
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo

CONCEP T S O F DA TABASE
MANAGEMEN T

CONCEP T S O F DA TABASE
MANAGEMEN T

Seventh Edition

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

Philip J. Pratt
Grand Valley State University

Joseph J. Adamski
Grand Valley State University

 This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

Concepts of Database Management,
Seventh Edition
Philip J. Pratt and Joseph J. Adamski

Publisher: Joe Sabatino

Senior Acquisitions Editor: Charles
McCormick, Jr.

Senior Product Manager: Kate Mason

Development Editor: Jessica Evans

Editorial Assistant: Courtney Bavaro

Marketing Director: Keri Witman

Marketing Manager: Adam Marsh

Senior Marketing Communications
Manager: Libby Shipp

Marketing Coordinator: Suellen Ruttkay

Content Project Management: PreMediaGlobal

Media Editor: Chris Valentine

Senior Art Director: Stacy Jenkins Shirley

Cover Designer: Lou Ann Thesing

Cover Credit: © iStock Photo

Manufacturing Coordinator: Julio Esperas

Compositor: PreMediaGlobal

© 2012 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or by any
means—graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act—without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions.

Further permissions questions can be e-mailed to
permissionrequest@cengage.com.

Some of the product names and company names used in this book have been
used for identification purposes only and may be trademarks or registered
trademarks of their respective manufacturers and sellers.

Library of Congress Control Number: 2011927627

ISBN-13: 978-1-111-82591-1

ISBN-10: 1-111-82591-2

Instructor Edition:

ISBN-13: 978-1-111-97022-2

ISBN-10: 1-111-97022-X

Course Technology
20 Channel Center Street
Boston, MA 02210
USA

Screenshots for this book were created using Microsoft Access®, and were used
with permission from Microsoft.

Microsoft and the Office logo are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. Course
Technology, a part of Cengage Learning, is an independent entity from the
Microsoft Corporation, and not affiliated with Microsoft in any manner.

Oracle is a registered trademark, and Oracle11g is a trademark of Oracle
Corporation. MySQL is a registered trademark of Oracle Corporation, © 2010,
Oracle Corporation and/or its affiliates.

The programs in this book are for instructional purposes only. They have been
tested with care, but are not guaranteed for any particular intent beyond
educational purposes. The author and the publisher do not offer any warranties or
representations, nor do they accept any liabilities with respect to the programs.

Course Technology, a part of Cengage Learning, reserves the right to revise this
publication and make changes from time to time in its content without notice.

Cengage Learning is a leading provider of customized learning solutions with office
locations around the globe, including Singapore, the United Kingdom, Australia,
Mexico, Brazil, and Japan. Locate your local office at: www.cengage.com/global

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Course Technology, visitwww.cengage.com/coursetechnology.

Purchase any of our products at your local college store or at our preferred
online store www.cengagebrain.com

Printed in the United States of America
1 2 3 4 5 6 7 15 14 13 12 11

TABLE OF CONTENTS

Preface xi

Chapter 1 Introduction to Database Management 1
Premiere Products Background 1
Database Background 4
Database Management Systems 9
Advantages of Database Processing 12
Disadvantages of Database Processing 14
Introduction to the Henry Books Database Case 14
Introduction to the Alexamara Marina Group Database Case 22
Summary 28
Key Terms 28
Review Questions 28
Premiere Products Exercises 29
Henry Books Case 29
Alexamara Marina Group Case 30

Chapter 2 The Relational Model 1: Introduction, QBE, and Relational Algebra 31
Relational Databases 31
Query-By-Example (QBE) 34
Simple Queries 35
Simple Criteria 37
Compound Criteria 39
Computed Fields 42
Functions 44
Grouping 46
Sorting 47

Sorting on Multiple Keys 48
Joining Tables 51

Joining Multiple Tables 53
Using an Update Query 55
Using a Delete Query 55
Using a Make-Table Query 56
Relational Algebra 58

SELECT 59
PROJECT 59
JOIN 60
Normal Set Operations 62
Product 64
Division 65

Summary 66
Key Terms 67
Review Questions 67
Premiere Products Exercises: QBE 68
Premiere Products Exercises: Relational Algebra 69
Henry Books Case 69
Alexamara Marina Group Case 70

Chapter 3 The Relational Model 2: SQL 71
Getting Started with SQL 71

Getting Started with Access 2007 and 2010 72
Getting Started with MySQL 72

Table Creation 73
Simple Retrieval 75
Compound Conditions 82
Computed Fields 86
Using Special Operators (LIKE and IN) 88
Sorting 90
Built-In Functions 92
Subqueries 95
Grouping 96
Joining Tables 99
Union 102
Updating Tables 103
Creating a Table from a Query 105
Summary of SQL Commands 107
Summary 114
Key Terms 114
Review Questions 115
Premiere Products Exercises 115
Henry Books Case 116
Alexamara Marina Group Case 116

Chapter 4 The Relational Model 3: Advanced Topics 119
Views 119
Indexes 126
Security 130
Integrity Rules 131

Entity Integrity 131
Referential Integrity 132
Legal-Values Integrity 135

Structure Changes 137
Making Complex Changes 139

System Catalog 140
Stored Procedures 142
Triggers 143

Using Triggers in MySQL 143
Using Data Macros in Access 2010 144

Summary 148
Key Terms 148
Review Questions 149
Premiere Products Exercises 150
Henry Books Case 151
Alexamara Marina Group Case 152

Chapter 5 Database Design 1: Normalization 155
Functional Dependence 157
Keys 159
First Normal Form 161
Second Normal Form 162
Third Normal Form 165
Incorrect Decompositions 169
Multivalued Dependencies and Fourth Normal Form 173

vi Table of Contents

Avoiding the Problem with Multivalued Dependencies 176
Application to Database Design 177
Summary 179
Key Terms 179
Review Questions 179
Premiere Products Exercises 180
Henry Books Case 181
Alexamara Marina Group Case 181

Chapter 6 Database Design 2: Design Method 183
User Views 184
Information-Level Design Method 184

Represent the User View as a Collection of Tables 184
Normalize the Tables 186
Identify All Keys 186
Database Design Language (DBDL) 187
Entity-Relationship (E-R) Diagrams 188
Merge the Result into the Design 189

Database Design Examples 190
Physical-Level Design 201
Top-Down Versus Bottom-Up Design 202
Survey Form 203
Obtaining Information from Existing Documents 204
One-to-One Relationship Considerations 208
Many-to-Many Relationship Considerations 211
Nulls and Entity Subtypes 213
Avoiding Problems with Third Normal Form when Merging Tables 217
The Entity-Relationship Model 217
Summary 223
Key Terms 224
Review Questions 224
Premiere Products Exercises 226
Henry Books Case 226
Alexamara Marina Group Case 227

Chapter 7 DBMS Functions 229
Update and Retrieve Data 230
Provide Catalog Services 231
Support Concurrent Update 232

The Concurrent Update Problem 232
Avoiding the Lost Update Problem 236
Two-Phase Locking 237
Deadlock 240
Locking on PC-Based DBMSs 241
Timestamping 242

Recover Data 242
Journaling 242
Forward Recovery 244
Backward Recovery 245
Recovery on PC-Based DBMSs 245

Provide Security Services 246
Encryption 246
Authentication 246
Authorizations 247

Table of Contents vii

Views 247
Privacy 247

Provide Data Integrity Features 248
Support Data Independence 250

Adding a Field 250
Changing the Length of a Field 250
Creating an Index 250
Adding or Changing a Relationship 250

Support Data Replication 251
Provide Utility Services 252
Summary 253
Key Terms 253
Review Questions 254
Premiere Products Exercises 255
Henry Books Case 255
Alexamara Marina Group Case 255

Chapter 8 Database Administration 257
Database Policy Formulation and Enforcement 258

Access Privileges 258
Security 260
Disaster Planning 261
Archiving 262

Other Database Administrative Functions 263
DBMS Evaluation and Selection 264
DBMS Maintenance 268
Data Dictionary Management 268
Training 268

Technical Functions 269
Database Design 269
Testing 269
Performance Tuning 270

Summary 274
Key Terms 274
Review Questions 275
Premiere Products Exercises 275
Henry Books Case 276
Alexamara Marina Group Case 276

Chapter 9 Database Management Approaches 277
Distributed Databases 277
Characteristics of Distributed DBMSs 279

Location Transparency 279
Replication Transparency 279
Fragmentation Transparency 280

Advantages of Distributed Databases 281
Disadvantages of Distributed Databases 282
Rules for Distributed Databases 285
Client/Server Systems 285

Advantages of Client/Server Systems 288
Web Access to Databases 289
XML 292

viii Table of Contents

Data Warehouses 295
Data Warehouse Structure and Access 297
Rules for OLAP Systems 300

Object-Oriented DBMSs 301
What Is an Object-Oriented DBMS? 301
Objects and Classes 301
Methods and Messages 303
Inheritance 304
Unified Modeling Language (UML) 304
Rules for OODBMSs 307

Summary 309
Key Terms 310
Review Questions 311
Premiere Products Exercises 313
Henry Books Case 313
Alexamara Marina Group Case 313

Appendix A Comprehensive Design Example: Marvel College 315
Marvel College Requirements 315

General Description 315
Report Requirements 316
Update (Transaction) Requirements 319

Marvel College Information-Level Design 320
Final Information-Level Design 338
Exercises 339

Appendix B SQL Reference 347
ALTER TABLE 347
Column or Expression List (Select Clause) 347

Computed Fields 348
Functions 348

Conditions 348
Simple Conditions 348
Compound Conditions 348
BETWEEN Conditions 349
LIKE Conditions 349
IN Conditions 349

CREATE INDEX 349
CREATE TABLE 350
CREATE VIEW 350
Data Types 351
DELETE Rows 351
DROP INDEX 352
DROP TABLE 352
GRANT 352
INSERT 352
Integrity 353
Join 353
REVOKE 354
SELECT 354
SELECT INTO 355
Subqueries 355
UNION 355
UPDATE 356

Table of Contents ix

Appendix C “How Do I?” Reference 357

Appendix D Answers to Odd-Numbered Review Questions 359
Chapter 1—Introduction to Database Management 359
Chapter 2—The Relational Model 1: Introduction, QBE, and Relational Algebra 359
Chapter 3—The Relational Model 2: SQL 360
Chapter 4—The Relational Model 3: Advanced Topics 361
Chapter 5—Database Design 1: Normalization 362
Chapter 6—Database Design 2: Design Method 363
Chapter 7—DBMS Functions 364
Chapter 8—Database Administration 365
Chapter 9—Database Management Approaches 366

Appendix E Using Access to Create and Publish a Web Database 369
Examining a Web Database 369
Creating a User-Defined Data Type 374
Creating a Web Database 376
Adding Fields to a Table in a Web Database 378
Relating the Tables in a Web Database 378
Importing Data Into the Tables 381
Creating a Query in a Web Database 381
Creating Forms in a Web Database 381

Creating a Single-Item Form 382
Creating a Datasheet Form with a Macro 382

Creating a Navigation Form 384
Setting a Startup Form 386
Checking Web Compatibility 388
Publishing a Database to a Server 388

Viewing the Web Database 390
Key Terms 391
Premiere Products Exercises 391

Appendix F Determining Information-Level Requirements 393
Information Systems 393
System Requirement Categories 394

Output Requirements 394
Input Requirements 394
Processing Requirements 395
Technical and Constraining Requirements 395

Determining System Requirements 395
Interviews 395
Document Collection 396
Observation 396
Research 396

Transitioning from Systems Analysis to Systems Design 396
Key Terms 397
Exercises 397

Glossary 399

Index 409

x Table of Contents

PREFACE

The advent of database management systems for personal computers in the 1980s moved database
management beyond the realm of database professionals and into the hands of everyday users from
all segments of the population. A field once limited to highly trained users of large, mainframe,
database-oriented application systems became an essential productivity tool for such diverse groups
as home computer users, small business owners, and end-users in large organizations.

The major PC-based database software systems have continually added features to increase their
ease of use, allowing users to enjoy the benefits of database tools relatively quickly. Truly effective use
of such a product, however, requires more than just knowledge of the product itself, although that
knowledge is obviously important. It requires a general knowledge of the database environment, includ-
ing topics such as database design, database administration, and application development using these
systems. While the depth of understanding required is certainly not as great for the majority of users as
it is for the data processing professional, a lack of any understanding in these areas precludes effective
use of the product in all but the most limited applications.

A B O U T T H I S B O O K

This book is intended for anyone who is interested in gaining some familiarity with database
management. It is appropriate for students in introductory database classes in computer science or
information systems programs. It is appropriate for students in database courses in related disciplines,
such as business, at either the undergraduate or graduate level. Such students require a general
understanding of the database environment. In addition, courses introducing students of any discipline
to database management have become increasingly popular over the past few years, and this book is
ideal for such courses. It is also appropriate for individuals considering purchasing a PC-based database
package and who want to make effective use of such a package.

This book assumes that students have some familiarity with computers; a single introductory course
is all the background that is required. While students need not have any background in programming to
use this book effectively, there are certain areas where some programming experience will allow them
to explore topics in more depth.

C H A N G E S T O T H E S E V E N T H E D I T I O N

The Seventh Edition includes the following new features and content:

• Hands-on steps for creating and using Microsoft Access data macros to accomplish the same
functionality as SQL triggers.

• General information about publishing data to the Internet and specific steps for using
Access to create a Web database that contains Web-compatible objects, including a
navigation form.

• How to use Access to create a user-defined data type to streamline the process of adding fields
to tables.

• A discussion of the process for determining the requirements needed as the starting point for
database design, including descriptions of the requirements you need to gather and how to
gather these requirements.

• A modified design of the Henry Books database case used at the end of each chapter in the book
to support a change to the company’s processing requirements.

S P E C I A L F E A T U R E S

As in the Sixth Edition, the SQL material is covered using Access. Also included are generic forms of all
examples that students can use on a variety of platforms, including Oracle and MySQL. The Seventh
Edition continues the two appendices that provide a useful reference for anyone wanting to use SQL
effectively. Appendix B includes a command reference of all the SQL commands and operators that are
taught in the chapters. Students can use this appendix as a quick resource when constructing
commands. Each command includes a short description, a table that shows the required and optional
clauses and operators, and an example and its results. Appendix C provides students with an
opportunity to ask a question, such as “How do I delete rows?”, and to identify the appropriate
section in Appendix B to use to find the answer. Appendix C is extremely valuable when students
know what they want to accomplish, but can’t remember the exact SQL command they need.

In addition to the section of Review Questions, the end of each chapter includes three sets of
exercises—one featuring the Premiere Products database and the others featuring the Henry Books
database and the Alexamara Marina Group database—that give students “hands-on” experiences with
the concepts found in the chapter.

As in the previous edition, the Seventh Edition covers entity-relationship diagrams. The database
design material includes a discussion of the entity-relationship model as a database model. It also
includes a discussion of a characterization of various types of primary keys.

The Premiere Products, Henry Books, and Alexamara Marina Group databases on the Instructor’s
Resource CD-ROM and at www.cengage.com are usable with Access 2007 and Access 2010. For those
students using database management systems that run scripts (such as Oracle and MySQL), the data
files also include the script files that create the tables and add the data to the tables in the databases
used in the book.

For instructors who want to use an Access or SQL text as a companion to the Seventh Edition, the
Instructor’s Manual for this book includes detailed tips on integrating the Seventh Edition with other
books from Course Technology that cover Access 2010 and SQL (for more information, see the
“Teaching Tools” section in this preface).

Detailed Coverage of the Relational Model, including Query-By-Example (QBE) and SQL
The book features detailed coverage of the important aspects of the relational model, including
comprehensive coverage of SQL. It also covers QBE and relational algebra as well as advanced aspects
of the model, such as views, the use of indexes, the catalog, and relational integrity rules.

Normalization Coverage
The Seventh Edition covers first normal form, second normal form, third normal form (Boyce-Codd
normal form), and fourth normal form. The book describes in detail the update anomalies associated
with lower normal forms as part of the motivation for the need for higher normal forms. Finally, the
book examines correct and incorrect ways to normalize tables. This book specifically addresses this by
showing students some of the mistakes people can make in the normalization process, explaining why
the approach is incorrect, demonstrating the problems that would result from incorrect normalizations,
and, most importantly, identifying how to avoid these mistakes.

Views Coverage
This text covers the important topic of views. It discusses the creation and use of views as well as the
advantages of using views.

Database Design
The important process of database design is given detailed treatment. A highly useful method for
designing databases is presented and illustrated through a variety of examples. In addition to the
method, this text includes important design topics such as the use of survey forms, obtaining
information by reviewing existing documents, special relationship considerations, and entity subtypes.
Appendix A contains a comprehensive design example that illustrates how to apply the complete
design process to a large and complex set of requirements. After mastering the design method

xii Preface

presented in this text, students should be able to produce correct database designs for future database
requirements they encounter.

Functions Provided by a Database Management System
With such a wide range of features included in current database management systems, it is important
for students to know the functions that such systems should provide. These functions are presented and
discussed in detail.

Database Administration
While database administration (DBA) is absolutely essential in the mainframe environment, it is also
important in a personal computer environment, especially when the database is shared among several
users. Thus, this text includes a detailed discussion of the database administration function.

Database Management System Selection
The process of selecting a database management system is important, considering the number of
available systems from which to choose. Unfortunately, selecting the correct database management
system is not an easy task. To prepare students to be able to do an effective job in this area, the text
includes a detailed discussion of the selection process together with a comprehensive checklist that
greatly assists in making such a selection.

Advanced Topics
The text also covers distributed database management systems, client/server systems, data warehouses,
object-oriented database management systems, Web access to databases, and XML. Each of these topics
encompasses an enormous amount of complex information, but the goal is to introduce students to
these important topics. The text also includes detailed coverage of stored procedures, triggers, and data
macros. The book includes detailed coverage of Web databases, navigation forms, and data type parts in
Access. In addition, the book discusses the process for determining the requirements needed as the
starting point for database design. After describing information systems, we describe the requirements
you need to gather and how to gather these requirements.

Numerous Realistic Examples
The book contains numerous examples illustrating each of the concepts. A running “case” example—
Premiere Products—is used throughout the book to illustrate concepts. The examples are realistic and
represent the kinds of problems students will encounter in the design, manipulation, and administration
of databases. Exercises that use the Premiere Products case are included at the end of each chapter. In
addition, there is another complete set of exercises at the end of each chapter that feature a second and
third case—Henry Books and Alexamara Marina Group—giving students a chance to apply what they
have learned to a database that they have not seen in the chapter material.

Review Material
This text contains a wide variety of questions. At key points within the chapters, students are asked
questions to reinforce their understanding of the material before proceeding. The answers to these
questions follow the questions. A summary and a list of key terms appear at the end of each chapter,
followed by review questions that test the students’ knowledge of the important points in the chapter and
that occasionally test their ability to apply what they have learned. The answers to the odd-numbered
review questions are provided in Appendix D. Each chapter also contains hands-on exercises related to
the Premiere Products, Henry Books, and Alexamara Marina Group case examples.

Teaching Tools
When this book is used in an academic setting, instructors may obtain the following teaching tools from
Course Technology through their sales representative or by visiting www.cengage.com:

• Instructor’s Manual The Instructor’s Manual has been carefully prepared and tested to ensure its
accuracy and dependability. The Instructor’s Manual includes suggestions and strategies for using

Preface xiii

this text, including the incorporation of companion texts on Access or SQL for those instructors
who desire to do so. For instructors who want to use an Access or SQL text as a companion to
the Seventh Edition, the Instructor’s Manual for this book includes detailed tips on integrating
the Seventh Edition with the following books, also published by Course Technology: New
Perspectives on Microsoft Access 2010—Comprehensive, New Perspectives on Microsoft Access
2010—Introductory, and New Perspectives on Microsoft Access 2010—Brief, by Adamski and
Finnegan; Microsoft Access 2010: Introductory Concepts and Techniques, Microsoft Access
2010: Complete Concepts and Techniques, and Microsoft Access 2010: Comprehensive
Concepts and Techniques, by Shelly, Cashman, Pratt, and Last; A Guide to SQL, Sixth Edition,
by Pratt; and A Guide to MySQL, by Pratt and Last.

• Data Files Data files are available at www.cengage.com and on the Instructor’s Resource CD-
ROM. Students will find data files at www.cengagebrain.com. Data files consist of copies of the
Premiere Products, Henry Books, and Alexamara Marina Group databases that are usable in
Access 2007 and Access 2010, and script files to create the tables and data in these databases in
other systems, such as Oracle and MySQL.

• ExamView® This text is accompanied by ExamView, a powerful testing software package that
allows instructors to create and administer printed, computer (LAN-based), and Internet exams.
ExamView includes hundreds of questions that correspond to the topics covered in this text,
enabling students to generate detailed study guides that include page references for further
review. The computer-based and Internet testing components allow students to take exams at
their computers, and also save the instructor time by grading each exam automatically.

• PowerPoint Presentations Microsoft PowerPoint slides are included for each chapter as a teach-
ing aid for classroom presentations, to make available to students on a network for chapter
review, or to be printed for classroom distribution. Instructors can add their own slides for addi-
tional topics they introduce to the class. The presentations are included on the Instructor’s CD.

• Figure Files Figure files are included so that instructors can create their own presentations using
figures appearing in the text.

O R G A N I Z A T I O N O F T H E T E X T B O O K

This text includes nine chapters covering general database topics that are relevant to any database
management system. A brief description of the organization of topics in the chapters and an overview of
each chapter’s contents follows.

Introduction
Chapter 1 provides a general introduction to the field of database management.

The Relational Model
The relational model is covered in detail in Chapters 2, 3, and 4. Chapter 2 covers the data definition
and manipulation aspects of the model using QBE and relational algebra. The text uses Access 2010 to
illustrate the QBE material. The relational algebra section includes the entire relational algebra.
(Note: The extra material on relational algebra is optional and can be omitted if desired.)

Chapter 3 is devoted exclusively to SQL. The SQL material is illustrated using Access, but the
chapter also includes generic versions of all examples that can be used with a variety of platforms,
including Oracle and MySQL.

Chapter 4 covers some advanced aspects of the relational model such as views, the use of indexes,
the catalog, relational integrity rules, stored procedures, triggers, and data macros.

Database Design
Chapters 5 and 6 are devoted to database design. Chapter 5 covers the normalization process, which
enables students to identify and correct bad designs. This chapter discusses and illustrates the use of
first, second, third, and fourth normal forms. (Note: The material on fourth normal form is optional and
can be omitted if desired.)

xiv Preface

Chapter 6 presents a method for database design using many examples. The material includes
entity-relationship diagrams and their role in database design. It also includes discussions of several
special design issues as well as the use of survey forms, obtaining information by reviewing existing
documents, special relationship considerations, and entity subtypes. After completing Chapter 6,
students can further challenge themselves by completing Appendix A, which includes a comprehensive
design example that illustrates the application of the complete design process to a large and complex
set of requirements. (Note: Chapters 5 and 6 can be covered immediately after Chapter 2 if desired.)

Database Management System Functions
Chapter 7 discusses the features that should be provided by a full-functioned PC-based database
management system. This chapter includes coverage of journaling, forward recovery, backward
recovery, authentication, and authorizations.

Database Administration
Chapter 8 is devoted to the role of database administration. Also included in this chapter is a discussion
of the process of selecting a database management system.

Database Management Approaches
Chapter 9 provides an overview of several advanced topics: distributed databases, client/server systems,
Web access to databases, XML and related document specification standards, data warehouses, and
object-oriented databases.

G E N E R A L N O T E S T O T H E S T U D E N T

There are many places in the text where special questions have been embedded. Sometimes the
purpose of these questions is to ensure that you understand some crucial material before you proceed.
In other cases, the questions are designed to give you the chance to consider some special concept in
advance of its actual presentation. In all cases, the answers to these questions follow each question.
You could simply read the question and its answer. You will receive maximum benefit from the text,
however, if you take the time to work out the answers to the questions and then check your answer
against the one provided before continuing.

The end-of-chapter material consists of a summary, a list of key terms, review questions, and
exercises for the Premiere Products, Henry Books, and Alexamara Marina Group databases. The
summary briefly describes the material covered in the chapter. The review questions require you to
recall and apply the important material in the chapter. (The answers to the odd-numbered review
questions appear in Appendix D.) The Premiere Products, Henry Books, and Alexamara Marina
Group exercises test your knowledge of the chapter material; your instructor will assign one or more
of these exercises for you to complete.

A C K N O W L E D G M E N T S

We would like to acknowledge the following individuals who all made contributions during the
preparation of this book during its multiple editions. We appreciate the following individuals who
reviewed the text and made many helpful suggestions: Linda Lau, Longwood University; Janine Loveless,
Eastern Iowa Community College; Dave Braunschweig, Harper College; and William Wagner, Villanova
University. We also appreciate the efforts of the following individuals, who have been invaluable during
this book’s development: Kate Mason, Senior Product Manager; Jennifer Feltri, Content Project Manager;
Nicole Ashton, Quality Assurance tester; Karunakaran Gunasekaran, Senior Project Manager; and
Jessica Evans, Development Editor.

We have again been privileged to work with Jessica Evans as our Development Editor. Thank you,
Jess, for your knowledge, skill, guidance, and energy, and for your hard work and positive influence on
our work. We appreciate your dedication and many contributions to this book, value you as a friend,
and wish the very best to you and your family. We have said it before, but we want to say it again.
You are the best!!

Preface xv

C H A P T E R1
INTRODUCTION TO DATABASE
MANAGEMENT

L E A R N I N G O B J E C T I V E S

• Introduce Premiere Products, the company that is used as the basis for many of the examples
throughout the text

• Introduce basic database terminology

• Describe database management systems (DBMSs)

• Explain the advantages and disadvantages of database processing

• Introduce Henry Books, the company that is used in a case that appears throughout the text

• Introduce Alexamara Marina Group, the company that is used in another case that appears
throughout the text

I N T R O D U C T I O N

In this chapter, you will examine the requirements of Premiere Products, a company that will be used in many examples
in this chapter and in the rest of the text. You will learn how Premiere Products initially stored its data, what problems
employees encountered with the storage method, and why management decided to use a database management sys-
tem. Then you will study the basic terminology and concepts of databases and database management systems, and
learn the advantages and disadvantages of database processing. Finally, you will examine the database requirements
for Henry Books and Alexamara Marina Group, the companies featured in the cases that appear at the end of each
chapter.

PREMIERE PRODUCTS BACKGROUND

Premiere Products is a distributor of appliances, housewares, and sporting goods. Since its inception, the
company has used spreadsheet software to maintain customer, order, inventory, and sales representative
(sales rep) data. Management has determined that the company’s recent growth means it is no longer feasible
to use spreadsheets to maintain the firm’s data.

What has led the managers at Premiere Products to this decision? One of the company’s spreadsheets,
shown in Figure 1-1, displays sample order data and illustrates the company’s problems with the
spreadsheet approach. For each order, the spreadsheet displays the number and name of the customer
placing the order; the number and date of the order; the number, description, number ordered, quoted
price, and warehouse number of the item ordered; and the number of the sales rep assigned to the
customer. Note that the Ferguson’s order (order number 21610) and the first Johnson’s Department Store
order (order number 21617) appear in two rows because these customers purchased two different items in
their orders.

Redundancy is one problem that employees have with the orders spreadsheet. Redundancy is the dupli-
cation of data or the storing of the same data in more than one place. In the orders spreadsheet, redundancy
occurs in the Customer Name column because the name of a customer is stored in more than one place. All
three rows for customer number 608, for example, store “Johnson’s Department Store” as the customer
name. In the orders spreadsheet, redundancy also occurs in other columns, such as the Order Date and
Part Description columns.

Q & A

Question: What problems does redundancy cause?
Answer: Redundancy wastes space because you’re storing the same data in multiple places. The extra space
results in larger spreadsheets that require more space in memory and on disk and that take longer to save
and open.

When you need to change data, redundancy also makes your changes more cumbersome and time-
consuming. For example, if you incorrectly enter “Johnson’s Department Store” in the Customer Name col-
umn, you would need to correct it in three places. Even if you use the global find-and-replace feature,
multiple changes require more computer time than does a single change.

Finally, redundancy can lead to inconsistencies. For example, you might enter “Johnson’s Department
Store,” “Johnsons Department Store,” and “Johnsons’ Department Store” in the Customer Name column, and
then not be sure which is the correct spelling. Further, if that customer’s name is spelled three different ways
and you use the search feature with one of the three values, you’d find a single match instead of three
matches.

Difficulty accessing related data is another problem that employees at Premiere Products encounter with
their spreadsheets. For example, if you want to see a customer’s address and a part’s standard price, you
must open and search other spreadsheets that contain this data.

Spreadsheets also have limited security features to protect data from being accessed by unauthorized
users. A spreadsheet’s data-sharing features also prevent multiple employees from updating data in one

Customer Order Part Part Number Quoted Rep
Number Customer Name Number Order Date Number Description Ordered Price Warehouse Number

148 Al’s Appliance 21608 10/20/2013 AT94 Iron 11 $21.95 3 20
and Sport

148 Al’s Appliance 21619 10/23/2013 DR93 Gas Range 1 $495.00 2 20
and Sport

282 Brookings 21614 10/21/2013 KT03 Dishwasher 2 $595.00 3 35
Direct

356 Ferguson’s 21610 10/20/2013 DR93 Gas Range 1 $495.00 2 65

356 Ferguson’s 21610 10/20/2013 DW11 Washer 1 $399.99 3 65

408 The Everything 21613 10/21/2013 KL62 Dryer 4 $329.95 1 35
Shop

608 Johnson’s 21617 10/23/2013 BV06 Home Gym 2 $794.95 2 65
Department
Store

608 Johnson’s 21617 10/23/2013 CD52 Microwave 4 $150.00 1 65
Department Oven
Store

608 Johnson’s 21623 10/23/2013 KV29 Treadmill 2 $1,290.00 2 65
Department
Store

Orders requiring more
than one spreadsheet row

FIGURE 1-1 Sample orders spreadsheet

2

Chapter 1

spreadsheet at the same time. Finally, if the increase in sales and growth at Premiere Products continues at
its planned rate, spreadsheets have inherent size limitations that will eventually force the company to split its
order data into multiple spreadsheets. Splitting the spreadsheets would create further redundancy.

Having decided to replace its spreadsheet software, management has determined that Premiere Products
must maintain the following information about its sales reps, customers, and parts inventory:

• The sales rep number, last name, first name, address, total commission, and commission rate for
each sales rep.

• The customer number, name, address, current balance, and credit limit for each customer, as
well as the number of the sales rep who represents the customer.

• The part number, description, number of units on hand, item class, number of the warehouse
where the item is stored, and unit price for each part in inventory.

Premiere Products must also store information about orders. Figure 1-2 shows a sample order.

The sample order has three components:

• The heading (top) of the order contains the order number and date; the customer’s number,
name, and address; and the sales rep’s number and name.

• The body of the order contains one or more order lines, sometimes called line items. Each order
line contains a part number, a part description, the number of units of the part ordered, and the
quoted price for the part. Each order line also contains a total, usually called an extension,
which is the result of multiplying the number ordered by the quoted price.

• The footing (bottom) of the order contains the order total.

Premiere Products must also store the following items for each customer’s order:

• For each order, the company must store the order number, the date the order was placed, and
the number of the customer that placed the order. The customer’s name and address and the
number of the sales rep who represents the customer are stored with the customer information.
The name of the sales rep is stored with the sales rep information.

• For each order line, the company must store the order number, the part number, the number of
units ordered, and the quoted price. Remember that the part description is stored with the
information about parts. The result of multiplying the number of units ordered by the quoted
price is not stored because the computer can calculate it when necessary.

• The overall order total is not stored. Instead, the computer calculates the total whenever an
order is printed or displayed on the screen.

CD52
BV06

Microwave Oven
Home Gym

PART
NUMBER

PART
DESCRIPTION

NUMBER
ORDERED PRICE TOTAL

2189.90ORDER TOTAL >>

2
4

794.95
150.00

1589.90
600.00

ORDER: 21617

CUSTOMER: 608
Johnson’s Depar t ment Store
372 Oxford
She ldon FL 33553

PREMIERE
PRODUCTS DATE: 10/23 /2013

SALES REP: 65
Juan Perez

Heading

Order lines

Footing

Extensions

Body

FIGURE 1-2 Sample order

3

Introduction to Database Management

The problem facing Premiere Products is common to many businesses and individuals that need to store and
retrieve data in an efficient and organized way. Furthermore, most organizations are interested in more than one
category of information. For example, Premiere Products is interested in categories such as sales reps, customers,
orders, and parts. A school is interested in students, faculty, and classes; a real estate agency is interested in cli-
ents, houses, and agents; and a used car dealership is interested in customers, vehicles, and manufacturers.

Besides wanting to store data that pertains to more than one category, Premiere Products is also inter-
ested in the relationships between the categories. For example, company employees want to be able to asso-
ciate orders with the customers that ordered them, the sales reps who coordinated the orders, and the parts
that the customers requested. Likewise, a real estate agency wants to know not only about clients, houses,
and agents but also about the relationships between clients and houses (which clients have listed which
houses and which clients have expressed interest in which houses). A real estate agency also wants to know
about the relationships between agents and houses (which agent sold which house, which agent is listing
which house, and which agents are receiving commissions for which houses).

DATABASE BACKGROUND

After studying the alternatives to using spreadsheet software, Premiere Products decided to switch to a data-
base system. A database is a structure that contains information about many different categories of informa-
tion and about the relationships between those categories. The Premiere Products database, for example, will
contain information about sales reps, customers, orders, and parts. It will also provide facts that relate sales
reps to the customers they represent and customers to the orders they currently have placed.

With a database, employees can enter the number of a particular order and find out which customer
placed the order, as well as which parts the customer ordered. Alternately, employees can start with a cus-
tomer and find all orders the customer placed, together with which parts the customer ordered and the
amount of the commission earned by the customer’s sales rep. Using a database, Premiere Products can not
only maintain its data better, but it also can use the data in the database to produce a variety of reports and
to answer a variety of questions.

There are some terms and concepts in the database environment that are important for you to know. For
instance, the terms entity, attribute, and relationship are fundamental when discussing databases. An entity
is a person, place, object, event, or idea for which you want to store and process data. The entities of interest
to Premiere Products, for example, are sales reps, customers, orders, and parts.

An attribute is a characteristic or property of an entity. The term is used in this text exactly as it is used in
everyday English. For the entity person, for example, the list of attributes might include such things as eye
color and height. For Premiere Products, the attributes of interest for the entity customer are such things as
customer name, street, city, and so on. An attribute is also called a field or column in many database systems.

Figure 1-3 shows two entities, Rep (short for Sales Rep) and Customer, along with the attributes for each
entity. The Rep entity has nine attributes: RepNum, LastName, FirstName, Street, City, State, Zip, Commission,
and Rate. The attributes are the same as the columns in a spreadsheet. The Customer entity has nine
attributes: CustomerNum, CustomerName, Street, City, State, Zip, Balance, CreditLimit, and RepNum.

RepNum LastName FirstName Street City State RateCommissionZip

Rep

CustomerNum

Customer

CustomerName Street City State Zip Balance CreditLimit RepNum

Attributes

Attributes

Entities

FIGURE 1-3 Entities and attributes

4

Chapter 1

The final key database term is relationship. A relationship is an association between entities. There is
an association between reps and customers, for example, at Premiere Products. A rep is associated with all of
his or her customers, and a customer is associated with its rep. Technically, you say that a rep is related to
all of his or her customers, and a customer is related to its rep.

This particular relationship is called a one-to-many relationship because each rep is associated with
many customers, but each customer is associated with only one rep. In this type of relationship, the word
many is used differently than in everyday English; it might not always indicate a large number. In this con-
text, for example, the term many means that a rep can be associated with any number of customers. That is,
a given rep can be associated with zero, one, or more customers.

A one-to-many relationship often is represented visually in the manner shown in Figure 1-4. In such a
diagram, entities and attributes are represented in precisely the same way as they are shown in Figure 1-3.
A line connecting the entities represents the relationship. The one part of the relationship (in this case, Rep)
does not have an arrow on its end of the line, and the many part of the relationship (in this case, Customer)
is indicated by a single-headed arrow.

Spreadsheets, word-processed documents, Web pages, and other computer information sources are stored
in files. Basically, a file that is used to store data, which is often called a data file, is the computer counter-
part to an ordinary paper file you might keep in a file cabinet, an accounting ledger, or other place. A data-
base, however, is more than a file. Unlike a typical data file, a database can store information about multiple
entities. There is another difference. A database holds information about the relationships among the various
entities. Not only will the Premiere Products database have information about both reps and customers, it
will also hold information relating reps to the customers they service, customers to orders, parts to orders,
and so on. Formally, a database is a structure that can store information about multiple types of entities, the
attributes of those entities, and the relationships between the entities.

How does a database handle entities, attributes of entities, and relationships between entities? Entities
and attributes are fairly simple. Each entity has its own table. In the Premiere Products database, for exam-
ple, there will be one table for reps, one table for customers, and so on. The attributes of an entity become
the columns in the table. In the table for reps, for example, there will be a column for the rep number, a col-
umn for the rep last name, and so on.

What about relationships between entities? At Premiere Products, there is a one-to-many relationship
between reps and customers. (Each rep is related to the many customers that he or she represents, and each
customer is related to the one rep who represents the customer.) How is this relationship handled in a data-
base system? It is handled by using common columns in the two tables. Consider Figure 1-4 again. The
RepNum column in the Rep table and the RepNum column in the Customer table are used to implement the
relationship between reps and customers. Given a rep, you can use these columns to determine all the custo-
mers that he or she represents; given a customer, you can use these columns to find the rep who represents
the customer.

How will Premiere Products store its data in a database? Figure 1-5 shows sample data for Premiere
Products.

RepNum LastName FirstName Street City State RateCommissionZip

Rep

CustomerNum

Customer

CustomerName Street City State Zip Balance CreditLimit RepNum

Relationship

FIGURE 1-4 One-to-many relationship

5

Introduction to Database Management

FIGURE 1-5 Sample data for Premiere Products

6

Chapter 1

In the Rep table, you see that there are three reps whose numbers are 20, 35, and 65. The name of sales
rep 20 is Valerie Kaiser. Her street address is 624 Randall. She lives in Grove, FL, and her zip code is 33321.
Her total commission is $20,542.50, and her commission rate is 5% (0.05).

Premiere Products has 10 customers, which are identified with the numbers 148, 282, 356, 408, 462,
524, 608, 687, 725, and 842. The name of customer number 148 is Al’s Appliance and Sport. This customer’s
address is 2837 Greenway in Fillmore, FL, with a zip code of 33336. The customer’s current balance is
$6,550.00, and its credit limit is $7,500.00. The number 20 in the RepNum column indicates that Al’s Appli-
ance and Sport is represented by sales rep 20 (Valerie Kaiser).

Skipping to the table named Part, you see that there are 10 parts, whose part numbers are AT94, BV06,
CD52, DL71, DR93, DW11, FD21, KL62, KT03, and KV29. Part AT94 is an iron, and Premiere Products has
50 units of this part on hand. Irons are in item class HW (housewares) and are stored in warehouse 3. The
price of an iron is $24.95. Other item classes are AP (appliances) and SG (sporting goods).

Moving back to the table named Orders, you see that there are seven orders, which are identified with
the numbers 21608, 21610, 21613, 21614, 21617, 21619, and 21623. Order number 21608 was placed on
October 20, 2013, by customer 148 (Al’s Appliance and Sport).

N O T E
In some database systems, the word “Order” has a special purpose. Having a table named Order could cause problems in
such systems. For this reason, Premiere Products uses the table name Orders instead of Order.

The table named OrderLine might seem strange at first glance. Why do you need a separate table for the
order lines? Couldn’t the order lines be included in the Orders table? The answer is yes. The Orders table
could be structured as shown in Figure 1-6. Notice that this table contains the same orders as shown in
Figure 1-5, with the same dates and customers. In addition, each table row in Figure 1-6 contains all the
order lines for a given order. Examining the fifth row, for example, you see that order 21617 has two order
lines. One of the order lines is for two BV06 parts at $794.95 each, and the other order line is for four CD52
parts at $150.00 each.

Q & A

Question: How is the information in Figure 1-5 represented in Figure 1-6?
Answer: Examine the OrderLine table shown in Figure 1-5 and note the sixth and seventh rows. The sixth
row indicates that there is an order line in order 21617 for two BV06 parts at $794.95 each. The seventh row
indicates that there is an order line in order 21617 for four CD52 parts at $150.00 each. Thus, the informa-
tion in Figure 1-6 is represented in Figure 1-5 in two separate rows rather than in one row.

OrderNum OrderDate CustomerNum PartNum NumOrdered QuotedPrice

21608 10/20/2013 148 AT94 11 $21.95

21610 10/20/2013 356 DR93 1 $495.00
DW11 1 $399.99

21613 10/21/2013 408 KL62 4 $329.95

21614 10/21/2013 282 KT03 2 $595.00

21617 10/23/2013 608 BV06 2 $794.95
CD52 4 $150.00

21619 10/23/2013 148 DR93 1 $495.00

21623 10/23/2013 608 KV29 2 $1,290.00

Orders

FIGURE 1-6 Alternative Orders table structure

7

Introduction to Database Management

It might seem inefficient to use two rows to store information that can be represented in one row. There is
a problem, however, with the arrangement shown in Figure 1-6—the table is more complicated. In Figure 1-5,
there is a single entry at each position in the table. In Figure 1-6, some of the individual positions within the
table contain multiple entries, thus making it difficult to track the information between columns. In the row for
order number 21617, for example, it is crucial to know that BV06 corresponds to the 2 in the NumOrdered
column (not to the 4) and that it corresponds to $794.95 in the QuotedPrice column (not to $150.00). In addi-
tion, having a more complex table means that there are practical issues to worry about, such as:

• How much room do you allow for these multiple entries?
• What if an order has more order lines than you have allowed room for?
• Given a part, how do you determine which orders contain order lines for that part?

Certainly, none of these problems is unsolvable. These problems do add a level of complexity, however,
that is not present in the arrangement shown in Figure 1-5. In Figure 1-5, there are no multiple entries to
worry about, it doesn’t matter how many order lines exist for any order, and it is easy to find every order
that contains an order line for a given part (just look for all order lines with the given part number in the
PartNum column). In general, this simpler structure is preferable, which is why order lines appear in a
separate table.

To test your understanding of the Premiere Products data, use the data shown in Figure 1-5 to answer
the following questions.

Q & A

Question: What are the numbers of the customers represented by Valerie Kaiser?
Answer: 148, 524, and 842. (Look up the RepNum value for Valerie Kaiser in the Rep table and obtain the
number 20. Then find all customers in the Customer table that have the number 20 in the RepNum column.)

Q & A

Question: What is the name of the customer that placed order 21610, and what is the name of the rep who
represents this customer?
Answer: Ferguson’s is the customer, and Juan Perez is the rep. (Look up the CustomerNum value in the
Orders table for order number 21610 and obtain the number 356. Then, find the customer in the Customer
table with a CustomerNum value of 356. Using this customer’s RepNum value, which is 65, find the name of
the rep in the Rep table.)

Q & A

Question: List all the parts that appear in order 21610. For each part, give the description, number ordered,
and quoted price.
Answer: Part number: DR93, part description: Gas Range, number ordered: 1, and quoted price: $495.00.
Also, part number: DW11, part description: Washer, number ordered: 1, and quoted price: $399.99. (Look up
each OrderLine table row in which the order number is 21610. Each row contains a part number, the num-
ber ordered, and the quoted price. Use the part number to look up the corresponding description in the Part
table.)

8

Chapter 1

Q & A

Question: Why is the QuotedPrice column part of the OrderLine table? Can’t you just use the part number to
look up the price in the Part table?
Answer: If the QuotedPrice column didn’t appear in the OrderLine table, you would need to obtain the price
for a part on an order line by looking up the price in the Part table. Although this might not be a bad prac-
tice, it prevents Premiere Products from charging different prices to different customers for the same part.
Because Premiere Products wants the flexibility to quote and charge different prices to different customers,
the QuotedPrice column is included in the OrderLine table. If you examine the OrderLine table, you will see
cases in which the quoted price matches the actual price in the Part table and cases in which the quoted
price differs. For example, in order number 21608, Al’s Appliance and Sport bought 11 irons, and Premiere
Products charged only $21.95 per iron, and not the regular price of $24.95.

A visual way to represent a database is with an entity-relationship (E-R) diagram. In an E-R diagram,
rectangles represent entities, and lines represent relationships between connected entities. The E-R diagram
for the Premiere Products database appears in Figure 1-7.

Each of the five entities in the Premiere Products database appears as a rectangle in the E-R diagram
shown in Figure 1-7. The name of each entity appears above the rectangle. The columns for each entity
appear within the rectangle. Because the Rep and Customer entities have a one-to-many relationship, a line
connects these two entities; similarly, a line connects the Customer and Orders entities, the Orders and
OrderLine entities, and the Part and OrderLine entities. The dot at the end of a line, such as the dot at the
Customer end of the line that connects the Rep and Customer entities, indicates the “many” part of the
one-to-many relationship between two entities. You will learn more about E-R diagrams in Chapter 6.

DATABASE MANAGEMENT SYSTEMS

Managing a database is inherently a complicated task. Fortunately, software packages, called database man-
agement systems, can do the job of manipulating databases for you. A database management system (DBMS)
is a program, or a collection of programs, through which users interact with a database. The actual manipula-
tion of the underlying database is handled by the DBMS. In some cases, users may interact with the DBMS
directly, as shown in Figure 1-8.

RepNum

LastName
FirstName
Street
City
State
Zip
Commission
Rate

Rep

OrderNum

OrderDate
CustomerNum

Orders

OrderNum
PartNum

NumOrdered
QuotedPrice

OrderLine

CustomerNum

CustomerName
Street
City
State
Zip
Balance
CreditLimit
RepNum

Customer

PartNum

Description
OnHand
Class
Warehouse
Price

Part

An entity appears
as a rectangle

Column names
appear inside

rectangles

Entity names

Line indicates a
relationship

Absence of a dot
indicates the “one” part

of the relationship

Dot indicates the
“many” part of the

relationship

FIGURE 1-7 E-R diagram for the Premiere Products database

9

Introduction to Database Management

In other cases, users may interact with programs such as those created with Visual Basic, Java, Perl,
PHP, or C++; these programs, in turn, interact with the DBMS, as shown in Figure 1-9. In either case, only
the DBMS actually accesses the database.

With a DBMS, for example, users at Premiere Products can ask the system to find data about part KV29;
the system will either locate the part and provide the data or display a message that no such part exists in
the database. All the work involved in this task is performed by the DBMS. If part KV29 is in the database,
users then can ask for the order lines that contain the part, and again the system will perform all the work
involved in locating the order lines. Likewise, when users add data about a new customer to the database, the
DBMS performs all the tasks necessary to ensure that the customer data is added and that the customer is
related to the appropriate rep.

Popular DBMSs include Access, Oracle, DB2, MySQL, and SQL Server. Because Premiere Products uses
the Microsoft Office suite of programs, which includes Access, management elects to use Access as its DBMS
initially. Using the tables shown in Figure 1-5 as the starting point, a database expert at Premiere Products
determines the structure of the required database—this process is called database design. Then this person
enters the design in the DBMS and creates several forms, which are screen objects used to maintain, view,
and print data from a database. Employees then use these forms to enter data.

The form that employees use to process part data is shown in Figure 1-10. Using this form, employees
can enter a new part; view, change, or delete an existing part; and print the information for a part. No one at
Premiere Products needs to write a program to create this form; instead, the DBMS creates the form based on
answers provided in response to the DBMS’s questions about the form’s content and appearance.

DBMS Database

User

FIGURE 1-8 Using a DBMS directly

User

DBMSProgram Database

FIGURE 1-9 Using a DBMS through another program

10

Chapter 1

In this same way, you can easily use the DBMS to create the other forms that Premiere Products needs.
A more complicated form for processing order data is shown in Figure 1-11. This form displays data about an
order and its order lines, using data from the Orders table and related data from the OrderLine table.

Premiere Products can create the reports it needs in a similar way—the DBMS asks questions about the
desired content and appearance of each report and then creates the reports automatically based on the
answers. The Part report, listing each part in stock, is shown in Figure 1-12.

Field valuesField names

FIGURE 1-10 Part form

Fields from the
Orders table Fields from the

OrderLine table

FIGURE 1-11 Orders form

11

Introduction to Database Management

ADVANTAGES OF DATABASE PROCESSING

The database approach to processing offers nine clear advantages over alternative data management methods.
These advantages are listed in Figure 1-13 and are discussed on the following pages.

1. Getting more information from the same amount of data. The primary goal of a computer sys-
tem is to turn data (recorded facts) into information (the knowledge gained by processing those facts).
In a nondatabase, file-oriented environment, data often is partitioned into several disjointed systems,
with each system having its own collection of files. Any request for information that necessitates
accessing data from more than one of these collections can be extremely difficult to fulfill. In some
cases, for all practical purposes, it is impossible. Thus, the desired information is unavailable—it has
been stored in the computer, but it is scattered across multiple files. When all the data for the various
systems is stored in a single database, however, the information becomes available. Given the power
of a DBMS, the information is available, and the process of getting it is quick and easy.

2. Sharing data. The data of various users can be combined and shared among authorized users,
allowing all users access to a greater pool of data. Several users can have access to the same
piece of data—for example, a customer’s address—and still use it in a variety of ways. When one
user changes a customer’s address, the new address immediately becomes available to all users.

BV06

CD52

DL71

DR93

FD21

KL62

KT03

KV29

OnHand Class

Iron

Home Gym

Gas Range

Stand Mixer

Dishwasher

50

45

32

21

8

12

22

12

8

9

HW

SG

AP

HW

AP

AP

HW

AP

AP

SG

3

2

1

3

2

3

3

1

3

2

$24.95

$794.95

$165.00

$129.95

$495.00

$399.99

$159.95

$349.95

$595.00

$1,390.00

AT94

DW11

Microwave Oven

Cordless Drill

Washer

Dryer

Treadmill

DescriptionPartNum

Part

Warehouse Price

FIGURE 1-12 Part report

1.
2. Sharing data
3.
4.
5. Facilitating consistency
6.
7. Expanding security
8.
9.

Getting more information from the same amount of data

Balancing conflicting requirements
Controlling redundancy

Improving integrity

Increasing productivity

Providing data independence

FIGURE 1-13 Advantages of database processing

12

Chapter 1

In addition, the existing data can be used in new ways, such as generating new types of reports,
without having to create additional data files, as is the case in the nondatabase approach.

3. Balancing conflicting requirements. For the database approach to function adequately within an
organization, a person or group should be in charge of the database, especially if the database will
serve many users. This person or group is often called the database administrator or database
administration (DBA), respectively. By keeping the overall needs of the organization in mind, a
DBA can structure the database in such a way that it benefits the entire organization, not just a
single group. Although this approach might mean that an individual user group is served less well
than it would have been if it had its own isolated system, the organization as a whole is better off.
Ultimately, when the organization benefits, so do the individual groups of users.

4. Controlling redundancy. With database processing, data that formerly was kept separate in
nondatabase, file-oriented systems is integrated into a single database, so multiple copies of the
same data no longer exist. With the nondatabase approach, each user group at Premiere Pro-
ducts has its own copy of each customer’s address. With the database approach, each customer’s
address would occur only once, thus eliminating redundancy.

Eliminating redundancy not only saves space but also makes the process of updating data
much simpler. With the database approach, changing a customer’s address means making one
change. With the nondatabase approach, in which data for each customer might be stored in
three different places, the same address change means that three changes have to be made.

Although eliminating redundancy is the ideal, it is not always possible. Sometimes, for rea-
sons having to do with performance, you might choose to introduce a limited amount of redun-
dancy into a database. However, even in these cases, you would be able to keep the redundancy
under tight control, thus obtaining the same advantages. This is why it is better to say that you
control redundancy rather than eliminate it.

5. Facilitating consistency. Suppose an individual customer’s address appears in more than one
place. Customer 148, for example, might be listed at 2837 Greenway in one place and at 2856
Wisner in another place. In this case, the data for the customer is inconsistent. Because the
potential for this sort of problem is a direct result of redundancy and because the database
approach reduces redundancy, there is less potential for this sort of inconsistency occurring with
the database approach.

6. Improving integrity. An integrity constraint is a rule that data must follow in the database. For
example, the rep number given for any customer must be one that is already in the database. In
other words, users cannot enter an incorrect or nonexistent rep number for a customer. A data-
base has integrity when the data in it satisfies all established integrity constraints. A good DBMS
should provide an opportunity for users to incorporate these integrity constraints when they
design the database. The DBMS then should ensure that the constraints are not violated.
According to the integrity constraint about customers, the DBMS should not allow you to store
data about a given customer when the rep number you enter is not the number of a rep that
already is in the database.

7. Expanding security. Security is the prevention of unauthorized access to the database. A DBMS
has many features that help ensure the enforcement of security measures. For example, a DBA
can assign passwords to authorized users and then only those users who enter an acceptable pass-
word can gain access to the data in the database. Further, a DBMS lets you assign users to groups,
with some groups permitted to view and update data in the database and other groups permitted
only to view certain data in the database. With the nondatabase approach, you have limited secu-
rity features and are more vulnerable to intentional and accidental access and changes to data.

8. Increasing productivity. A DBMS frees the programmers who are writing database access pro-
grams from having to engage in mundane data manipulation activities, such as adding new data
and deleting existing data, thus making the programmers more productive. A good DBMS has many
features that allow users to gain access to data in a database without having to do any program-
ming. These features increase the productivity of programmers, who may not need to write com-
plex programs in order to perform certain tasks, and nonprogrammers, who may be able to get the
results they seek from the data in a database without waiting for a program to be written for them.

9. Providing data independence. The structure of a database often needs to be changed. For
example, changing user requirements might necessitate the addition of an entity, an attribute,

13

Introduction to Database Management

or a relationship, or a change might be required to improve performance. A good DBMS provides
data independence, which is a property that lets you change the structure of a database without
requiring you to change the programs that access the database; examples of these programs are
the forms you use to interact with the database and the reports that provide information from
the database. Without data independence, programmers might need to expend a great deal of
effort to update programs to match the new database structure. The presence of many programs
in the system may make this effort so prohibitive that management might decide to avoid
changing the database, even though the change might improve the database’s performance or
add valuable data. With data independence, management is more likely to make the decision to
change the database.

DISADVANTAGES OF DATABASE PROCESSING

As you would expect, when there are advantages to doing something in a certain way, there are also disad-
vantages. Database processing is no exception. In terms of numbers alone, the advantages outweigh the dis-
advantages; the latter are listed in Figure 1-14 and explained next.

1. Larger file size. To support all the complex functions that it provides to users, a DBMS must be
a large program that occupies a great deal of disk space, as well as a substantial amount of inter-
nal memory. In addition, because all the data that the database manages for you is stored in one
file, the database file requires a large amount of disk space and internal memory.

2. Increased complexity. The complexity and breadth of the functions provided by a DBMS make
it a complex product. Users of the DBMS must learn a great deal to understand the features of
the system in order to take full advantage of it. In the design and implementation of a new sys-
tem that uses a DBMS, many choices have to be made; it is possible to make incorrect choices,
especially with an insufficient understanding of the system. Unfortunately, a few incorrect
choices can spell disaster for the whole project. A sound database design is critical to the suc-
cessful use of a DBMS.

3. Greater impact of failure. In a nondatabase, file-oriented system, each user has a completely
separate system; the failure of any single user’s system does not necessarily affect any other
user. On the other hand, if several users are sharing the same database, a failure on the part of
any one user that damages the database in some way might affect all the other users.

4. More difficult recovery. Because a database inherently is more complex than a simple file, the
process of recovering it in the event of a catastrophe also is more complicated. This is particu-
larly true when the database is being updated by many users at the same time. The database
must first be restored to the condition it was in when it was last known to be correct; any
updates made by users since that time must be redone. The greater the number of users
involved in updating the database, the more complicated this task becomes.

INTRODUCTION TO THE HENRY BOOKS DATABASE CASE

Henry Books is a bookstore chain owned by Ray Henry, who sells used books and remainders in his stores.
To support his growing mail order and Internet business, he stores his data in a database to ensure that his
data is current, accurate, and easily accessible.

1. Larger file size
2.
3.
4.

Increased complexity
Greater impact of failure

More difficult recovery

FIGURE 1-14 Disadvantages of database processing

14

Chapter 1

In running his chain of bookstores, Ray gathers and organizes information about branches, publishers,
authors, and books. Figure 1-15 shows sample branch and publisher data for Henry Books. Each branch has a
number that uniquely identifies the branch. In addition, Ray tracks the branch’s name and its location. Each
publisher has a code that uniquely identifies the publisher. In addition, Ray tracks the publisher’s name and city.

BranchNum BranchName BranchLocation

1 Henry Downtown 16 Riverview

2 Henry on the Hill 1289 Bedford

3 Henry Brentwood Brentwood Mall

4 Henry Eastshore Eastshore Mall

Branch

PublisherCode PublisherName City

AH Arkham House Sauk City WI

AP Arcade Publishing New York

BA Basic Books Boulder CO

BP Berkley Publishing Boston

BY Back Bay Books New York

CT Course Technology Boston

FA Fawcett Books New York

FS Farrar Straus & Giroux New York

HC HarperCollins Publishers New York

JP Jove Publications New York

JT Jeremy P. Tarcher Los Angeles

LB Lb Books New York

MP McPherson and Co. Kingston

PE Penguin USA New York

PL Plume New York

PU Putnam Publishing Group New York

RH Random House New York

SB Schoken Books New York

SC Scribner New York

SS Simon & Schuster New York

ST Scholastic Trade New York

TA Taunton Press Newtown CT

TB Tor Books New York

TH Thames and Hudson New York

TO Touchstone Books Westport CT

VB Vintage Books New York

WN W.W. Norton New York

WP Westview Press Boulder CO

Publisher

FIGURE 1-15 Sample branch and publisher data for Henry Books

15

Introduction to Database Management

Figure 1-16 shows sample author data for Henry Books. Each author has a number that uniquely identi-
fies the author. In addition, Ray records each author’s last and first names.

Figure 1-17 shows sample book data for Henry Books. Each book has a code that uniquely identifies the
book. For each book, Ray also tracks the title, publisher, type of book, and whether the book is a paperback.

AuthorNum AuthorLast AuthorFirst

1 Morrison Toni

2 Solotaroff Paul

3 Vintage Vernor

4 Francis Dick

5 Straub Peter

6 King Stephen

7 Pratt Philip

8 Chase Truddi

9 Collins Bradley

10 Heller Joseph

11 Wills Gary

12 Hofstadter Douglas R.

13 Lee Harper

14 Ambrose Stephen E.

15 Rowling J.K.

16 Salinger J.D.

17 Heaney Seamus

18 Camus Albert

19 Collins, Jr. Bradley

20 Steinbeck John

21 Castelman Riva

22 Owen Barbara

23 O’Rourke Randy

24 Kidder Tracy

25 Schleining Lon

Author

FIGURE 1-16 Sample author data for Henry Books

16

Chapter 1

BookCode Title PublisherCode Type Paperback

0180 A Deepness in the Sky TB SFI Yes

0189 Magic Terror FA HOR Yes

0200 The Stranger VB FIC Yes

0378 Venice SS ART No

079X Second Wind PU MYS No

No

0808 The Edge JP MYS Yes

Yes

Yes

1351 Dreamcatcher: A Novel SC HOR o

1382 Treasure Chests TA ART

ART

No

No

138X Beloved PL FIC

2226 Harry Potter and the
Prisoner of Azkaban ST SFI o

2281 Van Gogh and Gauguin WP No

2766 Of Mice and Men PE FIC Yes

2908 Electric Light FS POE No

3350 Group: Six People in
Search of a Life BP PSY

3743 Nine Stories LB FIC Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

3906 The Soul of a New
Machine BY SCI

5163 Travels with Charley PE TRA Yes

5790 Catch-22 SC FIC

6128 Jazz PL FIC

6328 Band of Brothers TO HIS Yes

669X A Guide to SQL CT CMP

6908 Franny and Zooey LB FIC Yes

7405 East of Eden PE FIC

7443 Harry Potter and the
Goblet of Fire ST SFI o

7559 The Fall VB FIC Yes

8092 Godel, Escher, Bach BA PHI Yes

8720 When Rabbit Howls JP PSY

9611 Black House RH HOR No

No

No

9627 Song of Solomon PL FIC

9701 The Grapes of Wrath PE FIC

9882 Slay Ride JP MYS Yes

9883 The Catcher in the Rye LB FIC Yes

9931 To Kill a Mockingbird HC FIC

Book

FIGURE 1-17 Sample book data for Henry Books

17

Introduction to Database Management

Q & A

Question: To check your understanding of the relationship between publishers and books, answer the follow-
ing questions: Who published Jazz? Which books did Jove Publications publish?
Answer: Plume published Jazz. In the row in the Book table for Jazz (see Figure 1-17), find the publisher
code PL. Examining the Publisher table (see Figure 1-15), you see that PL is the code assigned to Plume.

Jove Publications published The Edge, When Rabbit Howls, and Slay Ride. To find the books published
by Jove Publications, find its code (JP) in the Publisher table. Next, find all rows in the Book table for which
the publisher code is JP.

The table named Wrote, shown below in Figure 1-18, is used to relate books and authors. The Sequence
field indicates the order in which the authors of a particular book are listed on the cover. The table named
Copy, shown on the next three pages, is used to indicate the detailed facts about each copy of a particular
book currently on hand at a particular branch of Henry Books. The first row, for example, indicates that
there is a copy of the book with the book code 0180 available at branch 1, the book’s quality is excellent, and
the book’s price is $7.19.

BookCode AuthorNum Sequence

0180 3 1

0189 5 1

0200 18 1

0378 11 1

079X 4 1

0808 4 1

1351 6 1

1382 23 2

1382 25 1

138X 1 1

2226 15 1

2281 9 2

2281 19 1

2766 20 1

2908 17 1

3350 2 1

3743 16 1

3906 24 1

Wrote
BookCode AuthorNum Sequence

Wrote (continued)

7405 20 1

7443 15 1

7559 18 1

8092 12 1

8720 8 1

9611 5 2

9611 6 1

9627 1 1

9701 20 1

9882 4 1

9883 16 1

9931 13 1

5163 20 1

5790 10 1

6128 1 1

6328 14 1

669X 7 1

6908 16 1

FIGURE 1-18 Sample data that relates books to authors and books to branches for Henry Books (continued)

18

Chapter 1

BookCode BranchNum CopyNum

0180 1 1

0180 1 1

1

2

1

1

2

3

1

2

1

1

2

0189 2

0189 2

0200 1

0200 2

0200 2

0200 2

0378 3

0378 3

079X 2

079X 3

079X 3

079X 4 1

079X 4 2

079X 4 3

0808 2 1

11351 2

1351 2 2

1351 2 3

1351 2 4

Copy
Quality Price

1351 3 1

1351 3 2

1382

Excellent

Excellent

Excellent

Good

Excellent

Excellent

Fair

Poor

Excellent

Excellent

Excellent

Excellent

Good

Excellent

Excellent

Good

Excellent

Excellent

Excellent

Excellent

Excellent

Excellent

Good

Good2 1

7.19

7.19

7.99

5.99

8.00

8.00

3.50

2.25

24.50

24.50

25.95

25.95

19.95

25.95

25.95

19.95

7.99

21.95

21.95

21.95

21.95

21.95

13.95

34.50

2 1 Excellent 12.95

2 2 Excellent 12.95

2 3 Good 6.95

1 1 Excellent 14.96

1 2 Excellent 14.96

1 3 Good 8.95

3 1 Excellent 14.95

3 2 Excellent 14.95

4 1 Fair 3.95

4 1 Excellent 21.00

3 1 Excellent 7.95

3 2 Good 3.95

138X

138X

138X

2226

2226

2226

2226

2226

2226

2281

2766

2766

FIGURE 1-18 Sample data that relates books to authors and books to branches for Henry Books (continued)

19

Introduction to Database Management

BookCode BranchNum CopyNum

Copy (continued)
Quality Price

2908 1 1 Excellent 14.95

2908 1 2 Excellent 14.95

2908 1 3 Good 8.50

2908 4 1 Good 8.50

3350 1 1 Excellent 10.40

3350 1 2 Excellent 10.40

3743 2 1 Excellent 5.99

3906 2 1 Excellent 12.16

3906 3 1 Excellent 12.16

3906 3 2 Good 4.50

5163 1 1 Excellent 7.95

5790 4 1 Excellent 12.00

5790 4 2 Good 5.95

6128 2 1 Excellent 12.95

6128 2 2 Excellent 12.95

6128 2 3 Excellent 12.95

6128 2 4 Excellent 12.95

6128 3 1 Excellent 12.95

6128 3 2 Excellent 12.95

6128 3 3 Good 4.75

6328 2 1 Excellent 9.95

6328 2 2 Excellent 9.95

669X 1 1 Excellent 39.95

669X 2 1 Excellent 39.95

6908 2 1 Excellent 5.99

6908 2 2 Excellent 5.99

7405 3 1 Good 5.00

7405 3 2 Fair 2.95

7443 4 1 Good 9.25

7559 2 1 Fair 3.65

7559 2 2 Good 8.00

8092 3 1 Good 9.50

8720 1 1 Excellent 6.29

8720 1 2 Excellent 6.29

8720 1 3 Good 3.95

9611 1 1 Excellent 18.81

9611 1 2 Good 8.25

9627 3 1 Excellent 14.00

9627 3 2 Excellent 14.00

9627 3 3 Excellent 14.00

9627 3 4 Excellent 14.00

FIGURE 1-18 Sample data that relates books to authors and books to branches for Henry Books (continued)

20

Chapter 1

Q & A

Question: To check your understanding of the relationship between authors and books, answer the following
questions: Who wrote Black House? (Make sure you list the authors in the correct order.) Which books did
Toni Morrison write?
Answer: Stephen King and Peter Straub wrote Black House. To determine who wrote Black House, first
examine the Book table (see Figure 1-17) to find its book code (9611). Next, look for all rows in the Wrote
table in which the book code is 9611. There are two such rows. In one row, the author number is 5, and in
the other row, the author number is 6. Then look in the Author table to find the authors who have been
assigned the numbers 5 and 6. The answer is Peter Straub (5) and Stephen King (6). In the Wrote table, the
sequence number for author number 5 is 2, and the sequence number for author number 6 is 1. Thus, listing
the authors in the proper order results in Stephen King and Peter Straub.

Toni Morrison wrote Beloved, Jazz, and Song of Solomon. To find the books written by Toni Morrison,
look up her author number in the Author table and find that it is 1, then look for all rows in the Wrote table
for which the author number is 1. There are three such rows. The corresponding book codes are 138X, 6128,
and 9627. Looking up these codes in the Book table, you find that Toni Morrison wrote Beloved, Jazz, and
Song of Solomon.

BookCode BranchNum CopyNum

Copy (continued)
Quality Price

9627 3 5 Good 6.50

9627 4 1 Excellent 14.00

9627 4 2 Good 6.50

9701 1 1 Excellent 13.00

9701 1 2 Excellent 13.00

9701 2 1 Excellent 13.00

9701 3 1 Fair 4.00

9701 3 2 Fair 4.00

9701 3 3 Good 7.25

9701 4 1 Excellent 13.00

9701 4 2 Poor 1.55

9882 3 1 Excellent 6.99

9882 3 2 Good 3.75

9882 3 3 Excellent 6.99

9883 2 1 Excellent 5.99

9883 2 2 Excellent 5.99

9883 2 3 Fair 1.95

9883 4 1 Good 3.99

9883 4 2 Excellent 5.99

9931 1 1 Excellent 13.00

9931 1 2 Excellent 13.00

FIGURE 1-18 Sample data that relates books to authors and books to branches for Henry Books (continued)

21

Introduction to Database Management

Q & A

Question: A customer in branch 1 wants to purchase a copy of The Soul of a New Machine whose quality is
excellent. Is this book currently in stock at branch 1?
Answer: No. Looking up the code for The Soul of a New Machine in the Book table, you find it is 3906. To
find out if copies are in stock at branch 1, look for a row in the Copy table with 3906 in the BookCode col-
umn and 1 in the BranchNum column. Because there is no such row, branch 1 doesn’t have any copies of
The Soul of a New Machine.

Q & A

Question: You would like to obtain a copy of The Soul of a New Machine whose quality is excellent for this
customer. Which branches currently have it in stock, and how many copies does each branch have?
Answer: Branches 2 and 3 each have one copy of this book whose quality is excellent. You already know that
the code for The Soul of a New Machine is 3906. (If you didn’t know the book’s code, you would look it up in
the Book table.) To find out which branches currently have copies, look for rows in the Copy table with 3906
in the BookCode column. There are three such rows. The first row indicates that branch number 2 currently
has one copy of this book. The Quality column indicates that the quality of this copy is excellent. The second
and third rows indicate that branch number 3 currently has two copies of this book. The Quality column in
the second row indicates that there is one copy of this book whose quality is excellent, and the third row
indicates that there is a second copy of this book whose quality is good at branch number 3.

The E-R diagram for the Henry Books database appears in Figure 1-19.

INTRODUCTION TO THE ALEXAMARA MARINA GROUP DATABASE CASE

Alexamara Marina Group offers in-water boat storage to owners by providing boat slips that boat owners can
rent on an annual basis. Alexamara owns two marinas: Alexamara East and Alexamara Central. In addition to
boat slips, Alexamara also provides a variety of boat repair and maintenance services to the boat owners who
rent the slips. Alexamara stores in a database the data it needs to manage its operations.

AuthorNum

AuthorLast
AuthorFirst

Book

BookCode

Wrote

BookCode

Sequence

Author

AuthorNum

PublisherCode

PublisherName
City

Publisher

BranchNum

BranchName
BranchLocation

Quality
Price

Branch

Title
PublisherCode
Type
Paperback

Copy

BookCode
BranchNum
CopyNum

FIGURE 1-19 E-R diagram for the Henry Books database

22

Chapter 1

In the Marina table shown in Figure 1-20, Alexamara stores information about its two marinas. A marina
number uniquely identifies each marina. The table also includes the marina name, address, city, state, and
zip code.

Alexamara stores information about the boat owners to whom it rents slips in the Owner table shown in
Figure 1-21. An owner number that consists of two uppercase letters followed by a two-digit number uniquely
identifies each owner. For each owner, the table also includes the last name, first name, address, city, state,
and zip code.

Each marina contains slips that are identified by slip numbers. Marina 1 (Alexamara East) has two sec-
tions named A and B. Slips are numbered within each section. Thus, slip numbers at marina 1 consist of
the letter A or B followed by a number (for example, A3 or B2). At marina 2 (Alexamara Central), a number
(1, 2, 3) identifies each slip.

Information about the slips in the marinas is contained in the MarinaSlip table shown in Figure 1-22. The
table contains the slip ID, marina number, slip number, length of the slip (in feet), annual rental fee, name of
the boat currently occupying the slip, type of boat, and boat owner’s number.

FIGURE 1-20 Sample marina data for Alexamara Marina Group

OwnerNum LastName FirstName Address City State Zip

AD57 Adney Bruce and Jean 208 Citrus Bowton FL 31313

AN75 Anderson Bill 18 Wilcox Glander Bay FL 31044

BL72 Blake Mary 2672 Commodore Bowton FL 31313

EL25 Elend Sandy and Bill 462 Riverside Rivard FL 31062

FE82 Feenstra Daniel 7822 Coventry Kaleva FL 32521

JU92 Juarez Maria 8922 Oak Rivard FL 31062

KE22 Kelly Alyssa 5271 Waters Bowton FL 31313

NO27 Norton Peter 2811 Lakewood Lewiston FL 32765

SM72 Smeltz Becky and Dave 922 Garland Glander Bay FL 31044

TR72 Trent Ashton 922 Crest Bay Shores FL 30992

Owner

FIGURE 1-21 Sample owner data for Alexamara Marina Group

23

Introduction to Database Management

Q & A

Question: To check your understanding of the relationship between owners and marina slips, answer the
following questions: Who owns Axxon II? What are the names of the boats owned by Bill Anderson?
Answer: Peter Norton owns Axxon II. In the row in the MarinaSlip table for Axxon II (see Figure 1-22), find
owner number NO27. Examining the Owner table (see Figure 1-21), you see that NO27 is the code assigned
to Peter Norton.

Bill Anderson owns Anderson II and Anderson III. To find the boats owned by Bill Anderson, find his
owner number (AN75) in the Owner table. Next, find all rows in the MarinaSlip table for which the owner
number is AN75.

Alexamara provides boat maintenance service at its two marinas. The types of service provided are
stored in the ServiceCategory table shown in Figure 1-23. A category number uniquely identifies each service
that Alexamara performs. The table also contains a description of the category.

Information about the services requested by owners is stored in the ServiceRequest table shown in
Figure 1-24. Each row in the table contains a service ID that identifies each service request. The slip ID
identifies the location (marina number and slip number) of the boat to be serviced. For example, the slip ID
on the second row is 5. As indicated in the MarinaSlip table, the slip ID 5 identifies the boat in marina 1 and
slip number B2. The ServiceRequest table also contains the category number of the service to be performed,

SlipID MarinaNum SlipNum Length RentalFee BoatName BoatType OwnerNum

1 1 A1 40 $3,800.00 Anderson II Sprite 4000 AN75

2 1 A2 40 $3,800.00 Our Toy Ray 4025 EL25

3 1 A3 40 $3,600.00 Escape Sprite 4000 KE22

4 1 B1 30 $2,400.00 Gypsy Dolphin 28 JU92

5 1 B2 30 $2,600.00 Anderson III Sprite 3000 AN75

6 2 1 25 $1,800.00 Bravo Dolphin 25 AD57

7 2 2 25 $1,800.00 Chinook Dolphin 22 FE82

8 2 3 25 $2,000.00 Listy Dolphin 25 SM72

9 2 4 30 $2,500.00 Mermaid Dolphin 28 BL72

10 2 5 40 $4,200.00 Axxon II Dolphin 40 NO27

11 2 6 40 $4,200.00 Karvel Ray 4025 TR72

MarinaSlip

FIGURE 1-22 Sample data about marina slips for Alexamara Marina Group

CategoryNum CategoryDescription

1 Routine engine maintenance

2 Engine repair

3 Air conditioning

4 Electrical systems

5 Fiberglass repair

6 Canvas installation

7 Canvas repair

8 Electronic systems (radar, GPS, autopilots, etc.)

ServiceCategory

FIGURE 1-23 Sample data about service categories for Alexamara Marina Group

24

Chapter 1

a description of the specific service to be performed, and the current status of the service. The table
also contains the estimated number of hours required to complete the service. For completed jobs, the table
contains the actual number of hours it took to complete the service. If another appointment is required to
complete additional service, the appointment date appears in the NextServiceDate column.

Service Slip Category Description Status Est Spent Next
ID ID Num Hours Hours ServiceDate

1 1 3 Air conditioner Technician has verified 4 2 7/12/2013
periodically stops the problem. Air
with code indicating conditioning specialist
low coolant level. has been called.
Diagnose and repair.

2 5 4 Fuse on port motor Open 2 0 7/12/2013
blown on two occasions.
Diagnose and repair.

3 4 1 Oil change and general Service call has been 1 0 7/16/2013
routine maintenance scheduled.
(check fluid levels, clean
sea strainers, etc.).

4 1 2 Engine oil level has been Open 2 0 7/13/2013
dropping drastically.
Diagnose and repair.

5 3 5 Open pockets at base Technician has 4 2 7/13/2013
of two stantions. completed the initial

filling of the open pockets.
Will complete the job
after the initial fill has had
sufficient time to dry.

6 11 4 Electric-flush system Open 3 0
periodically stops
functioning. Diagnose
and repair.

7 6 2 Engine overheating. Open 2 0 7/13/2013
Loss of coolant.
Diagnose and repair.

ServiceRequest

8 6 2 Heat exchanger not Technician has determined 4 1 7/17/2013
operating correctly. that the exchanger is

faulty. New exchanger
has been ordered.

9 7 6 Canvas severely Open 8 0 7/16/2013
damaged in windstorm.
Order and install new
canvas.

10 2 8 Install new GPS and Scheduled 7 0 7/17/2013
chart plotter.

11 2 3 Air conditioning unit Technician not able to 1 1
shuts down with “HHH” replicate the problem.
showing on the control Air conditioning unit ran
panel. fine through multiple

tests. Owner to notify
technician if the problem
recurs.

FIGURE 1-24 Sample data about service requests for Alexamara Marina Group (continued)

25

Introduction to Database Management

Q & A

Question: To check your understanding of the relationship between service requests and boats, answer the
following questions: What is the name of the boat that had a fuse blown on its port motor, and who owns this
boat? What service has been performed on the boat named Gypsy?
Answer: Anderson III, owned by Bill Anderson, had a fuse blown on its port motor. To determine which boat
had a fuse blown on its port motor, first examine the service descriptions in the ServiceRequest table (see
Figure 1-24) to find the slip ID of the boat (5). Next, look for the row in the MarinaSlip table (see Figure 1-22)
in which the slip ID is 5. Anderson III is the boat name in that row, and AN75 is the owner number for that
boat. Finally, to identify the owner, Bill Anderson, look for the row in the Owner table (see Figure 1-21) in
which the owner number is AN75.

The Gypsy had services for an oil change and routine maintenance and for an inspection of the speed
and depth readings on its data unit. To find the service request for the Gypsy, look up the slip ID for the
Gypsy in the MarinaSlip table and find that it is 4. Then look for all rows in the ServiceRequest table for
which the slip ID is 4. There are two such rows. The corresponding service IDs are 3 for an oil change and
routine maintenance and 12 for an inspection of the data unit.

Service Slip Category Description Status Est Spent Next
ID ID Num Hours Hours ServiceDate

12 4 8 Both speed and depth Technician has 2 0 7/16/2013
readings on data unit scheduled appointment
are significantly less than with owner to attempt
the owner thinks they to verify the problem.
should be.

13 8 2 Customer describes Technician suspects 5 2 7/12/2013
engine as making a problem with either
“clattering” sound. propeller or shaft and

has scheduled the boat to
be pulled from the water
for further investigation.

ServiceRequest (continued)

14 7 5 Owner accident caused Technician has scheduled 6 0 7/13/2013
damage to forward repair.
portion of port side.

15 11 7 Canvas leaks around Overlap has been created. 8 3 7/17/2013
zippers in heavy rain. Installation has been
Install overlap around scheduled.
zippers to prevent leaks.

FIGURE 1-24 Sample data about service requests for Alexamara Marina Group (continued)

26

Chapter 1

The E-R diagram for the Alexamara Marina Group database appears in Figure 1-25.

Name
Address
City
State
Zip

Marina

MarinaNum

LastName
FirstName
Address
City
State
Zip

Owner

OwnerNum

SliplD

MarinaSlip

MarinaNum
SlipNum
Length
RentalFee
BoatName
BoatType
OwnerNum

ServiceCategory

CategoryNum

CategoryDescription

ServiceRequest

SliplD
CategoryNum
Description
Status
EstHours
SpentHours
NextServiceDate

ServicelD

FIGURE 1-25 E-R diagram for the Alexamara Marina Group database

27

Introduction to Database Management

Summary

• Problems with nondatabase approaches to data management include redundancy, difficulties accessing
related data, limited security features, limited data sharing features, and potential size limitations.

• An entity is a person, place, object, event, or idea for which you want to store and process data. An attribute,
field, or column is a characteristic or property of an entity. A relationship is an association between entities.

• A one-to-many relationship between two entities exists when each occurrence of the first entity is related to
many occurrences of the second entity and each occurrence of the second entity is related to only one
occurrence of the first entity.

• A database is a structure that can store information about multiple types of entities, the attributes of the
entities, and the relationships among the entities.

• Premiere Products is an organization whose requirements include information about the following entities:
reps, customers, parts, orders, and order lines.

• An entity-relationship (E-R) diagram represents a database visually by using a rectangle for each entity
that includes the entity’s name above the rectangle and the entity’s columns inside the rectangle, using a
line to connect two entities that have a relationship, and placing a dot at the end of a line to indicate the
“many” part of a one-to-many relationship.

• A database management system (DBMS) is a program, or a collection of programs, through which users
interact with a database. DBMSs let you create forms and reports quickly and easily, as well as obtain
answers to questions about the data stored in a database.

• Database processing offers the following advantages: getting more information from the same amount of
data, sharing data, balancing conflicting requirements, controlling redundancy, facilitating consistency,
improving integrity, expanding security, increasing productivity, and providing data independence. The dis-
advantages of database processing include the following: larger file size, increased complexity, greater
impact of failure, and more difficult recovery.

• Henry Books is a company whose requirements include information about the following entities: branches,
publishers, authors, books, book copies, and author sequence.

• Alexamara Marina Group is a company whose requirements include information about the following enti-
ties: marinas, owners, marina slips, service categories, and service requests.

Key Terms

attribute

column

data file

data independence

database

database administration (DBA)

database administrator

database design

database management system (DBMS)

entity

entity-relationship (E-R) diagram

field

form

integrity

integrity constraint

one-to-many relationship

redundancy

relationship

security

Review Questions

1. What is redundancy? What problems are associated with redundancy?

2. Besides redundancy, what other problems are associated with the nondatabase approach to processing data?

3. What is an entity? An attribute?

4. What is a relationship? A one-to-many relationship?

28

Chapter 1

5. What is a database?

6. How do you create a one-to-many relationship in a database system?

7. What is an E-R diagram?

8. What is a DBMS?

9. What is database design?

10. What is a form?

11. How is it possible to get more information from the same amount of data by using a database approach as
opposed to a nondatabase approach?

12. What is meant by the sharing of data?

13. What is a DBA? What kinds of responsibilities does a DBA have in a database environment?

14. How does consistency result from controlling redundancy?

15. What is an integrity constraint? When does a database have integrity?

16. What is security? How does a DBMS provide security?

17. What is data independence? Why is it desirable?

18. How is file size a disadvantage in a database environment?

19. How can the complexity of a DBMS be a disadvantage?

20. Why can a failure in a database environment be more serious than an error in a nondatabase environment?

21. Why might recovery of data be more difficult in a database environment?

Premiere Products Exercises

Answer each of the following questions using the Premiere Products data shown in Figure 1-5. No computer work is
required.

1. List the names of all customers that have a credit limit less than $10,000.

2. List the descriptions of all parts in item class AP and located in warehouse number 3.

3. List the order numbers for orders placed by customer number 608 on October 23, 2013.

4. List the part number, part description, and on-hand value (OnHand * Price) for each part in item class SG.

5. List the name of each customer that placed an order for two different parts in the same order.

6. List the name of each customer that has a credit limit of $5,000 and is represented by Richard Hull.

7. Find the sum of the balances for all customers represented by Juan Perez.

8. For each order, list the order number, order date, customer number, and customer name.

9. For each order placed on October 21, 2013, list the order number, order date, customer number, and customer
name.

10. For each order placed on October 20, 2013, list the order number and customer name, along with the name of
the rep who represents the customer.

Henry Books Case

In later chapters, you will be asked to perform many tasks to help Ray Henry manage and manipulate his database.
To familiarize yourself with the database in preparation for those tasks, answer each of the following questions using
the Henry Books data shown in Figures 1-15 through 1-18. No computer work is required.

1. List the name of each publisher that’s not located in New York.

2. List the title of each book published by Penguin USA.

3. List the title of each book that has the type MYS.

4. List the title of each book that has the type SFI and that is in paperback.

29

Introduction to Database Management

5. List the title of each book that has the type PSY or whose publisher code is JP.

6. List the title of each book that has the type CMP, HIS, or SCI.

7. How many books have a publisher code of ST or VB?

8. List the title of each book written by Dick Francis.

9. List the title of each book that has the type FIC and that was written by John Steinbeck.

10. For each book with coauthors, list the title, publisher code, type, and author names (in the order listed on the
cover).

11. How many book copies have a price that is greater than $20 but less than $25?

12. List the branch number, copy number, quality, and price for each copy of The Stranger.

13. List the branch name, copy number, quality, and price for each copy of Electric Light.

14. For each book copy with a price greater than $25, list the book’s title, quality, and price.

15. For each book copy available at the Henry on the Hill branch whose quality is excellent, list the book’s title and
author names (in the order listed on the cover).

Alexamara Marina Group Case

Answer each of the following questions using the Alexamara Marina Group data shown in Figures 1-20 through 1-24.
No computer work is required.

1. List the owner number, last name, and first name of every boat owner.

2. List the names of all boats that are stored in a slip with a length of less than 30 feet.

3. List the last name, first name, and street address of every owner located in Glander Bay.

4. List the last name, first name, and city of every owner who has more than one boat stored at the marina.

5. List the last name, first name, and city of every owner with a boat located in a slip whose rental fee is greater
than $2,500.

