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Preface

The cornerstone of writing this book has been the genuine interest of its editors
on two futuristic domains of research, namely, brain research and research on eye-
tracking. It was somewhere within 2014 when a research team from Greece with the
infrastructure and expertise to collect and analyse brain signals has decided to join
forces with a research team from Germany experienced in capturing and analysing
signals collected from eye movements. The ground of this collaboration has been
the conception of an ambitious project that would answer the call of the European
Commission for multimodal and natural computer interaction and more specifically,
the development of multimodal, adaptive interfaces assisting people with disabilities.
In this direction, we have envisioned the research and development of ‘MAMEM –
Multimodal Authoring using your Eyes and Mind’ as the means to enable people who
have lost their fine-motor skills to operate the computer, create multimedia content,
share it through social networks and become more integrated in a constantly digitizing
society. To make this vision a reality, the aforementioned teams were complemented
by two small–medium enterprises specialized in brain research and eye-tracking, one
team of social scientists and three organizations fostering the potential end users
of MAMEM. In 2015, MAMEM became a reality by receiving funding from the
European Commission and eight partners from around Europe and Israel started on
a research journey that lasted for 3.5 years.

During this journey, we had to face a number of challenges and overcome impor-
tant barriers but, in the end, produce significant achievements. The purpose of this
book is to provide an overview of these achievements and introduce the reader in
a futuristic world where human interaction will no longer require the use of mouse,
keyboard or even hand-gestures but could rely on a combination of mental commands
and eye-gaze. In introducing this world, we initially study the computer use require-
ments of people with (dis)abilities (Part I), we present the algorithms and interfaces
that have been developed for interacting through eyes and mind (Part II) and conclude
with the description of prototype multimodal interfaces integrating both modalities
(Part III). The reader may use this book either as a general introduction of future
human–computer interaction and how this is expected to evolve by including more
modalities and becoming more natural or as a selected list of state-of-the-art algo-
rithms and interfaces assisting people who have lost their fine-motor skills to interact
with a computer.

In concluding this preface, we would like to have a special acknowledgment to
Prof. Maria Petrou who has been the visioner behind this research and she is no longer
with us to see how far her vision has brought us!
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Chapter 1

Introduction
Spiros Nikolopoulos1, Chandan Kumar2, and Ioannis

Kompatsiaris1

1.1 Background

Traditionally, human–computer interaction has been grounded on the principle of
a healthy neuromuscular system allowing access to conventional interface channels
like mouse and keyboard. Recently, in an effort to make human–computer interaction
more natural other types of control mechanisms have been brought in the forefront of
interest, such as gesture-based (e.g. touchscreens and gesture recognition using cam-
eras or wearables) or speech-driven interfaces (e.g. Google Assistant, Apple’s Siri).
However, the potential of these interfaces is also limited by either the good condition
of the neuromuscular system in the case of gestures or the use of an application that
can be easily operated through spoken commands. It has been only very recently
that the evolution of devices recording accurate information about eye movements,
brain electrical signals and bio-measurements has given a new perspective on the
control channels that can be used for interacting with a computer application. The
necessity of using these alternative channels has been mainly motivated in the con-
text of assisting people with disabilities. Loss of the voluntary muscular control but
with preserved intellectual functions is a common symptom of neuromuscular condi-
tions (i.e. muscular dystrophy, multiple sclerosis, Parkinson’s disease and spinal cord
injury) leading to functional deterioration and poor quality of life. Among a great
variety of functional deficits, the most affected people may also lose their ability
to operate computer applications that require the use of conventional interfaces like
mouse, keyboard or touchscreens. As a result, they are marginalized and unable to
keep up with the rest of the society in a digitized world.

During the last decade, a radically new perspective on natural computer interac-
tion has gained momentum aiming to deliver the technology that will allow people to
operate computer applications using their eyes and mind. By ‘eyes’, we refer to eye
movements captured through eye-tracking devices following the user’s gaze, whereas
by ‘mind’we refer to brain electrical signals captured through electroencephalography
(EEG) devices reflecting the brain’s state. The fundamental assumption underlying

1The Multimedia Knowledge and Social Media Analytics Laboratory, Information Technologies Institute,
Centre for Research and Technology-Hellas (CERTH), Thessaloniki, Greece
2Institute for Web Science and Technologies, University of Koblenz-Landau, Koblenz, Germany
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this radically new perspective is that the signals (i.e. eye movements and brain elec-
trical signals) obtained from people with motor impairment that are in good mental
health can be reliably used to drive the interface control of a computer application.
Good mental health does not always guarantee that, due to psychological or other rea-
sons, our users will not shake his/her head involuntarily, or that his/her brain activity
will not be affected by his/her medical treatment (misleading the translation of brain
activity into mental commands). Moreover, simply providing the technology is not
enough, since people with disabilities are usually reluctant (as with most forms of
therapy and intervention) to adhere to practice a new technology even though they
may be totally aware of its benefits. Therefore, there is also a need for making this
technology persuasive and provide the principles for designing interfaces that will
effectively stimulate their potential users to use them and keep on using them. Thus,
the modelling of users based on their (dis)abilities, interaction behaviour, emotions
and intentions is also a critical aspect for the adoption of this technology.

Finally, it is important to mention that although the use of interfaces based on eye
gaze and mental commands has been primarily motivated in the context of assisting
people with motor impairment, their effective use can be also foreseen in cases where
the user can be considered conditionally impaired, in the sense that his/her hands are
occupied in performing another critical task. This could be the case, for example, of
piloting an aircraft in a critical situation where both hands are engaged in the control
panel and the pilot could make the use of an additional modality to issue even a simple
on/off command.

1.2 Rationale

This book reflects on the knowledge and outcomes generated in the context of the
3-year research and innovation action ‘MAMEM’– ‘Multimedia Authoring and Man-
agement using your Eyes and Mind’ (mamem.eu) that has been funded by the H2020
programme of the European Commission under the call of ‘Multi-modal and natural
computer interaction’. In the following, we present the rationale that has been adopted
in the context of this project that also governs the way of organizing this book into
different book chapters. More specifically, the adopted rationale can be considered to
extend along the following axes: (a) review the existing literature on the benefits of
using brain–computer interfaces (BCIs) for the communication and rehabilitation of
people with motor impairment, study their requirements on computer use and model
their (dis)abilities through a set of personas coupled with persuasion and compliance
strategies; (b) design and implement a number of signal-processing algorithms for
interaction control through eyes and mind and (c) develop multimodal, prototype
interface applications that can be operated through eyes and mind.

In reviewing the existing literature for the benefits of BCI applications for com-
munication and rehabilitation, we have focused on BCI research that deals with
noninvasive, EEG-based BCIs, which are used with the intention to gain part of the
lost autonomy through multiple communication and rehabilitation strategies. A total
of 45 studies reporting noninvasive EEG-based BCI systems have been systematically
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reviewed by summarizing the underlying operational mechanisms and reporting the
clinical evidence and outcomes. In studying the computer use requirements of people
with motor impairment, a thorough review of the related literature has been initially
performed, followed by a set of focus groups with the participation of medical experts
targeting aspects like computer use, internet literacy as well as factors limiting the
endorsement of applications that can be operated through eyes and mind. In addi-
tion, a set of questionnaires and interviews was used with the intention to engage the
patients and their caregivers into the process of defining requirements, following an
established methodology on how to formulate, collect and analyse the responses of
the questionnaires. Finally, in defining a set of personas (modelling our end-users)
coupled with the appropriate persuasion strategies, we have worked along two parallel
tasks. The first task had to do with evaluating the patient group’s attributes, needs and
habits, as obtained from the aforementioned user group studies, with the intention to
perform clustering among the patients and, in this way, identify a set of user profiles
constituting the personas. The second task had to do with the definition of a persuasion
strategy aiming to introduce a novel assistive device into the every-day life of people
with motor impairment. Towards this direction, we present the theoretical background
of persuasion strategies by going through the available persuasion theories (i.e. self-
determination, self-regulation, social cognitive learning theory, theories of emotions
and theory of planned behaviour), as well as the existing practices in translating these
theories into design decisions (i.e. functional triad, persuasive systems design model
and design with intent).

With respect to the design and implementation of signal-processing algorithms
for interaction control, we have worked on eye-tracking and EEG-based interaction.
More specifically, with respect to eye-tracking-based interaction, we have studied how
to acquire the user’s eye gaze information in real-time by an eye-tracking device that
can be used to generate gaze events and to analyse the data for deducing more high-
level events. In detecting these events, we have relied on accumulated dwell time
selection, task-specific threshold, object size, position and several other interface-
optimization algorithms for eye-tracking signals. In implementing these optimization
algorithms, we had conducted studies to analyse different types of selection methods
with eye-tracking, also taking target size into account. With respect to EEG-based
interaction, our emphasis has been placed in three directions: (a) steady-state-visual-
evoked potentials (SSVEPs), which are known from the literature to provide the
most accurate setting for EEG-based BCI applications, (b) EEG-based BCIs that rely
on motor-imagery, which are far less disturbing than SSVEPs but at the expense
of considerable lower accuracy and (c) error-related potentials (ErrPs), which are
potentials that have been reported to distinguish themselves in cases where an error
has been observed by the user.

Finally, with respect to the development of multimodal interface applications, we
present an error-aware gaze-based keyboard and a reinvented version of the popular
TETRIS game that can be played through eyes and mind. The error-aware gaze-based
keyboard uses the EEG signals to correct the erroneous actions performed through
eye-tracking-based typewriting. While the keyboard interfaces based on eye-gaze
typically include special buttons for undoing (in the ‘selecting boxes paradigm’) or
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backspacing (in the ‘keyboard entry paradigm’), the use of these buttons is time-
consuming and becomes tedious. On the other hand, EEG offer an easy and natural
solution for undoing/backspacing based on ErrPs. ErrPs are brain signals that appear
when the user detects and error, either by an erroneous action from the interfaces
or by an error made by himself. In this sense, ErrPs have been used and evaluated
as an automatic ‘backspace’ operation in a gaze-based keyboard. Finally, the mul-
timodal reinvention of the popular TETRIS game has been properly modified to be
controlled with the user’s eye-movements, mental commands and bio-measurements.
In the proposed version of the game, the use of eye-movements and mental com-
mands works in a complementary fashion, by facilitating two different controls, the
horizontal movement of the tiles (i.e. tetriminos) through the coordinates of the gaze
and the tile rotation through the detection of senso-motoric brain signals, respectively.
Additionally, bio-measurements provide the stress levels of the player, which in turn
determine the speed of the tiles’ drop. In this way, the three modalities smoothly
collaborate to facilitate playing a game like TETRIS.

1.3 Book objectives

Among the objectives of this book, we may classify the advocacy of BCI applications
as a novel means to facilitate the communication and rehabilitation of people with
motor impairments. In Chapter 2, the reader will have the opportunity to get familiar
with the existing efforts in this field in a structured and systematic way and realize
that despite its great potential, the full capabilities of BCI technology remain rather
unexplored. Understanding the difficulties that may be faced by people with motor
impairment, when using computer applications, fails also within the objectives of
this book. Computer-use habits and difficulties differing significantly from that of
able-bodied as well as requirements for assistive interfaces with unexpected priorities
from people with motor impairment synthesize the content of Chapter 3. This content
is further extended to include objective measurements and qualitative feedback on
the home usage of an assistive interface for a period of one month. Finally, the
instruments to model the (dis)abilities of people with motor impairment, as well as
the study of persuasion theories and intervention frameworks to stimulate a positive
attitude towards the usage of eye- and brain-assistive interfaces, are the subject of
Chapter 4 that concludes Part I of this book.

The objective of Part II is to allow the interested reader to become familiar
with the details of some of the most common algorithmic challenges and method-
ological approaches when interacting with the computer using the eyes and mind. In
particular, Chapter 5 provides a detailed walk-through of existing eye-tracking tech-
nologies, highlights the main problems in eye-controlled interaction and describes
potential solutions in the context of adapted multimedia interfaces. Of particular inter-
est is the description of a browser that can be operated solely with the eyes, called
GazeTheWeb. GazeTheWeb is a custom-made browser that incorporates a number of
layout and functional elements that have been specifically designed to facilitate its use
through eye-tracking. It overrides the basic browser functionalities, such as scrolling,
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zooming, back button, history and favourites, by incorporating a parser for HTML5
that allows to make interventions on the way the web-page content is displayed to
the user. Chapter 6, on the other hand, reviews and elaborates different evaluation
methods used in gaze interaction research, so the readers can inform themselves of
the procedure and metrics to assess their novel gaze interaction method or interface.
In this context, the objective of this chapter is to address the following questions:
how efficiently can pointing and selection be performed? Whether common tasks
can be performed quickly and accurately with the novel interface? How different
gaze interaction methods can be compared? What is the user experience while using
eye-controlled interfaces?

Switching to the EEG modality, the objective of Chapter 7 is to provide an
introductory overview of the machine-learning techniques that are typically used to
recognize mental states from EEG signals in BCIs. Particular emphasis is placed in
describing the available techniques for noise reduction and spatial filtering of EEG
signals with the intention to extract robust features for mental state recognition. The
presentation of the most effective classification approaches for performing this recog-
nition is also within the objectives of Chapter 7, which concludes with some future
directions on adaptive, transfer and deep learning. Chapters 8–10 offer a deep dive into
the algorithmic details of BCIs for the cases of SSVEPs, motor imagery sensorimotor
rhythms and near-infrared spectroscopy (NIRS) signals, respectively. In particular,
Chapter 8 performs a comparative evaluation of the most promising SSVEP-based
algorithms existing in the literature and also describes four novel approaches to
improve accuracy under different operational contexts. Chapter 9 introduces the con-
cept of endogenous BCIs that can be operated via movement imagination of one limb
and are considered ideal for self-paced implementations. Next to the methodological
details and the experimental findings on the use of sensomotoric rhythms for BCIs
based on motor imagery, of particular interest in Chapter 9 is the study investigating
whether the progressive loss of fine-motor skills in people suffering from neuromus-
cular dystrophy brings any significant difference (compared to healthy individuals)
on their functional brain organization that can be considered to favour the Motor
Imagery – BCI paradigm. Finally, the objective of Chapter 10 is to present how the
emerging field of graph signal processing can be used to benefit the accuracy of
BCIs. In proving this claim, a method based on graph Fourier transform is applied
on NIRS signals so as to extract robust features capturing the spatial information
characterizing this type of signals. The presented approach is evaluated in the context
of a mental arithmetic task and achieves classification rates that compare favourably
with the state-of-the-art methodologies.

In the last part of this book (Part III), our objective is to demonstrate how the
modalities of eye-gaze and mental commands can be effectively combined to drive
human–computer interaction. More specifically, in Chapter 11, we initially introduce
the concept of ErrPs and describe how they can be effectively used to automatically
recognize erroneous human–computer interactions and facilitate their correction.
ErrPs are motivated as a passive correction mechanism in human–machine interaction
leading towards more user-friendly environments. Their effectiveness as an error-
aware mechanism is validated in two different settings: an error-aware SSVEP-based
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BCI and an error-aware gaze-based keyboard. Another impressive demonstrator of
the effective collaboration between eyes and mind is presented in Chapter 12 through
the hands-free version of TETRIS. The natural sensory modalities, i.e. vision, brain
commands and stress levels, are integrated into a single visceral experience that allows
simultaneous control of various interface options. In Chapter 12, the reinvented ver-
sion of TETRIS is presented in terms of gameplay design, associated algorithmic
challenges and experimental validation.

Finally, this book concludes with Chapter 13 that wraps up the main knowl-
edge and outcomes presented in the previous chapters, while also identifying the
open questions and suggesting some future perspectives on making human–computer
interaction more intuitive and natural.



Part I

Reviewing existing literature on the benefits of
BCIs, studying the computer use requirements
and modeling the (dis)abilities of people with
motor impairment



Chapter 2

The added value of EEG-based BCIs for
communication and rehabilitation of people with

motor impairment
Ioulietta Lazarou1, Spiros Nikolopoulos1, and

Ioannis Kompatsiaris1

People with severe motor impairment face many challenges in communication and
control of the environment especially in late stages, while survivors from neuro-
logical disorders have increased demand for advanced, adaptive and personalized
rehabilitation. In the last decades, many studies have underlined the importance of
brain–computer interfaces (BCIs) with great contribution in medical fields, rang-
ing from communication restoration to entertainment (e.g. brain games) and motor
rehabilitation. Through this chapter we shed light in BCI research that focuses on non-
invasive, electroencephalography (EEG)-based BCIs, which is used with the intention
to support people with motor impairment in gaining part of their lost autonomy
through multiple communication and rehabilitation strategies. This type of approach
is primarily intended to help severely paralyzed and locked-in state people by using
slow cortical potentials, sensorimotor rhythm and P300 as operational mechanisms.
Moreover, they can assist people with spinal cord injury and chronic stroke by apply-
ing novel methods for restoration and reorganization of their movement. In this review,
45 studies reporting noninvasive EEG-based BCI systems, which have been tested
and operated by individuals with neuromuscular disorders, were identified in the liter-
ature. Our review systematically organizes these studies, summarizing the underlying
operational mechanisms of each study while reviewing the clinical evidence and out-
comes reported between 2000 and 2016. The general conclusion from this review is
that BCI systems could successfully serve as a means of communication and control
for people with motor impairment, as well as help those with incomplete motor func-
tion to regain their motion. However, BCIs need first to be validated in long-term
studies of systematic everyday usage by people with severe motor disabilities, as well
as to take into consideration the differences between able-bodied and motor-impaired
subjects during evaluation.

1Centre for Research and Technology Hellas (CERTH), Information Technologies Institute (ITI),
Multimedia Knowledge and Social Media Analytics Laboratory (MKLab), Thessaloniki, Greece
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2.1 Introduction

Nowadays, several advancements in the fields of clinical neurophysiology and com-
putational neuroscience have been contributed toward the development of promising
approaches based on brain–computer interfaces (BCIs) that pave the way for effective
communication and efficient rehabilitation of people with motor disabilities.

BCI systems can provide end users with communication means operated from
the human brain. In this way, the social exclusion can be avoided and BCI users can
feel more active and capable of interacting with their friends and relatives. Among
the earlier BCIs for communication, the Wadsworth Center’s “Right Justified Box”
[1], the participants learned how to choose specific target by controlling their mu
rhythm through motor imagery (MI). In the later ones, we may include the electroen-
cephalography (EEG)-based thought translation device (TTD) [2] that is based on
regulating slow cortical potentials (SCPs) to move a cursor up or down, which could
be interpreted as “yes” or “no.” More recent solutions use speller implementations
with BCIs, which measure the P300 evoked response when letters of the alphabet
arranged in a matrix are flashed in random order [3–5]. A number of tools have
been developed for accessing the Internet, with popular examples the BCI-controlled
web browsers, such as “Descartes” [6] and “Brain Browser” [7]. In particular, the
Brain Browser [8] was based on modulating mu rhythms over motor cortex to select
browsing commands such as “next” and “previous.” The most advanced BCIs that are
currently available allow users to select web links by increasing their mu amplitude
with MI or to move to the next link. A more recent version of the Brain Browser that
is currently in experimental phase uses P300-based BCIs for direct selection [9].

Perhaps one of the most significant and innovative applications for BCIs that is
currently under investigation involves the creation of therapies to regain the lost motor
control for people suffering from neurological disorders, such as stroke. Mobility
rehabilitation is a form of physical rehabilitation applied to people with mobility
problems to restore their motor functions and regain previous levels of mobility or to be
adapted to their disabilities. Its implementation lies in the fact that the central nervous
system (CNS) has the ability to restore lost functions through the CNS plasticity
[10]. Based on the aforementioned hypothesis, various recent studies have shed light
in the BCI-based rehabilitation training and motor retraining through real, virtual
[11] and augmented approaches and have endeavored to identify the characteristics
of an MI-based BCI for rehabilitation. In this common vein, we can group in two
categories the approaches for gaining movement in paralyzed participants by using
BCIs: (i) approaches that train the patient to produce better motor brain signals and
(ii) approaches that train the patient in activating a device that assists movement
and as a result to eventually improve their motor function. In the latter case, the
goal is to produce sensory input which leads to restoration of normal motor control
for those who have their limbs but the disorder or trauma has severely impaired
motion capabilities [12]. Preliminary work has shown that MI is an area of high
research interest within the field of poststroke rehabilitation. Moreover, “MI engages
the autonomic nervous system as if an actual movement was under way. In turn,
that force implies metabolic demands which allow humans to adapt to the ongoing
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conditions” [13]. Considering the beneficial effects of MI on motor rehabilitation,
this control task has been the one used for BCIs with therapeutic purposes of recovery.
As a result, MI training has rapidly become a key novelty to reactive sensorimotor
networks which have been affected by an acute stroke and as a result restore the motor
function [14]. So far, preliminary studies have shown that individuals who have had a
stroke or other motor difficulties could gain control of specific EEG features [15,16].
A recent systematic review has shown the benefits and the clinical efficacy of the
BCI in stroke rehabilitation through the combination of an MI-based BCI, Functional
Electrical Stimulation (FES), physiotherapy sessions and robotic assistive orthotic
devices for motor recovery poststroke [10].

In most cases of neuromuscular disorders (NMDs), there is a gradual loss of
muscle activity that affects speaking, walking and execution of fine motor tasks, and
results in the deterioration of quality of life. Although the symptoms of the diseases
are easier to cope with during their early stages, they become much more severe in
the late stages. Thus, specific priorities must be set forth in order to develop systems
that will be deployable for each stage of the disease, even for late stages. The majority
of people with NMDs indicate a preference for portable solutions, such as a tablet
or a laptop [17]. Nevertheless, one common issue that may arise from these devices
is their inability to adapt to patient’s needs, especially at late stages of the disease
where many abilities have deteriorated. Even though many technological adaptive
devices are currently used, such as head tracking technology (e.g. “SmartNav∗”) and
eyetracking technology (e.g. Tobii Dynavox†), they have several limitations [17]. In
detail, for people in extreme pathological conditions (e.g., those who are in complete
locked-in state without any remaining muscle control), the use of such systems may
not be possible.

On the contrary, recent studies have underlined the importance of BCI systems in
rehabilitation and restoration of motor function [18–20]. In a nutshell, BCI systems
promise to offer a unique and multimodal solution for both communication and reha-
bilitative therapy that will overcome the shortfalls of the aforementioned approaches
[21]. The idea of operating an external device with one’s thoughts is a highly promis-
ing option for people whose functions such as speech or motion are impaired. Many
clinical studies on BCI research field have highlighted not only the potential utility
and integration of these innovative technological approaches into the life of people
with motor impairment, but also the positive impact occurring by translating scien-
tific knowledge and experimental design into clinical benefits by enabling a novel
real-time communication between the user and the external world [22].

2.2 BCI systems

Nowadays, there are several techniques and operational systems that are used on a
daily basis in order to record brain activity and obtain useful brain signals. In detail,

∗https://www.naturalpoint.com/smartnav/
†https://www.tobiidynavox.com/en-us/about/about-us/how-eye-tracking-works/
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BCI systems can be based on invasive recordings, i.e., implantable electrodes or
grid recordings from the cortex (ECoG) [23], multi-unit activity (MUA) or single-
unit activity (SUA) [24], local field potentials (LFPs) [25], as well as noninvasive
recordings such as EEG, magnetoencephalography (MEG) [26], functional magnetic
resonance imaging (fMRI) [27] and near-infrared spectroscopy (NIRS) [28]. Further-
more, other approaches concerning combinations of the aforementioned recording
methods with additional electrical stimulation have also been suggested, such as
electrical/magnetic stimulation [29–31]. Figure 2.1 depicts all brain recording and
stimulation technologies used for BCI systems.

Among the aforementioned types for BCI system realization, EEG recordings
have been so far more extensively tested and deployed [32–34] due to their effective
implementations, noninvasiveness, and portable and adaptable manifestation [10].
In this systematic review, we focus on the EEG-based BCI systems. In this direction,
there are multiple types of EEG-based BCI systems for communication, environ-
mental control and rehabilitation depending on different modalities of the EEG,
namely SCPs, sensorimotor rhythms (SMRs), P300 event-related potentials and

EEG

fMRI

Recording Stimulation

DBS

tDCS

NIRS

TMS

EEG-BCI
RehabilitationCommunication/control

ECoG,
MUA,

SUA, LFP

MEG

(a)

(b)

Figure 2.1 The different types of neuroimaging systems for recording brain activity,
i.e., ECoG, EEG, fMRI, MEG, or stimulating the brain (DBS, NIRS,
TMS, and tDCS), widely used in BCI research field (A) and the
potential of deploying the aforementioned systems for communication
and control as well as rehabilitation (B)
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steady-state visual evoked potentials (SSVEPs). Finally, different BCI applications
will be reviewed and assessed qualitatively and quantitatively using two measures:
Classification Accuracy (CA), i.e., the percentage of correctly classified BCI controls
when the user operates a BCI system and Information Transfer Rate (ITR), i.e., the
information transfer rate, given in bits per selection or bits/min.

2.3 Review question

In this review, we focus on noninvasive BCI applications geared toward alterna-
tive communication and restoration of movement to paralyzed patients [35]. For
the purposes of this systematic review, we use the following study frameworks
(Figure 2.2):

● Population: People with motor disabilities such as ALS, SCI, PD and MS.
● Intervention: EEG-based BCIs using different modalities such as P300, SMR

and SCPs
● Outcomes: Communication and social integration, environment/domestic

appliances

Therefore, we have included several milestone studies focusing on EEG-based
BCIs for either assisting people with motor impairment in their everyday life or
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Figure 2.2 EEG-based BCI for communication-control and rehabilitation
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supporting them through rehabilitation strategies. We review EEG-based BCI tech-
nologies for communication and control based on three different EEG signals (SCP,
SMR and P300), and discuss their limitations and advantages. We did not include
SSVEP since this type of BCI depends on attentional capacity and vision to be intact,
and both are often compromised in patients with advanced and severe neurological
disease [21]. Therefore, SSVEPs are not suitable for patients in advanced stages of
amyotrophic lateral sclerosis (ALS-LIS) or with uncontrollable eye movements [36].
A number of SSVEP-based BCI systems have been developed and applied to oper-
ating a prosthesis [37] or controlling an avatar in a virtual reality environment [38]
by healthy individuals. The conventional SSVEP-based BCI systems described above
commonly require the basic assumption that the users have a normal oculomotor func-
tion and are thus able to maintain gaze at a given visual stimulus consistently [39]. In
addition, we examine and analyze the BCI methods for inducing brain plasticity and
restoring functions in impaired patients.

2.4 Methods

2.4.1 Search strategy

The following electronic databases have been searched for relevant studies: MED-
LINE/PubMed, EMBASE, Scopus, IEEExplore, ResearchGate, Google Scholar and
manual search conducted in Journal of Neuroengineering and Rehabilitation, Jour-
nal of Clinical Neurophysiology and Journal of Medical Internet Research. We
included only English-language journal articles that directly evaluated EEG-based
BCI technology on participants with motor disabilities. Our search identified 650
potentially relevant citations. Also, we examined the reference and citation lists of the
retrieved articles. We further examined if there were any duplicates of the retrieved
articles (35 duplicates identified and removed). A total of 615 articles were screened,
based on title and abstract, to only include studies involving individuals with motor
disabilities and EEG–BCI systems. Screening of titles, abstracts and full texts yielded
92 publications that met the inclusion criteria. Further screening for EEG studies
focused on restoring communication, environmental interaction and rehabilitation
after training in the target population reduced the sample to 33 articles. Additional
hand-searching of the references of these publications identified another 12 relevant
papers as listed in Figure 2.3.

2.4.2 Types of participants and model systems

The selected studies included participants with motor disabilities. Some studies
involved both able-bodied and individuals with motor disabilities. Participants’group
included: ALS, spinal muscular atrophy type II (SMA II), Duchenne muscular dystro-
phy (DMD), spinal cord injury (SCI), (Spastic) cerebral palsy (CP), multiple sclerosis
(MS), Arnold-Chiari malformation (A-CM), stroke, motor disability and tetraparesis,
postanoxic encephalopathy, extrapyramidal syndrome and Parkinsonism.
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Figure 2.3 PRISMA flow diagram of the article screening and selection process.
Article selection was conducted in accordance with PRISMA guidelines
for reporting systematic reviews [40]

2.4.3 Data synthesis – description of studies target population
characteristics

The selected studies included 10 single-subject reports, 8 studies with fewer than 5
participants, and 11 studies with 5–28 participants with motor disabilities. A total
of 20 studies involved both healthy and individuals with the aforementioned charac-
teristics. The majority of studies included participants with ALS (25 studies). Other
conditions reported in studies included different levels of SCI (14 studies), SMA II
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(1 study), DMD (6 studies), CP (7 studies), MS (3 studies), traumatic brain injury
(TBI) (1 study), A-CM (1 study), tetraparesis and myopathy (3 studies), neurofibro-
matosis (1 study), and extrapyramidal syndrome and Parkinsonism (1 study). All of
the selected studies included only adult participants, whereas studies included adoles-
cents and children with the aforementioned diagnosis were excluded from our study.
The majority of studies included participants at severe state (13 studies), others con-
tained motor-impaired participants at minimal (5 studies), moderate (8 studies) and
advanced (2 studies) level of severity, locked-in state (10 studies), complete locked-in
state (2 studies), hemiparesis after stroke (4 studies), and tetraparesis (1 study). Also,
studies included participants with SCI with level of injury at cervical (12 studies),
thoracic (3 studies) and lumbar (1 study) vertebrae.

2.5 EEG-based BCI systems for people with motor impairment

EEG-based BCI systems present great possibility for a widespread clinical use. The
reason for using BCIs can be organized in two basic categories: (a) communication and
control and (b) rehabilitation. By communication and control, we mean the ability
of BCIs to assist people with motor impairment in communication with multiple
devices. By rehabilitation, we refer to rehabilitation strategies that use BCI systems
for regaining the lost motor control for people suffering from neurological disorders
(e.g., stroke). In the following sections, we present briefly this two-fold use of EEG-
based BCIs.

2.5.1 EEG-based BCIs for communication and control

2.5.1.1 EEG-based BCIs using SCP
An EEG-based BCI can rely on SCPs, which allow anatomically specific voluntary
activation of different brain areas.

The TTD system. SCP–EEG-based BCI systems require users’ training to shift
the polarity (positive or negative) of their SCPs. The first seminal study on EEG–BCI
with two patients in LIS-ALS using SCP was conducted almost two decades ago
[41]. The patients were trained to voluntarily generate SCPs and during the response
period, the subjects were required to produce either negativity or positivity greater
than specific amplitude. In a subsequent work [3], a TTD was developed. TTD trains
participants at locked-in state to self-regulate their SCPs in order to select letters,
words or pictograms in a computerized language support program. Kubler et al.
[42] expanded the previous TTD system by introducing for the first time “feedback
training” by testing two participants at lateALS stage. Moreover, in another work [33],
the research team trained an ALS patient to use TTD for over 1 year so as to use this
device in order to communicate by spelling words. Also, they compared different EEG
classification algorithms of the three phases of training in two sets (Set 1: “feedback
training” phase by rewarding the patient for producing cortical shifts in a requested
direction, Set 2: “copy-spelling mode” by requiring the participant to copy a text,
and “free-spelling mode” by self-selecting letters and words). The patient’s average
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correct response rates in the online training were 83% and 72% for Set 1 and Set 2,
respectively.

In another work, five ALS participants were trained on how to use their SCPs
for effective communication. Particularly, the procedure included a training phase,
while during the copy spelling and free spelling mode, participants had to select a
letter by producing positive SCP amplitude shifts or to reject a letter by producing
negative SCP amplitude shifts [43]. In essence, it was shown that the performance in
SCP self-regulation after several sessions of training can be predicted from an initial
performance. Another approach investigated the potential use of SCPs as a control
mechanism in order to promote communication of an ALS patient by providing visual
feedback of his actual SCP amplitude [44]. After 6 months of training, the participant
managed to self-regulate his SCP by producing two different brain responses. In the
end he managed to produce 454 words in German language even though the speller
yielded one letter per minute.

Web browsers. Another approach to using the TTD system for handling a Web
Browser, namely “Descartes,” was firstly introduced in Karim et al. [6]. The embed-
ded system was tested with only one ALS patient. “Descartes” provided feedback of
SCP amplitude in a time-locked manner after several sessions of training. This was
the first study to show that an EEG-controlled Web browser, which is based on SCP
self-regulation, could be efficiently and successfully operated by a severely paralyzed
patient. It was possible to access the Internet via the “Descartes” system but there
was great difficulty with respect to selecting an icon or a picture on a Web page or
selecting from an alphabetically sorted decision tree. Although the training phase of
the aforementioned study may be a proper procedure in order to support patients so
as to take advantage of BCIs and foster communication, the participant had to exceed
or to remain below a certain threshold (7.7 μV) for operating the system and this
containment may not be suitable for daily usage.

2.5.1.2 EEG-based BCIs using SMRs
People with NMDs can also learn to modulate their SMRs generated when a specific
movement is executed or simply imagined (MI).

Graz-BCI system. One of the most highlighted SMR-BCI studies, namely the
“Graz-BCI,” was tested on a severely paralyzed participant with CP, who had lost the
ability to communicate completely [45]. This particular study showed that “Graz-BCI”
could effectively decode changes in SMR due to MI with a CA of 70% in the task
of letter selection. Nevertheless, the spelling speed rate was very low (one letter
per minute) and many adaptations of the classifier were necessary. More specifi-
cally, the task in this study was a right-hand movement imagination, the so-called
Basket-paradigm with feedback, where the participants had to move the ball into the
correct “basket” [46]. One aspect that should be highlighted in this study was that
the participants achieved high CA and an ITR between 8 and 17 bits/min without
participants having any experience with the BCI system before. This proved that the
“Graz-BCI” paradigm can be easily learned even by people who are not skilled at
these applications.
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Cursor movement systems. Similarly, Wolpaw et al. [47] developed an EEG–
BCI based on SMR regulations. Their results showed that people can learn to use
scalp-recorded EEG rhythms to control movement of a cursor in two dimensions, while
this control is developing gradually over training sessions. This study demonstrated
that performance gradually improved over the training sessions while participants
gradually gained better control over the rhythm amplitudes that controlled the cursor.
In another study [48], four ALS participants were trained to move the cursor steadily
across the screen with its vertical movement controlled by SMR amplitude. Their
results showed that over the initial 20 sessions of training, all four participants acquired
SMR control, proving that an SMR-based BCI might help participants with ALS to
maintain an acceptable quality of life with appropriate communication systems [48].

In exploring the feasibility and accuracy of the SMR-based systems, one recent
study [49] applied high-resolution electroencephalographic (HREEG) techniques that
estimated cortical activity by using appropriate models of volume conduction and neu-
roelectrical sources. In this study, the authors examined five able-bodied participants
and one with a traumatic stabilized lesion located at the dorsal level. In this study, the
lateralization of electrical activity, which is expected to be contralateral to the imag-
inary movement, is more evident on the estimated cortical current density (CCD)
than in the scalp potentials and showed that subjects who underwent training could
use voluntary modulation of estimated CCDs for accurate online control of a cursor.
Furthermore, McFarland et al. [50] showed remarkable results as people with severe
motor disabilities could use brain signals for sequential multidimensional movement,
selection with two-dimensional cursor movement and target selection through self-
regulation of their SMR. This is one of the first and most highlighted studies which
showed that people with motor impairment can learn to use scalp-recorded EEG
rhythms so as to move a cursor in two dimensions to reach a target and then to select
the target.

Game applications. A noteworthy study tried to address the problem of long
training periods needed for people with motor impairment to learn how to operate an
EEG–BCI system. A game experiment that could achieve a successful BCI operation
in less than 30 min was proposed [51]. Their results indicated that three out of six
subjects learned to control a BCI after training and hit the target with rates 2.2–
3.8 hits/min, with accuracy of 94%, 67%, and 57%, respectively, and an ITR of
8 bits/min. They concluded that subjects could improve their performance after more
training since they could learn to produce more distinctive brain activations during
the attempted movements.

In this common vein, Bai et al. [52] investigated the role of extensive training in
the ability to control SMR. This is one of the few studies where people with motor
impairment showed equal performance, in terms of CA, with able-bodied ones. In
particular, two motor-impaired participants (one with stroke and one with ALS) and
nine healthy ones participated and it was found that by using MI, subjects were able
to operate the proposed system with good CA and with fast transfer rates (10–12
bits/min), while in terms of CA, healthy, stroke and ALS participants had similar
performance. Another study [53] developed a different approach for self-control of
SMR rhythms throughout a game, namely the “Connect-Four.” The proposed system
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showed low effectiveness, as compared with effectiveness achieved by end users in
other SMR-based BCI systems (70%–100%) [51].

Although some of the aforementioned studies tried to address SMR-based BCI
systems by reducing the time needed for training, their results revealed low ITR 2.2–
3.8 hits/min and showed that participants’performance improved with longer training
periods [51,54].

Virtual environments. A milestone approach investigated how a tetraplegic sub-
ject could control his movements in a virtual environment (VE) with a self-paced
(asynchronous) BCI system [11]. After four runs, the subject was able to reach accu-
racy of 100%. The fact that after only four runs the subject reached a successful
performance of 100% shows that motivation induced by responses of the avatars and
more realistic conditions enable the participant to achieve better performance.

Control of external devices. There are plenty of studies that have highlighted
the importance of EEG-based BCI for controlling external devices. In Cincotti et al.
[55], it was found that people with severe NMDs can acquire and maintain control
over detectable patterns of brain signals and use this in order to control devices.
This particular study showed for the first time that an EEG-based BCI system can
be integrated into an environmental control system. Over the 10 sessions of train-
ing, subjects acquired brain control with an average CA higher than 75% in a binary
selection task. However, it should be underlined that only four out of 14 participants
managed to achieve the aforementioned CA. In another study, the potential use of
SMR in control of external domestic devices was investigated. During the training
sessions, subjects were asked to imagine the same kinesthetic movement during the
visual session. Four out of six participants with DMD were able to control several
electronic devices in the domestic context with the BCI system with a percentage
of correct responses averaging over 63%, whereas healthy subjects achieved rates of
70%–80%. Furthermore, another study [56] introduced the “one-dimensional feed-
back task,” i.e., moving a cursor from the center of a monitor to a randomly indicated
horizontal direction. Four out of seven subjects were able to operate the BCI system
via attempted (not imagined) movements with their impaired limbs (both foot and
hand) with up to 84% CA.

Additionally, a recent approach investigated the potential use of a telepresence
robot, which is remotely controlled by a BCI system during a navigation task. In
this task, the participants with motor impairment achieved similar CA to ten able-
bodied participants who were already familiar with the environment [57]. Some end
users were able to press specific buttons on a modified keyboard, while others were
using “head switches” by imagining left hand, right hand and feet movements during
calibration recordings. Nevertheless, people with motor impairment needed more
time as compared with healthy participants to complete the task.

2.5.1.3 EEG-based BCIs using P300
The widely known P300 component is an EEG modality that is very frequently used
for operating a BCI system, since it is a late positive component evoked in response to
an external task-relevant stimulus. In particular, the P300 component has been used
in order to control devices, such as wheelchairs, operate real and VEs, and allows the
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user to use paint interfaces or access the Internet. The following categories have been
examined so far with EEG–BCI systems using P300 as modality:

Speller systems. Speller systems are the main BCI applications that use the P300
modality. One seminal work [58] investigated whether P300–BCI could be used as an
alternative EEG-based BCI modality for communication in ALS population. In terms
of CA, groups’ performances were similar, suggesting that a P300-based BCI can be
considered as a powerful and cost-effective, nonmuscular communication tool both for
ALS and non-ALS, able-bodied users. However, the ITR (bits/selection) in this study
is considered rather low as compared with other similar, more recent P300-based BCI
studies [7]. In addition, the most severely impaired ALS participants had the worse CA
as compared with other participants, which reflects also the incapability of P300 to be
an effective communication solution for more severe impairments. In this common
line, another study [59] developed a P300-based BCI system tested on five people
with motor impairment with separate pathologies and four able-bodied subjects. Four
out of the five disabled participants and two out of the four healthy subjects achieved
100% offline accuracy. Similarly, Nijboer et al. [60] examined severely disabled
ALS individuals on a P300-based BCI system for writing text by using a two-phase
experimental procedure. The research team found that the ERP response remained
stable for several months and that CA improved during free-spelling phase.

In another study [61], four ALS participants who had already been involved in
similar studies operated a 5 × 5 spelling matrix (all letters of the alphabet, except
for letter Z) with auditory feedback. This study showed extremely low selection and
CA, which demonstrates that it is exceptionally difficult for participants to focus
and maintain their attention on the numbers. Another study [62] used P300 Speller
Paradigm with 7 × 7 matrix of alphanumeric characters, where two types of stimuli are
presented with different probability (infrequent target stimuli and frequent nontarget
stimuli). People with motor impairment showed lower CA with regard to the able-
bodied group, while the ITR was also lower for the people with motor impairment.
A more recent approach [63] compared the “Classic Flashing (CF)” P300 Speller
paradigm, in which rows and columns are highlighted randomly (as in common P300
Spellers), and the “Face Flashing (FF),” in which characters (letter and numbers) are
overlaid with faces, so as to investigate effects of face familiarity on spelling accuracy.
Two motor-impaired participants were not able to communicate with more than 40%
CA with CF, whereas with FF the same participants spelled with an average accuracy
of approximately 82%. On the contrary, low ITR and CA reported in a study that exam-
ined 10 SCI participants with a P300-based BCI system. In this study, participants had
to spell the 5-character word “SPINE” by using a 36-character matrix (6×6 matrix
layout) after 10 min of training [54]. A recent study [64] introduced a thought-based,
row-column filtering correspondence board, emulating user-centered configuration
standard for individuals with CP. They found that the participants became gradually
more capable to communicate by using the proposed system.

In this common line, another study evaluated the possibility and usability of an
assistive model operated by a P300-based BCI system in order to promote commu-
nication and environmental control of domestic appliances and applications to users
with ALS [65]. Their results of the three experimental conditions showed that the
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effectiveness, adequacy and the end user’s fulfillment did not vary within those three
experiments. However, in terms of CA, the participants’ performance was not suc-
cessful. In this vein, another study [66] evaluated the impact of a hybrid control of a
P300-based BCI technology (using both EEG and Electromyography) that was devel-
oped to operate an assistive technology software. It was found that hybrid BCI might
enable end users to take advantage of some remaining muscular activity, which may
not be fully reliable for properly controlling an assistive technology device. More-
over, [67] introduced also a 6 × 6 matrix where the participant had to “copy-spell”
(35 letters) or “texttospell.” It is noteworthy that this study concluded that there is
no significant correlation between level of severity and CA. Finally, a combined
approach tested a heterogeneous group of ALS participants in a study of a P300–BCI
with an MI task and showed for the first time that the quality of the control signals
depends on the cognitive function of the participants and that behavioral dysfunction
negatively affects P300 speller performance [68].

Web browsers. Another approach refers to BCI systems for Internet access. More
recently, a new solution of Internet access, the “true web access,” was proposed by
Mugler et al. [7] where Internet surfing could be successfully executed through a
P300–BCI browser. It was the first study to use real-life scenario for Internet access
by using the open-source technology of Mozilla’s Firefox. Their results showed that
participants with ALS achieved a CA of 73%, while healthy subjects achieved a CA
of 90%, and ITRs achieved a CA of 8.6 and 14.3, respectively. However, the positive
response and acceptance of this useful tool were outlined by the ALS participants.
Moreover, a recent work assessed the effectiveness, efficiency and user satisfaction
in two spelling tasks, an email sending and an Internet browsing task [69] by testing
a commercial “AT-software QualiWORLD” (QW) controlled by the P300–BCI with
four end users and three AT experts. The performance was high in all tasks and always
above 70% CA.

Paint application. A different direction of a P300–BCI system is toward sup-
porting users to paint [70], such as the “Brain Painting.” Despite the low ITR (ALS:
5.8, able-bodied: 8.57), the CA of both people with motor impairment and able-
bodied was high (ALS: 79%, able-bodied: 92%). Moreover, the patients found the
application extremely useful. However, this study showed that P300 amplitudes may
be affected by illness severity as has been already mentioned in previous studies.
Additionally, another P300-based BCI system used a “paint” application, achieving
high-performance levels (80% accuracy) in both free painting and copy painting con-
ditions, whereas ITRs were rather low (4.47–6.65 bits/min) as compared with other
P300 applications. In general, P300 Brain Painting application was effective and the
end users with severe motor paralysis declared that they might use the suggested
application in their everyday routine [71]. A recent study [72] reported the use of a
Brain Painting 6 × 8 matrix including 48 tools for painting combined with a home-
use P300–BCI application. After approximately 2 years of training, a high accuracy
of 70%–90% was accomplished, while, most importantly, the end users were highly
satisfied with the BCI–Brain Painting system. This study highlighted the potential of
using a BCI application independently by the users while promoting satisfaction and
enjoyment to people with motor impairment.
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Control of external devices. Another communication mode of P300-based sys-
tems is to control external devices. A recent study [73] developed a BCI system that
was tested by two groups of participants, where they had to select a specific path
for a virtual object to reach the goal-point by using the P300 activity. It is worth
noting that this is one of the few studies which have deployed such a system to peo-
ple with motor impairment other than the common diseases (e.g., ALS and stroke)
by examining five paralyzed participants with various impairments. This study also
highlights the fact that correct response without training by using P300 modulation
is feasible as an endogenous response to a stimulus. Furthermore, Mauro et al. [74]
compared two interfaces for controlling the movement of a virtual cursor on a monitor
and found that online CA was more than 70% both for able-bodied and ALS partic-
ipants. Their results showed that ALS participants with residual motor abilities were
able to maintain their attention by controlling the movement of a virtual cursor on a
monitor, similar to the able-bodied ones. Another approach evaluated different visual
P300 BCI systems on subjects with severe disabilities and their results revealed that
P300-based BCI operation may be affected by the severity of the disease, whereas long
periods of BCI execution revealed tiredness symptoms and a decrease in performance
rates [75].

Furthermore, a recent work on this field tested a P300-based BCI system on par-
ticipants with different motor and cognitive limitations, aiming at managing eight real
domestic devices by means of 113 control commands [32]. Ten out of 15 participants
were able to properly execute the suggested apparatus for precision higher than 75%.
Eight of them reached accuracy above 95%. Moreover, high ITRs, up to 20.1 bit/min,
were reached. In another study, a BCI system decodes the user’s intentions and facil-
itates navigation, exploration and bidirectional communication with a robotic system
that is remotely controlled [76]. More specifically, the system is composed of a user
station (patient environment) and a robot station (placed anywhere in the world), both
remotely located and through the Internet to promote communication. Although the
ITR was significantly low (7 bits/min) the CA was interestingly high (90%–100%).

2.5.2 EEG-based BCIs for rehabilitation and training

One of the most innovative applications for BCI technology concerns rehabilitation
systems that aim to support people with motor impairments to regain the lost motor
control. Many clinical BCI studies showed evidence for the feasibility and posi-
tive effect of MI-based BCI systems in combination with physiotherapy and robotic
assistive orthotic devices for motor poststroke recovery [16,77–80]. It is conjectured
[21,77,78,80,81] that this efficacy of BCI systems on motor rehabilitation is due to the
underlying mechanism of synaptic plasticity [82]. Various recent studies have shed
light in the BCI-based rehabilitation training and motor retraining through real, vir-
tual [11] and augmented approaches and have managed to identify the characteristics
of a MI-based BCI system for rehabilitation.

In this vein, it is suggested that there are two ways for paralyzed people to regain
motor abilities by using BCI systems: (i) train patients to produce more reliable
motor brain signals and (ii) train patients to activate a device that assists movement
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by improving the motor function [10]. Even though people with acquired motor
impairment often exhibit damaged cortex or disrupted motor connection integrity,
EEG-based BCI methods are still capable of identifying meaningful improvement
and gradual change. The combined approach of BCI systems together with traditional
physiotherapy appears to be very effective. In another work, a tetraplegic participant
gained control of a hand orthosis in order to improve his functionality of residual mus-
cle activity and restore “hand grasp function” of the upper limb. This was achieved
by regulating his SMR through motor imaging of his foot movement [16]. Following
the training procedure, the participant was capable of a successful operation of the
orthosis by closing the hand orthosis while imaging both-feet-movement and by open-
ing the orthosis by imaging right-hand-movement, nearly error-free with CA close to
100%. Since a stable performance of above 90% correct responses was reached, the
patient started to practically use the orthosis to lift light-weighted objects.

Another similar study evaluated the results of daily BCI training to beneficial
effects of physiotherapy in patients with severe paresis [81]. Successful SMR control
resulted in concurrent movements of the arm and hand orthoses in the experimen-
tal group, while in the control group participants sham feedback was received, i.e.,
random movements of the robotic orthoses (not related to the ipsilesional SMR oscil-
lations). This was the first study to present SMR–BCI intervention as a rehabilitative
approach for a relatively large number (N = 32) of stroke survivors. A recent study
[83] highlighted the importance of the currently used BCI technology in assisting
MI practice, which notably contributes to the improvement of motor functionality in
subacute stroke patients with severe motor disabilities. More specifically, they used
BCIs which can support rapid measure of brain activity generated by MI. The impor-
tance of this study lies in the fact that it was a randomized controlled trial and the
first to demonstrate a clinical, pre-post improvement of the subacute stroke patients
with detailed reports about the underlying neurobiology.

Moreover, a recent study suggested enhancing motor recovery in people who
survived a stroke through passive movement (PM) with a haptic robot and MI [79].
These results revealed better CA of stroke participants (75%) than observed by able-
bodied (67.7%). Finally, another study showed the potential application of an MI
task as a mechanism for stroke rehabilitation. They classified the participants into
three subgroups based on the different lesion locations in order to perform three
different motor tasks (MI, passive motion and active motion). They found different β

band EEG patterns in each patient group, while two groups showed positive laterality
coefficient (LC) values (LC of the ERD/ERS power of stroke patients is affected by
brain damage) in the active and MI tasks.

Finally, a recent study [84] explored the EEG activity from six NMD participants
and six able-bodied individuals during two randomly alternating, externally cued, MI
tasks (clenching either left or right fist) and a rest condition. In detail, the participants
had to imagine the movement of their left or right hand. The cue for the initiation
of movement imagination was given by a red arrow (onset), appearing either on the
left or right side of the screen, pointing in the same direction and indicating the
corresponding imagery movement. Their results revealed increased phase synchrony
and richer network organization in NMD patients since they appear to possess an
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inherent advantage, over able-bodied participants, in the use of phase-synchrony-
related MI–BCIs.

2.6 Discussion

The goal of this systematic review was to identify and synthesize findings on the
grounds of noninvasive EEG-based BCI systems. We presented published studies
which promote communication and control of appliances for people with motor
impairment and approaches which applied adaptable rehabilitation strategies con-
cerning the modern restorative physiotherapy. This chapter reviewed BCI systems of
45 published studies that were generated from the year 2000 till 2016, discussing the
added value of this novel technology and highlighting the important role of BCIs in
motor-impaired people’s life. These studies involved applications of BCI systems in
fields such as medical and clinical applications, control of wheelchair, games and
entertainment (e.g., painting), communication, rehabilitation and environmental con-
trol. The majority of the studies included participants with adult-onset ALS, while
most of them were at severe level of paralysis of locked-in state. In this common line,
in studies focusing on rehabilitation, the majority of participants were tetraplegic
with SCI at cervical vertebrae. This contributes to the line of research that tackles the
importance of investigating new solutions for people who are severely paralyzed and
concentration in BCI research. It also underlines the critical need of severely paralyzed
motor-impaired people for communication even at late stages. Moreover, different
control mechanisms have been used to assess the CA and ITR of the system and the
ability of the user to modulate brain patterns. From the reviewed studies, it is evident
that each one of the three EEG-based modalities (i.e., SCP, SMR and P300), used in
noninvasive BCIs, comprises a promising solution for EEG–BCI system realization.

Moreover, SMR-based games [51,52] indicated that people with motor impair-
ment show reliable performance and a successful BCI operation. In Kauhanen et al.
[51], three out of six subjects learned to control a BCI after training, where a great
advantage was that participants received feedback and could change their strategy in
response to the feedback. In Bai et al. [52], both patients were able to use the proposed
SMR–BCI game system with high performance as well. Both studies are highlighting
the adaptability of the systems and the general acceptance of game applications by
people with motor impairment. However in SMR–BCI applications, the main disad-
vantage is that although ERD/ERS is observed in the majority of participants, some
subjects (even able-bodied) may have no detectable ERD/ERS components (on the
contrary, P300 component is always observed). Initially, BCI approaches for enter-
tainment were typically not at high priority in the field of BCI research due to the fact
that BCI research has mainly focused on applications to address communication and
independency through assistive technological ways (i.e., spelling devices and control
of external devices). Nevertheless, game-oriented solutions seem to be really promis-
ing since they use additional assistive tools while enhancing participant’s motivation.
Furthermore, reported BCI studies involving both able-bodied individuals and those
with severe disabilities have pointed delays in reaction time, low ITR and worse CA
of people with motor impairment [7,52–54,62,75,76]. Moreover, low ITRs of current
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BCI systems do not allow for general conclusions regarding the effective use of BCI
on a daily basis. Also, except for few cases [85], the majority of BCI systems and
applications are mainly used in a research environment (research laboratory, etc.) and
have not been deployed yet in patient’s homes for continuous and everyday use, as
they would need adaptation and fixation during the operation.

P300 shows higher ITRs and does not need training but is greatly affected by the
level of severity of the disease. Nevertheless, many studies have also shown that even
patients in the LIS can use a P300–BCI for longterm periods [72,86]. However, in
terms of ITR, able-bodied group reached higher maximum bit rates than disabled sub-
jects in almost all studies of P300–BCI [7,62,74–76,87]. Moreover, in some studies,
the patients did not even complete the experimental process [74]. In addition, in most
cases the most severely paralyzed participants seem not to be able to operate success-
fully the EEG-based BCI system [75,88]. These results indicate that (i) P300 may be
affected by the level of severity and (ii) participants have worse performance during
the sessions due to a “habitual effect” [89–91].

The reviewed articles largely focused on individuals with adult-onset disabilities.
It is unclear if the findings of these studies could be generalized to individuals with
congenital disabilities, who often have never experienced any terms of communication
or motion. For example, to the best of our knowledge, BCI systems that use SMR for
system operation rely on MI of upper and lower limbs and have not been tested with
individuals who never experienced voluntary control of their movements [92].

Albeit slow, in the majority of the studies SCP speller (namely the TTD) was
around one letter per minute and satisfied the requirements for a successful BCI sys-
tem [3,33]. Although the course of the SCP shifts of participants who used the TTD
remained stable over time, a huge disadvantage of BCIs that demand “self-control”
of an EEG component is that the user must undergo long-term preparation and exten-
sive training for several weeks so as to gain the level of CA needed to use, e.g.,
“brain-controlled cursor movement” for communication. Moreover, BCI technology
that does not replace but complement existing therapies is a novel and promising
field. Studies in stroke patients have shown that, with a motor relearning interven-
tion, EEG features change in parallel with improvement in motor function and that
sensorimotor rehabilitation using BCI training and MI may improve motor function
after CNS injury. Taking into account all the aforementioned pieces of evidence, there
is a strong indication that BCIs can eventually promote independence through novel
communication techniques and promote motor rehabilitation of patients with NMD,
SCI and stroke.

2.7 Summary

The development of novel BCIs raises new hopes for the communication and con-
trol as well as the motor rehabilitation of people with motor impairment. However,
the majority of current published works are basically proof of concept studies with
no clinical-based evidence of daily use by people with motor impairment. Research
interest in the field of BCI systems is expected to increase and BCI design and devel-
opment and will most probably continue to bring benefits to the daily lives of people
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with motor impairment. Moreover, to address the need for extensive training for
self-regulation of SMR, and considering the effect of motivation in the BCI control
performance, more enjoyable solutions such as Virtual Reality or Gaming/Painting
could be used. These approaches re-enable patients to be creatively active and con-
sequently promote feelings of happiness, self-esteem and well-being, and promote
better quality-of-life. Also, as the goal of future studies should be the demonstration
of a long-term beneficial impact of BCI technology on functional recovery and motor
rehabilitation, extensive randomized controlled trials are required.
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Chapter 3

Brain–computer interfaces in a home
environment for patients with motor
impairment—the MAMEM use case

Sevasti Bostantjopoulou1, Zoe Katsarou2,
and Ioannis Dagklis1

Individuals with motor disabilities are marginalized and unable to keep up with the
rest of the society in a digitized world with little opportunity for social inclusion. Spe-
cially designed electronic devices are required so as to enable patients to overcome
their handicap and bypass the loss of their hand motor dexterity, which constitutes
computer use impossible. The MAMEM’s ultimate goal is to deliver technology in
order to enable people with motor disabilities to operate the computer using inter-
face channels that can be controlled through eye-movements and mental commands.
Three groups of 10 patients with motor disabilities each were recruited to try the
MAMEM platform at their home: patients diagnosed with high spinal cord injuries,
patients with Parkinson’s disease and patients with neuromuscular diseases. Patients
had the MAMEM platform—including a built-in monitoring mechanism—at home
for 1 month. Some of the participants used the platform extensively participating in
social networks, while others did not use it that much. In general, patients with motor
disabilities perceived the platform as a useful and satisfactory assistive device that
enabled computer use and digital social activities.

3.1 Introduction

People with disabilities meet multiple barriers that have an impact on their quality
of life. The World Health Organization (WHO) [1] defines barriers as factors in a
person’s environment that through their absence or presence cause limitation of daily
functioning (an umbrella term that covers body functions, body structures, activities
and participation) and create disability. Furthermore, according to the International
Classification of Functioning, Disability and Health [1], disability refers to impair-
ments, such as loss or abnormality in body structure or physiological function, limited
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physical activity and restricted participation in daily activities. People with motor
disabilities have limited capabilities in moving, performing manual tasks, gaining
employment, participating in recreational everyday activities and organizing physi-
cal meeting or having an effective communication due to physical, communication,
attitudinal and social barriers.

Nowadays, technology plays a pivotal role in several aspects of life and people
with disabilities will gain the most from the new technologies lowering the multi-
ple barriers they meet. Brain–computer interface (BCI) technology translates signals
recorded from the brain into outputs that enable people with disabilities to commu-
nicate and control applications without the participation of peripheral nerves and
muscles [2–4]. The area of BCI technology will help people with nervous system
diseases and disabilities to improve both their communication and mobility [5–7].
Furthermore, the use of computer with Internet connection has changed our lives.
Computers are important for accessing global information, communicating with
others, collaborating with people worldwide and increasing both creativity and self-
expression, thus helping people to become more social and at the same time preserve
their independence. However, the needs and concerns of older people are different
from those of younger people. Older people meet a variety of barriers that hold
them from using the computer such as motor and sensory changes, cognitive changes
as well anxiety toward computers [8–10]. Furthermore, people with motor disabil-
ities face multiple barriers for computer accessibility such as difficulties handling
standard input devices (keyboard and mouse), navigation problems, etc. Moreover,
patients with neurological diseases causing motor impairment face specifically many
problems and difficulties when using a computer.

