calculate the average conductivity. For LSP, the
trials were repeated with each of the 25 parameters for teleportation and the average

Derivative-Based Community Detection 103

is reported. Figure 12a, b show the conductance of the detected communities for
DCD, LSP, and LGS for the 20 random seeds in FB-JHK and FB-CALTC. As it
can be seen, DCD has the best performance followed closely by LSP and then with
some margin is the LGS.

6.2 Community Tracking

Community tracking evaluation has two sections. In the first section, we will
show why surface tension of a community represents its quality by comparing
it to conductance, a very well-known and widely accepted quality measure for
communities. In the second section, the effectiveness of the surface tension as local
community tracking tool is demonstrated.

6.2.1 Analysing Surface Tension of Communities

To demonstrate the potentiality of surface tension as a local objective or quality
measure, we compared it with the conductance for more than 200 communities.
These communities were detected by some well-known global and local methods on
different networks. All networks in this section are part of FACEBOOK100 dataset
[40].

We show the correlation between surface tension of a community and its
conductance for several communities in different networks. To find communities,
we applied one of the best known global community detection methods, which is
proposed by Sobolevsky et al. [33], to FB-Caltech, FB-Trinity, FB-Yale, and FB-
Simmon, and then found the correlation between surface tension and conductance
of the detected communities. The specification of the mentioned networks is
presented in Table 2 and the correlations between surface tension and conductance
are presented in Table 3. In another experiment, we calculated the correlation of
conductance and surface tension of communities for 100 local communities in FB-
UCF and another 100 communities in FB-DUKE. We used local spectral method
[25] with different random initial seed for finding these 200 communities in these
two networks. The specifications of the networks can be seen in Table 2.

Considering the fact that surface tension is a local concept and only uses the
local information of a community, whereas conductance is a global notion and

Table 2 Datasets’ details

Networks FB-Caltech FB-Trinity FB-Yale FB-Simmon

Nodes 669 2613 8578 1518

Edges 33,253 111,996 405,450 65,976

Average degree 43.39 85.72 94.5 86.92

104 M. A. Rigi et al.

Table 3 The correlation between surface tension and conductance of detected communities by
Sobolevsky et al. [33] method

Networks FB-Caltech FB-Trinity FB-Yale FB-Simmon

Number of communities 10 6 7 6

Correlation 0.7311 0.8768 0.7635 0.8404

Table 4 The correlation between surface tension and conductance of detected communities by
local spectral method [25] method.

Networks FB-UCFA FB-DUKE

Number of communities 100 100

Correlation 0.9465 0.9286

needs network’s entire information, the high correlation between them suggests that
surface tension can be seen as a local quality objective (Table 4).

6.2.2 Tracking Local Communities

To evaluate our model for tracking communities, the dynamic community network
generator by Görke et al. [15] is used. The benefit of their clustered network
generator is its capability to create communities in a dynamic network with an
atomic change stream where ground truth is known. The stream of atomic changes
is generated in a way that the community label of every newly added node is known.
The ground truth data can be compared against our method’s result. We compared
surface tension model against the ground truth data. In this experiment, several
networks with 1000 nodes and five communities with different intra-cluster and
inter-cluster edge probabilities are generated. More intra-cluster and less the inter-
cluster probabilities lead to higher quality communities. In the next step, 200 nodes
are added to the network through a stream of atomic changes. Our model tracks and
maintains each of the communities. Since it is known a priori which cluster every
newly added node belongs to, we report precision, recall, and F1 score for different
scenarios.

To test the performance of our model for tracking local communities, seven
different scenarios with ground truth dynamic communities were generated. Each
network initially has 1000 nodes with an average degree of 30. Then, 200 nodes
are successively added to the network. The seven experiments differ in their
probabilities of inter-cluster and intra-cluster edges. Experiments are labeled in
alphabetical order. Their parameterisations are shown in Table 5.

The precision, recall, and F1 scores for each of the experiments are shown in
Fig. 13. As the probability of edges within clusters decreases and the probability of
edges between clusters increases, tracking communities becomes more difficult and
the accuracy decreases. For well-defined communities, it performs better.

Derivative-Based Community Detection 105

Table 5 Different
parameterisation for
intra-cluster (Pin) and
inter-cluster (Pout)
probabilities

Scenarios

A B C D E F G

Pin 0.8 0.8 0.8 0.7 0.7 0.6 0.5

Pout 0.1 0.3 0.2 0.2 0.3 0.3 0.3

Fig. 13 Precision, recall, and F1 score for each scenario in Table 5

7 Conclusion and Future Works

In this study we have extended the definition of derivatives to graph and approx-
imated derivatives over graph domain. Inspired by geometric active contours, we
proposed a method (DCD) that has shown comparable performance to a well-
known local community detection algorithm (LSP [25]). While both methods have
similar computational complexity, DCD offers more desirable stopping criteria,
where unlike LSP it will stop automatically once all qualified nodes have been
included in the community. Moreover, we introduced the concept of surface tension,
a natural phenomenon which is heavily investigated in chemistry, into networks.
According to chemistry, the binding forces between the molecules of a liquid draw
the molecules of the substance into a shape that has the least surface area. That
is to say, a community of similar liquid molecules tends to shape themselves in a
way that surface tension is minimised. Likewise, the binding forces between nodes
of a community inside a network lead to particular patterns for a community. A
pattern or shape in which the surface tension of community is minimised. We used
surface tension as an objective for tracking local communities in dynamic networks.
Surface tension provides a unique ability for tracking local communities in dynamic
networks in which new nodes are added over time. In other words, when a node is
a candidate of inclusion in a local community, it will be included only if the surface

106 M. A. Rigi et al.

tension of the community is reduced or remains unchanged. Our experiments show
the effectiveness of the proposed approaches to find and track communities as well
as the proposed framework for finding derivatives in graph space.

References

1. Ames, W.F.: Nonlinear Partial Differential Equations in Engineering, vol. 18. Academic, New
York (1965)

2. Andersen, R., Lang, K.J.: Communities from seed sets. In: Proceedings of the 15th Interna-
tional Conference on World Wide Web, pp. 223–232. ACM, New York (2006)

3. Bagrow, J.P., Bollt, E.M.: Local method for detecting communities. Phys. Rev. E 72(4), 046108
(2005)

4. Canu, M., Lesot, M.J., d’Allonnes, A.R.: Vertex-centred method to detect communities in
evolving networks. In: International Workshop on Complex Networks and Their Applications,
pp. 275–286. Springer, Berlin (2016)

5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1),
61–79 (1997)

6. Chen, J., Yuan, B.: Detecting functional modules in the yeast protein–protein interaction
network. Bioinformatics 22(18), 2283–2290 (2006)

7. Clauset, A.: Finding local community structure in networks. Phys. Rev. E 72(2), 026132 (2005)
8. Coleman, J.S.: Introduction to Mathematical Sociology. London Free Press, Glencoe (1964)
9. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen differenzengleichungen der mathe-

matischen physik. Math. Ann. 100(1), 32–74 (1928)
10. Diao, P., Guillot, D., Khare, A., Rajaratnam, B.: Differential calculus on graphon space. J.

Comb. Theory Ser. A 133, 183–227 (2015)
11. Falkowski, T.: Community analysis in dynamic social networks. Ph.D. thesis, Otto-von-

Guericke-University, Magdeburg (2009)
12. Farhangi, M.M., Frigui, H., Bert, R., Amini, A.A.: Incorporating shape prior into active

contours with a sparse linear combination of training shapes: application to corpus callosum
segmentation. In: 2016 IEEE 38th Annual International Conference of the Engineering in
Medicine and Biology Society (EMBC), pp. 6449–6452. IEEE, Piscataway (2016)

13. Farhangi, M.M., Frigui, H., Seow, A., Amini, A.A.: 3-D active contour segmentation based
on sparse linear combination of training shapes (SCoTS). IEEE Trans. Med. Imaging 36(11),
2239–2249 (2017)

14. Friedman, J., Tillich, J.P.: Calculus on graphs. arXiv preprint cs/0408028 (2004)
15. Görke, R., Kluge, R., Schumm, A., Staudt, C., Wagner, D.: An efficient generator for clustered

dynamic random networks. In: Proceedings of the Design and Analysis of Algorithms – First
Mediterranean Conference on Algorithms. Lecture Notes in Computer Science, vol. 7659, pp.
219–233. Springer, Berlin (2012)

16. Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012)
17. Jeub, L.G., Balachandran, P., Porter, M.A., Mucha, P.J., Mahoney, M.W.: Think locally, act

locally: detection of small, medium-sized, and large communities in large networks. Phys.
Rev. E 91(1), 012821 (2015)

18. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632
(1999)

19. Kottak, C.P.: Cultural Anthropology: Appreciating Cultural Diversity. McGraw-Hill, New York
(2011)

20. Krishnamurthy, B., Wang, J.: On network-aware clustering of web clients. ACM SIGCOMM
Comput. Commun. Rev. 30(4), 97–110 (2000)

21. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical
community structure in complex networks. New J. Phys. 11(3), 033015 (2009)

Derivative-Based Community Detection 107

22. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems, vol. 15. SIAM, Philadelphia
(1995)

23. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diam-
eters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, pp. 177–187. ACM, New York (2005)

24. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large
networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math.
6(1), 29–123 (2009)

25. Mahoney, M.W., Orecchia, L., Vishnoi, N.K.: A local spectral method for graphs: with
applications to improving graph partitions and exploring data graphs locally. J. Mach. Learn.
Res. 13(1), 2339–2365 (2012)

26. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. Adv.
Neural Inf. Process. Syst. 2, 849–856 (2002)

27. Nguyen, N.P., Dinh, T.N., Tokala, S., Thai, M.T.: Overlapping communities in dynamic
networks: their detection and mobile applications. In: Proceedings of the 17th Annual
International Conference on Mobile Computing and Networking, pp. 85–96. ACM, New York
(2011)

28. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc.
66(336), 846–850 (1971)

29. Rigi, M.A., Moser, I., Rigi, S., Liu, C.: Re-imaging the networks: detecting local communities
in networks by approximating derivatives in graph space. In: Proceedings of the 2017
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
(ASONAM ’17), pp. 974–981. ACM, New York (2017)

30. Rives, A.W., Galitski, T.: Modular organization of cellular networks. Proc. Natl. Acad. Sci.
100(3), 1128–1133 (2003)

31. Samie, M.E., Hamzeh, A.: Community detection in dynamic social networks: a local evolu-
tionary approach. J. Inf. Sci. 43(5), 615–634 (2017)

32. Shang, J., Liu, L., Li, X., Xie, F., Wu, C.: Targeted revision: a learning-based approach
for incremental community detection in dynamic networks. Phys A: Stat. Mech. Appl.
443(Suppl. C), 70–85 (2016)

33. Sobolevsky, S., Campari, R., Belyi, A., Ratti, C.: General optimization technique for high-
quality community detection in complex networks. Phys. Rev. E 90(1), 012811 (2014)

34. Solomon, J.: PDE approaches to graph analysis. arXiv preprint, arXiv:1505.00185 (2015)
35. Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., Schult, R.: Monic: modeling and monitoring

cluster transitions. In: Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 706–711. ACM, New York (2006)

36. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free mining of large
time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 687–696. ACM, New York (2007)

37. Ta, V.-T., Elmoataz, A., Lézoray, O.: Partial difference equations over graphs: morphological
processing of arbitrary discrete data. In: European Conference on Computer Vision, pp. 668–
680. Springer, Berlin (2008)

38. Tong, H., Papadimitriou, S., Sun, J., Yu, P.S., Faloutsos, C.: Colibri: fast mining of large static
and dynamic graphs. In: Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 686–694. ACM, New York (2008)

39. Toyoda, M., Kitsuregawa, M.: Creating a web community chart for navigating related
communities. In: Proceedings of the 12th ACM Conference on Hypertext and Hypermedia
(HYPERTEXT ’01), pp. 103–112. ACM, New York (2001)

40. Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of Facebook networks. Phys. A: Stat.
Mech. Appl. 391(16), 4165–4180 (2012)

41. Xu, T., Zhang, Z., Yu, P.S., Long, B.: Generative models for evolutionary clustering. ACM
Trans. Knowl. Discov. Data 6(2), 7 (2012)

42. Yang, T., Chi, Y., Zhu, S., Gong, Y., Jin, R.: Detecting communities and their evolutions in
dynamic social networks—a Bayesian approach. Mach. Learn. 82(2), 157–189 (2011)

Graph Clustering Based on
Attribute-Aware Graph Embedding

Esra Akbas and Peixiang Zhao

Abstract Graph clustering is a fundamental problem in graph mining and network
analysis. To group vertices of a graph into a series of densely knitted clusters with
each cluster being well-separated from all the others, classic methods primarily
consider the mere graph structure information in modeling and quantifying the prox-
imity or distance of vertices for graph clustering. However, with the proliferation
of rich, heterogeneous attribute information widely available in real-world graphs,
such as user profiles in social networks, and GO (Gene Ontology) terms in protein
interaction networks, it becomes essential to combine both structure and attribute
information of graphs towards yielding better-quality clusters. In this chapter, we
propose a new graph embedding approach for attributed graph clustering. We
embed each vertex of a graph into a continuous vector space within which the local
structure and attribute information surrounding the vertex can be jointly encoded in
a unified, latent representation. Specifically, we quantify the vertex-wise attribute
proximity into edge weights and leverage a group of truncated, attribute-aware
random walks to learn the latent representations of vertices. This way, the chal-
lenging attributed graph clustering problem can be cast into the traditional problem
of multidimensional data clustering, which has admitted efficient and cost-effective
solutions. We apply our attribute-aware graph embedding algorithm in a series of
real-world and synthetic attributed graphs and networks. The experimental studies
demonstrate that our proposed method significantly outperforms the state-of-the-art
attributed graph clustering techniques in terms of both clustering effectiveness and
efficiency.

E. Akbas
Oklahoma State University, Stillwater, OK, USA
e-mail: eakbas@cs.okstate.edu

P. Zhao (�)
Florida State University, Tallahassee, FL, USA
e-mail: zhao@cs.fsu.edu

© Springer Nature Switzerland AG 2019
P. Karampelas et al. (eds.), From Security to Community Detection in Social
Networking Platforms, Lecture Notes in Social Networks,
https://doi.org/10.1007/978-3-030-11286-8_5

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11286-8_5&domain=pdf
mailto:eakbas@cs.okstate.edu
mailto:zhao@cs.fsu.edu
https://doi.org/10.1007/978-3-030-11286-8_5

110 E. Akbas and P. Zhao

1 Introduction

Graph clustering, also referred to as community detection, is a fundamental data
mining problem for exploring and understanding graphs and networked data [10,
26]. The objective of classic graph clustering is to partition vertices of a graph based
on its topological structure information, such as vertex connectivity and distance, in
order to identify densely connected subgraphs or communities. However, in addition
to the interlinked graph structures, real-world graphs and information networks have
witnessed an abundant amount of rich, attributive information affiliated with vertices
that represent the key characteristics and properties of entities [15, 36]. This gives
rise to a new, complicated type of graphs, namely, attributed graphs, and as a result,
new graph clustering methods need to be revamped accordingly to support the so-
called attributed graph clustering [5, 22, 30, 32, 36, 37].

Attributed graph clustering has found a wide range of real-world applications
because it has the potential to yield more informative and better-quality clustering
results due in particular to a joint consideration of both attribute and structure
information of the underlying graphs. Some noteworthy examples are outlined as
follows:

1. In social networks such as Facebook, LinkedIn, and Google+, users and their
friendship relations constitute the underlying social graphs. Additionally, each
user is characterized by a series of attributes depicting one’s personal profiles
including age, education, occupation, location, and hobbies. Clustering social
network users by tackling both their social relationships and personal profiles is
particularly useful for social targeting and personalized recommendation [11, 17,
36];

2. In protein–protein interaction (PPI) networks, the proteins are often annotated
with biological attributes, such as functional classifications, gene ontology (GO)
terms, and gene expression profiles. Clustering PPI networks by leveraging
both the network topologies and protein attributes can significantly facilitate the
identification process of protein complexes and pathways [7, 14];

3. The web graph consists of web pages interweaved by hyperlinks. Each web page
is also characterized by a series of attributes including URL, name, keywords,
contents, tags, and so forth. When both hyperlinks and web page attributes are
considered for web community discovery, the results are often more informative
than those identified based solely on web structures [9, 12, 25].

Unfortunately, attributed graph clustering turns out to be significantly more chal-
lenging than the classic graph clustering problem where the mere graph structure
information is adopted for clustering. The main reason is that topological structures
and vertex attributes are two completely different types of information pertaining to
graphs. Clustering based solely on either one type of information oftentimes leads to
inconsistent, or even contradicting, graph clustering results [36]. As a consequence,
the key challenge of attributed graph clustering is to meaningfully combine the
structure and attribute information of graphs towards striking the right balance

Graph Clustering Based on Attribute-Aware Graph Embedding 111

A

B
C

D

E

F

H

G

I

J L

K MMS C++

PHD C++

PHD
C++

 MS
Java

MS C++

 MS C++

 MS C++

 BS
Java

 MS
Java

 MS
Java

 MS
Java

PHD
C++

PHD
C++

-0.2-0.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

E C

D B

A J L
M

K

G
I

H

F

A

B
C

D

E

F

H

G

I

J L

K M

0.5

1

1

1

1
0.5

0.5
0.5

1

0
0

0

0

0.5

0.5

0.5

0.5

0.5

0.5

1
1

1

10.5

(a) (b)

(c)

Fig. 1 The attribute-aware graph embedding on a sample attributed graph. (a) Presents a sample
social graph G containing 13 individuals and their friendship relations. Each individual is
characterized by two attributes: education and favorite programming language; (b) presents the
transformed, weighted graph G′ with vertex attribute similarity embedded as edge weights; and (c)
presents the two-dimensional attribute-aware graph embedding, Φ, from which the latent cluster
structures naturally arise

between the two distinct objectives of clustering based on either graph structures
or vertex attributes, respectively.

In this chapter, we introduce a novel approach for attributed graph clustering
based on both graph structure cohesiveness and vertex attribute homogeneity. The
key idea is to design a unified latent representation for each vertex u of a graph such
that both the graph connectivity and vertex attribute similarity within the localized
region of u can be jointly encoded into a continuous vector space. Specifically, the
pairwise vertex attribute similarity between u and any vertex in u’s local vicinity
is first quantified and embedded as the new edge weights of the graph. A series

112 E. Akbas and P. Zhao

of truncated, edge weight-biased random walks originating from u are further
generated to capture the local, attribute-aware structure information surrounding u.
Inspired by the recent work of graph embedding [8, 23, 28], these random walks
are further used to learn a latent representation, r(u) ∈ R

d , of u, which lies in
a continuous vector space with a relatively small number d of dimensions. This
way, the salient, localized attribute and structure information of the vertices can be
jointly and uniformly encoded in the continuous d-dimensional vector space. As a
result, the challenging attributed graph clustering problem is cast to the traditional
data clustering problem upon the d-dimensional space, in which the graph structure
cohesiveness and vertex attribute homogeneity can be approximately preserved. In
the end, we can apply any data clustering algorithm, e.g., k-Medoids, to accomplish
the challenging task of attributed graph clustering in large-scale graphs or networks.
To illustrate the key idea, we present the typical pipeline of our attributed graph
clustering method in a sample graph, as shown in Fig. 1.

The main contributions of our work can be summarized as follows:

1. We propose a novel, attribute-aware graph embedding framework for the problem
of attributed graph clustering. It provides a natural and principled way to
encode the structure and attribute information surrounding vertices into a unified
latent representation in a low-dimensional vector space, within which the graph
structure cohesiveness and vertex attribute homogeneity can be well-preserved.
This framework also establishes a general graph embedding approach to tackling
attributed graphs in widely varying application domains.

2. We design an efficient and cost-effective graph embedding algorithm that
accomplishes the transformation of an attributed graph into its vertex-based latent
representations in a low-dimensional space, which are further fed as input to any
data clustering method for attributed graph clustering;

3. We carry out experimental studies in a series of real-world and synthetic
attributed graphs and compare our method with the state-of-the-art attributed
graph clustering techniques. The experimental results demonstrate that our
efficient graph embedding method outperforms other existing algorithms in terms
of both graph structure cohesiveness (w.r.t. graph density) and vertex attribute
homogeneity (w.r.t. entropy) of resultant graph clusters. Our scalability test
shows that our algorithm exhibits excellent scalability for graph clustering, while
the state-of-the-art attributed graph clustering techniques cannot scale in large
graphs.

The rest of this chapter is organized as follows. In Sect. 2, we discuss the related
work for attributed graph clustering and graph embedding. In Sect. 3, we formally
define the problem of attributed graph clustering. We then present our attribute-
aware graph embedding framework in Sect. 4 and develop the corresponding
algorithm in Sect. 5. We report our experimental studies and main results in Sect. 6,
followed by the conclusion in Sect. 7.

Graph Clustering Based on Attribute-Aware Graph Embedding 113

2 Related Work

In this section, we brief the related work on attributed graph clustering and graph
embedding and discuss how our proposed work differs from the existing solutions.

Attributed Graph Clustering There has been a rich literature for attributed graph
clustering [6]. The straightforward idea is to define some vertex-wise distance
metric or similarity measure that takes into account both structure and attribute
information of vertices in a graph. For instance, the differences in vertex attribute
values can be quantified as distances between neighboring vertices [27]. The textual
web contents and hyperlinks are also combined in a similarity measure for web page
clustering [12]. SA-Cluster [36] transforms a graph into another augmented graph
with new, artificial attribute vertices representing distinct vertex attribute values. A
new attribute edge (u, u′) is further created that links an original vertex u and a
newly created attribute vertex u′, if there is an attribute of u whose value is equal
to u′. After this transformation, the vertices sharing the same attribute values are
connected via common attribute vertices. A random walk-based distance measure
is further defined upon the augmented graph in order to estimate the closeness
of vertices in terms of both structure cohesiveness and attribute proximity. SA-
Cluster is computationally expensive because: (1) the resultant augmented graph
can be excessively large if the number of distinct vertex attribute values is high,
and (2) SA-Cluster involves costly iterative matrix multiplication in random walk-
based distance computation and weight tuning. Although an improved version has
been proposed to support incremental computation for the random walk distance
matrix [37], SA-Cluster is still hard to scale up in real-world large-scale attributed
graphs.

Another stream of related work for attributed graph clustering is built primarily
upon generative probabilistic models, within which graph structure and vertex
attribute information is correlated to a set of shared, hidden variables of cluster
membership [2, 13, 30, 32, 33]. BAGC [30, 31] is a Bayesian probabilistic model in
which the cluster label of each vertex of the graph is explicitly represented as a hid-
den variable. A joint probability distribution is further defined and estimated over the
space of all possible clusterings of the attributed graph, and a variational inference
algorithm is developed to find the posterior distribution with highest probability.
While a graph is considered as a dynamic system, it is assumed that community is
the stable status shared by the nodes in that community. Specifically, nodes from
the same community are likely to get the same amount of content propagation.
CPIP [18] is a model-based method which is based on content propagation with
principles of influence propagation as well as random walk. It is assumed that
while a network is considered as a dynamic system, a community is considered
as the stable status shared by the nodes in that community. Specifically, nodes in
the same community are likely to get the same amount of content propagation.
CESNA [32] assumes that clusters will generate both the graph structure and vertex
attributes based on the affiliation network model [16] and a separate logistic model,
respectively. An optimization problem is further formulated to probabilistically infer

114 E. Akbas and P. Zhao

clusters based on both graph structure and vertex attribute information, and an
efficient coordinate ascent algorithm is used to detect overlapping graph clusters
from the attributed graph. Unfortunately, these probabilistic clustering methods
have to undertake an optimization process for parameter likelihood estimation,
which is typically very time-demanding. In addition, choosing appropriate a priori
distributions in these statistical models is a nontrivial task.

Our work differs from existing attributed graph clustering solutions in that we are
the first to consider the idea of attribute-aware graph embedding towards encoding
both graph structure cohesiveness and vertex attribute homogeneity into a low-
dimensional latent space, within which attributed graph clustering can be supported
in an efficient and cost-effective way especially in large-scale attributed graphs.

Graph Embedding There have been many approaches to learning low-
dimensional representations for graphs [4, 24, 29]. Inspired by the recent
advancement in language modeling and deep learning [20], a series of graph
embedding work that learn latent vertex representations of graphs have been
proposed. DeepWalk [23] takes advantage of local structure information of
vertices based on the Skip-Gram model [20] to learn the latent representations by
treating random walks as the equivalent of sentences. When applied for multilabel
graph classification in social networks, DeepWalk can successfully encode the
global graph structure especially in the presence of missing information in graphs.
Line [28] is a scalable graph embedding method that uses edge sampling for model
inference. It naturally breaks the limitation of the classical stochastic gradient decent
method adopted in graph embedding without compromising embedding efficiency.
GraRep [8] refines DeepWalk by introducing an explicit loss function of the Skip-
Gram model defined on the graph and extends Line by capturing k-step (k > 2)
high-order information for learning the latent representations. Matrix factorization
algorithms are used for optimization in GraRep.

Our work differs from existing graph embedding solutions in the following
two aspects: (1) graph embedding is typically proposed and optimized for the
task of graph classification, while our work is primarily designed for attributed
graph clustering; (2) graph embedding considers encoding the mere graph structure
into a low-dimensional space, while our work is the first to take into account
attributed graphs and thus enriches the existing frameworks for attribute-aware
graph embedding.

This work is an extended version of our previous conference paper [1]. We
provide details of our attributed graph embedding algorithm with theoretical
justifications. We also include thorough experimental results with other large-scale
real-world attributed graphs and a set of synthetic attributed graph by varying several
parameters including number of vertex and vertex dimensionality. We compare
AA-Cluster with other state-of-the art methods. We examine the effects of our
algorithm’s parameter such as neighborhood distance, length and number of random
walks per vertex, and window size. Moreover, we analyze the scalability of our
methods and compare with others. We find that our attributed graph clustering

Graph Clustering Based on Attribute-Aware Graph Embedding 115

method has excellent scalability, while others cannot scale in large graphs with
giving memory error after some points.

3 Problem Formulation

Henceforth, we consider clustering graph-structured data whose vertices are affil-
iated with multidimensional attributes. We refer to these complicated data as
attributed graphs, which is defined as follows.

Definition 1 (Attributed Graph) An attributed graph is a three tuple G =
(V ,E,A), where V is a set of vertices, E ⊆ V × V is a set of edges, and
A = {A1, . . . , An} is a set of n attributes associated with vertices from V . That is,
for each u ∈ V , there is an attribute vector A(u) = (A1(u), . . . , An(u)) associated
with u, where Al(u) is the attribute value of u on the l-th attribute Al (1 ≤ l ≤ n).

In this chapter, we consider the attributed graphs as undirected, connected, and
simple graphs, and all the vertex attributes conform to a unique multidimensional
schema, A. However, the proposed attribute-aware graph embedding framework
and the attributed graph clustering algorithm can be extended with minor revision
to other types of graphs with the vertex attributes conforming to heterogeneous
attribute schemas. We further assume that each vertex attribute Ai has a finite set of
discrete values and the number of possible values (or cardinality) of Ai is |Ai |. For
vertex attributes with continuous or infinitely countable values, we can transform
them into discrete values by either bucketization or histograms.

Given a vertex u in an attributed graph G, we denote all the neighboring vertices
of u as N1(u) = {v|v ∈ V, (u, v) ∈ E}. Analogously, we denote all the vertices that
are l (l ≥ 1) hops away from u as Nl(u) = {v|v ∈ V, d(u, v) = l}, where d(·) is
the shortest unit distance function defined upon G. If l is small, Nl(u) consists of
all vertices that are in the local vicinity of u. In principle, if vertices in Nl(u) are
densely connected and share similar vertex attributes with u, they are very likely to
be in the same cluster that u belongs to.

Definition 2 (Attributed Graph Clustering) The attributed graph clustering
problem is to partition a graph G into k mutually exclusive and collectively
exhaustive subgraphs Gi = (Vi, Ei,A) with an objective to obtain the following
graph clustering properties:

1. Structure closeness: Vertices within the same clusters are closely connected
with each other, while vertices in different clusters are far apart;

2. Attribute homogeneity: Vertices within the same clusters have similar attribute
values, while vertices in different clusters differ significantly in vertex attribute
values.

We note that in the classic graph clustering problem, only the first objective
is optimized as the mere graph structure information is considered, while for the

116 E. Akbas and P. Zhao

attributed graph clustering problem, we strive to achieve the dual objective of
structure closeness and attribute homogeneity for graph clusters.

4 The Attribute-Aware Graph Embedding Framework

In this section, we will discuss our attribute-aware graph embedding framework for
attributed graph clustering. Our goal is to transform every vertex u of an attributed
graph into a latent, low-dimensional feature vector f (u) ∈ R

d , where d is a small
number for the latent dimensions. This way, both vertex attributes and local graph
structure information of u are encoded within f (u) in a way that vertices of the
same cluster will have similar feature vectors. The distance within the latent low-
dimensional space should represent a metric for evaluating the structure–attribute
similarity between corresponding vertices of the attributed graph.

4.1 Vertex Attribute Embedding

Given an attributed graph G, our first step is to embed the information of vertex
attribute similarity into a transformed, weighted graph G′ = (V ,E;W), where W :
E → R≥0. Specifically, for each edge e = (u, v) ∈ E, we assign an edge weight
w(e) that quantifies the vertex attribute similarity for u and v. This way, the vertex
attribute information of G can be encoded into the weighted graph G′ as new edge
weights.

The straightforward way to quantify the multidimensional attribute similarity of
two adjacent vertices u and v is based on a dimension-wise evaluation of attribute
values for u and v, respectively. We define an indicator function 1Ai

(u, v) for the
attribute Ai of u and v as follows:

1Ai
(u, v) =

{
1 if Ai(u) = Ai(v)

0 otherwise

Then, the vertex attribute similarity, s0(u, v), of vertices u and v can be computed
as:

s0(u, v) =
∑n

i=1 1Ai
(u, v)

n
(1)

In an attributed graph G, it is not uncommon two adjacent vertices u and v that
are within the same cluster may share few, or even no, identical vertex attribute
values. In this case, u and v may be closely connected and only their structure
information plays an essential role in assigning them in one cluster. However, if we
solely rely on the structure information of u and v that disagree on vertex attribute

Graph Clustering Based on Attribute-Aware Graph Embedding 117

values, it is still likely that u and v will be assigned to different clusters by mistake.
To account for this case, we extend the computation of the vertex attribute similarity
by taking into consideration the neighboring vertices of u and v, respectively. This
way, if u and v share few or no common vertex attribute values, the vertices within
their vicinity may still hold identical or similar vertex attribute values, considering
that u and v belong to the same cluster. Formally, we consider all the nearby vertices
of u in Nl(u) which are l hops away from u. For each vertex attribute Ai(1 ≤ i ≤ n),
we maintain a histogram vector, HAi

(u), with a total number of |Ai | entries, each
of which corresponds to a possible value at ∈ Domain(Ai), and maintains the value
as:

HAi
(u)[t] = |{v|v ∈ Nl(u),Ai(v) = at }|

|Nl(u)| , 1 ≤ t ≤ |Ai | (2)

That is, the t-th element of the vector HAi
(u) maintains the percentage of vertices

whose attribute value upon the attribute Ai is equal to at (1 ≤ t ≤ |Ai |) w.r.t. all
vertices that are l hops away from u. As a result, HAi

(u) maintains the distribution
of vertex attribute values of the attribute Ai for the vertices that are near the vertex
u. So, the vertex attribute similarity of u and v in terms of their neighbors that are l

hops away can be formally defined as:

sl(u, v) =
∑n

i=1 sim(HAi
(u),HAi

(v))

n
(3)

where sim(·, ·) is a similarity function defined on two vectors. In this work, we
consider the cosine similarity function for computation.

For adjacent vertices u and v, where (u, v) ∈ E, we synthesize the overall vertex
attribute similarity, s(u, v), by considering both the vertex attribute similarity of u

and v themselves (Eq. (1)) and vertex attribute similarities of all the vertices within
the localized vicinity of u and v, respectively, which are up to L hops away from u

and v (Eq. (3)):

s(u, v) =
L∑

l=0

sl(u, v)

2l
. (4)

We note that vertices that are l (1 ≤ l ≤ L) hops away from u and v should
contribute less to the vertex attribute similarity between u and v when the value
of l grows larger. To account for this, we consider dampening exponentially the
vertex attribute similarities of nearby vertices in terms of distances away from u and
v, respectively, as presented in Eq. (4). As a result, we assign the vertex attribute
similarity s(u, v) as an edge weight w(u, v) of the edge (u, v) in the transformed
weighted graph G′. This way, the information of vertex attribute similarity is
embedded into G′, which will be further explored in order to accommodate structure
information in the attributed graph.

118 E. Akbas and P. Zhao

Algorithm 1: Vertex attribute embedding (G,L)
Input: attributed graph G(V,E;A), maximum neighborhood length L

Output: weighted graph G′(V ,E; W)

1 begin
2 for e = (u, v) ∈ E do
3 s(u, v) ← s0(u, v) /* Eq. (1) */
4 for l = 1 to L do
5 for i = 1 to n do
6 Construct histograms HAi

(u) and HAi
(v); /* Eq. (2) */

7 sl(u, v) =
∑n

i=1 sim(HAi
(u),HAi

(v))

n
/* Eq. (3) */

8 s(u, v) ← s(u, v) + sl (u,v)

2l

/* Eq. (4) */

9 w(e) ← s(u, v)

10 return G′(V ,E; W)

Algorithm 1 presents the procedure for vertex attribute embedding. Given an
attributed graph G an input, we consider for each edge e = (u, v) a new edge weight
w(e) that encodes the vertex attribute similarity, s(u, v), between two vertices u and
v. The vertex attribute similarity s(u, v) is first initialized to s0(u, v) (Line 3). We
then expand the neighborhood length, l, of u and v by considering all the vertices
that are l hops away from u and v, respectively. For each of different n = |A|
vertex attributes, we construct histograms for neighboring vertices at distance l away
from u and v, respectively (Line 6), and the vertex attribute similarity at distance l,
sl(u, v), is computed using a vector-based similarity function sim(·, ·), e.g., cosine
similarity (Line 7). The vertex attribute similarity s(u, v) is further updated by
incorporating sl(u, v) which is dampened by the distance l (Line 8). The worst-
case time complexity of Algorithm 1 is O(|E| × L × |A| × dL

max), where dmax is the
maximum degree of vertices in the graph G. In practice, we only need to consider
the neighborhood L as a very small value (0 ≤ L ≤ 2), because larger values of L

will introduce more vertices that are likely to be in other graph clusters, or with a
great percentage of “noisy” vertex attribute values that begin to mismatch with each
other.

4.2 Structure Embedding

Once the original attributed graph G is transformed to the weighted graph G′,
the information of vertex attribute similarity is embedded as edge weights of G′.
Another aspect of graph clusters yet to be explored is the information of structure
closeness. Intuitively, vertices within the same graph cluster are closely connected,
while those located in different clusters are typically far apart. We thus take as

Graph Clustering Based on Attribute-Aware Graph Embedding 119

input the augmented graph G′ and further embed the local structure information
of vertices for attributed graph clustering.