6. List the boat name and boat type of all boats that are stored at the Alexamara East marina.

7. List the last name and first name of the owner and the boat name of all boats that have a completed or open
service request.

8. List the boat name and boat type of all boats that have two or more completed or open service requests.

9. List the boat name and boat type of all boats that have a completed or open service request for a fiberglass or
canvas-related service.

10. List the boat name and the last and first names of the owners for all boats that have engine repair service
requests.

30

Chapter 1

C H A P T E R2
THE RELATIONAL MODEL 1:
INTRODUCTION, QBE, AND
RELATIONAL ALGEBRA

L E A R N I N G O B J E C T I V E S

• Describe the relational model

• Understand Query-By-Example (QBE)

• Use criteria in QBE

• Create calculated columns in QBE

• Use functions in QBE

• Sort data in QBE

• Join tables in QBE

• Update data using QBE

• Understand relational algebra

I N T R O D U C T I O N

The database management approach implemented by most DBMSs is the relational model. In this chapter, you will study
the relational model and examine a method of retrieving data from relational databases, called Query-By-Example (QBE).
Finally, you will learn about relational algebra, which is one of the original ways of manipulating a relational database.

RELATIONAL DATABASES

A relational database is a collection of tables like the ones you viewed for Premiere Products in Chapter 1.
These tables also appear in Figure 2-1. You might wonder why this type of database is not called a “table”
database or something similar, if a database is nothing more than a collection of tables. Formally, these tables
are called relations, and this is where this type of database gets its name.

How does a relational database handle entities, attributes of entities, and relationships between entities?
Each entity is stored in its own table. For example, the Premiere Products database has a table for sales reps,
a table for customers, and so on. The attributes of an entity become the fields or columns in the table. In the
table for sales reps, for example, there is a column for the rep number, a column for the rep’s last name, and
so on.

RepNum LastName FirstName Street City State Zip Commission Rate

20 Kaiser Valerie 624 Randall Grove FL 33321 $20,542.50 0.05

35 Hull Richard 532 Jackson Sheldon FL 33553 $39,216.00 0.07

65 Perez Juan 1626 Taylor Fillmore FL 33336 $23,487.00 0.05

Rep

CustomerNum CustomerName Street City State Zip Balance CreditLimit RepNum

148 Al’s Appliance 2837 Greenway Fillmore FL 33336 $6,550.00 $7,500.00 20
and Sport

282 Brookings 3827 Devon Grove FL 33321 $431.50 $10,000.00 35
Direct

356 Ferguson’s 382 Wildwood Northfield FL 33146 $5,785.00 $7,500.00 65

408 The Everything 1828 Raven Crystal FL 33503 $5,285.25 $5,000.00 35
Shop

462 Bargains Galore 3829 Central Grove FL 33321 $3,412.00 $10,000.00 65

524 Kline’s 838 Ridgeland Fillmore FL 33336 $12,762.00 $15,000.00 20

608 Johnson’s 372 Oxford Sheldon FL 33553 $2,106.00 $10,000.00 65
Department
Store

687 Lee’s Sport 282 Evergreen Altonville FL 32543 $2,851.00 $5,000.00 35
and Appliance

725 Deerfield’s 282 Columbia Sheldon FL 33553 $248.00 $7,500.00 35
Four Seasons

842 All Season 28 Lakeview Grove FL 33321 $8,221.00 $7,500.00 20

Customer

OrderNum OrderDate CustomerNum

21608 10/20/2013 148

21610 10/20/2013 356

21613 10/21/2013 408

21614 10/21/2013 282

21617 10/23/2013 608

21619 10/23/2013 148

21623 10/23/2013 608

Orders
OrderNum PartNum NumOrdered QuotedPrice

21608 AT94 11 $21.95

21610 DR93 1 $495.00

21610 DW11 1 $399.99

21613 KL62 4 $329.95

21614 KT03 2 $595.00

21617 BV06 2 $794.95

21617 CD52 4 $150.00

21619 DR93 1 $495.00

21623 KV29 2 $1,290.00

OrderLine

PartNum Description OnHand Class Warehouse Price

AT94 Iron 50 HW 3 $24.95

BV06 Home Gym 45 SG 2 $794.95

CD52 Microwave Oven 32 AP 1 $165.00

DL71 Cordless Drill 21 HW 3 $129.95

DR93 Gas Range 8 AP 2 $495.00

DW11 Washer 12 AP 3 $399.99

FD21 Stand Mixer 22 HW 3 $159.95

KL62 Dryer 12 AP 1 $349.95

KT03 Dishwasher 8 AP 3 $595.00

KV29 Treadmill 9 SG 2 $1,390.00

Part

FIGURE 2-1 Sample data for Premiere Products

32

Chapter 2

What about relationships? At Premiere Products, there is a one-to-many relationship between sales reps
and customers. (Each sales rep is related to the many customers he or she represents, and each customer is
related to the one sales rep who represents it.) How is this relationship implemented in a relational database?
The answer is through common columns in two or more tables. Consider Figure 2-1 again. The RepNum col-
umns in the Rep and Customer tables implement the relationship between sales reps and customers. For any
sales rep, you can use these columns to determine all the customers the sales rep represents; for any cus-
tomer, you can use these columns to find the sales rep who represents the customer. If the Customer table
did not include the sales rep number, you would not be able to identify the sales rep for a given customer
and the customers for a given sales rep.

More formally, a relation is essentially just a two-dimensional table. If you consider the tables shown in
Figure 2-1, however, you might see certain restrictions that you can place on relations. Each column in a
table should have a unique name, and all entries in each column should be consistent with this column
name. For example, in the CreditLimit column, all entries should, in fact, be credit limits. In addition, each
row should be unique. After all, when two rows in a table contain identical data, the second row doesn’t pro-
vide any information that you don’t already have. In addition, for maximum flexibility, the order in which
columns and rows appear in a table should be immaterial. Finally, a table’s design is less complex when you
restrict each location in the table to a single value; that is, you should not permit multiple entries (often
called repeating groups) in the table. These ideas lead to the following definitions.

Definition: A relation is a two-dimensional table in which:

1. The entries in the table are single-valued; that is, each location in the table contains a single
value.

2. Each column has a distinct name (technically called the attribute name).
3. All values in a column are values of the same attribute (that is, all entries must match the

column name).
4. The order of columns is immaterial.
5. Each row is distinct.
6. The order of rows is immaterial.

Definition: A relational database is a collection of relations.
Later in this text, you will encounter situations in which a structure satisfies all the properties of a

relation except for the first item; that is, some of the entries contain repeating groups and, thus, are not
single-valued. Such a structure is called an unnormalized relation. This jargon is a little strange in that an
unnormalized relation is really not a relation at all. This term is used for such a structure, however. The
table shown in Figure 2-2 is an example of an unnormalized relation.

OrderNum OrderDate CustomerNum PartNum NumOrdered QuotedPrice

21608 10/20/2013 148 AT94 11 $21.95

21610 10/20/2013 356 DR93 1 $495.00
DW11 1 $399.99

21613 10/21/2013 408 KL62 4 $329.95

21614 10/21/2013 282 KT03 2 $595.00

21617 10/23/2013 608 BV06 2 $794.95
CD52 4 $150.00

21619 10/23/2013 148 DR93 1 $495.00

21623 10/23/2013 608 KV29 2 $1,290.00

Orders

FIGURE 2-2 Sample structure of an unnormalized relation

33

The Relational Model 1: Introduction, QBE, and Relational Algebra

N O T E
Rows in a table (relation) are often called records or tuples. Columns in a table (relation) are often called fields or attributes.

There is a commonly accepted shorthand representation that shows the structure of a relational database:
You write the name of the table and then, within parentheses, list all the columns in the table. In addition, each
table should appear on its own line. Using this method, you would write the Premiere Products database as follows:

Rep (RepNum, LastName, FirstName, Street, City, State, Zip, Commission, Rate)

Customer (CustomerNum, CustomerName, Street, City, State, Zip, Balance, CreditLimit, RepNum)

Orders (OrderNum, OrderDate, CustomerNum)

OrderLine (OrderNum, PartNum, NumOrdered, QuotedPrice)

Part (PartNum, Description, OnHand, Class, Warehouse, Price)

The Premiere Products database contains some duplicate column names. For example, the RepNum col-
umn appears in both the Rep table and the Customer table. Suppose a situation exists wherein the two col-
umns might be confused. If you write RepNum, how would the computer or another programmer know which
RepNum column in which table you intend to use? That could be a problem.

When duplicate column names exist in a database, you need a way to indicate the column to which you are
referring. One common approach to this problem is to write both the table name and the column name, separated
by a period. Thus, you would write the RepNum column in the Customer table as Customer.RepNum and the
RepNum column in the Rep table as Rep.RepNum. Technically, when you combine a column name with a table
name, you say that you qualify the column names. It is always acceptable to qualify column names, even when
there is no possibility of confusion. If confusion may arise, however, it is essential to qualify column names.

The primary key of a table (relation) is the column or collection of columns that uniquely identifies a
given row in that table. In the Rep table, the sales rep’s number uniquely identifies a given row. For example,
rep 35 occurs in only one row of the table. Thus, RepNum is the primary key for the Rep table.

The primary key provides an important way of distinguishing one row in a table from another. Primary keys
are usually represented by underlining the column or collection of columns that comprises the primary key for
each table in the database. Thus, the complete representation for the Premiere Products database is as follows:

Rep (RepNum, LastName, FirstName, Street, City, State, Zip, Commission, Rate)

Customer (CustomerNum, CustomerName, Street, City, State, Zip, Balance, CreditLimit, RepNum)

Orders (OrderNum, OrderDate, CustomerNum)

OrderLine (OrderNum, PartNum, NumOrdered, QuotedPrice)

Part (PartNum, Description, OnHand, Class, Warehouse, Price)

Q & A

Question: Why does the primary key of the OrderLine table consist of two columns, not just one?
Answer: No single column uniquely identifies a given row in the OrderLine table. It requires a combination of
two columns: OrderNum and PartNum.

QUERY-BY-EXAMPLE (QBE)

When you ask Access or any other DBMS a question about the data in a database, the question is called a
query. A query is simply a question represented in a way that the DBMS can recognize and process. In this
section, you will investigate Query-By-Example (QBE), an approach to writing queries that is very visual.
With QBE, users ask their questions by entering column names and other criteria using an on-screen grid,
and data appears on the screen in tabular form.

N O T E
This chapter features a specific version of QBE, Microsoft Access 2010, to illustrate the use of QBE. Although the various ver-
sions of QBE are not identical, the differences are relatively minor. After you have mastered one version of QBE, you can apply
your skills to learn another version of QBE.

34

Chapter 2

In Access, you create queries using the Query window, which has two panes. The upper portion of the
window contains a field list for each table you want to query. The lower pane contains the design grid, the
area in which you specify the format of your output, the fields to be included in the query results, a sort
order for the query results, and any criteria the records you are looking for must satisfy.

The following figures and examples will show you how to retrieve data using the Access version of QBE.

N O T E
If you plan to work through the examples in this chapter using a computer, you should use a copy of the Premiere Products
database provided with this text because the version of the database used in subsequent chapters does not include the
changes you will make.

SIMPLE QUERIES

To include a field in the results of a query, you place it in the design grid.

E X A M P L E 1

List the number, name, balance, and credit limit of all customers in the database.

To include a field in an Access query, double-click the field in the field list to place it in the design grid, as
shown in Figure 2-3. The check marks in the Show check boxes indicate the fields that will appear in the query
results. To omit a field from the query results, remove the check mark from the field’s Show check box.

Fields from the
Customer table added

to the design grid

Fields in the
Customer

table’s field list

Click the Run
button to view the

query results

Check marks
indicate fields to appear

in the query results

FIGURE 2-3 Fields added to the design grid

35

The Relational Model 1: Introduction, QBE, and Relational Algebra

Clicking the Run button in the Results group on the Query Tools Design tab runs the query and displays
the query results, as shown in Figure 2-4.

E X A M P L E 2

List all fields and all rows in the Orders table.

To display all fields and all rows in the Orders table, you could add each field to the design grid. There is
a shortcut, however. In Access, you can add all fields from a table to the design grid by double-clicking the
asterisk in the table’s field list. As shown in Figure 2-5, the asterisk appears in the design grid, indicating that
all fields will be included in the query results.

Only the fields added
to the design grid appear

in the query results

All records from
the Customer table

are included

FIGURE 2-4 Query results

36

Chapter 2

The query results appear in Figure 2-6.

SIMPLE CRITERIA

When the records that you want to display in a query’s results must satisfy a condition, you enter the condi-
tion in the appropriate column in the design grid. Conditions that data must satisfy are also called criteria.
(A single condition is called a criterion.) The following example illustrates the use of a criterion to select data.

E X A M P L E 3

Find the name of customer 148.

Asterisk in the
Orders table

field list

Asterisk indicates
that all fields will

be included in the
query results

FIGURE 2-5 Query that includes all fields in the Orders table

All fields in
the Orders table

are included

FIGURE 2-6 Query results

37

The Relational Model 1: Introduction, QBE, and Relational Algebra

To enter a criterion for a field, include the field in the design grid, and then enter the criterion in the
row labeled “Criteria” for that field, as shown in Figure 2-7.

N O T E
When you enter a criterion for a Text field, such as CustomerNum, Access automatically adds double quotation marks around
the value when you run the query or move the insertion point to another box in the design grid. Typing the quotation marks is
optional. (Some DBMSs use single quotation marks to enclose Text values.)

Q & A

Question: Why is the CustomerNum field a Text field? Doesn’t it contain numbers?
Answer: Fields such as the CustomerNum field that contain numbers, but are not involved in calculations,
are usually assigned the Text data type.

Criterion causes
the query to select a
record only when the
CustomerNum is 148

FIGURE 2-7 Query to find the name of customer 148

38

Chapter 2

The query results shown in Figure 2-8 show an exact match; the query selects a record only when
CustomerNum equals 148.

If you want something other than an exact match, you must enter the appropriate comparison operator,
also called a relational operator, as you will see in the next example. The comparison operators are ¼ (equal
to), > (greater than), < (less than), >¼ (greater than or equal to), <¼ (less than or equal to), and NOT (not
equal to).

N O T E
It is common in QBE to omit the ¼ symbol in “equal to” comparisons, although you can use it every time.

COMPOUND CRITERIA

You can use the comparison operators by themselves to create conditions. You can also combine criteria to
create compound criteria, or compound conditions. In many query languages, you create compound criteria
by including the word AND or OR between the separate criteria. In an AND criterion, both criteria must be
true for the compound criterion to be true. In an OR criterion, the overall criterion is true if either of the
individual criteria is true.

In QBE, to create an AND criterion, place the criteria for multiple fields on the same Criteria row in
the design grid; to create an OR criterion, place the criteria for multiple fields on different Criteria rows
in the design grid.

E X A M P L E 4

List the description, on hand value, and warehouse number for all parts that have more than 10 units on
hand and that are located in warehouse 3.

Only customer
148 (Al’s Appliance and

Sport) is included in
the query results

FIGURE 2-8 Query results

39

The Relational Model 1: Introduction, QBE, and Relational Algebra

To indicate that two criteria must both be true to select a record, place the conditions for each field in
the same Criteria row, as shown in Figure 2-9. In this case, you want the query to select those parts where the
value in the OnHand field is greater than 10 (which requires the use of the > comparison operator) and
the value in the Warehouse field is 3.

The query results appear in Figure 2-10.

E X A M P L E 5

List the description, on hand value, and warehouse number for all parts that have more than 10 units on
hand or that are located in warehouse 3.

Criterion to select
records in which the

OnHand value is
greater than 10Because the criteria

are in the same Criteria
row, both criteria must be

true to select a record

Criterion to select
records in which the

Warehouse value
equals 3

FIGURE 2-9 Query that uses an AND criterion

Only parts with more
than 10 units on hand and

located in warehouse 3
are included

FIGURE 2-10 Query results

40

Chapter 2

To indicate that either of two conditions must be true to select a record, place the first criterion in the Cri-
teria row for the first column and place the second criterion in the row labeled “or,” as shown in Figure 2-11.

The query results appear in Figure 2-12.

E X A M P L E 6

List the number, name, and balance for each customer whose balance is between $1,000 and $5,000.

Because the criteria
are on separate rows, only
one criterion needs to be

true to select a record

FIGURE 2-11 Query that uses an OR criterion

Only those parts that
have more than 10 units on
hand or that are located in
warehouse 3 are included

FIGURE 2-12 Query results

41

The Relational Model 1: Introduction, QBE, and Relational Algebra

This example requires you to search for a range of values to find all customers with balances between
$1,000 and $5,000. When you ask this kind of question, you are looking for all balances that are greater than
$1,000 and all balances that are less than $5,000; the answer to this question requires using a compound
criterion, or two criteria in the same field.

To place two criteria in the same field, separate the criteria with the AND operator to create an AND
condition. Figure 2-13 shows the AND condition to select all records with a value of more than 1000 and
less than 5000 in the Balance field.

The query results appear in Figure 2-14.

COMPUTED FIELDS

Sometimes you’ll need to include calculated fields that are not in the database in queries. A computed field
or calculated field is a field that is the result of a calculation using one or more existing fields. Example 7
illustrates the use of a calculated field.

Two conditions
for a single field

FIGURE 2-13 Query that uses an AND condition for a single field

Only customers with
balances between
$1,000 and $5,000

are included

FIGURE 2-14 Query results

42

Chapter 2

E X A M P L E 7

List the number, name, and available credit for all customers.

Available credit is computed by subtracting the balance from the credit limit. Because there is no avail-
able credit field in the Customer table, you must calculate it from the existing Balance and CreditLimit fields.
To include a computed field in a query, you enter a name for the computed field, followed by a colon, and
then followed by an expression in one of the columns in the Field row.

To calculate available credit, you can enter the expression AvailableCredit:CreditLimit-Balance in the
desired Field row in the design grid. When entering an expression in the design grid, the default column size
prevents you from being able to see the complete expression. An alternative method is to right-click the
column in the Field row to display the shortcut menu, and then click Zoom to open the Zoom dialog box.
Then you can type the expression in the Zoom dialog box, as shown in Figure 2-15.

N O T E
When a field name contains spaces or SQL reserved words, you must enclose the field name in square brackets ([]). For
example, if the field name were Credit Limit instead of CreditLimit, you would enter the expression as [Credit Limit]-Balance.
You can also enclose a field name that does not contain spaces in square brackets, but you do not need to do so.

Computed field
(AvailableCredit)

The AvailableCredit
field will appear here

in the design grid

Expression

FIGURE 2-15 Using the Zoom dialog box to add a computed field to a query

43

The Relational Model 1: Introduction, QBE, and Relational Algebra

The query results appear in Figure 2-16.

You are not restricted to subtraction in computations. You can also use addition (þ), multiplication (*),
or division (/). You can include parentheses in your expressions to indicate which computations Access
should perform first.

FUNCTIONS

All products that support QBE, including Access, support the following built-in functions (called aggregate
functions in Access): Count, Sum, Avg (average), Max (largest value), Min (smallest value), StDev (standard
deviation), Var (variance), First, and Last. To use any of these functions in a query, you include them in the
Total row for the desired column in the design grid. By default, the Total row does not appear automatically
in the design grid. To display it, you click the Totals button in the Show/Hide group on the Query Tools
Design tab.

Example 8 illustrates how to use a function in a query by counting the number of customers represented
by sales rep 35.

E X A M P L E 8

How many customers does sales rep 35 represent?

To count the number of rows in the Customer table that have the value 35 in the RepNum column, you
select the Count function in the Total row for the CustomerNum column. In the RepNum column, you select
the Where operator in the Total row to indicate that there will also be a criterion. In the Criteria row for the
RepNum column, the entry 35 selects only those records for sales rep number 35, as shown in Figure 2-17.

Computed
field

Parentheses
indicate negative

numbers

FIGURE 2-16 Query results

44

Chapter 2

The query results appear in Figure 2-18. Notice that Access used the default name, CountOfCustomerNum,
for the new column. You could create your own column name by preceding the field name with the desired
column name and a colon in the query design (for example, NumberOfCustomers: CustomerNum changes the
default name to “NumberOfCustomers”).

E X A M P L E 9

What is the average balance of all customers of sales rep 35?

Total row added
to design grid

Function
(Count)

Criterion
(RepNum

must be 35)

Click the Totals
button to add

the Total row to
the design grid

FIGURE 2-17 Query to count records

Number of
customers for
sales rep 35

FIGURE 2-18 Query results

45

The Relational Model 1: Introduction, QBE, and Relational Algebra

To calculate the average balance, use the Avg function, as shown in Figure 2-19.

The query results appear in Figure 2-20.

GROUPING

You can also use functions in combination with grouping, where calculations affect groups of records. For
example, you might need to calculate the average balance for all customers of each sales rep. Grouping sim-
ply means creating groups of records that share some common characteristic. In grouping by RepNum, for
example, the customers of sales rep 20 would form one group, the customers of sales rep 35 would form a
second group, and the customers of sales rep 65 would form a third group. The calculations are then made
for each group. To group records in Access, select the Group By operator in the Total row for the field on
which to group.

E X A M P L E 1 0

What is the average balance for all customers of each sales rep?

In this example, include the RepNum and Balance fields in the design grid. To group the customer
records for each sales rep, select the Group By operator in the Total row for the RepNum column. To calcu-
late the average balance for each group of customers, select the Avg function in the Total row for the Balance
column, as shown in Figure 2-21.

Avg function
added to
Total row

Criterion
(RepNum

must be 35)

FIGURE 2-19 Query to calculate an average

Average balance
of all customers
of sales rep 35

FIGURE 2-20 Query results

46

Chapter 2

The query results appear in Figure 2-22.

SORTING

In most queries, the order in which records appear doesn’t matter. In other queries, however, the order in
which records appear can be very important. You might want to see customers listed alphabetically by cus-
tomer name or listed by rep number. Further, you might want to see customer records listed alphabetically
by customer name and grouped by sales rep number.

To list the records in query results in a particular way, you need to sort the records. The field on which
records are sorted is called the sort key; you can sort records using more than one field when necessary.
When you are sorting records by more than one field (such as sorting by rep number and then by customer
name), the first sort field (RepNum) is called the major sort key (also called the primary sort key) and the
second sort field (CustomerName) is called the minor sort key (also called the secondary sort key).

To sort in Access, specify the sort order in the Sort row of the design grid for the sort key field.

E X A M P L E 1 1

List the customer number, name, balance, and rep number for each customer. Sort the output alphabetically
by customer name.

To sort the records alphabetically using the CustomerName field, select the Ascending sort order in the
Sort row for the CustomerName column, as shown in Figure 2-23. (To sort the records in reverse alphabeti-
cal order, select the Descending sort order.)

Groups records
using sales

rep numbers

Calculates the
average balance
for each group

FIGURE 2-21 Query to group records

Records grouped
by sales rep number

Average balance
for all customers
of each sales rep

FIGURE 2-22 Query results

47

The Relational Model 1: Introduction, QBE, and Relational Algebra

The query results appear in Figure 2-24. Notice that the customer names appear in alphabetical order.

Sorting on Multiple Keys
You can specify more than one sort key in a query; in this case, the sort key on the left in the design grid will
be the major (primary) sort key and the sort key on the right will be the minor (secondary) sort key. Example
12 illustrates the process.

E X A M P L E 1 2

List the customer number, name, balance, and rep number for each customer. Sort the output by sales rep
number. Within the customers of each sales rep, sort the output by customer name.

To sort records by sales rep number and then by customer name, RepNum is the major sort key and
CustomerName is the minor sort key. You might be tempted to select the sort orders for these fields in the
design grid, but your results would not be sorted correctly. Figure 2-25 shows an incorrect query design.

Sort row
Ascending sort

order specified for the
CustomerName field

FIGURE 2-23 Query to sort records

Records sorted
alphabetically by
customer name

FIGURE 2-24 Query results

48

Chapter 2

In Figure 2-25, the CustomerName field is to the left of the RepNum field in the design grid. With this
order, CustomerName is the major sort key, so the data is sorted by customer name first, and not by sales rep
number, as shown in Figure 2-26. If two customers had the same name, the data for these customers would
be further sorted by sales rep number because RepNum is the minor sort key.

 Ascending sort
order specified for

CustomerName and
RepNum fields

Because
CustomerName

is to the left of RepNum,
CustomerName is the

major sort key

FIGURE 2-25 Incorrect query design to sort by RepNum and then by CustomerName

Data incorrectly
sorted first by

CustomerName

Data sorted
second by
RepNum

FIGURE 2-26 Query results

49

The Relational Model 1: Introduction, QBE, and Relational Algebra

To correct this problem, include the RepNum field in the design grid twice, as shown in Figure 2-27.

The correct query design shows the Ascending sort order selected for the first RepNum field, which will
not appear in the query results because the check mark was removed from its Show check box. Because
this RepNum field is to the left of the minor sort key (CustomerName), RepNum is the major sort key. The
second RepNum field in the design grid will display the rep numbers in the query results in the desired
position, as shown in Figure 2-28.

Ascending
sort order specified

for RepNum and
CustomerName fields

Because RepNum is to
the left of CustomerName,

RepNum will be the
major sort key

 First RepNum field
will not appear in the

query results

RepNum field
included twice

FIGURE 2-27 Correct query design to sort by RepNum and then by CustomerName

50

Chapter 2

JOINING TABLES

So far, the queries used in the examples have displayed records from a single table. In many cases, you’ll
need to create queries to select data from more than one table. To do so, it is necessary to join the tables
based on matching fields in corresponding columns. To join tables in Access, first you add the field lists for
both tables to the upper pane of the Query window. Access will draw a line, called a join line, between
matching fields in the two tables, indicating that the tables are related. (If the corresponding fields have the
same field name and at least one of the fields is the primary key of the table that contains it, Access will join
the tables automatically.) Then, you can select fields from either or both tables, as you will see in the next
example.

E X A M P L E 1 3

List each customer’s number and name, along with the number, last name, and first name of each customer’s
sales rep.

You cannot create this query using a single table—the customer name is in the Customer table and the
sales rep name is in the Rep table. The sales rep number can come from either table because it is the match-
ing field. To select the correct data, you need to join the tables by adding both the Customer and Rep table
field lists to the upper pane and then adding the desired fields from the field lists to the design grid, as shown
in Figure 2-29.

Records are
sorted first

by RepNum

RepNum field
is displayed in the
correct position

Within groups of
customers of a sales rep,

records are sorted second
by CustomerName

FIGURE 2-28 Query results

51

The Relational Model 1: Introduction, QBE, and Relational Algebra

Notice that the Table row in the design grid indicates the table with which each field is associated. The
query results appear in Figure 2-30.

E X A M P L E 1 4

For each customer whose credit limit is $10,000, list the customer’s number and name, along with the num-
ber, last name, and first name of the corresponding sales rep.

Fields from the
Customer table

Fields from the
Rep table

FIGURE 2-30 Query results

Fields from the
Customer table

Join line indicates
how these tables

are related

Rep table
field list

Customer
table field list

Fields from the
Rep table

FIGURE 2-29 Query design to join two tables

52

Chapter 2

The only difference between this query and the one illustrated in Example 13 is that there is an extra
restriction—the credit limit must be $10,000. To include this new condition, add the CreditLimit field to
the design grid, enter 10000 as the criterion, and remove the check mark from the CreditLimit field’s Show
check box (because the CreditLimit column should not appear in the query results). The query design
appears in Figure 2-31.

Only customers with credit limits of $10,000 are included in the query results, as shown in Figure 2-32.

Joining Multiple Tables
Joining three or more tables is similar to joining two tables. First, you add the field lists for all the tables
involved in the join to the upper pane, and then you add the fields to appear in the query results to the
design grid in the desired order.

Criterion (CreditLimit
must be 10000)

FIGURE 2-31 Query to restrict records in a join

Only customers with
credit limits of $10,000

are included

FIGURE 2-32 Query results

53

The Relational Model 1: Introduction, QBE, and Relational Algebra

E X A M P L E 1 5

For each order, list the order number, order date, customer number, and customer name. In addition, for
each order line within the order, list the part number, description, number of units ordered, and quoted
price.

This query requires data from four tables: Orders (for basic order data), Customer (for the customer
number and name), OrderLine (for the part number, number ordered, and quoted price), and Part (for the
description). Figure 2-33 shows the query design.

The query results appear in Figure 2-34.

Four tables
included

Join lines

FIGURE 2-33 Query to join multiple tables

FIGURE 2-34 Query results

54

Chapter 2

USING AN UPDATE QUERY

In addition to retrieving data, you can use a query to update data. A query that changes data is called an
update query. An update query makes a specified change to all records satisfying the criteria in the query.
To change a query to an update query, click the Update button in the Query Type group on the Query Tools
Design tab. When you create an update query, a new row, called the Update To row, is added to the design
grid. You use this row to indicate how to update the data selected by the query.

E X A M P L E 1 6

The zip code for customers located in the city of Fillmore is incorrect; it should be 33363. Change the zip
code for these customers to the correct value.

To change the zip code for only those customers located in Fillmore, include the City column in the
design grid and enter a criterion of Fillmore in the Criteria row. To indicate the new value for the zip code,
include the Zip column in the design grid and enter the new zip code value in the Update To row for the Zip
column, as shown in Figure 2-35. When you click the Run button in the Results group on the Query Tools
Design tab, Access indicates how many rows the query will change and gives you a chance to cancel the
update, if necessary. When you click the Yes button, the query is executed and updates the data specified in
the query design. Because the result of an update query is to change data in the records selected by the
query, running the query does not produce a query datasheet.

USING A DELETE QUERY

You can also use queries to delete one or more records at a time based on criteria that you specify. A delete
query permanently deletes all the records satisfying the criteria entered in the query. For example, you can
delete all the order lines associated with a certain order in the OrderLine table by using a single delete query.

Update To row
added to

design grid

Field
containing
criterion

Field to be
updated

Update
button

New value

FIGURE 2-35 Query design to update data

55

The Relational Model 1: Introduction, QBE, and Relational Algebra

E X A M P L E 1 7

Delete all order lines in which the order number is 21610.

You enter the criteria that will determine the records to be deleted just as you would enter any other
criteria. In this example, include the OrderNum field in the design grid and enter the order number 21610 in
the Criteria row, as shown in Figure 2-36. To change the query type to a delete query, click the Delete but-
ton in the Query Type group on the Query Tools Design tab. Notice that a new row, called the Delete row, is
added to the design grid, indicating that this is a delete query. When you click the Run button, Access indi-
cates how many rows will be deleted and gives you a chance to cancel the deletions, if necessary. If you click
the Yes button, the query will delete all rows in the OrderLine table in which the order number is 21610.
Because the result of a delete query permanently deletes the records it selects, you should take extra care to
make sure that the query design selects the correct records.

Q & A

Question: What happens if you run a delete query that does not include a criterion?
Answer: Because there is no criterion to select records, the query selects all records in the table and then
deletes all of them from the table.

USING A MAKE-TABLE QUERY

You can use a query to create a new table in either the current database or another database. A make-table
query creates a new table using the results of a query. The records added to the new table are separate from
the original table in which they appear; in other words, you don’t move the records to a new table; you cre-
ate a new table using the records selected by the query.

Field
containing
criterion

Delete row
added to

design grid

Delete
button

Criterion

FIGURE 2-36 Query design to delete records

56

Chapter 2

E X A M P L E 1 8

Create a new table containing the customer number and customer name, and the number, first name, and
last name of the customer’s sales rep. Name the new table CustomerRep.

Figure 2-37 shows the query design to select records from the Customer and Rep tables.

After you create and test the query to make sure it selects the correct records, change the query type to
a make-table query by clicking the Make Table button in the Query Type group on the Query Tools Design
tab. In the Make Table dialog box that opens, enter the new table’s name and choose where to create it, as
shown in Figure 2-38.

Fields from
the Customer

table

Fields from
the Rep table

FIGURE 2-37 Make-table query design

57

The Relational Model 1: Introduction, QBE, and Relational Algebra

After closing the Make Table dialog box and running the make-table query, the records it selects are
added to a new table named CustomerRep in the current database. Figure 2-39 shows the new CustomerRep
table created by the make-table query.

RELATIONAL ALGEBRA

Relational algebra is a theoretical way of manipulating a relational database. Relational algebra includes opera-
tions that act on existing tables to produce new tables, similar to the way the operations of addition and sub-
traction act on numbers to produce new numbers in the mathematical algebra with which you are familiar.

Fields from
the Rep table

New table Fields from
the Customer

table

FIGURE 2-39 CustomerRep table created by the make-table query

New table will
be saved in the

current database

Query to select
records to add to

the new table

Make Table
button

Table to contain
the query results

FIGURE 2-38 Make Table dialog box

58

Chapter 2

Retrieving data from a relational database through the use of relational algebra involves issuing relational
algebra commands to operate on existing tables to form a new table containing the desired information.
Sometimes you might need to execute a series of commands to obtain the desired result.

N O T E
Unlike QBE, relational algebra is not used in current DBMS systems. Its importance is the theoretical base it furnishes to the
relational model and the benchmark it provides. Other approaches to querying relational databases are judged by this
benchmark.

N O T E
There is no “standard” method for representing relational algebra commands; this section illustrates one possible approach.
What is important is not the particular way the commands are represented, but the results they provide.

As you will notice in the following examples, each command ends with a GIVING clause, followed by a
table name. This clause requests that the result of the command be placed in a temporary table with the
specified name.

SELECT
In relational algebra, the SELECT command takes a horizontal subset of a table; that is, it retrieves certain
rows from an existing table (based on some user-specified criteria) and saves them as a new table. The
SELECT command includes the word WHERE followed by a condition. The rows retrieved are the rows in
which the condition is satisfied.

E X A M P L E 1 9

List all information about customer 282 from the Customer table.

SELECT Customer WHERE CustomerNum=282

GIVING Answer

This command creates a new table named Answer that contains only one row in which the customer number
is 282, because that is the only row in which the condition is true. All the columns from the Customer table
are included in the new Answer table.

E X A M P L E 2 0

List all information from the Customer table about all customers with credit limits of $7,500.

SELECT Customer WHERE CreditLimit=7500

GIVING Answer

This command creates a new table named Answer that contains all the columns from the Customer table, but
only those rows in which the credit limit is $7,500.

PROJECT
In relational algebra, the PROJECT command takes a vertical subset of a table; that is, it causes only certain
columns to be included in the new table. The PROJECT command includes the word OVER followed by a list
of the columns to be included.

59

The Relational Model 1: Introduction, QBE, and Relational Algebra

E X A M P L E 2 1

List the number and name of all customers.

PROJECT Customer OVER (CustomerNum, CustomerName)

GIVING Answer

This command creates a new table named Answer that contains the CustomerNum and CustomerName
columns for all the rows in the Customer table.

E X A M P L E 2 2

List the number and name of all customers with credit limits of $7,500.

This example requires a two-step process. You first use a SELECT command to create a new table that
contains only those customers with credit limits of $7,500. Then, you project the new table to restrict the
result to only the indicated columns.

SELECT Customer WHERE CreditLimit=7500

GIVING Temp

PROJECT Temp OVER (CustomerNum, CustomerName)

GIVING Answer

The first command creates a new table named Temp that contains all the columns from the Customer
table, but only those rows in which the credit limit is $7,500. The second command creates a new table
named Answer that contains all the rows from the Temp table (that is, only customers with credit limits of
$7,500), but only the CustomerNum and CustomerName columns.

JOIN
The join operation is the core operation of relational algebra because it is the command that allows you to
extract data from more than one table. In the most common form of the join, two tables are combined based
on the values in matching columns, creating a new table containing the columns in both tables. Rows in this
new table are the concatenation (combination) of a row from the first table and a row from the second table
that match on the common column (often called the join column). In other words, two tables are joined on
the join column.

For example, suppose you want to join the two tables shown in Figure 2-40 on RepNum (the join
column), creating a new table named Temp.

60

Chapter 2

The result of joining the Customer and Rep tables creates the table shown in Figure 2-41. The column that
joins the tables (RepNum) appears only once. Other than that, all columns from both tables appear in the result.

When a row in one table does not match any row in the other table, that row will not appear in the result of
the join. Thus, the row for sales rep 75 (Joan Lewis) from the Rep table and the row for customer 701 (Peters)
from the Customer table do not appear in the join table because their rows are not common to both tables.

You can restrict the output from the join to include only certain columns by using the PROJECT com-
mand, as shown in the following example.

CustomerNum CustomerName RepNum

148 Al’s Appliance and Sport 20

282 Brookings Direct 35

356 Ferguson’s 65

408 The Everything Shop 35

462 Bargains Galore 65

524 Kline’s 20

608 Johnson’s Department Store 65

687 Lee’s Sport and Appliance 35

725 Deerfield’s Four Seasons 35

842 All Season 20

701 Peters 05

Customer

RepNum LastName FirstName

20 Kaiser Valerie

35 Hull Richard

65 Perez Juan

75 Lewis Joan

Rep

FIGURE 2-40 Customer and Rep tables

CustomerNum CustomerName RepNum LastName FirstName

148 Al’s Appliance and Sport 20 Kaiser Valerie

282 Brookings Direct 35 Hull Richard

356 Ferguson’s 65 Perez Juan

408 The Everything Shop 35 Hull Richard

462 Bargains Galore 65 Perez Juan

524 Kline’s 20 Kaiser Valerie

608 Johnson’s Department Store 65 Perez Juan

687 Lee’s Sport and Appliance 35 Hull Richard

725 Deerfield’s Four Seasons 35 Hull Richard

842 All Season 20 Kaiser Valerie

Temp

FIGURE 2-41 Table produced by joining the Customer and Rep tables

61

The Relational Model 1: Introduction, QBE, and Relational Algebra

E X A M P L E 2 3

For each customer, list the customer number, customer name, sales rep number, and sales rep’s last name.

JOIN Customer Rep

WHERE Customer.RepNum=Rep.RepNum

GIVING Temp

PROJECT Temp OVER (CustomerNum, CustomerName, RepNum, LastName)

GIVING Answer

In the WHERE clause of the JOIN command, the matching fields are both named RepNum—the field in the
Rep table named RepNum is supposed to match the field in the Customer table named RepNum. Because two
fields are named RepNum, you must qualify the field names. Just as in QBE, the RepNum field in the Rep
table is written as Rep.RepNum and the RepNum field in the Customer table is written as Customer.RepNum.

In this example, the JOIN command joins the Rep and Customer tables to create a new table, named
Temp. The PROJECT command creates a new table named Answer that contains all the rows from the Temp
table, but only the CustomerNum, CustomerName, RepNum, and LastName columns.

The type of join used in Example 23 is called a natural join. Although this type of join is the most com-
mon, there is another possibility. The other type of join, the outer join, is similar to the natural join, except
that it also includes records from each original table that are not common in both tables. In a natural join,
these unmatched records do not appear in the new table. In the outer join, unmatched records are included
and the values of the fields are vacant, or null, for the records that do not have data common in both tables.
Performing an outer join for Example 23 produces the table shown in Figure 2-42.

Normal Set Operations
Relational algebra includes set operations for union, intersection, and difference. The union of tables A and B is
a table containing all rows that are in either table A or table B or in both table A and table B. The intersection
of two tables is a table containing all rows that are common in both table A and table B. The difference of two
tables A and B (referred to as “A minus B”) is the set of all rows that are in table A but that are not in table B.

Union

There is a restriction on set operations. It does not make sense, for example, to talk about the union of the
Rep table and the Customer table because the tables do not contain the same columns. The two tables must

CustomerNum CustomerName RepNum LastName FirstName

148 Al’s Appliance and Sport 20 Kaiser Valerie

282 Brookings Direct 35 Hull Richard

356 Ferguson’s 65 Perez Juan

408 The Everything Shop 35 Hull Richard

462 Bargains Galore 65 Perez Juan

524 Kline’s 20 Kaiser Valerie

608 Johnson’s Department Store 65 Perez Juan

687 Lee’s Sport and Appliance 35 Hull Richard

725 Deerfield’s Four Seasons 35 Hull Richard

842 All Season 20 Kaiser Valerie

701 Peters 05 - -

- - 75 Lewis Joan

Temp

FIGURE 2-42 Table produced by an outer join of the Customer and Rep tables

62

Chapter 2

have the same structure for a union to be appropriate; the formal term is union compatible. Two tables are
union compatible when they have the same number of columns and when their corresponding columns rep-
resent the same type of data. For example, if the first column in table A contains customer numbers, the first
column in table B must also contain customer numbers.

E X A M P L E 2 4

List the number and name of those customers that have orders or are represented by sales rep 65, or both.

You can create a table containing the number and name of all customers that have orders by joining the
Orders table and the Customer table (Temp1 in the following example) and then projecting the result over
CustomerNum and CustomerName (Temp2). You can also create a table containing the number and name of
all customers represented by sales rep 65 by selecting from the Customer table (Temp3) and then projecting
the result (Temp4). The two tables ultimately created by this process (Temp2 and Temp4) have the same
structure. They each have two fields: CustomerNum and CustomerName. Because these two tables are union
compatible, it is appropriate to take the union of these two tables. This process is accomplished in relational
algebra using the following code:

JOIN Orders, Customer

WHERE Orders.CustomerNum=Customer.CustomerNum

GIVING Temp1

PROJECT Temp1 OVER CustomerNum, CustomerName

GIVING Temp2

SELECT Customer WHERE RepNum= ’65 ’

GIVING Temp3

PROJECT Temp3 OVER CustomerNum, CustomerName

GIVING Temp4

UNION Temp2 WITH Temp4 GIVING Answer

Intersection

As you would expect, using the intersection operation is very similar to using the union operation. The only
difference is that you replace the UNION command with the INTERSECT command, as illustrated in the
following example.

E X A M P L E 2 5

List the number and name of customers that have orders and that are represented by sales rep 65.

In this example, you need to intersect the two tables instead of taking their union. The code to accom-
plish this is as follows:

JOIN Orders, Customer

WHERE Orders.CustomerNum=Customer.CustomerNum

GIVING Temp1

PROJECT Temp1 OVER CustomerNum, CustomerName

GIVING Temp2

SELECT Customer WHERE RepNum= ’65 ’

GIVING Temp3

PROJECT Temp3 OVER CustomerNum, CustomerName

GIVING Temp4

INTERSECT Temp2 WITH Temp4 GIVING Answer

63

The Relational Model 1: Introduction, QBE, and Relational Algebra

Difference

The difference operation is performed by the SUBTRACT command in relational algebra.

E X A M P L E 2 6

List the number and name of those customers that have orders but that are not represented by sales rep 65.

This process is virtually identical to the one you encountered in the union and intersection examples, but
in this case, you subtract one of the tables from the other instead of taking their union or intersection. This
process is accomplished in relational algebra using the following command:

JOIN Orders, Customer

WHERE Orders.CustomerNum=Customer.CustomerNum

GIVING Temp1

PROJECT Temp1 OVER CustomerNum, CustomerName

GIVING Temp2

SELECT Customer WHERE RepNum= ’65 ’

GIVING Temp3

PROJECT Temp3 OVER CustomerNum, CustomerName

GIVING Temp4

SUBTRACT Temp4 FROM Temp2 GIVING Answer

The next two sections present the final two important but infrequently used commands in relational
algebra: product and division.

Product
The product of two tables (mathematically called the Cartesian product) is the table obtained by concatenat-
ing every row in the first table with every row in the second table. Thus, the product of the Orders table and
the Part table, which are both shown in Figure 2-43, appears in the figure as the table labeled “Product of
Orders and Part.”

Every row in the Orders table is matched with every row in the Part table. If the Orders table has m rows
and the Part table has n rows, there would be m times n rows in the product. If, as is typically the case, the
tables have many rows, the number of rows in the product can be so great that it is not practical to form the
product. Usually, you want only those combinations that satisfy certain restrictions; thus, you would almost
always use the join operation instead of the product operation.

OrderNum OrderDate

21608 10/20/2013

21610 10/20/2013

21613 10/21/2013

Orders

OrderNum OrderDate PartNum Description

21608 10/20/2013 DR93 Gas Range

21610 10/20/2013 DR93 Gas Range

21613 10/21/2013 DR93 Gas Range

21608 10/20/2013 DW11 Washer

21610 10/20/2013 DW11 Washer

21613 10/21/2013 DW11 Washer

Product of Orders and Part

PartNum Description

DR93 Gas Range

DW11 Washer

Part

FIGURE 2-43 Product of two tables

64

Chapter 2

Division
The division process is best illustrated by considering the division of a table with two columns by a table with
a single column, which is the most common situation in which this operation is used. Consider the first two
tables shown in Figure 2-44. The first table contains two columns: OrderNum and PartNum. The second table
contains only a single column, PartNum.

The quotient (the result of the division) is a new table with a single column named OrderNum (the col-
umn from table A that is not in table B). The rows in this new table contain those order numbers from the
OrderLine table that “match” all the parts appearing in the Part table. For an order number to appear in the
quotient, a row in the OrderLine table must have that order number in the OrderNum column and DR93 in
the PartNum column. Also, the OrderLine table must have a row with this same order number in the
OrderNum column and DW11 in the PartNum column. It doesn’t matter if other rows in the OrderLine table
contain the same order number as long as the rows with DR93 and DW11 are present. With the sample data,
only order number 21610 qualifies. Thus, the result is the final table shown in the figure.

OrderNum PartNum

21608 AT94

21610 DR93

21610 DW11

21613 KL62

21614 KT03

21617 BV06

21617 CD52

21619 DR93

21623 KV29

OrderLine
PartNum

DR93

DW11

Part
OrderNum

21610

Result of dividing
OrderLine by Part

FIGURE 2-44 Dividing one table by another

65

The Relational Model 1: Introduction, QBE, and Relational Algebra

Summary

• A relation is a two-dimensional table in which the entries are single-valued, each field has a distinct name,
all the values in a field are values of the same attribute (the one identified by the field name), the order of
fields is immaterial, each row is distinct, and the order of rows is immaterial.

• A relational database is a collection of relations.

• An unnormalized relation is a structure in which entries need not be single-valued but that satisfies all the
other properties of a relation.

• A field name is qualified by preceding it with the table name and a period (for example, Rep.RepNum).

• A table’s primary key is the field or fields that uniquely identify a given row within the table.

• Query-By-Example (QBE) is a visual tool for manipulating relational databases. QBE queries are created
by completing on-screen forms.

• To include a field in an Access query, place the field in the design grid and make sure a check mark
appears in the field’s Show check box.

• To indicate criteria in an Access query, place the criteria in the appropriate columns in the design grid of
the Query window.

• To indicate AND criteria in an Access query, place both criteria in the same Criteria row of the design grid;
to indicate OR criteria, place the criteria on separate Criteria rows of the design grid.

• To create a computed field in Access, enter an appropriate expression in the desired column of the design
grid.

• To use functions to perform calculations in Access, include the appropriate function in the Total row for the
appropriate column of the design grid.

• To sort query results in Access, select Ascending or Descending in the Sort row for the field or fields that
are sort keys.

• When sorting query results using more than one field, the leftmost sort key in the design grid is the major
sort key (also called the primary sort key) and the sort key to its right is the minor sort key (also called the
secondary sort key).

• To join tables in Access, place field lists for both tables in the upper pane of the Query window.

• To make the same change to all records that satisfy certain criteria, use an update query.

• To delete all records that satisfy certain criteria, use a delete query.

• To save the results of a query as a table, use a make-table query.

• Relational algebra is a theoretical method of manipulating relational databases.

• The SELECT command in relational algebra selects only certain rows from a table.

• The PROJECT command in relational algebra selects only certain columns from a table.

• The JOIN command in relational algebra combines data from two or more tables based on common
columns.

• The UNION command in relational algebra forms the union of two tables. For a union operation to make
sense, the tables must be union compatible.

• Two tables are union compatible when they have the same number of columns and their corresponding
columns represent the same type of data.

• The INTERSECT command in relational algebra forms the intersection of two tables.

• The SUBTRACT command in relational algebra forms the difference of two tables.

• The product of two tables (mathematically called the Cartesian product) is the table obtained by
concatenating every row in the first table with every row in the second table.

• The division process in relational algebra divides one table by another table.

66

Chapter 2

Key Terms

aggregate function

AND criterion

attribute

calculated field

Cartesian product

comparison operator

compound condition

compound criteria

computed field

concatenation

criteria

criterion

delete query

design grid

difference

division

field

function

grouping

INTERSECT

intersection

join

join column

join line

major sort key

make-table query

minor sort key

natural join

null

OR criterion

outer join

primary key

primary sort key

product

PROJECT

qualify

query

Query-By-Example (QBE)

record

relation

relational algebra

relational database

relational operator

repeating group

secondary sort key

SELECT

sort

sort key

SUBTRACT

tuple

union

union compatible

unnormalized relation

update query

Review Questions

1. What is a relation?

2. What is a relational database?

3. What is an unnormalized relation? Is it a relation according to the definition of the word relation?

4. How is the term attribute used in the relational model? What is a more common name for atttribute?

5. Describe the shorthand representation of the structure of a relational database. Illustrate this technique by
representing the database for Henry Books as shown in Chapter 1.

6. What does it mean to qualify a field name? How would you qualify the Street field in the Customer table?

7. What is a primary key? What is the primary key for each table in the Henry Books database shown in
Chapter 1?

8. How do you include a field in an Access query?

9. How do you indicate criteria in an Access query?

10. How do you use an AND criterion to combine criteria in an Access query? How do you use an OR criterion to
combine criteria?

11. How do you create a computed field in an Access query?

12. In which row of the Access design grid do you include functions? What functions can you use in Access
queries?

67

The Relational Model 1: Introduction, QBE, and Relational Algebra

13. How do you sort data in an Access query?

14. When sorting data on more than one field in an Access query, which field is the major sort key? Which field is
the minor sort key? What effect do these keys have on the order in which the rows are displayed?

15. How do you join tables in an Access query?

16. When do you use an update query?

17. When do you use a delete query?

18. When do you use a make-table query?

19. What is relational algebra?

20. Describe the purpose of the SELECT command in relational algebra.

21. Describe the purpose of the PROJECT command in relational algebra.

22. Describe the purpose of the JOIN command in relational algebra.

23. Describe the purpose of the UNION command in relational algebra.

24. Are there any restrictions on the tables when using the UNION command? If so, what are these restrictions?

25. Describe the purpose of the INTERSECT command in relational algebra.

26. Describe the purpose of the SUBTRACT command in relational algebra.

27. Describe the purpose of the product process in relational algebra.

28. Describe the results of the division process in relational algebra.

Premiere Products Exercises: QBE

In the following exercises, you will use the data in the Premiere Products database shown in Figure 2-1. (If you use
a computer to complete these exercises, use a copy of the Premiere Products database so you will still have the
original data when you complete Chapter 3.) In each step, use QBE to obtain the desired results. You can use the
query feature in a DBMS to complete the exercises using a computer, or you can simply write a description of how
you would complete the task. Check with your instructor if you are uncertain about which approach to take.

1. List the number and name of all customers.

2. List the complete Part table.

3. List the number and name of all customers represented by sales rep 35.

4. List the number and name of all customers that are represented by sales rep 35 and that have a credit limit of
$10,000.

5. List the number and name of all customers that are represented by sales rep 35 or that have a credit limit of
$10,000.

6. For each order, list the order number, order date, number of the customer that placed the order, and name of
the customer that placed the order.

7. List the number and name of all customers represented by Juan Perez.

8. How many customers have a credit limit of $10,000?

9. Find the total of the balances for all customers represented by sales rep 35.

10. Give the part number, description, and on-hand value (OnHand * Price) for each part in item class HW.

11. List all columns and all records in the Part table. Sort the results by part description.

12. List all columns and all records in the Part table. Sort the results by part number within item class.

13. List the item class and the sum of the value of parts on hand. Group the results by item class.

14. Create a new table named SportingGoods to contain the columns PartNum, Description, OnHand, Warehouse,
and Price for all rows in which the item class is SG.

15. In the SportingGoods table, change the description of part BV06 to “Fitness Gym.”

16. In the SportingGoods table, delete every row in which the price is greater than $1,000.

68

Chapter 2

Premiere Products Exercises: Relational Algebra

In the following exercises, you will use the data in the Premiere Products database shown in Figure 2-1. In each
step, indicate how to use relational algebra to obtain the desired results.

1. List the number and name of all sales reps.

2. List all information from the Part table for part FD21.

3. List the order number, order date, customer number, and customer name for each order.

4. List the order number, order date, customer number, and customer name for each order placed by any cus-
tomer represented by the sales rep whose last name is Kaiser.

5. List the number and date of all orders that were placed on 10/20/2013 or that were placed by a customer whose
rep number is 20.

6. List the number and date of all orders that were placed on 10/20/2013 by a customer whose rep number is 20.

7. List the number and date of all orders that were placed on 10/20/2013 but not by a customer whose rep number
is 20.

Henry Books Case

Ray Henry knows that being able to run queries is one of the most important benefits of using a DBMS. Now that he
has created his database, he is eager to obtain answers to a variety of questions. In the following exercises, you will
use the data in the Henry Books database shown in Figures 1-15 through 1-18 in Chapter 1. (If you use a computer
to complete these exercises, use a copy of the Henry Books database so you will still have the original data when
you complete Chapter 3.) In each step, use QBE to obtain the desired results. You can use the query feature in a
DBMS to complete the exercises using a computer, or you can simply write a description of how you would com-
plete the task. Check with your instructor if you are uncertain about which approach to take.

1. List the name of each publisher that’s not located in New York.

2. List the title of each book published by Penguin USA.

3. List the title of each book that has the type MYS.

4. List the title of each book that has the type SFI and that is in paperback.

5. List the title of each book that has the type PSY or whose publisher code is JP.

6. List the title of each book that has the type CMP, HIS, or SCI.

7. How many books have a publisher code of ST or VB?

8. List the title of each book written by Dick Francis.

9. List the title of each book that has the type FIC and that was written by John Steinbeck.

10. For each book with coauthors, list the title, publisher code, type, and author names (in the order listed on the
cover).

11. How many book copies have a price that is greater than $20 but less than $25?

12. List the branch number, copy number, quality, and price for each copy of The Stranger.

13. List the branch name, copy number, quality, and price for each copy of Electric Light.

14. For each book copy with a price greater than $25, list the book’s title, quality, and price.

15. For each book copy available at the Henry on the Hill branch whose quality is excellent, list the book’s title and
author names (in the order listed on the cover).

16. Create a new table named FictionCopies using the data in the BookCode, Title, BranchNum, CopyNum, Quality,
and Price columns for those books that have the type FIC.

17. Ray Henry is considering increasing the price of all copies of fiction books whose quality is excellent by 10%.
To determine the new prices, list the book code, title, and increased price of every book in the FictionCopies
table. (Your computed column should determine 110% of the current price, which is 100% plus a 10% increase.)

69

The Relational Model 1: Introduction, QBE, and Relational Algebra

18. Use an update query to change the price of each book in the FictionCopies table with a current price of $14.00
to $14.50.

19. Use a delete query to delete all books in the FictionCopies table whose quality is poor.

Alexamara Marina Group Case

In the following exercises, you will use the data in the Alexamara database shown in Figures 1-20 through 1-24 in
Chapter 1. (If you use a computer to complete these exercises, use a copy of the Alexamara database so you will
still have the original data when you complete Chapter 3.) In each step, use QBE to obtain the desired results. You
can use the query feature in a DBMS to complete the exercises using a computer, or you can simply write a
description of how you would complete the task. Check with your instructor if you are uncertain about which
approach to take.

1. List the owner number, last name, and first name of every boat owner.

2. List the complete Marina table (all rows and all columns).

3. List the last name and first name of every owner located in Bowton.

4. List the last name and first name of every owner not located in Bowton.

5. List the marina number and slip number for every slip whose length is equal to or less than 30 feet.

6. List the marina number and slip number for every boat with the type Dolphin 28.

7. List the slip number for every boat with the type Dolphin 28 that is located in marina 1.

8. List the boat name for each boat located in a slip whose length is between 25 and 30 feet.

9. List the slip number for every slip in marina 1 whose annual rental fee is less than $3,000.

10. Labor is billed at the rate of $60 per hour. List the slip ID, category number, estimated hours, and estimated
labor cost for every service request. To obtain the estimated labor cost, multiply the estimated hours by 60. Use
the column name “EstimatedCost” for the estimated labor cost.

11. List the marina number and slip number for all slips containing a boat with the type Sprite 4000, Sprite 3000, or
Ray 4025.

12. List the marina number, slip number, and boat name for all boats. Sort the results by boat name within the
marina number.

13. How many Dolphin 25 boats are stored at both marinas?

14. Calculate the total rental fees Alexamara receives each year based on the length of the slip.

15. For every boat, list the marina number, slip number, boat name, owner number, owner’s first name, and owner’s
last name.

16. For every completed or open service request for routine engine maintenance, list the slip ID, description, and
status.

17. For every service request for routine engine maintenance, list the slip ID, marina number, slip number, esti-
mated hours, spent hours, owner number, and owner’s last name.

18. Create a new table named LargeSlip using the data in the MarinaNum, SlipNum, RentalFee, BoatName, and
OwnerNum columns in the MarinaSlip table for slips with lengths of 40 feet.

19. Use an update query to change the rental fee of any slip in the LargeSlip table whose fee is currently $3,800 to
$3,900.

20. Use a delete query to delete all rows in the LargeSlip table in which the rental fee is $3,600.

70

Chapter 2

C H A P T E R3
THE RELATIONAL MODEL 2: SQL

L E A R N I N G O B J E C T I V E S

• Introduce Structured Query Language (SQL)

• Use simple and compound conditions in SQL

• Use computed fields in SQL

• Use built-in SQL functions

• Use subqueries in SQL

• Group records in SQL

• Join tables using SQL

• Perform union operations in SQL

• Use SQL to update database data

• Use an SQL query to create a table in a database

I N T R O D U C T I O N

In this chapter, you will examine the language called SQL (Structured Query Language). Like Access and Query-
By-Example (QBE), SQL provides users with the capability of querying a relational database. However, in SQL, you must
enter commands to obtain the desired results rather than complete an on-screen form as you do in Access and QBE.
SQL uses commands to create and update tables and to retrieve data from tables. The commands used to retrieve table
data are usually called queries.

SQL was developed under the name SEQUEL at the IBM San Jose research facilities as the data manipulation lan-
guage for IBM’s prototype relational DBMS, System R, in the mid-1970s. In 1980, it was renamed SQL (but still pro-
nounced “sequel,” although the equally popular pronunciation of “S-Q-L” [“ess-cue-ell”] is used in this text) to avoid
confusion with an unrelated hardware product called SEQUEL. Most relational DBMSs use a version of SQL as a data
manipulation language. SQL is the standard language for relational database manipulation. The SQL version used in the
examples in this chapter is Microsoft Access 2010. Although the various versions of SQL are not identical, the differences
are relatively minor. After you have mastered one version of SQL, you can apply your skills to learn another version of
SQL.

You will begin studying SQL by examining how to use it to create a table. You will examine simple retrieval methods
and compound conditions. You will use computed fields in SQL and learn how to sort data. You will then learn how to use
built-in functions, subqueries, and grouping. You will learn how to join tables and use the UNION operator. Finally, you will
use SQL to update data in a database. The end of this chapter includes generic versions of all the SQL commands pre-
sented in the chapter.

GETTING STARTED WITH SQL

In this chapter, you will be reading the material and examining the figures to understand how to use SQL to
manipulate a relational database. You might also be using a DBMS to practice database manipulation at the
same time. If you are completing the work in this chapter using Microsoft Office Access 2007, Microsoft
Access 2010, or MySQL version 4.1 or higher, you should read the following information about your DBMS to
learn more about how to start SQL and to learn specific details about differences you might encounter as you
complete your work.

Getting Started with Access 2007 and 2010
If you are using Access 2007 or 2010 and the Premiere Products database provided with the Data Files for
this text, the tables in the database have already been created. You will not need to execute the CREATE
TABLE commands to create the tables or the INSERT commands to add records to the tables.

To execute SQL commands shown in the figures in Access 2007 or 2010, open the Premiere Products
database, click the Create tab on the Ribbon, click the Query Design button in the Other group in Access
2007 or in the Queries group in Access 2010, click the Close button in the Show Table dialog box, click the
View button arrow in the Results group on the Query Design Tools tab, and then click SQL View. The Query1
tab displays the query in SQL view, ready for you to type your SQL commands. To run the SQL command,
click the Run button in the Results group on the Query Tools Design tab. To return to SQL view, click the
View button arrow in the Views group on the Home tab, and then click SQL View.

Unlike other SQL implementations, Access doesn’t have a DECIMAL data type. To create numbers with
decimals, you must use either the CURRENCY or NUMBER data type. Use the CURRENCY data type for fields
that will contain currency values; use the NUMBER data type for all other numeric fields.

In Access, you can correct typing errors in a command just as you would correct errors in a document,
by using the keyboard arrow keys to move the insertion point and using the Backspace or Delete keys to
delete text. After making your corrections, you can run the query again.

Some of the examples in this text change the data in the database. If you plan to work through the exam-
ples using Access, you should use a copy of the original Premiere Products database because the version of
the database that is used in subsequent chapters does not include these changes.

Getting Started with MySQL
If you use the MySQL-Premiere script provided with the Data Files for this text to create and activate the
Premiere (Products) database, the script will activate the database, create the tables, and insert the records
for you. You will not need to execute the CREATE TABLE commands to create the tables or the INSERT
commands to add records to the tables. (Note: This script file assumes you have not previously created the
database or any of the tables in the database. If you have created any of the tables, you should run the
MySQL-DropPremiere script provided with the Data Files for this book prior to running the MySQL-Premiere
script.)

To run a script in MySQL, type the SOURCE command followed by the name of the file, and then press
the Enter key. For example, to run a script named MySQL-Premiere, you would type the following command:

SOURCE MySQL-Premiere

Before typing commands in MySQL, you must activate the database by typing the USE command followed
by the name of the database; for example, to activate the Premiere Products database, the command is USE
PREMIERE. After the database is activated, all commands are assumed to pertain to the activated database.
To activate a different database during the current session, you execute the USE command again with the
new database name. After typing any MySQL command, press the Enter key. MySQL moves the cursor to the
next line and displays the continuation indicator (->). After typing the last line of a command, type a semico-
lon, and then press the Enter key to execute the command and display the results.

As you are working in MySQL, the most recent command you entered is stored in a special area of mem-
ory called the statement history. You can edit the command in the statement history by using the editing
keys shown in Figure 3-1.

72

Chapter 3

For example, to make a correction in the first line of a command, you can use the Up arrow key to bring
the first line of the incorrect command to the screen, make any necessary changes, and then press the Enter
key. You can then move the second line to the screen, make any necessary changes, and press the Enter key.
You can repeat this process for all the lines in the command. If you need to add a new line, just type it at the
appropriate position.

Some of the examples used in this text change the data in the database. If you plan to work through the
examples using MySQL, you should follow the instructions in this section for re-creating the Premiere data-
base prior to starting the next chapter. The version of the database used in subsequent chapters does not
include these changes.

TABLE CREATION

You use the SQL CREATE TABLE command to create a table by describing its layout. The word TABLE is
followed by the name of the table to be created and then by the names and data types of the columns (fields)
that make up the table. The rules for naming tables and columns vary slightly from one version of SQL to
another. If you have any doubts about the validity of any of the names you have chosen, you should consult
the manual for your version of SQL.

Some common restrictions placed on table and column names by DBMSs are as follows:

• The names cannot exceed 18 characters.
• The names must start with a letter.
• The names can contain only letters, numbers, and underscores (_).
• The names cannot contain spaces.

N O T E
Unlike some other versions of SQL, Access SQL permits the use of spaces within table and column names. There is a restric-
tion, however, on the way names that contain spaces are used in SQL commands. When you use a name containing a space
in Access SQL, you must enclose it in square brackets. For example, if the name of the CreditLimit column were changed to
Credit Limit (with a space between Credit and Limit), you would write the column as [Credit Limit] because the name includes
a space.

Activity Editing Key

Up arrowMove up a line in the statement history

Down arrowMove down a line in the statement history

Left arrowMove left one character within a line

Right arrowMove right one character within a line

HomeMove to beginning of a line

EndMove to end of a line

BackspaceDelete previous character

DeleteDelete character below cursor

FIGURE 3-1 MySQL editing commands

73

The Relational Model 2: SQL

N O T E
In systems that permit the use of uppercase and lowercase letters in table and column names, you can avoid using spaces by
capitalizing the first letter of each word in the name and using lowercase letters for the remaining letters in the words. For
example, the name of the credit limit column would be CreditLimit. In systems that do not permit the use of spaces or mixed-
case letters, some programmers use an underscore to separate words. For example, the name of the credit limit column would
be CREDIT_LIMIT.

For each column in a table, you must specify the type of data that the column can store. Although the
actual data types will vary slightly from one implementation of SQL to another, the following list indicates
the data types you will often encounter:

• INTEGER: Stores integers, which are numbers without a decimal part. The valid data range is
–2147483648 to 2147483647. You can use the contents of INTEGER fields for calculations.

• SMALLINT: Stores integers, but uses less space than the INTEGER data type. The valid data
range is –32768 to 32767. SMALLINT is a better choice than INTEGER when you are certain
that the field will store numbers within the indicated range. You can use the contents of
SMALLINT fields for calculations.

• DECIMAL(p,q): Stores a decimal number p digits long with q of these digits being decimal
places. For example, DECIMAL(5,2) represents a number with three places to the left and two
places to the right of the decimal. You can use the contents of DECIMAL fields for calculations.
(Unlike other SQL implementations, Access doesn’t have a DECIMAL data type. To create num-
bers with decimals, you must use either the CURRENCY or NUMBER data type. Use the
CURRENCY data type for fields that will contain currency values; use the NUMBER data type for
all other numeric fields.)

• CHAR(n): Stores a character string n characters long. You use the CHAR type for fields that
contain letters and other special characters and for fields that contain numbers that will not be
used in calculations. Because neither sales rep numbers nor customer numbers will be used in
any calculations, for example, both of them are assigned CHAR as the data type. (Some DBMSs,
such as Access, use TEXT rather than CHAR, but the two data types mean the same thing.)

• DATE: Stores dates in the form DD-MON-YYYY or MM/DD/YYYY For example, May 12, 2013,
could be stored as 12-MAY-2013 or 5/12/2013.

E X A M P L E 1

Use SQL to create the Rep table by describing its layout.

The CREATE TABLE command for the Rep table is as follows:

CREATE TABLE Rep

(RepNum CHAR(2),

LastName CHAR(15),

FirstName CHAR(15),

Street CHAR(15),

City CHAR(15),

State CHAR(2),

Zip CHAR(5),

Commission DECIMAL(7,2),

Rate DECIMAL(3,2))

;

74

Chapter 3

In this SQL command, which uses the data definition features of SQL, you’re describing a table that will be
named Rep. The table contains nine fields: RepNum, LastName, FirstName, Street, City, State, Zip, Commission,
and Rate. RepNum is a character field that is two positions in length. LastName is a character field with
15 characters. Commission is a numeric field that stores seven digits, including two decimal places. Similarly,
Rate is a numeric field that stores three digits, including two decimal places. Because many versions of SQL
require you to end a command with a semicolon, commands in this text will end with semicolons.

N O T E
In SQL, commands are free-format. No rule says that a specific word must begin in a particular position on the line. The previ-
ous SQL command could have been written as follows:

CREATE TABLE Rep (RepNum CHAR(2), LastName CHAR(15),

FirstName CHAR(15), Street CHAR(15), City CHAR(15),

State CHAR(2), Zip CHAR(5), Commission DECIMAL(7,2),

Rate DECIMAL(3,2))

;

The manner in which the first CREATE TABLE command was written simply makes the command more readable. In general,
you should strive for such readability when you write SQL commands.

SIMPLE RETRIEVAL

The basic form of an SQL retrieval command is SELECT-FROM-WHERE. After the word SELECT, you list the
fields you want to display in the query results. This portion of the command is called the SELECT clause.
The fields will appear in the query results in the order in which they are listed in the SELECT clause. After
the word FROM, you list the table or tables that contain the data to display in the query results. This portion
of the command is called the FROM clause. Finally, after the word WHERE, you list any conditions that you
want to apply to the data you want to retrieve, such as indicating that the credit limit must be $10,000. This
portion of the command, which is optional, is called the WHERE clause.

There are no special formatting rules in SQL—the examples in this text include the SELECT, FROM, and
WHERE clauses on separate lines to make the commands more readable. In addition, this text uses a com-
mon style in which words that are part of the SQL language, called reserved words, appear in all uppercase
letters. All other words in commands appear in a combination of uppercase and lowercase letters.

E X A M P L E 2

List the number, name, and balance of all customers.

Because you want to list all customers, you won’t need to use the WHERE clause—you don’t need to put
any restrictions on the data to retrieve. Figure 3-2a shows the query to select the number, name, and balance
of all customers, using the SQL implementation in Access 2010.

75

The Relational Model 2: SQL

Figure 3-2b shows the MySQL query to select the number, name, and balance of all customers.

The results of executing the query shown in Figure 3-2a in Access 2010 appear in Figure 3-3a.

The results of executing the query shown in Figure 3-3a in MySQL appear in Figure 3-3b.

SELECT
clause

SQL reserved
words are written in
uppercase letters

Fields to include in
the query results

Table from which
to select data

Command ends
with a semicolon

FIGURE 3-2a SQL query to select customer data (Access)

mysql> SELECT CustomerNum, CustomerName, Balance
-> FROM Customer
-> ;

FIGURE 3-2b SQL query to select customer data (MySQL)

Fields in the SELECT
clause appear in the same

order in the results

All customer records are
included in the query results

FIGURE 3-3a Query results (Access)

76

Chapter 3

E X A M P L E 3

List the complete Part table.

You could use the same approach shown in Example 2 by listing each field in the Part table in the
SELECT clause. However, there is a shortcut. Instead of listing all the field names in the SELECT clause, you
can use the * symbol. When used after the word SELECT, the * symbol indicates that you want to include all
fields in the query results in the order in which you described them to the DBMS when you created the table.
To include all the fields in the query results, but in a different order, you would type the names of the fields
in the order in which you want them to appear. In this case, assuming the default order is appropriate, the
query design appears in Figure 3-4.

10 rows in set (0.02 sec)

BalanceCustomerNameCustomerNum

148
282
356
408
462
524
608
687
725
842

Al's Appliance and Sport
Brookings Direct
Ferguson's
The Everything Shop
Bargains Galore
Kline's
Johnson's Department Store
Lee's Sport and Appliance
Deerfield's Four Seasons
All Season

6550.00
431.50
5785.00

3412.00
12762.00
2106.00
2851.00
248.00
8221.00

5285.25

FIGURE 3-3b Query results (MySQL)

Asterisk indicates all fields
will be included in the query

results

FIGURE 3-4 SQL query to list the complete Part table

77

The Relational Model 2: SQL

The query results appear in Figure 3-5.

E X A M P L E 4

List the name of every customer with a $10,000 credit limit.

You include the following condition in the WHERE clause to restrict the query results to only those
customers with a credit limit of $10,000.

WHERE CreditLimit=10000

Notice that you do not type commas or dollar signs in numbers. The query design appears in Figure 3-6.

All fields are
included

FIGURE 3-5 Query results

Condition (credit limit
must be $10,000)

FIGURE 3-6 SQL query with a WHERE condition

78

Chapter 3

The query results appear in Figure 3-7.

The WHERE clause shown in Figure 3-6 includes a simple condition. A simple condition includes the
field name, a comparison operator, and either another field name or a value, such as CreditLimit ¼ 10000 or
CreditLimit > Balance. Figure 3-8 lists the comparison operators that you can use in SQL commands. Notice
that there are two versions of the “not equal to” operator: < > and !¼. You must use the correct one for
your version of SQL. If you use the wrong one, your system will generate an error, in which case, you’ll know
to use the other version.

In Example 4, the WHERE clause compared a numeric field (CreditLimit) to a number (10000). When a
query involves a character field, such as CustomerNum or CustomerName, you must enclose the value to
which the field is being compared in single quotation marks, as illustrated in Examples 5 and 6.

E X A M P L E 5

Find the name of customer 148.

The query design appears in Figure 3-9. Because CustomerNum is a character field, the value 148 is
enclosed in single quotation marks.

Customers with credit
limits of $10,000

FIGURE 3-7 Query results

Comparison Operator Meaning

= Equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

< > Not equal to (used by most implementations of SQL)

!= Not equal to (used by some implementations of SQL)

FIGURE 3-8 Comparison operators used in SQL commands

79

The Relational Model 2: SQL

The query results appear in Figure 3-10. Only a single record appears in the query results because the
CustomerNum field is the primary key for the Customer table and there can be only one customer with the
number 148.

E X A M P L E 6

Find the customer name for every customer located in the city of Grove.

The query design appears in Figure 3-11.

Condition (customer
number must be 148)

Value is enclosed in
single quotation marks
because CustomerNum

is a character field

FIGURE 3-9 SQL query to find the name of customer 148

Customer with
customer number 148

FIGURE 3-10 Query results

Condition (city
must be Grove)

FIGURE 3-11 SQL query to find all customers located in Grove

80

Chapter 3

The query results appear in Figure 3-12. Because more than one customer is located in Grove, there are
multiple records in the query results.

You can also use dates in conditions. The format for using dates in queries varies slightly from one
implementation of SQL to another. In Access, you place number signs around the date (for example,
#11/15/2013#). In other programs, you enter the day of the month, a hyphen, the three-character abbrevia-
tion for the month, a hyphen, and the year, all enclosed in single quotation marks (for example,
’15-NOV-2013’).

E X A M P L E 7

List the number, name, credit limit, and balance for all customers with credit limits that exceed their
balances.

The query design appears in Figure 3-13. Notice that the condition in the WHERE clause compares the
contents of two fields.

The query results appear in Figure 3-14.

Condition (credit
limit must be greater

than balance)

FIGURE 3-13 SQL query to find all customers with credit limits that exceed their balances

Customers
located in Grove

FIGURE 3-12 Query results

81

The Relational Model 2: SQL

COMPOUND CONDITIONS

The conditions you’ve seen so far are called simple conditions. The following examples require compound
conditions. A compound condition is formed by connecting two or more simple conditions using one or both
of the following operators: AND and OR. You can also precede a single condition with the NOT operator to
negate a condition.

When you connect simple conditions using the AND operator, all the simple conditions must be true for
the compound condition to be true. When you connect simple conditions using the OR operator, the com-
pound condition will be true whenever any of the simple conditions are true. Preceding a condition by the
NOT operator reverses the truth or falsity of the original condition. That is, if the original condition is true,
the new condition will be false; if the original condition is false, the new one will be true.

E X A M P L E 8

List the descriptions of all parts that are located in warehouse 3 and for which there are more than 20 units
on hand.

In this example, you want to list those parts for which both the warehouse number is equal to 3 and the
number of units on hand is greater than 20. Thus, you form a compound condition using the AND operator,
as shown in Figure 3-15.

Compound
condition Because the condition

contains the AND operator,
both conditions must be true
for a record to appear in the

query results

FIGURE 3-15 Compound condition that uses the AND operator

Customers with
credit limits that are

greater than their
balances

FIGURE 3-14 Query results

82

Chapter 3

The query results appear in Figure 3-16.

E X A M P L E 9

List the descriptions of all parts that are located in warehouse 3 or for which there are more than 20 units on
hand or both.

As you would expect, you form compound conditions with the OR operator similar to the way you use
the AND operator. The compound condition shown in Figure 3-17 uses the OR operator instead of the AND
operator.

Compound
condition Because the condition

contains the OR operator,
either or both conditions must
be true for a record to appear

in the query results

FIGURE 3-17 Compound condition that uses the OR operator

Parts in warehouse 3
with more than 20

units on hand

FIGURE 3-16 Query results

83

The Relational Model 2: SQL

The query results appear in Figure 3-18.

E X A M P L E 1 0

List the descriptions of all parts that are not in warehouse 3.

For this example, you could use a simple condition and the “not equal to” operator (<>). As an alterna-
tive, you could use the “equals” operator (¼) in the condition, but precede the entire condition with the NOT
operator, as shown in Figure 3-19.

Parts in warehouse 3
or with more than 20 units

on hand or both

FIGURE 3-18 Query results

NOT operator indicates
that the condition must be false

for a record to appear in the
query results

FIGURE 3-19 SQL query with the NOT operator

84

Chapter 3

The query results appear in Figure 3-20.

E X A M P L E 1 1

List the number, name, and balance of all customers with balances greater than or equal to $1,000 and less
than or equal to $5,000.

You could use a WHERE clause and the AND operator (Balance>¼1000 AND Balance<¼5000). An alter-
native to this approach uses the BETWEEN operator, as shown in Figure 3-21.

Parts not in
warehouse 3

FIGURE 3-20 Query results

BETWEEN operator
indicates the value must
be between the listed

numbers

FIGURE 3-21 SQL query with the BETWEEN operator

85

The Relational Model 2: SQL

The query results appear in Figure 3-22.

The BETWEEN operator is not an essential feature of SQL; you can use the AND operator to obtain the
same results. Using the BETWEEN operator, however, does make certain SELECT commands easier to
construct.

COMPUTED FIELDS

Similar to QBE, you can include fields in queries that are not in the database but whose values you can com-
pute from existing database fields. A field whose values you derive from existing fields is called a computed
field or calculated field. Computed fields can involve addition (þ), subtraction (–), multiplication (*), or divi-
sion (/). The query in Example 12, for example, uses subtraction.

E X A M P L E 1 2

List the number, name, and available credit for all customers.

There is no field in the database that stores available credit, but you can compute it using two fields that
are present in the database: CreditLimit and Balance. The query design shown in Figure 3-23 creates a new
field named AvailableCredit, which is computed by subtracting the value in the Balance field from the value
in the CreditLimit field (AvailableCredit ¼ CreditLimit – Balance). By using the word AS after the computa-
tion, followed by AvailableCredit, you can assign a name to the computed field.

Customers with
balances between
$1,000 and $5,000

FIGURE 3-22 Query results

Expression Computed
field name

FIGURE 3-23 SQL query with a computed field

86

Chapter 3

The query results appear in Figure 3-24. The column heading for the computed field is the name that
you specified in the SELECT clause.

Computations are not limited to values in number fields. You can combine values in character fields as
well. For example, in Access you can combine the values in the FirstName and LastName fields into a single
computed field by using the & operator. The expression would be FirstName&’ ’&LastName, which places a
space between the first name and the last name. The formal term is that you are concatenating the
FirstName and LastName fields.

In MySQL, you use the CONCAT function to concatenate fields. To concatenate FirstName and
LastName, for example, the expression would be CONCAT(FirstName, LastName).

E X A M P L E 1 3

List the number, name, and available credit for all customers with credit limits that exceed their balances.

The only difference between Examples 12 and 13 is that Example 13 includes a condition, as shown in
Figure 3-25.

Available credit
amounts

Computed
field name

FIGURE 3-24 Query results

Condition

FIGURE 3-25 SQL query with a computed field and a condition

87

The Relational Model 2: SQL

The query results appear in Figure 3-26.

USING SPECIAL OPERATORS (LIKE AND IN)

In most cases, your conditions will involve exact matches, such as finding all customers located in the city of
Sheldon. In some cases, however, exact matches will not work. For example, you might know only that the
desired value contains a certain collection of characters. In such cases, you use the LIKE operator with a
wildcard, as shown in Example 14.

E X A M P L E 1 4

List the number, name, and complete address of every customer located on a street that contains the letters
Oxford.

All you know is that the addresses that you want contain a certain collection of characters (Oxford)
somewhere in the Street field, but you don’t know where. In Access SQL, the asterisk (*) is used as a wild-
card to represent any collection of characters. (In MySQL, the percent sign (%) is used as a wildcard to rep-
resent any collection of characters.) To use a wildcard, include the LIKE operator in the WHERE clause. The
query design shown in Figure 3-27 will retrieve information for every customer whose street contains some
collection of characters followed by the letters Oxford, followed potentially by some additional characters.

Only customers with
credit limits that exceed
their balances are listed

FIGURE 3-26 Query results

Wildcards

LIKE operator

FIGURE 3-27 SQL query with a LIKE operator

88

Chapter 3

The query results appear in Figure 3-28.

Another wildcard in Access SQL is the question mark (?), which represents any individual character. For
example, “T?m” represents the letter T followed by any single character, followed by the letter m and when
used in a WHERE clause, retrieves records that include the words Tim, Tom, or T3m, for example. Many
versions of SQL, including MySQL, use an underscore (_) instead of the question mark to represent any indi-
vidual character.

N O T E
In a large database, you should use wildcards only when absolutely necessary. Searches involving wildcards can be extremely
slow to process.

Another operator, IN, provides a concise way of phrasing certain conditions, as Example 15 illustrates.

E X A M P L E 1 5

List the number, name, street, and credit limit for every customer with a credit limit of $7,500, $10,000, or
$15,000.

In this query, you can use the SQL IN operator to determine whether a credit limit is $7,500, $10,000,
or $15,000. You can obtain the same result by using the condition WHERE CreditLimit ¼ 7500 OR
CreditLimit ¼ 10000 OR CreditLimit ¼ 15000. The approach shown in Figure 3-29 is simpler, however—the
IN clause contains the collection of values 7500, 10000, and 15000. The condition is true for those rows in
which the value in the CreditLimit column is in this collection of values.

Customer
whose street

contains Oxford

FIGURE 3-28 Query results

IN operator

List of values

FIGURE 3-29 SQL query with an IN operator

89

The Relational Model 2: SQL

The query results appear in Figure 3-30.

SORTING

Recall that the order of rows in a table is considered to be immaterial. From a practical standpoint, this
means that when you query a relational database, there are no guarantees concerning the order in which the
results will be displayed. The results might appear in the order in which the data was originally entered, but
even this is not certain. Thus, if the order in which the data is displayed is important, you should specifically
request that the results be displayed in a desired order. In SQL, you sort data using the ORDER BY clause.

E X A M P L E 1 6

List the number, name, street, and credit limit of all customers. Order (sort) the customers by name.

The field on which to sort data is called a sort key. To sort the output, you include the words ORDER BY
in the SQL query, followed by the sort key field, as shown in Figure 3-31.

Only customers with credit
limits of $7,500, $10,000,

or $15,000 are listed

FIGURE 3-30 Query results

Sort key

ORDER BY
clause

FIGURE 3-31 SQL query to sort data

90

Chapter 3

The query results appear in Figure 3-32.

E X A M P L E 1 7

List the number, name, street, and credit limit of all customers. Order the customers by name within des-
cending credit limit. (In other words, sort the customers by credit limit in descending order. Within each
group of customers that have a common credit limit, sort the customers by name.)

When you need to sort data on two fields, the more important sort key is called the major sort key (also
referred to as the primary sort key) and the less important sort key is called the minor sort key (also referred
to as the secondary sort key). In this case, because you need to sort the output by name within credit limit,
the CreditLimit field is the major sort key and the CustomerName field is the minor sort key. If there are two
sort keys, as in Example 17, the major sort key will be listed first. You can specify to sort the output in des-
cending (high-to-low) order by following the sort key with the word DESC, as shown in Figure 3-33.

Customers are
sorted alphabetically

by name

FIGURE 3-32 Query results

Major (primary)
sort key

Minor (secondary)
sort key

Descending
order

FIGURE 3-33 SQL query to sort data on multiple fields

91

The Relational Model 2: SQL

The query results appear in Figure 3-34.

BUILT-IN FUNCTIONS

SQL has built-in functions (also called aggregate functions) to calculate the number of entries, the sum or
average of all the entries in a given column, and the largest or smallest values in a given column. In SQL,
these functions are called COUNT, SUM, AVG, MAX, and MIN, respectively.

E X A M P L E 1 8

How many parts are in item class HW?

In this query, you need to count the number of rows in the query results that have the value HW in the
Class field. You could count the number of part numbers in the query results or the number of descriptions
or the number of entries in any other field. It doesn’t matter which column you choose because all columns
will yield the correct answer. Rather than requiring you to pick a column arbitrarily, some versions of SQL
allow you to use the * symbol to select any column. In SQL versions that support the * symbol, you could
use the query design shown in Figure 3-35.

Customers are
sorted by credit limit
in descending order

Within credit limit,
customers are

sorted by name

FIGURE 3-34 Query results

Condition to select
records in the HW

item class

COUNT function

FIGURE 3-35 SQL query to count records

92

Chapter 3

The query results appear in Figure 3-36.

If your implementation of SQL doesn’t permit the use of the * symbol, you could write the query as
follows:

SELECT COUNT(PartNum)

FROM Part

WHERE Class= ’HW ’

;

E X A M P L E 1 9

Find the number of customers and the total of their balances.