3.1.1 Parkinson’s disease

Parkinson’s disease (PD) is the second most common neurodegenerative disorder
affecting about 1% of the population over 60 years and the prevalence of the disease
is increasing with age from 107/100,000 persons between ages 50 and 59 years to
1087/100,000 persons between 70 and 79 years [11,12]. PD is characterized by motor
symptomatology including tremor at rest, rigidity, bradykinesia, postural instability
and freezing episodes [13,14]. However, the clinical spectrum of PD is more extensive
covering a wide range of non-motor symptoms (depression, apathy, sleep disorders,
autonomic dysfunction, cognitive impairment, etc.) [15,16].

Despite significant advances in the pharmacotherapy of the disease, drug treat-
ment remains only symptomatic and slowing disease progression still remains an
unmet need [17]. Therefore as the disease advances motor, symptoms become pro-
gressively worse, leading to difficulties of daily activities and functional impairment.
Furthermore, after years of treatment with L-Dopa patients develop motor compli-
cations (fluctuations and dyskinesias) [18]. Patients’ quality of life deteriorates due
to the significant motor disability, communication difficulties, loss of employment,
social embarrassment and isolation [19,20].

Patients with PD want to continue living a normal life and technology will help
them to compensate their disability and have social participation. Little is known about
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the needs and troubles of patients with PD in relation to computer usage. Cunning-
ham et al. [21] reported that the loss of high level of finger dexterity makes difficult
the use of a keyboard or mouse. During computer use the issues that emerged were
keeping the hand steady when navigating, losing the cursor, moving in the wrong
direction, slipping off menus, running out of room on the mouse mat and the mouse
ball getting stuck [21]. In the study of Begnum [22], nearly 80% of patients with
PD had severe challenges using the computer mainly linked to the motor symptoms
(stiffness, bradykinesia and tremor), inertia, pain and fatigue. Main problems arise
in the use of standard input devices such as computer mouse and keyboard. Further-
more, Begnum and Begnum [23] evaluated the usefulness of different adaptations
according to the patient difficulty such as mouse adaptations, keyboard adaptation
and ergonomic adaptations. Although potential solutions with different adaptations
have been found for individual cases no single solution was found for all patients
with PD.

3.1.2 Patients with cervical spinal cord injury

Spinal cord injury (SCI) and especially of the cervical region are devastating con-
ditions with enormous physical and psychosocial burden. Spinal cord lesions can
be divided into two categories: traumatic and nontraumatic. The annual worldwide
crude incidence of traumatic spinal cord injuries ranges from 12.1 to 57.8 cases per
million people [24]. The traumatic SCIs have a bimodal age distribution: the first
peak in young adults and the second peak in older adults [24]. Patients with cervical
lesions show tetraparesis or tetraplegia together with sensory loss, pain, spasticity
and autonomic dysfunction. SCI can be complete or incomplete and the disability it
causes is related to the level and extent of the damage. Complete high cervical cord
lesions are the most severe, rendering the patient totally unable to move all extremities
(tetraplegia) and torso [25,26]. They may also cause respiratory problems. Complete
lower cervical cord lesions also cause tetraplegia, but may allow some mobility of
the upper extremities. Incomplete cervical cord lesions may cause less severe mus-
cular weakness in upper and lower extremities (tetraparesis). However, even in this
category of patients finger motor dexterity is compromised. Spinal cord lesions are
accompanied by other neurological symptoms such as sensory loss, pain, spastic-
ity and autonomic dysfunction that increase the patients’ discomfort and disability.
The functional, psychological and financial impacts of traumatic spinal cord injury
(TSCI) are broad. There are different scales that assess independence and disability
in patients with SCI as well as the impairments of the arm and hand that determined
the level of functioning of these patients [27]. For patients with SCI, a variety of
computer interface devices have been created in order to help them in their everyday
living. These devices are classified according to the handling methods that are oper-
ated with the mouth and that sense the movement of a specific part of the body [28].
According to Goodman et al. [29], 69.2% of patients with SCI used a computer with
19.1% of them having an assistive device. A proportion of 94.2% of the computer
users accessed the Internet for e-mail, shopping sites and health sites [29]. Patients
before the age of 18 years had the highest computer use. Furthermore, the motor and
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functional impairments of patients with SCI have a negative impact on their quality
of life and the assistive devices for computer use present a possibility for access to
information, social networks, work and leisure activities [30]. Baldassin et al. [30] in
a systematic review about computer assistive technology and associations with qual-
ity of life for patients with SCI conclude that “despite the scarcity of studies and their
methodological limitations, there is evidence that assistive technology for computer
access favors the quality of life of people with tetraplegia due to SCI, since it improves
participation, independence, and self-esteem.”

3.1.3 Patients with neuromuscular diseases

Neuromuscular diseases (NMDs) are a heterogeneous group of diseases that are inher-
ited or acquired and include motor neuron diseases, neuropathies, neuromuscular
junction diseases and muscular diseases [31,32]. Loss of muscle strength is the main
problem of the NMD. However, muscle weakness differs in localization and type of
progression between the different NMDs. Furthermore, neuromuscular disorders are
associated with disability in body structure and function that have an impact on their
activities and participation [31].

Concerning body structure and function patients may present with loss of
strength, atrophy, contractures, pain and cardiopulmonary symptoms [31]. They also
have problems in activities (fatigue, exercise intolerance, walking and mobility prob-
lems and psychological problems) as well as participation problems [31]. As the
disease progresses, functional problems and limitations in activities become worse
and there is an augmentation of the psychological problems. Patients with NMD will
benefit from the use of assistive technology that facilitates communication, house
activities and mobility. Few studies analyzed computer task performance in patients
with Duchenne muscular dystrophy (DMD). Vilozni et al. [33] used computer games
to encourage their respiratory efforts. Recently, Malheiros et al. [34] determined the
computing task performance in patients with DMD and they reported that patients with
DMD improved their functionality after practicing a computational task. Climans et al.
[35] conducted a survey in Canada about myotonic dystrophy patients’interaction with
technology. According to their study the majority of the patients used computer and
smartphones. They used technology for e-mails, social media and to obtain informa-
tion about their disease. Those who did not use technology found it too complicated
and too expensive. For patients with amyotrophic lateral sclerosis, high-tech aug-
mentative and alternative communication technologies such as eye-tracking-based
computer devices and BCIs have a high potential for improving communication and
environmental control [36,37]. Recently, Wolpaw et al. [38] reported that the benefit
exceeded the burden of communication for patients with amyotrophic lateral scle-
rosis that used independently at home the Wadsworth electroencephalogram (EEG)-
based BCI.

The goal of the MAMEM project was to provide a tool for disabled people
(patients with PD, SCI and NMDs) that can enable them to integrate back into society,
by allowing them a better use of computers and thus a better option to participate in
social networks [39]. Therefore, a novel way to control computers for multimedia
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authoring and management using primarily their eye-gaze and mental commands
were developed—the MAMEM platform.

This chapter initially tackles the habits and difficulties that patients with PD, SCI
and NMD face when using a computer. Subsequently the clinical trials for the use of
the MAMEM platform at home are being analytically presented.

3.2 Computer habits and difficulties in computer use

A set of questionnaires was developed concerning computer use habits, difficulties
and needs for patients with PD, SCI and NMD in order to design the MAMEM plat-
form. Questions for computer use habits included type of computer system used,
computer using hours per day, years of experience and main uses of computer (social
participation, communication, productive activities, recreation, etc.). The questions
about difficulties using a computer referred to problems with the cursor, the key-
board, browsing/navigating the Internet, etc. Furthermore the patients reported how
much their disease affected computer use aspects (comfort, independence, speed and
accuracy of operation, pain, fatigue, effectiveness, etc.). The results of the question-
naires helped defining the clinical requirements for operating the MAMEM platform
[40–42].

3.2.1 Patients with PD

Most of the patients used a desktop (78.9%) and a laptop (57.9%) and they had
4.34 ± 2.8 h of computer use every day. Their most important uses of computer sys-
tem were communication (e-mail, Skype, etc.) (73.7%) and information (Wikipedia,
news, etc.) (63.2%). According to them, the three most important aspects of com-
puter contribution to their life were emotional well-being, educational attainment and
interpersonal interactions and relationships. Their main difficulties using the com-
puter were double-clicking with the cursor (63.2%), moving the cursor on the screen
(63.2%), identifying the cursor on the screen (36.8%) and using two keys at the same
time (36.8%).

3.2.2 Patients with cervical spinal cord injuries

Most of the patients used a laptop (73.3%), smartphone (66.7%) and a tablet (60%)
and they had 5.4 ± 3.13 h of computer use every day. Their most important uses of
computer system were communication (e-mail, Skype, etc.) (45.5%) and productive
(writing, editing, etc.) activities (45.5%). According to them, the three most important
aspects of computer contribution to their life were educational attainment, interper-
sonal interactions and relationships and work and employment status. Their main
difficulties using the computer were using two keys at the same time (70%), typing
with the keyboard (60%) and zooming (50%).

3.2.3 Patients with NMDs

Most of the patients used a laptop (78.9%) and equally a smartphone and a desktop
(63.2%) and they had 6.05 ± 2.99 h of computer use every day. Their most important
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uses of computer system were social participation (Facebook, forums, etc.), com-
munication and recreation (movies, music etc.). According to them, the three most
important aspects of computer contribution to their life were interpersonal interac-
tions and relationships, educational attainment and work and employment status. Their
main difficulties using the computer were using the keyboard (57.9%), identifying
the letters on the keyboard (57.9%) and using two keys at the same time (52.6%).

In conclusion, patients used computers extensively despite their disability. They
all agreed that computer use has a major contribution in their lives especially for
interpersonal interactions and relationships and educational attainment. Therefore,
every improvement that will facilitate computer use will improve their quality of life
and socialization.

3.3 MAMEM platform use in home environment

The clinical trials for the use of the MAMEM platform at home, that is a novel way of
using computer in real-world conditions, had two objectives: to assess the feasibility
and usability of the system in home environment by patients with disabilities and
to test the ability of the platform to enhance the social communication activities of
the patients in real-world conditions. Therefore the purpose of the clinical trials was
to determine whether the MAMEM platform can indeed provide a better computer
operating solution by a sample of potential users.

3.3.1 Subjects selection

Three different cohorts of patients were selected fulfilling the inclusion/exclusion
criteria: patients with PD, SCI and NMD (muscular dystrophies and spinal muscular
atrophy II). There was a pretest trial in the hospital involving 20 patients from each
disease type in order to test patients’ability to operate the eye-tracker and the platform.
Thus, ten patients from each cohort with the best performance were selected for the
home trial. In the PD group, there were six men and four women with an average
age of 55.6 years and 10 years of disease duration. They were in an average 2.1
stage of the disease according to the Hoehn and Yahr [43] scale. All of them had
bilateral arm bradykinesia and rigidity, four had bilateral arm tremor while all had
dyskinesias. The majority of them (90%) reported of a slight to medium interference
of their clinical condition on the computer use. They use mainly laptop and desktop
computer. Their most important computer uses were information, communication and
study (online courses, articles, etc.). In the SCI group (with complete or incomplete
injury above C5), all patients were male with an average age of 38.1 years. They
had partial or complete tetraparesis confined to a wheelchair. Most of them (62.5%)
reported large interference of their medical condition on computer use. Their most
important computer uses were recreation activities and information. In the NMD
group, there were six men and four women with an average age of 31.5 years. They
reported slight (50% of them) and fairly much (20% of them) interference of their
medical condition on their computer use. The most important computer uses were
social participation and communication.
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3.3.2 Method

3.3.2.1 Apparatus
The apparatus included a standard laptop with “GazeTheWeb” installed on. The lap-
tops were relatively new with i5 6th-generation Intel processors, 4GB RAM and
240GB SSD hard drives. For the gaze behavior analysis, the MAMEM apparatus also
included the myGaze [44] eyetracking system. The MAMEM platform included the
final version of “GazeTheWeb” (the tool that was developed within the MAMEM
platform that enables surfing the Internet with the use of the eyes) on each computer,
in addition to supporting software for the trials. This supporting software included
the TeamViewer application [45] which was for remote technical support if needed.
In addition, the MAMEM platform included a built-in monitoring mechanism that
recorded every action that the user performed with the system. This monitoring mech-
anism had a temporary “turn-off” option for privacy reasons. As the default page
of GazeTheWeb, the MAMEM dashboard/Homepage was used so as to inform the
participants for their digital indicators of social integration. Another monitoring mech-
anism was the social tracker application which monitored the public activities of the
participants in online social networks. Moreover, in selected subjects (two partici-
pants from the PD cohort and three participants from the NMD cohort) the apparatus
also included the ENOBIO 8 EEG [46] device and the Shimmer GSR sensor [47] that
were set up (additionally to the eye-tracker) in collaboration with the experimenter
so as to test MAMEM’s multimodal interfaces including the error-aware gaze-based
keyboard and the hands-free version of Tetris (MM-Tetris).

3.3.2.2 Procedure
The laptop with the MAMEM platform installed on it, as well as an eye-tracker was
given to the patients for a period of 1 month to use at their homes. Participation in
the study was performed in several stages. Initially, 1 month before the actual trial,
there was a phone call that started a social monitoring mechanism by asking the
“Facebook,” “Twitter” and “Google Plus” usernames from the participants, assuming
that they had one, and entering them into a social tracker application that was created
for the MAMEM project. In the next stage, the first visit of the trial in each participant’s
home took place. In case the participant had a Facebook account the username was
entered into the MAMEM Facebook developer’s application as an additional social
monitoring mechanism. Then the laptop was located in an appropriate operation
station with a certain height and angle in order to enable the proper use of the eye-
tracker. After the installation of the platform, including connecting all the devices as
well as connecting the laptops to the local WIFI Internet network each participant was
given an oral and written explanation on how to operate the system (how to turn it
on and off, operate the “GazeTheWeb” interface using their eyes, open pages, scroll
in them and save them as bookmarks or how to use the “GazeTheWeb” keyboard,
etc.). In addition, the participants were given a full and profound explanation about
the GazeTheWeb built-in monitoring mechanism that recorded each of their action,
and how to turn it off when they desire. Furthermore, participants were notified about
sites that promote social inclusion; they were suggested to visit them and were taught
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how to view their social activities on the “GazeTheWeb” dashboard (i.e., MAMEM
dashboard/Home page). This dashboard was designed to provide the participants
with feedback about their progress in accessing social sites from different categories
as well as with information about their progress in the training games according
to the persuasive design principles and user models that were formulated within
the MAMEM project for this purpose. Two weeks after the installation visit, an
experimenter performed a monitoring phone call to the participants asking about the
experience they had with the MAMEM platform and the technical difficulties they
were confronted. The final visit was carried out 1 month after the first visit and
the computer was removed from the patient’s home. In selected subjects, during the
first visit the ENOBIO 8 EEG device and the Shimmer GSR sensor were installed
(additionally to the eye-tracker) in collaboration with the experimenter and a few
hours were spent on testing MAMEM’s multimodal interfaces including the error-
aware gaze-based keyboard and the hands-free version of Tetris (MM-Tetris). All
patients signed an informed consent form for all the stages of the trial.

3.3.2.3 Evaluation
The primary outcomes of the trials were the impact of various aspects of the MAMEM
platform on the computer use habits and the social lives of the participants. For the
computer use habits outcome, we extracted five measures of usage: (i) active hours
of usage, (ii) unique sites that the user visited, (iii) keystrokes that were made in the
keyboard, (iv) clicks that were made on the screen and (v) typing speed (calculated as
seconds per character). For the social life outcome, we chose the five most popular
social sites and extracted three measures of usage in them: (i) number of sessions, (ii)
total time spent in the site and (iii) number of keystrokes that were made in the site.

The secondary outcomes comprised user satisfaction and perceived usability of
the system, as measured by the QUEST 2.0 (Quebec User Evaluation of Satisfac-
tion with assistive Technology) [48] and the System Usability Scale (SUS) [49,50]
questionnaires. The QUEST 2.0 item scores are averaged and the final score ranges
between 1 and 5 (not satisfied at all—highly satisfied). The QUEST 2.0 scores were
calculated by averaging the first part of the questionnaire that concerns the differ-
ent physical and usability aspects of the assistive system. The SUS scores ranged
between 0 and 100, and a SUS score above a 68 would be considered above average
and anything below 68 is below average.

Two weeks after the installation visit, the patients answered a structured question-
naire on the phone. The questionnaire included three Likert style questions regarding
the experience with the platform [on a scale of 10 to 1 (10—very satisfied and
1—not at all satisfied)] how satisfied are you by using the MAMEM up to this point?
in comparison to the previous digital device how satisfied are you with MAMEM
on a scale of 1–5 (5—by comparison more satisfied and 1—by comparison not at
all satisfied)? and now that you have tried MAMEM for 2 weeks how probable is it
that you could recommend it to another person with the same disability (a scale of 10
would definitely recommend to 1 would not at all recommend)?

The qualitative outcome included patients’ testimonials, technical problem,
experimenter’s impression regarding the participants, case study analysis and
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multimodal interface experience. The main areas that the case study analyses focused
were demographics, mobility status, history with digital devices, ability of learning
how to use the device, the experience of MAMEM over time, the range of MAMEM
usage, some critical satisfaction and dissatisfaction factors, core learnings and future
perspectives.

3.3.3 Results

All patients completed the 1-month trial using the MAMEM platform at home.

Primary outcome: In the three groups of patients, nine participants used the platform
for a short duration, fifteen participants made a moderate use and six participants
were frequent users. Active usage hours per day in the three cohorts are shown in
Figure 3.1. Patients with NMD tended to use the platform more frequently, while
patients with PD used it less and SCI very little. In detail, the usage outcome for the
participants with moderate and frequent usage was as follows: keystrokes per day
ranged from 0.27 to 277.47 (mean ± standard deviation [SD] = 56.15 ± 91.3), click
per day ranged from 0.4 to 59.44 (mean ± SD = 22.04 ± 27.23) and typing speed
per day (seconds per character) ranged from 0.23 to 3.87 (mean ± SD = 1.43 ± 1.2).
Concerning social activity primary outcomes patients hardly used social media sites
except for YouTube and Facebook (Figures 3.2 and 3.3). The most popular websites
were search engine sites.

Secondary outcome: All three cohorts reported an above-average score to the inter-
face design of the system measured by the SUS questionnaire (the SUS score over 68
is considered above average). PD cohort had a SUS score of mean ± SD = 75.5 ± 13
[51], NMD cohort had a score of mean ± SD = 70 ± 17 and the score for the SCI
cohort was mean ± SD = 73.33 ± 15.81. For the physical attributes of the system
measured by the QUEST 2.0, the scores were mean ± SD = 4.2 ± 0.5 for the PD group
[51], mean ± SD = 3.8 ± 0.68 for the NMD group and mean ± SD = 4.33 ± 0.48 for
the SCI group. The results were similar across cohorts and generally favorable toward
the MAMEM platform. The MAMEM platform was perceived by the patients as a
useful, usable and a satisfactory assistive device that enables computer usage and
digital social activities.
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Figure 3.1 Average active hours using the MAMEM platform in the three cohorts
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Figure 3.2 Average Facebook active hours using the MAMEM platform in the three
cohorts
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Figure 3.3 Average YouTube active hours using the MAMEM platform in the three
cohorts

Qualitative outcome: Most of the patients found the platform useful, easy to learn
and manageable. They enjoyed it and they reported that usage was getting easier and
faster as time went up. They concluded that it is a great tool for people with disabilities.
However, some patients complained of technical problems such as need to restart the
program due to frequent crashes and recalibration of the eye-tracker.

PD patients’ testimonials were as follows: “I was familiarized with the system
very quickly and I used it almost day long but I faced problems focusing the keyboard
after using it for significant time,” “I used the system easily,” “I had difficulty to use
it since I am not familiar with computers and I asked the help of my daughter,” “I
found MAMEM very useful and easy use but faced problems with the eye-tracker
(unplug and plug the USB cable),” “I found the use of the system straightforward and
useful but the recalibration when leaving the laptop was tiring,” “after some delay I
was thrilled with the use of the platform,” “I found difficulty using the platform and
the eye-tracker crashed several times,” “the more time I spent with the system the
easier I got to use it but problems with the eye-tracker,” “I found the system very easy
and I used it as part of my occupation.”

SCI patients’ testimonials were as follows: “MAMEM tool is a great tool for
people with disabilities and useful for my needs,” “I had many problems with the



Brain–computer interfaces in a home environment 43

eye-tracker and I am not so sure that I can use it,” “many problems with the eye-
tracker and I am not very positive,” “positive because I found a better way to perform
activities for social participation that did not have before,” “the MAMEM platform
must provide a better solution for me in order to leave my laptop,” “the MAMEM
platform must provide a better solution for me in order to leave my smartphone,” “I
like the system and I think it can be very beneficial for people with disabilities.”

NMD patients’ testimonials were as follows: “the platform had no flash support
and needed to be re-calibrated and pull out and put the USB,” “nice, useful and
enjoyed it, very useful for many people, eye-tracker problems,” “difficulty writing
using my eyes but if you are familiar with the platform it can be useful for many
people,” “I used the platform 2–5 h per day for many social activities, usage was
getting easier and faster as time went by, I organized a trip through the MAMEM
use,” “easy learning of the system from the first usage time, several times program
crashed, after stopping the use need of calibration again, the eyes got tired quickly
and cannot used it for hours so I prefer my own computer mainly because of fatigue
with the MAMEM platform,” “if you are familiar with the system it is easier for you,
affects positively job opportunities,” “several times the program crashed and needed
to restart the system,” “the system worked well and is easily manageable, many times
needed to restart and calibration again after stopping using it for a while.”

The 2-week phone calls revealed that all patients were satisfied with the platform.
MAMEM platform was found a bit better than the one they were currently using. They
would recommend it to someone with the same disability. Concerning the structural
questionnaire of patients with PD had an average score of mean ± SD = 8 ± 1.6 for the
first question, an average score of mean ± SD = 3.5 ± 1.06 for the second one and
an average score of mean ± SD = 9.25 ± 1.03 for the third question. SCI patients’
scores were mean ± SD = 6 ± 1.8 for the first question, mean ± SD = 3.25 ± 1.3 for
the second and mean ± SD = 6.9 ± 2.2 for the third question. Finally, patients with
NMD had mean ± SD = 6.5 ± 2.8 for the first question, mean ± SD = 3 ± 1.7 for the
second question and mean ± SD = 7.6 ± 2.84 for the third question.

Concerning case study analysis we report the comments of three patients, one of
each category, which used the system frequently and reported high satisfaction with
MAMEM:

Case 1: Patient with PD—he expressed high satisfaction with MAMEM because
it facilitated greatly his use of the computer, allowing him to reexperience what
is like to be using the computer effortlessly. He was able to carry out mostly all
his daily activities and obligations. He mentioned that the difference MAMEM
made in the way he uses the computer was 2-fold: (1) carrying his regular tasks
with more ease and with much less frustration caused by slow movements and (2)
using the computer more effortlessly and faster so that for the amount of time he
spent on the computer he was able to make better use of his time and achieve more.

Case 2: Patient with NMD—the patient started with MAMEM from not using
the computer before to use the computer 2–3 h every day. She mentioned that
MAMEM had a tremendous impact in her life as it opened up a wide range of
opportunities to learn, to connect and to entertain. The patient mentioned a radical
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difference in her life in the sense that it actually gave her access to the Internet.
The critical satisfaction factor of the MAMEM use was the gift of independent
use of the Internet. When she had to give back the device at the end of the month
she said that she would miss all the activities that she was able to carry out with it.

Case 3: Patient with SCI—he felt that as time went by he has gotten used to
operating the platform and the experience of the system has gotten better over
the time. He used the platform to go to social network sites and searching various
things on the Internet. The critical satisfaction factors for this patient were the
ease of operation and the usefulness of the assistive device. He was satisfied with
the MAMEM platform and he learned that technology gets better over time.

3.4 Summary

The clinical trials were designed to evaluate the use of the MAMEM platform for
multimedia authoring among patients with motor disabilities. The platform was used
by three groups of patients at home, which is an uncontrolled environment without
the helpful presence of experimenters. The novelty of the MAMEM platform as well
as its usefulness and usability motivated the patients to use the platform.

The use of the platform at home provided positive indications for MAMEM as an
assistive device that enables computer usage and digital social activities. However the
usage pattern varied between patients. Some patients used the platform extensively
during the 1 month that they had the platform, while others hardly used it. Those who
used the system extensively used it for various activities especially for participation
in social networks, thus promoting social inclusion. Several patients reported that
they could do various sophisticated Web activities that they could not do before. The
reason why some patients used the platform a lot and some not as much is unclear.
Various subjective measures of user impairment stage, age, preferences, prior interac-
tion experience, performance and accuracy are implicated. Furthermore, some users
that rarely used the platform they were already using computer by another assistive
technology (e.g., mouse/switch) and they were reluctant to use a novel eye-tracking
technology.

In general, the MAMEM platform was perceived as a useful, usable and satisfac-
tory assistive device for surfing the Internet and social networks participation among
some patients with motor disabilities. Certain technical problems arose that had to do
with the hardware technology that is the eye-tracker functionality and usability, the
calibration, the restart requirements and difficulties installing the platform.

BCI systems are a fast-growing technology that has a wide array of potential clin-
ical application-restoring communication and motor function. These systems should
be advanced to become portable, more convenient, easy to use and able to function in
different environments. Therefore, the MAMEM platform joins the family of assistive
devices for computer use for people with motor hand disabilities offering a unique
way to surf the web and to participate in online social networks using eye gaze.

The area of interfacing brain with computer for communication and social par-
ticipation is continuously improving with further improvements in the ease and
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convenience of their daily use. People with disabilities will gain the most from the
new technology. However, in order to offer the best to the patients, this technology
must cover their needs and expectations.
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Chapter 4

Persuasive design principles and user models
for people with motor disabilities

Sofia Fountoukidou1, Jaap Ham1, Uwe Matzat1,
and Cees Midden1

When developing effective assistive technology, it is crucial to focus on how
acceptance and continued use of the technology can be optimized considering the
(complexity of the) user and his or her situation. Therefore, this chapter describes
methods for creating user models and shows how these were applied to user groups
(patients with spinal cord injury, Parkinson’s disorder and neuromuscular disorders)
of a newly developed assistive technology (AT). The user models include user char-
acteristics such as demographics, relevant medical information, computer interaction
behaviour and attitudes towards novel assistive devices. Next, this chapter describes
persuasive strategies to improve user acceptance and continued use of AT, specif-
ically aimed at motivating individuals with disabilities to learn to operate the AT
and to use it, in order to increase their social participation. Also, this chapter shows
how empirical research has tested the effectiveness of the proposed persuasive and
personalization (i.e., incorporating user model knowledge) design elements. Finally,
this chapter shows how the implications of these findings were used to improve the
persuasive design requirements of the AT. In sum, this chapter shows how persuasive
personalized design principles (implemented into the AT) improve user acceptance
(evaluations) and continued use (performance).

4.1 Methods for creating user models for the assistive technology

This section describes methods for creating user models and shows how these were
applied to the user groups of a research project to develop AT (i.e., The Multimedia
MAnagement/sharing and authoring using your Eyes and Mind (MAMEM) project,
see [1]). This AT was developed for patients with spinal cord injury (SCI), Parkinson’s
disease (PD) and neuromuscular disorders (NMDs). The AT comprised a system that
would allow these patients to use a personal computer through eye tracking and
electroencephalogram (EEG) computer interface with the ultimate goal to increase
the user’s social participation. The user models include user characteristics such as

1Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology,
Eindhoven, The Netherlands
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demographics, relevant medical information, computer interaction behaviour and
attitudes towards novel assistive devices.

The main method used in this project to create user models was user profiling.
The user profile is a method of presenting data from studies of user characteristics. In
other words, a user profile of the target group contains collective information about
mental, physical and demographic data for the user population as well as other charac-
teristics. The goal of using user profiles is to help the team members (i.e., designers) to
recognize or learn about the real user by presenting them with a description of his/her
attributes. User profile does not necessarily mirror or present a complete collection
of a whole user population’s attributes. The essence of user profiles is an accurate and
simple collection of end-users’ characteristics [2].

The user profile is almost the same as a persona, i.e., some kind of fictitious
person as a collection of attributes (e.g., age, skills, attitudes, motivation level).
However, while a user profile covers a range of characteristics of the target population,
a persona uses specific characteristics (e.g., gender, experience and skill level), which
are usually derived from the user profile.

In more detail, personas have been defined as hypothetical archetypes of actual
users. They are not real people but they represent real people during the design
process. Personas have proper names and are represented with pictures. Although
they are imaginary, they are defined with significant rigor and precision. The purpose
of a persona is to make the users seem more real and help designers to keep realistic
ideas of users throughout the design process. Designers and evaluators can refer to the
personas when considering design specifics. They put a name, face, and characteristics
on users to keep the users in the forefront of design decisions [3].

4.1.1 User profiles

The user profiles for the project were generated from an extensive literature review
of our target groups, as well as patients’ questionnaire analysis and focus groups with
professionals (derived from [4,5]). In these user profiles, each of the three target
groups is described covering areas such as disease range and characteristics, level of
injury, physical symptoms, emotional functioning, cognitive functioning, motivation,
computer operation and assistive devices. Details of these user profiles and sets of
personas for the three target groups (SCI, PD and NMDs) can be found in [6].

4.1.2 Personas

Based on these user profiles, personas were developed to help system developers
focus on the user of the system. To create personas for each of the three target groups,
a list of variables that seem to be the most relevant for the project’s scope was made.
These variables (i.e., demographic, behavioural) were derived from the user profiles.
Next, for each group, we mapped participants’ responses to the questionnaires (for
all details, see [5]), and summarized in the user profiles, against the selected set of
variables. The overall goal of the variable mapping was to find a major pattern for
each variable that will form the basis for the personas. The sets of variables have been
grouped to four groups for all three groups: demographic, medical, computer use and
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Table 4.1 Selected relevant variables to describe users. Example of spinal cord
injury user

Demographic

Medical information
Medical condition

Level of injury

Secondary conditions

Computer skills

Computer use frequency

Respiratory and breathing issues

Intermediate

Medium

Assistive device use

Frequent computer activities

Main computer difficulties

Computer skills

Technology attitude Technophobe

Main computer contribution Employment potential, communication

Typing stick

Recreation, communication

Using two keys at the same time, zooming

Intermediate

Computer use information

Goals and attitudes

Spinal cord injury

Complete injury in the C3 vertebra and
loss of mobility from the neck down

Name

Gender Male

Age 46

Country of origin Israel

Marital status Married

Children

Occupation

One

Unemployed

Education

Main hobby

14 years

Reading

Arie Cohen

goals and attitudes. Lastly, in order to complete the personas, we added extra details
based on the user data (i.e., occupation, marital status).

Table 4.1 provides detailed information about the chosen variables for SCI and
how patients with SCI were mapped against them. It is worth mentioning that inclusion
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and exclusion criteria for the project’s pilot trials were taken into account for the
variable mapping and consequently for the personas’ creation. Hence, according to
the inclusion criteria, the SCI audience will be included by individuals suffering
from complete or incomplete SCI (levels A, B and C), from C5 level and above.
Moreover, according to the exclusion criteria, participants with any psychiatric (e.g.,
major depression) or cognitive conditions that might interfere with understanding
the instruction or with cooperation will be removed. Thus, the variables of cognitive
and emotion functioning were not taken into primary consideration for the personas
creation.

Next, we presented two sets of personas for each group to represent a wide range
of end-users. Below, we present one example of such persona. More specifically, we
show a persona description for a male patient with SCI.

Persona 1: Arie
Arie is 46 years old and he lives with his wife in Tel Aviv, Israel. His life changed
after a military training accident that caused him an SCI. Now he has a complete
tetraplegia at C3. After completing his rehabilitation, he finally managed to sit and
to move using a motorized wheelchair. This was one of the biggest accomplish-
ments for Arie, since he struggled a lot to make it happen. He is also mechanically
ventilated, 24/7.

Arie requires complete assistance with almost all daily activities. Due to the fact
that his wife works full-time, he has a professional caregiver to take care of him most
of the day. He is unemployed at the moment, but he receives financial support from
the Ministry of Defense. Although he has several friends that meet frequently, he feels
most of the time bored and he really misses doing something productive.

His feelings of monotony exacerbated when his son, Timothy, left the house
recently. Timothy is 23 years old and he has recently moved to the U.S. to study; thus,
they do not see each other very often anymore. Arie is very unhappy because of this
and he misses him a lot.

Arie discussed about his feelings with his wife, who insisted that it is time to find
an assistive device to help him operate the computer better, in order to be better able to
search for a job and to communicate with their son more frequently. Arie does not like
changes and he is very cautious when trying new things; that is why he was reluctant
to use an assistive device all this time. However, after he started using a typing stick,
his computer use has increased. He uses image applications to edit photos and send
them to his son through social media networks. He also uses an internet browser to
search for job vacancies and sends job applications through email.

Although the typing stick is useful, Arie still faces many difficulties with his
computer operation. These difficulties are related to both the type of the assistive
device and his medical condition. Specifically, he has trouble using two keys at the
same time and zooming. In addition, his medical condition has an impact on the
endurance and effectiveness of computer use. As a consequence, he does not use his
computer as often as he would desire. Although he would like an assistive device that
would provide him comfort and ease of use, he lacks the motivation to search for a
more suitable one and to learn how to use it and his proficiency.
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4.2 Persuasive strategies to improve user acceptance and use
of an assistive device

This section describes persuasive strategies to improve user acceptance and use of AT,
specifically aimed at motivating individuals with disabilities to learn to operate the
AT and to use it, in order to increase their social participation.

4.2.1 Selection of persuasive strategies

In view of developing a prototype for the current AT, a selection should be made of
persuasive design strategies and techniques. The main criterion for this selection is
to choose those techniques that are more likely to persuade the target groups to use
the AT for managing, authoring and sharing multimedia context.

The core goal of this task is to influence user motivation and make patients
willing to use the technology and continue using it in the future. The pilot trials are
divided into two phases: Phase I refers to patients testing the platform in a controlled
environment (patient centres) to address its feasibility and usability; and Phase II,
during which, participants are encouraged to use the AT in their home environments
for a fixed period, in order to assess the impact of their multimedia authoring in a less
control setting. Hence, the overall desired outcome for the three target groups (SCI,
PD and NMD) is 2-fold:

● User acceptance and training engagement of the AT;
● Keep using the AT to increase social participation in (a) Social network activities

and (b) Digital productivity.

Section 4.1.1.1 describes the development of the persuasive strategies to realize
the objective of increased acceptance and engagement and Section 4.1.1.2 describes
the selection of persuasive strategies to increase social participation.

4.2.2 Developing persuasive strategies for Phase I: user acceptance
and training

Phase I of the clinical trials included training to use the EEG element, training to use
the gaze element, and training for using both. It was divided in two parts: the first part
includes the introduction to the platform, setting up the EEG cap on the participants
head, and training them with basic tasks, such as mouse pointer, basic windows
(operating system) functionalities and basic keyboard operations. The second part of
the training taught users how to perform multimedia managing, authoring and sharing
using dictated tasks like typing an email and editing a photo.

To come to a selection of the techniques to be incorporated in the system during
the first phase, we applied intervention mapping (IM), a framework for developing
and implementing health interventions [7]. In the next subsections, we discuss the IM
framework in more detail.

Intervention mapping framework
IM is a framework for the development of theory and evidence-based health pro-
motion programmes. It provides guidelines and tools for the selection of theoretical



54 Signal processing to drive human–computer interaction

foundations and underpinnings of health promoting programmes, for the application
of theory and for the translation of theory in actual programme materials and activ-
ities. Past projects showed that IM allows intervention developers to successfully
identify (1) behavioural and environmental determinants affecting target health prob-
lems and (2) the most appropriate methods and strategies to address the identified
determinants.

The IM framework guides the developer through iterative steps, as shown in
Figure 4.1.

In the IM framework, steps 1 to 3 provide systematic guidance for the selection
of persuasive techniques for the AT. The first step of the IM pertains to the needs
analysis, which we performed with the use of focus groups with professionals (for
details, see [4]) as well as in the form of questionnaires for the patients and their
caregivers (for details, see [5]). The information derived has been also incorporated
into the user profiles described above.

Therefore, in the following subsections we focus on the second and third steps
of the IM. We define performance objectives, determinants of behaviour and change
objectives accordingly (step 2). Based on this, we subsequently map relevant theory-
and evidence-based change methods (step 3). At the end of this section, we describe
the final selection of persuasive strategies for Phase I.

1. Conducting a needs
assessment

2. Developing programme
objective matrices

3. Selecting theory-based
intervention methods and 

practical strategies for 
behavioural and 

environmental change

4. Producing programme
components and materials

for behavioural and
environmental change

5. Achieving programme
adoption, implementation

and maitenance

6. Evaluating the proposed
programme

Figure 4.1 Iterative steps of intervention mapping approach (based on
Bartholomew et al. 2001)
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Performance objectives
Performance objectives have been defined as the detailed breakdown of what the
participants must do to express a behavioural outcome [8]. In other words, they
are specific sub-behaviours that are necessary to accomplish the desired behaviour
or environmental outcome. Performance objectives clarify the exact performance of
someone affected by the intervention. The central question is:What do participants
in this programme need to do to accomplish a behavioural outcome?

Below we define performance objectives related to the first objective, namely,
the acceptance and training engagement of the users:

1. Understanding the concept of the current AT project: multimedia manage-
ment/sharing and authoring using your eyes and mind;

2. Experiencing the benefits of the current project’s AT (multimedia manage-
ment/sharing and authoring using your eyes and mind);

3. Performing the training and dictated task according to the objectives;
4. Creating realistic operation goals and setting personal targets related to these

goals;
5. Applying solutions for (un)satisfactory multimedia management, authoring and

sharing of the platform;
6. Evaluating the effect of solutions on multimedia operation and achievement of

goals and personal targets (i.e., compared to what was planned);
7. Comparing own behaviours with previous own performance or those of other

users;
8. Identifying and overcoming barriers in multimedia operation;
9. Maintaining progress in multimedia management/authoring and sharing.

Behavioural and psychological determinants
Determinants are those factors that have been found associated with the performance
of the behaviour of the target population or agents that have control or influence over
environmental outcomes. Determinants as such form the key to achieving the per-
formance objectives. Personal determinants usually include cognitive factors and
capabilities such as skills. Environmental conditions rest outside the individual.
Determinants can either create a barrier for or stimulate certain behaviour.

Research in the area of user acceptance of new technology has resulted in several
theoretical models, with roots to information systems, psychology and technology.
The Unified Theory of Acceptance and Use of Technology (UTAUT) has been for-
mulated to present a unified view of user acceptance, which is based upon conceptual
and empirical similarities across the following eight models: (i) theory of reasoned
action, (ii) the technology acceptance model, (iii) the motivational model, (iv) the the-
ory of planned behaviour, (v) a model combining the technology acceptance model
and theory of planned behaviour, (vi) the model of PC utilization, (vii) the innova-
tion diffusion theory and (viii) the social and cognitive theory [9], and see also [23].
The UTAUT model employs intention and/or usage as the key dependent variable,
since the role of intention as a direct predictor of behaviour (e.g., usage) has been
well established across different disciplines. Figure 4.2 shows the basic conceptual



56 Signal processing to drive human–computer interaction

Individual reactions to
using information

technology

Intentions to use
information
technology

Actual use of
information
technology

Figure 4.2 Basic concept underlying user acceptance models (adapted from [9])

Performance
expectancy

Effort
expectancy

Social
influence

Facilitating
conditions

Behavioral
intention User behavior

Gender Experience Age Voluntariness
of use

Figure 4.3 A unified model that integrates elements across the eight models (based
on [9])

framework underlying the class of models explaining individual acceptance of the
technology.

UTAUT provides a useful tool to assess the likelihood for new technology intro-
ductions and helps in understanding the drivers of acceptance in order to proactively
design intervention (including training, marketing, etc.) targeted at populations of
users that might be less inclined to adopt and use new systems.

Therefore, the determinants that will be used within the IM framework stem
from the UTAUT model (Figure 4.3). According to this model, there are four core
determinants of intention and usage of new technology, each including several con-
structs (based on the eight integrated theoretical models): performance expectancy,
effort, expectancy, social influence and facilitating conditions. Table 4.2 provides the
definition of each of these determinants, according to [9], and see also [24].
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Table 4.2 Determinants of technology acceptance and use (see [9])

Determinant Definition

Performance The degree to which an individual believes that using the
expectancy system will help him to attain gains in work.

Effort expectancy The degree of ease associated with the use of a system.
Social influence The degree to which an individual perceives that important

others believe that he or she should use the new system.
Facilitating The degree to which an individual believes that the organizational

conditions and technical infrastructure exists to support use of the system.

Table 4.3 Performance expectancy: constructs and definitions (adapted from [9])

Construct Definition

Perceived usefulness The degree to which a person believes that using a particular system
would enhance his/her job performance.

Extrinsic motivation The perception that users will want to perform an activity because it is
perceived to be instrumental in achieving valued outcomes that are
distinct from the activity itself, such as improved job performance,
pay, promotions.

Job-fit How the capabilities of a system enhance an individual’s
job performance.

Relative advantage The degree to which using an innovation is perceived as being better
than using its precursor.

Outcome They relate to the consequences of the behaviour. They were separated
expectations into performance expectations (job-related) and personal

expectation (individual goals).

In more detail, performance expectancy includes constructs of perceived useful-
ness, extrinsic motivation, job fit and relative advantage and outcome expectations
(Table 4.3). Effort expectancy includes the constructs of perceived ease of use,
complexity and ease of use (Table 4.4). Social influence includes the constructs
of subjective norm, social factors and image (Table 4.5). Facilitating conditioning
includes constructs such as perceived behavioural control, facilitating conditioning
and compatibility (Table 4.6).

The following constructs of each determinant were selected and used for the
current project’s purposes: perceived usefulness, relative advantage and the outcome
expectations (performance expectancy); perceived ease of use and complexity (effort
expectancy); subjective norm and Image (social influence); perceived behavioural
control, facilitating conditions and compatibility (facilitating conditions).
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Table 4.4 Effort expectancy: constructs and definitions (adapted from [9])

Construct Definition

Perceived ease of use The degree to which a person believes that using a system would
be effortless.

Complexity The degree to which a system is perceived as relatively difficult to
understand and use.

Ease of use The degree to which using an innovation is perceived as being
difficult to use.

Table 4.5 Social influence: constructs and definitions adapted from [9]

Construct Definition

Subjective norm The person’s perception that most people who are important to him think
he should or should not perform the behaviour in question.

Social factors The individual’s internalization of the reference group’s subjective culture,
and specific interpersonal agreements that the individual has made with
others, in specific social situations.

Image The degree to which using an innovation is perceived to enhance one’s
image or status in one’s social system.

Table 4.6 Facilitating conditions: constructs and definitions

Construct Definition

Perceived behavioural Reflects perceptions of internal and external constraints on behaviour
control and encompasses self-efficacy, resource facilitating conditions and

technology facilitating conditions.
Facilitating Objective factors in the environment that observers agree make an

conditions act easy to do, including the provision and computer support.
Compatibility The degree to which an innovation is perceived as being consistent

with existing values, needs and experience of the potential adopters.

Change objectives
Change objectives are specific goals of the (health) intervention, stating what should
change at the individual lever or among environmental agents. Change objectives can
be formulated by crossing performance objectives with the determinants. However,
crossing performance objectives with determinants is only relevant when determi-
nants affect the performance objective. Based on the performance objectives and
determinants described above, we constructed a list of specific behaviour change
objectives (for details, see [6]).
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Selected persuasion strategies
After the creation of the behaviour change matrix, the next step was the mapping
of strategies for each change objective/determinant. The mapping involves selecting
strategies that have been proven effective to realize the defined change objectives and
describing how they are practically applied. Based on this, a plethora of persuasive
strategies was selected for the AT.

In total, seven change objectives were selected as candidates for theAT prototype:

1. Feel that it is easy to become skillful at using the system
2. Feel that the training is fun
3. Know how to state clear goals and tasks
4. Compare performance level with what other users do
5. Show ability to monitor own operation activity (i.e., training tasks)
6. Ask for positive reinforcement on system operation successes
7. Be able to identify barriers in own performance and show how to overcome them

Since each change objective is related to one or more behaviour change theories,
multiple persuasive technologies might be appropriate (see [24]). For each change
objective selected, several persuasive strategies were chosen (for details, see Table 4.7
of [6]). Tailoring and tunnelling are the most common persuasive strategies and tools
selected. By combining different persuasive technologies (e.g., monitoring progress
and rewarding user with positive feedback) we believe that we would enlarge the
persuasive impact of the system and successfully motivate our target groups to operate
multimedia management, authoring and sharing using the AT.

4.2.3 Developing persuasive strategies for Phase II:
Social inclusion

In the second phase of the clinical trials of the project, the participants went over the
same protocol as in the first phase, but this time in their home environments. The
platform was given to them for a fixed period in which they will be encouraged to use
it. The core objective is to assess the impact of the AT on multimedia management,
authoring and sharing in less controlled settings. In this phase, social network activities
(i.e., social media activities) and digital productivity (i.e., online courses taken) are
of primary importance.

Since the overall aim of the project is to increase users’ potential in social inclu-
sion, strategies are needed, as motivators, for the users to continue using the system
and stimulate their online social participation. The desired outcome of the second
phase is different from that of the first phase and therefore, the IM framework is not
applicable; here, the overall goal is broader, and it is pointless to predefine objectives
and determinants of behaviour of potential online activities. All in all, a different
persuasive approach needs to be designed.

In the following subsections, we use theories from the domain of social psychol-
ogy as the foundations of the strategies to motivate user’s online social participation
and contributions. Next, we describe the selected persuasive strategy of hierarchical
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Table 4.7 Updated requirements for persuasive design

No. Original requirement Updated requirement

1 System shows how a user is doing
on a number of clear and quantifiable
criteria

System shows how a user is doing
on a number of clear criteria,
and this information is presented in
an evaluated way

2 System shows users’ status, progress
and achievements

System shows users’ status, progress
and achievements on a special
overview page. To provide continuous,
repeated progress feedback, the system
shows a combined, evaluated variable

3 System encourages or discourages
user’s behaviour with the use of praises
or rewards and punishments (absence
of rewards)

System encourages or discourages
user’s behaviour with the use of praises
or rewards

4 System provides positive, evaluative
feedback of user’s performance

(no change) System provides positive,
evaluative feedback of user’s
performance

5 System provides means for
comparing performance with the
that of other users

System provides ambient means for
comparing performance with the that
of other users

6 System provides a clear structure
among the various levels and tasks

System provides a clear structure
among the various levels and
tasks, and presents this in a
very simple way

7 System provides challenging (though
attainable) assignments with clear
short-term and long-term goals

System provides challenging (though
attainable) assignments with clear
short-term and long-term goals; these
assignments only need little amounts of
conscious attention

8 System provides assignments and
levels which increase gradually in
difficulty, following the training tasks

System provides assignments and
levels which increase gradually in
difficulty, following the training tasks,
without bothering the user with keeping
track of sequences or progress

9 System provides task instructions in a
clear manner

No change

10 System provides opportunities for the
user to learn functionalities of the
system and develops competences
and skills

No change

11 System provides suggestion for
carrying out tasks during the
system use process

System provides, in an ambient way,
suggestion for carrying out tasks
during the system use process

12 System provides opportunities for the
training tasks to be fun

No change
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memberships and lastly, present our proposed motivation strategy to accomplish the
goal of social inclusion of the current project.

Reciprocation theory
Reciprocation is a basic norm of human society. It states that appropriate rewards are
necessary when individuals are invited to do something for someone else. Since the
project’s goal is individuals to keep using the system, users should benefit from their
participation. One overly used technique is to match rewards with the participation
level. Simply put, the amount of reward a user gets should be contingent on his/her
activity level. At this point, two crucial questions are important: how to precisely
measure users’participation and activity and what the reward should be. If the rewards
are perceived as unimportant, it can affect users’ motivation to continue using the
system.

Consistency
According to the consistency theory, making initial public commitments increase the
probability that subsequent actions will be consistent with such commitments [10].
Forming this theory for the project, users could be encouraged to make an initial
commitment of their online social participation. Thereinafter, they will be reminded
of the commitment whenever they do not act in accordance with this commitment.
Based on the theory, the user, in an effort to reduce his/her cognitive dissonance, will
adjust his/her behaviour accordingly. The central issue here is how to persuade the
user to make a public commitment.

Social validation
According to social validation theory, people often choose what to do in a situation
by observing the actions of others. If a large percentage of people are in favour of a
certain idea, many others would tend to follow their way. Moreover, people who share
some short of similarity, can influence the behaviour of one another. Therefore, it is
likely to persuade users to increase their online participation, by making known that
many others, just like them, performed the same activity, and were rewarded for this.

Theories of discrete emotions
Discrete emotions are universal emotions such as fear, anger, sadness and joy. They
have been defined as ‘those emotions that have unique appraisals patterns, motiva-
tional functions and behavioural associations’ [11]. For this project, the theory of
fear will be primarily used. According to the theory of fear, a person can feel fear
when he/she finds himself/herself in a situation of perceived threat, directed either
to the self or to his/her properties. This fear of loss increases the appeal of incoming
messages, particularly those enclosing reassuring information [11]. An interpretation
of the theory to our motivation strategy could involve provoking fear to the users;
for example, by threating that they may lose some of their privileges. Afterwards,
they are presented with the information about how to prevail over this issue. As a
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consequence, the persuasiveness of the information is enhanced and a user becomes
more active.

Selected persuasive strategy: hierarchical memberships
The core motivation strategy here is to introduce a set of hierarchical memberships
into the system. Users can be given different memberships based on their levels of
online activity. The more active a user is, the higher his/her membership level is.
The three issues that are explored in the subsections below pertain to the selection
of measuring activity indicators, the membership decision and the selected rewards
for each group. Lastly, we describe below a detailed example of how the selected
persuasive strategy could be applied to the AT.

Selection of measuring activity indicators
In accordance with the questionnaire analysis (see [5]), we expect the users to engage
in the following four social activities that have been rated as the most important
aspects of computer use categories for all patient groups:

1. Social participation
2. Educational attainment
3. Work/employment potential
4. Recreation and information

Furthermore, each of these four categories contains various social indicators. For
example, the interpersonal relationship category includes, among others, increase of
online friends and the number of messages sent. A very important aspect here is that
the number of indicators (shown to the users) should not be large and should also
be concrete and easy for the users to understand (so as to know how to match their
activity in accordance with them). Since these will be the target behaviours for each
of the four categories, careful consideration is needed in their selection.

Another essential issue is that users of each of the three target groups have differ-
ent needs and preferences for social inclusion that have to be taken into account. The
feedback from questionnaires has pointed out that the three most important computer
categories among the group of patients were as follows:

(a) Patients with SCI: productive activities and recreation, social participation,
study/recreation and information

(b) Patients with PD: communication, information, social participation
(c) Patients with NMD: social participation, communication and recreation

Although some of the indicators can be chosen to apply to all three groups (such
as ‘log on the system frequently’ and ‘stay online’) other indicators should be tailored
to each of the three groups. This means that the indicators should reflect the most
significant social indicators related to computer activities, which are important to the
patient groups.

As a result, the core idea is that each group will be presented with different indica-
tors to accomplish, according to groups’preferences for online activities. For example,
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frequency of SNS use (e.g., Facebook, Twitter) could be a more relevant social indica-
tor for patients with NMD, while for patients with PD, frequency of mail and Skype use
would have a higher importance. Based on this, our approach is the following: first,
maintain separate numeric values for each user to represent his/her performance on
each of the selected indicators per category. For example, a value ‘V1’ may account
for users’ frequency of social media use per time unit (e.g., 1 week), in the first
category.

Moreover, these indicators can have the same or different weights. Since the
importance of the selected indicators for social inclusion can be different, different
weights (i.e., W1, W2 and W3) could be introduced per indicator. The weights could
be tailored per group; the activities that are more relevant to each group could be
assigned with a higher value.

Although in most cases users’ activity can be measured accurately, there is a
detail that deserves mentioning. We hope that users engage in all categories. In other
words, they should not keep performing one of them and skip the others. Therefore,
we can put a ceiling value (Ci) for each criterion. If a user’s performance value of
a certain activity is greater than the ceiling value of that activity, the weight for the
excess part (Wi_excess) would be much less than the original one (Wi). The intent
of introducing the ceiling values is to stimulate users to be active in four categories,
with the same effort. It ensures that the users who always perform one task and ignore
the others would not get a high-level membership.

We constructed a variable integrating the four categories using for each an
assigned (tailored) indicator that could measure the users’ social inclusion (on that
category), each with their assigned weights and ceiling value. This integrated variable
was used to determine a user’s ‘membership level’ (see the next section).

Users’ membership decision
First of all, we should decide how many membership levels we should introduce to the
system. If the number of the membership levels is too small the users’ activity would
not be differentiated well. On the contrary, too many membership levels could be
confusing for the users. Generally the number of memberships should not be greater
than six and less than three. For the current AT, we selected to rank the users in the
system into three levels depending on the overall evaluation of their online activity:
gold (top level) silver (middle level) and bronze (bottom level).

In general, becoming a gold member should be relatively more difficult, because
gold users, representing the highest level of participation, are not easy to be stimulated
further. According to the theory of discrete emotions, their only motivation is trying
to maintain their memberships. It is intended to be relatively easier for users to be
classified in the silver member category, because these users have the chance to
upgrade their membership and at the same time be afraid that they might be demoted.
Both possibilities could become their motivation to increase their participation. In
addition, according to the social validation theory, the fact that all users can see the
participants that managed to get in the top two levels could pressure or stimulate the
ones that are on the bronze level, to perform better, thus getting them a promotion.
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Users’ rewards decision
When users have managed to upgrade their membership, it is really important to
have them realize that the system offers some kind of reward for their active partic-
ipation. Otherwise users would feel there is no meaningful reason to achieve a high
membership level and their participation might decline.

What should be the reward for active users? To start with, the membership itself is
a kind of reward if it becomes public. Since there are a limited number of this project’s
platforms to be distributed, they were given to the users in a rotational process.
Thus, the simultaneous and ‘live’ comparison and visualization of the participants
was impossible. However, users’ membership served as a kind of recognition when
it becomes public and can be seen by all users. Gold members gained a high status
and silver members gained some social credits as well. Therefore, it was highlighted
to the users that the levels of their progress as well as the membership they reached
would be visible on the interface to subsequent users.

However, offering only this reward was not enough since not all users are moti-
vated by status and social comparison. A basic rule of thumb is that the reward should
deserve or outweigh the users’ effort to upgrade their memberships. Consequently,
a more ‘materialistic’ reward could be introduced, such as providing better services
for active users. The definition of better services should be what users really need in
the system. Previous research rewarded users by altering media items such as sounds,
background skin, or user avatar according to user’s performance.

However, users of the three groups have different needs, difficulties and require-
ments; that is why rewards have to be tailored to the group. Based on their status,
we rewarded the groups with some extra functionality which is attractive enough to
them.

The motivation interface
The AT will introduce three memberships into the system: gold, silver and bronze.
A user will be grouped into these three levels according to his/her activity, related to
the selected social indicator. A graphical user interface shows the user’s membership.
On the default scree, right when the user runs the software, a symbolic membership
card was displayed, which clearly shows the user’s current membership level. If the
user clicks on the card, a new window would pop up and show the user’s participation
during the previous period of time (e.g., days, weeks). The window will describe the
proportion of the user’s activity in each of the selected indicators (of the four broad
categories) instead of the absolute value. This information explains visually why the
user is in the current membership class.

In the AT, the users’ membership is public among the participants. There will
be a visualization panel that shows the hierarchical representation of all (previous)
users’ nicknames together with their memberships. This representation was included
to trigger social comparison and thus stimulate the user to increase participation.

Based on their status we rewarded the active users with some useful extra func-
tionality, tailored to the group. The rewards increased as the user moves to a higher
level.
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Lastly, users received messages which evaluate their progress, warning them
when they are about to downgrade or upgrade their membership.

4.2.4 Conclusions

The section above presented the design of persuasive principles to motivate users
towards the use of the AT. This design followed the pilot trials protocol which is
divided into two phases; therefore, the persuasive strategies were designed for each
phase. For the first phase, which is the user acceptance and training engagement,
various persuasive theories were selected and proposals on how they could be applied
were made. For the design of the persuasive strategies, the needs and requirements
of each of the target groups were taken into consideration. Thus, tailoring was the
persuasive technique most frequently used. With regards to the second phase, which
refers to the increase of users’ social inclusion through online social activities, a
persuasive strategy called hierarchic memberships, was designed, considering the
particularities of the groups throughout the design process.

The next step is to validate the selected strategies through experiments with
users with similar characteristics with our target groups, to incorporate the updated
strategies into the prototype.

4.3 Effectiveness of the proposed persuasive and personalization
design elements

Also, this chapter shows how empirical research has tested the effectiveness of the
proposed persuasive and personalization (i.e., incorporating user model knowledge)
design elements. For this, this chapter will describe two user evaluations of the system.
That is, firstly, at the three clinical sites a feasibility study has been performed: Phase
I trials of the AT (for a detailed evaluation, see [12]). The core goal of this feasibility
study was to test whether users from the three patient groups could use theAT, identify
usability issues, technology issues, and assess whether they can be effectively trained
to use the AT and after such training perform a series of web tasks. Below, we present
this evaluation and discuss the implications is has for the persuasive design and
personalization of the AT.

Secondly, we studied in a lab study specifically the influence of the persuasive
and personalization design. That is, the persuasive and personalization strategies were
selected based on a close review of the scientific literature showing what the more
effective (and most fitting and relevant) persuasive strategies are. Also, based on
the IM approach, we developed a selection system for selecting those persuasive and
personalization strategies that best fit within a larger intervention aimed at influencing
the current target behaviour (acceptance and use of the AT, and after that, social
inclusion behaviour).

To test the actual effectiveness of these strategies, we performed a lab study. In
this lab study, we compared the effects of being trained with a version of the AT
training software that include all of these persuasive strategies and personalization
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to the effects of being trained with a version of the AT training software from which
most of those elements were removed.

4.3.1 The evaluation of Phase I field trials

As described above, the project conducted Phase I field trials. These field trials were
designed to evaluate the first version of the AT with actual users in a controlled
environment. The specific purpose was to investigate the feasibility and usability of
the AT and the propensity of the participants exposed to it, for adoption purposes.
A sample of 34 participants (18 able-bodied participants and 16 patients) was trained
to use the AT in a half-day training session supervised by experimenters. The patient
sample included six patients with PD, four participants with SCI and six participants
suffering from NMD. All had physical disabilities limiting the use of digital devices.
In this field trial, participants were trained in using theAT (using the training software),
and then performed four dictated tasks that aimed at social inclusion (e.g., writing an
email, posting a picture).

Results of this first feasibility study represent the first evidence that the AT can
be used effectively by patients, that patients can use it as effectively as healthy users,
and that the AT will allow patients to successfully perform social inclusion aimed
tasks. More specifically, during these clinical trials, most patients (and also healthy
users) expressed strong interest in trying this innovative technology using their mind
and eyes. All participants were (with the exception of two participants who dropped
out for medical reasons) able to learn to use the device in the basic, intermediate and
advanced training tasks, while also showing improvement in the use of the device after
practicing in more tasks. Results show that patients learned to use the AT similarly
to able-bodied participants. All patients were able to successfully carry out dictated
tasks (composing and sending e-mail, posting on social media, watching a video and
uploading a photo) defined as important for social inclusion. Their performance on
these tasks (with respect to time and accuracy) was not different from able-bodied
participants. Importantly, the current findings point out that with theAT, their physical
disability tends to not be a hindrance in the use of a computer for social inclusion
tasks. Finally, the patients in the sample tended to express satisfaction and interest
in using the device, despite some technical difficulties (e.g., repeated necessity of
eye-tracker recalibration).