We consider using a series of short random walks to capture the structure
closeness within the localized vicinity of vertices. Random walks have been exten-
sively used as a fundamental data structure to efficiently capture local community
structure information of graphs [3, 19, 23, 35]. Specifically, for each vertex u ∈ V ,
we generate a group of γ truncated random walks rooted from u, denoted as
W t

l (u) = (u, v1, . . . , vt), where 1 ≤ l ≤ γ , and t denotes the length (i.e., the
number of edges) of the truncated random walks, which is often a small value.
Each of γ truncated random walks is generated as follows. We start from the vertex
v0 = u, and at each step i (0 ≤ i ≤ t − 1), we choose the next vertex vi+1 ∈ N1(vi)

in the truncated random walk with the following probability:

Pr(vi, vi+1) = s(vi, vi+1)∑
vj ∈N1(vi)

s(vi, vj)

where s(vi, vi+1) is the weight of the edge (vi, vi+1) in the graph G′, as defined
in Eq. (4). That is, the truncated random walks W t

l (u) are generated in a biased
way that the edge (vi, vi+1) with a higher edge weight will be chosen with a
greater probability. Note that edge weights in G′ indicate the vertex-wise attribute
similarity, as discussed in Sect. 4.1. As a result, the γ truncated random walks
generated from u are attribute-aware random walks that capture both local structure
closeness and vertex attribute homogeneity within the local vicinity of u, if the
length t of random walks is set small.

Inspired by the recent advances in language modeling and deep learning [20],
we treat each attribute-aware random walk as a short sentence or phrase, and each
vertex of the graph as a word in a special language. Our goal is to learn a latent
representation Φ : v ∈ V → R

d that maps each vertex of the graph into a
low-dimensional vector, Φ(u), while still preserving the clustering properties in
Definition 2. Following the intuition of DeepWalk [23], we relax the formulation
of random walks in two aspects: (1) a random walk that passes through a vertex
vi ∈ V as the center of the walk is treated as a bi-directional random walk rooted at
vi . That is, we consider that the random walk originates from vi and encompasses
preceding and following vertices in a window of size 2w; (2) we ignore the ordering
information of vertices in the random walk. The relaxations are particularly useful
for the latent representation learning because the order independence assumption
well-captures a sense of “closeness” provided by random walks. Furthermore, they
greatly simplify the learning process and save a lot of training time. To this end,
the latent representation of vertices can be formulated as the following optimization
problem:

min
Φ

(−log Pr({vi−w, . . . , vi−1, vi, vi+1, . . . , vi+w})) (5)

120 E. Akbas and P. Zhao

Algorithm 2: Structure embedding (G′, w, d, γ, t)
Input: weighted graph G = (V ,E; W), window size w, embedding size d , random walks

per vertex γ , random walk length t

Output: matrix of vertex latent representation Φ ∈ R
|V |×d

1 begin
2 for i = 1 to γ do
3 for u ∈ V do
4 W t

i (u) = RandomWalk(G′, u, t)

5 SkipGram(Φ,W t
i (u), w)

6 return Φ

To solve the optimization problem in Eq. (5), we take advantage of Skip-
Gram [20] that maximizes the concurrence probability among the words (vertices)
arising within a window w in a sentence (truncated random walk). We further use
Hierarchical Softmax [21] and stochastic gradient descent (SGD) to optimize the
approximation of probability distributions and parameter estimation.

Algorithm 2 presents the procedure for structure embedding. Given the weighted
graph G′ as input, we examine every vertex u of G′ and embed it into a low-
dimensional space as a d-dimensional vector Φ(u). We generate γ truncated random
walks with length t (Line 4). When each truncated random walk originated from u

is generated, we use the SkipGram algorithm to update the latent representation in
accordance with the objective function in Eq. (5) (Line 5). As the time complexity
for the training process of SkipGram is O(log|V |) for each random walk update, the
overall time complexity of Algorithm 2 is O(γ t |E| + |V |log|V |).

5 Attributed Graph Clustering Algorithm

Based on the attributed-aware graph embedding framework discussed in Sect. 4,
it becomes straightforward to support clustering on attributed graphs, and the
algorithm is sketched in Algorithm 3. Given an attributed graph G, we first
embed vertex attribute similarity information into a weighted graph G′, where
the parameter L regulates the distance of vertex neighborhood to be considered
for the quantification of vertex attribute similarity (Line 1). We then embed the
structure information of G′ by mapping vertices of G′ into d-dimensional latent
representations, Φ (Line 2), which approximately capture the structure closeness
and attribute homogeneity within the local neighborhood of vertices, and thus are
important indicators of cluster memberships of vertices. Once the original graph has
been transformed into the general latent representations in the d-dimensional space,
we can use any traditional data clustering method, such as kMedoids, to partition
the d-dimensional vectors representing vertices into k clusters.

Graph Clustering Based on Attribute-Aware Graph Embedding 121

Algorithm 3: Attributed graph clustering (G, k,L,w, d, γ, t)
Input: attributed graph G, number of resultant graph clusters k, maximum neighborhood

length L, window size w, embedding size d, random walks per vertex γ , random
walk length t

Output: graph clustering C = {C1, C2, . . . , Ck}
1 begin
2 G′ ← Vertex Attribute Embedding (G,L)
3 Φ ← Structure Embedding (G′, w, d, γ, t)
4 C ← kMedoids(Φ, k)
5 return C

It is worth noting that although in Definition 2, we aim to generate hard
graph clusters, meaning that every vertex can belong to at most one cluster, our
proposed attribute-aware graph embedding approach can also support overlapping
graph clustering. Once we transform the original attributed graph into its latent
representations, Φ, we can apply any hierarchically data clustering method for
overlapping graph clusters.

6 Experiments

In this section, we present our experimental studies for the proposed method, AA-
Cluster, which is abbreviated for attribute-aware graph clustering. We compare
AA-Cluster with four state-of-the art methods: (1) SA-Cluster [36] that combines
vertex attributes and graph structure information through a unified distance measure
for attributed graph clustering; (2) BAGC [31] is a Bayesian probabilistic approach
for attributed graph clustering; (3) CPIP [18] is based on content propagation with
principles of influence propagation as well as random walk (4) DeepWalk [23] that
learns the graph structure information as latent features in a low-dimensional space
without consideration of vertex attributes. We choose the recommended algorithmic
parameters for these, respectively, as mentioned in the corresponding papers. For
our method, AA-Cluster, we choose the following default parameter values in the
following experimental studies, if not specified otherwise: the vertex neighborhood
distance L = 1, the number of truncated random walks per vertex γ = 30, the
length of truncated random walks t = 30, the window size w = 30, and the
embedded dimension d = 40. All our experiments were carried out in a Linux
workstation running RedHat Enterprise Server 6.5 with 16 Intel Xeon 2.3 GHz
CPUs and 128 GB of memory.

122 E. Akbas and P. Zhao

6.1 Datasets

We examine three real-world attributed graphs and a set of synthetic attributed
graphs in our experimental studies. The details of data sets are as follows:

1. Political Blogs. This a network of hyperlinks between web blogs on the US
politics recorded in 2005.1 It contains 1490 web blogs as vertices and 19,090
hyperlinks between web blogs as edges. Each blog in the network has an attribute
pertaining to its political leaning as either liberal or conservative;

2. DBLP.2 This is a co-authorship network of computer science authors from
four research areas of database (including conferences such as SIGMOD,
VLDB, PODS, ICDE, and EDBT), data mining (including conferences such
as KDD, ICDM, SDM, PKDD, and PAKDD), information retrieval (including
conferences such as SIGIR, CIKM, ECIR, and WWW), and artificial intelligence
(including conferences such as IJCAI, AAAI, UAI, and NIPS). This network
contains 27,199 authors as vertices and 66,832 collaborations as edges. For each
author, we consider two categorical attributes: topic that is the primary one of 100
research topics extracted from paper titles based on topic modeling [34], and level
that is determined as follows. If an author published more than 20 papers, the
value of level is “highly prolific.” If the number of published papers is between
10 and 20, the value of level is “prolific.” If the number of published papers is
less than 10, the value of level is “low prolific”;

3. Patent. This is a large patent citation network with vertices representing patents
and edges depicting the citations between patents.3 We extract a subgraph
containing all the patents from the year 1988 to 1999. Each patent has six
attributes, grant year, number of claims, technological category, technological
subcategory, assignee type, and main patent class. There are 1,174,908 vertices
and 4,967,216 edges in the network. Note that this is the largest attributed
graph in our experimental studies, and most existing attributed graph clustering
methods fail to run in this large graph.

4. Synthetic Graphs. We generate a series of syntactic attributed, small-world
graphs by varying the number of vertices ranging from 1K up to 250K. For vertex
attributes, we change the vertex dimensionality, |A|, from 5 to 40 with half of
attributes whose values follow the Gaussian distribution, and the remaining half
of attributes whose values follow the uniform distribution. The synthetic graphs
are primarily used to examine the clustering efficiency and scalability of our
proposed method, AA-Cluster.

1http://www-personal.umich.edu/~mejn/netdata.
2http://dblp.uni-trier.de/xml/.
3http://www.nber.org/patents.

http://www-personal.umich.edu/~mejn/netdata
http://dblp.uni-trier.de/xml/
http://www.nber.org/patents

Graph Clustering Based on Attribute-Aware Graph Embedding 123

6.2 Evaluation Metrics

In order to compare the effectiveness of different attributed graph cluttering methods
and assess the quality of resultant graph clusters, we consider the following
evaluation metrics in our experimental studies:

1. Clustering density. Assume that there are k graph clusters C = {C1, C2, . . . , Ck}
generated by some specific attributed graph clustering method. The clustering
density is defined as:

density =
k∑

i=1

|{(u, v)|u, v ∈ VCi
, (u, v) ∈ ECi

}|
|E| (6)

Density is a quantitative measure indicating the structure closeness of the
resultant graph clusters. Empirically, the larger the density value, the better
quality of clustering results in terms of structure closeness;

2. Clustering entropy. In order to quantify the homogeneity of vertex attribute
values in graph clusters, we consider a second evaluation metric, average
clustering entropy, which is defined as follows:

entropy = 1

n

n∑

i=1

k∑

j=1

|VCj
|

|V | entropy(ai, VCj
) (7)

where

entropy(ai, VCj
) = −

|Al |∑

l=1

pijl logpijl

n = |A| is the number of vertex attributes in the attributed graph, and pijl denotes
the percentage of vertices in the cluster Cj whose vertex attribute value upon the
attribute Ai = ail , where ail ∈ Dom(Ai). Empirically, the lower the value of
entropy, the more homogeneous of vertex attribute values in the resultant graph
clusters.

Besides the evaluation metrics for clustering quality, we also examine the runtime
cost and scalability of our proposed method, AA-Cluster, as it is important to
support clustering real-world large-scale attributed graphs in a fast and potentially
scalable way.

124 E. Akbas and P. Zhao

6.3 Experimental Results

We report our main experimental results and findings for attributed graph clustering
across different datasets. We first perform experimental studies for the clustering
quality (in terms of density and entropy) by different attributed graph clustering
methods in Sect. 6.3.1. As our method, AA-Cluster, is determined by a series of
important parameters, we perform a systematic parametric analysis in Sect. 6.3.2.
Finally, we evaluate the scalability of AA-Cluster in synthetic datasets, as reported
in Sect. 6.3.3.

6.3.1 Clustering Quality

We first apply different attributed graph clustering methods in the Political Blog
graph, and the clustering quality results are illustrated in Fig. 2. By varying the
number k of graph clusters, we recognize that the density of graph clusters generated
by AA-Cluster is very close to that by SA-Cluster, both of which are consistently
higher than the density of BAGC, CPIP, and DeepWalk (Fig. 2a). Meanwhile, the
resultant graph clusters by AA-Cluster have a significantly smaller entropy value
than BAGC and DeepWalk and close entropy value to CPIP meaning that these
graph clusters have more homogeneous vertex attributes (Fig. 2b). For larger k

values, CPIP has lower entropy but also lower density value. As a result, AA-Cluster
can provide both structurally densely connected and attribute-wise homogeneous
graph clusters, whose clustering quality is higher than the graph clusters generated
by AA-Cluster and DeepWalk. An interesting observation is that, when k = 7,
the graph clusters generated by SA-Cluster are structurally imbalanced: There is
one large cluster subsuming most vertices of the graph, while the remaining six
graph clusters are very small containing a handful of vertices. This results in a high
density value but a high entropy value. However, the graph clusters generated by

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

3 5 7

D
en

si
ty

The Number of Clusters (k)

AA−Cluster
SA−Cluster
DeepWalk

BGC
CPIP

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

3 5 7

E
nt

ro
py

The Number of Clusters (k)

AA−Cluster
SA−Cluster
DeepWalk

BGC
CPIP

(b)

Fig. 2 Clustering quality in political blog dataset. (a) Density. (b) Entropy

Graph Clustering Based on Attribute-Aware Graph Embedding 125

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

10 30 50

E
nt

ro
py

The Number of Clusters (k)

AA−Cluster
SA−Cluster
DeepWalk

BGC
CPIP

(a)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10 30 50

E
nt

ro
py

The Number of Clusters (k)

AA−Cluster
SA−Cluster
DeepWalk

BGC
CPIP

(b)

Fig. 3 Clustering quality in DBLP dataset. (a) Density. (b) Entropy

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

10 50 100

D
en

si
ty

The Number of Clusters (k)

AA-Cluster
DeepWalk

(a)

 2.8

 3

 3.2

 3.4

 3.6

 3.8

10 50 100

En
tro

py

The Number of Clusters (k)

AA-Cluster
DeepWalk

(b)

Fig. 4 Clustering quality in patent dataset. (a) Density. (b) Entropy

AA-Cluster are structurally balanced with the best clustering quality results in terms
of both density and entropy.

We then examine different attributed graph clustering methods in the DBLP
graph, and the clustering quality results are presented in Fig. 3. By tuning the
number k of resultant graph clusters, we can clearly notice that in terms of both
density (Fig. 3a) and entropy (Fig. 3b), AA-Cluster outperforms SA-Cluster
BAGC and DeepWalk in generating high-quality graph clusters. As similar to
previous dataset, CPIP has lower entropy but also lower density value for all k

values. This means, while maintaining the attribute homogeneity, it could not keep
clusters structurally dense. In addition, the quality results of graph clusters of AA-
Cluster are very stable, which are not sensitive to the changes of the number k of
graph clusters generated.

We further evaluated different methods in the largest Patent graph. SA-Cluster
BAGC and CPIP fail in finishing the clustering computation and returns with
runtime memory errors.

126 E. Akbas and P. Zhao

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

Blog DBLP Patent

D
en

si
ty

Attributed Graphs

L=0
L=1
L=2

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

Blog DBLP Patent

En
tro

py

Attributed Graphs

L=0
L=1
L=2

(b)

Fig. 5 Clustering quality of AA-Cluster w.r.t. neighborhood distance, L. (a) Density. (b) Entropy

However, both AA-Cluster and DeepWalk return meaningful graph clustering
results, and the clustering quality is reported in Fig. 4. In terms of both density
and entropy, we find that AA-Cluster is consistently better than DeepWalk in
generating high-quality graph clusters. This indicates that a joint consideration of
both graph structure and vertex attribute information will bring better-quality graph
clustering results than the one with only graph structure is considered.

6.3.2 Parameter Analysis

It is important to note that our attributed graph clustering method, AA-Cluster,
is regulated by a series of important algorithmic parameters. In this section, we
will examine how these parameters affect the graph clustering performance of AA-
Cluster.

We first study the parameter of neighborhood distance, L, in vertex attribute
embedding. The clustering quality results are reported in Fig. 5, in terms of density
(Fig. 5a) and entropy (Fig. 5b), respectively. We recognize that by increasing the
neighborhood scope, more vertices within the localized region of target vertices
are involved for vertex attribute similarity computation. This can be treated as a
smoothing step in order to avoid the case that two intracluster vertices happen to
share few or even no common vertex attributes. In addition, for the case that two
intracluster vertices that share vertex attributes in common but there is no edge
connecting them, there are still neighboring vertex attribute similarities that can be
leveraged to account for the “closeness” of the intracluster vertices.

As a result, the involvement of neighboring vertices for the quantification of
vertex attribute similarity can help improve the graph clustering quality. However, it
is not always beneficial to expand the localized neighborhood for vertex attribution
value computation. When L is set large, the computational cost of attribute embed-
ding grows as well. More importantly, some noisy vertices with heterogeneous

Graph Clustering Based on Attribute-Aware Graph Embedding 127

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

20 30 40

D
en

si
ty

Walk Length

γ=20
γ=30
γ=40

(a)

 1

 1.05

 1.1

 1.15

 1.2

 1.25

20 30 40

En
tro

py

Walk Length

γ=20
γ=30
γ=40

(b)

Fig. 6 Clustering quality of AA-Cluster w.r.t. number of walks, γ , in DBLP graph (k = 10). (a)
Density. (b) Entropy

vertex attribute values might be involved, thus leading to a drop of entropy. In
our experimental studies, we find that L = 1 is typically good enough for vertex
attribute embedding.

We then examine the parameters pertaining to structure embedding for AA-
Cluster. We will report the experimental results in the DBLP network with k = 10
graph clusters generated, as we witness very similar trends and findings in the other
two graphs.

By varying the length of truncated random walks, t , and the number of truncated
random walks rooted per vertex, γ , the graph clustering quality results are illustrated
in Fig. 6. We can clearly find that by leveraging more truncated random walks and
lengthening the random walks, we can more easily capture the structure closeness
of graph clusters. However, the side effect is that we include more vertices with
heterogeneous vertex attribute values, thus leading to a decrease in entropy. As a
result, there is an intrinsic trade-off when setting the values of t and γ , which are
both directly correlated to the clustering quality.

When then test the parameter w of the window size for the SkipGram algorithm
used in structure embedding, and the graph clustering quality results are reported in
Fig. 7. When w increases, the clustering quality results are enhanced as the density
increases and the entropy decreases in the mean time. This suggests that a large
window size will benefit the attributed graphs clustering method, AA-Cluster.

6.3.3 Scalability

We also analyze the runtime cost and scalability of the attributed graph clustering
method, AA-Cluster, in a series of synthetic graphs. First of all, we create a series
of synthetic, small-world graphs with the number of vertices ranging from 1K up to
250K, and the number of vertex attributes, n = |A| = 10, with the values of five
vertex attributes following the Gaussian distribution (μ = 3, σ 2 = 5) and values

128 E. Akbas and P. Zhao

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

 0.94

20 25 30 35

D
en

si
ty

Window Size

(a)

 1.07

 1.08

 1.09

 1.1

 1.11

 1.12

20 25 30 35

En
tro

py

Window Size

(b)

Fig. 7 Clustering quality of AA-Cluster w.r.t. window size, w, in DBLP graph (k = 10). (a)
Density. (b) Entropy

0

5K

10k

15K

20K

25K

1 50 100 150 200 250

R
un

tim
e

C
os

t (
Se

co
nd

s)

Graph Size (*1K)

AA−Cluster

DeepWalk

SA−Cluster

BAGC

CPIP

(a)

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

1 2 3 4 5 6 7 8 9 10

R
un

tim
e

C
os

t (
Se

co
nd

s)

Variance

μ = 5
μ = 20

(b)

Fig. 8 Runtime cost in synthetic graphs. (a) Scalability. (b) Variance

of the other five vertex attributes following the uniform distribution. We test all
methods on these synthetic graphs, and the runtime results are reported in Fig. 8a.

We find that both AA-Cluster and DeepWalk exhibit excellent scalability for
graph clustering, and the runtime cost gap between these two methods is marginal.
Note that DeepWalk only deals with graph structure information, while AA-
Cluster takes account of both graph structure and vertex attribute information for
graph clustering. Therefore, AA-Cluster is both effective and efficient for attributed
graph clustering. We also note that SA-Cluster, BAGC, and CPIP cannot scale in
large graphs. They give memory error after some points.

We then examine how the value distributions of vertex attributes affect the
running time of AA-Cluster. We consider two settings by assigning the mean values
of vertex attributes whose values following Gaussian distributions to be 5 and 20,
respectively. Meanwhile, we vary the variances, σ 2, from 1 to 20. The runtime
results are reported in Fig. 8b. We note that the runtime cost of AA-Cluster is
not sensitive to the variances of vertex attribute values. Namely, for the graphs

Graph Clustering Based on Attribute-Aware Graph Embedding 129

with extremely distributed vertex attribute values, AA-Cluster is still capable of
supporting efficient attribute graph clustering upon them.

7 Conclusions

Graph clustering or community detection has played a fundamental role in model-
ing, structuring, and understanding the large-scale, real-world graphs and networks.
In many real-world settings, we are not only concerned with the connectivity
structure but also the vertex properties characterized by vertex attributes, for graph
clustering. More importantly, we want to study the interplay between graph structure
and attribute information in graph clustering with an objective to generating high-
quality graph clusters efficiently from real-world, attributed graphs.

In this chapter, we devised a new attributed graph clustering method that com-
bines both vertex attributes and graph structure information within a general, unified
attributed-aware graph embedding framework. We design efficient graph embedding
algorithms that embed an attributed graph as a low-dimensional latent representation
encoding both graph structure closeness and vertex attribute homogeneity. As such,
the attribute-aware cluster/community information is well-preserved during the
graph embedding. We test our attributed graph clustering method in a series of
real-world and synthetic graphs, and the experimental results demonstrate both
effectiveness and efficiency of our methods in comparison with state-of-the-art
attributed graph clustering techniques.

References

1. Akbas, E., Zhao, P.: Attributed graph clustering: an attribute-aware graph embedding approach.
In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining 2017 (ASONAM’17), pp. 305–308. ACM, New York (2017),
http://doi.acm.org/10.1145/3110025.3110092

2. Akoglu, L., Tong, H., Meeder, B., Faloutsos, C.: PICS: parameter-free identification of cohe-
sive subgroups in large attributed graphs. In: Proceedings of the Twelfth SIAM International
Conference on Data Mining, Anaheim (SDM’12), pp. 439–450. Society for Industrial and
Applied Mathematics, Philadelphia (2012)

3. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors. In:
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pp. 475–486. IEEE, Piscataway (2006)

4. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representa-
tion. Neural Comput. 15(6), 1373–1396 (2003)

5. Boden, B., Haag, R., Seidl, T.: Detecting and exploring clusters in attributed graphs: a
plugin for the gephi platform. In: Proceedings of the 22nd ACM International Conference on
Information & Knowledge Management (CIKM’13), pp. 2505–2508. ACM, New York (2013)

6. Bothorel, C., Cruz, J.D., Magnani, M., Micenkova, B.: Clustering attributed graphs: models,
measures and methods. Netw. Sci. 3, 408–444 (2015)

7. Cannataro, M., Guzzi, P.H., Veltri, P.: Protein-to-protein interactions: technologies, databases,
and algorithms. ACM Comput. Surv. 43(1), 1:1–1:36 (2010)

http://doi.acm.org/10.1145/3110025.3110092

130 E. Akbas and P. Zhao

8. Cao, S., Lu, W., Xu, Q.: Grarep: Learning graph representations with global structural
information. In: Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management (CIKM’15), pp. 891–900. ACM, New York (2015)

9. Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of dense communities
in the web. In: Proceedings of the 16th International Conference on World Wide Web
(WWW’07), pp. 461–470. ACM, New York (2007)

10. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
11. Gong, N.Z., Xu, W., Huang, L., Mittal, P., Stefanov, E., Sekar, V., Song, D.: Evolution of social-

attribute networks: measurements, modeling, and implications using Google+. In: Proceedings
of the 2012 ACM Conference on Internet Measurement Conference (IMC’12), pp. 131–144.
ACM, New York (2012)

12. He, X., Ding, C.H.Q., Zha, H., Simon, H.D.: Automatic topic identification using webpage
clustering. In: Proceedings of the 2001 IEEE International Conference on Data Mining
(ICDM’01), pp. 195–202. IEEE, Piscataway (2001)

13. Henderson, K., Eliassi-Rad, T., Papadimitriou, S., Faloutsos, C.: HCDF: a hybrid community
discovery framework. In: Proceedings of the SIAM International Conference on Data Mining
(SDM’10), pp. 754–765. Society for Industrial and Applied Mathematics, Philadelphia (2010)

14. Hu, A.L., Chan, K.C.C.: Utilizing both topological and attribute information for protein
complex identification in PPI networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(3),
780–792 (2013)

15. Kim, M., Leskovec, J.: Multiplicative attribute graph model of real-world networks. Internet
Math. 8(1–2), 113–160 (2012)

16. Lattanzi, S., Sivakumar, D.: Affiliation networks. In: Proceedings of the Forty-first Annual
ACM Symposium on Theory of Computing (STOC’09), pp. 427–434. ACM, New York (2009)

17. Li, R., Wang, C., Chang, K.C.C.: User profiling in an ego network: co-profiling attributes
and relationships. In: Proceedings of the 23rd International Conference on World Wide Web
(WWW’14), pp. 819–830. ACM, New York (2014)

18. Liu, L., Xu, L., Wangy, Z., Chen, E.: Community detection based on structure and content:
a content propagation perspective. In: 2015 IEEE International Conference on Data Mining,
pp. 271–280. IEEE, Piscataway (2015)

19. Macropol, K., Singh, A.: Scalable discovery of best clusters on large graphs. Proc. VLDB
Endow. 3(1–2), 693–702 (2010)

20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations
of words and phrases and their compositionality. In: 27th Annual Conference on Neural
Information Processing Systems (NIPS’13), pp. 3111–3119 (2013)

21. Mnih, A., Hinton, G.E.: A scalable hierarchical distributed language model. In: Proceedings of
the Twenty-Second Annual Conference on Neural Information Processing Systems (NIPS’08),
pp. 1081–1088 (2008)

22. Perozzi, B., Akoglu, L., Iglesias Sánchez, P., Müller, E.: Focused clustering and outlier
detection in large attributed graphs. In: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’14), pp. 1346–1355. ACM, New
York (2014)

23. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In:
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’14), pp. 701–710. ACM, New York (2014)

24. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.
Science 290(5500), 2323–2326 (2000)

25. Ruan, Y., Fuhry, D., Parthasarathy, S.: Efficient community detection in large networks using
content and links. In: Proceedings of the 22nd International Conference on World Wide Web
(WWW’13), pp. 1089–1098. ACM, New York (2013)

26. Schaeffer, S.E.: Survey: graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)
27. Steinhaeuser, K., Chawla, N.V.: Identifying and evaluating community structure in complex

networks. Pattern Recogn. Lett. 31(5), 413–421 (2010)

Graph Clustering Based on Attribute-Aware Graph Embedding 131

28. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information
network embedding. In: Proceedings of the 24th International Conference on World Wide Web
(WWW’15), pp. 1067–1077. International World Wide Web Conferences Steering Committee,
Geneva (2015)

29. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear
dimensionality reduction. Science 290(5500), 2319–2323 (2000)

30. Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based approach to attributed
graph clustering. In: Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data (SIGMOD’12), pp. 505–516. ACM, New York (2012)

31. Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: GBAGC: a general Bayesian framework for
attributed graph clustering. ACM Trans. Knowl. Discov. Data 9(1), 5:1–5:43 (2014)

32. Yang, T., Jin, R., Chi, Y., Zhu, S.: Combining link and content for community detection: a
discriminative approach. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’09), pp. 927–936. ACM, New York (2009)

33. Zanghi, H., Volant, S., Ambroise, C.: Clustering based on random graph model embedding
vertex features. Pattern Recogn. Lett. 31(9), 830–836 (2010)

34. Zhai, C., Velivelli, A., Yu, B.: A cross-collection mixture model for comparative text
mining. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’04), pp. 743–748. ACM, New York (2004)

35. Zhao, X., Chang, A., Sarma, A.D., Zheng, H., Zhao, B.Y.: On the embeddability of random
walk distances. Proc. VLDB Endow. 6(14), 1690–1701 (2013)

36. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. Proc.
VLDB Endow. 2(1), 718–729 (2009)

37. Zhou, Y., Cheng, H., Yu, J.X.: Clustering large attributed graphs: an efficient incremental
approach. In: Proceedings of the 2010 IEEE International Conference on Data Mining
(ICDM’10), pp. 689–698. IEEE, Piscataway (2010)

On Counting Triangles Through Edge
Sampling in Large Dynamic Graphs

Guyue Han and Harish Sethu

Abstract Traditional frameworks for dynamic graphs have relied on processing
only the stream of edges added into or deleted from an evolving graph, but not
any additional related information such as the degrees or neighbor lists of nodes
incident to the edges. In this chapter, we propose a new edge sampling framework
for big-graph analytics in dynamic graphs which enhances the traditional model by
enabling the use of additional related information. To demonstrate the advantages
of this framework, we present a new sampling algorithm, called Edge Sample and
Discard (ESD). It generates an unbiased estimate of the total number of triangles,
which can be continuously updated in response to both edge additions and deletions.
We provide a comparative analysis of the accuracy and computational complexity
of ESD under the new framework against two current state-of-the-art algorithms
operating under the traditional framework. The results of the experiments performed
on real graphs show that, with the help of the neighborhood information of the
sampled edges, the accuracy achieved by our algorithm is substantially better. We
also characterize the impact of properties of the graph on the performance of our
algorithm by testing on several Barabási–Albert graphs.

1 Introduction

Given the rising significance of social networks in our society, the analysis of their
structural properties and the principles guiding their evolution and dynamics have
attracted tremendous interest from researchers, sociologists, and marketeers [5, 10,
28]. Social networks can be modeled as graphs with nodes representing users and
edges representing the interactions between the users; the study of social networks,
therefore, usually translates into a study of extremely large graphs.

G. Han · H. Sethu (�)
Department of ECE, Drexel University, Philadelphia, PA, USA
e-mail: guyue.han@drexel.edu; sethu@drexel.edu

© Springer Nature Switzerland AG 2019
P. Karampelas et al. (eds.), From Security to Community Detection in Social
Networking Platforms, Lecture Notes in Social Networks,
https://doi.org/10.1007/978-3-030-11286-8_6

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11286-8_6&domain=pdf
mailto:guyue.han@drexel.edu
mailto:sethu@drexel.edu
https://doi.org/10.1007/978-3-030-11286-8_6

134 G. Han and H. Sethu

In the real world, social networking services (social networking sites or social
media), such as Facebook, Twitter, and WeChat, offer prominent examples of
fully dynamic graphs. A typical representation of a dynamic graph consists of
two components: a connected graph and an edge stream. The stream indicates the
addition of a new edge or the deletion of an existing edge from the graph. Social
networking service (SNS) providers need to maintain and update their datasets in a
real-time fashion. Moreover, service providers may perform various types of analyt-
ics on their graph datasets, such as distinguishing different communities, detecting
anomalies or spam, and finding the nodes with high betweenness centrality. Real-
time graph analytics has the ability to discover important information which can
help SNS providers improve existing services, develop new ones, detect anomalous
conditions, and respond rapidly to resource management concerns.

One of the key structural properties of interest in social graphs is the triangle, the
simplest of graph motifs. The number of triangles is used as one of the signatures
of social roles in online discussion groups [33]. The distribution of triangles is a
relevant property for spam detection in social networks [4]. The real-time estimation
of the number of triangles helps monitor the evolution of the community structure
of the graph. The global clustering coefficient can be easily tracked by the changes
in the number of triangles and can tell us whether the network is becoming tightly
connected, or decentralized [5, 21]. Moreover, a dramatic growth or reduction in the
number of triangles in a short time can reflect abnormal behaviors.

In this chapter, we develop a new low-cost sampling algorithm which monitors
the edge stream of an evolving graph and is able to, at any instant, provide the
current real-time estimate of the number of triangles in it. The goal is for our
algorithm to also be adaptable to the case of a static graph.

A dynamic graph, such as one representing a social network, is described by
a sequence of edge addition and deletion operations occurring over time. The
following tasks may be involved in the management of the graph:

• Maintenance of the graph datasets. When a user becomes another user’s follower
or when a user removes some infrequent contacts from his/her friend list, the
system needs to perform edge addition or deletion over the dataset. In addition,
the system needs to update the lists of neighbors of the users accordingly.

• Graph analytics. Besides the task of maintaining the graph dataset mentioned
above, some SNS providers may analyze their social networks quantitatively and
qualitatively for better understanding of the networks and improving the existing
services.

The fact that a typical dynamic graph-based system needs to maintain the graph
dataset as described in the first of the two tasks above whether or not the second
task of graph analytics is performed suggests a framework where the minimum
available information for graph analytics is all of the information obtained from
the first task. Traditional frameworks of dynamic graphs, however, have developed
algorithms based only on the sequence of edge additions and deletions, without
allowing queries to the graph dataset. In a real scenario, since graph datasets are
constantly maintained anyway, it is unnecessary to restrict graph analytics to use

On Counting Triangles Through Edge Sampling in Large Dynamic Graphs 135

Fig. 1 A framework of graph
analytics in a dynamic system

only the information from the edge stream and without use of any information
about other graph characteristics related to those edges. Our goal in this chapter
is to develop an enhanced framework and demonstrate that algorithms under the
new framework can perform substantially better in accuracy and speed compared to
those using the traditional and more restrictive edge streaming model.

1.1 A Framework for Graph Analytics

Figure 1 shows the outline of our framework for performing graph analytics in a
dynamic system. Each time a new edge operation happens, the system maintains the
graph dataset by adding or deleting the edge according to the operation and updates
the corresponding information which is determined by the service provided. This
comprises the normal functioning of a dynamic graph-based system regardless of
whether graph analytics is taken into consideration or not. Note that graph datasets
have to be stored somewhere, typically on a server, and can be queried for graph
analytics. In almost all real contexts, after all, we would not be counting the triangles
in a graph without the graph existing in storage somewhere. Our framework, by
assuming the existence of a stored graph dataset and allowing queries on it, achieves
a better approximation of the reality of graph-based applications and networks and,
as we demonstrate in this chapter, allows the design of algorithms with substantially
improved accuracy and speed.

For graph analytics, each new edge operation represents the addition or the
deletion of an edge. There are streaming edge algorithms for a variety of analytical
purposes, most of which will typically allow only a single pass over the edge stream.
Often, in real situations, certain simple queries can be made of the server asking
for additional information when processing a new edge. This service providing
additional information, via queries, is usually already available on the server since
this information is kept updated and maintained by the service providers for offering
a number of other necessary services.

In our framework for graph analytics, therefore, we assume the ability to process
an edge stream (one pass) and also the ability to query the server maintaining the

136 G. Han and H. Sethu

graph dataset for information on the neighborhood of an edge. The dotted line in the
figure frames the real-time graph analytics in a realistic scenario. In this framework,
each new edge operation is treated as an arriving edge involving either an addition
of an edge or the deletion of an edge. Edges are sampled independently with a
certain probability. If an edge is sampled, queries are sent to the server asking for
the information on the neighborhood of the two incident nodes of the sampled edge
in order to update the estimators used in graph analytics.

We use the above framework to design a new sampling algorithm to keep a
running count of the number of triangles in a dynamic graph. The estimation is
enabled by the use of neighborhood information. Since the list of neighbors of a
user is necessary information for a social network’s server to maintain and update
anyway, little extra computational/memory costs are expended for querying this
additional information.