There are two differences between COUNT and SUM—other than the obvious fact that they are comput-
ing different statistics. In the case of SUM, you must specify the field for which you want a total and the field
must be numeric. (How could you calculate a sum of names or addresses?) The query design appears in
Figure 3-37.

Number of records in
item class HW

Column heading created
by Access for a field

containing an expression

FIGURE 3-36 Query results

SUM function

COUNT function

FIGURE 3-37 SQL query to count records and calculate a total

93

The Relational Model 2: SQL

The query results appear in Figure 3-38.

The use of AVG, MAX, and MIN is similar to the use of SUM. The only difference is that different statis-
tics are calculated.

E X A M P L E 2 0

Find the total number of customers and the total of their balances. Change the column names for the number
of customers and the total of their balances to CustomerCount and BalanceTotal, respectively.

As with computed fields, you can use the word AS to assign names to these computations, as shown in
Figure 3-39.

The query results appear in Figure 3-40.

Sum of all
customers’
balances

Number of
customers

FIGURE 3-38 Query results

Name for count
of customers

Name for sum of
balances

FIGURE 3-39 SQL query to perform calculations and rename columns

New column
names

FIGURE 3-40 Query results

94

Chapter 3

SUBQUERIES

In some cases, it is useful to obtain the results you want in two stages. You can do so by placing one query
inside another. The inner query is called a subquery and is evaluated first. After the subquery has been eval-
uated, the outer query can be evaluated. Example 21 illustrates the process.

E X A M P L E 2 1

List the order number for each order that contains an order line for a part located in warehouse 3.

You can find the answer by using the Part table and creating a list of part numbers for those parts in
warehouse 3. Then you can use the OrderLine table to find those order numbers present in any row on
which the part number is in the results you created in the inner query. The corresponding query design
appears in Figure 3-41.

N O T E
Although not required, it is common to enclose subqueries in parentheses for readability.

The query results appear in Figure 3-42.

The subquery finds all the part numbers in the Part table with a warehouse number of 3. The subquery
is evaluated first, producing a list of part numbers. After the subquery has been evaluated, the outer query is
evaluated. Order numbers in the results appear in any row in the OrderLine table for which the part number
in the row is in the subquery results.

Subquery

Part number must be
in results of subquery

FIGURE 3-41 SQL query with a subquery

FIGURE 3-42 Query results

95

The Relational Model 2: SQL

GROUPING

Recall from Chapter 2 that grouping means creating groups of records that share some common characteris-
tic. When grouping customers by sales rep number, for example, the customers of sales rep 20 would form
one group, the customers of sales rep 35 would form a second group, and the customers of sales rep 65 would
form a third group.

In Example 22, you need to group customers by rep number to perform the necessary calculations.

E X A M P L E 2 2

For each sales rep, list the rep number, the number of customers assigned to the rep, and the average bal-
ance of the rep’s customers. Group the records by rep number and order the records by rep number.

This type of query requires grouping by rep number to make the correct calculations for each group. To
indicate grouping in SQL, you use the GROUP BY clause, as shown in Figure 3-43. It is important to note
that the GROUP BY clause does not mean that the query results will be sorted. To display the query results
in a particular order, you must use the ORDER BY clause. The query design in Figure 3-43 uses the ORDER
BY clause to sort the query results by rep number.

The query results appear in Figure 3-44.

Orders records by
rep number

Groups
records by rep

number

FIGURE 3-43 SQL query to group and sort records

Average balance of
customers of rep 20

Rep 20
Number of

customers of
rep 20

FIGURE 3-44 Query results

96

Chapter 3

When rows are grouped, one line of output is produced for each group. Only statistics calculated for the
group or fields whose values are the same for all rows in a group can be displayed in the grouped results.

Q & A

Question: Why is it appropriate to display the rep number?
Answer: Because the output is grouped by rep number, the rep number in one row in a group must be the
same as the rep number in any other row in the group.

Q & A

Question: Would it be appropriate to display a customer number? Why or why not?
Answer: No, because the customer number will vary from one row in a group to another. (SQL could not
determine which customer number to display for the group.)

E X A M P L E 2 3

For each sales rep with fewer than four customers, list the rep number, the number of customers assigned to
the rep, and the average balance of the rep’s customers. Rename the count of the number of customers and
the average of the balances to NumCustomers and AverageBalance, respectively. Order the groups by rep
number.

Examples 22 and 23 are similar, but there are two important differences: You need to rename the fields,
and there is a restriction to display the calculations for only those reps having fewer than four customers. In
other words, you want to display only those groups for which COUNT(*) is less than four. This restriction
does not apply to individual rows, but to groups. Because the WHERE clause applies only to rows, it is not
the appropriate clause to accomplish the kind of selection you need. Fortunately, the HAVING clause is to
groups what the WHERE clause is to rows, as shown in Figure 3-45.

Only groups with
fewer than four
records will be

included

HAVING clause

FIGURE 3-45 SQL query to restrict the groups that are included

97

The Relational Model 2: SQL

The query results appear in Figure 3-46.

In this case, the row created for a group will be displayed only when the count of the number of records
in the group is less than four.

You can include both a WHERE clause and a HAVING clause in the same query design, as shown in
Figure 3-47.

The query results appear in Figure 3-48.

In this case, the condition in the WHERE clause restricts the rows from the Customer table to those rows
in which the credit limit is less than $10,000. These rows are grouped by rep number. The HAVING clause
then restricts the groups to those for which the count of the rows in the group is less than three.

FIGURE 3-46 Query results

HAVING clause
Only groups with fewer
than three records will

be included

Only customers whose
balance is less than

$10,000 will be included

WHERE clause

FIGURE 3-47 SQL query that includes WHERE and HAVING clauses

FIGURE 3-48 Query results

98

Chapter 3

JOINING TABLES

Many queries require data from more than one table. As with QBE and relational algebra, it is necessary to
be able to join tables so you can find rows in two or more tables that have identical values in matching fields.
In SQL, this is accomplished by entering the appropriate conditions in the WHERE clause. (Appendix B at
the end of this text includes information about an alternative way of joining tables in SQL that uses the
FROM clause.)

E X A M P L E 2 4

List the number and name of each customer together with the number, last name, and first name of the sales
rep who represents the customer. Order the records by customer number.

Because the numbers and names of customers are in the Customer table and the numbers and names of
sales reps are in the Rep table, you need to include both tables in your SQL query. To join the tables, you’ll
construct the SQL command as follows:

1. In the SELECT clause, list all fields you want to display.
2. In the FROM clause, list all tables involved in the query.
3. In the WHERE clause, give the condition that will restrict the data to be retrieved to only those

rows from the two tables that match; that is, you’ll restrict it to the rows that have common
values in matching fields.

As in relational algebra, it is often necessary to qualify a field name to specify the particular field you are
referencing. To qualify a field name, precede the name of the field with the name of the table, followed by a
period. For example, the RepNum field in the Rep table is written as Rep.RepNum and the RepNum field in
the Customer table is written as Customer.RepNum. The query design appears in Figure 3-49.

Qualified field
names

Condition to join
the tables

Two tables
in query

FIGURE 3-49 SQL query to join tables

99

The Relational Model 2: SQL

The query results appear in Figure 3-50.

When there is potential ambiguity in listing field names, you must qualify the fields involved. It is per-
missible to qualify other fields as well, even if there is no possible confusion. Some people prefer to qualify all
fields, which is certainly not a bad approach. In this text, however, you will qualify fields only when it is nec-
essary to do so.

E X A M P L E 2 5

List the number and name of each customer whose credit limit is $10,000 together with the number, last
name, and first name of the sales rep who represents the customer. Order the records by customer number.

In Example 24, the condition in the WHERE clause serves only to relate a customer to a sales rep.
Although relating a customer to a sales rep is essential in this example as well, you also need to restrict the
output to only those customers whose credit limit is $10,000. You can accomplish this goal by using the AND
operator to create a compound condition, as shown in Figure 3-51.

Records ordered by
CustomerNum

Fields from
the Rep table

Fields from the
Customer table

FIGURE 3-50 Query results

Credit limit must
be $10,000

Condition to
join the tables

FIGURE 3-51 SQL query to restrict the records in a join

100

Chapter 3

The query results appear in Figure 3-52.

It is possible to join more than two tables, as illustrated in Example 26. For each pair of tables to join,
you must include a condition indicating how the tables are related.

E X A M P L E 2 6

For every order, list the order number, order date, customer number, and customer name. In addition, for
each order line within the order, list the part number, description, number ordered, and quoted price. Order
the records by order number.

The order number and date are stored in the Orders table. The customer number and name are stored in
the Customer table. The part number and description are stored in the Part table. The number ordered and
quoted price are stored in the OrderLine table. Thus, you need to join four tables: Orders, Customer, Part,
and OrderLine. The procedure for joining more than two tables is essentially the same as the one for joining
two tables. The difference is that the condition in the WHERE clause will be a compound condition, as shown
in Figure 3-53. The first condition relates an order to a customer, using the common CustomerNum columns.
The second condition relates the order to an order line, using the common OrderNum columns. The final
condition relates the order line to a part, using the common PartNum columns.

FIGURE 3-52 Query results

Condition to relate
OrderLine and Part tables

Condition to
relate Orders and
OrderLine tables

Condition to
relate Customer and

Orders tables

FIGURE 3-53 SQL query to join multiple tables

101

The Relational Model 2: SQL

The query results appear in Figure 3-54.

The query shown in Figure 3-53 is more complex than many of the previous ones. You might think that
SQL is not such an easy language to use after all. If you take it one step at a time, however, you will find that
the query in Example 26 isn’t all that difficult. To construct a detailed query in a step-by-step fashion, do the
following:

1. List in the SELECT clause all the columns you want to display. If the name of a column appears
in more than one table, precede the column name with the table name (that is, qualify the col-
umn name).

2. List in the FROM clause all the tables involved in the query. Usually you include the tables that
contain the columns listed in the SELECT clause. Occasionally, however, there might be a table
that does not contain any columns used in the SELECT clause but that does contain columns
used in the WHERE clause. In this case, you must also list the table in the FROM clause. For
example, if you do not need to list a customer number or name but you do need to list the sales
rep name, you wouldn’t include any columns from the Customer table in the SELECT clause.
The Customer table is still required in the FROM clause, however, because you must include
columns from it in the WHERE clause.

3. Take one pair of related tables at a time and indicate in the WHERE clause the condition that
relates the tables. Join these conditions with the AND operator. When there are other conditions,
include them in the WHERE clause and connect them to the other conditions with the AND
operator.

UNION

Recall from Chapter 2 that the union of two tables is a table containing all rows that are in the first table, the
second table, or both tables. The two tables involved in a union must have the same structure, or be union
compatible; in other words, they must have the same number of fields and their corresponding fields must
have the same data types. If, for example, the first field in one table contains customer numbers, the first
field in the other table also must contain customer numbers.

E X A M P L E 2 7

List the number and name of all customers that are represented by sales rep 35 or that currently have orders
on file or both.

Because the two criteria are so different, you cannot use a simple OR criterion. Instead, you can create a
table containing the number and name of all customers that are represented by sales rep 35 by selecting cus-
tomer numbers and names from the Customer table in which the sales rep number is 35. You can then create

FIGURE 3-54 Query results

102

Chapter 3

another table containing the number and name of every customer that currently has orders on file by joining
the Customer and Orders tables. The two tables created by this process have the same structure—fields named
CustomerNum and CustomerName. Because the tables are union compatible, it is possible to take the union of
these two tables, which is the appropriate operation for this example, as shown in Figure 3-55.

The query results appear in Figure 3-56.

If an SQL implementation truly supports the union operation, it will remove any duplicate rows. For
instance, any customers that are represented by sales rep 35 and that currently have orders on file will not
appear twice in the query results. Some SQL implementations have a union operation but will not remove
duplicate values.

UPDATING TABLES

There are more uses for SQL than simply retrieving data from a database and creating tables. SQL has sev-
eral other capabilities, including the ability to update a database, as demonstrated in the following examples.

N O T E
If you plan to work through the examples in this section using Access, you should use a copy of the original Premiere Products
database because the version of the database used in subsequent chapters does not include these changes. As an alternative,
if you are using a DBMS (such as Oracle or MySQL) that supports the ROLLBACK command, which reverses changes to a
database, you can ensure that your changes are undone by typing the word ROLLBACK before exiting the DBMS. If you have
any questions concerning which of these (or other) approaches is appropriate for you, check with your instructor.

Second query

UNION operation

First query

FIGURE 3-55 SQL query to perform a union

Customers of rep
35 or who have orders

on file or both

FIGURE 3-56 Query results

103

The Relational Model 2: SQL

E X A M P L E 2 8

Change the street address of customer 524 to 1445 Rivard.

You can use the SQL UPDATE command to make changes to existing data. After the word UPDATE, you
indicate the table to be updated. After the word SET, you indicate the field to be changed, followed by an
equals sign and the new value. Finally, you can include a condition in the WHERE clause in which case only
the records that satisfy the condition will be changed. The SQL command for this example appears in
Figure 3-57. When you run this query in Access, a dialog box opens and indicates the number of records the
UPDATE command will affect. In this case, you would update only one record because the WHERE clause
selects customer 524.

E X A M P L E 2 9

Add a new sales rep to the Rep table. Her number is 16; her name is Sharon Rands; and her address is 826
Raymond, Altonville, FL 32543. She has not yet earned any commission, but her commission rate is 5% (0.05).

To add new data to a table, you use the INSERT command. After the words INSERT INTO, you list the
name of the table, followed by the word VALUES. Then you list the values in parentheses for each of the col-
umns, as shown in Figure 3-58. Character values must be enclosed within single quotation marks. When you
run this query in Access, a dialog box opens and indicates the number of records the INSERT command will
append to the table. In this case, you would add one record to the Rep table.

Condition to select
customer 524

Change to
be made

Table to be
updated

FIGURE 3-57 SQL query to update data

Values for the
new row

Table into which to
insert the new row

FIGURE 3-58 SQL query to insert a row

104

Chapter 3

E X A M P L E 3 0

Delete any row in the OrderLine table in which the part number is BV06.

To delete data from the database, use the DELETE command, which consists of the word DELETE
followed by a FROM clause identifying the table. Use a WHERE clause to specify a condition to select the
records to delete. If you omit the condition for selecting the records to delete, when you run the query, it will
delete all records from the table.

The DELETE command for this example is shown in Figure 3-59. When you run this query in Access, a
dialog box opens and indicates the number of records the DELETE command will delete. In this case, you
would delete only one record because the WHERE clause selects part number BV06.

CREATING A TABLE FROM A QUERY

You can save the results of a query as a table by including the INTO clause in the query, as illustrated in
Example 31.

E X A M P L E 3 1

Create a new table named SmallCust consisting of all fields from the Customer table and those rows in which
the credit limit is less than or equal to $7,500.

To create the SmallCust table, create a query to select all fields from the Customer table, include a
WHERE clause to restrict the rows to those in which CreditLimit <¼ 7500, and include an INTO clause. The
INTO clause precedes the FROM clause and consists of the word INTO followed by the name of the table to
be created. The query appears in Figure 3-60a. When you run this query in Access, a dialog box opens and
indicates the number of records the INTO clause will paste into the new table. In this case, you would add six
rows to the SmallCust table.

Oracle and MySQL do not support the query shown in Figure 3-60a. To accomplish the same task, you
would create the SmallCust table using a CREATE TABLE command. You would then use an INSERT com-
mand to insert the appropriate data into the SmallCust table. Figure 3-60b shows the query in MySQL.

Condition to select
part number BV06

Table from which
to delete rows

FIGURE 3-59 SQL query to delete rows

105

The Relational Model 2: SQL

After you execute this query, you can use the SmallCust table shown in Figure 3-61, which is just like
any other table you created using the CREATE TABLE command.

mysql> CREATE TABLE SmallCust
 -> (CustomerNum CHAR(3),
 -> CustomerName CHAR(35),
 -> Street CHAR(15),
 -> City CHAR(15),
 -> State CHAR(2),
 -> Zip CHAR(5),
 -> Balance DECIMAL(8,2),
 -> CreditLimit DECIMAL(8,2),
 -> RepNum CHAR(2))
 -> ;
Query OK, 0 rows affected (0.13 sec)

mysql> INSERT INTO SmallCust
 -> SELECT *
 -> FROM Customer
 -> WHERE CreditLimit<=7500
 -> ;
Query OK, 6 rows affected (0.06 sec)

Command to insert
records from the Customer table

with credit limits of less than
$7,500 into the SmallCust table

Command to create
the SmallCust table

FIGURE 3-60b Query to create a new table (for Oracle and MySQL)

Name of table
to create

INTO clause

FIGURE 3-60a Query to create a new table (Access)

Records inserted from
the query results

Name of table

FIGURE 3-61 SmallCust table created by query

106

Chapter 3

SUMMARY OF SQL COMMANDS

This section contains generic versions of SQL commands for every example presented in this chapter. (The
example numbers match the ones used in the chapter, making it easy to return to the page in the chapter on
which the example is described.) In most cases, commands in Access are identical to the generic versions.
For those commands that differ in other SQL implementations, both the generic version and the Access ver-
sion are included.

E X A M P L E 1

Use SQL to create the Rep table by describing its layout.

CREATE TABLE Rep

(RepNum CHAR(2),

LastName CHAR(15),

FirstName CHAR(15),

Street CHAR(15),

City CHAR(15),

State CHAR(2),

Zip CHAR(5),

Commission DECIMAL(7,2),

Rate DECIMAL(3,2))

;

Access:

CREATE TABLE Rep

(RepNum CHAR(2),

LastName CHAR(15),

FirstName CHAR(15),

Street CHAR(15),

City CHAR(15),

State CHAR(2),

Zip CHAR(5),

Commission CURRENCY,

Rate NUMBER)

;

E X A M P L E 2

List the number, name, and balance of all customers.

SELECT CustomerNum, CustomerName, Balance

FROM Customer

;

E X A M P L E 3

List the complete Part table.

SELECT *

FROM Part

;

107

The Relational Model 2: SQL

E X A M P L E 4

List the name of every customer with a $10,000 credit limit.

SELECT CustomerName

FROM Customer

WHERE CreditLimit=10000

;

E X A M P L E 5

Find the name of customer 148.

SELECT CustomerName

FROM Customer

WHERE CustomerNum= ’148 ’

;

E X A M P L E 6

Find the customer name for every customer located in the city of Grove.

SELECT CustomerName

FROM Customer

WHERE City= ’Grove ’

;

E X A M P L E 7

List the number, name, credit limit, and balance for all customers with credit limits that exceed their
balances.

SELECT CustomerNum, CustomerName, CreditLimit, Balance

FROM Customer

WHERE CreditLimit>Balance

;

E X A M P L E 8

List the descriptions of all parts that are located in warehouse 3 and for which there are more than 20 units
on hand.

SELECT Description

FROM Part

WHERE Warehouse= ’3 ’

AND OnHand>20

;

108

Chapter 3

E X A M P L E 9

List the descriptions of all parts that are located in warehouse 3 or for which there are more than 20 units on
hand or both.

SELECT Description

FROM Part

WHERE Warehouse= ’3 ’

OR OnHand>20

;

E X A M P L E 1 0

List the descriptions of all parts that are not in warehouse 3.

SELECT Description

FROM Part

WHERE NOT Warehouse= ’3 ’

;

E X A M P L E 1 1

List the number, name, and balance of all customers with balances greater than or equal to $1,000 and less
than or equal to $5,000.

SELECT CustomerNum, CustomerName, Balance

FROM Customer

WHERE Balance BETWEEN 1000 AND 5000

;

E X A M P L E 1 2

List the number, name, and available credit for all customers.

SELECT CustomerNum, CustomerName, CreditLimit-Balance AS AvailableCredit

FROM Customer

;

E X A M P L E 1 3

List the number, name, and available credit for all customers with credit limits that exceed their balances.

SELECT CustomerNum, CustomerName, CreditLimit-Balance AS AvailableCredit

FROM Customer

WHERE CreditLimit>Balance

;

109

The Relational Model 2: SQL

E X A M P L E 1 4

List the number, name, and complete address of every customer located on a street that contains the letters Oxford.

SELECT CustomerNum, CustomerName, Street, City, State, Zip

FROM Customer

WHERE Street LIKE ’%Oxford% ’

;

Access:

SELECT CustomerNum, CustomerName, Street, City, State, Zip

FROM Customer

WHERE Street LIKE ’*Oxford* ’

;

E X A M P L E 1 5

List the number, name, street, and credit limit for every customer with a credit limit of $7,500, $10,000, or
$15,000.

SELECT CustomerNum, CustomerName, Street, CreditLimit

FROM Customer

WHERE CreditLimit IN (7500, 10000, 15000)

;

E X A M P L E 1 6

List the number, name, street, and credit limit of all customers. Order (sort) the customers by name.

SELECT CustomerNum, CustomerName, Street, CreditLimit

FROM Customer

ORDER BY CustomerName

;

E X A M P L E 1 7

List the number, name, street, and credit limit of all customers. Order the customers by name within des-
cending credit limit.

SELECT CustomerNum, CustomerName, Street, CreditLimit

FROM Customer

ORDER BY CreditLimit DESC, CustomerName

;

E X A M P L E 1 8

How many parts are in item class HW?

SELECT COUNT(*)

FROM Part

WHERE Class= ’HW ’

;

110

Chapter 3

E X A M P L E 1 9

Find the number of customers and the total of their balance.

SELECT COUNT(*), SUM(Balance)

FROM Customer

;

E X A M P L E 2 0

Find the total number of customers and the total of their balances. Change the column names for the number
of customers and the total of their balances to CustomerCount and BalanceTotal, respectively.

SELECT COUNT(*) AS CustomerCount, SUM(Balance) AS BalanceTotal

From Customer

;

E X A M P L E 2 1

List the order number for each order that contains an order line for a part located in warehouse 3.

SELECT OrderNum

FROM OrderLine

WHERE PartNum IN

(SELECT PartNum

FROM Part

WHERE Warehouse= ’3 ’)

;

E X A M P L E 2 2

For each sales rep, list the rep number, the number of customers assigned to the rep, and the average bal-
ance of the rep’s customers. Group the records by rep number and order the records by rep number.

SELECT RepNum, COUNT(*), AVG(Balance)

FROM Customer

GROUP BY RepNum

ORDER BY RepNum

;

E X A M P L E 2 3

For each sales rep with fewer than four customers, list the rep number, the number of customers assigned to
the rep, and the average balance of the rep’s customers. Rename the count of the number of customers and
the average of the balances to NumCustomers and AverageBalance, respectively. Order the groups by rep
number.

SELECT RepNum, COUNT(*) AS NumCustomers, AVG(Balance)

AS AverageBalance

FROM Customer

GROUP BY RepNum

HAVING COUNT(*)<4

ORDER BY RepNum

;

111

The Relational Model 2: SQL

E X A M P L E 2 4

List the number and name of each customer together with the number, last name, and first name of the sales
rep who represents the customer. Order the records by customer number.

SELECT CustomerNum, CustomerName, Rep.RepNum, LastName, FirstName

FROM Customer, Rep

WHERE Customer.RepNum=Rep.RepNum

ORDER BY CustomerNum

;

E X A M P L E 2 5

List the number and name of each customer whose credit limit is $10,000 together with the number, last
name, and first name of the sales rep who represents the customer. Order the records by customer number.

SELECT CustomerNum, CustomerName, Rep.RepNum, LastName, FirstName

FROM Customer, Rep

WHERE Customer.RepNum=Rep.RepNum

AND CreditLimit=10000

ORDER BY CustomerNum

;

E X A M P L E 2 6

For every order, list the order number, order date, customer number, and customer name. In addition, for
each order line within the order, list the part number, description, number ordered, and quoted price. Order
the records by order number.

SELECT Orders.OrderNum, OrderDate, Customer.CustomerNum,

CustomerName, Part.PartNum, Description, NumOrdered, QuotedPrice

FROM Orders, Customer, OrderLine, Part

WHERE Customer.CustomerNum=Orders.CustomerNum

AND Orders.OrderNum=OrderLine.OrderNum

AND OrderLine.PartNum=Part.PartNum

ORDER BY Orders.OrderNum

;

E X A M P L E 2 7

List the number and name of all customers that are represented by sales rep 35 or that currently have orders
on file or both.

SELECT CustomerNum, CustomerName

FROM Customer

WHERE RepNum= ’35 ’

UNION

SELECT Customer.CustomerNum, CustomerName

FROM Customer, Orders

WHERE Customer.CustomerNum=Orders.CustomerNum

;

112

Chapter 3

E X A M P L E 2 8

Change the street address of customer 524 to 1445 Rivard.

UPDATE Customer

SET Street=’1445 Rivard ’

WHERE CustomerNum=’524 ’

;

E X A M P L E 2 9

Add a new sales rep to the Rep table. Her number is 16; her name is Sharon Rands; and her address is 826
Raymond, Altonville, FL 32543. She has not yet earned any commission, but her commission rate is 5% (0.05).

INSERT INTO Rep

VALUES

(’16 ’,’Rands ’,’Sharon ’,’826 Raymond ’,’Altonville ’,’FL ’,’32543 ’,0.00,0.05)

;

E X A M P L E 3 0

Delete any row in the OrderLine table in which the part number is BV06.

DELETE

FROM OrderLine

WHERE PartNum= ’BV06 ’

;

E X A M P L E 3 1

Create a new table named SmallCust consisting of all fields from the Customer table and those rows in which
the credit limit is less than or equal to $7,500.

SELECT *

INTO SmallCust

FROM Customer

WHERE CreditLimit<=7500

;

Oracle and MySQL:

CREATE TABLE SmallCust

(CustomerNum CHAR(3),

CustomerName CHAR(35),

Street CHAR(15),

City CHAR(15),

State CHAR(2),

Zip CHAR(5),

Balance DECIMAL(8,2),

CreditLimit DECIMAL(8,2),

RepNum CHAR(2))

;

INSERT INTO SmallCust

SELECT *

FROM Customer

WHERE CreditLimit<=7500

;

113

The Relational Model 2: SQL

Summary

• Structured Query Language (SQL) is a language that is used to manipulate relational databases.

• The basic form of an SQL query is SELECT-FROM-WHERE.

• Use the CREATE TABLE command to describe a table’s layout to the DBMS, which creates the table in
the database.

• In SQL retrieval commands, fields are listed in the SELECT clause, tables are listed in the FROM clause,
and conditions are listed in the WHERE clause.

• In conditions, character values must be enclosed in single quotation marks.

• Compound conditions are formed by combining simple conditions using either or both of the following
operators: AND and OR.

• Sorting is accomplished using the ORDER BY clause. The field on which the records are sorted is called
the sort key. When the data is sorted in more than one field, the more important field is called the major
sort key or primary sort key. The less important field is called the minor sort key or secondary sort key.

• Grouping is accomplished in SQL by using the GROUP BY clause. To restrict the rows to be displayed,
use the HAVING clause.

• Joining tables is accomplished in SQL by using a condition that relates matching rows in the tables to be
joined.

• SQL has the built-in (also called aggregate) functions COUNT, SUM, AVG, MAX, and MIN.

• One SQL query can be placed inside another. The subquery is evaluated first.

• The union of the results of two queries is specified by placing the UNION operator between the two
queries.

• Computed fields are specified in SQL queries by including the expression, followed by the word AS, fol-
lowed by the name of the computed field.

• The INSERT command is used to add a new row to a table.

• The UPDATE command is used to change existing data.

• The DELETE command is used to delete records.

• The INTO clause is used in a SELECT command to create a table containing the results of the query.

Key Terms

CHAR(n)

command

compound condition

CREATE TABLE

DATE

DECIMAL(p,q)

DELETE

FROM clause

GROUP BY clause

HAVING clause

INSERT

INTEGER

INTO clause

ORDER BY clause

reserved word

SELECT clause

simple condition

SMALLINT

SQL (Structured Query Language)

statement history

subquery

UPDATE

WHERE clause

114

Chapter 3

Review Questions

1. Describe the process of creating a table in SQL and the different data types you can use for fields.

2. What is the purpose of the WHERE clause in SQL? Which comparison operators can you use in a WHERE
clause?

3. How do you write a compound condition in an SQL query? When is a compound condition true?

4. What is a computed field? How can you use one in an SQL query? How do you assign a name to a computed
field?

5. How do you use the LIKE and IN operators in an SQL query?

6. How do you sort data in SQL? When there is more than one sort key, how do you indicate which one is the
major sort key? How do you sort data in descending order?

7. What are the SQL built-in functions? How do you use them in an SQL query?

8. What is a subquery? When is a subquery executed?

9. How do you group data in SQL? When you group data in SQL, are there any restrictions on the items that you
can include in the SELECT clause? Explain.

10. How do you join tables in SQL?

11. How do you qualify the name of a field in an SQL query? When is it necessary to do so?

12. How do you take the union of two tables in SQL? What criteria must the tables meet to make a union possible?

13. Describe the three update commands in SQL.

14. How do you save the results of an SQL query as a table?

Premiere Products Exercises

In the following exercises, you will use the data in the Premiere Products database shown in Figure 2-1 in Chapter
2. (If you use a computer to complete these exercises, use a copy of the original Premiere Products database so
you will still have the original data when you complete Chapter 4.) In each step, use SQL to obtain the desired
results. You can use a DBMS to complete the exercises using a computer, or you can simply write the SQL com-
mand to complete each step. Check with your instructor if you are uncertain about which approach to take.

1. List the number and name of all customers.

2. List the complete Part table.

3. List the number and name of every customer represented by sales rep 35.

4. List the number and name of all customers that are represented by sales rep 35 and that have credit limits of
$10,000.

5. List the number and name of all customers that are represented by sales rep 35 or that have credit limits of
$10,000.

6. For each order, list the order number, order date, number of the customer that placed the order, and name of
the customer that placed the order.

7. List the number and name of all customers represented by Juan Perez.

8. How many orders were placed on 10/20/2013?

9. Find the total of the balances for all customers represented by sales rep 35.

10. Give the part number, description, and on-hand value (OnHand * Price) for each part in item class HW.

11. List all columns and all rows in the Part table. Sort the results by part description.

12. List all columns and all rows in the Part table. Sort the results by part number within item class.

13. List the item class and the sum of the number of units on hand. Group the results by item class.

14. Create a new table named SportingGoods to contain the columns PartNum, Description, OnHand, Warehouse,
and Price for all rows in which the item class is SG.

15. In the SportingGoods table, change the description of part BV06 to “Fitness Gym.”

16. In the SportingGoods table, delete every row in which the price is greater than $1,000.

115

The Relational Model 2: SQL

Henry Books Case

Ray Henry knows the importance of the SQL language in database management. He realizes that he can use SQL
to perform the same functions that you performed with queries in Chapter 2. In each of the following steps, use SQL
to obtain the desired results using the data shown in Figures 1-17 through 1-20 in Chapter 1. (If you use a computer
to complete these exercises, use a copy of the original Henry Books database so you will still have the original data
when you complete Chapter 4.) You can use a DBMS to complete the exercises using a computer, or you can sim-
ply write the SQL command to complete each step. Check with your instructor if you are uncertain about which
approach to take.

1. List the name of each publisher that’s not located in New York.

2. List the title of each book published by Penguin USA.

3. List the title of each book that has the type MYS.

4. List the title of each book that has the type SFI and that is in paperback.

5. List the title of each book that has the type PSY or whose publisher code is JP.

6. List the title of each book that has the type CMP, HIS, or SCI.

7. How many books have a publisher code of ST or VB?

8. List the title of each book written by Dick Francis.

9. List the title of each book that has the type FIC and that was written by John Steinbeck.

10. For each book with coauthors, list the title, publisher code, type, and author names (in the order listed on the
cover).

11. How many book copies have a price that is greater than $20 but less than $25?

12. List the branch number, copy number, quality, and price for each copy of The Stranger.

13. List the branch name, copy number, quality, and price for each copy of Electric Light.

14. For each book copy with a price greater than $25, list the book’s title, quality, and price.

15. For each book copy available at the Henry on the Hill branch whose quality is excellent, list the book’s title and
author names (in the order listed on the cover).

16. Create a new table named FictionCopies using the data in the BookCode, Title, BranchNum, CopyNum, Quality,
and Price columns for those books that have the type FIC.

17. Ray Henry is considering increasing the price of all copies of fiction books whose quality is excellent by 10%.
To determine the new prices, list the book code, title, and increased price of every book in the FictionCopies
table. (Your computed column should determine 110% of the current price, which is 100% plus a 10% increase.)

18. Use an update query to change the price of each book in the FictionCopies table with a current price of $14.00
to $14.50.

19. Use a delete query to delete all books in the FictionCopies table whose quality is poor.

Alexamara Marina Group Case

In the following exercises, you will use the data in the Alexamara Marina Group database shown in Figures 1-20
through 1-24 in Chapter 1. (If you use a computer to complete these exercises, use a copy of the Alexamara Marina
Group database so you will still have the original data when you complete Chapter 4.) In each step, use SQL to
obtain the desired results. You can use the query feature in a DBMS to complete the exercises using a computer, or
you can simply write the SQL command to complete each step. Check with your instructor if you are uncertain about
which approach to take.

1. List the owner number, last name, and first name of every boat owner.

2. List the complete Marina table (all rows and all columns).

3. List the last name and first name of every owner located in Bowton.

4. List the last name and first name of every owner not located in Bowton.

5. List the marina number and slip number for every slip whose length is equal to or less than 30 feet.

116

Chapter 3

6. List the marina number and slip number for every boat with the type Dolphin 28.

7. List the slip number for every boat with the type Dolphin 28 that is located in marina 1.

8. List the boat name for each boat located in a slip whose length is between 25 and 30 feet.

9. List the slip number for every slip in marina 1 whose annual rental fee is less than $3,000.

10. Labor is billed at the rate of $60 per hour. List the slip ID, category number, estimated hours, and estimated
labor cost for every service request. To obtain the estimated labor cost, multiply the estimated hours by 60. Use
the column name “EstimatedCost” for the estimated labor cost.

11. List the marina number and slip number for all slips containing a boat with the type Sprite 4000, Sprite 3000, or
Ray 4025.

12. List the marina number, slip number, and boat name for all boats. Sort the results by boat name within the
marina number.

13. How many Dolphin 25 boats are stored at both marinas?

14. Calculate the total rental fees Alexamara receives each year based on the length of the slip.

15. For every boat, list the marina number, slip number, boat name, owner number, owner’s first name, and owner’s
last name.

16. For every completed or open service request for routine engine maintenance, list the slip ID, description, and
status.

17. For every service request for routine engine maintenance, list the slip ID, marina number, slip number, esti-
mated hours, spent hours, owner number, and owner’s last name.

18. Create a new table named LargeSlip using the data in the MarinaNum, SlipNum, RentalFee, BoatName, and
OwnerNum columns in the MarinaSlip table for slips with lengths of 40 feet.

19. Use an update query to change the rental fee of any slip in the LargeSlip table whose fee is currently $3,800 to
$3,900.

20. Use a delete query to delete all rows in the LargeSlip table in which the rental fee is $3,600.

117

The Relational Model 2: SQL

C H A P T E R4
THE RELATIONAL MODEL 3:
ADVANCED TOPICS

L E A R N I N G O B J E C T I V E S

• Define, describe, and use views

• Use indexes to improve database performance

• Examine the security features of a DBMS

• Discuss entity, referential, and legal-values integrity

• Make changes to the structure of a relational database

• Define and use the system catalog

• Understand the use of stored procedures, triggers, and data macros

I N T R O D U C T I O N

In Chapter 3, you used SQL to define and manipulate table data. In this chapter, you will investigate some other aspects of
the relational model. You will learn about views, which represent a way of giving each user his or her own view of the data
in a database. You will examine indexes and use them to improve database performance. You also will investigate the fea-
tures of a DBMS that provide security. You then will learn about important integrity rules and examine ways to change the
structure of a database. You will use the system catalog found in many relational DBMSs to provide users with information
about the structure of a database. You will examine the use of stored procedures and triggers. Finally, you will see how
Access 2010 provides the functionality of triggers using data macros.

N O T E
In this chapter, concepts are introduced using SQL and followed by the method you would use to accomplish the same
task in Access 2010. Unless otherwise specified, the SQL commands in this chapter function in Oracle and MySQL exactly
as indicated.

N O T E
If you plan to work through the examples in this chapter using a computer, you should use a copy of the original
Premiere Products database because the version of the database used in this chapter does not include the changes made
in Chapter 3.

VIEWS

Most DBMSs support the creation of views. A view is an application program’s or an individual user’s picture
of the database. An individual can use a view to create reports, charts, and other objects using database data.
In many cases, an individual can use a view to examine table data as well. Because a view is usually less

involved than the full database, its use can represent a great simplification. Views also provide a measure of
security because omitting sensitive tables or fields from a view will render them unavailable to anyone who is
accessing the database via that view.

To illustrate the idea of a view, suppose Juan is interested in the part number, part description, units on
hand, and unit price for Premiere Products parts that are in class HW. He is not interested in any of the
other fields in the Part table, nor is he interested in any of the rows that correspond to parts in other item
classes. Viewing this data would be simpler for Juan if the other rows and fields were not even present.

Although you cannot change the structure of the Part table and omit some of its rows just for Juan, you
can do the next best thing. You can provide him with a view that consists of precisely the rows and fields he
needs to access. Using SQL, the following CREATE VIEW command creates the view that Juan can use to see
the data he needs.

CREATE VIEW Housewares AS

SELECT PartNum, Description, OnHand, Price

FROM Part

WHERE Class= ’HW ’

;

The SELECT command that creates the view, which is called the defining query, indicates what to
include in the view. Conceptually, given the current data in the Premiere Products database, this view will
contain the data shown in Figure 4-1. The data does not really exist in this form, however, nor will it ever
exist in this form. It is tempting to think that when this view is used, the query is executed and will produce
some sort of temporary table named Housewares, which Juan then could access, but that is not what
happens.

Instead, the query acts as a sort of window into the database, as shown in Figure 4-2. As far as Juan is
concerned, the entire database is just the darker-shaded portion of the Part table. Juan can see any change
that affects the darker portion of the Part table, but he is totally unaware of any other changes that are made
in the database.

PartNum Description OnHand Price

AT94 Iron 50 $24.95

DL71 Cordless Drill 21 $129.95

FD21 Stand Mixer 22 $159.95

Housewares

FIGURE 4-1 Housewares view

120

Chapter 4

RepNum LastName FirstName Street City State Zip Commission Rate

20 Kaiser Valerie 624 Randall Grove FL 33321 $20,542.50 0.05

35 Hull Richard 532 Jackson Sheldon FL 33553 $39,216.00 0.07

65 Perez Juan 1626 Taylor Fillmore FL 33336 $23,487.00 0.05

Rep

CustomerNum CustomerName Street City State Zip Balance CreditLimit RepNum

148 Al’s Appliance 2837 Greenway Fillmore FL 33336 $6,550.00 $7,500.00 20
and Sport

282 Brookings Direct 3827 Devon Grove FL 33321 $431.50 $10,000.00 35

356 Ferguson’s 382 Wildwood Northfield FL 33146 $5,785.00 $7,500.00 65

408 The Everything 1828 Raven Crystal FL 33503 $5,285.25 $5,000.00 35
Shop

462 Bargains Galore 3829 Central Grove FL 33321 $3,412.00 $10,000.00 65

524 Kline’s 838 Ridgeland Fillmore FL 33336 $12,762.00 $15,000.00 20

608 Johnson’s 372 Oxford Sheldon FL 33553 $2,106.00 $10,000.00 65
Department
Store

687 Lee’s Sport 282 Evergreen Altonville FL 32543 $2,851.00 $5,000.00 35
and Appliance

725 Deerfield’s 282 Columbia Sheldon FL 33553 $248.00 $7,500.00 35
Four Seasons

842 All Season 28 Lakeview Grove FL 33321 $8,221.00 $7,500.00 20

Customer

PartNum Description OnHand Class Warehouse Price

Part

OrderNum OrderDate CustomerNum

21608 10/20/2013 148

21610 10/20/2013 356

21613 10/21/2013 408

21614 10/21/2013 282

21617 10/23/2013 608

21619 10/23/2013 148

21623 10/23/2013 608

Orders
OrderNum PartNum NumOrdered QuotedPrice

21608 AT94 11 $21.95

21610 DR93 1 $495.00

21610 DW11 1 $399.99

21613 KL62 4 $329.95

21614 KT03 2 $595.00

21617 BV06 2 $794.95

21617 CD52 4 $150.00

21619 DR93 1 $495.00

21623 KV29 2 $1,290.00

OrderLine

AT94 Iron 50 HW 3 $24.95

BV06 Home Gym 45 SG 2 $794.95

CD52 Microwave Oven 32 AP 1 $165.00

DL71 Cordless Drill 21 HW 3 $129.95

DR93 Gas Range 8 AP 2 $495.00

DW11 Washer 12 AP 3 $399.99

FD21 Stand Mixer 22 HW 3 $159.95

KL62 Dryer 12 AP 1 $349.95

KT03 Dishwasher 8 AP 3 $595.00

KV29 Treadmill 9 SG 2 $1,390.00

FIGURE 4-2 Housewares view of the Premiere Products database

121

The Relational Model 3: Advanced Topics

When you create a query that involves a view, the DBMS changes the query to one that selects data from
the table(s) in the database that created the view. Suppose, for example, Juan creates the following query:

SELECT *

FROM Housewares

WHERE OnHand<25

;

The DBMS does not execute the query in this form. Instead, it merges the query Juan entered with the
query that defines the view to form the query that is actually executed. When the DBMS merges the query
that creates the view with the query to select rows where the OnHand value is less than 25, the query that
the DBMS actually executes is as follows:

SELECT PartNum, Description, OnHand, Price

FROM Part

WHERE Class= ’HW ’

AND OnHand<25

;

In the query that the DBMS executes, the FROM clause lists the Part table rather than the Housewares
view, the SELECT clause lists fields from the Part table instead of * to select all fields from the Housewares
view, and the WHERE clause contains a compound condition to select only those parts in the HW class
(as Juan sees in the Housewares view) and only those parts with OnHand values of less than 25.

Juan, however, is unaware that this kind of activity is taking place. To Juan, it seems as though he is
using a table named Housewares. One advantage of this approach is that, because the Housewares view never
exists in its own right, any update to the Part table is immediately available in Juan’s Housewares view. If the
Housewares view were really a table, that would not be the case.

To create a view in Access, you simply create and save a query. For example, to create the Housewares
view, you would include the PartNum, Description, OnHand, and Price fields from the Part table. You would
also include the Class field in the design grid and enter HW as the criterion. Because the Class field is not
included in the view, you would remove the check mark from the Class field’s Show check box. Finally, you
would save the query using the name Housewares, as shown in Figure 4-3.

View name

Fields included
in the view

Class values won’t
appear in the view

Condition to
select only those parts

in class HW

FIGURE 4-3 Access query design for the Housewares view

122

Chapter 4

After creating the view, you can use it right away. Figure 4-4 shows the data in the Housewares view. You
can create a form for the view, base a report on the view, and treat the view as though it were a table.

What if Juan wanted different names for the fields? You can use SQL to change the field names in a view
by including the new field names in the CREATE VIEW command. For example, if Juan wanted the names of
the PartNum, Description, OnHand, and Price fields to be PNum, PDesc, OnHd, and Price, respectively, the
CREATE VIEW command would be as follows:

CREATE VIEW Housewares (PNum, PDesc, OnHd, Price) AS

SELECT PartNum, Description, OnHand, Price

FROM Part

WHERE Class= ’HW ’

;

Now when Juan accesses the Housewares view, he uses the field names PNum, PDesc, OnHd, and Price
rather than PartNum, Description, OnHand, and Price, respectively.

In Access, you can change the field names by preceding the name of the field with the desired name,
followed by a colon, as shown in Figure 4-5.

Data in view

FIGURE 4-4 Housewares view datasheet

View name

New field
names

Fields

FIGURE 4-5 Access query design of the Housewares view with changed field names

123

The Relational Model 3: Advanced Topics

In the query results shown in Figure 4-6, the column headings are PNum, PDesc, OnHd, and Price.

The Housewares view is an example of a row-and-column subset view because it consists of a subset of
the rows and columns in some individual table, which, in this case, is the Part table. Because the query can
be any SQL query, a view can also join two or more tables.

Suppose, for example, Francesca needs to know the number and name of each sales rep, along with the
number and name of the customers represented by each sales rep. It would be much simpler for her if this
information were stored in a single table instead of in two tables that she has to join together. She would like
a single table that contains the sales rep number, sales rep name, customer number, and customer name.
Suppose she would also like these fields to be named SNum, SLast, SFirst, CNum, and CName, respectively.
She could use a join in the CREATE VIEW command as follows:

CREATE VIEW SalesCust (SNum, SLast, SFirst, CNum, CName) AS

SELECT Rep.RepNum, LastName, FirstName, CustomerNum, CustomerName

FROM Rep, Customer

WHERE Rep.RepNum=Customer.RepNum

;

Given the current data in the Premiere Products database, conceptually this view is the table shown in
Figure 4-7.

Data in view

New field
names

FIGURE 4-6 Datasheet for the Housewares view with changed field names

SNum SLast SFirst CNum CName

20 Kaiser Valerie 148 Al’s Appliance and Sport

20 Kaiser Valerie 524 Kline’s

20 Kaiser Valerie 842 All Season

35 Hull Richard 282 Brookings Direct

35 Hull Richard 408 The Everything Shop

35 Hull Richard 687 Lee’s Sport and Appliance

35 Hull Richard 725 Deerfield’s Four Seasons

65 Perez Juan 356 Ferguson’s

65 Perez Juan 462 Bargains Galore

65 Perez Juan 608 Johnson’s Department Store

SalesCust

FIGURE 4-7 SalesCust view

124

Chapter 4

To Francesca, the SalesCust view is a real table; she does not need to know what goes on behind the
scenes in order to use it. She could find the number and name of the sales rep who represents customer 282,
for example, by using the following query:

SELECT SNum, SLast, SFirst

FROM SalesCust

WHERE CNum= ’282 ’

;

Francesca is completely unaware that, behind the scenes, the DBMS converts her query as follows:

SELECT Rep.RepNum AS SNum, LastName AS SLast, FirstName AS SFirst

FROM Rep, Customer

WHERE Rep.RepNum=Customer.RepNum

AND CustomerNum= ’282 ’

;

In Access, the query for the SalesCust view appears in Figure 4-8.

The datasheet for the SalesCust view appears in Figure 4-9.

Name of view

Fields from
the Rep table

Fields from
the Customer

table

FIGURE 4-8 Access query design of the SalesCust view

125

The Relational Model 3: Advanced Topics

The use of views provides several advantages:

• Views provide data independence. If the database structure changes (because of fields being
added or relationships changing between tables, for example) in such a way that the view can
still be derived from existing data, the user can still access and use the same view. If adding
extra fields to tables in the database is the only change and these fields are not required by the
view’s user, the defining query may not even need to be changed for the user to continue using
the view. If relationships are changed, the defining query may be different, but because users
need not be aware of the defining query, this difference is unknown to them. They continue
accessing the database through the same view as though nothing has changed.

• Because each user has his or her own view, different users can view the same data in different
ways.

• A view should contain only those fields required by a given user. This practice has two advan-
tages. First, because the view will, in all probability, contain fewer fields than the overall data-
base and the view is conceptually a single table, rather than a collection of tables, it greatly
simplifies the user’s perception of the database. Second, views provide a measure of security.
Fields that are not included in the view are not accessible to the view’s user. For example, omit-
ting the Balance field from a view will ensure that a user of the view cannot access any custo-
mer’s balance. Likewise, rows that are not included in the view are not accessible. A user of the
Housewares view, for example, cannot obtain any information about parts in the AP or SG item
classes.

INDEXES

If you want to find a discussion of a given topic in a book, you could scan the entire book from start to finish,
looking for references to the topic you had in mind. More likely, however, you would not have to resort to
this technique. If the book had a good index, you could use it to quickly identify the pages on which your
topic is discussed.

Within relational model systems on both mainframes and personal computers, the main mechanism
for increasing the efficiency with which data is retrieved from the database is the index. Conceptually,
these indexes are very much like the index in a book. Consider Figure 4-10, for example, which shows the
Customer table for Premiere Products together with one extra field, RecordNum. This extra field gives the
location of the record in the file. (Customer 148 is the first record in the table and is on record 1, customer
282 is on record 2, and so on.) These record numbers are automatically assigned and used by the DBMS,
not by its users, which is why you do not normally see them. For illustrative purposes, Figure 4-10 includes
a RecordNum column to show how an index works.

Data in view

FIGURE 4-9 Datasheet for the SalesCust view

126

Chapter 4

To rapidly access a customer’s record on the basis of his or her record number, you might choose to
create and use an index, as shown in Figure 4-11.

The index has two fields. The first field contains a customer number, and the second field contains the
number of the record on which the customer number is found. Because customer numbers are unique, there
is only a single corresponding record number in this index. That is not always the case, however. Suppose,
for example, you wanted to quickly access all customers with a specific credit limit or all customers that are
represented by a specific sales rep. You might choose to create and use an index on credit limit as well as an
index on sales rep number. These two indexes are shown in Figure 4-12.

CustomerNum CustomerName ... Balance CreditLimit RepNum

Customer

1 148 Al’s Appliance ... $6,550.00 $7,500.00 20
and Sport

2 282 Brookings Direct ... $431.50 $10,000.00 35

3 356 Ferguson’s ... $5,785.00 $7,500.00 65

4 408 The Everything ... $5,285.25 $5,000.00 35
Shop

5 462 Bargains Galore ... $3,412.00 $10,000.00 65

6 524 Kline’s ... $12,762.00 $15,000.00 20

7 608 Johnson’s ... $2,106.00 $10,000.00 65
Department Store

8 687 Lee’s Sport and ... $2,851.00 $5,000.00 35
Appliance

9 725 Deerfield’s ... $248.00 $7,500.00 35
Four Seasons

10 842 All Season ... $8,221.00 $7,500.00 20

RecordNum

FIGURE 4-10 Customer table with record numbers

RecordNumCustomerNum

CustomerNum Index

148 1

282 2

356 3

408 4

462 5

524 6

608 7

687 8

725 9

842 10

FIGURE 4-11 Index for the Customer table on the CustomerNum field

127

The Relational Model 3: Advanced Topics

By examining the CreditLimit index in Figure 4-12, you can see that each credit limit occurs in the
index along with the numbers of the records on which that credit limit occurs. Credit limit $7,500, for exam-
ple, occurs on records 1, 3, 9, and 10. Further, the credit limits appear in the index in numerical order. If the
DBMS uses this index to find those records on which the credit limit is $10,000, for example, it could scan
the credit limits in the index to find $10,000. After doing that, it would determine the corresponding record
numbers (2, 5, and 7) and then immediately go to those records in the Customer table, finding these custo-
mers more quickly than if it had to scan the entire Customer table one record at a time. Thus, indexes can
make the process of retrieving records fast and efficient.

N O T E
With relatively small tables, the increased efficiency associated with indexes will not be readily apparent. In practice, it is com-
mon to encounter tables with thousands, tens of thousands, or even hundreds of thousands of records. In such cases, the
increase in efficiency is dramatic. In fact, without indexes, many operations in such databases would simply not be practical—
they would take too long to complete.

The field or combination of fields on which the index is built is called the index key. In the index shown
in Figure 4-11, the index key is CustomerNum; in the indexes shown in Figure 4-12, the index keys are
CreditLimit and RepNum. The index key for an index can be any field or combination of fields in any table.

After creating an index, you can use it to facilitate data retrieval. In powerful mainframe relational sys-
tems, the decision concerning which index(es) to use (if any) during a particular type of retrieval is a func-
tion of the DBMS.

As you would expect, the use of any index is not purely advantageous or disadvantageous. An advantage
was already mentioned: An index makes certain types of retrieval more efficient. There are two disadvan-
tages. First, the index occupies space on disk. Using this space for an index, however, is technically unneces-
sary because any retrieval that can be made using the index can also be made without the index, although
less efficiently. The other disadvantage is that the DBMS must update the index whenever corresponding data
in the database is updated. Without the index, the DBMS would not need to make these updates. The main
question you must ask when considering whether to create a given index is this: Do the benefits derived dur-
ing retrieval outweigh the additional storage required and the extra processing involved in update operations?
The following guidelines should help you make this determination. You should create an index on a field (or
combination of fields) when one or more of the following conditions exist:

• The field is the primary key of the table. (In some systems, the DBMS might create this index
automatically.)

• The field is the foreign key in a relationship you have created.
• You will frequently use the field as a sort field.
• You will frequently need to locate a record based on a value in this field.

You can add and delete indexes as necessary. You can create an index after the database is built—the
index does not need to be created at the same time as the database. Likewise, when it appears that an exist-
ing index is unnecessary, you can delete it.

The exact process for creating an index varies from one DBMS to another. A common SQL command to
create an index is as follows:

CREATE INDEX CustomerName

ON Customer (CustomerName)

;

CreditLimit

$5,000 4, 8

$7,500 1, 3, 9, 10

$10,000 2, 5, 7

$15,000 6

CreditLimit Index
RepNum

RepNum Index
RecordNum RecordNum

20 1, 6, 10

35 2, 4, 8, 9

65 3, 5, 7

FIGURE 4-12 Indexes for the Customer table on the CreditLimit and RepNum fields

128

Chapter 4

This CREATE INDEX command creates an index named CustomerName. The index is for the Customer
table, and the index key is the CustomerName field. In this example, the index name is the same as the
index key. This format is not a requirement, but it is a good general practice.

Figure 4-13 shows the creation of an index on the CustomerName field in the Customer table using
Access. As illustrated in the figure, there are three choices for index options: No, Yes (Duplicates OK), and
Yes (No Duplicates).

The first Indexed option, No, is the default. You select No when you need to remove a previously created
index. You select Yes (Duplicates OK) to create an index that allows duplicate values. In this case, Access
allows more than one customer with the same name. When you select Yes (No Duplicates), Access creates
the index, but you cannot add a customer with the same name as an existing customer in the database. The
third option is used to enforce uniqueness when it is appropriate. For example, the third option would be a
good choice for a Social Security number field.

When you create an index whose key is a single field, you have created a single-field index (also called a
single-column index). A multiple-field index (also called a multiple-column index) is an index with more
than one key field. When creating a multiple-field index, you list the more important key first. In addition, if
data for either key appears in descending order, you must follow the field name with the word DESC.

To create an index named RepBal with the keys RepNum and Balance and with the balances listed in
descending order, you could use the following SQL command:

CREATE INDEX RepBal

ON Customer (RepNum, Balance DESC)

;

Options for not creating an
index, creating an index that allows
duplicates, and creating an index

that prohibits duplicates

Index key

FIGURE 4-13 Creating index on a single field in Access

129

The Relational Model 3: Advanced Topics

Creating multiple-field indexes in Access involves a slightly different process than creating single-field
indexes. To create multiple-field indexes, click the Indexes button in the Show/Hide group on the Table Tools
Design tab, enter a name for the index, and then select the fields that make up the index key. If data for any
of the fields is to appear in descending order, change the corresponding entry in the Sort Order column to
Descending, as shown in Figure 4-14.

The SQL command used to drop (delete) an index that is no longer necessary is DROP INDEX, which
consists of the words DROP INDEX followed by the name of the index to drop. To drop the RepBal index, for
example, the command is as follows:

DROP INDEX RepBal

;

In MySQL, the DROP INDEX command must include an ON clause that specifies the name of the table.
The corresponding command in MySQL is as follows:

DROP INDEX RepBal ON CUSTOMER

;

To delete an index in Access, select the index in the Indexes dialog box (see Figure 4-14), right-click it,
and then click Delete Rows on the shortcut menu.

SECURITY

Security is the prevention of unauthorized access to the database. Within an organization, the database
administrator determines the types of access various users can have to the database. Some users may be able
to retrieve and update anything in the database. Other users may be able to retrieve any data from the data-
base but not make any changes to it. Still other users may be able to access only a portion of the database.
For example, Bill Kaiser may be able to retrieve and update sales rep and customer data, but not be permit-
ted to retrieve data about parts and orders. Mary Smith may be able to retrieve part data and nothing else.
Kyung Park may be able to retrieve and update data on parts in the HW class but not in other classes.

After the database administrator has determined the access different users of the database will have, it is up
to the DBMS to enforce it. In particular, it is up to whatever security mechanism the DBMS provides. In SQL sys-
tems, there are two security mechanisms. You have already seen that views furnish a certain amount of security.
(When users are accessing the database through a view, they cannot access any data that is not included in the
view.) The main mechanism for providing access to a database, however, is the GRANT statement.

The basic idea of the GRANT statement is that different types of privileges can be granted to users and, if
necessary, later revoked. These privileges include such things as the right to select, insert, update, and delete
table data. You can revoke user privileges using the REVOKE statement. Following are examples of these two
statements.

Name of
multiple-field

index Second index key

Descending sort
order selected

First index key

FIGURE 4-14 Creating a multiple-field index in Access

130

Chapter 4

The following command will enable user Jones to retrieve data from the Customer table but not take any
other action.

GRANT SELECT ON Customer TO Jones

;

The following command will enable users Smith and Park to add new records to the Part table.

GRANT INSERT ON Part TO Smith, Park

;

The following command will revoke the ability to retrieve Customer records from user Jones; that is,
Jones will no longer have the privilege granted earlier.

REVOKE SELECT ON Customer FROM Jones

;

INTEGRITY RULES

A relational DBMS must enforce two important integrity rules that were defined by Dr. E. F. Codd (Codd, E.
F. “Extending the Relational Database Model to Capture More Meaning.” In ACM TODS 4, no. 4 [December
1979]). Both rules are related to two special types of keys: primary keys and foreign keys. The two integrity
rules are called entity integrity and referential integrity.

Entity Integrity
In some DBMSs, when you describe a database, you can indicate that certain fields can accept a special value,
called null. Essentially, setting the value in a given field to null is similar to not entering a value in the field at
all. Nulls are used when a value is missing, unknown, or inapplicable. It is not the same as a blank or zero
value, both of which are actual values. For example, a value of zero in the Balance field for a particular cus-
tomer indicates that the customer has a zero balance. A value of null in a customer’s Balance field, on the
other hand, indicates that, for whatever reason, the customer’s balance is unknown.

When you indicate that the Balance field can be null, you are saying that this situation (a customer with
an unknown balance) is something you want to allow. If you do not want to allow unknown values, you indi-
cate this by specifying that Balance field values cannot be null.

The decision about allowing nulls is generally made on a field-by-field basis. There is one type of field for
which you should never allow nulls, however, and that is the primary key. After all, the primary key is sup-
posed to uniquely identify a given row, which would not happen if nulls were allowed. How, for example,
could you tell two customers apart if both had null customer numbers? The restriction that the primary key
cannot allow null values is called entity integrity.

Definition: Entity integrity is the rule that no field that is part of the primary key may accept null values.
Entity integrity guarantees that each record will indeed have its own identity. In other words, preventing

the primary key from accepting null values ensures that you can distinguish one record from another. Typi-
cally, the DBMS handles this distinction automatically. All you need to do is specify which field or fields make
up the primary key.

In SQL, you can specify the primary key by entering a PRIMARY KEY clause in either an ALTER TABLE
(covered later in this chapter) or a CREATE TABLE command. For example, to use the PRIMARY KEY clause
to indicate that CustomerNum is the primary key for the Customer table, the clause would be as follows:

PRIMARY KEY (CustomerNum)

In general, the PRIMARY KEY clause has the form PRIMARY KEY followed, in parentheses, by the field or
fields that make up the primary key. When more than one field is included, the fields are separated by com-
mas. Thus, the PRIMARY KEY clause for the OrderLine table is as follows:

PRIMARY KEY (OrderNum, PartNum)

In Access, you designate the primary key by selecting the primary key field in Table Design view and
clicking the Primary Key button in the Tools group on the Table Tools Design tab. A key symbol will appear
in the field’s row selector to indicate that it is the primary key, as shown in Figure 4-15.

131

The Relational Model 3: Advanced Topics

If the primary key consists of more than one field, select the first field, press and hold down the Ctrl key,
and then click the other field or fields that make up the primary key. Clicking the Primary Key button adds
the key symbol to the row selectors of the primary key fields, as shown in Figure 4-16.

Referential Integrity
In the relational model you have examined thus far, you have created the relationships between tables by
having common fields in two or more tables. The relationship between sales reps and customers, for example,
is accomplished by including the primary key of the Rep table (RepNum) as a field in the Customer table.

This approach has several drawbacks. First, relationships are not very obvious. If you were not already
familiar with the relationships in the Premiere Products database, you would have to find the matching fields
in separate tables in order to locate the relationship. Even then, you could not be sure that the matching field
names indicated a relationship. Two fields having the same name could be just a coincidence—the fields
might have nothing to do with each other. Second, what if the primary key in the Rep table is named
RepNum, but the corresponding field in the Customer table is named SlsrNo? Unless you are aware that these
two fields are identical, the relationship between customers and sales reps would not be clear. In a database
having as few tables and fields as the Premiere Products database, these problems might be manageable. How-
ever, picture a database that has 20 tables, each containing an average of 30 fields. As the number of tables
and fields increases, so do the potential problems.

CustomerNum is
the primary key

Primary Key
button

FIGURE 4-15 Specifying a primary key in Access

The combination of
OrderNum and PartNum
is the table’s primary key

FIGURE 4-16 Specifying a primary key consisting of more than one field in Access

132

Chapter 4

There is also another issue with the relational model. Nothing about the model itself would prevent a user
from storing data about a customer whose sales rep number did not correspond to any sales rep already in the
database. Clearly, this is not a desirable situation.

Fortunately, a solution exists for both issues. It involves using foreign keys.

Definition: A foreign key is a field (or collection of fields) in a table whose value is required to match the
value of the primary key for a second table.

The RepNum field in the Customer table is a foreign key that must match the primary key of the Rep
table. In practice, this means that the sales rep number for any customer must be the same as the number of
a sales rep that is already in the database.

There is one possible exception to this rule. Perhaps Premiere Products does not require a customer to
have a sales rep—it is strictly optional. This situation could be indicated in the Customer table by setting
such a customer’s sales rep number to null. Technically, however, a null sales rep number would violate the
restrictions that you have indicated for a foreign key. Thus, if you were to use a null sales rep number, you
would have to modify the definition of a foreign key to include the possibility of nulls. You would insist,
though, that if the foreign key contained a value other than null, it would have to match the value of the pri-
mary key in some row in the other table. (In the example, for instance, a customer’s sales rep number could
be null. If it were not null, it would have to be the number of an actual sales rep.) This general property is
called referential integrity.

Definition: Referential integrity is the rule that if table A contains a foreign key that matches the primary
key of table B, the values of this foreign key must match the value of the primary key for some row in table B
or be null.

Usually a foreign key is in a table that is different from the primary key it is required to match. In the
Premiere Products database, for example, to be able to determine the rep for any customer, you include the
rep number as a foreign key in the Customer table that must match the primary key in the Rep table. It is
possible for the foreign key and the matching primary key to be in the same table, however. As an example of
this situation, suppose one of the requirements in a particular database is that, given an employee, you must
be able to determine the manager of that employee. You might have an Employee table with a primary key of
EmployeeNum (the employee number). To determine the employee’s manager, you would include the man-
ager’s employee number as a foreign key in the Employee table. Because the manager is also an employee,
however, the manager will be in the same Employee table. Thus, this foreign key in the Employee table would
need to match the primary key in the same Employee table. The only restriction is that the foreign key must
have a name that is different from the primary key because the fields are in the same table. For example, you
could name the foreign key ManagerEmployeeNum.

Using foreign keys solves the previously mentioned problems. Indicating that the RepNum field in the
Customer table is a foreign key that must match the RepNum field in the Rep table explicitly specifies the
relationship between customers and sales reps—you do not need to look for common fields in several tables.
Further, with foreign keys, matching fields that have different names no longer pose a problem. For example,
it would not matter if the name of the foreign key in the Customer table were SlsrNo and the primary key in
the Rep table were RepNum; the only thing that would matter is that this field is a foreign key that matches
the Rep table. Finally, through referential integrity, it is possible for a customer not to have a sales rep num-
ber, but it is not possible for a customer to have an invalid sales rep number; that is, a customer’s sales rep
number must be null or must be the number of a sales rep who is already in the database.

In SQL, you specify referential integrity using a FOREIGN KEY clause in either the CREATE TABLE or
ALTER TABLE commands. To specify a foreign key, you need to specify both the field that is a foreign key
and the table whose primary key it is to match. In the Customer table, for example, the RepNum field is a
foreign key that must match the primary key in the Rep table as follows:

FOREIGN KEY (RepNum) REFERENCES Rep

The general form of this clause is FOREIGN KEY, followed by the field or combination of fields that make
up the foreign key, which is followed by the word REFERENCES and the name of the table containing the pri-
mary key that the foreign key is supposed to match.

In Access, referential integrity is specified as part of the process of defining relationships, as shown in
Figure 4-17.

133

The Relational Model 3: Advanced Topics

You use the pointer to drag the primary key (RepNum) of the Rep table to the foreign key (RepNum) of
the Customer table. After releasing the mouse button, you can request Access to enforce referential integrity
by selecting the Enforce Referential Integrity check box, as shown in Figure 4-18. You also can specify
whether update or delete operations will “cascade.” Selecting the Cascade Delete Related Records check box
ensures that the deletion of a sales rep record also deletes all customer records related to that sales rep (also
known as cascade delete); selecting the Cascade Update Related Fields check box ensures that changes made
to the primary key of a sales rep record are also made in the related customer record (also known as cascade
update). In Figure 4-18, the cascade delete and cascade update options are not selected.

With referential integrity enforced, users cannot enter a customer record with a sales rep number that
does not match any sales rep number currently in the Rep table. An error message, such as the one shown in
Figure 4-19, appears when a user attempts to enter an invalid sales rep number.

Foreign key

Primary key

Field lists for the
tables to be related

FIGURE 4-17 Using the Relationships window to relate tables in Access

Foreign key
(Customer table)

Primary key
(Rep table)

Enforce Referential
Integrity check box

is selected

FIGURE 4-18 Specifying referential integrity in Access

134

Chapter 4

Deleting a sales rep who currently has customers on file would also violate referential integrity because
the sales rep’s customers would no longer match any sales rep in the Rep table. The DBMS must prevent this
type of deletion and then produce an error message, such as the one shown in Figure 4-20. If sales rep 20
leaves Premiere Products, all of her customers would need to be assigned to other sales reps before her record
could be deleted from the Rep table.

Legal-Values Integrity
In addition to the two integrity rules defined by Codd, there is a third type of integrity, called legal-values
integrity. Often there is a particular set of values, called the legal-values, that are allowable in a field. Legal-
values integrity is the property that states that no record can exist in the database with a value in the field
other than one of the legal values. For example, at Premiere Products, the legal values for the CreditLimit
field are $5,000, $7,500, $10,000, and $15,000. The DBMS must reject an attempt to enter a record with a
credit limit of $12,500.

RepNum does not
match any RepNum
value in Rep table

Message indicating you
cannot add a record because

the RepNum is invalid

FIGURE 4-19 Referential integrity violation when attempting to add a record

Message indicating you
cannot delete sales rep 20
because related customer

records exist

FIGURE 4-20 Referential integrity violation when attempting to delete a record

135

The Relational Model 3: Advanced Topics

In SQL, you use the CHECK clause to enforce legal-values integrity. For example, to ensure that the only
legal values for credit limits are $5,000, $7,500, $10,000, or $15,000, include the following CHECK clause in a
CREATE TABLE or ALTER TABLE command:

CHECK (CreditLimit IN (5000, 7500, 10000, 15000))

The general form of the CHECK clause is the word CHECK followed by a condition. In the previous
CHECK clause, the credit limit must be in the set consisting of 5000, 7500, 10000, or 15000. The DBMS will
automatically reject any update to the database that violates the condition in the CHECK clause.

In Access, you can restrict the legal values accepted by a field by entering an appropriate validation rule
that data entered in the field must follow. Figure 4-21 shows the validation rule that restricts entries in the
CreditLimit field to 5000, 7500, 10000, and 15000. Along with the validation rule, you usually enter valida-
tion text to inform the user of the reason for the rejection when the user attempts to enter data that violates
the rule.

CreditLimit field
is selected

Validation rule for the
CreditLimit field

Validation text for the
CreditLimit field

FIGURE 4-21 Specifying a validation rule in Access

136

Chapter 4

STRUCTURE CHANGES

An important feature of relational DBMSs is the ease with which you can change the database structure by
adding and removing tables and fields, by changing the characteristics of existing fields, or by creating and
dropping indexes. Although the exact manner in which you accomplish these changes varies from one system
to another, most systems allow you to make all of these changes quickly and easily.

Changes to a table’s structure are made using the SQL ALTER TABLE command. Virtually every imple-
mentation of SQL allows the creation of new fields in existing tables. For example, suppose you need to
maintain a customer type for each customer in the Premiere Products database. You can decide to assign
regular customers type R, distributors type D, and special customers type S. To implement this change, you
would add a new field to the Customer table as follows:

ALTER TABLE Customer

ADD CustType CHAR(1)

;

In Access, you can add a field in Table Design view at any time. Figure 4-22 shows the Customer table
after adding the CustType field.

At this point, the Customer table contains an extra field, CustType. For rows (customers) added from
this point on, the value of CustType is entered just like any other field. For existing rows, CustType is typi-
cally assigned a null value by the DBMS automatically. The user then can change these values if desired.

Some systems allow changes to the properties of existing fields, such as increasing the length of a char-
acter field. For example, to increase the field size of the CustomerName field in the Customer table from 35
to 40 characters, use the following SQL ALTER TABLE command:

ALTER TABLE Customer

MODIFY CustomerName CHAR(40)

;

In Access, you can change field properties in Table Design view. Figure 4-23 shows the CustomerName
field after increasing its field size from 35 to 40 characters.

New field
(CustType)

Field data
type (Text)

Field size (1)

FIGURE 4-22 Adding a field in Access

137

The Relational Model 3: Advanced Topics

Some systems allow existing fields to be deleted. (Oracle is one system that does not allow existing fields
to be deleted.) For example, the following SQL command deletes the Warehouse field from the Part table:

ALTER TABLE Part

DROP COLUMN Warehouse

;

In Access, you can delete a field in Table Design view by selecting the field and pressing the Delete key.
Access will ask you to confirm the deletion of the field, as shown in Figure 4-24. Clicking the Yes button
permanently deletes the field and the data it stores.

Field Size property
changed

CustomerName
field selected

FIGURE 4-23 Changing a field property in Access

Selected field
for deletion

FIGURE 4-24 Dialog box that opens when a field in Access is deleted

138

Chapter 4

You can use the SQL DROP TABLE command to delete a table that is no longer needed. For example, to
delete the SmallCust table (created in Chapter 3) from the Premiere Products database, you would use the
following command:

DROP TABLE SmallCust

;

The table and all indexes and views defined on the table would be deleted. The DROP TABLE command
deletes the table structure as well as its data.

In Access, you can drop (delete) a table, such as the SmallCust table created in Chapter 3, by right-
clicking the table on the Navigation Pane and then clicking Delete on the shortcut menu, as shown in
Figure 4-25. Access will open a dialog box and ask you to confirm the deletion by clicking the Yes button,
and then Access will delete the table from the database.

Making Complex Changes
In some cases, you might need to change a table’s structure in ways that are beyond the capabilities of your
DBMS. Perhaps you need to eliminate a field, change the field order, or combine data from two tables into one,
but your system does not allow these types of changes. For example, some systems, including Oracle, do not
allow you to reduce the size of a field or change its data type. In these situations, you can use the CREATE
TABLE command to describe the new table, and then insert values into it using the INSERT command combined
with an appropriate SELECT clause, as you learned in Chapter 3. If you are using a version of SQL that supports
the SELECT INTO command, as Access does, you can use it to create the new table in a single operation.

Delete command on
the shortcut menu

Table to be
deleted

FIGURE 4-25 Deleting a table in Access

139

The Relational Model 3: Advanced Topics

SYSTEM CATALOG

Information about tables in the database is kept in the system catalog (or the catalog). The catalog is main-
tained automatically by the DBMS. When a user adds a new table, changes the structure of an existing table,
or deletes a table, the DBMS updates the catalog to reflect these changes.

This section describes the types of items kept in the catalog and the way in which you can query it to
determine information about the database structure. (This description represents the way catalogs are used
in a typical SQL implementation.) Although catalogs in individual relational DBMSs will vary from the exam-
ples shown here, the general ideas apply to most relational systems.

The catalog you will consider contains two tables: Systables (information about the tables known to SQL)
and Syscolumns (information about the columns or fields within these tables). An actual catalog contains
other tables as well, such as Sysindexes (information about the indexes that are defined on these tables) and
Sysviews (information about the views that have been created). Although these tables have many fields, only
a few are of concern here.

As shown in Figure 4-26, the Systables table contains the Name, Creator, and Colcount fields. The Name
field identifies the name of a table, the Creator field identifies the person or group that created the table, and
the Colcount field contains the number of fields in the table being described. If, for example, the user named
Brown created the Rep table and the Rep table has nine fields, there would be a row in the Systables table in
which the Name is Rep, the Creator is Brown, and the Colcount is 9. Similar rows would exist for all tables
known to the system.

The Syscolumns table contains the Colname, Tbname, and Coltype fields, as shown in Figure 4-27. The
Colname field identifies the name of a field in one of the tables. The table in which the field is found is stored
in the Tbname field, and the data type for the field is found in the Coltype field. There is a row in the Sys-
columns table for each field in the Rep table, for example. On each of these rows, Tbname is Rep. On one
of these rows, Colname is RepNum and Coltype is CHAR(2). On another row, Colname is LastName
and Coltype is CHAR(15).

Name Creator Colcount

Customer Brown 10

Part Brown 6

Orders Brown 3

OrderLine Brown 4

Rep Brown 9

Systables

FIGURE 4-26 Systables table

140

Chapter 4

A DBMS furnishes ways of using the catalog to determine information about the structure of the data-
base. In some cases, this simply involves using SQL to query the tables in the catalog. For example, to list the
name and type of all fields (columns) in the Part table, you could use the following SQL command:

SELECT Colname, Coltype

FROM Syscolumns

WHERE Tbname= ’Part ’

;

Colname Tbname Coltype

Balance Customer DECIMAL(8,2)

City Customer CHAR(15)

City Rep CHAR(15)

Class Part CHAR(2)

Commission Rep DECIMAL(7,2)

CreditLimit Customer DECIMAL(8,2)

CustomerName Customer CHAR(35)

CustomerNum Customer CHAR(3)

CustomerNum Orders CHAR(3)

Description Part CHAR(15)

FirstName Rep CHAR(15)

LastName Rep CHAR(15)

NumOrdered OrderLine DECIMAL(3,0)

OnHand Part DECIMAL(4,0)

OrderDate Orders DATE

OrderNum OrderLine CHAR(5)

OrderNum Orders CHAR(5)

PartNum OrderLine CHAR(4)

PartNum Part CHAR(4)

Price Part DECIMAL(6,2)

QuotedPrice OrderLine DECIMAL(6,2)

Rate Rep DECIMAL(3,2)

RepNum Customer CHAR(2)

RepNum Rep CHAR(2)

State Customer CHAR(2)

State Rep CHAR(2)

Street Customer CHAR(15)

Street Rep CHAR(15)

Warehouse Part CHAR(2)

Zip Customer CHAR(5)

Zip Rep CHAR(5)

Syscolumns

FIGURE 4-27 Syscolumns table

141

The Relational Model 3: Advanced Topics

N O T E
In MySQL, you use the SHOW TABLES command to produce a list of all tables in the current database. The SHOW INDEX
command produces a list of all indexes. The SHOW COLUMNS command, which consists of the words SHOW COLUMNS
FROM followed by the name of a table, produces details concerning all columns in the indicated table. Running the command
SHOW COLUMNS FROM CUSTOMER, for example, lists details concerning all the columns in the Customer table.

N O T E
In Oracle, the equivalent tables for SYSTABLES, SYSCOLUMNS, and SYSVIEWS are named DBA_TABLES,
DBA_TAB_COLUMNS, and DBA_VIEWS, respectively.

In other cases, special tools provide the desired documentation. For example, Access has a tool called the
Documenter, which allows you to print detailed documentation about any table, query, report, form, or other
object in the database. To document the objects in an Access database, click the Database Tools tab, and
then click the Database Documenter button in the Analyze group.

STORED PROCEDURES

In a client/server system, the database resides on a computer called the server and users access the database
through clients. A client is a computer that is connected to a network and has access through the server to
the database. Every time a user executes a query, the DBMS must determine the best way to process the
query and provide the results. For example, the DBMS must determine which indexes are available and
whether it can use those indexes to make the processing of the query more efficient.

If you anticipate running a particular query often, for example, you can improve overall performance by
saving the query in a special file called a stored procedure. The stored procedure is placed on the server.
The DBMS compiles the stored procedure (translating it into machine code) and creates an execution plan,
which is the most efficient way of obtaining the results. From that point on, users execute the compiled,
optimized code in the stored procedure.

Another reason for saving a query as a stored procedure, even when you are not working in a client/
server system, is convenience. Rather than retyping the entire query each time you need it, you can use the
stored procedure. For example, suppose you frequently execute a query to change a customer’s credit limit.
You can use the same query to select the record using the customer’s number and to change the credit limit.
Instead of running the query each time and changing the customer number and the credit limit, it would be
simpler to store the query in a stored procedure. When you run the stored procedure, you need to enter only
the appropriate customer number and the new credit limit.

Although it is easy to create and use a stored procedure, you need to be aware of one issue you will face
when creating a stored procedure in MySQL. The semicolon in a MySQL command marks the end of the
command. In this context, the semicolon is called a delimiter. When MySQL encounters a semicolon in a
command, it executes the command. Because a semicolon also indicates the end of a stored procedure, you
need to change the delimiter temporarily for the stored procedure. In the following example, the first line
temporarily changes the delimiter to a double dollar sign ($$). The last line in the command changes the
delimiter back to a semicolon. (Notice that there is a space between the word DELIMITER and the
semicolon.)

DELIMITER $$

CREATE PROCEDURE Change_Credit

(CNum CHAR(4), CLimit DECIMAL (8,2))

BEGIN

UPDATE Customer

SET CreditLimit ¼ CLimit

WHERE CustomerNum ¼ CNum ;

END

$$

DELIMITER ;

142

Chapter 4

The CREATE PROCEDURE line in the stored procedure causes MySQL to create a procedure named
Change_Credit. The second line indicates that there are two arguments, CNum and CLimit, with the appro-
priate data types. These values are used in the SQL statement that will be stored. (Although it is not
required, creating aliases for the field names simplifies the command.) When users run this stored procedure,
they furnish values for CNum and CLimit. The stored procedure then updates the customer whose number is
stored in CNum by changing the customer’s credit limit to the value stored in CLimit.

The next line contains the word BEGIN to mark the beginning of the SQL command to be stored. The
next three lines contain the command, including the semicolon. The line that contains the word END marks
the end of the command. The $$ delimiter indicates that the CREATE PROCEDURE command is complete.
MySQL then executes this command and creates the stored procedure. The final line changes the delimiter
back to the semicolon.

To use this stored procedure, a user enters the word CALL followed by the procedure name. After the
procedure name, the user enters the values of the two arguments in parentheses. For example, the following
command changes the credit limit of customer number 356 to $10,000:

CALL Change_Credit (’356 ’, 10000);

Although Access does not support stored procedures, you can achieve some of the same convenience by
creating a parameter query that prompts the user for the arguments you would otherwise use in a stored
procedure.

TRIGGERS

A trigger is an action that occurs automatically in response to an associated database operation such as an
INSERT, UPDATE, or DELETE command. Like a stored procedure, a trigger is stored and compiled on the
server. Unlike a stored procedure, which is executed in response to a user request, a trigger is executed in
response to a command that causes the associated database operation to occur.

The examples in this section assume there is a new column named OnOrder in the Part table. This col-
umn represents the number of units of a part currently on order. For example, if there are two separate order
lines for a part and the number ordered on one order line is three and the number ordered on the other
order line is two, the OnOrder value for that part is five. Adding, changing, or deleting order lines affects the
value in the OnOrder column for the part. To ensure that the value is updated appropriately, you can use a
trigger in MySQL or a data macro in Access 2010. These features are explained in the following sections.

Using Triggers in MySQL
When a user adds an order line, the following MySQL trigger, which is named AddOrderLine, is executed.
When a user adds an order line, the trigger must update the OnOrder value for the corresponding part to
reflect the new order line. For example, if the value in the OnOrder column for part CD52 is four and the
user adds an order line on which the part number is CD52 and the number of units ordered is two, six units
of part CD52 are on order. When a record is added to the OrderLine table, the AddOrderLine trigger updates
the Part table by adding the number of units ordered on the new order line to the previous value in the
OnOrder column.

DELIMITER $$

CREATE TRIGGER AddOrderLine

AFTER INSERT ON OrderLine

FOR EACH ROW

BEGIN

UPDATE PART

SET OnOrder ¼ OnOrder þ New.NumOrdered

WHERE PartNum ¼ New.PartNum ;

END

$$

DELIMITER ;

Because semicolons cause the same issues with triggers as with stored procedures, the command starts by
changing the delimiter to $$. The second line indicates that the command is creating a trigger named

143

The Relational Model 3: Advanced Topics

AddOrderLine. The third line indicates that this trigger will be executed after a new order line is inserted.
The fourth line indicates that the SQL command is to occur for each row that is added. Like stored proce-
dures, the SQL command is enclosed between the words BEGIN and END. In this case, the SQL command is
an UPDATE command. The command uses the New qualifier. The New qualifier refers to the row that is
added to the OrderLine table. If an order line is added on which the part number is CD52 and the number
ordered is two, New.PartNum is CD52 and New.NumOrdered is 2.

The following UpdateOrderLine trigger is executed when a user attempts to update an order line. There
are two differences between the UpdateOrderLine trigger and the AddOrderLine trigger. First, the third line of
the UpdateOrderLine trigger indicates that this trigger is executed after an UPDATE of an order line, rather
than an INSERT. Second, the computation to update the OnOrder column includes both New.NumOrdered
and Old.NumOrdered. As with the AddOrderLine trigger, New.NumOrdered refers to the new value. In an
UPDATE command, however, there is also an old value, which is the value before the update takes place. If an
update changes the value for NumOrdered from 1 to 3, Old.NumOrdered is 1 and New.NumOrdered is 3.
Adding New.NumOrdered and subtracting Old.NumOrdered results in a net change of an increase of two. (The
net change could also be negative, in which case the OnOrder value decreases.)

DELIMITER $$

CREATE TRIGGER UpdateOrderLine

AFTER UPDATE ON OrderLine

FOR EACH ROW

BEGIN

UPDATE PART

SET OnOrder ¼ OnOrder þ New.NumOrdered � Old.NumOrdered

WHERE Part.PartNum ¼ New.PartNum ;

END

$$

DELIMITER ;

The following DeleteOrderLine trigger performs a function similar to the other two triggers. When an
order line is deleted, the OnOrder value for the corresponding part is updated by subtracting
Old.NumOrdered from the current OnOrder value. (In a delete operation, there is no New.NumOrdered.)

DELIMITER $$

CREATE TRIGGER DeleteOrderLine

AFTER DELETE ON OrderLine

FOR EACH ROW

BEGIN

UPDATE PART

SET OnOrder ¼ OnOrder � Old.NumOrdered

WHERE PartNum ¼ Old.PartNum ;

END

$$

DELIMITER ;

Using Data Macros in Access 2010
Access does not support triggers. In Access 2010, however, you can gain the same functionality as triggers by
creating a data macro. You can create a data macro using the options on the Table Tools Table tab, as shown
in Figure 4-28.

144

Chapter 4

When a user adds a record to the OrderLine table, a data macro, which is associated with the After Insert
event for the OrderLine table, is executed. The data macro must update the OnOrder value for the corre-
sponding part to reflect the new record in the OrderLine table. For example, if the value in the OnOrder field
for part CD52 is four and the user adds an order line on which the part number is CD52 and the number
of units ordered is two, six units of part CD52 are on order. When a record is added to the OrderLine table,
the data macro updates the Part table by adding the number of units ordered on the order line to the
previous value in the OnOrder field. You create a data macro by adding actions to it using the Macro
Designer. Figure 4-29 shows the data macro associated with the After Insert event for the OrderLine table.

OrderLine table in
Datasheet view

Table Tools Table
tab contains options for

creating data macros

FIGURE 4-28 Using data macros to create triggers for the OrderLine table

Double-click or drag an
item in the Action Catalog pane

to add it to the data macro

After Insert event for
the OrderLine table

Click to display or hide
the Action Catalog pane

Block contains
actions

Actions

Arguments

FIGURE 4-29 Macro Designer window for the After Insert event associated with the OrderLine table

145

The Relational Model 3: Advanced Topics

In this data macro, the For Each Record block specifies that actions in the block will be executed for
each record in the Part table. A block can contain one or more actions to perform the indicated task. In this
case, the block applies to each record in the Part table that satisfies a condition. The Where condition speci-
fies that the actions will be executed only for those records in the Part table whose part number matches the
part number on the new order line. Notice that Access adds square brackets around the table and field names
used in the Where condition. The alias “Part” is an optional short name for the new record; it is common to
use the table name as the alias, which is how the alias is handled by Access in this macro.