Important for the current report, Phase I field trials also investigated (qualita-
tively) the feasibility of the persuasive and personalized design of the AT training
software. That is, the persuasive design and personalization elements of the training
software were included in these field trials: Half of the participants were exposed
to the persuasive design elements by training them on how to use the AT with the
(original) version of training software that included all persuasive and personaliza-
tion elements, whereas other participants were trained with a version of the training
software from which most of these elements had been removed (but that still retained
a potential influence on behaviour as it contained the same structure and training
cycles).
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Results of Phase I field trials showed that participants were very positive about
the persuasive and personalization elements. For example, participants’ self-reports
showed that these elements added to the fun and enjoyment of usage of the AT.
However, these persuasive and personalization design elements did not seem to make
a difference in participants’ acceptance and use (performance) of the AT. That is,
both with respect to acceptance variables (ease of use, perceived usefulness, etc.) and
performance variables (speed and accuracy, learning speed), Phase I trials showed
comparable findings for participants trained with the two versions of the training
software.

However, there are several very clear reasons for this absence of differences
in acceptance and use between users trained with the persuasive and personalized
training software and the other users. First of all, all participants in Phase I field
trials showed to have very high motivation for accepting and using the AT. Also,
these participants only used the AT for a very limited amount of time (only 3–4 h),
which apparently was brief enough to not cause deteriorations of motivation. This
indicates that the persuasive and personalized design could not increase motivation
even further. Relatedly, in Phase I field trials, an experimenter is needed to be present
in the room to assist the participant. Still, the presence of the experimenter might have
had a stimulating effect on the motivation of the participant. However, the persuasion
design elements will be especially relevant in Phase II part of the trials which will
last for a month in participants’ homes, and in which users have to use the system
without the presence of an experimenter.

Another potential reason for the absence of clear differences between user accep-
tance and performance caused by the persuasive and personalized design of the
training software is the lack of statistical power of Phase I field trials. That is, these
field trials were set up as a feasibility study and had inherent limitations in using
larger numbers of patients as participants.

Therefore, next, we conducted a lab study we performed to gather quantitative
and more focused evidence for the (potential) effectiveness of the selected persuasive
design strategies and personalization.

4.3.2 The evaluation of the assistive technology in a lab study

In addition to studying the feasibility of the AT in Phase I fields trials, we also
performed a lab study to specifically investigate the effects of the persuasive design
and personalization elements in the AT training software on two crucial outcomes:
system evaluation and task performance (for details, see [6]).

To study the effects on system evaluation and task performance, this study inves-
tigated the effects of training participants with two different versions of the training
software: a version with all persuasive design elements included, and a version of
the training software from which most persuasive design and personalization was
removed. So, for example, participants who used the version with all persuasive
design elements included were instructed on how to use the system through gamified,
personalized instructions, while for the participants who used the other version, the
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same instructions were giving without personalization and gamification elements.
After being trained on how to use the AT with one of these two versions of the train-
ing software, participants in this study performed two dictated tasks: a Google search
task and a YouTube task. Overall, the results of this lab study confirm and extend the
results of Phase I trials (as described in [12]).

First of all, the lab study investigated participants’ evaluations of the AT. When
assessing ease of use evaluations right after completion of the training tasks, results
show that the Full Persuasive training software leads to more negative evaluations
of the AT. That is, results showed that in their evaluations right after completing the
training tasks, participants who were trained using the Full Persuasive training soft-
ware evaluated the perceived ease of use of the AT more negatively than participants
who were trained using the Limited Persuasive training software. Explanations for
this difference may be related to the core consequence of including persuasive design
elements: playing the games in the version of the software needed more time (as
results also showed), more game elements needed to be understood, and, basically,
the tasks within this version of the software were more elaborate (including the per-
suasive design elements, like feedback, personalization, gaming elements) than the
tasks in the Limited Persuasive training software. Thereby, we argue that causing
a somewhat lower evaluation on ease of use judgments is not easily avoided when
including persuasive design elements (compared to software in which those elements
are not present).

Importantly, results could not provide evidence for a difference in ease of use
judgments for the two versions of the software, right after the dictated tasks had been
completed. This suggests that the detrimental effects on ease of use caused by the extra
task elements in the persuasive design version had disappeared, and any disadvantage
for ease of use judgments caused by the persuasive design elements had dissipated.

Finally, results could also not provide evidence that participants trained with the
persuasive design version of the training software evaluated the AT as more useful
than participants trained with the other version. Importantly, results show that the
explanation for this is a ‘floor effect’: all (healthy) participants of our study seem to
have evaluated the potential usefulness for themselves of this technology to be very
low (in both training software conditions), probably simply because they have much
more useful alternatives available (i.e., the mouse and keyboard).

Thereby, these results help understand the lack of (qualitative) differences found
in Phase I trials on evaluations of the Full Persuasive training software as compared
to the Limited Persuasive training software. The current results suggested that there
may not be an advantage (for ease of use judgments) of including persuasive design
elements but rather that ease of judgments are negatively influenced, although such
more negative ease of use judgments also easily diminish when using the system.

More importantly, the current results help understand how the persuasive design
elements help increase user performance. That is, first of all, our analyses show
that users trained with the Full Persuasive training software needed more time for
completing the training tasks. This finding is closely related to the lower ease of
use scores found for this version of the AT: doing more (as more was included)
costs more time, and thereby the whole set of tasks was less easy to complete.



Persuasive design principles and user models 69

Still, using it for a longer time period also seems to have led to more training and
better performance.

Indeed, crucially, the current results also showed the advantages of including
the persuasive design elements in the AT for a very important performance outcome:
accuracy. That is results showed both that participants trained with Full Persuasive
training software performed the training tasks better (more accurate) and, perhaps
even more importantly, performed the two dictated tasks better (more accurate). As
the core goal of the AT is increasing social inclusion activities users perform, this
finding provides evidence for the effectiveness of the persuasive design included in
the AT training software for increasing such outcome behaviour.

In sum, the lab study gave rise to the following conclusions about first of all AT
evaluation, and, secondly, task performance within the AT.

First of all, different from what we expected, including the persuasive and person-
alization design principles into the AT training software did not lead to more positive
AT evaluations, as compared to not including these elements. The Full Persuasive
version of the training software was perceived to be less easy to use, and, relatedly,
participants needed more time to complete these training tasks. Crucially, we argue
that this finding does not mean that these design features should be removed from the
AT. Rather, we argue that the comparison made in the current lab study (between the
two versions of the training software) was rather specific.

That is, importantly, also the version of the AT training software from which
the persuasive and personalization design principles were removed, still comprised
skills training included in appropriate and effective training cycles. So, the compar-
ison made in the current lab studies (in hindsight) can be regarded as one between a
rather elaborate (with persuasive and personalization included) version of the same
skills training, versus a shorter version of the same skills training (with persuasive
and personalization elements removed). Many reasons for these lower perceived ease
of use judgments can be identified: the increased extensiveness of the tasks (with the
persuasive and personalization elements included), the longer time that was needed
to complete them (e.g., for reading the feedback messages, or the social compari-
son tables), and also the potential additional usability issues in these additional task
elements (e.g., difficulty of reading personalized feedback message). These charac-
teristics of the persuasive and personalization design may have given rise to cognitive
overload (and consequently lower perceived ease of use).

Finally, we conclude that the perceived ease of use of the training software could
(although not necessarily) be improved. For this, the included persuasive and per-
sonalization design principles could be screened for elements that take unnecessary
time or might otherwise lower perceptions of ease of use. Still, we argue that not too
much should be changed in the persuasive and personalization design, because of the
more important advantages these design elements show to have for the performance
of users of the AT.

Second, and more importantly, we conclude that the persuasive and personalized
design of the AT is effective in influencing user performance. The accuracy of users
trained with the persuasive personalized version of the training software improved (as
compared to users trained with the Limited Persuasive version) both on the training
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tasks themselves (as found in the lab study) as well as on the dictated tasks (as found
in the lab study and suggested by the results of Phase I).

4.4 Implications for persuasive design requirements

Based on the outcomes of Phase I field trials and the lab study reported (on the
persuasive and personalization design strategies specifically), we were able to presents
updates and extensions earlier insights. That is, the user profiles and personas (Section
4.1), and also the persuasive strategies selected for improving user acceptance and
continued use (Section 4.2) could be ameliorated based on these findings. Overall,
the main conclusion of Phase I field trials was confirmed by the main conclusion of
the lab study: the persuasive and personalization design elements of the AT can be
effective for improving acceptance (motivation, etc.) and use (performance, especially
in accuracy) and thereby improve users effectiveness in using the computer system
for social inclusion tasks. Thereby, the findings of these two user studies had great
value to improve the persuasive and personalization design elements of the AT.

4.4.1 Implication for user profiles and personas

In both Phase I field trials and also the lab study reported in this document, indica-
tions were found that the complexity of the AT’s training task (especially the version
including the persuasive and personalization design principles) contained a lot of cog-
nitive tasks to be performed by the user (e.g., process feedback, play and understand
task and game elements, etc.). Even though evidence was found that performance
improved (i.e., better accuracy), the abundance of additional tasks may have negative
effects. For example, the user evaluations of the AT may be negatively influenced by
this cognitive overload.

The user profiles and personas for the three cohorts (patients with SCI, PD and
NMD) covered the following six areas: disease range and demographic character-
istics; physical functioning; emotional functioning; motivational aspects; cognitive
functioning; and computer and AT operation.

The results of the field trials clearly show that the created user profiles cover most
of the essential user attributes. For example, regarding the physical symptoms of PD,
the user profile contained information about posture/loss of postural reflexes. As it
was observed in the field trials, indeed, a PD user had difficulties in holding his body
posture, leading to usability problems with the eye-tracking device. Another example
that provides evidence for the rigor with which the profiles were created comes from
the NMD patient groups. The NMD profile discusses the gradual mobility reduction of
the patients with NMD as a physical symptom and the consequences for psychosocial
functioning. Specifically, in computer use part of the profile it is mentioned that the
use of computer validates their ability to think, respond and function well. Indeed,
findings from field trials provided similar evidence: NMD users prefer to make use
of any ability they have in using their hand as long as they have it. In conclusion,
the derived requirements based on the findings of the trials were all included in the
profiles and personas.
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However, one limitation is that although the cognitive functioning is included in
the profiles, it was excluded from the personas, giving rise to more the psycho-social
aspects rather than the cognitive aspects of anATAT use, like theAT.The reason for this
was that the limited information in the literature regarding cognition (of these patient
groups) and AT use, but also this was due to the fact that cognitive functioning was
not included in the project’s first patient questionnaires. This lack of consideration
of cognitive functioning might have been the reason for the decreased ease of use
found in our lab study, which compared the Full Persuasive to the Limited Persuasive
training software.

Based on this argumentation, we provided an update of profiles per patient group,
adding a focus on the aspect of cognitive functioning. This was mainly useful for
updating the persuasive design training, as well as the persuasive strategies included
in Phase II trials.

One important note to be made is that the cognitive aspects to be taken into con-
sideration in the following subsection pertain to both patients with muscular disorders
as well as to healthy individuals, since one of the exclusion criteria of the project’s
trials was that cognitive function of users has to be intact in order to be able to operate
the AT successfully. In fact, Phase I field trials presented no evidence for statistical
differences in responses between able-bodied and patients in variables in terms of
system perceptions, beliefs, satisfaction and ease of use. So, although the personas
we created could remain as they are, based on Phase I fields trials and the lab study,
we propose (below) an updated general cognitive user profile. These additions are
relevant for all three patient groups (as well as healthy users), because all three patient
groups have comparable mental characteristics in the sense that they might suffer from
cognitive overload when tasks are too demanding (and the exclusion criterion of no
cognitive deficits was used for all three patient groups).

4.4.2 Updated cognitive user profile

Based on the two user evaluation studies (Phase I field trial and the lab study),
we present below an addition and update of cognitive user profiles (for all three
patient groups). This update does not apply to patients with any cognitive deficits
(i.e., memory or attention impairments).

It became evident in Phase I that participants need clear instructions about how
to use AT. This made clear that the AT is not readily intuitively figured out. Proper
training and learning is very important in leading the user to a successful learning
experience. Below we describe an extension of variables to be described in the user
profiles emphasizing cognitive aspects that will pave the way for a meaningful update
of persuasive design training method, to be used in the home trials too (such a cognitive
user profile is specifically tailored to the project’s patient groups and lies on the
cognitive theory of multimedia learning) (see also [13]):

● Cognitive overload: TheAT is mainly used with the eyes.At the first learning steps,
users learn both the functionalities of the system (i.e., different icons) as well as
the interaction between them and the system. A potential problem to be considered
from this learning situation is that the processing demands evoked by the learning
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task may exceed the processing capacity of the cognitive system, called cognitive
overload. The split-attention effect is a learning effect with detrimental learning
effects when cognitive load is high. It is apparent when the same modality (e.g.,
visual) is used for various types of information within the same display. To learn
from these materials, learners must split their attention between these materials
to understand and use the materials provided.

● Limited capacity: users are limited in the amount of information that can be
processed in each channel at one time.

● Active processing: Users are engaged in active learning by attending to rele-
vant incoming information, organizing selected information into coherent mental
representations and integrating mental representation with other knowledge.

These cognitive user variables extend the user profiles. That is, the cognitive
characteristics of each of the three patient groups can now be evaluated and taken into
account using also the new insights generated by these two evaluation studies.

In general, we saw that especially patients with muscular disorders might face
difficulties with memory, attention and processing speed (both for patients with PD
and NMD). So, one general implication (at least for PD and NMD, but probably also
for patients with SCI) of the current findings is that any persuasive and personaliza-
tion design elements should refrain from taxing memory, attention and/or processing
speed.

Below, we present for each of the three patient groups the cognitive functioning
element of their user profiles, and the implications the current findings have for these
user profiles.

4.4.2.1 SCI Cognitive functioning
Cognitive function can be normal, but a substantial number of patients with SCI
have significant deficits in one or more cognitive domains: moderate attention and
processing speed deficits, mild deficits in processing speed, executive processing
difficulties, or moderate memory impairments.

Implications based on current evaluation studies: As described above, especially
for these patients, the persuasive and personalization design should take into account
cognitive limitations, and use more influencing strategies that demand less cognitive
resources (both in memory as in processing speed).

4.4.2.2 PD Cognitive functioning
Mild cognitive impairment (MCI) in PD individuals is associated with increasing
age, disease duration and disease severity. The frequency of cognitive dysfunction is
from 36% at the time of diagnosis to as high as 93% in more advanced stages of the
disease. The most frequently encountered domains of cognitive dysfunction involve
executive functions, memory, visuospatial skills, attention, and mental processing
speed. Preserved functions include basic attentional processes and many language
abilities (particularly comprehension).

Implications based on current evaluation studies: Next to the importance of
exclusion criteria (no cognitive impairments), the current evaluation studies also stress
that for PD individuals cognitive overload caused by the abundance of persuasive
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and personalization strategies included may certainly occur. Therefore, also for these
patients, limitations to necessity of memory and cognitive processing in the persuasive
games are needed. Also, the games might also be limited in the extent to which they
need visuospatial skills.

4.4.2.3 NMD cognitive, learning and neurobehavioral functioning
A substantial number of patients from the NMD population have a cognitive impair-
ment. Cognitive skills do not deteriorate over time. Cognitive deficits documented in
older children and adults mainly pertain to verbal skills. Vision-spatial skills, long-
term memory and abstract reasoning skills are not affected. Patients with NMD have
been characterized as being easily frustrated, easily distracted, and have poor attention
span.

Implications based on current evaluation studies: Next to limiting the strain on
memory, processing speed, and visuospatial capabilities (needed for patients with
SCI and PD), for NMD individuals the persuasive games need to be optimized for
causing no or very limited frustration, and needing only a limited attention span.

4.4.3 Updated requirements for personalization

In general, the two evaluation studies showed favourable results as for the personal-
ization strategies included in the design of the AT training software. We propose two
sets of updates to the requirements for the personalized persuasive design elements
in the next version of the training software.

First, the current two evaluation studies show that the personalization included is
effective, but at the same time also suggest that further limitations of the necessity of
using memory, cognitive processing, etc., might be helpful for optimizing the effec-
tiveness of all persuasive strategies (also the personalization persuasive strategies).
Therefore, we propose to check in this perspective all personalization now included
in the training software. Using the participant’s first name, for example, seems to be
effective, but must be done only for a limited number of times. Likewise, the per-
sonalized feedback messages might be effective but should be limited in length and
complexity.

Second, as mentioned by various participants in Phase I field trials, the current
AT’s interfaces contained possibilities for customization. That is, also the AT training
software contained personalized persuasive strategies (e.g., using the participant’s
first name, and adapting feedback messages to the participant’s age and gender), this
personalization was done by the AT itself. An additional personalization strategy is
to allow users of a system to customize it to their own preferences. That is partici-
pants might be allowed to set the background colour of the interface, choose certain
graphics, set other issues like response speed, etc. Indeed, earlier research presented
evidence for the effectiveness of customization as a persuasive strategy (see [14]).

4.4.4 Updated requirements for persuasive design

Finally, we will discuss the implications for the requirements for the persuasive
design of the AT training software of the two user evaluations (Phase I field trials
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and the lab study reported in this document). Most importantly, as argued above,
in both Phase I field trials and also the lab study reported in this document, indi-
cations were found that the complexity of the AT training task (that included the
persuasive and personalization design principles) gave rise to cognitive overload.
Indeed, we presented earlier scientific research [6] that investigated the effectiveness
of most of the persuasive and personalization principles separately. For example,
based on the research of social norm activation and related interventions (see [15]),
we [6] proposed to include various kinds of social norm activation interventions.
And although some earlier studies have investigated combinations of a few persua-
sive strategies (see, e.g., [16]), scientific research has not investigated the effects
of combining larger numbers of persuasive strategies with one another. Indeed, dual
process theories of persuasion (e.g., [17]) disentangle more elaborate, conscious and
controlled mental processes (central processing) from less elaborate, more uncon-
scious and less controlled (peripheral processing). Such theories (e.g., the Elaboration
Likelihood Models [17]) would argue that presenting too many persuasive strate-
gies that need to be processed through central processing will lead to overload,
may lead to interferences between these persuasive strategies and diminish their
effectiveness.

Now, although the current user evaluation study results suggested limited (Phase I
trials) to negative (lab study) effects of the persuasive and personalized design prin-
ciples on user evaluations of the AT, results also showed that the persuasive and
personalized design was effective in stimulating performance improvement (on accu-
racy). Therefore, our main conclusion for updating the requirements for the persuasive
design entails that only limited changes should be made, as the current design seemed
to be effective on the most important variable: behaviour change.

Still, changes in the persuasive and personalized design principles that improve
user evaluations and leave unchanged (or even improve) the effectiveness of the
AT training software for influencing behaviour (performance accuracy) can pro-
vide a positive contribution. Therefore, we propose two kinds of improvements for
the persuasive design principle requirements: Simplification (more peripheral cog-
nitive influencing strategies), and more positive elements. That is, based on dual
process theories of persuasion, as argued above, we propose to adapt some of the
selected influencing strategies towards more peripheral processing: less elaborate,
more unconscious and less controlled influencing strategies may lead to less cog-
nitive load. Thereby, a set of influencing strategies that includes (next to already
incorporated, more central influencing strategies) also more peripheral influencing
strategies may have a more positive influence on user evaluations of the AT and lead
to more positive perceptions of ease of use. In other words, we propose to include in
the AT persuasive personalized design more ambient persuasive technology strategies
(see [18]), that influence user behaviour from the ‘ambient’ environment without the
necessity of the conscious attention of the user. For example, we propose to replace
factual feedback (e.g., presenting a score) with evaluated feedback (e.g., a colour
between red and green, or a flower in a particular state of opening up). That is, fac-
tual feedback needs more elaborate cognitive processing, whereas evaluated feedback
already has been processed (evaluated) and causes less cognitive load for the user.
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Also, we propose that negative evaluations within the persuasive principles may
have influenced the perceived ease of use of the AT. Psychological research showed
that negative associations may spread through what is known as the ‘halo’-effect [19]
to related judgments. Research findings by [20] (see also [25]) showed that hedonistic
elements of user interfaces (e.g., negative feedback) can influence (e.g., lower) ease of
use perceptions. Still research [21] on the effectiveness of evaluative feedback showed
that negative feedback can be more effective than positive feedback for changing user
behaviour. Therefore, we also propose to restrict the number of negative evaluations
in the persuasive and personalized, but not to abandon negative feedback.

Based on these analyses, we propose the following update of the requirements
for persuasive design of the training tasks. In Table 4.7, we present the original
requirement and the updated requirement.

4.4.5 Implications for Phase II persuasive design strategies

Earlier, we proposed a separate set of persuasive strategies to be included in the
extended use situation of Phase II trials. That is, in the second phase of the clinical
trials of the project, the participants will go over the same protocol as in the first phase,
but this time in their home environments. The platform will be given to them for a
fixed period in which they will be encouraged to use it. The core objective of Phase II
trials will be to assess the impact of theAT on multimedia management, authoring and
sharing in less-controlled settings. In this phase, the research focused on the user’s
social network activities (i.e., social media activities) and digital productivity (i.e.,
online courses taken).

Since the overall aim of the project is to increase users’ potential in social inclu-
sion, strategies are needed, as motivators, for the users to continue using the system
and stimulate their online social participation. The specific target of the persuasive
and personalization strategies included in Phase I training software was to stimu-
late acceptance and use (although use within the limited time frame of 3–4 h). After
comparable initial training (that may also be repeated over the weeks to improve per-
formance), in Phase II trials, participants will also (mainly) use the AT for actual and
extensive web browsing (over a period of 4 weeks). In these web browsing activities,
social inclusion related activities (e.g., using social media) will be stimulated through
the persuasive elements of the AT. Thereby, the desired outcome of the second phase
is different from that of the first phase and therefore, for Phase II trials, we need
additional persuasive design elements.

We used the following list of persuasive strategies that can be incorporated into the
AT’s web-browsing interface to stimulate social inclusion behaviour (for details, see
[6]): Reciprocation (responding likewise when receiving something), Consistency
(showing consistency in attitudes and behaviours), Social validation (doing what
others do), Theories of discrete emotions (people are sensitive to specific emotional
appeals).

These persuasive strategies were included by incorporating in Phase II trial soft-
ware the concept of ‘hierarchical memberships’ because in this persuasive design
element the above-mentioned persuasive strategies are combined. The core motivation
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strategy here is to introduce a set of hierarchical memberships into the system. Users
can be given different memberships based on their levels of online activity. The more
active a user, the higher their membership level.

Finally, we argue that indeed social activity indicators should be measured in
Phase II to steer this persuasive design element of hierarchical group membership
and give user rewards. See [6] for a detailed example of how the selected persuasive
strategy could be applied to the AT.

Based on the two evaluation studies the following implications can be identified
for the persuasive design elements to be added to Phase II trials: In general, the two
evaluation studies present evidence supporting that also these additional persuasive
strategies will be effective. Even though these strategies were a part of Phase I trials,
or of the lab study, the proven effectiveness of the persuasive and personalization
elements of the training software makes it probable that also these additional strate-
gies will add to the overall effectiveness of the AT for stimulating social inclusion
behaviour.

Also, it is important to limit in the implementation of these additional persuasive
strategies (e.g., the hierarchical group membership) the extent to which they rely on
and need user memory, processing capacity, visuo-spatial capacity and the extent
to which they might cause frustration. The considerations presented above for the
already included persuasive and personalization design elements should be used also
to optimize the to-be-included Phase II persuasive design elements.

4.4.6 Conclusions

Based on the outcomes of Phase I field trials and the lab study (on the persuasive and
personalization design strategies specifically), we present an update of the proposed
persuasive and personalization strategies as they were included in the training software
for Phase I. Overall, the main conclusion of Phase I field trials and the lab study
was that the included persuasive and personalization design elements are effective
in improving user performance (that is, task accuracy). For implementation of these
requirements into the final version of the training software to be used in Phase II field
trials, the updated requirements presented in Table 4.7 can be used.

The IM approach seems optimal for distilling what the behavioural steps should
be for users of the AT. That is, participants were able to successfully complete the
training cycle (as was shown in Phase I field trials and also in the lab study), and
after performing the training tasks, all participants could successfully complete the
dictated tasks (again, in both studies).

Importantly, because Phase II trials will allow the participant to use the AT for
an extended period of time (4 weeks), the effectiveness of the motivators included
in the persuasive and personalized design elements (the ones included in Phase I,
and also the additional ones presented for Phase II) will potentially strongly increase.
That is, both in Phase I field study but also in the lab study, the effectiveness of
the persuasive and personalized design elements for increasing user acceptance and
use was limited. Indeed, there are several very clear reasons for this limitation of
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differences in acceptance and use between users trained with the persuasive and per-
sonalized training software and the other users. First of all, all participants (especially
in Phase I field trials, but also in the lab study) showed to have very high moti-
vation to accept and use the AT. Also, these participants only used the AT for a
very limited amount of time (only 3–4 h in Phase I field study, and 30 min in the
lab study) that may have been very short for that high motivation to diminish. This
makes clear that (as results show) the persuasive, personalized design could (but to
a limited extent) increase motivation even further. However, the persuasion design
elements will be especially relevant in Phase II part of the trials which will last for a
month in participants’ homes. Internal motivation of the user may be lost or dimin-
ish within that time frame, and the persuasive and personalization design elements
will be much more important and have the possibility of increasing or retaining
motivation for accepting the system and to keep on using it for social inclusion
activity.

Based on the current report, the persuasive and personalized design principles
can be further improved, and the persuasive and personalization design elements for
Phase II field trials can be developed.

4.5 Summary

In sum, this chapter shows how persuasive personalized design principles (imple-
mented into the AT) can be used to improve user acceptance (evaluation) and use
(performance). When developing AT like the current, taking into account the user
is crucial, and this research shows how this can be done. Building on user profiles
and personas, very effective personalized persuasive technology can be developed.
Using persuasive design principles and user models helps create technology that is
inherently more easily adopted, and that motivates the user to continue using it.
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Part II

Algorithms and interfaces for interaction control
through eyes and mind



Chapter 5

Eye tracking for interaction: adapting
multimedia interfaces

Raphael Menges1, Chandan Kumar1, and Steffen Staab1,2

This chapter describes how eye tracking can be used for interaction. The term eye
tracking refers to the process of tracking the movement of eyes in relation to the
head, to estimate the direction of eye gaze. The eye gaze direction can be related to
the absolute head position and the geometry of the scene, such that a point-of-regard
(POR) may be estimated. We call the sequential estimations of the POR gaze signals in
the following, and a single estimation gaze sample. In Section 5.1, we provide basic
description of the eye anatomy, which is required to understand the technologies
behind eye tracking and the limitations of the same. Moreover, we discuss popular
technologies to perform eye tracking and explain how to process the gaze signals for
real-time interaction. In Section 5.2, we describe the unique challenges of eye tracking
for interaction, as we use the eyes primarily for perception and potentially overload
them with interaction. In Section 5.3, we survey graphical interfaces for multimedia
access that have been adapted to work effectively with eye-controlled interaction.After
discussing the state-of-the-art in eye-controlled multimedia interfaces, we outline in
Section 5.4 how the contextualized integration of gaze signals might proceed in order
to provide richer interaction with eye tracking.

5.1 Tracking of eye movements

In this section, we provide a basic understanding of the eye anatomy, the technologies
to track its movement as eye gaze, and the processing of raw gaze signals.

5.1.1 Anatomy of the eye

The eyeball is covered mostly by a white protective tissue, called sclera. The colored
part in the center of the eye is the iris, which encloses a hole, called pupil. The iris
can shrink or grow the pupil, thus less or more light enters the eye. Iris and pupil are
covered by the transparent cornea. A flexible lens is placed directly behind the iris

1Institute for Web Science and Technologies, University of Koblenz-Landau, Koblenz, Germany
2Web and Internet Science Research Group, University of Southampton, Southampton, United Kingdom
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which refracts the light, such that it falls focused on the rear interior surface of the
eye, the retina. The retina is covered by two types of photosensitive cells. The rods
are sensitive to brightness, and the cones are sensitive to chromatic light. There is a
spot of high density in cones with a diameter of 1◦–2◦ on the retina, which is called
fovea. The eye moves so that the light from the focused object falls into the fovea.
Thus, our perceived focus of sight is sensed in the fovea region. Figure 5.1 shows a
schematic illustration of the eye.

Each eye moves with the help of three antagonistic pairs of muscles that pro-
vide the eye with three degrees of freedom. One muscle pair performs horizontal
movements, one muscle pair performs vertical movements, and the third muscle pair
performs rotational movements around the direction of the view. The eye movements
can be categorized into saccades or fixations [1]. Saccades are fast movements under
100 ms of both eyes in the same direction. These movements can be jump-like, gradual
and smooth, or random. Fixations are times of about 100–600 ms for which an eye
rests at a particular POR.

The diameter of the fovea defines the portion in visual angle of sharp sight, which
is what we are interested in for eye tracking. We can estimate the visual angle of an
object [2] with

A = 2 arctan
S

2D
. (5.1)

S is the size of the object and D is the distance to the object.
The anatomy indicates two limitations of eye tracking which cannot be simply

overcome with better technology. First, we need calibration of an eye-tracking system
for each individual. The eyeballs of different people have a variance in size, but more
importantly, the fovea is not located directly opposite of the pupil in the optical axis
but 4◦–8◦ higher. Thus, the visual axis must be determined by a calibration procedure
in order to find the POR. Second, the eye does not necessarily move such that the
light of the object-of-interest falls in the perfect center of the fovea. Thus, the fovea
diameter of about 1◦ limits the accuracy of an eye-tracking system to ± 0.5◦ [3]. In
fact, this is most often the best-case accuracy that manufacturers provide in their

FoveaLensPupil

Sclera
Iris

Cornea Retina

Optical axis

Visual axis

Figure 5.1 Schematic illustration of the anatomy of a human eye
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Table 5.1 Specifications of commercial video-based eye-tracking devices for
interaction purposes

Model myGaze n 4C Skyle

Manufacturer Visual Interaction Tobii AB eyeV
Sampling rate (Hz) 30 90 20–40
Operating distance (cm) 40–100 50–95 45–65
Head box 50 × 30 cm at 65 cm 40 × 30 cm at 75 cm 30 × 12 cm
Accuracy 0.4◦ n/a 1–2◦
Precision (RMS) 0.05◦ n/a n/a
Connection USB 3.0 USB 2.0 USB 3.0
Screensize (inches) 10–27 Max. 27 Max. 24

specifications, see Table 5.1. In comparison, the index fingernail also covers about
1◦ of the view at arm’s length distance. This means, at a distance of 70 cm, and a
visual angle of 1◦, an uncertainty of 1.2 cm. An uncertainty of 1.2 cm translates to
about 44 pixel on a 24 in. monitor at a resolution of 1,920×1,080 pixel. Additionally,
photosensitive cells in the eyes only react to changes in the amount of light they
receive, and in lack of changes quickly adapt and stop responding, the eyes need to
move during long fixations, introducing micro-saccades [4].

5.1.2 Techniques to track eye movements

Three techniques have become popular to measure eye movements [2]. Each technique
has its own motivations but also limitations with regard to eye-controlled interaction.

5.1.2.1 Electro oculography
In electro oculography (EOG), electrodes are attached to the skin around the eyes to
measure an electric field that exists when the eyes rotate. The movement of an eye can
be estimated by recording small differences in the electric potential of the skin around
the eye. Specific electrode designs can record horizontal and vertical movements and,
thus, can be used to estimate eye gaze [5]. However, the signal can change even when
there is no eye movement, especially through external factors like nearby electric
devices. The EOG offers a cheap, easy, but invasive method to record large eye
movements. The EOG technique is not well suited for the use-case of interaction, yet,
it is frequently used by clinicians. The advantage of the EOG technique is its ability
to detect eye movements even when an eye is closed, e.g., while a person sleeps.

5.1.2.2 Scleral search coils
In scleral search coils (SSC) [6], a coil of wire is attached to the eye. Voltage is induced
in the coil and movements within a magnetic field can be measured. Small coils of
wire are embedded in a modified contact lens to measure human eye movements. The
advantage of SSC is the high accuracy and the nearly unlimited resolution in time. The
disadvantage of SSC is that it is a highly invasive method, as it requires a participant
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to put contact lenses into her eyes. Thus, this method is mostly used in medical and
psychological research. Similarly to EOG, the SSC technique tracks eye movements
only in relation to the head and provides no indication about the spatial POR.

5.1.2.3 Video oculography
In video oculography, a single or multiple camera setups with no or multiple light
sources are used to determine the movement of the eyes from captured images [7].
Mostly, infrared light is used to cause reflections on the cornea, which are visible as
glints in the captured images. As the cornea has a spherical shape, the glints stay in
the same position independent of the eye gaze direction. A vector between pupil and
glints can be calculated, which is used to estimate the direction of the eye gaze. This
technique of video-based eye tracking is the most widely used method in commercial
eye-tracking systems (see Table 5.1).

The video-based eye gaze estimation can be problematic for dark brown eyes
where the contrast between the brown iris and the black pupil is very low and it
makes the pupil difficult to detect in the captured image. An additional infrared light
source can be placed close to a camera, such that the emitted light reflects from the
retina straight back toward the camera. The reflected light makes the pupil to appear
white in the captured image and provides more contrast to the iris, which helps in
detecting the pupil on the captured image. The effect is well known as “red eye”
when photographing faces with a flash. Modern systems combine a single or two
cameras with an array of carefully placed light sources. The light sources can flicker
periodically to illuminate the eyes only for certain image captures. For example, two
light sources might be used to produce glints in one image while capturing a dark
pupil, and a third light source, which is placed close to the camera, produces an
image with a bright pupil effect. The images are recorded consecutively and can be
processed directly on the image-processing chip of the eye-tracking device. Modern
eye-tracking systems vary in the frequency to report eye gaze coordinates from 30 up
to 1,000 Hz. Interaction requires a frequency that is comparable with the refresh rate
of the screen; thus, we recommend to use systems that sample eye gaze at 60 Hz. Eye
detection and tracking remain a very challenging task due to several unique issues,
including illumination, viewing angle, occlusion of the eye, and head pose.

Eye-tracking systems using the video-oculography technique are available as
table- and head-mounted devices. In the context of our research, we primarily use
table-mounted eye-tracking devices (Figure 5.2), because these are calibrated to
provide POR estimations in the coordinate system of the computer screen.

5.1.3 Gaze signal processing

Eye-tracking systems produce gaze signals, which require processing to be used for
interaction purposes.

5.1.3.1 Calibration of the eye-tracking system
A direct calculation of the POR from the captured image would not only need the spa-
tial geometry of the eye-tracking system, the relative display placement, and the eye
position but also the radius of the eyeball and offset of the fovea, which is specific to
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Eye-tracking system

Graphical user interface

m

Figure 5.2 Photo of an eye-tracking system in use

an individual. Commercial systems provide a dedicated mode for calibration, during
which the screen presents a stimulus that is rendered by the eye-tracking system. The
user is asked to follow a symbol on the screen using the eyes, often in the form of a
moving dot. The dot stops for a short time at the coordinates of predefined calibration
points. This calibration procedure provides reference data for known fixated calibra-
tion points on the screen. The reference data is used to calculate the parameters for
the mapping of the glint-pupil vector to positions on the screen. Calibrations usually
make use of five to nine calibration points, depending on the desired accuracy. Quality
of the model can be tested with reference data by comparing the mapped gaze signals
to the true position of the calibration points.

5.1.3.2 Error modeling of gaze signals
Besides lighting, visual angle, and iris color, also calibration drift, tremor, and micro-
saccades of the eye movements, which are in a magnitude of 0.1◦, contribute to the
inaccuracy of gaze signal estimation. Error in gaze signal estimation can be modeled
using the two values of precision and accuracy. Precision is defined as the ability of the
eye-tracking system to reliably reproduce the POR at a fixation. The precision error is
perceived as high-frequency noise in the gaze estimation. Accuracy is defined as the
average difference between the object coordinate and the measured gaze coordinate.
The accuracy error is perceived as bias in the gaze signal estimation.

5.1.3.3 Filtering of gaze signals
Filtering of gaze signals has the purpose to improve the precision and to delineate
between fixations and saccades. Some eye-tracking systems already incorporate fil-
tering, yet, the manufacturers often do not exactly specify their implementation.
There are four popular approaches to filter gaze signals and identify fixations [8], as
described next.

● Velocity-threshold identification. A point-to-point velocity is calculated
between the coordinates of sequential gaze samples. Saccadic eye movements
are considered to have a velocity of more than 300◦/s, whereas fixations are
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considered to have a velocity of less than 100◦/s. A static threshold criterion can
be applied to separate fixations and in-between saccades. For each fixation, a
centroid of the gaze samples is calculated. The time of the first gaze sample is the
start of the fixation, whereas the time from the first gaze sample in the fixation
until the time of the last gaze sample in the fixation is considered the duration of
the fixation. However, the static threshold is prone to over-segmentation of gaze
signals into fixations. Yet, velocity-based filters are the most popular, as they are
effective and simple to implement.

● Hidden-Markov-model identification. Saccades and fixations can be mod-
eled as probabilistic state machines using a hidden-Markov-model. Two states
are implemented. One represents the velocity distributions of gaze samples
for saccades and the other the velocity distributions for gaze samples of fixa-
tions. The hidden-Markov-model filter allows a more robust identification than
fixed-threshold methods, but the filter is more difficult to implement.

● Dispersion-threshold identification. Gaze points that belong to a fixation tend to
cluster closely together. One can go through the gaze signal over time and calculate
the spatial spread of the coordinates of gaze samples in a time window. When
the spatial spread is below a preset threshold, this time window is considered
a fixation. A window whose content is considered a fixation can be expanded
until the spatial dispersion of the covered gaze samples is too high. For each time
window its spatial centroid represents the fixation coordinate.

● Area-of-interest identification. Previous methods to identify fixations can iden-
tify them at any location on the screen. In contrast, area-of-interest identification
considers only gaze signals that occur within specified target areas. The method
uses a duration threshold to distinguish fixation in target area from passing sac-
cades in those areas. The target areas have to be defined manually or by another
algorithm, which is the reason why the filter is not generally applicable. However,
the filter might provide a higher level insight into the gaze signals in regard to
the screen content.

5.1.3.4 Online filtering of gaze signals for eye-controlled interaction
Filtering of gaze signals for interaction must be fast, as only a small-time overhead
to the estimation of the POR may be added. A fixation must be recognized in the
gaze signal, while new gaze samples are coming in. The incoming gaze samples
might extend the fixation or be part of a saccade toward another fixation. Further-
more, usually only the current fixation is of interest for interaction purposes. A basic
attempt to smooth the gaze signal is to collect samples over time and to average their
coordinates [9], toward a reliable POR for every update of the interface. This basic
smoothing idea can be performed for a sliding time window, to cover, e.g., the current
user fixation but not the whole gaze signal history. By declaring a gaze sample at the
current time t as Xt , N as window size, and w as applied weight per sample, we can
define the following formula to calculate a weighted average of the gaze signal:

X̂t =
N−1∑

i=0

wi∑
j wj

Xt−i. (5.2)
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The weight can be defined by an additional kernel function, which takes the age
of each sample into account. Literature [9] names three common kernels to calculate
a weight per sample in the window:

● Linear kernel, wi = 1. Every sample is weighted equally.
● Triangular kernel, wi = N − i + 1. Latest sample is weighted the highest, oldest

with one.
● Gaussian kernel, wi = e−((i−1)2/2σ 2), where σ = √

(−(N − 1)2/2 ln (0.05)) is
defined to assign the oldest sample in the window a weight of 0.05.

The Gaussian kernel is reported [9] to deliver the best results.

Saccade detection. The presented filtering assumes that all gaze samples inside the
sliding time window belong to a single fixation. However, the window might contain
samples from two or more fixations when the user performs a saccade. Averaging
these samples would produce a fixation somewhere in the middle between the con-
tained fixations, possibly on a region which the user never had fixated. Therefore,
the sliding window for filtering is limited to the current fixation by using a spatial
threshold [10]. The spatial threshold works similarly to the velocity-threshold iden-
tification and separates fixations by the spatial distance of sequential gaze samples.
The current fixation is then defined as gaze samples which distance is successive
below spatial threshold, starting from the latest gaze sample.

Outlier correction. Eye-tracking systems may produce single outliers, e.g., when
a reflection is shed on the camera or the data transfer suffers from an error. This
may produce a single outlying gaze sample, which would prohibit a proper filtering
of a fixation. Therefore, when going from the latest to the oldest sample within the
sliding window, for each gaze sample that is classified to belong to another fixation
than the current one, the previous gaze sample is also checked if it belongs to the
current fixation. If the previous gaze sample belongs to the current fixation, the
looked-at gaze sample is discarded as an outlier and the filtering is continued at
the previous gaze sample [11]. Otherwise, the gaze sample collection is stopped
and the weighted average of the collected gaze samples is calculated as the current
fixation. The described filtering can improve the precision of the gaze signal and
should be applied for any interaction purpose.

5.2 Eye-controlled interaction

Eye gaze is a natural means of communication between humans [12]. Bolt has
already proposed in 1981 to extrapolate the communication toward human–computer
interaction [13]:

At the user/observer interface level, interactivity is extended to incorporate
where the user is looking, making the eye an output device.
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However, in traditional human–computer interaction, the process of selection
and perception works in parallel. Physical inputs like mouse and keyboard are used to
select interactive elements in an interface and the eyes observe the selection process
on the interface. In a naive implementation of eye-controlled interaction, the eye
gaze triggers an interactive element that it dwells upon. In this scenario, a user often
would select elements by accident while browsing through the available options. The
overload of inspection and selection is referred to as Midas touch [14]. There are two
fundamental approaches to deal with this overload. Either, the conventionally parallel
process of selection and perception is sequentialized allowing unimodal input with eye
gaze only. Or, another input device is used to perform selections, allowing multimodal
input that is potentially even more efficient and enjoyable than using an interface with
traditional input devices.

Moreover, an eye-tracking system provides gaze signals with limited precision
and accuracy. As shown in the previous section, precision can be improved with filter-
ing. However, there is yet no universal approach to bring the accuracy of gaze signals
on par with mouse pointing. Thus, interfaces must consider the limited accuracy of
at most ± 0.5◦. The limited accuracy renders it infeasible to simply replace mouse
pointing with eye-controlled pointing or a keyboard with eye-controlled typing.

Both, Midas touch and limited accuracy make it inevitable to develop distinct
interaction means to interpret gaze signals as input signals. In this section, we outline
selection methods with eye tracking and explain how these selection methods are
combined to interactions that emulate mouse and keyboard events.

5.2.1 Selection methods

The most intuitive method to select an area using eye gaze might be the blinking of
the eyes. A user could look at the option to select, closing one or both eyes for a
short period of time, so as to select the looked-at element. However, there are various
flaws with blinking as a selection method. First, it is not easy to distinguish between a
natural blink and an intentional blink solely from the gaze signal. The user might blink
with only one eye, which is not convenient. An intentional blink with both eyes would
have to last longer than a natural blink, rendering it still as tedious process. Second,
even if blinking with one eye would be sufficiently convenient, the gaze signals are
disturbed by blinking. Eye tracking does not work when the eyes are closed, that is
why blinking has been considered infeasible for selection purposes [14].

Another simple but much more popular selection method is the so-called dwell
time, i.e., if the user’s fixation exceeds a predefined threshold, a selection is trig-
gered [14]. The dwell time selection method can be improved with visual feedback
about the dwelling progress, a preview of the effect of the selection in the area of
dwelling, and audio output. Moreover, dwell time can be adjusted to fit the user’s
expertise in the interface and may even be automatically deduced for distinct areas of
an interface [15].

Lately, eye gestures have become popular. Eye gestures are eye movements that
perform a predefined pattern, similar to the pattern lock on phones. The benefit of
eye gestures is that they are not relying on accurate gaze signals, because only relative



Eye tracking for interaction: adapting multimedia interfaces 91

distances of consecutive gaze samples are considered. However, eye gestures might
be perceived as not natural when a user is asked to make eye movements without
a corresponding stimulus. The eye is not used to move without a point to focus on.
Thus, early attempts to use eye gestures for selection [16] or typing [17] required a
lot of training. More recent approaches, however, make use of dynamic elements in
interfaces as stimuli which a user may follow for selection [18]. Eye gestures bear
a huge potential for all kinds of eye-controlled interaction, as they allow gaze-based
selection with something as small as a wristwatch [19].

A lot of research has considered additional input devices for selection, leaving
only the pointing control to eye tracking. Obviously, eye tracking has been combined
with mouse [20,21] and keyboard [22]. Recently, also touch [23,24], and voice [25]
modalities have been integrated with eye gaze.

5.2.2 Unimodal interaction

The most challenging use of eye tracking as an input method is using eye gaze alone
for unimodal interaction. Using eye gaze alone allows for contact-free interaction,
even in noisy environments. It may be used for public ticket machines, information
monitors, clinical environments, and to improve accessibility in general. Interaction
with eye gaze alone has to cope with both the Midas touch and the limitations in
accuracy.

5.2.2.1 Eye pointing
A simple but effective approach for pointing with eye gaze is to employ a multistep
approach of dwell time and zooming. Lankford [26] has proposed a four-step approach
to emulate mouse events on a classical desktop interface. The user first looks at the
area of interest, which contains the target. After a dwell time, a window pops up near
the center of the screen. The region around which the user was fixating on appears
magnified in this window. The user then fixates on the point in the window where they
wished to have performed a mouse action. After another dwell time, a menu pops up,
offering six different mouse actions as buttons. Again, after a dwell time on the button
corresponding to the desired mouse action, the pointing process is completed. Further
work has proposed different approaches for the zooming, e.g., in the appearance of a
fisheye lens [27], yet, the principle remains the same.

Besides zooming into the whole interface, there are approaches to zoom or scale
only some parts of the interface. The eye movements as caused by the zoom or scale
functionality are then used to improve the accuracy. Špakov and Miniotas [28] have
proposed a system that selects items in a drop-down menu more accurately. The item
on which the POR is sensed by the eye-tracking system does vertically expand, while
the text within the item stays on the same screen position. When there is an inaccuracy
in the estimation of the eye gaze, the actual POR might be on an item that is below or
above the expanded item. The expansion of the item would move the desired item on
the screen and a user’s eye gaze would follow that movement. This can be recognized
as a relative shift in the gaze signals. Then the gaze signals are adapted accordingly
and the desired item can be selected.
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Another approach is to separate pointing and selection not only time-wise but also
spatially, which allows for reducing dwell times drastically. Lutteroth et al. [29] mark
interactive elements, e.g., hyperlinks on webpages, with unique colors. On the side
of the screen, each color occupies a distinct area. A user can first look at the desired
hyperlink, and then next the area which is at the side of the screen with the color
corresponding to the highlight color of the hyperlink.

Eye gestures may eliminate the need for dwell time, why they are potentially
more efficient to use. GazeEverywhere [18] by Schenk et al. is an approach using
eye gestures to perform selections and improve accuracy. After the fixation at a POR
on the screen, two moving dots appear above and below the fixated point. Movement
of dots and relative eye gaze can be compared to know that the user focuses on one of
the dots and mouse click on the targeted coordinates is performed. Furthermore, the
offset of POR and dot, orthogonal to the movement of the dot, can be entered into an
offset grid that improves the accuracy of gaze signals. Because only the offset in one
direction can be detected at once, the moving direction of the dots has to alternate
between a horizontal and vertical moving direction.

5.2.2.2 Eye typing
Dwell time as a selection method can be also used to implement an eye typing key-
board. Lankford [26] has introduced an eye-controlled keyboard that displays a button
for each key, which can be selected via dwell time. Additionally, a dictionary pro-
vides choices that match the characters typed by the user. The choices are displayed
on further buttons on the screen, which can be selected using dwell time.

Over the last years, researchers put much effort to accelerate eye typing with bet-
ter integrated suggestions in order to save required dwell times. Diaz-Tula et al. [31]
improve the throughput by augmenting keys with a prefix, to allow continuous text
inspection, and suffixes to speed up typing with word prediction. The system is
designed to limit the visual information to the foveal region to minimize eye move-
ments. They both integrate word suggestions in a frame on the right side of the
keyboard as well as include prefixes around the key to exploit the foveal region
of visual perception. Current works even suggest integrating suggestions into the
keys [32]. A pilot study reveals that 54.4% of all the word suggestions were selected
via gazing on the keys, one participant achieved a maximum of 92.6% (Figure 5.3).

There are also systems to integrate eye gestures instead of dwell time into eye
typing. Kurauchi et al. [33] have designed a keyboard that is inspired by swiping on
touch screen keyboards. An eye gesture indicates the first and last characters of a
word, while the in-between characters are entered by glancing over the keys in the
keyboard. An eye-controlled version of the well-known Dasher keyboard [34] has
been also successfully evaluated.

5.2.3 Multimodal interaction

Multimodal interaction usually uses gaze signals to pick one from the available targets,
while the selection is performed with another modality. Multimodal interaction has
to cope with the limitations of accuracy in eye tracking, but not Midas touch.
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(a) (b)

Figure 5.3 Eye typing interface of GazeTheKey [32]: (a) suggestions are
embedded to keys and (b) multi-step dwell time is used for selections of
firstly the letter and secondly the suggestion

Gaze signals can be combined with physical pointing devices. Zhai et al. [20]
developed a system which wraps a cursor toward the POR and allows for fine adjust-
ments and selections with manual input devices, e.g., relative mouse movement and
mouse clicks. They deduced that the input speed is similar to using the mouse only,
however, the users subjectively tended to feel faster using the multimodal pointing
techniques. Further developments have extended the approach with a touch-sensitive
mouse [21].

Gaze signals can be also combined with a physical keyboard. Kumar et al. [22]
proposed a look-press-look-release method. A user looks at the desired target. A key
press on the keyboard lets us the system magnify the area around the desired target.
A user then can refine her selection in the magnified area and release the key, which
confirms the selection. This approach is very fast and reliable.

Gaze signals have been also combined with touch input. Pfeuffer and
Gellersen [23] have presented various combinations of gaze signals and touch input.
They redirect touches to the gaze target and, thus, provide whole-screen reach while
only using a single hand for both holding the touch screen device and touch input
selections.

5.2.4 Emulation software

Eye pointing and eye typing may be combined into an emulation software that
can emit mouse and keyboard events. Emulation software can provide people with
motor impairment opportunity to control a broad set of computer applications.
Various commercial emulation softwares with eye tracking are available, e.g., Tobii
Windows Control, myGazePower, or Microsoft Windows Eye Control. In addition,
both researchers [26] and open-source developers [30] have created similar projects
(Figure 5.4). However, emulation is slower than native control with physical devices,
more error-prone, and adds more mental load to a user [35]. The emulation software
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Figure 5.4 Pointing in the OptiKey software [30]. The pointing is implemented as
a two-step dwell-time process. The first dwell time triggers a
magnification, the second dwell time confirms the selection of the
fixated element

acts as a command-translation layer between the eye-tracking environment and inter-
faces that expect traditional input device events. A user must first imagine which event
from the physical input device the interface expects and emulates the corresponding
input device accordingly. There are various programming interfaces to improve the
workflow with an emulation, however, these programming interfaces often lack a
complete cover of the available options. Hurst et al. [36] have studied the coverage
of accessibility APIs, finding approximately 25% of the widgets missing from the
API’s view of many common interfaces. Thus, we argue that only interfaces which
are designed for eye-controlled interaction can yield the full potential of gaze signals
as an input channel.

5.3 Adapted multimedia interfaces

Eye-controlled interactions can be composed toward interfaces to access and manip-
ulate multimedia content. In this section, we discuss adaptation of interfaces to be
operated with gaze signals, which we call gaze-adapted interfaces. First, we take a
look at applications with a single-purpose whose interfaces have been adapted to be
operated with gaze signals. Then, we present a framework for eye-controlled inter-
actions, which allows for designing custom eye-controlled interfaces. Last, we show
how interactive elements in the Web can be mapped to eye-controlled interfaces. The
mapping of interaction elements from the Web to eye-controlled interfaces allows for
accessing websites through eye movements in a unified way.
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5.3.1 Adapted single-purpose interfaces

Researchers have created and evaluated various multimedia interfaces that were
designed for eye-controlled interaction. These interfaces are mostly prototypes, which
are limited in their functionality for a single purpose and often not maintained after
the experiments. Nevertheless, their designs provide insights into the potential of
interfaces that are adapted to work effectively with gaze signals as input.

5.3.1.1 Drawing with eye movements
Drawing allows people to express their creativity and feelings. Especially, people
with motor impairment, and, even more specifically, children with motor impairment
are considered a target group for eye-controlled drawing applications. Hornof and
Cavender [37] developed EyeDraw, an application that enables children with severe
motor impairment to draw with their eyes. The authors propose an interface with two
states. One state allows for free looking and the other state for drawing. A user defines
the start and end of a line through fixations instead of drawing pixel-by-pixel like a
brush using eye gaze. Transition between the states is performed via dwell time on
the canvas. The application allows for drawing lines, circles, rectangles, polygons,
and stamps. The tools are available as dwell time buttons that surround the canvas,
see Figure 5.5. A grid of dots can be displayed on the canvas to help a user fixating a
POR. Furthermore, a dedicated mode for looking has been implemented. Any dwell
time interaction on the canvas can be paused through the selection of a button in the
interface.

The idea of a drawing application with gaze signals has been enhanced in multiple
works. Heikkilä [38] has developed EyeSketch. The application allows the drawing
of shapes that can be moved and resized, and their color attributes can be changed.
The tools for moving and resizing are controlled with gaze gestures and blinking.

Figure 5.5 Interface of EyeDraw 2.0 [37]
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Figure 5.6 Interface of Tobii Snap + Core First for Windows∗

5.3.1.2 Writing with eye movements
Inserting text for data processing, documentation, and communication is the tra-
ditional purpose of desktop computers. Communication has been in the focus of
eye-controlled applications for people with motor impairment. There are various com-
mercial grid-based applications available. They offer buttons in a grid-like interface,
which can be selected through dwell time. The buttons represent common phrases,
which allow to formulate queries of everyday communication. There are systems
with a deep hierarchy of buttons, customizable grid layouts, eye typing, and combi-
nations with speech and touch input. See Figure 5.6 for a representative example of
an application with grid-like interface.

Recent research in writing with gaze signals has rather focused on multimodal
interaction as it bears huge potential for a broad user audience. Beelders and
Blignaut [39] have enhanced Microsoft Word with speech and eye gaze as input.
They have combined speech commands for formatting, cursor movement, text selec-
tion with speech dictation, and eye gaze for pointing, e.g., cursor placement in the
document and eye typing. The system is highly configurable, as different selection
methods for eye pointing are available, like dwell time, blinking, or via key press.
However, it was found that the eye gaze and speech-interaction technique caused a
significantly higher error rate than the traditional keyboard.

Sindhwani et al. [40] have developed ReType, a system for quick text editing
with keyboard and eye gaze. The system is gaze-assisted and attempts to erase the
need for mouse pointing in certain scenarios. It allows common editing operations,
while the hands can remain on the keyboard. A text editor is enhanced with a specific
mode to retype. The mode to retype can be entered via a hotkey or via heuristics on

∗Image source of Tobii Snap + Core First for Windows: https://www.tobiidynavox.com/globalassets/
pictures/software/snap/product-listing-images/scf-2.jpg.
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the gaze signals. A user can start to type an edit string, which is matched with the
complete text. Phrases with low string distance are highlighted as candidates to be
replaced with the edit string. The user looks at the desired candidate and presses a
key to apply the edit.

5.3.1.3 Gaming with eye movements
Games have the potential to introduce many people in a playful way to interaction
with eye tracking. Furthermore, the gaze signals of players can be used to retrieve
a deeper understanding of human perception. However, it is often difficult to adapt
games for eye-controlled interaction due to their complexity and frequency in input
commands.

Games for entertainment. Vickers et al. [41] have evaluated locomotion tasks in
games, in which an avatar can be moved by players over a terrain. They have divided the
screen into multiple rectangular zones which control the movement of the avatar, e.g.,
moving it forward or changing its direction. The zones are triggered on gaze signals
that fall into the extents of a zone. This interface design allows to steer an avatar in
a conventional computer game. However, the interaction with eye tracking is slower
and more error-prone than with input by mouse and keyboard. In addition, games
usually require broader set of interactions, which is not yet covered by this approach.

Chicken Shoot is a classic two-dimensional shooter game, in which the player
must hit flying chickens with a shotgun. Usually, it is played with a mouse. Aiming
with the cross-hair is performed through the movement of the mouse, and shooting
and reloading with the mouse buttons. Isokoski et al. have translated gaze signals
into mouse and keyboard events and then inject these into the game. The cross-hair is
changed to follow the eye gaze. The shooting and reloading via mouse buttons have
been replaced with a switchable automatic machine gun. An off-screen target above
the screen region can be fixated to switch the gun on and off. After four to five trials,
most participants outperformed the mouse and keyboard control condition in the final
score. Especially, the faster positioning of the cross-hair by eye gaze compared to the
manual positioning improved the score.

Isokoski et al. [4] also have discussed EyeChess, developed by Špakov. Turn-
based games and other games that do not require high-frequency control can be easily
adapted for interaction via gaze signals. However, the user experience can be signif-
icantly improved by adapting the interface itself for eye-controlled interaction. The
elements in the interface of EyeChess have been made large enough to be selectable
through dwell time without additional magnification. Furthermore, the elements pro-
vide feedback about selection and feature points to focus on the center. The changes
in comparison to a mouse-operated chess application are not large, yet, they are eval-
uated as critical to allow a satisfactory control with eye movements. See Figure 5.7
for a screenshot of the interface of EyeChess.

Games with a purpose. In the context of research, games with a purpose are popular
to offer knowledge to players and to retrieve feedback from them in a playful way. In
combination with eye tracking, saliency information from eye gaze on images can be
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Figure 5.7 Interface of EyeChess [4]

gathered by users looking at presented images. The saliency data may be useful to tag
images and improve image search in the future.

Walber et al. [42] have developed a two-dimensional eye-controlled game,
eyeGrab, for image classification. Players classify a number of images according
to their relevance for a given tag. While the game is entertaining for players, the
aim is to enrich the image context information. Players are asked to look at images
falling down the screen. The task is to classify the images as relevant or irrelevant
to a given tag. A player can select an image by fixation and classify the image by
dwelling on a corresponding button. A player receives points for each correctly cat-
egorized image, negative points for each false categorized image, and no points
for images that fell off the screen without classification by the player. The speed
of the images that fall is increased over time, in order to increase the difficulty of
the game.