1.2 Contributions

Based on the new framework/model of a dynamic graph system, we propose a new
edge sampling algorithm, called Edge Sample and Discard (ESD), which returns
an estimate of the total number of triangles in a large dynamic graph by sampling
only a tiny fraction of the edges in the graph. For each sampled edge, it samples the
presence of triangles at the end points of the edge to update its estimates and then
discards the edge (as opposed to holding the edge in memory in a subgraph sample
as in [1, 15, 30]). The algorithm works on fully dynamic graphs where both edge
deletions and additions are considered, and can be readily applied to static graphs
as well. A preliminary version of this work appeared in [12].

In Sect. 2, we introduce the graph model more formally and present the ESD

algorithm. We show that the total number of triangles can be estimated from the
probabilities with which we sample an edge and one of its neighbor nodes, and
whether the sampled edge and the node form a triangle.

Section 3 presents a theoretical analysis of the algorithm and proves that its
estimate is an unbiased one. We also derive a bound on the variance of our estimate
and draw implications from it. We show that our sampling algorithm for an evolving
graph can be readily modified to apply to static graphs.

Section 4 provides a comparative analysis of ESD against two edge sampling
algorithms, DOULION [30] and TRIÈST [26] which also can handle both edge
additions and deletions, and provide a real-time tracking of the number of triangles.
Note that the framework assumed by both DOULION and TRIÈST is different from
the one assumed by our algorithm. They are designed assuming the traditional
streaming edge framework and do not consider the possibility of using additional
information obtained by querying the stored graph dataset on the server. We use
several real network graphs with millions of edges to create streams of dynamic
graphs. Based on tests on these graphs, we show that, with the use of the
neighborhood information of the sampled edges which our new framework allows,

On Counting Triangles Through Edge Sampling in Large Dynamic Graphs 137

the accuracy achieved by ESD is at least one order of magnitude better than the
accuracies achieved by DOULION and TRIÈST, while the extra cost of querying for
additional information is relatively small. These costs and the associated trade-offs
are described in Sect. 4.

Section 4 also evaluates our algorithm on real dynamic graphs. The tests show
that our algorithm can generate accurate estimates of the number of triangles in
real dynamic graphs. Moreover, we present the influence of the total number of
triangles and the clustering coefficient on the accuracy of the estimate of ESD by
performing simulations on Barabási–Albert (BA) graphs. The accuracy achieved by
our algorithm is better on graphs with a larger number of triangles or a larger global
clustering coefficient.

Section 5 concludes the chapter.

1.3 Related Work

Triadic properties such as triangle counts and the global clustering coefficient
have been widely studied [7, 32]. Some early works use enumeration or matrix
multiplication to compute the exact number of triangles in the graph [8, 9, 18, 24].
Alon et al. [2] propose the theoretically fastest exact triangle counting algorithm,
which is based on fast matrix multiplication and runs in O(|E|1.41) time. But, it has
a high space complexity of O(|V |2) which renders it largely infeasible for extremely
large graphs. Besides, in many cases, the exact answer is not necessary and an
approximation is sufficient. Therefore, well-performing approximation methods,
which achieve fast runtime and small memory footprint, have attracted tremendous
interest.

Eigenvalue-based methods are one class of algorithms used to approximate the
global and local number of triangles in the graph [3, 29]. They use the interesting
property that the total number of triangles in an undirected graph is 1/6 of the sum of
the cubes of the eigenvalues of its adjacency matrix. But, the computation of matrix
multiplication is still very expensive and they only work on static graphs. Hardiman
et al. [13] present a method based on a random walk which is capable of estimating
both the global and the average clustering coefficient by testing the connectivity of
each node in the random walk after the mixing time is reached.

Most of the studies on triangle counting use the graph stream model, where a
graph is treated as a stream of edges. Two algorithms for approximating the local
number of triangles in both directed and undirected graph are presented in [4]. These
two algorithms both require multiple passes over the edge stream and only work on
static graphs.

Another class of algorithms uses an edge sparsification approach based on
a certain selecting probability to decide whether an edge should be sampled
[1, 20, 30]. In [16], a hybrid approach is used which combines edge sparsification
with degree-based vertex partitioning. In all of these algorithms, the sample size
is not fixed. Algorithms based on reservoir sampling, which use a fixed amount

138 G. Han and H. Sethu

of space for estimating the triadic properties, are described in [15, 25]. However,
except for the method presented in [30], none of these algorithms can handle edge
deletions in an evolving graph; they work on static graphs and on dynamic graphs
with edge additions but not edge deletions.

One approach which works on fully dynamic graphs where both edge additions
and deletions are allowed is presented in [17]. It combines the sampling of vertex
triples algorithm in [6] and monochromatic sampling method in [22]. The algorithm
first performs monochromatic sampling on the original large graph to obtain a
sampled graph and then estimates the global clustering coefficient by checking the
closure of wedges selected in the sampled graph. The estimate of the total number of
wedges in the original graph is obtained by applying the second moment estimation
method in [27]. This algorithm has a large memory requirement and cannot provide
a real-time update of the estimates. De Stefani et al. [26] propose a method based
on reservoir sampling called TRIÈST, which also works on fully dynamic graphs.
It adopts random pairing [11], an extension of the reservoir sampling, to solve the
problem of accounting for edge deletions. This algorithm uses a fixed sample size
and can keep updating the estimates during the processing of the graph. Since the
publication of our preliminary work in [12], a similar approach has been used in
a recently published report [31]. However, they limit their focus on estimating the
number of triangles on static graphs, and do not consider the dynamic case.

As presented in [26], TRIÈST is significantly better than previously known
methods in terms of accuracy, space requirement, and the applicability to fully
dynamic graphs. However, the framework assumed by TRIÈST does not permit
queries to the graph dataset even though the graph dataset in most real applications
has to be stored somewhere, such as on a server accessible by API queries. The
Edge Sample and Discard (ESD), proposed in this chapter, assumes a different but
a more realistic framework allowing access to the graph dataset information which
helps substantially improve both the computational/memory costs and the accuracy.

2 The Algorithm

The Edge Sample and Discard (ESD) algorithm is designed assuming the framework
described in Sect. 1.1. It works on dynamic graphs where both edge deletions and
additions are considered. Additional information, the neighboring nodes of the
sampled edges, is queried. It is also generalizable to the case of directed graphs,
but for clarity of presentation in the paper, we will use undirected graphs in this
chapter.

On Counting Triangles Through Edge Sampling in Large Dynamic Graphs 139

2.1 Preliminaries and Notation

Let Gt = (Vt , Et) represent an undirected simple graph, where t is the time instant
and t ≥ 0. Vt and Et are the node set and the edge set at time t , respectively. At the
beginning, we have V0 = E0 = ∅.

Consider a stream S of ((u, v), β), where (u, v) denotes the edge which is added
to or deleted from the graph, and β ∈ {+1,−1}. β = +1 indicates that edge (u, v)

is added to the graph, and β = −1 indicates that edge (u, v) is deleted from the
graph. For any t ≥ 0, if a new pair ((u, v), β) arrives at time t , we update Gt−1 =
(Vt−1, Et−1) to Gt = (Vt , Et) with the corresponding edge addition or deletion.

For simplicity, we drop t from the notation and denote by G = (V ,E) the most
recent update of the graph. Let Γ (v) denote the set of neighbors of node v ∈ V , and
let d(v) = |Γ (v)| denote the node degree of v. A wedge is a path of length two, and
a triangle is a closed wedge (a circular path of length three). Let T denote the set of
triangles in G and let NT = |T |.

The goal of this work is to monitor the edge stream of a graph and estimate
the value of NT by examining only a small fraction of the edges and their
neighborhoods.

2.2 Edge Sample and Discard

Algorithm 1 presents the pseudo-code of Edge Sample and Discard (ESD) to
estimate the total number of triangles given a stream of ((u, v), β). In our algorithm,
we use a global variable Test to record the real-time estimate of the total number
of triangles in the current graph. We consider both edge addition and deletion
operations; however, as described in Fig. 1 and as in real-life scenarios, the SNS
server assumes responsibility for the maintenance and updation of the graph
datasets, while the information related to the dataset can be queried and obtained
by ESD.

Lines 1–2 in the pseudo-code perform necessary initializations. Lines 3–8 show
that for each pair ((u, v), β) in the stream, we check the value of β and decide
whether edge addition or deletion should be performed. Lines 9–13 perform edge
sampling and estimate. We use the sampling fraction α as the selecting probability.
Each arriving edge has a probability α of being sampled. If an edge is sampled, the
UpdateCount routine is called. Note that UpdateCount works on the graph where
the addition or deletion has just been made. Suppose, at time t , an edge e = (u, v)

is sampled and UpdateCount(u, v, β) is called. Then, we examine the size of the
neighborhood of u. For β = −1, when (u, v) is deleted from Gt−1, we check
whether node u has neighbors in Gt . For β = +1, where (u, v) is added to Gt−1, we
check whether node u has more than one neighbor in Gt . If one of the requirements
is fulfilled, we check the value of β and perform the corresponding neighborhood
selection. If β = +1, we pick one node from the neighbor set of u other than v.
For example, we select node a from Γ (u) \ {v}, and thus the probability of a being

140 G. Han and H. Sethu

Algorithm 1 The ESD algorithm
Require: A graph stream S and sampling fraction α

1: Test ← 0
2: Create an empty graph G

3: for each pair ((u, v), β) in S do
4: if β = +1 then
5: Add new edge (u, v) to graph G

6: else
7: Delete old edge (u, v) from graph G

8: end if
9: r ← Random number ∈ [0, 1]

10: if r ≤ α then
11: UpdateCount(u, v, β)

12: UpdateCount(v, u, β)

13: end if
14: end for
15: return Test

Function used in the ESD algorithm

UpdateCount(u, v, β):
1: if |Γ (u)| >

1+β
2 then

2: if β = +1 then
3: Pick random node a uniformly from Γ (u) \ {v}
4: if a ∈ Γ (v) then
5: Test = Test + 1

2
d(u)−1

α
6: end if
7: else
8: Pick random node a uniformly from Γ (u)

9: if a ∈ Γ (v) then
10: Test = Test − 1

2
d(u)
α

11: end if
12: end if
13: end if

picked uniformly at random is 1
d(u)−1 . Since the probability of sampling edge (u, v)

is α, the total probability P of selecting (u, v) and then a as a neighbor of u is

P = α

d(u) − 1
. (1)

Given a wedge a-u-v, we check whether the closing edge (a, v) exists by
examining Γ (v). If a ∈ Γ (v), we update the triangle estimator Test. The estimate is
updated by applying Eq. (5) (in Sect. 3). On the other hand, if β = −1, since edge
(u, v) is already deleted from G and v is no longer a neighbor of u, we pick one
node from the neighbor set of u. Thus, the total probability P of selecting (u, v) and
then one node from the neighborhood of u is

P = α

d(u)
. (2)

On Counting Triangles Through Edge Sampling in Large Dynamic Graphs 141

After selecting a node from the neighbor set of u, we check whether the selected
node is also a neighbor of v. If it is, which means that the subgraph induced by the
two incident nodes of the deleted edge (u, v) and the selected node together is a
triangle in Gt−1, we update the triangle estimator Test.

Given a dynamic graph, ESD avoids using extra space for storing the sample
graph by discarding the processed edge and nodes after updating the estimate. The
total number of triangles is estimated from the probabilities with which an edge and
one of its neighbor nodes are sampled, and whether the sampled edge and the node
form a triangle. ESD can provide a real-time estimate of the triangle counts in a
dynamic graph as new edges come in or old edges are deleted.

3 Quality of Estimation

In this section, we present the mathematical reasoning behind our triangle estimator
and prove that our algorithm provides an unbiased estimate of the total number of
triangles with a theoretically tight bound on the variance. We first discuss the case
of dynamic graphs allowing only the addition of edges and with edge deletions not
considered; we next show that estimating the number of triangles in this additions-
only case is not different from that in the case of a fully dynamic graph with both
additions and deletions.

Let an ordered tuple (u, v, z) denote the sampled edge (u, v) and the node z

selected by UpdateCount(u, v, β). The first element in the tuple, u, is one of the
incident nodes of the edge and the second element is the other incident node. The
third element of the tuple, z, is the node picked from the neighborhood of the first
element, u. For example, given a sampled pair ((a, b),+1) from the edge stream,
we select node c from Γ (a) \ {b} which gives us the ordered tuple (a, b, c).

Let’s consider the partially dynamic case with edge additions only. Suppose we
have a stream S of pairs ((u, v), β) where β = +1 for each pair in S . If a pair
((u, v),+1) arrives at time t , the graph Gt−1 is updated to Gt as follows:

Gt = (Vt−1 ∪ {u, v}, Et−1 ∪ {(u, v)}).

Let Tt denote the set of triangles in Gt , where T0 = ∅. Suppose, at time t + 1,
we get (et+1,+1) from the stream, where et+1 = (u, v) is an edge arriving at time
t + 1 , so we have an updated graph Gt+1. Let H(et ,Gt) denote the set of triangles
composed of edge et in graph Gt . We can obtain that Tt+1 = Tt ∪ H(et+1,Gt+1).
Since Tt ∩ H(et+1,Gt+1) = ∅,

|Tt+1| = |Tt | + |H(et+1,Gt+1)|. (3)

According to Eq. (3), we can obtain

|Tt | =
t∑

i=0

|H(ei,Gi)|. (4)

142 G. Han and H. Sethu

Let Qt denote the set of all ordered tuples (u, v, z) that have a nonzero
probability to be observed when processing a new arriving pair (et , β) from stream
S . Let Tt ⊆ Qt be the set of all ordered tuples in Qt of which the three elements
form a triangle in Gt . Note that (u, v, z) and (v, u, z) are two different tuples but
the three elements in each of them induce the same triangle in the graph.

Suppose (et , β) is sampled, and then one node is picked from the neighborhood
of each incident node of et . So, the same triangle may be observed twice during the
sampling period. Thus, we can obtain

|Tt | = 2|H(et ,Gt)|.

Consider T ′
t ⊆ Tt as the set of ordered tuples obtained by sampling (et ,+1),

where the three elements of each ordered tuple in T ′
t form a triangle in Gt . Let P(r)

be the probability that an ordered tuple r = (u, v, z) ∈ T ′
t is sampled. By adopting

the Horvitz–Thompson construction[14], we come up with the linear estimator:

Ht
est = ω

∑

r∈T ′
t

1

P(r)
. (5)

where ω is a weight parameter, and ω = |H(et ,Gt)|/|Tt | = 1/2.
Let Δk = (u, v, z) be an element in Tt , where k ∈ [1, |Tt |]. Remember that the

subgraph induced by the three elements of Δk in Gt is a triangle. Let δk denote the
existence of Δk in the set T ′

t . We have

δk =
{

1 Δk ∈ T ′
t

0 Δk /∈ T ′
t

Taking the expectation of Ht
est,

E
[
Ht

est

] = ω

|Tt |∑

k=1

E

[
δk · 1

P(Δk)

]

= ω

|Tt |∑

k=1

P(Δk) · 1

P(Δk)

= |H(et ,Gt)|

The expected number of triangles composed of edge et obtained by our estimator is
equal to the actual number of triangles composed of edge et in Gt . Applying Eq. (4)
and Eq. (5), we get

|Tt |est = ω

t∑

i=0

∑

r∈T ′
t

1

P(r)

On Counting Triangles Through Edge Sampling in Large Dynamic Graphs 143

According to the linearity of the expectation, E[|Tt |est] = |Tt |. So, we have an
unbiased estimator to approximate the total number of triangles in Gt . The variance
of Ht

est is

Var[Ht
est] = E[(H t

est − E[Ht
est])2]

= E
[
Ht

est
2
]

− |H(et ,Gt)|2

Expanding E
[
Ht

est
2
]
, we get

E
[
Ht

est
2
]

= ω2 E

⎡

⎣
|Tt |∑

i=1

(
δi

P (Δi)

)2

+
|Tt |∑

i �=j

δiδj

P (Δi)P (Δj)

⎤

⎦

Suppose the sampling fraction is α, and the maximum degree in Gt (the graph upon
the most recent update) is dmax, then we have P(Δi) ≥ α

dmax−1 for any i ∈ [1, |Tt |].
Letting m = α

dmax−1 , we can obtain

E

⎡

⎣
|Tt |∑

i=1

(
δi

P (Δi)

)2
⎤

⎦ ≤ |Tt | 1

m

According to the definition of Tt , each ordered tuple in Tt represents the triangle
which is part of edge et in Gt . So, the two triangles represented by any two ordered
tuples Δi and Δj in set Tt , where i �= j , must have edge et as a shared edge. Thus,

E

⎡

⎣
|Tt |∑

i �=j

δiδj

P (Δi)P (Δj)

⎤

⎦ = 2

α

(|Tt |
2

)2

So, the variance of our estimator is bounded as follows:

Var[Ht
est] ≤ |Tt |(dmax − 1)

4α
+

(
1

2α
− 1

) (|Tt |
2

)2

Since Var[|Tt |est] = ∑t
i=0 Var[Ht

est], we have

Var[|Tt |est] ≤ |Tt |(dmax − 1)

2α
+

t∑

i=0

|H(et ,Gt)|2
(

1

2α
− 1

)

For any t > 0, when the degree of the incident nodes of the sampled edge in
Gt , where t is the time step that the edge is sampled, are all equal, the equality in
the above bound holds. Therefore, the bound derived above on the variance of our
estimate, Var[|Tt |est], is a strict upper bound.

144 G. Han and H. Sethu

Further, applying Chebyshev’s inequality:

P(||Tt |est − |Tt || � ε|Tt |) � Var[|Tt |est]
ε2|Tt |2 (6)

The above shows that the relative error of the estimate is influenced by the sampling
fraction and the properties of the graph. The error is increased as the value of the
sampling fraction is decreased and the estimate achieves a better accuracy on a
graph with more triangles. Moreover, the local clustering coefficient also affects the
estimate; the algorithm can achieve a better accuracy on a graph where most of the
nodes have a higher clustering coefficient. In general, ESD achieves a better estimate
on graphs with a higher global clustering coefficient.

The proof for the fully dynamic case with edge deletions is similar to the case
with additions described above. Suppose we keep performing edge addition up to
time t . Thus, at time t , we have a graph Gt = (Vt , Et) and Tt , the set of triangles
in Gt . Suppose, at time t + 1, we get (et+1,−1) from the stream, indicating an
edge deletion, so we have an updated graph Gt+1. We can easily obtain that Tt+1 =
Tt \ H(et+1,Gt). In other words, we have

|Tt+1| = |Tt | − |H(et+1,Gt)|.

As proved before, we have an unbiased estimator Ht
est for estimating |H(et ,Gt)|,

so in the edge deletion case, we use the same estimator to estimate the decreased
number of triangles caused by deleting et+1.

3.1 Static Graphs

Although ESD is designed for implementation on dynamic graphs, it can be easily
extended to work on static graphs. In the dynamic case, a triangle can be detected
only when the new coming edge is the closing edge of a wedge already in the graph;
however, in static graphs, each of the three edges of a triangle appears in the edge
stream, so one triangle can be detected every time the new coming edge is part of
this triangle. Thus, for static graphs, the value of the weight parameter ω of the
estimator is one-third of the one in the dynamic case.

Let S ′ be the set of ordered tuples which represent the triangles observed in the
sampling period by an edge stream which delivers random edges from the static
graph. Let P(s) be the probability that a tuple s ∈ S ′ is sampled. By applying the
Horvitz–Thompson construction, we have

|T |est = ω
∑

s∈S ′

1

P(s)

where the weight parameter is ω = 1/6.

On Counting Triangles Through Edge Sampling in Large Dynamic Graphs 145

4 Performance Analysis

In this section, we perform a comparative analysis of the performance of ESD against
TRIÈST [26] and DOULION[30]. Both TRIÈST and DOULION, like ESD, can provide
a real-time estimate of the total number of triangles by performing edge sampling on
an edge stream of a fully dynamic graph. However, TRIÈST and DOULION assume
a traditional streaming graph framework, where a graph can be processed only via
a stream of edges. As our comparative analysis will show, the use of additional
information by ESD already available and kept updated for graph maintenance as
per our framework substantially improves the accuracy.

We use real, simple, and undirected graphs from the Network Repository site
[23] to create streams of addition-only graphs and fully dynamic graphs. Table 1
summarizes some vital properties of these graphs. We also evaluate our algorithm
on two real dynamic graphs from [19] and [34].

All of the tests were run on an iMac with 16 GB 1600 MHz DDR3 memory and
2.7 GHz Intel Core i5 processor. Our primary goal in this project was to democratize
Big Data analysis and make it feasible even on ordinary desktops. It is for this reason
that we deliberately choose ordinary computers and we want to show the capability
as well as the limits of sampling algorithms. As a result, the datasets considered in
this chapter are not very large (e.g., billions of nodes), but the point we are making
is not that we can use our algorithms on large datasets but that our sampling strategy
is a highly efficient one that substantially increases what one can accomplish with
an ordinary computer.

4.1 Complexity

Fast runtime and small space requirement are two vital goals of a good sampling
algorithm.

Table 1 Properties of the graphs used in the experiments

Graph |E| |V | NT η

socfb-UCLA 7.47e+05 2.05e+04 5.11e+06 0.1431

socfb-Wisconsin 8.35e+05 2.38e+04 4.86e+06 0.1201

com-Amazon 9.26e+05 5.49e+05 6.67e+05 0.2052

com-DBLP 1.05e+06 4.26e+05 2.22e+06 0.3064

web-Stanford 1.99e+06 2.82e+05 1.13e+07 0.0086

web-Google 4.32e+06 8.76e+05 1.34e+07 0.0552

|E| is the number of edges, |V | is the number of nodes, NT is the number of triangles, and η is the
global clustering coefficient

146 G. Han and H. Sethu

4.1.1 Runtime

Consider the partially dynamic case where edge additions happen |E| times and
there are no edge deletions. Suppose the neighbors of each node in a graph are
stored in a sorted list. This allows a determination of whether a node is a neighbor
of another specific node in O(log d) steps where d is the degree of that specific
node.

In TRIÈST, an edge reservoir is maintained and updated. Suppose the size of
the edge reservoir is M . At time t (t > M), the probability of updating the edge
reservoir is M/t , so the expected number of times that the edge reservoir is updated
is M + ∑|E|

t=M+1
M
t

≈ M + M ln |E|. Each time the edge reservoir is updated,
TRIÈST checks the number of triangles composed of the newly sampled edge in
the sample graph. Suppose ds is the maximum degree in the sample graph, the
computational complexity of TRIÈST is O(Mds log |E| log ds).

As presented in [30], the computational complexity of DOULION is O(p|E| +
(p|E|) 2ω

ω+1), where ω is 2.371 and p is the probability of sampling an edge.
In the case of ESD, suppose p|E| is the number of edges which are sampled,

and each query of the neighbor nodes takes O(1). Then, for each sampled edge, we
take a maximum of O(log dG) steps to sample a neighboring node and determine if
the node and the sampled edge form a triangle. The complexity of ESD, therefore,
is O(p|E| log dG). Besides, the server needs to take O(p|E|) to respond to the
queries.

Table 2 summarizes the complexity of the three algorithms for the case with no
edge deletions. ESD is faster than DOULION when log dG < (p|E|)0.41 (the number
of edges sampled is not too small). In fact, on all real graphs today and reasonable
sample sizes, ESD enjoys a lower computational complexity than DOULION. For
ESD and TRIÈST, since log |E| > log dG for large graphs, ESD is faster than TRIÈST

when sampling the same number of edges (p|E| = M).
Moreover, for each edge deletion, both DOULION and TRIÈST have to check

whether the deleted edge is in the sample set or not, and update the estimates. While
in ESD, it avoids looking up the sample set and processes edge deletions with a
sampling probability. So, our algorithm is substantially faster than DOULION and
TRIÈST, especially when facing a large amount of edge deletions.

Table 2 The complexity of the three algorithms

Server-side time Server-side space
Algorithm Time complexity complexity Space complexity complexity

ESD O(p|E| log dG) O(p|E|) O(dG) O(dG)

DOULIONa O(p|E| + (p|E|) 2ω
ω+1) N/A O(Vs

2) N/A

TRIÈST O(Mds log |E| log ds) N/A O(M) N/A
aThe algorithm given in [30] cannot provide a real-time estimate; it only updates the estimate once
after processing the entire graph

On Counting Triangles Through Edge Sampling in Large Dynamic Graphs 147

Note that ESD uses a different framework from DOULION and TRIÈST, neither of
which involve querying the server for additional information. Given the framework
used by ESD, it involves an additional server-side cost in responding to the
queries. As shown in Table 2, ESD achieves a substantially better trade-off saving
computational and memory costs with a small amount of extra effort on the part of
the server.

4.1.2 Space

At first sight, it may appear as though the framework used in this chapter to develop
the ESD algorithm requires the storage of the entire graph, while DOULION and
TRIÈST only have to store the sampled graph. However, this mischaracterizes the
actual storage needs under these frameworks. In real contexts, even streaming graph
data for a fully dynamic graph are ultimately generated by a system/server which
maintains and keeps updated a graph dataset. After all, a well-maintained graph
dataset is essential for the normal functioning of most applications relying on the
graph. Before, after, and in the midst of any graph analytics, in most real contexts,
the graph datasets are still kept stored somewhere. So even for the traditional
streaming graph model (used by TRIÈST and DOULION), the existence and the
storage needs of the complete graph dataset cannot and should not be ignored. It
is unrealistic to assume that, after performing a streaming graph algorithm, one
would only store the sampled graph and not store anywhere the large dynamic graph
observed so far. Therefore, the cost of storing the dynamic graph is a necessity for
all of the three algorithms and their respective frameworks.

For the graph analytics part, our algorithm avoids the requirement of extra
memory to store the sampled edges by performing independent collections of edges
and discarding edges after updating the estimators. The list of the neighbor nodes of
the sampled edge are required for estimating which leads to a memory requirement
O(dG) where dG is the maximum degree in the original graph. As described in
Sect. 1.1, the graph datasets are maintained regardless of whether the graph analytics
is applied or not. Thus, for the server-side space complexity, we do not include the
cost for maintaining the graph datasets, and only count the extra space complexity
required by our algorithm.

DOULION uses a certain probability p to sample edges in the stream, and the
samples are maintained in the memory during the entire process. So, the amount
of memory used is not fixed and partially depends on the algorithm used to
calculate the exact number of triangles in the sampled graph. In [30], the fast
matrix multiplication is used to count triangles in the sampled graph, so the space
complexity is O(Vs

2), where Vs is the number of nodes in the sampled graph.
TRIÈST is a reservoir sampling-based algorithm which uses a fixed amount of
memory to store the sampled edges.

148 G. Han and H. Sethu

4.2 Partially Dynamic Case

We show the comparison of the performances of ESD with TRIÈST and DOULION

on dynamic graphs where only edge additions are considered. The edge stream is
generated by permuting the edges uniformly at random.

We consider the relative error in estimating the triangle number as a measure of
the accuracy. The relative error is measured as:

Relative error = Average estimate − Actual value

Actual value
,

where the average estimate is the mean of the estimated value over 100 independent
runs.

Table 3 shows relative errors in estimating the total number of triangles for each
of the three algorithms. We sample 1% of the edges for each graph. As shown in
the table, ESD achieves better accuracy than the other algorithms on all the graphs.
On most of the graphs, the relative errors obtained by ESD are at least one order of
magnitude smaller than the errors obtained by DOULION and TRIÈST.

To further compare the accuracy of the three algorithms, we use the normalized
root mean square error:

NRMSE =
√

E[(estimate − Actual value)2]
Actual value

,

Figure 2 depicts the average NRMSEs based on 100 independent runs for each
graph as the sample sizes are increased. We can see from the figure that ESD has
the smallest NRMSEs in all cases. Especially when the sample size is small, the
NRMSEs of ESD are almost one order of magnitude smaller than the NRMSEs
of DOULION and TRIÈST. On most of the graphs, our algorithm achieves similar
NRMSEs to the other two algorithms with one-ninth of the sample size used by
these two algorithms. In other words, to achieve equivalent accuracy, ESD requires
fewer samples and thus reduces the computational cost.

Table 3 The relative errors
in the estimates of the total
number of triangles

Triangles NT

Relative error (%)

Graph name Sample size ESD DOULION TRIÈST

socfb-UCLA 7,476 0.0958 1.6274 3.5433

socfb-Wisconsin 8,359 0.5380 4.2736 2.6817

com-Amazon 9,258 0.2329 6.4262 3.4856

com-DBLP 10,498 0.4301 1.5458 3.4481

web-Stanford 19,926 0.9796 3.1822 5.6751

web-Google 43,220 0.0336 2.2997 3.2821

Sample size is the number of edges sampled

On Counting Triangles Through Edge Sampling in Large Dynamic Graphs 149

Fig. 2 Comparison of NRMSEs of the estimates for three algorithms over 100 independent runs.
(a) socfb-UCLA, (b) socfb-Wisconsin, (c) com-Amazon, (d) com-DBLP, (e) web-Stanford, (f)
web-Google

4.3 Fully Dynamic Graphs

In the experiments for the fully dynamic case, we use the model presented in [26]
to simulate the deletions or additions of nodes or edges.

We first tested the performances of the three algorithms on dynamic graphs where
both edge additions and deletions are considered. For each test on the graph, we first

150 G. Han and H. Sethu

Fig. 3 Comparison of the estimated values of total number of triangles in dynamic case. (a) socfb-
UCLA, (b) socfb-Wisconsin87, (c) com-DBLP

generate a stream of edges by randomly permuting the edges. Initially, an empty
graph G is created. The arrival of each edge in the stream is treated as an edge
addition, and each new edge is added into G. A probability pe = 0.0001 is used
to decide whether a deletion event should be performed after each edge addition is
made. If a deletion event happens, every edge in G has a probability pd = 0.01 of
being deleted.

Figure 3 shows the comparison of the estimates of the triangle number for three
algorithms. The red line indicates the actual number of triangles obtained by the
exact triangle computing algorithm. For all graphs, the final sample sizes of both
DOULION and ESD are approximately equal to 10,000, while the sample size of
TRIÈST is fixed at 10,000.

As shown in the figure, ESD has the best performance among the three in tracking
the changes in the number of triangles, even at small sample sizes. In the case
of DOULION, however, the edge deletion affects the accuracy of its estimate. If
many deleted edges are edges held in the sample set, the sample set shrinks quickly,
significantly reducing the accuracy of estimates made by DOULION. For example, in
the com-DBLP graph, the estimate obtained by DOULION is sometimes more than
twice as large as the actual value.

On Counting Triangles Through Edge Sampling in Large Dynamic Graphs 151

TRIÈST uses reservoir sampling with a fixed size of the sample set. If the deleted
edge is an edge in the sample set, it would be removed from the sample set, and
the edge deletion in the sample set would be compensated by future edge insertion.
So, TRIÈST can maintain a sample set with fixed number of edges during the entire
sampling period. In other words, the number of edges sampled by TRIÈST is always
larger than the number of edges sampled by ESD and DOULION in the simulations.
The figure shows that ESD achieves a better performance than TRIÈST in terms of
the accuracy even though TRIÈST samples more edges than ESD.

Besides edge deletion, in the real world, node deletion also occurs. Deletion of
a single node can be modeled as a sequence of deletions of edges adjacent to that
node. We also tested the performances of the three algorithms on dynamic graphs
with node deletions. For each test on the graph, we use a probability pe = 0.0001
to decide whether a deletion event should be performed after the occurrence of each
edge addition. If a deletion event happens, every node in the current graph has a
probability pd = 0.001 of being deleted.

Figure 4 plots the comparison of the estimates of the number of triangles for the
three algorithms. For all graphs, the sampling probability is set to 0.02 for DOULION

and is set to 0.01 for ESD, while the sample size of TRIÈST is fixed at 10,000.

Fig. 4 Comparison of the estimated values of total number of triangles in dynamic case. (a) socfb-
UCLA, (b) socfb-Wisconsin87, (c) com-DBLP

152 G. Han and H. Sethu

As plotted in the figure, ESD achieves the best performance among the three in
estimating the number of triangles in dynamic graphs with node deletions. The red
line which indicates the actual number of triangles is extremely close to the blue line
which plots the estimates obtained by ESD. The closeness between the red line and
the blue line indicates that our algorithm is capable of providing accurate estimates
of number of triangles in a real-time fashion. Moreover, for all graphs, ESD has the
smallest final sample size. In other words, our algorithm samples fewer edges, but
achieves higher accuracy than the other two algorithms in tracking the number of
triangles.

Besides the abovementioned model, we also tested the performance of our algo-
rithm on two real dynamic graphs. Oregon-2 dataset [19] contains 9 autonomous
system (AS) graphs which represent AS peering information inferred from Oregon
route views. It was collected from March 31, 2001 to May 26, 2001. Yahoo!
Message dataset [34] which has 28 graphs was generated by a small subset of
Yahoo! Messenger users from different zip codes for 28 days starting from April
1, 2008. Graphs in each of the datasets are timestamped. Each of the graphs is
processed sequentially according to its time order. Edges which are not present in
the previous graph, but are in the current graph, are treated as edge additions, and
edges which are present in the previous graph, but are not in the current graph, are
treated as edge deletions. Thus, both of the two datasets exhibit the addition and
deletion of the edges over time.

Figure 5 shows the estimation of the total number of triangles on real dynamic
graphs when the sampling fraction is α = 0.01. As shown in the figure, ESD has a
good performance on real graphs in terms of the accuracy and the variance. Even on
the Yahoo! Message graph, where the number of triangles changes frequently and
dramatically, our algorithm is still capable of tracking variation on the number of
triangles accurately.

4.4 Relationship to Graph Properties

We show the influence of the properties of the graph on the performance of ESD

by testing on several Barabási–Albert (BA) graphs. For ease in illustrating this
relationship, we only consider edge additions in this set of experiments. We ran
ESD on BA graphs with the same number of nodes, but with different numbers of
edges and different powers of the preferential attachment. For each BA graph, we
start with an Erdös–Rénzi graph with 100 nodes. Then, in each time step, one node
is added to the graph, and the new node initiates dozens of edges to old nodes. The
probability that an old node is selected is given by:

P(i) ∼ di
γ

On Counting Triangles Through Edge Sampling in Large Dynamic Graphs 153

Fig. 5 Estimation of the total number of triangles in dynamic case. (a) Oregon-2, (b) Yahoo!
Messenger

Table 4 Properties of the
Barabási–Albert (BA) graphs
used in the experiments

Graph γ NT η |E| |V |
BA-1 1.5 281,296 0.00255 200,500 20,000

BA-2 1.5 1,046,132 0.00381 399,500 20,000

BA-3 1.5 6,874,145 0.01195 996,500 20,000

BA-4 1.0 3,526,361 0.02615 1,474,100 20,000

BA-5 1.5 3,473,097 0.00818 757,700 20,000

BA-6 2.0 3,464,420 0.00233 598,500 20,000

γ is the power of the preferential attachment, NT is the
number of triangles, and η is the global clustering coefficient

where di is the degree of node i in the current time step and γ is the power of the
preferential attachment. Table 4 lists some basic properties of the BA graphs used
in these simulation experiments.