The Edit Record action specifies the action to take on the specified record. In this case, the data macro
will edit the current record. The alias “Part” is used again as a reference to the new record. It is a require-
ment for the aliases in a block to match.

Many actions require additional information, called arguments, to complete the action. If you select an
action that requires arguments, the arguments will appear along with the action and you can make any nec-
essary changes to them. The SetField action uses two arguments to change the contents of a field. The Name
argument includes the name of the field being changed, which is the OnOrder field in the Part table
(Part.OnOrder). The Value argument includes the expression for making the update, which is to add the value
in the OnOrder field in the Part table to the NumOrdered field in the new record in the OrderLine table
([Part].[OnOrder] þ [OrderLine].[NumOrdered]).

The End EditRecord statement ends the EditRecord block. If you needed to change multiple fields on the
same order line, you could add additional SetField actions to the EditRecord block.

Figure 4-30 shows the data macro associated with the After Update event for the OrderLine table. It is
similar to the data macro for the After Insert event, but with one difference. The Value argument indicates
that the new value is the result of adding the current value of OnOrder ([Part].[OnOrder]) and the value of
NumOrdered ([OrderLine].[NumOrdered]) on the new order line, and then subtracting the old value of
NumOrdered ([Old].[NumOrdered]).

New value (previous value
in OnOrder field plus new value in

NumOrdered field minus old
value in NumOrdered field)

Value of NumOrdered
before the update

FIGURE 4-30 Macro Designer window for the After Update event associated with the OrderLine table

146

Chapter 4

Figure 4-31 shows the data macro associated with the After Delete event for the OrderLine table. This
data macro is also similar to the data macro for the After Insert event, with two differences. First, the Value
argument indicates that the new value is the result of subtracting the old value of NumOrdered
([Old].[NumOrdered]) from OnOrder. The second difference is in the Where Condition argument. Because
the record has been deleted from the OrderLine table, there is no [OrderLine].[PartNum]. Thus, the value of
the argument must refer to the old value of PartNum ([Old].[PartNum]).

New value (previous value
in OnOrder field minus old value

in NumOrdered field)

Value of PartNum
before the deletion

FIGURE 4-31 Macro Designer window for the After Delete event associated with the OrderLine table

Q & A

Question: The MySQL trigger includes both the “New” and “Old” qualifiers. In Access, the data macro only
uses the “Old” qualifier. Why doesn’t Access also use the “New” qualifier?
Answer: If you omit the qualifier, Access assumes that you are using the “New” qualifier. You only need to
specify the “Old” qualifier in a data macro. 147

The Relational Model 3: Advanced Topics

Summary

• Views are used to give each user his or her own view of the data in a database. In SQL, a defining query
creates a view. When you enter a query that references a view, it is merged with the defining query to pro-
duce the query that is actually executed. In Access, views are created by saving queries that select the
data to use in the view.

• Indexes are often used to facilitate data retrieval from the database. You can create an index on any field
or combination of fields.

• Security is provided in SQL systems by using the GRANT and REVOKE statements.

• Entity integrity is the property that states that no field that is part of the primary key can accept null values.

• Referential integrity is the property that states that the value in any foreign key field must be null or must
match an actual value in the primary key field of another table. Referential integrity is specified in SQL
using the FOREIGN KEY clause. In Access, foreign keys are specified by creating relationships.

• Legal-values integrity is the property that states that the value entered in a field must be one of the legal
values that satisfies some particular condition. Legal-values integrity is specified in SQL using the CHECK
clause. In Access, legal-values integrity is specified using validation rules.

• The ALTER TABLE command allows you to add fields to a table, delete fields, or change the characteristics of
fields. In Access, you can change the structure of a table by making the desired changes in the table design.

• The DROP TABLE command lets you delete a table from a database. In Access, you can delete a table
by selecting the Delete command on the table’s shortcut menu in the Navigation Pane.

• The system catalog is a feature of many relational DBMSs that stores information about the structure of a
database. The system updates the catalog automatically. Each DBMS includes features to produce docu-
mentation of the database structure using the information in the catalog.

• A stored procedure is a query saved in a file that users can execute later.

• A trigger is an action that occurs automatically in response to an associated database operation such as
an INSERT, UPDATE, or DELETE command. Like a stored procedure, a trigger is stored and compiled on
the server. Unlike a stored procedure, which is executed in response to a user request, a trigger is exe-
cuted in response to a command that causes the associated database operation to occur. Access provides
the functionality of triggers through the use of data macros.

Key Terms

argument

ALTER TABLE

cascade delete

cascade update

catalog

CHECK

client

client/server system

CREATE INDEX

data macro

defining query

delimiter

Documenter

DROP INDEX

DROP TABLE

entity integrity

FOREIGN KEY

foreign key

GRANT

index

index key

legal-values integrity

multiple-column index

multiple-field index

PRIMARY KEY

referential integrity

REVOKE

row-and-column subset view

security

server

single-column index

single-field index

stored procedure

Syscolumns

148

Chapter 4

Sysindexes

Systables

system catalog

Sysviews

trigger

validation rule

validation text

view

Review Questions

1. What is a view? How do you define a view? Does the data described in a view definition ever exist in that form?
What happens when a user accesses a database through a view?

2. Using data from the Premiere Products database, define a view named TopLevelCust. It consists of the number,
name, address, balance, and credit limit of all customers with credit limits that are greater than or equal to
$10,000.

a. Using SQL, write the view definition for TopLevelCust.

b. Write an SQL query to retrieve the number and name of all customers in the TopLevelCust view with bal-
ances that exceed their credit limits.

c. Convert the query you wrote in Question 2b to the query that the DBMS will actually execute.
3. Define a view named PartOrder. It consists of the part number, description, price, order number, order date,

number ordered, and quoted price for all order lines currently on file.

a. Using SQL, write the view definition for PartOrder.

b. Write an SQL query to retrieve the part number, description, order number, and quoted price for all orders in
the PartOrder view for parts with quoted prices that exceed $100.

c. Convert the query you wrote in Question 3b to the query that the DBMS will actually execute.
4. What is an index? What are the advantages and disadvantages of using indexes? How do you use SQL to cre-

ate an index?

5. Describe the GRANT statement and explain how it relates to security. What types of privileges may be granted?
How are they revoked?

6. Write the SQL commands to grant the following privileges:

a. User Stillwell must be able to retrieve data from the Part table.

b. Users Webb and Bradley must be able to add new orders and order lines.
7. Write the SQL command to revoke user Stillwell’s privilege.

8. What is the system catalog? Name three items about which the catalog maintains information.

9. Write the SQL commands to obtain the following information from the system catalog:

a. List every table that you created.

b. List every field in the Customer table and its associated data type.

c. List every table that contains a field named PartNum.
10. Why is it a good idea for the DBMS to update the catalog automatically when a change is made in the database

structure? Could users cause problems by updating the catalog themselves? Explain.

11. What are nulls? Which field cannot accept null values? Why?

12. State the three integrity rules. Indicate the reasons for enforcing each rule.

13. The Orders table contains a foreign key, CustomerNum, that must match the primary key of the Customer table.
What type of update to the Orders table would violate referential integrity? If deletes do not cascade, what type
of update to the Customer table would violate referential integrity? If deletes do cascade, what would happen
when a customer was deleted?

14. How would you use SQL to change a table’s structure? What general types of changes are possible? Which
commands are used to implement these changes?

15. What are stored procedures? What purpose do they serve?

16. What are triggers? What purpose do they serve? How do you gain the functionality of a trigger using Access
2010?

149

The Relational Model 3: Advanced Topics

Premiere Products Exercises

In the following exercises, you will use the data in the Premiere Products database shown in Figure 2-1 in Chapter 2.
(If you use a computer to complete these exercises, use a copy of the original Premiere Products database so your
data will not reflect the changes you made in Chapter 3.) If you have access to a DBMS, use the DBMS to perform the
tasks and explain the steps you used in the process. If not, explain how you would use SQL to obtain the desired
results. Check with your instructor if you are not certain about which approach to take.

1. Create the TopLevelCust view described in Review Question 2. Display the data in the view.

2. Create the PartOrder view described in Review Question 3. Display the data in the view.

3. Create a view named OrdTot. It consists of the order number and order total for each order currently on file.
(The order total is the sum of the number ordered multiplied by the quoted price on each order line for each
order.) Display the data in the view.

4. Create the following indexes. If it is necessary to name the index in your DBMS, use the indicated name.

a. Create an index named PartIndex1 on the PartNum field in the OrderLine table.

b. Create an index named PartIndex2 on the Warehouse field in the Part table.

c. Create an index named PartIndex3 on the Warehouse and Class fields in the Part table.

d. Create an index named PartIndex4 on the Warehouse and OnHand fields in the Part table and list units on
hand in descending order.

5. Drop the PartIndex3 index.

6. Assume the Part table has been created, but there are no integrity constraints. Create the necessary integrity
constraint to ensure that the only allowable values for the Class field are AP, HW, and SG. Ensure that the
PartNum field is the primary key and that the PartNum field in the OrderLine table is a foreign key that must
match the primary key of the Part table.

7. Add a field named Allocation to the Part table. The allocation is a number representing the number of units of
each part that have been allocated to each customer. Set all Allocation values to zero. Calculate the number of
units of part number KV29 currently on order. Change the Allocation value for part number KV29 to this number.
Display all the data in the Part table.

8. Increase the length of the Warehouse field in the Part table to two characters. Change the warehouse number
for warehouse 1 to 1a. Display all the data in the Part table.

9. Delete the Allocation field from the Part table. Display all the data in the Part table.

10. What command would you use to delete the Part table from the Premiere Products database? (Do not delete
the Part table.)

11. Write a stored procedure that will change the price of a part with a given part number. How would you use this
stored procedure to change the price of part AT94 to $26.95?

12. Write the code for the following triggers following the style shown in the text.

a. When adding a customer, add the customer’s balance times the sales rep’s commission rate to the com-
mission for the corresponding sales rep.

b. When updating a customer, add the difference between the new balance and the old balance multiplied by
the sales rep’s commission rate to the commission for the corresponding sales rep.

c. When deleting a customer, subtract the balance multiplied by the sales rep’s commission rate from the
commission for the corresponding sales rep.

13. If you are using Access 2010, create the following data macros.

a. Create a data macro associated with the After Insert event for the Customer table to implement the trigger
in Step 12a. Test the data macro by adding a customer and ensuring that the corresponding sales rep’s
commission is updated correctly.

b. Create a data macro associated with the After Update event for the Customer table to implement the trigger
in Step 12b. Test the data macro by changing a customer’s balance and ensuring that the corresponding
sales rep’s commission is updated correctly.

150

Chapter 4

c. Create a data macro associated with the After Delete event for the Customer table to implement the trigger
in Step 12c. Test the data macro by deleting a customer and ensuring that the corresponding sales rep’s
commission is updated correctly.

Henry Books Case

Ray Henry would like you to complete the following tasks to help him maintain his database. In the following exer-
cises, you will use the data in the Henry Books database shown in Figures 1-17 through 1-20 in Chapter 1. (If you
use a computer to complete these exercises, use a copy of the original Henry Books database so your data will not
reflect the changes you made in Chapter 3.) If you have access to a DBMS, use the DBMS to perform the tasks and
explain the steps you used in the process. If not, explain how you would use SQL to obtain the desired results.
Check with your instructor if you are uncertain about which approach to take.

1. Create a view named PenguinBooks. It consists of the book code, book title, book type, and book price for
every book published by Penguin USA. Display the data in the view.

2. Create a view named Paperback. It consists of the book code, book title, publisher name, branch number, copy
number, and price for every book copy that is available in paperback. Display the data in the view.

3. Create a view named BookAuthor. It consists of the book code, book title, book type, author number, first name,
last name, and sequence number for each book. Display the data in the view.

4. Create the following indexes. If it is necessary to name the index in your DBMS, use the indicated name.

a. Create an index named BookIndex1 on the PublisherName field in the Publisher table.

b. Create an index named BookIndex2 on the Type field in the Book table.

c. Create an index named BookIndex3 on the BookCode and Type fields in the Book table and list the book
codes in descending order.

5. Drop the BookIndex3 index.

6. Specify the integrity constraint that the price of any book must be less than $90.

7. Ensure that the following are foreign keys (that is, specify referential integrity) within the Henry Books database.

a. PublisherCode is a foreign key in the Book table.

b. BranchNum is a foreign key in the Inventory table.

c. AuthorNum is a foreign key in the Wrote table.
8. Add to the Book table a new character field named Classic that is one character in length.

9. Change the Classic field in the Book table to Y for the book titled The Grapes of Wrath.

10. Change the length of the Title field in the Book table to 60.

11. What command would you use to delete the Books table from the Henry Books database? (Do not delete the
Book table.)

12. Write a stored procedure that will change the price of a book with a given book code and quality. How would
you use this stored procedure to change the price of any copy of book 1351 whose quality is excellent to
$22.95?

13. Assume the Branch table contains a column called TotalValue that represents the total price for all books at that
branch. Following the style shown in the text, write the code for the following triggers.

a. When inserting a row in the Copy table, add the price to the total value for the appropriate branch.

b. When updating a row in the Copy table, add the difference between the new price and the old price to the
total value for the appropriate branch.

c. When deleting a row from the Copy table, subtract the price on the record being deleted from the total value
for the appropriate branch.

14. If you are using Access 2010, complete the following steps.

a. Add the TotalValue field to the Branch table. Create and run a query on the Copy table to determine the
appropriate values for this field, and then update the Branch table with these values.

b. Create a data macro associated with the After Insert event for the Copy table to implement the trigger in
Step 13a. Test the data macro by adding a record to the Copy table and ensuring that the corresponding
branch’s total value is updated correctly.

151

The Relational Model 3: Advanced Topics

c. Create a data macro associated with the After Update event for the Copy table to implement the trigger in
Step 13b. Test the data macro by changing a price on a record in the Copy table and ensuring that the cor-
responding branch’s total value is updated correctly.

d. Create a data macro associated with the After Delete event for the Copy table to implement the trigger in
Step 13c. Test the data macro by deleting a record from the Copy table and ensuring that the correspond-
ing branch’s total value is updated correctly.

Alexamara Marina Group Case

In the following exercises, you will use the data in the Alexamara Marina Group database shown in Figures 1-20
through 1-24. (If you use a computer to complete these exercises, use a copy of the original Alexamara database so
your data will not reflect the changes you made in Chapter 3.) If you have access to a DBMS, use the DBMS to per-
form the tasks and explain the steps you used in the process. If not, explain how you would use SQL to obtain the
desired results. Check with your instructor if you are not certain about which approach to take.

1. Create a view named LargeSlip using the data in the MarinaNum, SlipNum, RentalFee, BoatName, and
OwnerNum columns in the MarinaSlip table for those slips with lengths of 40 feet. Display the data in the view.

2. Create a view named InitialService using the slip ID, category number, category description, and estimated
hours for every service request for which the spent hours are zero. Display the data in the view.

3. Create a view named TypesOfBoats using the boat type and a count of all boats of each type. Display the data
in the view.

4. Create the following indexes. If it is necessary to name the index in your DBMS, use the indicated name.

a. Create an index named BoatIndex on the BoatName field in the MarinaSlip table.

b. Create an index named BoatIndex2 on the OwnerNum field in the MarinaSlip table.

c. Create an index named BoatIndex3 on the Length and BoatName fields in the MarinaSlip table and list the
lengths in descending order.

5. Drop the BoatIndex3 index.

6. Assume the MarinaSlip table has been created, but there are no integrity constraints. Create the necessary
integrity constraints so the rental fee must be less than $5,000 and the slip length must be 25, 30, or 40.

7. Ensure that the following are foreign keys (that is, specify referential integrity) in the Alexamara database.

a. MarinaNum is a foreign key in the MarinaSlip table.

b. OwnerNum is a foreign key in the MarinaSlip table.

c. CategoryNum is a foreign key in the ServiceRequest table.

d. SlipID is a foreign key in the SerivceRequest table.
8. Add to the MarinaSlip table a new character field named FeePaid that is one character in length. On all records,

change the value for the FeePaid field to Y.

9. Change the FeePaid field in the MarinaSlip table to N for the slip whose slip ID is 4.

10. Change the length of the BoatName field in the MarinaSlip table to 60.

11. Write a stored procedure that will change the rental fee of a slip with a given slip ID. How would you use this
stored procedure to change the rental fee of slip ID 3 to 3,700.00?

12. Assume the Owner table contains a column called TotalRental that represents the total rental fee for all slips
rented by that owner. Write the code for the following triggers following the style shown in the text.

a. When inserting a row in the MarinaSlip table, add the rental fee to the total rental for the appropriate owner.

b. When updating a row in the MarinaSlip table, add the difference between the new rental fee and the old
rental fee to the total rental for the appropriate owner.

c. When deleting a row in the MarinaSlip table, subtract the rental fee from the total rental for the appropriate
owner.

13. If you are using Access 2010, complete the following steps.

a. Add a Currency field named TotalRental to the Owner table. Create and run a query on the MarinaSlip table
to determine the appropriate values for this field and then update the Owner table with these values.

152

Chapter 4

b. Create a data macro associated with the After Insert event for the MarinaSlip table to implement the trigger
in Step 12a. Test the data macro by adding a row to the MarinaSlip table and ensuring that the TotalRental
field for the corresponding owner is updated correctly.

c. Create a data macro associated with the After Update event for the MarinaSlip table to implement the trig-
ger in Step 12b. Test the data macro by changing the rental fee on a row in the MarinaSlip table and
ensuring that the TotalRental field for the corresponding owner is updated correctly.

d. Create a data macro associated with the After Delete event for the MarinaSlip table to implement the
trigger in Step 12c. Test the data macro by deleting a row from the MarinaSlip table and ensuring that
the TotalRental field for the corresponding owner is updated correctly.

153

The Relational Model 3: Advanced Topics

C H A P T E R5
DATABASE DESIGN 1:
NORMALIZATION

L E A R N I N G O B J E C T I V E S

• Discuss functional dependence and primary keys

• Define first normal form, second normal form, third normal form, and fourth normal form

• Describe the problems associated with tables (relations) that are not in first normal form, sec-
ond normal form, or third normal form, along with the mechanism for converting to all three

• Discuss the problems associated with incorrect conversions to third normal form

• Describe the problems associated with tables (relations) that are not in fourth normal form and
describe the mechanism for converting to fourth normal form

• Understand how normalization is used in the database design process

I N T R O D U C T I O N

You have examined the basic relational model, its structure, and the various ways of manipulating data within a relational
database. In this chapter, you will learn about the normalization process and its underlying concepts and features. The nor-
malization process enables you to identify the existence of potential problems, called update anomalies, in the design of
a relational database. This process also supplies methods for correcting these problems.

To correct update anomalies in a database, you must convert tables to various types of normal forms. A table in a
particular normal form possesses a certain desirable collection of properties. The most common normal forms are first nor-
mal form (1NF), second normal form (2NF), third normal form (3NF), and fourth normal form (4NF). Normalization is a pro-
gression in which a table that is in first normal form is better (freer from problems) than a table that is not in first normal
form, a table that is in second normal form is better than one that is in first normal form, and so on. The goal of normaliza-
tion is to take a table or collection of tables and produce a new collection of tables that represents the same information but
that is free of update anomalies.

In this chapter, you will learn about two crucial concepts that are fundamental to understanding the normalization pro-
cess: functional dependence and keys. You will also learn about first, second, third, and fourth normal form.

Many of the examples in this chapter use data from the Premiere Products database, which is shown in Figure 5-1.

RepNum LastName FirstName Street City State Zip Commission Rate

20 Kaiser Valerie 624 Randall Grove FL 33321 $20,542.50 0.05

35 Hull Richard 532 Jackson Sheldon FL 33553 $39,216.00 0.07

65 Perez Juan 1626 Taylor Fillmore FL 33336 $23,487.00 0.05

Rep

CustomerNum CustomerName Street City State Zip Balance CreditLimit RepNum

148 Al’s Appliance 2837 Greenway Fillmore FL 33336 $6,550.00 $7,500.00 20
and Sport

282 Brookings Direct 3827 Devon Grove FL 33321 $431.50 $10,000.00 35

356 Ferguson’s 382 Wildwood Northfield FL 33146 $5,785.00 $7,500.00 65

408 The Everything 1828 Raven Crystal FL 33503 $5,285.25 $5,000.00 35
Shop

462 Bargains Galore 3829 Central Grove FL 33321 $3,412.00 $10,000.00 65

524 Kline’s 838 Ridgeland Fillmore FL 33336 $12,762.00 $15,000.00 20

608 Johnson’s 372 Oxford Sheldon FL 33553 $2,106.00 $10,000.00 65
Department
Store

687 Lee’s Sport 282 Evergreen Altonville FL 32543 $2,851.00 $5,000.00 35
and Appliance

725 Deerfield’s 282 Columbia Sheldon FL 33553 $248.00 $7,500.00 35
Four Seasons

842 All Season 28 Lakeview Grove FL 33321 $8,221.00 $7,500.00 20

Customer

OrderNum OrderDate CustomerNum

21608 10/20/2013 148

21610 10/20/2013 356

21613 10/21/2013 408

21614 10/21/2013 282

21617 10/23/2013 608

21619 10/23/2013 148

21623 10/23/2013 608

Orders
OrderNum PartNum NumOrdered QuotedPrice

21608 AT94 11 $21.95

21610 DR93 1 $495.00

21610 DW11 1 $399.99

21613 KL62 4 $329.95

21614 KT03 2 $595.00

21617 BV06 2 $794.95

21617 CD52 4 $150.00

21619 DR93 1 $495.00

21623 KV29 2 $1,290.00

OrderLine

PartNum Description OnHand Class Warehouse Price

AT94 Iron 50 HW 3 $24.95

BV06 Home Gym 45 SG 2 $794.95

CD52 Microwave Oven 32 AP 1 $165.00

DL71 Cordless Drill 21 HW 3 $129.95

DR93 Gas Range 8 AP 2 $495.00

DW11 Washer 12 AP 3 $399.99

FD21 Stand Mixer 22 HW 3 $159.95

KL62 Dryer 12 AP 1 $349.95

KT03 Dishwasher 8 AP 3 $595.00

KV29 Treadmill 9 SG 2 $1,390.00

Part

FIGURE 5-1 Premiere Products data

156

Chapter 5

FUNCTIONAL DEPENDENCE

Understanding functional dependence is crucial to learning the material in the rest of this chapter. Func-
tional dependence is a formal name for what is basically a simple idea. To understand functional depen-
dence, suppose the Rep table for Premiere Products contains an additional column named PayClass, as
shown in Figure 5-2.

Assume one of the policies at Premiere Products is that all sales reps in any given pay class earn the
same commission rate. How might you convey this fact to someone else? You might say that a sales rep’s pay
class determines his or her commission rate. Another way to convey this fact is to say that a sales rep’s com-
mission rate depends on his or her pay class. This phrasing uses the words determines and depends on
exactly the way you will use them in connection with database design. If you wanted to be more formal, you
would precede either expression with the word functionally. Thus, you might say, “A sales rep’s pay class
functionally determines his or her commission rate” or “A sales rep’s commission rate functionally depends
on his or her pay class.”

The formal definition of functional dependence is as follows:

Definition: A column (attribute) B is functionally dependent on another column A (or possibly a collection
of columns) when each value for A in the database is associated with exactly one value of B.

You can think of functional dependence as follows: If you are given a value for A in the database, do you
know whether it will be associated with exactly one value of B? If so, B is functionally dependent on A (writ-
ten as A → B). If B is functionally dependent on A, you can also say that A functionally determines B.

In the Rep table, LastName is functionally dependent on RepNum. If you are given a value of 20 for
RepNum, for example, you know that you will find a single LastName (in this case, Kaiser) associated with it.
(Note: You need to be concerned only with actual values of RepNum in the database. If you are given a value
of 21 for RepNum, for example, you will not find any names associated with it because there is no row in the
Rep table on which the rep number is 21.)

Q & A

Question: In the Customer table, is CustomerName functionally dependent on RepNum?
Answer: No. Rep number 20, for example, occurs on a row in which the customer name is Al’s Appliance and
Sport, on a row in which the customer name is Kline’s, and on a row in which the customer name is All Sea-
son. Thus, a rep number can be associated with more than one customer name.

Q & A

Question: In the OrderLine table, is QuotedPrice functionally dependent on OrderNum?
Answer: No. Order number 21617, for example, occurs on a row in which the quoted price is $794.95 and on
another row in which the quoted price is $150.00. Thus, an order number can be associated with more than
one quoted price.

RepNum LastName FirstName Street City State Zip Commission

Rep

20 Kaiser Valerie 624 Randall Grove FL 33321 $20,542.50 .05

35 Hull Richard 532 Jackson Sheldon FL 33553 $39,216.00 2 .07

65 Perez Juan 1626 Taylor Fillmore FL 33336 $23,487.00 1 .05

PayClass Rate

01

0

0

FIGURE 5-2 Rep table with additional column, PayClass

157

Database Design 1: Normalization

Q & A

Question: Is QuotedPrice functionally dependent on PartNum?
Answer: No. A given part number, such as DR93, can occur on more than one row in the OrderLine table.
The quoted price can be different on each row. With current data, the two rows on which the part number is
DR93 actually have the same price, $495.00. What is important, however, is not that they happen to be the
same now, but whether there is a guarantee that they will always be the same. That is certainly not the case.
In fact, the reason for storing quoted prices in the OrderLine table is to allow two rows with the same part
number to have different prices.

Q & A

Question: On which columns is QuotedPrice functionally dependent?
Answer: For any combination of an order number and a part number, there can be only one row in the
OrderLine table. Thus, any combination of an order number and part number in the OrderLine table is asso-
ciated with exactly one quoted price. Consequently, QuotedPrice is functionally dependent on the combina-
tion (formally called the concatenation) of OrderNum and PartNum.

At this point, a question naturally arises: How do you determine functional dependencies? Can you
determine them by looking at sample data, for example? The answer is no.

Consider the Rep table shown in Figure 5-3, in which all last names are unique. It is very tempting to say
that LastName functionally determines Street, City, State, and Zip (or equivalently that Street, City, State,
and Zip are all functionally dependent on LastName). After all, given the last name of a rep, you can find his
or her address.

What happens when you add rep 85, whose last name also is Kaiser, to the database? Now you have the
situation illustrated in Figure 5-4. If the last name you are given is Kaiser, you no longer can find a single
address. Thus, you were misled by the original sample data. The only way to determine the functional
dependencies that exist is to examine users’ policies through discussions with users, an examination of user
documentation, and so on.

RepNum LastName FirstName Street City State Zip Commission Rate

20 Kaiser Valerie 624 Randall Grove FL 33321 $20,542.50 0.05

35 Hull Richard 532 Jackson Sheldon FL 33553 $39,216.00 0.07

65 Perez Juan 1626 Taylor Fillmore FL 33336 $23,487.00 0.05

Rep

FIGURE 5-3 Rep table

RepNum LastName FirstName Street City State Zip Commission Rate

Rep

20 Kaiser Valerie 624 Randall Grove FL 33321 $20,542.50 0.05

35 Hull Richard 532 Jackson Sheldon FL 33553 $39,216.00 0.07

65 Perez Juan 1626 Taylor Fillmore FL 33336 $23,487.00 0.05

85 Kaiser Wil 172 Bahia Norton FL 39281 $0.00 0.05

FIGURE 5-4 Rep table with second rep named Kaiser added

158

Chapter 5

Q & A

Question: Assume the following columns exist in a relation named Student:

• StudentNum (student number)
• StudentLast (student last name)
• StudentFirst (student first name)
• HighSchoolNum (number of the high school from which the student graduated)
• HighSchoolName (name of the high school from which the student graduated)
• AdvisorNum (number of the student’s advisor)
• AdvisorLast (last name of the student’s advisor)
• AdvisorFirst (first name of the student’s advisor)

Student numbers, high school numbers, and advisor numbers are unique; no two students have the same
number, no two high schools have the same number, and no two advisors have the same number. Use this
information to determine the functional dependencies in the Student relation.
Answer: Because student numbers are unique, any given student number in the database is associated with
a single last name, first name, high school number, high school name, advisor number, advisor last name, and
advisor first name. Thus, all the other columns in the Student relation are functionally dependent on
StudentNum, which is represented as follows:
StudentNum → StudentLast, StudentFirst, HighSchoolNum, HighSchoolName,

AdvisorNum, AdvisorLast, AdvisorFirst
Because two students can have the same first and last names, StudentFirst and StudentLast do not

determine anything else. Because high school numbers are unique, any given high school number is
associated with exactly one high school name. If high school 128 is Robbins High, for example, any student
whose high school number is 128 must have the high school name Robbins High. Thus, HighSchoolName
is functionally dependent on HighSchoolNum, which is represented as follows:
HighSchoolNum → HighSchoolName

Because advisor numbers are unique, any given advisor number is associated with exactly one advisor
first name and exactly one advisor last name. If advisor 20 is Mary Webb, for example, any student whose
advisor number is 20 must have the advisor’s first name Mary and the advisor’s last name Webb. Thus,
AdvisorFirst and AdvisorLast are functionally dependent on AdvisorNum, which is represented as follows:
AdvisorNum → AdvisorLast, AdvisorFirst

As with students, an advisor’s first and last names are not necessarily unique, so AdvisorFirst and
AdvisorLast do not determine anything. The complete collection of functional dependencies is as follows:
StudentNum → StudentLast, StudentFirst, HighSchoolNum, HighSchoolName,

AdvisorNum, AdvisorLast, AdvisorFirst

HighSchoolNum → HighSchoolName

AdvisorNum → AdvisorLast, AdvisorFirst

KEYS

A second underlying concept of the normalization process is that of the primary key. You already encoun-
tered the basic concept of the primary key in earlier chapters. In this chapter, however, you need a more
precise definition.

Definition: Column A (or a collection of columns) is the primary key for a relation (table) R, if:
Property 1. All columns in R are functionally dependent on A.
Property 2. No subcollection of the columns in A (assuming A is a collection of columns and not just a

single column) also has Property 1.

159

Database Design 1: Normalization

Q & A

Question: Is Class the primary key for the Part table?
Answer: No, because the other columns are not functionally dependent on the class. The item class HW, for
example, appears on a row in the Part table in which the part number is AT94, a row in which the part num-
ber is DL71, and a row in which the part number is FD21. The item class HW is associated with three part
numbers, so the part number is not functionally dependent on the class.

Q & A

Question: Is CustomerNum the primary key for the Customer table?
Answer: Yes, because customer numbers are unique. A given customer number cannot appear on more than
one row. Thus, each customer number is associated with a single name, a single street, a single city, a single
state, a single zip code, a single balance, a single credit limit, and a single rep number. In other words, all
columns in the Customer table are functionally dependent on CustomerNum.

Q & A

Question: Is OrderNum the primary key for the OrderLine table?
Answer: No, because it does not uniquely determine NumOrdered or QuotedPrice. The order number 21617,
for example, appears on a row in the OrderLine table in which the number ordered is 2 and the quoted price
is $794.95 and on a row in which the number ordered is 4 and the quoted price is $150.00.

Q & A

Question: Is the combination of OrderNum and PartNum the primary key for the OrderLine table?
Answer: Yes, because all columns are functionally dependent on this combination. Any combination of an
order number and a part number occurs on only one row in the OrderLine table and is associated with only
one value for NumOrdered and only one value for QuotedPrice. Further, neither OrderNum nor PartNum
alone has this property. For example, order number 21617 appears on more than one row, as does part
DR93.

Q & A

Question: Is the combination of PartNum and Description the primary key for the Part table?
Answer: No. It is true that this combination functionally determines all columns in the Part table. PartNum
alone, however, also has this property.

160

Chapter 5

Q & A

Question: You already determined the functional dependencies in a Student relation containing the
following columns: StudentNum, StudentLast, StudentFirst, HighSchoolNum, HighSchoolName, AdvisorNum,
AdvisorLast, and AdvisorFirst. The functional dependencies you determined were as follows:
StudentNum → StudentLast, StudentFirst, HighSchoolNum, HighSchoolName,

AdvisorNum, AdvisorLast, AdvisorFirst

HighSchoolNum → HighSchoolName

AdvisorNum → AdvisorLast, AdvisorFirst
What is the primary key for the Student relation?
Answer: The only column that determines all the other columns is StudentNum, so it is the primary key for
the Student relation.

Occasionally (but not often), there might be more than one possibility for the primary key. For example,
if the Premiere Products database included an Employee table to store employee numbers and Social Secu-
rity numbers, either the employee number or the Social Security number could serve as the table’s primary
key. In this case, both columns are referred to as candidate keys. Like a primary key, a candidate key is a
column or a collection of columns on which all columns in the table are functionally dependent; the defini-
tion for primary key also defines a candidate key. From all the candidate keys, one is chosen to be the pri-
mary key. The candidate keys that are not chosen as the primary key are often referred to as alternate keys.

N O T E
The primary key is often called the key in other studies on database management and the relational model. This text
will continue to use the term primary key to distinguish between the different definitions of a key that you will encounter
throughout this text.

FIRST NORMAL FORM

A relation (table) that contains a repeating group (or multiple entries for a single record) is called an unnor-
malized relation. Removing repeating groups is the starting point in the quest to create tables that are as free
of problems as possible. Tables without repeating groups are said to be in first normal form.

Definition: A table (relation) is in first normal form (1NF) when it does not contain repeating groups.
As an example, consider the Orders table shown in Figure 5-5, in which there is a repeating group con-

sisting of PartNum and NumOrdered.

The notation for describing the Orders table is as follows:

Orders (OrderNum, OrderDate, (PartNum, NumOrdered))

OrderNum OrderDate PartNum NumOrdered

Orders

21608 10/20/2013 AT94 11

21610 10/20/2013 DR93 1
DW11 1

21613 10/21/2013 KL62 4

21614 10/21/2013 KT03 2

21617 10/23/2013 BV06 2
CD52 4

21619 10/23/2013 DR93 1

21623 10/23/2013 KV29 2

FIGURE 5-5 Sample unnormalized table

161

Database Design 1: Normalization

This notation indicates a table named Orders consisting of a primary key (OrderNum) and a column
named OrderDate. The inner parentheses indicate that there is a repeating group. The repeating group con-
tains two columns, PartNum and NumOrdered. This means that for a single order, there can be multiple
combinations of a part number and a corresponding number of units ordered, as illustrated in Figure 5-5. The
row for order 21617, for example, contains two such combinations. In the first combination, the part number
is BV06 and the number ordered is 2. In the second combination, the part number is CD52 and the number
ordered is 4.

To convert the Orders table to first normal form, you remove the repeating group as follows:

Orders (OrderNum, OrderDate, PartNum, NumOrdered)

Figure 5-6 shows the new table, which is now in first normal form.

Note that the fifth row of the unnormalized table (see Figure 5-5) indicates that part BV06 and part CD52
are both present for order 21617. In the normalized table (see Figure 5-6), this information is represented by
two rows, the sixth and seventh. The primary key to the unnormalized Orders table was OrderNum alone.
The primary key to the normalized table is now the combination of OrderNum and PartNum.

In general, when converting a table that is not in first normal form to first normal form, the primary key
will usually include the original primary key concatenated with the key to the repeating group, which is the
column that distinguishes one occurrence of the repeating group from another on a given row in the table. In
this case, PartNum is the key to the repeating group; thus, PartNum becomes part of the primary key of the
first normal form table.

SECOND NORMAL FORM

A table that is in first normal form still might contain problems that will require you to restructure it. Con-
sider the following table:

Orders (OrderNum, OrderDate, PartNum, Description, NumOrdered, QuotedPrice)

This table has the following functional dependencies:

OrderNum → OrderDate

PartNum → Description

OrderNum, PartNum → NumOrdered, QuotedPrice, OrderDate, Description

OrderNum OrderDate PartNum NumOrdered

Orders

21608 10/20/2013 AT9 1

21610 10/20/2013 DR9

21610 10/20/2013 DW1

21613 10/20/2013 KL6

21614 10/20/2013 KT03 2

21617 10/20/2013 BV0

21617 10/20/2013 CD52 4

21619 10/20/2013 DR9

21623 10/20/2013 KV2

4 1

3 1

1 1

2 4

6 2

3 1

9 2

FIGURE 5-6 Result of normalization (conversion to first normal form)

162

Chapter 5

This notation indicates that OrderNum alone determines OrderDate and that PartNum alone determines
Description but that both an OrderNum and a PartNum are required to determine either NumOrdered or
QuotedPrice. (The combination of OrderNum and PartNum also determines both OrderDate and Description
because OrderNum determines OrderDate and PartNum determines Description.) Consider the sample of this
table shown in Figure 5-7.

The description of a specific part (DR93, for example) occurs twice in the table. This redundancy causes
several problems. It is wasteful of space, but that is not nearly as serious as some of the other problems.
These other problems are called update anomalies, and they fall into four categories:

1. Update. A change to the description of part DR93 requires not one change to the table, but two
changes—you have to change each row on which part DR93 appears. Changing multiple rows
makes the update process more cumbersome; it also is more complicated logically and takes
more time to update.

2. Inconsistent data. There is nothing about the design that would prohibit part DR93 from having
two different descriptions in the database. In fact, if part DR93 were to occur on 20 rows, it
could potentially have 20 different descriptions in the database!

3. Additions. You have a real problem when you try to add a new part and its description to the
database. Because the primary key for the table consists of both OrderNum and PartNum, you
need values for both columns when you want to add a new row. If you have a part to add, but
there are no orders for it yet, what order number do you use? The only solution is to use a ficti-
tious order number and then replace it with a real order number after Premiere Products
receives an order for the new part. Certainly, this is not an acceptable solution.

4. Deletions. If you deleted order 21608 from the database, you would lose all information about
part AT94. For example, you would no longer know that part AT94 is an iron.

These problems occur because you have a column, Description, that is dependent on only a portion of
the primary key (PartNum) and not on the complete primary key. This problem leads to the definition of
second normal form. Second normal form represents an improvement over first normal form because it elim-
inates update anomalies in these situations. To understand second normal form, you need to understand the
term nonkey column.

Definition: A column is a nonkey column (also called a nonkey attribute) when it is not a part of the pri-
mary key.

Definition: A table (relation) is in second normal form (2NF) when it is in first normal form and no nonkey
column is dependent on only a portion of the primary key.

OrderNum OrderDate PartNum Description NumOrdered QuotedPrice

Orders

21608 10/20/2013 AT94 Iron 11 $21.95

21610 10/20/2013 DR93 Gas Range 1 $495.00

21610 10/20/2013 DW11 Washer 1 $399.99

21613 10/21/2013 KL62 Dryer 4 $329.95

21614 10/21/2013 KT03 Dishwasher 2 $595.00

21617 10/23/2013 BV06 Home Gym 2 $794.95

21617 10/23/2013 CD52 Microwave Oven 4 $150.00

21619 10/23/2013 DR93 Gas Range 1 $495.00

21623 10/23/2013 KV29 Treadmill 2 $1290.00

FIGURE 5-7 Sample Orders table

163

Database Design 1: Normalization

N O T E
When a table’s primary key contains only one column, the table is automatically in second normal form because there would be
no way for a column to be dependent on only a portion of the primary key.

For another perspective on second normal form, consider Figure 5-8. This type of diagram, sometimes
called a dependency diagram, uses arrows to indicate all the functional dependencies present in the Orders
table. The arrows above the boxes indicate the normal dependencies that should be present; in other words,
the primary key functionally determines all other columns. (In the Orders table, the concatenation of
OrderNum and PartNum determines all other columns.) The arrows below the boxes prevent the table from
being in second normal form. These arrows represent types of dependencies that are often called partial
dependencies, which are dependencies on only a portion of the primary key. In fact, another definition for
second normal form is a table that is in first normal form but that contains no partial dependencies.

Regardless of which definition of second normal form you use, you now can identify the fundamental
problem with the Orders table: It is not in second normal form. Although it may be pleasing to have a name
for the problem, what you really need is a method to correct it; you need a way to convert tables to second
normal form. To do so, first take each subset of the set of columns that makes up the primary key; then
begin a new table with this subset as the primary key. For the Orders table, this would give the following:

(OrderNum,

(PartNum,

(OrderNum, PartNum,

Next, place each of the other columns with its appropriate primary key; that is, place each primary key
with the minimal collection of columns on which it depends. For the Orders table, this would yield the
following:

(OrderNum, OrderDate)

(PartNum, Description)

(OrderNum, PartNum, NumOrdered, QuotedPrice)

Now you can give each new table a name that is descriptive of the table’s contents, such as Orders, Part,
or OrderLine. Figure 5-9 shows the original Orders table on top; the resulting Orders, Part, and OrderLine
tables created after the Orders table was converted to second normal form appear below it.

OrderNum OrderDate PartNum Description NumOrdered QuotedPrice

FIGURE 5-8 Dependencies in the Orders table

164

Chapter 5

Now you have eliminated the update anomalies. A description appears only once for each part, so you do
not have the redundancy that you did in the previous design. Changing the description for part DR93 from
Gas Range to Deluxe Range, for example, now is a simple process involving a single change. Because the
description for a part occurs in a single place, it is not possible to have multiple descriptions for a single part
in the database at the same time.

To add a new part and its description, you create a new row in the Part table; there is no need to have an
existing order for that part. Also, deleting order 21608 does not delete part AT94 from the Part table, and you
still have its description (Iron) in the database. Finally, you have not lost any information in the process—you
can reconstruct the data in the original design from the data in the new design.

THIRD NORMAL FORM

Problems can still exist with tables that are in second normal form. Consider the following Customer table:

Customer (CustomerNum, CustomerName, Balance, CreditLimit, RepNum, LastName, FirstName)

The functional dependencies in this table are as follows:

CustomerNum → CustomerName, Balance, CreditLimit, RepNum, LastName, FirstName

RepNum → LastName, FirstName

OrderNum OrderDate

Orders

21608 10/20/2013

21610 10/20/2013

21613 10/21/2013

21614 10/21/2013

21617 10/23/2013

21619 10/23/2013

21623 10/23/2013

PartNum Description

Part

AT94 Iron

BV06 Home Gym

CD52 Microwave Oven

DL71 Cordless Drill

DR93 Gas Range

DW11 Washer

FD21 Stand Mixer

KL62 Dryer

KT03 Dishwasher

KV29 Treadmill

OrderNum PartNum NumOrdered QuotedPrice

OrderLine

21608 AT94 11 $21.95

21610 DR93 1 $495.00

21610 DW11 1 $399.99

21613 KL62 4 $329.95

21614 KT03 2 $595.00

21617 BV06 2 $794.95

21617 CD52 4 $150.00

21619 DR93 1 $495.00

21623 KV29 2 $1290.00

OrderNum OrderDate PartNum Description NumOrdered QuotedPrice

Orders

21608 10/20/2013 AT94 Iron 11 $21.95

21610 10/20/2013 DR93 Gas Range 1 $495.00

21610 10/20/2013 DW11 Washer 1 $399.99

21613 10/21/2013 KL62 Dryer 4 $329.95

21614 10/21/2013 KT03 Dishwasher 2 $595.00

21617 10/23/2013 BV06 Home Gym 2 $794.95

21617 10/23/2013 CD52 Microwave Oven 4 $150.00

21619 10/23/2013 DR93 Gas Range 1 $495.00

21623 10/23/2013 KV29 Treadmill 2 $1290.00

FIGURE 5-9 Conversion to second normal form

165

Database Design 1: Normalization

CustomerNum determines all the other columns. In addition, RepNum determines LastName and
FirstName.

When the primary key of a table is a single column, the table is automatically in second normal form. (If
the table were not in second normal form, some columns would be dependent on only a portion of the pri-
mary key, which is impossible when the primary key is just one column.) Thus, the Customer table is in sec-
ond normal form.

The sample Customer table shown in Figure 5-10 illustrates that this table possesses problems similar to
those encountered earlier even though it is in second normal form. In this case, the name of a sales rep can
occur many times in the table; see sales rep 65 (Juan Perez), for example.

This redundancy creates the same set of problems that you examined in the first normal form Orders
table. In addition to the problem of wasted space, you have similar update anomalies as follows:

1. Updates. A change to the name of a sales rep requires not one change to the table, but several,
making the update process cumbersome.

2. Inconsistent data. There is nothing about the design that would prohibit a sales rep from having
two different names in the database. In fact, if the same sales rep represents 20 customers (and
thus would be found on 20 different rows), he or she could have 20 different names in the
database.

3. Additions. In order to add sales rep 87 (Mary Daniels) to the database, she must already repre-
sent at least one customer. If she has not yet been assigned any customers, you must add her
record and create a fictitious customer for her to represent. Again, this is not a desirable solu-
tion to the problem.

4. Deletions. If you deleted all the customers of sales rep 35 from the database, you would lose all
information concerning sales rep 35.

These update anomalies are due to the fact that RepNum determines LastName and FirstName, but
RepNum is not the primary key. As a result, the same RepNum and consequently the same LastName and
FirstName can appear on many different rows.

You’ve seen that second normal form is an improvement over first normal form, but to eliminate second
normal form problems, you need an even better strategy for creating tables in the database. Third normal
form provides that strategy. Before looking at third normal form, however, you need to become familiar with
the special name that is given to any column that determines another column (as RepNum does in the
Customer table).

CustomerNum CustomerName Balance CreditLimit RepNum LastName FirstName

148 Al’s Appliance $6,550.00 $7,500.00 20 Kaiser Valerie
and Sport

282 Brookings Direct $431.50 $10,000.00 35 Hull Richard

356 Ferguson’s $5,785.00 $7,500.00 65 Perez Juan

408 The Everything $5,285.25 $5,000.00 35 Hull Richard
Shop

462 Bargains Galore $3,412.00 $10,000.00 65 Perez Juan

524 Kline’s $12,762.00 $15,000.00 20 Kaiser Valerie

608 Johnson’s $2,106.00 $10,000.00 65 Perez Juan
Department
Store

687 Lee’s Sport $2,851.00 $5,000.00 35 Hull Richard
and Appliance

725 Deerfield’s Four $248.00 $7,500.00 35 Hull Richard
Seasons

842 All Season $8,221.00 $7,500.00 20 Kaiser Valerie

Customer

FIGURE 5-10 Sample Customer table

166

Chapter 5

Definition: Any column (or collection of columns) that determines another column is called a determinant.
Certainly, the primary key in a table will be a determinant. In fact, by definition, any candidate key will

be a determinant. (Remember that a candidate key is a column or a collection of columns that could func-
tion as the primary key.) In this case, RepNum is a determinant, but it is not a candidate key, and that is the
problem.

Definition: A table (relation) is in third normal form (3NF) when it is in second normal form and the only
determinants it contains are candidate keys.

N O T E
The previous definition is not the original definition of third normal form. This more recent definition, which is preferable to the
original, is often referred to as Boyce-Codd normal form (BCNF) when it is important to make a distinction between this defi-
nition and the original. This text will not make such a distinction, but it will take this to be the definition of third normal form.

Again, for an additional perspective, you can use a dependency diagram, as shown in Figure 5-11. The
arrows above the boxes represent the normal dependencies of all columns on the primary key. The arrows
below the boxes represent the problem—these arrows make RepNum a determinant. If there were arrows
from RepNum to all the columns, RepNum would be a candidate key and you would not have a problem. The
absence of these arrows indicates that this table contains a determinant that is not a candidate key. Thus,
the table is not in third normal form.

You now have identified the problem with the Customer table: It is not in third normal form. The follow-
ing method corrects the deficiency in the Customer table and in all tables having similar deficiencies.

First, for each determinant that is not a candidate key, remove from the table the columns that depend
on this determinant (but don’t remove the determinant). Next, create a new table containing all the columns
from the original table that depend on this determinant. Finally, make the determinant the primary key of
this new table. In the Customer table, for example, you would remove LastName and FirstName because they
depend on the determinant RepNum, which is not a candidate key. A new table is formed, consisting of
RepNum (as the primary key), LastName, and FirstName.

Customer (CustomerNum, CustomerName, Balance, CreditLimit, RepNum)

Rep (RepNum, LastName, FirstName)

Figure 5-12 shows samples of the revised Customer table and the new Rep table.

CustomerNum CustomerName Balance CreditLimit RepNum LastName FirstName

FIGURE 5-11 Dependencies in the Customer table

167

Database Design 1: Normalization

Have you now corrected all previously identified problems? A sales rep’s name appears only once,
thus avoiding redundancy and simplifying the process of changing a sales rep’s name. With this design, it is
not possible for the same sales rep to have different names in the database. To add a new sales rep to the
database, you can add a row in the Rep table without requiring the rep to have at least one assigned cus-
tomer. Finally, deleting all the customers of a given sales rep will not remove the sales rep’s record from the
Rep table, retaining the sales rep’s name. In addition, you can reconstruct all the data in the original table
from the data in the new collection of tables. All previously mentioned problems have indeed been solved.

CustomerNum CustomerName Balance CreditLimit RepNum LastName FirstName

Customer

148 Al’s Appliance $6,550.00 $7,500.00 20 Kaiser Valerie
and Sport

282 Brookings Direct $431.50 $10,000.00 35 Hull Richard

356 Ferguson’s $5,785.00 $7,500.00 65 Perez Juan

408 The Everything $5,285.25 $5,000.00 35 Hull Richard
Shop

462 Bargains Galore $3,412.00 $10,000.00 65 Perez Juan

524 Kline’s $12,762.00 $15,000.00 20 Kaiser Valerie

608 Johnson’s $2,106.00 $10,000.00 65 Perez Juan
Department
Store

687 Lee’s Sport $2,851.00 $5,000.00 35 Hull Richard
and Appliance

725 Deerfield’s $248.00 $7,500.00 35 Hull Richard
Four Seasons

842 All Season $8,221.00 $7,500.00 20 Kaiser Valerie

CustomerNum CustomerName Balance CreditLimit RepNum

Customer

148 Al’s Appliance $6,550.00 $7,500.00 20
and Sport

282 Brookings Direct $431.50 $10,000.00 35

356 Ferguson’s $5,785.00 $7,500.00 65

408 The Everything $5,285.25 $5,000.00 35
Shop

462 Bargains Galore $3,412.00 $10,000.00 65

524 Kline’s $12,762.00 $15,000.00 20

608 Johnson’s $2,106.00 $10,000.00 65
Department Store

687 Lee’s Sport $2,851.00 $5,000.00 35
and Appliance

725 Deerfield’s Four $248.00 $7,500.00 35
Seasons

842 All Season $8,221.00 $7,500.00 20

RepNum LastName FirstName

20 Kaiser Valerie

35 Hull Richard

65 Perez Juan

Rep

FIGURE 5-12 Conversion to third normal form

168

Chapter 5

INCORRECT DECOMPOSITIONS

It is important to note that the decomposition of a table into two or more third normal form tables must be
accomplished by the method indicated in the previous section, even though there are other possibilities that
at first glance might seem to be legitimate. For example, you can examine two other decompositions of the
Customer table into third normal form tables to understand the difficulties they pose. Assume in the decom-
position process that

Customer (CustomerNum, CustomerName, Balance, CreditLimit, RepNum, LastName, FirstName)

is replaced by

Customer (CustomerNum, CustomerName, Balance, CreditLimit, RepNum)

Rep (CustomerNum, LastName, FirstName)

Samples of these tables appear in Figure 5-13. Both new tables are in third normal form. In addition, by
joining these two tables on CustomerNum, you can reconstruct the original Customer table. The result, how-
ever, still suffers from some of the same kinds of problems as the original Customer table.

169

Database Design 1: Normalization

Consider, for example, the redundancy in the storage of sales reps’ names, the problem encountered in
changing the name of a sales rep, and the difficulty of adding a new sales rep who represents no customers.
In addition, because the rep number and names are in different tables, you have actually split a functional
dependence across two different tables. Thus, this seemingly valid decomposition is definitely not a desirable
way to create third normal form tables.

CustomerNum CustomerName Balance CreditLimit RepNum LastName FirstName

148 Al’s Appliance $6,550.00 $7,500.00 20 Kaiser Valerie
and Sport

282 Brookings Direct $431.50 $10,000.00 35

Perez

Perez

Hull Richard

356 Ferguson’s $5,785.00 $7,500.00 Juan

408 The Everything $5,285.25 $5,000.00 35 Hull Richard
Shop

462 Bargains Galore $3,412.00 $10,000.00 65 Juan

524 Kline’s $12,762.00 $15,000.00 20 Kaiser Valerie

608 Johnson’s $2,106.00 $10,000.00 65 Perez Juan
Department
Store

687 Lee’s Sport 35 Hull Richard
and Appliance

725 Deerfield’s 35 Hull Richard
Four Seasons

842 All Season

$2,851.00 $5,000.00

$248.00 $7,500.00

$8,221.00 $7,500.00 20 Kaiser Valerie

Customer

CustomerNum CustomerName Balance CreditLimit RepNum

148 Al’s Appliance $6,550.00
and Sport

282 Brookings Direct $431.50

356 Ferguson’s $5,785.00

408 The Everything $5,285.25
Shop

462 Bargains Galore $3,412.00

524 Kline’s $12,762.00

608 Johnson’s $2,106.00
Department Store

687 Lee’s Sport $2,851.00
and Appliance

725 Deerfield’s Four $248.00
Seasons

842 All Season $8,221.00

$7,500.00 20

$10,000.00 35

$7,500.00 65

$5,000.00 35

$10,000.00 65

$15,000.00 20

$10,000.00 65

$5,000.00 35

$7,500.00 35

$7,500.00 20

Customer
CustomerNum LastName FirstName

148 Valerie

282 Richard

356 Juan

408 Richard

462 Juan

524 Valerie

608 Juan

687 Richard

725 Richard

842

Kaiser

Hull

Perez

Hull

Perez

Kaiser

Perez

Hull

Hull

Kaiser Valerie

Rep

65

FIGURE 5-13 Incorrect decomposition of the Customer table

170

Chapter 5

There is another decomposition that you might choose, and that is to replace

Customer (CustomerNum, CustomerName, Balance, CreditLimit, RepNum, LastName, FirstName)

with

Customer (CustomerNum, CustomerName, Balance, CreditLimit, LastName, FirstName)

Rep (RepNum, LastName, FirstName)

Samples of these tables appear in Figure 5-14.

CustomerNum CustomerName Balance CreditLimit RepNum LastName FirstName

148 Al’s Appliance $6,550.00 $7,500.00 20 Kaiser Valerie
and Sport

282 Brookings Direct $431.50 $10,000.00 35 Hull Richard

356 Ferguson’s $5,785.00 65 Perez Juan

408 The Everything $5,285.25 35 Hull Richard
Shop

462 Bargains Galore $3,412.00

524 Kline’s $12,762.00

$10,000.00 Perez Juan

$15,000.00 Kaiser Valerie

608 Johnson’s $2,106.00

65

20

$10,000.00 65 Perez Juan
Department
Store

687 Lee’s Sport $2,851.00 35 Hull Richard
and Appliance

725 Deerfield’s $248.00 $7,500.00 35 Hull Richard
Four Seasons

842 All Season $8,221.00

$7,500.00

$5,000.00

$5,000.00

$7,500.00 20 Kaiser Valerie

Customer

CustomerNum CustomerName Balance CreditLimit LastName FirstName

148 Al’s Appliance $6,550.00 $7,500.00 Kaiser Valerie
and Sport

282 Brookings Direct $431.50 $10,000.00 Hull Richard

356 Ferguson’s $5,785.00 $7,500.00 Perez Juan

408 The Everything $5,285.25 $5,000.00 Hull Richard
Shop

462 Bargains Galore $3,412.00 $10,000.00 Perez Juan

524 Kline’s $12,762.00 $15,000.00 Kaiser Valerie

608 Johnson’s $2,106.00 $10,000.00 Perez Juan
Department Store

687 Lee’s Sport $2,851.00 $5,000.00 Hull Richard
and Appliance

725 Deerfield’s $248.00 $7,500.00 Hull Richard
Four Seasons

842 All Season $8,221.00 $7,500.00 Kaiser Valerie

Customer
RepNum LastName FirstName

20 Kaiser Valerie

35 Hull Richard

65 Perez Juan

Rep

FIGURE 5-14 Second incorrect decomposition of the Customer table

171

Database Design 1: Normalization

This new design seems to be a possibility. Not only are both tables in third normal form but joining them
together based on LastName and FirstName seems to reconstruct the data in the original table. Or does it?
Suppose two different sales reps, with sales rep numbers 20 and 65, have the same name, Valerie Kaiser. In
this case, when you join the two new tables, there would be no way to correctly identify which Valerie Kaiser
represents which customers. Thus, you would get a row on which customer 148 (Al’s Appliance and Sport) is
associated with sales rep 20 (Valerie Kaiser) and another row on which customer 148 is associated with sales
rep 65 (the other Valerie Kaiser). Because you obviously want decompositions that preserve the original
information, this design is not appropriate.

Q & A

Question: Using the types of entities found in a college environment (faculty, students, departments, courses,
and so on), create an example of a table that is in first normal form but not in second normal form and an
example of a table that is in second normal form but not in third normal form. In each case, justify your
solutions and show how to convert to the higher forms.
Answer: There are many possible solutions. Your answer may differ from the following solution, but that
does not mean it is an unsatisfactory solution.

To create a first normal form table that is not in second normal form, you need a table that has no
repeating groups and that has at least one column that is dependent on only a portion of the primary key.
For a column to be dependent on a portion of the primary key, the primary key must contain at least two
columns. Following is a picture of what you need:
(1, 2, 3, 4)

This table contains four columns, numbered 1, 2, 3, and 4, in which the combination of columns 1 and 2
functionally determines both columns 3 and 4. In addition, neither column 1 nor column 2 can determine all
other columns; if either one could, the primary key would contain only this one column. Finally, you want
part of the primary key (say, column 2) to determine another column (say, column 4).

Now that you know the pattern you need, you would like to find columns from within the college
environment to fit it. One example is as follows:
(StudentNum, CourseNum, Grade, CourseDescription)

In this example, the concatenation of StudentNum and CourseNum determines both Grade and
CourseDescription. Both columns are required to determine Grade; thus, the primary key consists of their
concatenation. CourseDescription, however, is dependent only on CourseNum, which violates second
normal form. To convert this table to second normal form, you would replace it with two tables:
(StudentNum, CourseNum, Grade)

(CourseNum, CourseDescription)
You would, of course, now give these tables appropriate names.
To create a table that is in second normal form but not in third normal form, you need a second normal

form table in which there is a determinant that is not a candidate key. If you choose a table that has a single
column as the primary key, it is automatically in second normal form, so the real problem is the determi-
nant. You need a table like the following:
(1, 2, 3)

This table contains three columns, numbered 1, 2, and 3, in which column 1 determines each of the
others and thus is the primary key. When column 2 also determines column 3, column 2 is a determinant.
When column 2 does not also determine column 1, column 2 is not a candidate key. One example that fits
this pattern is as follows:
(StudentNum, AdvisorNum, AdvisorName)

In this case, the StudentNum determines both the student’s AdvisorNum and AdvisorName. AdvisorNum
determines AdvisorName, but AdvisorNum does not determine StudentNum because one advisor can have
many advisees. This table is in second normal form but not in third normal form. To convert it to third
normal form, you would replace it with the following:
(StudentNum, AdvisorNum)

(AdvisorNum, AdvisorName)

172

Chapter 5

Q & A

Question: Convert the following table to third normal form. In this table, StudentNum determines
StudentName, NumCredits, AdvisorNum, and AdvisorName. AdvisorNum determines AdvisorName.
CourseNum determines Description. The combination of StudentNum and CourseNum determines Grade.
Student (StudentNum, StudentName, NumCredits, AdvisorNum, AdvisorName,

(CourseNum, Description, Grade))
Answer: Step 1. Remove the repeating group to convert it to first normal form, yielding the following:
Student (StudentNum, StudentName, NumCredits, AdvisorNum, AdvisorName,

CourseNum, Description, Grade)
This table is now in first normal form because it has no repeating groups. It is not, however, in second

normal form because StudentName, for example, is dependent only on StudentNum, which is only a portion
of the primary key.

Step 2. Convert the first normal form table to second normal form. First, for each subset of the primary
key, start a table with that subset as its key, yielding the following:
(StudentNum,

(CourseNum,

(StudentNum, CourseNum,
Next, place the rest of the columns with the smallest collection of columns on which they depend, giving

the following:
(StudentNum, StudentName, NumCredits, AdvisorNum, AdvisorName)

(CourseNum, Description)

(StudentNum, CourseNum, Grade)
Finally, assign names to each of the newly created tables as follows:

Student (StudentNum, StudentName, NumCredits, AdvisorNum, AdvisorName)

Course (CourseNum, Description)

StudentCourse (StudentNum, CourseNum, Grade)
Although these tables are all in second normal form, Course and StudentCourse are also in third

normal form. The Student table is not in third normal form, however, because it contains a determinant
(AdvisorNum) that is not a candidate key.

Step 3. Convert the second normal form Student table to third normal form by removing the column
that depends on the determinant AdvisorNum and placing it in a separate table.
(StudentNum, StudentName, NumCredits, AdvisorNum)

(AdvisorNum, AdvisorName)
Step 4. Name these tables and put the entire collection together, giving the following:

Student (StudentNum, StudentName, NumCredits, AdvisorNum)

Advisor (AdvisorNum, AdvisorName)

Course (CourseNum, Description)

StudentCourse (StudentNum, CourseNum, Grade)

MULTIVALUED DEPENDENCIES AND FOURTH NORMAL FORM
By converting a given collection of tables to an equivalent third normal form collection of tables, you remove
problems arising from functional dependencies. Usually this means that you eliminate the types of previously
discussed update anomalies. Converting to third normal form doesn’t avoid all problems related to dependen-
cies, however. A different kind of dependency also can lead to the same types of problems.

To illustrate the problem, suppose you are interested in faculty members at Marvel College. In addition
to faculty members, you are interested in the students they advise and the committees on which the faculty
members serve. A faculty member can advise many students. Because students can have more than one
major, a student can have more than one faculty member as an advisor. A faculty member can serve on zero,

173

Database Design 1: Normalization

one, or more committees. As an initial relational design for this situation, suppose you chose the following
unnormalized table:

Faculty (FacultyNum, (StudentNum), (CommitteeCode))

The single Faculty table has a primary key of FacultyNum (the number that identifies the faculty
member) and two separate repeating groups, StudentNum (the number that identifies the student) and
CommitteeCode (the code that identifies the committee, such as ADV for Advisory committee, PER for
Personnel committee, and CUR for Curriculum committee). To convert this table to first normal form,
you might be tempted to remove the two repeating groups and expand the primary key to include both
StudentNum and CommitteeCode. That solution would give the following table:

Faculty (FacultyNum, StudentNum, CommitteeCode)

Samples of the table with repeating groups and with the repeating groups removed appear in Figure 5-15.

You already may have suspected that this approach has some problems. If so, you are correct. It is a
strange way to normalize the original table. Yet it is precisely this approach for removing repeating groups
that leads to the problems concerning multivalued dependencies. You will see how this table should have
been normalized to avoid the problems altogether. For now, however, you’ll examine this table to see what
kinds of problems are present.

The first thing you should observe about this table is that it is in third normal form because no groups
repeat, no column is dependent on only a portion of the primary key, and no determinants exist that are not
candidate keys. There are several problems, however, with this third normal form table.

1. Update. Changing the CommitteeCode for faculty member 123 requires more than one change.
If this faculty member changes from an Advisory committee member to a Curriculum committee

FacultyNum StudentNum CommitteeCode

123 12805
24139

PER

444 57384

456 24139
36273
37573

Faculty

FacultyNum StudentNum CommitteeCode

123

123

123

123

123

123

444

456

456

456

12805 ADV

12805 HSG

12805 PER

24139 ADV

24139 HSG

24139 PER

57384 HSG

24139 CUR

36273 CUR

37573 CUR

Faculty

ADV
HSG

HSG

CUR

FIGURE 5-15 Incorrect way to remove repeating groups—relation is not in fourth normal form

174

Chapter 5

member, you would need to change the CommitteeCode from ADV to CUR in rows 1 and 4 of
the table. After all, it doesn’t make sense to say that the committee is ADV when associated with
student 12805 and CUR when associated with student 24139. The same committee is served on
by the same faculty member. The faculty member does not serve on one committee when advis-
ing one student and a different committee when advising another student.

2. Additions. Suppose faculty member 555 joins the faculty at Marvel College. Also suppose that
this faculty member does not yet serve on a committee. When this faculty member begins advis-
ing student 44332, you have a problem because CommitteeCode is part of the primary key. You
need to enter a fictitious CommitteeCode in this situation.

3. Deletions. If faculty member 444 no longer advises student 57384 and you delete the appropri-
ate row from the table, you lose the information that faculty member 444 serves on the Housing
committee (HSG).

These problems are similar to those encountered in the discussions of both second normal form and
third normal form, but there are no functional dependencies among the columns in this table. A given faculty
member is not associated with one student, as he or she would be if this were a functional dependence. Each
faculty member, however, is associated with a specific collection of students. More importantly, this associa-
tion is independent of any association with committees. This independence is what causes the problem. This
type of dependency is called a multivalued dependency.

Definition: In a table with columns A, B, and C, there is a multivalued dependence of column B on column
A (also read as “B is multidependent on A” or “A multidetermines B”) when each value for A is associated
with a specific collection of values for B and, further, this collection is independent of any values for C. This
is usually written as follows:

A → → B

Definition: A table (relation) is in fourth normal form (4NF) when it is in third normal form and there are
no multivalued dependencies.

As you might expect, converting a table to fourth normal form is similar to the normalization process
used in the treatments of second normal form and third normal form. You split the third normal form table
into separate tables, each containing the column that multidetermines the others, which, in this case, is
FacultyNum. This means you replace

Faculty (FacultyNum, StudentNum, CommitteeCode)

with

FacStudent (FacultyNum, StudentNum)

FacCommittee (FacultyNum, CommitteeCode)

Figure 5-16 shows samples of these tables. As before, the problems have disappeared. There is no prob-
lem with changing the CommitteeCode ADV to CUR for faculty member 123 because the committee code
occurs in only one place. To add the information that faculty member 555 advises student 44332, you need
to add a row to the FacStudent table—it doesn’t matter whether this faculty member serves on a committee.
Finally, to delete the information that faculty member 444 advises student 57384, you need to remove a row
from the FacStudent table. In this case, you do not lose the information that this faculty member serves on
the Housing committee.

175

Database Design 1: Normalization

Figure 5-17 summarizes the four normal forms.

AVOIDING THE PROBLEM WITH MULTIVALUED DEPENDENCIES

Any table that is not in fourth normal form suffers some serious problems, but there is a way to avoid dealing
with the issue. You should have a design methodology for normalizing tables that prevents this situation from
occurring in the first place. You already have most of such a methodology in place from the discussion of the
first normal form, second normal form, and third normal form normalization processes. All you need is a
slightly more sophisticated method for converting an unnormalized table to first normal form.

FacultyNum StudentNum CommitteeCode

123 12805 ADV

123 12805 HSG

123 12805 PER

123 24139 ADV

123 24139 HSG

123 24139 PER

444 57384 HSG

456 24139 CUR

456 36273 CUR

456 37573 CUR

Faculty

FacultyNum StudentNum

FacStudent

123 12805

123 24139

444 57384

456 24139

456 36273

456 37573

FacultyNum CommitteeCode

123 ADV

123 HSG

123 PER

444 HSG

456 CUR

FacCommittee

FIGURE 5-16 Conversion to fourth normal form

Normal Form Meaning/Required Conditions Notes

First normal form No repeating groups exist

Second normal form First normal form and no non- Automatically second normal form
key column is dependent on only if the primary key contains only a
a portion of the primary key single column

Third normal form Second normal form and the only Actually Boyce-Codd normal
determinants are candidate keys form (BCNF)

Fourth normal form Third normal form and no
multivalued dependencies exist

FIGURE 5-17 Normal forms

176

Chapter 5

The conversion of an unnormalized table to first normal form requires the removal of repeating groups.
When this was first demonstrated, you merely removed the repeating group symbol and expanded the
primary key. You will recall, for example, that

Orders (OrderNum, OrderDate, (PartNum, NumOrdered))

became

Orders (OrderNum, OrderDate, PartNum, NumOrdered)

The primary key was expanded to include the primary key of the original table together with the key to
the repeating group.

What if there are two or more repeating groups? The method you used earlier is inadequate for such
situations. Instead, you must place each repeating group in a separate table. Each table will contain all the
columns that make up the given repeating group, as well as the primary key of the original unnormalized
table. The primary key to each new table will be the concatenation of the primary key of the original table
and the primary key of the repeating group. For example, consider the following unnormalized table that
contains two repeating groups.

Faculty (FacultyNum, FacultyName, (StudentNum, StudentName), (CommitteeCode, CommitteeName))

In this example, FacultyName is the name of the faculty member and StudentName is the name of the
student. The columns CommitteeCode and CommitteeName refer to the committee’s code and name. (For
example, one row in this table would have PER in the CommitteeCode column and Personnel Committee in
the CommitteeName column.) Applying this new method to create first normal form tables would produce
the following:

Faculty (FacultyNum, FacultyName)

FacStudent (FacultyNum, StudentNum, StudentName)

FacCommittee (FacultyNum, CommitteeCode, CommitteeName)

As you can see, this collection of tables avoids the problems with multivalued dependencies. At this
point, you have a collection of first normal form tables that you still need to convert to third normal form. By
using the above process, however, you can guarantee that the result will also be in fourth normal form.

APPLICATION TO DATABASE DESIGN

The normalization process used to convert a relation or collection of relations to an equivalent collection of
third normal form tables is a crucial part of the database design process. By following a careful and appropri-
ate normalization methodology, you need not worry about normal forms higher than third normal form.
There are three aspects concerning normalization that you need to keep in mind, however.

First, you should carefully convert tables to third normal form. Suppose the following columns exist in a
Coach relation. (The ellipsis (…) represents additional columns that exist but are not included in this
example.)

Coach (CoachNum, LastName, FirstName, Street, City, State, Zip, ...)

In addition to the functional dependencies that all the columns have on CoachNum, there are two other
functional dependencies. As originally designed by the United States Postal Service, Zip determines both
State and City.

Does this mean that you should replace the Coach relation with the following?

Coach (CoachNum, LastName, FirstName, Street, Zip, ...)

ZipCode (Zip, City, State)

If you are determined to ensure that every relation is in third normal form, you could replace the Coach
relation with the revised Coach relation and the new ZipCode relation, but this approach is probably unnec-
essary. If you review the list of problems normally associated with relations that are not in third normal form,
you will see that they don’t apply here. Are you likely to need to change the state in which the zip code
49428 is located? Do you need to add the fact that zip code 49401 corresponds to Allendale, Michigan, if you
have no customers who live in Allendale? In this case, the design of the original Coach relation is sufficient.

177

Database Design 1: Normalization

Second, there are currently situations where the same zip code corresponds to more than one city or
even to more than one state. This situation illustrates the wisdom in not making the change and the fact that
requirements and, consequently, the functional dependencies can change over time. It is critical to review
assumptions and dependencies periodically to see if any changes to the design are warranted.

Third, by splitting relations to achieve third normal form tables, you create the need to express an inter-
relation constraint, a condition that involves two or more relations. In the example given earlier for convert-
ing to third normal form, you split the Customer relation in the Premiere Products database from

Customer (CustomerNum, CustomerName, Balance, CreditLimit, RepNum, LastName, FirstName)

to

Customer (CustomerNum, CustomerName, Balance, CreditLimit, RepNum)

Rep (RepNum, LastName, FirstName)

Nothing about these two relations by themselves would force the RepNum on a row in the Customer
relation to match a value of RepNum in the Rep relation. Requiring this to take place is an example of an
interrelation constraint. Foreign keys handle this type of interrelation constraint. You will learn more about
foreign keys during the database design process, which is covered in Chapter 6.

178

Chapter 5

Summary

• A column (attribute) B is functionally dependent on another column A (or possibly a collection of columns)
when each value for A in the database is associated with exactly one value of B.

• The primary key is a column (or a collection of columns) A such that all other columns are functionally
dependent on A and no subcollection of the columns in A also has this property.

• When there is more than one choice for the primary key, one of the possibilities is chosen to be the
primary key. The others are referred to as candidate keys.

• A table (relation) is in first normal form (1NF) when it does not contain repeating groups.

• A column is a nonkey column (also called a nonkey attribute) when it is not a part of the primary key.

• A table (relation) is in the second normal form (2NF) when it is in first normal form and no nonkey column
is dependent on only a portion of the primary key.

• A determinant is any column that functionally determines another column.

• A table (relation) is in third normal form (3NF) when it is in second normal form and the only determinants
it contains are candidate keys.

• A collection of tables (relations) that is not in third normal form has inherent problems called update anom-
alies. Replacing this collection with an equivalent collection of tables (relations) that is in third normal form
removes these anomalies. This replacement must be done carefully, following a method like the one pro-
posed in this text. If not, other problems, such as those discussed in this chapter, may be introduced.

• A table (relation) is in fourth normal form (4NF) when it is in third normal form and there are no multivalued
dependencies.

Key Terms

alternate key

Boyce-Codd normal form (BCNF)

candidate key

concatenation

dependency diagram

determinant

first normal form (1NF)

fourth normal form (4NF)

functional dependence

functionally dependent

functionally determines

interrelation constraint

multidependent

multidetermine

multivalued dependence

nonkey attribute

nonkey column

normal form

normalization process

partial dependency

primary key

repeating group

second normal form (2NF)

third normal form (3NF)

unnormalized relation

update anomaly

Review Questions

1. Define functional dependence.

2. Give an example of a column A and a column B such that B is functionally dependent on A. Give an example of
a column C and a column D such that D is not functionally dependent on C.

3. Define primary key.

4. Define candidate key.

5. Define first normal form.

6. Define second normal form. What types of problems would you find in tables that are not in second normal form?

7. Define third normal form. What types of problems would you find in tables that are not in third normal form?

8. Define fourth normal form. What types of problems would you find in tables that are not in fourth normal form?

179

Database Design 1: Normalization

9. Define interrelation constraint and give one example of such a constraint. How are interrelation constraints addressed?

10. Consider a Student table containing StudentNum, StudentName, student’s StudentMajor, student’s AdvisorNum,
student’s AdvisorName, student’s AdvisorOfficeNum, student’s AdvisorPhone, student’s NumCredits, and stu-
dent’s Class (freshman, sophomore, and so on). List the functional dependencies that exist, along with the
assumptions that would support those dependencies.

11. Convert the following table to an equivalent collection of tables that are in third normal form. This table contains
information about patients of a dentist. Each patient belongs to a household.

Patient (HouseholdNum, HouseholdName, Street, City, State, Zip,

Balance, PatientNum, PatientName, (ServiceCode, Description,

Fee, Date))

The following dependencies exist in the Patient table:

PatientNum → HouseholdNum, HouseholdName, Street, City, State,

Zip, Balance, PatientName

HouseholdNum → HouseholdName, Street, City, State, Zip, Balance

ServiceCode → Description, Fee

PatientNum, ServiceCode → Date

12. Using your knowledge of the college environment, determine the functional dependencies that exist in the fol-
lowing table. After determining the functional dependencies, convert this table to an equivalent collection of
tables that are in third normal form.

Student (StudentNum, StudentName, NumCredits, AdvisorNum,

AdvisorName, DeptNum, DeptName, (CourseNum, Description,

Term, Grade))

13. Again, using your knowledge of the college environment, determine the functional or multivalued dependencies
that exist in the following table. After determining the functional dependencies, convert this table to an equiva-
lent collection of tables that are in fourth normal form. ActivityNum and ActivityName refer to activities in which a
student can choose to participate. For example, activity number 1 might be soccer, activity 2 might be band, and
activity 3 might be the debate team. A student can choose to participate in multiple activities. CourseNum and
Description refer to courses the student is taking.

Student (StudentNum, StudentName, ActivityNum, ActivityName,

CourseNum, Description)

Premiere Products Exercises

The following exercises are based on the Premiere Products database.

1. Using your knowledge of Premiere Products, determine the functional dependencies that exist in the following
table. After determining the functional dependencies, convert this table to an equivalent collection of tables that
are in third normal form.

Part (PartNum, Description, OnHand, Class, Warehouse,

Price, (OrderNum, OrderDate, CustomerNum,

CustomerName, RepNum, LastName, FirstName,

NumOrdered, QuotedPrice))

2. List the functional dependencies in the following table that concerns invoicing (an application Premiere Products is
considering adding to its database), subject to the specified conditions. For a given invoice (identified by the Invoi-
ceNum), there will be a single customer. The customer’s number, name, and complete address appear on the
invoice, as does the date. Also, there may be several different parts appearing on the invoice. For each part that
appears, display the part number, description, price, and number shipped. Each customer that orders a particular
part pays the same price. Convert this table to an equivalent collection of tables that are in third normal form.

Invoice (InvoiceNum, CustomerNum, LastName, FirstName,

Street, City, State, Zip, Date, (PartNum,

Description, Price, NumShipped))

3. The requirements for Premiere Products have changed. A number and a name now identify each warehouse.
Units of each part may be stored in multiple warehouses, and it is important to know precisely how many parts

180

Chapter 5

are stored in each warehouse. In addition, Premiere Products now wants to manage information about the sup-
pliers from which it purchases parts. For each part, Premiere Products needs to know the number and name of
each supplier as well as the expected lead time for delivering each part. (Lead time is the amount of time a
supplier is expected to take to deliver the part after Premiere Products has ordered it.) Each part can have
many suppliers, and each supplier can supply many parts. Using this information, convert the following unnor-
malized relation to fourth normal form:

Part (PartNum, Description, Class, Price,

(WarehouseNum, WarehouseName, OnHand),

(SupplierNum, SupplierName, LeadTime))

Henry Books Case

The following exercises are based on the Henry Books database.

1. Using the types of entities found in the Henry Books database (books, authors, and publishers), create an
example of a table that is in first normal form but not in second normal form and an example of a table that is in
second normal form but not in third normal form. In each case, justify your answers and show how to convert to
the higher forms.

2. Henry Books is considering selling textbooks to a local college. To do so, it must maintain information about
courses, textbooks, and instructors. Determine the multivalued dependencies in the following table, and then
convert this table to an equivalent collection of tables that are in fourth normal form. Each course is associated
with a specific set of textbooks independent of the instructors who are teaching the course. In other words,
although many instructors may be teaching the course, they all will use the same set of textbooks.

Course (CourseNum, Textbook, InstructorNum, InstructorName)

3. The following unnormalized table is similar in content to the table in Exercise 2. Note that this table has two
separate repeating groups: one listing the textbooks used for the course and the other listing the instructors who
teach the course. Convert it to fourth normal form. Did you encounter the table from Exercise 2 along the way?

Course (CourseNum, Description, NumCredits,

(Textbook), (InstructorNum, InstructorName))

4. Identify the functional dependencies in the following unnormalized table. Convert the table to third normal form.
Is the result also in fourth normal form? Why or why not?

Book (BookCode, Title, PublisherCode, PublisherName,

(AuthorNum, AuthorLast, AuthorFirst))

Alexamara Marina Group Case

The following exercises are based on the Alexamara Marina Group database.

1. Using the types of entities found in the Alexamara Marina Group database (marinas, owners, boat slips, catego-
ries, and service requests), create an example of a table that is in first normal form but not in second normal
form and an example of a table that is in second normal form but not in third normal form. In each case, justify
your answer and show how to convert to the higher forms.

2. Determine the functional dependencies that exist in the following table, and then convert this table to an equiva-
lent collection of tables that are in third normal form:

Marina (MarinaNum, Name, (SlipNum, Length, RentalFee, BoatName))

3. Determine the functional dependencies that exist in the following table, and then convert this table to an equiva-
lent collection of tables that are in third normal form:

MarinaSlip (SlipID, MarinaNum, SlipNum, Length, RentalFee, BoatName, BoatType,

OwnerNum, LastName, FirstName)

181

Database Design 1: Normalization

C H A P T E R6
DATABASE DESIGN 2: DESIGN
METHOD

L E A R N I N G O B J E C T I V E S

• Discuss the general process and goals of database design

• Define user views and explain their function

• Define Database Design Language (DBDL) and use it to document database designs

• Create an entity-relationship (E-R) diagram to visually represent a database design

• Present a method for database design at the information level and view examples illustrating
this method

• Explain the physical-level design process

• Discuss top-down and bottom-up approaches to database design and examine the advantages
and disadvantages of both methods

• Use a survey form to obtain information from users prior to beginning the database design
process

• Review existing documents to obtain information prior to beginning the database design

• Discuss special issues related to implementing one-to-one relationships and many-to-many
relationships involving more than two entities

• Discuss entity subtypes and their relationships to nulls

• Learn how to avoid potential problems when merging third normal form relations

• Examine the entity-relationship model for representing and designing databases

I N T R O D U C T I O N

Now that you have learned how to identify and correct poor table designs, you will turn your attention to the design process
by determining the tables (relations) and columns (attributes) that make up the database. In addition, you will determine the
relationships between the various tables.

Most designers tackle database design using a two-step process. In the first step, the database designers design a
database that satisfies the organization’s requirements as cleanly as possible. This step, which is called information-level
design, is completed independently of any particular DBMS that the organization will ultimately use. In the second step,
which is called the physical-level design, designers adapt the information-level design for the specific DBMS that the
organization will use. During the physical-level design, designers must consider the characteristics of the particular DBMS
that the organization will use.

After examining the information-level design process, you will explore the general database design method and view
examples illustrating this method. You will construct entity-relationship diagrams to represent the database design visually.
You will then learn about the physical-level design process. You will also compare top-down and bottom-up approaches to
database design.

You will explore special issues related to database design, including survey forms and their use in database design
and the way to obtain important information from existing documents. You will examine issues related to the implementation
of some special types of relationships. You will learn about entity subtypes and their relationship to nulls. You will examine
issues related to merging third normal form relations. Finally, you will learn about the entity-relationship model.

USER VIEWS

Regardless of which approach an organization adopts to implement its database design, a complete database
design that will satisfy all the organization’s requirements is rarely a one-step process. Unless the require-
ments are simple, an organization will usually divide the overall job of database design into many smaller
tasks by identifying the individual pieces of the design problem, called user views. A user view is the set of
requirements that is necessary to support the operations of a particular database user. For example, at Pre-
miere Products, the database must be capable of storing each part’s number, description, units on hand, item
class, number of the warehouse in which the part is located, and price. It is critical to analyze and determine
these user views carefully before beginning the design process.

For each user view, designers must design the database structure to support the view and then merge it
into a cumulative design that supports all the user views encountered during the design process. Each user
view is generally much simpler than the total collection of requirements, so working on individual user views
is usually more manageable than attempting to turn the design of the entire database into one large task.

INFORMATION-LEVEL DESIGN METHOD

The information-level design method in this text involves representing individual user views, refining them to
eliminate any problems, and then merging them into a cumulative design. After you have represented and
merged all user views, you can complete the cumulative design for the entire database.

When creating user views, a “user” can be a person or a group that will use the system, a report that the
system must produce, or a type of transaction that the system must support. In the last two instances, you
might think of the user as the person who will use the report or enter the transaction. In fact, if the same
user requires three separate reports, for example, it is more efficient to consider each report as a separate
user view, even though only one “user” is involved, because smaller user views are easier to construct.

For each user view, the information-level design method requires you to complete the following steps:

1. Represent the user view as a collection of tables.
2. Normalize these tables.
3. Identify all keys in these tables.
4. Merge the result of Steps 1 through 3 into the cumulative design.

In the following sections, you will examine each of these steps in detail.

Represent the User View as a Collection of Tables
When provided with a user view or some sort of stated requirement, you must develop a collection of tables
that will support it. In some cases, the collection of tables may be obvious to you. For example, suppose a
requested user view involves departments and employees, each department can hire many employees, and
each employee can work in only one department (a typical restriction). A design similar to the following may
have naturally occurred to you. It is an appropriate design.

Department (DepartmentNum, Name, Location)

Employee (EmployeeNum, LastName, FirstName, Street, City,

State, Zip, WageRate, SocSecNum, DepartmentNum)

You will undoubtedly find that the more designs you complete, the easier it will be for you to develop
such a collection without resorting to any special procedure. The real question is this: What procedure should
you follow when the correct design is not so obvious? In this case, you can complete the following four steps.