We have developed a three-dimensional successor to the game, Schau genau! [43].
In the game, the gaze signals are used to control an avatar in appearance of a butterfly,
see Figure 5.8 for the setup and a screenshot of the game. The task of a player is to
collect flowers with the avatar in order to gain points. The flowers are spawned in the
distance and the avatar flies constantly toward the flowers over a meadow. The user
interface of the game consists only of two panels on the bottom of the screen. The
collected points are displayed in the green panel on the right. The current multiplier
is displayed in the purple panel on the left. The game terminates when the avatar
is caught by spider web spawned analogously to the flowers. During the game, both
game speed and spider-web density linearly increase to make the game more difficult.
The research purposes of the game are threefold: we have integrated control styles
with different levels of intelligence, we educate the players about flower species as
the serious game part, and we collect gaze signals on photos of flowers.
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(a) (b)

Figure 5.8 The Schau genau! [43] arcade-box was placed at a state horticulture
show in Germany for half a year: (a) arcade-game like box and (b)
screenshot from the gameplay

The controls of the avatar with gaze signals are of special interest in this game.
The avatar moves accordingly to the active control style on a two-dimensional plane,
which is placed parallel to the screen. Three mappings of gaze-on-screen to world
position of the avatar on that plane, featuring different levels of intelligence, have been
defined and were randomly assigned to players. The first approach is the interpretation
of the gaze on screen as avatar position, similar to the mouse emulation. The second
approach features a grid-based positioning, similar to the first approach but with very
coarse fixation filtering. The third approach supports the player by making use of the
knowledge about the virtual world. The eye gaze is checked to lay upon a flower in
the distance, and the avatar is moved toward the future collision point with the flower.
The visual position of the flower in the distance and the future collision point are not
the same, as the perspective projection moves objects in the distance closer to the
center of the scene. When the eye gaze is upon the avatar, its opacity is reduced to
enable players to see what would have been hidden by the avatar.

The serious part of the game educates the players about flower species, who are
rewarded with an increase of the multiplier for knowledge. After a certain time inter-
val, the game state switches from normal game into a picture mode (Figure 5.9(a)), in
which one tag and two images of flowers are presented to the player. The player shall
select the image that depicts the flower which corresponds to the displayed tag. For
each correct selection, the multiplier is increased. During this decision process, gaze
signals on the two images are collected. These gaze signals may provide insightful
details in future, like which portion of the image led the player to identify the flower’s
species.

In this immersive eye-controlled game environment, several interaction elements
were included with respect to the size, shape, and visual feedback. The photo in
Figure 5.9(b) shows the game screen for the player inserting a nickname for the
high score table. The alphabet is displayed on the top where the player can scroll
horizontally through the letters by fixating on specific letters. The fixated letter moves
toward the center of the screen and enlarges until a dwell time is over and the letter
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(a) (b)

Figure 5.9 Schau genau! [43] game with eye-tracking system mounted below the
monitor (the three red illumination units are visible): (a) picture mode
and (b) entry of a nickname

is selected. If the player fixates on another letter in the meantime, the previous letter
is scaled down again. On the bottom of the screen, the player can either confirm the
input or delete the last written later by individual buttons. All these interface and
interaction components of Schau genau! were very well received by the participants
yielding to high usage and explicit positive feedback.

The game has been presented in an arcade box made of wood. The box includes
a height-adjustable chair in front of a screen, which is placed behind glass. A Tobii
EyeX eye-tracking device is attached to the lower part of the screen’s frame. For the
sole purpose of starting and aborting the game, a single red buzzer has been placed
on a tray between the chair and the monitor. Nearly 3,000 completed sessions were
recorded on a state horticulture show in Germany, which demonstrates the impact
and acceptability of eye-controlled interaction among lay users as implemented in
our interface. The control style had a statistically significant, yet very small effect
on high scores: games with direct positioning led to the lowest, games with indirect
positioning to the highest scores. This is another hint about the importance to consider
gaze signals not as replacement of mouse pointing but to treat it specifically in each
context.

5.3.1.4 Social media with eye movements
As of today, social media allows to share multimedia at a big scale. One of the biggest
social networks is Twitter, a platform that allows users to share their opinion, to follow
the posts of other users, and to post media on a personal wall. Other users may respond
to entries on another user’s personal wall and forward entries on the same of their own.
Social media platforms may act as an open window to the world for people with motor
impairments—if they are able to use such services. Usually, Twitter is accessed via a
Web interface or smartphone applications. We have developed a stand-alone Twitter
application with an eye-controlled interface [35].

Design and positioning of interactive elements are a significant aspect of gaze-
adapted interfaces. Unintended activation of interaction confuses users and has
negative impact on the user experience.
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Figure 5.10 Interface of the eye-controlled interface in our Twitter application [35]

The most important part of Twitter† is the personal wall. The personal wall con-
tains posts from users that the user follows. See Figure 5.10 for our implementation
of a gaze-controlled personal wall. The posts are presented in the center of the screen,
called content area. A user can select a post in the content area by just focusing it,
e.g., while reading the content. When a post at the bottom or top is selected, the
system scrolls the post toward the center of the view. This behavior allows intuitively
to browse through the available posts. The currently selected post is colored in dark
gray, which informs the user about the selection and connects the post to the available
actions in the action bar. The action bar is placed on the right-hand side for the con-
tent area and provides contextual actions for the selected post. This spatial separation
of content and actions allows a user to scroll through the content without triggering
unintended actions. Most of the functionalities of Twitter have been implemented.
Each selected post can be forwarded, responded to, liked, and unliked, and one can
visit the profile of the user who created the post. Actions that require textual input
automatically present a virtual keyboard for eye typing, which works with dwell time
keys.

In addition to the personal wall from Figure 5.10, there are five other screens that
can be accessed with the global navigation on the top of the screen. Most screens of
the interface share the concept of content area and action bar:

● send a tweet
● discover trends
● visit own user profile
● private messaging for direct user communication
● search and view other profiles

†https://twitter.com
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In order to develop an eye-controlled interface for an existing application, one
needs low-level access to the functionalities. Twitter offers a public representational
state transfer (REST) API‡ for developers to access a user’s information and to sub-
mit tweets and messages. For this, a user has to activate communication over this
REST API,§ which is performed in our application at the first successful login.‖ The
API follows the OAuth¶ protocol. There are various libraries∗∗ available to access
the REST API in a convenient way in different programming languages. Since our
application is written in C++ language, we decided to delegate the twitcurl†† library
for all communication with the social network.

We have performed a comparative evaluation with 13 participants. The exper-
iment was designed to compare objective and subjective user experience between
using the mobile webpage with emulation and our eye-controlled interface. The par-
ticipants were asked to perform specific tasks representing the common social media
usage: to write a post and to publish it, to find a particular user and follow another
user, to find and like a certain tweet about a specific topic, and to explore the appli-
cation like one would do for social media browsing (5–10 min). We reported that our
eye-controlled interface is regarded as more intuitive and easier interpretable by the
participants than the emulation. Despite its novelty, the novel interface performed
well on usability analysis and required less mental demand from the participants. The
result implies that gaze-adapted interfaces with a tight integration of gaze signals must
be considered for enhanced usability and performance of eye-controlled interfaces.

5.3.2 Framework for eye-controlled interaction

Most adapted single-purpose interfaces share similar mechanisms, like dwell time
buttons and feedback about selections. Thus, we have developed a framework, called
eyeGUI [44], that makes it easy to compose eye-controlled interfaces using interface
elements that feature these kinds of mechanisms.

5.3.2.1 Gaze-adapted interface with eyeGUI
To cater with the eye-tracking accuracy limitations and interaction issues like Midas
touch problem [14], eye-controlled applications primarily depend on the presentation,
manipulation, visual cues, and feedback of elements in the interface. The eyeGUI
framework provides a variety of interface elements, like buttons, keyboards, images,
text displays, and text editors, which allow to compose interfaces for many different
kinds of applications. The interface elements can be grouped into layouts and further
ordered with grids, stacks, and scrollable overflows. The elements can be customized
in their size, appearance, or behavior, e.g., buttons can be given an arbitrary icon that

‡https://dev.twitter.com/rest/public
§https://apps.twitter.com
‖https://dev.twitter.com/oauth/application-only
¶https://dev.twitter.com/oauth
∗∗https://dev.twitter.com/overview/api/twitter-libraries
††https://github.com/swatkat/twitcurl
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Figure 5.11 eyeGUI! [44] framework for eye-controlled interfaces: (a) interface
elements in eyeGUI and (b) architecture of eyeGUI

scales automatically when the overall size of the interface changes, though the ratio
of height and width of the image stays the same.

All interface elements in eyeGUI are designed especially for eye tracking in
their size, appearance, and interaction, e.g., buttons get activated when the gaze hits
them for a set dwell time, and they shrink after triggering to provide a user with
feedback about the activation. A colored overlay increasing in size works as a visual
representation of the remaining dwell time until the activation. The screenshots in
Figure 5.11(a) show the interaction with three different elements from the eyeGUI
framework. On the top (i), the states of a button are depicted. After the user fixates
on the button, a cyan overlay fills the button. When the dwell time is over, the
cyan overlay completely covers the button, vanishes, and the button performs a press
animation. In the second row (ii), the interaction with a sensor is shown. A sensor is an
interaction element that instantly reacts to gaze and spawns signals to the application.
The longer the gaze lays upon the element, the stronger the signals become. This
instant interaction is useful, e.g., for smooth scrolling of content. The four images
at the bottom (iii) show different stages of eye typing with magnifying effect in the
character selection. Besides the interface elements, the framework also offers other
eye-tracking-specific features, like displaying the gaze path during operation.

5.3.2.2 Architecture of eyeGUI
The framework is developed in C++ 11 and uses OpenGL for rendering. Each layout
and its contained elements are defined in XML files. Furthermore, colors, sounds,
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dwell times, and animations can be adjusted in a style sheet. Each interface element
can be assigned classes from the style sheet and classes in the style sheet can inherit
properties from each other in a hierarchical manner. All events that are spawned from
interactive interface elements are sent to registered listeners, which can handle incom-
ing events on their own behalf. The listeners can be created in the custom application
environment in order to interact with external APIs. Eye-tracking devices (e.g., SMI
REDn Scientific, and Tobii EyeX) would send raw gaze signals to the application,
which implements a receiver and filter for the gaze signals. A filtered gaze signal
is then passed to the eyeGUI framework, which handles interaction and calls events
in the interface (e.g., button pressed), and the application would react to those user
interactions at calls to the registered listeners. For development purposes, the control
paradigm can be switched to mouse-control to emulate gaze signals. Figure 5.11(b)
depicts the architecture of the eyeGUI framework.

The integration of eyeGUI is similar to other OpenGL user interface libraries like
ImGui‡‡ and AntTweakBar.§§ A developer is free to choose how to create a window
and in which way to initialize the OpenGL context. Before the render loop is entered,
the GUI object for eyeGUI must be instantiated and an arbitrary number of layouts
from XML files can be added. During the render loop, for every frame, the most
recent gaze sample is used to update eyeGUI, which provides feedback as whether
the input has been used by any layout. Based on that feedback, a developer can decide
how to update the custom application content. This enables developers to overlay their
own rendering with eyeGUI and use the gaze signal not only to allow interaction with
eyeGUI but also with their custom interface. All functions are accessible through a
single header file with C++ functions and the memory allocation for displayed images
and other media content is handled automatically.

The eyeGUI framework has been used by us in two eye-controlled applications.
First, the eye-controlled client to access Twitter from the previous section. Second,
GazeTheWeb, an eye-controlled Web browser that is discussed in the next section.

5.3.3 Adaptation of interaction with multimedia in the Web

The Web offers a broad range of services and applications, e.g., shopping, commu-
nication, learning, and working. Although such tasks appear to be very different, the
underlying data structure on the client side is built with HTML, CSS, JavaScript code,
and the interactions with the pages are designed to be performed with mouse, key-
board, or solely by touch devices. Therefore, a Web browser is able to cover modern
computer tasks in a unified fashion, since Web interfaces are written in standardized
languages and anticipate the same set of input devices. Hence, we want to adapt the
interfaces in the Web uniformly to be conveniently eye controlled. We have developed
GazeTheWeb [45], a framework for full-featured Web browsing with gaze signals as
sole input. It integrates the visual appearance and control functionality of webpages in
an eye-tracking environment. GazeTheWeb has the potential to make a huge number

‡‡https://github.com/ocornut/imgui
§§http://anttweakbar.sourceforge.net
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of Web-based services and applications feel like being designed for eye-controlled
interaction.

The Web application environment is built upon the Chromium Embedded Frame-
work‖‖ with eye-controlled interface [44] overlays for traditional menu functions like
page navigation, URL input, bookmarks, and tab management. For webpage interac-
tion, the system examines the location of selectable objects on webpages, such as text
inputs, select fields, videos, hyperlinks, buttons, scrollable sections, and edit boxes.
The system represents these objects with explicit or implicit indicators to be accessed
by eye gaze input. We achieve the adaptation through knowledge about interface
semantics, such as the position, size, properties, state, and interaction means of the
elements in an application interface. To retrieve the semantics, introspection of the
interface allows us to track object properties such as type, location, and status within
a known, yet dynamic, system.

5.3.3.1 Eye-controlled Web browsing
There have been some attempts in research to integrate eye tracking to the Web
environment. The Text 2.0 framework [46] had introduced a novel benchmark
to mix eye-tracking data with Web technology, where gaze-responsive webpages
can be implemented via interpreting a new set of gaze handlers (e.g., onFixation,
onGazeOver, and onRead) that can be attached to parts of the Document Object
Model (DOM) tree and behave similar to existing HTML and JavaScript mouse and
keyboard event facilities. Wassermann et al. [47] have built upon this concept to
enable eye gaze events in eLearning environments. Although it is a pertinent guide-
line for the Web developers to include eye gaze interactions in their application, it
does not resolve the problem of browsing the current Web with eye-controlled interac-
tions. Hence, there is a need of Web extraction methodology to identify the input and
selectable objects in Web so that it can be revised to eye-controlled interactions. There
have been some elementary approaches in this direction to identify basic elements
such as scrolling and hyperlinks [16,29]; however, Web is much more complicated
and requires a comprehensive and scalable approach to identify the interactive ele-
ments, and to design suitable interaction for all browsing functionalities. None of the
approaches allow for a full browsing experience, e.g., they have not integrated eye
typing to allow entering text on webpages.

5.3.3.2 Introspection of dynamic web page interfaces
A core contribution of GazeTheWeb is the novel real-time observation of the DOM
tree, for changes in interaction elements [48]. Retrieval, classification, and tracking
of elements on the webpages, while the webpage is loaded and updated, are desirable
to provide an eye-controlled interface that corresponds to the displayed webpage.
Today’s Web makes heavy use of dynamically loaded content, thus, simple polling of
DOM tree parsing at a specific time of execution (like end of initial page loading)
is not sufficient. We propose to use direct callbacks from JavaScript into C++ in

‖‖https://bitbucket.org/chromiumembedded/cef
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combination with JavaScript-side observation of the DOM tree for dynamic changes.
This mechanism is combined with a Mutation Observer, which efficiently observes
changes in the DOM tree.

5.3.3.3 Gaze-adapted interaction with webpages
Clicking on hyperlinks to navigate to different pages is an essential component of
user’s Web browsing behavior. For such navigational task, basic dwell time selection
strategy does not work, because hyperlinks might be very close to each other. This
makes it impossible to precisely choose intended links with fixations and dwell time.
In GazeTheWeb, the accuracy problem is tackled using traditional multistep dwell
time with magnification. A click mode can be activated with a button in the interface.
All hyperlinks on the webpage are highlighted, in order to support the user in the
decision process of which hyperlink to select. The magnification after the first dwell
time is centered at the fixation. Another fixation on the magnified web page that
exceeds the dwell time triggers a click event on the webpage. The system provides
visual feedback with a shrinking circle around the click. If there is no hyperlink
element at the POR, but there exists a hyperlink in nearby region, the click coordinates
are moved to the center of the nearest hyperlink to perform the click.

Typically, webpages exceed the available vertical screen space and users need to
scroll the webpage within their viewport to reveal lower parts of the page. Various
approaches have been published, like a two-step approach where a user first selects
to scroll and is then presented with an element to control speed [16], or an automatic
scrolling feature with respect to the POR on the screen [49]. We provide the user
with a choice between manual approach with sensor elements that instantly react to
fixations, and an automatic approach, where the webpage content beneath the POR
is constantly centered on the screen.

Whereas hyperlinks and scrolling are also reasonably supported in the existing
eye-controlled Web browsers [16], we have especially adapted the interaction with
more complex interaction elements, like text inputs, select fields, and videos. Each
of these elements is overlaid with a gaze-sensitive icon on the webpage and can be
selected through a fixation. The system knows the type of the selected element and
switches to a dedicated interface mode that allows a user to spawn the events as desired
by the element through eye movements. See Figure 5.12 for a webpage displayed in
GazeTheWeb, augmented with gaze-sensitive icons, and the corresponding interface
modes in Figure 5.13.

(a) A text input is a webpage interaction element that allows a user to insert text
for a search query, information transactions like filling a form or sending a chat
message. In conventional interaction, text insertion is directly performed via key-
board. However, in gaze-based interaction, sophisticated eye-typing techniques
are required to translate gaze signals into keystrokes. Most eye-typing interfaces
provide one dwell-time sensitive key per available letter, why eye typing can
be considered as a complex interaction. We provide the user with an interface
mode featuring a virtual keyboard for eye typing, including the option to directly
submit a query without any additional selection on the webpage. Additionally,
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(a)
(b)

(c)

Figure 5.12 Complex interaction elements on a webpage are augmented with
gaze-sensitive icons to handle (a) text input, (b) select fields, and
(c) videos

Text input Select field Video mode
(a) (b) (c)

Figure 5.13 Gaze-sensitive icons on a webpage are associated with
gaze-controlled interface modes for sophisticated gaze-based
interaction: (a) virtual keyboard for text input, (b) list of options from
select field, and (c) mode with video controls

other semantics of the text input can be queried for further optimizations of the
virtual keyboard, e.g., to automatically provide a discrete and secure way to insert
passwords or to determine the expected language to support the user in the typing
task.

(b) A select field is a webpage interaction element that allows the user to select
among predefined options, like date of birth, search result filters, or localization.
The select field offers multiple options for the user to choose from, and hence we
categorize it as a complex interaction element. We present the available options
in an interface mode with a button associated with each option, to allow for a
convenient gaze-based interaction. If the number of options extends beyond the
vertical screen space, the currently inspected option is vertically moved to the
center of the screen and the interface mode automatically reveals further options
in the direction of movement through scrolling.
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(c) A video is a webpage interaction element that embeds video content into a web-
page. Videos offer multiple options for control, e.g., play, pause, or skip, which
makes the video element a complex interaction element according to our def-
inition. Videos are especially cumbersome to interact with in an emulation, as
the controls of video on a webpage usually disappear when no mouse movement
is detected over the video by the Web browser. However, mouse movement in
emulation is only inherently performed through positioning the mouse cursor
to emulate a mouse click event. Instead, we suggest an eye-controlled inter-
face mode that shows the video instead of the webpage viewport and features
associated with buttons to control the video.

The interaction with the previously listed complex interaction elements has been
gaze-adapted for the scope of our experiments, however, adaptation is not limited
to text inputs, select fields, and videos. In a similar fashion, interface semantics
about less common but standardized interaction elements like sliders or audio players
might be defined and their interaction adapted with dedicated eye-controlled interface
modes.

The frequent usage of GazeTheWeb during the MAMEM field trials, including
the visits of various Web domains, pages, and the activities (e.g., clicks and text
entry), indicates that users were able to interact with the variety of pages and perform
desired browsing operations [50]. Furthermore, the longer stay duration and revisits of
popular platforms like Facebook, Gmail,YouTube (incorporating complex interaction
elements in Facebook posting, mail body, video control) imply that GazeTheWeb
could effectively adapt the associated elements and webpages for gaze interaction.

5.3.3.4 Challenges and limitations
We have developed an effective architecture to include gaze signals for interaction
in modern webpages. However, Web is complex and it brings several challenges due
to the non-standardization or unintended use of Web technologies. Here we describe
some of these limitations and future challenges to improve the interaction further.

Semantic information. For a convenient experience with eye input, we aim to provide
different options to end users, for example, the text input action can apply the typed
text to the input field or it can be directly submitted for processing (e.g., search query).
However, in several instances, input submission depends on the input of other fields,
for example, a password cannot be submitted without providing a username first,
or a registration form requires multiple entries. In such scenarios, deactivating the
submit button or automatic transformation to a “next-text-input-field” function would
provide a more user-friendly interaction. To accomplish this, we need precise semantic
information about the input fields, which is hard to extract from the DOM tree. We
could employ trivial rules, for example, in the scenario of username and password
combination, search for DOM nodes that have the tag “password” and other input
fields within the same form. However, this is just a heuristic and does not work out
for all cases. A more robust approach is required to gauge the semantic information.

Text input field density. Specific forms for registration or communication tools
feature a high number of text input fields, which are represented by gaze-sensitive
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icons in GazeTheWeb. These gaze-sensitive icons have to be rendered at a minimum
size in order to cope with the eye-tracker accuracy. Hence, in the scenario of complex
forms, the icons might overlap with each other and interaction becomes difficult and
error-prone.

Extensive use of CSS and JavaScript. The abuse of modern Web technologies limits
the impact of DOM tree parsing. A well-known example is the search input field on
the Google page.¶¶ At the time of our assessment, there are at least two text input fields
stacked onto each other for the search box. It appears that one field is responsible for
displaying suggestions in gray color and the other one is used for the actual user input.
The webpage uses the CSS mechanism of z-index to advise the browser to render the
actual text input field in front of the other, which is not detectable in simple DOM
tree parsing. One has to do additional CSS property look-ups in order to find the text
input field to be filled by the keyboard. It is not just sufficient to check the z-index,
since there may be multiple accessible text input fields and some hidden ones, which
are not accessible to a user but share the same z-index. At present, we do an in-depth
investigation to resolve such issues for popular websites, however, a universal solution
is required to deal with these scenarios.

For highly customized interaction contexts (e.g., map navigation, document
editing and game controls), we imagine a future research approach would employ
automatic interaction-template matching, i.e., to cater to different Web services with
similar interaction behavior. This would optimize the engineering effort required to
suffice GazeTheWeb adaptation for highly customized pages. For example, there are
common patterns of interactions for map navigation (panning and zooming), regard-
less of the website that is offering the corresponding service like Google Maps, Bing
Maps, or Open Street Maps. An intelligent interaction-context recognition would
detect the context of map navigation on these sites and offer a unified, gaze-adapted
interface mode for map navigation. The interface mode would be the same for all map
services, yet spawn interaction events as expected by the different services.

5.4 Contextualized integration of gaze signals

Gaze signals can be used not only to mimic traditional input devices and interactions
but to allow for novel interactions with multimedia, which are specific to eye gaze [1].

5.4.1 Multimedia browsing

The act of scrolling is strongly coupled with the user’s ability to engage with infor-
mation via the visual channel. Therefore, the use of implicit eye gaze information is a
natural choice for enhancing multimedia content browsing techniques. For scrolling
and reading, we propose using natural eye movements to control the motion of the
interface for the user. In an automatic scrolling mode, the user has a smoother and more

¶¶https://www.google.com
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natural reading experience, because the scrolling is supported via implicit observation
of a user’s POR. The scroll direction is determined by noting the quadrant where the
user is currently looking. The scroll speed is proportional to the distance from the
center of the screen.

5.4.2 Multimedia search

Another focus of our work is to employ implicit gaze patterns for an improved search
experience. Essentially, a user implicitly requests better visual media, like images
and videos. This feedback is inferred from gaze signals, while the user looks at the
media. This could significantly reduce a user’s effort for explicit refinement of search
results. There have been some preliminary studies related to the use of implicit gaze
information in image retrieval [51]. However, an eye-controlled interface provides
a more natural scenario of gathering implicit feedback to enhance the results, while
users are actively engaged in gaze-driven searching and browsing.

5.4.3 Multimedia editing

Gaze signals allow to recognize a user’s region of interest. We plan to use such fixation
data to enhance multimedia interaction, for example, to identify important content
and use it for multimedia editing, such as image cropping. The goal is to create
appealing crops without explicit interaction. Furthermore, precise identification of
relevant image content without explicit interaction is a vital feature. It lets us analyze
and quantify the viewing behavior on images and how users select the region of
interest for image editing. It also lets us analyze other useful functionalities, such as
the automatic creation of snapshots or thumbnails for adaptive Web documents. In
this context, we have already conducted experiments and employed human fixation
patterns to identify the most salient region of images, because defining a good crop
requires a model that explicitly represents important image content. Our analysis of the
Schau genau! game data implies that human fixations are very particular in identifying
important image content. Implicit gaze feedback is also relevant in personalizing the
user experience—especially given that the sensory input performance largely depends
on the individual’s ability to process the cognitive information. For example, some
users might be able to easily select the target with smaller dwell times compared to
the time needed by others.

5.5 Summary

Eye-tracking hardware becomes more and more available. Table-mounted eye trackers
that are designed for gaming purposes are already fairly cheap, with prices of about
150 dollars. Headsets for augmented and virtual reality like the Microsoft HoloLens 2
also include eye tracking and might have a big impact on the availability of gaze sig-
nals in the near future. In this chapter, we have provided a comprehensive overview
about eye-controlled interactions for multimedia interfaces. We have started with the
anatomy of the eye and technologies to track eye movements, have discussed selec-
tion methods, and have described the design of eye-controlled interfaces. We conclude
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that eye-controlled interaction requires dedicated interfaces for good user experience,
because of the overload in perception and control, and gaze signal estimation errors.
We argue that the Web has many standardized elements for which we can make
dedicated eye-controlled interface modes to support a broad range of applications.
Upcoming interface toolkits must consider gaze signals for a deeper integration. The
Windows API∗ ∗ ∗ already includes handling of gaze signals; thus, eye tracking will be
even more available in the future. Especially, the interaction with multimedia can ben-
efit from gaze signals. They potentially allow for magic-like interaction, for example,
with automatic scrolling or automatic cropping of content-of-interest. Gaze signals
are already used as unimodal interaction means to improve accessibility and bear a
huge potential for everybody’s life with multimodal interaction and well-designed
interfaces.
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Chapter 6

Eye tracking for interaction: evaluation methods
Chandan Kumar1, Raphael Menges1, Korok Sengupta1,

and Steffen Staab1,2

Eye tracking as a hands-free input method can be a significant addition to the lives
of people with a motor disability. With this motivation in mind, so far research in
eye-controlled interaction has focused on several aspects of interpreting eye tracking
as input for pointing, typing, and interaction methods with interfaces, as presented in
Chapter 5. In this regard, the major question is about how well does the eye-controlled
interaction work for the proposed methods? How efficiently can pointing and selection
be performed? Whether common tasks can be performed quickly and accurately
with the novel interface? How different gaze interaction methods can be compared?
What is the user experience while using eye-controlled interfaces? These are the
sorts of questions that can be answered with an appropriate evaluation methodology.
Therefore, in this chapter, we review and elaborate different evaluation methods used
in gaze interaction research, so the readers can inform themselves of the procedure
and metrics to assess their novel gaze interaction method or interface.

We discuss the common methodological denominators and guidelines for eye
tracking experiments in Section 6.1. In Section 6.2, we outline how the evalua-
tion of eye tracking as input for atomic interactions like pointing, selection, and
typing is performed. Besides reviewing the general metrics, we also discuss the
cognitive load metric that we introduced in our recent work [1]. In Section 6.3, we
discuss the methodology to evaluate complete eye-controlled application interfaces.
We specifically describe how we have evaluated our gaze-controlled Web browser [2],
incorporating comparative and feasibility evaluations.

6.1 Background and terminology

Evaluation in eye-tracking research conforms to the methodology from the inter-
disciplinary field of human–computer interaction (HCI) [3] and experimental
psychology [4]. A user study is an experiment with human participants, and the

1Institute for Web Science and Technologies, University of Koblenz-Landau, Koblenz, Germany
2Web and Internet Science Research Group, University of Southampton, Southampton, United Kingdom
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methodology includes all the choices one makes in undertaking the user study. The
choices pertain to the research questions, study design, variables, participants, ethics,
data collection, and analysis. In the following, we discuss these terminologies in the
context of experiments involving eye tracking for interaction.

6.1.1 Study design

Based on the goal and hypothesis about the interaction method or interface,
researchers undertake different types of studies to evaluate the performance and
usability of the proposed system.

Lab studies involve the user carrying out a set of constrained tasks in a con-
trolled environment. The key element is to test the differences in the developed
system while keeping all other factors constant, i.e., the controlled environment
implies that there should be no other differences between the conditions than the
introduced differences of the proposed methods. This means that the experimenter
must control all other factors, including lighting, temperature, noise, and instruc-
tions, given to the participants. To assist with this, lab studies are usually carried
out in a dedicated usability laboratory. There are several advantages of lab studies in
eye-tracking-related experiments. First of all, lab studies are fairly cheap to perform
and provide a concrete comparative analysis of the performance of a gaze interac-
tive system or technique. More importantly, the most common research questions
in eye-tracking-related approaches are rather comparative, such as “What value of
dwell time yields better performance?”, “Is user performance better using mouse
click, gaze-based dwell confirmation, or touch selection?”, “Does a filtering algo-
rithm improve the user performance compared to no-filtering or compared to previous
filtering techniques?”, or “Does the gaze-adapted interface help completing the tasks
efficiently than the generic interface?”. These kinds of questions can be best answered
using a controlled experiment. Furthermore, the performance and accuracy of eye-
tracking systems are highly subjective to environmental influences such as lighting,
display, seating position, and distance. If those factors are not controlled, the differ-
ence in results could be due to the external factors, rather than the method or interface
to be tested. However, lab studies are not very suitable to provide the understand-
ing of how eye-tracking systems fit into everyday life. Eye tracking can be used for
novel interaction concepts, and not many users are equipped with eye-tracking sys-
tems in daily life environment; hence, evaluating the end-user acceptability is not
trivial.

Field studies allow to assess the difficulties, challenges, and acceptance in real-
world environment from end-user’s perspective. Field studies are generally carried
out at users’ environment that may be their workplace, home, or leisure environment,
depending on the tasks to be supported by the technology. Field studies can last for
a couple of hours to several days, weeks, or months, depending on the resources and
the research/commercial goal of the study. It is important to investigate eye-tracking
systems acceptability as a future interaction technology; however, there are not many
such studies reported in the literature. In Section 6.3, we describe the experimental
setup and procedure of how we have conducted a field study at a home environment
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for a period of one month. Such studies, which last for a longer period, are also
categorized as longitudinal study.

Longitudinal studies focus on the learnability aspect, i.e., the role of time and
experience in the usability of a system. A longitudinal study may be of duration of
anywhere from a few days to several decades and may be conducted by either running
repeated measurements in a lab setting or in a field setting.

6.1.1.1 Within-subjects and between-subjects designs
If you are comparing different conditions (interaction method or interfaces), i.e., if the
evaluation is comparative, the experiment can be performed with within-subjects
or between-subjects conditions. When all participants are tested on all conditions,
the design is called a within-subjects design. It is also termed “repeated-measures
design,” as the measurements gathered under one condition are repeated on the same
participants for the other conditions. In a between-subjects design, each participant
is tested under one condition only. One group of participants is tested under one
condition and a different group under the other condition.

The choice of design highly depends on the goal of the evaluation. For controlled
lab studies, a within-subjects design is generally preferred, because effects due to
the behavioral differences of participants are minimized as they are likely to be con-
sistent across the conditions. For example, a participant who often moves her head
would exhibit such behavior consistently across experimental conditions affecting
the accuracy of gaze estimation. For field studies, or longitudinal studies generally,
between-subjects design is preferred, because in real-life environment it is not natural
to ask participants to use two different methods to perform similar tasks. For example,
the Schau genau! [5] game, described in Section 5.3.1 of Chapter 5, was placed in
a public area and had three different control types. We could not ask each player to
play the game three times to directly compare the different control types; hence, a
between-subject comparison was performed.

6.1.1.2 Counterbalancing
For within-subjects designs, an important factor is learning. Because two or more
methods are compared and all participants use one method first followed by the others,
an improvement with later might be because of the practice on the first method. In this
regard, counterbalancing is useful where the grouping is done according to a Latin
Square. Counterbalancing may be specially critical in an eye-tracking setup, as users
are mostly novices of the technology and could have a significant learning in the first
trials. Latin Square [6] ordering is used mostly to ensure that there is no bias for
within-subjects design. The (balanced) Latin Square orders participants for different
experimental scenarios ensuring that a learning effect from one scenario does not
impact the overall experiment in totality.

6.1.2 Participants

Persons who participate in an experiment are called participants. Most empirical eval-
uations with eye tracking as input include 5–25 participants [8,9], although the exact
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number to use is arguable. In general, if the number of participants is low, large perfor-
mance differences may occur but the differences might not be statistically significant.
In contrast, if there are large numbers of participants, small performance differences
of no practical relevance might indicate statistical significance. The best practice is
to review the literature and use approximately similar number of participants used in
the prior research with a similar methodology [4,10,11].

In the ideal scenario, participants are selected randomly from the population of
people in the intended community of users. For instance, eye tracking as an assistive
technology should ideally involve the target-group participants in an evaluation. The
target-group participants in such eye-tracking experiments should involve represen-
tative groups from patients of amyotrophic lateral sclerosis, aphasia, neuromuscular
disease, Parkinson’s disease, spinal cord injuries, and cerebral palsy. (More detailed
discussions on target-group users are available in Chapters 2–4.) Although there
are some notable works that conducted usability studies with target-group partici-
pants [8,12], the most common approach in practice is to invite people conveniently
available, e.g., students at a local university or colleagues at work. In some cases,
prescreening is necessary if, for example, users are required with a specific level
of expertise or experience with aspects of the interaction. This includes having no
prior exposure of eye tracking, if such is important in the evaluation. In all cases,
it is recommended to report on demographic data, i.e., number of participants, their
gender, age, and prior experience with eye tracking or the experience with related
interfaces to be tested. The use of glasses or corrective lenses is also noted for eye-
tracking experiments as it could have an impact on accuracy. Before each condition,
a recalibration of the eye-tracking system is recommended and the reached accuracy
should be recorded for later reporting.

6.1.2.1 Ethics
One important aspect of conducting evaluation with human participants is ethics.
Usually, there are formal regulations on ethics of your institution which you have
to follow, but ethics in principle should be taken care by everyone who carries out
experiments. A good ethics code includes steps such as treating participants with
respect (you are testing the technology and not the participants), pilot testing (to make
sure everything works in the actual study as expected with the least overhead to the
participants), and informed consent (you provide information about what will happen
and get the approval of participants by signing the consent form). More specifically for
eye-tracking studies, the recorded data might contain sensitive eye-gaze information
of user attention; hence, this needs to be clarified in consent form regarding which data
being recorded during the experiment. For eye-tracking studies, if you are inviting
participants with motor disability, you should be specially careful of accessibility
guidelines and clinical protocol. One example is Helsinki ethical approval [13].

6.1.3 Experimental variables

Extending the discussion and terminology on study design, the two primary vari-
ables in HCI and experimental research are independent and dependent variables [3].
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For the research to be reproducible, it is highly recommended to clearly define all
experimental variables as part of the evaluation methodology in any work.

6.1.3.1 Independent variables
Independent variables are the values that are targeted to be evaluated in the experi-
ment, in order to analyze the conditions. Those variables are called “independent,”
because they are controlled by the experimenter and are completely independent of
participants, i.e., a participant cannot do anything to influence an independent variable
being evaluated. In eye-tracking research, “input method” would be an independent
variable in studies comparing (gaze vs. mouse), (dwell vs. blink), or (eye move-
ment vs. head movement) as different conditions. Generally speaking, any factor
influencing the performance could be hypothetically an independent variable in the
experiment. Examples include interface element size (big vs. small), visual effect
(feedback vs. no feedback), fixation filtering (on vs. off), gender (male vs. female),
age (old vs. young), and so forth. In eye-tracking-related evaluations, various kinds
of independent variables are used in literature [8,11,14].

6.1.3.2 Dependent variables
A dependent variable is any measurable estate of the interaction involving an indepen-
dent variable. It is called dependent because it “depends on” actions by the participant.
Any observable, measurable aspect of the interaction is a potential-dependent variable.
However, speed and accuracy in executing the tasks are the most general dependent
variables used in experiments. For example, throughput (bits/s) is a common measure
to evaluate gaze-based pointing and selection, which includes both the speed and
accuracy in participants’ responses. For gaze-based text entry, most common depen-
dent variables are speed (words per minute (WPM)), error rate, backspace usage,
and keystroke savings (we provide more details on pointing and typing measures in
Section 6.2). It is advised to separate the dependent variable name from its units,
for example, typing speed is a dependent variable with units “WPM”; however, the
unit could also be “characters per minute” but the dependent variable of typing speed
would be the same. For interface evaluation, task completion time is the most com-
mon dependent variable (we provide more details on interface evaluation measures
in Section 6.3).

6.1.3.3 Further variables
We discussed earlier in lab study design of eye-tracking experiments that consistent
environmental conditions for the experimental setup are particularly important.

Control variables include all circumstances that are kept constant. It is to confirm
that there are no variations of independent variables due to external factors, and the
outcomes of dependent variable are largely based on independent variable conditions.
Example of control variable includes ambient lighting, seating arrangement, display
settings, or interface elements, like text fonts.

A confounding variable is a variable that influences both the dependent and
independent variables, causing a spurious association. A circumstance that varies
systematically with an independent variable confounding is a causal concept, and as



122 Signal processing to drive human–computer interaction

such, cannot be described in terms of correlations or associations [15]. In general,
the guideline is that any such variable should be controlled or randomized to avoid
misleading results. For example, a study comparing the eye-typing performance on
a QWERTY layout vs. a novel layout which the participants have never seen before.
Hence, a performance difference may emerge, but prior experience is a confounding
variable. The experiment needs to state such variables and take precautionary actions
such as providing training and randomizing the order.

6.1.4 Measurements

Another common terminologies in reporting evaluation results are objective and
subjective measurements.

Objective measurement is something that is measured consistently and yields
from quantitative data recorded while participants perform the designated tasks. For
example, how effectively someone can perform a set number of tasks in a controlled
environment, i.e., it is closely related to the dependent variable.

Subjective measurement is about measuring what people say or they feel about the
interaction experience. It is very important to listen to the feedback from participants,
because eye tracking is a novel interaction mechanism for most of them, and the
usage is very subjective to human behavior and responses. Furthermore, it can be a
physically and cognitively demanding task to operate with an eye-tracking system.
Therefore, it is very common in eye-tracking experiment to use a survey to answer
open-ended questions, ranking an experience (how they judge speed and accuracy)
based on feelings, and more.

Both objective and subjective measurements are keys in reaching our goal and
evaluate the suggested method or interface. Researchers want to support users with
faster and accurate inputs, at the same time they want users to feel good about using the
system. For subjective assessment, developing a questionnaire is a key aspect, which
means that getting the choice of questions, their format, ordering, etc. are often time
consuming but also imperative to report a full picture of the user experience. Besides
this, there are some general questionnaires used for subjective assessment discussed
in the following:

● The system usability scale (SUS) [16] is a simple ten-point questionnaire that
helps in understanding a subjective assessment of usability. The ten levels of SUS
cover system usability, need for support, training, and complexity. The scale is
generally used after the participants complete the experiments. They are asked to
record their immediate responses to each of the points on a Likert scale.

● NASA’s Task Load Index (NASA-TLX) [17] has been used in a wide variety
of experiments to assess the usability, stress, or effectiveness of performance
in regard to perceived mental load. This is a qualitative metric where partici-
pants provide a rating to six subjective scales to show their mental load. The six
subjective scales look into the following:
– Mental demand: How mentally demanding was the task?
– Physical demand: How physically demanding was the task?
– Temporal demand: How hurried or rushed was the pace of the task
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– Overall performance: How successful were you in accomplishing what you
were asked to do?

– Effort: How hard did you have to work to achieve your level of performance?
– Frustration level: How insecure, discouraged, irritated, stressed, and annoyed

were you?
● Heuristic evaluation is an informal usability testing method for user interfaces.

Nielsen et al. [18] define heuristic evaluation of an interface as “simply looking at
the interface and passing judgement according to ones own opinion”. Heuristic
evaluation is a fast and easy method to test user interfaces in order to recognize
failures with respect to intended purposes and can be performed by the designer.
Following the guidelines of Nielsen et al. [19], we proposed to adapt the ques-
tionnaire for eye-tracking environment [20]. In the following subsections, we
would provide some examples of how the heuristics were adapted for eye-typing
experiment (Section 6.2) and for browser application evaluation (Section 6.3).

6.1.4.1 Statistical analysis
In the analysis, we are interested in knowing whether there is a significant difference
in the dependent variable when the participants are confronted with the experimental
conditions. Thus in HCI research, usually significance tests are performed on the
outcome of the dependent variables, which is sometimes difficult because of the low
number of participants. The dependent variables are usually measured as interval
or ratio values, e.g., execution times or words entered per minute. Furthermore, we
assume that the experimental data is balanced, i.e., the sample sizes are equal across
all tested methods. Generally, the p-value should be below or equal to 5% to consider
a significant difference between the conditions.

We generally distinguish between parametric and nonparametric tests. Paramet-
ric tests are those that make assumptions about the parameters of the population
distribution from which the samples are drawn. In most of the cases, the assumption
is about the normality of the population distribution. We recommend to first check
the histogram plot of the dependent variable as measured across the participants and
draw a conclusion from the shape of the histogram. There are also statistical measures
like the Shapiro–Wilk test. However, the null hypothesis of the Shapiro–Wilk test is
that the samples are taken from a normal distribution. We cannot reject the p-value
over the threshold as well as we cannot validate it. A p-value greater than the threshold
still may indicate a normal distribution of the values of the dependent variables. In
addition, the effect size should be reported alongside each significance result. Sta-
tistical significance is the probability that the observed difference between groups is
due to chance. A bigger sample size makes it more probable to find a significant dif-
ference between the groups. While a p-value can inform the reader whether an effect
exists, the p-value will not reveal the size of an effect. Thus, both the substantive
significance (effect size) and statistical significance (p-value) are to be reported for
a dependent variable.

The t-test is a parametric test to compare the means of two groups. It is assumed
that the distribution of the population of the sample data is normal. A paired t-test
can be performed when the participants using both conditions are matched; thus, we
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can look at the differences in each participant’s outcome of a dependent variable. An
unpaired t-test just considers the means of two independent groups of participants
using one condition or the other. As effect size Cohen’s d can be reported for both
paired and unpaired t-tests.

Analysis of variance (ANOVA) is a common test to estimate the difference in
means among more than two conditions. Similar to a t-test, the test is parametric and
requires the population from which the samples are drawn to conform to a normal
distribution. Furthermore, homogeneity of variances must be checked for between-
subjects designs and sphericity for within-subjects designs. The effect size is called
eta squared and calculated as the square of the correlation ratio. Refer to your statis-
tics package of choice for further instructions on how to perform those tests and to
calculate the effect size.

If normality cannot be assumed, there are nonparametric tests that do not require
the samples to be drawn from a normally distributed population. Yet, the nonparamet-
ric tests still assume the equality of variances. A Mann–Whitney’s U test compares the
medians of the two groups, not the means, and works with ranks instead of the actual
values of the dependent variable. Analogous to a paired t-test, a Wilcoxon signed-rank
test is similar to a Mann–Whitney’s U test, but it works on the differences between the
ranks of dependent variable outcomes per participant. For three or more conditions
without normality assumption about the samples, a Friedman test or Kruskal–Wallis
test can be performed. Table 6.1 presents a summary of statistical methods used in
eye tracking evaluation.

6.2 Evaluation of atomic interactions

The characteristics of eye gaze as “what you look at is what you get” [21] had initiated
the initial comparisons of eye gaze as a substitute to conventional input mechanisms
like mouse, pen, touch, or keyboard. Therefore, several methods for better pointing
and typing with eye gaze input are an imperative aspect of gaze interaction research, as
discussed in Section 5.2 in Chapter 5. In the following, we discuss the most common
methodologies used for the evaluation of gaze-based pointing and typing methods.

6.2.1 Evaluation of gaze-based pointing and selection

As a pointing device, an eye tracking system typically emulates a mouse. Similar to
point-select operations with a mouse, the eye can spatially orientate user intention and
perform select operation using dwell, blink, or gestures (more details in Section 5.2
in Chapter 5). Evaluation of eye trackers for pointing and selecting operation has
largely followed the methodology pertaining to the conventional issues for computer
input using a mouse and the unique characteristics of eye-tracking system and gaze
interaction.

6.2.1.1 Objective measures
The conventional measures such as speed and accuracy are obviously applicable to
the eye-tracking scenario for evaluation and comparison. Similar to pointing devices,
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Table 6.1 Statistical methods used in eye tracking evaluation

Study design Normality assumed Normality not assumed

Within-subjects Two conditions Paired t-test Wilcoxon test
design Three or more Repeated-measures Friedman test

conditions ANOVA

Between-subjects Two conditions Unpaired t-test Mann–Whitney test
design Three or more ANOVA Kruskal–Wallis test

conditions

“throughput” (TP) has been introduced by MacKenzie [22] as Fitts’ law for eye
tracking. It is considered a primary performance metric (dependent variable) in
various eye tracking evaluations till date [9,23–26]. Throughput conforms to ISO
9241-9 to uniform guidelines and testing procedures for evaluating computer-pointing
devices [27,28]. It is measured in bits per second, and it is a composite measure that
includes both the speed and accuracy in performance [29]. The equation for through-
put is Fitts’“index of performance” except using an effective index of difficulty (IDe).
Specifically,

TP = IDe

MT
,

where MT is the mean movement time, in seconds, for all trials within the same
condition and

IDe = log2

(
D

We
+ 1

)
,

IDe, in bits, is calculated from D, the distance to the target. We is the effective target
width with

We = 4.133 × SDx,

SDx is the standard deviation in the selection coordinates measured along the axis
from the default position to the center of the target.

The standard mouse throughput varies from about 3 up to 5 bits/s [30,31]. The
performance of eye gaze input is found to be lower than the mouse and other conven-
tional pointing mechanisms like pen or touch [11]. However, the throughput value
is highly subjective to experimental variations (e.g., display size and experience of
participants). Figure 6.1 shows an example of throughput comparison where input
method is the independent variable (gaze vs. head vs. mouse) [32] and (gaze vs.
touch vs. mouse) [31]. Various methods of eye pointing, e.g., multistep magnifica-
tion [33], fish-eye lens magnification [34], or smooth pursuit of visual targets [35],
have been evaluated to improve the pointing performance and accuracy. There are
also case studies where eye gaze outperforms mouse in specific scenarios such as a
gaming environment [36].



126 Signal processing to drive human–computer interaction

4.00

6.00

5.00

4.00

3.00

3.00

2.00

Th
ro

ug
hp

ut
 (b

its
/s

)

Th
ro

ug
hp

ut
 (b

its
/s

)

1.00

.00 Gaze
(a) (b)

Click
Dwell Observed

grand mean

Throughput: estimated marginal means

Head
Pointing method

Selection method

Selection method
Mouse Mouse Touch Gaze

Figure 6.1 Throughput comparison of eye gaze vs. other input modalities for target
pointing and selection tasks: (a) Hansen et al. [32] and (b) Rajanna
and Hammond [31]

6.2.1.2 Subjective measures
ISO 9241-9 has also laid out the methodology for subjective assessment of user com-
fort with input devices, such as mice, trackballs, touchpads, joysticks, or pens. The
eye tracker as a pointing device also falls within the scope of this standard. However,
the generic ISO 9241-9 assesses comfort using a questionnaire soliciting Likert-scale
responses to 12 items, and this needs to be customized for the characteristics of a
specific device. Zhang and MacKenzie [28] have adapted the questionnaire as per
eye-tracking comfort and fatigue (Figure 6.2). Besides this, researchers have used
customary questionnaire depending on the nature of tasks; most often, it involves
Likert-scale questionnaire on how would you rate speed, accuracy, comfort, and
learnability aspects of the presented methods [9,37] to participants.

6.2.2 Evaluation of gaze-based text entry

Similar to its assessment to accomplish pointing and selecting operations, eye tracking
has also been considered a substitute for a keyboard, to allow for text entry [8]. The
most common design to evaluate gaze-based text entry is to conduct lab studies, in
which participants are asked the enter phrases using proposed methods [38,39]. There
are also some longitudinal studies analyzing the long-term learning effect [40,41].
However, the evaluation measures are common across all these studies, as discussed
in the following.

6.2.2.1 Objective measures
In terms of objective measures, the eye typing methods use the dependent variable of
speed and accuracy with the most common units being WPM, keystrokes, and error
rate.

● WPM forms one of the most basic metrics for evaluating text entry. WPM is
calculated as

WPM = |S − 1|
T

× 60 × 1

5
,
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Would you like to use the eye tracker

Overall (compared to the mouse)

Shoulder fatigue

Neck fatigue

Eye fatigue

General comfort

Operation speed

Target selection

Accurate pointing

Physical effort

Mental effort

Smoothness

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Figure 6.2 Questionnaire for subjective assessment of eye tracking as input
modality [28]. Response 7 was the most favorable, response 1 the least
favorable

where S is the length of the transcribed string, including spaces, and T is the
time in seconds from the entry of the first character to the entry of the last
character, and 5 represents the average characters in a word [10]. In Figure 6.3,
we showcase how WPM is usually reported taking an example of our eye-tracking
experiment [42], where the independent variable was three different keyboard
designs having suggestions at different positions.

● Accuracy and error rate are measured as mean square difference (MSD), which
is a metric for the number of errors left in the transcribed text.

MSD error rate = MSD(P, T )

SA

× 100%,

where MSD(P, T ) is the minimum string distance between the presented and
transcribed strings, and SA is the mean length of the alignment strings [43].

● Keystrokes measure is defined as the number of key activations required, on an
average, to generate a character for text for a given entry technique in a given
language. Measurement of keystrokes gives an indication of the efficiency of
text entry system. The efficiency can be attributed to the keyboard design, the
language model, or both. In text entry systems, keystrokes are mostly measured
as keystrokes per character [44].

● Besides the conventional metrics, we introduced direct estimation of cognitive
load as an additional metrics used in our recent research [1]. In comparison
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Figure 6.3 Words per minute measured across five sessions for three different
keyboard designs. Keyboard A, a traditional keyboard design with
predictions placed on top of the keyboard layout area. Keyboard B, an
interspaced prediction positioning where predictions appear on top of
every row of keys, which is currently being used. Keyboard C, featuring
on-key predictions that try to bring the predictions to the visual fovea

to the traditional text entry approaches, gaze-based typing involves natural eye
movements that are highly correlated with human brain cognition. Employing
eye gaze as an input can lead to excessive MD, and we argue the need to include
cognitive load as an eye-typing evaluation measure. Cognitive load is defined as
the effort or the load imposed on the memory by the cognitive process involved
in learning [45]. We investigated the text entry use case to understand whether
cognitive load can be measured by a noninvasive process and would that help our
investigation. Electroencephalogram (EEG) signals can be used to investigate
cognitive load from a noninvasive direction [46]. For our research purposes, we
used an Emotiv EPOC+ wearable device and applied short-time Fourier transform
to the EEG signal time series, in order to evaluate the cognitive load of each
participant during the experiments [47]. We computed the average value of the
spectral power ratio in the Beta band [48] of the EEG signal from all 14 channels
within a time window (Figure 6.4). The average value of the spectral ratio served
as an indicator of the cognitive load within each particular time window. For
a detailed analysis on how we performed cognitive load analysis on keyboard
designs and related interaction, we recommend reading [1].

6.2.2.2 Subjective measures
Similar to the pointing method, it is common practice to provide a customary ques-
tionnaire for text entry assessment; most often, it involves Likert-scale questionnaire
on how a participant rates speed, accuracy, comfort, and learnability aspects of
the used text entry methods [8,10,38]. NASA-TLX has also been used by various
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Figure 6.4 Comparison of overall cognitive load of participants using three
keyboard designs during the experiment. The x-axis marks the keyboard
design, while the y-axis denotes the spectral power ratio of the Beta
band of EEG signals, which indicates the level of cognitive load of the
participant. Each data entry in the box-plot corresponds to the spectral
power ratio value of one-time window. The horizontal bar in the middle
of the box shows the median value, while the red square shows the
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researchers [49]. Besides this, we formulated a heuristic questionnaire [42] that would
give us insights into how participants felt when using the system. Participants were
asked to give a grade between zero and ten. The questions are listed next:

● Was the design intuitive? (If there was no guidance, would you have figured it
out easily?)

● How comfortable was to use eye tracking on the keyboard designs (A/B/C)?
● How will you rate the design of the keyboard?
● How easy was it recover from the errors made?
● How easy was it to control the keyboard?
● How close were the features of the gaze-based keyboard in comparison to

conventional keyboard?
● How good is the visibility of the interaction elements? (Interaction elements

include keys, suggestions, and typing area.)

6.3 Evaluation of application interfaces

In the previous section, we discussed the approaches assessing eye tracking to accom-
plish primary interactions such as target selection or text entry. However, users do not
use these methods in isolation, and the acceptance of technology primarily depends on
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how these atomic interactions let users interact with applications through their inter-
faces as a whole. Hence, it is rather interesting to investigate how gaze interaction
impacts the user experience in terms of both objective and subjective measurements.
In this section, we go beyond the atomic interactions and aim to assess the gaze
interaction performance for interface control.

So far, the evaluation of eye-controlled interfaces lacks a universal benchmark.
Commercial systems like Tobii Dynavox Windows Control∗ or Visual Interaction
myGaze Power† have not published any resources on how or even if they evaluated
the usability of their eye-controlled interfaces. Most of the research prototypes aim
to validate whether users are merely able to accomplish fundamental tasks or not, as
evaluated in various kinds of formative studies. For example, to evaluate the drawing
application discussed in Section 5.3.1, authors conducted lab studies to validate if
participants are able to draw lines, circles, or basic diagrams, and then ask their
opinion on how easy or difficult was the drawing procedure [12,50]. Similarly, the
Web browsing applications by Abe et al. [51] and the WeyeB [52] prototype had
no comparative benchmark. The authors validated if users were able to accomplish
basic Web browsing operations like clicking or scrolling on webpages by measuring
success and failure rates. We argue that it is rather interesting to investigate how
interfaces impact the user experience in terms of objective user performance in task
execution, subjective usability, and workload impression. In this regard, we have
proposed a comparative evaluation methodology to evaluate eye-controlled interfaces,
e.g., applications such as a Twitter client [53] and a Web browser [54], GazeTheWeb.

Moreover, there is a need to move beyond the concept of eye tracking being a
useful input method, to being usable in daily use of applications. Hence, it is imperative
to conduct field studies on assessing how eye-controlled interfaces would be used by
target-group users in a real-world environment. In this regard, we also discuss a field
study of GazeTheWeb in subsequent section. This would lead to eye tracking being
more acceptable as an interaction technology for end-users.

To showcase the procedure of a comparative and feasibility evaluation method-
ology of eye-controlled interfaces, we describe the methodology we used to evaluate
our eye-controlled Web browser [2], which includes both the comparative evaluation
as a lab study and the feasibility evaluation as a field study.

6.3.1 Comparative evaluation

For the evaluation of eye-controlled application interfaces, the choice of a comparative
baseline is a crucial aspect. Especially, since the goal is to investigate how proposed
enhancements improve the user experience of controlling an application, rather than
specific performance measures related to pointing or typing. In our study related to
GazeTheWeb, the aim has been to investigate how the gaze-adapted Web browser
interface improves the user experience as compared to conventional method of Web
browser control using eye tracking. The conventional method to employ eye tracking

∗https://www.tobiidynavox.com/software/windows-software/windows-control
†http://www.mygaze.com/products/assistive-products/mygaze-power
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for controlling any kind of application interfaces is the emulation approach, i.e.,
to emulate mouse and keyboard devices through an additional command-translation
layer to provide indirect control of application interfaces through eye gaze. The emu-
lation approach has existed for several years, e.g., the Eye-gaze Response Interface
Computer Aid system [55,56]. The commercial systems like Tobii Dynavox Win-
dows Control or Visual Interaction myGaze Power incorporate similar mechanisms.
Microsoft has also integrated eye-controlled mouse and keyboard emulation into
the Windows 10 operating system.‡ There are also open-source alternatives, like
OptiKey [57], which work effectively with affordable eye tracking systems available
in the market. OptiKey has received high praise in recent years as a tool to assist
gaze-based computer access.§ In our study, we used OptiKey as an instance of the
emulation approach to control the popular Google Chrome browser.‖

6.3.1.1 Methodology
The central aim of the evaluation methodology was to assess if GazeTheWeb allows for
effective Web browsing experience compared to controlling a browser with conven-
tional emulation approach, i.e., Google Chrome with OptiKey. For this purpose, we
conducted a lab study with 20 participants (9 females and 11 males) in the age range
from 23 to 31 years (average = 25.55, sd = 2.16). All those participants were students
at our university with no prior experience in operating GazeTheWeb or OptiKey.
Seven participants wore corrective lenses (three females and four males). As per the
ethics guidelines, we got the approval of each participant on the informed consent
form prior to the study. The participants were paid each an amount of ten euro for
their effort after the study. The participants were instructed to perform tasks involv-
ing common activities to search and browse the Web for finding specific information
about German cities and subsequently to bookmark and access these bookmarks later.

The independent variables were the systems itself (GazeTheWeb vs. OptiKey
and Google Chrome) (Figure 6.5). The dependent variables were related to task effi-
ciency, i.e., the completion time for the entire task and for the high granular browsing
operations such as typing, searching, scrolling, link clicking, back navigation, select-
ing bookmark, and marking bookmark. As per the eye-tracking control variables,
we kept the dwell time constant (1 s), provided similar environment, with artificial
illumination and blocking of sunlight and fixed distance of chair from the screen. The
study employed a within-subjects design, as all participants used both the systems.
Counter-balancing was used to eliminate any bias of one system over the other.

6.3.1.2 Objective measures
As mentioned before, the task completion time was objectively measured as a depen-
dent variable to compare the performance. The participants were on average over
135 s faster with GazeTheWeb than with OptiKey to complete the overall tasks.

‡https://support.microsoft.com/en-us/help/4043921/windows-10-get-started-eye-control
§http://www.businessinsider.com/an-eye-tracking-interface-helps-als-patients-use-computers-2015-9,
https://alsnewstoday.com/2016/03/08/article-for-als
‖https://www.google.com/chrome
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(a)

(b)

Figure 6.5 Screenshots of both systems from the comparative evaluation:
(a) GazeTheWeb and (b) OptiKey and Google Chrome

Furthermore, the time differences between both systems appear to be normally
distributed, according to a Shapiro–Wilk test with p = 0.05 threshold. This allowed us
to assess the significance of the differences by a paired t-test calculating the two-tailed
p-value. We reported a significant difference in the completion time for GazeTheWeb
(average = 261.91 s, sd = 49.25) and OptiKey (average = 397.43 s, sd = 130.76), with
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t(19) = −5.23, p = 4.78E−5, and a high effect size of Cohen’s d = 1.17. See Fig-
ure 6.6 for a box plot showing the consistent times the participant required to fulfill
all tasks in GazeTheWeb, whereas the times for OptiKey showed much higher variety.

We also compared the timings for different browsing activities in GazeTheWeb
with the timings in OptiKey as shown in Figure 6.7. The timings for typing and
hyperlink clicking appear to be similar, whereas submission of search, back naviga-
tion, and bookmark management have been achieved faster with GazeTheWeb than
using OptiKey. We reported a significant improvement in times for GazeTheWeb over
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Figure 6.7 Times in GazeTheWeb in comparison to times in OptiKey as baseline.
A percentage of 100 means a participant needed the same time in
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OptiKey for scrolling (W = 20, Z = −3.17, p < 0.05, r = 0.71), back navigation
(W = 41, Z = −2.39, p < 0.05, r = 0.53), marking (W = 0, Z = −3.92, p < 0.05,
r = 0.88), and selection (W = 14, Z = −3.4, p < 0.05, r = 0.76) of bookmarks.