Figure 6 shows the ratio of the average estimated total number of triangles to
the actual value for each BA graph with increasing number of edges sampled.
The error bars represent the 95% confidence intervals. The red line indicates 1,
when the estimated and the actual values are equal. For all of the graphs, the same

154 G. Han and H. Sethu

Fig. 6 Blue circles represent the ratio of the average estimated values of the total number of
triangles to the actual value over 100 independent runs. Red line indicates 1. The blue error bars
indicate 95% confidence intervals. (a) BA-1 (γ = 1.5, NT = 281, 296), (b) BA-2 (γ = 1.5,
NT = 1, 046, 132, (c) BA-3 (γ = 1.5, NT = 6, 874, 145), (d) BA-4 (γ = 1.0, NT = 3, 526, 361),
(e) BA-5 (γ = 1.5, NT = 3, 473, 097), (f) BA-6 (γ = 2.0, NT = 3, 464, 420)

sampling fraction is used. By comparing Fig. 6a, b, and c where all of these figures
are obtained by testing on BA graphs with the same power of the preferential
attachment, we can see that the confidence intervals are larger in the BA graphs with
a smaller number of triangles. In Fig. 6d, e, and f, the total number of triangles in
each of the tested graphs is approximately equal but the values of γ and the global

On Counting Triangles Through Edge Sampling in Large Dynamic Graphs 155

clustering coefficient are different. We can see that the estimate on graphs with a
higher global clustering coefficient achieves a smaller confidence interval.

These results confirm the theoretical analysis of the relative error of the estimate
presented in Sect. 3. Besides the sampling fraction, the relative error of the estimate
is influenced by certain properties of the graph. Our algorithm achieves better
accuracy on graphs with more triangles and a higher global clustering coefficient.

5 Conclusion

In this chapter, we propose a new framework for analyzing graphs in a dynamic
system and present an edge sampling algorithm, called Edge Sample and Discard
(ESD), which estimates the total number of triangles in a fully dynamic graph
where both edge additions and deletions are possible. With a tiny modification
of the weight parameter, ESD can also be applied to static graphs. Our algorithm
achieves a significant improvement in accuracy by allowing the use of neighborhood
information of the sampled edges through sending queries to the graph dataset. As
illustrated in our performance analysis, ESD achieves much better accuracy, smaller
variance, and faster speed than the previously known state-of-the-art algorithms
under a slightly relaxed but practically relevant restrictions. In particular, it offers
a methodology for the design of new algorithms in the future to keep track of the
changes in the number of motifs of a certain type in a fully dynamic graph.

Acknowledgements This work was partially supported by the National Science Foundation
Award #1250786.

References

1. Ahmed, N.K., Duffield, N., Neville, J., Kompella, R.: Graph sample and hold: a framework for
big-graph analytics. In: ACM KDD, pp. 1446–1455. ACM, NY (2014)

2. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17(3),
209–223 (1997)

3. Avron, H.: Counting triangles in large graphs using randomized matrix trace estimation. In:
Workshop on Large-Scale Data Mining: Theory and Applications, vol. 10, pp. 10–9 (2010)

4. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient algorithms for large-scale local
triangle counting. ACM Trans. Knowl. Discov. Data 4(3), 13 (2010)

5. Berry, J.W., Hendrickson, B., LaViolette, R.A., Phillips, C.A.: Tolerating the community
detection resolution limit with edge weighting. Phys. Rev. E 83(5), 056119 (2011)

6. Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Counting
triangles in data streams. In: ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pp. 253–262. ACM, New York (2006)

7. Chakrabarti, D., Faloutsos, C.: Graph mining: laws, generators, and algorithms. ACM Comput.
Surv. 38(1), 2 (2006)

8. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1),
210–223 (1985)

156 G. Han and H. Sethu

9. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: Proceed-
ings of the 19th Annual ACM Symposium on Theory of Computing, pp. 1–6. ACM, New York
(1987)

10. Foucault Welles, B., Van Devender, A., Contractor, N.: Is a friend a friend?: investigating the
structure of friendship networks in virtual worlds. In: CHI’10 Extended Abstracts on Human
Factors in Computing Systems, pp. 4027–4032. ACM, New York (2010)

11. Gemulla, R., Lehner, W., Haas, P.J.: Maintaining bounded-size sample synopses of evolving
datasets. VLDB J. 17(2), 173–201 (2008)

12. Han, G., Sethu, H.: Edge sample and discard: a new algorithm for counting triangles in large
dynamic graphs. In: IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, pp. 44–49. ACM, New York (2017)

13. Hardiman, S.J., Katzir, L.: Estimating clustering coefficients and size of social networks via
random walk. In: WWW, pp. 539–550. ACM, New York (2013)

14. Horvitz, D.G., Thompson, D.J.: A generalization of sampling without replacement from a finite
universe. J. Am. Stat. Assoc. 47(260), 663–685 (1952)

15. Jha, M., Seshadhri, C., Pinar, A.: A space-efficient streaming algorithm for estimating
transitivity and triangle counts using the birthday paradox. ACM Trans. Knowl. Discov. Data
9(3), 15 (2015)

16. Kolountzakis, M.N., Miller, G.L., Peng, R., Tsourakakis, C.E.: Efficient triangle counting in
large graphs via degree-based vertex partitioning. Internet Math. 8(1–2), 161–185 (2012)

17. Kutzkov, K., Pagh, R.: Triangle counting in dynamic graph streams. In: Algorithm Theory–
SWAT 2014, pp. 306–318. Springer, Cham (2014)

18. Latapy, M.: Main-memory triangle computations for very large (sparse (power-law)) graphs.
Theor. Comput. Sci. 407(1), 458–473 (2008)

19. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection. http://snap.
stanford.edu/data (Jun 2014)

20. Lim, Y., Kang, U.: Mascot: memory-efficient and accurate sampling for counting local triangles
in graph streams. In: ACM KDD, pp. 685–694. ACM, New York (2015)

21. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256
(2003)

22. Pagh, R., Tsourakakis, C.E.: Colorful triangle counting and a MapReduce implementation. Inf.
Process. Lett. 112(7), 277–281 (2012)

23. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and
visualization (2013), http://networkrepository.com

24. Schank, T., Wagner, D.: Finding, counting and listing all triangles in large graphs, an
experimental study. In: Experimental and Efficient Algorithms, pp. 606–609. Springer, Berlin
(2005)

25. Shin, K.: Wrs: Waiting room sampling for accurate triangle counting in real graph streams.
arXiv preprint arXiv:1709.03147 (2017)

26. Stefani, L.D., Epasto, A., Riondato, M., Upfal, E.: TRIÈST: Counting local and global triangles
in fully-dynamic streams with fixed memory size. CoRR abs/1602.07424 (2016), http://arxiv.
org/abs/1602.07424

27. Thorup, M., Zhang, Y.: Tabulation-based 5-independent hashing with applications to linear
probing and second moment estimation. SIAM J. Comput. 41(2), 293–331 (2012)

28. Tiropanis, T., Hall, W., Crowcroft, J., Contractor, N., Tassiulas, L.: Network science, web
science, and Internet science. Commun. ACM 58(8), 76–82 (2015)

29. Tsourakakis, C.E.: Fast counting of triangles in large real networks without counting:
algorithms and laws. In: 2008 8th IEEE International Conference on Data Mining, pp. 608–
617. IEEE, Pisa (2008)

30. Tsourakakis, C.E., Kang, U., Miller, G.L., Faloutsos, C.: Doulion: Counting triangles in
massive graphs with a coin. In: ACM KDD, pp. 837–846, ACM, New York (2009)

31. Türkoğlu, D., Turk, A.: Edge-based wedge sampling to estimate triangle counts in very large
graphs. arXiv preprint arXiv:1710.09961 (2017)

http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://networkrepository.com
http://arxiv.org/abs/1602.07424
http://arxiv.org/abs/1602.07424

On Counting Triangles Through Edge Sampling in Large Dynamic Graphs 157

32. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8.
Cambridge University Press, Cambridge (1994)

33. Welser, H.T., Gleave, E., Fisher, D., Smith, M.: Visualizing the signatures of social roles in
online discussion groups. J. Soc. Struct. 8(2), 1–32 (2007)

34. Yahoo! webscope dataset. http://research.yahoo.com/Academic_Relations

http://research.yahoo.com/Academic_Relations

Generation and Corruption of
Semi-Structured and Structured Data

Samir Al-janabi and Ryszard Janicki

Abstract It is crucial for data to be a reliable source of information so that decisions
made based on the analysis of this data could provide a competitive edge and reduce
the negative impacts that pose significant cost to organizations on an annual basis.
This data could have more than one form, including that both of semi-structured and
structured data. There are many factors that could corrupt and cause degradation
in the quality of data including duplicate records, inaccurate values, inconsistent
values, outdated data, or incomplete information. To maintain the quality of data, the
algorithms of different data quality management approaches need to be compared,
and to accomplish this, common datasets need to be presented. These datasets
could be real or synthetic. In the latter type, the datasets need to satisfy intrinsic
characteristics of data. However, such datasets are not common for reasons such as
privacy constraints in the case of real datasets, or the synthetic data that is generated
or corrupted by the existing systems may not satisfy the quality aspects. To address
these issues, we present a system that allows for generation of semi-structured and
structured data. The generated semi-structured data is XML documents and the
generated structured datasets satisfy a set of integrity constraints. Also our system
generates other data values such as personal data and sensors data. Additionally, it
allows for the corruption of the generated semi-structured and structured data.

1 Introduction

Data is used in various organizational activities such as identifying patterns in
consumer habits, or determining what new product or service to create next. There is
tremendous value in data and consequently, having the knowledge to improve data
quality most efficiently is essential. Users and companies at large need to be able
to depend on the information that the data produces so that it is a reliable source of

S. Al-janabi (�) · R. Janicki
McMaster University, Hamilton, ON, Canada
e-mail: aljanasa@mcmaster.ca; janicki@mcmaster.ca

© Springer Nature Switzerland AG 2019
P. Karampelas et al. (eds.), From Security to Community Detection in Social
Networking Platforms, Lecture Notes in Social Networks,
https://doi.org/10.1007/978-3-030-11286-8_7

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11286-8_7&domain=pdf
mailto:aljanasa@mcmaster.ca
mailto:janicki@mcmaster.ca
https://doi.org/10.1007/978-3-030-11286-8_7

160 S. Al-janabi and R. Janicki

information for analysis. Organizations use data to support different activities, and
researchers in data quality management use data to validate hypotheses and evaluate
the quality and scalability of their proposed algorithms. The area of data quality
is thus of concern to both practitioners and researchers [1]. The development of
effective systems that detect and correct data issues is becoming an important factor
for managing the quality of data. Problems related to data quality cost businesses
in the USA more than $600 billion a year [2]. There is an increased demand in
the industries for developing data quality management systems [3]. There are five
central data quality aspects. It is necessary to deal with each one of these elements,
in order to improve the quality of data [4].

There is more than one type of data. Data types include structured, semi-
structured, and unstructured data. Structured data is represented by a strict format,
that is, there is a formal structure of data models associated with that data. An
example of this type is the data stored in relational databases. The DBMS checks to
ensure that the data stored conforms to the specified formal structure and constraints
[5]. Constraints can be expressed in this type of data as functional dependencies
(FDs), conditional functional dependencies (CFDs), and inclusion dependencies
(INDs). Semi-structured data allows for some degree of flexibility in the structure
of data [6]. The data may have a certain structure but it is not necessary for all
data to have an identical structure. Some attributes may exist only in some entities.
This type of data is commonly referred to as self-describing documents. The data
typically contains the information that is normally associated with a schema [7].
Examples of this type of data are XML (extensible markup language) and JSON
(JavaScript Object Notation). There are different uses for XML documents, such
as exchanging data over the Web in text files. Two main concepts are used in the
structure of XML documents: elements and attributes. Simple elements contain data
values, while hierarchically, complex elements are constructed from other elements
[8]. With unstructured data, there is no defined structure and data is expressed
in natural language[6]. An example of unstructured data is when there is a text
document which contains information embedded within it such as a web page in
HTML. Rather than describe the meaning of various data elements in the document,
HTML documents describe the format of the document through tags that describe
how it is displayed. In this work, we generate and corrupt semi-structured and
structured data.

To evaluate their algorithms and techniques, data scientists, researchers, ana-
lysts, and engineers working in data analytics, databases, information retrieval,
or machine learning require data with certain properties. A plentiful number of
techniques have been proposed to fix data quality problems such as [9–11], but
to do representative comparisons, a common gold standard is required. However,
knowledge of duplicate records, that is, the gold standard, can be difficult to obtain.
Real datasets are usually unavailable due to confidentiality and privacy constraints
that make it difficult for data to be published [12, 13]. Providing a common ground
for existing algorithms to detect and correct errors in duplicate records is essential.
However, comparing between these algorithms, with the exception of a few datasets,
is not allowed. One of the main reasons for this is the lack of common datasets [14].

Generation and Corruption of Semi-Structured and Structured Data 161

To tackle these challenges, we present datumPIPE 2.0, a data generator and
corrupter of multiPle data qualIty asPEcts—version 2.0, an extended version of
the system in [15]. The key features of datumPIPE 2.0 are: 1. it generates semi-
structured data represented by XML documents; 2. it corrupts the XML documents
by introducing errors in terms of data accuracy and information completeness of
data quality aspects; 3. it generates structured data that satisfy different types of
integrity constraints including FDs, constant CFDs, variable CFDs, and INDs; 4.
it corrupts the record of the structured data through corruption of the central five
aspects of data quality including data deduplication, data consistency, information
completeness, data accuracy, and data currency; 5. it generates other types of
attributes values in the data such as joint values, sensors data, and personal data
ranging from names and dates, to bank account numbers and SSNs, as well as
numerical values; and 6. it marks the original generated records of the data.

2 Overview of the System

The system architecture of datumPIPE 2.0 is illustrated in Fig. 1. It consists of two
main parts: one part generates data and other part corrupts data, where the data
models are based on the XML data model (also called hierarchical model or tree
model) and the relational data model, for the semi-structured and structured data,
respectively.

Attributes of
FDs

Generated
Structured

Original
Dataset

Attributes of
CFDs

Attributes of
INDs

Generate Original
Structured Dataset

Individual
Attributes

Corrupt Dataset
with Duplicates

Corrupt Duplicate
Records with

Additional Quality
Issues

Violation of
Data Accuracy

Input
Datasets

Violation of
Uniqueness of

Dataset Entities

Violation of
Integrity

Constraints

Violation of
Information

Completeness

Violation of
Data Currency

Corrupted
Semi-

structured
Dataset

Joint Attributes

Generated
Semi-

structured
Original
Dataset

Corrupted
Structured

Dataset

Generate Original
Semi-structured

Dataset

Corrupt
Semi-structured

Data with Quality
Issues

Fig. 1 datumPIPE 2.0 System Architecture

162 S. Al-janabi and R. Janicki

2.1 Generation of Semi-Structured Data

The attributes in an XML document can be used to provide additional information
that describes elements. An XML document can be a schemaless XML document
when it does not conform to a predefined XML schema in which it is considered
semi-structured data. If it conforms to a predefined XML schema such as DTD
document, it is considered to be structured data. The attribute term in an XML
document is used differently than in relational databases. In XML, it is used as a
description language [8]. datumPIPE 2.0 generates semi-structured data type. The
elements in an XML document are identified by their start tag and end tag. The tag
names are enclosed between angled brackets < . . . >, and end tags are identified by
a slash </ . . . >. The component Generate Original Semi-structured Dataset is used
to generate the Generated Semi-structured Original Dataset. datumPIPE 2.0 allows
for the generation of the following attributes:

Individual Attributes datumPIPE 2.0 generates the attribute values of XML data
using the individual attributes component in Fig. 1. Figure 2 illustrates some
generated individual attributes. For example, the complex elements are the ones with
the tag names <Employees> and<Employee>, while the simple elements are the
ones with the tag names such as <RecordID>, <BankAccount>, <SSN>, <Phone>,
<Bin8>, <Bin16>, <FirstName>, <LastName>, <Email>, <RandomInteger>,
<Date>,<DateRange>, and <SequentialInteger>. datumPIPE 2.0 can also generate
other attributes that are not shown in Fig. 2.

Joint Attributes datumPIPE 2.0 generates the joint attribute values using the
joint attributes component in Fig. 1. Figure 2 illustrates a generated joint
attribute <Email>. This attribute value is the concatenation of <FirstName> and
<Company> attribute values. For example, in line 30 of Fig. 2, the value of the email
is “adrienne@proinindustries.com,” which is based on the first name “Adrienne”
and the company name “Proin Industries.’

2.2 Corruption of Semi-Structured Data

Original semi-structured generated data are corrupted using the Corrupt Semi-
structured Data with Quality Issues component. The user could specify different
parameter settings to corrupted XML data such as the rate of corruption in the XML
attribute values. The attribute value <RecordID> does not get corrupted. datumPIPE
2.0 allows for the corruption of two types of data quality aspects:

Inaccurate Data Errors are introduced in the attribute values in terms of typo-
graphical errors including deletion of a character, insertion of a new character,
substitution of a character with a new character, or transposition of two adjacent
characters. In addition, swapping of values for each attribute is introduced. Figure 3
illustrates some corrupted attribute values. For example, in the <FirstName> tag in

Generation and Corruption of Semi-Structured and Structured Data 163

1: <?xml version=“1.0 standalone=“yes?>
2: <Employees>
3: <Employee>
4: <RecordID>53</RecordID>
5: <BankAccount>3-562-3917129</BankAccount>
6: <SSN>591-635-525</SSN>
7: <Phone>1010011</Phone>
8: <Bin8>011111101000010</Bin8>
9: <Bin16>1100010001011110011100111100100</Bin32>
10: <FirstName>Adam</FirstName>
11: <LastName>Marc</LastName>
12: <Company>Et Ipsum Ltd</Company>
13: <Email>adam@etipsumltd.net</Email>
14: <RandomInteger>212 </RandomInteger>
15: <Date>2016/12/10< /Date>
16: <DateRange>1995/7/14</DateRange>
17: <SequentialInteger>153</SequentialInteger>
18: <RandomDecFraction>0.6267489831533459</RandomDecFraction>
19: </Employee>
20: <Employee>
21: <RecordID>96</RecordID>
22: <BankAccount>2-405-4686184</BankAccount>
23: <SSN>545-682-889</SSN>
24: <Phone>+1(950)-722-1807</Phone>
25: <Bin8>0010111</Bin8>
26: <Bin16>001000100111100</Bin32>
27: <FirstName>Adrienne</FirstName>
28: <LastName>Joseph</LastName>
29: <Company>Proin Industries</Company>
30: <Email>adrienne@proinindustries.com</Email>
31: <RandomInteger>204</RandomInteger>
32: <Date>1989/3/23</Date>
33: <DateRange>1995/4/25</DateRange>
34: <SequentialInteger>196</SequentialInteger>
35: <RandomDecFraction>0.8097480696988298</RandomDecFraction>
36: </Employee>
37: </Employees>

Fig. 2 An instance of a generated XML document

line 11, the value is “Mabrc” instead of “Marc” which represents a transcription
error in terms of insertion of a new character. In the <Company> tag in line 29, the
value is “Industries Proin” instead of “Proin Industries,” thus indicating a swap of
values of the tag.

Incomplete Information Errors are introduced in the attribute values in terms of
incomplete information by making them missing, i.e., NULL. Figure 3 illustrates
some corrupted attribute values. For example, in the <LastName> tag in line 28,
the value is missing.

164 S. Al-janabi and R. Janicki

1: <?xml version=“1.0 standalone=“yes?>
2: <Employees>
3: <Employee>
4: <RecordID>53</RecordID>
5: <BankAccount>3-562-3917129</BankAccount>
6: <SSN>591-635-525</SSN>
7: <Phone>+1(825)-614-3515</Phone>
8: <Bin8>1010011</Bin8>
9: <Bin16>011111101000010</Bin32>

10: <FirstName>Avdam</FirstName>
11: <LastName>Mabrc</LastName>
12: <Company>Et Ipsm Ltd</Company>
13: <Email>adam@etipbsumltd.net</Email>
14: <RandomInteger>212</RandomInteger>
15: <Date>2016/12/10< /Date>
16: <DateRange>1995/7/14 </DateRange>
17: <SequentialInteger>153</SequentialInteger>
18: <RandomDecFraction>0.6267489831533459</RandomDecFraction>
19: </Employee>
20: <Employee>
21: <RecordID>96</RecordID>
22: <BankAccount>2-405-4686184</BankAccount>
23: <SSN>545-682-889</SSN>
24: <Phone>+1(950)-722-1807</Phone>
25: <Bin8>0010111</Bin8>
26: <Bin16>001000100111100</Bin32>
27: <FirstName>Adrienne</FirstName>
28: <LastName> </LastName>
29: <Company>Industries Proin</Company>
30: <Email>adrienne@proinindustries.com</Email>
31: <RandomInteger>204</RandomInteger>
32: <Date>1989/3/23< /Date>
33: <DateRange>1995/4/25</DateRange>
34: <SequentialInteger>196</SequentialInteger>
35: <RandomDecFraction>0.8097480696988298</RandomDecFraction>
36: </Employee>
37: </Employees>

Fig. 3 An instance of a corrupted XML document

2.3 Generation of Structured Data

The component Generate Original Structured Dataset is used to generate the
Generated Structured Original Dataset in which different types of attributes can be
generated. The user specifies different parameter settings to generate records such
as the number of required generated records, attributes types, and the dependency
between attributes. The generated records are marked through the attribute ID.
datumPIPE 2.0 allows for the generation of the following types of attributes:

Generation and Corruption of Semi-Structured and Structured Data 165

Table 1 An instance of a
generated original dataset that
satisfies an FD

ID FName City Temp

t1 458 Penny Sun City 35

t2 4670 Ray Sun City 35

t3 738 Eaton Summerfield 42

t4 2452 Vickie Summerfield 42

t5 3167 Myrtle Summerfield 42

t6 2494 Michael Pine Plains 29

Table 2 An instance of a
generated original dataset that
satisfies a variable CFD

ID Rank Salary

t1 4036 e 1928

t2 4037 d 2113

t3 4038 e 1928

t4 4039 c 2368

t5 5926 d 2113

t6 5947 c 2368

Table 3 An instance of a
generated original dataset that
satisfies a constant CFD

ID Model Car

t1 7284 Ranger Ford

t2 7666 Ranger Ford

t3 3656 Venza Toyota

t4 4727 Venza Toyota

FD Attributes Table 1 shows data generated by datumPIPE 2.0. There is a
functional dependency φ1: [City] → [Temp] in which the attribute value of [X]
determines the attribute value of [Y].

CFD Attributes Table 2 shows data generated by datumPIPE 2.0. There is a
variable CFD, φ2: ([Rank] → [Salary], T1), where T1 states that if the value of the
rank of any two ranks is “e,” then the value of the salary should be the same, and so
on for other rank values.

Table 3 shows data generated by datumPIPE 2.0. There is a constant CFD, φ3:
([model] → [car], T2), where T2 states that if the value of the model is “Ranger,”
then the value of the car should be “Ford,” and so on for other pairs of model and
car values.

IND Attributes Table 4 shows data generated by datumPIPE 2.0. The attribute
values are taken from another dataset in the Input Datasets component.

166 S. Al-janabi and R. Janicki

Table 4 An instance of a
generated original dataset that
satisfies an IND

ID dept

t1 3993 dept3

t2 3994 dept5

t3 3995 dept5

t4 3996 dept4

Table 5 An instance of data
with inconsistent values

ID City Temp

t1 2452 Summerfield 42

t2 2452 Summerfield 39

t3 2452 Summerfield 42

t4 2463 Forest Hill 38

t5 2463 Forest Hill 27

t6 2463 Forest Hill 38

2.4 Corruption of Structured Data

Original structured generated records are corrupted using Corrupt Dataset with
Duplicates and Corrupt Duplicate Records with Additional Quality Issues com-
ponents. Different parameter settings to corrupted records can be specified by the
user such as the rate of corruption in the duplicated records, what dependencies to
corrupt, and the percentage of duplicated records. The attribute value ID does not
get corrupted so the corrupted records that belong to the same entity are known.
datumPIPE 2.0 allows for the corruption of five types of data quality aspects:

Duplicate Records datumPIPE 2.0 introduces errors in the generated data through
duplicating the original generated records. The percentage of the records to
duplicate in the original records and the number of duplicates per records can be
specified by the user.

Inaccurate Data Errors are introduced in the attribute values in similar techniques
to that in Sect. 2.2.

Inconsistent Data datumPIPE 2.0 introduces errors in the generated data in terms
of inconsistency through corrupting the left side attribute in the IND and corrupting
the right side of the FD and the CFD. Corruption could include typographical errors,
as well as swapped or missing values. Table 5 shows a corrupted attribute value
t2[Temp] that makes φ1: [City] → [Temp] unsatisfied.

Incomplete Information datumPIPE 2.0 introduces errors in the generated attribute
values in terms of information incompleteness by making them missing, i.e., NULL.
We assume a model with NULL marks with a closed world assumption (CWA)
where some attribute values of a tuple could be missing (NULL). In Table 6, the
attribute value t2[Email] is missing.

Generation and Corruption of Semi-Structured and Structured Data 167

Table 6 An instance of data
with incomplete information

ID Email

t1 5451 jason@vulputatellc.org

t2 5451 NULL

t3 5451 jason@vulputatellc.org

t4 5458 bernice@sitllc.net

Table 7 An instance of data
with outdated values

ID Date

t1 4791 12/1/1995

t2 4791 12/1/1995

t3 4791 7/26/1970

t4 4792 7/3/1950

Data Currency datumPIPE 2.0 introduces errors in the generated attribute values
in terms of corruption of the timestamps in the original records through introducing
corrupted values. In Table 7, the attribute value t3[Date] is corrupted.

Other Types of Attributes Other types of attribute values can be generated by
datumPIPE 2.0 such as joint attributes in which two different attribute values are joint
into one value. For example, the attribute Email with a value of “anne@etpc.net”
is a join of the generated attribute values in first name (FName) and the company
(Company). In addition, datumPIPE 2.0 can generate other types of attribute values
such as sensors binary data, SSN, bank account numbers, dates, random integers,
and sequential integers.

The Input Datasets component of datumPIPE 2.0 also represents all the datasets
that are used to generate some of the values such as names of persons and cities. In
addition, some attribute values including SSN, bank account numbers, and emails
are generated uniquely. We also assume in this version of datumPIPE 2.0 that the
sets of X and Y of the integrity constraints attributes are singleton and disjoint sets.

3 Related Work

Different frameworks and tools have been developed to generate semi-structured
and structured data and/or to corrupt this data. However, most of them neither
generate and corrupt XML documents nor corrupt structured data. Also, they do
not provide generation of records that satisfy sets of FDs, CFDs, and INDs and
do not corrupt multiple data quality aspects. In TPC-H Benchmark, almost all the
generated columns, with few exceptions, are uncorrelated, and there is no corruption
functionality (http://www.tpc.org/tpch/default.asp). Other online data generation or
commercial tools (e.g., http://www.generatedata.com or http://www.sqledit.com)
lack the corruption functionality and the generation of structured data with integrity
constraints including FDs, CFDs, and INDs. In the work of [16], a data generator

http://www.tpc.org/tpch/default.asp
http://www.generatedata.com
http://www.sqledit.com

168 S. Al-janabi and R. Janicki

for XML collections is developed. In the work of [17], a synthetic XML data
generator is developed that generates data with regards to a given set of XML
queries expressed in XPath. Tran [18] introduced a tool to generate and corrupt
data in which the generated attribute values can be compound where the values
depend on each other or are independent of each other. The tool corrupts datasets
with missing values and typographical errors and some other types of errors. The
tool of [19] generates data with attribute dependencies. In the work of [20], data
mining techniques are used to help generating synthetic data. Lin [21] introduced
a tool to generate data in order to test data mining tools. A tool developed by [22]
generates synthetic trajectory datasets in order to simulate mobility behaviors. An
interactive tool developed by [23] generates data for the merge/purge problem. It
allows the user to set the percentage of duplicate records in the data, the size of data,
and the error rate. The types of errors include swapping of values and typographical
errors. The generated fields include data such as cities, states, zip codes, and names.
Christen [24] developed a system named febrl that can generate data. This system
may include look-up files with name variations and frequency distribution tables.
In the context of ETL processes, [25] presented a work for data generation. It aims
to evaluate the quality characteristics in addition to the correctness of ETL process
models.

4 Conclusions and Future Work

datumPIPE 2.0 is a tool that can be used to generate semi-structured datasets in terms
of XML documents and to generate structured datasets that satisfy multiple data
quality aspects. In addition, the generated semi-structured and structured datasets
can be corrupted. It is an interactive tool in which the user can specify different
parameter settings for the generation and corruption. Different applications can
benefit from this tool, such as algorithm evaluation when there is a need for a
dataset that satisfies specific data models and types. In future work, we plan to have
an online graphical user interface, to generate big data, and to generate other data
models, such as in the JSON data format.

References

1. Watts, S., Shankaranarayanan, G., Even, A.: Data quality assessment in context: a cognitive
perspective. Decis. Support. Syst. 48(1), 202–211 (2009)

2. Eckerson, W.: Data Quality and the Bottom Line: Achieving Business Success Through a
Commitment to High Quality Data, pp. 1–36. The Data Warehousing Institute, Renton (2002)

3. Judah, S., Friedman, T.: Magic Quadrant for Data Quality Tools. Technical Report. Gartner,
Stamford (2014)

4. Fan, W., Geerts, F.: Foundations of Data Quality Management. Morgan & Claypool Publishers,
San Rafael (2012)

Generation and Corruption of Semi-Structured and Structured Data 169

5. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts. McGraw-Hill, New
York (2006)

6. Batini, C., Scannapieca, M.: Data Quality Concepts, Methodologies and Techniques. Springer,
New York (2006)

7. Buneman, P.: Semistructured Data. In: PODS ’97 Proceedings of the Sixteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 117–121. ACM, New
York (1997)

8. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems. Pearson, Boston (2015)
9. Al-janabi, S., Janicki, R.: A density-based data cleaning approach for deduplication with

data consistency and accuracy. In: SAI Computing Conference (SAI), pp. 492–501. IEEE,
Piscataway (2016)

10. Cao, Y., Fan, W., Yu, W.: Determining the Relative Accuracy of Attributes. In: Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data, pp. 565–576.
ACM, New York (2013)

11. Fan, W., Geerts, F., Tang, N., Yu, W.: Conflict resolution with data currency and consistency.
J. Data Inf. Qual. 5(1–2), 6 (2014)

12. Christen, P.: Data Matching Concepts and Techniques for Record Linkage, Entity Resolution,
and Duplicate Detection. Springer, Canberra (2012)

13. Naumann, F., Herschel, M.: An Introduction to Duplicate Detection. Morgan & Claypool
Publishers, San Rafael (2010)

14. Weis, M., Naumann, F., Brosy, F.: A duplicate detection benchmark for XML (and relational)
data. In: SIGMOD Workshop on Information Quality for Information Systems (IQIS) (2006)

15. Al-janabi, S., Hamid, A., Janicki, R.: datumPIPE: data generator and corrupter for multiple data
quality aspects. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining 2017, pp. 589–592. ACM, New York (2017)

16. Pérez, M., Sanz, I., Berlanga, R.: XTaGe: A flexible XML collection generator. In: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 1139–1142.
ACM, New York (2010)

17. Rychnovský, D., Holubová, I.: Generating XML data for XPath queries. In: Proceedings of the
30th Annual ACM Symposium on Applied Computing, pp. 724–731. ACM, New York (2015)

18. Tran, K.-N., Vatsalan, D., Christen, P.: GeCo: an online personal data generator and corruptor.
In: Proceedings of the 22nd ACM International Conference on Information & Knowledge
Management, pp. 2473–2476. ACM, New York (2013)

19. Houkjær, K. , Torp, K., Wind, R.: Simple and realistic data generation. In: Proceedings of the
32nd International Conference on Very Large Data Bases, pp. 1243–1246. VLDB Endowment
(2006)

20. Eno, J., Thompson, C.: Generating synthetic data to match data mining patterns. IEEE Internet
Comput. 12(3), 78–82 (2008)

21. Lin, P., Samadi, B., Cipolone, A., Jeske, D., Cox, S., Rendón, C., Holt, D., Xiao. R.:
Development of a synthetic data set generator for building and testing information discovery
systems. In: Third International Conference on Information Technology: New Generations,
2006. ITNG 2006, pp. 707–712. IEEE, Piscataway (2006)

22. Pelekis, N., Sideridis, S., Tampakis, P., Theodoridis, Y.: Hermoupolis: a semantic trajectory
generator in the data science era. SIGSPATIAL Spec. 7(1), 19–26 (2015)

23. Hernández, M., Stolfoz, S.: The merge/purge problem for large databases. In: Proceedings of
the 1998 ACM-SIGMOD Conference (1995)

24. Christen, P.: Development and user experiences of an open source data cleaning, deduplication
and record linkage system. SIGKDD Explor. 11(1), 39–48 (2009)

25. Nakuçi, E., Theodorou, V., Jovanovic, P., Abelló, A.: Bijoux: data generator for evaluating ETL
process quality. In: Proceedings of the 17th International Workshop on Data Warehousing and
OLAP, pp. 23–32. ACM, New York (2014)

A Data Science Approach to Predict the
Impact of Collateralization on Systemic
Risk

Sharyn O’Halloran, Nikolai Nowaczyk, Donal Gallagher,
and Vivek Subramaniam

Abstract In this chapter, we simulate and analyze the impact of financial reg-
ulations concerning the collateralization of derivative trades on systemic risk—a
topic that has been vigorously discussed since the financial crisis in 2007/08.
Experts often disagree on the efficacy of these regulations. Compounding this
problem, banks regard their trade data required for a full analysis as proprietary.
We adapt a simulation technology combining advances in graph theory to randomly
generate entire financial systems sampled from realistic distributions with a novel
open-source risk engine to compute risks in financial systems under different
regulations. This allows us to consistently evaluate, predict, and optimize the impact
of financial regulations on all levels—from a single trade to systemic risk—before
it is implemented. The resulting data set is accessible to contemporary data science
techniques like data mining, anomaly detection, and visualization. We find that
collateralization reduces the costs of resolving a financial system in crisis, yet it does
not change the distribution of those costs and can have adverse effects on individual
participants in extreme situations.