Step 1. Determine the entities involved and create a separate table for each type of entity. At this point,
you do not need to do anything more than name the tables. For example, if a user view involves departments
and employees, you can create a Department table and an Employee table. At this point, you will write some-
thing like this:

Department (

Employee (

That is, you will write the name of a table and an opening parenthesis, and that is all. You will assign
columns to these tables in later steps.

184

Chapter 6

Step 2. Determine the primary key for each table. In this step, you can add one or more columns
depending on how many columns are required for the primary key. You will add additional columns later.
Even though you have yet to determine the columns in the table, you can usually determine the primary key.
For example, the primary key in an Employee table will probably be EmployeeNum, and the primary key in a
Department table will probably be DepartmentNum.

The primary key is the unique identifier, so the essential question is this: What does it take to uniquely
identify an employee or a department? Even if you are trying to automate a previously designed manual sys-
tem, you usually can find a unique identifier in that system. If no unique identifier is available, you will need
to assign one. For example, in a manual system, customers may not have been assigned numbers because the
customer base was small and the organization did not require or use customer numbers. Because the organi-
zation is computerizing its records, however, now is a good time to assign customer numbers to become the
unique identifiers you are seeking.

After creating unique identifiers, you add these primary keys to what you have written already. At this
point, you will have something like the following:

Department (DepartmentNum,

Employee (EmployeeNum,

Now you have the name of the table and the primary key, but that is all. In later steps, you will add the
other columns.

Step 3. Determine the properties for each entity. You can look at the user requirements and then deter-
mine the other required properties of each entity. These properties, along with the primary key identified in
Step 2, will become columns in the appropriate tables. For example, an Employee entity may require columns
for LastName, FirstName, Street, City, State, Zip, WageRate, and SocSecNum (Social Security number). The
Department entity may require columns for Name (department name) and Location (department location).
Adding these columns to what is already in place produces the following:

Department (DepartmentNum, Name, Location

Employee (EmployeeNum, LastName, FirstName, Street, City,

State, Zip, WageRate, SocSecNum

Step 4. Determine relationships between the entities. The basic relationships are one-to-many, many-
to-many, and one-to-one. You will see how to handle each type of relationship next.

To create a one-to-many relationship, include the primary key of the “one” table as a foreign key in the
“many” table. For example, assume each employee works in a single department but a department can have
many employees. Thus, one department is related to many employees. In this case, you would include the
primary key of the Department table (the “one” part) as a foreign key in the Employee table (the “many”
part). The tables would now look like this:

Department (DepartmentNum, Name, Location)

Employee (EmployeeNum, LastName, FirstName, Street, City,

State, Zip, WageRate, SocSecNum, DepartmentNum)

You create a many-to-many relationship by creating a new table whose primary key is the combination of
the primary keys of the original tables. Assume each employee can work in multiple departments and each
department can have many employees. In this case, you would create a new table whose primary key is the
combination of EmployeeNum and DepartmentNum. Because the new table represents the fact that an
employee works in a department, you might choose to call it WorksIn. Another method is to use a name that
combines the names of the two tables being related. Using the second approach, the new table’s name could
be DepartmentEmployee or EmployeeDepartment. After creating the new table, the collection of tables is as
follows:

Department (DepartmentNum, Name, Location)

Employee (EmployeeNum, LastName, FirstName, Street, City,

State, Zip, WageRate, SocSecNum)

WorksIn (EmployeeNum, DepartmentNum)

In this design, there is a one-to-many relationship between the Department and WorksIn tables and a
one-to-many relationship between the Employee and WorksIn tables. By creating the WorksIn table, which
includes foreign keys from the Department and Employee tables, you have created a new table to implement

Database Design 2: Design Method

185

a many-to-many relationship. The one-to-many relationship between each of the original tables with the new
table creates the many-to-many relationship between the two original tables.

In some situations, no other columns will be required in the new table. The other columns in the
WorksIn table would be those columns that depend on both the employee and the department, if such
columns existed. One possibility, for example, would be the date the department hired the employee
because it depends on both the employee and the department.

If each employee works in a single department and each department has only one employee, the relation-
ship between employees and departments is one-to-one. (In practice, such relationships are rare.) The sim-
plest way to implement a one-to-one relationship is to treat it as a one-to-many relationship. Which table is
the “one” part of the relationship, and which table is the “many” part? Sometimes looking ahead helps. For
example, you might ask this question: If the relationship changes in the future, is it more likely that one
employee will work in many departments or that one department will hire several employees rather than just
one? If your research determines that it is more likely that a department will hire more than one employee,
you would make the Employee table the “many” part of the relationship. If both situations might happen, you
could treat the relationship as many-to-many. If neither situation is likely to occur, you could arbitrarily
choose the “many” part of the relationship.

Normalize the Tables
After establishing the relationships between the entities, the next task is to normalize each table, with the
target being third normal form. (The target is actually fourth normal form, but careful planning in the early
phases of the normalization process usually rules out the need to consider fourth normal form.)

Identify All Keys
For each table, you must identify the primary key and any alternate keys, secondary keys, and foreign keys.
In the database containing information about employees and departments, you already determined the pri-
mary keys for each table in an earlier step.

Recall that an alternate key is a column or collection of columns that could have been chosen as a pri-
mary key but was not. It is not common to have alternate keys; if they do exist and the system must enforce
their uniqueness, however, you should note them. You usually implement this restriction by creating a unique
index on the field. If there are any secondary keys (columns that are of interest strictly for the purpose of
retrieval), you should represent them at this point. If a user were to indicate, for example, that rapidly
retrieving an employee record based on his or her last name was important, you would designate the
LastName column as a secondary key. You usually create a nonunique index for each secondary key.

In many ways, the foreign key is the most important key because it is through foreign keys that you cre-
ate relationships between tables and enforce certain types of integrity constraints in a database. Remember
that a foreign key is a column (or collection of columns) in one table that is required to match the value of
the primary key for some row in another table or is required to be null. (This property is called referential
integrity.) Consider, for example, the following tables:

Department (DepartmentNum, Name, Location)

Employee (EmployeeNum, LastName, FirstName, Street, City,

State, Zip, WageRate, SocSecNum, DepartmentNum)

As before, the DepartmentNum column in the Employee table indicates the department in which the
employee works. In this case, you say that the DepartmentNum column in the Employee table is a foreign key
that identifies Department. Thus, the number in this column on any row in the Employee table must be a
department number that is already in the database or the value must be set to null. (Null indicates that, for
whatever reason, the employee is not assigned to a department.)

Types of Primary Keys

There are three types of primary keys that you can use in your database design. A natural key (also called a
logical key or an intelligent key) is a primary key that consists of a column that uniquely identifies an entity,
such as a person’s Social Security number, a book’s ISBN (International Standard Book Number), a product’s
UPC (Universal Product Code), or a vehicle’s VIN (Vehicle Identification Number). These characteristics are
inherent to the entity and visible to users. If a natural key exists for an entity, you usually can select it as the
primary key.

186

Chapter 6

If a natural key does not exist for an entity, it is common to create a primary key column that will
be unique and accessible to users. The primary keys in the Premiere Products database (RepNum,
CustomerNum, OrderNum, and PartNum) were created to serve as the primary keys. A column that you
create for an entity to serve solely as the primary key and that is visible to users is called an artificial key.

The final type of primary key, which is called a surrogate key (or a synthetic key), is a system-generated
primary key that is usually hidden from users. When a DBMS creates a surrogate key, it is usually an auto-
matic numbering data type, such as the Access AutoNumber data type. For example, suppose you have the
following relation for customer payments:

Payment (CustomerNum, PaymentDate, PaymentAmount)

Because a customer can make multiple payments, CustomerNum cannot be the primary key. Assuming
it is possible for a customer to make more than one payment on a particular day, the combination of
CustomerNum and PaymentDate also cannot be the primary key. Adding an artificial key, such as
PaymentNum, means you would have to assign a PaymentNum every time the customer makes a payment.
Adding a surrogate key, such as PaymentId, would make more sense because the DBMS will automatically
assign a unique value to each payment. Users do not need to be aware of the PaymentId value, however.

Database Design Language (DBDL)
To carry out the design process, you must have a mechanism for representing tables and keys. The standard
notation you have used thus far for representing tables is fine, but it does not go far enough—there is no way
to represent alternate, secondary, or foreign keys. Because the information-level design method is based on
the relational model, it is desirable to represent tables with the standard notation. To do so, you will add
additional features capable of representing additional information. One approach to doing this is called Data-
base Design Language (DBDL). Figure 6-1 shows sample DBDL documentation for the Employee table.

In DBDL, you represent a table by listing all columns and then underlining the primary key. Below the
table definition, you list any alternate keys, secondary keys, and foreign keys, using the abbreviations AK, SK,
and FK, respectively. For alternate and secondary keys, you can list the column or collection of columns by
name. In the case of foreign keys, however, you must also represent the table whose primary key the foreign
key must match. In DBDL, you write the foreign key followed by an arrow pointing to the table that the for-
eign key identifies.

The rules for defining tables and their keys using DBDL are as follows:

• Tables (relations), columns (attributes), and primary keys are written by first listing the table
name and then, in parentheses, listing the columns that make up the table. The column(s) that
make up the primary key are underlined.

• Alternate keys are identified by the abbreviation AK, followed by the column(s) that make up
the alternate key.

• Secondary keys are identified by the abbreviation SK, followed by the column(s) that make up
the secondary key.

• Foreign keys are identified by the abbreviation FK, followed by the column(s) that make up the
foreign key. Foreign keys are followed by an arrow pointing to the table identified by the foreign
key. When several tables are listed, a common practice places the table containing the foreign
key below the table that the foreign key identifies, if possible.

Figure 6-1 shows that there is a table named Employee, containing the columns EmployeeNum,
LastName, FirstName, Street, City, State, Zip, WageRate, SocSecNum, and DepartmentNum. The primary
key is EmployeeNum. Another possible primary key is SocSecNum, which is listed as an alternate key.

Employeeƒ(EmployeeNum,ƒLastName,ƒFirstName,ƒStreet,ƒCity,ƒState,ƒZip,
ƒƒƒƒƒƒWageRate,ƒSocSecNum,ƒDepartmentNum)
ƒƒƒƒƒƒAKƒƒƒSocSecNum
ƒƒƒƒƒƒSKƒƒƒLastName
ƒƒƒƒƒƒFKƒƒƒDepartmentNumƒ ƒDepartmentƒ

FIGURE 6-1 DBDL for the Employee table

Database Design 2: Design Method

187

The LastName column is a secondary key, which allows you to retrieve data more efficiently based on
an employee’s last name. (You can add additional secondary key designations later as necessary.) The
DepartmentNum column is a foreign key that identifies the department number in the Department table
in which the employee works.

Entity-Relationship (E-R) Diagrams
A popular type of diagram that visually represents the structure of a database is the entity-relationship (E-R)
diagram. In an E-R diagram, rectangles represent the entities (tables). Foreign key restrictions determine
relationships between the tables, and these relationships are represented as lines joining the corresponding
rectangles.

There are several different styles of E-R diagrams currently in use. In this text, the style you will use is
called IDEF1X.

N O T E
IDEF stands for “Integrated Definition” and is the name for a family of modeling languages that began with a project of the U.S.
Air Force called Integrated Computer Aided Manufacturing. There are languages for such areas as activity modeling (IDEF0),
conceptual data modeling (IDEF1), simulation modeling (IDEF2), process modeling (IDEF3), and object-oriented software
design (IDEF4). The language in this family for logical data modeling is IDEF1X.

Consider the following database design written in DBDL:

Department (DepartmentNum, Name, Location)

Employee (EmployeeNum, LastName, FirstName, Street, City,

State, Zip, WageRate, SocSecNum, DepartmentNum)

AK SocSecNum

SK LastName, FirstName

FK DepartmentNum fi Department

The E-R diagram for the preceding database design appears in Figure 6-2.

The E-R diagram shown in Figure 6-2 has the following characteristics:

• A rectangle represents each entity in the E-R diagram—there is one rectangle for the
Department entity and a second rectangle for the Employee entity. The name of each
entity appears above the rectangle.

Department

Employee

EmployeeNum

DepartmentNum

Name
Location

LastName (SK)
FirstName (SK)
Street
City
State
Zip
WageRate
SocSecNum (AK)
DepartmentNum (FK)

Entities
are drawn as
rectangles

Dashed
line indicates the

relationship

Entity
names

Primary keys
appear above

the line

Other
columns appear
below the line

Dot
indicates the

“many” part of the
relationship

FIGURE 6-2 E-R diagram

188

Chapter 6

• The primary key for each entity appears above the line in the rectangle for each entity.
DepartmentNum is the primary key of the Department entity, and EmployeeNum is the
primary key of the Employee entity.

• The other columns in each entity appear below the line within each rectangle.
• The letters AK, SK, and FK appear in parentheses following the alternate key, secondary key,

and foreign key, respectively, in the Employee entity. (The Department entity does not have an
alternate, secondary, or foreign key.)

• For each foreign key, there is a line leading from the rectangle that corresponds to the table
being identified to the rectangle that corresponds to the table containing the foreign key. The
dot at the end of the line indicates the “many” part of the one-to-many relationship between the
Department and Employee entities. (In Figure 6-2, one department is related to many employ-
ees, so the dot is at the end of the line connected to the Employee entity.)

When you use an E-R diagram to represent a database, it visually illustrates all the information listed in
the DBDL. Thus, you would not also need to include the DBDL version of the design. There are other styles,
however, that do not include such information within the diagram. In that case, you should represent the
design with both the diagram and the DBDL.

Merge the Result into the Design
As soon as you have completed Steps 1 through 3 for a given user view, you can merge the results into the
cumulative design. If the view on which you have been working is the first user view, the cumulative design
will be identical to the design for the first user. Otherwise, you merge all the tables for this user with those
tables that are currently in the cumulative design.

Next, you combine tables that have the same primary key to form a new table. The new table has the
same primary key as those tables you have combined. The new table also contains all the columns from both
tables. In the case of duplicate columns, you remove all but one copy of the column. For example, if the
cumulative design already contains the following table:

Employee (EmployeeNum, LastName, FirstName, WageRate, SocSecNum, DepartmentNum)

and the user view you just completed contains the following table:

Employee (EmployeeNum, LastName, FirstName, Street, City, State, Zip)

you would combine the two tables because they have the same primary key. All the columns from both
tables are in the new table, but without any duplicate columns. Thus, LastName and FirstName appear only
once, even though they are in each table. The end result is as follows:

Employee (EmployeeNum, LastName, FirstName, WageRate, SocSecNum, DepartmentNum, Street, City,

State, Zip)

If necessary, you could reorder the columns at this point. For example, you might move the Street, City,
State, and Zip columns to follow the FirstName column, which is the more traditional arrangement of this
type of data. This change would give the following:

Employee (EmployeeNum, LastName, FirstName, Street, City, State, Zip, WageRate, SocSecNum,

DepartmentNum)

At this point, you need to check the new design to ensure that it is still in third normal form. If it is not,
you should convert it to third normal form before proceeding.

Figure 6-3 summarizes the process that is repeated for each user view until all user views have been
examined. At that point, the design is reviewed to resolve any problems that may remain and to ensure that it
can meet the needs of all individual users. After all user view requirements have been satisfied, the
information-level design is considered to be complete.

Database Design 2: Design Method

189

DATABASE DESIGN EXAMPLES

Now that you understand how to represent a database in DBDL and in an E-R diagram, you can examine the
requirements of another database, the Premiere Products database. In the process, you will see how a set of
requirements led to the database with which you have been working throughout this text.

E X A M P L E 1

Complete an information-level design for a database that satisfies the following constraints and user view
requirements for a company that stores information about sales reps, customers, parts, and orders.

User View 1 Requirements: For a sales rep, store the sales rep’s number, name, address, total commis-
sion, and commission rate.

User View 2 Requirements: For a customer, store the customer’s number, name, address, balance, and
credit limit. In addition, store the number and name of the sales rep who represents this customer. A sales
rep can represent many customers, but a customer must have exactly one sales rep. (A customer must have
a sales rep and cannot have more than one sales rep.)

User View 3 Requirements: For a part, store the part’s number, description, units on hand, item class,
number of the warehouse in which the part is located, and price. All units of a particular part are stored in
the same warehouse.

User View 4 Requirements: For an order, store the order number; order date; number, name, and
address of the customer that placed the order; and number of the sales rep who represents that customer. In
addition, for each line item within the order, store the part number and description, number of the part that
was ordered, and quoted price. The user also has supplied the following constraints:

a. Each order must be placed by a customer that is already in the Customer table.
b. There is only one customer per order.
c. On a given order, there is, at most, one line item for a given part. For example, part DR93 cannot

appear in several lines within the same order.
d. The quoted price might not match the current price in the Part table, allowing the company to sell

the same parts to different customers at different prices. The user wants to be able to change the
price for a part without affecting orders that are currently on file.

Step 1. Represent the user view as a collection of tables (relations).

Step 2. Normalize these tables.

Step 3. Represent all keys.

Step 4. Merge the result of the previous steps into the
cumulative design.

User view

Collection of tables

Collection of
normalized tables

Old cumulative design

New cumulative design

Collection of
normalized tables with

keys represented

FIGURE 6-3 Information-level design method

190

Chapter 6

What are the user views in Example 1? In particular, how should the design proceed if you are given
requirements that are not specifically stated in the form of user views? Sometimes you might encounter a
series of well-thought-out user views in a form that you can easily merge into the design. Other times you
might be given only a set of requirements, such as those described in Example 1. In another situation, you
might be given a list of reports and updates that a system must support. In addition to the requirements,
when you are able to interview users and document their needs before beginning the design process, you can
make sure that you understand the specifics of their user views prior to starting the design process. On the
other hand, you may have to take information as you get it and in whatever format it is provided.

When the user views are not clearly defined, you should consider each stated requirement as a separate
user view. Thus, you can think of each report or update transaction that the system must support, as well as
any other requirement stated in the user views, as an individual user view. In fact, even when the require-
ments are presented as user views, you may want to split a complex user view into smaller pieces and con-
sider each piece as a separate user view for the design process.

To transform each user view into DBDL, examine the requirements and create the necessary entities,
keys, and relationships.

User View 1 Requirements: For a sales rep, store the sales rep’s number, name, address, total
commission, and commission rate. You will need to create only one table to support this view:

Rep (RepNum, LastName, FirstName, Street, City, State,

Zip, Commission, Rate)

This table is in third normal form. Because there are no foreign, alternate, or secondary keys, the DBDL
representation of the table is the same as the relational model representation.

Notice that you have assumed the sales rep’s number (RepNum) is the Rep table’s primary key—this is a
reasonable assumption. Because the user did not provide this information, however, you would need to verify
its accuracy with the user. In each of the following requirements, you can assume the obvious column (cus-
tomer number, part number, and order number) is the primary key. Because you are working on the first
user view, the “merge” step of the design method will produce a cumulative design consisting of only the Rep
table, which is shown in Figure 6-4. This design is simple, so you do not need to represent it with an E-R
diagram.

User View 2 Requirements: Because the first user view was simple, you were able to create the necessary
table without having to complete each step mentioned in the information-level design method section.
The second user view is more complicated, however, so you will use all the steps to determine the tables.
(If you have already determined what the tables should be, you have a natural feel for the process. If so,
please be patient and work through the process.)

For a customer, store the customer’s number, name, address, balance, and credit limit. In addition, store
the number and name of the sales rep who represents this customer. You will take two different approaches
to this requirement, allowing you to see how they both can lead to the same result. The only difference
between the two approaches is the entities that you initially identify. In the first approach, suppose you iden-
tify two required entities for sales reps and customers. You would begin by listing the following two tables:

Rep (

Customer (

After determining the unique identifiers, you add the primary keys, which would give the following:

Rep (RepNum,

Customer (CustomerNum,

Rep (RepNum, LastName, FirstName, Street, City, State, Zip,
ƒƒƒƒ Commission, Rate)

FIGURE 6-4 Cumulative design after first user view

Database Design 2: Design Method

191

Adding columns for the properties of each of these entities would yield this:

Rep (RepNum, LastName, FirstName

Customer (CustomerNum, CustomerName, Street, City, State,

Zip, Balance, CreditLimit

Finally, you deal with the relationship: one sales rep is related to many customers. To implement this
one-to-many relationship, include the key of the “one” table as a foreign key in the “many” table. In this
case, you would include the RepNum column in the Customer table. Thus, you would have the following:

Rep (RepNum, LastName, FirstName)

Customer (CustomerNum, CustomerName, Street, City, State,

Zip, Balance, CreditLimit, RepNum)

Both tables are in third normal form, so you can move on to representing the keys. Before doing that,
however, consider another approach that you could have used to determine the tables.

Suppose you did not realize that there were really two entities, and you created only a single table for
customers. You would begin by listing the table as follows:

Customer (

Adding the unique identifier as the primary key would give this table:

Customer (CustomerNum,

Finally, adding the other properties as additional columns would yield the following:

Customer (CustomerNum, CustomerName, Street, City, State,

Zip, Balance, CreditLimit, RepNum, LastName, FirstName)

A problem occurs, however, when you examine the functional dependencies that exist in the Customer
entity. The CustomerNum column determines all the other columns, as it should. However, the RepNum col-
umn determines the LastName and FirstName columns, but RepNum is not an alternate key. This table is in
second normal form because no column depends on a portion of the primary key, but it is not in third nor-
mal form. Converting the table to third normal form produces the following two tables:

Customer (CustomerNum, CustomerName, Street, City, State,

Zip, Balance, CreditLimit, RepNum)

Rep (RepNum, LastName, FirstName)

Notice that these are the same tables you determined with the first approach—it just took a little longer
to get there.

Besides the obvious primary keys, CustomerNum for Customer and RepNum for Rep, the Customer table
now contains a foreign key, RepNum. There are no alternate keys, nor did the requirements state anything
that would require a secondary key. If there were a requirement to retrieve the customer based on the cus-
tomer’s name, for example, you would probably choose to make CustomerName a secondary key.

The next step is to merge these two tables into the cumulative design. You could now represent the Rep
table in DBDL in preparation for merging these two tables into the existing cumulative design. Looking ahead,
however, you see that because this table has the same primary key as the Rep table from the first user view,
you can merge the two tables to form a single table that has the common column RepNum as its primary key
and that contains all the other columns from both tables without duplication. For this second user view, the
only columns in the Rep table other than the primary key are LastName and FirstName. These columns were
already in the Rep table from the first user view that you added to the cumulative design. Thus, you do not
need to add anything to the Rep table that already appears in the cumulative design. The cumulative design
now contains the Rep and Customer tables shown in Figure 6-5.

192

Chapter 6

User View 3 Requirements: Like the first user view, this one poses no special problems. For a part,
store the part’s number, description, units on hand, item class, number of the warehouse in which the
part is located, and price. Only one table is required to support this user view:

Part (PartNum, Description, OnHand, Class, Warehouse, Price)

This table is in third normal form. The DBDL representation is identical to the relational model
representation.

Because PartNum is not the primary key of any table you have already encountered, merging this
table into the cumulative design produces the design shown in Figure 6-6, which contains the tables Rep,
Customer, and Part.

User View 4 Requirements: This user view is more complicated, and you can approach it in several
ways. For an order, store the order number; order date; number, name, and address of the customer that
placed the order; and number of the sales rep who represents that customer. In addition, for each line item
within the order, store the part number and description, number of the part that was ordered, and quoted
price. Suppose that you decide you need to create only a single entity for orders. You might create the
following table:

Orders (

Customer

CustomerNum

CustomerName
Street
City
State
Zip
Balance
CreditLimit
RepNum (FK)

Rep

RepNum

LastName
FirstName
Street
City
State
Zip
Commission
Rate

Customer
entity

Rep entity

Foreign key

“Many”
part of the

relationship

Relationship

FIGURE 6-5 Cumulative design after second user view

Rep

RepNum

LastName
FirstName
Street
City
State
Zip
Commission
Rate

Customer

CustomerNum

CustomerName
Street
City
State
Zip
Balance
CreditLimit
RepNum (FK)

Part

PartNum

Description
OnHand
Class
Warehouse
Price

Part
entity

No relationship
exists between the Part entity

and other entities at
this point

FIGURE 6-6 Cumulative design after third user view

Database Design 2: Design Method

193

Because order numbers uniquely identify orders, you would add the OrderNum column as the primary
key, giving this table:

Orders (OrderNum,

Examining the various properties of an order, such as the date, customer number, and so on, as listed in
the requirements, you would add the appropriate columns, giving the following:

Orders (OrderNum, OrderDate, CustomerNum, CustomerName,

Street, City, State, Zip, RepNum,

What about the fact that you are supposed to store the part number, description, number ordered, and
quoted price for each order line in this order? One way of doing this would be to include all these columns
within the Orders table as a repeating group (because an order can contain many order lines). This would
yield the following:

Orders (OrderNum, OrderDate, CustomerNum, CustomerName,

Street, City, State, Zip, RepNum, (PartNum, Description,

NumOrdered, QuotedPrice))

At this point, you have a table that contains all the necessary columns. Now you must convert this table
to an equivalent collection of tables that are in third normal form. Because this table is not in first normal
form, you would remove the repeating group and expand the primary key to produce the following:

Orders (OrderNum, OrderDate, CustomerNum, CustomerName, Street,

City, State, Zip, RepNum, PartNum, Description, NumOrdered,

QuotedPrice)

In the new Orders table, you have the following functional dependencies:

OrderNum fi OrderDate, CustomerNum, CustomerName, Street,

City, State, Zip, RepNum

CustomerNum fi CustomerName, Street, City, State, Zip, RepNum

PartNum fi Description

OrderNum, PartNum fi NumOrdered, QuotedPrice

N O T E
Certainly, the combination of OrderNum and PartNum functionally determines all attributes that OrderNum alone would deter-
mine. In addition, the combination determines all attributes that PartNum alone would determine. Adding all these other attri-
butes after the combination of OrderNum and PartNum, while technically correct, would only clutter the list of dependencies. In
general, you should list an attribute after the smallest possible combination that determines it. Because you can determine
Description by PartNum alone, for example, you should list Description after PartNum, but you should not list Description after
the combination of OrderNum and PartNum.

From the discussion of the quoted price in the requirement, you should note that a quoted price depends
on both the order number and the part number, not on the part number alone. Because some columns
depend on only a portion of the primary key, the Orders table is not in second normal form. Converting to
second normal form would yield the following:

Orders (OrderNum, OrderDate, CustomerNum, CustomerName,

Street, City, State, Zip, RepNum)

Part (PartNum, Description)

OrderLine (OrderNum, PartNum, NumOrdered, QuotedPrice)

The Part and OrderLine tables are in third normal form. The Orders table is not in third normal form
because CustomerNum determines CustomerName, Street, City, State, Zip, and RepNum; CustomerNum is

194

Chapter 6

not an alternate key, however. Converting the Orders table to third normal form and leaving the other tables
as written would produce the following design for this requirement:

Orders (OrderNum, OrderDate, CustomerNum)

Customer (CustomerNum, CustomerName, Street,

City, State, Zip, RepNum)

Part (PartNum, Description)

OrderLine (OrderNum, PartNum, NumOrdered, QuotedPrice)

You can represent this collection of tables in DBDL and then merge them into the cumulative design.
Again, however, you can look ahead and see that you can merge this Customer table with the existing
Customer table and this Part table with the existing Part table. In both cases, you will not need to add
anything to the Customer and Part tables already in the cumulative design, so the Customer and Part
tables for this user view will not affect the overall design. The DBDL representation for the Orders and
OrderLine tables appears in Figure 6-7.

At this point, you have completed the process for each user view. Now it is time to review the design to
make sure it will fulfill all the stated requirements. If the design contains problems or new information arises,
you must modify the design to meet the new user views. Based on the assumption that you do not have to
modify the design further, the final information-level design appears in Figure 6-8.

Orders (OrderNum, OrderDate, CustomerNum)
FK CustomerNum Customer

OrderLine (OrderNum, PartNum, NumOrdered, QuotedPrice)
FK OrderNum Orders
FK PartNum Part

FIGURE 6-7 DBDL for Orders and OrderLine tables

OrderLine

OrderNum (FK)
PartNum (FK)

NumOrdered
QuotedPrice

Rep

RepNum

LastName
FirstName
Street
City
State
Zip
Commission
Rate

Customer

CustomerNum

CustomerName
Street
City
State
Zip
Balance
CreditLimit
RepNum (FK)

Part

PartNum

Description
OnHand
Class
Warehouse
Price

Orders

OrderNum

OrderDate
CustomerNum (FK)

Solid line
indicates identifying

relationship

Dashed line
indicates nonidentifying

relationship

Shape indicates
that order lines can be identified

only through relationships
with other entities

Columns in this
primary key are also

foreign keys

Orders
entity OrderLine

entity

FIGURE 6-8 Final information-level design

Database Design 2: Design Method

195

There are some differences between the E-R diagram shown in Figure 6-8 and the ones you have seen so
far. The OrderLine entity appears as a rectangle with curved corners. Further, the relationships from Orders
to OrderLine and from Part to OrderLine are represented with solid lines instead of dashed lines.

Both of these differences are due to the fact that the primary key of the OrderLine entity contains for-
eign keys. In the OrderLine entity, both columns that compose the primary key (OrderNum and PartNum)
are foreign keys. Thus, to identify an OrderLine, you need to know the order and the part to which the order
corresponds.

This situation is different from one in which the primary key does not contain one or more foreign keys.
Consider the Customer table, for example, in which the primary key is CustomerNum, which is not a foreign
key. The Customer table does contain a foreign key, RepNum, which identifies the Rep table. To identify a
customer, however, all you need is the customer number; you do not need to know the rep number. In other
words, you do not need to know the sales rep to which the customer corresponds.

An entity that does not require a relationship to another entity for identification is called an independent
entity, and one that does require such a relationship is called a dependent entity. Thus, the Customer entity
is independent, whereas the OrderLine entity is dependent. Independent entities have square corners in the
diagram, and dependent entities have rounded corners.

A relationship that is necessary for identification is called an identifying relationship, whereas one that is
not necessary is called a nonidentifying relationship. Thus, the relationship between the Rep and Customer
entities is nonidentifying, and the relationship between the Orders and OrderLine entities is identifying. In an
E-R diagram, a solid line represents an identifying relationship and a dashed line represents a nonidentifying
relationship.

E X A M P L E 2

Ray Henry, the owner of a bookstore chain named Henry Books, gathers and organizes information about
branches, publishers, authors, and books. Each branch has a number that uniquely identifies the branch. In
addition, Ray tracks the branch’s name and location. Each publisher has a code that uniquely identifies the
publisher. In addition, Ray tracks the publisher’s name and city. The only user of the Book database is Ray,
but you do not want to treat the entire project as a single user view. Ray has provided you with all the
reports the system must produce, and you will treat each report as a user view. Ray has given you the follow-
ing requirements:

User View 1 Requirements: For each publisher, list the publisher code, publisher name, and city in
which the publisher is located.

User View 2 Requirements: For each branch, list the number, name, and location.
User View 3 Requirements: For each book, list its code, title, publisher code, publisher name, and

whether it is a paperback.
User View 4 Requirements: For each book, list its code, title, and type. In addition, list the book’s author

(s) and the name(s) of the author(s). If a book has more than one author, all names must appear in the order
in which they are listed on the book’s cover. The author order is not always alphabetical.

User View 5 Requirements: For each branch, list its number and name. In addition, for each copy of a
book in the branch, list the code and title of the book the condition of the book, and the price. A branch may
have multiple copies of the same book, each with a different quality (condition) and price. The copies of the
same book in a branch are assigned numbers to distinguish one copy from another.

User View 6 Requirements: For each book, list its code and title. In addition, for each branch that cur-
rently has a copy of the book in stock, list the branch number, copy number, quality, and price of the book.

To transform each user view into DBDL, examine the requirements and create the necessary entities,
keys, and relationships.

User View 1 Requirements: For each publisher, list the publisher code, publisher name, and city in
which the publisher is located.

The only entity in this user view is Publisher.

Publisher (PublisherCode, PublisherName, City)

This table is in third normal form; the primary key is PublisherCode. There are no alternate or foreign
keys. Assume Ray wants to be able to access a publisher rapidly on the basis of its name. You will need to
specify the PublisherName column as a secondary key.

196

Chapter 6

Because this is the first user view, there is no previous cumulative design. Thus, at this point, the new
cumulative design will consist only of the design for this user view, as shown in Figure 6-9. There is no need
for an E-R diagram at this point.

User View 2 Requirements: For each branch, list the number, name, and location.
The only entity in this user view is Branch.

Branch (BranchNum, BranchName, BranchLocation)

This table is in third normal form. The primary key is BranchNum, and there are no alternate or
foreign keys. Ray wants to be able to access a branch rapidly on the basis of its name, so you will make the
BranchName column a secondary key.

Because there is no table in the cumulative design with the BranchNum column as its primary key, you
can add the Branch table to the cumulative design during the merge step, as shown in Figure 6-10. Again,
there is no need for an E-R diagram with this simple design.

User View 3 Requirements: For each book, list its code, title, publisher code and name, and whether it is
paperback.

To satisfy this user requirement, you will need to create entities for publishers and books and establish a
one-to-many relationship between them. This leads to the following:

Publisher (PublisherCode, PublisherName)

Book (BookCode, Title, Paperback, PublisherCode)

The PublisherCode column in the Book table is a foreign key identifying the publisher. Merging these
tables with the ones you already created does not add any new columns to the Publisher table, but it does
add columns to the Book table. The result of merging the Book table with the cumulative design is shown in
Figure 6-11. Assuming Ray will need to access books based on their titles, you will designate the Title column
as a secondary key.

Publisher (PublisherCode, PublisherName, City)
SK PublisherName

FIGURE 6-9 DBDL for Book database after first user view

Publisher (PublisherCode, PublisherName, City)
SK PublisherName

Branch (BranchNum, BranchName, BranchLocation)
SK BranchName

FIGURE 6-10 DBDL for Book database after second user view

Publisher

Publisher Code

Publisher Name (SK)
City

Branch

BranchNum

BranchName (SK)
BranchLocation

Book

BookCode

Title (SK)
Paperback
PublisherCode (FK)

Publisher
entity

Book
entity

Relationship
Foreign key

Branch entity
(not related to other

entities at this
point)Secondary

keys

FIGURE 6-11 Cumulative design after third user view

Database Design 2: Design Method

197

User View 4 Requirements: For each book, list its code, title, and type. In addition, list the book’s
author(s) and the name(s) of the author(s). If a book has more than one author, all names must appear
in the order in which they are listed on the book’s cover. The author order is not always alphabetical.

There are two entities in the user view for books and authors. The relationship between them is many-
to-many (one author can write many books and one book can have many authors). Creating tables for each
entity and the relationship between them gives the following:

Author (AuthorNum, AuthorLast, AuthorFirst)

Book (BookCode, Title, Type)

Wrote (BookCode, AuthorNum)

The third table is named Wrote because it represents the fact that an author wrote a particular book. In
this user view, you need to be able to list the authors for a book in the appropriate order. To accomplish this
goal, you will add a sequence number column to the Wrote table. This completes the tables for this user
view, which are as follows:

Author (AuthorNum, AuthorLast, AuthorFirst)

Book (BookCode, Title, Type)

Wrote (BookCode, AuthorNum, Sequence)

The Author and Wrote tables are new; merging the Book table adds nothing new. Because it may be
important to find an author based on the author’s last name, the AuthorLast column is a secondary key. The
result of the merge step is shown in Figure 6-12.

User View 5 Requirements: For each branch, list its number and name. In addition, for each copy of a
book in the branch, list the code and title of the book, the quality of the book, and the price. A branch might
have multiple copies of the same book, each with a different quality and price. The copies of the same book
in a branch are assigned numbers to distinguish one copy from another.

Suppose you decide that the only entity mentioned in this requirement contains information about
branches. You would create the following table:

Branch (

You would then add the BranchNum column as the primary key, producing the following:

Branch (BranchNum,

The other columns include the branch name as well as the book code, book title, copy number, quality,
and price. Because a branch will have several books, the last five columns will form a repeating group. Thus,
you have the following:

Branch (BranchNum, BranchName, (BookCode, Title, CopyNum, Quality, Price))

Book

BookCode

Title (SK)
Paperback
Type
PublisherCode (FK)

Wrote

BookCode (FK)
AuthorNum (FK)

Sequence

Publisher

PublisherCode

PublisherName (SK)
City

Branch

BranchNum

BranchName (SK)
BranchLocation

Author

AuthorNum

AuthorLast (SK)
AuthorFirst

FIGURE 6-12 Cumulative design after fourth user view

198

Chapter 6

You convert this table to first normal form by removing the repeating group and expanding the primary
key. This gives the following:

Branch (BranchNum, BranchName, BookCode, Title, CopyNum, Quality, Price)

Q & A

Question: Why is CopyNum part of the primary key?
Answer: A branch can have more than one copy of the same book in stock. The Branch entity, as currently
designed, could include multiple rows with the same branch number and the same book code. To uniquely
identify a specific book, you also need the copy number. Thus, CopyNum must be part of the primary key.

In this table, you have the following functional dependencies:

BranchNum fi BranchName

BookCode fi Title

BranchNum, BookCode, CopyNum fi Quality, Price

The table is not in second normal form because some columns depend on just a portion of the primary
key. Converting to second normal form gives the following:

Branch (BranchNum, BranchName)

Book (BookCode, Title)

Copy (BranchNum, BookCode, CopyNum, Quality, Price)

You can name the new table Copy because it represents information about individual copies of books. In
the Copy table, the BranchNum column is a foreign key that identifies the Branch table, and the BookCode
column is a foreign key that identifies the Book table. In other words, for a row to exist in the Copy table,
both the branch number and the book code must already be in the database.

You can merge this Branch table with the existing Branch table without adding any new columns or rela-
tionships to the database, and you can merge this Book table with the existing Book table without adding any
new columns or relationships to the database. After adding the Copy table to the existing cumulative design,
you have the design shown in Figure 6-13.

Book

BookCode

Title (SK)
Paperback
Type
PublisherCode (FK)

Wrote

BookCode (FK)
AuthorNum (FK)

Sequence

Copy

BookCode (FK)
BranchNum (FK)

Quality
Price

Publisher

PublisherCode

PublisherName (SK)
City

Branch

BranchNum

BranchName (SK)
BranchLocation

Author

AuthorNum

AuthorLast (SK)
AuthorFirst

CopyNum

FIGURE 6-13 Cumulative design after fifth user view

Database Design 2: Design Method

199

N O T E
When you are using a software tool to produce these diagrams, the software may change the order of the columns that make
up the primary key from the order you intended. For example, the diagram in Figure 6-13 indicates that the primary key for
the Copy table is BookCode, BranchNum, and CopyNum, even though you intended it to be BranchNum, BookCode, and
CopyNum. This change in order is not a problem. What is significant is the collection of fields that make up the primary key,
not the order in which they appear.

Q & A

Question: How would the design for this user view turn out if you began with two entities, Branch and Book,
instead of just the single entity Branch?
Answer: In the first step, you would create the following tables:

Branch (

Book (
Adding the primary keys would produce the following:
Branch (BranchNum,

Book (BookCode,
Adding the other columns would produce the following:
Branch (BranchNum, BranchName)

Book (BookCode, Title)
Finally, you have to implement the relationship between the Branch and Book tables. Because a branch

can have many books and a book can be in stock at many branches, the relationship is many-to-many. To
implement a many-to-many relationship, you add a new table whose primary key is the combination of the
primary keys of the other tables. Doing this, you produce the following:

Branch (BranchNum, BranchName)

Book (BookCode, Title)

Copy (BranchNum, BookCode)
Finally, you add any column that depends on both the BranchNum and BookCode columns to the Copy

table, which would appear to give the following:
Branch (BranchNum, BranchName)

Book (BookCode, Title)

Copy (BranchNum, BookCode, Quality, Price)
There is a problem with the Copy table, however. For the same reasons discussed earlier, the combina-

tion of BranchNum and BookCode is not sufficient for the primary key. To uniquely identify a row in this
table also requires the CopyNum field. Thus, the correct collection of tables is:

Branch (BranchNum, BranchName)

Book (BookCode, Title)

Copy (BranchNum, BookCode, CopyNum, Quality, Price)
As you can see, you end up with exactly the same collection of tables as before, which illustrates a point

made earlier: There is more than one way of arriving at the correct result.

User View 6 Requirements: For each book, list its code and title. In addition, for each branch that cur-
rently has a copy of the book in stock, list the branch number, copy number, quality, and price of the book.

This user view leads to precisely the same set of tables that were created for User View 5.
You have satisfied all the requirements, and the design shown in Figure 6-13 represents the complete

information-level design.

200

Chapter 6

Q & A

Question: In the Wrote table, Sequence is not part of the primary key. In the Copy table, CopyNum is part of
the primary key. These fields seem to play similar roles in tables. Why is there a difference?
Answer: In the Wrote table, there will only be one row with a given book code and author number. The
sequence number simply helps ensure that the authors for a given book appear in the correct order when
listed in queries and reports. It is not necessary in distinguishing one row from another. On the other hand,
in the Copy table, there can be multiple rows with the same branch number and book code combination, and
with the same or a different condition and price. The copy number is essential to distinguish one copy of a
given book at a given branch from another.

PHYSICAL-LEVEL DESIGN

After the information-level design is complete, you are ready to begin the physical-level design process by
implementing the design for the specific DBMS selected by the organization.

Because most DBMSs are relational and the final information-level design already exists in a relational
format, producing the design for the chosen DBMS is usually an easy task—you simply use the same tables
and columns. At this point, you also need to supply format details, such as specifying that the CustomerNum
field will store characters and that its length is three.

Most DBMSs support primary, alternate, secondary, and foreign keys. If you are using a system that sup-
ports these keys, you can use these features to implement the various types of keys that are listed in the final
DBDL version of the information-level design. When working in DBMSs that do not support these keys, you
need to devise a scheme for handling them to ensure the uniqueness of primary and alternate keys. In addi-
tion, you must ensure that values in foreign keys are legitimate; they must match the value of the primary
key in some row in another table. For secondary keys, you must ensure that it is possible to retrieve data
rapidly on the basis of a value of the secondary key.

For instance, suppose you are implementing the Employee table shown in Figure 6-1 and it has the fol-
lowing DBDL:

Employee (EmployeeNum, LastName, FirstName, Street, City,

State, Zip, WageRate, SocSecNum, DepartmentNum)

AK SocSecNum

SK LastName

FK DepartmentNum fi Department

The Employee table uses the EmployeeNum column as its primary key, the SocSecNum column as its
alternate key, the LastName column as its secondary key, and the DepartmentNum column as a foreign key
that matches the DepartmentNum column in the Department table. You must find a way for the DBMS to
ensure that the following conditions hold true:

• Employee numbers are unique.
• Social Security numbers are unique.
• Access to an employee’s record on the basis of his or her last name is rapid. (This restriction

differs in that it merely states that a certain type of activity must be efficient, but it is an impor-
tant restriction nonetheless.)

• Department numbers must match the number of a department currently in the database.

When the DBMS cannot enforce these restrictions, who should enforce them? Two choices are possible:
the users of the system or the programmers. If users must enforce these restrictions, they must be careful not
to enter two employees with the same EmployeeNum, an employee with an invalid DepartmentNum, and so
on. Clearly, this type of enforcement would put a tremendous burden on users.

Database Design 2: Design Method

201

When the DBMS cannot enforce these restrictions, the appropriate place for the enforcement to take
place is in the programs written to access the data in the database. Thus, the responsibility for this enforce-
ment should fall on the programmers who write these programs. Incidentally, users must update the data
through these programs and not through the built-in features of the DBMS in such circumstances; otherwise,
the users would be able to bypass all the controls you are attempting to program into the system.

To enforce restrictions, programmers must include logic in their programs. With respect to the DBDL for
the Employee table, this means the following:

1. Before an employee is added, the program should determine and process three restrictions:
a. Determine whether an employee with the same EmployeeNum is already in the database. If

so, the program should reject the update.
b. Determine whether an employee with the same Social Security number is already in the

database. If so, the program should reject the update.
c. Determine that the inputted department number matches a department number that is

already in the database; if it does not, the program should reject the update.
2. When a user changes the department number of an existing employee, the program should

check to make sure the new number matches a department number that is already in the data-
base. If it does not, the program should reject the update.

3. When a user deletes a department number, the program should verify that no employees work in
the department. If the employees do work in the department and the program allows the dele-
tion of the department, these employees will have invalid department numbers. In this case, the
program should reject the update.

Programs must perform these verifications efficiently; in most systems, this means the database adminis-
trator will create indexes for each column (or combination of columns) that is a primary key, an alternate
key, a secondary key, or a foreign key.

TOP-DOWN VERSUS BOTTOM-UP DESIGN

Another way to design a database is to use a bottom-up design method in which specific user requirements
are synthesized into a design. The opposite of a bottom-up design method is a top-down design method,
which begins with a general database design that models the overall enterprise and repeatedly refines the
model to achieve a design that supports all necessary applications. The original design and refinements are
often represented with E-R diagrams.

Both strategies have their advantages. The top-down approach lends a more global feel to the project; you
at least have some idea where you are headed, which is not so with a strictly bottom-up approach. On the
other hand, a bottom-up approach provides a rigorous way of tackling each separate requirement and ensur-
ing that it will be met. In particular, tables are created to satisfy each user view or requirement precisely.
When these tables are correctly merged into the cumulative design, you can be sure that you have satisfied
the requirements for each user view.

The ideal strategy combines the best of both approaches. Assuming the design problem is sufficiently
complicated to warrant the benefits of the top-down approach, you could begin the design process for Pre-
miere Products using a top-down approach by completing the following steps:

1. After gathering data on all user views, review them without attempting to create any tables. In
other words, try to get a general feel for the task at hand.

2. From this information, determine the basic entities of interest to the organization (sales reps,
customers, orders, and parts). Do not be overly concerned that you might miss an entity. If you
do miss one, it will show up in later steps of the design method.

3. For each entity, start a table. For example, if the entities are sales reps, customers, orders, and
parts, you will have the following:

Rep (

Customer (

Orders (

Part (

202

Chapter 6

4. Determine and list a primary key for each table. In this example, you might have the following:
Rep (RepNum,

Customer (CustomerNum,

Orders (OrderNum,

Part (PartNum,

5. For each one-to-many relationship you can identify among these entities, optionally create and
document an appropriate foreign key. For example, if there is a one-to-many relationship
between the Rep and Customer tables, add the foreign key RepNum to the Customer table. If
you omit this step or fail to list any foreign keys, you will usually find the foreign keys when you
examine the individual user views later.

After completing the steps for a top-down approach, you can then apply the bottom-up method for
examining individual user views. As you design each user view, keep in mind the tables you have created in
the initial top-down approach and their keys. When you need to determine the primary key for a table, look
for a primary key in your cumulative design. When it is time to determine a foreign key, check the entity’s
primary key to see if a match exists in the cumulative design. In either case, if the primary key already
exists, use the existing name as a foreign key to ensure that you can merge the tables properly. At the end of
the design process, you can consider removing any tables that do not contain columns and that have no for-
eign keys matching them.

Adding these steps to the process brings the benefits of the top-down approach to the approach you have
been using. As you proceed through the design process for the individual user views, you will have a general
idea of the overall picture.

SURVEY FORM

When designing a database, you might find it helpful to design a survey form to obtain the required informa-
tion from users. You can ask users to complete the form, or you may want to complete the form yourself
during an interview with the user. Before beginning the interview, you can identify all existing data by view-
ing various reports, documents, and so on. In any case, it is imperative that the completed survey form con-
tain all the information necessary for the design process.

To be truly valuable to the design process, the survey form must contain the following information:

• Entity information. For each entity (reps, customers, parts, and so on), record a name and
description and identify any synonyms for the entity. For example, at Premiere Products, your
survey might reveal that what one user calls “parts” another user calls “products.” In addition,
record any general information about the entity, such as its use within the organization.

• Attribute (column) information. For each attribute of an entity, list its name, description,
synonyms, and physical characteristics (such as being 20 characters long and alphanumeric or a
number with five digits), along with general information concerning its use. In addition, list any
restrictions on values and the place from which the values for the item originate. (For example,
the values might originate from time cards or from orders placed by customers or be computed
from values from other attributes, such as when subtracting the balance from the credit limit to
obtain available credit). Finally, list any security restrictions that apply to the attribute.

• Relationships. For any relationship, the survey form should include the entities involved, the
type of relationship (one-to-one, one-to-many, or many-to-many), the significance of the rela-
tionship (that is, what determines when two objects are related), and any restrictions on the
relationship.

• Functional dependencies. The survey form should include information concerning the func-
tional dependencies that exist among the columns. To obtain this information, you might ask the
user a question such as this: If you know a particular employee number, can you establish other
information, such as the name? If so, you can determine that the name is functionally depen-
dent on the employee number. Another question you might ask is this: Do you know the number
of the department to which the employee is assigned? If so, you can determine that the depart-
ment number is functionally dependent on the employee number. If a given employee can be
assigned to more than one department, you would not know the department number and the
department number would not be dependent on the employee number. Users probably will not

Database Design 2: Design Method

203

understand that term functional dependency; therefore, it is important to ask the right questions
so that you can identify any functional dependencies. An accurate list of functional dependen-
cies is absolutely essential to the design process.

• Processing information. The survey form should include a description of the manner in which
the various types of processing (updates to the database, reports that must be produced, and so
on) are to take place. To obtain this information, you would pose questions such as these:

• How exactly is the report to be produced?
• Where do the entries on the report come from?
• How are the report entries calculated?
• When a user enters a new order, from where does the data come?
• Which entities and columns must be updated and how?

In addition, you need to obtain estimates on processing volumes by asking questions such as these:

• How often is the report produced?
• On average, how many pages or screens is the report?
• What is the maximum length of the report?
• What is the maximum number of orders the system receives per day?
• What is the average number of orders the system receives per day?
• What is the maximum number of invoices the system prints per day?
• What is the average number of invoices the system prints per day?

OBTAINING INFORMATION FROM EXISTING DOCUMENTS

Existing documents can often furnish helpful information concerning the database design. You need to take
an existing document, like the invoice for the company named Holt Distributors shown in Figure 6-14, and
determine the tables and columns that would be required to produce the document.

B/OOrder

6
4

Ship Item Number

AT414
BT222

Description

$42.00
$51.00

Price

Lounge Chair
Arm Chair

Freight

Amount

$210.00
$204.00

$42.50

Pay This Amount

10/15/2013 Invoice 11025
HOLT DISTRIBUTORS
146 NELSON PLACE
BRONSTON, MI 49802

SOLD SHIP
TO: Smith Rentals TO: A & B Supplies

153 Main St. 2180 Halton Pl.
Suite 102 Arendville, MI 49232
Grandville, MI 49494

Customer P.O. No. Order Date Sales Rep
1354 PO3351 10/02/2013 10-Brown, Sam

Quantity

$456.50

Our Order No.
12424

Ship Date
10/15/2013

5
4

1
0

FIGURE 6-14 Invoice for Holt Distributors

204

Chapter 6

The first step in obtaining information from an existing document is to identify and list all columns and
give them appropriate names. Figure 6-15 lists the columns you can determine from the invoice shown in
Figure 6-14.

The names the user chose for many of these columns might differ from the names you select, but this dif-
ference is not important at this stage. After interviewing the user, you might learn that a required column
was not apparent on the document you reviewed. For example, the shipping address for the customer shown
in Figure 6-14 did not require a second line, so you simply listed CustomerShipToAddress rather than
CustomerShipToAddressLine1 and CustomerShipToAddressLine2 in your preliminary list of columns
(see Figure 6-15). Some columns that you identify may not be required. For example, when the ship date
is the same as the invoice date, a separate ShipDate column is unnecessary. Clearly, the user’s help is
needed to clarify these types of issues.

Next, you need to identify functional dependencies. If you are unfamiliar with the document you are
examining, you might not be able to determine its functional dependencies. In this case, you will need to
interview the user to determine the functional dependencies that exist. Sometimes you can make intelligent
guesses based on your general knowledge of the type of document you are studying. You may make mistakes,
of course, but you can correct them when you interview the user. After initially determining the functional
dependencies shown in Figure 6-16, you may find additional information.

InvoiceNumber
InvoiceDate
CustomerNumber
CustomerSoldToName
CustomerSoldToAddressLine1
CustomerSoldToAddressLine2
CustomerSoldToCity
CustomerSoldToState
CustomerSoldToZip
CustomerShipToName
CustomerShipToAddress
CustomerShipToCity
CustomerShipToState
CustomerShipToZip
CustomerPONumber
OrderNumber
OrderDate
ShipDate
CustomerRepNumber
CustomerRepLastName
CustomerRepFirstName
ItemNumber
ItemDescription
ItemQuantityOrdered
ItemQuantityShipped
ItemQuantityBackordered
ItemPrice
ItemAmount
Freight
InvoiceTotal

FIGURE 6-15 List of possible attributes for Holt Distributors invoice

Database Design 2: Design Method

205

Based on your list of functional dependencies, you may learn that the shipping address for a given cus-
tomer will vary from one invoice to another. In other words, the shipping address depends on the invoice
number, not the customer number. A default shipping address may be defined for a given customer in case
no shipping address is entered with an order. However, the address that actually appears on the invoice
would depend on the invoice number. You may also determine that several columns actually depend on the
order that was initially entered. The order date, customer, shipping address, and quantities ordered on each
line of the invoice may have been entered as part of the initial order. At the time the invoice was printed,
additional information, such as the quantities shipped, the quantities back-ordered, and the freight charges,
may have been added. You may also find that the price is not necessarily the one stored with the item and
that the price can vary from one order to another. Given all these corrections, a revised list of functional
dependencies might look like Figure 6-17.

CustomerNumber

CustomerSoldToName
CustomerSoldToAddressLine1
CustomerSoldToAddressLine2
CustomerSoldToCity
CustomerSoldToState
CustomerSoldToZip
CustomerShipToName
CustomerShipToAddressLine1
CustomerShipToAddressLine2
CustomerShipToCity
CustomerShipToState
CustomerShipToZip
CustomerRepNumber
CustomerRepLastName
CustomerRepFirstName

ItemNumber
ItemDescription
ItemPrice

InvoiceNumber
InvoiceDate
CustomerNumber
OrderNumber
OrderDate
ShipDate
Freight
InvoiceTotal

InvoiceNumber, ItemNumber
ItemQuantityOrdered
ItemQuantityShipped
ItemQuantityBackordered
ItemAmount

FIGURE 6-16 Tentative list of functional dependencies for the Holt Distributors invoice

206

Chapter 6

After you have determined the preliminary functional dependencies, you can begin determining the
tables and assigning columns. You could create tables with the determinant (the column or columns to the
left of the arrow) as the primary key and with the columns to the right of the arrow as the remaining col-
umns. This would lead to the following initial collection of tables:

Customer (CustomerNumber, CustomerSoldToName,

CustomerSoldToAddressLine1, CustomerSoldToAddressLine2,

CustomerSoldToCity, CustomerSoldToState, CustomerSoldToZip,

CustomerRepNumber, CustomerRepLastName,

CustomerRepFirstName)

Part (ItemNumber, ItemDescription, ItemPrice)

Invoice (InvoiceNumber, InvoiceDate, OrderNumber, ShipDate,

Freight, InvoiceTotal)

Order (OrderNumber, OrderDate, CustomerPONumber,

CustomerShipToName, CustomerShipToAddressLine1,

CustomerShipToAddressLine2, CustomerShipToCity,

CustomerShipToState, CustomerShipToZip)

OrderLine (OrderNumber, ItemNumber, ItemQuantityOrdered,

ItemQuantityShipped, ItemQuantityBackordered, ItemPrice)

These tables would then need to be converted to third normal form and the result merged into the
cumulative design.

CustomerNumber
CustomerSoldToName
CustomerSoldToAddressLine1
CustomerSoldToAddressLine2
CustomerSoldToCity
CustomerSoldToState
CustomerSoldToZip
CustomerRepNumber
CustomerRepLastName
CustomerRepFirstName

ItemNumber
ItemDescription
ItemPrice

InvoiceNumber
InvoiceDate
OrderNumber
ShipDate
Freight
InvoiceTotal

OrderNumber
OrderDate
CustomerPONumber
CustomerShipToName
CustomerShipToAddressLine1
CustomerShipToAddressLine2
CustomerShipToCity
CustomerShipToState
CustomerShipToZip

OrderNumber, ItemNumber
ItemQuantityOrderedƒ(added when order is entered)
ItemQuantityShippedƒ(added during invoicing)
ItemQuantityBackorderedƒ(added during invoicing)
ItemPriceƒ(added when order is entered)

FIGURE 6-17 Revised list of functional dependencies for the Holt Distributors invoice

Database Design 2: Design Method

207

Some people prefer not to get so specific at this point. Rather, they will examine the various columns
and determine a preliminary list of entities, as shown in Figure 6-18.

After examining the functional dependencies, they will refine this list, producing a list similar to the one
shown in Figure 6-19. At this point, they will create tables for these entities and position each column in the
table in which it seems to fit best.

Whichever approach you take, this kind of effort is certainly worthwhile; it gives you a better feel for the
problem when you interact with the user. You can change your work based on your interview with the user.
Even if your work proves to be accurate, you still need to ask additional questions of the user. These ques-
tions include the following:

• What names do you think are appropriate for the various entities and attributes?
• What synonyms are in use?
• What restrictions exist?
• What are the meanings of the various entities, attributes, and relationships?

If the organization has a computerized system, current file layouts can provide you with additional infor-
mation about entities and attributes. Current file sizes can provide information on volume. Examining the
logic in current programs and their operational instructions can yield processing information. Again, how-
ever, this is just a starting point. You still need further information from the user, which you can obtain by
asking questions such as these:

• How many invoices do you expect to print?
• Exactly how are the values on the invoice calculated, and where do they come from?
• What updates must be made during the invoicing cycle of processing?
• What fields in the Customer table will be updated?

ONE-TO-ONE RELATIONSHIP CONSIDERATIONS

What, if anything, is wrong with implementing a one-to-one relationship by simply including the primary key
of each table as a foreign key in the other table? For example, suppose each Premiere Products customer has
a single sales rep and each sales rep represents a single customer. Applying the suggested technique to this
one-to-one relationship produces two tables:

Rep (RepNum, LastName, FirstName, CustomerNum)

Customer (CustomerNum, CustomerName, RepNum)

In practice, these tables would contain any additional sales rep or customer columns of interest in the
design problem. For the purposes of illustration, however, assume these are the tables’ only columns.

Orders
Customer
Rep
Part

FIGURE 6-18 Tentative list of entities

Invoice
Customer
Rep
Part
Orders
OrderLine

FIGURE 6-19 Expanded list of entities

208

Chapter 6

Samples of these tables are shown in Figure 6-20. This design clearly forces a sales rep to be related to a
single customer. Because the customer number is a column in the Rep table, there can be only one customer
for each sales rep. Likewise, this design forces a sales rep to be related to a single customer.

Q & A

Question: What is the potential problem with this solution?
Answer: There is no guarantee that the information will match. Consider Figure 6-21, for example. The data
in the first table indicates that sales rep 20 represents customer 148. The data in the second table, on the
other hand, indicates that customer 148 is represented by sales rep 35! This solution may be the simplest
way of implementing a one-to-one relationship from a conceptual standpoint, but it clearly introduces the
risk of update anomalies and inconsistency in the database. The programs themselves would have to ensure
that the data in the two tables match, a task that the design should be able to accomplish on its own.

To avoid these types of problems when creating one-to-one relationships, the first solution is to create a
single table such as this:

Customer (CustomerNum, CustomerName, RepNum, LastName, FirstName)

A sample of this table is shown in Figure 6-22. Which column should be the primary key? If it is the
customer number, there is nothing to prevent all three rows from containing the same rep number. On the
other hand, if it is the rep number, the same would hold true for the customer number.

RepNum LastName FirstName CustomerNum

20 Kaiser Valerie 148

35 Hull Richard 282

65 Perez Juan 356

Rep

CustomerNum CustomerName RepNum

148 Al’s Appliance and Sport 20

282 Brookings Direct 35

356 Ferguson’s 65

Customer

FIGURE 6-20 One-to-one relationship implemented by including the primary key of each table as a foreign key in the other

RepNum LastName FirstName CustomerNum

Rep

20 Kaiser Valerie 148

35 Hull Richard 282

65 Perez Juan 356

CustomerNum CustomerName RepNum

Customer

148 Al’s Appliance and Sport 35

282 Brookings Direct 20

356 Ferguson’s 65

FIGURE 6-21 Implementation of a one-to-one relationship in which information does not match

Database Design 2: Design Method

209

The solution is to choose either the customer number or the rep number as the primary key and make
the other column the alternate key. In other words, the DBMS should enforce the uniqueness of both cus-
tomer numbers and rep numbers. Because each customer and each sales rep will appear in exactly one row,
there is a one-to-one relationship between them.

Although this solution is workable, it has two features that are not particularly attractive. First, it com-
bines columns of two different entities into a single table. It certainly would seem more natural to have one
table with customer columns and a second table with sales rep columns. Second, if it is possible for one
entity to exist without the other (for example, when a customer has no sales rep), this structure is going to
cause problems.

A better solution is to create separate tables for customers and sales reps and to include the primary key
of one of them as a foreign key in the other. This foreign key would also be designated as an alternate key.
Thus, you could choose either

Rep (RepNum, LastName, FirstName, CustomerNum)

Customer (CustomerNum, CustomerName)

or

Rep (RepNum, LastName, FirstName)

Customer (CustomerNum, CustomerName, RepNum)

Samples of these two possibilities are shown in Figure 6-23. In either case, you must enforce the unique-
ness of the foreign key that you added. In the first solution, for example, if customer numbers need not be
unique, all three rows might contain customer 148, violating the one-to-one relationship. You can enforce the
uniqueness by designating these foreign keys as alternate keys. They will also be foreign keys because they
must match an actual row in the other table.

How do you make a choice between the possibilities? In some cases, it really makes no difference which
arrangement you choose. Suppose, however, you anticipate the possibility that this relationship may not

CustomerNum CustomerName RepNum LastName FirstName

148 Al’s Appliance and Sport 20 Kaiser Valerie

282 Brookings Direct 35 Hull Richard

356 Ferguson’s 65 Perez Juan

Customer

FIGURE 6-22 One-to-one relationship implemented in a single table

RepNum LastName FirstName CustomerNum

20 Kaiser Valerie 148

35 Hull Richard 282

65 Perez Juan 356

Solution 1:
Rep

CustomerNum CustomerName

148 Al’s Appliance and Sport

282 Brookings Direct

356 Ferguson’s

Customer

RepNum LastName FirstName

20 Kaiser Valerie

35 Hull Richard

65 Perez Juan

Solution 2:
Rep

CustomerNum CustomerName RepNum

148 Al’s Appliance and Sport 20

282 Brookings Direct 35

356 Ferguson’s 65

Customer

FIGURE 6-23 One-to-one relationship implemented by including the primary key of one table as a foreign key
(and alternate key) in the other table

210

Chapter 6

always be one-to-one. Suppose there is a likelihood in the future that a sales rep might represent more than
one customer but that each customer still will be assigned to exactly one sales rep.

The relationship would then be one-to-many, and it would be implemented with a structure similar to
Solution 2. In fact, the structure would differ only in that the rep number in the Customer table would not be
an alternate key. Thus, to convert from the second alternative to the appropriate structure would be a simple
matter—you would remove the restriction that the rep number in the Customer table is an alternate key.
This situation would lead you to favor the second alternative.

MANY-TO-MANY RELATIONSHIP CONSIDERATIONS

Complex issues arise when more than two entities are related in a many-to-many relationship. For example,
suppose Premiere Products needs to know which sales reps sold which parts to which customers. In this
example, there are no restrictions on which customers a given sales rep may sell to or on the parts that a
sales rep may sell. Sample data for this relationship is shown in Figure 6-24.

The first row in the table indicates that sales rep 20 sold part AT94 to customer 148. (The number of
units sold to the customer is not important in this example.) The second row indicates that sales rep 20 sold
part DR93 to customer 282.

Q & A

Question: What is the primary key of the Sales table?
Answer: Clearly, none of the three columns (RepNum, CustomerNum, and PartNum) alone will uniquely
identify a record. The combination of RepNum and CustomerNum does not work because there are two rows
on which the rep number is 35 and the customer number is 148. The combination of RepNum and PartNum
does not work because there are two rows on which the rep number is 65 and the part number is AT94.
Finally, the combination of CustomerNum and PartNum does not work because there are two rows on which
the customer number is 282 and the part number is DR93. Thus, the primary key for the Sales table must be
the combination of all three columns, as follows:

Sales (RepNum, CustomerNum, PartNum)

Attempting to model this particular situation as two (or three) many-to-many relationships is not legiti-
mate. Consider the following code and the data shown in Figure 6-25, for example, in which the same data is
split into three tables.

RepCustomer (RepNum, CustomerNum)

CustomerPart (CustomerNum, PartNum)

PartRep (PartNum, RepNum)

RepNum CustomerNum PartNum

20 148 AT94

20 282 DR93

35 148 DR93

35 148 DW11

65 282 AT94

65 282 DR93

65 356 AT94

Sales

FIGURE 6-24 Sample Sales data

Database Design 2: Design Method

211

Figure 6-26 shows the result of joining these three tables. Note that it contains inaccurate information.
The second row, for example, indicates that rep 20 sold part DR93 to customer 148. If you look back to Fig-
ure 6-24, you will see that is not the case.

The second row appears in the join because rep 20 is related to customer 148 in the RepCustomer table
(rep 20 sold a part to customer 148), customer 148 is related to part DR93 in the CustomerPart table (cus-
tomer 148 bought part DR93 from a rep), and part DR93 is related to rep 20 in the RepPart table (rep 20
sold part DR93 to a customer). In other words, rep 20 sold a part to customer 148, customer 148 bought part
DR93, and rep 20 sold part DR93. Of course, these three facts do not imply that rep 20 sold part DR93 to
customer 148. (Customer 148 might have purchased this part from another rep.)

The problem with the preceding relationship is that it involves all three entities—reps, customers, and
parts. Splitting the Sales table shown in Figure 6-26 any further is inappropriate. Such a relationship is called
a many-to-many-to-many relationship.

Remember from the discussion of fourth normal form that there are examples of three-way relationships
in which you must split the tables. In particular, if the relationship between sales reps and customers has
nothing to do with the relationship between sales reps and parts, this table would violate fourth normal form
and would need to be split.

RepNum CustomerNum

20 148

20 282

35 148

65 282

65 356

RepCustomer

CustomerNum PartNum

148 AT94

148 DR93

148 DW11

282 AT94

282 DR93

356 AT94

CustomerPart

PartNum RepNum

AT94 20

AT94 65

DR93 20

DR93 35

DR93 65

DW11 35

PartRep

FIGURE 6-25 Results obtained by splitting Sales table into three tables

RepNum CustomerNum PartNum

Sales

20 148 AT94

20 148 DR93 !!!!

20 282 AT94 !!!!

20 282 DR93

35 148 DR93

35 148 DW11

65 282 AT94

65 282 DR93

65 356 AT94

FIGURE 6-26 Result obtained by joining three tables—the second and third rows are in error!

212

Chapter 6

The crucial issue in making the determination between a single many-to-many-to-many relationship and
two (or three) many-to-many relationships is the independence. When all three entities are critical in the
relationship, the three-way relationship (like Sales) is appropriate. When there is independence among the
individual relationships, separate many-to-many relationships are appropriate. Incidentally, if a many-to-
many-to-many relationship is created when it is not appropriate to do so, the conversion to fourth normal
form will correct the problem.

NULLS AND ENTITY SUBTYPES

Recall that a null is a special value that represents the absence of a value in a field. In other words, setting a
particular field to null is equivalent to not entering a value in the field. Nulls are used when a value is either
unknown or inapplicable. This section focuses on the second possibility—when the value is inapplicable.

Consider, for example, a Student table in which one of the columns, DormNum, is a foreign key that
identifies a Dorm (dormitory) table. The DormNum column indicates the number of the dormitory in which a
student currently resides. This foreign key is allowed to be null because some students do not live in a
dormitory; for these students, DormNum is inapplicable. Thus, for some rows in the Student table, the
DormNum column would be null.

When there are many students who do not live in dorms, you can avoid using null values in the
DormNum column by removing the DormNum column from the Student table and creating a separate table
named StudentDorm that contains the columns StudentNum (the primary key) and DormNum. Students
living in a dorm would have a row in this new table. Students not living in a dorm would have a row in the
Student table but not in the StudentDorm table.

This change is illustrated in Figure 6-27. Note that StudentNum, the primary key of the StudentDorm
table, is also a foreign key that must match a student number in the Student table.

StudentNum LastName FirstName DormNum

1253 Johnson Ann 3

1

2

3

1662 Anderson Tom

2108 Lewis Bill

2546 Davis Mary

2867 Albers Cathy 2

2992 Matthew Mark

3011 Candela Tim

3574 Talen Sue

Student

StudentNum LastName FirstName

1253 Johnson Ann

1662 Anderson Tom

2108 Lewis Bill

2546 Davis Mary

2867 Albers Cathy

2992 Matthew Mark

3011 Candela Tim

3574 Talen Sue

Student

StudentNum DormNum

1253 3

1662 1

2546 2

2867 2

3011 3

StudentDorm

FIGURE 6-27 Student table split to avoid use of null values

Database Design 2: Design Method

213

In the process, you have created what is formally called an entity subtype. You can say that the
StudentDorm table is a subtype of the Student table. In other words, “students living in dorms” is a subtype
(or subset) of “students.”

Some design methods have specific ways of denoting entity subtypes, but it is not necessary to denote
entity subtypes in DBDL. You can recognize entity subtypes by the fact that the primary key is also a foreign
key, as shown in Figure 6-28.

Most approaches to diagramming database designs have ways of representing subtypes. In IDEF1X, for
example, a subtype, which is called a category in IDEF1X terminology, is represented in the manner shown
in Figure 6-29. The circle is the symbol used for a category. The single horizontal line below the category
symbol indicates that the category is an incomplete category; that is, there are students who do not fall into
the StudentDorm category.

The issue is more complicated when more than one column can accept null values. Suppose the
DormNum, ThesisTitle, and ThesisArea columns in the following Student table can be null.

Student (StudentNum, LastName, FirstName, DormNum, ThesisTitle, ThesisArea)

In this table, the dorm number is the number of the dorm in which the student resides or is null if the
student does not live in a dorm. In addition, students at this college must write a senior thesis. After students
attain senior standing, they must select a thesis title in the area in which they will write their thesis. Thus,
seniors will have a thesis title and a thesis area, whereas other students will not. You can handle this situa-
tion by allowing the fields ThesisTitle and ThesisArea to be null.

The Student table now has three different columns—DormNum, ThesisTitle, and ThesisArea—that can
be null. The DormNum column will be null for students who do not live in a dorm. The ThesisTitle and
ThesisArea columns will be null for students who have not yet attained senior standing. It would not make
much sense to combine all three of these columns into a single table. A better choice would be to create
the following table for students living in dorms:

StudentDorm (StudentNum, DormNum)

Studentƒ(StudentNum, LastName, FirstName)

StudentDorm (StudentNum, DormNum)
FK StudentNum Student
FK DormNum Dorm

FIGURE 6-28 Sample DBDL with entity subtypes

StudentDorm

StudentNum (FK)

DormNum (FK)

Student

StudentNum

LastName
FirstName

DormNum
is a foreign key
(matching entity

not shown)

Single line
indicates an
incomplete

category

Student
entity

Category
symbol

StudentDorm
entity

Category
(entity subtype)

Primary
key is also a
foreign key

FIGURE 6-29 Entity subtype in an E-R diagram

214

Chapter 6

For seniors, you could create a second table as follows:

SeniorStudent (StudentNum, ThesisTitle, ThesisArea)

Samples of these tables are shown in Figure 6-30. The StudentDorm and SeniorStudent tables represent
entity subtypes. In both tables, the primary key (StudentNum) will also be a foreign key matching the stu-
dent number in the new Student table.

The DBDL for these tables appears in Figure 6-31. The primary key of the StudentDorm and SeniorStudent
tables (StudentNum) is also a foreign key matching the student number in the new Student table.

StudentNum LastName FirstName DormNum ThesisTitle ThesisArea

1253 Johnson Ann 3

1662 Anderson Tom 1 P.D.Q. Bach Music

2108 Lewis Bill Cluster sets Math

2546 Davis Mary 2

2867 Albers Cathy 2 Rad. Treatment Medicine

2992 Matthew Mark

3011 Candela Tim 3

3574 Talen Sue

StudentNum LastName FirstName

1253 Johnson Ann

1662 Anderson Tom

2108 Lewis Bill

2546 Davis Mary

2867 Albers Cathy

2992 Matthew Mark

3011 Candela Tim

3574 Talen Sue

StudentNum DormNum

1253 3

1662 1

2546 2

2867 2

3011 3

StudentNum ThesisTitle ThesisArea

1662 P.D.Q. Bach Music

2108 Cluster sets Math

2867 Rad. Treatment Medicine

Student

Student

StudentDorm

SeniorStudent

FIGURE 6-30 Student table split to avoid use of null values

Student (StudentNum, LastName, FirstName)

StudentDorm (StudentNum, DormNum)
FK StudentNum Student
FK DormNum Dorm

SeniorStudent (StudentNum, ThesisTitle, ThesisArea)
FK StudentNum Student

FIGURE 6-31 Sample DBDL with entity subtypes

Database Design 2: Design Method

215

To represent two subtypes (categories) in IDEF1X, you use the same category symbol shown in
Figure 6-29. The difference is that there will be two lines coming out of the category symbol—one to each
category, as shown in Figure 6-32. Because there are students who do not live in dorms and who are not
seniors, these categories are also incomplete; so there is only one horizontal line below the category symbol.

By contrast, Figure 6-33 represents a slightly different situation. There are two categories: students who
live in dorms (StudentDorm) and students who do not (StudentNonDorm) live in dorms. For students who
live in dorms, the attribute of interest is DormNum. For students who do not live in dorms, the attributes
of interest are the ones that give the students’ local addresses (LocalStreet, LocalCity, LocalState, and
LocalZip). The difference between this example and the one shown in Figure 6-32 is that every student
must be in one of these two categories. These are called complete categories and are represented by two
horizontal lines below the category symbol.

You should group columns that can be null by function. If a given subset of the entity in question can
have nulls in a certain collection of columns, you should note this fact. When available, you should strongly
consider splitting columns that can have nulls into a separate table (an entity subtype). If you create an
entity subtype, you should give the entity subtype a name that suggests the related entity type, such as
SeniorStudent for students who are seniors. In addition, you should carefully document the meaning of the
entity subtype, especially the conditions that will cause an occurrence of the entity type also to be an occur-
rence of the entity subtype. If you do not create such an entity subtype, you must at least document pre-
cisely when the columns might take on null as a value.

StudentDorm

StudentNum (FK)

DormNum (FK)

Student

StudentNum

LastName
FirstName

SeniorStudent

StudentNum (FK)

ThesisTitle
ThesisArea

One line
indicates incomplete

categories

SeniorStudent
category (entity

subtype)

StudentDorm
category (entity

subtype)

Student
entity

FIGURE 6-32 Two entity subtypes—incomplete categories

StudentDorm

StudentNum (FK)

DormNum (FK)

StudentNonDorm

StudentNum (FK)

LocalStreet
LocalCity
LocalState
LocalZip

Student

StudentNum

LastName
FirstName Two lines

indicate complete
categories (every student

is in one of the
categories)

StudentNonDorm
category

(entity subtype)

StudentDorm
category (entity

subtype)

Student
entity

FIGURE 6-33 Two entity subtypes—complete categories

216

Chapter 6

AVOIDING PROBLEMS WITH THIRD NORMAL FORM WHEN MERGING TABLES

When you combine third normal form tables, the result might not be in third normal form. For example, both
of the following tables are in third normal form:

Customer (CustomerNum, CustomerName, RepNum)

Customer (CustomerNum, CustomerName, LastName, FirstName)

When you combine them, however, you get the following table:

Customer (CustomerNum, CustomerName, RepNum, LastName, FirstName)

This table is not in third normal form. You would have to convert it to third normal form before pro-
ceeding to the next user view.

You can attempt to avoid the problem of creating a table that is not in third normal form by being cau-
tious when representing user views. This problem occurs when a column A in one user view functionally
determines a column B in a second user view. Thus, column A is a determinant for column B, yet column A
is not a column in the second user view.

In the preceding example, the RepNum column in the first table determines the columns LastName and
FirstName in the second table, yet the RepNum column is not one of the columns in the second table. If you
always attempt to determine whether determinants exist and include them in the tables, you often will avoid
this problem. For example, when the second user indicates that the name of a rep is part of that user’s view
of data, you should ask whether any special way has been provided for sales reps to be uniquely identified
within the organization. Even though this user evidently does not need the rep number, he or she might very
well be aware of the existence of such a number. If so, you would include this number in the table. Having
done this, you would have the following table in this user view:

Customer (CustomerNum, CustomerName, RepNum, LastName, FirstName)

Now the normalization process for this user view would produce the following two tables:

Customer (CustomerNum, CustomerName, RepNum)

Rep (RepNum, LastName, FirstName)

When you merge these two tables into the cumulative design, you do not produce any tables that are not
in third normal form. Notice that the determinant RepNum has replaced the columns that it determines,
LastName and FirstName, in the Customer table.

THE ENTITY-RELATIONSHIP MODEL

In this chapter, you examined the use of E-R diagrams to visually illustrate the relations and keys repre-
sented in DBDL. The entity-relationship (E-R) model is an approach to representing data in a database. This
model uses E-R diagrams exclusively as the tool for representing entities, attributes, and relationships. The
E-R model is widely used and forms the basis of some computerized tools, so it is important that you under-
stand how to use it.

In 1976, Peter Chen of the MIT Sloan School of Management proposed the E-R model, and since then it
has been widely accepted as a graphical approach to database representation and database design. The basic
constructions in the E-R model are the familiar entities, attributes, and relationships, all of which are repre-
sented in E-R diagrams. This section focuses on the standard versions of these diagrams. The versions you
examined earlier in this chapter represent one of the common alternative forms of creating these diagrams
that is particularly convenient for use with DBDL.

In the standard E-R diagrams, entities are drawn as rectangles and relationships are drawn as diamonds,
with lines connecting the entities involved in relationships. Both entities and relationships are named in the
E-R model. The lines are labeled to indicate the type of relationship. For example, in Figure 6-34, the one-
to-many relationship between sales reps and customers is represented as “1” to “n.”

Database Design 2: Design Method

217

In Figure 6-35, the many-to-many relationship between orders and parts is represented as “m” to “n.”

Finally, the many-to-many-to-many relationship between sales reps, customers, and parts is represented
as “m” to “n” to “p,” as shown in Figure 6-36.

If desired, you can also indicate attributes in the E-R model by placing them in ovals and attaching them
to the corresponding rectangles (entities), as shown in Figure 6-37. As in the relational model representation,
primary keys are underlined.

Rep
1 n

Represents Customer

”1“ represents
the one part of

the relationship

Diamond
represents a
relationship ”n“ represents

the many part of the
relationship

FIGURE 6-34 One-to-many relationship

Orders
m n

OrderLine Part

”m“ represents
the many part of the

relationship

”n“ also represents
the many part of the

relationship

FIGURE 6-35 Many-to-many relationship

Rep
m

n

p
Sold

Customer

Part

”m“ represents
the many part of the

relationship

”n“ also represents
the many part of the

relationship

”p“ also represents
the many part of the

relationship

FIGURE 6-36 Many-to-many-to-many relationship

218

Chapter 6

In the original version of the E-R model, attributes and relationships can have attributes. Figure 6-38
shows the many-to-many relationship between the Orders and Part entities, in which the relationship,
OrderLine, has two attributes, NumOrdered and QuotedPrice.

In Figure 6-38, it is not clear whether OrderLine is an entity or a relationship. To address this confusion,
the E-R model was changed slightly so that entities can have attributes but relationships cannot. With this
change, OrderLine in Figure 6-38 would be an entity. However, making OrderLine an entity does not effec-
tively communicate the fact that the OrderLine entity is implementing only a many-to-many relationship
between orders and parts. To address this problem, an entity that exists to implement a many-to-many rela-
tionship is called a composite entity. A composite entity is essentially both an entity and a relationship and is
represented in an E-R diagram by a diamond within a rectangle. Figure 6-39 shows this new approach.

Rep

Rate

Commission

Zip

State

RepNum

CreditLimit

Balance

State1 n
Represents Customer

City

Zip

CustomerNum

CustomerName

LastName

FirstName Street

City

Street

Primary keys are
underlined

Attributes are
shown as ovals

FIGURE 6-37 One-to-many relationship with attributes added

Orders

NumOrdered QuotedPrice Price

Class
m n

OrderLine Part

OnHand

Warehouse

PartNum
OrderNum

OrderDate Description

Attributes for
OrderLine

FIGURE 6-38 Many-to-many relationship with attributes

Database Design 2: Design Method

219

A complete E-R diagram for the Premiere Products database appears in Figure 6-40. Notice that
OrderLine is represented as a composite entity.

Orders

NumOrdered QuotedPrice Price

Class
m n

OrderLine Part

OnHand

Warehouse

PartNum
OrderDate Description

OrderNum

OrderLine
is a composite

entity

FIGURE 6-39 Composite entity

Customer

n

n

1

Placed

Orders

Rep

1

Represents

NumOrdered QuotedPrice Price

Class
nm

OrderLine Part

OnHand

Warehouse

PartNum
Description

OrderDate

OrderNum

CustomerNum

CustomerName

Street

Rate
Commission

Zip

State

RepNum

LastName

FirstName

Street

City

Balance

State

City

Zip

CreditLimit

FIGURE 6-40 Complete E-R diagram for the Premiere Products database

220

Chapter 6

When the existence of one entity depends on the existence of another related entity, there is an exis-
tence dependency. For example, because an order cannot exist without a customer, the relationship between
customers and orders is an existence dependency. You indicate an existence dependency by placing an E in
the relationship diamond, as shown in Figure 6-41. An entity that depends on another entity for its own
existence is called a weak entity. A double rectangle encloses a weak entity, as shown in Figure 6-41. A weak
entity corresponds to the term dependent entity, which was previously defined in this chapter.

There is another popular way to indicate a one-to-many relationship. In this alternative, you do not label
the “one” end of the relationship; instead, you place a crow’s foot at the “many” end of the relationship.
Figure 6-42 illustrates this style.

Some people represent cardinality, or the number of items that must be included in a relationship, in an
E-R diagram. Figure 6-43 shows an E-R diagram that represents cardinality in this way. The two symbols to
the right of the Rep rectangle are both the number 1. The 1 closest to the rectangle indicates that the maxi-
mum cardinality is one; that is, a customer can have at most one sales rep. The 1 closest to the relationship
is the minimum cardinality; that is, a customer must have at least one sales rep. Together the two symbols
indicates that a customer must have exactly one sales rep. (If the minimum cardinality were zero, for exam-
ple, a customer would not be required to have a sales rep.)

Customer

n

1

E

Orders
Weak
entity

Existence
dependency

FIGURE 6-41 E-R diagram with an existence dependency and a weak entity

Rep Represents Customer

One part of
the relationship
has no symbol

Many part
of the relationship

is drawn as a
crow’s foot

FIGURE 6-42 E-R diagram with a crow’s foot

Database Design 2: Design Method

221

The crow’s foot to left of the Customer rectangle indicates that the maximum cardinality is “many.” The
circle to the left of the crow’s foot indicates that the minimum cardinality is zero; that is, a sales rep could be
associated with zero customers. An entity in a relationship with minimum cardinality of zero plays an
optional role in the relationship. An entity with a minimum cardinality of one plays a mandatory role in the
relationship.

Rep Represents Customer

Minimum
cardinality for the

Rep entity (1: there must be
at least one sales rep

for a customer)

Maximum cardinality
for the Customer entity

(many: a sales rep can have
many customers)

Symbol for
”optional” (minimum

cardinality for the Customer
table is 0: a rep can have

zero customers)

Maximum cardinality
for the Rep entity (1: there
must be at most one sales

rep for a customer)

FIGURE 6-43 E-R diagram that represents cardinality

222

Chapter 6

Summary

• Database design is a two-part process of determining an appropriate database structure to satisfy a given
set of requirements. In the information-level design, a clean DBMS design that is not dependent on a par-
ticular DBMS is created to satisfy the requirements. In the physical-level design, the final information-level
design is converted into an appropriate design for the particular DBMS that will be used.

• A user view is the set of necessary requirements to support a particular user’s operations. To simplify the
design process, the overall set of requirements is split into user views.

• The information-level design method involves applying the following steps to each user view: represent the
user view as a collection of tables, normalize these tables (convert the collection into an equivalent collec-
tion that is in third normal form), represent all keys (primary, alternate, secondary, and foreign), and merge
the results into the cumulative design.