6.3.1.3 Subjective measures
The SUS questionnaire was used to measure the overall usability of applications,
where the participants answered on a five-point Likert scale from strongly disagree to
strongly agree. The NASA-TLX questionnaire was used to assess subjective workload,
which contains six components: Mental demand, physical demand, temporal demand,
performance, effort, and frustration. For each component, the participant specified
the most applicable scores on a scale from 1 (low) to 7 (high). The custom gaze
interaction design heuristics evaluation for eye-controlled interfaces was used [18,20],
which could be answered on a scale from 1 strongly disagree to 10 strongly agree.
Participants were also asked if they have any general feedback on what they liked,
disliked, and further comments for improvement.

The average SUS usability score for GazeTheWeb was 77.13 in contrast to 55.0
for OptiKey, indicating an over-average acceptability rate of the gaze-adapted system
of GazeTheWeb among the participants. The difference between the SUS scores by the
participants appears to be normally distributed, according to a Shapiro–Wilk test with
p = 0.05 threshold, and we have performed a paired t-test to assess the significance
of the higher rating for GazeTheWeb. There was a significant difference in the overall
SUS scores for GazeTheWeb (average = 77.13, sd = 16.08) and OK (average = 55.0,
sd = 19.36), t(19) = 3.6, p = 0.0019.

The consistently better ratings of GazeTheWeb over OptiKey in terms of NASA-
TLX mental workload, physical demand, level of effort, and sense of stress and
irritation are presented in Figure 6.8. The feeling of success in accomplishment
of the task was also slightly better for GazeTheWeb in comparison to OptiKey,
since a lower value means a higher feeling of success in NASA-TLX questionnaire
design.

The results of the gaze interaction design heuristics questionnaire are shown in
Table 6.2, where we can see that actions like the ease of recovering from errors (#5)
in GazeTheWeb receive better scores than in OptiKey. The intuitive factor (#3) and
ease of hyperlink navigation (#4) are rated better for GazeTheWeb.

Furthermore, we received interesting insights from participants’ open comments
after usage, where participants stated that they liked the intuitive interaction aspect
of GazeTheWeb, some example statements are: “It was easy to navigate and also
very easy to get used to start working with it” emphasizes the good usability of
GazeTheWeb, whereas about OptiKey a participant reported “Too cumbersome and
physically exhausting. Requires many clicks which are tiring for the eyes”. Some
participants explicitly reported about OptiKey on their cumbersome interaction expe-
rience, e.g., “Multiple click for every action” or “Reduce left click mechanism using
any other intuitive means. For example, let’s say I am accessing the bookmarked
URLs it should give easy access to the links by reducing the number of intermediate
left clicks”.
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Figure 6.8 Raw NASA-TLX scores. Lower scores signify lower perceived
workload. MD, mental demand; PD, physical demand; TD, temporal
demand; P, performance; E, effort; F, frustration

Table 6.2 Heuristics scores, higher scores are better

Heuristics GTW OK

How was the visibility of the main interaction elements? 8.45 7.65
How comfortable was the size of the interaction elements? 7.95 6.95
How intuitive was the reading and scrolling experience? 8.00 6.05
How easy was handling the link navigation in the browser? 7.25 5.35
How easy was it to recover from errors made? 7.95 6.55
How close do you feel the interaction to conventional browsing? 7.90 6.40

6.3.2 Feasibility evaluation

The goal of a field study is to assess whether an eye-controlled interface is feasible
in a real-world scenario. In this regard, we present results from the second phase
trials of the MAMEM project, in which GazeTheWeb had been offered to people with
motor impairment for home use. The system consisted of a laptop (with GazeTheWeb
installed as startup program) and an eye tracking system, deployed to the homes of
each of the 30 participants for one month.

6.3.2.1 Methodology
For the field study, GazeTheWeb system had been placed for one month at the homes
of the participants at an accessible place within their homes. The major aim of the
study was to assess the eye-controlled Web browsing behavior of the users in daily
use environment. Hence, there were no usage guidelines, rewards, or requests to
influence them for using the system. At the time of deployment, a person from the
medical supervisory team gave an introduction and initial guidance through the system
in native language to the participant and caretaker. After the deployment, participants
were free to use the system as per their needs and preferences. The person from
the medical supervisory team provided telephone support in native language, if there
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were any technical issues during the usage. For easier operation, GazeTheWeb started
automatically after the startup of the laptop and offered the participant to perform a
calibration of the eye tracker. Furthermore, if the participants’ eyes could not be
detected for 30 s, the participants have been offered a recalibration upon return. To
record the behavioral pattern of field study, the system automatically logged the Web
browsing activity to a custom Firebase¶ real-time database, e.g., the system logged
loaded webpages and times, clicks, amount of inserted text, and general interface
use. Due to ethical reasons, we did not record the textual content itself but stored
the string-edit distances. To assess the attitudinal aspect, we asked the participants to
fill SUS questionnaire after one month usage, and for any open feedback about their
overall experience, positive or negative aspects.

In total, 30 target-group users of eye tracking as an assistive technology were
recruited for the field study. As per the recruitment process of participants, each
of the candidates had been visited to verify if the eye-tracking system would work
with them. Each associated clinical organization in the MAMEM project contacted
participants of one potential target group. MDA Hellas, Greece, recruited ten partic-
ipants (four females and six males, average age 31.5, sd = 4.8) with neuromuscular
disease. These participants are referred to as MDA 1 to MDA 10 in the following.
AUTH—School of Medicine, Greece, recruited ten participants (four females and six
males, average age 55.6, sd = 7.3) with Parkinson’s disease, referred to as AUTH 1 to
AUTH 10 in the following. SHEBA—Academic Medical Center Hospital, Israel—
also recruited ten participants (ten males, average age 38.1, sd = 10.8) with spinal
cord injuries, referred to as SHEBA 1 to SHEBA 10 in the following. Most of the
participants already had some computer accessories and assistive solutions available
at their homes. Therefore, we did not expect that the participants would completely
switch their existing means of interaction and start using GazeTheWeb excessively.
However, the persistent usage of GazeTheWeb even by some participants would be
relevant indicators on its functionality and effectiveness in supporting daily browsing
activities. After one month usage, the system was collected back from the participant
home, and the participants were asked to fill questionnaires, including an SUS, to
quantify their gaze interaction experience.

As per ethics guidelines, the clinical protocol was followed after the ICH-GCP65
guidelines,∗∗ and an ethical approval (Helsinki Approval) had been obtained.

6.3.2.2 Measurements
GazeTheWeb worked successfully for the entire one month period, and we could
observe the user behavior through the logged data on Firebase. The participants could
visit and interact with variety of Web sites as per their needs and preferences, which
signifies the usability of GazeTheWeb in supporting everyday browsing operations
and handling dynamic webpages. An average SUS score of 73.2 among all participants
indicates the general acceptability and satisfaction of GazeTheWeb.

For the field study, we collected data for total run-time of 186.24 h in Web
browsing. Out of this, 118.93 h were categorized of active participation in front of

¶https://firebase.google.com
∗∗http://www.ich.org/products/guidelines/efficacy/efficacy-single/article/good-clinical-practice.html
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Figure 6.9 Daily use of GazeTheWeb in the field study. The vertical axis shows the
participants. The horizontal axis displays the days since the setup of the
system at the homes of the participants. Each dot signifies at least one
start of the system by a participant on a specific day

the system, since we could check for the presence of participants from the gaze
signals. There were regular use of the system by some of the participants, as shown
in Figure 6.9. The participants have browsed to 456 unique domains, on which they
have visited 8,415 Web pages. Table 6.3 indicates the top ten domains browsed by
the participants. In total, there have been 8,027 clicks on Web pages and 22,811
characters have been entered in text inputs. Furthermore, participants have browsed
to 498 URLs by typing and added 189 bookmarks. They also made the use of the
multi-tab browsing through 857 tab switches.

The frequent usage of GazeTheWeb during the field study, including the visits of
various websites, -pages, and the activities (e.g., clicks and text entry), indicates that
users were able to interact with the variety of pages and to perform desired browsing
operations. However, for the pages where the participants did not stay long or did not
revisit, one could argue that interaction was difficult or not functional. For example,
the gaming domains specifically received less interest among participants, such as
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Table 6.3 Top 10 visited websites by participants. “Visits” are caused through URL
input, navigation, bookmarks, or history use. “Stays” are visits that
exceed an active time of one min, during which the participant had been
registered by the eye-tracking system. “Pages” is the count of visited
pages on the website. “Hours” is the time of browsing by a participant
on the website. “duckduckgo.com” had been preset as search engine

Rank Domain Visits Stays Pages Hours

1 facebook.com 369 229 1,208 24.3
2 youtube.com 271 203 1,396 26.5
3 duckduckgo.com 235 37 483 2.1
4 google.gr 123 24 270 1.6
5 mail.google.com 100 66 774 4.0
6 accounts.google.com 71 7 258 0.5
7 instagram.com 54 34 125 1.4
8 google.com 54 12 136 0.8
9 twitter.com 52 9 65 0.8

10 newsit.gr 50 46 257 3.7

“games.yo-yoo.co.il” with two visits and a stay duration of 14 min, “freegames.com”
with one visit for 1.8 min, and “actiongame.com” with three visits and a stay duration
of 12.2 min. Action games incorporate specialized controls for gameplay with high
frequency of mouse and keyboard input, which would be nontrivial to adapt for gaze
interaction in the proposed methodology of GazeTheWeb. There has been only one
stay at “docs.google.com,” with a duration of 6.2 min, and nobody has visited Google
Maps. This indicated the limitations of the GazeTheWeb for specific websites and
interesting future work direction for us.

Since the participants used the system for a month period, the longitudinal
observations also provide specifics on their learning behavior and attitude about
GazeTheWeb and feasibility of interaction with eye tracking in general. The usage
behavior and feedback of participants, who used GazeTheWeb persistently over the
course of a month, indicate that these participants get accustomed to the technology,
and, hence, increase their usage and acceptance toward the system. For example,
Figure 6.10 showcases the usage behavior of MDA 5, who consistently increased
her activity over the time. The subjective feedback from MDA 5 also correlates with
the pattern as she mentioned in her feedback that the “usage was getting easier and
faster as time went by. She used GazeTheWeb for 2 to 5 hours per day, while her
previous use [of the Web] was almost zero. She reopened her Facebook accounts
and Instagram, managed to communicate with a person abroad, [got] entertained by
YouTube and was informed. She could organize a travel trip that took place through
the use of GazeTheWeb. She would definitely use the eye tracker in the future.” More
interestingly, while returning the equipment, she told us that she would miss it. Few
weeks after the study she approaches us by phone to ask if she would again have
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Figure 6.10 Daily use of GazeTheWeb for participant MDA 5 in terms of active
hours in front of the system

the opportunity to use it through the MAMEM program or if she could buy it from
somewhere.

Besides the positive signals, the longitudinal observation also reveals the chal-
lenges of eye tracking in daily usage. The repeated calibration requirement of eye
tracker is one of such issues reported by most participants. The eye tracker gets often
overheated, and sometimes it was required to unplug and restart the system again;
hence, the participants needed assistance from their caretaker, which also can be
considered current limitation for target-group feasibility. In summary, we attribute
the infrequent usage of GazeTheWeb and eye-tracking technology in general to a
multitude of factors as follows: (a) low motivation of participants in general; (b) low
interest in using a technical system in general; (c) technical limitations of eye track-
ing calibration, precision, and accuracy; (d) the physical and cognitive demand of
using an eye-tracking system; and (e) limitations of GazeTheWeb to perform some
browsing activity or interact with specific websites.

6.4 Summary

Eye tracking has been explored as a computer input channel for several years. Various
approaches have already been published with the focus on improving the performance
and usability in interaction, and there is a continuous need to assess previous work
and enhance the interaction methods further. For this purpose, a suitable evaluation
methodology is an essential aspect for the innovation and advancement. Especially,
for the research to be reproducible, it is highly recommended to clearly define all
experimental variables as part of the evaluation methodology.

In this regard, this chapter elaborates on different evaluation methods used in gaze
interaction research. We first discussed the common terminologies and guidelines for
HCI experiments, and how they apply for eye tracking research. We summarized how
the evaluation of atomic interactions like pointing, selection, and typing needs to be
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performed. Besides the micro-optimization for better pointing and typing, we argue
the need to optimize and evaluate eye-controlled interfaces and their feasibility in daily
use. Hence, we discussed the methodology to evaluate the eye-controlled application
interfaces by means of comparative and feasibility evaluations of a browser application
we had developed. We envision that these guidelines and examples would help the
researchers to quickly recognize and solicit suitable study design, procedure, baseline,
measures, and analysis methods to evaluate their ideas and approaches.
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Chapter 7

Machine-learning techniques for EEG data
Vangelis P. Oikonomou1, Spiros Nikolopoulos1,

and Ioannis Kompatsiaris1

In this chapter, we present an introductory overview of machine-learning techniques
that can be used to recognize mental states from electroencephalogram (EEG) signals
in brain–computer interfaces (BCIs). More particularly, we discuss how to extract
relevant and robust information from noisy EEG signals. Due to the spatial properties
of the EEG acquisition modality, learning robust spatial filters is a crucial step in the
analysis of EEG signals. Optimal spatial filters will help us extract relevant and robust
features, helping considerably the subsequent recognition of mental states. Also, a
few classification algorithms are presented to assign this information into a mental
state. Furthermore, particular care will be given on algorithms and techniques related
to steady-state visual evoked potentials (SSVEPs) BCI and sensorimotor rhythms
(SMRs) BCI systems. The overall objective of this chapter is to provide the reader
with practical knowledge about how to analyze EEG signals.

7.1 Introduction

Machine learning has become a core component in any data analysis approach, includ-
ing the analysis of EEGs. In this chapter, we will discuss the basic ideas of machine
learning and how these ideas have been used to analyze EEG signals. More specif-
ically, we will concentrate our efforts around supervised learning methodologies to
design spatial filters and classifiers. This chapter serves as the introductory material
for the various usages of EEG signal in the design of BCI systems, which are pre-
sented in the subsequent chapters. While this chapter introduces the main ideas of
algorithms, we do not aim for a full treatment of the available literature. Rather, we
present a somewhat biased view, mainly drawing from the authors’ work.

7.1.1 What is the EEG signal?

Electroencephalography is a brain imaging technique that measures the brain’s electri-
cal activity by placing sensors on the head’s surface. During the activation of a neuron,

1The Multimedia Knowledge and Social Media Analytics Laboratory, Information Technologies Institute,
Centre for Research and Technology-Hellas (CERTH), Thessaloniki, Greece
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a tiny weak electrical field is generated, but as neural activity becomes synchronous
across thousands of neurons, the electrical activity is summed up and it is powerful
enough to be measured outside the head. Current technological advancements give us
the ability to measure accurately this activity, hence producing the EEG, a biomedical
signal describing the status of the brain. The EEG signal is produced by performing
recordings at multiple different brain sites (i.e., multichannels’ recordings). It is a
nonstationary high dimensional time series with temporal and spatial correlations.
The EEG is used in many applications in brain studies for diagnosing brain disorders
such as the epilepsy [1,2], Alzheimer’s disease [3,4], the stroke [5], and Parkinson’s
disease [6]. Besides health-care applications, EEG is used as a communication chan-
nel in BCIs systems [7,8]. In this chapter, we will concentrate our study on using the
EEG for BCI applications, especially in SSVEP BCI and SMR BCI.

7.1.2 EEG-based BCI paradigms

An EEG-based BCI system (Figure 7.1) translates the recorded electric brain activity
to output commands. The input of a BCI system is the electrophysiological brain
activity, while the output is the device commands. The brain activity is recorded
through the use of an EEG system. After that, the analysis of EEG signals is per-
formed in order to extract the intended commands of the user. A BCI system contains
the following modules: (a) stimulator module (or BCI paradigm): this module is
responsible to produce/enhance the desired brain activity; (b) signal acquisition mod-
ule: which is responsible to acquire the EEG signals during the system operation;
(c) signal processing module: which is responsible for the analysis of EEG signals and
the translation/transformation of them into meaningful “codewords”; and (d) device
commands module: which is appointed with the task to translate the “codewords”

Signal
acquisition 

Signal
processing 

Device
commands 

Stimulator (LED
panel of monitor) User

EEG

0 1 0 1 …
1 0 0 0 …
0 0 0 1 …

Applications
(e.g., mouse cursor movement) 

Figure 7.1 Basic parts of a BCI system
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into interface commands according to the application setup. In the next paragraphs,
we provide a short description of two basic BCI paradigms, the SSVEP paradigm and
the SMR paradigm.

7.1.2.1 SSVEP paradigm
An SSVEP-based BCI system enables the user to select among several commands
that depend on the application, e.g., directing a cursor on a computer screen. Each
command is associated with a repetitive visual stimulus that has distinctive properties
(e.g., frequency). The stimuli are simultaneously presented to the user who selects a
command by focusing his/her attention on the corresponding stimulus. When the user
focuses his/her attention on the stimulus, an SSVEP is produced that can be observed
in the oscillatory components of the user’s EEG signal, especially in the signals
generated from the primary visual cortex. In these components, we can observe
the frequency of the stimulus, as well as its harmonics. SSVEPs can be produced
by repetitively applying visual stimuli to the user with frequencies higher to 6 Hz.
Compared to other brain signals (e.g., P300 and SMRs) used for BCI approaches,
SSVEP-based BCI systems have the advantage of achieving higher accuracy and
higher information transfer rate. In addition, short/no training time is required by its
users.

7.1.2.2 SMR paradigm
SMRs are brain waves that appear on EEG recordings from areas of the brain, which
are associated with planning, control, and execution of voluntary movements. The
execution of movements involves different brain regions, especially when the move-
ment is related to the left or right hand. More specifically, the movement of the left
hand reflects changes in EEG rhythms on the right part of the brain, while the right-
hand movement reflects changes in EEG rhythms on the left part of the brain. Similar
observations can be made when we imagine the corresponding movement. BCI sys-
tems based on SMRs try to exploit the previous observation and to find which brain
area is activated.

To gather EEG data, an experimental protocol of two basic steps is applied. In
the first step, the EEG data are acquired without showing any feedback to the user
(calibration step), while at the second step, feedback is incorporated into the overall
procedure (feedback step). In most cases, the feedback is the prediction of the BCI
system. In both steps, a number of EEG trials are acquired for further processing.
The trials acquired during the first step are gathered in order to train a classifier to
be exploited in the subsequent feedback step, while the ones from the latter step are
related to the training of the user. Thus, by providing feedback, the user is learning
to adapt to the system by regulating appropriate brain rhythms. It is worth to point
out here a significant difference between SSVEP and SMR BCI systems with respect
to the produced brain waves. SSVEP signals are produced due to the existence of an
external stimulus, while the SMRs are the results of an internal subject’s process [8].
Furthermore, in SMR-based systems, a closed-loop connection is developed between
the user and the system [8]. All the previously stated have considerable effects on the
type of application that these two BCI systems could be applied.
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7.1.2.3 General properties of an EEG dataset
EEG datasets are very complicated and difficult to analyze. The complexity and dif-
ficulty derive from the various properties of the acquisition process, the human brain
physiology, and the nature of the collected data. During the acquisition process, we
could collect data from 8 surface brain sites (channels) up to 256 sites. Furthermore,
these data could be collected under various sampling rates ranging from 128–2,048
Hz. Also, during an experiment, we could collect EEG data from many (healthy or
not) participants. Under the same experimental conditions, we expect some kinds
of similarity between EEG data of different participants, but great diversity between
them could be also present. In addition, EEG data are collected under various exper-
imental conditions and many times for each condition resulting in EEG segments
called trials. Furthermore, each EEG trial contains thousand of raw features. Most
EEG studies result into a dataset with too many raw features (EEG samples) and very
few trials making the data analysis procedure very difficult. Based on the previous
short description, it is difficult to have a holistic approach for analyzing EEG data
(i.e., an approach that works fair enough on all EEG datasets), in contradiction to
other pattern recognition problems such as face recognition, speech analysis, and
visual object recognition.

7.1.3 What is machine learning?

Learning is the process of acquiring new knowledge or skills through study, expe-
rience, or being taught. Humans learn before birth and continue until death as a
consequence of ongoing interactions between people and their environment. As we
see, in humans, learning involves the processing of information (or data) in order to
produce new knowledge or skills. In analogy, machine learning involves an algorithm
or a computer program that is able to learn from the data. At the very basic level,
machine learning is about predicting the future based on the past. More specifically,
we define a model with some parameters, and learning is the execution of an algorithm
to optimize the parameters of the model using the training data or past experience.
The model may be predictive, to make predictions about the future, or descriptive, to
gain knowledge from data, or both.

Machine-learning methods are divided into two large approaches. In the super-
vised learning approach, the goal is to learn a mapping, f (·), from inputs x to
outputs y, given a dataset. The dataset D is composed by pairs of inputs–outputs
D = {(xi, yi)}N

i=1, where N is the number of training examples. In the simplest case,
each training input xi is a D-dimensional vector of numbers, which is called features.
However, in more general setting, each xi can represent a more complex object such
as images and EEG trials. The output (or response variable) yi can in principle be any-
thing, but two cases are of great interest for us. In the first case, each yi takes value
from some finite set, yi ∈ {1, 2, . . . , C}. This problem is known as classification. In
the second case, yi is a real-valued scalar. This problem is known as regression. The
second approach of machine-learning methods is called unsupervised learning. In
this type of method, we are only given the inputs, D = {(xi)}N

i=1 and the goal is to
find valuable patterns in the data. This kind of learning includes clustering approaches
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and some forms of dimensionality reduction methods such as the principal component
analysis (PCA) and the independent component analysis.

Due to the extensive use of supervised learning methods, in other chapters of
this book, next we provide a more elaborate description of the supervised learning
approach. The goal in supervised learning is to learn the mapping f (·) between the
input and the output values (i.e., y = f (x)). In most cases, this mapping/function
depends on model/function parameters θ (y = f (x; θ )). In order to find the optimal
function, one needs to specify a suitable loss function that evaluates the good-
ness of the fitting �(yi, f (xi; θ )) between true values and predicted values. Given
a specific loss function, the best function f (·) is obtained when we minimize the
expected risk (or generalization error), which cannot be minimized directly [9].
Therefore, we use an approximation of the expected risk, the averaged loss on
the training samples: (1/N )

∑N
i=1 �(yi, f (xi; θ )) [9]. In some cases, to avoid over-

fitting and account for model inconsistencies, we use the modified averaged loss
function L (θ ) = (1/N )

∑N
i=1 �(yi, f (xi; θ )) + λ‖Tf ‖2, where the term λ‖Tf ‖2 is a

regularization term over the properties of function f (·).

7.1.4 What do you want to learn in EEG analysis for BCI
application?

In EEG analysis, machine-learning techniques are found on the signal processing
module (Figure 7.2). In the typical case, the signal processing module consists of
four submodules: (a) preprocessing, (b) feature extraction (FE), (c) feature selection
(FS), and (d) classification. The first three submodules have the goal to make the data
suitable for the classification process, which will give us the appropriate “codewords.”
In each of the previous submodules, we can find many machine-learning techniques.

After collecting the data (i.e., EEG trials), a critical step is the application of a
dimensionality reduction method. It must be pointed out that in BCI applications, the
raw data are of very large dimension. For example, in an SSVEP experiment, where we
collect data from 256 channels for 4 s with a sampling frequency of 256 Hz, we obtain
a feature vector of 262,144 features. Furthermore, the number of training samples
is typically small, up to a few hundred samples. In order to make the classification
feasible, the dimensionality of the input data needs to be significantly reduced, and
informative features have to be extracted. Dimensionality reduction can be achieved

Signal
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Feature
extraction

Feature
selection Classification

1 2 3 4
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Figure 7.2 Basic parts of the signal processing module in a BCI system. Pattern
recognition system of an EEG-based BCI system.
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by performing FE or FS, or both. FE involves the transformation of the existing
features into a lower dimensional space (i.e., PCA, common spatial pattern (CSP))
[10]. An FE approach closely related to BCI is the learning of optimal spatial filters.
In contradiction to FE, FS is about selecting a subset of the existing features without a
transformation. Although FS can be seen as a special case of FE, in practice it is quite
different, since FS searches for a feature’s subset that minimizes some cost function
(i.e., student’s t-statistics, biserial correlation) [11].

BCI experiments often aim at comparing specific brain states. Typically, we
choose a neurophysiological paradigm that maximizes the contrast between various
brain states. After recording brain imaging data, the goal of the analysis is to find
significant differences in the spatial and the temporal characteristics of the data con-
trasting the different states as accurately as possible. The brain states are related to
the type of BCI paradigm. For example, an SSVEP BCI system uses the fact that the
visual cortex produces brain activity related to the visual stimulus frequency, while an
SMR BCI system is based on the fact that the movement imagination of different parts
of the human body (i.e., hands) activates distinct brain areas in motor cortex. As we
can observe, the discrimination of brain states can be formulated as a classification
problem (i.e., learning to discriminate the brain states). Widely used classifiers in the
context of BCI are: the linear discriminant analysis (LDA) [12], the Bayesian LDA
(BLDA) [13,14], and the support vector machines (SVMs) [12]. Concluding this
section, we can mention that from a machine-learning perspective, we are interested,
mainly, in learning good features to feed the classifier as well as to learn a boundary
with good generalization capabilities (a classifier) in order to discriminate the brain
states.

7.2 Basic tools of supervised learning in EEG analysis

In this section, a short description of three very important tools is provided. These
tools are the generalized Rayleigh quotient function, the linear regression model, and
the Bayesian framework. These tools can be found at the heart of most machine-
learning algorithms, especially those related to EEG signal processing, as we will see
in the next sections.

7.2.1 Generalized Rayleigh quotient function

In some problems, we want to maximize (or minimize) a cost function that is
described as the ratio of two quantities. One significant cost function of this kind
is the generalized Rayleigh quotient function given by

J (w) = wT Aw
wT Bw

(7.1)

where A ∈ �N×N and B ∈ �N×N are symmetric matrices (B is also invertible) and
w ∈ �N×1 is a vector (to be selected). We can observe that this function is a scalar
and the value of J (w) is irrelevant to the norm of w, scaling w does not change the
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value of the function (i.e., J (aw) = J (w)). Note here that when matrices A and B are
also positive definite (i.e., wT Aw > 0, wT Bw > 0 ) then J (w) > 0.

Maximizing the J (w) is equivalent to the following constrained optimization
problem:

max
w

wT Aw subject to wT Bw = 1 (7.2)

Adopting the Lagrange multipliers approach, we can show that the optimal w is
the eigenvector (corresponding to the largest eigenvalue, λmax) of the following
generalized eigenvalue problem [15,16]:

Aw = λBw. (7.3)

Also, we can observe that the function J (w) is bounded below and above from the
smallest and largest eigenvalue (λmin ≤ J (w) ≤ λmax). Furthermore, the previous
study can be extended to include more general cases when more than one eigenpairs
are needed [16].

Finally, it is worth to note here that the previous function has found numer-
ous application in machine-learning and signal processing communities. Close
connections of the generalized Rayleigh quotient function can be found with the
maximization of signal-to-noise ratio [15,17], the PCA [15], the canonical corre-
lation analysis (CCA) [16], the partial least squares (PLS) [16], and the Fisher’s
LDA [18].

7.2.2 Linear regression modeling

One of the most important models to describe relations between input and output
quantities is the linear regression model [18]. In this model, the output (observations)
y = {y1, . . . , yN } is described as a linear combination of the input (predictors) given
by the following equation:

y = �w + e, (7.4)

where � is the design matrix of size N × p and it is assumed to be known for the
problem under study, w is the vector of weights of the linear combination and has size
p × 1, and e is the additive noise assumed to be zero mean and Gaussian distributed,
p(e) = N (0, C−1

e ), where C−1
e is the inverse precision (covariance) matrix. The form

of this matrix defines the properties of the additive noise. Usually, we assume that
the error samples are independent and identically distributed; in that case, a simple
approach is to assume C−1

e = λI. Also, more general forms can be used such as a
diagonal precision matrix, where we use for each observation yn a separate precision
λn. This form of the precision matrix helps to use in indirect way more useful dis-
tributions such as the student t distribution [19]. Finally, the autoregressive model
can be alternatively used to describe the autocorrelation between the error samples,
where it can be written in the general form of the additive noise [20].
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In the next paragraphs, the role of the design matrix and the various forms of it
will be described. The design matrix has the following general form:

� =

⎡

⎢⎢⎣

φ1(x1) φ2(x1) · · · φp(x1)
φ1(x2) φ2(x2) · · · φp(x2)
· · · · · · · · · · · ·
φ1(xN ) φ2(xN ) · · · φp(xN )

⎤

⎥⎥⎦ , (7.5)

where {xn}N
n=1 are the input variables and φj(·), j = 1, . . . , p are the basis functions,

both, the input variables and the basis functions, are assumed to be known. According
to the linear model described previously, each observation yn is described as a linear
combination of p basis functions:

yn =
p∑

j=1

wjφj(xn) + en = wT φ(xn) + en. (7.6)

We see that the basis functions describe the relationship between the observations and
the input variables. In the literature, many forms for the basis functions have been
proposed. In the case, where a linear relationship between the observations and the
input variables is assumed, then the basis functions take the form φ(xn) = xn. It is
important to observe here that by using nonlinear functions, we allow the model to
be also nonlinear to the input variables, while we keep the linearity with respect to
the weights. One possible choice is to use polynomial basis functions where the basis
function has the form of powers of the input variables, i.e., φj(x) = xj. Other choices
of basis functions are: the Gaussian basis functions, the logistic sigmoid functions,
the Fourier basis functions, and the wavelet basis functions.

7.2.3 Maximum likelihood (ML) parameter estimation

Assuming that the noise follows white Gaussian distribution, i.e., e ∼ N (0, λI), then
the likelihood of the observations y is given by

p(y; w, λ) =
(

λ

2π

)N/2

exp
{
−λ

2
‖y − �w‖2

}
(7.7)

Based on the previous formulation, the learning of the linear regression model
becomes a maximum likelihood (ML) estimation problem for the regression model
parameters � = {w}, in the sense of maximizing the log-likelihood function given by

LML(�) = log p(y; w) =
{

N

2
log λ − λ

2
‖y − �w‖2

}
. (7.8)

Setting the partial derivatives of the previous function with respect to the parameters,
equal to zero, the following update rules for the model parameters are obtained

ŵ = (�T �)−1�T y. (7.9)

We want to mention here that we have made the assumption that the matrix �T �

is invertible. Furthermore, we can observe that the previous solution can be, also,
obtained if we adopt the LS formulation [21].
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7.2.4 Bayesian modeling of machine learning

Bayesian inference provides a mathematical framework that can be used for modeling,
where the uncertainties of the system are taken into account and the decisions are made
according to logical principles. These main tools are random variables, the probability
distributions, and the rules of probability calculus. The Bayesian framework is based
on Bayes’ rule given by

p(w|y) = p(y|w)p(w)

p(y)
(7.10)

An important property of this framework is that the model parameters w are treated
as random variables with a probability distribution being assigned over them.

The basic components of the Bayesian framework is described next.

Prior distribution The prior information consists of beliefs about the possible and
impossible parameters’ values and their relative likelihoods before anything
has been seen. The prior distribution is a mathematical representation of this
information:

p(w) = Information on parameters w before arises any observations.

(7.11)

The lack of prior information can be expressed by using a non-informative
prior [18,22]. Besides incorporating prior knowledge into our problem, from a
model perspective view, prior distribution introduces four significant properties:
● Avoids overfitting since restricts parameters to fit completely to the data.
● Provide generalization capabilities due to the supressness of overfitting.
● Avoid numerical instabilities (or model inaccuracies) since places constraints

onto the likelihood.
● Specific priors, such as sparse priors, favor simpler models to explain the

data (Occam’s razor).
Likelihood function Between the measurements and the parameters, there is a noisy

or inaccurate relationship. This relationship is modeled using the likelihood
distribution:

p(y|w) = Distribution of observation y given the parameter w. (7.12)

Using only the likelihood function, to learn the parameters, could result in over-
fitting, since the parameters will learn very accurately the current observed data,
so accurately that will overfit to the observed data losing the ability to generalize
in new data.

Posterior Posterior distribution is the conditional distribution of parameters given the
observation y and represents the information that we have after the observation
y has been obtained. It can be computed by using Bayes’ rule:

p(w|y) = p(y|w)p(w)

p(y)
(7.13)
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where the normalization constant is given by

p(y) =
∫

p(y|w)p(w)dw. (7.14)

Predictive posterior distribution The predictive distribution is the distribution of
the new observation ynew:

p(ynew|y) =
∫

p(ynew|w)p(w|y)dw. (7.15)

The predictive distribution can be used for computing the probability distribution
of the new observation, which has not been observed yet.

7.3 Learning of spatial filters

Spatial filtering is the process of filtering the signals by using information from the
spatial domain. More specifically, in the spatial filtering, “new” channels are created
as a combination of the original ones. In EEG analysis, well-known spatial filters
are the bipolar and Laplacian which are local spatial filters [23]. A bipolar filter is
defined as the difference between two neighboring channels, while a Laplacian filter
is defined as four times the value of a central channel minus the values of the four
neighboring channels around. The previous spatial filters are defined a priori, i.e.,
the filter coefficients are known and fixed. There are different ways to define spatial
filters. In particular, the filter coefficients (or weights) can be fixed in advance or
they can be data-driven, i.e., the weights are obtained during a learning procedure.
More formal, the above procedure can be described by the following linear model:

x(new) = Wx, (7.16)

where x(new) is the spatially filtered EEG, x is the original EEG, and W is a matrix
contains the set of spatial filters. In the next subsections, we describe two methods for
learning the set of spatial filters, the CCA and the CSPs. We will see both methods are
special cases of the generalized Rayleigh quotient function and, hence, they present
great similarity with the well-known PCA method.

7.3.1 Canonical correlation analysis

CCA is a multivariate statistical method, where the goal is to find the underlying
correlations between two sets of data [16,24]. The basic assumption of this approach
is that these two sets of data are only a different view (or representation) of the same
original (hidden) data. More specifically, a linear projection is computed for each
representation such that they are maximally correlated in the dimensionally reduced
(hidden) space. Let us assume that the two different views of the hidden data can be
represented by two matrices X ∈ �KxP and Y ∈ �HxP. Formally, CCA approach seeks
to find two vectors w ∈ �K and v ∈ �H in order to maximize the linear correlation
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between the projections wT X and vT Y. This is achieved by solving the following
optimization problem:

max ρ = max
w,v

wT XYT v√
wT XXT wvT YYT v

(7.17)

Since ρ is invariant to the scaling of w and v, the previous optimization problem can
be also formulated as

max
w,v

wT XYT v subject to wT XXT w = 1 and vT YYT v = 1

Assuming that YYT is nonsingular, it can be shown that w can be obtained by solving
the following optimization problem

max
w

wT XYT (YYT )−1YXT w subject to wT XXT w = 1 (7.18)

The previous formulations attempt to find the eigenvectors corresponding to top
eigenvalues of the following generalized eigenvalue problem:

XYT (YYT )−1YXT w = λXXT w (7.19)

where λ is the eigenvalue corresponding to the eigenvector w. Finally, we collect all
the eigenvectors (or spatial filters) in one matrix, Wx. By applying the transformation
Wx to data X, we obtain the spatial filtered data.

In EEG signal processing, X refers to the set of multichannel EEG signals and Y
refers to the set of reference signals. The idea behind using CCA for spatial filtering
is to find a spatial filter that maximizes the correlation between the spatially filtered
signal and the reference signals, hence reducing noise in EEG signals. CCA has been
used in numerous occasions to analyze EEG signals such as P300 signals [25] and
SSVEP signals [26]. Also, CCA can be used in various ways in EEG-based BCI
community, depending on the construction of the two matrices. For example, in [25],
a number of multichannel EEG trials have been concatenated into one large matrix
X, while matrix Y has been constructed by using averaged EEG trials (i.e., averaged
evoked responses). Using CCA, a set of spatial filters was obtained.A slightly different
approach was adopted in SSVEP BCI studies [26], where the general idea is to find the
canonical correlation coefficients between a multichannel EEG trial, X, and various
multichannel reference signals, Yi. These coefficients were used as features for the
subsequent classification. Furthermore, in SSVEP BCI systems, extensions of basic
CCA algorithm have been proposed based on the exploitation of filterbanks and on
the advanced construction of the reference signals [27,28]. Also, in [29], CCA was
used as a kernel function to describe similarities between the multichannel EEG trials.
In addition to BCI applications, CCA has been applied to remove artifacts from EEG
signals [30,31] and to evaluate the correlation between EEG complexity and cognitive
dysfunction (as measured by the Neuropsychiatric Inventory scores) in AD [32].

7.3.2 Common spatial patterns

The CSP algorithm is an algorithm that provides us with a set of spatial filters. These
filters are obtained after performing a learning procedure, during which the variance
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of the spatially filtered signals is maximized for one class (e.g., one mental imagery
task) and minimized for the other class. At the beginning, the CSP algorithm was
applied on multichannel data from two classes/conditions [33]. However, extensions
of the algorithm to handle multi-class problems have been proposed [34,35].

The CSP algorithm performs a decomposition of the signal through the matrix
W, which contains the spatial filters. More specifically, this algorithm transforms
the EEG signal from the original into a new domain which is occupied by the “new”
channels

x(CSP) = Wx, (7.20)

where x ∈ �C×1 is the EEG signal at time point t, x(CSP) ∈ �C×1 is the decom-
posed “new” EEG signal and W ∈ �C×C is the matrix with the spatial filters
wi, i = 1, . . . , C, and C is the number of channels. The spatial filters are obtained by
maximizing (or extremizing) the following function [36]:

J (w) = wT C1w
wT C2w

(7.21)

where T denotes transpose, and Ci is the covariance matrix of ith class. The previ-
ous maximization problem is equal to maximize wT C1w subject to the constraints
wT C2w = 1. The last problem is equivalent to the generalized eigenvalue problem
C1w = λC2w. So, the spatial filters wi are the generalized eigenvectors of the pre-
vious problem. It is worth to note here that in most cases after the application of
CSP algorithm for spatial filtering, an additional step is performed in order to extract
CSP-related features[36]. Once the spatial filters wi are obtained, CSP FE consists
in filtering the EEG signals using the wi and then computing the resulting signals
variance. As reported in [36] it is common to select three pairs of CSP spatial filters,
corresponding to the three largest and smallest eigenvalues, hence resulting in a trial
being described by six CSP features. However, the previous heuristic choice of the
number of spatial filters depends heavily on the nature of the data (i.e., number of
channels) as well as on the data analysis perspective (i.e., using filterbanks or not).
Nevertheless, by choosing 2p( < C) spatial filters, corresponding to the p largest and
smallest eigenvalues, the CSP algorithm is transformed into a spatial dimensionality
reduction method (i.e., reduce the number of EEG channels). CSP algorithm was
applied at first in BCI applications [33] with substantial results, and as expected, it
has found many other applications in EEG analysis such as the prediction of epileptic
seizure [37] and the recognition of AD [3].

7.4 Classification algorithms

In the next sections, we will describe classifiers that use linear functions of features
to distinguish between classes. Linear classifiers are the most popular algorithms
for BCI applications. Furthermore, these algorithms can be easily extended to cover
nonlinear cases.
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7.4.1 Linear discriminant analysis

Given a dataset D = {(xi, yi)}N
i=1, where xi are feature vectors and yi ∈

{1(ω1), −1(ω2)} are the class labels, we seek to find a weight vector w and a thresh-
old w0 such that: assign x to ω1 if f (x) = wT x + w0 > 0, otherwise to ω2. Through
f (x), we want to project the D-dimensional feature vector into a scalar value (i.e.,
in 1-dimension). Much effort in machine-learning community is consumed to find
an optimal, in some sense, projection (i.e., an optimal weight vector w). An obvious
choice is to select a projection that maximizes the class separation. Under this view, a
measure of the separation of the classes is the separation of the projected class means,
resulting in a weight vector that is equal to the difference of means from each class.
The previous approach does not take into account the variability of the data resulting
in significant overlap between classes. The idea proposed by Fisher is to find a pro-
jection that will give a large separation between the projected class means while also
giving a small variance within each class, thereby minimizing the class overlap.

The Fisher criterion is defined to be the ratio of the between-class variance to the
within-class variance and is given by

J (w) = wT SBw
wT SW w

(7.22)

where SB is the between-class covariance matrix and SW is the total within class
covariance matrix [18]. Maximizing the previous function with respect to w, we
obtain

w = S−1
W (mω2 − mω1 ) (7.23)

Now, it remains to determine the threshold w0. Under normality assumptions, the
optimal threshold w0 is given on closed form [38]. However, in non-normal situations,
a different threshold maybe more appropriate. In that case, we can choose the threshold
that minimizes misclassification error over the training data [38]. It must be noted here
the similarities between Fisher’s LDA with the CSP and the CCA. All the previous
methods are special cases of the generalized Rayleigh quotient function.

LDA has found numerous applications on EEG analysis ranging from
medical/health-care studies to a more general case such as BCI application. For
example, in [39], it was used to classify the various EEG-based sleep stages in
healthy subjects and patients, while in [37], it was used for epileptic seizure pre-
diction. Furthermore, in [3], LDA was used to distinguish AD patients from healthy
control subjects. Finally, in [11], it is was used to discriminate SMR rhythms, while
in [40] to recognize the various SSVEP responses.

7.4.2 Least squares classifier

Given a dataset D = {(xi, yi)}N
i=1, where xi are feature vectors of size p × 1 and yi = t1

if xi ∈ ω1 or yi = t2 if x2 ∈ ω2. Collecting all the features vectors in a matrix, X ∈
�N×p, then the LS function is given by

J (w) = ‖y − Xw‖2 (7.24)
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Maximizing the previous function with respect to w, we obtain the LS solution
(assuming that XT X is invertible):

wLS = (XT X)−1XT y (7.25)

When a new feature vector, x, arrives the quantity xT wLS is compared to a threshold t0

in order to decide its class. Depending on the data, different threshold values maybe
used.

It is interesting to make some comments here with respect to the quantity XT y,
which can be written as

XT y =
N∑

i=1

yi · xi =
∑

i:xi∈ω1

t1xi +
∑

i:xi∈ω2

t2xi = t1N1m1 + t2N2m2 (7.26)

where N is the number of total samples, N1 is the number of samples belonging
to class 1, and N2 is the number of samples belonging to class 2. We see that the
vector z = XT y is a weighted average of mean vectors of each class. For the sake of
exposition, let us assume that N1 = N2 = N/2 then we have z = (N/2)(t1m1 + t2m2).

Using the target values t1 = 1 and t2 = 0, we obtain z = (N/2)m1; hence,
when a test feature vector arrives, we calculate the prediction score xT wLS =
xT (XT X)−1(N/2)m1 and compared it with a threshold to perform the decision.
The prediction score can be further analyzed. More specifically, we can see that
we project the new test feature vector into the space of training feature vectors
(row space of matrix X) and then we calculate the similarity between this pro-
jection and the mean of class 1. Finally, we compare the similarity with the
threshold, t0, in order to decide about the class. Loosely speaking, we can say
that the decision rule checks how close to class 1 is the new (projected) feature
vector.

Let us use the following target values t1 = 1 and t2 = −1 then we have z =
(N/2)(m1 − m2). When a new (test) feature vector arrives, the prediction score is
calculated according to xT wLS = xT (XT X)−1(N/2)(m1 − m2). Again, we project the
new test feature vector into the space of training feature vectors but, now, we calculate
the similarities between the projected feature vector and the two class means. Then, we
compare the difference between the two similarities with the threshold, t0, to decide
about the class. At this case, we can say that the decision rule checks in which class
the new (projected) feature vector “is closer.” It is tempting at this point someone
to assume that when m2 = 0, the two cases are identical. However, this is not really
the case, since no such assumption is made in the first case. More specifically, in
the first case, the term t2N2m2 goes to zero due to the given target value in t2( = 0),
and not due to m2 = 0. While the previous statements do not have huge practical
implications, it is helpful to know the underlying assumptions that lead us to specific
algorithms (or decision rules).

In the next paragraphs, we will show that under some assumptions on the values
of class labels, the LDA classifier is a special case of LS classifier [18,38]. A more
thorough analysis on this subject can be found in [18,38]. In order to be consistent
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with the theory and the assumptions of Section 7.4.1, the following LS function is
used:

J (w, w0) = ‖y − Xw − w0‖2 (7.27)

Maximizing the function J (w, w0) with respect to w0 we obtain

ŵ0 = ȳ − wT m (7.28)

where ȳ = (1/N )
∑N

i=1 yi and m = (1/N )
∑N

i=1 xi. Replacing w0 in (7.27) with the
estimated quantity ŵ0 and maximizing J (w, ŵ0) with respect to w we obtain

(
NSW + N1N2

N
SB

)
w = XT y − Nȳm (7.29)

where N is the number of total samples, N1 is the number of samples belonging
to class 1, and N2 is the number of samples belonging to class 2. Now, it remains
to define the values yi that “we will regress.” By defining yi = (N/N1) if xi ∈ ω1

and yi = −(N/N2) if xi ∈ ω2, it can be shown that ȳ = 0 and XT y = N (m1 − m2).
Therefore, we obtain

ŵ0 = −wT m (7.30)
(

NSW + N1N2

N
SB

)
w = N (m1 − m2) (7.31)

where SW is the total within-class covariance matrix and SB is the between-class
covariance matrix[18,38]. In (7.31), we can observe that SBw lies in the direction of
m1 − m2; hence, the final estimation for w is given by

w ∝ S−1
W (mω2 − mω1 ) (7.32)

We see that under some assumptions, the LS classifier is similar to Fisher LDA.
This similarity gives us the opportunity to provide connections with the Bayesian
framework in the following section.

7.4.3 Bayesian LDA

Given a dataset D = {(xi, yi)}N
i=1, where xi are feature vectors of size p × 1 and yi

the target values. Collecting all the features vectors in a matrix, X ∈ �N×p, we can
consider the following linear model:

y = Xw + e (7.33)

where e is the noise and it follows a Gaussian distribution with zero mean and inverse
variance (or precision) β. In that case, the likelihood function of parameters w is
given by

p(y|w, β) = β

2π
exp

{
−β

2
‖y − Xw‖2

}
(7.34)



160 Signal processing to drive human–computer interaction

Furthermore, we constrain the parameters w to follow a Gaussian distribution with
zero mean and precision α before we observe the data (or class labels in our case).
This prior distribution is given by

p(w|α) = N (0, αI) = α

2π
exp

{
−α

2
‖w‖2

}
(7.35)

Then, according to the Bayes theorem, the posterior distribution is also a Gaussian
distribution and it is given by

p(w|y, α, β) = N (μ, �) (7.36)

where

� = (βXT X + αI)−1 (7.37)

m = β�XT y (7.38)

The predictive distribution (the probability distribution over target values conditioned
on an input vector) is given by

p(ynew|y, α, β, xnew) =
∫

p(ynew|α, β, xnew, w)p(w|α, β, y)dw

= N (μ, �) (7.39)

where

� = 1

β
+ xT

new�xnew (7.40)

μ = μT xnew (7.41)

We observe that in this case, the predictive distribution is also a Gaussian. To decide
about the class, a threshold is applied on the predictive mean μ [13,14]. In the previous
simplified Bayesian-based analysis, we assume that we know a priori the parameters
α and β. However, in most cases, these quantities are unknown. In order to define
these quantities, either a cross validation approach may be adopted or we can extend
the Bayesian framework by incorporating priors (and hyperpriors) over these param-
eters. In the case that priors are used, we obtain various iterative algorithms for the
estimation of w, α, and β [14,41]. Furthermore, in EEG signal analysis commu-
nity, various priors have been explored over the parameters w [42]. Many variants
of BLDA have been used for SMR rhythms discrimination [14], SSVEP responses
recognition [41], epileptic seizure detection [43], and ERP classification [13]. Also
the usage of Bayesian linear model is not restricted in EEG signals classification but it
has found many other applications on EEG analysis. In [44], it was used to compress
sensed EEG signals, while in [45], it was used to solve the inverse EEG problem and
provide estimates of EEG sources.

7.4.4 Support vector machines

The most popular classification algorithm is the SVMs, which aims to find the optimal
hyperplane that separates the positive class from the negative one by maximizing
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the margin between the two classes. This hyperplane, in its basic linear form, is
represented by its normal vector w and a bias parameter w0. These two terms are
the parameters that are learnt during the training phase. Assuming that the data are
linearly separable, there exist multiple hyperplanes that can separate the two classes,
and hence, solve the classification problem. SVMs choose the one that maximizes the
margin, assuming that this will generalize better to new unseen data. This hyperplane
is found by solving the following minimization problem:

minw,w0
1
2‖w‖2 + C

N∑

i=1

ξi

s.t.: yi(wT x + w0) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , N (7.42)

where ξi are slack variables relaxing the constraints of perfect separation of the two
classes and C is a regularization parameter controlling the trade-off between the sim-
plicity of the model and its ability to better separate the two classes. SVM has been used
in numerous applications with respect to EEG analysis. It has been used to solve vari-
ous medical-based classification problems related, among others, to the epilepsy [46],
to Alzheimer’s disease [47], and to the recognition of sleep stage in patients [39].
Furthermore, it has found extensive use in BCI-related problems such as the discrim-
ination of SMR rhythms [48–50] and the recognition of SSVEP responses [51,52].

7.4.5 Kernel-based classifier

In all aforementioned machine-learning techniques, we assume that the map-
ping/connection between the target values and the features was linear. However, easily
the previous algorithms can be extended to include (nonlinear) feature space transfor-
mation φ(·). In that case, the decision is based on the output of f (x) = wT φ(x) + w0,
where φ(x) denotes the possibly nonlinear, feature-space transformation. Note here
that assuming φ(x) = x, we obtain the basic form of the decision function f (x). A
careful investigation of the aforementioned algorithms reveals that a significant quan-
tity is the kernel function given by k(xi, xj) = φ(xi)T φ(xj), where xi and xj are two
points of the training dataset. This function describes the similarity between these
two points. By adopting the dual representation [53], we can see that the prediction
can be made in terms of similarities between feature vectors instead of features. In
addition, the kernel function k(xi, xj) must be evaluated for all possible pairs of xi and
xj. The previous fact affects considerably the computation time of any kernel-based
algorithm. Kernel-based algorithms avoid the problem of large dimensionality of fea-
tures vectors but encounter problem when we have a large training set (large number
of trials). A useful tactic to the previous problem is to favor kernel-based algorithms
that have sparse solutions such as the SVM and the RVM [53].

It is worth to note here that the regression models of (7.33) can be easily kernelized
[53]. Instead of working on the original feature space described from the following
equation y = Xw + e = ∑D

n=1 wnxn + e, we can work on kernel feature space by
applying the kernel trick. In that case, the regression model is described by y =∑N

n=1 w′
nk(x, xn) + e = X′w′ + e, where the matrix X′ is an N × N symmetric matrix
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with elements Xnm = k(xn, xm), k( · ) is the kernel function, and w′
k ∈ �N is the new

vector of regression coefficients. It is worth to note here that the kernel method can
be useful in high dimensional settings, even if we only use a linear kernel. More
specifically, to compute the regression coefficients into the original feature space
(primal variables), the computational cost is O(D3), while in the kernel feature space
is O(N 3)[53]. When D � N , as it is the case for the many problems in EEG analysis,
the computational cost of working into the original feature space is considerable
compared to the computational cost of kernel feature space. Finally, we must point
out here that in most cases, an EEG dataset contains much more raw features than
trials, and this fact must be taken into account when a machine-learning algorithm is
used to process the EEG data.

7.5 Future directions and other issues

In the previous sections, we described the basic concept underlying the supervised
learning task and how this task is applied to EEG analysis to learn optimal spatial
filters and classifiers. However, other more specialized concepts of learning could be
applied in order to obtain a model with better performance or a model that best suited
in our needs. In this section, we will provide a brief description of these learning tasks.

7.5.1 Adaptive learning

In the previous sections, we described methods on how to learn optimal spatial filters
and classifiers. However, we can observe that when the weights of the model are
learned, they cannot change with the passage of time. In situations such as EEG
analysis, this can be problematic, since the EEG signal is a nonstationary signal and
its statistical properties can change with time. To attack this problem, variants of
reported algorithms have been proposed where the weights of models are changing
with time. Under this perspective, adaptive spatial filters have been proposed in
[54,55]. Furthermore, adaptive classifiers have been applied on analyzing EEG data,
see [56]. Finally, it is worth to point here that the Kalman filter algorithm is a very
useful starting point for adaptive learning, especially, in applications related to the
EEG data analysis [57].

7.5.2 Transfer learning and multitask learning

Transfer learning (TL) is the process of transferring the knowledge obtained during
the learning of a task to learn another similar new task. The basic assumption on this
type of learning is that the two tasks have a common underlying structure. A use-
ful characteristic of the TL with respect to BCI applications is that it could reduce
significantly the calibration time of a BCI system [58]. On the other side, multitask
learning (MTL) is the process of learning, simultaneously, a number of tasks that
share a common structure. While MTL and TL are very similar approaches, there is
a critical difference. Assuming that we have two tasks, MTL tries to learn both tasks
simultaneously, while TL tries to transfer the learning experience from the first task
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to learn the second one. As we see that MTL does not make distinctions between
tasks[59]. With respect to BCI, MTL is trying to combine information from different
tasks[60]. The task can be defined in terms of subjects, of sessions, and of channels.
Furthermore, MTL and TL show us the road for subject-independent BCI systems.

7.5.3 Deep learning

The term deep learning is referred to a set of methodologies that are used to train
convolutional neural networks of several dozen, or more, hidden layers. Deep models
often have millions of parameters, due to their large and complicated structure, and
we need enough labeled data to train such models. Assuming that enough data are
acquired for a particular problem, then deep models can be trained to learn simultane-
ously the features and the classifier. In EEG analysis, especially in BCI concept, many
attempts have been performed to use deep models [61,62]; however, their success is
limited [56]. This behavior of deep models is expected to some degree, since the
current EEG datasets are of small size; hence, there is not enough data to effectively
train them. Finally, another basic criticism over deep models in EEG analysis is that
“they are difficult to interpret in terms of the EEG problem”[56]. However, this is
closely related to our overall understanding of the human brain. Clearly, we know and
understand much better the basic principles of image processing and analysis than
how the human brain is functioning.

7.6 Summary

In this chapter, we provided basic information about the EEG signal and how this
biomedical signal can be used in the context of noninvasive BCI systems. In addition,
we described well-known machine-learning techniques that are used in EEG analysis.
More specifically, at first, we provided a short description of the generalized Rayleigh
quotient function, the linear regression model, and the Bayesian framework. These
approaches can be found at the heart of many supervised learning algorithms related
to the EEG analysis. In addition, we described basic ideas of widely used learning
methods in the spectrum of EEG analysis, although being biased towards the BCI
applications. These learning methods are related to the finding of optimal spatial fil-
ters and classifiers. Furthermore, we provided additional information about various
connections between these methods. Then, we close this chapter by describing sub-
categories of the general supervised learning task, how these subcategories could be
used in EEG analysis, and what are the benefits of using them.
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BCIs using steady-state visual-evoked potentials
Vangelis P. Oikonomou1, Elisavet Chatzilari1,

Georgios Liaros1, Spiros Nikolopoulos1,
and Ioannis Kompatsiaris1

Brain–computer interfaces (BCIs) have been gaining momentum in making
human–computer interaction more natural, especially for people with neuromuscular
disabilities. Among the existing solutions, the systems relying on electroencephalo-
grams (EEGs) occupy the most prominent place due to their noninvasiveness.
However, the process of translating EEG signals into computer commands is far
from trivial, since it requires the optimization of many different parameters that need
to be tuned jointly. In this chapter, we focus on the category of EEG-based BCIs that
rely on steady-state-visual-evoked potentials (SSVEPs) and perform a comparative
evaluation of the most promising algorithms existing in the literature. Moreover, we
will also describe four novel approaches that are able to improve the accuracy of the
interaction under different operational context.

8.1 Introduction

The EEG represents the mean electrical activity of the brain cells in different locations
of the head. We acquire the brain activity by placing scalp electrodes on the surface
of the head. To ensure reproducibility among studies, an international system for
electrode placement, the 10–20 international system, has been defined. In this system,
the electrodes’ locations are related to specific brain areas. For example, electrodes
O1, O2, and Oz are above the visual cortex. Each EEG signal can therefore be related
to an underlying brain area. However, this is a broad approximation that depends
strongly on the placement of the electrodes.

The EEG is a valuable tool in the diagnosis of numerous brain disorders. Nowa-
days, the recording of EEG signals is a routine clinical procedure and it is widely
regarded as the physiological “gold standard” to monitor and quantify electric brain
activity. The electric activity of the brain is usually divided into three categories:
(1) bioelectric events produced by single neurons, (2) spontaneous activity, and

1The Multimedia Knowledge and Social Media Analytics Laboratory, Information Technologies Institute,
Centre for Research and Technology-Hellas (CERTH), Thessaloniki, Greece
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(3) EPs. EEG spontaneous activity is measured on the scalp or on the brain. Clini-
cally, meaningful frequencies lie between 0.1 and 100 Hz. Event-related potentials
(ERPs) are the changes of spontaneous EEG activity related to a specific event. ERPs
triggered by specific stimuli, VEP, auditory, or somatosensory are called EPs. It is
assumed that ERPs are generated by the activation of specific neural populations,
time-locked to the stimulus, or that they occur as the result of the reorganization in
ongoing EEG activity. The basic problem in the analysis of ERPs is their success-
ful detection within the larger EEG activity, since ERP amplitudes are an order of
magnitude smaller than that of the rest EEG components.

VEPs have attracted special interest due to their usage on the construction of
BCIs systems. When the stimulation frequency is at low rate (<4 Hz), the poten-
tials are called transient VEPs, while stimulation on higher rate (>6 Hz) produces
SSVEPs [1]. When identical stimuli are presented at high frequency (e.g., 8 Hz),
the visual system stops producing transient responses and enters into a steady state
where the visual system resonates at the stimulus frequency. In other words, when the
human eye is excited by a visual stimulus, the brain generates electrical activity at the
same (or multiples of) frequency of the visual stimulus. Besides, the significance of
SSVEPs in clinical studies, their employment as a basic building block of BCIs makes
them a very important tool. An SSVEP-based BCI gives the user the ability to select
among several commands, where each command is associated with a repetitive visual
stimulus that has distinctive properties (e.g., frequency). The general architecture of
an SSVEP BCI system contains the following modules: (1) stimulator module: this
module is responsible for the production of the visual stimuli, and, in most cases,
it is an LED panel or a monitor; (2) signal acquisition module: it is responsible for
the acquisition of SSVEP signals; (3) signal processing module: it is responsible for
the analysis of SSVEP signals and the translation/transformation of them into mean-
ingful “codewords”; and (4) device commands module: it is appointed with the task
to translate the “codewords” into interface commands according to the application
setup. In this chapter, our interest lies in the signal processing module.