Keywords Big data · Graph theoretic models · Data science · Machine
learning · Python · C++ · Random graph generation · Stochastic Linear
Gauss-Markov model · Monte Carlo simulation · Financial risk analytics ·
Systemic risk · Collateralizations · Variation margin · Initial margin ·
Open-source risk engine · Financial regulation

S. O’Halloran · V. Subramaniam
Columbia University, New York, NY, USA
e-mail: so33@columbia.edu; vs2575@columbia.edu

N. Nowaczyk (�) · D. Gallagher
Quaternion Risk Management, London, UK
e-mail: nikolai.nowaczyk@quaternion.com; donal.gallagher@quaternion.com

© Springer Nature Switzerland AG 2019
P. Karampelas et al. (eds.), From Security to Community Detection in Social
Networking Platforms, Lecture Notes in Social Networks,
https://doi.org/10.1007/978-3-030-11286-8_8

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11286-8_8&domain=pdf
mailto:so33@columbia.edu
mailto:vs2575@columbia.edu
mailto:nikolai.nowaczyk@quaternion.com
mailto:donal.gallagher@quaternion.com
https://doi.org/10.1007/978-3-030-11286-8_8

172 S. O’Halloran et al.

1 Introduction

Counterparty credit risk (CCR) is the risk of suffering a loss when a contracting
party defaults before satisfying its obligations. While banks and financial institu-
tions have been well aware of the CCR in classical business lines like loans for
centuries, the credit risk component in derivative trades has gained recent attention.
Since the 2008 crisis, markets can no longer assume that the credit risk in a
derivative with a bank is zero—even if it is AAA rated. As the volume of the over-
the-counter (OTC) derivative business alone exceeds $20,701 billions of the US
dollars,1 it has been suggested that the inherent credit risk now poses a significant
threat to the system. Indeed, a number of financial regulations have been enacted
aimed at reducing this credit risk. A key feature of these regulations is that they
provide strong incentives (and increasingly the obligation) to collateralize derivative
trades, i.e., post and receive capital.

It is obvious that a counterparty2 that receives collateral for its derivative trades
has a lower CCR exposure than a counterparty that does not. However, it is less
obvious to show that the introduction of collateralization reduces the systemic risk
in a financial system as a whole. Since the turmoil following the collapse of Lehman
Brothers in the 07/08 crisis, there has been a vibrant discussion on how to improve
financial regulation to avoid another crisis in the future. This crisis has not only
questioned the soundness of the current regulation but also the process on how to
decide what regulations to implement. Although a decade has passed by now, there
is still little consensus on how to evaluate, predict, and optimize financial regulation,
that is:

1. Evaluate: Has the regulation implemented since the financial crises reduced
systemic risk or not?

2. Predict: How can we predict the impact of a financial regulation before it is
implemented on the real financial system?

3. Optimize: How can we find the best possible financial regulation?

Data science provides new solutions to measuring and predicting systemic risk
in financial systems. It is the aim of this article to use these new technologies to
develop a framework in which these questions can be answered quantitatively and
systematically and to apply this technology to prominent regulations regarding the
collateralization of derivative trades.

The rest of this chapter is organized as follows: In Sect. 2, we provide a
framework to coherently extend enterprise-level risk metrics to a systemic level
using a graph model, in which the nodes represent individual banks and the links
represent trade relations. We present a purely graph theoretic technique on how

1The corresponding outstanding notional amount of all contracts in 2016 was $544,052 billions
of the US dollars. See Bank of International Settlements, Global OTC Derivatives Market Semi-
Annual Statistics, March 6, 2017. http://stats.bis.org/statx/srs/table/d5.1.
2In this chapter, we assume all our counterparties to be banks.

http://stats.bis.org/statx/srs/table/d5.1

A Data Science Approach to Predict the Impact of Collateralization on Systemic Risk 173

to aggregate the risks arising in those trades to a counterparty and to a systemic
level employing a weighted multivariate version of the in/out degree. In Sect. 3,
we present in detail our data science approach to predict the impact of a regulation
on systemic risk using recent advances in random graph generation and a novel
open-source risk engine (ORE). We present our results in Sect. 4 and conclude with
further research plans in Sect. 5.

The analysis validates that collateralization does indeed reduce systemic risk;
it does not, however, change the distribution of risk in a system. The analysis also
illustrates that validation depends on the metric chosen to quantify systemic risk. We
find that while on a macro-level, the impact of collateralization is unambiguously
risk reducing, and it can increase the risk stemming from individual netting sets in
extreme cases.

1.1 State of the Art

One of the main methods currently used to evaluate financial regulation is expert
judgment (of course based on quantitative studies providing a snapshot of data of the
current financial system). The main disadvantage of expert judgment is that different
experts have different opinions. If experts do not even agree in their judgment on
whether or not the changes in regulations so far are improvements, there is little
hope to answer the question of how to find an optimal financial regulation with that
method.

Data science and ultimately machine learning offer a viable alternative by
tackling some of the root causes why experts fail to agree:

1. Micro- vs. Macro-regulation: In financial economics, the impact of a financial
regulation is currently studied either on the micro-prudential level, which
considers only a single individual bank with its trades in all its detail, but
ignores systemic effects, or on the macro-prudential level, which considers
only systemic effects, but ignores most of the implications on individual banks,
see Fig. 1. As financial regulations heavily affect the financial system on both
levels—sometimes in opposite ways—this gap makes it very difficult to arrive at
consistent answers.

2. Inconsistent metrics and unclear definitions: This gap is particularly visible when
reviewing risk metrics. On the micro-prudential level, there are very well-defined
types of risk, for instance market risk (suffering a loss due to adverse market
movements), counterparty credit risk (suffering a loss due to a default of a
business partner), liquidity risk (running out of money), or model risk (models
used to quantify any of the previous risks are wrong). Furthermore, there are
standardized metrics to measure them like Value-at-Risk, Effectivized Expected
Positive Exposure (EEPE), Liquidity Coverage Ratio, or a Basel Traffic Light
Test. Not only are these metrics standardized, their use is enforced globally by
regulators.

174 S. O’Halloran et al.

Fig. 1 Using data science to close the gap between micro- and macro-prudential regulation

On the macro-prudential level, there is not even a clear definition on what
systemic risk means or how it should be measured. In [7], the US Office for
Financial Research discusses 31 metrics of systemic risk. Most of these metrics
focus on the analysis of market data like housing prices or government bonds and
their correlations. For instance, [6] use principal components analysis (PCA) and
Granger causality to study the correlations between the returns of banks, asset
managers, and insurances. Unfortunately, most of those macro-prudential metrics
are unsuited to guide decision-making bodies or regulatory interventions—
precisely because their micro-prudential nature remains unclear (with CoVaR,
which relies on a quantile of correlated asset losses, being a notable exception,
see [1]).

This incoherence in metrics yields to incompatible views when evaluating
the impact of financial regulations. One of the key strengths of a data science
approach is that it enforces a consistent quantification of features and transparent
evaluation metrics.

3. Lack of Data: While macro-economic data of the financial markets is easily
available, even macro-economic data on the financial system is often not publicly
available, Cont et al. were able to obtain macro-level data of aggregate interbank
exposures of the Brazilian banking system during 2007/08 from the Brazilian
Central Bank and adopt a graph model to describe the interconnectedness of the
system and to estimate the impact that an increase in capital requirements has on
those interbank exposures, see [10].

While those analyses are very interesting on a macro-prudential level, they
cannot predict the impact of financial regulations on a micro-prudential level,
because their impacts depend on a banks’ individual trades. However, all banks
regard their trade data as proprietary.

A Data Science Approach to Predict the Impact of Collateralization on Systemic Risk 175

1.2 Method and Approach

The lack of data is a nontrivial practical problem for the calibration and backtesting
of any model of systemic risk. Notice that even if one would obtain the trade data
of the entire financial system as of today and test the impact of a regulation with
the aim of guiding a decision-making process, this would still not guarantee that
its implementation has the desired effects. The regulations regarding Initial Margin
are a consequence of the financial crisis in 2007/08, but the last phase-in date for
Initial Margin is currently set at 2020. A lot of the trades that existed in 2007 will
have matured in 2020. Therefore, it is imperative to make sure that the regulation is
future proof and has the desired effect not only on the current financial system but
ideally also on all possible future versions of it.

Our approach is to randomly generate financial systems sampled from realistic
distributions and simulate their future evolution under different regulatory regimes.
The key tool is a systemic risk engine, which combines a novel open-source risk
engine with graph theoretic models. This allows us to consistently calculate the risks
of all individual banks and the system as a whole, hence bridging the gap between
micro- and macro-prudential economics.3

The systemic risk engine uses the following key components and steps, see also
Fig. 2:

1. Graph Model—Trade Relations: Any financial system at a fixed point in time can
be modeled using an undirected graph, where the nodes represent the banks and
the links represent the trade relations between them, see Definition 1 for details
and Fig. 3 for a simplified example.4

2. Graph Model—Risk Metrics: The exposures stemming from the trade relations
in a financial system can be represented as a directed graph where the nodes
again represent the same banks and the arrows represent the risk induced from
the tail to the head, see Definition 2 for the details and Fig. 4 for an example.
The standardized micro-prudential metrics give rise to weight functions on the
arrows, which quantify the risks stemming from the trade relations, for instance
EEPE for counterparty credit risk. These can then be aggregated consistently
to systemic versions using weighted in and out degrees, see Definition 3 and
Definition 4 for details.

3. Financial System Generation: We randomly generate trade relation graphs
G1, . . . ,Gs , of financial systems sampling from the distributions found in [10],
see Fig. 5 for an example. This is achieved using the configuration erase model
from the Python library networkx based on [5, 8, 16], see component I in
Fig. 2.

3In an earlier paper, see [18], we examined a case study that analyzed a single financial system
under varying regulatory regimes, see also.
4In reality, these graphs are significantly more complex. According to an analysis carried out in
[10] based on central bank data, the Brazilian financial system for example has about 2400 banks
heavily interconnected via 20,000 links.

176 S. O’Halloran et al.

I. Financial System
Generator

Generation of
• Counterparties
• Trades
• Trade Relations

Distribution Sampler

III. Regulations
IV. Systemic
Risk Engine

ORE

Input Config

Output

1)

2)

3)

32

27

12

14

68

71

52

31
11
21

17 1824

35 51

42

2

7

2

4

8

1

2

1
1
1

7 84

5 1

2

Reg 1 Reg 2 ...

VI. Aggregation,
Mining & Vizualization

• Reg 1
• Reg 2
• ...

...

1)

2)

3)

V. Financial System
Risk Data

II. Financial System
Trade Data

Fig. 2 IT architecture of data science solution

Fig. 3 Trade relations: the
nodes represent the banks, the
links represent the trade
relations, and the labels on
the links represent the trade
or portfolio IDs

C

B A
FWD1hIRS1

FWD1

IRS1h

E
FWD2

F

D

Fig. 4 Exposures: the nodes
represent the same banks as
in Fig. 3, the arrows represent
that risk is induced from the
bank on the tail onto the bank
on the head, the weights on
the arrows quantify that risk,
and the percentages in the
nodes represent the share of
risk induced by that bank

A Data Science Approach to Predict the Impact of Collateralization on Systemic Risk 177

Fig. 5 A randomly generated trade relation graph

4. Systemic Risk Engine: In order to compute the individual risks in each banks’
portfolio, we propose to use ORE, a novel open-source risk engine, see [19],
which is based on QuantLib and implemented in C++. We extend this to a
systemic risk engine, which computes not only the risk of any individual bank
in the system but also aggregated systemic risk metrics, see component IV in
Fig. 2. The main task is to automate entering all the generated financial systems
into OREs XML configuration files, which is done using the Python library lxml.

5. Risk Graph Generation: Technically, a financial regulation can be implemented
into the systemic risk engine as part of its input configuration, see component
III of Fig. 2. Therefore, we can simulate the impact of a proposed financial
regulation Rprop compared to a base regulation Rbase by running the systemic
risk engine on each of the financial systems G1, . . . ,Gs under regulation Rbase
as well as Rprop, see components IV and V of Fig. 2.

6. Classification, Data Mining, and Visualization: In a last step, we aggregate the
generated data to allow hypothesis testing on whether or not the impact of Rprop
over Rbase has reduced systemic risk, see component VI of Fig. 2. In addition,

178 S. O’Halloran et al.

we use this raw data for data mining techniques such as anomaly detection to
identify corner cases, in which Rprop has adverse effects or fails.

It seems obvious to bridge the gap between micro- and macro-prudential
regulation by understanding the macro-prudential impact of a financial regulation
via an aggregation of all the micro-prudential impacts on all banks, see again Fig. 1.
The complexity of the system and of each of its banks as well as the large number of
banks has made such an approach intractable for the traditional methods in financial
economics. We believe that the current level of data science and risk management
technology makes this bottom-up approach feasible for the first time. The approach
has the advantage that it allows to understand the micro-prudential impact not only
on one entity but on all of them simultaneously and systematically.

Notice that bridging a gap between a micro-perspective and a macro-perspective
using data science to understand the macro-perspective as an aggregation of all
micro-perspectives and organizing them in a graph model could in principle be
applied to other domains as well, for instance payment systems, elections, or
sentiment analysis.

2 A Graph Model of Financial Systems and Systemic Risk
Metrics

A financial system can be modeled as a graph,5 where the nodes represent the
counterparties. Two counterparties are connected by an (undirected) edge if and only
if they are conducting business with each other. The nodes as well as the edges can
be enriched with additional data regarding the counterparties or the trade relations.

2.1 Trade Relation Graph

We capture this by the following formal definition, see Fig. 3.

Definition 1 (Financial System) A financial system FS = (B, T , τ) is an undi-
rected graph G = (B, T) called trade relation graph together with a trade data
function τ , where:

• B is the set of nodes in the graph representing the banks.
• T is the set of (undirected) edges in the graph representing the trade relations

between the banks. Two banks b1 ∈ B and b2 ∈ B are connected by an edge if
and only if they have at least one trade with each other.

5See [4] for an overview of graph theoretic modeling of large-scale networks.

A Data Science Approach to Predict the Impact of Collateralization on Systemic Risk 179

• τ : T → Y is a trade data function, which to each trade relation t assigns
additional trade relation data τ(t) (for instance a list of trade IDs) in some data
space Y .

Optionally, this can be enriched to (B, T , β, τ), where:

• β : B → X is a node data function, which assigns each bank b ∈ B additional
data β(b) (for instance its core capital) in some data space X.

In Fig. 3, we see an example of a financial system, where six banks (labeled A–F

here) are trading bilaterally with each other in five trade relations. The trade data
function τ assigns to each trade relation t the ID of a trade (IRS1 for instance
stands for an Interest Rate Swap). While in this example, every trade relation only
consists of one trade, banks often have many trades with each other.6 While it is
possible (both mathematically and technically) to assign more data than just a list
of trade IDs to a trade relation, we stick to this simple trade data function for now.
Optionally, one can supply this example with a node data function β, which is not
shown in Fig. 3. A meaningful example of a function β is to assign to each bank b

its core capital (or core capital ratio).

2.2 Risk Graph

Each trade in a trade relation imposes various types of risks (as well as rewards)
on potentially both banks, which can be computed in various metrics by means of
mathematical finance. By computing a fixed set of risk metrics for all trade relations
in a trade relation graph, we obtain a graph that captures the risks between all the
various banks in the system, see Fig. 4. Formally, we define this as follows:

Definition 2 (Risk Graph) Let FS = (B, T , τ) be a financial system as in
Definition 1 (optionally enriched by a node data function β). A weighted directed
graph RG = (B,A,w) is called a risk graph associated to FS, where:

• B is the set of nodes in the graph representing the banks (i.e., FS and RG have
identical nodes).

• A is the set of directed edges (often called arrows) in the graph RG. We add an
arrow from a bank b1 ∈ B to a bank b2 ∈ B if and only if b2 is exposed to some
form of risk from b1 as a consequence of their trades.

• w : A → R
k is a multivariate weight function on the arrows quantifying the risks

attached to each arrow measured in k metrics.

6A way to capture this technically is to give all trades in the financial system a globally unique
ID. The trade relation function is then a function τ : T → Pf (N), where Pf (N) denotes the set
of finite subsets of N (assuming each trade ID is a natural number). For instance, if the trades in
Fig. 3 where enumerated by 0, 1, 2, . . . , 4 and IRS1 corresponds to 0, then for the trade relation t

between bank A and B, we would have τ(t) = {0}.

180 S. O’Halloran et al.

While the nodes in the trade relation graph and in the risk graph are the same,
the edges are not. Each undirected edge in FS gives rise to one or two edges in RG.
This is because there are trades like Interest Rate Swaps that induce risk from one
counterparty to another and vice versa. In this case, we see two arrows between the
counterparties that go in opposite directions, which in Fig. 4 is the case for all trade
relations. Notice that there are also trades like FX Options where risk is induced in
one direction only. On the arrows in Fig. 4, we only see one number, so k = 1, and
the weight function chosen here is w(a) := EEPE(a) ∈ R, i.e., if a = (b1, b2),
then w(a) denotes the EEPE that b2 receives from b1. Another example could be
the PFE over a certain time horizon at a fixed quantile α (analogous to the US stress
testing). Here, EEPE stands for Effectivized Expected Positive Exposure and PFE
for Potential Future Exposure. These are standardized metrics to express risks in
derivative portfolios, see [17, Sect. III] for a detailed discussion.

The weight function w in the risk graph associates a weight to the arrows. As
banks often trade with many counterparties, we want to aggregate this information
into a weight function on the nodes, i.e., the banks themselves. There is a purely
graph theoretic procedure that extends a weight function on arrows to a weight
function on nodes. As this method is less standard, we give the following definition.

Definition 3 (Weighted In/Out Degree) Let G = (V ,E,w) be a directed graph
with nodes V , edges E, and a weight function w : E → R

k . In case k = 1, for each
vertex v ∈ V , the quantities:

w−(v) :=
∑

e∈E
e ends at v

w(e), w+(v) :=
∑

e∈E
e starts at v

w(e) (1)

are called the weighted in/out degree. Let w(G) := ∑
e∈E w(e) be the total weight

in the system. The quantities:

ρ−(v) := w−(v)

w(G)
, ρ+(v) := w+(v)

w(G)
, (2)

are called weighted relative in/out degree. In case the weight function w : E → R
k

is multivariate, the weighted in/out degree w : V → R
k and the relative weighted

in/out degree ρ : V → R
k are defined using Eqs. (1) and (2) in each component.

Intuitively, w±(v) is the total weight received respectively induced by v into the
graph G. Notice that in case k = 1 and w ≡ 1, we have w±(v) = deg±(v), i.e., the
weighted in/out degree is the ordinary in/out degree, which just counts the number
of incoming respectively outgoing edges. Any of the quantities:

w(G), max
v∈V

w+(v), max
v∈V

ρ+(v) (3)

are R
k-real-valued metrics that capture the total amount of weight in the graph and

its concentration.

A Data Science Approach to Predict the Impact of Collateralization on Systemic Risk 181

2.3 Systemic Risk

Applying these graph theoretic concepts to systemic risk is straightforward.

Definition 4 (Systemic Risk) Let RG = (B,A,w) be a risk graph as in Defini-
tion 2. Extend the weight function w : A → R

k on the arrows to a weight function
w± : B → R

k using the weighted in/out degree from Eq. (1). We also define
ρ : B → R

k via Eq. (2). We regard any of the quantities in Eq. (3) as a metric
of systemic risk.

As any metric that measures risk in a trade relation between two counterparties
can be used as a weight function in a risk graph, we have produced a general
procedure how to construct a systemic risk metric from that.

An example for such a metric is w = EEPE. In that case for each bank b, the
quantity EEPE+(b) can be thought of as the cost of resolution if b defaults (like a
loss given failure, but not a probability of failure). The quantities ρ+(b) are a metric
that quantifies the concentration of these costs of resolution in the system.

3 Simulation Technology

In order to predict the impact of a financial regulation on systemic risk, we randomly
generate financial systems as trade relation graphs, like the one shown in Fig. 3.
For all netting sets containing all the trades in all the financial systems, we then
compute risk metrics under different regulations. Using this data, we populate risk
graphs like Fig. 4 for each regulation. Finally, we aggregate all these graphs to come
to a conclusion on how a regulation impacts systemic risk. An overview of the
technologies used in these various steps and their interactions is shown in Fig. 2.
We will discuss the key challenges in this section.

3.1 Generation of Random Trade Relation Graphs

In order to generate random trade relation graphs like Fig. 3, various distributional
choices have to be made.

3.1.1 Nodes

Generating the number of nodes is straightforward by choosing either a fixed value
or drawing from a uniform distribution between an upper and lower bound.

182 S. O’Halloran et al.

3.1.2 Edges

How to randomly generate the edges such that the resulting trade relation graph
forms a realistic financial system? Ideally, one should sample those from empirical
data, but the trade relations in the real financial system are top secret. However, in
[10] a statistical analysis of the macro-exposures in the Brazilian banking system has
been performed using aggregated anonymized data provided by the Brazilian central
bank. Due to this analysis, it is known that the degrees of the nodes in the trade
relation graph follow approximately a Pareto distribution. Therefore, the problem
can be split up into sampling a Pareto distributed sequence {d1, . . . , dn}, where n

is the number of nodes in the graph, and second by creating a graph out of this
sequence. While the first step is straightforward, the second is not.

Generating random graphs with a degree sequence prescribed from a given
distribution is a hard problem in discrete mathematics. For Poisson distributed
degree sequences, a solution has been developed by Erdős and Rényi in the 1960, see
[12, 13]. With the advances of the WWW and social networks, generating random
graphs with degree sequence sampled from an arbitrary given distribution became a
useful tool. Therefore, substantial theoretical work as well as the search for efficient
algorithms has been invested into this problem. We use the erased configuration
model as implemented in the Python library networkx and described in [16].
Further details can also be found in [5, 8]. For random number generation, we use
the Python library numpy.random.

3.1.3 Trades

Once a trade relation has been generated, the portfolio between the banks attached to
this relation has to be populated with trades. For the purpose of this text, we keep it
simple and choose a number k of trades, uniformly distributed between a fixed upper
and lower bound, and then draw k times without replacement from a list of trade
IDs. To generate the trades behind these IDs, we start with an FX Forward (EUR vs.
USD) with a uniformly distributed maturity of up to 5 years, a uniformly distributed
domestic amount between 100k and 100mn and a log-normally distributed strike
rate, and also with an Interest Rate Swap (fixed vs. floating) with a uniformly
distributed maturity of up to 10 years, a uniformly distributed notional between
100k and 100mn, and a uniformly distributed fixed rate between 0.01% and 5%.
The choice between a Forward and the Swap as well as the sides of the trades are
Bernoulli distributed with probability 0.5. We assume that all trades between two
counterparties are in precisely one netting set.

A Data Science Approach to Predict the Impact of Collateralization on Systemic Risk 183

3.2 The Open-Source Risk Engine (ORE)

Computing the exposure in even in just a single netting set of derivative trades is
a hard problem in mathematical finance. The risk department of a bank invests
substantial resources into developing and maintaining a risk management system
capable of computing the banks exposure—in particular, if the bank chooses to use
its own internal models. As those risk management systems are proprietary, they
cannot be used for the purpose of this text.

Therefore, we use the Open-Source Risk Engine (ORE), an open-source software,
which performs risk management computations like a production system in a bank.
It has been released by Quaternion Risk Management in 2015 as part of the Open-
Source Risk initiative, see [19]. ORE models the risk in a derivative trade from the
perspective of a single bank. Given the banks’ portfolio, market data, and some
additional configuration files, it projects the value of the trades into the future using
a Monte Carlo simulation based on complex stochastic modeling of the risk factors.
A detailed description of these risk factor models can be found in [14]. In case of a
collateralized netting set, ORE also consumes parameters that specify the details of
a netting agreement and simulates the value of collateral. This is a nontrivial matter.
In particular, forecasting the IM is still subject to current research, see [3, 9, 11, 15].

3.3 Configuration and Aggregation

Each generated trade relation graph and each regulation has to be entered into OREs
XML configuration before a run can be kicked off. This is realized via a Python
script using lxml. After the run, OREs output consists of csv files containing all
the risk metrics. We use pandas to extract those from the files and populate the
risk graphs like Fig. 4. This puts us in a position to compute statistics on the risk
metrics in the various graphs under various regulations.

4 Results: Impact of Collateralization on Systemic Risk

In this section, we apply the simulation technology described in Sect. 3 to study
the impact of various collateralization regulations on systemic risk. The value of
a derivative contract stems from future cashflows, which are not yet settled. If
no collateral is exchanged, both parties are fully exposed to each other’s credit
risk (REG_1). To mitigate that risk, parties can exchange Variation Margin (VM)
to cover the current exposure, i.e., the immediate loss suffered by the surviving
counterparty on default (REG_3). This still does not reduce the exposure to zero
as the surviving counterparty will need some time to close out the position. To
mitigate the potential exposure caused by this gap, parties can exchange Initial

184 S. O’Halloran et al.

Margin (IM) on top of the Variation Margin (REG_4). A detailed description of
these three regulatory regimes can be found in [17, Sect. II].

In [17, Sect. V], we presented a case study, which analyzes the impact of
these three different regulatory regimes on the financial system with the structure
depicted in Fig. 3. We found while increasing collateralization decreases systemic
risk measured in EEPE (respectively, EEPE +, see Definition 3), i.e., the total cost
of resolving a failed system decreases with the amount of collateral. However,
collateralization has only little effect on the concentration of these costs (i.e., the
associated ρ+ does not change much).

We now use the simulation technology described in Sect. 3.1 to generate
10 financial systems with 30–50 counterparties and trade relations, which are
approximately Pareto distributed. This results in 2360 trades in total. These are faced
from two sides, which yields 4720 technical trades in 1378 netting sets in ORE. We
compute the EEPE under the regulatory regimes 1), 3), and 4) using 500 Monte
Carlo paths. Regulatory regime 2) is omitted, because if one sets a global threshold,
the result would depend on an arbitrary choice on whether or not the netting set
exposures are distributed above or below that threshold, which is unrealistic. In
Fig. 6, we can see that under regime 3), i.e., the full VM collateralization, the
total EEPE reduction is at about 71%, and under regime 4), i.e., the VM & IM
collateralization, the reduction is at about 93%. The average does not exhibit any
outliers among the 10 financial systems analyzed, see Fig. 7.

On a macro-level, these numbers confirm unambiguously that the impact of any
collateralization yields to a reduction in risk. As a byproduct of the simulation, we
obtain exposure data of 1378 netting sets, which we can now mine to gain insight
into all micro-impacts of the various regulations.

3500

2500

2000

1500

1000

500

0

3000

-74.01%

-95.00%

REG_1 REG_3 REG_4

To
ta

l E
EP

E
in

 E
U

R
m

n

Fig. 6 Total reduction of EEPE

A Data Science Approach to Predict the Impact of Collateralization on Systemic Risk 185

Fig. 7 Average relative
reduction of total EEPE in the
various financial systems

FS VM IM & VM
0 –78.00% –97.22%
1 –74.63% –94.72%
2 –75.97% –96.86%
3 –71.47% –94.45%
4 –70.23% –93.16%
5 –72.89% –94.45%
6 –73.88% –94.16%
7 –75.46% –96.31%
8 –74.44% –95.04%
9 –71.43% –91.95%

Fig. 8 Histogram of relative reduction in EEPE over all netting sets (197 out of 1378 have
more than 150% increase and are not shown, 29 of those have zero uncollateralized EEPE).
Mean:−57.42%, SD: 38.33%

In Fig. 8, we see the distribution of relative reductions in EEPE of the various
netting sets when comparing REG_1 (uncollateralized) with REG_3 (VM collat-
eralized). While most of the netting sets show a significant relative reduction in
exposure, we can see that some of them also show a significant relative increase
in exposure. The explanation for this is as follows: Assume that bank A has trades
in a netting set with bank B. These trades are deeply out of the money for bank A,
meaning that the markets have moved into bank B’s favor. Then, the uncollateralized
exposure for bank A is very low.7 Under VM collateralization however, as the trades
are deeply in the money for bank B, bank B will call bank A for variation margin.

7Due to the finite number of Monte Carlo paths, it is sometimes even numerically zero in the
simulation.

186 S. O’Halloran et al.

Fig. 9 Histogram of relative reduction in EEPE over all netting sets (0 out of 1378 have more than
150% increase and are not shown, 0 of those have zero VM collateralized EEPE). Mean: −85.78%,
SD: 20.76%

Bank A will then pay the variation margin to bank B, where it is exposed to the
default risk of B, because B might rehypothecate this variation margin. In some
situations, this is resulting in higher exposure under VM collateralization than under
no collateralization. We see that on a micro-level, VM collateralization can have an
adverse effect in rare cases of netting sets, which are deeply out of the money.

Initial Margin cannot be rehypothecated and therefore, posted Initial Margin is
not treated as being at risk.8 In Fig. 9, we see the relative reductions in EEPE of
the various netting sets when comparing REG_3 (VM collateralization) vs. REG_4
(VM & IM collateralization). Here, we can see that the effect of the additional IM
overcollateralization unambiguously reduces the exposure further.

When comparing REG_1 (uncollateralized) vs. REG_4 (VM & IM collateral-
ization) directly, we can see in Fig. 10 that the reduction in exposure is larger and
distributed more narrowly compared with just the VM collateralization, see Fig. 8.
There are still some netting sets left, which show an increase which is due to posted
variation margin. However, this increase is smaller as under REG_3 as it is mitigated
by the additional IM collateral.

8It should be highlighted that in our simulation we model the bilateral trading between various
banks, where Initial Margin is posted into segregated accounts. Derivatives that are cleared through
a central counterparty (CCP) or exchange traded derivatives (ETDs) are not in scope of this
simulation.

A Data Science Approach to Predict the Impact of Collateralization on Systemic Risk 187

Fig. 10 Histogram of relative reduction in EEPE over all netting sets (69 out of 1378 have more
than 150% increase and are not shown, 29 of those have zero uncollateralized EEPE). Mean:
−83.83%, SD: 34.44%

-1000

-500

500

0

-2000

-3000

-2500

-3500

-1500

Fig. 11 Total increases and decreases in EEPE of all netting sets between the various regimes

It should be noted that while the increases in exposure we see in Figs. 8 and 10
are large in relative terms, they are actually quite small in absolute terms, see Fig. 11,
where we compute the total increases and decreases in EEPE of all the netting sets
separately.

188 S. O’Halloran et al.

Fig. 12 Visualization of data outputted from systemic risk engine in Jupyter notebook dashboard.
Depicts trade relations and risk graphs for various financial systems/regimes (top left) along with
impact on risk within system (top right) and on individual counterparties measured in absolute
terms (bottom left) and relative terms (bottom right). Can be configured and visualized with
different regulations imposed

4.1 Jupyter Dashboard

To interactively explore the above results further, we developed a Jupyter dash-
board,9 see Fig. 12, using the jupyter_dashboards extension. Data on various
financial systems and effects from various collateralization regulations outputted
from the systemic risk engine is imported using pandas. The data is manipulated
into proper forms for graphing purposes primarily using pandas and numpy. The
trade relations and risk graphs are assembled using the erased configuration model
from networkx and visualized using the visJS2jupyter module. The size of
each node corresponds to the share of risk induced by the counterparty, while the
width of the in-edges and out-edges quantifies the risk received respectively induced
by the counterparty.

The remaining graphs are plotted using bqplot. The interactive menu is created
using elements from the ipywidgets module that interact directly with elements
within the notebook. The various financial systems and regulations can be chosen
using dropdown menus with the option to switch between the trade relation and
risk graphs. Javascript is employed to allow for dynamic execution of cells
within the notebook and recreation of the graphs. Animations built into bqplot
allow for seamless transitions across configurations, while the networkx graphs
are regenerated upon each execution.

9Will be made available on http://fintech.datascience.columbia.edu/.

http://fintech.datascience.columbia.edu/

A Data Science Approach to Predict the Impact of Collateralization on Systemic Risk 189

5 Synopsis

Our results can be summarized as follows:

1. Collateralization reduces the costs of resolution drastically,10 see Fig. 6. In that
sense, it reduces systemic risk.

2. The case study however suggests that collateralization does not change the
distribution of these costs in the system, see [17, Sect. V].

3. The data mining exercise makes visible that in rare cases of netting sets, which
are deeply out of the money, VM collateralization can actually cause an increase
in exposure, which can be large in relative terms, but is small in absolute terms,
see Figs. 8 and 11.

Notice that these results are an interplay of the aggregated macro-exposures and
a systematic analysis of all micro-exposures, which would not be possible outside
of the present framework.

Regarding practical applicability of this research, any bank b knows its own
EEPE−(b) and has to report this quantity to the regulator. It is reasonable to assume
that it also knows its EEPE(b, b′) for any other counterparty b′ it does business
with. (Especially for large complex banks, it is reasonable to assume that they
can compute their own EEPE+(b) as well.) A regulator who would collect this
information from all banks in the system could actually compute a graph like Fig. 4
representing the exposures in the real financial system as of today.

The research outlined in this chapter can be expanded into several directions.

Large-Scale Simulation The results from Sect. 4 we obtained by running the
simulation technology described in Sect. 3 on a client desktop machine. We plan
to deploy this on a cold environment and run a larger-scale simulation.

Capitalization and Central Clearing The EEPE+(b) of a bank b should be thought
of as a measure of loss given failure, not a probability of failure. A bank with a large
EEPE+(b) can actually still be very safe, if it has also large capital reserves. The key
to take this into account is to add a capital adequacy ratio function CR : B → R as a
node data function in Definition 1 and to add RWA as an additional risk metric to the
edges of the risk graph in Definition 2 (and then also to the nodes via the procedure
described in Definition 4). The core capital of each bank can then be computed from
that. This allows us to model a bank failure due to market risk, for instance by using
the criterion:

CC(b) < VaRq(b), (4)

10The question to what extent exactly Initial Margin reduces exposure to CCR is subject to debate
even when considering only one counterparty. In [2], the authors argue that when taking time lags
between trade payments and margin reposting into account, the reduction is much smaller.

190 S. O’Halloran et al.

where VaRq is the Value at Risk at some confidence level q. It also allows us to
model a bank failure due to credit risk, for instance using the criterion:

CC(b1) < EEPE((b1, b2)). (5)

By increasing the confidence level q further and further and labeling a bank as
defaulted if either Eqs. (4) or (5) is satisfied, one can study the collapse of the whole
system. In particular, one can study how a default of one counterparty causes chain
reaction of defaults. The values of q at which default events occur can be interpreted
as p-values of the hypothesis that the system is safe. We believe this framework to
be particularly suited to study the regulation around central clearing in a similar
fashion.

Agents-Based Creation of Trade Relation Graphs Recall from Sect. 3.1 that we
are currently generating the trade relations such that the degrees are approximately
Pareto distributed, because this is in line with empirical data from [10]. If we
prescribe the degrees, we obviously cannot get any insight into why those trade
relations are formed. Therefore, we propose to enhance this by adding a trading
strategy to the node data in Definition 1 for each bank. During the simulation,
the banks would then trade based on that strategy and the evolution of the market
and form those trade relations dynamically. It would be interesting to study under
what conditions this produces Pareto distributed trade relations. As a byproduct, this
enables studying the systemic market risks in trading strategies. What happens for
example if everybody is trend following?

Derivative Market vs. Money Market In the current example, only the derivative
business is considered. However, there is also an inherent credit risk in the classical
money market. The financial regulation on collateralization has a significant impact
on the interplay between the two: Unlike Variation Margin, the Initial Margin cannot
usually be rehypothecated (that means you cannot reuse the Initial Margin you
receive from one counterparty to post your Initial Margin to another). Raising the
necessary funds to post Initial Margin will increase the business in the money
markets and it would be interesting to test the hypothesis that this increases the
systemic credit risk in the money market in a similar fashion. In that case the trade-
off between the reduction of credit risk in the derivative market and the increase
of credit risk in the money market should be further examined. Imagine a situation
where a counterparty A hedges a trade it has sold to counterparty B by buying a
reversed trade from counterparty C. Although A has zero market risk, it has to post
Initial Margin twice, namely to B and C. If A borrows this Initial Margin directly or
indirectly from B or C, the reduction in overall credit risk across both markets will
be a lot lower.