• A database design is represented in a language called Database Design Language (DBDL).

• Designs can be represented visually using entity-relationship (E-R) diagrams. Such diagrams have the fol-
lowing characteristics: there is a rectangle for each entity; the name of the entity appears above the rect-
angle; the primary key appears above the line in the rectangle; the remaining columns appear below the
line; alternate keys, secondary keys, and foreign keys are identified with the letters AK, SK, and FK,
respectively; and for each foreign key, there is a dashed line from the rectangle that corresponds to the
table being identified to the rectangle that corresponds to the table containing the foreign key. A dot at the
end of the line indicates the “many” part of a one-to-many relationship.

• When a relational DBMS is going to be used, the physical-level design process consists of creating a table
for each entity in the DBDL design. Any constraints (primary key, alternate key, or foreign key) that the
DBMS cannot enforce must be enforced by the programs in the system; this fact must be documented for
the programmers.

• The design method presented in this chapter is a bottom-up method. By listing potential relations before
beginning the method, you have the advantages of both the top-down and bottom-up approaches.

• A survey form is useful for documenting the information gathered for the database design process.

• To obtain information from existing documents, list all attributes present in the documents, identify potential
functional dependencies, make a tentative list of tables, and use the functional dependencies to refine
the list.

• To implement a one-to-one relationship, include the primary key of one of the two tables in the other table
as a foreign key and then indicate the foreign key as an alternate key.

• If a table’s primary key consists of three (or more) columns, you must determine whether there are inde-
pendent relationships between pairs of these columns. If there are independent relationships, the table is
not in fourth normal form and you must split it. If there are no independent relationships, you can’t split the
table because doing so produces incorrect information.

• If a table contains columns that can be null and the nulls represent the fact that the column is inapplicable
for some rows, you can split the table, placing the null column(s) in separate tables. These new tables rep-
resent entity subtypes.

• It is possible that the result of merging third normal form tables may not be in third normal form. To avoid
this problem, include determinants for columns in the individual tables before merging them.

• The entity-relationship (E-R) model is a method of representing the structure of a database using an E-R
diagram. In an E-R diagram, a rectangle represents an entity, a diamond represents a relationship, and an
oval represents an attribute.

Database Design 2: Design Method

223

Key Terms

artificial key

bottom-up design method

cardinality

category

complete category

composite entity

cumulative design

Database Design Language (DBDL)

dependent entity

entity-relationship (E-R) model

entity subtype

existence dependency

IDEF1X

identifying relationship

incomplete category

independent entity

information-level design

intelligent key

logical key

mandatory role

many-to-many relationship

many-to-many-to-many relationship

natural key

nonidentifying relationship

one-to-one relationship

optional role

physical-level design

secondary key

surrogate key

synthetic key

top-down design method

user view

weak entity

Review Questions

1. Define the term user view as it applies to database design.

2. What is the purpose of breaking down the overall design problem into a consideration of individual user views?

3. Under what circumstances would you not need to break down an overall design into a consideration of individ-
ual user views?

4. The information-level design method presented in this chapter contains steps that must be repeated for each
user view. List the steps and briefly describe the kinds of activities that must take place at each step.

5. Describe the function of each of the following types of keys: primary, alternate, secondary, and foreign.

6. Suppose a given user view contains information about employees and projects. Suppose further each employee
has a unique EmployeeNum and each project has a unique ProjectNum. Explain how you would implement the
relationship between employees and projects in each of the following scenarios:

a. Many employees can work on a given project, but each employee can work on only a single project.

b. An employee can work on many projects, but each project has a unique employee assigned to it.

c. An employee can work on many projects, and a project can be worked on by many employees.

7. A database at a college is required to support the following requirements. Complete the information-level design
for this set of requirements. Use your own experience to determine any constraints you need that are not stated
in the problem. Represent the answer in DBDL.

a. For a department, store its number and name.

b. For an advisor, store his or her number and name and the number of the department to which he or she
is assigned.

c. For a course, store its code and description (for example, MTH110 or Algebra).

d. For a student, store his or her number and name. For each course the student has taken, store the
course code, course description, and grade received. In addition, store the number and name of the stu-
dent’s advisor. Assume that an advisor may advise any number of students but that each student has
just one advisor.

8. List the changes you would need to make in your answer to Question 7 if a student could have more than one
advisor.

224

Chapter 6

9. Suppose in addition to the requirements specified in Question 7, you must store the number of the department
in which the student is majoring. Indicate the changes this would cause in the design in the following two
situations:

a. The student must be assigned an advisor who is in the department in which the student is majoring.

b. The student’s advisor does not necessarily have to be in the department in which the student is majoring.

10. Illustrate the physical-level design process by means of the design shown in Question 7. List the tables, identify
the keys, and list the special restrictions that programs must enforce.

11. Is the database design method top-down or bottom-up? How can you modify this method to gain the advan-
tages to both types of design methods?

12. Design a survey form of your own. Fill it out as it might have been completed during the database design for
Premiere Products. For any questions you have too little information to answer, make a reasonable guess.

13. Using a document at your own school (for example, a report card), determine the attributes present in the docu-
ment. Using your knowledge of the policies at your school, determine the functional dependencies present in the
document. Use these dependencies to create a set of tables and columns that you could use to produce the
document.

14. Describe the different ways of implementing one-to-one relationships. Assume you are maintaining information
on offices (office numbers, buildings, and phone numbers) and faculty (numbers and names). No office houses
more than one faculty member; no faculty member is assigned more than one office. Illustrate the ways of
implementing one-to-one relationships using offices and faculty. Which option would be best in each of the fol-
lowing situations?

a. A faculty member must have an office, and each office must be occupied by a faculty member.

b. A faculty member must have an office, but some offices are not currently occupied. You must maintain
information about the unoccupied offices in an Office relation.

c. Some faculty members do not have an office, but all offices are occupied.

d. Some faculty members do not have an office, but some offices are not occupied.

15. For each of the following collections of relations, give the assumptions concerning the relationship between stu-
dents, courses, and faculty members that are implied by the collection. In each relation, only the primary keys
are shown.

a. Student (StudentNum, CourseNum, FacultyNum)

b. Student (StudentNum, CourseNum)

Faculty (CourseNum, FacultyNum)

c. Student (StudentNum, CourseNum)

Faculty (CourseNum, FacultyNum)

StudentFaculty (StudentNum, FacultyNum)

d. Student (StudentNum, CourseNum, FacultyNum)

e. Student (StudentNum, CourseNum)

Faculty (CourseNum, FacultyNum)

StudentFaculty (StudentNum, FacultyNum)

16. Describe the relationship between columns that can be null and entity subtypes. Under what circumstances
would these columns lead to more than one entity subtype?

17. How is it possible to merge a collection of relations that is in third normal form into a cumulative design that is in
third normal form but not obtain a collection of relations that is in third normal form? Give an example other than
the one described in the text.

18. Describe the entity-relationship model. How are entities, relationships, and attributes represented in this model?
What is a composite entity? Describe the approach to diagrams that uses a crow’s foot. Describe how you
would represent cardinality in an E-R diagram.

Database Design 2: Design Method

225

Premiere Products Exercises

The following exercises are based on the Premiere Products database as designed in Example 1 in this chapter. In
each exercise, represent your answer in DBDL and with a diagram. You may use any of the styles presented in this
chapter for the diagram.

1. Indicate the changes you need to make to the design of the Premiere Products database to support the follow-
ing situation. A customer is not necessarily represented by a single sales rep but can be represented by several
sales reps. When a customer places an order, the sales rep who gets the commission on the order must be one
of the collection of sales reps who represents the customer.

2. Indicate the changes you need to make to the design of the Premiere Products database to support the follow-
ing situation. There is no relationship between customers and sales reps. When a customer places an order, it
may be through any sales rep. On the order, identify both the customer placing the order and the sales rep
responsible for the order.

3. Indicate the changes you need to make to the design of the Premiere Products database in the event User
View 3 requirements are changed as follows; For a part, store the part’s number, description, item class, and
price. In addition, for each warehouse in which the part is located, store the number of the warehouse, descrip-
tion of the warehouse, and number of units of the part stored in the warehouse.

4. Indicate the changes you need to make to the Premiere Products database design to support the following situ-
ation. The region where customers are located is divided into territories. For each territory, store the territory
number (a unique identifier) and territory name. Each sales rep is assigned to a single territory. Each customer
is also assigned to a single territory, but the territory must be the same as the territory to which the customer’s
sales rep is assigned.

5. Indicate the changes you need to make to the Premiere Products database design to support the following situ-
ation. The region where customers are located is divided into territories. For each territory, store the territory
number (a unique identifier) and territory name. Each sales rep is assigned to a single territory. Each customer
is also assigned to a single territory, which may not be the same as the territory to which the customer’s sales
rep is assigned.

Henry Books Case

Ray Henry is considering expanding the inventory at his book stores to include movie DVDs. He has some special
ideas for how he wants to implement this change, and he needs you to help with database design activities. In each
exercise, represent your answer in DBDL and with a diagram. You may use any of the styles presented in this chap-
ter for the diagram.

1. Design a database for Ray. He is interested in movie DVDs and wants to keep information on movies, actors,
and directors in a database. The only user is Ray, and he needs to produce the following reports:

a. For each director, list his or her number and name and the year he or she was born. If the director is
deceased, list the year of death.

b. For each movie, list its number, its title, the year the movie was made, and its type (for example, Com-
edy, Drama, or Science Fiction).

c. For each movie, list its number, its title, the number and name of its director, the critics’ rating, the MPAA
rating (G, PG, PG-13, or R), the number of awards for which the movie was nominated, and the number
of awards the movie won. (The critics rate the movie with a number of “stars.” Four stars is the top rating
possible. Zero stars is the worst possible rating.)

d. For each lead actor starring in each movie, list his or her number, name, and birthplace and the year he
or she was born. If the actor is deceased, list the year of death.

e. For each movie, list its number and title, along with the number and name of the actors who appeared in it.

f. For each lead actor starring in each movie, list his or her number and name, along with the number and
name of the other movies in which the actor starred.

2. Expand the database design you created in Exercise 1 so that it will also support the following situation: Ray
wants to start a DVD rental program at his stores. He refers to each of his customers as “members.” Each
member in the club is assigned a number. He also stores the members’ names and addresses. In addition, he

226

Chapter 6

stores the number of rentals a member has made and the date the member joined the club. He periodically has
promotions during which members can earn bonus units that they can later apply to the cost of renting DVDs.
He needs to store the number of bonus units a member has earned.

3. Expand the database design you created in Exercise 1 and modified in Exercise 2 so that it will also support the
following situation: Ray wants to store information about the DVDs the club owns. When the club purchases a
DVD, Ray assigns it a number. Along with the number, he stores the number of the movie on the DVD, the date
the DVD was purchased, the number of times it has been rented, and the number of the member who is cur-
rently renting it. (If the DVD is not currently being rented, the member number will be null.) Ray also needs to
store the number of the branch to which the DVD is assigned. Finally, Ray would like to store the history of the
rental of each particular DVD. In particular, he needs to store the DVD number, date of the rental, date it was
returned, and number of the member who rented the DVD. Assume a DVD could potentially be rented more
than once on the same day. (Hint: Review the discussion of the categories of primary keys to determine what
type of primary key would be appropriate for this relation.)

Alexamara Marina Group Case

Complete the following tasks. In each exercise, represent your answer in both DBDL and with a diagram. You may
use any of the styles presented in this chapter for the diagram.

1. Design a database to produce the following reports. Do not use any surrogate keys in your design.

a. For each marina, list the marina number, name, address, city, state, and zip code.

b. For each boat owner, list the owner number, last name, first name, address, city, state, and zip code.

c. For each marina, list all the slips in the marina. For each slip, list the length of the slip, annual rental fee,
name and type of the boat occupying the slip, and boat owner’s number, last name, and first name.

d. For each service category, list the category number and description. In addition, for each service request
in each category, list the marina number, slip number of the boat receiving the service, estimated hours
for the service, hours already spent on the service, and next scheduled service date.

e. For each service request, list the marina number, slip number, category description, description of the
particular service, and a description of the current status of the service.

2. Expand the database design you created in Exercise 1 so that it will also support the following situation: A spe-
cific technician handles each service request. Along with all the details concerning a service request listed in
Exercise 1, list the number, last name, and first name of the technician assigned to handle the request.

Database Design 2: Design Method

227

C H A P T E R7
DBMS FUNCTIONS

L E A R N I N G O B J E C T I V E S

• Introduce the functions, or services, provided by a DBMS

• Describe how a DBMS handles updating and retrieving data

• Examine the catalog feature of a DBMS

• Illustrate the concurrent update problem and describe how a DBMS handles this problem

• Explain the data recovery process in a database environment

• Describe the security services provided by a DBMS

• Examine the data integrity features provided by a DBMS

• Discuss the extent to which a DBMS achieves data independence

• Define and describe data replication

• Present the utility services provided by a DBMS

I N T R O D U C T I O N

In this chapter you learn about nine critical functions performed by a DBMS. Some of the functions have been introduced in
previous chapters; however, they are emphasized again here because they are key processing components of a DBMS.
The nine functions of a DBMS are:

• Update and retrieve data. A DBMS must provide users with the ability to update and retrieve data in a database.
• Provide catalog services. A DBMS must store data about the data in a database and make this data accessible

to users.
• Support concurrent update. A DBMS must ensure that the database is updated correctly when multiple users

update the database at the same time.
• Recover data. A DBMS must provide methods to recover a database in the event that the database is damaged in

any way.
• Provide security services. A DBMS must provide ways to ensure that only authorized users can access the

database.
• Provide data integrity features. A DBMS must follow rules so that it updates data accurately and consistently.
• Support data independence. A DBMS must provide facilities to support the independence of programs from the

structure of a database.
• Support data replication. A DBMS must manage multiple copies of the same data at multiple locations.
• Provide utility services. A DBMS must provide services that assist in the general maintenance of a database.

UPDATE AND RETRIEVE DATA

A DBMS must provide users with the ability to update and retrieve data in a database; this is the fundamental
capability of a DBMS. Unless a DBMS provides this capability, further discussion of what a DBMS does is
irrelevant. In updating and retrieving data, users do not need to know how data is physically structured on
disk or which processes the DBMS uses to manipulate the data. These structures and manipulations are
solely the responsibility of the DBMS.

Updating data in a database includes adding new records and changing and deleting existing records. For
example, suppose that Elena must update the Premiere Products database by adding data for part AE27,
which is a new part. As shown in Figure 7-1, Elena enters the data for part AE27 and then requests that the
DBMS add the data to the database. To add this data, the DBMS handles all the work to verify that part AE27
doesn’t already exist in the database, stores the part AE27 data in the database, and then informs Elena that
the task was completed successfully. How the DBMS performs these steps, where the DBMS stores the data in
the database, how the DBMS stores the data, and all other processing details are invisible to Elena.

Suppose that Elena must also update the Premiere Products database by changing the price of part KL62.
As shown in Figure 7-2, Elena requests the data for the part and enters the change, but the DBMS performs
the tasks of locating and reading the part data, displaying the data for Elena, and changing the price in the
database. Once again, Elena does not need to be aware of the tasks that the DBMS completes or how the
DBMS completes them.

DBMS

Elena

1. Elena enters data
for new part AE27

2. Elena requests that the
DBMS add part AE27 data

to the database

3. DBMS verifies that
part AE27 doesn t exist

in the database

4. DBMS adds
part AE27 data to

the database

5. DBMS notifies Elena
that part AE27 data is now

stored in the database

Premiere
Products
database

FIGURE 7-1 Adding a new part to the Premiere Products database

Elena 4. Elena changes the
price and requests that the
DBMS change the price in

the database

1. Elena requests the
data for part KL62

2. DBMS reads the
data for part KL62

5. DBMS changes the
price in the database

DBMS
Pr
Pr
database

DBMS
Premiere

database

3. DBMS displays the
data for part KL62

Products

FIGURE 7-2 Changing the price of a part in the Premiere Products database

230

Chapter 7

N O T E
Deleting data in a database requires user and DBMS processing steps similar to those used to change data. The only differ-
ences occur in Steps 4 and 5 in Figure 7-2. In Step 4, the user requests that the DBMS delete the designated record. In Step
5, the DBMS deletes the record.

Figure 7-3 shows Elena retrieving the balance amount for All Season, a customer in the Premiere Pro-
ducts database. The DBMS finds the All Season record using the same strategy it used when it added the cus-
tomer to the database; Elena doesn’t need to know the strategy the DBMS uses to find and read the data.
After finding and reading the All Season record in the database, the DBMS displays the customer’s balance
amount for Elena.

PROVIDE CATALOG SERVICES

A DBMS must store data about the data in a database and make this data accessible to users. Data about
the data in a database, or metadata, includes table descriptions and field definitions. As described in
Chapter 4, the catalog, which is maintained automatically by the DBMS, contains table and field
metadata. In addition, the catalog contains metadata about table relationships, views, indexes, users, privi-
leges, and replicated data; the last three items are discussed later in this chapter.

The catalogs for many DBMSs consist of a set of special tables that are included in the database. The
DBMS hides these special tables from the users of the database. However, the DBMS lets the DBA access and
update the tables because the DBA must know the contents of the database and must create and define
tables, fields, views, indexes, and other metadata. The DBA can authorize access for some catalog tables to
other users as necessary.

N O T E
In some database systems, such as Microsoft Access, users can access and update the metadata about the fields, tables, rela-
tionships, and indexes in a database. However, individuals and companies that create databases for other people usually hide
this metadata so that users cannot access or update the metadata.

When the DBA uses the DBMS to access the catalog in the database, the DBA asks questions such as the
following:

• What tables and fields are included in the database? What are their names?
• What are the properties of these fields? For example, is the Street field in the Customer table 15

or 30 characters long? Is the CustomerNum field a numeric field, or is it a character field? How
many decimal places are in the Rate field in the Rep table?

• What are the possible values for the various fields? For example, are there any restrictions on
the possible values for the CreditLimit field in the Customer table or for the Class field in the
Part table?

Elena

Pr
PrDBMS
Pr

1. Elena requests
the balance amount for

All Season

2. DBMS finds and
reads the data for

All Season3. DBMS displays the
balance amount for

All Season

DBMS
Premiere
Products
database

FIGURE 7-3 Retrieving a balance amount from the Premiere Products database

231

DBMS Functions

• What are the meanings of the various fields? For example, what exactly is the Class field in the
Part table, and what does a Class field value of HW mean?

• What relationships between the tables exist in the database? Which relationships are one-
to-many, many-to-many, and one-to-one? Must the relationship always exist? For example, must
a customer always have a sales rep?

• Which fields and combinations of fields can you rapidly search for specific values because they
are indexed? Which fields that are not indexed are candidates for indexes because they are often
used in searches?

• Which users have access to the database? For example, which fields can Elena access for
retrieval purposes but not update? Which fields can Elena update?

• Which programs or objects (queries, forms, and reports) access which data within the database?
How do they access it? Do these programs merely retrieve the data, or do they update it too?
What kinds of updates do the programs perform? Can a certain program add a new customer, for
example, or can it merely make changes to information about customers that are already in the
database? When a program changes customer data, can it change all the fields or only some
fields? Which fields?

Enterprise DBMSs, such as Oracle and DB2, often have a catalog called a data dictionary, which contains
answers to all these questions and more. The data dictionary serves as a super-catalog containing metadata
beyond what’s been described previously. For example, these DBMSs let the DBA split the data in a database
and store the fragmented data on multiple disks at multiple locations. In these cases, the data dictionary
must track the location of the data. PC-based DBMSs do not offer a data dictionary, but they have a catalog
that provides answers to most of the preceding questions.

SUPPORT CONCURRENT UPDATE

A DBMS must ensure that the database is updated correctly when multiple users update the database at the
same time.

Sometimes a person uses a database stored on a single computer. At other times, several people might
update a database, but only one person at a time does so. For example, several people might take turns with
one computer to update a database. A DBMS handles these situations easily. However, the use of networks
and of DBMSs that are capable of running on these networks and that allow several users to update the same
database raises a problem that the DBMS must address: concurrent update.

Concurrent update occurs when multiple users make updates to the same database at the same time. On
the surface, you might think that a concurrent update doesn’t present any problem. Why couldn’t two, three,
or fifty users update the database simultaneously without causing a problem?

The Concurrent Update Problem
To illustrate the problem with concurrent update, suppose that Ryan and Elena are two users who work at
Premiere Products. Ryan is currently updating the Premiere Products database to process orders and, among
other actions, to increase customers’ balances by the amount of their orders. For example, Ryan needs to
increase the balance of customer 282 (Brookings Direct) by $100.00. Elena, on the other hand, is updating
the Premiere Products database to post customer payments and, among other things, to decrease customers’
balances by the amounts of their payments. Coincidentally, Elena has a $100.00 payment from Brookings
Direct, so she will decrease that customer’s balance by $100.00. The balance for Brookings Direct is $431.50
before the start of these updates. Because the amount of the increase exactly matches the amount of the
decrease, the balance should still be $431.50 after their updates. But will it? That depends on how the data-
base handles the updates.

How does the DBMS make the required update for Ryan? First, as shown in Figure 7-4, the DBMS reads
the data for Brookings Direct from the database on disk into Ryan’s work area in memory (RAM). Second,
Ryan enters the order data for Brookings Direct. At this point, Ryan’s order entry takes place in his work area
in memory, including the addition of the order total of $100.00 to the balance of $431.50, bringing the bal-
ance to $531.50. This change has not yet taken place in the database; it has taken place only in Ryan’s work
area in memory. Finally, after Ryan finishes entering the order data for Brookings Direct, the DBMS updates
the database with Ryan’s changes.

232

Chapter 7

Suppose that Elena begins her update at this point. As shown in Figure 7-5, the DBMS reads the data for
Brookings Direct from the database, including the new balance of $531.50. Elena then enters the payment of
$100.00, which decreases the customer balance to $431.50 in her work area in memory. Finally, the DBMS
updates the database with Elena’s change. The balance for Brookings Direct in the database is now $431.50,
which is correct.

FIGURE 7-4 Ryan updates the database

233

DBMS Functions

In the preceding sequence of updates, everything worked out correctly, but this is not always the case. Do
you see how the updates to the database could occur in a way that would lead to an incorrect result?

What if the updates occur in the sequence shown in Figure 7-6 instead? First, the DBMS reads the data
from the database into Ryan’s work area in memory. At about the same time, the DBMS reads the data from
the database into Elena’s separate work area in memory. At this point, both Ryan and Elena have the correct
data for Brookings Direct, including a balance of $431.50. Ryan adds $100.00 to the balance in his work area,
and Elena subtracts $100.00 from the balance in her work area. At this point, in Ryan’s work area in memory
the balance is $531.50, while in Elena’s work area in memory, the balance is $331.50. The DBMS now
updates the database with Ryan’s change. At this moment, Brookings Direct has a balance of $531.50 in the
database. Finally, the DBMS updates the database with Elena’s change. Her update replaces Ryan’s. Now the
balance for Brookings Direct in the database is $331.50! Had the DBMS updated the database in the reverse
order, the final balance would have been $531.50. In either case, you would now have incorrect data in the
database—one of the updates has been lost. The DBMS must prevent these lost updates from affecting the
database.

FIGURE 7-5 Elena updates the database

234

Chapter 7

Ryan ElenaDatabase on disk

Database before updates

Ryan ElenaDatabase on disk

Step 1 DBMS reads data from the database into RAM for Ryan

Ryan ElenaDatabase on disk

Step 2 DBMS reads data from the database into RAM for Elena

Ryan ElenaDatabase on disk

282.......431.50

282.......431.50

282.......431.50

282.......431.50

282.......431.50

Step 3 Ryan changes data in RAM

282.......431.50

282.......
431.50

(continued)

282.......4
31.50

282.......5
31.50

Ryan ElenaDatabase on disk

Step 4 Elena updates data in RAM

282.......431.50

282.......331.50
282.......5

31.50

FIGURE 7-6 Ryan’s and Elena’s updates to the database result in a lost update (continued)

235

DBMS Functions

Avoiding the Lost Update Problem
One way to prevent lost updates is to prohibit concurrent update. This may seem drastic, but it is not really
so farfetched. You can let several users access the database at the same time, but for retrieval only; that is,
the users can read data from the database, but they can’t update any data in the database. When these users
need to update the database, such as increasing a customer’s balance or changing the price of a part, the
database itself is not updated. Instead, as shown in Figure 7-7, a special program, which a computer program-
mer would create for the users to use with the data in their database, adds a record to a separate file.

DBMS

User

User

Database
update

program

1. Retrievals of data
from the database

1. Retrievals of data
from the database

2. Updates to data
in the database

4. Program runs
once a day to update

the database

3. Program interacts
with users during the day to
store their database updates

in a separate file

Premiere
Products
database

Updates to the
Premiere Products

database

Database
update

pre-processing
program

FIGURE 7-7 Delaying updates to the Premiere Products database to avoid the lost update problem

Ryan ElenaDatabase on disk

Ryan ElenaDatabase on disk

282.......331.50

282.......531.50

282.......331.50

282.......331.50

282.......5
31.50

282.......5
31.50

FIGURE 7-6 Ryan’s and Elena’s updates to the database result in a lost update (continued)

236

Chapter 7

A record in this separate file might indicate, for example, that Premiere Products received a $100 pay-
ment from customer 282 on a certain date. Periodically, usually once a day, a single update program reads
the batch of records in this file one at a time and performs the appropriate updates to the database; this pro-
cessing technique is called batch processing. Because this program is the only way to update the database,
you eliminate the problems associated with concurrent update.

Although this alternative approach avoids the lost update problem, it creates another problem. From the
time users start updating (adding records to the special batch file) until the time the batch-processing pro-
gram actually updates the database, the data in the database is out of date. If a customer’s balance in the
database is $4,500, the true balance is $5,500 if a user had entered an order for this customer that increased
its balance by $1,000. If the customer has a $5,000 credit limit, the customer is now over that credit limit
by $500.

The batch-processing alternative does not work in any situation that requires the data in the database to
be current. These situations include credit card processing, banking, inventory control, and airline reserva-
tions. Other simple alternative solutions to the concurrent update problem, such as permitting only one user
to update the database, also will not work in these situations because many users need to update the database
in a timely way.

Two-Phase Locking
In most situations, you can’t solve the concurrent update problem by avoiding it; you need the DBMS to have
a strategy for dealing with it. One such strategy is for the DBMS to process an update completely before it
begins processing the next update. For example, the DBMS can prevent Elena from beginning her update to
the Brookings Direct data until the DBMS completes Ryan’s update to that data, or vice versa.

To accomplish such a serial processing of updates, many DBMSs use locking. Locking denies other users
access to data while the DBMS processes one user’s updates to the database. An example of locking using
Ryan’s and Elena’s updates appears in Figure 7-8. After the DBMS reads the data in the database for Ryan’s
update, the DBMS locks the data, denying access to the data by Elena and any other user. The DBMS retains
the locks until Ryan completes his change; then the DBMS updates the database. For the duration of the
locks, the DBMS rejects all attempts by Elena to access the data, and it notifies Elena that the data is locked.
If she chooses to do so, she can keep attempting to access the data until the DBMS releases the locks, at
which time the DBMS can process her update. In this simple case at least, the locking technique appears to
solve the lost update problem.

237

DBMS Functions

FIGURE 7-8 The DBMS uses a locking scheme to apply the updates for Ryan and Elena to the database (continued)

238

Chapter 7

How long should the DBMS hold a lock? If the update involves changing field values in a single row in a
single table, such as changing a customer’s name and address, the lock no longer is necessary after this row
is updated. However, sometimes an update is more involved.

Consider the task of filling an order for Premiere Products. Ryan might think that filling an order involves
a single action. He simply indicates that an order currently in the database now needs to be filled. Alterna-
tively, Ryan might need to enter data about the order. In either case, Ryan still believes the process is a single
action. Behind the scenes, though, filling an order requires that the DBMS update several records in the data-
base. For example, suppose Ryan fills a new order for Brookings Direct that includes the sale of three washers
and two dryers; Richard Hull is the rep for Brookings Direct. To fill this order, the DBMS must update the
records in the database as follows:

• Add one record to the Orders table for the new order.
• Add one record to the OrderLine table for the sale of the three washers.
• Add one record to the OrderLine table for the sale of the two dryers.
• Change the washer record in the Part table to decrease the record’s number of units on hand by

three.

FIGURE 7-8 The DBMS uses a locking scheme to apply the updates for Ryan and Elena to the database (continued)

239

DBMS Functions

• Change the dryer record in the Part table to decrease the record’s number of units on hand
by two.

• Change the Brookings Direct record in the Customer table to increase the balance by the total
amount of the order.

• Change the Richard Hull record in the Rep table to increase the commission by the commission
amount owed to the rep for the order.

For this order, the DBMS updates seven records in the database; it adds three records and changes four
records.

Each task that a user completes, such as filling an order, is called a transaction. A transaction is a set of
steps completed by a DBMS to accomplish a single user task; the DBMS must successfully complete all trans-
action steps or none at all for the database to remain in a correct state.

For transactions such as filling an order, in which a single user task requires several updates in the data-
base, what should the DBMS do about locks? How long does the DBMS hold each lock? For safety’s sake, the
DBMS should hold locks until it completes all the updates in the transaction. This approach for handling locks
is called two-phase locking. The first phase is the growing phase, in which the DBMS locks more rows and
releases none of the locks. After the DBMS acquires all the locks needed for the transaction and has com-
pleted all database updates, the second phase is the shrinking phase, in which the DBMS releases all the locks
and acquires no new locks. This two-phase locking approach solves the lost update problem.

Deadlock
Because each user transaction can require more than one lock, another problem can occur. Suppose Ryan is
filling the Brookings Direct order for the sale of three washers and two dryers and Elena is filling another cus-
tomer order that includes the sale of washers and dryers. Further suppose for Ryan’s transaction, the DBMS
holds a lock on the washer record and is attempting to lock the dryer record, as shown in Figure 7-9. How-
ever, the DBMS has already locked the dryer record for Elena’s transaction, so Ryan must wait for the DBMS
to release the lock. Before the DBMS releases the lock on the dryer record for Elena’s transaction, however, it
needs to update (and thus lock) the washer record, which is currently locked for Ryan’s transaction. Ryan is
waiting for the DBMS to act for Elena (release the lock on the dryer record), while Elena is waiting for the
DBMS to act for Ryan (release the lock on the washer record). Without the aid of some intervention, this
dilemma could continue indefinitely. Terms used to describe such situations are deadlock and the deadly
embrace. Obviously, some strategy is necessary to prevent, minimize, or manage deadlocks. You can mini-
mize the occurrence of deadlocks by making sure all programs lock records in the same order whenever pos-
sible. For example, all programs for the Premiere Products database should lock records in the Rep table and
then lock records in the Customer table consistently. A consistent locking strategy prevents situations in
which a user first locks a record in the Rep table, a second user first locks a record in the Customer table,
and both users are deadlocked while they wait for the release of records they need to lock next.

One strategy to manage deadlocks is to let them occur and then have the DBMS detect and break any
deadlock. To detect a deadlock, the DBMS must keep track of the collection of records it has locked for each
transaction, as well as the records it’s waiting to lock. If two transactions are waiting for records held by the
other, a deadlock has occurred. Actually, more than two users could be involved. Ryan could be waiting for a
record held by Elena, while Elena is waiting for a record held by Pat, who in turn is waiting for a record held
by Ryan.

Ryan ElenaDatabase on disk

Washer record

locked

Ryan is waiting to lock
the dryer record already

locked by Elena

Elena is waiting to lock
the washer record already

locked by Ryan

Dryer record

Washer record

Dryer record
locked

FIGURE 7-9 Two users experiencing deadlock

240

Chapter 7

After the DBMS detects deadlock, the DBMS must break the deadlock. To break the deadlock, the DBMS
chooses one deadlocked user to be the victim. For the victim’s transaction, the DBMS undoes all completed
updates, releases all locks, and reschedules the transaction. Using this method of handling deadlocks, the user
notices only a delay in the time needed to complete the transaction.

Locking on PC-Based DBMSs
Enterprise DBMSs typically offer sophisticated schemes for locking as well as for detecting and handling dead-
locks. PC-based DBMSs provide facilities for the same purposes, but they usually are much more limited than
the facilities provided by enterprise DBMSs. These limitations, in turn, put an additional burden on the pro-
grammers who write the programs that allow concurrent update.

Although the exact features for handling the problems associated with concurrent update vary from one
PC-based DBMS to another, the following list is fairly typical of the types of facilities provided:

• Programs can lock an entire table or an individual row within a table, but only one or the other.
As long as one program has a row or table locked, no other program may access that row or
table.

• Programs can release any or all of the locks that they currently hold.
• Programs can inquire whether a given row or table is locked.

This list, although short, makes up the complete set of facilities provided by many PC-based DBMSs. Con-
sequently, the following guidelines have been devised for writing programs for concurrent update:

• If an update transaction must lock more than one row in the same table, you must lock the
entire table.

• When a program attempts to read a row that is locked, the program may wait a short period of
time and then try to read the row again. This process can continue until the row becomes
unlocked. However, it usually is preferable to impose a limit on the number of times a program
may attempt to read the row. In this case, reading is done in a loop, which proceeds until the
read is successful or the maximum number of times that the program can repeat the operation is
reached. Programs vary in terms of what action is taken should the loop be terminated without
the read being successful. One possibility is to notify the user of the problem and let the user
decide whether to try the same update again or move on to something else.

• Because there is no facility to detect and handle deadlocks, you must try to prevent them. A
common approach to this problem is for every program in the system to attempt to lock all the
rows and/or tables it needs before beginning an update. Assuming each proogram is successful in
this attempt, it can then perform the required updates. If any row or table that the program
needs is already locked, the program should immediately release all the locks that it currently
holds, wait some specified period of time, and then try the entire process again. In some cases, it
might be better to notify the user of the problem and see whether the user wants to try again. In
effect, this means that any program that encounters a problem will immediately get out of the
way of all the other programs rather than be involved in a deadlock situation.

• Because locks prevent other users from accessing a portion of the database, it is important that
no user keep rows or tables locked any longer than necessary. This is especially significant for
update programs. Suppose, for example, that a user is employing an update program to update
information about customers. Suppose further that after the user enters the number of the cus-
tomer to be updated, the customer row is locked and remains locked until the user has entered
all the new data and the update has taken place. What if the user is interrupted by a phone call
before he or she has finished entering the new data? What if the user goes to lunch? The row
might remain locked for an extended period of time. If the update involves several rows, all of
which must be locked, the problem becomes that much worse. In fact, in many DBMSs, if more
than one row from the same table must be locked, the entire table must be locked, which means
that entire tables might be locked for extended periods of time. Clearly, this situation must not
be permitted to occur. A variation on the timestamping technique used by some enterprise
DBMSs is a programming strategy you can use to overcome this problem.

241

DBMS Functions

Timestamping
An alternative to two-phase locking is timestamping. With timestamping, the DBMS assigns to each database
update the unique time when the update started; this time is called a timestamp. In addition, every database
row includes the timestamp associated with the last update to the row. The DBMS processes updates to the
database in timestamp order. If two users try to change the same row at the same time, the DBMS processes
the change that has the earlier timestamp. The other transaction will be restarted and assigned a new time-
stamp value.

Timestamping avoids the need to lock rows in the database and eliminates the processing time needed to
apply and release locks and to detect and resolve deadlocks. On the other hand, additional disk and memory
space are required to store the timestamp values; in addition, the DBMS uses extra processing time to update
the timestamp values.

One might naturally ask at this point whether the ability to have concurrent update is worth the com-
plexity that it adds to the DBMS. In some cases, the answer is no. Concurrent update may be far from a
necessity. In most cases, however, concurrent update is necessary to the productivity of the users of the sys-
tem. In these cases, implementation of locking, timestamping, or some other strategy is essential to the
proper performance of the system.

RECOVER DATA

A DBMS must provide methods to recover a database in the event the database is damaged in any way. A
database can be damaged or destroyed in many ways. Users can enter data that is incorrect, transactions that
are updating the database can end abnormally during an update, a hardware problem can occur, and so on.
After any such event has occurred, the database might contain invalid or inconsistent data. It may even be
totally destroyed.

Obviously, a situation in which data has been damaged or destroyed must not be allowed to go uncor-
rected. The database must be returned to a correct state. Recovery is the process of returning the database
to a state that is known to be correct from a state known to be incorrect; in performing such a process, you
say that you recover the database. In situations where indexes or other physical structures in the database
have been damaged but the data has not, many DBMSs provide a feature that you can use to repair the data-
base automatically to recover it.

To address cases in which the data in a database has been damaged, the simplest approach to recovery
involves periodically making a copy of the database (called a backup or a save). If a problem occurs, the
database is recovered by copying this backup copy over it. In effect, the damage is undone by returning the
database to the state it was in when the last backup was made.

Unfortunately, other activity besides that which caused the destruction also is undone. Suppose the data-
base is backed up at 10:00 p.m. and users begin updating it at 8:00 a.m. the next day. Further suppose that at
11:30 a.m., something happens that destroys the database. If the previous night’s backup is used to recover the
database, the entire database is returned to the state it was in at 10:00 p.m. All updates made in the morning
are lost, not just the update or updates that were in progress at the time the problem occurred. Thus, during
the final part of the recovery process, users would have to redo all the work they had done since 8:00 a.m.

Journaling
As you might expect, enterprise DBMSs provide sophisticated features to avoid the costly and time-consuming
process of having users redo their work. These features include journaling, which involves maintaining a
journal or log of all updates to the database. The log is a separate file from the database; thus, the log is still
available if a catastrophe destroys the database.

Several types of information are typically kept in the log for each transaction. This information includes
the transaction ID and the date and time of each individual update. The log also includes a record of what the
data in the row looked like in the database before the update (called a before image) and a record of what the
data in the row looked like in the database after the update (called an after image). In addition, the log con-
tains an entry to indicate the start of a transaction and the successful completion (commit) of a transaction.

To illustrate the use of a log by a DBMS, consider the four sample transactions shown in Figure 7-10.
Three transactions—1, 3, and 4—require a single update to the database. The second transaction, which is
Ryan’s order transaction for Brookings Direct, requires seven updates to the database.

242

Chapter 7

Suppose these four transactions are the first transactions in a day, immediately following a backup of
the database, and they all complete successfully. In this case, the log might look like the sample log shown
in Figure 7-11.

Before studying how the log is used in the recovery process, examine the log itself. Each record in the log
includes the ID of the transaction, as well as the time the particular action occurred. The actual time would be
more precise than in the example, the DBMS would process the actions much faster, and the date would also be
included in the log. For simplicity, each action occurs one minute after the preceding action. The actions are
Start to indicate the start of a transaction, Commit to indicate that the transaction completed successfully,
Insert to identify the addition of a record to the database, Update to identify the change of a record, and Delete

Transaction ID Transaction Description

1 1. Change the Price value for part number DW11 to $389.99

2 1. Add a record to the Orders table: OrderNum of 21700,
OrderDate of 10/24/2013, CustomerNum of 282

2. Add a record to the OrderLine table: OrderNum of 21700,
PartNum of DW11, NumOrdered of 3, QuotedPrice of $389.00

3. Add a record to the OrderLine table: OrderNum of 21700, PartNum of
KL62, NumOrdered of 2, QuotedPrice of $346.50

4. Change the OnHand value for part number DW11 to 9
5. Change the OnHand value for part number KL62 to 10
6. Change the Balance value for CustomerNum 282 to $2,321.50
7. Change the Commission value for RepNum 35 to $39,346.20

3 1. Add customer 510

4 1. Delete part AT94

FIGURE 7-10 Four sample transactions

Transaction ID Time Action Record Updated Before Image After Image

1 8:00 Start

2 8:01 Start

2 8:02 Insert Orders (21700) (new values)

3 8:03 Start

1 8:04 Update Part (DW11) (old values) (new values)

2 8:05 Insert OrderLine (21700, DW11)

1 8:06 Commit

4 8:07 Start

3 8:08 Insert Customer (510) (new values)

2 8:09 Insert OrderLine (21700, KL62) (new values)

3 8:10 Commit

2 8:11 Update Part (DW11) (old values) (new values)

2 8:12 Update Part (KL62) (old values) (new values)

4 8:13 Delete Part (AT94) (old values)

2 8:14 Update Customer (282) (old values) (new values)

4 8:15 Commit

2 8:16 Update Rep (35) (old values) (new values)

2 8:17 Commit

FIGURE 7-11 Sample log in which all four transactions commit normally

243

DBMS Functions

to identify the deletion of a record. For an Insert action, no before image appears in the log because the data did
not exist prior to the action. Similarly, for a Delete action, no after image appears in the log.

The sample log shows, for example, that transaction 2 began at 8:01. The database changes to complete
the transaction occurred at 8:02 (order record 21700 inserted), 8:05 (the first order line record inserted),
8:09 (the second order line record inserted), 8:11 (the first part record updated), 8:12 (the second part record
updated), 8:14 (customer record 282 updated), and 8:16 (rep record 35 updated). At 8:17, the transaction
was committed. During this same time span, the other three transactions were also committed.

Forward Recovery
How is the log used in the recovery process? Suppose a catastrophe destroys the database just after 8:11. In
this case, the recovery of the database begins with the most recent database backup from the previous even-
ing at 10:00. As shown in Figure 7-12, the DBA copies the backup over the live database. Because the data-
base is no longer current, the DBA executes a DBMS recovery program that applies the after images of
committed transactions from the log to bring the database up to date. This method of recovery is called
forward recovery.

In its simplest form, the recovery program in chronological order copies the after image of each record in
the log over the actual record in the database. You can improve the recovery process by realizing that if a
record was updated 10 times since the last backup, the recovery program copies the after image records 10
times over the database record. Thus, in reality, the first nine copies are unnecessary. The 10th after image
includes all the updates accomplished in the first nine. Thus, you can improve the performance of the recov-
ery program by having it first scan the log and then apply the last after image.

Q & A

Question: In the preceding scenario, which transactions in the sample log shown in Figure 7-11 does the
recovery program use to update the restored database?
Answer: The catastrophe occurred just after 8:11. Because the recovery program applies transactions com-
mitted before the catastrophe, the program applies only transactions 1 and 3. These two transactions com-
mitted before 8:11, at which point the DBMS was still processing transactions 2 and 4.

1. DBA copies the most
recent database backup over

the live database

Copy

Log
(after images)

DBMS forward
recovery feature

Premiere
Products
database

Most recent
database
backup

2. DBMS forward recovery
feature uses the log to apply
after images for committed

transactions

FIGURE 7-12 Forward recovery

244

Chapter 7

Backward Recovery
If the database has not actually been destroyed, the problem must involve transactions that were either
incorrect or, more likely, stopped in midstream. In either case, the database is currently not in a valid state.
You can use backward recovery, or rollback, to recover the database to a valid state by undoing the problem
transactions. The DBMS accomplishes the backward recovery by reading the log for the problem transactions
and applying the before images to undo their updates, as shown in Figure 7-13.

Q & A

Question: For the sample log shown in Figure 7-11, what does the DBMS do to roll back transaction 1?
Answer: The DBMS started transaction 1 at 8:00, changed a Part table record at 8:04 for transaction 1, and
committed transaction 1 at 8:06. To roll back transaction 1, the DBMS applies the before image of the Part
table record.

Q & A

Question: For the sample log shown in Figure 7-11, what does the DBMS do to roll back transaction 3?
Answer: The DBMS started transaction 3 at 8:03, added a Customer table record at 8:08 for transaction 3,
and committed transaction 3 at 8:10. Because no before image exists for adding a record, to roll back trans-
action 3, the DBMS deletes the Customer table record.

Recovery on PC-Based DBMSs
PC-based DBMSs generally don’t offer sophisticated recovery features such as journaling. Most of them pro-
vide users with a simple way to make backup copies and to recover the database later by copying the backup
over the database.

How should you handle recovery in any application system you develop with a PC-based DBMS? You could
simply use the features of the DBMS to periodically make backup copies and use the most recent backup if a
recovery is necessary. The more important it is to avoid redoing work, the more often you would make back-
ups. For example, if a backup is made every eight hours, you might have to redo up to eight hours of work. If,
on the other hand, a backup is made every two hours, you might have to redo up to two hours of work.

In many situations, this approach, although not particularly desirable, is acceptable. However, for systems
with a large number of updates made to the database between backups, this approach is not acceptable. In
such cases, the necessary recovery features that are not supplied by the DBMS must be included in the appli-
cation programs. Each of the programs that updates the database could, for example, also write a record to a
separate log file, indicating the update that had taken place. You could write a separate program to read the
log file and re-create all the updates indicated by the records in the file. The recovery process would then
consist of copying the backup over the actual database and running this special program.

DBMS backward
recovery feature

Log
(before images)

Premiere
Products
database

DBMS backward recovery
feature uses the log to apply

before images for the
problem transactions

FIGURE 7-13 Backward recovery

245

DBMS Functions

Although this approach does simplify the recovery process for the users of the system, it also causes some
problems. First, each of the programs in the system becomes more complicated because of the extra logic
involved in adding records to the special log file. Second, you must write a separate program to update the
database with the information in this log file. Finally, every time a user completes an update, the system has
extra work to do, and this additional processing may slow down the system to an unacceptable level. Thus, in
any application, you must determine whether the ease of recovery provided by this approach is worth the
price you might have to pay for it. The answer will vary from one system to another.

PROVIDE SECURITY SERVICES

As discussed in Chapter 4, a DBMS must provide ways to ensure that only authorized users can access the
database. Security is the prevention of unauthorized access, either intentional or accidental, to a database.
The most common security features used by DBMSs are encryption, authentication, authorizations, and views.

Encryption
Encryption converts the data in a database to a format that’s indecipherable by a word processor or another
program and stores it in an encrypted format. When unauthorized users attempt to bypass the DBMS and get
to the data directly, they see only the encrypted version of the data. However, authorized users accessing the
data using the DBMS have no problem viewing and working with the data.

When a user updates data in the database, the DBMS encrypts the data before updating the database.
Before a legitimate user retrieves the data via the DBMS, the data is decrypted, or decoded, and presented to
the user in the normal format. The entire encryption process is transparent to a legitimate user; that is, he or
she is not even aware it is happening.

Access lets you encrypt a database with a password and, after you’ve encrypted the database, you can use
Access to decrypt it. Decrypting a database reverses the encryption. If your encrypted database takes longer
to respond to user requests as it gets larger, you might consider decrypting it to improve its responsiveness.

Using Access to encrypt or decrypt a database is a four-step process:

1. Start Access, click the File tab on the Ribbon (if necessary) to display Backstage view, and then
click Open in the navigation bar.

2. Navigate to the drive and folder that contains the database in the Open dialog box, click the
database name, click the Open arrow, and then click Open Exclusive.

3. Click the File tab, and then click the Encrypt with Password button. (To decrypt a database,
click the Decrypt Database button.)

4. Type the password in the Password box, type the same password in the Verify box, press the
Enter key, and then click the OK button in the message box. (If you are decrypting the database,
type the password for the database in the Password box, and then press the Enter key.)

Authentication
Authentication refers to techniques for identifying the person who is attempting to access the DBMS. The use
of passwords is the most common authentication technique. A password is a string of characters assigned by
the DBA to a user that the user must enter to access the database. Users also use passwords to access many
operating systems, networks, and other computer and Internet resources. Biometric identification techniques
and the use of smart cards are increasing in use as an alternative to passwords for authentication. Biometrics
identify users by physical characteristics such as fingerprints, voiceprints, handwritten signatures, and facial
characteristics. Smart cards are small plastic cards about the size of a driver’s license that have built-in cir-
cuits containing processing logic to identify the card holder.

Unlike individual passwords, a database password is a string of characters that the DBA assigns to a data-
base and that users must enter before they can access the database. As long as the database password is
known only to authorized database users, unauthorized access to the database is prevented. The DBA should
use a database password that is easy for the authorized users to remember but that is not so obvious that
others can easily guess the password. If a DBA encrypts an Access database, the DBA must assign a database
password, as shown in Figure 7-14. To create the database password, the DBA enters the same password twice
to verify that the initial entry is the one that the DBA wants.

246

Chapter 7

After the DBA creates the database password for a database, as shown in Figure 7-15, users must enter it
correctly before they can open the database.

Authorizations
Using passwords is a security measure that applies to all users of a database; after users enter their passwords
successfully, they can retrieve and update all the data in the database. Frequently, the security needs for a
database are more individualized. For example, the DBA might need to let some users view and update all
data and let other users view only certain data. In this situation, the DBA uses authorization rules that spec-
ify which users have what type of access to which data in the database.

The DBA grants users specific permissions to tables, queries, and other objects in a database. A user’s
permissions specify what kind of access the user has to objects in the database. The DBA can assign permis-
sions to individual users or to groups of users. The DBA usually creates groups of users, sometimes called
workgroups; assigns the appropriate permissions to each group; and then assigns each user to the appropriate
group based on the permissions the user requires.

Views
Recall from Chapter 4 that a view is a snapshot of certain data in the database at a given moment in time. If a
DBMS provides a facility that allows users to have their own views of a database, this facility can be used for
security purposes. Tables or fields to which the user does not have access in his or her view effectively do not
exist for that user.

Privacy
No discussion of security is complete without at least a brief mention of privacy. Although the terms security
and privacy are often used synonymously, they are different, but related, concepts. Privacy refers to the right
of individuals to have certain information about them kept confidential. Privacy and security are related
because it is only through appropriate security measures that privacy can be ensured.

Laws and regulations dictate some privacy rules, and companies institute additional privacy rules. Varia-
tions in what information is kept confidential occur among organizations. For example, salaries at govern-
mental and many service organizations are public information, but salaries at many private enterprises are
kept confidential.

Asterisks
appear for each
keyed character

DBA enters
the same database

password for
verification

DBA enters
the database

password

FIGURE 7-14 Assigning a database password to the Premiere Products database

FIGURE 7-15 User enters database password to open the Premiere Products database

247

DBMS Functions

PROVIDE DATA INTEGRITY FEATURES

A DBMS must follow rules so that it updates data accurately and consistently. These rules, called integrity
constraints, are categorized as either key integrity constraints or data integrity constraints.

Key integrity constraints consist of primary key constraints and foreign key constraints. Primary key
constraints, which are governed by entity integrity (as discussed in Chapter 4), enforce the uniqueness of the
primary key. For example, forbidding the addition of a rep whose number matches the number of a rep
already in the database is an example of a primary key constraint. Foreign key constraints, which are gov-
erned by referential integrity (as discussed in Chapter 4), enforce the fact that a value for a foreign key must
match the value of the primary key for some row in a table in the database. Forbidding the addition of a cus-
tomer whose rep is not already in the database is an example of a foreign key constraint.

Data integrity constraints help to ensure the accuracy and consistency of individual field values. Types of
data integrity constraints include the following:

• Data type. The value entered for any field should be consistent with the data type for that field.
For a numeric field, only numbers should be allowed to be entered. If the field is a date, only a
legitimate date should be permitted. For instance, February 30, 2013, is an invalid date and
should be rejected.

• Legal values. For some fields, not every possible value that is of the assigned data type is legiti-
mate. For example, even though CreditLimit is a numeric field, only the values $5,000.00,
$7,500.00, $10,000.00, and $15,000.00 are valid. For the OrderDate field in the Orders table,
Premiere Products might insist that only the current date or a future date is an acceptable value
when an order is updated. In addition, you should be able to specify which fields can accept null
values and which fields can’t.

• Format. Some fields require a special entry or display format. Although the PartNum field is a
character field, for example, only specially formatted strings of characters might be acceptable.
Legitimate part numbers might have to consist of two letters followed by two digits; this is an
example of an entry format constraint. Users might want the OrderDate field displayed with a
four-digit year value instead of a two-digit year value; this is an example of a display format
constraint.

Integrity constraints can be handled in one of four ways:

1. The constraint is ignored, in which case no attempt is made to enforce the constraint.
2. The responsibility for constraint enforcement is placed on the users. This means that users must

be careful that any updates they make in the database do not violate the constraint.
3. The responsibility for constraint enforcement is placed on programmers. Programmers place into

programs the logic to enforce the constraint. Users must update the database only by means of
these programs and not through any of the built-in entry facilities provided by the DBMS
because these would allow violation of the constraint. Programmers design the programs to
reject any attempt by the users to update the database in a way that violates the constraint.

4. The responsibility for constraint enforcement is placed on the DBMS. The DBA specifies the
constraint to the DBMS, which then rejects any attempt to update the database in a way that
violates the constraint.

Q & A

Question: Which of these four approaches for constraint enforcement is best?
Answer: The first approach, ignoring the constraint, is undesirable because it can lead to invalid data in the
database, such as two customers with the same number, part numbers with an invalid format, and invalid
credit limits.

The second approach, user constraint enforcement, is a little better because at least an attempt is made
to enforce the constraints. However, this approach places the burden of enforcement on users. Besides mean-
ing extra work for users, any mistake on the part of a single user, no matter how innocent, can lead to invalid
data in the database.

continued

248

Chapter 7

The third approach removes the burden of enforcement from users and places it on programmers. This
solution is better still because it means that users can’t violate the constraints. The disadvantage is that all
update programs in the system become more complex. This complexity makes programmers less productive
and makes programs more difficult to create and modify. This approach also makes changing an integrity
constraint more difficult because this may mean changing all the programs that update the database. Fur-
thermore, if the logic in any program used to enforce the constraints is faulty, the program could permit
some constraint to be violated, and you might not realize that this had happened until a problem occurred at
a later date. Finally, you would have to guard against a user bypassing the programs in the system in order to
enter data directly into the database—for example, by using some built-in facility of the DBMS. If a user is
able to bypass the programs and enters incorrect data, all the controls that were so diligently placed into the
programs are helpless to prevent a violation of the constraints.

The best approach is the one the DBMS enforces. You specify the constraints to the DBMS, and the
DBMS ensures that they are never violated.

Nearly all DBMSs include most of the necessary capabilities to enforce the various types of integrity con-
straints. Consequently, you let the DBMS enforce all the constraints that it is capable of enforcing; then let
application programs enforce any other constraints. You also might create a special program whose sole pur-
pose is to examine the data in the database to determine whether any constraints have been violated. You’d
run this program periodically and take corrective action to remedy any violations that the program discovers.

N O T E
Access supports key constraints. Access lets you specify a primary key, and then it builds a unique index automatically for the
primary key. Access also lets you specify foreign keys, and then it enforces referential integrity automatically. You can use
Access to specify data integrity constraints. As shown in Figure 7-16, you can specify the data type for each field, and you can
specify data format and legal-values integrity constraints.

Primary
key integrity constraint,

indicated by the key
symbol

Data format
integrity

constraints

Data type
integrity

constraints

Data
legal-values

integrity
constraint

FIGURE 7-16 Example of integrity constraints in Access

249

DBMS Functions

N O T E
MySQL also allows you to specify primary keys, foreign keys, and integrity constraints. To do so, you would use SQL com-
mands that were presented in Chapter 4 for these purposes.

SUPPORT DATA INDEPENDENCE

A DBMS must provide facilities to support the independence of programs from the structure of a database.
One of the advantages of working with a DBMS is data independence, which is a property that lets you
change the database structure without requiring you to change the programs that access the database. What
types of changes could you or a DBA make to the database structure? A few of these changes are adding a
field, changing a field property (such as length), creating an index, and adding or changing a relationship.
The following sections describe the data independence considerations for each type of change.

Adding a Field
If you add a new field to a database, you don’t need to change any program except, of course, those programs
using the new field. However, when a program uses an SQL SELECT * FROM command to select all the fields
from a given table, you are presented with an extra field. To prevent this from happening, you need to change
the program to restrict the output to only the desired fields. To avoid the imposition of this extra work, you
should list all the required fields in an SQL SELECT command instead of using the *.

Changing the Length of a Field
In general, you don’t need to change programs because you’ve changed the length of a field; the DBMS han-
dles all the details concerning this change in length. However, if a program sets aside a certain portion of the
screen or a report for the field, and the length of the field has increased to the point where the previously
allocated space is inadequate, you’ll need to change the program.

Creating an Index
To create an index, you enter a simple SQL command or select a few options. Most DBMSs use the new index
automatically for all updates and queries. For some DBMSs, you might need to make minor changes in
already existing programs to use the new index.

Adding or Changing a Relationship
In terms of data independence considerations, adding or changing a relationship is the trickiest of all and is
best illustrated with an example. Suppose Premiere Products now has the following requirements:

• Customers are assigned to territories.
• Each territory is assigned to a single rep.
• A rep can have more than one territory.
• A customer is represented by the rep who covers the territory to which the customer is

assigned.

To implement these changes, you need to restructure the database. The previous one-to-many relation-
ship between the Rep and Customer tables is no longer valid. Instead, there’s now a one-to-many relationship
between the Rep table and the new Territory table, and a one-to-many relationship between the Territory
table and the Customer table, as follows:

Rep (RepNum, LastName, FirstName, Street, City, State,

Zip, Commission, Rate)

Territory (TerritoryNum, TerritoryDesc, RepNum)

Customer (CustomerNum, CustomerName, Street, City, State,

Zip, Balance, CreditLimit, TerritoryNum)

250

Chapter 7

Further suppose that a user accesses the database via the following view, which is named RepCust:

CREATE VIEW RepCust (RNum, RLast, RFirst, CNum, CName) AS

SELECT Rep.RepNum, LastName, FirstName, Customer.CustomerNum, CustomerName

FROM Rep, Customer

WHERE Rep.RepNum=Customer.RepNum

;

The defining query is now invalid because there is no RepNum field in the Customer table. A relationship still
exists between reps and customers, however. The difference is that you now must go through the Territory table
to relate the two tables. If users have been accessing the tables directly to form the relationship, their programs
will have to change. If they are using the RepCust view, you will need to change only the definition of the view.
The new definition is as follows:

CREATE VIEW RepCust (RNum, RLast, RFirst, CNum, CName) AS

SELECT Rep.RepNum, LastName, FirstName, Customer.CustomerNum, CustomerName

FROM Rep, Territory, Customer

WHERE Rep.RepNum=Territory.RepNum

AND Territory.TerritoryNum=Customer.TerritoryNum

;

The defining query is now more complicated than it was before, but this does not affect users of the view.
The users continue to access the database in exactly the same way they did before, and the DBA won’t need
to change their programs.

SUPPORT DATA REPLICATION

A DBMS must manage multiple copies of the same data at multiple locations. For performance or other rea-
sons, sometimes data should be duplicated—technically called replicated—at more than one physical loca-
tion. For example, accessing data at a local site is much more efficient than accessing data remotely. It’s
more efficient because using replicated data does not involve data communication and network time delays,
users compete for data with fewer other users, and replicated data keeps data available to local users at times
when the data might not be available at other sites.

If certain information needs to be accessed frequently from all sites, a company might choose to store
the information at all its locations. At other times, users on the road—for example, reps meeting at their cus-
tomers’ sites—might need access to data but would not have this access unless the data was stored on their
portable computers.

Replication lets users at different sites use and modify copies of a database and then share their changes
with the other users. Replication is a two-step process. First, the DBMS creates copies, called replicas, of the
database at one or more sites. For example, you could create two replicas, as shown in Figure 7-17, and give
the “Replica 1 database” to one user to access at a remote location and give the “Replica 2 database” to a
second user to use at a different remote location.

The master database and all replicas form a replica set. Users then update their individual replicas, just
as if they were updating the master database. Periodically, the DBMS exchanges all updated data between the

Replica 2
database

Master
database

Replica 1
database

DBMS

FIGURE 7-17 The DBMS creates replicas from the master database

251

DBMS Functions

master database and a replica in a process called synchronization. For example, after the second user returns
from the remote site, the DBA synchronizes the master database and the “Replica 2 database,” as shown in
Figure 7-18. Later, after the first user returns, the DBA synchronizes the master database and the “Replica 1
database.”

Ideally, the DBMS should handle all the issues associated with replication for you. The DBMS should do
all the work to keep the various copies of data consistent behind the scenes; users should be unaware of the
work involved. You’ll learn more about replication in Chapter 9.

PROVIDE UTILITY SERVICES

A DBMS must provide services that assist in the general maintenance of a database. In addition to the ser-
vices already discussed, a DBMS provides a number of utility services that assist in the general maintenance
of the database. The following is a list of services that might be provided by a PC-based DBMS:

• The DBMS lets you change the database structure—adding new tables and fields, deleting exist-
ing tables and fields, changing the name or properties of fields, and so on.

• The DBMS lets you add new indexes and delete indexes that are no longer needed.
• While you are using the database, the DBMS lets you use the services available from your oper-

ating system, such as Windows or Linux.
• The DBMS lets you export data to and import data from other software products. For example,

you can transfer data easily between the DBMS and a spreadsheet file, a word-processing file, a
graphics program file, or even another DBMS.

• The DBMS provides support for easy-to-use edit and query capabilities, screen generators, report
generators, and so on.

• The DBMS provides support for both procedural and nonprocedural languages. With a proce-
dural language, you must tell the computer precisely how a given task is to be accomplished;
Basic, C++, and COBOL are examples of procedural languages. With a nonprocedural language,
you merely describe the task you want the computer to accomplish. The nonprocedural language
then determines how the computer will accomplish the task. SQL is an example of a nonproce-
dural language.

• The DBMS provides an easy-to-use, menu-driven interface that allows users to tap into the power
of the DBMS without having to learn a complicated set of commands.

Replica 2
database

Master
database DBMS

DBMS exchanges the
updated data between

the two databases

FIGURE 7-18 DBMS synchronizes two databases in a replica set

252

Chapter 7

Summary

• The fundamental capability of a DBMS is to provide users with the ability to update and retrieve data in a
database without users needing to know how data is structured on disk or which processes the DBMS
uses to manipulate the data.

• A DBMS must store metadata (data about the data) in a database and make this data accessible to users.
The metadata is stored in a catalog or data dictionary.

• A DBMS must support concurrent update, allowing multiple users to update the same database at the
same time. If concurrent update is not handled correctly, updates might be lost, causing the database to
contain invalid data.

• Locking, which denies access by other users to data while the DBMS processes one user’s updates, is
one approach to concurrent update. Two-phase locking includes a growing phase, in which the DBMS
locks more rows and releases none of the locks, followed by a shrinking phase, in which the DBMS
releases all locks and acquires no new locks.

• Deadlock and deadly embrace are terms used to describe the situation in which two or more users are each
waiting for the other(s) to release a lock before they can proceed. Enterprise DBMSs have sophisticated
facilities for detecting and handling deadlock. Most PC-based DBMSs do not have such facilities, which
means that programs that access the database must be written in such a way that deadlocks are avoided.

• An alternative to two-phase locking is timestamping, in which the DBMS processes updates to a database
in timestamp order.

• A DBMS must provide methods to recover a database in the event that the database is damaged in any
way. DBMSs provide facilities for periodically making a backup copy of the database. To recover the data-
base when it is damaged or destroyed, your first step is to copy the backup over the damaged database.

• Enterprise DBMSs maintain a log or journal of all database updates since the last backup. If a database is
destroyed, you make the database current from the last backup by using forward recovery to apply the
after images of committed transactions. If you need to remove the updates of incorrect or terminated trans-
actions, you use backward recovery or rollback to apply the before images to undo the updates.

• A DBMS must provide security features to prevent unauthorized access, either intentional or accidental, to
a database. These security features include encryption (the storing of data in an encoded form), authenti-
cation (passwords, biometrics, or smart cards to identify users, and database passwords assigned to the
database), authorizations (assigning authorized users to groups that have permissions for accessing the
database), and views (snapshots of certain data in the database that limit a user’s access to only the
tables and fields included in the view).

• A DBMS must follow rules or integrity constraints so that it updates data accurately and consistently. Key
integrity constraints consist of primary key and foreign constraints. Data integrity constraints help to ensure
the accuracy and consistency of individual fields and include data type, legal-values, and format integrity
constraints.

• A DBMS must provide facilities to support the independence of programs from the structure of a database;
data independence is the term for this capability.

• A DBMS must provide a facility to handle replication by managing multiple copies of a database at multiple
locations.

• A DBMS must provide a set of utility services that assist in the general maintenance of a database.

Key Terms

after image

authentication

authorization rule

backup

backward recovery

batch processing

before image

biometrics

253

DBMS Functions

commit

concurrent update

database password

data dictionary

data independence

deadlock

deadly embrace

decrypting

encryption

forward recovery

growing phase

journal

journaling

locking

log

metadata

nonprocedural language

password

permission

privacy

procedural language

recovery

replica

replicate

rollback

save

shrinking phase

smart card

synchronization

timestamp

timestamping

transaction

two-phase locking

utility services

victim

workgroup

Review Questions

1. When users update and retrieve data, what tasks does a DBMS perform that are hidden from the users?

2. What is metadata? Which component of a DBMS maintains metadata?

3. How does a catalog differ from a data dictionary?

4. What is meant by concurrent update?

5. Describe a situation that could cause a lost update.

6. What is locking, and what does it accomplish?

7. What is a transaction?

8. Describe two-phase locking.

9. What is deadlock? How does it occur?

10. How do some DBMSs use timestamping to handle concurrent update?

11. What is recovery?

12. What is journaling? What two types of images does a DBMS output to its journal?

13. When does a DBA use forward recovery? What are the forward recovery steps?

14. When does a DBA use backward recovery? What does the DBMS do to perform backward recovery?

15. What is security?

16. What is encryption? How does encryption relate to security?

17. What is authentication? Describe three types of authentication.

18. What are authorization rules?

19. What are permissions? Explain the relationship between permissions and workgroups.

20. How do views relate to security?

21. What is privacy? How is privacy related to security?

22. What are integrity constraints? Describe four different ways to handle integrity constraints. Which approach is
the most desirable?

23. What is data independence?

254

Chapter 7

24. What is replication? What is synchronization?

25. Describe three utility services that a DBMS should provide.

26. What is a procedural language? What is a nonprocedural language?

Premiere Products Exercises

For the following exercises, you will address problems and answer questions from management at Premiere Pro-
ducts. You do not use the Premiere Products database for any of these exercises.

1. While users were updating the Premiere Products database, one of the transactions was interrupted. You need
to explain to management what steps the DBMS will take to correct the database. Using the sample log in
Figure 7-11, list and describe the updates that the DBMS will roll back if transaction 2 is interrupted at 8:10.

2. Occasionally, users at Premiere Products obtain incorrect results when they run queries that include built-in
(aggregate, summary, or statistical) functions. The DBA told management that unrepeatable reads caused the
problems. Use books, articles, and/or the Internet to research the unrepeatable read problem. Write a short
report that explains the unrepeatable-read problem to management and use an example with your explanation.
(Note: Unrepeatable reads are also called inconsistent retrievals, dirty reads, and inconsistent reads.)

3. You’ve explained replication to management, and some managers ask you for examples of when replication
could be useful to them. Describe two situations, other than the ones given in the text, when replication would
be useful to an organization.

4. The staff of the marketing department at Premiere Products is scheduled to receive some statistical databases,
and they need you to explain these databases to them. (A statistical database is a database that is intended to
supply only statistical information to users; a census database is an example of a statistical database.) Using a
statistical database, users should not be able to infer information about any individual record in the database.
Use books, articles, and/or the Internet to research statistical databases; then write a report that explains them,
discusses the problem with using them, and gives the solution to the problem.

5. The DBA at Premiere Products wants you to investigate biometric identification techniques for potential use at
the company for computer authentication purposes. Use books, articles, and/or the Internet to research these
techniques, then write a report that describes the advantages and disadvantages of each of these techniques.
In addition, recommend one technique and provide a justification for your recommendation.

Henry Books Case

Ray Henry plans to upgrade his database and wants you to help him select a different DBMS. To help him, he
would like you to complete the following exercises. You do not use the Henry Books database for any of these
exercises.

1. Many computer magazines and Web sites present comparisons of several DBMSs. Find one such DBMS com-
parison and compare the functions in this chapter to the listed features and functions in the comparison. Which
functions from this chapter are included in the comparison? Which functions are missing from the comparison?
What additional functions are included in the comparison?

2. How well does your school’s DBMS fulfill the functions of a DBMS as described in this chapter? Which functions
are fully supported? Which are partially supported? Which are not supported at all?

3. Use computer magazines and/or the Internet to investigate one of these DBMSs: DB2, SQL Server, MySQL,
Oracle, or Sybase. Prepare a report that explains how that DBMS handles the following DBMS functions: con-
current update, data recovery, and security. (Note: For concurrent update, you might need to review the concur-
rency control features of the DBMS.)

Alexamara Marina Group Case

For the following exercises, you will address problems and answer questions from the Alexamara Marina Group
staff. You do not use the Alexamara database for any of these exercises.

255

DBMS Functions

1. The log shown in Figure 7-19 includes four transactions that completed successfully. For each of the four trans-
actions, list the transaction ID and the table(s) modified. Also, list whether the modification to the table added,
changed, or deleted a record.

2. Suppose a catastrophe destroys the database just after 11:10. Which transactions in the sample log shown in
Figure 7-19 would the recovery program use to update the restored database? Which transactions would have
to be reentered by users?

3. If two of the four transactions shown in Figure 7-19 started at different times, deadlock could have occurred.
Adjust the log to create deadlock between these two transactions.

4. Two of the five tables in the Alexamara database are defined as follows:

Owner (OwnerNum, LastName, FirstName, Address, City,

State, Zip)

MarinaSlip (SlipID, MarinaNum, SlipNum, Length,

RentalFee, BoatName, BoatType, OwnerNum)

Suppose that a user accesses the database via the following view:

CREATE VIEW OwnerBoat AS

SELECT Owner.OwnerNum, LastName, FirstName, BoatName

FROM Owner, MarinaSlip

WHERE Owner.OwnerNum=MarinaSlip.OwnerNum

;

Suppose further that the database requirements have changed so that a boat can have multiple owners, just as
owners can have more than one boat. What’s the new database design for the Owner and MarinaSlip tables, as
well as any other table(s) needed to satisfy the new requirements? Does the new database design affect the
OwnerBoat view? If so, what’s the new defining query for the view?

Transaction ID Time Action Record Updated Before Image After Image

1 11:00 Start

2 11:01 Start

1 11:02 Insert ServiceRequest (16) (new values)

3 11:03 Start

2 11:04 Update Marina (1) (old values)

(old values)

(new values)

(new values)3 11:05 Update Owner (EL25)

Owner (EL25)

1 11:06 Commit

4 11:07 Start

3 11:08 Update MarinaSlip (2)

MarinaSlip (2)

MarinaSlip (2)

(new values)

3 11:09 Commit

(new values)2 11:10 Update

2 11:11 Commit

(old values)

4 11:12 Update

(old values)

(new values)

4 11:13 Update

(old values)

4 11:14 Commit

(old values) (new values)

FIGURE 7-19 Sample log in which four transactions commit normally

256

Chapter 7

C H A P T E R8
DATABASE ADMINISTRATION

L E A R N I N G O B J E C T I V E S

• Discuss the need for database administration

• Explain the DBA’s responsibilities in formulating and enforcing database policies for access
privileges, security, disaster planning, and archiving

• Discuss the DBA’s administrative responsibilities for DBMS evaluation and selection, DBMS
maintenance, data dictionary management, and training

• Discuss the DBA’s technical responsibilities for database design, testing, and performance
tuning

I N T R O D U C T I O N

As you’ve learned in previous chapters, the database approach has many benefits. At the same time, the use of a DBMS
involves potential hazards, especially when a database serves more than one user. For example, concurrent update and
security present potential problems. Whom do you allow to access various parts of the database, and in what way? How
do you prevent unauthorized accesses?

Note that just managing a database involves fundamental difficulties. So that they can use the database effectively,
users must be made aware of the database structure or at least the portion of the database they are allowed to access.
Any changes made in the database structure must be communicated to all users, along with information about how the
changes will affect them. Backup and recovery must be carefully coordinated, much more so than in a single-user environ-
ment, and this coordination presents another complication.

To manage these problems, companies appoint a DBA to manage both the database and the use of the DBMS, that
is, to perform database administration tasks. In this chapter, you will learn about the responsibilities of the DBA, which are
summarized in Figure 8-1. You’ll be focusing on the role of the DBA in a personal comupter (PC) environment that is simi-
lar to the environment of Premiere Products. You will learn about the DBA’s role in formulating and enforcing important pol-
icies with respect to the database and its use. Then, you will examine the DBA’s other administrative responsibilities for
DBMS evaluation and selection, DBMS maintenance, data dictionary management, and training. Finally, you will learn
about the DBA’s technical responsibilities for database design, testing, and performance tuning.

Da t a ba se P o l i c y F o rm u l a t i on a nd E n fo rcement
 Acce ss p r i v i l e ge s
 S e cu r i t y
 Di sa s te r p l a n n i n g
 A rch i v i n g
Ot he r D a ta ba se A dm i n i s t ra t i v e F u n c t ions
 D B MS e v a l u a t i on a n d se l e c t ion
 D B MS m a i n te n a n ce
 Da ta d i c t i on a ry m a n a ge m e n t
 Tra i n i n g
Da t a ba se Te ch n i ca l F u n c t i on s
 Da ta ba se de s i gn
 Te s t i n g
 P e r f o rm a n ce tu n i n g

FIGURE 8-1 DBA responsibilities

DATABASE POLICY FORMULATION AND ENFORCEMENT

The DBA formulates database policies, communicates those policies to users, and enforces them. Among the
policies are those covering access privileges, security, disaster planning, and archiving.

Access Privileges
Access to every table and field in a database is not a necessity for every user. Sam, for example, is an employee
at Premiere Products; his main responsibility is inventory control. Although he needs access to the entire Part
table, does he also need access to the Rep table? It is unlikely. Figure 8-2 illustrates the permitted and denied
access privileges for Sam.

Access
permitted

DBMS

Sam

Access
denied

RepNum LastName FirstName Street City State Zip Commission Rate

20 Kaiser Valerie 624 Randall Grove FL 33321 $20,542.50 0.05

35 Hull Richard 532 Jackson Sheldon FL 33553 $39,216.00 0.07

65 Perez Juan 1626 Taylor Fillmore FL 33336 $23,487.00 0.05

Rep

PartNum Description OnHand Class Warehouse Price

AT94 Iron 50 HW 3 $24.95

BV06 Home Gym 45 SG 2 $794.95

CD52 Microwave Oven 32 AP 1 $165.00

DL71 Cordless Drill 21 HW 3 $129.95

DR93 Gas Range 8 AP 2 $495.00

DW11 Washer 12 AP 3 $399.99

FD21 Stand Mixer 22 HW 3 $159.95

KL62 Dryer 12 AP 1 $349.95

KT03 Dishwasher 8 AP 3 $595.00

KV29 Treadmill 9 SG 2 $1,390.00

Part

FIGURE 8-2 Permitted and denied access privileges for Sam

258

Chapter 8

Paige, whose responsibility is customer mailings at Premiere Products, clearly requires access to custo-
mers’ names and addresses, but what about their balances or credit limits? Should she be able to change an
address? Should she be able to retrieve customers’ balances or credit limits? Figure 8-3 illustrates the permit-
ted and denied access privileges for Paige.

Although rep 20 (Valerie Kaiser) should be able to obtain some of the information about her own custo-
mers, should she be able to obtain the same information about other customers? Figure 8-4 illustrates the
permitted and denied access privileges for Valerie.

DBMS

Balance CreditLimit RepNumCustomerNum CustomerName City State Zip

148 Al’s Appliance
and Sport

2837 Greenway Fillmore FL 33336 $6,550.00 $7,500.00 20

282 Brookings 3827 Devon Grove FL 33321 $431.50 $10,000.00 35
Direct

356 Ferguson’s 382 Wildwood Northfield FL 33146 $5,785.00 $7,500.00 65

408 The Everything 1828 Raven Crystal FL 33503 $5,285.25 $5,000.00 35
Shop

462 Bargains 3829 Central Grove FL 33321 $3,412.00 $10,000.00 65
Galore

524 Kline’s 838 Ridgeland Fillmore FL 33336 $12,762.00 $15,000.00 20

608 Johnson’s 372 Oxford Sheldon FL 33553 $2,106.00 $10,000.00 65
Department
Store

687 Lee’s Sport 282 Evergreen Altonville FL 32543 $2,851.00 $5,000.00 35
and Appliance

725 Deerfield’s 282 Columbia Sheldon Fl 33553 $248.00 $7,500.00 35
Four Seasons

842 All Season 28 Lakeview Grove FL 33321 $8,221.00 $7,500.00 20

Customer

Paige

Access
denied

Access
permitted

Street

FIGURE 8-3 Permitted and denied access privileges for Paige

259

Database Administration

The DBA determines the access privileges for all users and enters the appropriate authorization rules in
the DBMS catalog to ensure that users access the database only in ways to which they are entitled. For exam-
ple, the DBA uses the SQL GRANT statement to define the access privileges users have to the data in the
database. The DBA also documents the access privilege policy; top-level management approves the policy, and
the DBA communicates the policy to management and to all users.

Security
As discussed in previous chapters, security is the prevention of unauthorized access, either intentional or
accidental, to a database, and the DBA uses views and the SQL GRANT statement as two security mechan-
isms. Unauthorized access includes access by someone who has no right to access the database at all. For
example, as shown in Figure 8-5, the DBMS prevents Brady, who is a programmer at Premiere Products, from
accessing the database because the DBA has not authorized Brady as a user.

DBMS

Unauthorized
user

Premiere
Products
database

DBMS prevents the
attempted security

violation

Brady

FIGURE 8-5 Attempted security violation by Brady, who’s not an authorized user

CustomerNum CustomerName ... Balance CreditLimit RepNum

148 Al’s Appliance ... $6,550.00 $7,500.00 20
and Sport

282 Brookings Direct ... $431.50 $10,000.00 35

356 Ferguson’s ... $5,785.00 $7,500.00 65

408 The Everything ... $5,285.25 $5,000.00 35
Shop

462 Bargains Galore ... $3,412.00 $10,000.00 65

524 Kline’s ... $12,762.00 $15,000.00 20

608 Johnson’s ... $2,106.00 $10,000.00 65
Department
Store

687 Lee’s Sport and ... $2,851.00 $5,000.00 35
Appliance

725 Deerfield’s Four ... $248.00 $7,500.00 35
Seasons

842 All Season ... $8,221.00 $7,500.00 20

Customer

Access
permitted

Access
denied

Valerie

DBMS

FIGURE 8-4 Permitted and denied access privileges for Valerie

260

Chapter 8

Unauthorized access also includes users who have legitimate access to some but not all data in a database
and who attempt to access data for which they are not authorized. For example, the DBMS prevents Paige
from accessing customer balances, as shown in Figure 8-6, because the DBA did not grant her access privi-
leges to that data.

The DBA takes the steps necessary to ensure that the database is secure. After the DBA determines the
access privileges for each user, the DBA creates security policies and procedures, obtains management
approval of the policies and procedures, and then distributes them to authorized users.

To implement and enforce security, the DBA uses the DBMS’s security features, such as encryption,
authentication, authorizations, and views. If a DBMS lacks essential security features, the DBA might create or
purchase special security programs that provide the missing features.

In addition to relying on the security features provided by the DBMS and, if necessary, the special secu-
rity programs, the DBA monitors database usage to detect potential security violations. If a security violation
occurs, the DBA determines who breached security, how the violation occurred, and how to prevent a similar
violation in the future.

Disaster Planning
The type of security discussed in the previous section concerns damage to the data in a database caused by
authorized and unauthorized users. Damage to a database can also occur through a physical incident such as
an abnormally terminated program, a software virus or worm, a disk problem, a power outage, a computer
malfunction, a hurricane, a flood, a tornado, or another natural disaster.

Paige

DBMS

DBMS prevents Paige
from accessing

customer balances

Authorized
user

CustomerNum CustomerName ...

148 Al’s Appliance ... $6,550.00 $7,500.00 20
and Sport

282 Brookings Direct ... $431.50 $10,000.00 35

356 Ferguson’s ... $5,785.00 $7,500.00 65

408 The Everything ... $5,285.25 $5,000.00 35
Shop

462 Bargains Galore ... $3,412.00 $10,000.00 65

524 Kline’s ... $12,762.00 $15,000.00 20

608 Johnson’s ... $2,106.00 $10,000.00 65
Department
Store

687 Lee’s Sport and ... $2,851.00 $5,000.00 35
Appliance

725 Deerfield’s Four ... $248.00 $7,500.00 35
Seasons

842 All Season ... $8,221.00 $7,500.00 20

Customer
CreditLimit RepNumBalance

FIGURE 8-6 Attempted security violation by Paige, who’s authorized to access some customer data but is not authorized
to access customer balances

261

Database Administration

To protect an organization’s data from physical damage, the DBA creates and implements backup and
recovery procedures as part of a disaster recovery plan. A disaster recovery plan specifies the ongoing and
emergency actions and procedures required to ensure data availability if a disaster occurs.

For example, a disaster recovery plan must include plans for protecting an organization’s data against
hard drive failures and electrical power loss. To protect against hard drive failures, organizations often use
redundant array of inexpensive/independent drives (RAID), in which database updates are replicated to mul-
tiple hard drives so that an organization can continue to process database updates after losing one of its hard
drives. To protect against electrical power interruptions and outages, organizations use an uninterruptible
power supply (UPS), which is a power source such as a battery or fuel cell, for short interruptions and a
power generator for longer outages.

For some functions, such as credit card processing, stock exchanges, and airline reservations, data avail-
ability must be continuous. In these situations, organizations can switch quickly to duplicate backup systems
(usually at a separate backup site) in the event of a malfunction in or a complete destruction of the main sys-
tem. Other organizations contract with firms using hardware and software similar to their own so that in the
event of a catastrophe, they can temporarily use these other facilities as backup sites. Backup sites can be
established with different levels of preparedness. A hot site is a backup site that an organization can switch to
in minutes or hours because the site is completely equipped with duplicate hardware, software, and data.
Although hot sites are expensive, businesses such as banks and other financial institutions cannot permit any
lengthy service interruptions and must have hot sites. A warm site is a backup site that is equipped with
duplicate hardware and software but not data, so it takes longer to start processing at a warm site compared
to a hot site.

Archiving
Often users need to retain certain data in a database for only a limited time. An order that has been filled,
reported on a customer’s statement, and paid by the customer is, in one sense, no longer important. Should
you keep the order in the database? If you always keep data in the database as a matter of policy, the data-
base will continually grow. The disk space that is occupied by the database will expand, and programs that
access the database might take more time to perform their functions. The increased usage of disk space and
the longer processing times might be good reasons to remove completed orders and all their associated order
lines from the database.

On the other hand, you might need to retain orders and their associated order lines for future reference
by users to answer customer inquiries or to check a customer’s past history with the company. More criti-
cally, you need to retain data legally required to satisfy governmental laws and regulations and to meet audit-
ing and financial requirements. Examples of legal reasons for data retention that apply to many organizations
are as follows:

• The Sarbanes-Oxley (SOX) Act of 2002 is a federal law that specifies data retention and verifi-
cation requirements for public companies, requires CEOs and CFOs to certify financial state-
ments, and makes it a crime to destroy or tamper with financial records. Congress passed this
law in response to major accounting scandals such as Enron, WorldCom, and Tyco.

• The Patriot Act of 2001 is a federal law that specifies data retention requirements for the identi-
fication of customers opening accounts at financial institutions, allows law enforcement agencies
to search companies’ and individuals’ records and communications, and expands the govern-
ment’s authority to regulate financial transactions. President George W. Bush signed the Patriot
Act into law 45 days after the September 11, 2001 terrorist attacks against the United States.

• The Security and Exchange Commission’s Rule 17a-4 (SEC Rule 17a-4) specifies the retention
requirements of all electronic communications and records for financial and investment entities.

• The Department of Defense (DOD) 5015.2 Standard of 1997 provides data management
requirements for the DOD and for companies supplying or dealing with the DOD.

• The Health Insurance Portability and Accountability Act (HIPAA) of 1996 is a federal law that
specifies the rules for storing, handling, and protecting health-care transactions.

• The Presidential Records Act of 1978 is a federal law that regulates the data retention require-
ments for all communications, including electronic communications, of U.S. presidents and vice
presidents. Congress passed this law after the scandals during the Nixon administration.

262

Chapter 8

Legal compliance to the many data retention laws and regulations is a complicated and expensive pro-
cess. For example, the length of time organizations must retain data ranges from two to seven years; for some
laws, the time period is indefinite. The DBA is responsible for ensuring that data processed by DBMSs is
retained in conformance to all laws. Although DBAs need to retain data for legal reasons, they can choose to
remove data that’s no longer needed for perfomance reasons.

One solution to data retention is to use what is known as a data archive, or archive. In ordinary usage, an
archive (technically archives) is a place where public records and documents are kept. A data archive is sim-
ilar. It is a place where a record of certain corporate data is kept. In the case of the previously mentioned
completed orders and associated order lines, Figure 8-7 shows how you would remove them from the data-
base and place them in the archive, thus storing them for future reference.