SSVEP is the brain response evoked in the occipital and occipital–parietal areas
of the brain by a visual stimulus flashing at a fixed frequency [2] and includes the
fundamental frequency of the visual stimulus that has generated this response, as
well as its harmonics. Due to this property, methods based on power spectrum den-
sity analysis (PSDA) (i.e., fast Fourier transform) have been extensively used [3,4].
However, PSDA methods are sensitive to noise and they need a large data window
to estimate the frequency spectrum with sufficient resolution [5,6]. To overcome
the previously mentioned problems, approaches based on spatial filtering have been
proposed. These approaches are based on reference templates and they solve an opti-
mization problem on multichannel SSVEP data for obtaining the optimal spatial
filters [5–7].

A well-known method of spatial filtering is the canonical correlation analysis
(CCA) [5] where the correlation between the reference templates and the acquired
EEG signal (SSVEP responses) is used to detect the target frequency. However, one
major drawback of CCA is that the templates are based on sine–cosine, resulting
in inaccurate representation of the underlying information due to overfitting [8].
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Extensions of basic CCA method have been proposed to alleviate this problem,
including a multi-way extension of CCA (MCCA) and its L1-regularized version
(L1MCCA) [8], itCCA that averages over multiple training trials for constructing
individual templates[9], as well as a combination of standard CCA and itCCA [10].
Recently, the multivariate synchronization index [11] has been also proposed to ana-
lyze SSVEP data by using time-delayed versions of them. CCA method has proven
very useful method for the analysis of SSVEP. In addition, CCA is a special case of
the generalized eigenvalue problem; hence, it is natural to pay close attention to var-
ious others special cases of the generalized eigenvalue problem. Recently, methods
based on the generalized eigenvalue problem have been proposed in [12–14]. More
specifically, in task-related component analysis [14] and in correlated component
analysis [13], spatial filters were learned in order to increase the discrimination abil-
ity of the subsequent classification scheme, while in the Subclass Marginal Fisher
Analysis (SMFA) [12], discriminative features were learned. SMFA belongs to a gen-
eral category of techniques, known as subspace learning, which is the process of
reducing the dimensionality of the raw data while retaining as much discriminant
information as possible.

Furthermore, methods that do not make the use of any reference templates,
based on deep learning techniques, have been proposed in [15,16]. However, these
methods have been tested with a limited number (four or five) of stimulus frequencies
and with SSVEP responses segmented into overlapping segments of (at least) 1 s,
resulting in BCI systems with low ITR values. Furthermore, deep learning methods
(due to complex structure of the underlying model) require large enough datasets and
are computationally expensive with limited expressiveness in BCI applications [17].
Finally, in [18], the use of multivariate linear regression (MLR) was proposed to learn
discriminative features for improving SSVEP classification using only four stimulus
frequencies. Extending the work in [18], linear regression models under the Bayesian
framework have been used in [19,20]. Furthermore, in [21], different kernel spaces
under a multiple kernel scheme are used to improve the classification performance.
The idea of using multiple kernels is motivated by the need to combine different views
of the data and our expectation on improving the performance of SSVEP classification
stems from the fact that it has been already proposed for the classification of P300
signals [22] and the clustering of fMRI time series [23]. In this chapter, we will present
various regression-based SSVEP recognition systems reported in the literature based
on the conception of synchronous mode [24].

8.2 Regression-based SSVEP recognition systems

The input to signal processing module is a set of EEG trials Xi ∈ �M×P, i = 1, . . . , N .
Another form of representation of the ith EEG trial is that of vector (instead of
matrix) xi = vec(Xi), where vec represents the procedure which converts a matrix
into a vector ( concatenation of P temporal points from M channels). Now, the set of
EEG trials is x1, x2, . . . , xN ∈ �D (feature vectors), where each vector has dimension
D = M × P and N is the number of training samples. The classes are represented
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by adopting the 1-of-K coding scheme, where K is the number of classes. More
specifically, for a training sample xi belonging to class m, its label is specified as

yi = [ y1, y2, . . . , yK ], where yj =
{

1, if j = m

0, otherwise
(8.1)

The previous formulation provides us with the indicator matrix Y=[y1, y2, . . . , yN ]T , ∈
�N×K . Assuming that each column of matrix Y can be expressed as a linear
combination of feature vector, we obtain the following K regression models:

yk = Xwk + ek , k = 1, . . . , K (8.2)

The previous assumption leads us to K regression models, where each regression
model is trying to learn the labels of one class versus the rest. To obtain an estimate
for the model parameters wk , we will describe two frameworks, the least squares
and the sparse Bayesian learning. But before that, it is needed to provide relevant
information related to (8.2). The vector yk ∈ �N contains 0s and 1s, with the nth
element being 1 if the nth feature vector belongs to class k . The matrix X ∈ �N×D

contains the EEG samples (feature vectors) xi, i = 1, . . . , N and ek denotes the noise
of the model following a Gaussian distribution with zero mean and precision (inverse
variance) βk . Finally, the wk ∈ �D is a vector containing the model parameters.

8.2.1 Multivariate linear regression (MLR) for SSVEP

The MLR classification scheme was first appeared for the analysis of SSVEP data
in [18]. This scheme combines into one general framework/algorithm—a feature-
extraction-based method and a classifier. In this section, we provide a brief description
of the MLR classification scheme.

In regression, given a training data set comprising of N observations xn ∈ �D

where n = 1, . . . , N , together with corresponding target values yn, the goal is to
predict the value of target for a new value of observations. The observations and the
targets are connected through a projection matrix W, which is unknown in our case
and needs to be estimated. In this case, the least squares method can be applied to
compute the projection matrix W ∈ �D×K :

WMLR = (XXT )†XT Y (8.3)

where (XXT )† denotes the pseudo-inverse of (XXT ). The least squares formulation can
also be applied for classification problems by treating accordingly the target values.
More specifically, in classification problems, the target values contain information
related to the class labels by using various coding schemes [25]. In our analysis, the
1-of-K coding scheme has been adopted.

After learning the projection matrix via MLR between training samples and multi-
class label matrix, the training data are projected onto a lower dimensional space
expanded by columns of W, which represent the features of training data. Hence,
sample features Z ∈ �N×K can be extracted as Z = XWMLR, and zi ∈ �K denotes
features corresponding to EEG sample xi. For subsequent analysis of test data, we
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project them to the space learned by MLR and as a final step, the k-nearest-neighbor
(kNN) algorithm is adopted to classify the subspace features extracted by the MLR.

8.2.2 Sparse Bayesian LDA for SSVEP

An alternative approach to learning the projection matrix W is through the Bayesian
framework. The Bayesian framework has been extensively used to analyze EEG
for BCI applications. More specifically, the Bayesian Linear Discriminant Analysis
(BLDA) with sparse priors has been used for sensorimotor rhythms discrimina-
tion [26] and for SSVEP responses recognition [21]. In this chapter, we describe the
general idea of the previous works restricting ourselves to the analysis of SSVEP data.

The overall model is constituted by K regression models (see (8.2)); hence, we
can work on each model separately. Also the subscript k has been removed in the
remaining of this subsection to facilitate the exposition of the algorithm. Crucial
part in a Bayesian setting plays the priors and hyperparameters of the probabilistic
model and how we are handling these two issues. In the literature, two well-known
methodologies are widely used: the Bayesian evidence framework and the variational
Bayesian (VB) framework [25]. In our study, we adopt the VB framework since it
provides us the ability to use prior (and hyperprior over hyperparameters) distributions
overall model parameters. A suitable choice for the prior distribution is the Automatic
Relevance Determination (ARD) prior [27,28] since provides us with simpler models.
This type of sparse prior is based on a hierarchical modeling approach, where the
parameter vector w is treated as a random variable with Gaussian prior of zero mean
and variance a−1

i for each element in the vector w:

p(w|a) =
D∏

i=1

N (0, a−1
i ), (8.4)

where D is the length of the vector w. Also each parameter ai, which controls
the prior distribution of the parameters w, follows a Gamma distribution, so the
overall prior over all ai is a product of Gamma distributions given by p(a) =∏D

i=1 Gamma(ai; ba, ca).
Besides the prior and hyperparameters over w, it is needed to deal with the noise

(more specifically with its variance), since in our study, it is an unknown quantity.
The overall precision (inverse variance) β of the noise follows a Gamma distribution:
p(β) = Gamma(β; b, c) = (1/�(c))(β (c−1)/bc) exp{−(β/b)}, where b and c are the
scale and the shape of the Gamma distribution, respectively.

Now, the prior governing all model parameters {w, a, β} is given by p(w, a, β) =
p(w|a)

∏D
i=1 p(ai)p(β). In comparison with the BLDA, described in the previous chap-

ter in this book, we can observe here that a different prior is used over w. Also the
noise precision as well as the parameters of the prior are treated as unknown prob-
abilistic quantities and they must be estimated together with parameters vector w.
The likelihood of the data is given by

p(y|w, β) = βN/2

(2π )N/2
· exp

{
−β

2
(y − Xw)T (y − Xw)

}
(8.5)
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The VB methodology [25] dictates that we need an approximate distribution of
the true distribution in order to facilitate the computations. In our analysis, we define
an approximate posterior based on one factorization over the parameters {w, a, β}.
More specifically, we choose the following factorization:

q(w, a, β) = q(w|a)
D∏

i=1

q(ai)q(β),

which means that we assume posteriori independence between model parameters.
Applying the VB methodology, and taking into account the previous factorization,
the following posteriors are obtained:

q(w) = N (ŵ, Cw), (8.6)

q(β) = Gamma(β; b′, c′), (8.7)

q(a) =
D∏

i=1

Gamma(ai; b′
ai

, c′
ai

), (8.8)

where

Cw = (β̂XT X + Â)−1, (8.9)

ŵ = (β̂XT X + Â)−1β̂XT y, (8.10)

1

b′
ai

= 1

2
(ŵ2

i + Cw(i, i)) + 1

ba
, (8.11)

c′
ai

= 1

2
+ ca, (8.12)

âi = b′
ai

c′
ai

, (8.13)

1

b′
β

= 1

2
(y − Xw)T (y − Xw) + tr(XT XCw) + 1

b
, (8.14)

c′
β = N

2
+ c, (8.15)

β̂ = b′
βc′

β. (8.16)

In the previous equations, the matrix Â is a diagonal matrix with the mean of param-
eters ai in its main diagonal. Equations (8.9)–(8.16) are applied iteratively until
convergence. The previous algorithm is applied for each regression model result-
ing in K classification scores. When a feature vector is provided and we want to
classify it into one of the K classes, the following procedure is adopted:

● Calculate the K classification scores using the predictive means.
● Use the kNN algorithm to classify the classification scores.
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Kernel matrix:⎡
⎢⎢⎢⎣

X11 X12 · · · X1N
X21 X22 · · · X2N

...
...

. . .
...

XN1 XN2 · · · XNN

⎤
⎥⎥⎥⎦

Kernel function:
Xnm = k(xn, xm)

EEG trials
{x1, x2, … , xN}N

Figure 8.1 Graphic representation of kernel transformation

8.2.3 Kernel-based BLDA for SSVEP (linear kernel)

Regression models of (8.2) can be easily kernelized [29]. By applying the kernel
trick, the regression models of feature space yk = Xwk + ek = ∑D

n=1 wknxn + ek

are transformed into yk = ∑N
n=1 w′

knk(x, xn) + ek = X′w′
k + ek , where the matrix

X′ is a N × N symmetric matrix with elements Xnm = k(xn, xm), k(·) is the kernel
function, and w′

k ∈ �N is the new vector of regression coefficients. In supervised
learning settings, feature-based classifiers are trying to predict the class label by giving
optimal (in some sense) weights in each feature. From the other side, kernel-based
classifiers are trying to predict the class label by giving weights to the similarities
between the training samples (see Figure 8.1). We can observe that the kernel-based
transformation is useful in high dimensional settings, even if the linear kernel is used.
More specifically, to compute the regression coefficients wk into the original feature
space, the computational cost is O(D3), while in the kernel space is O(N 3)[29]. When
D � N , as it is the case for the SSVEP analysis, the computational cost of working
into the original feature space is considerable compared to the computational cost of
kernel space.

8.2.4 Kernels for SSVEP

In the literature, various kernel functions have been proposed such as the linear and
Gaussian kernels. In this section, we describe two kernel functions appropriate for
multichannel data (and hence SSVEP data). More specifically, the two kernels are
based on CCA and Partial Least Squares (PLS) methods.

8.2.4.1 CCA-based kernel
CCA [30] seeks to find the underlying correlations between two sets of data (paired
data). Let us assume that a ∈ �Da and b ∈ �Db are two multivariate variables and
their corresponding (paired) sets are Sa = {a1, a2, . . . , an}, Sb = {b1, b2, . . . , bn}.
Furthermore, let us denote with f CCA(Sa, Sb) the process (or function) of calcu-
lating the maximum canonical correlation between the two sets Sa and Sb. The
function f CCA(·, ·) has two important properties: it is symmetric ( f CCA(Sa, Sb) =
f CCA(Sb, Sa)) and nonnegative ( f CCA(Sa, Sb) ≥ 0). Hence, the previous function can
be interpreted as a measure of similarity and it can be used to produce a valid kernel
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matrix [29]. For SSVEP analysis, we can create a kernel matrix �CCA based on CCA
by defining the sets Sa and Sb to be the multichannel EEG trials:

�CCA =

⎡

⎢⎢⎢⎢⎢⎣

f CCA(X1, X1) f CCA(X1, X2) · · · f CCA(X1, XN )

f CCA(X2, X1) f CCA(X2, X2) · · · f CCA(X2, XN )

...
...

. . .
...

f CCA(XN , X1) f CCA(XN , X2) · · · f CCA(XN , XN )

⎤

⎥⎥⎥⎥⎥⎦

Finally, it must be noted that in our approach, we do not propose a kernelized version
of CCA such as in [31], but CCA is used as the function to construct the kernel matrix.

8.2.4.2 PLS kernel
Assuming two EEG trials Xi and Xj. The linear regression of Xj on Xi is defined as
Xj = CXi + V, where C and V are coefficient and noise matrices. Note here that in
this subsection, the terms “noise” and “coefficient” are not the same as these of the
linear regression model described previously. PLS method decomposes the two trials
into the following form:

Xi = TPT + E (8.17)

Xj = UQT + F (8.18)

where T and U are matrices containing the latent vectors, P and Q are the loading
matrices, and, E and F are the residual matrices. The decomposition of trial Xj can
be expressed by using the trial Xi by

Xj = BXi + F∗ (8.19)

where F∗ is the residual matrix and the matrix B is given by

B = XiU(TXiX
T

i U)−1TT Xj (8.20)

In our study, we define as the kernel function κ(·, ·) between Xi and Xj the trace
of matrix B, i.e., κ(Xi, Xj) = trace(B). It is worth to note here that the previous
construction approach does not produce a Mercer kernel, and approaches like the
support vector machines cannot be applied[29]. In this particular analysis, the term
“kernel function” is used to describe the relationship between two objects in a broader
sense than the classical case, where the kernel function is defined in terms of similarity
or positive definiteness of the Gramian matrix (Mercer kernel). In order to have a
positive definite kernel, we could use an eigendecomposition of PLS kernel matrix
and remove the negative eigenvalues, as suggested in [32].

8.2.5 Multiple kernel approach

In the previous section, we provided information about three significant kernels
in SSVEP analysis, the linear kernel, the CCA-based kernel, and the PLS-based
kernel. In this section, we will provide information on how we could combine these
kernels under one general framework. Multiple kernel learning (MKL) is one of
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the most promising kernel optimization approaches, which aims at simultaneously
learning a combined kernel and the associated predictor in supervised learning set-
tings [33–35]. More specifically, the combined kernel is modeled as a convex sum of
base kernels as follows: kηk (x, xn) = ∑L

�=1 η�kk�(x, xn),
∑L

�=1 η� = 1, η� ≥ 0; where
L is the number of kernels. Furthermore, the combined kernel matrix �ηk is pro-
vided by �ηk = ∑L

�=1 η�k��,
∑L

�=1 η�k = 1, η�k ≥ 0. Also we can extend the linear
regression model in order to take into account the combined kernel �ηk :

yk =
N∑

n=1

wnk

L∑

�=1

η�kk�(x, xn) + ek = �ηk wk + ek . (8.21)

The previous equation can be written slightly different by interchanging the sum
operators. In that case, we have a new representation of the linear regression model
given by

yk =
L∑

�=1

η�k

N∑

n=1

wnkk�(x, xn) + ek

=
L∑

�=1

η�k(��wk) + ek = �wk ηk + ek , (8.22)

where the matrix �wk ∈ �N×L and each column of this matrix is constructed by
weighting each base kernel matrix with the regression coefficients wk . As we can see
the class labels yk are described by (8.21) or (8.22). Thus, by knowing the regression
coefficients wk and the mixing coefficients ηk , it is possible to provide predictions.
A graphic representation of the MKL scheme is provided in Figure 8.2. In [21],
a methodology for combining the MKL scheme with the Sparse Bayesian Learn-
ing (SBL) framework is provided and we will adopt this procedure in our current
experimental analysis.

MKL scheme
Φ η k = ∑L

�= 1 η �kΦ �

yk = Φ wk η k + ek
yk = Φ η k wk + ek

Kernel 1:

Φ1 =

⎡
⎢⎢⎢⎣

f (1)(X 1,X1) · · · f (1)(X 1,X N)
f (1)(X 2,X1) · · · f (1)(X 2,X N)

...
. . .

...
f (1)(XN ,X1) · · · f (1)(XN ,XN)

⎤
⎥⎥⎥⎦

Kernel 2:

Φ2 =

⎡
⎢⎢⎢⎣

f (2)(X 1, X1) · · · f (2)(X 1, X N)
f (2)(X 2, X1) · · · f (2)(X 2, X N)

...
. . .

...
f (2) (XN ,X1) · · · f (2)(XN , XN)

⎤
⎥⎥⎥⎦

...

Kernel L:

ΦL =

⎡
⎢⎢⎢⎣

f (L) (X 1,X1) · · · f (L) (X 1,X N)
f (L) (X 2,X1) · · · f (L) (X 2,X N)

...
. . .

...
f (L) (XN ,X1) · · · f (L) (XN ,XN)

⎤
⎥⎥⎥⎦

EEG trials
{X 1,X 2, · · ·,XN}

ŵk, η̂k
Estimated parameters

Figure 8.2 Graphic representation of multiple kernel learning approach. In this
figure, symbol f (·)(·, ·) represents a general kernel function © 2019.
Reprinted, with permission, from Reference [21]
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8.3 Results

In order to validate the performance of the described/reviewed regression-based pat-
tern recognition system, we use the EEG dataset described in [10]. In this dataset,
12-target visual stimuli were presented on a 27-in. LCD monitor. Ten healthy sub-
jects with normal or corrected-to-normal vision participated in this study. EEG data
were recorded with eight electrodes covering the occipital area. For each subject,
the experiment consisted of 15 blocks. In each block, subjects were asked to gaze
at one of the visual stimuli indicated by the stimulus program in a random order for
4s, and complete 12 trials corresponding to all 12 targets. Data epochs, comprising
eight-channel SSVEPs, were extracted according to event triggers generated by the
stimulus program. All data epochs were down-sampled to 256 Hz. The EEG data have
been band-pass filtered from 6 to 80 Hz with an infinite impulse response filter using
the filtfilt() function in MATLAB. As indicated in [10], a latency delay of 0.135 ms
in the visual system is considered.

For evaluation purposes, we have used the classification accuracy. The classifi-
cation is defined as the ratio of the number of correctly classified trials to the total
number of trials. In our analysis, the classification accuracy is estimated using a leave-
one-block-out cross validation. In each of 15 rounds, cross-validation was performed
using 14 blocks for training and 1 block for testing. The previous procedure is the
same as that described in [10,18]. Finally, the accuracy has been calculated at various
time windows ranging from 0.5 to 4 s.

The goal of an SSVEP pattern recognition algorithm is to take as input one EEG
trial, X , and assign it into one of K(=12) classes where each class corresponds to a
stimulation frequency fk , k = 1, . . . , K . In this section, we provide results that show
the effectiveness of various kernels to discriminate various SSVEP responses. More
specifically, the linear, the CCA, and the PLS kernel are used. Also the previous
kernels are combined by adopting the MKL scheme [21]. As a baseline method, we
use the MLR approach and the BLDA with linear kernel. Next, we provide a short
explanation of the methods’ acronym.

● MLR is the acronym for the MLR method.
● LIN is the acronym of the basic version of BLDA where the linear kernel is used.
● PLS is the acronym of BLDA when the PLS kernel is used.
● MKL_CCA_LIN is the acronym of BLDA when we combine the CCA kernel

with the linear kernel under the MKL scheme.
● MKL_PLS_CCA is the acronym of BLDA when we combine the CCA kernel

with the PLS kernel under the MKL scheme.

The results are shown in Figure 8.3. The LIN method presents the worst performance
compared to MLR, especially in small time windows. However, when this kernel
is combined by the CCA kernel in the MKL scheme (MKL_CCA_LIN method),
the performance becomes much better than MLR. But it cannot provide us with
classification rates such high as the PLS method. The PLS method provides the most
promising results, which can be augmented slightly if this kernel is combined with
the CCA kernel under the MKL scheme (MKL_PLS_CCA method). In Figure 8.4,
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Figure 8.4 (Continued)

the accuracy for each subject is provided for all methods. We can observe that the
combined use of PLS and CCA provides the best performance for each subject. In
this figure, it can also be observed that there exist a significant number of subjects
that all methods present similar performance (Subjects 6–8). Furthermore, we can
observe that Subjects 2 and 10 are the subjects that contribute most in the observed
differences between the PLS-related methods and the rest methods. Especially, in
Subject 2, the MLR and LIN methods fail to provide accurate performance.
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8.4 Summary

In this chapter, we presented existing methods for the discrimination of SSVEP
responses based on the linear regression model. At first, we presented the MLR
method where massive linear regression models were used to find an optimal lin-
ear projection between the EEG trials and the corresponding labels. This projection
gave us the opportunity to extract new discriminative features. The performance
of MLR, presented here and elsewhere [18,21], suggests that the linear-regression-
based techniques are valuable tools in the BCI context. The general key steps of MLR
method have been extended in more complicated models by adopting the Bayesian
framework. Due to large number of raw EEG features, the MLR approach uses,
as a preprocessing step, a dimensionality reduction technique based on principal
component analysis. To alleviate the problem of large number of raw features, we
used the BLDA method with sparse priors resulting into an algorithm that chooses
the most important raw features. However, the use of BLDA on the original feature
domain does not solve the problem of computational cost, which we alleviated by
adopting the idea of kernels. Furthermore, we presented two recently used kernels
in SSVEP analysis and an extension of kernel-idea by using multiple kernels under
the same framework. The results have shown the usefulness of all methods. A careful
investigation and comparisons with state-of-the-art methods of the literature reveal
that all methods provide us with state-of-the-art performance. Finally, the perfor-
mance of the presented methods (in this chapter) could be enhanced by adopting a
filter bank analysis or an ensemble strategy such as those presented in [14].
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Chapter 9

BCIs using motor imagery and
sensorimotor rhythms

Kostas Georgiadis1,2, Nikos A. Laskaris2,3, Spiros
Nikolopoulos1, and Ioannis Kompatsiaris1

Motor imagery (MI) Brain Computer Interfaces (BCI) are considered the most
prominent paradigms of endogenous BCIs, as they comply with the requirements
of asynchronous implementations. As MI BCIs can be operated via the movement
imagination of one limb (e.g., left hand), after a training period, the user can harness
such an interface without the aid of external cue(s) that are considered ideal for self-
paced implementations. MI BCIs have been employed in several cases as a means
of both communication restoration and neurorehabilitation. Neuromuscular disease
(NMD), although rarely studied within the context of MI BCIs, presents significant
interest mainly due to the disease’s progressive nature and the impact it has on each
patient’s brain reorganization.

9.1 Introduction to sensorimotor rhythm (SMR)

Endogenous BCIs receive continuous attention from the neuroscientific community
as there is no need for external stimulation for them to be operated by the user.
Their experimental design encapsulates the perspective of asynchronous (i.e., self-
paced) BCIs, and this is the main reason why endogenous BCIs currently receive
significant attention, even though a considerable training period that can last from
a couple of days to several months is required for the user before harnessing such
a system. Endogenous BCIs include the slow cortical potential techniques, like the
thought translation device [1] and the MI paradigms, that require the user to perform
a mental task, including planning, imagination, and execution of a movement (e.g.,
one hand [2,3], left or right hand [4], feet [5], or even a combination of limbs and
tongue [6]). Besides the two aforementioned approaches, more recently introduced
alternatives within the same concept, incorporate speech imagination [7] and mental
arithmetic [8].

1Information Technologies Institute, CERTH, Thermi-Thessaloniki, Greece
2Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
3Neuroinformatics Group, Aristotle University of Thessaloniki, Thessaloniki, Greece
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BCIs based on movement imagination are considered the most prominent
paradigms of endogenous BCIs as they provide the most natural path to adopt in
a real-life setting where simple commands like “turn left” or “turn right” need to be
realized by an actuator. MI BCIs brain decoding usually relies on the sensorimotor
rhythm (SMR), oscillations detected in the Electroencephalogram (EEG) signal cap-
tured from the electrodes placed on the sensorimotor cortex, the part of the brain that
is associated with planning, control, and execution of voluntary movements [9]. MI-
related modulations in brain activity are usually associated with both α and β rhythms
over the sensorimotor areas. Nevertheless, there are also cases that SMR activity can
be associated with different brain rhythms, due to mainly the wide subject variability
encountered on EEG measurements.

9.2 Common processing practices

The early studies exploited the power alteration identified whenever a movement is
imagined or planned or once it is completed. More specifically, there is a noticeable
power decrease in μ-band whenever a movement imagination task is performed known
as event-related desynchronization, while once the mental task has been terminated,
there is a power increase in β-band, usually referred to as event-related synchronization
or beta-rebound [10]. Within the same context, several band-power-based approaches
have also emerged [11].

A second popular approach is the technique of common spatial patterns (CSPs)
[12], where spatial filtering is combined with classification so as to decode the
intended movement, based on the entropy minimization for the one mental task and
the maximization for the other. As the core CSP algorithm is designed only for binary-
related MI problems, several modifications have been proposed to accommodate the
existence of more than two classes (e.g., filter bank CSP (FBCSP) [13] or wavelet
CSP [14]). A recent comparison study [15] between power-based approaches, the
CSP and FBCSP algorithms, demonstrated that there are no significant differences
in terms of performance among them given that an appropriate classification scheme
is employed.

Besides the previously mentioned time-domain-based approaches, the detection
of discriminative patterns of functional connectivity or covariation, as these emerge
in the sensor or source space, has also been attempted [16,17]. Recent approaches
include concepts from complex network theory [18] and Riemannian geometry [19],
as a means to classify the multichannel EEG-signals based on distinct estimates
of connectivity pattern and covariance matrix, respectively. Phase synchrony has
also recently entered into the picture and led to novel alternative ways in decoding
an indented movement by describing the functional inter-areal interactions during
MI [20]. The metric of phase locking value (PLV) is usually employed and fea-
tures from either the static or dynamic connectivity patterns, as they emerge over the
sensor space, have been demonstrated to facilitate the effective decoding of user’s
intentions [21].

Finally, recent approaches based on the graph signal-processing notion have
entered the picture of MI decoding [22–26], where spectral graph theory is blended
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with signal-processing techniques offering a unified framework to handle signals over
irregular domains (as is the case of EEG traces recorder via a given sensor array).

9.3 MI BCIs for patients with motor disabilities

As BCIs, regardless of the selected experimental strategy, can be operated by exploit-
ing the user’s brain activity without requiring any physical activity, they are considered
ideal assistive mechanisms for people with partial or complete loss of their fine motor
skills [27], as they usually cannot use conventional communication channels. As a
result, BCIs can provide an alternative communication pathway to people suffering
from motor disabilities, therefore, restoring the communication of patients with their
environment. Moreover, BCIs have also proven to be extremely effective in terms
of rehabilitation, known as neurorehabilitation, by promoting functional recovery
providing the patients the opportunity to relearn a number of their motor functions.
Beyond their initial motivation, BCI applications have been recently involved in novel
approaches extended beyond rehabilitation or communication restoration, including
gaming [28] and mental workload monitoring [29].

Depending on the type of disability, different brain regions are affected or even
damaged, resulting in the obstruction or the cessation of various motor functions.
Furthermore, the loss of motor skills may be gradual or sudden (e.g., chronic strokes)
affecting the patient’s brain reorganization in different ways. In this direction, several
studies have examined the potential use of MI BCIs for enabling the communication or
aiding in terms of rehabilitation in several motor disabilities with diversified severity.

9.3.1 MI BCIs for patients with sudden loss of motor functions

Spinal cord injuries (SCIs) (e.g., due to car accident) can result in sudden and com-
plete loss of the affected individuals’motor skills, leading to paraparesis or paraplegia.
Similarly, an ischemic stroke (IS) can cause (temporary) paralysis of arms and legs
and can even lead to speaking difficulties. As rehabilitation is an integral factor in both
cases (i.e., SCI and IS), there are several MI-based studies that examine neuroreha-
bilitation therapies, indicating that BCIs can be used as a means of recovery [30,31].
Besides rehabilitation, MI BCIs have been successfully used, for both conditions, as
communication tools in several studies [32,33].

9.3.2 MI BCIs for patients with gradual loss of motor functions

Kübler et al. [34] examined patients suffering from amyotrophic lateral sclerosis
(ALS) and their ability to operate an MI BCI by mentally controlling (e.g., left-hand
movement imagination) the horizontal movement of a mouse cursor, proving that all
participants could improve their ability to harness the interface after several training
sessions. In the same direction, Bai et al. [35], including also primary lateral sclerosis
patients in their study, expanded the use of MI BCI beyond the binary cursor control to
a four-directional cursor control. Similar trends were observed in multiple sclerosis
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(MS) patients [36] that could operate MI BCIs when external cues are provided
to them.

9.4 MI BCIs for NMD patients

9.4.1 Condition description

The abovementioned MI-BCI approaches have been investigated in several studies
with participants suffering from motor disabilities, ALS, SCI, MS, and CS. However,
only a limited number of studies have been done on people suffering from NMD [37].

In contrast with SCI and CS, NMD is a progressive condition that often initiates
with the affection of specific group of muscles and finally spreads to many other
groups, resulting in gradual loss of a patient’s fine motor skills. Therefore, significant
mental effort is required by the patients to make a move or even attempt to move
their limbs in their everyday life for several years, prior to the complete loss of
their movement control. In this direction, the initial motivation of this study was to
examine how NMD-patients, as novice BCI users, would perform in simple MI tasks
(imagination of left-/right-hand movement) without any training and/or feedback.
We hypothesized that, due to long-lasting self-organization, phase synchrony would
govern their reconfigured brain networks and could be detected in the sensor space
when they were cued to imagine a limb movement (which for them is almost equivalent
to try to realize the same movement).

In this direction, it is important to examine whether NMD patients are character-
ized by increased level of both phase-synchrony and brain network organization as
hypothesized, by comparing NMD patients with health control population [38].

9.4.2 Experimental design

9.4.2.1 Participants
Twelve individuals, separated into two groups (seven males and five females, aged
36.08 ± 6.45), participated in the experimental procedure. More specifically, the
first group consists of six people suffering from various types of NMD and the
second of six able-bodied with a matching sociodemographic profile. Table 9.1 pro-
vides information about each participant, while a more detailed description (e.g.,
inclusion criteria and clinical characteristics) is available in [39]. All subjects had
normal or corrected-to-normal vision and none of them had taken any psychoactive
or psychotropic substance. Participants were BCI-naive users, as they had no prior
experience with BCIs. Prior to the experimental session, subjects and their caretakers
were informed about the experimental procedure and a consent form (approved by
the Ethical Committee of MDA HELLAS—protocol no. TH.COM-23, 26/01/2017)
was signed by the participants or in the cases of inability by their caretakers.

9.4.2.2 Experimental environment
During the experimental procedure, participants were seated in a comfortable arm-
chair (or in their wheelchair) placed 50 cm from a 22-in. liquid crystal display with
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Table 9.1 Subject demographics

Participant Gender Age Participant Gender Age Condition
ID ID

S1 F 46 P1 M 35 SMA III
S2 F 31 P2 M 44 Muscular dystrophy
S3 M 40 P3 M 32 Muscular dystrophy type II
S4 M 43 P4 F 36 Tunisian muscular dystrophy
S5 F 39 P5 M 25 Duchenne muscular dystrophy

0 1 2 3 4 5 6 7 8 9 Time (s)

Motor imagery BreakFixation cross

Cue

Figure 9.1 The timeline of the experimental procedure (depicted for a single trial)

the EEG cap attached on their scalp. Throughout the entire process, participants were
required to place their hands in the armrests and to minimize any kind of upper limb
movement in order to minimize the recorded artifactual activity.

9.4.2.3 Experimental design
Prior to the initiation of the MI task, where subjects were asked to imagine the move-
ment of their left or right hand, resting state for 3 min was recorded. The cue for
the initiation of movement imagination was given by a red arrow (onset), appear-
ing either on the left or right side of the screen, pointing in the same direction and
indicating the corresponding imagery movement. The arrow remained on the screen
for approximately 5 s, indicating the continuation of movement imagination to the
subject. Once the arrow disappeared from the screen, subjects could rest and prepare
themselves for the next arrow appearance. Prior to the arrow presentation, a fixation
cross was displayed on the screen for 3 s, indicating the beginning of a new trial.
Figure 9.1 presents the sequence of events on a single-trial level. Each subject partici-
pated in two identical sessions, each one consisting of 20 random arrow appearances,
equally distributed among the two classes, resulting in 40 trials (20 for each imagery
movement class). The brain activity was recorded using the BePlusLTM Bioelectric
Signal Amplifier,∗ an EEG headset with 61 + 2 (ground and reference) electrodes
placed according to the 10–10 international system with a sampling frequency of
256 Hz and the impedance was set below 10 K before beginning the recording in
every session.

∗http://www.ebneuro.biz/en/neurology/ebneuro/galileo-suite/be-plus-ltm
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9.4.2.4 Preprocessing
During the offline processing and prior to the trial segmentation so as to avoid edge
effects, a third-order bandpass filter (0.5–45 Hz) was applied to the EEG signals.
Furthermore, “bad” sensors were identified and excluded from further analysis using
a spectral analysis based scheme. The remainder “good” sensors, denoted hereby as
Nsensor , were employed in the subsequent average re-reference procedure.

Independent component (IC) analysis (ICA) was then used to reduce physiolog-
ical artifacts. Using a semi-supervised procedure that employed the ranking of ICs,
based on kurtosis/skewness and the visual inspection of their spectra and topogra-
phies, artifactual components were identified and removed before reconstructing the
multichannel single-trial data.

Seven commonly used EEG frequency bands were defined: (1–4); (4–8);
1 (8–10); 2 (10–13); 1 (13–20); 2 (20–30); (30–45) Hz and the neural activity of
each brain rhythm was examined independently. Once again, band-pass filtering was
implemented via third-order Butterworth filters, applied in zero-phase mode.

9.4.2.5 PLV measurements and functional connectivity patterns
Phase synchronization is a well-established concept for describing the coordinated
function of distinct neural assemblies based on the recorded signals. When studied at
the level of sensor space, the brain signals recorded at distinct sites are used (by one
of the available estimators) to detect whether the relative phases of the underlying
oscillatory processes bear any systematic relation across time.

The PLV measurement, introduced by Lachaux et al. [40], is a very popular
estimator of phase synchrony, with the great advantage of computational simplicity
that motivated its use in the context of MI-BCIs. Considered a function, PLV receives
two signal traces and produces a scalar ranging between 0 and 1, with 1 indicating a
“perfect” coupling between the brain areas and 0 indicating functional independence.
For a pair of single-trial signals xk (t) xr(t), with k , r = 1 . . . Nsensor and t = t1 . . . t2,
from distinct recording sites, PLV is estimated as follows:

PLV (xk , xr) =
(

1

t2 − t1

∣∣∣∣∣

t2∑

t1

exp(i(�φ(t)))

∣∣∣∣∣

)
(9.1)

with �φ(t) = φk (t) − φr(t) denoting the difference between the instantaneous phases
of the two processes and discrete time parameter t running along the latencies of
interest (for instance the 5 s interval during the presentation of an arrow on the
screen). Hilbert transform is applied to the corresponding band-limited brain activity
xk (t) to produce each phase signal φk (t). By efficiently parallelizing the computations
implied by (9.1), the PLV computations extend to all sensor couples.

In this way, for each frequency band, an [Nsensor × Nsensor] matrix is formed
with entries Wkr = PLV (xk , xr) and is treated as a weighted adjacency matrix W,
including the connectivity pattern of a graph that spans the sensor space and reflects
the brain’s functional organization. Considering the symmetry in PLV measurements,
PLV (xk , xr) = PLV (xr , xk ) and the fact that all diagonal elements Wkk equal to 1,
it is easy to realize that a more economical description of a connectivity pattern
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can be obtained by vectorizing the upper triangular part of W , i.e., gathering all
(NsensorxNsensor−1)/2 elements Wkr with r < k in a single vector, denoted as vec(W).

9.4.2.6 Network metrics
The functional connectivity graph defined byW matrix, with nodes the recording sites
and edges the links between the sites weighed by the associated pairwise PLV values,
can be characterized based on network topology metrics [41]. In this chapter, weighted
graphs were selected aiming to reveal the self-organization tendencies of the underly-
ing cortical network and provide a comparative analysis of them between healthy and
NMD condition. Toward this end, the following three well-established evaluation met-
rics were employed to compare the recording conditions and the physiological states.

Strength equals to the sum of connectivity weights is attached to a given node:

Sk =
∑

r �=k

Wkr (9.2)

Global efficiency (GE)/Local efficiency (LE) is a metric which expresses how
efficiently information is transferred via the network, at a global/local level. Network’s
efficiency is directly linked with the concept of the shortest paths, which in our case
were estimated after turning the functional coupling strengths wkr to pairwise distances
dkr = 1 − wkr and applying Dijkstra’s algorithm. Adopting the formulation of GE as
defined in [42]:

GE = 1

Nsensors(Nsensors − 1)

∑

k ,r �=k

1

lrk
(9.3)

with lrk denoting the length of the shortest path between nodes (i.e., sensors) r and k .
LE requires the confinement of the previous calculations to each subgraph Gk

and then integrating across nodes:

LE = 1

Nsensors

∑

r �=k

LE(k) = 1

Nsensors

∑

r �=k

1

NGk (NGk − 1)

∑

i,j∈Gk

1

lij
(9.4)

9.4.2.7 Time-indexed patterns of functional connectivity
In an attempt to track more precisely the dynamics of cortical self-organization during
MI, we formulated several instantiations of the connectivity pattern for all single trials,
by means of a stepping window that confined the integration in (9.1) within succes-
sive (overlapping) temporal segments. The “cycle-criterion” [43,44], which adapts the
temporal resolution so as three cycles from the lowest frequency of the band-limited
brain signal to be included at each step along the time-axis, was adapted to define
the window length. In this way, a sequence vec(W [τ ]), τ = 1, 2, . . . , Nτ encaptulat-
ing the evolving functional connectivity during the hand movement imagination was
generated.

9.4.2.8 Feature screening
As the number of features was extremely high (i.e., 1,830 in the case of static PLVs,
with this number being multiplied by the selected number of steps in the time-indexed
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PLVs) it was clear that, besides the “curse of dimensionality issues,” it would not
be possible for all couplings to contribute highly discriminative information for the
decoding task. In this direction, a “filter” approach (using MATLAB rankfeatures
command accompanied by the “Wilcoxon” criterion), including feature ranking and
selection, was employed to identify the most reliable coupling in the designing process
of a classifier. More specifically, in the case of static connectivity patterns of this
operation are estimated as follows:

Score(r) = rankfeatures({vec(Wi
left)}i=1:Ntrials , {vec(Wj

right)}i=1:Ntrials ),

r = 1, 2 . . . , Npairs

(9.5)

resulted in a vector of scores reflecting the relative discriminative power of each
coupling. Feature selection was accomplished by identifying the set of ten most
discriminative couplings.

For the case of time-indexed connectivity, the previous command was applied
repeatedly at every latency of the stepping window resulting in a time-indexed score

Score(r, τ ) = rankfeatures({vec(W[t]i
left)}i=1:Ntrials , {vec(W[t]j

right)}i=1:Ntrials ),

τ = 1, 2 . . . , Nτ

(9.6)

To identify the most important features among the (Npairs · Nτ ) available ones, a
permutation test was applied, with the connectivity patterns being randomly parti-
tioned, several times, into two groups and the computations implied by (9.6) being
repeated for every random splitting. The computed randScore(r, τ )1 : Nrand mea-
surements were used to form a “baseline” distribution of scores associated with the
random case (no differences between the two imagery types would be detectable).
From the formed distribution, the value of score index corresponding to the mar-
gin of 99.9% was identified and used as a threshold, thr99.9%, that was applied to the
actual Score(r, τ ) measurements so as to keep only the statistical significant couplings
(p < 0.001).

After this trimming step that zeroed most of the measurements, a sparse matrix
appeared that contained some spurious entries (associated with couplings that occa-
sionally become significant for short lasting intervals). An additional data-sieving
step (based on simple rowwise median filtering) was applied that eliminated most of
them. The rationale behind this last step was the detection of couplings that could be
considered both “useful” and “stable” regarding their discriminatory power.

A pair-dependent profile was derived by the sequence of these operations as
shown next, where the operator H (·) denotes Heaviside step function operator and 1N

is column-vector of N ones.

I (r, t) = H (Score(r, τ ) − thr99.9%), r = 1, 2, . . . , Npairs, t = 1, 2, . . . , Nt

Î[NpairsxNτ ] = runningMedianrowwise(I)

Profile(r) = Î · 1Nτ

(9.7)
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Finally, feature selection was accomplished by detecting the nonzero entries in
this profile. A demonstration of this sequence of algorithmic steps can be seen in
Figure 9.12.

9.4.2.9 SVM classifiers as MI-direction decoders
Support vector machines (SVMs) constitute a family of well-established classification
algorithms. In the basic binary formulation, the training algorithm of SVM is designed
to determine the optimal hyperplane that separates two classes while maximizing the
margin between them. The selected hyperplane guarantees optimal generalization,
meaning that it can cope better with unseen data. The class of an unseen pattern
is determined based on its relative position with respect to the learned hyperplane
and the confidence regarding the decision can be estimated using its distance to the
hyperplane.

For the purposes of this chapter, a linear hyperplane was selected for the MI-
direction decoding as it provided satisfactory results at low computational load
(a combination of high importance for online implementations). In all cases reported
next, SVM classification had been employed in a “personalized” mode. This trend,
which ultimately led to subject-specific brain decoding, was initiated very early dur-
ing the stage of feature selection. For each trial of an MI movement, the selected
(discriminative) features (depending on subject and brain rhythm) were used to form
the input pattern to be used in SVM training and validation.

The performance of the SVM-based binary classification (“left” vs “right”) was
measured, for each subject independently, under the two different feature-screening
procedures, which in turn led to two distinct classification scenarios: one based on
static and one based on “instantaneous” connectivity (sub)patterns. Classification
performance was expressed in terms of accuracy and carefully validated using a
cross-validation scheme that was dependent on the scenario.

The validation and testing procedure was performed on a single-subject basis.
In the reported results, a leave-one-out-cross-validation (LOOCV) scheme had been
selected to validate the accuracy of the proposed methodology. In the LOOCV, one
trial is left out for testing purposes, while the remainder was used in the training
process, with the procedure being repeated for all trials.

Having in mind to establish a procedure that could also be employed in a potential
implementation of a personalized BCI, in which only a small training dataset would
be available for crafting the decision function and the overall training should be
completed within a reasonable time before the actual use of the BCI system, we
proceeded as follows. We repeatedly form (by sampling with replacement) 30 sets of
2Ntrials, and the procedure described in (9.7) was applied to every bootstrap-resample
resulting in an ensemble of curves boot_iProfile(r)boot_i=1:30. Feature selection was
accomplished by averaging these profiles and thresholding the obtained average curve.

9.4.2.10 Group analysis of pairwise couplings
The first part of the analysis was devoted to confirming the hypothesis that there were
significant differences between NMD patients and controls regarding the strength of
functional couplings. To this end, a single connectivity pattern was first derived (by



194 Signal processing to drive human–computer interaction

trial-averaging) for each subject, brain rhythm and recording condition (i.e., “rest,”
“left,” and “right”). A statistical comparison of the group medians in every pairwise
coupling of the connectivity patterns was performed. The Wilcoxon rank sum test
was repeatedly applied and the results were corrected for multiple testing, by means
of false discovery rate (FDR = 0.05) [45].

Figure 9.2 illustrates the results for all brain rhythms and recording conditions
(i.e., “left,” “right,” and “rest”). The statistically significant (p < 0.05) pairs stand
out as colored entries in the shown matrices, with the color reflecting the sign of
the observed differences. It was computed based on the medians of the groups
(med(PLV (·)NMD)–med(PLV (·)Control)) and clearly indicates (since only red hue is
observed) an increased coupling in the patients group compared to the control group,
mostly in low and high brain rhythms. It is important to mention here that increased
functional couplings were found in all frequency bands, although not clearly observed
when a common color code was used.

The topological representation of the statistically significant functional couplings
is provided in Figure 9.3, with the edge-width reflecting the difference in strength
between the group-level medians of each pairwise coupling and the node-size the
number of edges that have survived the statistical test (p < 0.05) and are incident to
the node. It is clear that the NMD group is characterized by enhanced connectivity in
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Figure 9.2 The results from the statistical comparison (group-level analysis) of
averaged connectivity patterns between patients and controls. Each
pairwise coupling was compared independently, for every band and
recording condition, by means of Wilcoxon rank sum and the significant
ones (p < 0.05; corrected for multiple comparisons) are indicated as
nonzeroed entries of a “connectivity matrix,” with a color code that
encapsulates the difference in strength (of the median values in the
corresponding groups). Red hue has to be interpreted as higher
coupling in patients and green hue as higher coupling in controls,
while color intensity reflects the strength of this effect. The absence of
green hue in the diagrams clearly indicates the increased coupling in
patients group compared to the control group
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Figure 9.3 Topographical representation of the statistically significant functional
couplings (shown in Figure 9.2). In the emerging graphs, the
edge-width reflects the strength of the coupling and the node-size the
number of edges incident to that node. The shown results correspond
to group-level analysis and reflect higher connectivity in the
NMD patients

all recording conditions. In the two MI-conditions, the majority of nodes being part
of the statistical significant couplings, follow a distributed pattern that occasionally
includes the primary and supplementary sensorimotor area (e.g., in “left”: α1, β1 and
γ rhythms).

9.4.2.11 Group analysis of network metrics
Next, the network organization associated with the functional connectivity patterns
was compared. The three metrics (i.e., strength, GE, and LE) were first applied at the
single-trial level (to “static” Ws) and then averaged to derive a triad of measurements
for each subject, brain rhythm and experimental condition were used to further justify
the observed differences among the two groups.

Figure 9.4 compares these measurements, after deriving group-medians, with
the stars in patients’ bars indicating the statistically significant differences (p < 0.01,
bonferroni-corrected) in the level of network-metrics, which resulted from the group-
analysis of the corresponding measurements (NMD patients vs controls) performed
using the Wilcoxon rank sum test. It is easy to observe that despite the lack of statis-
tically significant differences in the case of strength (which practically corresponds
to integrating the coupling strength across sensors), the network efficiency metrics
(i.e., GE and LE) pose significant differences for rhythms faster than 8 Hz, where
MI spectral activity is expected to be found. The observed differences in these two
topological metrics (which reflect how efficiently the information flows within the
brain network) are related to brain coordination and, hence, can be attributed to the
NMD condition itself and the way it affects the patient’s brain reorganization during its
progression. Interestingly, differences in network organization during MI tasks were
detected in α2 rhythm, even though the pairwise couplings did not show, individually,
any difference between groups based on their PLV levels (see Figures 9.2 and 9.3).
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Figure 9.4 Contrasting the functional network organization between patients and
controls using the standard networks metrics of strength, global
efficiency (GE) and local efficiency (LE). The median values have been
computed across the subjects of each group and presented for all brain
rhythms. Statistically significant differences between the two groups
have also been detected (using Wilcoxon rank sum test) and indicated
with a star symbol in the corresponding bar of the patients’ bar plot

9.4.2.12 Personalized MI decoding—SVM classification based
on static patterns

The third stage of the analysis consists of an attempt to decode the MI direction
based on the single-trial functional connectivity patterns and provides a comparative
analysis of the two cohorts in terms of performance. A linear SVM in conjunction with
standard, statistical, feature screening was used, with the screening being performed
to confine the SVM design within the space spanned by the ten most informative
functional couplings. Moreover, to reduce the possibility of overfitting, this step was
incorporated in the LOOCV scheme (i.e., it was performed every time an SVM was
about to be designed from the set of trials that had been reserved for training).

The acquired classification scores of the decoding task for each subject and all
brain rhythms are illustrated in Figure 9.5. It is evident that the accuracy levels for the
patients group are significantly higher, with five out of six subjects exceeding 75%
accuracy, while even the participant with the lowest accuracy (i.e., P3) for this group
reaches 65%. It is also interesting to notice that for the NMD group, the highest
accuracy is associated with a common frequency band (i.e., β1) in four subjects
(i.e., P1, P2, P4, and P6). On the contrary, only half of the subjects belonging to
the control population exceed the level of 60% accuracy in any of the frequency
bands, with subject S5 being considered the “best” subject for the control group,
as it is the only case where 80% of the trials were correctly classified. To confirm
rigorously the hypothesis that BCI-naive patients can perform better than controls
in the employed MI tasks, we gathered the highest performance level from each
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individual in two sets of accuracies, AccuraciesNMD
i=1:6 /Accuraciescontrols

i=1:6 , and applied
the Wilcoxon rank sum test that revealed a statistical significant difference ( p <

0.05, one-tailed). For comparison purposes, PSD and CSP-based measurements were
estimated (see Figures 9.6 and 9.7). Overall, the decoding performance stays below
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Figure 9.5 The classification performance in the state discrimination task (“left”
vs “right”hand movement imagery) when elements from the static
connectivity patterns are used
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vs “right”) when band-specific power-spectral density estimates are
employed
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Figure 9.7 The classification performance in the state discrimination task (“left”
vs “right”) when the common spatial pattern algorithm is employed in
the 8–30 Hz frequency band

75% (except for patient P5), i.e., lower than in the case of PLV measurements. In
addition, there is no statistically significant advantage for the NMD group over the
controls considering the highest performance level from each individual (p = 0.43,
one-tailed).

9.4.2.13 Personalized MI decoding—SVM classification based
on time-varying patterns

At the expense of increased computations and algorithmic complexity, the decoding
of MI direction from time-varying connectivity patterns for the NMD patients was
then explored. Both the beneficial phase-synchrony based representation, for the
brain activity in this clinical group, and the fact that MI-BCIs have remained largely
unexplored for NMD patients led to a deeper study regarding the relevant dynamic
patterns of connectivity.

Supporting evidence, regarding the dynamic nature of the underlying phenom-
ena, was provided by the feature screening procedures, since the obtained scores for
the dynamic patterns were often higher than the ones for the static patterns. Work-
ing at a personalized level, the set of functional couplings was spotted, illustrated in
Figure 9.8 that showed a stable and highly discriminative behavior (using bootstrap-
ping and (9.7)). The fixed set of selected entries was extracted (in single-trial level)
from the time-indexed connectivity patterns, vec(W[τ ]), which had been computed
with a time-step of 350 ms. The vectors were used to design and evaluate an “instan-
taneous” SVM (i.e., SVMτ ) that corresponds to each latency and also follows an
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LOOCV scheme. The performances of this decoder were estimated by comparing the
time-indexed predictions with the class labels of the trials and integrating the results
across trials.

Figure 9.9 shows the corresponding performance curves for the “instantaneous”
SVM classification scheme. The variability among subjects is evident, as subjects
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Figure 9.8 The statistically significant and temporally consistent couplings as
detected by means of a permutation test (random re-labeling of trials)
applied for each patient and brain rhythm independently
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Figure 9.9 The classification performance in the “left” vs “right” task when the
selected couplings (shown in Figure 9.8) are used to form multiple
time-resolved patterns associated with each trial
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P1, P3, and P6 reach the highest accuracy within the first second and maintain
the high performance for the full trial length, while subjects P2 and P4 similarly
achieve the highest performance levels within the first second but there is a decrease
in the performance as the trial evolves, a trend that can be interpreted as declining
engagement to the task. Finally, only subject P5 showed deterioration in performance
after the first second. The observed variability can be attributed to the subject’s
devotion to the task, how he/she performed it, and possibly to NMD condition.
Overall, this classification scheme appears to lead to optimal performance earlier
in time.

9.5 Toward a self-paced implementation

9.5.1 Related work

Providing the BCI-user with the ability to operate a BCI at his/her own will is
considered one of the fundamental aspects of BCIs and its significance for peo-
ple with motor disabilities is even greater. In the related literature of MI-BCIs,
there are only a few approaches that present a solution regarding a self-initiated
motion. In two of them, [46,47], a two-stage classification scheme is adopted,
with the first identifying the onset of an MI event, and the second determining
the direction of the imagery movement. Additionally, a “brain switch” has been
implemented based on the rhythm rebound (i.e., ERS). Either a simple thresholding
scheme [48] or linear discriminant analysis [49] is employed to flag a signifi-
cant departure from the ongoing activity that corresponds to an “idling” (baseline)
state.

9.5.2 An SVM-ensemble for self-paced MI decoding

The high performance of the SVM decoders working with time-resolved connectivity
patterns, vec(W[τ ]), motivated the search for a decoding scheme that could operate
without requiring an external trigger to define the trial initiation. The original idea was
that a “local” SVM tailored to deal with patterns from latency τsel would show a high
confidence level about its prediction only within a time-interval around that latency.
While this scenario seemed to work well upon trial-averaging, it could not cope well
with available MI trials, as it had the tendency to produce false-positive (FP) detections
(see Figure 9.10(b)). As a consequence, a sequence of SVMi, i = τsel1, τsel2, . . . , τselM ,
was employed with the scope of making more stringent the decision about detecting
an MI event. Assuming a trigger-agnostic scenario, these SVMs will run in parallel
resulting in a time-indexed vector Z(τ ) = [z1(τ ), z2(τ ), . . . , zM (τ )]T , with entries

zi(τ ) = SVM i(FeatureExtraction(vec(W[τ ])))

i = τsel1, τsel1, . . . , τselM

(9.8)
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Figure 9.10 SVM-ensemble formation: (a) a set of consecutive but not “colliding”
SVMs are combined in order to form an ensemble that will process, in
parallel, the streaming coupling measurements and derive for each
latency a vector of classification grades. (b) The latency-resolved
multitude of instantaneous SVM predictions is shown for three
exemplar single trials (first three columns in every row) along with the
corresponding pattern resulted from averaging the individual ST
profiles across all trials (rightmost column). Each SVM outputs a
classification score ranging within [−1 1], with the sign indicating
the movement side and the magnitude reflecting its confidence

Each entry zi denotes the multiplication of classifier’s confidence with the sign of
its prediction (+/− is associated with “right”/“left” movement), i.e., a real number
within [−1 1]. Deviating from the standard approaches for combining classifiers
(e.g., voting), in the proposed scheme, the classifiers’ outputs are combined based on
temporal patterning (that reflects their relative positioning in time, which is associated
with the optimal performance in the cued trials). An “instantaneous” classification
index is derived by averaging the individual signed confidences after imposing the
predefined lags

zensemble(t) = 1

M

M∑

i

zi(t + τseli) (9.9)

It is important to notice, here, that such an SVM-ensemble formation is feasible
and computational tractable, due to the prior selection of a unique set of “stable”
couplings. The proposed SVM-ensemble scheme is supported by two experimental
observations. First, the time-indexed accuracy of the locally defined SVMs showed
multiple, easy-detectable peaks (e.g., Figure 9.10(a)), which led to an automation
process for selecting the SVMs. Second, there was no pair of SVMs among the selected
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“local” ones in the ensemble that demonstrated significant similarity. The latter fact
means that all the selected SVMs were defining different separating-hyperplanes in
the space of common features.

9.5.3 In quest of self-paced MI decoding

Finally, the possibility of decoding phase-connectivity patterns in a way that could
be used in a future implementation of a self-paced MI-BCI, where the user would
initiate the MI events at will, was explored. Since self-initiated MI events were not
available, the scenario was partially “simulated” by exploiting the resting-condition
recordings and devising a scheme that would mark a time instance as the beginning
of an MI event, regardless of the class, only when the temporal patterning in the
streaming connectivity-data was deviant from the patterning in the baseline (rest)
condition. In this direction, 20 trials were selected from each patient’s resting-state
recording and “baseline” time-resolved connectivity patterns (extending for 8 s) were
formulated, based on an identical signal-analytic pipeline used in the case of MI
trials. The algorithmic steps required for the self-paced MI decoder are presented in
Figure 9.11.

A training set consisting of 10 trials from each class (“left”, “right,” and “rest”)
was formed and used in a two-stage data-learning process. During the first stage,
only the MI-related single-trial connectivity patterns ({vec(W[t]i

left)}i=1:10 alongside
with {vec(W[t]i

right)}i=1:10) were employed for (i) the feature-selection process, (ii) the
training of all “instantaneous” SVMs, and (iii) the “instantaneous” SVM selection.
The feature selection step is exemplified in Figure 9.12, for subject P2’s connectivity
patterns from α1 rhythm, while SVMs’ selection is exemplified in Figure 9.10(a).
Finally, the application of the SVM ensemble in a number of trials (from all recording
conditions) is depicted in Figure 9.10(b), where the vectors of successive predictions
appear as columns in the shown heat-maps. The rightmost panels in Figure 9.10(b)
include the corresponding trial-averaged heat-maps, where a “diagonal” pattern can
be identified in both cases of “triggered” MI events but not in the case of resting-state.
It was exactly this discrepancy that the stratified combination of the outputs of the
SVMs participating in the ensemble tried to reveal in a computationally tractable way
by means of (9.9).