Initial Margin and Funding Costs The reduction in EEPE in the derivative business
comes at the cost of funding the collateral, in particular the Initial Margin. It is to
be expected that these costs will be significant. On the other hand, the reduction
in EEPE yields to a reduction in RWA, which yields to a reduction in the cost

A Data Science Approach to Predict the Impact of Collateralization on Systemic Risk 191

of capital. Therefore, it would be interesting to study the trade-off between the
reduction in the cost of capital and the increase in funding costs. There are already
various standardized metrics, called XVAs, to measure funding costs. In particular,
the Margin Value Adjustment (MVA), which captures the additional funding costs
due to Initial Margin, contributes significantly. Studying the levels, evolution, and
distribution of Variation Margin and Initial Margin and the associated XVAs as part
of a case study as well as systemic versions of that would enable a quantitative
evaluation of the trade-off.

Credit Risk vs. Liquidity Risk vs. Market Risk vs. Model Risk While the reduction
of credit risk in Fig. 6 is very convincing, one should keep in mind that EEPE,
the metric we use to quantify systemic risk, is a metric that captures Counterparty
Credit Risk only. However, this is not the only source of risk in a financial system.
Therefore, it would be more precise to say that collateralization reduces systemic
credit risk. It is very reasonable to assume that pulling large amounts of money out
of a financial system due to Initial Margin increases the liquidity risk in that system.
Therefore, testing the hypothesis that collateralization increases systemic liquidity
risk in a similar fashion and again study the trade-off between the two would be
enlightening. We believe that the key to understand the link between credit risk and
liquidity risk lies in a detailed analysis of the XVAs. While quantifying liquidity
risk is difficult, it should be pointed out that value at risk (VaR), a standard metric
to measure market risk—the most obvious source of risk—has a systemic analogue,
namely CoVaR, see [1]. Finally, model risk can be added as well. This would allow
us to study if for instance the increasing standardization of models increases or
decreases the risk of system-wide model failures. What happens if everybody uses
the same model and there exists a market condition under which it fails at one bank?
It would be prudent to have a comprehensive simulation that studies the impact of
collateralization on all these sources of risk and systemic risk.

References

1. Adrian, T., Brunnermeier, M.K.: CoVaR. Am. Econ. Rev. 106(7), 1705–1741 (2016)
2. Andersen, L., Pykhtin, M., Sokol, A.: Does Initial Marign Eliminate Counterparty Risk?,

risk.net (May 2017)
3. Anfuso, F., Aziz, D., Giltinan, P., Loukopoulos, K.: A Sound Modelling and Backtesting

Framework for Forecasting Initial Margin Requirements, SSRN Pre-print (2016)
4. Bales, M., Johnson, S.: Graph theoretic modeling of large-scale semantic networks. J. Biomed.

Inform. 39(4), 451–464 (2006)
5. Bayati, M., Kim, J.-H., Saberi, A.: A sequential algorithm for generating random graphs.

Algorithmica 58(4), 860–910 (2010)
6. Billio, M., Getmansky, M., Lo, A.W., Pelizzon, L.: Econometric Measures of Systemic Risk in

the Finance and Insurance Sectors. NBER Working Paper 16223, NBER (2010)
7. Bisias, D., Flood, M., Lo, A.W., Valavanis, S.: A Survey of Systemic Risk Analytics. Office of

Financial Research, Working Paper #0001 (January 5, 2012)
8. Britton, T., Deijfen, M., Martin-Löf, A.: Generating simple random graphs with prescribed

degree distribution. J. Stat. Phys. 124(6), 1377–1397 (2006)

192 S. O’Halloran et al.

9. Caspers, P., Lichters, R.: Initial Margin Forecast–Bermudan Swaption Methodology and Case
Study (February 27, 2018). Available at SSRN: https://ssrn.com/abstract=3132008

10. Cont, R., Moussa, A., Santos, E.: Network structure and systemic risk in banking systems.
In Fouque, J., Langsam, J. (ed.): Handbook on Systemic Risk, pp. 327–368. Cambridge
University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139151184.018

11. Caspers, P., Giltinan, P., Lichters, R., Nowaczyk, N.: Forecasting initial margin requirements–a
model evaluation. J. Risk Manage. Financ. Inst. 10(4), 365–394 (2017)

12. Erdős, P., Rényi, A.: On random graphs. Publ. Math. 6, 290–297 (1959)
13. Erdőos, P., Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5,

17–61 (1960)
14. Lichters, R., Stamm, R., Gallagher, D.: Modern Derivatives Pricing and Credit Exposure

Analysis: Theory and Practice of CVA and XVA Pricing, Exposure Simulation and Backtesting
(Applied Quantitative Finance), Palgrave Macmillan, Basingstoke (2015)

15. McWalter, T., Kienitz, J., Nowaczyk, N., Rudd, R., Acar, S.K.: Dynamic Initial Margin
Estimation Based on Quantiles of Johnson Distributions, Working Paper (2018) Available at
SSRN: https://ssrn.com/abstract=3147811

16. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256
(2003)

17. O’Halloran, S., Nowaczyk, N., Gallagher, D.: Big data and graph theoretic models: simulating
the impact of collateralization on a financial system. Proceedings of the 2017 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining 2017,
ASONAM ’17, pp. 1056–1064. (2017)

18. O’Halloran, S., Nowaczyk, N., Gallagher, D.: Big data and graph theoretic models: simulating
the impact of collateralization on a financial system. In Proceedings of the 2017 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining 2017,
ASONAM ’17, pp. 1056–1064. ACM, New York (2017). https://doi.org/10.1145/3110025.
3120989

19. Open Source Risk Engine. www.opensourcerisk.org. First release in October 2016

https://ssrn.com/abstract=3132008
https://doi.org/10.1017/CBO9781139151184.018
https://ssrn.com/abstract=3147811
https://doi.org/10.1145/3110025.3120989
https://doi.org/10.1145/3110025.3120989
www.opensourcerisk.org

Mining Actionable Information from
Security Forums: The Case of Malicious
IP Addresses

Joobin Gharibshah, Tai Ching Li, Andre Castro, Konstantinos Pelechrinis,
Evangelos E. Papalexakis, and Michalis Faloutsos

Abstract The goal of this work is to systematically extract information from hacker
forums, whose information would be in general described as unstructured: the text
of a post is not necessarily following any writing rules. By contrast, many security
initiatives and commercial entities are harnessing the readily public information,
but they seem to focus on structured sources of information. Here, we focus on
the problem of identifying malicious IP addresses, among the IP addresses which
are reported in the forums. We develop a method to automate the identification
of malicious IP addresses with the design goal of being independent of external
sources. A key novelty is that we use a matrix decomposition method to extract
latent features of the behavioral information of the users, which we combine with
textual information from the related posts. A key design feature of our technique is
that it can be readily applied to different language forums, since it does not require a
sophisticated natural language processing approach. In particular, our solution only
needs a small number of keywords in the new language plus the user’s behavior
captured by specific features. We also develop a tool to automate the data collection
from security forums. Using our tool, we collect approximately 600K posts from
three different forums. Our method exhibits high classification accuracy, while the
precision of identifying malicious IP in post is greater than 88% in all three forums.
We argue that our method can provide significantly more information: we find up
to three times more potentially malicious IP address compared to the reference
blacklist VirusTotal. As the cyber-wars are becoming more intense, having early
accesses to useful information becomes more imperative to remove the hackers first-
move advantage, and our work is a solid step towards this direction.

J. Gharibshah (�) · T. Ching Li · A. Castro · E. E. Papalexakis · M. Faloutsos
University of California Riverside, Riverside, CA, USA
e-mail: jghar002@ucr.edu; tli010@ucr.edu; acast050@ucr.edu; epapalex@ucr.edu;
michalis@ucr.edu

K. Pelechrinis
School of Information Sciences, University of Pittsburgh, Pittsburgh, PA, USA
e-mail: kpele@pitt.edu

© Springer Nature Switzerland AG 2019
P. Karampelas et al. (eds.), From Security to Community Detection in Social
Networking Platforms, Lecture Notes in Social Networks,
https://doi.org/10.1007/978-3-030-11286-8_9

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11286-8_9&domain=pdf
mailto:jghar002@ucr.edu
mailto:tli010@ucr.edu
mailto:acast050@ucr.edu
mailto:epapalex@ucr.edu
mailto:michalis@ucr.edu
mailto:kpele@pitt.edu
https://doi.org/10.1007/978-3-030-11286-8_9

194 J. Gharibshah et al.

Keywords Security · Online communities mining · Forums

1 Introduction

How can we take the first-mover advantage away from hackers? We argue that
hacker forums provide information earlier than other sources, and we should lever-
age these forums in our security intelligence. Here, we focus on a specific question.
In particular, we want to extract as much useful information from hacker/security
forums as possible in order to perform (possibly early) detection of malicious IP
addresses, e.g., prior to their appearance on blacklists. The latter can exhibit large
delays in their update and hence, new ways for labeling malicious IP addresses
are needed [10]. In this study we will use the term “hacker forums” to describe
online forums with a focus on security and system administration. Interestingly,
we can classify these forums into categories: (a) main stream forums, like Wilders
Security, and (b) “fringe” forums, like Offensive Community, where we find users
with names like satan911. Some of these forums have been known to have hackers
boast of attacks they have mounted, or sell tools for malicious purposes (think rent-
a-botnet). For example, in our dataset there is a post that mentions “I give you a
second server to have your fun with. Multiple websites on this server. So let’s see if
anyone can actually bring down the server.” Right after that the hacker posted the IP,
username, and password for anyone to access the server. In fact, there is a show-off
section in these forums for people to broadcast their hacking “skills.”

The overarching goal of this work is to mine the unstructured, user-generated
content in security forums. Specifically, we focus here on collecting malicious IP
addresses, which are often reported at such forums. We use the term security forum
to refer to discussion forum with a focus on security, system administration, and/or
more generally, system-related discussions. The users in these forums include:
security professionals, hobbyists, and hackers, who go on these forums to identify
issues, discuss solutions, and in general exchange information.

Let us provide a few examples of how users report IP addresses, which may
or may not be malicious. Posts could talk about a benign IP address, say in
configuration files, as in the post:

[T]his thing in my hosts file: 64.91.255.87 . . . [is] it correct?

At the same time, posts could also report compromised or malicious IP addresses,
as in the post:

My browser homepage has been hijacked to http://69.50.191.51/2484/.

The challenge is to automatically distinguish between the two. By doing so, we
can provide a new source of information of malicious IP addresses directly from the
affected individuals. Formally, we can state the problem as follows:

Key Question: Malicious IP Detection Given a set of posts PF that may contain
IP addresses and users UF of a security forum F , as well as, the features Φp, ∀p ∈

http://69.50.191.51/2484/

Mining Actionable Information from Security Forums: The Case of Malicious. . . 195

Table 1 Extracting useful
information; number of
malicious IP addresses found
by InferIP and not by
VirusTotal

IP found by

Dataset Total IP Virus Total InferIP only

Wilders Security 4338 216 670
Offensive Community 7850 339 617
Ashiyane 8121 133 806

PF and Φu, ∀u ∈ UF for the posts and the users, respectively, can we determine
if a given IP address i is malicious or not?

The set of features PF includes attributes such as the text of the post, the posting
user, the time of post, etc., while UF includes information such as the date of a user
joining the forum, the number of posts the user has made, etc. The above problem
has two associated questions:

(a) Exclusivity: How many IP addresses can we find that are never reported by
other reference sources?

(b) Early warning: How much earlier are malicious IP addresses reported in a
forum compared to reference sources, for the IP addresses reported by both?

Most previous studies in this area have focused on structured information
sources, such as security reports, or malware databases. In fact, many efforts
focus on addressing security problems using knowledge obtained from the web,
as well as social and information networks. These efforts are mainly focused on
analyzing structured sources (e.g., [11]). However, studies assessing the usefulness
of (unstructured) information in online forums have only recently emerged (e.g.,
[19]). These studies are rather exploratory and provide evidence of the usefulness of
the data in the forums, but do not provide a systematic methodology or ready-to-use
tools, which is the goal of our work. We discuss existing literature in more detail
later in Sect. 5.

The motivation of our work is to provide more information to security analysts
and systems. We want to enhance and complement, but not replace, existing efforts
for detecting malicious IP addresses. For instance, many IP blacklists enlist an IP as
malicious after a number of reports above a pre-defined threshold have been made
for the specific address. Depending on the threshold and the reactivity of the affected
users/systems, this might take several days, weeks, or months. Therefore, a system,
like the one proposed here, can identify and point to malicious IP address to blacklist
services and firewalls.

We propose InferIP, a systematic approach for identifying malicious IP addresses
among the IP addresses, which are mentioned in security forums. A key novelty
is that we use the behavioral information of the users, in addition to the textual
information from the related posts. Specifically, we customize and use a sparse
matrix regression method on this expanded set of features. By design, our frame-
work is applicable to forums in different languages as it relies only on the behavioral
patterns of users and simple word counts, and not a complex language-specific
natural language processing technique. From a technical point of view the challenge

196 J. Gharibshah et al.

in designing a solution to our key question is most IP addresses mentioned in these
forums are not malicious. We show that our system can add a significant number
of previously unreported IP address to existing blacklist services. Finally, as an
engineering contribution, we develop a customizable tool to facilitate the crawling
of forums, which we discuss in the next section.

Our results can be summarized into the following points:

(a) Our method exhibits precision and recall greater than 88% and 85%,
respectively, and an accuracy over malicious class above 86% in the 10-fold
cross validation tests we conducted for the three different forums. In partially
answering our key question, if our method labels a currently non-blacklisted IP
as malicious, there is a high chance that it is malicious, given our high precision.

(b) Our method identifies three times more malicious IP addresses compared
to VirusTotal [21], a widely used aggregator of 60 blacklists of IP addresses.
Across our three forums, we find more than 2000 potential malicious IP
addresses that were never reported by VirusTotal (Table 1).

(c) Our method identifies more than half of the IP addresses at least 3
month earlier than VirusTotal. We study the malicious IP addresses that
are identified by both VirusTotal and InferIP. We find 53%, 71%, and 62% of
these IP addresses in Wilders Security, Offensive Community, and Ashiyane,
respectively, at least 3 months earlier than they were reported in VirusTotal.

(d) The number of reported malicious IP addresses has increased by a factor
8 in 4 years. We find that the number of malicious IP addresses has increased
from roughly 100 in 2011 and 2012 to more than 800 in 2016. This could be
attributed to either an increase in the user base, an increase in the number of
attacks, or a combination of the two.

2 Data Collection and Basic Properties

We have collected data from three different forums relevant to our study: (1) Wilders
Security [22], (2) Offensive Community [15], and (3) Ashiyane [3]. The first two
forums are mainly written in English, while the last forum is an Iranian forum, in
Farsi.1

Our Data Collection Tool We develop a customizable universal tool to make the
crawling forums easier. The challenge here is that each forum has its own format
and layout. Our tool requires only a custom configuration file, before crawling a
new forum. In configuration file, we specify entities in the forum which are needed
such as user ID, post’s date, post’s content, etc., by XML path language known as
Xpath. Leveraging our current configuration files, the task of crawling a new forum

1Our software and datasets will be made available at http://www.hackerchatter.org/.

http://www.hackerchatter.org/

Mining Actionable Information from Security Forums: The Case of Malicious. . . 197

Table 2 The collected forums

Forum Threads Posts Users Active days

Wilders Security 28,661 302,710 14,836 5227

Offensive Community 3542 25,538 5549 1508

Ashiyane 67,004 279,309 22,698 4978

100 101 102 103 104
10−4

10−2

100

102

Number of posts

P
er

ce
n

ta
g

e
o

f
u

se
rs

10
0

10
1

10
2

10
310−2

10−1

10
0

101

102

Number of posts

P
er

ce
n

ta
g

e
o

f
u

se
rs

10
0

10
1

10
2

10
3

10
410−4

10−2

100

102

Number of posts

P
er

ce
n

ta
g

e
o

f
u

se
rs

(a) (b) (c)

Fig. 1 CCDF of the number of posts per user (log–log scale). (a) Wilders Security. (b) Offensive
Community (c) Ashiyane

is simplified significantly. Using our crawler, we collect data from three forums, two
English and one in Farsi, for a total number of more than 30K users and 600K posts.

We use VirusTotal [21] as our reference blacklist IP addresses, since it is
an aggregator, and combines the information from over 70 other blacklists and
resources. VirusTotal is free to end users for non-commercial use and is a private
API to query the services in the rate of more than 4000 IP addresses per minute. It
is provided upon requests for academic purposes.

We provide some basic statistics for our three forums in Table 2. Offensive
Community and Ashiyane are two fringe forums in different languages. In these
forums there is a section where people openly boast about their achievement in
hacking. They share their ideas and tutorials on how to break into vulnerable
networks. On the other hand, Wilders Security as a mainstream forum is mostly
used to protect non-experts against attacks such as browser hijacking, and provide
solutions for their security problems.

For completeness, we present some of the terms we use here. A user is defined by
a login name registered with the site. The term post refers to a single unit of content
generated by a user. A thread refers to a collection of posts that are replies to a given
initiating post.

In Figs. 1 and 2, we present the cumulative complementary distribution function
of the number of posts per user and the number of threads per user, respectively.
As we can see in all the cases the distributions are skewed, that is, most of the users
contribute few posts in the forums and engage with few threads. In Wilders Security,
85% of users post less than 10 posts each, while 5.2% of the users post more than
50 posts. We find that 70% of the users post in only one thread and only 8% of the
users are active in more than 10 threads. This skewed behavior is typical for online

198 J. Gharibshah et al.

10
0

10
1

10
2

10
3

10
410

−4

10
−2

10
0

10
2

Number of threads

P
er

ce
n

ta
g

e
o

f
u

se
rs

10
0

10
1

10
2

10
310

−2

10
−1

10
0

10
1

10
2

Number of threads

P
er

ce
n

ta
g

e
o

f
u

se
rs

10
0

10
1

10
2

10
3

10
410

−4

10
−2

10
0

10
2

Number of threads

P
er

ce
n

ta
g

e
o

f
u

se
rs

(a) (b) (c)

Fig. 2 CCDF of the number of thread per user (log–log scale). (a) Wilders Security. (b) Offensive
Community (c) Ashiyane

10
0

10
1

10
210

−2

10
−1

10
0

10
1

10
2

Number of IPs

p
er

ce
n

ta
g

e
o

f
p

o
st

s

10
0

10
1

10
210

0

10
1

10
2

Number of IPs

p
er

ce
n

ta
g

e
o

f
p

o
st

s

10
0

10
1

10
2

10
310

−2

10
−1

10
0

10
1

10
2

Number of IPs

p
er

ce
n

ta
g

e
o

f
p

o
st

s

(a) (b) (c)

Fig. 3 CCDF of the number of IP addresses per post (log–log scale). (a) Wilders Security. (b)
Offensive Community (c) Ashiyane

users and communities [7]. We will use features to capture aspects of both these
user properties, as we will see in the next section.

In Fig. 3, we present the cumulative complementary distribution function of the
number of IP addresses that appear in each post. The skewed distribution shows
that most of the posts contain a few number of IP address. We find that 84.2% of
the posts with IP addresses in Wilders Security and 84.1% in Offensive Community
have two or less IP addresses. In Ashiyane, 87.2% of these posts contain less than
two IP addresses. Interestingly, in Ashiyane, we find 1% of the IP containing posts
with more than 100 IP addresses. We investigated and found that typically, these
posts provide benign IP addresses of proxies’ servers to fellow administrators.

Groundtruth for Training and Testing In order to build and evaluate our model
we need to obtain a reasonably labeled dataset from IP addresses that appear in
the posts of the security forums. For that, we use the VirusTotal service and assign
malicious labels to an IP that has been reported by this service. The number of
malicious IP addresses that we have used with the corresponding posts is shown in
Table 1 as the IP found by VirusTotal. Note that the absence of a report on VirusTotal
does not necessarily mean that the IP is benign. However, a listed IP address is most
likely malicious, since VirusTotal as most blacklist sites requires a high threshold of

Mining Actionable Information from Security Forums: The Case of Malicious. . . 199

confidence for blacklisting an address. This way, we find in total 688 malicious IP
addresses for our forums as shown in Table 1.

Using this labeling process we have collected all the IP addresses that have
appeared on our forums prior to their report on VirusTotal. For building our model,
we also randomly select an equal number of IP addresses that have not been reported
as malicious and via manual inspection further assess their status. Finally, for every
security forum we have a different dataset and hence, we build a different model.

3 InferIP: Malicious IP Detection

We propose a method to identify whether an IP address within a post is malicious.
For example, although many users report a malicious IP address, such as one that
is attacking the user’s network, there are also users who will mention a benign
IP address when people discuss about network tutorials like setting up Putty or
initiating a SSH connection.

While this task is simple for a human, it is non-trivial to automate. Adding to
the challenge, different communities use different terminology and even different
languages altogether (English and Farsi in our case). In order to overcome these
challenges, we use a diverse set of features and build a model to identify IP addresses
that are potentially malicious.

Our approach consists of four steps that each hide non-trivial novelties:

Step 1: We consider the user behavior and extract features that profile users who
post IP-reporting posts.

Step 2: We extract keywords from the posts and use information gain to identify
the 100 most informative features.

Step 3: We identify meaningful latent feature sets using an unsupervised co-
clustering approach [16].

Step 4: We train a classifier using these latent feature sets using 10-fold cross
validation.

We describe each step in more detail.

Step 1: Behavioral Features We associate each user of the forum with a set of 11
features that capture their behavior. In particular:

• Number of posts: The total number of posts made by the user.
• Number of threads: The total number of threads the user has contributed to.
• Number of threads initiated: The total number of threads initiated by the user.
• Average thread entropy: The average entropy of the user distribution of the

threads in which the user has contributed to.
• Number of active days: The number of days that the user generates at least one

post.
• Average day entropy: The average entropy of the user distribution of the posts

made on the days that the user is active.

200 J. Gharibshah et al.

• Active lifetime: The number of days between the first and the last post of the
user.

• Wait time: The number of days passed between the day the user joined the forum
and the day the user contributed their first post.

• Average post length: The average number of characters in the user’s posts.
• Median post length: The median number of characters in the user’s posts.
• Maximum post length: The number of character’s in the user’s longest post.

Step 2: Contextual Features Apart from the aforementioned behavioral features
we also include features related with the context in which an IP address appears
within a post. In particular, we consider the frequency of the words (except stop-
words) in the posts. Words that are frequent only in few documents (posts in our
case) are more informative than those that appear frequently on a larger corpus [18].
To this end, we use TFIDF to weight the various words/terms that appear in our
data.

After calculating the frequency and the corresponding weights of each word in
the dataset we end up with more than 10,000 features/terms. Hence, in the next step
we select discriminative features by extracting latent features.

We begin by performing feature selection in order to identify the most infor-
mative features by applying the information gain framework [23]. Furthermore, in
order to avoid overfitting we pick a random subset of posts from the whole dataset
and select the highest ranked features based on Information Gain score. In this way,
a subset of discriminative keywords, 100 in our model, are selected. It turns out that
each user uses only a small number of those words, resulting in a sparse dataset
which we wish to exploit in our model.

Step 3: Identifying Latent Feature Sets We also like to leverage latent similarities
of different posts in some of the dimensions spanned by post features and behavioral
features for the writer of the post. Essentially, we seek to identify groups of highly
similar posts under a small number of features, which does not necessarily span the
full set of features. The reason why we wish to pinpoint a subset of the features
instead of the entire set is because this way we are able to detect subtle patterns
that may go undetected if we require post similarity across all the features. We call
those sets of features latent feature sets. To this end, we apply a soft co-clustering
method, sparse matrix regression (SMR) [16], to exploit the sparsity and extract
latent features of the post containing IP addresses. Given a matrix X of posts ×
features, its soft co-clustering via SMR can be posed as the following optimization
problem:

min
ar≥0,br≥0

‖X −
R∑

r

arbT
r ‖2

F + λ
∑

i,r

|ar (i)| + λ
∑

j,r

|br (j)|

where ar and br are vectors that “describe” co-cluster r , which we explain below.
Each ar is a vector with as many dimensions as posts. Each value ar (i) expresses
whether post i is affiliated with co-cluster r . Similarly, br is a vector with as many

Mining Actionable Information from Security Forums: The Case of Malicious. . . 201

Table 3 Selecting a classifier: overall accuracy

Forum Naive Bayes 3NN Logistic regression

Wilders Security 91.9% 87.1 % 94.8%

Offensive Community 84.1% 83.2% 86.5%

Ashiyane 85.1% 82.3% 94%

dimensions as features, and br (j) expresses whether feature j is affiliated with co-
cluster r . Parameter λ controls how sparse the co-cluster assignments are effectively
controlling the co-cluster size. As we increase λ we get sparser results, hence cleaner
co-clustering assignments. We tune λ via trial-and-error so that we obtain clean but
non-empty co-clusters, and we select λ = 0.01 in our case.

Step 4: Training the Model We subsequently train a number of classifiers using
the selected features based on a matrix. In particular, we examine (a) a Naive Bayes
classifier, (b) a K-nearest neighbor classifier, and (c) a logistic regression classifier.
Our 10-fold cross validation indicates that the Logistic regression classifier outper-
forms kNN and Naive Bayes, achieving high accuracy, precision, and recall (see
Table 3).

Determining Feature Sets We investigate the effect of selecting different feature
sets in classifying IP addresses in forums. To this end, we investigate three subsets
of the features discussed earlier.

(a) Words-Frequency is the normalized frequency of the most informative words
that appear in a post as discussed in Step 2.

(b) Combined is the set of features which consists of the combination of the
words-frequency features, defined above, and user behavior features, which are
extracted in Step 1. In other words, it is the union of the features in Steps 1 and
2.

(c) Co-Clustered is the latent set of features extracted in Step 3 by applying the
co-clustering approach on the Combined features set.

We evaluate these three sets of features on their ability to enable the classification.
In more detail, we use these features with a classifier to assess their effectiveness
by computing the accuracy of the classifier to identify malicious IP addresses.
According to the results which are shown in Fig. 4, the Co-Clustered features set
exhibits higher accuracy by 4.1% compared to Words-Frequency. On the other
hand, although the Combined features do not increase the accuracy compared to
the Words-Frequency, the co-clustering method does. It extracts the latent features
from the Combined features set and outperforms Words-Frequency and Combined
in identifying malicious IP addresses.

202 J. Gharibshah et al.

Combined Words−Frequecny Co−Clustered
80

85

90

95

100

105

A
cc

u
ra

cy
 P

er
ce

n
ta

g
e

Datasets

Fig. 4 Accuracy of different feature sets in Wilders Security forum to detect malicious IP

Table 4 InferIP evaluation: 10-fold cross validation evaluation (using logistic regression)

Forum Instances Precision Recall ROC Area

Wilders Security 362 0.9 0.94 0.96

Offensive Community 342 0.88 0.85 0.91

Ashiyane 446 0.9 0.92 0.92

3.1 Applying InferIP on the Forums

Having established the statistical confidence of our classifier, we apply it on the
posts of the forums except the ones that we used in our ground truth. We use the
logistic regression classifier as it exhibits the best performance (Table 4).

Applying InferIP on the forums shows that there is a wealth of information that
we can extract from security forums in two aspects of the quantity and time of
detecting malicious IP against VirusTotal.

(a) Detecting more IP addresses. With InferIP, we find an additional 670 mali-
cious IP addresses in Wilders Security, 617 in Offensive Community, and 806
in Ashiyane (see Table 1). In other words, InferIP enables us to find three times
additional malicious IP addresses in total compared to the IP addresses found
on VirusTotal. It is interesting to observe that this factor varies among our three
sites. For Ashiyane, our method finds roughly six times additional malicious
IP addresses. With a precision of roughly around 90% and considering small
amount of False Positive rate, our method can add a significant number of
malicious IP addresses to a blacklist. Using the limited manual inspection, we
confirm that the precision of the method on out-of-sample data is in the order of
88%.

(b) Detecting malicious IP addresses earlier: more than half IPs, at least 3
months earlier. Here we focus on the malicious IP addresses that are jointly
identified by our method and VirusTotal and compare the time that they were

Mining Actionable Information from Security Forums: The Case of Malicious. . . 203

Table 5 Timely comparison between jointly detected malicious IP addresses in InferIP and
VirusTotal. Reported percentage of malicious IP addresses which InferIP detected earlier than
VirusTotal

At least X months earlier

Dataset 3 6 12

Wilders Security 53% 23% 14%

Offensive Community 71% 46% 21%

Ashiyane 62% 49% 37%

Average (across forums) 62% 39% 24%

10
0

10
1

10
2

10
3

10
410

−1

10
0

10
1

10
2

Number of posts

P
er

ce
n

ta
g

e
o

f
u

se
rs

10
0

10
1

10
2

10
310

−1

10
0

10
1

10
2

Number of posts

P
er

ce
n

ta
g

e
o

f
u

se
rs

10
0

10
1

10
2

10
3

10
410

−1

10
0

10
1

10
2

Number of posts

P
er

ce
n

ta
g

e
o

f
u

se
rs

(a) (b) (c)

Fig. 5 CCDF of the number of overall posts per contributing user (who report malicious IPs) in
log–log scale. (a) Wilders Security. (b) Offensive Community (c) Ashiyane

reported in each source, and show the results in Table 5 for 3, 6, and 12 months
difference in time. We compare jointly detected IP addresses with InferIP and
VirusTotal in terms of time that the IP addresses were mentioned in posts and
the time they were reported on VirusTotal. We see that on average 62% of the
malicious IP addresses with InferIP could be identified at least 3 months earlier
than VirusTotal. We can see that with InferIP, we find 53%, 71%, and 62% of
these IP addresses in Wilders Security, Offensive Community, and Ashiyane,
respectively, at least 3 months earlier than in VirusTotal. We also identify 39%
and 24% of the malicious IP addresses, respectively, at least 6 and 12 months
earlier with InferIP.

Additional Stress-Testing of Our Accuracy In order to assess the performance
of our approach, we randomly picked 10% of the labeled data with InferIP method
and annotated them manually by human annotators. The calculated accuracy on the
sampled data shows more than 85% accuracy on average over all datasets which is
close but somewhat lower than the reported accuracy in Table 3.

Contributing Users Who are the users that report malicious IP addresses? We
want to understand and ideally develop a profile for these users, which we will refer
to as Contributing users. We start by considering the number of post these users post
on the forums.

The Majority of IP Reporting Is Done by Highly Active (More Than 10
Posts Overall) in Ashiyane In Fig. 5, we show the cumulative complementary
distribution function for the number of posts per Contributing user for Ashiyane.

204 J. Gharibshah et al.

More than 72% of the Contributing users post more than 10 posts overall, which
we consider as high engagement given the distribution of posting that we saw in
the previous section. Therefore, in Ashiyane, Contributing users are contributing
significantly in reporting malicious IP addresses. Intrigued, we examined further
and found that, among them, there are two users who have more than 1000 posts,
1058 and 2780 to be exact, and whose user-names are “Classic” and “Crisis.” On
the other side of the spectrum, 2.4% of Contributing users have posted a single post
in the forum, and in that post they reported a malicious IP address.

The Majority of IP Reporting Is Done by Less Active Users (Less Than
10 Posts Overall) in Offensive Community In Fig. 5, we show the cumulative
complementary distribution function for the number of posts per Contributing
user for Offensive Community. Unlike Ashiyane, here 65% of the Contributing
users have less than 10 posts overall. Going into more detail, roughly 12% of the
Contributing users have a single post overall, while 26% of them have only two
overall posts. The same behavior is observed in Wilders Security which is shown in
Fig. 5.

Overall, there does not seem to be an obvious pattern between number of total
posts and number of malicious IPs reported among Contributing users.

3.2 Case-Study: From Reported Malicious IPs to a DDoS
Attack

We show that mining the forums could actually provide information about real
events. We identify a link between a malicious IP address that our method detected
with an actual DDoS attack.

We conducted the following analysis. We plot the time-series of the number of
posts containing malicious IP addresses in Wilders Security from 2012 to 2013
found by InferIP. We show the time-series in Fig. 6. We observe some spikes on
these time-series, which we further analyze. One of the spikes was in September
2012, and it reports a set of malicious IP addresses that were involved in an DDoS
attack that month. That same thread continued being active, and in December of
2012, it was reported in that thread that attack was caused by Nitol Botnet due to a
Microsoft’s vulnerability [14].

We argue that this case-study points to additional layers of functionality that can
be built upon our method and that can provide a semi-automated way to extract
richer information beyond just reporting malicious IP addresses.

Mining Actionable Information from Security Forums: The Case of Malicious. . . 205

0

5

10

15

20

25

N
u

m
b

er
 o

f
IP

Dates
02

/20
12

03
/20

12

04
/20

12

05
/20

12

06
/20

12

07
/20

12

08
/20

12

09
/20

12

11
/20

12

01
/20

13

02
/20

13

03
/20

13

04
/20

13

05
/20

13

06
/20

13

07
/20

13

08
/20

13

09
/20

13

Fig. 6 Time-series of the number of posts containing malicious IP reported in each month for
Wilders Security

3.3 Discussion and Limitations

Although our method exhibits pretty good accuracy overall, we attempt to under-
stand its limitations and detect the source of misclassifications.

Limited Text in the Post The words in the post provide significant evidence for the
classification. In some cases, some posts are very sparse in their text, which makes
the classification of the included IP address harder. We consider these kinds of posts
a significant contributor to misclassifications.

Characterization at the Post Level In our method, we classify an IP address by
using features at the level of a post. Recall that roughly 86% of all posts across
all forums has a single IP per post as shown in Fig. 3. In other words, having
more than one IP address per post is already not very common. Furthermore, even
more rarely, we have seen a few cases, where a post contains both a benign and
a malicious IP address. As our method is currently set up, this will lead to errors
in the classification. A straightforward solution is to consider examining the text
surrounding each IP address within the post.

4 Spatiotemporal Analysis

In this section, we discuss the spatiotemporal features of the malicious IP addresses
identified in security forums in Sect. 3.

206 J. Gharibshah et al.

2011 2012 2013 2014 2015 2016
0

100

200

300

400

500

600

700

800

900

N
u

m
b

er
 o

f
IP

 A
d

d
re

ss
es

Years

Fig. 7 Increasing trend: Malicious IP addresses reported on the forums each year

4.1 Temporal Analysis

The key question from a temporal point of view is if the number of reported
malicious IP addresses increases or decreases over time.

The Number of Reported Malicious IP Addresses Has Increased by a Factor
8 in 4 Four Years In Fig. 7, we plot the number of reported malicious IPs found
by our method across all three forums between 2011 and 2016. We find that the
number increased by a factor of 8: from roughly 100 to roughly 800. In spite of
some decreases in years 2011, 2012, and 2015, it has a clear increasing trend.

4.2 Spatial Analysis

We study the geo-location of the identified IP addresses from Sect. 3. We utilize
GeoLite database [9], which can show us the country and continent of an IP address.
Here we focus on continents of the IP addresses location.