Typically, the DBA stores the archive on some mass storage device—for example, a disk, tape, CD, or
DVD. Whichever medium the DBA uses, the DBA must store copies of both archives and database backups
off-site so that recovery can take place even if a company’s buildings and contents are destroyed. The off-site
location must be a sufficient distance from the main site so that there’s no likelihood of a disaster damaging
both sites. Once again, it is up to the DBA to establish and implement procedures for the use, maintenance,
and storage of the archive.

OTHER DATABASE ADMINISTRATIVE FUNCTIONS

The DBA is also responsible for DBMS evaluation and selection, DBMS maintenance, data dictionary manage-
ment, and training.

OrderNum OrderDate CustomerNum

21608 10/20/2013 148

21610 10/20/2013 356

21613 10/21/2013 408

21614 10/21/2013 282

21617 10/23/2013 608

21619 10/23/2013 148

21623 10/23/2013 608

DATABASE
Orders

OrderNum OrderDate CustomerNum

21617 10/23/2013 608

ARCHIVE

OrderNum PartNum NumOrdered QuotedPrice

21608 AT94 11 $21.95

21610 DR93 1 $495.00

21610 DW11 1 $399.99

21613 KL62 4 $329.95

21614 KT03 2 $595.00

21617 BV06 2 $794.95

21617 CD52 4 $150.00

21619 DR93 1 $495.00

21623 KV29 2 $1,290.00

OrderLine

OrderNum PartNum NumOrdered QuotedPrice

21617 BV06 2 $794.95

21617 CD52 4 $150.00

OrderLine

Orders

FIGURE 8-7 Movement of order 21617 from the database to the archive

263

Database Administration

DBMS Evaluation and Selection
When a company decides to purchase a new DBMS, the DBA leads the DBMS evaluation and selection effort. To
evaluate the DBMS candidates objectively, the DBA usually prepares a checklist similar to the one shown in
Figure 8-8. (This checklist applies specifically to a relational system because most DBMSs are, at least in part,
relational. If the DBA had not already selected a data model, such as the relational model, the DBA would have
added a “Choice of Data Model” category to the list.) The DBA evaluates each prospective purchase of a DBMS
against the categories shown in the figure. An explanation of each category follows Figure 8-8.

1 . Data Defin i t ion
a . Data t ypes

 (1) Numer i c
 (2) Cha rac te r
 (3) Da te
 (4) Log ica l (T /F)
 (5) Memo
 (6) Cu r rency
 (7) B ina ry ob jec t (p i c tu res , d raw ings , sounds , and so on)
 (8) L ink to an In te rne t , Web , o r o the r address
 (9) Use r-defined da ta t ypes

(10) Othe r
b . Suppor t fo r nu l l s
c . Suppor t fo r p r imary keys
d . Suppor t fo r fo re ign keys
e . Un ique indexes
f . V iews

2 . Data Res t ruc tu r ing
a . Poss ib le res t ruc tu r ing

(1) Add new tab les
(2) De le te ex i s t i ng tab les
(3) Add new co lumns
(4) Change the l ayout o f ex i s t i ng co lumns
(5) De le te co lumns
(6) Add new indexes
(7) De le te ex i s t i ng indexes

b . Ease o f res t ruc tu r ing
3 . Nonprocedura l Languages

a . Nonprocedura l l anguages suppor ted
(1) SQL
(2) QBE
(3) Na tu ra l l anguage
(4) Language un ique to the DBMS. Aw ard po in t s on the

 bas i s o f ease o f use as w e l l a s the t ypes o f opera t ions
 (j o in ing , so r t i ng , g roup ing , ca l cu la t ing va r ious s ta t i s t i c s ,
 and so on) tha t a re ava i l ab le i n the l anguage . You can
 u se SQL as a s tandard aga ins t wh ich you can judge the
 l anguage .
b . Opt im i za t ion done by one o f the fo l low ing :

(1) Use r (i n fo rmu la t ing the query)
(2) DBMS (th rough bu i l t - i n opt im i ze r)
(3) No opt im i za t ion poss ib le ; s y s tem does on l y sequent i a l

 sea rches .
4 . P rocedura l Languages

a . P rocedura l l anguages suppor ted
(1) Language un ique to the DBMS. Aw ard po in t s on the bas i s

 o f the qua l i t y o f th i s l anguage both i n te rms o f the t ypes
 o f s ta tements and cont ro l s t ruc tu res ava i l ab le and the da tabase
 man ipu la t ion s ta tements i nc luded in the l anguage .

(2) Java
(3) C o r C++
(4) GUI l anguage such as V i sua l Bas i c
(5) COBOL
(6) Othe r

b . Can a nonprocedura l l anguage be used in con junc t ion w i th
the p rocedura l l anguage (fo r example , cou ld SQL be
embedded in a COBOL p rogram)?

5 . Data D ic t iona ry
a . Type o f en t r i e s

(1) Tab les
(2) Co lumns
(3) I ndexes
(4) Re la t ionsh ips
(5) Use r s
(6) P rograms
(7) Othe r

b . In tegra t ion o f da ta d i c t iona ry w i th o the r components o f
the sy s tem

FIGURE 8-8 DBMS evaluation checklist (continued)

264

Chapter 8

6 . Concur ren t Update
a . Leve l o f lock ing

(1) F ie ld va lue
(2) Row
(3) Page
(4) Tab le
(5) Da tabase

b . Type o f lock ing
(1) Sha red
(2) Exc lus i ve
(3) Bo th

c . Respons ib i l i t y fo r hand l ing d ead lock
(1) P rograms
(2) DBMS (au tomat i c ro l lback o f t r ansac t ion caus ing

 dead lock)
7 . Backup and Recove ry

a . Backup se rv i ces
b . Journa l i ng se rv i ces
c . Recove ry se r v i ces

(1) Recove r f rom backup copy on l y
(2) Recove r us ing backup copy and jou rna l

d . Ro l lback o f i nd i v idua l t r ansac t ions
e . Inc rementa l backup

8 . Secu r i t y
a . Enc ryp t ion
b . Passwords
c . Author i za t ion ru les

(1) Access to da tabase on l y
(2) Access /update access to any co lumn o r combina t ion o f

 co lumns
d . V iews
e . D i fficu l t y i n bypass ing secu r i t y con t r o l s

9 . I n tegr i t y
a . Suppor t fo r en t i t y i n tegr i t y
b . Suppor t fo r re fe ren t i a l i n tegr i t y
c . Suppor t fo r da ta i n tegr i t y
d . Suppor t fo r o the r t ypes o f i n tegr i t y cons t ra in t s

10 . Rep l i ca t ion and D i s t r ibu ted Databases
a . Pa r t i a l rep l i cas
b . Hand l ing o f dup l i ca te updates i n rep l i cas
c . Data d i s t r ibu t ion
d . P rocedure suppor t

(1) Language used
(2) P rocedures s to red in da tabase
(3) Suppor t fo r re mote s to red p rocedu res
(4) Tr igger suppor t

11 . L im i ta t ions
a . Number o f t ab les
b . Number o f co lumns
c . Length o f i nd i v idua l co lumns
d . Tota l l ength o f a l l co lumns in a t ab le
e . Number o f ro ws pe r t ab le
f . Number o f fi les tha t can be open a t th e same t im e
g . S i zes o f da tabase , t ab les , and o the r ob jec t s
h . Types o f ha rdware suppor ted
i . Types o f LANs suppor ted
j . Othe r

12 . Documenta t ion and Tra in ing
a . C lea r l y w r i t ten manua l s
b . Tu to r i a l

(1) On l ine
(2) P r in ted

c . On l ine he lp ava i l ab le
(1) Genera l he lp
(2) Contex t - sens i t i ve he lp

d . Tra in ing
(1) Vendor o r o the r company
(2) Loca t ion
(3) Types (DBA, p rogrammers , u se r s , o the r s)
(4) Cos t

13 . Vendor Suppor t
a . Type o f suppor t ava i l ab le
b . Qua l i t y o f suppor t ava i l ab le
c . Cos t o f suppor t
d . Reputa t ion o f suppor t

14 . Pe r fo rmance
a . Ex te rna l benchmark ing done by va r iou s o rgan i za t ions
b . In te rna l benchmark ing
c . Inc ludes a pe r fo rmance mon i to r

FIGURE 8-8 DBMS evaluation checklist (continued)

265

Database Administration

1. Data definition. What types of data does the DBMS support? Does it support nulls? What about
primary and foreign keys? The DBMS undoubtedly provides support for indexes, but can you
specify that an index is unique and then have the system enforce the uniqueness? Does the
DBMS support views?

2. Data restructuring. What type of database restructuring does the DBMS allow? How easily can
the DBA perform the restructuring? Will the system do most of the work, or will the DBA have
to create special programs for this purpose?

3. Nonprocedural languages. What types of nonprocedural language does the DBMS support? The
possibilities are SQL, QBE, natural language, and a DBMS built-in language. If the DBMS sup-
ports one of the standard languages, what’s the quality of its version? If the DBMS provides its
own language, how good is it? How does its functionality compare to that of SQL? How does the
DBMS achieve optimization of queries? The DBMS optimizes each query, or the user must do so
by the manner in which he or she states the query. If neither happens, no optimization occurs.
Most desirable, of course, is the first alternative.

4. Procedural languages. What types of procedural languages does the DBMS support? Are they
common languages, such as Java, C or C++, and COBOL? Is it a graphical user interface (GUI)
language? Does the DBMS provide its own language? In the latter case, how complete is the lan-
guage? Does it contain all the required types of statements and control structures? What facili-
ties does the language provide for accessing the database? Does the DBMS let you use a
nonprocedural language while you are using the procedural language?

5. Data dictionary. What kind of data dictionary does the DBMS provide? Is it a simple catalog?
Or can it contain more content, such as information about programs and the various data items
these programs access? How well is the data dictionary integrated with other components of the
system—for example, the nonprocedural language?

6. Concurrent update. Does the DBMS support concurrent update? What unit may be locked (field
value, row, page, table, or database)? Are exclusive locks the only ones permitted, or are shared
locks also allowed? (A shared lock permits other users to read the data; with an exclusive lock,
no other user may access the data in any way.) Does the DBMS resolve deadlock, or must pro-
grams resolve it?

7. Backup and recovery. What type of backup and recovery services does the DBMS provide?
Does the DBMS maintain a journal of changes in the database and use the journal during the
recovery process? If a transaction terminates abnormally, does the DBMS roll back its updates?
Can the DBMS perform an incremental backup of just the data that has changed?

15 . Por tab i l i t y
a . Opera t ing sy s tems

(1) Un i x
(2) M ic roso f t W indows
(3) L inux
(4) Othe r

b . Impor t /expor t / l i nk ing fi le suppor t
(1) Othe r da tabases
(2) Othe r app l i ca t ions (fo r example , sp readsheet s and

 g raph ic s)
c . I n te rne t and in t rane t suppor t

16 . Cos t
a . Cos t o f DBMS
b. Cos t o f any add i t iona l components
c . Cos t o f any add i t iona l ha rdware tha t i s requ i red
d . Cos t o f ne twork ve r s ion (i f requ i red)
e . Cos t and t ypes o f suppor t

17 . Fu tu re P lans
a . What does the vendor p lan fo r the fu tu re o f the s y s tem?
b . What i s the h i s to ry o f the vendor i n te rms o f keep ing the

sy s tem up to da te?
c . When changes a re made in the s y s tem, wha t i s i nvo l ved in

conve r t ing to the new ve r s ion?
(1) How easy i s the conve r s ion?
(2) What w i l l i t cos t ?

18 . Other Cons ide ra t ions (F i l l i n you r own spec ia l requ i rements .)
a . ?
b . ?
c . ?
d . ?

FIGURE 8-8 DBMS evaluation checklist (continued)

266

Chapter 8

8. Security. What types of security features does the DBMS provide? Does the DBMS support
encryption, password support, and authorizations rules? Does the DBMS provide a view mecha-
nism that can be used for security? How difficult is it to bypass the security controls?

9. Integrity. What type of integrity constraints does the DBMS support? Does the DBMS support
entity integrity (the fact that the primary key cannot be null) and referential integrity (the prop-
erty that values in foreign keys must match values already in the database)? What types of data
integrity does the DBMS support? Does the DBMS support any other types of integrity constraints?

10. Replication and distributed databases. Does the DBMS support replication? If so, does the
DBMS allow partial replicas (copies of selected rows and fields from tables in a database)? And
how does the DBMS handle updates to the same data from two or more replicas? Can the DBMS
distribute a database, that is, divide the database into segments and store the segments on dif-
ferent computers? If so, what types of distribution does the DBMS allow and what types of pro-
cedure support for distribution does the DBMS provide?

11. Limitations. What limitations exist with respect to the number of tables and the number of fields
and rows per table? How many files can you open at the same time? (For some databases, each
table and each index is in a separate file. Thus, a single table with three indexes, all in use at the
same time, would account for four files. Problems might arise if the number of files you can open
is relatively small and many indexes are in use.) On what types of operating systems and hardware
is the DBMS supported? What types of local area networks (LANs) can you use with the DBMS?
(A local area network (LAN) is a configuration of several computers connected together that
allows users to share a variety of hardware and software resources. One of these resources is the
database. In a LAN, support for concurrent update is very important because many users might be
updating the database at the same time. The relevant question here, however, is not how well the
DBMS supports concurrent update but which of the LANs you can use with the DBMS.)

12. Documentation and training. Does the vendor of the DBMS supply printed or online training
manuals? If so, how good are the manuals? Are they easy to use? Is there a good index? Is a
tutorial, in either printed or online form, available to assist users in getting started with the sys-
tem? Is online help available? If so, does the DBMS provide general help and context-sensitive
help? (Context-sensitive help means that if a user is having trouble and asks for help, the DBMS
will provide assistance for the particular feature being used at the time the user asks for the
help.) Does the vendor provide training classes? Do other companies offer training? Are the
classes on-site or off-site? Are there classes for the DBA and separate classes for programmers
and others? What is the cost for each type of training?

13. Vendor support. What type of support does the vendor provide for the DBMS, and how good is
it? What is the cost? What is the vendor’s reputation for support among current users?

14. Performance. How well does the DBMS perform, where performance is a measure of how rapidly
the DBMS completes its tasks? This is a difficult question to answer because each organization
has a different number of users and a different mix of transactions and both factors affect how a
DBMS performs. One way to determine relative performance among DBMSs is to look into
benchmark tests that various organizations have performed on several DBMSs. Benchmarking
typically is done in areas such as sorting, indexing, and reading all rows and then changing data
values in all rows. For example, the Transaction Processing Performance Council (www.tpc.org)
provides the results of database benchmark tests to its members. Beyond using benchmarks, if
an organization has some specialized needs, it may have to set up its own benchmark tests. Does
the DBMS provide a performance monitor that measures different types of performance while
the DBMS is operating?

15. Portability. Which operating systems can you use with the DBMS? What types of files can you
import or export? Can the DBMS link to other data sources, such as files and other types of
DBMSs? Does the DBMS provide Internet and intranet support? (An intranet is an internal com-
pany network that uses software tools typically used on the Internet and the World Wide Web.)

16. Cost. What is the cost of the DBMS and of any additional components the organization is plan-
ning to purchase? Is additional hardware required? If so, what is the associated cost? If the
organization requires a special version of the DBMS for a network, what is the additional cost?
What is the cost of vendor support, and what types of support plans are available?

267

Database Administration

17. Future plans. What plans has the vendor made for the future of the system? This information is
often difficult to obtain, but you can get an idea by looking at the performance of the vendor
with respect to how it has kept the existing system up to date. How easy has it been for users to
convert to new versions of the system?

18. Other considerations. This is a final catch-all category that contains any special requirements
not covered in the other categories. For many organizations, existing financial and other applica-
tion software and existing hardware limit the DBMS choice.

After the DBA examines each DBMS with respect to all the preceding categories, the DBA and manage-
ment can compare the results. Unfortunately, this process can be difficult because of the number of categories
and their generally subjective nature. To make the process more objective, the DBA can assign a numerical
ranking to each DBMS in each category (for example, a number between 0 and 10, where 0 is poor and 10 is
excellent). Furthermore, the DBA can assign weights to the categories. Weighting allows an organization to
signify which categories are more critical than others. Then, you multiply each number used in the numerical
ranking by the appropriate weight and add the results, producing a weighted total. Finally, you compare the
weighted totals for each DBMS, producing the final evaluation.

How does the DBA arrive at the numbers to assign each DBMS in the various categories? Several methods
are used. The DBA can request feedback from other organizations that are currently using the DBMS being
considered. The DBA can read journal reviews of the various DBMSs. Sometimes the DBA can obtain a trial
version of the DBMS, and members of the staff can give it a hands-on test. In practice, the DBA usually com-
bines all three methods. Whichever method is used, however, the DBA must carefully create the checklist and
determine weights before starting the evaluation; otherwise, the findings may be inadvertently slanted in a
particular direction.

DBMS Maintenance
After the organization selects and purchases the DBMS, the DBA has primary responsibility for it. The DBA
installs the DBMS in a way that is suitable for the organization. If the DBMS configuration needs to be
changed, it is the DBA who makes the changes.

When the vendor releases a new version of the DBMS, the DBA reviews it and determines whether the
organization should upgrade to it. If the decision is made to convert to the new version or perhaps to a new
DBMS, the DBA coordinates the conversion. The DBA also handles any fixes to problems in the DBMS that
the vendor releases.

When a problem occurs that affects the database, the DBA coordinates the people required to resolve the
problem. Some people, such as programmers and users, are from inside the organization, and others, such as
hardware and software vendors, are from outside the organization.

When users have special one-time processing needs or extensive query requirements against the data-
base, the DBA coordinates the users so that their needs are satisfied without unduly affecting other users.

Data Dictionary Management
The DBA also manages the data dictionary. Essentially, the data dictionary is the catalog mentioned in
Chapter 7, but it often contains a wider range of information, including information about tables, fields,
indexes, programs, and users.

The DBA establishes naming conventions for tables, fields, indexes, and so on. The DBA creates the data
definitions for all tables, as well as for any data integrity rules and user views. The DBA also updates the
contents of the data dictionary. Finally, the DBA creates and distributes appropriate reports from the data
dictionary to users, programmers, and other people in the organization.

Training
The DBA provides training in the use of the DBMS and in how to access the database. The DBA also coordi-
nates the training of users and the technical staff responsible for developing and maintaining database appli-
cations. In those cases where the vendor of the DBMS provides training, the DBA handles the scheduling to
make sure users receive the training they require. Training is a big expense, but successful organizations
make the investment to ensure that their employees are knowledgeable and productive in handling the criti-
cal data resource.

268

Chapter 8

TECHNICAL FUNCTIONS

The DBA is also responsible for database design, testing, and performance tuning.

Database Design
The DBA establishes a sound methodology for database design, such as the one discussed in Chapter 6, and
ensures that all database designers follow the methodology. The DBA also verifies that the designers obtain all
pertinent information from the appropriate users. After the database designers complete the information-level
design, the DBA does the physical-level design.

The DBA establishes documentation standards for all the steps in the database design process. The DBA
also makes sure that these standards are followed, that the documentation is kept up to date, and that the
appropriate personnel have access to the documentation they need.

Requirements don’t remain stable over time; they change constantly. The DBA reviews all changes to
requirements and determines whether the changes will require that modifications be made to the database.
If so, the DBA makes the changes in the design and in the data in the database. The DBA also verifies that
programmers modify all programs and documentation affected by the change.

Testing
The hardware, software, and database for the users is called the production system, or live system. The DBA
strictly controls the production system. With just two exceptions, the DBA grants access and update privileges
to the production system only to authorized users. The first exception is when problems occur, for example,
with software. The DBA and others must troubleshoot the problem by accessing the production system. The
second exception is when programmers complete new programs or modify existing programs for the produc-
tion system. For both exceptions, the DBA performs any necessary database modifications or closely controls
the activities of others.

Other than for these two exceptions, the DBA does not grant programmers access to the production sys-
tem. Instead, the DBA and the programmers create a separate system, called the test system, or sandbox, that
programmers use to develop new programs and modify existing programs. After programmers complete the
testing of their programs in the test system, a separate quality assurance group performs futher tests, the DBA
and the users review and approve the test results, and the DBA reviews and approves the programs and docu-
mentation. The DBA then notifies all affected users when the new or corrected features will be available. The
DBA then transfers the programs to the production system and makes any required database changes, as
shown in Figure 8-9.

269

Database Administration

A production system with a DBMS is a complex system. Having a separate test system reduces the com-
plexity of the production system and provides an extra measure of control.

Performance Tuning
Database performance deals with the ability of the production system to serve users in a timely and respon-
sive manner. Because funding is usually a constraint, the DBA’s challenge is to get the best possible perfor-
mance from the available funds.

Faster computers with faster disks, faster network connections, faster software, and other production
system expenditures help improve performance. What can the DBA do if the organization has no additional
money for its production system but needs further performance improvements? The DBA can change the
database design to improve performance; this process is called tuning the design. Some of the performance-
tuning changes the DBA can make to a database design include creating and deleting indexes, splitting tables,
and changing the table design.

By default, Access and some other DBMSs automatically create indexes for primary key and foreign key
fields. These indexes make accessing the fields faster than accessing would be without the indexes. Further,
indexing common fields improves the speed of joining related tables. If a DBMS doesn’t automatically index
primary key and foreign key fields, the DBA should create indexes for them. In addition, queries that search
indexed fields run faster than comparable queries without indexes for those fields. For example, if users fre-
quently query the Part table to find records based on values for the Class or Warehouse fields, the DBA can
improve performance by adding indexes on those fields. On the other hand, a table with many indexes takes
longer to update. If users experience delays when they update a table, the DBA can delete some of the table’s
indexes to improve updating performance.

If users access only certain fields in a table, you can improve performance by splitting the table into two
or more tables that each have the same primary key as the original and that collectively contain all the fields
from the original table. Each resulting table is smaller than the original; the smaller amount of data moves
faster between disk and memory. For example, suppose dozens of users at Premiere Products access the
Customer table shown in Figure 8-10.

DBMS

Test System Production System

DBA

 The DBA makes only
approved modifications

to the production
database

Programmer

DBMS

Test
database

Production
database

Production
programs

Test
programs

User

The DBA makes only
approved modifications

to the production
programs

Move/copy
utility

program

FIGURE 8-9 DBA controls the interaction between the test and production systems

270

Chapter 8

If some users access address data from the Customer table and other users access balances and credit
limits, the DBA can split the Customer table into two tables, as shown in Figure 8-11, to improve perfor-
mance. Users needing data from both tables can obtain that data by joining the two split tables on the
CustomerNum field.

CustomerNum CustomerName Street City State Zip Balance CreditLimit RepNum

148 Al’s Appliance 2837 Greenway Fillmore FL 33336 $6,550.00 $7,500.00 20
and Sport

282 Brookings 3827 Devon Grove FL 33321 $431.50 $10,000.00 35
Direct

356 Ferguson’s 382 Wildwood Northfield FL 33146 $5,785.00 $7,500.00 65

408 The Everything 1828 Raven Crystal FL 33503 $5,285.25 $5,000.00 35
Shop

462 Bargains Galore 3829 Central Grove FL 33321 $3,412.00 $10,000.00 65

524 Kline’s 838 Ridgeland Fillmore FL 33336 $12,762.00 $15,000.00 20

608 Johnson’s 372 Oxford Sheldon FL 33553 $2,106.00 $10,000.00 65
Department
Store

687 Lee’s Sport and 282 Evergreen Altonville FL 32543 $2,851.00 $5,000.00 35
Appliance

725 Deerfield’s 282 Columbia Sheldon FL 33553 $248.00 $7,500.00 35
Four Seasons

842 All Season 28 Lakeview Grove FL 33321 $8,221.00 $7,500.00 20

Customer

FIGURE 8-10 Customer table for Premiere Products

271

Database Administration

The DBA can also split tables for security purposes. In Figure 8-11, the CustomerAddress table contains
customer address data and the CustomerFinancial table contains customer financial data. Those users granted
access only to the CustomerAddress table have no access to customer financial data, thus providing an added
measure of security.

Although you design database tables in third normal form to prevent the anomaly problems discussed in
Chapter 5, the DBA occasionally denormalizes tables to improve performance. Denormalizing converts a table
that is in third normal form to a table that is no longer in third normal form. Usually, the conversion produces
tables that are in first normal form or second normal form. Denormalizing introduces anomaly problems but
can decrease the number of disk accesses that certain types of transactions require, thus improving perfor-
mance. For example, suppose users who are processing order lines need part descriptions. The DBA might
include part descriptions in the OrderLine table, as shown in Figure 8-12.

CustomerNum CustomerName Street City State Zip

148 Al’s Appliance and Sport 2837 Greenway Fillmore FL 33336

282 Brookings Direct 3827 Devon Grove FL 33321

356 Ferguson’s 382 Wildwood Northfield FL 33146

408 The Everything Shop 1828 Raven Crystal FL 33503

462 Bargains Galore 3829 Central Grove FL 33321

524 Kline’s 838 Ridgeland Fillmore FL 33336

608 Johnson’s Department Store 372 Oxford Sheldon FL 33553

687 Lee’s Sport and Appliance 282 Evergreen Altonville FL 32543

725 Deerfield’s Four Seasons 282 Columbia Sheldon FL 33553

842 All Season 28 Lakeview Grove FL 33321

CustomerNum CustomerName Balance CreditLimit RepNum

148 Al’s Appliance and Sport $6,550.00 $7,500.00 20

282 Brookings Direct $431.50 $10,000.00 35

356 Ferguson’s $5,785.00 $7,500.00 65

408 The Everything Shop $5,285.25 $5,000.00 35

462 Bargains Galore $3,412.00 $10,000.00 65

524 Kline’s $12,762.00 $15,000.00 20

608 Johnson’s Department Store $2,106.00 $10,000.00 65

687 Lee’s Sport and Appliance $2,851.00 $5,000.00 35

725 Deerfield’s Four Seasons $248.00 $7,500.00 35

842 All Season $8,221.00 $7,500.00 20

CustomerAddress

CustomerFinancial

FIGURE 8-11 Result of splitting the Customer table into two tables

272

Chapter 8

The OrderLine table in Figure 8-12 is in first normal form because there are no repeating groups. Because
a part description depends only on the part number, which is just a portion of the primary key for the table,
the OrderLine table is not in second normal form and, consequently, is not in third normal form either. As a
result, the table has redundancy and anomaly problems that are inherent in tables that are not in third nor-
mal form. However, users processing order lines no longer need to join the OrderLine and Part tables to
obtain part descriptions, thus improving performance.

Large databases with thousands of users often suffer periodic performance problems as users change their
transaction mix. In these cases, the DBA must tune the databases to provide improved performance to all
users.

OrderNum PartNum Description NumOrdered QuotedPrice

21608 AT94 Iron 11 $21.95

21610 DR93 Gas Range 1 $495.00

21610 DW11 Washer 1 $399.99

21613 KL62 Dryer 4 $329.95

21614 KT03 Dishwasher 2 $595.00

21617 BV06 Home Gym 2 $794.95

21617 CD52 Microwave Oven 4 $150.00

21619 DR93 Gas Range 1 $495.00

21623 KV29 Treadmill 2 $1,290.00

OrderLine

FIGURE 8-12 Including part descriptions in the OrderLine table, which creates a first normal form table

273

Database Administration

Summary

• The DBA is the person who is responsible for supervising the database and the use of the DBMS.

• The DBA formulates and enforces policies about those users who can access the database, the portions
of the database they may access, and in what manner they can access the database.

• The DBA formulates and enforces policies about security, which is the prevention of unauthorized access,
either intentional or accidental, to a database. The DBA uses the DBMS’s security features and special
security programs, if necessary, and monitors database usage to detect potential security violations.

• The DBA creates and implements backup and recovery procedures as part of a disaster recovery plan to
protect an organization’s data from physical damage.

• The DBA formulates and enforces policies that govern the management of an archive for data that is no
longer needed in the database but that must be retained for reference purposes or for compliance with
federal laws.

• The DBA leads the effort to evaluate and select a new DBMS. The DBA develops a checklist of desirable
features for a DBMS and evaluates each prospective purchase of a DBMS against this checklist.

• The DBA installs and maintains the DBMS after it has been selected and procured.

• The DBA maintains the data dictionary, establishes naming conventions for its contents, and provides
information from it to others in the organization.

• The DBA provides database and DBMS training and coordinates and schedules training by outside
vendors.

• The DBA verifies all information-level database designs, completes all physical-level database designs,
and creates documentation standards. The DBA also evaluates changes in requirements to determine
whether he or she needs to change the database design and the data in the database.

• The DBA controls the production system, which is accessible only to authorized users. Other than when
authorized by the DBA to access the production system in exceptional situations, programmers access a
separate test system. The DBA migrates tested programs to the production system and makes any
required database changes.

• The DBA tunes the database design to improve performance. Included among the performance tuning
changes the DBA makes are creating and deleting indexes, splitting tables, and denormalizing tables.

Key Terms

archive

context-sensitive help

data archive

denormalizing

Department of Defense (DOD) 5015.2 Standard

disaster recovery plan

exclusive lock

HIPAA

hot site

intranet

live system

local area network (LAN)

Patriot Act

Presidential Records Act

production system

RAID (redundant array of inexpensive/independent
drives)

sandbox

Sarbanes-Oxley (SOX) Act

SEC Rule 17a-4

shared lock

test system

tuning

UPS (uninterruptible power supply)

warm site

274

Chapter 8

Review Questions

1. What is a DBA? Why is this position necessary?

2. What are the DBA’s responsibilities regarding access privileges?

3. What are the DBA’s responsibilities regarding security?

4. What is a disaster recovery plan?

5. What are data archives? What purpose do they serve? What is the relationship between a database and its
data archives?

6. Name five categories that you usually find on a DBMS evaluation and selection checklist.

7. What is a shared lock? What is an exclusive lock?

8. What is a LAN?

9. What is context-sensitive help?

10. What is an intranet?

11. After a DBMS has been selected, what is the DBA’s role in DBMS maintenance?

12. What are the DBA’s responsibilities with regard to the data dictionary?

13. Who trains computer users in an organization? What is the DBA’s role in this training?

14. What are the DBA’s database design responsibilities?

15. What is the difference between production and test systems?

16. What is meant by “tuning a design?”

17. How can splitting a table improve performance?

18. What is denormalization?

Premiere Products Exercises

For the following exercises, you do not use the Premiere Products database.

1. The DBA asks for your help in planning the data archive for the following Premiere Products database:

Rep (RepNum, LastName, FirstName, Street, City, State,

Zip, Commission, Rate)

Customer (CustomerNum, CustomerName, Street, City,

State, Zip, Balance, CreditLimit, RepNum)

Orders (OrderNum, OrderDate, CustomerNum)

OrderLine (OrderNum, PartNum, NumOrdered, QuotedPrice)

Part (PartNum, Description, OnHand, Class, Warehouse, Price)

Determine which data from the database to archive; that is, for each table, specify whether data needs to be
archived. If it does, specify which data, when it should be archived, and whether it should be archived with data
from another table.

2. The DBA denormalized some of the data in the Premiere Products database to improve performance, and one
of the resulting tables is the following:

Customer (CustomerNum, CustomerName, Street, City,

State, Zip, Balance, CreditLimit, RepNum, RepName)

Which field or fields cause the table to no longer be in third normal form? In which normal form is the denormalized
table?

3. Does your school have a formal disaster recovery plan? If it does, describe the general steps in the plan. If it
does not, describe the informal steps that would be taken if a disaster occurred.

275

Database Administration

Henry Books Case

For the following exercises, you do not use the Henry Books database.

1. The DBA asks for your help in planning the data archive for the following Henry Books database:

Branch (BranchNum, BranchName, BranchLocation)

Publisher (PublisherCode, PublisherName, City)

Author (AuthorNum, AuthorLast, AuthorFirst)

Book (BookCode, Title, PublisherCode, Type, Paperback)

Wrote (BookCode, AuthorNum, Sequence)

Copy (BookCode, BranchNum, CopyNum, Quality, Price)

Determine which data from the database to archive; that is, for each table, specify whether data needs to be
archived. If it does, specify which data, when it should be archived, and whether it should be archived with data
from another table.

2. The DBA denormalized some of the data in the Henry Books database to improve performance, and one of the
resulting tables is the following:

Wrote (BookCode, AuthorNum, Sequence, PublisherCode, PublisherName)

Which field or fields cause the table to no longer be in third normal form? In which normal form is the denormalized
table?

3. Interview the DBA at your school or at a local business to determine the safeguards used to segregate the pro-
duction system from the test system.

Alexamara Marina Group Case

For the following exercises, you do not use the Alexamara database.

1. The DBA asks for your help in planning the data archive for the following Alexamara database:

Marina (MarinaNum, MarinaName, Address, City, State, Zip)

Owner (OwnerNum, LastName, FirstName, Address, City, State, Zip)

MarinaSlip (SlipID, MarinaNum, SlipNum, Length,

RentalFee, BoatName, BoatType, OwnerNum)

ServiceCategory (CategoryNum, CategoryDescription)

ServiceRequest (ServiceID, SlipID, CategoryNum,

Description, Status, EstHours, SpentHours,

NextServiceDate)

Determine which data from the database to archive; that is, for each table, specify whether data needs to be
archived. If it does, specify which data to archive, when it should be archived, and whether it should be archived
with data from another table.

2. The DBA denormalized some of the data in the Alexamara database to improve performance, and one of the
resulting tables is the following:

MarinaSlip (SlipID, MarinaNum, MarinaName, SlipNum,

Length, RentalFee, BoatName, BoatType, OwnerNum,

LastName, FirstName)

Which field or fields cause the table to no longer be in third normal form? In which normal form is the denormalized
table?

3. Interview the DBA at your school or at a local business to determine the security and access privilege proce-
dures used to safeguard data.

276

Chapter 8

C H A P T E R9
DATABASE MANAGEMENT
APPROACHES

L E A R N I N G O B J E C T I V E S

• Describe distributed database management systems (DDBMSs)

• Discuss client/server systems

• Examine the ways databases are accessed on the Web

• Discuss XML and related document specification standards

• Define data warehouses and explain their structure and access

• Discuss the general concepts of object-oriented DBMSs

I N T R O D U C T I O N

In previous chapters, you learned about relational DBMSs (RDBMSs), which dominate the database market today. In this
chapter, you will examine several database management topics, most of which are applicable to relational systems.

The centralized approach to processing data, in which users access a central computer through personal computers
(PCs) and workstations, dominated organizations from the late 1960s through the mid-1980s because there was no alterna-
tive approach to compete with it. The introduction of reasonably priced PCs during the 1980s, however, facilitated the
placement of computers at various locations within an organization; users could access a database directly at those loca-
tions. Networks connected these computers, so users could access not only data located on their local computers but also
data located anywhere along the entire network. In the next section, you will study the issues involved in distributed data-
bases where a database is stored on more than one computer.

Organizations often off-load, or shift, data communications functions from central computers to smaller computers to
improve processing speed. Similarly, organizations often use client/server systems to off-load database access functions
from central computers to other computers; you’ll study these client/server systems. You will also learn about accessing
databases on the Web and the growing importance of XML and related document standard specifications. Next you’ll learn
about special database systems, called data warehouses, that allow you to retrieve data rapidly. Finally, you will study
object-oriented systems, which treat data as objects and include the actions that operate on the objects.

DISTRIBUTED DATABASES

Premiere Products has multiple locations nationwide. Each location has its own sales reps and customer base,
and each location maintains its own inventory. Instead of using a single centralized computer accessed by all
the separate locations, Premiere Products is considering installing a computer at each site. If it does so, each
site would maintain its own data about its sales reps, customers, parts, and orders. Occasionally, an order at
one site might involve parts from another site. In addition, a customer serviced at one site might place orders
for its subsidiaries that are located closer to other sites. Consequently, the computer at a particular site
would need to communicate with the computers at all the other sites. The computers would have to be con-
nected in a communications network, or network, as illustrated in Figure 9-1.

Premiere Products would also divide its existing database and distribute to each site the data needed at
that site. In doing so, Premiere Products would be creating a distributed database. A distributed database is
a single logical database that is physically divided among computers at several sites on a network. To make
such a distributed database work properly, Premiere Products needs to purchase a distributed database
management system (DDBMS), which is a DBMS capable of supporting and manipulating distributed
databases.

Computers in a network communicate through messages; that is, one computer sends a message to
another. The word message is used in a fairly broad way here. A computer might send a message to request
data from another computer, or a computer might send a message to indicate a problem. For example, one
computer might send a message to another computer to indicate that the requested data is not available.
Finally, a computer might send the requested data as a message to another computer.

Accessing data using messages over a network is substantially slower than accessing data on a disk. To
access data rapidly in a centralized database, you make design decisions to minimize the number of disk
accesses. In general, to access data rapidly in a distributed database, you must attempt to minimize the num-
ber of messages. The length of time required to send one message depends on the length of the message and
the characteristics of the network. A fixed amount of time, sometimes called the access delay, is required for
every message. In addition, the time to send a message includes the time it takes to transmit all the charac-
ters in the message. The formula for message transmission time is:

Communication time ¼ access delay þ (data volume / transmission rate)

Database 1

Database 2

Communications
network

Computer at
location 2

Computer at
location 1

Computers send
messages through

the communications
network

User B User CUser A

User E User FUser D

FIGURE 9-1 Communications network

278

Chapter 9

To illustrate the importance of minimizing the number of messages, suppose you have a network with
an access delay of 2 seconds and a transmission rate of 750,000 bits per second. Also suppose you send a
message that consists of 10,000 records, each of which is 800 bits long. (The 10,000 records is equivalent
to approximately 250 pages of single-spaced text.) In this example, you calculate the communication time
as follows:

Communication time ¼ 2 þ ((10,000 * 800) / 750,000)

¼ 2 þ (8,000,000 / 750,000)

¼ 2 þ 10.67

¼ 12.67 seconds

If you send a message that is 100 bits long, your communication time calculation is as follows:

Communication time ¼ 2 þ (100 / 750,000)

¼ 2 þ .0001

¼ 2.0001 seconds or, for practical purposes,

¼ 2 seconds

As you can see, in short messages, the access delay becomes the dominant factor. Thus, in general, it is
preferable to send a small number of lengthy messages rather than a large number of short messages.

CHARACTERISTICS OF DISTRIBUTED DBMSs

Because a DDBMS effectively contains a local DBMS at each site, an important property of DDBMSs is that
they are either homogeneous or heterogeneous. A homogeneous DDBMS is one that has the same local
DBMS at each site. A heterogeneous DDBMS is one that does not; there are at least two sites at which the
local DBMSs are different. Heterogeneous DDBMSs are more complex than homogeneous DDBMSs and, con-
sequently, have more problems and are more difficult to manage.

All DDBMSs share several important characteristics. Among these characteristics are location transpar-
ency, replication transparency, and fragmentation transparency.

Location Transparency
The definition of a distributed database says nothing about the ease with which users access data that is
stored at other sites. Systems that support distributed databases should let a user access data at a remote
site—a site other than the one at which the user is located—just as easily as the user accesses data from the
local site—the site at which the user is located. Response times for accessing data stored at a remote site
might be much slower, but except for this difference, a user should feel as though the entire database is
stored at the local site. Location transparency is the characteristic of a DDBMS that users do not need to be
aware of the location of data in a distributed database.

Replication Transparency
As described in Chapter 7, replication lets users at different sites use and update copies of a database and
then share their updates with other users. However, data replication creates update problems that can lead to
data inconsistencies. If you update the record of a single part at Premiere Products, the DDBMS must make
the update at every location at which data concerning this part is stored. Not only do multiple updates make
the process more time-consuming and complicated, but should one of the copies of data for this part be over-
looked, the database would contain inconsistent data. Ideally, the DDBMS should correctly handle the updat-
ing of replicated data. The steps taken by the DDBMS to update the various copies of data should be done
behind the scenes; users should be unaware of the steps. This DDBMS characteristic is called replication
transparency.

279

Database Management Approaches

Fragmentation Transparency
A DDBMS supports data fragmentation if the DDBMS can divide and manage a logical object, such as the
records in a table, among the various locations under its control. The main purpose of data fragmentation is
to place data at the location where the data is most often accessed.

Suppose Premiere Products has a local DBMS at each of its three warehouses and wants to fragment its
Part table data, which is shown in Figure 9-2, by placing the data for the parts stored in a warehouse in that
warehouse’s local database.

Using SQL-type statements, you can define the following fragments:

DEFINE FRAGMENT Part1 AS

SELECT PartNum, Description, OnHand, Class, Warehouse, Price

FROM Part

WHERE Warehouse¼01 0

DEFINE FRAGMENT Part2 AS

SELECT PartNum, Description, OnHand, Class, Warehouse, Price

FROM Part

WHERE Warehouse¼02 0

DEFINE FRAGMENT Part3 AS

SELECT PartNum, Description, OnHand, Class, Warehouse, Price

FROM Part

WHERE Warehouse¼03 0

Each fragment definition indicates which Part table data to select for the fragment. Note that the Part
table does not actually exist in any one place. Rather, the Part table exists in three pieces. You assign these
pieces, or fragments, to the databases located at the warehouses, as shown in Figure 9-3.

PartNum Description OnHand Class Warehouse Price

AT94 Iron 50 HW 3 $24.95

BV06 Home Gym 45 SG 2 $794.95

CD52 Microwave Oven 32 AP 1 $165.00

DL71 Cordless Drill 21 HW 3 $129.95

DR93 Gas Range 8 AP 2 $495.00

DW11 Washer 12 AP 3 $399.99

FD21 Stand Mixer $159.95

KL62 Dryer

2

1 $349.95

KT03 Dishwasher $595.00

KV29 Treadmill

2 HW 3

2 AP 1

8 AP 3

9 SG 2 $1,390.00

Part

FIGURE 9-2 Premiere Products Part table data

280

Chapter 9

You assign Fragment Part1 to the database at warehouse 1, Fragment Part2 to the database at warehouse
2, and Fragment Part3 to the database at warehouse 3. The effect of these assignments is that data about each
part is stored in the database at the warehouse where the part is stored. You can access the complete Part
table by taking the union of the three fragments.

Users should not be aware of the fragmentation—they should feel as if they are using a single central
database. When users are unaware of fragmentation, the DDBMS has fragmentation transparency.

ADVANTAGES OF DISTRIBUTED DATABASES

When compared with a single centralized database, distributed databases offer the following advantages:

• Local control of data. Because each location retains its own data, a location can exercise
greater control over that data. With a single centralized database, on the other hand, the central
site that maintains the database is usually unaware of all the local issues at the various sites
served by the database.

• Increasing database capacity. In a properly designed and installed distributed database, the
process of increasing system capacity is often simpler than in a centralized database. If the size
of the disk at a single site becomes inadequate for its database, you need to increase the capac-
ity of the disk only at that site. Furthermore, you can increase the capacity of the entire data-
base simply by adding a new site.

• System availability. When a centralized database becomes unavailable for any reason, no users
can continue processing. In contrast, if one of the local databases in a distributed database
becomes unavailable, only users who need data in that particular database are affected; other
users can continue processing in a normal fashion. In addition, if the data has been replicated
(another copy of it exists in other local databases), potentially all users can continue processing.
However, processing for users at the site of the unavailable database will be much less efficient
because data that was formerly obtained locally must now be obtained through communication
with a remote site.

• Improved performance. When data is available locally, you eliminate network communication
delays and can retrieve data faster than with a remote centralized database.

PartNum Description OnHand Class Warehouse Price

CD52 Microwave Oven 32 AP 1 $165.00

KL62 Dryer 2 AP $349.95

Fragment Part1

PartNum Description OnHand Class Warehouse Price

BV06 Home Gym 45 SG 2 $794.95

DR93 Gas Range $495.00

KV29 Treadmill

1 1

8 AP 2

9 SG 2 $1,390.00

PartNum Description OnHand Class Warehouse Price

AT94 Iron 50 HW 3 $24.95

DL71 Cordless Drill 21 HW 3 $129.95

DW11 Washer 12 AP 3 $399.99

FD21 Stand Mixer 22 HW 3 $159.95

KT03 Dishwasher 8 AP 3 $595.00

Fragment Part2

Fragment Part3

FIGURE 9-3 Fragmentation of Part table data by warehouse

281

Database Management Approaches

DISADVANTAGES OF DISTRIBUTED DATABASES

Distributed databases have the following disadvantages:

• Update of replicated data. Replicating data can improve processing speed and ensure that the
overall system remains available even when the database at one site is unavailable. However,
replication can cause update problems, most obviously in terms of the extra time needed to
update all the copies. Instead of updating a single copy of the data, the DBMS must update sev-
eral copies. Because most of these copies are at sites other than the site initiating the update,
each update transaction requires extra time to update each copy and extra time to communicate
all the update messages over the network.

Replicated data causes another, slightly more serious problem. Assume an update transaction
must update data that is replicated at five sites and that the fifth site is currently unavailable. If all
updates must be made or none at all, the update transaction fails. Because the data at a single site
is unavailable for update, that data is unavailable for update at all sites. This situation certainly
contradicts the earlier advantage of increased system availability. On the other hand, if you do not
require that all updates be made, the data will be inconsistent.

Often a DDBMS uses a compromise strategy. The DDBMS designates one copy of the data to
be the primary copy. As long as the primary copy is updated, the DDBMS considers the update to be
complete. The primary site and the DDBMS must ensure that all the other copies are in sync. The
primary site sends update transactions to the other sites and notes whether any sites are currently
unavailable. If a site is unavailable, the primary site must try to send the update again at some later
time and continue trying until it succeeds. This strategy overcomes the basic problem, but it obviously
uses more time. Further, if the primary site is unavailable, the problem remains unresolved.

• More complex query processing. Processing queries is more complex in a distributed database.
The complexity occurs because of the difference in the time it takes to send messages between
sites and the time it takes to access a disk. As discussed earlier, minimizing message traffic is
extremely important in a distributed database environment. To illustrate the complexity
involved with query processing, consider the following query for Premiere Products: List all parts
in item class SG with a price that is more than $500.00. For this query, assume (1) the Part
table contains 1,000 rows and is stored at a remote site; (2) each record in the Part table is 500
bits long; (3) there is no special structure, such as an index, that would be helpful in processing
this query faster; and (4) only 10 of the 1,000 rows in the Part table satisfy the conditions. How
would you process this query?

One query strategy involves retrieving each row from the remote site and examining the
item class and price to determine whether the row should be included in the result. For each
row, this solution requires two messages. The first is a message from the local site to the remote
site requesting a row. It is followed by the second message, which is from the remote site to the
local site, containing the data or, ultimately, an indication that there is no more data because
you have retrieved every row in the table. Thus, in addition to the database accesses, this
strategy requires 2,000 messages. Once again, suppose you have a network with an access delay
of 2 seconds and a transmission rate of 750,000 bits per second. Based on the calculations for
communication time earlier in this chapter, each message requires approximately 2 seconds.
You calculate the communication time for this query strategy as follows:

Communication time ¼ 2 * 2,000

¼ 4,000 seconds, or 66.7 minutes

A second query strategy involves sending a single message from the local site to the remote
site, requesting the complete answer to the query. The remote site examines each row in the
table and finds the ten rows that satisfy the query. The remote site then sends a single message
back to the local site, containing all 10 rows in the answer. You calculate the communication
time for this query strategy as follows:

Communication time ¼ 2 þ (2 þ ((10 * 500) / 750,000))

¼ 2 þ (2 þ (5000 / 750,000)

¼ 2 þ (2 þ 0.006)

¼ 4.006 seconds

282

Chapter 9

Even if the second message is lengthy, especially where many rows satisfied the conditions,
this second query strategy is a vast improvement over the first strategy. A small number of
lengthy messages is preferable to a large number of short messages.

Systems that are record-at-a-time-oriented can create severe performance problems in
distributed systems. If the only choice is to transmit every record from one site to another site
as a message and then examine it at the other site, the communication time required can
become unacceptably high. DDBMSs that permit a request for a set of records, as opposed to an
individual record, outperform record-at-a-time systems.

• More complex treatment of concurrent update. Concurrent update in a distributed database is
treated basically the same way it is treated in nondistributed databases. A user transaction
acquires locks, and the locking is two-phase. (Locks are acquired in a growing phase, during
which time no locks are released and the DDBMS applies the updates. All locks are released
during the shrinking phase.) The DDBMS detects and breaks deadlocks, and then the DDBMS
rolls back interrupted transactions. The primary distinction lies not in the kinds of activities that
take place, but in the additional level of complexity created by the very nature of a distributed
database.

If all the records to be updated by a particular transaction occur at one site, the problem is
essentially the same as in a nondistributed database. However, the records in a distributed
database might be stored at many different sites. Furthermore, if the data is replicated, each
occurrence might be stored at several sites, each requiring the same update to be performed.
Assuming each record occurrence has replicas at three different sites, an update that would
affect 5 record occurrences in a nondistributed system might affect 20 different record occur-
rences in a distributed system (each record occurrence together with its three replica
occurrences).

Having more record occurrences to update is only part of the problem. Assuming each site
keeps its own locks, the DDBMS must send many messages for each record to be updated: a
request for a lock, a message indicating that the record is already locked by another user or that
the lock has been granted, a message directing that the update be performed, an acknowledg-
ment of the update, and, finally, a message indicating that the record is to be unlocked. Because
all those messages must be sent for each record and its occurrences, the total time for an update
can be substantially longer in a distributed database.

A partial solution to minimize the number of messages involves the use of the primary copy
mentioned earlier. Recall that one of the replicas of a given record occurrence is designated as
the primary copy. Locking the primary copy, rather than all copies, is sufficient and will reduce
the number of messages required to lock and unlock records. The number of messages might still
be large, however, and the unavailability of the primary copy can cause an entire transaction to
fail. Thus, even this partial solution presents problems.

Just as in a nondistributed database, deadlock is a possibility in a distributed database. In a
distributed database, however, deadlock is more complicated because two types of deadlock, local
deadlock and global deadlock, are possible. Local deadlock is deadlock that occurs at a single site
in a distributed database. If each of two transactions is waiting for a record held by the other at
the same site, the local DBMS can detect and resolve the deadlock with a minimum number of
messages needed to communicate the situation to the other DBMSs in the distributed system.

On the other hand, global deadlock involves one transaction that requires a record held by
a second transaction at one site, while the second transaction requires a record held by the first
transaction at a different site. In this case, neither site has information individually to allow this
deadlock to be detected; this is a global deadlock, and it can be detected and resolved only by
sending a large number of messages between the DBMSs at the two sites.

The various factors involved in supporting concurrent update greatly add to the complexity
and the communications time in a distributed database.

• More complex recovery measures. Although the basic recovery process for a distributed data-
base is the same as the one described in Chapter 7, there is an additional potential problem. To
make sure that the database remains consistent, each database update should be made perma-
nent or aborted and undone, in which case, none of its changes will be made. In a distributed
database, with an individual transaction updating several local databases, it is possible—because

283

Database Management Approaches

of problems affecting individual sites—for local DBMSs to commit the updates at some sites and
undo the updates at other sites, thereby creating an inconsistent state in the distributed data-
base. The DDBMS must not allow this inconsistency to occur.

A DDBMS usually prevents this potential inconsistency through the use of two-phase commit.
The basic idea of two-phase commit is that one site, often the site initiating the update, acts as
coordinator. In the first phase, the coordinator sends messages to all other sites requesting that
they prepare to update the database; in other words, each site acquires all necessary locks. The
sites do not update at this point, however, but they do send messages to the coordinator stating
that they are ready to update. If for any reason any site cannot secure the necessary locks or if
any site must abort its updates, the site sends a message to the coordinator that all sites must
abort the transaction. The coordinator waits for replies from all sites involved before determining
whether to commit the update. If all replies are positive, the coordinator sends a message to each
site to commit the update. At this point, each site must proceed with the commit process. If any
reply is negative, the coordinator sends a message to each site to abort the update, and each site
must follow this instruction. In this way, the DDBMS guarantees consistency.

While a process similar to two-phase commit is essential to the consistency of the database,
two problems are associated with it. For one thing, many messages are sent during the process.
For another, during the second phase, each site must follow the instructions from the coordinator;
otherwise, the process will not accomplish its intended result. This process means that the sites
are not as independent as you would like them to be.

• More difficult management of the data dictionary. A distributed database introduces further
complexity to the management of the data dictionary or catalog. Where should the data
dictionary entries be stored? The three possibilities are as follows: choose one site and store the
complete data dictionary at this site and this site alone. store a complete copy of the data dictionary
at each site, and distribute, possibly with replication, the data dictionary entries among the various
sites.

Although storing the complete data dictionary at a single site is a relatively simple approach to
administer, retrieving information in the data dictionary from any other site is more time-
consuming because of the communication involved. Storing a complete copy of the data dictionary
at every site solves the retrieval problem because a local DBMS can handle any retrieval locally.
Because this second approach involves total replication (every data dictionary occurrence is
replicated at every site), updates to the data dictionary are more time-consuming. If the data
dictionary is updated with any frequency, the extra time needed to update all copies of the data
dictionary might be unacceptable. Thus, you usually implement an intermediate strategy.

One intermediate strategy is to partition the data by storing data dictionary entries at the
site at which the data they describe are located. Interestingly, this approach also suffers from a
problem. If a user queries the data dictionary to access an entry not stored at the user’s site, the
system has no way of knowing the entry’s location. Satisfying this user’s query might involve
sending a message to every other site, which involves a considerable amount of network and
DDBMS overhead.

• More complex database design. A distributed database adds another level of complexity to
database design. Distributing data does not affect the information-level design. During the
physical-level design in a nondistributed database, disk activity—both the number of disk
accesses and the volumes of data to be transported—is one of the principal concerns. Although
disk activity is also a factor in a distributed database, communication activity becomes another
concern during the physical-level design. Because transmitting data from one site to another is
much slower than transferring data to and from disk, in many situations, communication activity
is the most important physical-level design factor. In addition, you must consider possible frag-
mentation and replication during the physical-level design.

• More complicated security and backup requirements. With a single central database, you need
to secure the central physical site, the central database, and the network connecting users to the
database at the central site. The security requirements for a distributed database are more
demanding, requiring you to secure every physical site and every database, in addition to secur-
ing the network. Backing up a distributed database is also more complicated and is best initiated
and controlled from a single site.

284

Chapter 9

RULES FOR DISTRIBUTED DATABASES

C. J. Date (Date, C. J. “Twelve Rules for a Distributed Database.” ComputerWorld 21.23, June 8, 1987) for-
mulated 12 rules that distributed databases should follow. The basic goal is that a distributed database should
feel like a nondistributed database to users; that is, users should not be aware that the database is distrib-
uted. The 12 rules serve as a benchmark against which you can measure DDBMSs. The 12 rules are as
follows:

1. Local autonomy. No site should depend on another site to perform its database functions.
2. No reliance on a central site. The DDBMS should not rely on a single central site to control

specific types of operations. These operations include data dictionary management, query pro-
cessing, update management, database recovery, and concurrent update.

3. Continuous operation. Performing functions such as adding sites, changing versions of DBMSs,
creating backups, and modifying hardware should not require planned shutdowns of the entire
distributed database.

4. Location transparency. Users should not be concerned with the location of any specific data in
the database. Users should feel as if the entire database is stored at their location.

5. Fragmentation transparency. Users should not be aware of any data fragmentation that has
occurred in the database. Users should feel as if they are using a single central database.

6. Replication transparency. Users should not be aware of any data replication. The DDBMS
should perform all the work required to keep the replicas consistent; users should be unaware of
the data synchronization work carried out by the DDBMS.

7. Distributed query processing. You already learned about the complexities of query processing
in a distributed database. The DDBMS must process queries as rapidly as possible.

8. Distributed transaction management. You already learned about the complexities of update
management in a distributed database and the need for the two-phase commit strategy. The
DDBMS must effectively manage transaction updates at multiple sites.

9. Hardware independence. Organizations usually have many different types of hardware, and a
DDBMS must be able to run on this hardware. Without this capability, users are restricted to
accessing data stored only on similar computers, disks, and so on.

10. Operating system independence. Even if an organization uses similar hardware, different oper-
ating systems might be used within the organization. For the same reason that it is desirable for
a DDBMS to support different types of hardware, a DDBMS must be able to run on different
operating systems.

11. Network independence. Because different sites within an organization might use different com-
munications networks, a DDBMS must run on different types of networks and not be restricted
to a single type of network.

12. DBMS independence. Another way of stating this requirement is that a DDBMS should be het-
erogeneous; that is, a DDBMS must support different local DBMSs. Supporting heterogeneous
DBMSs is a difficult task. In practice, each local DBMS must “speak” a common language; this
common language most likely is SQL.

CLIENT/SERVER SYSTEMS

Networks often include a file server, as shown in Figure 9-4. The file server stores the files required by the
users on the network. When users need data from a file or a group of files, they send requests to the file
server. The file server then sends the requested file or files to the user’s computer; that is, the file server
sends entire files, not just the data needed by users. Although this approach works to supply data to users,
sending entire files generates a high level of communication activity on the network. Adding users to the net-
work and larger files to the file server adds higher levels of communication activity and eventually causes
longer delays in supplying data to users.

285

Database Management Approaches

An alternative architecture, which is called client/server, is illustrated in Figure 9-5. In client/server ter-
minology, the server is a computer providing data to the clients, which are the computers that are connected
to a network and that people use to access data stored on the server. A server is also called a back-end
processor or a back-end machine, and a client is also called a front-end processor or a front-end machine.

File
server

Computers connected to a network

Network

User B
User A User C

User requests
file(s) from the

file server

File server
sends

requested
file(s) to the

user

Files on disk

FIGURE 9-4 File server architecture

Server with
a DBMS

Network

User B
User A User C

Client requests
data from the

database

Server sends
only requested

data to the
client that

requested it

Database

Client computers connected to a network

FIGURE 9-5 Two-tier client/server architecture

286

Chapter 9

With this alternative architecture, a DBMS runs on the server. A client sends a request to the server, not
for entire files, but for specific data. The DBMS on the server processes the request, extracts the requested
data, and then sends only the requested data back to the client. Compared to a file server architecture, a
client/server architecture reduces communication activity on a network, which reduces delays in supplying
data to users. Because the clients and the server perform different functions and can run different operating
systems, this arrangement of client/server architecture is called a two-tier architecture.

In a two-tier architecture, the server performs database functions and the clients perform the presenta-
tion functions (or user interface functions), such as determining which form to display on the screen and
how to format the form’s data. Which of the two tiers, server or clients, performs the business functions, such
as the calculations Premiere Products uses to determine commissions, taxes, and order totals? When the
clients perform the business functions—each client is called a fat client in this arrangement—you have a
client maintenance problem. Whenever programmers make changes to the business functions, they must
make sure that they place the updated business functions on every client. For organizations with thousands
of clients, updating the business functions for all clients is an almost impossible task.

To eliminate the fat client maintenance problem, you can place the business functions on the server.
Because clients perform only the presentation functions in this arrangement, each client is called a thin
client. Although you’ve now eliminated the fat client maintenance problem by moving the business functions
to the server, you’ve created a scalability problem. Scalability is the ability of a computer system to continue
to function well as utilization of the system increases. Because the server performs both database and busi-
ness functions, increasing the number of clients eventually causes a bottleneck on the server and degrades
the system’s responsiveness to clients. To improve a system’s scalability, some organizations use a three-tier
client/server architecture, as shown in Figure 9-6. In a three-tier architecture, the clients perform the
presentation functions, a database server performs the database functions, and separate computers (called
application servers) perform the business functions and serve as an interface between clients and the data-
base server. A three-tier architecture distributes the processing functions so that you eliminate the fat client
maintenance problem and maximize the scalability of the system. As the number of users increases, you can
upgrade the application and database servers by adding faster processors, disks, and other hardware without
changing any client computers. A three-tier architecture is sometimes referred to as an n-tier architecture
because additional application servers can be added for scalability without affecting the design for the client
or the database server.

287

Database Management Approaches

N O T E
A client/server system stores the database on a single server, and the DBMS resides and processes on that server. Only with a
DDBMS is the database itself distributed to multiple computers. However, you can combine a DDBMS with a client/server sys-
tem to distribute both data and processing functions across multiple computers.

Advantages of Client/Server Systems
Compared to file server systems, a client/server system has the following advantages:

• Lower network traffic. A client/server system transmits only the necessary data, rather than
entire files, across the network.

• Improved processing distribution. A client/server system lets you distribute processing func-
tions among multiple computers.

• Thinner clients. Because the application and database servers handle most of the processing in
a client/server system, clients do not need to be as powerful or as expensive as they would in a
file-server environment.

• Greater processing transparency. As far as a user is concerned, all processing occurs on the
client just as it does on a stand-alone system. Users do not need to learn any special commands
or techniques to work in a client/server environment.

• Increased network, hardware, and software transparency. Because client/server systems use
SQL as a common language, it is easier for users to access data from a variety of sources. A sin-
gle operation could access data from different networks, different computers, and different oper-
ating systems.

• Improved security. Client/server systems can provide a greater level of security than file server
systems. In addition to the DBMS security features located on the database server, you can place
additional security features on the application servers and on the network.

Network

Database
server

Clients perform presentation functions

Application
server

Application server
performs business

functions
Database server
runs the DBMS
and performs

database functions

User B

User A User C

Database

FIGURE 9-6 Three-tier client/server architecture

288

Chapter 9

• Decreased costs. Client/server systems have proven to be powerful enough that organizations
have replaced, at a considerable cost savings, enterprise applications and mainframe databases
with PC applications and databases managed by client/server systems.

• Increased scalability. A three-tier client/server system is more scalable than file-server and two-
tier architectures. If an application server or database server becomes a bottleneck, you can
upgrade the appropriate server or add additional processors to share the processing load.

WEB ACCESS TO DATABASES

The Internet, which is a worldwide collection of millions of interconnected computers and computer net-
works that share resources, is used daily by most people and is an essential portal for all organizations. In
particular, people and organizations use the World Wide Web (or the Web), which is a vast collection of
digital documents available on the Internet. Each digital document on the Web is called a Web page, each
computer on which an individual or organization stores Web pages for access on the Internet is called a
Web server, and each computer requesting a Web page from a Web server is called a Web client. A Web
server requires special software to receive and respond to requests for Web pages from Web clients. The
dominant Web server software packages are Apache HTTP Server and IIS. Apache HTTP Server is a free,
open-source package that runs with most operating systems, while Internet Information Services (IIS) is a
Microsoft package that comes with many versions of its operating systems.

Each Web page is assigned an Internet address called a Uniform Resource Locator (URL); the URL iden-
tifies where the Web page is stored—both the location of the Web server and the name and location of the
Web page on that server. For example, http://www.irs.gov/individuals/index.html is a URL that identifies the
Web server (www.irs.gov), the location path (individuals) on the Web server, and the Web page name
(index.html). The beginning of the URL (http) specifies Hypertext Transfer Protocol (HTTP), which is
the data communication method used by Web clients and Web servers to exchange data on the Internet.

You use a computer program called a Web browser to retrieve a Web page from a Web client; popular
Web browsers include Microsoft Internet Explorer, Mozilla Firefox, Safari, Google Chrome, and Opera. As
shown in Figure 9-7, a user enters the Web page’s URL in a Web browser on a Web client and then sends the
request for the Web page over the Internet using HTTP and Transmission Control Protocol/Internet Protocol
(TCP/IP), which is the standard protocol for all communication on the Internet. The request for the Web
page arrives at the Web server designated in the transmitted URL, and the Web server locates the requested
Web page on a disk connected to the Web server and retrieves the Web page. The Web server then responds
to the Web client by transmitting the Web page over the Internet using HTTP and TCP/IP, and the Web
browser displays the Web page on the user’s screen. Note that Web clients on an intranet bypass the Internet
and directly access internal company Web pages through the organization’s Web server.

289

Database Management Approaches

Each Web page is a text document that contains the necessary codes, called tags, that the Web browser
interprets to position and format the text in the Web page. A Web page can also contain tags for links to
audio files to be played, to graphics and animations to be displayed on the screen, and to other files, which
are all sent along with the Web page by the Web server. A Web page can also contain tags for hyperlinks,
which link one Web page to another or link to another location in the same Web page. Web pages (such as
index.html in the www.irs.gov/individuals/index.html URL) are usually created using a language called
Hypertext Markup Language (HTML). You can use a program such as ColdFusion or Adobe Dreamweaver to
create the HTML code for Web pages without needing to learn HTML. Many programs, including Microsoft
Access, have built-in tools that convert and export objects such as tables and queries to HTML documents.

Web pages that display the same content for all Web clients are called static Web pages. At the heart of
most Web processing today are activities—such as paying bills, ordering merchandise, buying and selling
stocks, and bidding in online auctions—for which the Web pages need to change depending on the Web
client’s input and responses; these business activities are called electronic commerce (e-commerce). For
e-commerce activities, Web servers can’t use static Web pages. Instead, Web servers use dynamic Web pages,
which are pages whose content changes in response to the different inputs and choices made using Web
clients. A dynamic Web page includes, or triggers, instructions to tell the Web server how to process the page
(server-side extensions or server-side scripts) and possibly other instructions for the Web browser to process
(client-side extensions or client-side scripts). Client-side extensions can be embedded in HTML documents or
contained in separate files that are referenced within the HTML documents, while server-side extensions are
usually separately executed programs. Client-side extensions can change the user interface in response to
user input actions; JavaScript and VBScript are examples of client-side extension languages. Because of the
processing complexities of server-side extensions and the difficulty of creating them, most server-side exten-
sions are created using programming development frameworks, such as ASP.NET and ColdFusion, although
the PHP scripting language is frequently used with the Apache HTTP Server.

Web servers must have a mechanism for communicating with server-side extensions; Common Gateway
Interface (CGI) and Application Program Interface (API) are standard interfaces that provide this capability. In
addition, server-side extensions usually include interaction with databases to send Web clients requested data
from databases and to update databases with data supplied by Web clients. Several standard software interfaces
have been developed to interact with DBMSs; Open Database Connectivity (ODBC), Java Database Connectivity
(JDBC), and ADO.NET are examples of these standard interfaces. These standard software interfaces include
many DBMS-specific drivers so that a given Web server can work with many different DBMSs.

One common Web-based architecture for dealing with dynamic Web pages, shown in Figure 9-8, uses a
three-tier architecture, with the Web clients, a Web server, and a database server as the three tiers. A user
on a Web client sends a request for a Web page to the Web server over the Internet using TCP/IP and HTTP.

Web browser
displays the Web

page on the
Web client

Web page request
is transmitted over the Internet from

the Web client to the Web server
using HTTP and TCP/IP

Web
server

HTTP and
TCP/IP

HTTP and
TCP/IP

User enters the
URL for a Web
page using a
Web browser

Internet

Web server locates
the requested Web

page stored
on disk

Web server
transmits the Web page
over the Internet to the

Web client using
HTTP and TCP/IP

Web pages

Web

client

FIGURE 9-7 Retrieving a Web page on the Internet

290

Chapter 9

The Web server receives the request, retrieves the Web page, and then runs server-side extensions associated
with the Web page using API. These extensions, among other actions, include instructions for interacting with
the database, usually in the form of SQL commands, using API and ODBC in this example. The database
server, which contains the DBMS, deals directly with the database and returns the required data back through
the ODBC/API interfaces to the Web server. The Web server customizes the HTML document based on the
server-side extensions and the data from the database and the Web client, then using TCP/IP and HTTP, the
Web server transmits the Web page over the Internet to the Web client. The Web browser displays the Web
page on the user’s screen, executing any client-side extensions as appropriate. Interaction between the Web cli-
ent, the Web server, and the database server continues in a similar fashion as the user at the Web client fills in
data or chooses options in the delivered Web page and sends follow-up Web page requests to the Web server.

A further complication for database processing over the Web is that HTTP is inherently a stateless proto-
col, which means that, once the Web server responds to a Web client request for a Web page by delivering
the page, the connection between the two is closed and the Web server retains no information about the
request or the Web client. The stateless nature of HTTP allows for maximum throughput of Web pages
through the Internet. However, the stateless nature of Web pages is at odds with most e-commerce proces-
sing. Consider placing an order over the Internet. If you’ve ever done so, you know that you might view and
interact with dozens of Web pages to select the products you want to buy and to place them in a shopping
cart. You then view the shopping cart Web page, making adjustments to the products you are ordering; view
another Web page to confirm the order; enter your name and address information in another Web page; enter
your credit card information in a different Web page; and finally go through additional Web pages to confirm
and place the final order. In this scenario, the vendor’s Web server must somehow remember the key data
from many different Web pages, even though each delivered Web page is stateless. Organizations use several
techniques to remember key data supplied by a Web client. Among the client-side techniques are cookies
(small files written on a Web client’s hard drive by a Web server) and hidden form fields, while server-side
solutions usually include storing session information in a database or using other forms of session manage-
ment, where a session is the duration of a Web client’s connection to a Web server.

Database
serverWeb server

sends the customized
Web page to the Web client,

 which runs any client-
side extensions

Web server
requests data from

the database via the
database server

Web client
sends request for a
Web page to the

Web server

Database
server accesses
the database

Web server
retrieves the Web page

and runs server-side
extensions

Database
server sends

requested data to
the Web server

b

Web
server

HTTP and
TCP/IP

HTTP and
TCP/IP

ODBC
and API

Internet

Web pages

Database

Web

client

FIGURE 9-8 Three-tier Web-based architecture

291

Database Management Approaches

Organizations benefit in many ways from using the Web for database processing. They can transfer data
to and from their databases to suppliers, customers, and others outside the company; this provides current
information in a timely way to those needing the information. As another example, a company can allow cus-
tomers to place orders that directly update the organization’s database and trigger the processing required to
fulfill the orders. Additionally, Web clients can access an organization’s Web pages at their convenience 24-7.
The tradeoffs for an organization using the Web for database processing include the increased complexities
and cost of maintaining an always available Web presence and reliance on the Internet with potential data
communication contention difficulties and increased security exposure.

XML

Many different software languages, software products, computer hardware devices, and standards exist to
make e-commerce possible. As e-commerce evolves, these Web components are constantly changing and
improving with new components appearing frequently. Since 1994, the international World Wide Web Con-
sortium (W3C) has developed Web standards, specifications, guidelines, and recommendations, including
HTML standards. HTML is a text-based markup language, which means that it contains tags that describe a
document’s content and appearance. HTML was created and first used in 1990 by Tim Berners-Lee, the
founder of the Web, the founder of W3C, and the person who wrote the software for the first Web browser
and for the first Web server. As the basis for creating HTML, Berners-Lee used Standard Generalized Markup
Language (SGML), which is a metalanguage (a language used to define another language) used to create
document markup languages; SGML became a standard in 1986. Languages based on the full SGML are used
to manage large, complex reports and technical specifications for a variety of computer platforms, printers,
and other devices. Berners-Lee borrowed the tagging concepts and some of the tags from SGML for the HTML
language, adding a few tags specifically for the processing of Web pages over the Internet.

HTML contains tags that describe the content and appearance of Web pages to Web browsers, but HTML
does not describe the structure and meaning of the data it contains. That is, you can’t identify in an HTML
document which data elements are in the Web page, what each data elements means, and how those data
elements are related. This limitation is not a problem for Web pages that are intended to be used in the
traditional way, in which a user requests and works with Web pages using a Web browser. However,
e-commerce between organizations, called business to business (B2B), is an important part of communica-
tion across the Internet. Organizations send data from their databases to the databases of other organizations,
and those organizations that send data need to receive data in return. In these situations, the structure and
meaning of the transmitted data are of utmost importance because organizations structure common data,
such as product data and cost data, in their databases in different ways. Somehow the document containing
the data being transmitted between organizations must convey the structure and meaning of the data it
contains. To address the inability of HTML to specify the structure and meaning of data and to address
the need for the exchange of data between organizations, XML was developed and became a W3C
recommendation in 1998.

Extensible Markup Language (XML), a metalanguage derived from a restricted subset of SGML, is
designed for the exchange of data on the Web. Using XML, you can create text documents that follow simple,
specific rules for their content and you can define new tags that define the data in the document and the
structure of the data so that programs running on any platform can interpret and process the document.

Figure 9-9 shows the key portions of a file that was created by exporting the Rep table in the Premiere
Products database as an XML document using Access.

292

Chapter 9

An XML document should begin with an XML declaration that specifies to an XML processor which ver-
sion of XML to use. The first line in the XML document shown in Figure 9-9 is the XML declaration:

<?xml version¼"1.0" encoding¼"UTF-8"?>

The XML declaration instructs the XML processor to use version 1.0 of the XML specification. The sec-
ond, optional clause in the XML declaration (encoding¼"UTF-8") specifies that the XML document uses Uni-
code character coding.

Following the XML declaration in Figure 9-9, the <dataroot> tag identifies an element named dataroot,
which is a standard element in Office 2010 exported XML documents. The dataroot element serves as a con-
tainer for all the other elements defined in the XML document, and its matching </dataroot> tag at the end
of the document identifies the end of the scope of the dataroot element.

<?xml version="1.0" encoding="UTF-8"?>

<dataroot>

<Rep>

<RepNum>20</RepNum>

<LastName>Kaiser</LastName>

<FirstName>Valerie</FirstName>

<Street>624 Randall</Street>

<City>Grove</City>

<State>FL</State>

<Zip>33321</Zip>

<Commission>20542.5</Commission>

<Rate>0.05</Rate>

</Rep>

<Rep>

<RepNum>35</RepNum>

<LastName>Hull</LastName>

<FirstName>Richard</FirstName>

<Street>532 Jackson</Street>

<City>Sheldon</City>

<State>FL</State>

<Zip>33553</Zip>

<Commission>39216</Commission>

<Rate>0.07</Rate>

</Rep>

<Rep>

<RepNum>65</RepNum>

<LastName>Perez</LastName>

<FirstName>Juan</FirstName>

<Street>1626 Taylor</Street>

<City>Fillmore</City>

<State>FL</State>

<Zip>33336</Zip>

<Commission>23487</Commission>

<Rate>0.05</Rate>

</Rep>

</dataroot>

XML declaration

Element values
from the second Rep

table record

Element values
from the third Rep

table record

Element values
from the first Rep

table record

FIGURE 9-9 XML document created from the Rep table in the Premiere Products database

293

Database Management Approaches

In between the <dataroot> and </dataroot> statements in Figure 9-9, there are three groups of state-
ments, one group for each record from the Rep table. Each statement group starts with a <Rep> tag and
ends with a matching closing </Rep> tag; those tags identify the beginning and end of one Rep record. User-
defined tag pairs (such as <Rate> and </Rate>) enclose field values, which are called element values (such
as 0.05, 0.07, and 0.05) from the Rep records. Each tag must have a matching closing tag in an XML
document.

Web pages continue to be written in HTML, but the last W3C recommendation was for HTML 4.01 in
1999. Since then, W3C has focused on recommendations for Extensible Hypertext Markup Language
(XHTML), which is a markup language based on XML and, thus, is a stricter version of HTML. Web browsers
continue to support HTML and have been slow to adapt to the XHTML specification. However, as more
organizations use XML, more XHTML-based Web pages will be created and used on the Internet.

An XML document contains element tags and element values. How does an XML processor understand
the meaning of the tags and the characteristics and structure of the data in an XML document? You use
either a Document Type Definition or an XML schema to provide those important facts about the data. A
Document Type Definition (DTD) specifies the elements (tags), the attributes (characteristics associated with
each tag), and the element relationships for an XML document. The DTD can be a separate file with a .dtd
extension, or you can include it at the beginning of an XML document. An XML schema is a newer form of
DTD that more closely matches database features and terminology; you can embed it at the beginning of an
XML document or place it in a separate file with an .xsd extension. Figure 9-10 shows the portion of an XML
schema specifying the characteristics of the Rate field from the Rep table. Notice how closely the attributes
for the Rate element in the XML schema match the properties for the Rate field in the Rep table.

XML documents contain data; DTDs and XML schemas define the structure, characteristics, and relation-
ships of the data in an XML document. Also, XHTML documents focus on data, not on presentation details. The
presentation aspects of an XML or XHTML document can be described by a stylesheet. The Extensible Style-
sheet Language (XSL) is a standard W3C language for creating stylesheets for XML documents; a stylesheet is a
document that specifies how to process the data contained in another document and present the data in a Web
browser, in a printed report, on a mobile device, in a sound device, or in other presentation media. A related
W3C standard language is XSL Transformations (XSLT), which defines the rules to process an XML document
and change it into another document; this other document may be another XML document, an XSL document,
an HTML or XHTML document, or most any other type of document.

<xsd:element name="Rate" minOccurs="0" jetType="double"

 sqlSType="float" type="xsd:double">

<xsd:annotation>

<xsd:appinfo>

<fieldProperty name="ColumnWidth" type="3" value="840"/>

<fieldProperty name="ColumnOrder" type="3" value="0"/>

<fieldProperty name="ColumnHidden" type="1" value="0"/>

<fieldProperty name="DecimalPlaces" type="2" value="255"/>

<fieldProperty name="Required" type="1" value="0"/>

<fieldProperty name="DisplayControl" type="3" value="109"/>

<fieldProperty name="TextAlign" type="2" value="0"/>

<fieldProperty name="AggregateType" type="4" value="-1"/>

</xsd:appinfo>

</xsd:annotation>

</xsd:element>

FIGURE 9-10 XML schema for the Rate element from the Rep table

294

Chapter 9

More and more data is being stored, exchanged, and presented using XML; and the W3C has developed
recommendations for XQuery, which is a language for querying XML, XSL, XHTML, other XML-based docu-
ments, and similarly structured data repositories. There is growing interest in XQuery, and several products
have been developed based on the XQuery standard.

One example of the inroads made by XML is Microsoft’s Office suite. Starting with the Office 2007 suite,
Microsoft switched from its native file formats to a new file format that it calls Office Open XML for the
Excel, PowerPoint, and Word programs. The Office Open XML file format is a compressed version of XML,
but you can save each of these files in a more traditional XML-based format.

Figure 9-11 illustrates the interaction between XML and the languages that are closely related to XML. A
Web browser can display a Web page by processing an XML document with styles supplied by an XSL docu-
ment. A Web browser can also display a Web page by processing an HTML or XHTML document with styles
supplied by an XSL document; the HTML or XHTML document is created by an XML processor using an
XSLT transform on an XML document. Also, a Web client can obtain information from an XML document by
using an XQuery processor. Finally, an XML processor can create an XML document from data in a database
using a DTD or an XML schema, or the XML processor can update the database using an XML document with
a DTD or an XML schema.

DATA WAREHOUSES

Among the objectives that organizations have when they use RDBMSs are data integrity, high performance,
and ample availability. The leading RDBMSs are able to satisfy these requirements. Typically, when users
interact with an RDBMS, they use transactions, such as adding a new order and changing a customer’s sales
rep. Thus, these types of systems are called online transaction processing (OLTP) systems.

For each transaction, OLTP typically deals with a few rows from the tables in a database in a highly
structured, repetitive, and predetermined way. If you need to know the status of specific customers, parts,
and orders or if you need to update data for specific customers, parts, and orders, an RDBMS and OLTP are
the ideal tools to use.

Database
server

An XML processor uses XSLT
to transform an XML document into an

HTML or XHTML document, which a Web
browser uses with an XSL document to

display a Web page

Web browser
uses XML and

XSL documents
to display a
Web page

An XML
processor uses

a DTD or an XML
schema and an
XML document

to interact with a
database server
connected to a

database

Web
browser

HTML or
XHTML

XSL

XQuery
processor

Web
browser XSLT

XML
processor

XML
document

XML
processor

DTD or
XML schemaXSL

Web client obtains
information from

an XML document
using XQuery

Web

client

Database

FIGURE 9-11 Interaction among XML and related languages

295

Database Management Approaches

When you need to analyze data from a database, however, an RDBMS and OLTP often suffer from severe
performance problems. For example, finding total sales by site and by month requires the joining of all the
rows in many tables; such processing takes a considerable number of database accesses and considerable
time to accomplish. Consequently, many organizations continue to use RDBMSs and OLTP for their normal
day-to-day processing or for operational purposes, but the organizations have turned to data warehouses for
the analysis of their data. The following definition for a data warehouse is credited to W. H. Inmon (Inmon,
W. H. Building the Data Warehouse. QED, 1990), who originally coined the phrase.

Definition: A data warehouse is a subject-oriented, integrated, time-variant, nonvolatile collection of data in
support of management’s decision-making process.

Subject-oriented means that data is organized by entity rather than by the application that uses the data.
For example, Figure 9-12 shows the databases for typical operational applications such as inventory, order
entry, production, and accounts payable. When the data from these operational databases is loaded into a
data warehouse, it is transformed into subjects such as product, customer, vendor, and financial. Data about
products appears once in the warehouse even though it might appear in many files and databases in the
operational environment.

N O T E
For the operational applications shown in Figure 9-12, large organizations use a variety of DBMSs and file-processing systems
that have been developed over a period of many years.

Integrated means that data is stored in one place in the data warehouse even though the data originates
from everywhere in the organization and from a variety of external sources. The data can come from recently
developed applications or from legacy systems developed many years ago.

Time-variant means that data in a data warehouse represents snapshots of data at various points in time
in the past, such as at the end of each month. This is unlike an operational application, which has data that
is accurate as of the moment. Data warehouses also retain historical data for long periods of time; that data is
summarized to specific time periods, such as daily, weekly, monthly, and annually.

Nonvolatile means that data is read-only. Data is loaded into a data warehouse periodically, but users
cannot update a data warehouse directly.

Data warehouse

Product

Customer

Vendor

Financial

Order entry
database

Production
database

Accounts payable
database

Operational applications

Inventory
database

FIGURE 9-12 Data warehouse architecture

296

Chapter 9

In summary, a data warehouse contains read-only snapshots of highly consolidated and summarized data
from multiple internal and external sources that are refreshed periodically, usually on a daily or weekly basis.
Companies use data warehouses in support of their decision-making processing, which typically consists of
unstructured and nonrepetitive requests for exactly the type of information contained in a data warehouse.

Data Warehouse Structure and Access
A typical data warehouse structure is shown in Figure 9-13. The central Sales table is called a fact table. A
fact table consists of rows that contain consolidated and summarized data. The fact table contains a multipart
primary key, each part of which is a foreign key to the surrounding dimension tables. Each dimension table
contains a single-part primary key that serves as an index for the fact table and that contains other fields
associated with the primary key value. The overall structure shown in Figure 9-13 is called a star schema
because of its conceptual shape.

Access to a data warehouse is accomplished through the use of online analytical processing (OLAP) soft-
ware. OLAP software, whether it’s part of the DBMS or a separate product, is optimized to work efficiently
with data warehouses.

Users access a data warehouse using OLAP software to answer questions such as the following: How has
the average customer balance changed each year over the past five years? What are the total sales by month
for this year, and how do they compare to last year’s sales?

In posing those types of questions, users perceive the data in a data warehouse as a multidimensional
database. For example, if users’ questions pertain to the Part, Customer, and Time dimensions, which appear
in Figure 9-13, users might visualize the data warehouse as a multidimensional database in the shape of a
data cube, as shown in Figure 9-14. Each axis in the data cube (Part, Customer, and Time) represents data
from a dimension table in Figure 9-13, and the cells in the data cube represent unit sales and dollar sales data
from the Sales fact table in Figure 9-13.

Time
TimeKey
DayOfWeek
DayOfYear
WeekInYear
Month

Other attributes

Quarter

Rep
RepNum
LastName
FirstName
Rate

Other attributes

Sales

Dimension table Dimension table

Fact table

Part
PartNum
Description
Class
Warehouse
Price

Other attributes

CustomerDimension tables

PartNum
CustomerNum
RepNum
TimeKey
UnitSales

Other attributes

DollarSales

CustomerNum
CustomerName
Street
City
State

Other attributes

CreditLimit

FIGURE 9-13 A star schema with four dimension tables and a central fact table

297

Database Management Approaches

When users access a data warehouse, their queries usually involve aggregate data, such as total sales by
month and average sales by customer. As users view the aggregate results from their queries, they often need
to perform further analyses of the data they’re viewing. OLAP software should let users perform these analy-
ses as easily and quickly as possible.

Users’ analyses typically involve actions that include the following:

• Slice and dice. Instead of viewing all data in a data cube, users typically view only portions of
the data. You slice and dice data to select portions of the available data or to reduce the data
cube. For example, suppose the Time dimension in the conceptual data cube that appears in
Figure 9-14 contains detailed sales data on a weekly basis for Premiere Products. Further, sup-
pose the sales manager queries the data warehouse to view this week’s total sales, both in dollars
and in units sold, as shown in Figure 9-15.

Conceptually, the sales manager’s query slices the data cube to reduce it to the shaded
“Week Current” portion, which is shown in Figure 9-16.