In the second stage, the temporal traces corresponding to the single-trial “instan-
taneous” readouts from the SVM ensemble were derived for the abovementioned
MI-related connectivity patterns and, in addition, for the baseline-related ones
{vec(W[t]i

rest)}i=1:10. Figure 9.13 shows the estimated traces of classification index,
zensemble(t), in continuation of the example shown previously in Figures 9.10 and 9.12.
An evident peak can be identified, just after the third second (onset), for both the “left”
and “right” conditions. On the contrary, the traces derived from the rest condition
trials do not depict any comparable peak. In an attempt to quantify these observa-
tions, and simultaneously complete the design of a totally self-paced MI-decoding
scheme, we employed these 30 profiles for training purposes, crafting a decision
rule, that could provide evidence and therefore decide if the observed temporal
patterning in classification index can be correlated with the baseline condition
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Figure 9.12 Feature-selection procedure: (a) the latency-dependent Wilcoxon
score for all sensor pairs. (b) The definition of a “global” threshold
based on the distribution of Wilcoxon scores in randomized data.
(c) The selected subset of couplings that continuously exceed this
threshold for intervals longer than 100 ms (i.e., temporally consistent
discriminative couplings)

or with an MI event and, hence, should trigger the command associated with the sign
of the trace from the SVM ensemble. To accomplish the data-learning task, multi-
ple 0.5-s segments were extracted from the singe-trial traces shown in Figure 9.13
and confined within the intervals indicated via vertical dotted lines. These 100 seg-
ments were corresponding to the “MI-event” class (regardless direction). Moreover,
an equal number of segments, with no time restriction, were extracted from the
baseline condition, constituting the “baseline” class patterns. Both type of segments
were employed for training a binary-SVM (with a radial basis function kernel) to
discriminate an MI event from the baseline state. The trained “SVM switch” was
then fed with the streaming SVM-ensemble readouts, zensemble(t), resulted from the
testing set of trials. Figure 9.14 exemplifies this step by first illustrating the “instan-
taneous” single-trial readouts form the SVM ensemble (formed in Figure 9.10(a))
for all recording conditions (Figure 9.14(a)) and, then, the corresponding single-trial
traces of the instantaneous confidence of the SVM switch (Figure 9.14(b)). Using as
threshold, the confidence level of 0.5, only two FP detections were identified in all
three recording conditions (please notice that this would have also been the case if a
high confidence level had appeared within the first 3 s interval of a MI trial), and no
false negative ones. After referencing these counts to the number of trials, two proba-
bilistic indices regarding the observed probabilities of FN and FP (here 0/30 and 2/30,
respectively) were estimated. The overall procedure was repeated after different ran-
domized partitions of available data (i.e., Monte Carlo cross validation scheme), and
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Table 9.2 Subject demographics

Participant ID P1 P2 P3 P4 P5 P6

Brain rhythm α2 α1 β2 α2 α2 α2
FP 2.2% 3.5% 7.2% 3.9% 7.2% 2.7%
FN 1.4% 2.0% 5.3% 2.1% 3.3% 1.4%

the averaged results for each subject were tabulated in Table 9.2. The brain rhythms
had been selected according to the performance levels shown in Figure 9.9.

The very low probabilities of misdetection and false alarm, in conjunction with the
impressive performance of the individual MI decoders participating in the ensemble,
constitute the combined scheme (SVM ensemble and SVM switch) potentially suitable
for self-paced MI-decoding (see Figure 9.11).

9.6 Summary

NMD is a condition that gradually affects the musculature and eventually leads to
the loss of any voluntary muscle control. The reflections of NMD on the electroen-
cephalographic brain activity, under the perspective of establishing efficient BCIs,
have rarely been studied. It was the scope of this chapter to examine the differences in
the functional brain organization between NMD patients and healthy individuals in an
MI paradigm that, traditionally, is considered fruitful for endogenous BCIs. Special
attention was paid to dynamic patterns of functional connectivity aiming to determine
faster ways to perform MI decoding and provide solutions independent from external
triggering.
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Chapter 10

Graph signal processing analysis of NIRS signals
for brain–computer interfaces

Panagiotis C. Petrantonakis1 and Ioannis Kompatsiaris1

Graph signal processing (GSP) is an emerging field in signal processing that aims
at analyzing high-dimensional signals using graphs. The GSP analysis is intended to
take into account the signals’ inner graphical structure and expand traditional signal
processing techniques to the graph–network domain. In this chapter, we present a
GSP analysis framework for the implementation of brain–computer interfaces (BCI)
based on function near-infrared spectroscopy (NIRS) signals. Firstly, a GSP approach
for feature extraction is presented based on the Graph Fourier Transform (GFT). The
aforementioned approach captures the spatial information of the NIRS signals. The
feature extraction method is applied on a publicly available dataset of NIRS recordings
during mental arithmetic task and shows higher classification rates, up to 92.52%, as
compared to the classification rates of two state-of-the-art feature extraction method-
ologies. Moreover, in order to better demonstrate the spatial distribution of the NIRS
information and to quantify the smoothness or not of the NIRS signals across the
channel montage we present a GSP, Dirichlet energy-based analysis approach of
NIRS signals over a graph. The application of the proposed measure on the same
NIRS dataset further shows the spatial characteristics of the NIRS data and the effi-
ciency of this GSP approach to capture it. Moreover, Dirichlet energy-based approach
shows high classification rates, >97%, when used to extract features from NIRS sig-
nals. In sum, the presented methods show the efficacy of the GSP-based analysis of
NIRS signals for BCI applications and pave the way for more robust and efficient
implementations.

10.1 Introduction

Brain–computer interfaces (BCIs) have received great attention in the last two decades
as they play crucial role for communication and rehabilitation of people with motor
impairments [1–4]. Despite the fact that several signal processing techniques have

1The Multimedia Knowledge and Social Media Analytics Laboratory, Information Technologies Institute,
Centre for Research and Technology-Hellas (CERTH), Thessaloniki, Greece
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been developed for BCI algorithms [5–10], one of the most fundamental aspects of
such systems is the imaging modality used to capture the brain activity. Several such
brain–recordings techniques have been used to acquire brain activity with the most
popular, noninvasive modalities being the electroencephalography (EEG) [1], the
magnetoencephalography (MEG) [11–13], functional magnetic resonance imaging
(fMRI) [14–16], and near-infrared spectroscopy (NIRS) [17–20].

NIRS is a relatively new modality that exhibits promising features for efficient
BCI systems, such as portability (compared to fMRI and MEG), low noise (compared
to EEG and MEG that are severely affected by various electrical artifacts, i.e., eye
movements, face muscles etc.), user friendliness, i.e., no conductive gel is needed
during NIRS sensor placement in contrast with the EEG case and, finally, due to
recent technological advancements on novel wireless and wearable recording devices
[21, 22] it allows for noninvasive, portable and efficient BCI systems.

NIRS technique exploits the permeability of the tissue from near-infrared lights.
In essence, light source–detector pairs in the near-infrared range (650–1000 nm wave-
length) are used for the estimation, via the light absorption, of the concentration
changes (CCs) of the chromophore hemoglobin, specifically of its two main vari-
ants, oxyhemoglobin (oxy-Hb) and deoxyhemoglobin (deoxy-Hb) [23–25]. Since
hemoglobin is an oxygen carrier, changes in concentration levels of oxy-Hb and
deoxy-Hb during changes in activation levels of neuronal populations can be related
to mental task-specific responses and, thus, used for the realization of BCI systems.

The three main stages of a BCI system comprises (i) the evocation of the task-
related brain activity, (ii) the preprocessing and feature extraction stage, and (iii) the
classification with respect to the task performed by the subject during the brain activity
recording experiment. Mental tasks that are exploited to trigger neural activation for
NIRS-based BCI systems refer mainly to two brain regions, i.e., motor cortex (MC)
and prefrontal cortex (PFC) [17]. MC-related tasks correspond to different kinds of
motor imagery [26–28], whereas most prominent PFC-related tasks refer to mental
arithmetic, i.e., mental calculation performing (e.g., sequential subtraction, 97–4,
93–4, etc.) [29–35] and music imagery, i.e., mental music analysis without any
auditory stimulus [20, 36].

In regard with the three main steps of BCI systems, in this work we use a public
NIRS dataset that was recorded during mental arithmetic task as far as the first step
is concerned. Regarding the second step, we present a Graph Fourier Transform
(GFT)-based and a Dirichlet energy-based [37, 38] analysis for the extraction of the
feature vector whereas for the third step a support vector machine (SVM) classifier
[39], one of the most popular classification techniques for NIRS data classification
in BCI systems [40], is utilized for classification. The GSP-based feature vectors
are compared with two other state-of-the-art approaches that depend on either the
estimation of the mean CC values of the oxy-Hb and deoxy-Hb signals during certain
periods of the task execution or the respective slope (S) estimation of the signals
during the whole period of the task execution in order to capture the aforementioned
hemodynamic response [17, 41–44].

The proposed GSP approaches seem to exploit the potential, spatial patterns of
hemoglobin activity throughout the graph motif constructed by the different NIRS
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measurement channels and pave the way of channel-dependent analysis for NIRS
signals.

The rest of the chapter is structured as follows. Section 10.2 presents the NIRS
dataset used to evaluate the GFT and Dirichlet energy approaches. Section 10.3 elab-
orates on the methodologies presented in this chapter and the implementation issues
concerning their application on the NIRS dataset. Section 10.4 presents the results
of the application of the aforementioned methodologies over the NIRS dataset. Sec-
tion 10.5 discusses various aspects of the presented algorithms. Finally, Section 10.6
concludes the chapter.

10.2 NIRS dataset

The dataset used in this study is available online∗ and was firstly reported in
[31]. The dataset comprises eight subjects (three male and five female) of age
26 ± 2.8 (mean ± SD) that showed spatial, antagonistic hemodynamic, task-related
patterns [31]. Subjects were instructed to perform a cue-guided mental arithmetic
task (MAT), i.e., subtract sequentially a one-digit number from a two-digit one for
12 consecutive seconds after a cue. The task-related period was followed by a 28-s
rest period (for details, see online dataset documentation). Thus, each trial lasted for
40 s. Subjects 1–3 performed 18 trials, whereas subjects 4–8 performed 24 trials of
MAT. The recordings were performed by an NIRS recording set (ETG-400, Hitachi
Medical Co., Japan) comprising 16 light detectors and 17 light sources resulting in
a 52-channel grid; see Figure 10.1 for channel montage (this montage will be used

Light source Light detector Measurement channel

Figure 10.1 Source–detector configuration. Black circles: light sources, white
circles: light detectors, and star symbol: measurement channels (Fp1
association with the measurement channels is illustrated)

∗http://bnci-horizon-2020.eu/database/data-sets.
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as a graph in our analysis, channels correspond to vertices of the graph). The dis-
tance between light source and light detector was 3 cm, whereas the lowest line of
measurement channels was aligned with the Fp1–Fp2 lines (Fp1 channel alignment
is shown in Figure 10.1). The sampling rate was 10 Hz. In all signals in the dataset, a
fourth-order, 0.01 Hz, high-pass Butterworth filter was applied to remove the baseline
drift [29, 30]. Finally, the trial-related signal of all channels was referred to the 10-s
baseline interval prior to the task before any analysis of the signals was performed.

10.3 Materials and methods

10.3.1 Graph signal processing basics

GSP theory refers to analysis of signals recorded from sensors comprising a net-
work that resembles a graph. A graph is defined as the pair G = (V , W ), where
V = {v1, . . . , vn} is the set of n vertices (e.g., the sensors) and W ∈ R

n×n is the adja-
cency matrix of the graph with wij ≥ 0 denoting the weight of the edge (i, j) between
the vertices vi, vj ∈ V . Graphs G are also considered to be symmetric, i.e., ∀(i, j),
wij = wji. The degree matrix D ∈ R

n×n of a graph is a diagonal matrix with diagonal
elements Dii = ∑n

j=1 wij, i = 1, . . . , n. Moreover, the Laplacian matrix L ∈ R
n×n of a

graph G is defined as L = D −W.

The Laplacian of a graph is a real, symmetric, positive semidefinite matrix and
can be decomposed as

L = U�U H (10.1)

where � is the diagonal eigenvalue matrix � = diag(λ0, λ1, . . . , λn−1), where
{λk}, k = 0, 1, . . . , n − 1 is the corresponding set of the eigenvalues of the Lapla-
cian matrix and U = [u0, u1, . . . , un−1] is the eigenvector matrix. U H is the Hermitian
(conjugate transpose) of matrix U . It is assumed that the eigenvalues of the Laplacian
matrix are arranged in ascending order so that, 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1.

The eigenvector matrix is used to define the GFT [45]. A signal over a graph G
is a vector x ∈ R

n that is interpreted as scalar values observed in each vertex, i.e.,
each sensor (in this work an NIRS channel), vi ∈ V , i = 1, . . . , n. Thus, given a signal
x and a Laplacian L, the GFT of the signal is defined as

x̃ = U H x (10.2)

and the inverse Graph Fourier Transform (iGFT) is defined as

x = U x̃. (10.3)

Thus, each pair (x, x̃) forms a GFT pair. For the NIRS data case, vertices cor-
respond to measurement channels (see Figure 10.1) and, thus, x, corresponds to all
measurements acquired over the graph in a specific timestamp.

In essence, GFT encodes the notion of variability over vertices as the tradi-
tional Fourier Transform encodes variability of the temporal properties of the signals.
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This variability is encoded on the eigenvectors and their fluctuations over the graph
G vary for different frequency ranges, i.e., rapid fluctuations for high frequencies
(last coordinates of x̃) and more smooth fluctuations for lower ones (first coordinates
of x̃ [46].

Here, we present the results of three different frequency, f , ranges, i.e., low,
medium, and high. As f ranges from 1 to 52, low-, medium-, and high-frequency
ranges were chosen to correspond to approximately equal frequency ranges, i.e., 1 to
18, 19 to 35, and 36 to 52, respectively, across the whole frequency range.

10.3.2 Dirichlet energy over a graph

To better quantify the distribution of useful information across the channel montage
and provide a measure for smoothness (or nonsmoothness) of the NIRS signals over
the channel grid, we also estimated the Dirichlet energy of the graph NIRS signals.
In GSP theory, the notion of smoothness of a graph signal x is expressed via the
p-Dirichlet form of x which is defined as [37, 38]

Ep(x) = 1

p

∑
i∈V ‖∇i x‖p

2. (10.4)

When p = 2 then:

E2(x) =
∑

(i, j)∈Ewij(xi − xj)2 = xT Lx, (10.5)

that is, the graph Laplacian quadratic form, which is denoted here as the Dirichlet
Energy (E) of x. If x is constant across all vertices of the graph, then E = 0. In general,
E is small when the signal x has similar values in neighboring vertices, i.e., the signal
x is smooth. In essence, E is a measure of how much a graph signal changes with
respect to the network of the nodes (here the network of the NIRS channels). In the
NIRS case, it is a measure of how much an NIRS signal changes with respect to the
channel montage.

Thus, it is expected that E will be approximately zero when no mental task is
executed, thus no oxy-Hb or deoxy-Hb CCs are detected across NIRS channels. In
the contrary, E is expected to maximize within the task execution period [47].

10.3.3 Graph construction algorithm

To construct the NIRS graph, i.e., to estimate the W matrix of the weights between
the nodes, the Semilocal (SL) approach was adopted here. It has been proved that
the SL approach is the most efficient among other approaches of W estimation for
brain signals [46]. Moreover, the whole approach is computationally efficient as it is
mainly based on estimating the covariance between two NIRS channels. In particular,
a W matrix for an SL graph connects only close NIRS measurement channels (with
the Euclidian notion of proximity). The weights used for the connection of the nodes
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though, correspond to the absolute value of covariance between the measurements of
the two channels, i.e.,

wcov
ij =

{∣∣cov(xi , xj)
∣∣ if d(vi , vj) ≤ Tw

0 otherwise
(10.6)

where xi , xj are the signals that correspond to the measurements over time of the NIRS,
i, j, channels (vertices of the graph) for a specific trial of the task. d(vi , vj) is the
Euclidean distance between the NIRS measurement channels vertices (Figure 10.1).
Finally, Tw is the distance threshold used to determine the proximity criterion.

10.3.4 Feature extraction

In the following subsections, the GFT-based feature vector [48] along with the baseline
feature vector extraction approaches, S and CC, are described.

10.3.4.1 GFT feature vector
The GFT feature vector is based on the decomposition of a trial, second-dependent,
measurement x′ over the graph G. In particular, for a specified second t (t is actually
a set of sample moments corresponding to 1 s period) within a trial, the signal x′ is
defined as the mean signal over all 10 measurements (sampling frequency of 10 Hz)
during the specified second of the trial. The GFT x̃′ is computed using (12.2) and the
respective GFT feature vector (FV) is defined as

FVGFT = x̃′
f (10.7)

where f denotes the frequency range, i.e., low, medium, high. The number of the
frequencies in each range determines the number of the coefficients of x̃′ that are
used for the construction of the respective feature vector. In addition, except for the
low-, medium-, and high-frequency ranges, the f =“all” frequencies option is also
presented here. Vectors x′ that correspond to seconds ta = 1, . . . , 14 s after cue onset
are considered to belong to MAT class [29], whereas vectors corresponding to seconds
tb = 20, . . . , 30 s after cue onset are considered to belong to the Relax class [29] as
far as the GFT vector is concerned.

10.3.4.2 S feature vector
Here we also present the results of the slope-based S feature vector that is used in
the majority of the NIRS-based BCI systems to capture the fluctuations of oxy-Hb
and deoxy-Hb exhibited during mental tasks. For a specified time interval window
(I ) the slope of the regression line fit of the respective measurements is estimated.
To better capture the increase/decrease effects, a sliding window I with overlap of
33% [32] was used with I = 10 (equal to sampling frequency). Again the time period
between seconds 1 to 14 was considered as MAT class. Thus, the Sa

t , t = 1, . . . , 14 s
is the S feature vector for class MAT estimated for seconds 1 to t. For instance, Sa

1 is
the S feature vector estimated only for the first second after onset whereas, e.g., Sa

5 is
estimated for the first 5 s after onset.

Similarly, Sb
t , t = 17, . . . , 30 s, feature vectors were estimated for the class Relax.

In essence, t = 17 is considered the first second of the Relax state. Thus, Sb
17 is the
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S feature vector estimated for the first second of the Relax state whereas, e.g., Sb
21 is

estimated for the first 5 s of the Relax state. Ranges of t for MAT and Relax classes,
i.e., 1–14 and 17–30, respectively, were selected in order to result in equal numbers of
features for the two classes depending on the seconds used for their estimation [48].

10.3.4.3 CC feature vector
Apart from the slope-based feature vector, the CC feature of mean CCs is extensively
used in NIRS-based BCI systems [17]. Here, CC-based feature is also used for base-
line comparison. The CC feature adopted in this work was recently proposed [29, 30]
based on the antagonistic pattern detected during MATs. In particular, CCs (averaged
over 1 s period) at seconds t = 10, . . . , 14 were labeled as MAT class. On the contrary,
mean CC values at seconds t = 26, . . . , 30 after onset were used for the class Relax.

10.3.5 Classification

In the majority of the NIRS-based BCI system studies, LDA and SVMs [49] are the
most commonly used classifiers [17]. Nevertheless, it was recently shown [30] that
linear SVM is the most effective classifier for the dataset used here, compared to a
variety of other classification methods. Thus, in this work the linear SVM classifier
was used in order to test the reliability of the GSP-based feature vectors compared to
the baseline ones, S and CC feature vectors.

10.3.6 Implementation issues

For the estimation of the W cov matrix, we investigated four different threshold Tw

values, i.e., Tw = 3, 4.5, 6, and 7.5 cm, taking into account that the distance between
a source–detector pair is 3 cm. For each subject the value that led to the most efficient
recognition of the arithmetic mental task was used. Moreover, the time window used
for the W cov corresponded both to the measurements during only the task execution
period, i.e., 12 s (seconds 1 to 12 after cue onset), and to measurements during all
40 s, i.e., for seconds −10 to 30 in respect to the cue onset were used. Again the most
efficient choice was used for each subject.

In addition, for the W cov estimation two trials r = 1, 2 (approximately 10% of
the trials) from each subject were used. and the mean between the two trial-referred
matrices was used for the final weight matrix of the graph [48]. Finally, weights were
normalized in the range [0, 1]. For the analysis of GSP theory the GSPBOX toolbox
was used [50].

As far as the classification process is concerned, a leave-p-out cross validation
framework was adopted. In each classification iteration, 70% of the trials of each
subject were randomly chosen to be used for training and the rest (p observations)
were kept for testing. The mean classification rate (CR) across 10 iterations of the
leave-p-out process was used as an evaluation criterion throughout the rest of this
paper. It must be stressed out that the trials used for the estimation of the matrix W cov

were not considered for the classification stage. Thus, 16 trials from subjects 1, 2,
and 3 and 22 trials from subjects 4, 5, 6, 7, and 8 were used for classification.
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10.4 Results

The evaluation of the GFT-based feature vector went through a thorough experimenta-
tion phase were the optimal parameter set, in terms of the corresponding classification
accuracy, of the W cov−win, Tw, ta, tb and f variables was determined for each subject.
The same process for parameter optimization took place as far as the S and CC
feature vectors are concerned. The results concerning the subject dependent classifi-
cation task and the respective mean CR values across all 10 iterations are presented
in Table 10.1 for the oxy-Hb signals and for all three feature vectors.

The mean CR across all subjects was 88.39% (±9.36), 82.60% (±9.68), and
92.52% (±6.67) for oxy-Hb and S, CC, and GFT feature vectors, respectively. Thus,
the GFT base vector outperforms the rest state of the art approaches for all subjects
except for S1 and S3 where the S-slope approach exhibits better CR values. Nev-
ertheless, the S and CC approaches result in feature vector lengths of 936 and 260
features, respectively, whereas the GFT-based vector is of mean length of approxi-
mately 21 features [48]. Hence, the GFT approach accomplishes better classification
performance with much shorter feature vector.

Furthermore, Table 10.2 presents the CR values for all three feature vector extrac-
tion approaches for the deoxy-Hb signals. Again the GFT-based approach outperforms
the other two state-of-the-art methods. Although GFT and CC approaches show
poorer performance as compared to the oxy-Hb signals, the S methodology shows
advanced performance. Nevertheless, S feature vector performance is poorer than
the GFT ones. In particular, the mean CRs across all subjects were 90.35% (±5.71),
78.94% (±12.01), and 90.98% (±5.76) for deoxy-Hb and S, CC, and GFT feature
vectors, respectively. Moreover, it should be stressed out that the S and CC approaches
result again in a lengthy feature vector, i.e., the feature vectors are of lengths of 988

Table 10.1 CR values for the S, CC, and GFT-based feature vectors for oxy-Hb

Feature S1 S2 S3 S4 S5 S6 S7 S8 Mean SD
vector

S 91.67 90.00 98.33 92.92 72.50 75.00 93.33 93.33 88.39 9.36
CC 87.22 78.33 89.44 90.83 66.25 70.83 86.25 91.67 82.60 9.68
GFT 86.88 95.63 98.12 99.55 84.55 82.73 95.91 96.82 92.52 6.67

Table 10.2 CR values for the S, CC, and GFT-based feature vectors for deoxy-Hb

Feature S1 S2 S3 S4 S5 S6 S7 S8 Mean SD
vector

S 87.78 88.33 96.67 92.92 85.42 81.67 91.25 98.75 90.35 5.71
CC 83.33 72.78 78.33 88.33 74.58 55.42 83.33 95.42 78.94 12.01
GFT 90.00 96.25 92.50 94.55 78.18 89.09 91.82 95.45 90.98 5.76
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and 260 features, respectively, whereas the GFT-based vector is of mean length of
approximately 26 features [48]. Hence, the GFT approach accomplishes again better
classification performance with much shorter feature vector.

As previously stated, the superiority of the GFT approach over the state-of-the-art
ones is assumed to be based on the spatial characteristics of the NIRS signals that
the GFT approach takes into consideration. To further validate this assumption, we
estimated the Dirichlet energy (E) over each trial of the BCI experiment.

In Figure 10.2, the E values over the oxy-Hb values of the trial 12 of subject 2 are
presented. It is obvious that before the cue onset, E values are very small detecting low
divergence across the NIRS channel grid (smooth graph signal). On the contrary, after
the cue onset, E starts to increase depicting associated increase of the divergence of the
NIRS values across the respective measurement channels (nonsmooth graph signal).

Indeed, this can be proved by inspecting the concentrations changes of oxy-Hb
for all NIRS channels across time for the respective trial.

Figure 10.3 demonstrates the aforementioned CCs. Thus, despite the fact that
the graph NIRS signal x seems to be smooth during the pretask period (10-s period
before the dashed line) CCs start to vary after cue onset, leading to a more diverge
texture of the graph signal. This spatial, channel-oriented divergence is captured by
the Dirichlet energy measure (see Figure 10.2), which starts to increase after the
cue onset and decreases later on. It is noteworthy that despite the fact that the task
execution period lasts for 12 s after cue onset, the spatial divergence lasts even after
that time frame. Nevertheless, it starts to diminish after the 15th s after the cue onset.
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Figure 10.2 The estimated Dirichlet energy (normalized in the range [0, 1]) for
trial = 12 of subject 2. The dashed vertical line corresponds to the cue
onset
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Figure 10.4 The graph signal x across all measurement channels for second −4
(left) and second 12 (right) for subject 2, trial 12 (see Figure 10.3).
The vertices of the graphs are associated with the fNIRS channels in
Figure 10.1

To better illustrate this texture-like change of the NIRS signals across the channel
grid, Figure 10.4 shows the graph signals of seconds −4 (4 s before the cue onset)
and 12 (12 s after the cue onset, i.e., the second that the MAT ends). For the former
case, the NIRS graph vector over the measurement grid seems to be smooth, i.e.,
the values of neighboring channels slightly diverge. Moreover, the value range of the
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NIRS signals is narrow, i.e., values range from approximately −0.01 to 0.06. On the
contrary, the graph signal of the 12th second shows a more intense divergence of
NIRS values and the corresponding values range from approximately −0.3 to >0.2.

In an attempt to test the discrimination ability of the Dirichlet energy feature
between the Relax phase of the experiment and the phase where the MAT takes place,
we also investigate the E feature under a classification task. As a feature vector, we
use only two values, i.e., the mean Dirichlet energy (E) values of two consecutive
5-s windows. In particular, for the Relax phase the two mean values of the Dirichlet
energy of window −10 to −5 and of the window −5 to 0 are used.

On the contrary, for the MAT phase three different cases were adopted. Case 1:
the first feature is the mean E value of the time window 0 to 5 and the second is the
mean E value of the time window from 5 to 10 s. Case 2: the first feature is the mean
E value of the time window 10 to 15 and the second is the mean E value of the time
window from 15 to 20 s. Finally, Case 3: the first feature is the mean E value of the
time window 20 to 25 and the second is the mean E value of the time window from
25 to 30 s. Figure 10.5 shows the abovementioned feature sets for all three cases for
the oxy-Hb signal.
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For the sake of completeness, we also investigated the abovementioned Dirichlet
energy features for the deoxy-Hb signals. The corresponding features are depicted in
Figure 10.6.

For the classification of the proposed E-based features, the same classifier that
was used with the GFT-based feature vector was used and the same classification
framework was followed as described in Section 10.3.6. The CR values of the clas-
sification outcome are tabulated in Table 10.3 for both oxy- and deoxy-Hb signals.
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Table 10.3 CR values for the subject independent Dirichlet
energy-based feature vectors for oxy and
deoxy-Hb

Signals Case 1 Case 2 Case 3

Oxy-Hb 92.97 97.49 97.97
Deoxy-Hb 90.50 95.74 94.84
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Despite the fact that the proposed feature vector is comprised of only two values,
i.e., the E values of two consecutive, 5-s, time windows, the CR rates are high.
In particular, the best CR is accomplished for the oxy-Hb, Case 3 framework with
97.97% of success. Taking into account that the reported CR values are for subject
independent classification, it is evident that the Dirichlet energy measure is very
efficient on capturing the transition from the Relax phase to the MAT one.

10.5 Discussion

The results presented in the previous section show the efficiency of the GSP theory
to extract features from NIRS signals for BCI applications. The efficiency of the
GSP approach is based on the incorporation into the feature vector of the spatial
characteristics across the NIRS channel montage, an aspect that has been extensively
studied in EEG signals [51] but not for NIRS ones. The different texture of the graph
NIRS signals as depicted in Figure 10.3 is detected between the different phases of
the BCI experiment, i.e., Relax vs. MAT, and provide the NIRS BCI system with
spatial information.

Until now, the NIRS-based BCI systems relied mostly on slope oriented fea-
tures, and thus the information transfer rates remained low as slope-related features
require several seconds to be expressed. GFT-based and Dirichlet energy-based fea-
ture vectors exploit the spatial information of the hemodynamic response during a
mental task, e.g., the spatial patterns during an MAT [31] which are shown to be
expressed during even the first 5 s of the MAT phase leading this way to faster BCI
applications.

Furthermore, it is noteworthy that the spatial differentiation over the measurement
channels between the pre- and post-cue onset threshold may indicate a task-related
graph pattern (TRGP) that is expressed within the first seconds after the task onset
and probably vanishes thereafter. Further experimentation of the proposed feature
vectors should include validation of the proposed approach to more NIRS datasets
and investigation of the TRGP behavior as expressed in the GFT space of the NIRS
signals of the first seconds after onset.

10.6 Summary

In this work, GSP-based feature extraction methods for NIRS signals were presented.
The proposed approaches outperform widely used feature extraction approaches for
NIRS-based BCI systems. Moreover, the efficiency of the proposed features is illus-
trated in real NIRS signals where it is shown to discriminate relax phase from
task-related periods even within a time frame of the first 5 s after onset. Never-
theless, the efficacy of the proposed approaches should be further tested on more
datasets for NIRS-BCI systems.
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Error-aware BCIs
Fotis P. Kalaganis1,2, Elisavet Chatzilari1,
Nikos A. Laskaris2,3, Spiros Nikolopoulos1,

and Ioannis Kompatsiaris1

The ability of recognizing and correcting the erroneous actions is an integral part of
human nature. Plenty of neuroscientific studies have been investigating the ability of
human brain to recognize errors. The distinct neuronal responses that are produced by
the human brain during the perception of an erroneous action are referred to as error-
related potentials (ErrPs). Although research in brain–computer interfaces (BCIs) has
managed to achieve significant improvement in terms of detecting the users’intentions
over the last years, in a real-world setting, the interpretation of brain commands still
remains an error-prone procedure leading to inaccurate interactions. Even for multi-
modal interaction schemes, the attained performance is far from optimal. As a means
to overcome these debilities, and apart from developing more sophisticated machine-
learning techniques or adding further modalities, scientists have also exploited the
users’ ability to perceive errors. During the rapid growth of the BCI/Human-Machine
Interaction (HMI) technology over the last years, ErrPs have been used widely in order
to enhance several existing BCI applications serving as a passive correction mech-
anism towards a more user-friendly environment. The principal idea is that a BCI
system may incorporate, as feedback, the user’s judgement about its function and
use this feedback to correct its current output. In this chapter, we discuss the poten-
tials and applications of ErrPs into developing hybrid BCI systems that emphasize in
reliability and user experience by introducing the so-called error awareness.

11.1 Introduction to error-related potentials

ErrPs are characteristic electroencephalogram (EEG) signals observed after subjects,
in various tasks, committing errors. Several types of errors can evoke ErrPs-type
signals, e.g., depending on who is responsible for the error (the user or the interface)
or how the user perceives the error (e.g. as an erroneous feedback to an action or

1Information Technologies Institute, CERTH, Thermi-Thessaloniki, Greece
2Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
3Neuroinformatics Group, Aristotle University of Thessaloniki, Thessaloniki, Greece
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as an observation of an error made by an independent operator). Through ErrPs, the
EEG sensor offers a natural way to correcting the errors taking place in a natural
user interface by the responsibility of either the user or the interface itself. Therefore,
utilities like ‘undo’ or ‘backspace’ can be performed in an automated way, stemming
from user’s spontaneous physiological responses, leading to seamless user experience
and faster interaction.

ErrPs were first presented in [1] and refer to the human brain’s electro-
physiological response if an erroneous action is monitored and/or performed.
A typical ERP signal consists of two components, a negative deflection followed
by a positive one [2]. The first (usually called Ne) has a front-central scalp
distribution and peaks of about 50–100 ms following incorrect responses. The
second component, the error-related positivity (Pe), is associated with awareness
of erroneous actions and consists of a high peak of magnitude. This compo-
nent, subsequent to the Ne component, is mostly noticeable in the centro-parietal
brain area. The most prominent findings concerning the localization of this event
demonstrate that the anterior cingulate cortex is mainly activated during erroneous
processes [3,4].

ErrPs have been widely employed to enhance the user experience provided in
several BCI applications. Particularly, spellers, a widely known category of BCI
applications, take advantage of the ErrPs. Authors in [5] exploited the neural cor-
relations associated with error awareness so as to significantly improve Information
Transfer Rate (ITR) in a P-300-based BCI. An online adaptation of ErrPs was used
in [6] along with code-modulated VEPs. Generally, the results of integrating ERP-
based correction in an HMI system are promising. A variety of studies have managed
to successfully combine motor-imagery-based interfaces with ERP mechanisms that
provided an indication to whether defy certain actions (those recognized as erroneous)
or not [7,8]. More recently, researchers presented that the amplitude of ERP compo-
nents is modulated by the severity of the error and that ErrPs can be detected while
continuous feedback was presented, which means that discrete feedback presentation
is not mandatory [9]. In this chapter, we present how and when ErrPs can be used so as
to offer a significant improvement in both an Steady-State Visual Evoked Potentials
(SSVEP)-based BCI for a web-site navigation by cancelling out erroneous actions
automatically as well as in the setting of gaze-based keyboard that the ‘backspace’
functionality is automated.

11.2 Spatial filtering

A common preprocessing step, in EEG signal analysis, concerns spatial filtering,
where a transformation is applied to the spatial (channels) domain in order to increase
the signal-to-noise ratio (SNR). Spatial filters can be separated into two distinct
categories. On one hand, are those that are data-independent (i.e. the weights for
each sensor are predetermined), such as the Laplacian filter and the common average
re-reference technique [10]. These filters are mostly used in electroencephalography
analysis to diminish volume conduction effects. On the other hand, are the filters
which are data-dependent (i.e. data are necessary for filter calculation). In particular
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for use within ERP-BCI paradigms, the xDAWN [11] and canonical-correlation-
analysis-related filters [12] appear as the most promising ones [13]. The former
aims to maximize the signal-to-signal-plus-noise ratio, while the latter the correlation
between the single-trial signals and the average evoked response.

In this section, we present two methods for spatial filtering that resorts to the
well-established temporal patterning of ERP responses and maximizes the separability
among single-trial responses belonging to distinct brain states. The use of this concept
had been initiated successfully in a BCI paradigm that relied on transient visual evoked
responses [14]. Therein, a differential sensor montage was introduced based on the
bipolar pattern emerged in the topographical distribution of the evoked response. Here,
we elaborate initially on a method stemming from the domain of subspace learning
and then on a generalized methodology for designing spatial filters based on Fisher’s
discriminant analysis of single-trial temporal patterning. The main goal of this section
is to provide methods that increase the SNR of the recovered response (either directly
or indirectly) while enhancing the differences between responses of different types
or brain state. We show here that Fisher’s separability criterion constitutes the natural
extension of a standard SNR estimator suitable for multi-trial ERP responses and can
therefore naturally lead to spatial filters conforming to discriminant analysis. The
presented filters, named hereafter Collaborative Representation Projection (CRP)
and discriminant spatial filters (also called discriminant spatial patterns in [15]),
offer a flexible framework and are characterized by computational efficiency. The
approaches are validated using independent ERP datasets, concerning ErrPs in various
BCI settings, in direct comparison with other widely employed methodologies.

11.2.1 Subspace learning

Dimensionality reduction is a very wide field of statistical analysis that has drawn
a lot of interests. It is a common practice in many machine-learning and statistics
tasks to employ dimensionality reduction methods as a feature extraction process
especially when they succeed in preserving the underlying manifold structure of the
data. The graph-embedding methodology, where the data are represented by a pairwise
distance matrix according to some distance metrics that captures their relationship,
offered a unified framework for multiple dimensionality reduction methods (Principal
Component Analysis (PCA), Linear Discriminant Analysis, etc.) [16]. The graph
construction is probably the most crucial step in these methods, since it should be able
to capture and reveal the underlying data association. Collaborative representation
has been recently proposed as an automated way for constructing a graph where data
similarity stems from the ability of data to reconstruct each other [17]. Each data
sample is potentially represented as a weighted sum of the remaining data points. The
weights employed during this reconstruction process represent the similarity of data.

11.2.1.1 Unsupervised collaborative representation projection
The collaborative representation projection method [17] aims into offering an auto-
mated way for graph construction that represents the underlying data relationship.
During this graph construction process, each data sample is represented as a lin-
ear combination of the rest of the samples. Let us denote by X = [x1, x2, . . . , xn]
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the data matrix that contains n m-dimensional samples. The problem corresponds to
calculating the optimal weights wi that offer the best reconstruction for each xi

w∗
i = argmin

wi

{‖xi − X wi‖2
2 + λ‖wi‖q} (11.1)

In the previous equation, wi = [wi,1, . . . , wi, j−1, 0, wi, j+1, . . . , wi,n]T where each ele-
ment wij of wi represents the contribution of xj in the reconstruction of xi. The L-2
graph G(X , W ) is constructed considering that data samples are the vertices, the col-
laborative weights as the graph weights and q is set to 2. For L-1 graph, q should be
set to 1.

The constructed graph can now be employed so as to calculate a new projection
space through a projection matrix P. The L-2 graph represents the reconstruction
relationship of the data using weak sparse constraints (a more strict sparsity constraint
can be achieved using the L-1 graph). We now aim to find a projection space where
local compactness of the graph is minimized. This means that the samples with
the ability to accurately represent another sample will preserve that property in the
projection space. This criterion is formulated mathematically as

CL =
n∑

i=1

∥∥∥∥∥PT xi −
n∑

i=1

wijP
T xj

∥∥∥∥∥

2

(11.2)

and by setting SL = X (I − W − W T + WW T )X T , where I denotes the identity matrix,
(11.2) can be rewritten as

CL = PT SLP (11.3)

Apart from minimizing the local compactness of the graph (which can also be
understood as sparsity preservation), we aim at a projection capable offering maxi-
mum separability of the data. This leads to the maximization of the total covariance, in
the projection space, that can be achieved through the total scatter and is expressed by

CT =
n∑

i=1

∥∥PT xi − PT x̄
∥∥2

(11.4)

which can be rewritten in matrix form by setting ST = ∑n
i=1 (xi − x̄)(xi − x̄)T as

CT = PT ST P (11.5)

It is consistent that for machine-learning purposes both of the aforementioned
criteria need to be held simultaneously. We should minimize the local compactness
and in the meantime we need to maximize the total separability. The final optimization
problem is formulated as

P∗ = argmin
P

PT SLP

PT ST P
= argmax

P

PT ST P

PT SLP
(11.6)

The solution to (11.6) can be obtained by the generalized eigenvalue decomposition
of ST P = λSLP. Finally, P∗ corresponds to the eigenvectors of the largest eigenvalues
of the previous problem.
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11.2.1.2 Supervised collaborative representation
The classic CRP algorithm operates in an unsupervised manner assuming that the
weights will be able to uncover the underlying relationship of the data. In EEG, the
desired brain activity is only captured by certain channels, while the activity of the
rest channels is being inconsistent (regarding a desired stimulus) due to the nature of
human brain signals where each brain region is devoted to a different task (e.g. it is
not expected to find the reflection of an auditory stimulus in signals recorded over
the motor cortex). Consequently, by using the classic CRP approach we would end up
with weights that are not meaningful, although the collaborative representation error
will be sufficiently small.

The supervised CRP (sCRP) [18] differentiates from the original version only
during the graph construction process. In the presented study, we enforce the data to
be represented as a linear combination of the same class samples, that is, wij = 0 if
i and j data samples belong to different classes. Equation (11.1) is used to calculate
the weights for samples of the same class. Since the CRP objective, described by
(11.6), ensures that locality is preserved in the low dimensional space, we end up
with a more discriminant representation. Intuitively, the samples of the same class
tend to create a local neighbourhood, while the overall scatter, across all classes, is
maximized.

As already mentioned, during the graph construction we take into account only the
samples of the same class. This reduces the computational cost needed during weight
calculation (Equation (11.1)), which is the most computationally intensive task, since
it involves the calculation of an inverse matrix as many times as the number of training
samples.

11.2.2 Increasing signal-to-noise ratio

An ERP signal is a recorded brain response that is the direct aftereffect of a specific
event (e.g. the perception of an erroneous action). Due to low SNR of the recorded
signals, several single-trial responses (i.e. repetitions) can be aggregated in the so-
called ensemble average waveform. Averaging, typically, ensures that the background
noise (i.e. brain’s electrical activity that is not related to the stimulus) is cancelled out
and only a small fraction survives the averaging. Two assumptions must hold so that
averaging will increase the SNR of the ErrPs. First, the signal of interest should consist
of phase-locked responses with invariable latency and shape. Second, the background
noise should follow a random Gaussian process of zero mean, uncorrelated between
different recordings and not time-locked to the stimulus [19].

Typically, SNR is used in order to validate the credibility of one signal. However,
the SNR hardly offers any information regarding the separability among groups in a
classification problem, where distinct types of responses need to be considered. We
discuss next, how Fisher’s separability criterion can blend SNR measurements from
distinct groups into a single class discrimination score. Finally, we extend this idea
to the case of multichannel recordings so as to formulate a suitable cost function for
spatial filter design.
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11.2.2.1 Preliminaries
Considering that the average waveform is ‘practically’ free of noise (due to a suffi-
ciently large number of recorded responses), the calculation of SNR may proceed as
follows.

Let us denote by X i = [si
1, si

2, . . . , si
m]T ∈ Rm×p, the ith multichannel single-trial

response (i.e. a matrix that contains a single brain response recorded from multiple
sites) with DC offset removed, where m denotes the number of sensors and p the
number of samples. Hence, s̄k = (1/Nx)

∑Nx
i=1 si

k represents the average response,
which is a p-dimensional vector, of Nx single-trial responses for the kth sensor.
Similarly, the average multichannel response is expressed as X = (1/Nx)

∑Nx
i=1 X i =

[s̄1, s̄2, . . . , s̄m]T .
Consequently, the signal power (SP) and noise power (NP) of kth sensor are

defined as

SPk = 1

p
‖s̄k‖2

2 (11.7)

NPk = 1

p(Nx − 1)

Nx∑

i=1

‖s̄k − si
k‖2

2 = 1

p
csk (11.8)

where csk can be interpreted as a measure of dispersion of the single-trials from
the average waveform. Formally, this quantity corresponds to the energy of noise.
Equation (11.8) implies that every trial is an addition of the ERP signal and noise.
Then the corresponding SNR of the kth sensor is the ratio of SPk over NPk .

SNRk = ‖s̄k‖2
2

csk

(11.9)

Observing the previous equation, we could easily conclude that in an ideal
scenario we would expect identical ErrPs with zero scatter among them.

In a typical ERP-based BCI, we aim at distinguishing between two types of brain
response, ERP vs nonERP, or equivalently to discriminate between two groups of
single-trial responses. One could easily separate the two groups if the temporal pat-
terning is consistent within the groups and deviates across groups. In such a case, the
corresponding averaged waveforms would differ significantly, while the dispersion
for both groups will be low. The first condition can be formulated as high power for
the differential averaged signal (i.e. the difference of the average waveforms). The
second condition can be expressed as the sum of two terms, expressing the NP of
either group. These two conditions ensure that indeed the two groups are distinguish-
able, while the single-trial responses are identical within each group. By forming the
corresponding ratio SP/NP and simplifying the expression, we end up with Fisher’s
separability criterion used in standard discriminant analysis [20].

Considering two groups of single-trial responses, X i and Y j with Nx and Ny trials
each, the separability index of the kth sensor becomes

Jk = ‖s̄k (X ) − s̄k (Y )‖2
2

csk (X ) + csk (Y )
(11.10)
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11.2.2.2 Discriminant spatial filters
Having defined all the necessary notations as previously, we are now in a position
to formulate the spatial filter design as an optimization problem. Although (11.10)
could be used for sensor selection, we are looking for a spatial filter that captures this
idea and extends it to multiple sensors. Since surface EEG measurements may reflect
the neural response of interest in several electrodes placed over the scalp, and with
a varying grade of credibility, we seek the linear combination (i.e. a weighted sum
of sensor signals to create a ‘virtual’ signal) that will maximize Fisher’s separability
criterion.

Let w = [w1, w2, . . . , wm] ∈ Rm be a spatial filter (weight vector). Denoting CX =
(1/Nx − 1)

∑Nx
i=1 (X i − X̄ )(X i − X̄ )T , the average response and noise energy for the

‘virtual sensor’ (VS) for the X i group of trials can be written as

s̄vs(X ) = w1s̄1 + · · · wms̄m = w

⎡

⎢⎣
s̄1
...

s̄m

⎤

⎥⎦ = wX̄ (11.11)

cvs(X ) = 1

Nx − 1

Nx∑

i=1

‖wX̄ − wX i‖2
2 = wCX wT (11.12)

Similarly, for the Y group, the corresponding average response and noise energy
are calculated as

s̄vs(Y ) = wȲ (11.13)

cvs(Y ) = wCY wT (11.14)

following the similar denotation, as previous, for the Y group where CY =
(1/Nx − 1)

∑Nx
i=1 (Y i − Ȳ )(Y i − Ȳ )T .

Fisher’s separability index of the ‘VS’ can now be expressed as

Jvs = ‖s̄vs(X ) − s̄vs(Y )‖2
2

cvs(X ) + cvs(Y )
(11.15)

Substituting (11.11)–(11.14) to (11.15), Jvs can be easily reformulated and hence
maximized by

w = arg max
w

w(X̄ − Ȳ )(X̄ − Ȳ )T wT

w(Cx + CY )wT
(11.16)

It is easy to notice that the ratio in the right-hand side is a generalized Rayleigh
quotient and hence the solution can be obtained by solving the generalized eigenvalue
decomposition problem. The desired spatial filter corresponds to the eigenvector
associated with the largest eigenvalue. We should note here that the previous formula
could be easily adapted to enhance the discriminability in problems that only one
group of responses is available (i.e. ERP needs to be recovered from background
activity) or problems that concern the simultaneous separation of more than two
groups, following an approach similar to [21].
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11.3 Measuring the efficiency – ICRT

Our objective in this section is to present the advantage of incorporating an error-
detection system (EDS) in a BCI, with respect to the ITR (i.e. the time that is required
to perform an action correctly).

In order to calculate the effectiveness of an error-agnostic BCI system that incor-
porates error detection capabilities, we calculate the inverse of the average time
needed such that an individual will complete an action (e.g. to correctly select a
specific navigation option) correctly while considering the initial system’s (error-
agnostic) detection rate as well as the precision and recall values that correspond to
the EDS [22]. This quantity, that will be referred to as inverse correct response time,
is related in a monotonous fashion to the ITR of the system (i.e. information transfer
per unit of time). Denoting the number of actions to be completed as s, accuracy of
the initial system as Acc (without the error detection feature), the duration required
for a user to complete an action as t (i.e. for how many seconds will the boxes flicker
in SSVEP setup – refer to Section 11.4.1), the recall of correctly interpreted actions
(actions that were interpreted by the system as the user intended) as Re(c), the recall
of erroneous actions (actions that where miss-interpreted by the initial system) as
Re(e) and the time needed for the user to transition from the erroneous state to the
initial state (navigation panel) as d, we calculate the time needed to complete s correct
actions in an error-agnostic system as

T = s · t + (d + t) · s
∞∑

i=1

(1 − Acc)i (11.17)

Equation (11.17) sums the time for s actions plus the extra time needed to repeat the
erroneous ones till none erroneous is left. Although it is straight forward to calculate
the time needed by an error-agnostic system, the calculation of time required in an
error-aware system derives from the addition of four subcomponents. Considering the
first stage of a simple system, where the initial system classifies the user’s intentions
with accuracy Acc. Then the EDS detects the errors with a true positive (TP) rate, a
false positive (FP) rate, a false negative (FN) rate and a true negative (TN) rate. In
the first case (TP), the user’s intention was correctly interpreted by the initial system
and the EDS did not detect any erroneous action (e.g. an ERP when the selection was
presented to the user). These trials do not need to be repeated. In the case of FP, where
the initial system falsely interpreted the user’s intention and the EDS did not manage to
detect this miss-interpretation, the user needs d time to undo the previous action and t
time to repeat the action. In the case of FN, where the initial system correctly classified
user’s intention but it was considered falsely as a miss-interpretation by the EDS, the
user just needs t time to repeat the selection, since the cancelling of the previous
action is performed automatically by the EDS. Finally, in the case of TN, where the
initial system erroneously interpreted the user’s intention but the EDS was able to
capture this miss-interpretation, the user needs t time to repeat the selection action.
In all the cases, there is an additional time e that is essential for the error detector (in
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our case, this time corresponds to the time needed for ErrPs to be elicited), which is
added to the time t of each trial.

TTP = Acc · s · Re(c) · (t + e) (11.18)

TFP = (1 − Acc) · s · (1 − Re(e)) · (t + e + d) (11.19)

TFN = Acc · s · (1 − Re(c)) · (t + e) (11.20)

TTN = (1 − Acc) · s · Re(e) · (t + e) (11.21)

Equations (11.18)–(11.21) describe the amount of time needed during the first pass
of action (after the operation of the simple system’s classifier) modulated by the EDS.
In order to calculate the total time required by the error-aware system to successfully
interpret s actions, we recursively compute the previous equations substituting s with
the number of actions that need to be repeated. This recursive computation leads to
the following formula:

T = s · (t + e) + [Acc · s · (1 − Re(c)) · (t + e)

+ (1 − Acc) · s · (1 − Re(e)) · d] ·
∞∑

i=1

(1 − Acc · Re(c))i−1 (11.22)

Finally, ICRT is defined to be the number of actions times the inverse of the
already calculated total time

ICRT = s

T
(11.23)

This approach presents a generic framework that quantifies the efficiency of a
classifier-based system augmented by an error-detection procedure. It can be easily
shown that the sums of (11.17) and (11.23) are geometric series and converge when
Acc or Re(c) does not equal to 0 [23].

11.4 An error-aware SSVEP-based BCI

11.4.1 Experimental protocol

The experimental protocol is based on an SSVEP-based paradigm concerning the
selection of five boxes in the context of a website with a flickering frequency of
60/9, 60/8, 60/7, 60/6 and 60/5 Hz, respectively (these flickering frequencies are a
result of the monitor’s display rate of 60 Hz) [24]. Each participant was asked to
select one among the five magenta boxes flickering at different frequencies via an
auditory indication. After a flickering duration of 5 s, each box would stop flickering
and a preview of the box that was selected by the system was presented for 2 s
to the participant by turning the colour of the selected box from magenta to green
(Figure 11.1). In the case that the previewed box was different than the one the
subject was asked to observe, it becomes obvious that we would expect an ERP
complex in the recorded EEG signal a few ms (200–800) after the preview. In order
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Figure 11.1 Selection preview for the SSVEP-based interface

to maintain a similar ratio of correct and error trials for each participant, we opted for
a predetermined classifier to select the boxes (with a ratio of 70% correct and 30%
erroneous). The participants were not aware of the pseudorandom classifier so as to
get a natural response to the unexpected erroneous trials.

Compared to the standard experimental protocols for ErrPs detection and despite
the fact that the participants were instructed to confine any eye movement during
the SSVEP detection and the feedback stimulations, their attention unavoidably is
drawn towards the selected box that turns green. Thus, during erroneous actions only,
there is an unintentional gaze shift towards the selected box (i.e. above, bellow, on
the left or on the right). Nevertheless, this issue has been already investigated in [25]
leading to the conclusion that the generated ErrPs are not modulated by this occasional
gaze shift.

11.4.2 Dataset

The signal recordings were performed with the EBN cap (64 electrodes – Figure 11.2)
at a sampling rate of 128 Hz. Five healthy subjects, already experienced in SSVEP-
based BCIs, participated voluntarily in the study, all male, right-handed with their
age varying from 26 to 37 years. Each subject performed a total of 100 trials (20 trials
per flickering frequency), out of which 70 were correct and 30 erroneous. After the
starting of the selection preview, which lasted for 2 s, the EEG signal was recorded in
order to acquire the corresponding brain responses and then the system would redirect
the participant to the selected option so that the user could move on to the next trial.
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Figure 11.2 Spatial location of electrodes for the EBN headcap

11.4.3 Implementation details – preprocessing

Here, we present information regarding the data analysis. Initially, zero-phase fil-
tering (1–13 Hz so as to include δ, θ and α brain oscillatory activity) was applied
on the signals. Since the reference electrode of the EEG device we used is close to
the anticipated area of interest, the EEG signals have been re-referenced by removing
the average overall electrodes from each electrodes for each time instant, a procedure
referred to as common average re-reference. For the ErrPs, the EEG signal between
0.2 and 0.8 s after the preview of the selection was isolated and employed, since this
is the most prominent time frame for the ERP detection. Then, we performed an out-
lier detection procedure by employing the function robustcov in MATLAB® that was
applied with default parameters. In order to evaluate the spatial filtering methods,
six electrodes (F8, FCz, CPz, AF3, AF4, F7) were employed (Figure 11.2), located
mainly over the frontal brain areas in an effort to cover the anterior cingulate cortex.
As the default classification scheme, we used the support vector machines (SVMs)
using polynomial kernel of third degree. The detection rates of SVMs (accuracy, pre-
cision and recall) were used in order to evaluate the contribution of each setting. All
of the processing steps (namely outlier detection, spatial filtering and classification)
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were applied and evaluated by means of 10-fold cross validation, in a personalized
manner, tailored for each participant individually.

In order to calculate the spatial filters, we treated the EEG as a collection of mul-
tiple 6-dimensional vectors (where the dimensionality from the number of employed
sensors) defying the information underlying in the temporal domain. Then, these
6-dimensional vectors were considered independent observations for input in the
sCRP algorithm. Since sCRP is a computational intensive task during the training
process, the signals were subsampled, in order to reject redundant information as well
as to reduce the training time.

11.4.4 Results

11.4.4.1 Visual representation
In Figure 11.3, we depict the average response across all trials of one participant and
for the six utilized electrodes. The red line corresponds to the average signal of the
erroneous trials (i.e. recordings that are expected to contain an ERP signal), the blue
line corresponds to the correct trials, while the green line is their relative difference
(erroneous minus correct). By visually inspecting the aforementioned signals, we can
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easily find out two peaks at, approximately, 350 and 450 ms, only during erroneous
responses, over the frontal area (F7, F8 and FCz). The observed contradiction in
polarity (peaks at FCz are characterized by an antithetical sign) is justified by the
common average re-reference procedure. By performing a direct comparison of the
signals with the literature reports, it becomes evident that the two components are time
delayed about 100 ms, which could be possibly explained by the previous condition
during which the brain was performing a completely different task and habituated [26].
Although it is clear that the two states (erroneous and correct) have evident differences
in their average forms, when SNR is significantly improved, single-trial analysis,
which is the case we are mostly concerned of, is much more complicated.

11.4.4.2 Spatial filtering evaluation
Baseline comparison
In an effort to assess the benefit of sCRP as a spatial filtering approach, we initially
compare its performance against a baseline configuration, where no spatial filtering
is applied. Table 11.1 shows the average performance, across five participants, of the
ERP-detection system. Results are presented for three distinct spatial configurations:
FCz (which is the most prominent electrode for ERP detection), all used electrodes
by means of concatenating the signals and finally when sCRP is applied as a spatial
filter. As we can see, in the first two rows, when the six channels are employed,
the corresponding results are significantly better in terms of ICRT, compared to the
results of the FCz which is the most prominent electrode for the ERP detection. This
fact serves as an indication that information, necessary for ERP detection, stems from
various channels (at least those surrounding the brain area of interest), although it
may not always be evident by visually inspecting their average forms. The third row
corresponds to the results when sCRP is employed as a spatial filter. The trade-off
between the Re(c) and Re(e) is captured by the ICRT value which is increased in the
sCRP case. We should note that the used Acc value for ICRT calculation is selected so
as to match the accuracy of the SSVEP system during the data-collection procedure.

Assessing the contribution of error-related potentials
Our next objective in this section is to showcase the benefit of having an EDS in a
web-site BCI, with respect to the ICRT. Since the SSVEP system’s detection rates
are inextricably connected to the duration of the trial, we present results (by means
of figures) that show the benefit of the sCRP approach in three different scenarios
that diverge in time needed for the SSVEP detection to operate (e was set to 0.25 s

Table 11.1 Baseline comparison

Pr(c) Re(c) Pr(e) Re(e) ICRT

FCz 0.772 0.8743 0.5572 0.3933 0.5790
Six ch. 0.7403 0.9678 0.7562 0.1912 0.6062
sCRP 0.7346 0.9844 0.8703 0.1555 0.6107

ICRT settings: for the ICRT calculation we assumed t = d = 1, Acc = 0.7 and e =0.25
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Figure 11.4 The average ICRT across all participants for the error-aware system
(green solid line) compared to the error-agnostic (blue dashed line) as
function of SSVEP’s accuracy: (a) t=1 s, (b) t=2 s and (c) t=3 s

in this case, which is approximately the expected time for ErrPs to be elicited). In
order to depict the obtained results, we plot the ICRT of the systems with respect
to the accuracy of the SSVEP detection, which serves as an independent variable.
The results are shown in Figure 11.4(a)–(c) for the three durations (t) of SSVEP.
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As depicted in the figures, the ERP system is significantly improved by means of ICRT
in the case where the SSVEP-system accuracy is below a certain threshold, which
depends on the SSVEP trial length (t). This threshold corresponds to the intersection
of the simple SSVEP system (blue dashed line) and the SSVEP-ERP system (green
solid line). The presented results refer to the sCRP spatial filtering method applied to
enhance the ERP detection.

Apart from the reliability of both the error-agnostic and EDS, there is one more
parameter that plays an important role in the efficiency of an error-aware system.
The error awareness introduces a time delay during each action that is unavoided
(in the presented case, the system pauses till the elicitation and detection of ErrPs).
The shortest the duration an SSVEP system needs to operate (i.e. short-time segments
for flickering box detection), the more is affected by this delay. Even in the case of
an infallible ERP-detection system, it should not be expected to improve any SSVEP
system. Intuitively, the use of an error detection (which in our case is realized by
detecting ERP signals) is justified when three conditions are present: (a) the operation
of the error-agnostic system (which in our case is a SSVEP interface) is error-prone,
(b) the accuracy of EDS is high and (c) the introduced time-delay is insignificant
compared to the time needed for the error-agnostic system to operate.

11.5 An error-aware gaze-based keyboard

In this section, we investigate whether EEG can be used combined with an eye-tracker
towards the realization of a high-speed gaze-based keyboard. This section proceeds
in two distinct directions. Initially, we demonstrate that a specific neurophysiological
event associated with error perception is elicited just after the realization of a type-
setting error by the user. A related activation pattern, free of eye-related artefacts, can
be reliably detected and employed to indicate the errors. Second, we provide evidence
that this neurophysiological event, which is a special case of an ERP, constitutes the
basis for an automated EDS that stems directly from the user’s brain responses and
can be complemented by information extracted from the eye-movement patterns to
further improve its effectiveness. Apart from verifying the theoretical improvement
by means of typing speed in a gaze-based keyboard, we also present experimental
results from an online simulation, where the presented approach is compared against
a regular gaze-based typesetting scenario, without any error-detection assistance. To
our best knowledge, [27] was the first study that attempted to combine gaze-based
typesetting with ErrPs’ detection and demonstrated that such an integration holds
promise for an enhanced user experience.

11.5.1 Methodology

In our experiments, the electrical brain activity and gazing location were recorded
in a continuous aspect, while the subject was performing a gaze-based typing task
(Figure 11.5). The data acquisition protocol was specifically designed so as to uncover
the physiological patterns related to the perception of an erroneous visual key press
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Figure 11.5 (Top) Schematic outline of the error-aware keyboard. A hybrid BCI
system, relying on brain activity patterns and eye-movement features,
detects and deletes characters that are mistyped. The depicted
machine-learning (ML) modules correspond to linear SVMs. (Bottom)
Timeline describing the sequence of events during the typesetting
experiment. Initially, the participant starts gazing at the desired letter.
When he completes a 500 ms time-interval of continuous gazing, the
key is registered and simultaneously the associated visual indication
is presented. The physiological responses following this indication are
used to detect typesetting errors. We note that the ‘eye’ icon was not
presented in the experiments and it is only shown here for presentation
clarity purposes

(i.e. unintentional key registration). The discovered patterns that stem from the par-
ticipant’s brain and eye spontaneous activity are then used in a machine-learning
scheme so as to implement a gaze-based keyboard with an automatic error-detection,
and potentially error-correction, capability.