A natural question to ask is whether the geographical distribution of the
malicious addresses differs between VirusTotal and InferIP. We investigate this in
detail below.

VirusTotal: North America Hosts the Majority of the Reported Malicious IP
Addresses We plot the percentage of the distribution of the IP addresses extracted
from VirusTotal across continents in Fig. 8a between 2011 and 2016. We observe
that the majority of the malicious IP addresses are located in the North America
continent. There are two exceptions in 2013 and 2016 when Asia and Europe,
respectively, contained most of the malicious IP addresses. Overall, Table 6 shows

Mining Actionable Information from Security Forums: The Case of Malicious. . . 207

2011 2012 2013 2014 2015 2016
0

0.2

0.4

0.6

0.8

1

Datasets

P
re

ci
si

o
n

 P
er

ce
n

ta
g

e

Asia Europe North America South America Africa Oceania

2011 2012 2013 2014 2015 2016
0

0.2

0.4

0.6

0.8

1

Datasets

P
re

ci
si

o
n

 P
er

ce
n

ta
g

e

Asia Europe North America South America Africa Oceania

(a) (b)

Fig. 8 Spatiotemporal distribution of malicious IP addresses detected by InferIP and VT. (a)
VirusTotal. (b) InferIP

Table 6 Percentage of distribution of IP addresses across continents over all the years

North America Asia Europe South America Africa Oceania

InferIP 46.7 32.5 13.5 5.2 1.6 0.5

VirusTotal 50 26.5 20.4 2.4 0.6 0.17

the geographical distribution over all the years: North America, Asia, and Europe
are the three most active continents in that order.

InferIP: North America Dominates Again, But South America and Africa Have
Non-trivial Contributions We plot the percentage of the distribution of the IP
addresses extracted form InferIP across continents in Fig. 8b between 2011 and
2016. We observe that North America hosts the majority of the reported malicious
IP addresses again, but we find a more diverse global activity compared to what
we observed in VirusTotal. For example, we can see that in years 2013, 2014, and
2016: (a) Asia has the majority of the malicious IP addresses, and (b) South America
and Africa have a considerable percentage of malicious IP addresses. However,
when seen across all years, the geographical distributions of the IPs in InferIP and
VirusTotal are quite similar: North America, Asia, and Europe have the majority
of the malicious IPs detected by InferIP similar to those of VirusTotal. In Fig. 9,
we plot the geographical distribution of malicious IPs per continent across all years
and all forums for InferIP and VirusTotal, while the exact numbers are shown in
Table 6. Qualitatively the distributions look relatively similar, especially in the order
of significance of the continents, but at the same, we can see that South America
and Africa have a larger percentage of IP addresses in InferIP compared to those in
VirusTotal.

208 J. Gharibshah et al.

InferIP VirusTotal
0

10

20

30

40

50

60

Areas

%
 o

f
IP

 a
d

d
re

ss
es

North America Asia Europe South America Africa Oceania

Fig. 9 The percentage distribution of malicious IP addresses in each continent across all three
forums for InferIP and VirusTotal

5 Related Work

We briefly discuss three categories of relevant research:

(a) Analyzing structured security sources. There is a long line of research study-
ing the ontology of cyber security and the automatic extraction of information
from structured security documents. Iannacone et al. [11] developed a schema
for extracting relevant concepts from various types of structured data sources.
In another work, Blanco et al. [4] proposed methods to detect anomalies on
the extracted ontology and network flow graph. Moreover, Bridges et al. [5]
proposed a method to do entity labeling on structured data by utilizing neural
networks. These works are complementary to ours as we focus on unstructured
data, which poses different challenges.

(b) Analyzing online security forums. Recently security forums have been the
focus of various studies that showcase the usefulness of the information present
in security forums. For example, Motoyama et al. [13] present a comprehensive
statistical analysis in underground forums. Others studies focus on the users’
classification or the discovery of the relationships between the forum’s members
[1, 24]. Extracting different discussion topics in the forums and classifying the
language of the codes posted in the forum has been done in [19]. Contrary to
these studies, our work emphasizes on the development of automated systems
that actually exploit the wealth of information in these security forums in
order to enhance security. Similarly detecting malicious users on commenting
platforms has been done on [12]. A recent work analyzes security forums to
identify and geo-locate Canadian IP addresses focusing on spam and phishing

Mining Actionable Information from Security Forums: The Case of Malicious. . . 209

[8] and in another work, Portnoff et al. [17] studied the exchange of malicious
services and tools and studied their prices on the security forums.

(c) Analyzing blogs and social networks. There have been a plethora of studies
on blogs and social media, but their goals are typically not related to extracting
security information [2, 6, 20]. The studies range from modeling user behavior
[7] to inferring information about the user (demographics, preferences, and
mental state), and to modeling the information propagation on online forums.
Although interesting, the focus of these studies is significantly different from
our goal here.

6 Conclusion

The take away message from our work is that there seems to be a wealth of useful
information in security forums. The challenge is that the information is unstructured
and we need novel methods to extract it. In this direction, a key insight of our work
is that using behavioral and text-based features can provide promising results.

In support of this assertion, we develop a systematic method to extract malicious
IP addresses reported in security forums. We utilize both behavioral, as well as
textual features, and show that we can detect malicious IP addresses with high
accuracy, precision, and recall. Our results in Table 1 are promising.

We then apply InferIP to all the posts we have collected. Although our clas-
sification is not perfect, our relatively high precision (hovering around 90% in
Table 4) provides sufficient confidence in our results. We find three times as many
additional malicious IP addresses as the original malicious IP addresses identified
by VirusTotal. Furthermore, even for the jointly discovered IP addresses, at least
53% of the IP addresses were detected at least 3 months earlier than VirusTotal.
The key message from our spatiotemporal analysis is that the number of reported
malicious IP addresses is increasing overtime.

In the future, we plan to extend our work by extracting other types of security
information. Our first goal is to detect malicious URLs mentioned in the forums.
Our second and more ambitious goal is to identify the emergence of new malware,
threats, and possibly attacks, which we expect to see associated with large numbers
of panic-filled or help-requesting posts. Our final goal is to identify malicious users,
since interestingly, some users seem to be promoting and selling hacking tools in
these forums.

Acknowledgements This material is based upon work supported by an Adobe Data Science
Research Faculty Award, and DHS ST Cyber Security (DDoSD) HSHQDC-14-R-B00017 grant.
Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the funding institutions.

210 J. Gharibshah et al.

References

1. Abbasi, A., Li, W., Benjamin, V., Hu, S., Chen, H.: Descriptive analytics: examining expert
hackers in web forums. In: 2014 IEEE Joint Intelligence and Security Informatics Conference,
pp. 56–63. IEEE, Piscataway (2014)

2. Althoff, T., Jindal, P., Leskovec, J.: Online actions with offline impact: how online social
networks influence online and offline user behavior. In: Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining (WSDM’17), pp. 537–546. ACM,
New York (2017)

3. Ashiyane. http://www.ashiyane.org/forums/
4. Blanco, C., Lasheras, J., Valencia-García, R., Fernández-Medina, E., Toval, A., Piattini, M.:

A systematic review and comparison of security ontologies. In: 2008 Third International
Conference on Availability, Reliability and Security, pp. 813–820. IEEE, Piscataway (2008)

5. Bridges, R.A., Jones, C.L., Iannacone, M.D., Testa, K.M., Goodall, J.R.: Automatic labeling
for entity extraction in cyber security. arXiv preprint arXiv:1308.4941 (2013)

6. Cheng, J., Bernstein, M., Danescu-Niculescu-Mizil, C., Leskovec, J.: Anyone can become
a troll: causes of trolling behavior in online discussions. In: Proceedings of the Conference
on Computer-Supported Cooperative Work. Conference on Computer-Supported Cooperative
Work, p. 1217. NIH Public Access (2017)

7. Devineni, P., Koutra, D., Faloutsos, M., Faloutsos, C.: If walls could talk: patterns and
anomalies in Facebook wallposts. In: Proceedings of the 2015 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining 2015 (ASONAM’15), pp.
367–374. ACM, New York (2015)

8. Frank, R., Macdonald, M., Monk, B.: Location, location, location: mapping potential Canadian
targets in online hacker discussion forums. In: 2016 European Intelligence and Security
Informatics Conference (EISIC), pp. 16–23. IEEE, Piscataway, (2016)

9. Geolite. http://dev.maxmind.com/geoip/legacy/geolite/
10. Hang, H., Bashir, A., Faloutsos, M., Faloutsos, C. and Dumitras, T.: “Infect-me-not": a user-

centric and site-centric study of web-based malware. In: IFIP Networking Conference (IFIP
Networking) and Workshops, pp. 234–242. IEEE, Piscataway (2016)

11. Iannacone, M., Bohn, S., Nakamura, G., Gerth, J., Huffer, K., Bridges, R., Ferragut, E.,
Goodall, J. Developing an ontology for cyber security knowledge graphs. In: Proceedings of
the 10th Annual Cyber and Information Security Research Conference (CISR’15), pp. 12:1–
12:4. ACM, New York (2015)

12. Li, T.C., Gharibshah, J., Papalexakis, E.E., Faloutsos, M.: Trollspot: detecting misbehavior in
commenting platforms. In: Proceedings of the 2017 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM ’17), pp. 171–175. ACM, New
York (2017)

13. Motoyama, M., McCoy, D., Levchenko, K., Savage, S., Voelker, G.M.: An analysis of
underground forums. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet
Measurement Conference (IMC’11), pp. 71–80. ACM, New York (2011)

14. Nitol-botnet. https://threatpost.com/tag/nitol-botnet/
15. Offensive Community. http://www.offensivecommunity.net
16. Papalexakis, E.E., Sidiropoulos, N.D., Bro, R.: From k-means to higher-way co-clustering:

multilinear decomposition with sparse latent factors. IEEE Trans. Signal Process. 61(2), 493–
506 (2013)

17. Portnoff, R.S., Afroz, S., Durrett, G., Kummerfeld, J.K., Berg-Kirkpatrick, T., McCoy, D.,
Levchenko, K., Paxson, V.: Tools for automated analysis of cybercriminal markets. In: Pro-
ceedings of the 26th International Conference on World Wide Web, pp. 657–666. International
World Wide Web Conferences Steering Committee

18. Ramos, J.: Using TF-IDF to determine word relevance in document queries. In: Proceedings
of the First Instructional Conference on Machine Learning, vol. 242, pp. 133–142 (2003)

http://www.ashiyane.org/forums/
http://dev.maxmind.com/geoip/legacy/geolite/
https://threatpost.com/tag/nitol-botnet/
http://www.offensivecommunity.net

Mining Actionable Information from Security Forums: The Case of Malicious. . . 211

19. Samtani, S., Chinn, R., Chen, H.: Exploring hacker assets in underground forums. In: IEEE
International Conference on Intelligence and Security Informatics (ISI), pp. 31–36. IEEE,
Piscataway (2015)

20. Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the Facebook social graph.
arXiv preprint arXiv:1111.4503 (2011)

21. Virustotal. http://www.virustotal.com
22. Wilders Security. http://www.wilderssecurity.com
23. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In:

Proceedings of the Fourteenth International Conference on Machine Learning (ICML’97), pp.
412–420. Morgan Kaufmann Publishers, San Francisco (1997)

24. Zhang, X., Tsang, A., Yue, W.T., Chau, M.: The classification of hackers by knowledge
exchange behaviors. Inf. Syst. Front. 17(6), 1239–1251 (2015)

http://www.virustotal.com
http://www.wilderssecurity.com

Temporal Methods to Detect
Content-Based Anomalies in Social
Media

Jacek Skryzalin, Richard Field Jr., Andrew Fisher, and Travis Bauer

Abstract We develop a method for time-dependent topic tracking and meme
trending in social media. Our objective is to identify time periods whose content
differs significantly from normal, and we utilize two techniques to do so. The first
is an information-theoretic analysis of the distributions of terms emitted during
different periods of time. In the second, we cluster documents from each time period
and analyze the tightness of each clustering. We also discuss a method of combining
the scores created by each technique, and we provide ample empirical analysis of
our methodology on various Twitter datasets.

1 Introduction

Social media platforms (Twitter, Facebook, etc.) allow users to instantaneously
publish small, textual utterances. Taken individually, these utterances might have
little content and provide little information. Taken in aggregate, however, they can
provide insights into, for example, public health [6], political sentiment [23], and
personality [7].

We develop a framework which allows us to detect and understand temporal
anomalies in a collection of timestamped documents, such as those produced on
social media. More explicitly, we identify time periods during which the produced
documents’ content differs drastically from the norm or shows unusually high focus

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. SAND2017-12340 J.

J. Skryzalin · R. Field Jr. (�) · A. Fisher · T. Bauer
Sandia National Laboratories, Albuquerque, NM, USA
e-mail: jskryza@sandia.gov; rvfield@sandia.gov; anfishe@sandia.gov; tlbauer@sandia.gov

© Springer Nature Switzerland AG 2019
P. Karampelas et al. (eds.), From Security to Community Detection in Social
Networking Platforms, Lecture Notes in Social Networks,
https://doi.org/10.1007/978-3-030-11286-8_10

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11286-8_10&domain=pdf
mailto:jskryza@sandia.gov
mailto:rvfield@sandia.gov
mailto:anfishe@sandia.gov
mailto:tlbauer@sandia.gov
https://doi.org/10.1007/978-3-030-11286-8_10

214 J. Skryzalin et al.

or intensity, but we do not place further restrictions or specifications on the nature
of the anomaly. As such, we focus on unsupervised techniques which allow the
detection of an anomalous state without a prior specification of the exact nature of
the anomaly.

We discuss related research and its relationship to the current work in Sect. 2. In
Sect. 3, we discuss two methods of detecting anomalous behavior, as well as a way
to fuse the results of these two approaches. In Sect. 4, we present empirical results
of our methods on various Twitter datasets.

A preliminary version of this work was presented at the 2017 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
[18]. New contributions presented herein include more detailed discussions on
cluster coherence and probabilistic fusion, a sensitivity analysis demonstrating
robustness of the proposed method to data size, and an extension of our approach to
handle nonstationary datasets, that is, datasets where term distributions can change
over time.

2 Related Work

There has been a significant amount of research on the trends and dynamics of a
corpus of timestamped documents. These methods have been used to study trends
in a diverse collection of corpora, including those consisting of scientific papers [5,
8, 9], historical speeches [24], news stories [12, 25], and social media posts [11, 26].
Although there are numerous such techniques, they can be broken into roughly two
categories.

The techniques of the first category are generally known as topic detection and
tracking (TDT) algorithms. These algorithms attempt to incorporate temporal data
into traditional topic modeling algorithms—algorithms whose primary purpose is
to produce clusters of similar documents. Some of these algorithms use predefined
categories (e.g., music news, sports news, and political news) and supervised learn-
ing techniques to classify each new document into one of the predefined categories
[11]. Other techniques create vectors from each document and use traditional
unsupervised clustering algorithms to produce custom categories [13, 19].

Still other TDT algorithms tackle topic detection and tracking using probabilistic
Bayesian modeling. These algorithms are usually based loosely on latent Dirichlet
allocation (LDA) [4]. LDA represents a topic as a distribution over words and
considers each document to have been generated by sampling from a mixture of
topics. Some temporally sensitive variants of LDA partition a corpus into time
intervals, run LDA on each time interval, and connect the topic distributions from
each time interval with the topic distributions of neighboring time intervals [1, 5].
Other temporally sensitive variants of LDA associate each topic distribution with a
temporal distribution to encourage each topic to occur in a relatively concentrated
time period [24].

The second category of trend-identifying algorithms consists of techniques which
provide the user with a set of memes, defined as (clusters of) important words

Detecting Content-Based Anomalies 215

or phrases, and the periods of time where each meme is considered especially
important. Memes may or may not need to be specified in advance by the user,
and the importance of a meme is typically related to the frequency of mentions per
time. Various novel approaches have been developed to measure the importance of
a meme. Kleinberg et al. measure the importance of a meme by fitting an infinite
automaton to the temporal distribution of mentions of that meme [10, 12]. He and
Parker construct a physical model of importance using proxies for a meme’s mass
and velocity derived from the temporal distribution of mentions of a meme and
the context in which the meme occurs [9]. Swan and Allan extract important terms
from temporal slices of a corpus using a χ2 significance test [21]. Shasha et al.
deem a meme m important in a time window w if a user-specified function f (m,w)

is greater than a user-specified threshold, and they have constructed efficient data
structures and algorithms for identifying such memes [27, 28].

Although the algorithms discussed in this section successfully track temporal
aspects of topics and/or identify trending memes, they tend to focus more on the
topics and content being tracked and less on the relative importance of different
slices of time. In this work, we revisit the issue of topic tracking and meme trending
with a temporal focus. Rather than analyzing topics themselves, we identify time
periods with unusually high or anomalous trendiness. Moreover, our techniques
satisfy two properties which allow them to function well with minimal prior
configuration. First, our methods are completely unsupervised—the algorithms are
able to function without specifying categories or memes to be tracked. Unlike the
work of Pennebaker et al. [14, 22], which focuses on the temporal correlation of
pronoun usage and mental state, we discover both anomalous time periods and
interesting textual markers which provide insights into the nature of the anomaly.
Second, our methods are largely independent of the arrival rate of documents; we
assume that any data we see has been sampled from a larger distribution, and we
would like our methods to be able to accommodate differing sample sizes and
sampling rates.

3 Methods

In this section, we present two techniques for studying term and topic trends from
the perspective of identifying anomalous time periods. The first technique focuses
on the variation of term distributions and highlights time periods whose term
distributions differ drastically from baseline. The second technique uses clustering
to construct a rough metric for topic coherence, which we expect to be higher when
an unusually large percentage of documents share a topic.

We assume that we have time periods t1, t2, . . . , tr and associated corpora
Ct1 , . . . , Ctr of documents, where Cti consists of all documents produced during
time period ti . We also assume that we have a corpus C0 which serves as a “baseline”
for our term distribution analysis. In our experiments, we use as the baseline corpus
C0 the union C0 = Ct1 ∪ · · · ∪ Ctr .

216 J. Skryzalin et al.

3.1 Term Distribution Analysis

Our first technique utilizes information-theoretic analyses of the distributions of
terms seen across varying time periods. Our analysis begins with Zipf’s law—the
observation that the nth most common word in a corpus occurs with frequency
proportional to n−α for some α > 0 [16]. The parameter α varies based on language
and corpus type (research articles, Twitter posts, etc.), yet α is surprisingly constant
across different corpora of the same type. However, the distribution of terms in a
corpus can vary widely, and it is this variation that we analyze.

First, for each term w, we construct a probability p(w) (resp., q(w)) associated
with the term w and some corpus Ct (resp., C0) via one of the following:

– Document frequency: p(w) is the proportion of documents in Ct containing w.
– Term frequency: p(w) is the proportion of all terms in Ct which are equal to w.
– Weighted term frequency: p(w) is a document-weighted proportion of all terms

in Ct constructed so that all documents are weighted equally, that is:

p(w) = 1

|Ct |
∑

d∈Ct

number of words in d equal to w

number of words in d
, (1)

where |Ct | denotes the number of documents in Ct .

It will be made clear which of these choices we use for a given analysis by the
ensuing discussion.

The values {p(w)}w form a distribution (i.e., they are nonnegative and sum
to 1) when defined using the term frequency or weighted term frequency option,
but not when defined using the document frequency option. The non-weighted and
weighted term frequency definitions differ in that the term frequency option assigns
equal weight to each term, whereas the weighted term frequency option assigns
equal weight to each document.

The Kullback–Leibler divergence KL (p‖q) between {p(w)}w and {q(w)}w is
defined as:

KL (p‖q) =
∑

w

p(w) log

(
p(w)

q(w)

)
. (2)

The Kullback–Leibler divergence is an asymmetric measure of the difference
between two probability distributions which measures the number of extra bits
needed to encode p when using a coding scheme optimized for q rather than a
coding scheme optimized for p.

Since the Kullback–Leibler divergence is asymmetric, it is common practice to
use the Jensen–Shannon divergence, a symmetrized version of the Kullback–Leibler
divergence, when constructing a distance metric on probability distributions. How-
ever, we define an antisymmetric version of the Kullback–Leibler divergence via:

AKL (p‖q) = KL (p‖q) − KL (q‖p) =
∑

w

(p(w) + q(w)) log

(
p(w)

q(w)

)
. (3)

Detecting Content-Based Anomalies 217

When analyzing the trends of a corpus Ct , we find it most useful to analyze the
term-wise contributions to AKL (p‖q). We thus define the pointwise antisymmetric
Kullback–Leibler (PAKL) score of a term w to be

PAKL(p‖q)(w) = (p(w) + q(w)) log

(
p(w)

q(w)

)
. (4)

The value PAKL(p‖q)(w) satisfies the following properties:

1. PAKL(p‖q)(w) is positive if p(w) > q(w) and is negative if p(w) < q(w).
2. PAKL(p‖q)(w) approaches zero as p(w) approaches q(w).
3.

∣∣PAKL(p‖q)(w)
∣∣ increases as either (a) p(w) stays constant and q(w) approaches

0, or (b) q(w) stays constant and p(w) approaches 0.

Thus, when analyzing a set of timestamped corpora, we can monitor the time
evolution of PAKL scores to determine whether the relative frequency of a term
is increasing, decreasing, or staying constant in time. We can also sum all PAKL
scores, all positive (resp., negative) PAKL scores, or the most n positive (resp.,
negative) PAKL scores in each corpus Ct in order to construct a score which
measures the relative trendiness (or, in the case when relative common words
experience a drop in usage, anti-trendiness) exuded by Ct .

We note that the third property listed above is key to our analysis. If we had
instead chosen to analyze a “pointwise” version of the Kullback–Leibler divergence,
we might have defined a score PKL(p‖q)(w) via:

PKL(p‖q)(w) = p(w) log

(
p(w)

q(w)

)
. (5)

Note, however, that PKL(p‖q)(w) is unable to differentiate between terms w such
that p(w) ≈ q(w) and terms w such that p(w) ≈ 0, since in both cases,
PKL(p‖q)(w) ≈ 0.

3.2 Cluster Coherence

Our second topic-based approach to the temporal analysis of a series of corpora is
based on the idea that we can construct tighter clusters of documents during a time
period when there is a heightened focus on a relatively small set of concepts. The
procedure for this technique is as follows:

1. Obtain (GloVe) word vectors for the data.
2. Using the word vectors, derive a set of “corpus vectors” to represent the data in

Ct .
3. Cluster the corpus vectors.
4. Obtain scores from the clustering which measure cluster coherence and tightness.

218 J. Skryzalin et al.

For the first step, we train GloVe vectors on a relatively large corpus consisting
of data similar to the data we’ll be analyzing. GloVe is an algorithm which uses co-
occurrence statistics of the terms in a corpus with a weighted least-squares model
in order to derive a vector for each term in a corpus such that similar terms are
associated with vectors with high cosine similarity [15]. The authors of GloVe have
different objectives (synonym detection and analogy completion) for their vectors
and find that 300-dimensional vectors are optimal for their tasks. Such vectors are
too large for our purposes. Since the ultimate goal of these vectors is to construct
and cluster a set of vectors from Ct , the dimensionality of the vectors should be
sufficiently small so as not to be hindered by the curse of dimensionality (i.e., the
idea that as dimensionality grows, the distance between any two randomly chosen
points on the unit sphere approaches

√
2).

In the second step, we derive a set of vectors to represent the content of the
target corpus Ct . We describe the method we use here, although other methods are
possible. For each document d ∈ Ct , we construct a “document vector” v(d) by
taking a weighted and normalized sum of the word vectors for words occurring in
d. Explicitly, we define

ṽ(d) =
∑

w∈d

tfd(w) idfC0(w) w, (6)

where w denotes the word vector associated with w obtained by the GloVe
algorithm, tfd(w) denotes the number of times the term w occurs in document d,
and idfC0(w) denotes a smoothed version of inverse document frequency of w in
C0:

idfC0(w) = log

(
1 + |C0|

1 + |{d ∈ C0 | w ∈ d}|
)

, (7)

where |{d ∈ C0 | w ∈ d}| represents the number of documents in C0 containing w.
We define the document vector for d as a normalized version of ṽ(d) defined by

Eq. (6), that is:

v(d) = ṽ(d)

‖ṽ(d)‖ . (8)

This normalization reflects our belief that documents with similar content but
differing lengths should be treated as similar. Finally, we use the set of document
vectors v(d) as our set of “corpus vectors.”

In the third step, we cluster the corpus vectors. Because all of our vectors have
unit length, standard Gaussian or Euclidean clusterings are not appropriate. Instead,
we consider three variants of von Mises–Fisher (VMF) clustering, which are
described at length in [2] and [3]. The VMF distribution is defined as the restriction
to the unit sphere of a multivariate Gaussian distribution whose covariance matrix

Detecting Content-Based Anomalies 219

is a multiple of the identity. The probability density function of a VMF distribution
with location μ (where ‖μ‖ = 1) and concentration κ ≥ 0 is given by:

p(x;μ, κ) ∝ exp
[
κμᵀx

]
. (9)

The vector μ is analogous to the mean of a multivariate normal distribution, and the
parameter κ ≥ 0 is analogous to the inverse of the variance of a normal distribution.
We consider three VMF mixture models:

1. Spherical k-means clustering. Spherical k-means clustering can be reinterpreted
as a hard VMF mixture model where all mixture components are forced to have
the same concentration [3].

2. Hard VMF mixture model. In this model, we fit to our data a mixture of VMF
components with an underlying assumption that each data point can belong to
only one mixture component.

3. Soft VMF mixture model. In this model, we fit to our data a mixture of VMF
components with an assumption that each datum could have been drawn (with
varying probability) from any mixture component.

In the fourth step, we construct scores which measure cluster coherence and
tightness. The scores that we generate are dependent on which VMF mixture model
we use. There are multiple such measures; we list here only the most promising:

– The concentration κ derived from reinterpreting spherical k-means clustering as
a VMF mixture model.

– The median concentration parameter from both the hard and soft VMF mixture
models. After fitting to our data a mixture model consisting of k mixture
components, we collect the set of concentration scores. Empirical evidence
suggests that the median of the concentration scores is higher on days when
relatively few topics are receiving heightened interest. We also considered the
first and third quartiles as potential scores.

– The lognormal location of the concentration parameters from the VMF mixture
models. After constructing the set of concentration scores discussed above,
we first discard any outlier concentration scores. Empirically, we have found
that very high concentration scores result when we have a corpus with many
highly similar documents. We next fit a lognormal distribution to the set of
remaining concentration scores. A variable X has a lognormal distribution if
ln(X) ∼ N (μ, σ) (i.e., when ln(X) is normally distributed with mean μ and
standard deviation σ). The values μ and σ are typically referred to as the location
and scale of the lognormal distribution, respectively. We have found that the
location parameter is typically higher on days when relatively few topics are
receiving heightened interest, although this effect is more pronounced with a
hard VMF mixture model than a soft VMF mixture model.

In all three methods detailed above, we rely on the techniques and formulae
presented and explained in detail in [3, 20].

220 J. Skryzalin et al.

Remark In future work, we would like to incorporate various successful time-
sensitive Bayesian topic models into our framework [1, 5]. Bayesian topic models
are typically learned using one of two techniques—Gibbs sampling and variational
inference. When trained with variational inference, Bayesian topic models provide
distributions over parameter estimates. Just as we find the concentration scores
of our von Mises–Fisher mixture models helpful in identifying anomalous time
periods, so too could we utilize the covariance matrices of the posterior parameter
distributions in our analysis. For example, we hypothesize that the variance var(X)

of each parameter X in the posterior distribution is inversely proportional to the
trendiness exhibited by the set of documents in the corpus.

3.3 Weighted Probabilistic Fusion

In Sects. 3.1 and 3.2, we discussed numerous techniques for generating scores. In
this section, we discuss a promising technique for fusing together various scores.
Our technique is almost identical to that discussed in [17].

Empirical evidence suggests that our score generating techniques suffer from a
lower-than-desired signal-to-noise ratio, and that the scores produced by any one
technique are typically not normally distributed. As such, it would be inappropriate
to use fusion techniques which return the weighted average or maximum of
normalized scores as is done in other contexts. Instead, our fusion technique
incorporates estimates of the various score distributions.

For each corpus Ct , we assume that we have generated m different scores
zt,1, . . . , zt,m from one of the techniques discussed in Sects. 3.1 and 3.2. We assume
that the values

{
zt,j

}
t

are sampled from some distribution Zj with cumulative
distribution function (cdf) Fj . Since the true cdf Fj is not known, we approximate

Fj using either the empirical cdf F
(emp)
t or by using the cdf F

(β)
t of a beta

distribution fit to the scores
{
zt,j

}
t

(after scaling the zt,j to lie strictly between 0
and 1). Empirical evidence suggests that our fusion technique produces a greater
number of significant events when using F

(emp)
t than when using F

(β)
t .

Our fusion technique involves three steps:

1. For all scores of type j , construct a cdf Fj as described above.
2. For each time period t , construct a fused score st via:

st = −
m∑

j=1

cj log
(
1 − Fj (zt,j)

)
, (10)

where cj > 0 denotes the relative weight we wish to give the j th score generating
technique.

Detecting Content-Based Anomalies 221

3. Fit a gamma distribution with cdf G to the set of fused scores {s1, . . . , sn}. For
any given time period t , the value G(st) now quantifies the significance of the
events occurring during t .

Our model assumes stationarity; that is, each cdf Fj is assumed to be time
invariant. If our data spans a sufficiently large period of time, this assumption may be
inappropriate. In such circumstances, we modify step (1) above and fit a separate cdf
Ft,j for each score j and time period t from the scores

{
zτ,j

}
τ
, where τ ranges over

a set of time periods which are temporally proximal to the target time period t . In
step (2), we then calculate st using the cdfs

{
Ft,j

}
j
. Step (3) remains unchanged. We

call the fusion technique described in this paragraph “windowed fusion” in contrast
to the original “global fusion” technique presented in the enumerated list above.

We now give a rough justification of our empirically successful fusion method,
recognizing that the assumptions made in our justification may be invalid in a real-
world scenario. If we assume that the set of scores

{
zt,j

}
t,j

have been independently
sampled (where zt,j has been sampled from a distribution with cdf Fj), then the
values

{− log
(
1 − Fj (zt,j)

)}
t,j

are iid samples from an exponential distribution.
If we additionally assume that cj = 1 for all j , then the values st are iid samples
from a gamma distribution (because the sum of independent exponential random
variables is a Gamma random variable).

We note that, in general, each Fj only approximates the true cdf of the
corresponding score distribution, and, for any fixed time period t , the scores{
zt,j

}
j

are far from independent. In fact, we rely on the assumption that during
an anomalous time period t , all zt,j will be abnormally high. Furthermore, we may
want to choose our score weights cj to be nonuniform. In our experiments, we often
choose cj so that the scores generated from term distribution analysis (Sect. 3.1)
have combined weight equal to that of the scores generated by analyzing cluster
coherence (Sect. 3.2).

4 Experiments

Our overall motivating goal—finding content-based anomalies in temporal seg-
ments of a corpus of social media posts—is somewhat vague and underspecified.
We have thus chosen to focus our analysis on the somewhat more tractable goal
of finding time periods exhibiting unusually high trendiness. Yet even with this
specification, we suffer not only from a lack of a clear and unambiguous definition of
“trendiness” (although we have chosen to use an information-theoretic definition of
“anomaly” and cluster coherence as proxies), but also from the absence of data with
incontrovertible ground truth with labeled anomalous time periods. Nevertheless,
we present the results of applying our methods on multiple diverse Twitter datasets
to demonstrate the capabilities of the proposed algorithm.

222 J. Skryzalin et al.

4.1 Data

We first apply our algorithm to relatively small subsamples of the Twitter Streaming
API, a free public stream consisting of social media posts containing at most
140 characters. In total, four datasets are considered. The first, referred to as
TwitterParisEnglish, consists of 50,000 tweets per day sampled uniformly at random
from all English tweets from the Twitter Streaming API from October 11, 2015 to
November 29, 2015. The second dataset, TwitterParisFrench, consists of 53,000
tweets per day sampled uniformly at random from all French tweets from the
Twitter Streaming API from October 16, 2015 to November 29, 2015. Note that
the sampling period for both these datasets includes both November 13, 2015, the
date of major terrorist attacks in Paris, France, and November 26, 2015, the date of
the US holiday Thanksgiving.

We next apply our algorithm to datasets consisting of all tweets emitted by
specified users during a specified timeframe constructed using the Twitter Search
API. In particular, we construct a dataset TwitterUSUniversities by collecting all 4.2
million tweets emitted from official Twitter accounts of 2300 US universities from
May 2014 to December 2016. We further construct a dataset TwitterOlympics by
collecting all 1.1 million tweets emitted from the accounts of 1200 Olympians and
Olympics professionals (e.g., coaches, and sports journalists) from October 2014 to
December 2016.

For the analysis of all our Twitter datasets except TwitterParisFrench, we
use 25-dimensional GloVe vectors trained on roughly 50 million English tweets
sampled from the Twitter Streaming API from March, 2015 to July, 2015. For
TwitterParisFrench, we use 25-dimensional GloVe vectors trained on roughly 5
million French tweets sampled from the Twitter Streaming API from January,
2015 to August, 2015. Note that the GloVe vectors we use are trained on tweets
temporally separated from the TwitterParisEnglish and TwitterParisFrench datasets
by a period of at least two months. We also feel that TwitterUSUniversities and
TwitterOlympics are largely independent from the data used to train the GloVe
vectors.

It has been shown that changes in the usage of common words such as “me” and
“you” can be indicative of public sentiment. For example, previous research [14, 22]
suggests that usage of plural pronouns among members of a society increases after a
society-scale attack due to the unification of members in the attacked society against
a common threat. Therefore, in all cases, common stopwords were included in our
analysis.

4.2 Results

We first run a PAKL analysis (cf. Sect. 3.1) for our TwitterParisEnglish dataset
using the “document frequency” option. We segment our corpus by day, and for

Detecting Content-Based Anomalies 223

Table 1 Top words for select days and their associated PAKL scores from TwitterParisEnglish

Oct. 26, 2015 Nov. 4, 2015

forevermore 0.0286 #aldub16thweeksary 0.0203

#pushawardslizquens 0.0154 i 0.0110

#aldubpredictions 0.0149 #showtimehousemates 0.0103

the 0.0149 that 0.0085

#aldubnewbeginnings 0.0129 it 0.0083

everydayiloveyou 0.0142 #otwolmanilainlove 0.0082

#everydayilov. . . 0.0105 to 0.0078

#otwolhappytimes 0.0104 #cmaawards 0.0076

i 0.0096 #aldubnewcharacter 0.0076

you 0.0092 a 0.0075

Nov. 13, 2015 Nov. 26, 2015

paris 0.1448 thanksgiving 0.1743

in 0.0682 thankful 0.1159

#prayforparis 0.0582 happy 0.0692

the 0.0572 #mtvstars 0.0602

#madeintheam 0.0485 for 0.0402

#aldubhappybdaylola 0.0392 britney 0.0343

is 0.0381 spears 0.0342

#paris 0.0341 rey 0.0322

and 0.0312 lana 0.0321

prayers 0.0307 del 0.0315

the analysis of day t , we consider only terms which occur at least 5 times in Ct and
20 times in the entire corpus. The terms with the highest PAKL scores for select
days can be seen in Table 1. We include terms from both uneventful days (Oct. 26,
2015 and Nov. 4, 2015) and anomalous days (Nov. 13, 2015 and Nov. 26, 2015). For
the anomalous days, we can successfully find terms of interest. Note also that the
top PAKL scores for anomalous days tend to be higher than those for normal days.

We also wish to mention that on November 26, 2015, roughly 2% of our tweets
mention “#mtvstars,” “Britney Spears,” and “Lana Del Rey.” A post hoc analysis has
revealed that the vast majority (over 98%) of these tweets were posted by accounts
that are now suspended for violating the Twitter Rules. Even so, other terms
associated with Thanksgiving, including “family,” “turkey,” and “#imthankfulfor,”
are included in the 20 highest scoring terms for November 26, 2015.

We also score each document d ∈ Ct using the term PAKL scores for Ct via:

score(d) = ln (|d|)
|d|

∑

w∈d

PAKL(w). (11)

We report the top two documents for select days in Table 2. For anomalous days,
these documents successfully capture the nature of the day’s anomaly.

224 J. Skryzalin et al.

Table 2 Top documents for select days from TwitterParisEnglish

Oct. 26, 2015 Nov. 4, 2015

EVERYDAYILOVEYOU I’m chillin I’m good

Forevermore in the night I’m straight

#PushAwardsLizQuens

I LOOVE EVERYDAYILOVEYOU I don’t know, that

Forevermore #PushAwardsLizQuens that’s a thing that I know

Nov. 13, 2015 Nov. 26, 2015

Sending prayers to the thankful for everything

people in Paris #PrayForParis <emoji> Happy Thanksgiving

My thoughts and prayers go <emoji> Happy Thanksgiving

out the victims in the shootings <emoji>

in Paris #Prayers4Paris

Oct 09 Oct 16 Oct 23 Oct 30 Nov 06 Nov 13 Nov 20 Nov 27
Date

1.5

2

2.5

3

S
co

re

10k
20k
30k
40k
50k

Fig. 1 PAKL scores per day for corpora of varying size taken from TwitterParisEnglish

In order to test our methods’ robustness to corpora of different sizes, we create
subcorpora of TwitterParisEnglish containing 10,000, 20,000, 30,000, and 40,000
tweets per day. We plot the sum of all positive PAKL scores for each day in Fig. 1.
We find that varying the number of tweets considered causes surprisingly little
variation in the score. Similarly, we plot the concentration score for spherical k-
means clustering (with k = 50) in Fig. 2. Although the clustering scores are less
robust to the number of tweets considered each day than the PAKL scores, they still
maintain a level of robustness sufficient to identify anomalous time periods with
high confidence.

Figure 3 shows the first, second, and third quartiles of the concentration scores for
a hard VMF mixture model with 50 mixture components for the TwitterParisEnglish
dataset. Similar graphs, not shown here, were produced for the other datasets
mentioned above. We normalize the scores from each quartile for a fair comparison
of score quality.

Detecting Content-Based Anomalies 225

Oct 09 Oct 16 Oct 23 Oct 30 Nov 06 Nov 13 Nov 20 Nov 27
Date

114

116

118

120

122

124
S

co
re

10k
20k
30k
40k
50k

Fig. 2 Cluster scores per day for corpora of varying size taken from TwitterParisEnglish

Oct 09 Oct 16 Oct 23 Oct 30 Nov 06 Nov 13 Nov 20 Nov 27
Date

-2

-1

0

1

2

3

S
co

re

Q1
Q2
Q3

Fig. 3 VMF mixture cluster scores per day for TwitterParisEnglish

We have experimented with varying the number of clusters k between 10 and
100. For k in this range, the effects of changing k are noticeable but relatively
insignificant. In general, as k decreases, clustering scores become both more
resilient to changing dataset size and less noisy (the randomness inherent in
many clustering algorithms creates a lack of uniformity in clustering scores across
different clusterings of the same data). Unfortunately, the quality of the clustering
scores also tends to decrease with decreasing k.

We also present graphs produced by fusing PAKL scores with clustering scores.
Unless otherwise noted, fusion for these datasets is done via F (β), and the cdfs
used during fusion are calculated from the entire dataset, rather than from windows
around the target time periods.

For the TwitterParisEnglish and TwitterParisFrench datasets, we construct four
PAKL scores by summing, for each day, all PAKL scores, all positive PAKL scores,
the highest 200 PAKL scores, and the highest 50 PAKL scores. We also construct

226 J. Skryzalin et al.

Oct 09 Oct 16 Oct 23 Oct 30 Nov 06 Nov 13 Nov 20 Nov 27
Date

100

101

S
co

re

Fig. 4 Fused scores per day for TwitterParisEnglish

Oct 14 Oct 21 Oct 28 Nov 04 Nov 11 Nov 18 Nov 25
Date

100

101

S
co

re

Fig. 5 Fused scores per day for TwitterParisFrench

fifteen cluster scores: we run each clustering algorithm (spherical k-means, hard
VMF, and soft VMF) three times with k = 50 clusters. From the spherical k-
means clusterings, we record the concentration. From the VMF mixture models, we
collect the lognormal location parameter and the median concentration. We weight
the scores so that the PAKL and clustering scores each account for 50% of the total
fused score. The fused scores for TwitterParisEnglish (resp., TwitterParisFrench)
are shown in Fig. 4 (resp., Fig. 5). Dashed vertical lines denote the date of the
Paris attacks and Thanksgiving, and a dashed horizontal line indicates the 10%
significance level.

For the TwitterOlympics and TwitterUSUniversities datasets, fusion is performed
similarly with the following changes to account for the fact that these corpora
are smaller in general than TwitterParisEnglish and TwitterParisFrench. First, we
segment these corpora by week rather than by day. We also construct four PAKL
scores, but construct scores by summing the highest 100 and 20 PAKL scores instead

Detecting Content-Based Anomalies 227

Oct 2014 Apr 2015 Oct 2015 Apr 2016 Oct 2016
Date

100

101

S
co

re

Fig. 6 Fused scores for TwitterOlympics using F (β)

Oct 2014 Apr 2015 Oct 2015 Apr 2016 Oct 2016
Date

100

S
co

re

Fig. 7 Fused scores for TwitterOlympics using F (emp)

of the highest 200 and 50 scores as above. Finally, we run our clustering score
generators with k = 25 instead of k = 50. We again use dashed horizontal lines to
indicate the 10% significance level.

For TwitterOlympics, we produce fused scores using both F (β) (Fig. 6) and
F (emp) (Fig. 7). Although these graphs have very similar shapes, fusion using F (β)

tends to produce fewer significant events than fusion using F (emp). The three periods
in Fig. 6 with significant scores correspond to the various athletic events in August
2015, the 2016 Olympic trials, and the 2016 Summer Olympics.

For TwitterUSUniversities, we present a graph of the fused scores based on
the entire corpus (Fig. 8). We note that the Twitter feeds of many US universities
changed drastically between May 2014 and November 2016. Although our algo-
rithms are robust to changing corpus size and sampling rates, they are not robust
to underlying changes in behavior. For example, the rate of tweet production nearly
triples throughout our period of collection. Although this first appears to be a change

228 J. Skryzalin et al.

May 2014 Nov 2014 May 2015 Nov 2015 May 2016 Nov 2016
Date

10-1

100

101

S
co

re

Fig. 8 Fused scores for TwitterUSUniversities during 2014–2016 using global fusion

May 2014 Nov 2014 May 2015 Nov 2015 May 2016 Nov 2016
Date

100

S
co

re

Fig. 9 Fused scores for TwitterUSUniversities during 2014–2016 using windowed fusion

in corpus size, we see upon further inspection that it is a change in behavior, and
thus, a violation of the assumption of stationarity—later in our collection period,
universities are more likely to tweet about less pressing matters, so significant
events receive less attention in general. Consequently, no time periods register as
significant in the latter temporal half of this corpus when using global fusion.

However, a much clearer pattern emerges when using windowed fusion to
analyze TwitterUSUniversities (Fig. 9). For this analysis, we fit cdfs Ft,j for the j th
score generating technique and time period t from the scores generated by the j th
score generating technique for the 15 time periods before t and the 15 time periods
after t . With this modification, we see peaks for both the 2014–2015 school year
and the 2015–2016 school year corresponding to the beginning of the school year,
Thanksgiving break, Winter break, and the end of the school year.

We note that we have found it beneficial to fuse the clustering scores with the
PAKL scores, rather than relying on either alone. For example, the first peak in
Fig. 6 corresponding to the August 2015 athletic events can be attributed more to

Detecting Content-Based Anomalies 229

clustering scores than PAKL scores. During this event, PAKL scores barely rise
above baseline; since each sport has its own world championship, the difference
in term distribution from baseline is no more than expected. However, cluster
coherence is particularly high during this timeframe due to the large percentage
of tweets related to competition.

5 Conclusion

We have introduced two techniques which merge anomaly detection with topic
detection and tracking. Our first technique relies on an information-theoretic
examination of the term distributions of corpora collected over time. Our second
approach produces a set of values which serve as measures for the homogeneity
of the contents of the corpus. For sufficiently large corpora, both techniques are
agnostic to the size of the corpus. We then explain how the scores produced from
our techniques can be combined to form a single summary score. We demonstrate
our algorithms on various Twitter datasets and conclude that our techniques are
successful in identifying portions of a corpus with unusual and interestingly high
trendiness.

References

1. AlSumait, L., Barbará, D., Domeniconi, C.: On-line LDA: adaptive topic models for mining
text streams with applications to topic detection and tracking. In: Proceedings of the 2008
Eighth IEEE International Conference on Data Mining, pp. 3–12. IEEE, Piscataway (2008)

2. Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.: Generative model-based clustering of directional
data. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 19–28. ACM, New York (2003)

3. Banerjee, A., Dhillon, I.S., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von
Mises–Fisher distributions. J. Mach. Learn. Res. 6, 1345–1382 (2005)

4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–
1022 (2003)

5. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd International
Conference on Machine learning, pp. 113–120. ACM, New York (2006)

6. Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to
geo-locating Twitter users. In: Proceedings of the 19th ACM International Conference on
Information and Knowledge Management, pp. 759–768. ACM, New York (2010)

7. Golbeck, J., Robles, C., Turner, K.: Predicting personality with social media. In: CHI’11
Extended Abstracts on Human Factors in Computing Systems, pp. 253–262. ACM, New York
(2011)

8. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci. 101(Suppl. 1),
5228–5235 (2004)

9. He, D., Parker, D.S.: Topic dynamics: an alternative model of bursts in streams of topics. In:
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 443–452. ACM, New York (2010)

230 J. Skryzalin et al.

10. Kleinberg, J.: Bursty and hierarchical structure in streams. In: Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 91–101.
ACM, New York (2002)

11. Lee, K., Palsetia, D., Narayanan, R., Patwary, M.M.A., Agrawal, A., Choudhary, A.: Twitter
trending topic classification. In: Proceedings of the 2011 IEEE 11th International Conference
on Data Mining Workshops, pp. 251–258. IEEE, Piscataway (2011)

12. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 497–506. ACM, New York (2009)

13. Morinaga, S., Yamanishi, K.: Tracking dynamics of topic trends using a finite mixture
model. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 811–816. ACM, New York (2004)

14. Pennebaker, J.W., Mehl, M.R., Niederhoffer, K.G.: Psychological aspects of natural language
use: our words, our selves. Annu. Rev. Psychol. 54(1), 547–577 (2003)

15. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation.
In: Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), vol. 14, pp. 1532–1543 (2014)

16. Piantadosi, S.T.: Zipf’s word frequency law in natural language: a critical review and future
directions. Psychon. Bull. Rev. 21(5), 1112–1130 (2014)

17. Simonson, K.: Probabilistic fusion of ATR results. Tech. Rep. SAND98–1699. Sandia National
Laboratories (SNL-NM), Albuquerque, NM (1998)

18. Skryzalin, J., Field, R., Fisher, A., Bauer, T.: Temporal anomaly detection in social media.
In: Proceedings of the IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, pp. 505–508. ACM, New York (2017)

19. Spinosa, E.J., de Leon F de Carvalho, A.P., Gama, J.: OLINDDA: a cluster-based approach
for detecting novelty and concept drift in data streams. In: Proceedings of the 2007 ACM
Symposium on Applied Computing, pp. 448–452. ACM, New York (2007)

20. Sra, S.: A short note on parameter approximation for von Mises–Fisher distributions: and a fast
implementation of is (x). Comput. Stat. 27(1), 177–190 (2012)

21. Swan, R., Allan, J.: Extracting significant time varying features from text. In: Proceedings of
the 8th International Conference on Information Knowledge Management, pp. 38–45. ACM,
New York (1999)

22. Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and computer-
ized text analysis methods. J. Lang. Soc. Psychol. 29(1), 24–54 (2010)

23. Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with Twitter:
what 140 characters reveal about political sentiment. ICWSM 10(1), 178–185 (2010)

24. Wang, X., McCallum, A.: Topics over time: a non-Markov continuous-time model of topical
trends. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 424–433. ACM, New York (2006)

25. Wang, C., Blei, D., Heckerman, D.: Continuous time dynamic topic models. In: Uncertainty in
Artificial Intelligence (UAI). pp. 579–586 (2008)

26. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proceedings of the
Fourth ACM International Conference on Web Search and Data Mining, pp. 177–186. ACM,
New York (2011)

27. Zhang, X., Shasha, D.: Better burst detection. In: Proceedings of the 22nd International
Conference on Data Engineering, p. 146. IEEE, Piscataway (2006)

28. Zhu, Y., Shasha, D.: Efficient elastic burst detection in data streams. In: Proceedings of the 9th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 336–
345. ACM, New York (2003)

Index

A
American College Football Network, 26
Ashiyane forum, 197
Attribute-aware graph clustering (AA-Cluster),

120–121
vs. BAGC, 113, 121
vs. CESNA, 113
challenge of, 110–111
clustering quality, 124–125
continuous vector space, 111–112
vs. CPIP, 113, 121
DBLP, 122
DeepWalk, 114, 121
definition, 115
density, 122–123
entropy, 123
examples, 110
graph classification, 114
graph embedding, 114

structure embedding, 114, 118–120
vertex attribute, 116–118

joint probability distribution, 113
parameter analysis, 125–127
parameter likelihood estimation, 113–114
patent citation network, 122
political blogs, 121
vs. SA-Cluster, 113, 121
sample graph, 111–112
scalability, 127–128
synthetic graphs, 122

Attributed graph clustering, see Attribute-
aware graph clustering (AA-Cluster)

Attribute edge, 113
Attribute vertices, 113

B
Barabási–Albert (BA) graphs, 152–155
Bayesian information criterion (BIC), 56
Bayesian probabilistic model (BAGC), 113
Beta mixture model, 55
Big Data analysis, 145
Brazilian banking system, 174
Building block hypothesis, 23, 31

C
CCR, see Counterparty credit risk
CESNA, 113
Clauset (CA) algorithm, 20–21
Clique percolation method (CPM), 83
Cluster-based similarity partitioning algorithm

(CSPA), 66, 69
Collateralization

EEPE, 184–187
Initial Margin, 184, 186
Jupyter dashboard, 188
regulatory regimes, 184
Variation Margin, 183–184, 186

Community detection
CA algorithm, 20–21
community structure, 18
DA algorithm, 20, 38–39
entities, 17–18
evolutionary approach, 18
GNA, 19–20, 38
graph partitioning

genetic algorithm (see Genetic
algorithm)

Kernighan Lin algorithm, 21

© Springer Nature Switzerland AG 2019
P. Karampelas et al. (eds.), From Security to Community Detection in Social
Networking Platforms, Lecture Notes in Social Networks,
https://doi.org/10.1007/978-3-030-11286-8

231

https://doi.org/10.1007/978-3-030-11286-8

232 Index

Community detection (cont.)
nodes, 18–19
NSA, 21–23, 41
spectral bisection method, 21

modularity, 19
relationships, 18

Community structure, 18
affinity score, estimation of, 61–63
LPA, 59–60
parameterless local search algorithm, 58
relevance of dimensions, 60–61
selection of relevant dimensions, 63–65

Community variance, 25–26
Cond-Mat network, 40
Content-based anomalies detection

cluster coherence, 217–220
LDA, 214
χ2 significance test, 215
TDT algorithms, 214
term distribution analysis, 216–217
trend-identifying algorithms, 214–215
TwitterOlympics, 222, 226, 227
TwitterParisEnglish, 222

concentration scores, 224, 225
fused scores, 226
GloVe vectors, 222
PAKL analysis, 223
top documents, 223, 224
VMF mixture cluster scores, 224, 225

TwitterParisFrench, 222, 225
TwitterUSUniversities, 222, 226–228
unsupervised techniques, 214
weighted probabilistic fusion, 220–221

Counterparty credit risk (CCR), 172
CPIP, 113, 121
CPM, see Clique percolation method
Credit risk, 191
CSPA, see Cluster-based similarity partitioning

algorithm

D
Data quality management systems, 160
datumPIPE 2.0

architecture, 161
features, 161
semi-structured data

corruption of, 162–164
generation, 162

structured data
corruption of, 166–167
generation of, 164–166

DBLP, 122
Dendrogram, 20

Derivate-based community detection (DCD)
conductance, 100–101
Facebook graph FB-JHK, 100–102
FB-CALTC, 100, 102–103
geometric active contours, 93–94
LGS, 101–103
local communities, 95–98
LSP, 82, 100–101

Derivatives in networks
communities tracking, 83
continuous derivatives, 82
DCD (see Derivate-based community

detection)
graphon space, 81–82
graph space

boundary of shape, 83–84
central node, 90–93
definition, 83
discretisation, 85–87
finite difference method, 85–86
first-order derivative, 87–89
functions, 84–85
non-central nodes, 90–91, 93
overdetermined systems, 89–90
second-order derivative, 87–89
Taylor series, 88–89
weighted graphs, 88

local communities, surface tension
conductance, 103–104
exclusion of nodes, 99
ground truth data, 104
inclusion of nodes, 99
inter-cluster probabilities, 104–105
intra-cluster probabilities, 104–105
precision, recall, and F1 score, 104–105
structural similarity, 97–99
temporal smoothness, 99

PDEs, 82
snapshot model, 83
Solomon’s exponential approach, 82
temporal smoothness, 83

Document frequency, 216
Duch and Arenas (DA) algorithm, 20, 38–39

E
Edge Sample and Discard (ESD), 139–140

edge additions and deletions, 134, 138
edge sparsification approach, 137–138
eigenvalue-based methods, 137
global clustering coefficient, 137
graph analytics, 134–136
graph datasets, 134
monochromatic sampling method, 138

Index 233

preliminaries and notation, 139
quality of estimation

Chebyshev’s inequality, 144
linear estimator, 142–143
nonzero probability, 142
partially dynamic case, 141
static graphs, 144
variance, 143

real-life scenarios, 135, 139
structural properties, 134
total probability, 140
triangle counts, 137
triangle estimator, 141
TRIÈST and DOULION algorithm,

136–137
BA graphs, 152–155
Big Data analysis, 145
fully dynamic graphs, 149–153
Network Repository site, 145
partially dynamic case, 148–149
properties, 145
runtime, 146–147
sampled edges, 136, 147
server-side space complexity, 147

vertex triples algorithm, 138
Effectivized expected positive exposure

(EEPE), 180
increases and decreases, 187
regulatory regimes, 184
relative reduction of, 184–187
systemic risk, 184

Ego-networks, see Natura 2000 network
ETL processes, 168
Expectation-maximization (EM) algorithm,

56–57
Expert judgment, 173

F
Financial regulation

collateralization (see Collateralization)
configuration and aggregation, 183
evaluate, 172
expert judgment, 173
graph model

risk graph, 179–180
systemic risk, 181
trade relation graph, 178–179

lack of data, 174, 175
micro-and macro-prudential regulation,

173, 174
Monte Carlo simulation, 183
optimize, 172
ORE, 183

predict, 172
random trade relation graphs

edges, 182
nodes, 181
trades, 182

risk metrics, 173
systemic risk engine, 175–178

Finite difference method, 85–86
Fuzzy C-means (FCM) algorithm, 57

G
Genetic algorithm

building block hypothesis, 23
Clean-up step, 25–26
Collaboration in Jazz network

iterations, 34–35
outcome of, 32–33
time, 34–35

Cond-Mat network, 33
control of, 27
crossover, 27

community number, 25
one-point crossover, 24
selected communities, 28–30
two-point crossover, 24
uniform crossover, 24

e-mail network dataset, 32, 34–35, 37
emphMetabolic network, 32, 34, 36
encoding, 27–28
evaluation, 27
Facebook (NIPS) dataset, 32, 36, 38
fitness function, 23–24, 28
initialization step, 27
MGA, 33–34, 40
mutation, 24–25, 27, 30
performance evaluation, 31–32
PGP network, 32, 36–37, 39, 41
preprocess, 26, 31
randomization rate, 25
selection, 27, 31
TGA, 33
variables, 26
Zachary’s Karate Club, 32–34

Girvan and Newman algorithm (GNA)
edges betweenness, 7–8
with and without egos, 10–12
genetic algorithm, 19–20, 38

GloVe, 217–218
Graph embedding

Skip-Gram model, 114
structure embedding, 114, 118–120
vertex attribute, 116–118

GraphFuse, 49

234 Index

Graphon space, 81–82
Graph partitioning

genetic algorithm (see Genetic algorithm)
Kernighan Lin algorithm, 21
nodes, 18–19
NSA, 21–23, 41
spectral bisection method, 21

Graphscope, 83
Grouping genetic algorithms (GGA), 27

H
Hard VMF mixture model, 219
Hidden Markov model, 83
Hierarchical Softmax, 119
Hyper graph partition algorithm (HGPA), 66,

69

I
InferIP

behavioral features, 199–200
classifier selection, 201
contextual features, 200
cross validation tests, 196
DDoS attack, 204, 205
description, 195
feature sets, 201
10-fold cross validation evaluation, 201,

202
on forums, 202–204
geographical distributions of IPs, 207
latent feature sets, 200–201
limited text in post, 205
post level, 205
sparse matrix regression method, 195

Infomap algorithm, 49
Initial Margin (IM), 184, 186
Irrelevant dimensions, 46, 51

J
Jensen–Shannon divergence, 216
Jupyter dashboard, 188

K
Kernighan Lin algorithm, 21
Kullback–Leibler divergence, 216

L
Laplacian matrix, 22–23
Latent Dirichlet allocation (LDA), 214

Liquidity risk, 191
Local community detection

conductance, 103–104
exclusion of nodes, 99
ground truth data, 104
inclusion of nodes, 99
inter-cluster probabilities, 104–105
intra-cluster probabilities, 104–105
precision, recall, and F1 score, 104–105
structural similarity, 97–99
temporal smoothness, 99

Local geodesic spreading (LGS), 101–103
Local spectral clustering (LSP), 82, 100–101
Lower Siret Floodplain (LSF) management

analysis, 5–7
Birds Directive, 4
data collection, 5–6
Girvan–Newman algorithm, 7–8, 10–12
indegree vs. betweenness, 9–10
location of, 4
NetDraw and VosViewer, 7–8
network structure, 8–9
research design, 5–6
Simmelian ties, 10–12

M
Malicious IP detection

blogs and social networks, 209
data collection

Ashiyane, 197
collected forums, 197
configuration file, 196
cumulative complementary distribution

function, 197, 198
Offensive Community, 197, 198
Wilders Security, 197, 198
Xpath, 196

early warning, 195
exclusivity, 195
fringe forums, 194
hacker forums, 194
InferIP

behavioral features, 199–200
classifier selection, 201
contextual features, 200
cross validation tests, 196
DDoS attack, 204, 205
description, 195
feature sets, 201
10-fold cross validation evaluation, 201,

202
on forums, 202–204
geographical distributions of IPs, 207

Index 235

latent feature sets, 200–201
limited text in post, 205
post level, 205
sparse matrix regression method, 195

IP blacklists, 195
main stream forums, 194
security forum, 194, 208
show-off section, 194
spatiotemporal analysis, 206–208
structured security sources, 208
VirusTotal, 196, 198–199

Margin value adjustment (MVA), 191
Market risk, 191
Maximum likelihood technique, 55–56
Metabolic network, 32, 34, 36
Meta clustering algorithm (MCLA), 66, 69
Model risk, 191
Modified genetic algorithm (MGA), 33–34, 40
Monte Carlo simulation, 183
Multidimensional community detection

algorithm (MCDA)
community identification, 50
consensus partitioning, 48
feature integration-based methods, 48
GraphFuse, 49
Infomap algorithm, 49
Louvain-inspired generalized modularity

maximization approach, 49
low relevance score, 50
membership selection, 50
mining community structures (see

Community structure)
multiple subspaces, 49
outliers

accuracy and effectiveness, 50
automatic identification, 54–57
classification decision, 57
identified nodes, 57
implementation of, 65–66
lowest score values, 58–59
probability density function, 57–58
scores estimation, 52–54
synthetic network, 47, 58

PMM method, 48
problem statement, 51–52
real networks

Aarhus computer science department,
73

Caenorhabditis elegans, 73–74
DBLP1 and DBLP2 network, 73
European air transportation network,

74–76
SC-ML, 48
synthetic networks, 66

detection accuracy, 67–70
four-dimensional, 46–48
generation, 67–68
outlier immunity, 70–71
scalability, 72–73

user-supplied parameters, 49
weighted graphs, 48

N
Natura 2000 network

LSF management
analysis, 5–7
Birds Directive, 4
data collection, 5–6
Girvan–Newman algorithm, 7–8, 10–12
indegree vs. betweenness, 9–10
location of, 4
NetDraw and VosViewer, 7–8
network structure, 8–9
research design, 5–6
Simmelian ties, 10–12

Romania IGNP management
analysis, 5–7
data collection, 4–5
Girvan–Newman algorithm, 7–8, 10–12
indegree vs. betweenness, 9
location of, 4
NetDraw and VosViewer, 7–8
network structure, 8–9
research design, 4–5
SCIs, 3
Simmelian ties, 10–12
SPAs, 3

Newman’s spectral algorithm (NSA), 21–23,
41

Newton–Raphson method, 56
Normalized mutual information (NMI), 68–69

O
Offensive Community, 197, 198
Online data generation, 167
Open-source risk engine (ORE), 183

P
Partial differential equations (PDEs), 82
PGP network, 32, 36–37, 39, 41
Pointwise antisymmetric Kullback–Leibler

(PAKL) score, 217
Potential future exposure (PFE), 180
Principal modularity maximization (PMM)

method, 48
Protein–protein interaction (PPI), 110

236 Index

Q
QR factorisation, 92

R
Random trade relation graphs

edges, 182
nodes, 181
trades, 182

Relevant dimensions, 51
Risk graph

EEPE, 180
PFE, 180
Rprop financial regulation, 177
weighted directed graph, 179
weighted in/out degree, 180
weight function, 180

Romania Iron Gates Natural Park (IGNP)
management

analysis, 5–7
data collection, 4–5
Girvan–Newman algorithm, 7–8, 10–12
indegree vs. betweenness, 9
location of, 4
NetDraw and VosViewer, 7–8
network structure, 8–9
research design, 4–5
SCIs, 3
Simmelian ties, 10–12
SPAs, 3

S
SA-Cluster, 113
Self-describing documents, 160
Semi-structured data

corruption of
inaccurate data, 162–163
incomplete information, 163–164

degree of flexibility, 160
generation, 162

Singular value decomposition (SVD), 92
Site of Community Importance (SCIs),

3
Skip-Gram model, 114
Soft VMF mixture model, 219
Special Protection Areas (SPAs), 3
Spectral bisection method, 21
Spectral clustering on multilayer graphs

(SC-ML), 48
Spherical k-means clustering, 219
Stochastic gradient descent (SGD),

119

Structured data
corruption of

data currency, 167
duplicate records, 166
inaccurate data, 166
incomplete information, 166, 167
inconsistent data, 166

formal structure, 160
generation of

CFD attributes, 165
FD attributes, 165
Generate Original Structured Dataset

component, 164
IND attributes, 165–166

Surface tension
conductance, 103–104
exclusion of nodes, 99
ground truth data, 104
inclusion of nodes, 99
inter-cluster probabilities, 104–105
intra-cluster probabilities, 104–105
precision, recall, and F1 score, 104–105
structural similarity, 97–99
temporal smoothness, 99

Systemic risk engine
data mining techniques, 177–178
financial system generation, 175
graph model-risk metrics, 175
graph model-trade relations, 175, 176
IT architecture, 175, 176
micro-and macro-prudential regulation,

178
ORE XML configuration, 177
risk graph generation, 177

T
Tensor decomposition-based methods, 49
Term distribution analysis, 216–217
Term frequency, 216
Topic detection and tracking (TDT) algorithms,

214
TPC-H Benchmark, 167
Trade relation graph, 178–179
Traditional genetic algorithm (TGA), 33
TwitterOlympics, 222, 226, 227
TwitterParisEnglish, 222

concentration scores, 224, 225
fused scores, 226
GloVe vectors, 222
PAKL analysis, 223
top documents, 223, 224
VMF mixture cluster scores, 224, 225

Index 237

TwitterParisFrench, 222, 225
TwitterUSUniversities, 222, 226–228

U
Unstructured data, 160

V
Value at risk (VaR), 190, 191
Variation Margin (VM), 183–184,

186
VirusTotal, 196–199, 206–207
Von Mises–Fisher (VMF) clustering,

218–220

W
Weighted term frequency, 216
Wilders Security, 197, 198, 202

X
XML documents, 160
Xpath, 196

Z
Zachary’s Karate Club Network, 26

	Preface
	Introduction
	From Security to Community Detection in Social Networking Platforms

	Contents
	Real-World Application of Ego-Network Analysis to Evaluate Environmental Management Structures
	1 Introduction
	2 Methods
	2.1 Study Areas
	2.2 Research Design and Data Collection

	3 Concepts and Methodology
	4 Research Findings and Discussion
	4.1 Structure of the Ego-Networks
	4.2 Correlation Between the Indegree and Betweenness Values of the Networks
	4.3 Consequences of Removing the Ego: Role of Simmelian Ties and Girvan–Newman Clustering

	5 Conclusions and Future Work
	References

	An Evolutionary Approach for Detecting Communities in Social Networks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 The Algorithm
	3.2 Encoding and Initialization
	3.3 Fitness Function
	3.4 Crossover
	3.5 Mutation
	3.6 Selection
	3.7 Preprocess

	4 Experimental Results and Discussion
	4.1 Datasets
	4.2 Comparison Between Genetic Algorithms
	4.3 Comparison with Different Community Detection Algorithms for Social Networks
	4.4 Experiments with Using Preprocess Step

	5 Conclusion
	References

	On Detecting Multidimensional Communities
	1 Introduction
	1.1 Related Approaches
	1.2 Motivations and Contributions

	2 The MCDA Approach
	2.1 Problem Statement
	2.2 Outlier Handling
	2.2.1 Step 1: Estimating Outlier Scores
	2.2.2 Step 2: Automatic Identification of Outliers

	2.3 Summary of Outlier Handling Procedure
	2.4 Mining Community Structures
	2.4.1 Community Detection Approach
	2.4.2 Selection of Relevant Dimensions of Communities

	2.5 Summary of the MCDA Approach

	3 Experimental Results
	3.1 Experiments on Synthetic Networks
	3.1.1 Synthetic Network Generation
	3.1.2 Community Detection Accuracy
	3.1.3 Outlier Immunity
	3.1.4 Scalability Experiments

	3.2 Experiments on Real Networks

	4 Conclusion
	References

	Derivatives in Graph Space with Applications for Findingand Tracking Local Communities
	1 Introduction
	2 Related Work
	3 Derivatives in Graph Space
	3.1 Discretisation and Finite Difference
	3.2 Approximating Derivatives in Graph Space

	4 Community Detection Using Derivatives
	4.1 Geometric Active Contours
	4.2 Finding Local Communities

	5 Tracking Local Communities Using Surface Tension
	6 Experimental Evaluation
	6.1 Community Detection
	6.2 Community Tracking
	6.2.1 Analysing Surface Tension of Communities
	6.2.2 Tracking Local Communities

	7 Conclusion and Future Works
	References

	Graph Clustering Based on Attribute-Aware Graph Embedding
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 The Attribute-Aware Graph Embedding Framework
	4.1 Vertex Attribute Embedding
	4.2 Structure Embedding

	5 Attributed Graph Clustering Algorithm
	6 Experiments
	6.1 Datasets
	6.2 Evaluation Metrics
	6.3 Experimental Results
	6.3.1 Clustering Quality
	6.3.2 Parameter Analysis
	6.3.3 Scalability

	7 Conclusions
	References

	On Counting Triangles Through Edge Sampling in LargeDynamic Graphs
	1 Introduction
	1.1 A Framework for Graph Analytics
	1.2 Contributions
	1.3 Related Work

	2 The Algorithm
	2.1 Preliminaries and Notation
	2.2 Edge Sample and Discard

	3 Quality of Estimation
	3.1 Static Graphs

	4 Performance Analysis
	4.1 Complexity
	4.1.1 Runtime
	4.1.2 Space

	4.2 Partially Dynamic Case
	4.3 Fully Dynamic Graphs
	4.4 Relationship to Graph Properties

	5 Conclusion
	References

	Generation and Corruption of Semi-Structured and Structured Data
	1 Introduction
	2 Overview of the System
	2.1 Generation of Semi-Structured Data
	2.2 Corruption of Semi-Structured Data
	2.3 Generation of Structured Data
	2.4 Corruption of Structured Data

	3 Related Work
	4 Conclusions and Future Work
	References

	A Data Science Approach to Predict the Impact of Collateralization on Systemic Risk
	1 Introduction
	1.1 State of the Art
	1.2 Method and Approach

	2 A Graph Model of Financial Systems and Systemic Risk Metrics
	2.1 Trade Relation Graph
	2.2 Risk Graph
	2.3 Systemic Risk

	3 Simulation Technology
	3.1 Generation of Random Trade Relation Graphs
	3.1.1 Nodes
	3.1.2 Edges
	3.1.3 Trades

	3.2 The Open-Source Risk Engine (ORE)
	3.3 Configuration and Aggregation

	4 Results: Impact of Collateralization on Systemic Risk
	4.1 Jupyter Dashboard

	5 Synopsis
	References

	Mining Actionable Information from Security Forums: The Caseof Malicious IP Addresses
	1 Introduction
	2 Data Collection and Basic Properties
	3 InferIP: Malicious IP Detection
	3.1 Applying InferIP on the Forums
	3.2 Case-Study: From Reported Malicious IPs to a DDoS Attack
	3.3 Discussion and Limitations

	4 Spatiotemporal Analysis
	4.1 Temporal Analysis
	4.2 Spatial Analysis

	5 Related Work
	6 Conclusion
	References

	Temporal Methods to Detect Content-Based Anomaliesin Social Media
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Term Distribution Analysis
	3.2 Cluster Coherence
	3.3 Weighted Probabilistic Fusion

	4 Experiments
	4.1 Data
	4.2 Results

	5 Conclusion
	References

	Index