11.5.2 Typing task and physiological recordings

The data acquisition protocol was based on a standard gaze-based keyboard paradigm
that was implemented by an eye-tracker attached to a pc monitor [28,29]. The gazing
information, in the form of a densely sampled sequence of x–y coordinates corre-
sponding to the screen’s eye-trace, was registered simultaneously with the participant’s
EEG. The motivation behind this experimental setup was to obtain data where pat-
terns in the physiological activity, of either brain or/and eyes, could be associated
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with the case of an unintentional key registration (due to either the inaccuracy of the
eye-tracker or a human mistake). In the study of event-related neurophysiological
responses, the precise timing is of paramount importance. For this reason, the opera-
tional functionality of the gaze-based typesetting system had to be modified. Typical
gaze-based keyboards employ a visual indication in order to continuously inform
the user about the corresponding on-screen gaze location. A visual key is registered,
only, after the user has continuously gazed at it for a specific amount of time, usually
referred to as dwell time. However, this visual feedback informs the user on the typing
result at arbitrary times and as such the ErrPs are not time-locked to the registration of
the visual key. This feature of continuous visual feedback was deactivated during our
experimental protocol so as to ensure that evoked brain responses, time-locked to the
perception of an erroneous typesetting, would be elicited. It was only after a stared
key had been typed (or, equivalently, gazed at for more than 0.5 s) that appeared as
selected. In this way, the perception of a typo could be related to a specific timestamp
(i.e. the onset of a wrong selection was the trigger mechanism for an ERP response).

Twenty sentences were provided, in a sequential fashion, to the participants with
the instruction to type them with the adjusted gaze-based keyboard. The sentence that
had to be typed was not accessible to the subjects during the typesetting; hence, they
had to memorize it at the beginning of each attempt. The purpose behind this experi-
mental setup was to bring the subjects closer to the natural way of spontaneous typing.
The only difference compared to a regular typesetting mode was that the participants
were instructed to refrain from using the backspace button and ignore typos, since
we were interested in physiological events associated with error perception and not
in those related to reaction. All sentences were written using lower-case letters with
a full stop at the end of each sentence. Each session, which consisted of typing one
sentence, was followed by a short time-break.

11.5.3 Pragmatic typing protocol

Since it was essential to compare the individuals’ typing performance with and with-
out the EDS and concerning the time required to correctly type a given sentence,
we performed an additional round of control experiments. During this round, each
participant had to visually type the same sentences, but this time using the gaze-
based keyboard in its regular mode (without error-detection assistance) and with the
instruction that each sentence should be regarded as complete only when it had been
correctly typed. In this regular typing mode, participants were allowed to use the
backspace button during the typesetting; all other parameters remained the same.

11.5.4 Data analysis

The concurrent data streams (after the essential pre-filtering for the EEG signals) were
segmented into epochs. Each epoch corresponded to the physiological responses start-
ing 200 ms before the onset of visual key pressed and lasting for 700 ms. Since the
epochs corresponding to the erroneous responses were much less than the correct
ones, the two groups (erroneous and correct) were not equally represented. To alle-
viate this shortcoming, we employed the SMOTE [30] method that creates synthetic
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samples so as to populate the minority group. In order to analyse the brain signals,
the approach of discriminant spatial patterns [15] was employed so as to improve
the detectability of ErrPs. For analysing the gaze-related signals, the Hjorth descrip-
tors [31] were employed for characterizing the derived time series that stems from
the successive displacements of the gazing position. Two independent models that
relied on SVMs with linear kernel [32] were trained in order to discriminate between
correct and erroneous typesettings. The one used the feature vectors extracted from
the single epochs of brain activity and the other on the feature vectors extracted from
the associated epochs of gaze-related activity. The individual outputs were fused to
realize the final error detection.

11.5.5 System adjustment and evaluation

Accuracy is typically employed in classification tasks to assess the performance of the
system. However, in imbalance class situations (which is the most probable scenario
for our EDS), sensitivity/specificity pairs offer a more robust assessment of a given
classification model. The Utility metric [33] is a suitable composite measure, which
complementary to specificity and sensitivity considers the dwell typing time mod-
ulated by the mistyping probability as well. It is widely employed for assessing the
performance of BCI-spellers, and here it is used for tuning the EDS along with pro-
viding the final unbiased justification of it is gain via a Monte Carlo cross-validation
scheme.

After the classification scheme was decided, on data obtained from the first
typing task (i.e. using the error-aware keyboard), an error-aware simulation took
place. During this simulation, the time interval for typing a given sentence in error-
aware mode was calculated and then compared against the time interval using the
regular gaze-based keyboard. In order to avoid any biases, in the former case, we
initially trained the incorporated EDS in a leave-one-sentence-out manner (i.e. using
the epochs corresponding to the rest 19 sentences) and, then, simulated ‘off-line’ the
operation of the error-aware keyboard on the sentence. Then, taking into account both
the FPs and negatives of the EDS system (and the associated gain/loss in time), the
necessary time interval for our typesetting approach was predicted.

11.5.6 Results

11.5.6.1 Physiological findings
Among the main objectives of this chapter was to understand and identify the physi-
ological responses related to the perception of an error during the gaze-based typing
procedure. Figure 11.6 presents our main empirical findings about the neural corre-
lates and the eye-motion patterns that constituted the basis for deriving error-detection
patterns from the recording data streams. Using single-subject data, the averaged
responses for both brain activity and an eye-movement descriptor are shown for
the case of correct and erroneous typing. Concerning the brain activity patterns,
it becomes evident that the main components following an erroneous response are
a negative deflection approximately 300 ms (with a frontocentral scalp distribution)
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followed by a positive peak 100 ms later (with a centro-parietal scalp distribution).
These latencies have been defined with respect to stimulus onset, which is the time
instant that the gazed letter is registered and its preview is shown to the user. The
depicted activation pattern topographically complies with the relevant ERP litera-
ture [2] but varies slightly in the timing. In the correct typesetting case, the brain
activation presents a pattern that differentiates from the anticipated null response.
Specifically, a moderate bipolar response can be observed, consisting of a positive
deflection approximately at 200 ms and a negative one at about 300 ms. Its topographi-
cal representation indicates a cortical source located centrally. The explanation for the
observed neural patterns naturally stems by the temporal patterning of the associated
eye activity. It can be seen (Figure 11.6; bottom-most traces) that the averaged profile
of eye-movement speed is suggestive of evident eye-motion only in the case of a cor-
rect typesetting, and particularly well after the gazed letter is registered. It becomes
apparent that after a typing error, subjects slightly adjust their gaze, since their inten-
tion has been marginally misinterpreted, while in the opposite case, they have to type
the next letter which is probably located, on the screen, far from the previously gazed
position. Nevertheless, the successive typesetting of locally nearby letters is also a
possible scenario (e.g. in the case of the word ‘were’). Finally, it should be noted
that the presented scalp topographies (presented in rightmost panels) after the correct
typesetting are in accordance with cortical generators lying in a brain region that is
known to be causally associated with the eye movements [34]. More importantly, they
cannot be identified as ocular artefacts generated by the eye-movement.

In an effort to further examine the association between the EEG activity and
gaze shifts, we employed a data analytic procedure, in which the variability in eye-
movement directionality was initially coarse-grained and then used to condition the
brain activity signals’ grouping. Figure 11.7 includes the results from analysing the
single epoch data of the same participant as in Figure 11.6. Using the aggregated
gaze displacement, from −200 to 500 ms around each correct letter registration, we
applied the k-means method to cluster the eye-movements into k=4 distinct directions
(Figure 11.7; most left). Then, the derived grouping was applied to the eye move-
ment speed profiles additionally to the corresponding EEG traces. Finally, the four
uncovered prototypical traces, for both types of physiological data, were presented
in a contrasting manner (Figure 11.7; right bottom and top). It becomes apparent
that EEG-traces do not show any polarity inversion with the change of eye-movement
direction (blue/red waveform corresponds to right/left) as it would have been expected
in the case that the EEG signals were contaminated by ocular activity artefacts. On the
contrary, the temporal pattern as recorded at the Cz sensor follows the eye movement
speed profile.

11.5.6.2 SVM classification for predicting typesetting errors from
physiological activity

Having investigated the ability of brain activity and gaze-movement patterns for
distinguishing between correct and mistyped (unintentionally) letters, we moved
towards implementing the idea of error detection by means of a machine-learning
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algorithm. Features extracted from both the EEG-related epochs or/and the concur-
rent gaze-based traces were employed in the context of an SVM-classification setting.
Based on the type of the features and the way they were combined, four differ-
ent classification schemes were implemented and assessed using the widely known
performance indicators of sensitivity and specificity. In the first setting, only EEG
features were taken into account, while in the second only eye movement descrip-
tors were considered. In the other two settings, namely ‘early’ and ‘late’ fusion, the
error-detection was based on both data streams. The corresponding features were con-
catenated and fed to a single SVM classifier in the former case, while in the latter case
they were fed separately into two separate SVMs where the most dominant confidence
score was selected to indicate the corresponding classification result. Table 11.2 shows
that the classification using the brain activity patterns tends to emphasize specificity,
while eye-movement descriptors emphasize sensitivity.

11.5.6.3 Incorporating the SVM classifier(s) in the gaze-based
keyboard

The accurate detection of error responses plays a critical role in the realization of an
error-aware gaze-based keyboard. Hence, the classification accuracy of the employed
SVM-algorithm, alone, was not enough to fully justify the developed EDS. This
becomes more apparent when considering that the typesetting errors occur at low
probability (approximately one out of ten characters) and hence the SVM model has to
deal with an imbalanced classification task. The Utility metric offers an intuitive way
to weight meaningfully both the sensitivity and specificity while, simultaneously, to
appropriately consider the cost of typing time and the error chance. This metric served
as an (inverse) loss function to optimize the functionality of the linear SVM model,
by adjusting the offset of the separating hyperplane. As a result, the classifier that
was incorporated in the error-aware keyboard was not designed to perform optimally
regarding the accuracy of error detection task but was, instead, designed so as to lead
to higher Utility gain (the ratio UtilityEDS/ Utilityregular). Figure 11.8(a) depicts the
standard ROC curves for the four classification schemes, using as threshold a value
within [−1, 1] for classifying a sample either as erroneous or correct. It becomes
apparent that the late fusion setting shows always superior performance with respect
to specificity and sensitivity. Figure 11.8(b) shows the corresponding Utility gain
with respect to the threshold. A constantly increasing gain is related to lowering the
threshold in all four settings. This trend in gain is followed by an increased specificity,
which is apparently more significant than the sensitivity in the case of error detection.
As expected, lowering the threshold beyond the value of −1 results in a gain loss.
Summarizing, when the two SVMs in the late fusion settings use the most negative
threshold value, which is −1, the best performance of the error-aware gaze-based
keyboard will be obtained.

Table 11.3 presents a more detailed picture of the results obtained at the optimal
threshold by means of Utility gain for all subjects. The following empirical facts need
to be underlined. EDS based on features extracted from the EEG responses, but not
from the corresponding eye-related activity, may lead to improved user’s experience



Table 11.2 Performance metrics for the classification task of discriminating between correct and erroneous typesetting based on
EEG traces and gaze-movement patterns (used both separately and jointly). Tabulated are the results averaged from 100
repetitions of Monte Carlo cross validation. Four implementation scenarios have been validated, for each subject
independently

Subject ID EEG Eye motion Early fusion Late fusion

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

S01 73.41 83.19 97.82 51.39 78.95 85.96 91.51 78.00
S02 75.54 87.97 90.14 71.94 80.48 89.34 85.55 87.00
S03 85.52 93.20 89.36 82.83 87.40 94.00 89.50 93.13
S04 74.76 85.18 87.45 70.26 80.13 85.18 83.84 81.92
S05 76.38 85.90 88.34 75.71 82.58 89.83 85.25 89.96
S06 76.69 80.09 95.68 63.95 88.92 75.82 92.65 73.69
S07 61.61 78.79 83.98 67.89 71.71 77.79 79.37 75.57
S08 69.31 83.76 94.21 71.35 89.87 85.30 90.26 83.76
S09 67.39 82.36 87.73 77.18 78.64 83.94 82.71 83.70
S10 70.47 81.41 80.77 80.56 79.35 80.80 79.76 82.69

Average 73.10 84.18 89.54 71.30 81.80 84.79 86.04 82.94
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Figure 11.8 The grand average sensitivity and specificity values (a) along with the
Utility gain (b), after 100 Monte Carlo cross-validation repetitions,
with respect to threshold moving within the normalized SVM margins

by means of time efficiency (Utility gain higher than one). The late fusion EDS scheme
systematically provides better results, which on average correspond to a 4% increase
in Utility gain. Finally, all accuracies are well above the random chance (which stems
from the typing error chance).
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Table 11.3 Columns 2–6: chance that the eye-tracker will interpret user’s intention
falsely and Utility gain for the four classification schemes. Columns
7–9: classification performance metrics at the optimal threshold for the
late fusion classification scheme. Tabulated are the results averaged
from 100 repetitions of Monte Carlo cross validation

Subject Typing error Utility gain Specificity Sensitivity Accuracy
ID chance (%)

EEG Eye Early Late
motion fusion fusion

S01 11.60 1.02 0.69 1.05 1.05 98.64 45.60 92.48
S02 7.92 1.01 0.93 1.02 1.03 98.55 45.40 94.33
S03 6.36 1.04 0.99 1.04 1.04 99.28 71.00 97.48
S04 11.60 1.04 0.93 1.04 1.05 98.53 46.50 92.48
S05 8.87 1.02 0.91 1.04 1.04 98.94 50.60 94.66
S06 13.67 1.03 0.92 1.03 1.03 96.68 39.20 88.81
S07 13.50 0.99 0.92 0.99 1.02 97.97 24.10 87.99
S08 9.24 1.00 0.94 1.03 1.03 98.89 28.70 92.39
S09 6.16 0.98 0.91 0.99 1.01 97.66 35.40 93.82
S10 13.84 1.03 1.01 1.05 1.05 98.84 31.20 89.44

Average 10.27 1.02 0.92 1.03 1.04 98.40 41.77 92.38

11.5.6.4 Simulated implementation of the EDS
In an effort to compare the time efficiency of the error-aware gaze-based keyboard
against the error-agnostic one, we contrasted the time needed for users to type a given
sentence with our EDS system erasing automatically the erroneously typed letters
and then retyping the letters immediately (T1 task), with the time needed for them to
use the backspace button in order to correct the errors (T2 task). Table 11.4 shows the
average (AVG) essential times regarding the regular gaze-based keyboard, for each
subject individually, and the corresponding difference with the error-aware typing
scheme. It becomes evident that, on average, users require 2.7 s less to type a sentence
which would require 29.36 s approximately. This leads to an improvement of 9.3% in
typing speed (which is statistically significant; p-value equals to 0.032 based on the
Wilcoxon signed-rank test) that remarkably differs from the theoretical improvement
of 4% that was calculated by the Utility metric. The reason for this difference is based
on the fact that the Utility metric assumes identical key press times for conventional
letter and backspace buttons, which is not the case according to our empirical findings.
Moreover, the correlation between the obtained time gain and the user’s probability of
making a typo is of great interest. Actually, the gain from the EDS is upper bounded
by the misinterpretation probability of the eye-tracker [18]. In other words, users who
are more prone to errors during the gaze-based typing scheme tend to benefit more
from the presented hybrid BCI system.
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Table 11.4 Chance that the eye-tracker will interpret user’s intention falsely in the
two typesetting procedures (T1 and T2), the average gain in time
(accompanied by the respective percentage) that is obtained by the EDS
system taking advantage of the late fusion classifier and the average
time required to type one sentence in both tasks. The results are
obtained according to a Leave-one-Sentence-out cross-validation
manner

Subject ID Typing error chance (%) Gain (T2-T1) Average sentence time

T1 T2 Time Percentage T1 T2
(seconds) (seconds) (seconds)

S01 11.60 6.48 1.23 4.51 26.07 27.30
S02 7.92 4.14 4.17 13.99 25.64 29.81
S03 6.36 8.74 7.33 22.96 24.60 31.93
S04 11.60 8.44 7.53 21.68 27.21 34.74
S05 8.87 9.05 4.92 16.12 25.61 30.53
S06 13.67 3.56 −0.78 −2.90 27.72 26.94
S07 13.50 5.83 0.44 1.52 28.51 28.95
S08 9.24 3.36 −0.11 −0.42 26.20 26.09
S09 6.16 2.55 −1.38 −5.41 26.88 25.50
S10 13.84 9.50 3.74 11.74 28.11 31.85

Average 10.27 6.17 2.70 9.23 26.67 29.36

11.6 Summary

Brain–computer interfaces have been widely employed for supporting alternative
communication and control options in a wide variety of applications, including
information recommender systems [35], spellers [36,37], robotic devices [38] and
wheelchair controllers [39]. Guided by advances in machine learning, and in con-
junction with the ever-increasing availability of consumer EEG scanners, BCIs
are currently incorporated into multimodal systems as well, leading to improved,
adaptable, versatile and natural interfaces.

The main aim of this chapter was to introduce novel brain-based error-detection
paradigms (by means of multimodal BCIs) that have the potential to improve the
overall user experience. We have shown that certain physiological events, associated
with both brain and eye activity, can mark an unintended action and therefore serve
as the basis for an error correction system. It is important to note at this point that
the essence of the presented work lies in detecting users’ intentions. From this per-
spective, there is a major difference between the presented EDSs and an automatic
error-correction system (such as a proofing system) that may offer even better user
experience.
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Chapter 12

Multimodal BCIs – the hands-free Tetris
paradigm

Elisavet Chatzilari1, Georgios Liaros1, Spiros
Nikolopoulos1, and Ioannis Kompatsiaris1

In this chapter, we will explore ways to integrate three natural sensory modalities,
i.e. vision, brain commands and stress levels into a single visceral experience that
allows simultaneous control of various interface options. In this direction, we present
MM-Tetris, the multimodal reinvention of the popular Tetris game, modified to be
controlled with the user’s eye-movements, mental commands and bio-measurements.
MM-Tetris is intended for use by motor-impaired people who are not able to operate
computing devices through the regular controllers (i.e. mouse and keyboard). In
the proposed version of the game, the use of eye-movements and mental com-
mands works in a complementary fashion, by facilitating two different controls, the
horizontal movement of the tiles (i.e. tetriminos) through the coordinates of the gaze
and the tile rotation through sensorimotor rhythm (SMR) signals detection, respec-
tively. Additionally, bio-measurements provide the stress levels of the player, which
in turn determines the speed of the tiles’ drop. In this way, the three modalities
smoothly collaborate to facilitate playing a game like Tetris. Eventually, the design of
the game provides a natural gamified interface for user training in generating more
discriminative SMR signals for better detection of imaginary movements.

12.1 Introduction

Loss of the voluntary muscular control while preserving cognitive functions is a com-
mon symptom of neuromuscular disorders leading to a variety of functional deficits,
including the ability to operate software tools that require the use of conventional
interfaces like mouse, keyboard or touchscreens. As a result, the affected individuals
are marginalised and unable to keep up with the rest of the society in a digitised
world. MAMEM,∗ an EU H2020 funded project, aims to integrate these people
back into society by increasing their potential for communication and exchange in

1Information Technologies Institute, Centre for Research and Technology Hellas, 57001 Thermi,
Thessaloniki, Greece
∗www.mamem.eu
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leisure (e.g. social networks, gaming) and non-leisure context (e.g. workplace). In this
direction, MAMEM delivers the technology to enable interface channels that can be
controlled through bio-signals (i.e. eye-movements, brain activity and skin conduc-
tance). This is accomplished by replacing the mouse and keyboard with novel control
interfaces based on three sensors; eye-tracker, electroencephalogram (EEG) recorder
and galvanic skin response (GSR) sensor. Then, pattern recognition and tracking
algorithms are employed to jointly translate these signals into meaningful control and
enable a set of novel paradigms for multimodal interaction. In the MAMEM context,
our approach in this chapter is to modify the popular Tetris game in its hands-free
version by employing signals from the three sensors. In this new version of Tetris,
gaze input is able to control the horizontal movement of the Tetris tiles [1,2], EEG
signals are used for tile rotation through the detection of imaginary movement in the
SMR brain waves [3], while GSR readings are used to adapt the speed of the game
based on the stress levels of the user [4].

Our motivation for reinventing Tetris is that in the context of brain–computer
interface (BCI) applications (and especially the ones relying on SMR), it is impera-
tive to not only train the system to recognise the events related to the signals but also
the user to produce distinguishable signals. In this respect, the use of an application
that will allow users to train themselves needs to precede the actual use of a BCI.
Typical SMR training approaches consist of presenting the user with arrows as cues
to indicate what type of movement they are asked to perform mentally while provid-
ing feedback as to what movement the system has detected. This feedback allows the
users to adapt their mental strategy by optimising their mental movement command in
order to maximise the detection performance of the feedback mechanism. However,
this is a tedious process and the users get bored and frustrated before mastering their
SMR-signal generation to a sufficient extent. Alleviating this problem, we reinvent
the popular Tetris game to serve as an SMR training application that will engage
the user to keep training themselves. In the following, we present the gameplay of
MM-Tetris and how we replace the keyboard-based controls with bio-measurement-
based controls (Section 12.2), the used algorithms and the challenges (Section 12.3)
and our experiments towards generating a satisfying experience for the user
(Section 12.5).

12.2 Gameplay design

Tetris is a popular puzzle video game that relies on the placement of tiles on a board.
These tiles have different geometric shapes composed of four square blocks each and
are also known as tetriminos. A random sequence of tetriminos fall down the board.
The objective of the game is to manipulate these tetriminos, by moving each one
sideways and/or rotating by quarter-turns, so that they form a solid horizontal line
without gaps. When such a line is formed, it disappears and any blocks above it fall
down to fill the space. Usually, as the game progresses and the user gets to a higher
score, the falling speed of the tetriminos increases. In decomposing the gameplay,
we can see that there are three controls of the game; the horizontal movement of
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the tetriminos typically controlled though the left–right arrows of the keyboard, the
rotation of the tetriminos through the use of the up arrow and the drop speed of the
tetriminos that can be controlled through the down arrow for each tetrimino.

MM-Tetris is the multimodal reinvention of the Tetris game, modified to be con-
trolled without the conventional means (i.e. keyboard and/or mouse) but instead with
the users’ eye-movements, mental commands and bio-measurements. In maintaining
the same gameplay, our objective is to replace the arrow clicks in the aforementioned
controls with eye, mental and bio-based commands. In the proposed version of the
game (Figure 12.1), the use of these new modalities works in a complementary fash-
ion, allowing for the replacement of each control independently. In more detail, the
horizontal movement of the tiles is enabled through the coordinates of the user’s gaze,
the tile rotation through the user’s mental state (in our case SMR signals detection)
and the drop speed through the user’s stress levels. In this way, the three modalities
smoothly collaborate to facilitate playing a game like Tetris. The design of MM-
Tetris incorporates three sensors in the following way so as to implement the required
controls of the game (Table 12.1).

Eye-tracking EEG signals GSR/HR signals

Tile movement
control

Left Right

Tile rotation
control

Automatic speed
adaptation

Figure 12.1 The MM-Tetris interface and commands

Table 12.1 Multimodal controls for MM-Tetris

Device type Signal type Trigger Control

Eye-tracker Gaze coordinates Eye movement Horizontal tetrimino
movement

EEG recorder SMR signals Imaginary hand Tetrimino rotation
movement

GSR recorder Skin conductance Stress level Tetrimino drop speed
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In order to demonstrate an MM-Tetris playing session, we describe the following
scenario that showcases the beginners gaming mode of MM-Tetris. The eye-tracker
is first connected and a calibration procedure is performed, during which the partici-
pants are asked to fixate their gaze on nine dots appearing on multiple locations on the
screen. Next, the game starts with the first tetrimino appearing at a locked position
(tetrimino is not moving) on the top of the screen. A few seconds period is dedicated
in order for the user to rotate the tetrimino at the desired angle by brain activity dur-
ing imaginary movement. The exact duration of the locked position is determined on
the basis of imaginary task classification output. Classification runs simultaneously
on the background. Specifically, the user-specific classifier, as will be explained in
detail next (Section 12.3.2.3), is used to classify the EEG signals online and the cor-
responding scores are communicated each second to the Tetris game platform. If the
score exceeds a certain threshold, the tetrimino is rotated. The tetrimino is unlocked
when a decrease of the classification score is observed for three consecutive classifi-
cation iterations, since the last time the tetrimino was rotated (i.e. three consecutive
classification scores are below the threshold). Afterwards, the rotation angle of the
tetrimino is locked and it starts to drop at a dropping speed calculated on the basis
of the user’s stress level. When the tetrimino starts dropping, the user can move it
across the horizontal axis using their eye gaze (captured by the eye-tracker system).
The tetriminos are being moved constantly following the participant’s gaze location
on the screen one step at a time. If the participants look at the same location for
5 s continuously, then the tetrimino becomes completely locked and drops down fast
until it reaches the ‘ground’ in the Tetris board. For visual inspection of the imaginary
movements during the Tetris game, a feedback bar is depicting the strength of the
mental imagery task during the rotation stage of the game. When the users master
the controls and are confident with controlling the new interface functions, they can
select more advanced gameplays that allow, for example, the simultaneous control
of the tetrimino location and rotation, so being able to rotate and move the tetrimino
while dropping.

12.3 Algorithms and associated challenges

12.3.1 Navigating with the eyes

Eye-trackers are easy-to-use input devices for users who retain control of their eye
movements. Eye gaze has several desirable characteristics, such as being natural and
fast pointing. Eye-tracking techniques measure the person’s eye movements so that the
gaze point at any time and the eyes’ shifting are established accurately. Commercially
available eye-trackers having high resolution give liberty to the user to move their head
freely. Saccade measurements and the shortest latencies with fully remote, fiducial-
free and contact-free setup are possible, even with less compliant subject groups. The
fully automatic calibration that is included in the eye-trackers’ software takes only
a few seconds and maintains drift-free accuracy throughout the use. It is an easy
procedure, where the user is asked to look at or follow predefined number of specific
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points on the screen, also known as calibration dots. Eventually, this software provides
an indication of the quality of the calibration to the user so that they can recalibrate
with more dots if needed.

Eye-trackers provide access to real-time eye signals, of which the main signal is
the gaze coordinates of the users’ eyes on the screen. In our case, the gaze or eye-
tracking modality provides us with information on where our current visual attention
is directed at. Our approach is to acquire a user’s eye gaze information in real-time by
an eye-tracking device that can be used to generate gaze events, and to analyse the data
to deduce more high-level events. We focus on this explicit eye input in MM-Tetris to
implement the gaze-based command and control of horizontal tile movement. More
specifically, the MM-Tetris board is divided into invisible columns, each of which
has the size of the tetriminos’ square block. Then, if the x-axis coordinates of the
user’s gaze are in the right/left of the current tetrimino, then a right/left-arrow event
is actuated, respectively. On the other hand, if the user’s gaze x-axis coordinates
are exactly on the current tetrimino for a number of consequent measurements, the
horizontal position placement of the current tetrimino is locked (i.e. it cannot change)
so that the user can rest their eyes for the time remaining until the next tetrimino
appears.

12.3.2 Rotating with the mind

12.3.2.1 Sensorimotor rhythm
The second control we need to replace is that of the tetriminos’ rotation. In this
direction, we use mental commands extracted from brain signals through an EEG
recorder. The EEG signal can be roughly defined as the signal which corresponds to
the mean electrical activity of the brain cells in different locations of the head. It can
be acquired using either intracranial electrodes inside the brain or scalp electrodes on
the surface of the head. In our case, we use non-invasive EEG recorders that place
electrodes on the surface of the head. To ensure reproducibility among studies, an
international system for electrode placement, the 10–20 international system, has
been defined [5]. In this system, the electrodes’ locations are related to specific brain
areas. For example, electrodes O1, O2 and Oz are above the visual cortex. Each EEG
signal can therefore be correlated to an underlying brain area.

A BCI system translates the recorded electric brain activity to output commands.
Different electrophysiological sources for BCI control include event-related synchro-
nisation/desynchronisation, Visually Evoked Potential (VEP), Steady state visually
evoked potentials (SSVEP), slow cortical potentials, P300-evoked potentials, error-
related potentials (ErrPs) and μ and β rhythms. In MM-Tetris, we selected the option
of SMRs (specifically mu and beta) which provide a more natural way to complement
the missing functionalities from a gaze-based interaction system and particularly, the
rotation command. SMRs are brain waves that appear on EEG recordings from areas
of the brain, which are associated with planning, control and execution of voluntary
movements. When a user is in a resting state (i.e. no movement is occurring), the neu-
rons in these motor areas generate synchronised electrical activity resulting in high
amplitudes of EEG recordings. Movement or even preparation and imagination of a
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movement triggers an event that de-synchronises the electrical activity of the neurons
in the motor areas resulting in reduced amplitude or power of a specific frequency band
in the EEG. When the state of the user is reversed to the idle state, the electrical activity
of the neurons is again synchronised. The detection of the de-synchronisation period
is associated with a tile rotation command for our MM-Tetris application. According
to the 10–20 system, brain activity produced by left- and right-hand movement is
most prominent over locations C4 (right motor region) and C3 (left motor region),
respectively, while foot movement invokes activity on the central electrode (Cz).

The main advantage of SMR-based BCIs is that they do not depend on external
stimuli for invoking brain patterns (e.g. as in the case of SSVEPs). This provides more
freedom to the user, since the system is continuously available and they can decide
freely when they wish to generate the control signal. As a result, SMRs offer an
asynchronous interaction capability, which is particularly fit for our gaming scenario,
i.e. the players can generate a rotation event with their own volition. In MM-Tetris,
the upper arrow command corresponding to the tetrimino rotation is replaced with
imaginary hand movements. When the player imagines a hand movement, the game
detects their SMR signal de-synchronisation event and actuates an upper arrow event
that rotates the current tetrimino clock-wise. Similarly to the gaze-based interaction,
if the game does not detect any SMR-signal de-synchronisation event for a number
of consequent measurements, the rotation ability of the current tetrimino is locked
(i.e. it cannot change) so that the users can rest their thinking for the time remaining
until the next tetrimino appears.

12.3.2.2 Challenges
A key limitation in SMR-based systems is the amount of training required by the
user to be finally able to use the system. While stimulus-based BCIs (e.g. SSVEPs)
require little to no amount of training, since most of the users can learn the simple
task of focusing on a target letter or symbol within a few minutes, SMR-based BCIs
highly depend on how well users can produce signals that are easily detected. Thus,
such systems typically include training sessions for the user, so that they can produce
appropriate signals. Eventually, asynchronous BCI systems require both training of
the system, since each user may provide different signals on the performance of the
imaginary movement, and user training, since the user needs to be trained so as to
generate signals that can be robustly identified by the SMR classifier. The user training
is typically done using a feedback mechanism that provides real-time information to
the user with respect to what was detected based on their EEG signal, thus allowing
them to continuously modify their thoughts so as to optimise the detection accuracy
as shown in the feedback mechanism. In MM-Tetris, this is facilitated by the proposed
gamified interface that includes a feedback bar on the output of the SMR classifier. In
this gamified environment, the users are more eager to train themselves for optimising
the SMR detection by playing a game compared to the typically tedious interfaces
with simple arrows or smileys that are found in the literature.

Furthermore, while SMR offers this asynchronous interaction capability, it is
much more complicated to implement such a system than a stimulus-based BCI,
since asynchronous systems must continuously be able to detect whether the user is
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on an idle state or wishes to execute a command. This results in many false positives,
meaning that a lot of control commands are passed on the BCI system unintentionally.
In designing a functional MM-Tetris game, the first challenge we face is to provide an
algorithm for asynchronous, i.e. self-paced, SMR-based movement detection. Most
existing works in the literature focus on maximising the accuracy of detecting SMR
signals by choosing the ‘time window’ of the trials that maximises the accuracy
during testing, knowing when the user started to think of imaginary hand movements.
However, this does not simulate a real application scenario where the user may do an
imaginary movement at any arbitrary time and the system should detect this intention
for movement in an asynchronous way. Motivated by this, the objective of this chapter
is to investigate what is the optimal methodology for self-paced imaginary movement
detection. Towards this goal, first we present common spatial pattern (CSP) algorithm
based on filter bands (CSPFB), the EEG processing algorithm for training a classifier
that detects imaginary movements in SMR signals in Section 12.3.2.3. Finally, in
Section 12.5, we present the methodology for testing this classifier in the Tetris
scenario, by presenting extensive experiments in the direction of self-paced movement
detection (i.e. using the CSPFB-based classifier for detecting imaginary movements
in signals with arbitrary length).

12.3.2.3 Algorithm for SMR detection
The CSP algorithm is effective in constructing optimal spatial filters that discriminate
two classes of EEG measurements in SMR-based BCI. However, the performance of
this spatial filter is dependent on its operational frequency band. To avoid this effect
in [6], a variation of CSPFB was proposed. This approach is adopted in our study.
More specifically, the CSPFB consists of four basic steps: frequency filtering, spatial
filtering, feature extraction and classification. The general architecture of the adopted
approach is described in Figure 12.2.

The first stage employs a filter bank that bandpass filters the EEG measurements
into multiple bands. The second stage performs spatial filtering on each of these bands
using the CSP algorithm [7]. As we see, each pair of bandpass and spatial filter yields
CSP features that are specific to the frequency range of the bandpass filter. In the
third stage, we extract the CSP features from the filter bank. The fourth stage uses a
classification algorithm Support Vector Machine (SVMs) to model and classify the
selected CSP features.
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Figure 12.2 Architecture of CSPFB
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12.3.3 Regulating drop speed with stress

12.3.3.1 Galvanic skin response
The third and final control we need to replace is that of the tetriminos’ drop speed. In
this direction, we use the user’s stress levels to replicate this control, by decreasing/
increasing the tetriminos’ dropping speed as the user gets more stressed/relaxed. The
stress levels are extracted from their GSR measurements. GSR, also known as electro-
dermal activity, is the property of the human body that causes continuous variation in
the electrical characteristics of the skin. GSR is also a good measure to indicate stress.
In general, sympathetic activation increases when someone experiences excitement,
or something important is happening or about to happen. It also increases with stres-
sors – whether physical, emotional or cognitive. However, apart from such stimuli
and emotion states that have an impact on skin conductance values, there are also
external factors which influence GSR values, such as ambient temperature.

There is a wide availability of wearable devices that measure skin conductivity and
such devices are usually easy to find and affordable to buy (e.g. Shimmer 3 GSR+†).
The devices are lightweight and allow real-time collection of high quality and sci-
entifically validated data (i.e. measurements of the electrical characteristics or skin
conductance) that are transmitted wirelessly. The way that they gather such measure-
ments is by monitoring skin conductivity between two reusable electrodes attached
to two fingers of one hand. The finger probe used to capture skin conductance is an
unobtrusive sensor that can be easily attached to patients.

Skin conductance is characterised by great variability among different individu-
als, as it depends on various factors, including age, gender, ethnicity and hormonal
cycles. Thus, comparing absolute skin conductance levels really makes sense only
when the measurements originate from the same individual. In order to overcome the
individual variability problem, we developed an algorithm that establishes a personal
baseline by observing the skin conductance levels for each individual for a specific
amount of time. This baseline stores the typical skin conductance values for an indi-
vidual, and how often they occur. Afterwards, it is used to create stress level estimates
from low to high, using a classifier that is tuned for each individual. In the following,
we present the details of the developed algorithms.

12.3.3.2 Signal preprocessing
The raw signal of skin conductance is often noisy, as it contains many artefacts.
Therefore, in our proposed methodology, a critical step is to remove such noisy
observations. First, artefacts that result from poor contact between the electrodes and
the skin are eliminated. Values that correspond to moments that the sensor lost skin
contact, either intentionally or unintentionally due to movement, are zero or very close
to zero. Thus, if the 90% of values within a 5 s window do not exceed the lower bound
threshold (experimentally found to be 0.001 nS), they are removed. Furthermore,
skin conductance levels do not tend to change very abruptly. Namely, each second,
the values of skin conductance were experimentally found do not change more than

†https://www.shimmersensing.com/products/shimmer3-wireless-gsr-sensor
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20% when increasing or 10% when decreasing. Thus, as the sensor used is capable
of acquiring the GSR values more than once per second, a moving 1-s median filter
is used to even out the signal. Windows where the signal changes more rapidly than
these values, in either direction, are also marked as noise.

Subsequently, in order to obtain the slowly changing component of Skin Con-
ductance Level (SCL), a low-pass filter is applied in the form of a sliding window
filter, with a window size of 1 min, only on time intervals which do not include noisy
observations more than 60% of the window. The purpose of this filter is to remove
the fast-changing component of the skin conductance signal, and to derive the more
slow-changing skin conductance level. The final step of the proposed methodology
concerns the reconstruction of the signal in order to fill the noisy gaps and to smoothen
out the skin conductance level in these areas. For this purpose, linear interpolation is
applied between the ‘accepted’ observations, in order to generate the new values of
the skin conductance for the eliminated measurements.

12.3.3.3 Personalised stress level detection
The proposed stress level detection method entails the computation of skin con-
ductance thresholds that indicate five different levels. Considering the monotonous
relationship between skin conductance values and stress level, the thresholds are
calculated on the basis of minimum (l0) and maximum (l5) skin conductance levels
corresponding to the non-stressful and the highest stressful status, respectively. These
thresholds are expected to be different for each individual, as it was explained earlier
in Section 12.3.3.1. Thus, we need to define a personalised methodology that will
compute them for each individual separately. Towards this goal, our algorithm pro-
poses a monitoring period for each participant, during which the different thresholds
are identified.

According to the bibliography [8], a 5-min rest period ensures sufficient record-
ings in order to successfully detect the lowest level of skin conductance. Generally, we
assume that, in the monitoring period, the person had at least one period of being calm
for at least 5 min. We use the min–max algorithm for overlapping 5-min windows to
find this calmest period and the maximal SCL value in it. The detected value in this
5-min time-window is called zero level (l0).

Besides the zero-level value, the next step is to compute a threshold that indicates
high stress. This point is called the l5 level (because the algorithm is set to discriminate
five different distinct stress levels). In order to compute this value, we capture the
signal for a longer time than what is required for the zero-value. Then, based on
this recording, we calculate a baseline histogram, which is used to derive which skin
conductance levels are common for that individual, and which levels are unusually
low or unusually high. Its form is a 600-bin histogram, holding the information
concerning the occurrences of skin conductance level observations calculated over a
specific amount of time for each individual. Then, l5 is computed from the baseline
histogram, as the first level of skin conductance for which no values in the baseline
histogram have been observed.

For the developed methodology, the establishment of a correct baseline histogram
is very critical. Many problems could occur from sparse baseline histograms, i.e. if
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there are many skin conductance levels for which there are not yet any observations.
The most important problem is the underestimation of the l5 threshold, as the sparsity
of the baseline histogram may lead to the placement of the l5 value at a low level. In
order to avoid this, stress levels cannot be computed if more than 40% of the observed
skin conductance levels in the baseline are larger than l5. Taking this into account,
the proposed algorithm incorporates an additional online adaptation process, which
continuously updates the histogram and the l5 level, while the participant wears the
sensor. Note that the windows with a large amount of noisy measurements (≥ 40%)
are excluded for this step. The whole signal (including the reconstructed parts) is used
only in the classification step described afterwards as well as for the visualisation of
the signals.

Afterwards, based on the already calculated l0 and l5 values, the remaining stress
level thresholds are computed according to the following formulas:

δ = l5 − l0

4
(12.1)

l1 = l0 + 1

2
× δ (12.2)

li = li−1 + δ, for i = 2, . . . , 4 (12.3)

Finally, after the thresholds have been set and in order to classify the stress level
for each period of time, the algorithm computes the mean skin conductance level of
the processed signal within the time-window for which we want to detect the stress
level (e.g. at 5 s time intervals). The mean values are afterwards compared to the
predefined thresholds and assigned to the proper category. Notably, a given value is
classified within each stress level boundary and a single value is not selected to serve
as a threshold. As a result, the algorithm does not actually highlight events of stress
but rather defines a stress level from one to five for each time segment. Indeed, as
thresholds can yield different outcomes, this allows to further tailor the method at later
stages, e.g. by setting up different actions at level 5 stress than level 4. In MM-Tetris,
the various stress levels vary the dropping speed of the tetriminos, with the stress
level 5 setting the drop speed to the slowest and the stress level 0 to the fastest.

12.4 Experimental design and game setup

12.4.1 Apparatus

In our experiments, we used the following three sensors in order to acquire the bio-
signals necessary to operate the MM-Tetris game.

● Eye-tracking (MyGaze‡) provides the gaze coordinates of the user.
● EEG signal recorder (ENOBIO 8§) provides the SMR signal of the user upon

imaginary movement.

‡http://www.mygaze.com/
§http://www.neuroelectrics.com/products/enobio/enobio-8/
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● GSR measurements (Shimmer+‖) provide information for the SGR signal and the
stress level of the user.

12.4.2 Events, sampling and synchronisation

The controls of the game are treated as timed events (i.e. move the tile to x coordinate,
or rotate the tile, or decrease game speed), based on the signals that are sampled at
a frequency of 30, 500 and 32 Hz from the three devices, MyGaze, ENOBIO 8
and Shimmer+, respectively. In order to have a universal timing reference for the
identified events, the three signal streams and the events are synchronised through
the library SensorLib,¶ which relies on the software-based synchronisation library
LabStreamingLayer.∗∗

12.4.3 EEG sensors

The EEG signals were recorded by an ENOBIO headset using eight wet electrodes
that were placed on the CP1, CP2, C3, C1, C2, C4, FC1, FC2 sites of the 10–20
international system. The sampling frequency of the system was 500 Hz.

12.4.4 Calibration

The selected eye-tracker myGaze offers an easy interface for calibration to adapt the
unique characteristics of the user’s eyes so as to achieve the best possible gaze-tracking
accuracy. The software of myGaze offers various calibration options and the user can
select between 1, 2, 5 and 9-point calibration (i.e. the number of fixation points on the
display that the user focuses on in succession to calibrate their eye gaze) depending
on the results. Finally, the user also has the option to select the fixation point style
between a circle, a crosshair, a star or an image.

For calibrating the EEG sensor, we need to develop a subject-specific classi-
fier for the SMR signals. In getting the necessary training data for this classifier, a
specifically designed experiment for prompted imaginary movement was conducted
using the OpenVIBE framework. Note that OpenVIBE is only used for the calibration
phase in order to enable a user to play MM-Tetris in the first place by generating a
classifier for detecting movements, while MM-Tetris is designed to train the user
afterwards, while playing, for generating more discriminative signals. For the cali-
bration, an interface of visual cues is presented indicating whether the participants
should perform the imagination of movement as well as which of the hands to move.
In particular, the experimental session starts with a black screen that lasts for 40 s,
during which the participant is asked to remain calm without imagining any move-
ment in order to use the respective recording as a baseline signal. Afterwards, an
iteration of 40 trials is initiated consisting of 20 trials for the imagination of left-hand
movement and 20 for the imagination of right-hand movement. Each trial is initiated

‖http://www.shimmersensing.com/
¶https://github.com/MAMEM/SensorLib
∗∗https://github.com/sccn/labstreaminglayer
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by a green cross that lasts for 1 s and allows the participants to get prepared for the
execution of imaginary movement. Subsequently, a red arrow pointing towards the
left or right direction instructs the participants to imagine the respective movement.
After a 5-s period, the arrow disappears and a black-screen period that lasts for a
random duration of 5–20 s follows. The whole duration of the calibration session is
approximately 20 min. A classifier is then trained based on this calibration session
using the algorithm presented in Section 12.3.2.3.

Finally, the calibration of the GSR sensor also entails the development of a
subject-specific classifier for the GSR signal based on the algorithm presented in
Section 12.3.3.3. In gathering the necessary training data without extending the cal-
ibration time, the user wears the GSR sensor during the EEG calibration phase and
their signal throughout this session is captured. Based on this signal and using the
algorithms presented in Section 12.3.3, the stress levels of the users are identified and
are ready to be used for classifying their GSR signals in the game.

12.5 Data processing and experimental results

In this section, our aim is to show how to generate a subject-specific classifier for
the self-paced SMR detection problem so as to provide the optimal user experience
during playing MM-Tetris. In this direction, first, we discuss the way to segment the
signals in an asynchronous scenario (i.e. when not knowing the starting time of a trial).
Then, we propose an evaluation metric tailored to reflect the user experience during
gameplay and perform experiments on eight subjects using the designed evaluation
metric. Finally, we present the methodology for online classification of SMR signals,
which is used during an MM-Tetris session.

12.5.1 Data segmentation

The EEG signals recorded during the calibration phase are segmented by overlapping
windows of 2 s duration. The step of each window was set to 100 samples or 0.2 s.
Each window from now on referred to as trial consisted of 1,000 samples, each of
which was annotated as 1 or 0 based on whether the sample was recorded when the
participant was performing a mental movement regardless of the direction. The label
of each trial was then set based on the majority of the 1,000 samples to either 1
(movement) or 0 (no movement). After the segmentation, we have nm and nn number
of trials for the movement and no movement labels, respectively. Considering that the
users were asked to perform no movement for more time compared to the movement
case, the number of nn trials is bigger than that of movement trials nm (nn > nm), and
as such, the two classes are imbalanced.

12.5.2 Offline classification

The generated dataset during the calibration session is divided in half so as to pro-
duce a training and test set of (nm + nn)/2 trials. In order to tackle the class imbalance
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Table 12.2 Offline experiments for evaluating Tetris performance

Subject Precision Recall Accuracy

S1 39.65 76.66 89.06
S2 41.09 100 93.28
S3 23.80 83.33 83.59
S4 35.21 83.33 88.9
S5 37.83 82.35 88.12
S6 29.50 60 83.9
S7 32.5 86.66 88.4
S8 40.67 80 89.84

Avg. acc. 83.75
Baseline acc. (do nothing) 76.56

problem, which can hinder the learning process of the classification model, we bal-
ance the training set by randomly under-sampling the trials that correspond to the
majority class (no movement in this case), so as each class will have exactly the same
number of trials. The testing set on the other hand is left unbalanced to simulate a
real-world application scenario, where the classification model will be applied in a
continuous EEG signal stream, which is expected to be imbalanced. Each trial is then
filtered with a Butterworth band-pass filter in the ranges between 7 and 36 Hz and
the CSPFB features are extracted for each trial. The filter banks that were used for
extracting the features were in the frequency ranges of 8–12, 12–16, 16–20, 20–24,
24–28 and 28–32 Hz. As previously mentioned, the features from the first half of
each session were used to train a linear kernel SVM classifier and the other half was
used for testing.

The testing was performed as follows; the unknown to the classifier portion of
the recorded session was scanned with a sliding window of length 2 s and step 0.2 s.
Each trial was passed to the previously trained classifier in order to retrieve a score.
After 1 s, meaning that five scores are generated by the classifier, the sign of the
median of the scores was used to determine whether to issue a rotation command or
not. If the sign is positive, a rotation command is simulated and the classification is
paused for 5 s. This pause is inserted so as to avoid constant rotations of a tetrimino
based on the same imaginary hand movement event.

The results of this method can be found in Table 12.2, which were performed by
eight in-house participants. The precision indicator refers to the number of the correct
rotation commands that were issued (i.e. detected during the period that the subject
was performing the movement) divided by the total rotation commands. The recall
measurement refers to the number of correct rotation commands divided by the total
number of movements that was performed during the experiment. Finally, the accuracy
metric represents the percentage of the seconds that the classifier behaved according
to the user’s will. To calculate this accuracy metric, we used (12.4) where ns refers
to the number of seconds of the testing set, nmove were the number of times that the
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participant was asked to perform a movement by the experiment interface, TP was
the number of rotations that were detected by the system and were during the time the
participant was performing a mental movement and FP was the number of rotations
detected by the system during the time the participant was not performing any action.

acc = ns − 5 · (nmove − TP) − FP

ns
(12.4)

Intuitively, this accuracy metric calculates the number of seconds that the system was
performing according to the intention of the user and places it on the numerator. The
total number of seconds is placed on the denominator; thus, an accuracy of 80% for
a 100-s experiment means that the system was performing correctly for a total of
80 s. A baseline accuracy of a classifier that does not detect any rotations is also
reported on this table as 76.56%. An example of the performance of our classifier
can be seen in Figure 12.3, where the blue pulses represent the intention of the user,
i.e. the times the user intended to perform the mental movement, the green lines are
when the system detected a rotation command and the red lines are when the system
did not detect any mental movement. In this example, a blue pulse corresponds to a
single rotation intention, and the aforementioned 5-s pause in the classifier ensures
that multiple rotations per pulse are avoided.
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Figure 12.3 Subject 2 performing mental movement (blue lines) and the result of
our classifier coloured as green (rotation command) and red (no
rotation command)
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12.5.3 Online classification framework

For the online classification, we used the same classifier as for the offline case trained
with the whole calibration session instead of splitting the dataset in half. The EEG
signal is again sampled with a moving sliding window which moves for 0.2 s each
time and produces a classification score. After each second, the median classification
scores of the past five windows are calculated and communicated to the Tetris game.
Since the scores are negative if the window segment corresponds to the no movement
class and positive for the movement class, this practically means that in order to have
a movement outcome, at least three out of the five past windows must produce a
positive classification score.

12.6 Summary

In this chapter, we presented MM-Tetris, the hands-free adaptation of the popular
Tetris game, that can be played through the player’s bio-signals. In this direction, the
controls of the keyboard-based Tetris game were replaced by bio-signals of multiple
modalities. In more detail, the horizontal movement of the tetriminos that is controlled
through the left–right arrows of the keyboard was replaced by the player’s gaze coor-
dinates, the rotation of the tetriminos typically controlled with the up arrow was
replaced by the player’s brain signals and the dropping speed of the tetriminos con-
trolled by the down arrow in the keyboard version was replaced with the stress levels
of the player. Concerning the new controls of MM-Tetris, the most challenging is that
of brain-based control, though the SMR signals elicited by imaginary movements,
and more specifically detecting such commands in arbitrary time (i.e. self-paced).
Towards self-paced SMR detection, we have presented a series of experiments and
a new accuracy-based metric that is tailored to measure the percentage of time that
the system works as intended. These initial experiments were performed by a limited
number of eight participants. In our future plans, our aim is to increase the number
of participants so as to be able to reach safer conclusions. Furthermore, we plan to
develop an online training system to accompany MM-Tetris targeting performance
improvements in the detection of tetrimino rotations. This online training system will
rely on the detection of errors during gameplay. These errors may occur both due to
SMR detection imperfections and also due to user’s wrong decisions for the tetrimi-
nos’ moves. ErrPs [9] offer a natural way to detect and distinguish between these two
cases. The incorporation of the ErrPs due to system errors in the hands-free Tetris is
in our future plans for enhancing the game accuracy while playing in two ways. First,
ErrPs can be used to annotate the SMR detection events as correct or error and thus be
included as additional training samples in the calibration-trained classifier in order to
update the classifier through an incremental learning scenario. Second, ErrPs can be
also used to cancel the rotations that have been made through erroneous movement
detection from the SMR classifier. Eventually, the incorporation of this novel error-
based online system in MM-Tetris will offer bidirectional training (i.e. training of
the system to detect SMR signals and training of the user to provide distinguishable
signals).
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Chapter 13

Conclusions
Chandan Kumar1, Spiros Nikolopoulos2, and

Ioannis Kompatsiaris2

13.1 Wrap-up

Interaction with computer applications is usually performed using conventional input
devices such as mouse or keyboard. However, people lacking fine motor skills are
often not able to use these devices, which limits their ability to interact with computer
applications and thus excludes them from the digital information spaces that help us
stay connected with families, friends, and colleagues. The evolution of eye-tracking
systems and brain–computer interfaces (BCI) has given a new perspective on the
control channels that can be used for interacting with computer applications. This
book presented a study on end user characteristics and their needs for such control
channels, and the knowledge on how it can be fulfilled with eye tracking and BCI
interaction using signal-processing algorithms and interface adaptations. The con-
tributors of various chapters are researchers, engineers, clinical experts, and industry
practitioners, who collaborated in the context of the 3-year research and innovation
action “MAMEM”—“Multimedia Authoring and Management using your Eyes and
Mind” (mamem.eu). Hence, the book covers the underlying challenges of eye and
mind interaction, and possible solutions that identify future directions to encourage
the researchers around the world. In the following, we summarize the key outcomes
and takeaways of this book:

● End user requirements: The necessity of using eye and mind as alternative inter-
action channels has been mainly motivated in the context of assisting people with
disabilities. Hence, it is imperative to identify and understand the requirements
of target-group users to imply the usefulness and usability of novel interaction
channels. In this context, the authors have conducted several studies to char-
acterize these requirements and generate valuable insights and guidelines for
future research. More specifically, Chapters 2–4 elaborated on how computer
use habits and difficulties of people with motor impairment differs significantly
from that of able-bodied, what are the specific requirements and expectations from

1Institute for Web Science and Technologies, University of Koblenz-Landau, Koblenz, Germany
2Informations Technology Institute, Centre for Research and Technology Hellas, Thermi-Thessaloniki,
Greece
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assistive interfaces, and how persuasion theories and intervention frameworks can
stimulate a positive attitude toward the usage of eye and mind-based interface.

● Signal processing algorithms: One of the most challenging aspects of eye
and mind-based interaction is to analyze and process the physiological signals
recorded from eye-tracking and BCI devices and convert them to meaningful
commands. In this regard, the book provides a comprehensive knowledge on
various aspects of signal acquisition, preprocessing, enhancement, feature extrac-
tion, and classification. More specifically, with respect to eye-tracking-based
interaction, Chapter 5 describes how to acquire the user’s eye gaze information in
real-time by an eye-tracking device, filter and process this information to generate
eye gaze as input mechanism. With respect to Electroencephalography (EEG)
based interaction, Chapters 7–10 cover state-of-the-art methods and machine-
learning algorithms to understand and process EEG, steady-state-visual-evoked
potentials (SSVEPs), motor imagery, error-related-potentials (ERRPs), and
sensorimotor rhythm (SMR) for interaction process.

● Application interface developments: Contrary to the traditional emulation
approach of operating standard application interfaces with eye and mind-based
commands; this book argues the need of adapted interface developments for
improved interaction experience. In this regard, Chapter 5 not only outlines the
principles of GUI development for eye gaze interaction but also avails the eyeGUI
and GazeTheWeb framework for developers. eyeGUI supports the development
aspects, like rendering, layout, dynamic modification of content, support of
graphics, and animation. GazeTheWeb as an open-source browser∗ provides a
framework for researchers to investigate methods for improved interaction with
eye gaze and other input modalities in the web environment. In this direction, the
prototype of GazeTheWeb has already been used to integrate EEG for multimodal
error-aware BCI and Tetris game described in Chapters 10 and 11.

● Evaluation methods: The book also presents a comprehensive guideline and
examples of conducting evaluations to assess usability, performance, and fea-
sibility of eye gaze and EEG-based interaction algorithm and interfaces. This
would help the readers to quickly recognize and solicit suitable study design,
procedure, baseline, measures, and analysis methods. Chapter 6 reviews the
common methodology of human–computer interaction experiments and adapts it
for eye-tracking research. It describes how eye gaze pointing, selection, and typ-
ing can be evaluated, and how the performance and feasibility of eye-controlled
interfaces can be assessed using lab and field studies. Chapters 7–10 elaborates
on how EEG, SSVEPs, SMR, and ERRPs-based algorithms can be evaluated and
compared for better performance and accuracy.

13.2 Open questions

Based on the studies and methods presented in this book, there is no hesitation in
acknowledging the significance, purpose, and applicability of eye and mind-based

∗https://github.com/MAMEM/GazeTheWeb
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interactions. However, it also uncovers the challenges and open questions that are
imperative for the success of these novel interaction methods and applications.

● Hardware challenges: Many hardware improvements are required to make the
system work outside the laboratories. As we found out in MAMEM trials that
eye-tracking accuracy is subjective to various environmental variables such as
lighting condition and distance to screen. Eye-tracker device gets overheated,
and sometimes it is required to unplug and restart the system. BCI systems are
even more sensitive and do not work properly outside the suitable environment
like at noisy places. Furthermore, both eye tracking and BCI involve a tedious
calibration procedure before starting the interaction.

● Device usability: Most often, end user wants the system to be easily approachable.
A complex system that is not easy to handle could be disliked. In MAMEM
trials, we experienced that some participants found it cumbersome to use the
system and hence the usage frequency was very low over the month period. Eye-
tracker accuracy is affected if the head position is not stationary, which makes
the interaction physically demanding. EEG process includes the application of
gel to the electrodes to measure the exact level of volt potential and requires lot
of training to be able to interact intuitively. The new EEG technique with dry
electrodes does not need the application of gel but still involves a cumbersome
training procedure. Moreover, common problem with wearing BCI is sweating,
and large energy consumption is also a challenge.

● Ethical issues: Although the reported studies in the book follow the ethical and
clinical protocol. The long-term usage of these novel systems is subjective to
further privacy issues. While using eye tracking for interaction, the recorded data
might contain sensitive eye gaze information of user attention and might reveal
every piece of information the user has looked into. The ethical issues of BCI also
include sensitive physiological signals and cognitive information. Furthermore,
BCI headset with very high range of signal detection may read the mind of others,
which would also be an ethical issue. Currently, there are no universal ethical
guidelines for eye and mind-based interaction procedures.

13.3 Future perspectives

A chief focus of this book was on the applicability of eye tracking and BCI signals as
a computer-input mechanism to support people with motor impairment. However, the
proposed interaction methods, algorithms, and analytic insights have the potential to
expand into a variety of further promising scenarios. For example, supporting healthy
older adults, integration into public displays, as well as in medical professions, such
as surgeons in the operating theatre. We might use gaze and mind-based applications
for a hands-free control of devices or looking up information. Furthermore, in avi-
ation applications that may include gaze and mind-based cockpit control for pilots,
attention, and tiredness monitoring for control room-operators.

● Entertainment applications: In the entertainment field, eye tracking and BCI
have lot of promise in the form of gaming. This kind of gaming uses player’s eye
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movements, brain signals, player’s heartbeat, or facial expressions instead (or in
addition to) of traditional user controllers to control the game. In this book, we
discussed some interesting gaming applications such as eye-controlled 3D game
Schau Genau! in Chapter 5, and the multimodalTetris game in Chapter 11. In these
games, a user can get a good score by controlling a virtual object by eye move-
ment or imagining movements. Future efforts in these directions can enhance the
scope of eye and mind applications in the mainstream market. Commercial orga-
nizations like Tobii† have already introduced gaze attention and control in several
gaming applications. Furthermore, cognition-based games such as “NeuroRacer”
or “NeuroMage” have also received considerable success, indicating the future
potential of BCI-based gaming applications.

● Security applications: The physiological signals from eyes and brain could help
detecting irregular behavior and suspicious objects. In this direction, ERP, EEG,
and eye movement could help detect signal distortions in the event of any suspi-
cious event, i.e., to identify the potential vulnerable targets. There are already
many defense and pharmaceutical research institutes started working on eye
tracking and BCI, as both the signals in unison can help in criminal investigation
and a better understanding of the human body. For example, the physiological
functions to detect a lie could be very helpful in crime cases.

†https://gaming.tobii.com/
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