Iro
n •

••
 •

••
 D

ryer

14
8

 •

••

 •
••

 8

42

Week1 ••• ••• ••• Week
Current

Time

Customer

Part
Each cell
contains

unit sales and
dollar sales

data

FIGURE 9-14 A data cube representation of the Part, Customer, and Time dimensions

TotalDollars TotalUnits

$8,911.14 28

FIGURE 9-15 Total sales query results

Iro
n •

••
 •

••
 D

ryer

14
8

 •

••

 •
••

 8

42

Week1 ••• ••• ••• Week
Current

Time

Customer

Part

Selected slice
contains sales
data for the
current week

FIGURE 9-16 Slicing the data cube based on the Time dimension

298

Chapter 9

If the sales manager’s next query displays this week’s total sales for irons, the query dices
the sliced data cube, reducing it to the shaded portion shown in Figure 9-17.

The results for the sales manager’s queries for this diced portion of the data cube appear in
Figure 9-18.

The sales manager’s first query sliced the data cube to focus on the current week’s sales, and
the second query reduced the slice by dicing only the cells in the data cube that are for irons.

• Drill down. When you view specific aggregate data, you drill down the data to view and analyze
lower levels of aggregation; that is, you go to a more detailed view of the data. For example, sup-
pose again that the sales manager queries the data warehouse to view this week’s total sales, as
shown in Figure 9-15. To analyze details of these sales, the sales manager might drill down to
view total sales by class, as shown in Figure 9-19.

Finally, the sales manager might drill down to view total sales by part within class, as shown
in Figure 9-20.

Iro
n •

••
 •

••
 D

ryer

14
8

 •

••

 •
••

 8

42

Week1 ••• ••• ••• Week
Current

Time

Customer

Part

Selected segment
contains data for

the current week’s
iron sales

FIGURE 9-17 Dicing the sliced data cube based on the Part dimension

TotalDollars TotalUnits

$241.45 11

FIGURE 9-18 Query results for total sales of irons

Class TotalDollars TotalUnits

AP $4,499.79 13

HW $241.45 11

SG $4,169.90 4

FIGURE 9-19 Query results for total sales by class

299

Database Management Approaches

• Roll up. When you view specific aggregate data, you roll up the data to view and analyze higher
levels of aggregation. Rolling up the data is the exact opposite of drilling down the data. For
example, the sales manager might start with the query results for total sales by class and part
(see Figure 9-20), click the appropriate button to roll up the data for the query results for the
total sales by class (see Figure 9-19), and then click another button to roll up the data for the
query results for total sales (see Figure 9-15).

Data mining consists of uncovering new knowledge, patterns, trends, and rules from the data stored in a
data warehouse. You use data mining software to answer questions such as the following:

• Which products best attract new customers?
• What factors best predict which customers default in making payments?
• What are the optimal seasonal inventory levels based on predicted economic factors?
• What is the optimal number of customers to assign to each sales rep?

Because data warehouses often contain enormous amounts of data, users can’t sift through the data in
them to find answers to those questions. Instead, with minimal user interaction, data mining software
attempts to answer the questions by using sophisticated analytical, mathematical, and statistical techniques.

Rules for OLAP Systems
E. F. Codd (Codd, E. F., S. B. Codd, and C. T. Salley. “Providing OLAP (On-line Analytical Processing) to User-
Analysts: An IT Mandate.” Arbor Software, August, 1993) formulated 12 rules that OLAP systems should follow.
The 12 rules serve as a benchmark against which you can measure OLAP systems. The 12 rules are as follows:

1. Multidimensional conceptual view. Users must be able to view data in a multidimensional way,
matching the way data appears naturally in an organization. For example, users can view data
about the relationships between data using the dimensions of parts, customer locations, sales
reps, and time.

2. Transparency. Users should not have to know they are using a multidimensional database nor
need to use special software tools to access data. For example, if users usually access data using
a spreadsheet, they should still be able to use a spreadsheet to access a multidimensional
database.

3. Accessibility. Users should perceive data as a single user view even though the data may be
physically located in several heterogeneous locations and in different forms, such as relational
databases and standard files.

4. Consistent reporting performance. Retrieval performance should not degrade as the number of
dimensions and the size of the warehouse grow.

5. Client/server architecture. The server component of OLAP software must be intelligent enough
that a variety of clients can be connected with minimal effort.

6. Generic dimensionality. Every dimension table must be equivalent in both its structural and
operational capabilities. For example, you should be able to obtain information about parts as
easily as you obtain information about sales reps.

Class Description TotalDollars TotalUnits

AP Dishwasher $1,190.00 2

AP Dryer $1,319.80 4

AP Gas Range $990.00 2

AP Microwave Oven $600.00 4

AP Washer $399.99 1

HW Iron $241.45 11

SG Home Gym $1,589.90 2

SG Treadmill $2,580.00 2

FIGURE 9-20 Query results for total sales by class and part
300

Chapter 9

7. Dynamic sparse matrix handling. Missing data should be handled correctly and efficiently and
not affect the accuracy or speed of data retrieval.

8. Multiuser support. OLAP software must provide secure, concurrent retrieval of data. Because
you don’t update a data warehouse when you’re using it, concurrent update is not an issue; so
problems of security and access are less difficult than in an OLTP environment.

9. Unrestricted, cross-dimensional operations. Users must be able to perform the same opera-
tions across any number of dimensions. For example, you should be able to ask for statistics
based on the dimensions of time, location, and part just as easily as you would ask for statistics
based on the single dimension of location.

10. Intuitive data manipulation. Users should be able to act directly on individual data values
without needing to use menus or other interfaces. Of course, these other interfaces can be used,
but they should not be the required method of processing.

11. Flexible reporting. Users should be able to retrieve data results and view them any way they
want for analysis.

12. Unlimited dimensions and aggregation levels. OLAP software should allow at least 15 data
dimensions and an unlimited number of aggregation (summary) levels.

OBJECT-ORIENTED DBMSs

Organizations use relational databases to store and access data consisting of text and numbers. Additionally,
some organizations store and access graphics, drawings, photographs, video, sound, voice mail, spreadsheets,
and other complex objects in their databases. RDBMSs store these complex objects using special data types,
generically called binary large objects (BLOBs). Some applications, such as computer-aided design and
manufacturing (CAD/CAM) and geographic information systems (GIS), have as their primary focus the stor-
age and management of complex objects. For these systems, many companies use object-oriented DBMSs.

What Is an Object-Oriented DBMS?
The relational model, which has a strong theoretical foundation, is the foundation for RDBMSs. Although object-
oriented DBMSs do not have a corresponding theoretical foundation, they all exhibit several common character-
istics. Central to all object-oriented systems is the concept of an object. An object is a set of related attributes
along with the actions that are associated with the set of attributes. A customer object, for example, consists of
the attributes associated with customers (number, name, balance, and so on) together with the actions that are
associated with customer data (add customer, change credit limit, delete customer, and so on).

In relational systems, you create the actions as part of data manipulation (in the programs that update
the database), rather than as part of the data definition. In contrast, in object-oriented systems, you define
the actions as part of the data definition and then use the actions whenever they are required. In an object-
oriented system, the data and actions are encapsulated, which means that you define an object to contain
both the data and its associated actions. Thus, an object-oriented database management system (OODBMS)
is a database management system in which data and the actions that operate on the data are encapsulated
into objects.

To become familiar with OODBMSs, you should have a general understanding of the following object-
oriented concepts: objects, classes, methods, messages, and inheritance.

Objects and Classes
To understand the distinction between objects and classes, you will examine an object-oriented representa-
tion of the following relational model representation of the Premiere Products database.

Rep (RepNum, LastName, FirstName, Street, City, State, Zip, Commission, Rate)

Customer (CustomerNum, CustomerName, Street, City, State, Zip, Balance, CreditLimit, RepNum)

Orders (OrderNum, OrderDate, CustomerNum)

OrderLine (OrderNum, PartNum, NumOrdered, QuotedPrice)

Part (PartNum, Description, OnHand, Class, Warehouse, Price, Allocated)

301

Database Management Approaches

This version of the Premiere Products database contains an extra field, Allocated, in the Part table. The
Allocated field stores the number of units of a part that are currently on order (allocated). Figure 9-21 shows
a representation of this database as a collection of objects.

N O T E
Figure 9-21 shows just one of many approaches to representing objects. However, all techniques have the same general
features.

You’ll notice the following differences between the collection of objects in Figure 9-21 and the relational
model representation:

• You represent each entity (Rep, Customer, and so on) as an object rather than a relation.
• You list the attributes vertically below the object names. In addition, you follow each attribute

by the name of the domain associated with the attribute. A domain is the set of values permit-
ted for an attribute.

Rep OBJECT
RepNum: Sales Rep Numbers
LastName: Last Names
FirstName: First Names
Street: Addresses
City: Cities
State: States
Zip: Zip Codes
Commission: Commissions
Rate: Commission Rates
Customer: Customer OBJECT; MV

Customer OBJECT
CustomerNum: Customer Numbers
CustomerName: Customer Names
Street: Addresses
City: Cities
State: States
Zip: Zip Codes
Balance: Balances
CreditLimit: Credit Limits
Rep: Rep OBJECT; SUBSET[RepNum, LastName, FirstName]

Part OBJECT
PartNum: Part Numbers
Description: Part Descriptions
OnHand: Units
Class: Item Classes
Warehouse: Warehouse Numbers
Price: Prices
Allocated: Units
OrderLine: OrderLine OBJECT; MV

Orders OBJECT
OrderNum: Order Numbers
OrderDate: Dates
Customer: Customer OBJECT; SUBSET[CustomerNum, CustomerName, RepNum]
OrderLine: OrderLine OBJECT; MV

OrderLine OBJECT
OrderNum: Order Numbers
PartNum: Part Numbers
NumOrdered: Units
QuotedPrice: Prices

FIGURE 9-21 Object-oriented representation of the Premiere Products database

302

Chapter 9

• Objects can contain other objects. For example, the Rep object contains the Customer object as
one of its attributes. In the Rep object, the letters MV following the Customer object indicate
that the Customer object is multivalued. In other words, a single occurrence of the Rep object
can contain multiple occurrences of the Customer object. Roughly speaking, this is analogous to
a relation containing a repeating group.

• An object can contain a portion of another object. The Customer object, for example, contains
the Rep object. The word SUBSET indicates, however, that the Customer object contains only a
subset of the Rep object. In this case, the Customer object contains three of the Rep object
attributes: RepNum, LastName, and FirstName.

Notice that each of two objects can appear to contain the other. The Rep object contains the Customer
object, and the Customer object contains the Rep object (or at least a subset of it). The important thing to
keep in mind is that users deal with objects. If the users of the Customer object require access to the rep’s
number and name, the rep’s number and name are part of the Customer object. If the users of the Rep object
require data about all the customers of a sales rep, the Customer object is part of the Rep object. This
arrangement is not to imply, of course, that the data is physically stored this way, but this is the way its users
perceive the data.

Objects can contain more than one other object. Notice that the Orders object contains the Customer
object and the OrderLine object, with the OrderLine object being multivalued. Nevertheless, users of the
Orders object perceive it as a single unit.

Technically, the objects in Figure 9-21 are classes. The term class refers to the general structure. The
term object refers to a specific occurrence of a class. Thus, Rep is a class, whereas the data for rep 20 is an
object.

Methods and Messages
Methods are the actions defined for a class. Figure 9-22 shows two methods associated with the Orders
object. The first method, Add Order, adds an order to the database. In this example, users enter data, then
the program places the data temporarily in computer memory in a work area named WOrders. (In this exam-
ple, the W prefix indicates a temporary work area record or field.) The WOrders record consists of a user-
entered value for the order number stored in WOrderNum, a user-entered value for the order date stored in
WOrderDate, and so on.

Add Order (WOrders)
Add row to Orders table

OrderNum = WOrderNum
OrderDate = WOrderDate
CustomerNum= WCustomerNum

For each order line record in WOrders DO
Add row to OrderLine table

OrderNum = WOrderNum
PartNum = WPartNum
NumOrdered = WNumOrdered
QuotedPrice = WQuotedPrice

Update Part table (WHERE PartNum = WPartNum)
Allocated = Allocated + WNumOrdered

Delete Order (WOrderNum)
Delete row from Orders table (WHERE OrderNum = WOrderNum)
For each OrderLine record (WHERE OrderNum = WOrderNum) DO

Delete row from OrderLine table
Update Part table (WHERE Part.PartNum = OrderLine.PartNum)

Allocated = Allocated – NumOrdered

FIGURE 9-22 Two methods for the Premiere Products object-oriented database

303

Database Management Approaches

Q & A

Question: Describe the steps in the Add Order method.
Answer: The steps accomplish the following:

• Add a row to the Orders table for the new order.
• For each order line record associated with the order, add a row to the OrderLine table.
• For each matched order line record, update the Allocated value in the Part table for the

corresponding part.

In Figure 9-22, the second method, Delete Order, deletes an order. The only data a user inputs to this
method is the order number to be deleted, which is placed temporarily in WOrderNum.

Q & A

Question: Describe the steps in the Delete Order method.
Answer: The steps accomplish the following:

• Delete the order with the user-entered order number (WOrderNum) from the Orders table.
• For each order line record in which the order number matches the value of WOrderNum, delete

the record.
• For each matched order line record, subtract the NumOrdered value from the Allocated value for

the corresponding part in the Part table. (Because the method deletes the order line record, the
parts are no longer allocated.)

N O T E
The two methods in Figure 9-22 are fairly complicated, consisting of several steps with each step involving separate updates to
the database. Many methods are much simpler, although some methods are even more complicated.

You define methods during the data definition process. To execute the steps in a method, a user sends a
message to the object. A message is a request to execute a method. As part of sending the message to an
object, the user sends the required data (for example, full order data for the Add Order method, but only the
order number for the Delete Order method). The process is similar to the process of calling a subroutine or
invoking a procedure in a standard programming language.

Inheritance
A key feature of object-oriented systems is inheritance. For any class, you can define a subclass. Every occur-
rence of the subclass is also considered an occurrence of the class. The subclass inherits the structure of the
class as well as its methods. In addition, you can define additional attributes and methods for the subclass.

As an example, suppose Premiere Products has a special type of order that has all the characteristics of
other orders. In addition, it contains a freight amount and a discount that are calculated in a special way.
Rather than create a new class for this type of order, you can define it as a subclass of the Orders class. In
that way, the special order type automatically has all the attributes of the Orders class. The new subclass also
has all the same methods of the Orders class, including the update of the Allocated field in the Part table
whenever orders are added or deleted. The only thing you would have to add would be those attributes and
methods that are specific to this new type of order, thus greatly simplifying the entire process.

Unified Modeling Language (UML)
The Unified Modeling Language (UML) is an approach you can use to model all the various aspects of soft-
ware development for object-oriented systems. UML includes a way to represent database designs.

304

Chapter 9

UML includes several types of diagrams, each with its own special purpose. Figure 9-23 describes the pur-
pose of some of the most commonly used UML diagrams.

The type of diagram most relevant to database design is the class diagram. Figure 9-24 shows a sample
class diagram for the Premiere Products database. A rectangle represents a class. The top portion of a rectangle
contains the name of the class, the middle portion contains the attributes, and the bottom portion contains the
methods. The lines joining the classes represent the relationships and are called associations in UML.

Diagram Type Description

Class For each class, shows the name, attributes, and methods of the class, as well
as the relationships between the classes in the database.

Use Case Describes how the system is to behave from the standpoint of the
system’s users.

State Shows the possible states of an object. (For example, an order could be in
the placed, open, filled, or invoiced states.) Also shows the possible transi-
tions between states (for example, placed→open→filled→invoiced).

Sequence Shows the sequence of possible interactions between objects over time.

Activity

Component Complex software systems are usually subdivided into smaller components.
This type of diagram shows these components and their relationships with
each other.

Shows the business and operational step-by-step workflows of components
in a system.

FIGURE 9-23 UML diagrams

1..1
0..n

1..1

0..n

1..1
1..n

1..1

0..n

Multiplicity (cardinality)

Methods
(operations)

Data types

Rep
#RepNum : char(2)
#LastName : char(15)
#FirstName : char(15)
#Street : char(15)
#City : char(15)
#State : char(2)
#Zip : char(5)
#Commission : decimal(7,2)
#Rate : decimal(3,2)
+AddRep()
+DeleteRep()
+ChangeAddress()
+ChangeRate()
+ChangeCommission()

Customer
#CustomerNum : char(3)
#CustomerName : char(35)
#Street : char(15)
#City : char(15)
#State : char(2)
#Zip : char(5)
#Balance : decimal(8,2)
#CreditLimit : decimal(8,2)
+AddCustomer()
+DeleteCustomer()
+ChangeAddress()
+ChangeCreditLimit()
+ChangeBalance()

Orders
#OrderNum : char(5)
#OrderDate : date
+AddOrder()
+DeleteOrder()
+ChangeOrderDate()

OrderLine
#NumOrdered : decimal(3,0)
#QuotedPrice : decimal(6,2)
+AddOrderLine()
+DeleteOrderLine()
+ChangeOrderLine()

Part
#PartNum : char(4)
#Description : char(15)
#OnHand : decimal(4,0)
#Class : char(2)
#Warehouse : char(1)
#Price : decimal(6,2)
+AddPart()
+DeletePart()
+ChangePartData()
+ChangeOnHand()
+ChangePrice()

Attributes

Name of class

Association
(relationship)

FIGURE 9-24 Class diagram for the Premiere Products database

305

Database Management Approaches

In a class diagram, a visibility symbol precedes each attribute. The visibility symbol indicates whether
other classes can view or update the value in the attribute. The possible visibility symbols are public visibility
(þ), protected visibility (#), and private visibility (�). With public visibility, any other class can view or
update the value. With protected visibility, only the class itself or public or protected subclasses of the class
can view or update the value. With private visibility, only the class itself can view or update the value. The
name of the attribute, a colon, and then the data type for the attribute follow the visibility symbol.

At each end of each association is an expression that represents the multiplicity, or cardinality, of the
relationship. Multiplicity indicates the number of objects that can be related to an individual object at the
other end of the relationship. UML provides various alternatives for representing multiplicity. In the alterna-
tive shown in Figure 9-24, two periods separate two symbols. The first symbol represents the minimum num-
ber of objects, and the second symbol represents the maximum number of objects. A second number of n
indicates that there is no maximum number of objects.

In the association between Customer and Orders, for example, the multiplicity for Customer is 1..1. This
multiplicity indicates that an order must correspond to at least one customer and can correspond to, at most,
one customer. In other words, an order must correspond to exactly one customer. The multiplicity for Orders
is 0..n, indicating that a customer can have as few as zero orders (that is, a customer does not have to have
any orders currently in the database) and that there is no limit on the number of orders a customer can have.
In the association between Orders and OrderLine, the multiplicity for OrderLine is 1..n rather than 0..n. This
multiplicity indicates that each order must have at least one order line but that the number of order lines is
unlimited. If, on the other hand, the multiplicity for OrderLine were 1..5, an order would be required to have
anywhere from one to five order lines.

You can also specify constraints, which are restrictions on the data that can be stored in the database.
You enter the constraint in the shape shown in Figure 9-25 and then connect the shape to the class to which
it applies.

1..1
0..n

1..1

0..n

1..1
1..n

1..1

0..n

Rep
#RepNum : char(2)
#LastName : char(15)
#FirstName : char(15)
#Street : char(15)
#City : char(15)
#State : char(2)
#Zip : char(5)
#Commission : decimal(7,2)
#Rate : decimal(3,2)
+AddRep()
+DeleteRep()
+ChangeAddress()
+ChangeRate()
+ChangeCommission()

Customer
#CustomerNum : char(3)
#CustomerName : char(35)
#Street : char(15)
#City : char(15)
#State : char(2)
#Zip : char(5)
#Balance : decimal(8,2)
#CreditLimit : decimal(8,2)
+AddCustomer()
+DeleteCustomer()
+ChangeAddress()
+ChangeCreditLimit()
+ChangeBalance()

Orders
#OrderNum : char(5)
#OrderDate : date
+AddOrder()
+DeleteOrder()
+ChangeOrderDate()

OrderLine
#NumOrdered : decimal(3,0)
#QuotedPrice : decimal(6,2)
+AddOrderLine()
+DeleteOrderLine()
+ChangeOrderLine()

Part
#PartNum : char(4)
#Description : char(15)
#OnHand : decimal(4,0)
#Class : char(2)
#Warehouse : char(1)
#Price : decimal(6,2)
+AddPart()
+DeletePart()
+ChangePartData()
+ChangeOnHand()
+ChangePrice()

(CustomerName
is not null)

(CreditLimit is $5,000, $7,500
$10,000, or $15,000)

Constraints

FIGURE 9-25 Class diagram for the Premiere Products database with constraints

306

Chapter 9

You learned about entity subtypes and how to represent them in E-R diagrams. In UML, these entity sub-
types are called subclasses. In addition, when one class is a subclass of a second class, you call the second
class a superclass of the first class. The relationship between a superclass and a subclass is called a generali-
zation, which is shown in Figure 9-26. This class diagram represents the relationship between the class of
students and the subclass of students who live in dorms.

Rules for OODBMSs
Just as rules specify desired characteristics for DDBMSs and OLAP, OODBMSs also have a set of rules. These
rules serve as a benchmark against which you can measure object-oriented systems. The rules are as follows:

1. Complex objects. An OODBMS must support the creation of complex objects from simple
objects such as integers and characters.

2. Object identity. An OODBMS must provide a way to identify objects; that is, the OODBMS must
provide a way to distinguish between one object and another.

3. Encapsulation. An OODBMS must encapsulate data and associated methods together in the
database.

4. Information hiding. An OODBMS must hide from the users of the database the details concern-
ing the way data is stored and the actual implementation of the methods.

5. Types or classes. You are already familiar with the idea of a class. Types are very similar to
classes and correspond to abstract types in programming languages. The differences between the
two are subtle and will not be explored here. It is important to know, however, that an OODBMS
supports either abstract types or classes (it doesn’t matter which).

6. Inheritance. An OODBMS must support inheritance.
7. Late binding. In this case, binding refers to the association of operations to actual program

code. With late binding, this association does not happen until runtime, that is, until some user
actually invokes the operation. Late binding lets you use the same name for different operations,
which is called polymorphism in object-oriented systems. For example, an operation to display
an object on the screen requires different program code when the object is a picture than when
it is text. With late binding, you can use the same name for both operations. At the time a user
invokes this “display” operation, the system determines the object being displayed and then
binds the operation to the appropriate program code.

8. Computational completeness. You can use functions in the language of the OODBMS to per-
form various computations.

9. Extensibility. Any DBMS, object-oriented or not, comes with a set of predefined data types, such
as numeric and character. An OODBMS should be extensible, meaning that it is possible to
define new data types. Furthermore, the OODBMS should make no distinction between the data
types provided by the system and the new data types.

(Only students living in dorms
have StudentDorm record)

Student

#FirstName : char(15)
#Status : char(1)

#StudentNum : char(9)
#LastName : char(15)

+AddStudent()
+DeleteStudent()
+ChangeStudent()

StudentDorm
#DormNum : char(2)
+AddDorm()
+RemoveDorm()

SuperSuperclass

Generalization

Subclass

Constraint

FIGURE 9-26 Class diagram with a generalization and a constraint

307

Database Management Approaches

10. Persistence. In object-oriented programming, persistence refers to the ability to have a program
remember its data from one execution to the next. Although this is unusual in programming lan-
guages, it is common in all database systems. After all, one of the fundamental capabilities of any
DBMS is its ability to store data for later use.

11. Performance. An OODBMS should have sufficient performance capabilities to manage very large
databases effectively.

12. Concurrent update support. An OODBMS must support concurrent update. (You learned about
concurrent update in Chapter 7.)

13. Recovery support. An OODBMS must provide recovery services. (You learned about recovery
services in Chapter 7.)

14. Query facility. An OODBMS must provide query facilities. (You learned about query facilities
such as QBE and SQL in Chapter 2 and Chapter 3, respectively.)

308

Chapter 9

Summary

• A distributed database is a single logical database that is physically divided among computers at several
sites on a network. A user at any site can access data at any other site. A DDBMS is a DBMS capable of
supporting and manipulating distributed databases.

• Computers in a network communicate through messages. Minimizing the number of messages is important
for rapid access to distributed databases.

• A homogenous DDBMS is one that has the same local DBMS at each site, whereas a heterogeneous
DDBMS is one that does not.

• Location transparency, replication transparency, and fragmentation transparency are important characteris-
tics of DDBMSs.

• DDBMSs permit local control of data, increased database capacity, improved system availability, and
added efficiency.

• DDBMSs are more complicated than non-DDBMSs in the areas of updating replicated data, processing
queries, treating concurrent update, providing measures for recovery, managing the data dictionary,
designing databases, and managing security and backup requirements.

• The two-phase commit usually uses a coordinator to manage concurrent update.

• C. J. Date presented 12 rules that serve as a benchmark against which you can measure DDBMSs. These
rules have local autonomy, no reliance on a central site, continuous operation, location transparency, frag-
mentation transparency, replication transparency, distributed query processing, distributed transaction man-
agement, hardware independence, operating system independence, network independence, and DBMS
independence.

• A file server stores the files required by users and sends entire files to the users.

• In a two-tier client/server architecture, a DBMS runs on a file server and the server sends only the
requested data to the clients. The server performs database functions, and the clients perform presentation
functions. A fat client can perform the business functions, or the server can perform the business functions
in a thin client arrangement.

• In a three-tier client/server architecture, the clients perform the presentation functions, database servers
perform the database functions, and application servers perform business functions. A three-tier architec-
ture is more scalable than a two-tier architecture.

• The advantages of client/server systems are lower network traffic; improved processing distribution; thinner
clients; greater processing transparency; increased network, hardware, and software transparency;
improved security; decreased costs; and increased scalability.

• Web servers interact with Web clients using HTTP and TCP/IP to display HTML Web pages on Web cli-
ents’ screens.

• Dynamic Web pages, not static Web pages, are used in e-commerce; and server-side and client-side
extensions provide the dynamic capabilities, including the capability to interact with databases.

• Cookies and session management techniques are used to counteract the stateless nature of HTTP.

• XML was developed in response to the need for data exchange between organizations and due to the
inability of HTML to specify the structure and meaning of its data. XML is a metalanguage designed for the
exchange of data on the Web.

• The W3C has developed recommendations for other languages related to XML. These languages include
XHTML, a markup language based on XML and a stricter version of HTML; DTD and XML schema, both
used to specify the structure and meaning of data in an XML document; XSL, a language for creating
stylesheets; XSLT, which transforms an XML document into another document; and XQuery, which is an
XML query language.

• OLTP is used with relational database management systems, and OLAP is used with data warehouses.

• A data warehouse is a subject-oriented, integrated, time-variant, nonvolatile collection of data in support of
management’s decision-making process.

309

Database Management Approaches

• A typical data warehouse data structure is a star schema consisting of a central fact table surrounded by
dimension tables.

• Users perceive the data in a data warehouse as a multidimensional database in the shape of a data cube.
OLAP software lets users slice and dice data, drill down data, and roll up data.

• Data mining consists of uncovering new knowledge, patterns, trends, and rules from the data stored in a
data warehouse.

• E. F. Codd presented 12 rules that serve as a benchmark against which you can measure OLAP systems.
These rules are multidimensional conceptual view; transparency; accessibility; consistent reporting perfor-
mance; client/server architecture; generic dimensionality; dynamic sparse matrix handling; multiuser sup-
port; unrestricted, cross-dimensional operations; intuitive data manipulation; flexible reporting; and unlimited
dimensions and aggregation levels.

• Object-oriented DBMSs deal with data as objects. An object is a set of related attributes along with the
actions that are associated with the set of attributes. An OODBMS is a database management system in
which data and the actions that operate on the data are encapsulated into objects. A domain is the set of
values that are permitted for an attribute. The term class refers to the general structure, and the term
object refers to a specific occurrence of a class. Methods are the actions defined for a class, and a mes-
sage is a request to execute a method. A subclass inherits the structure and methods of its superclass.

• The UML is an approach to model all the various aspects of software development for object-oriented sys-
tems. The class diagram represents the design of an object-oriented database. Relationships are called
associations, and visibility symbols indicate whether other classes can view or change the value in an attri-
bute. Multiplicity indicates the number of objects that can be related to an individual object at the other end
of the relationship. Generalization is the relationship between a superclass and a subclass.

• Properties that serve as a benchmark against which you can measure object-oriented systems are com-
plex objects, object identity, encapsulation, information hiding, types or classes, inheritance, late binding,
computational completeness, extensibility, persistence, performance, concurrent update support, recovery
support, and query facility.

Key Terms

access delay

Apache HTTP Server

application servers

associations

back-end machine

back-end processor

binary large objects (BLOBs)

binding

business to business (B2B)

class

class diagram

client-side extensions

client-side scripts

client/server

clients

communications network

cookies

coordinator

data cube

data fragmentation

data mining

data warehouse

database server

dimension table

distributed database

distributed database management system (DDBMS)

Document Type Definition (DTD)

domain

drill down

dynamic Web pages

electronic commerce (e-commerce)

encapsulated

extensible

Extensible Hypertext Markup Language (XHTML)

Extensible Markup Language (XML)

Extensible Stylesheet Language (XSL)

fact table

fat client

file server

fragmentation transparency

310

Chapter 9

front-end machine

front-end processor

generalization

global deadlock

heterogeneous DDBMS

homogeneous DDBMS

hyperlinks

Hypertext Markup Language (HTML)

Hypertext Transfer Protocol (HTTP)

inheritance

Internet

Internet Information Services (IIS)

local deadlock

local site

location transparency

markup language

messages

metalanguage

methods

multidimensional database

multiplicity

n-tier architecture

network

object

object-oriented database management system (OODBMS)

Office Open XML

online analytical processing (OLAP)

online transaction processing (OLTP)

persistence

polymorphism

primary copy

private visibility

protected visibility

public visibility

remote site

replication transparency

roll up

scalability

server

server-side extensions

server-side scripts

session

slice and dice

Standard Generalized Markup Language (SGML)

star schema

stateless

static Web pages

stylesheet

subclass

superclass

tags

thin client

three-tier architecture

Transmission Control Protocol/Internet Protocol (TCP/IP)

two-phase commit

two-tier architecture

Unified Modeling Language (UML)

Uniform Resource Locator (URL)

visibility symbol

Web

Web browser

Web client

Web page

Web server

World Wide Web

World Wide Web Consortium (W3C)

XML declaration

XML schema

XQuery

XSL Transformations (XSLT)

Review Questions

1. What is a distributed database? What is a DDBMS?

2. What different design decisions do you make to access data rapidly in a centralized database compared to a
distributed database?

3. How does a homogeneous DDBMS differ from a heterogeneous DDBMS? Which is more complex?

4. What is meant by a local site? by a remote site?

5. What is location transparency?

6. What is replication? Why is it used? What benefit is derived from using it? What are the biggest potential
problems?

311

Database Management Approaches

7. What is replication transparency?

8. What is data fragmentation? What purpose does data fragmentation serve?

9. What is fragmentation transparency?

10. Why is local control of data an advantage in a distributed database?

11. Why is the ability to increase system capacity an advantage in a distributed database?

12. Why is system availability an advantage in a distributed database?

13. Why is increased efficiency an advantage in a distributed database?

14. What are two disadvantages of updating replicated data in a distributed database?

15. What causes query processing to be more complex in a distributed database?

16. What is meant by local deadlock? By global deadlock?

17. Describe the two-phase commit process. How does it work? Why is it necessary?

18. Describe three possible approaches to storing data dictionary entries in a distributed system.

19. What additional factors must you consider during the information-level design of a distributed database?

20. What additional factors must you consider during the physical-level design of a distributed database?

21. List and briefly describe the 12 rules against which you can measure DDBMSs.

22. What is the difference between a file server and a client/server system?

23. In a two-tier client/server architecture, what problems occur when you place the business functions on the
clients? On the server?

24. What is a fat client? What is a thin client?

25. What is scalability?

26. What is a three-tier architecture?

27. List the advantages of a client/server architecture as compared to a file server.

28. What are HTTP and TCP/IP?

29. What are dynamic Web pages? How can you augment HTML to provide the dynamic capability?

30. Explain why HTTP is a stateless protocol and what types of techniques are used in e-commerce to deal with
this complication.

31. What is XML? Why was it developed?

32. What is the purpose of DTDs and XML schemas?

33. What does XSLT accomplish?

34. What are the characteristics of OLTP systems?

35. What is a data warehouse?

36. What does it mean when a data warehouse is nonvolatile?

37. What is a fact table in a data warehouse?

38. When do you use OLAP?

39. What three types of actions do users typically perform when they use OLAP software?

40. What is data mining?

41. What are the 12 rules against which you can measure OLAP systems?

42. What is an OODBMS?

43. What is a domain?

44. How do classes relate to objects?

45. What is a method? What is a message? How do messages relate to methods?

46. What is inheritance? What are the benefits to inheritance?

47. What is the UML?

48. What are relationships called in UML?

312

Chapter 9

49. What is a visibility symbol in UML?

50. What is multiplicity?

51. What is generalization?

52. What are the 14 rules against which you can measure object-oriented systems?

Premiere Products Exercises

For the following exercises, you will answer problems and questions from management at Premiere Products. You
do not use the Premiere Products database for any of these exercises.

1. Fragment the Customer table so that customers of rep 20 form a fragment named CustomerRep20, customers
of rep 35 form a fragment named CustomerRep35, and customers of rep 65 form a fragment named
CustomerRep65. (Include all fields from the Customer table in each fragment.) In addition, you need to fragment
the Orders table so that orders are distributed and stored with the customers that placed the orders. For
example, fragment OrdersRep20 consists of those orders placed by customers of rep 20. Write the SQL-type
statements to create these fragments.

2. Create a class diagram for the Premiere Products database, as shown in Chapter 1, Figure 1-5. If you need to
make any assumptions in preparing the diagram, document those assumptions.

3. A user queries the Part table in the Premiere Products database over the company intranet. Assume the Part
table contains 5,000 rows, each row is 1,000 bits long, the access delay is 2.5 seconds, the transmission rate is
50,000 bits per second, and only 20 of the 5,000 rows in the Part table satisfy the query conditions. Calculate
the total communication time required for this query based on retrieving all table rows one row at a time, then
calculate the total communication time required based on retrieving the 20 rows that satisfy the query conditions
in a single message.

Henry Books Case

Ray Henry asks you to research improvements he might make to his database processing. To help him, he would
like you to complete the following exercises. You do not use the Henry Books database for any of these exercises.

1. Use computer magazines or the Internet to investigate one of these DBMSs: DB2, SQL Server, MySQL, Oracle,
or Sybase. Then prepare a report that explains how that DBMS handles two of the following distributed data-
base functions: deadlock, fragmentation, replication, the data dictionary or log, and distributed queries.

2. Create a class diagram for the Henry Books database, as shown in Chapter 1, Figures 1-15 through 1-18. If you
need to make any assumptions in preparing the diagram, document those assumptions.

Alexamara Marina Group Case

For the following exercises, you will answer problems and questions from the Alexamara Marina Group staff. You do
not use the Alexamara database for any of these exercises.

1. Use computer magazines, books, or the Internet to investigate one of the following Web services: Application
Programming Interface (API); Common Gateway Interface (CGI); Simple Object Access Protocol (SOAP);
Universal Description, Discovery, and Integration (UDDI); or Web Services Description Language (WSDI). Then,
prepare a report that defines the Web service and explains its purpose and features.

2. Create a class diagram for the Alexamara database, as shown in Chapter 1, Figures 1-20 through 1-24. If you
need to make any assumptions in preparing the diagram, document those assumptions.

313

Database Management Approaches

A P P E N D I XA
COMPREHENSIVE DESIGN
EXAMPLE: MARVEL COLLEGE

Marvel College has decided to computerize its operations. In this appendix, you will design a database that
satisfies many user requirements by applying the design techniques you learned in Chapter 6 to a significant
set of requirements.

MARVEL COLLEGE REQUIREMENTS

Marvel College has provided you with the following requirements that its new system must satisfy. You will
use these requirements to design a new database.

General Description
Marvel College is organized by department (math, physics, English, and so on). Most departments offer more
than one major; for example, the math department might offer majors in calculus, applied mathematics, and
statistics. Each major, however, is offered by only one department. Each faculty member is assigned to a sin-
gle department. Students can have more than one major, but most students have only one. Each student is
assigned a faculty member as an advisor for his or her major; students who have more than one major are
assigned a faculty advisor for each major. The faculty member may or may not be assigned to the department
offering the major.

A code that has up to three characters (CS for Computer Science, MTH for Mathematics, PHY for Phys-
ics, ENG for English, and so on) identifies each department. Each course is identified by the combination of
the department code and a three-digit number (CS 162 for Programming I, MTH 201 for Calculus I, ENG 102
for Creative Writing, and so on). The number of credits offered by a particular course does not vary; that is,
all students who pass the same course receive the same amount of credit.

A two-character code identifies the semester in which a course is taught (FA for fall, SP for spring, and
SU for summer). The code is combined with two digits that designate the year (for example, FA13 represents
the fall semester of 2013). For a given semester, a department assigns each section of each course a four-digit
schedule code (schedule code 1295 for section A of MTH 201, code 1297 for section B of MTH 201, code
1302 for section C of MTH 201, and so on). The schedule codes might vary from semester to semester. The
schedule codes are listed in the school’s time schedule, and students use them to indicate the sections in
which they want to enroll. (You’ll learn more about the enrollment process later in this section.)

After all students have completed the enrollment process for a given semester, each faculty member
receives a class list for each section he or she will be teaching. In addition to listing the students in each
section, the class list provides space to record the grade each student earns in the course. At the end of the
semester, the faculty member enters the students’ grades in this list and sends a copy of the list to the
records office, where the grades are entered into the database. (In the future, the college plans to automate
this part of the process.)

After an employee of the records office posts the grades (by entering them into the database), the DBMS
generates a report card for each student; then the report cards are mailed to the addresses printed on the
report card. The grades earned by a student become part of his or her permanent record and will appear on
the student’s transcript.

Report Requirements
Employees at Marvel College require several reports to manage students, classes, schedules, and faculty
members; these reports have the following requirements.

Report card: At the end of each semester, the system must produce a report card for each student.
A sample report card is shown in Figure A-1.

Class list: The system must produce a class list for each section of each course; a sample class list is
shown in Figure A-2. Note that space is provided for the grades. At the end of the semester, the instructor
enters each student’s grade and sends a copy of the class list to the records office.

Grade
Course

Description
Course
Number

Credits
TakenDepartment

Computer Science
Mathematics

MARVEL COLLEGE

Credits
Earned

Grade
Points

CS 162
MTH 201

Programming I
Calculus I

A
B+

4
3

4
3

16.0
9.9

25.93.7077

Credits
Taken

Credits
Earned

GPA Total
Points

149.23.394444

Credits
Taken

Student Number: 381124188Credits
Earned

GPA Total
Points

Local Address (IF DIFFERENT)Student Name & Address

Brian Connors
686 Franklin
Hart, MI 48282

4672 Westchester
Trent, MI 48222

Current Semester Totals

Cumulative Totals

Semester: FA13

FIGURE A-1 Sample report card for Marvel College

Department: CS Computer Science Term: FA13
Course: 162 Programming I (4 CREDITS)
Section: B
Schedule Code: 2366

Time: 1:00 - 1:50 M, T, W, F
PLACE: 118 SCR

CLASS LIST

Instructor: 462 Diane Johnson

Class
Standing

Student
Number

381124188

Student Name Grade

Brian Connors 2

FIGURE A-2 Sample class list for Marvel College

316

Appendix A

Grade verification report: After the records office processes the class list, it returns the class list to the
instructor with the grades entered in the report. The instructor uses the report to verify that the records
office entered the students’ grades correctly.

Time schedule: The time schedule shown in Figure A-3 lists all sections of all courses offered during a
given semester. Each section has a unique four-digit schedule code. The time schedule lists the schedule
code; the department offering the course; the course’s number, section letter, and title; the instructor teach-
ing the course; the time the course meets; the room in which the course meets; the number of credits gener-
ated by the course; and the prerequisites for the course. In addition to the information shown in Figure A-3,
the time schedule includes the date the semester begins and ends, the date final exams begin and end, and
the last withdrawal date (the last date on which students may withdraw from a course for a refund and with-
out academic penalty).

Registration request form: A sample registration request form is shown in Figure A-4. A student uses this
form to request classes for the upcoming semester. Students indicate the sections for which they want to reg-
ister by entering each section’s schedule code; for each of these sections, students may also enter a code for
an alternative section in case the first requested section is full.

TIME SCHEDULE Term: FA13

Course # Code # Sect Time Room Faculty

 111 Chemistry I 4 CREDITS
1740 A 10:00-10:50 M, T, W, F 102 WRN Johnson
1745 B 12:00-12:50 M, T, W, F 102 WRN Lawrence

112 Chemistry II 4 CREDITS
1790 A 10:00-11:50 M, W 109 WRN Adams
1795 B 12:00-1:50 T, R 102 WRN Nelson

114

Prerequisite: MTH 110

CHEMISTRY (CHM) Office: 341 NSB

Prerequisite: CHM 111

FIGURE A-3 Sample time schedule for Marvel College

317

Comprehensive Design Example: Marvel College

Student schedule: After all students have been assigned to sections, the system produces a student
schedule form, which is mailed to students so that they know the classes in which they have been enrolled.
A sample student schedule form is shown in Figure A-5. This form shows the schedule for an individual
student for the indicated semester.

Full student information report: This report lists complete information about a student, including his
or her major(s) and all grades received to date. A sample of a full student information report is shown in
Figure A-6.

Student Number: 381124188 Term: SP14

REGISTRATION REQUEST FORM

SCHEDULE CODES

City: Hart City: Trent
State: MI State: MI

Zip: 48282 Zip: 48222

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

Name: Brian Connors

PRIMARY ALTERNATE

Local Address: 4672 WestchesterPermanent Address: 686 Franklin

FIGURE A-4 Sample registration request form for Marvel College

STUDENT SCHEDULE

Student Number:
Name:

City:
State:

Zip:

381124188
Brian Connors

Hart
MI
48282

Term: SP14

Trent
MI
48222

City:
State:

Zip:

2366

 .
 .
 .

CS 253

 .
 .
 .

P rogramming I I

 .
 .
 .

B

.

.

.

118 SCR

Schedule
Code

Course
Number

Course
Description

Section Room

4

.

.

.

Credits

1 :00–1 :50 M, T, W, F

Time

Tota l Cred i t s : 16

Local Address: 4672 WestchesterPermanent Address: 686 Franklin

FIGURE A-5 Sample student schedule for Marvel College

318

Appendix A

Faculty information report: This report lists all faculty by department and contains each faculty mem-
ber’s ID number, name, address, office location, phone number, current rank (Instructor, Assistant Professor,
Associate Professor, or Professor), and starting date of employment. It also lists the number, name, and local
and permanent addresses of each faculty member’s advisees; the code number and description of the major
in which the faculty member is advising each advisee; and the code number and description of the depart-
ment to which this major is assigned. (Remember that this department need not be the one to which the fac-
ulty member is assigned.)

Work version of the time schedule: Although this report is similar to the original time schedule (see
Figure A-3), it is designed for the college’s internal use. It shows the current enrollments in each section of
each course, as well as the maximum enrollment permitted per section. It is more current than the time
schedule. (When students register for courses, enrollment figures are updated on the work version of the time
schedule. When room or faculty assignments are changed, this information also is updated. A new version of
this report that reflects the revised figures is printed after being updated.)

Course report: For each course, this report lists the code and name of the department that is offering the
course, the course number, the description of the course, and the number of credits awarded. This report
also includes the department and course number for each prerequisite course.

Update (Transaction) Requirements
In addition to being able to add, change, and delete any information in the report requirements, the system
must be able to accomplish the following update requirements:

Enrollment: When a student attempts to register for a section of a course, the system must determine
whether the student has received credit for all prerequisites to the course. If the student is eligible to enroll
in the course and the number of students currently enrolled in the section is less than the maximum enroll-
ment, enroll the student.

FULL STUDENT INFORMATION
Student Number: 381124188 Term: FA13

Name: Brian Connors

City: Hart City: Trent
State: MI State: MI

Zip: 48282 Zip: 48222

Major 1: Information Sys. Department: Computer Science Advisor: Mark Lawerence
Major 2: Accounting Department: Business Advisor: Jill Thomas
Major 3: Department: Advisor:

Credits Attempted:
 Credits Earned:
 Grade Points:

 Grade Point Avg:
 Class Standing:

44
44
149.2
3.39
2

Term

SP13

Course
Number Credits

MTH 123
HST 201
ENG 101

FA13

Grade
Earned

CS 162
MTH 201

Trigonometry
Western Civilization
American Literature

Programming I
Calculus I

4
3
3

4
4

A
 A-
A

A
 B+

16.0
11.1
12.0

16.0
9.9

FIGURE A-6 Sample full student information report for Marvel College

319

Comprehensive Design Example: Marvel College

Post grades: For each section of each course, the system must post the grades that are indicated on the
class list submitted by the instructor and produce a grade verification report. (Posting the grades is the for-
mal term for the process of entering the grades permanently in the students’ computerized records.)

Purge: Marvel College retains section information, including grades earned by the students in each sec-
tion, for two semesters following the end of the semester, then the system removes this information. (Grades
assigned to students are retained by course but not by section.)

MARVEL COLLEGE INFORMATION-LEVEL DESIGN

You should give some consideration to the overall requirements before you apply the method to the individ-
ual user requirements. For example, by examining the documents shown in Figures A-1 through A-6, you
may have identified the following entities: department, major, faculty member, student, course, and semester.

N O T E
Your list might include the section and grade entities. On the other hand, you might not have included the semester entity. In
the long run, as long as the list is fairly reasonable, what you include won’t make much difference. In fact, you may remember
that this step is not even necessary. The better you do your job now, however, the simpler the process will be later on.

After identifying the entities, you assign a primary key to each one. In general, this step will require
some type of consultation with users. You may need to ask users directly for the required information, or you
may be able to obtain it from some type of survey form. Assume that having had such a consultation, you
created a relation for each of these entities and assigned them the following primary keys:

Department (DepartmentCode,

Major (MajorNum,

Faculty (FacultyNum,

Student (StudentNum,

Course (DepartmentCode, CourseNum,

Semester (SemesterCode,

Note that the primary key for the Course table consists of two attributes, DepartmentCode (such as CS)
and CourseNum (such as 153), both of which are required. The database could contain, for example, CS 153
and CS 353. Thus, the department code alone cannot be the primary key. Similarly, the database could con-
tain ART 101 and MUS 101, two courses with the same course number but with different department codes.
Thus, the course number alone cannot be the primary key either.

Now you can begin examining the individual user views as stated in the requirements. You can create
relations for these user views, represent any keys, and merge the new user views into the cumulative design.
Your first task is to determine the individual user views. The term user view never appeared in the list of
requirements. Instead, Marvel College provided a general description of the system, together with a collection of
report requirements and another collection of update requirements. How do these requirements relate to user
views?

Certainly, you can think of each report requirement and each update requirement as a user view, but
what do you do with the general description? Do you think of each paragraph (or perhaps each sentence) in
the report as representing a user view, or do you use each paragraph or sentence to furnish additional infor-
mation about the report and update requirements? Both approaches are acceptable. Because the second
approach is often easier, it is the approach you will follow in this text. Think of the report and update
requirements as user views and when needed, use the statements in the general description as additional
information about these user views. You will also consider the general description during the review process
to ensure that your final design satisfies all the functionality it describes.

320

Appendix A

First, consider one of the simpler user views, the course report. (Technically, you can examine user
views in any order. Sometimes you take them in the order in which they are listed. In other cases, you may
be able to come up with a better order. Often, examining some of the simpler user views first is a reasonable
approach.)

Before you proceed with the design, consider the following method. First, with some of the user views,
you will attempt to determine the relations involved by carefully determining the entities and relationships
between them and using this information when creating the relations. This process means that from the
outset, the collection of tables created will be in or close to third normal form. With other user views, you
will create a single relation that may contain some number of repeating groups. In these cases, as you will
see, the normalization process still produces a correct design, but it also involves more work. In practice, the
more experience a designer has, the more likely he or she is to create third normal form relations
immediately.

Second, the name of an entity or attribute may vary from one user view to another, and this difference
requires resolution. You will attempt to use names that are the same.

User View 1—Course report: For each course, list the code and name of the department that is offering
the course, the course number, the course title, and the number of credits awarded. This report also includes
the department and course number for each prerequisite course. Forgetting for the moment the requirement
to list prerequisite courses, the basic relation necessary to support this report is as follows:

Course (DepartmentCode, DepartmentName, CourseNum, CourseTitle, NumCredits)

The combination of DepartmentCode and CourseNum uniquely determines all the other attributes. In
this relation, DepartmentCode determines DepartmentName; thus, the table is not in second normal form.
(An attribute depends on only a portion of the key.) To correct this situation, the table is split into the fol-
lowing two tables:

Course (DepartmentCode, CourseNum, CourseTitle, NumCredits)

Department (DepartmentCode, DepartmentName)

The DepartmentCode attribute in the first relation is a foreign key identifying the second relation.
To maintain prerequisite information, you need to create the relation Prereq:

Prereq (DepartmentCode, CourseNum, DepartmentCode/1, CourseNum/1)

In this table, the attributes DepartmentCode and CourseNum refer to the course and the attributes
DepartmentCode/1 and CourseNum/1 refer to the prerequisite course. If CS 362 has a prerequisite of MTH
345, for example, there will be a row in the Prereq table in which the DepartmentCode is CS, the CourseNum
is 362, the DepartmentCode/1 is MTH, and the CourseNum/1 is 345.

N O T E
Because the Prereq relation contains two attributes named DepartmentCode and two attributes named CourseNum, you must
be able to distinguish between them. The software used to produce these diagrams makes the distinction by appending the
characters /1 to one of the names, which is why these names appear in the Prereq table. In this example, the DepartmentCode/1
and CourseNum/1 attributes represent the department code and course number of the prerequisite course, respectively. When it
is time to implement the design, you typically assign them names that are more descriptive. For instance, you might name them
PrereqDepartmentCode and PrereqCourseNum, respectively.

321

Comprehensive Design Example: Marvel College

The DBDL version of these tables is shown in Figure A-7.

The result of merging these relations into the cumulative design appears in the E-R diagram shown in
Figure A-8. Notice that the Department and Course tables have been merged with the existing Department
and Course tables in the cumulative design. In the process, the attribute DepartmentName was added to the
Department table and the attributes CourseTitle and NumCredits were added to the Course table. In addition,
the attribute DepartmentCode in the Course table is a foreign key. Because the Prereq table is new, it was
added to the cumulative design in its entirety. Notice also that you do not yet have any relationships among
the entities Student, Major, Faculty, and Semester.

In Figure A-8, there are two relationships between Course and Prereq. To distinguish between them, it is
necessary to name the relationships. In the figure, the name for the first relationship is “has prereq” and the
name for the second relationship is “is prereq.”

DepartmentName

DepartmentCode

Prereq

CourseNum (FK)
DepartmentCode (FK)
CourseNum/1 (FK)
DepartmentCode/1 (FK)

CourseNum
DepartmentCode (FK)

Student Major Semester

Named
relationships

Entities are connected
by more than one

relationship

Faculty

Entities are not yet
related to any
other entity

Department Course

CourseTitle
NumCredits

is prereqhas prereq

FIGURE A-8 Cumulative design after User View 1

Department (DepartmentCode, DepartmentName)

Course (DepartmentCode, CourseNum, CourseTitle, NumCredits)
FK DepartmentCode → → Department

Prereq (DepartmentCode, CourseNum, DepartmentCode/1,
CourseNum/1)
FK DepartmentCode, CourseNum → → Course
FK DepartmentCode/1, CourseNum/1 → → Course

FIGURE A-7 DBDL for User View 1

322

Appendix A

N O T E
When using a software tool to produce E-R diagrams, the software might reverse the order of the fields that make up the pri-
mary key. For example, the E-R diagram in Figure A-8 indicates that the primary key for the Course table is CourseNum and
then DepartmentCode, even though you intended it to be DepartmentCode and then CourseNum. This difference is not a prob-
lem. Indicating the fields that make up the primary key is significant, not the order in which they appear.

User View 2—Faculty information report: List all faculty by department and each faculty member’s ID
number, name, address, office location, phone number, current rank (Instructor, Assistant Professor, Associ-
ate Professor, or Full Professor), and starting date of employment. In addition, list the number, name, and
local and permanent addresses of each faculty member’s advisees; the code number and description of the
major in which the faculty member is advising each advisee; and the code number and description of the
department to which this major is assigned. This user view involves three entities (departments, faculty, and
advisees), so you can create the following three tables:

Department (

Faculty (

Advisee (

The next step is to assign a primary key to each table. Before doing so, however, you should briefly
examine the tables in the cumulative design and use the same names for any existing tables or attributes. In
this case, you would use DepartmentCode as the primary key for the Department table and FacultyNum as
the primary key for the Faculty table. There is no Advisee table in the cumulative collection, but there is a
Student table. Because advisees and students are the same, rename the Advisee entity to Student and use the
StudentNum attribute as the primary key rather than AdvisorNum. Your efforts yield the following tables and
primary keys:

Department (DepartmentCode,

Faculty (FacultyNum,

Student (StudentNum,

Next, add the remaining attributes to the tables:

Department (DepartmentCode, DepartmentName)

Faculty (FacultyNum, LastName, FirstName, Street, City, State,

Zip, OfficeNum, Phone, CurrentRank, StartDate, DepartmentCode)

Student (StudentNum, LastName, FirstName, LocalStreet,

LocalCity, LocalState, LocalZip, PermStreet, PermCity,

PermState, PermZip, (MajorNum, Description,

DepartmentCode, FacultyNum, LastName, FirstName))

The DepartmentCode attribute is included in the Faculty table because there is a one-to-many relation-
ship between departments and faculty members. Because a student can have more than one major, the infor-
mation about majors (number, description, department, and the number and name of the faculty member
who advises this student in this major) is a repeating group.

323

Comprehensive Design Example: Marvel College

Because the key to the repeating group in the Student table is MajorNum, removing this repeating group
yields the following:

Student (StudentNum, LastName, FirstName, LocalStreet,

LocalCity, LocalState, LocalZip, PermStreet,

PermCity, PermState, PermZip, MajorNum, Description,

DepartmentCode, FacultyNum, LastName, FirstName)

Converting this relation to second normal form produces the following tables:

Student (StudentNum, LastName, FirstName, LocalStreet,

LocalCity, LocalState, LocalZip, PermStreet, PermCity,

PermState, PermZip)

Major (MajorNum, Description, DepartmentCode, DepartmentName)

Advises (StudentNum, MajorNum, FacultyNum)

In this case, you must remove the following dependencies to create third normal form tables: OfficeNum
determines Phone in the Faculty table, and DepartmentCode determines DepartmentName in the Major table.
Removing these dependencies produces the following collection of tables:

Department (DepartmentCode, DepartmentName)

Faculty (FacultyNum, LastName, FirstName, Street, City, State,

Zip, OfficeNum, CurrentRank, StartDate, DepartmentCode)

Student (StudentNum, LastName, FirstName, LocalStreet,

LocalCity, LocalState, LocalZip, PermStreet, PermCity,

PermState, PermZip)

Advises (StudentNum, MajorNum, FacultyNum)

Office (OfficeNum, Phone)

Major (MajorNum, Description, DepartmentCode)

The DBDL representation is shown in Figure A-9.

The result of merging these tables into the cumulative design is shown in Figure A-10. The tables
Student, Faculty, Major, and Department are merged with the existing tables with the same primary keys and
with the same names. Nothing new is added to the Department table in the process, but the other tables
receive additional attributes. In addition, the Faculty table also receives two foreign keys, OfficeNum and
DepartmentCode. The Major table receives one foreign key, DepartmentCode. The Advises and Office tables
are new and thus are added directly to the cumulative design.

Department (DepartmentCode, DepartmentName)

Student (StudentNum, LastName, FirstName, LocalStreet, LocalCity,
LocalState, LocalZip, PermStreet, PermCity, PermState, PermZip)

Office (OfficeNum, Phone)

Faculty (FacultyNum, LastName, FirstName, Street, City, State, Zip,
OfficeNum, CurrentRank, StartDate, DepartmentCode)

FK OfficeNum → Office
FK DepartmentCode → Department

Major (MajorNum, Description, DepartmentCode)
FK DepartmentCode → Department

Advises (StudentNum, MajorNum, FacultyNum)
FK StudentNum → Student
FK FacultyNum → Faculty
FK MajorNum → Major

FIGURE A-9 DBDL for User View 2

324

Appendix A

User View 3—Report card: At the end of each semester, the system must produce a report card for
each student. Report cards are fairly complicated documents in which the appropriate underlying relations
are not immediately apparent. In such a case, it’s a good idea to first list all the attributes in the report card
and assign them appropriate names, as shown in Figure A-11. After identifying the attributes, you should list
the functional dependencies that exist between these attributes. The information necessary to determine
functional dependencies must ultimately come from the user, although you can often guess most of them
accurately.

N O T E
Notice that there are duplicate names in the list. CreditsEarned, for example, appears three times: once for the course, once for
the semester, and once for the cumulative number of credits earned by the student. You could assign these columns different
names at this point. The names could be CreditsEarnedCourse, CreditsEarnedSemester, and CreditsEarnedCumulative. Alter-
natively, you could assign them the same name with an explanation of the purpose of each one in parentheses, as shown in
Figure A-11. Of course, after you have determined all the tables and assigned columns to them, you must ensure that the
column names within a single table are unique.

DepartmentName

DepartmentCode

Prereq

CourseNum (FK)
DepartmentCode (FK)
CourseNum/1 (FK)
DepartmentCode/1 (FK)

NumCredits

CourseNum
DepartmentCode (FK)

Semester

Office

Phone

OfficeNum

LastName
FirstName
Street
City
State
Zip
CurrentRank
StartDate
OfficeNum (FK)
DepartmentCode (FK)

FacultyNum

Major

Description
DepartmentCode (FK)

MajorNum

Advises

FacultyNum (FK)

MajorNum (FK)
StudentNum (FK)

Student

LastName
FirstName
LocalStreet
LocalCity
LocalState
LocalZip
PermStreet
PermCity
PermState
PermZip

StudentNum

Department

Entity not yet
related to any
other entity

Course

Faculty

CourseTitle

is prereqhas prereq

FIGURE A-10 Cumulative design after User View 2

325

Comprehensive Design Example: Marvel College

Assume the system’s users have verified the attributes listed in Figure A-11 and your work is correct.
Figure A-12 shows the functional dependencies among the attributes you identified on the report card. The
student number alone determines many of the other attributes.

Department
CourseNum
CourseTitle
Grade
CreditsTaken (Course)
CreditsEarned (Course)
GradePoints (Course)
CreditsTaken (Semester)
CreditsEarned (Semester)
GPA (Semester)
TotalPoints (Semester)
CreditsTaken (Cumulative)
CreditsEarned (Cumulative)
GPA (Cumulative)
TotalPoints (Cumulative)
SemesterCode
StudentNum
LastName
FirstName
Address
City
State
Zip
LocalAddress
LocalCity
LocalState
LocalZip

FIGURE A-11 Attributes on a report card from Marvel College

StudentNum→
CreditsTaken (Cumulative)
CreditsEarned (Cumulative)
GPA (Cumulative)
TotalPoints (Cumulative)
LastName
FirstName
Address
City
State
Zip
LocalAddress
LocalCity
LocalState
LocalZip

StudentNum, SemesterCode→
CreditsTaken (Semester)
CreditsEarned (Semester)
GPA (Semester)
TotalPoints (Semester)

DepartmentName, CourseNum→
CourseTitle
CreditsTaken (Course) (Same as NumCredits)

StudentNum, SemesterCode, DepartmentName, CourseNum→
Grade
CreditsEarned (Course)
GradePoints (Course)

FIGURE A-12 Functional dependencies among the attributes on a report card

326

Appendix A

In addition to the student number, the semester must be identified to determine credits taken and earned,
grade point average (GPA), and total points each semester. The combination of a department name (such as
Computer Science) and a course number (such as 153) determines a course title and the number of credits.

Finally, the student number, the semester (semester and year), the department, and the course (depart-
ment and course number) are required to determine an individual grade in a course, the credits earned from
the course, and the grade points in a course. (The semester is required because the same course might be
offered during more than one semester at Marvel College.)

N O T E
There is a parenthetical comment after CreditsTaken in the section determined by DepartmentName and CourseNum. It indi-
cates that CreditsTaken is the same as NumCredits, which is a column already in the cumulative design. Documenting that the
name you have chosen is a synonym for a name already in the cumulative design is a good practice.

The next step is to create a collection of tables that will support this user view. A variety of approaches
will work. You could combine all the attributes into a single table, which you then would convert to third
normal form. (In such a table, the combination of department, course number, course title, grade, and so on,
would be a repeating group.) Alternatively, you could use the functional dependencies to determine the fol-
lowing collection of relations:

Student (StudentNum, LastName, FirstName, PermStreet, PermCity,

PermState, PermZip, LocalStreet, LocalCity, LocalState,

LocalZip, CreditsTaken, CreditsEarned, GPA, TotalPoints)

StudentSemester (StudentNum, SemesterCode, CreditsTaken,

CreditsEarned, GPA, TotalPoints)

Course (DepartmentCode, CourseNum, CourseTitle, NumCredits)

StudentGrade (StudentNum, SemesterCode, DepartmentName,

CourseNum, Grade, CreditsEarned, GradePoints)

All these relations are in third normal form. The only change you should make involves the
DepartmentName attribute in the StudentGrade table. In general, if you encounter an attribute for which
there exists a determinant that is not in the table, you should add the determinant. In this case,
DepartmentCode is a determinant for DepartmentName, but it is not in the table, so you should add
DepartmentCode. In the normalization process, DepartmentName will then be removed and placed in
another table whose key is DepartmentCode. This other table will be merged with the Department table
without the addition of any new attributes. The resulting StudentGrade table is as follows:

StudentGrade (StudentNum, SemesterCode, DepartmentCode,

CourseNum, Grade, CreditsEarned, GradePoints)

Before representing this design in DBDL, examine the StudentSemester entity. Some of the attributes it
contains (CreditsTaken, CreditsEarned, GPA, and TotalPoints) refer to the current semester, and all appear
on a report card. Assume after further checking that you find that all these attributes are easily calculated
from other fields on the report card. Rather than storing these attributes in the database, you can ensure that
the program that produces the report cards performs the necessary calculations. For this reason, you will
remove the StudentSemester table from the collection of tables to be documented and merged. (If these attri-
butes are also required by some other user view in which the same computations are not as practical, they
might find their way into the database when that user view is analyzed.)

327

Comprehensive Design Example: Marvel College

Q & A

Question: Determine the tables and keys required for User View 3. Merge the result into the cumulative
design and draw the E-R diagram for the new cumulative design.
Answer: Figure A-13 shows the new cumulative design.

User View 4—Class list: The system must produce a class list for each section of each course. Space is
provided for the grades. At the end of the semester, the instructor enters each student’s grade and sends a
copy of the class list to the records office. Assume that, after examining the sample class list report (see
Figure A-2), you decide to create a single table (actually an unnormalized table) that contains all the attri-
butes on the class list, with the student information (number, name, class standing, and grade) as a repeating
group. (Applying the tips for determining the relations to support a given user view would lead more
directly to the result, but for the sake of developing the example, assume you haven’t done that yet.) The
unnormalized table created by this method would be as follows:

ClassList (DepartmentCode, DepartmentName, SemesterCode,

CourseNum, CourseTitle, NumCredits, SectionLetter,

ScheduleCode, Time, Room, FacultyNum, FacultyLastName,

FacultyFirstName, (StudentNum, StudentLastName,

StudentFirstName, ClassStanding, Grade))

DepartmentName

DepartmentCode

Prereq

CourseNum (FK)
DepartmentCode (FK)
CourseNum/1 (FK)
DepartmentCode/1 (FK)

Semester

Office

Phone

OfficeNum

Faculty

LastName
FirstName
Street
City
State
Zip
CurrentRank
StartDate
OfficeNum (FK)
DepartmentCode (FK)

FacultyNum

Major

Description
DepartmentCode (FK)

MajorNum

Advises

FacultyNum (FK)

MajorNum (FK)
StudentNum (FK)

Student

LastName
FirstName
LocalStreet
LocalCity
LocalState
LocalZip
PermStreet
PermCity
PermState
PermZip
CreditsTaken
CreditsEarned
GPA
TotalPoints

StudentNum

SemesterCode

StudentGrade

CourseNum (FK)
DepartmentCode (FK)
StudentNum (FK)
SemesterCode (FK)

Grade
CreditsEarned
GradePoints

has prereq is prereq

CourseTitle
NumCredits

CourseNum
DepartmentCode (FK)

CourseDepartment

FIGURE A-13 Cumulative design after User View 3

328

Appendix A

N O T E
Because attribute names within a single table must be unique, it is not permissible to assign the attribute name LastName to
both the faculty and student last names. Thus, the attributes that store the last and first names of a faculty member are named
FacultyLastName and FacultyFirstName, respectively. Similarly, the attributes that store the last and first names of a student
are named StudentLastName and StudentFirstName, respectively.

Note that you have not yet indicated the primary key. To identify a given class within a particular
semester requires the combination of a department code, course number, and section letter or, more simply,
the schedule code. Using the schedule code as the primary key, however, is not adequate. Because the infor-
mation from more than one semester will be on file at the same time and because the same schedule code
could be used in two different semesters to represent different courses, the primary key must also contain
the semester code. When you remove the repeating group, this primary key expands to contain the key
for the repeating group, which, in this case, is the student number. Thus, converting to first normal form
yields the following design:

ClassList (DepartmentCode, DepartmentName, SemesterCode,

CourseNum, CourseTitle, NumCredits, SectionLetter,

ScheduleCode, Time, Room, FacultyNum, FacultyLastName,

FacultyFirstName, StudentNum, StudentLastName,

StudentFirstName, ClassStanding, Grade)

Converting to third normal form yields the following collection of tables:

Department (DepartmentCode, DepartmentName)

Section (SemesterCode, ScheduleCode, DepartmentCode, CourseNum,

SectionLetter, Time, Room, FacultyNum)

Faculty (FacultyNum, LastName, FirstName)

StudentClass (SemesterCode, ScheduleCode, StudentNum, Grade)

Student (StudentNum, LastName, FirstName, ClassStanding)

Course (DepartmentCode, CourseNum, CourseTitle, NumCredits)

N O T E
Because the last name of a faculty member is now in a separate table from that of the last name of a student, it is no longer
necessary to have different names. Thus, FacultyLastName and StudentLastName have been shortened to LastName. Simi-
larly, FacultyFirstName and StudentFirstName have been shortened to FirstName.

Q & A

Question: Why was the grade included in the StudentClass table?
Answer: Although the grade is not actually printed on the class list, it will be entered on the form by the
instructor and sent to the records office for posting. The grade verification report differs from the class list
only in that the grade is printed. Thus, the grade will ultimately be required and it is appropriate to deal with
it here.

329

Comprehensive Design Example: Marvel College

Q & A

Question: Determine the tables and keys required for User View 4. Merge the result into the cumulative
design and draw the E-R diagram for the new cumulative design.
Answer: Figure A-14 shows the new cumulative design.

User View 5—Grade verification report: After the records office processes the class list, it returns the
class list to the instructor with the grades entered in the report. The instructor uses the report to verify that
the records office entered the students’ grades correctly. Because the only difference between the class list
and the grade verification report is that the grades are printed on the grade verification report, the user views
will be quite similar. In fact, because you made a provision for the grade when treating the class list, the
views are identical and no further treatment of this user view is required.

DepartmentName

DepartmentCode

Prereq

CourseNum (FK)
DepartmentCode (FK)
Course Num/1 (FK)
DepartmentCode/1 (FK)

Semester

Office

Phone

OfficeNum

Faculty

LastName
FirstName
Street
City
State
Zip
CurrentRank
StartDate
OfficeNum (FK)
DepartmentCode (FK)

FacultyNum

Major

Description
DepartmentCode (FK)

MajorNum

Advises

FacultyNum (FK)

MajorNum (FK)
StudentNum (FK)

Student

LastName
FirstName
LocalStreet
LocalCity
LocalState
LocalZip
PermStreet
PermCity
PermState
PermZip

CreditsEarned

ClassStanding

StudentNum

SemesterCode

StudentGrade

CourseNum (FK)
DepartmentCode (FK)
StudentNum (FK)
SemesterCode (FK)

Grade
CreditsEarned
GradePoints

StudentClass

Grade

StudentNum (FK)
ScheduleCode (FK)
SemesterCode (FK)

Section

SectionLetter
Time
Room
FacultyNum (FK)
CourseNum (FK)
DepartmentCode (FK)

ScheduleCode
SemesterCode (FK)

CourseTitle
NumCredits

CourseNum
DepartmentCode (FK)

has prereq is prereq

CourseDepartment

CreditsTaken

GPA
TotalPoints

FIGURE A-14 Cumulative design after User View 4

330

Appendix A

User View 6—Time schedule: List all sections of all courses offered during a given semester. Each section
has a unique four-digit schedule code. The time schedule lists the schedule code; the department offering
the course; the course’s number, section letter, and title; the instructor teaching the course; the time the
course meets; the room in which the course meets; the number of credits generated by the course; and
the prerequisites for the course. In addition to the information shown in the figure, the time schedule
includes the date the semester begins and ends, the date final exams begin and end, and the last withdrawal
date. The attributes on the time schedule are as follows: term (which is a synonym for semester), department
code, department name, location, course number, course title, number of credits, schedule code, section
letter, meeting time, meeting place, and instructor name.

You could create a single relation containing all these attributes and then normalize that relation, or you
could apply the tips presented in Chapter 8 for determining the collection of relations. In either case, you
ultimately create the following collection of relations:

Department (DepartmentCode, DepartmentName, Location)

Course (DepartmentCode, CourseNum, CourseTitle, NumCredits)

Section (SemesterCode, ScheduleCode, DepartmentCode, CourseNum,

SectionLetter, Time, Room, FacultyNum)

Faculty (FacultyNum, LastName, FirstName)

Semester (SemesterCode, StartDate, EndDate, ExamStartDate,

ExamEndDate, WithdrawalDate)

N O T E
Actually, given the attributes in this user view, the Section relation would contain the instructor’s name (LastName and
FirstName). There was no mention of instructor number. In general, as you saw earlier, it’s a good idea to include determinants
for attributes whenever possible. In this example, because FacultyNum determines LastName and FirstName, you add
FacultyNum to the Section relation, at which point the Section relation is not in third normal form. Converting to third normal
form produces the collection of relations previously shown.

Q & A

Question: Determine the tables and keys required for User View 6. Merge the result into the cumulative
design and draw the E-R diagram for the new cumulative design.
Answer: Figure A-15 shows the new cumulative design.

331

Comprehensive Design Example: Marvel College

User View 7—Registration request form: A student uses this form to request classes for the upcoming
semester. Students indicate the sections for which they want to register by entering the sections’ schedule
codes; for each section, students may also enter a code for an alternate section in case the requested primary
section is full. The collection of tables to support this user view includes a Student table that consists of the
primary key, StudentNum, and all the attributes that depend only on StudentNum. These attributes include
LastName, FirstName, and LocalStreet. Because all attributes in this table are already in the Student table in
the cumulative design, this user view will not add anything new and there is no need for further discussion
of it here.

DepartmentName
Location

DepartmentCode

Prereq

CourseNum (FK)
DepartmentCode (FK)
CourseNum/1 (FK)
DepartmentCode/1 (FK)

CourseTitle
NumCredits

CourseNum
DepartmentCode (FK)

Semester

Office

Phone

OfficeNum

Faculty

LastName
FirstName
Street
City
State
Zip
CurrentRank
StartDate
OfficeNum (FK)
DepartmentCode (FK)

FacultyNum

Major

Description
DepartmentCode (FK)

MajorNum

Advises

FacultyNum (FK)

MajorNum (FK)
StudentNum (FK)

Student

LastName
FirstName
LocalStreet
LocalCity
LocalState
LocalZip
PermStreet
PermCity
PermState
PermZip

CreditsEarned

TotalPoints
ClassStanding

StudentNumber
SemesterCode

StudentGrade

CourseNum (FK)
DepartmentCode (FK)
StudentNum (FK)
SemesterCode (FK)

Grade
CreditsEarned
GradePoints

StudentClass

Grade

StudentNum (FK)
ScheduleCode (FK)
SemesterCode (FK)

Section

SectionLetter
Time
Room
FacultyNum (FK)
CourseNum (FK)
DepartmentCode (FK)

ScheduleCode
SemesterCode (FK)

StartDate
EndDate
ExamStartDate
ExamEndDate
WithdrawalDate

has prereq is prereq

Department Course

FIGURE A-15 Cumulative design after User View 6

332

Appendix A

The portion of this user view that is not already present in the cumulative design concerns the primary
and alternate schedule codes that students request. A table to support this portion of the user view must
contain both a primary and an alternate schedule code. The table must also contain the number of the stu-
dent making the request. Finally, to allow the flexibility of retaining this information for more than a single
semester to allow registration for more than a semester at a time, the table must also include the semester in
which the request is made. This leads to the following relation:

RegistrationRequest (StudentNum, PrimaryCode, AlternateCode, SemesterCode)

For example, if student 381124188 were to request the section with schedule code 2345 and then
request the section with schedule code 2396 as an alternate for the FA13 semester, the row (381124188,
2345, 2396, "FA13") would be stored. The student number, the primary schedule code, the alternate schedule
code, and the semester code are required to uniquely identify a particular row.

Q & A

Question: Determine the tables and keys required for User View 7. Merge the result into the cumulative
design and draw the E-R diagram for the new cumulative design.
Answer: Figure A-16 shows the new cumulative design. Notice that two relationships join the Section table to
the RegistrationRequest table, so you must name each of them. In this case, you use “primary” and “alter-
nate,” indicating that one relationship relates a request to the primary section chosen and that the other
relationship relates the request to the alternative section when there is one.

333

Comprehensive Design Example: Marvel College

N O T E
The foreign keys are the combination of PrimaryCode and SemesterCode as well as the combination of AlternateCode and
SemesterCode. Because PrimaryCode and AlternateCode are portions of the foreign keys that must match the ScheduleCode
in the Section table, they have been renamed ScheduleCode and ScheduleCode/1, respectively. Likewise, the second
SemesterCode has been renamed SemesterCode/1.

DepartmentName
Location

DepartmentCode

Prereq

CourseNum (FK)
DepartmentCode (FK)
CourseNum/1 (FK)
DepartmentCode/1 (FK)

CourseTitle
NumCredits

CourseNum
DepartmentCode (FK)

Semester

Office

Phone

OfficeNum

Faculty

LastName
FirstName
Street
City
State
Zip
CurrentRank
StartDate
OfficeNum (FK)
DepartmentCode (FK)

FacultyNum

Major

Description
DepartmentCode (FK)

MajorNum

Advises

FacultyNum (FK)

MajorNum (FK)
StudentNum (FK)

Student

LastName
FirstName
LocalStreet
LocalCity
LocalState
LocalZip
PermStreet
PermCity
PermState
PermZip

CreditsEarned

TotalPoints
ClassStanding

StudentNum

SemesterCode

StudentGrade
CourseNum (FK)
DepartmentCode (FK)
StudentNum (FK)
SemesterCode (FK)

Grade
CreditsEarned
GradePoints

StudentClass

Grade

StudentNum (FK)
ScheduleCode (FK)
SemesterCode (FK)

Section

SectionLetter
Time
Room
FacultyNum (FK)
CourseNum (FK)
DepartmentCode (FK)

ScheduleCode
SemesterCode (FK)

StartDate
EndDate
ExamStartDate
ExamEndDate
WithdrawalDate

ScheduleCode/1 (FK)
SemesterCode/1 (FK)

StudentNum (FK)
ScheduleCode (FK)
SemesterCode (FK)

Department
Course

is prereqhas prereq

Relationship named
primary is identifying

(represented by
solid line)

Relationship named
alternate is nonidentifying

(represented by
dashed line)

RegistrationRequest

alternate

CreditsTaken

GPA

primary

FIGURE A-16 Cumulative design after User View 7

334

Appendix A

User View 8—Student schedule: After all students are assigned to sections, the system produces a student
schedule form, which is mailed to students to inform them of the classes in which they have been enrolled.
Suppose you had created a single unnormalized relation to support the student schedule. This unnormalized
relation would contain a repeating group representing the lines in the body of the schedule as follows:

StudentSchedule (StudentNum, SemesterCode, LastName, FirstName,

LocalStreet, LocalCity, LocalState, LocalZip, PermStreet,

PermCity, PermState, PermZip, (ScheduleCode,

DepartmentName, CourseNum, CourseTitle, SectionLetter,

NumCredits, Time, Room))

At this point, you remove the repeating group to convert to first normal form, yielding the following:

StudentSchedule (StudentNum, SemesterCode, LastName, FirstName,

LocalStreet, LocalCity, LocalState, LocalZip, PermStreet,

PermCity, PermState, PermZip, ScheduleCode,

DepartmentCode, CourseNum, CourseTitle, SectionLetter,

NumCredits, Time, Room)

Note that the primary key expands to include ScheduleCode, which is the key to the repeating group.
Converting this table to second normal form produces the following:

Student (StudentNum, LastName, FirstName, LocalStreet, LocalCity,

LocalState, LocalZip, PermStreet, PermCity,

PermState, PermZip)

StudentSchedule (StudentNum, SemesterCode, ScheduleCode)

Section (SemesterCode, ScheduleCode, DepartmentCode, CourseNum,

CourseTitle, SectionLetter, NumCredits, Time, Room)

Course (DepartmentCode, CourseNum, CourseTitle, NumCredits)

Removing the attributes that depend on the determinant of DepartmentCode and CourseNum from the
Section table and converting this collection of tables to third normal form produces the following tables:

Student (StudentNum, LastName, FirstName, LocalStreet,

LocalCity, LocalState, LocalZip, PermStreet, PermCity,

PermState, PermZip)

StudentSchedule (StudentNum, SemesterCode, ScheduleCode)

Section (SemesterCode, ScheduleCode, DepartmentCode, CourseNum,

SectionLetter, Time, Room)

Course (DepartmentCode, CourseNum, CourseTitle, NumCredits)

Merging this collection into the cumulative design does not add anything new. In the process, you can
merge the StudentSchedule table with the StudentClass table.

User View 9—Full student information report: List complete information about a student, including his
or her majors and all grades received to date. Suppose you attempted to place all the attributes on the full
student information report into a single unnormalized relation. The table has two separate repeating groups:
one for the different majors a student might have and the other for all the courses the student has taken.

N O T E
Several attributes, such as name and address, would not be in the repeating groups. All these attributes are already in the
cumulative design, however, and are not addressed here.

The table with repeating groups is as follows:

Student (StudentNum, (MajorNum, DepartmentCode, LastName,

FirstName), (SemesterCode, DepartmentCode, CourseNum,

CourseTitle, NumCredits, Grade, GradePoints))

335

Comprehensive Design Example: Marvel College

Recall from Chapter 5 that you should separate repeating groups when a relation has more than one. If
you don’t, you will typically have problems with fourth normal form. Separating the repeating groups in this
example produces the following:

StudentMajor (StudentNum, (MajorNum, DepartmentCode, LastName, FirstName))

StudentCourse (StudentNum, (SemesterCode, DepartmentCode,

CourseNum, CourseTitle, NumCredits, Grade, GradePoints))

Converting these tables to first normal form and including FacultyNum, which is a determinant for
LastName and FirstName, produces the following:

StudentMajor (StudentNum, MajorNum, DepartmentCode, FacultyNum,

LastName, FirstName)

StudentCourse (StudentNum, SemesterCode, DepartmentCode,

CourseNum, CourseTitle, NumCredits, Grade, Grade Points)

The StudentCourse table is not in second normal form because CourseTitle and NumCredits depend only
on the DepartmentCode, CourseNum combination. The StudentMajor table is not in second normal form
either because DepartmentCode depends on MajorNum. Removing these dependencies produces the following
tables:

StudentMajor (StudentNum, MajorNum, FacultyNum, LastName, FirstName)

Major (MajorNum, DepartmentCode)

StudentCourse (StudentNum, SemesterCode, DepartmentCode,

CourseNum, Grade, GradePoints)

Course (DepartmentCode, CourseNum, CourseTitle, NumCredits)

Other than the StudentMajor table, all these relations are in third normal form. Converting the
StudentMajor table to third normal form produces the following tables:

StudentMajor (StudentNum, MajorNum, FacultyNum)

Faculty (FacultyNum, LastName, FirstName)

Merging this collection into the cumulative design does not add anything new. (You can merge the
StudentMajor table with the Advises table without adding any new attributes.)

User View 10—Work version of the time schedule: This report is similar to the original time schedule
(see Figure A-3), but it is designed for the college’s internal use. It shows the current enrollments in each
section of each course, as well as each section’s maximum enrollment. The only difference between the work
version of the time schedule and the time schedule itself (see User View 6) is the addition of two attributes
for each section: current enrollment and maximum enrollment. Because these two attributes depend only on
the combination of the semester code and the schedule code, you would place them in the Section table of
User View 6, and after the merge, they would be in the Section table in the cumulative design. The cumula-
tive design thus far is shown in Figure A-17.

336

Appendix A

Because the process of determining whether a student has had the prerequisites for a given course
involves examining the grades (if any) received in these prior courses, it makes sense to analyze the user
view that involves grades before treating the user view that involves enrollment.

User View 11—Post grades: For each section of each course, the system must post the grades that are
indicated on the class list submitted by the instructor and produce a grade verification report. There is a
slight problem with posting grades—grades must be posted by section to produce the grade report (in other
words, you must record the fact that student 381124188 received an A in the section of CS 162 whose
schedule code was 2366 during the fall 2013 semester). On the other hand, for the full student information
report, there is no need to have any of the grades related to an actual section of a course. Further, because
section information, including these grades, is kept for only two semesters, grades would be lost after two
semesters if they were kept only by section because section information would be purged at that time.

is prereq

DepartmentName
Location

DepartmentCode

Prereq

CourseNum (FK)
DepartmentCode (FK)
CourseNum/1 (FK)
DepartmentCode/1 (FK)

CourseTitle
NumCredits

CourseNum
DepartmentCode (FK)

Course

Semester

Office

Phone

OfficeNum

Faculty

LastName
FirstName
Street
City
State
Zip
CurrentRank
StartDate
OfficeNum (FK)
DepartmentCode (FK)

FacultyNum

Major

Description
DepartmentCode (FK)

MajorNum

Advises

FacultyNum (FK)

MajorNum (FK)
StudentNum (FK)

Student

LastName
FirstName
LocalStreet
LocalCity
LocalState
LocalZip
PermStreet
PermCity
PermState
PermZip

CreditsEarned

TotalPoints
ClassStanding

StudentNum

SemesterCode

Student Grade
CourseNum (FK)
DepartmentCode (FK)
StudentNum (FK)
SemesterCode (FK)

Grade
CreditsEarned
GradePoints

StudentClass

Grade

StudentNum (FK)
ScheduleCode (FK)
SemesterCode (FK)

Section

SectionLetter
Time
Room

MaximumEnrollment
FacultyNum (FK)
CourseNum (FK)
DepartmentCode (FK)

ScheduleCode
SemesterCode (FK)

StartDate
EndDate
ExamStartDate
ExamEndDate
WithdrawalDate

ScheduleCode/1 (FK)
SemesterCode/1 (FK)

StudentNum (FK)
ScheduleCode (FK)
SemesterCode (FK)

has prereq

Department

CurrentEnrollment

primary
alternate

RegistrationRequest

CreditsTaken

GPA

FIGURE A-17 Cumulative design after User View 10

337

Comprehensive Design Example: Marvel College

A viable alternative is to post two copies of the grade: one copy will be associated with the student, the
term, and the section, and the other copy will be associated with only the student and the term. The first
copy would be used for the grade verification report; the second, for the full student information report.
Report cards would probably utilize the second copy, although not necessarily.

Thus, you would have the following two grade tables:

GradeSection (StudentNum, DepartmentCode, CourseNum,

ScheduleCode, SemesterCode, Grade)

GradeStudent (StudentNum, DepartmentCode, CourseNum,

SemesterCode, Grade)

Because the DepartmentCode and CourseNum in the GradeSection table depend only on the concatenation
of ScheduleCode and SemesterCode, they will be removed from the GradeSection table during the normaliza-
tion process and placed in a table whose primary key is the concatenation of ScheduleCode and SemesterCode.
This table will be combined with the Section table in the cumulative design without adding new fields. The
GradeSection table that remains will be merged with the StudentClass table without adding new fields. Finally,
the GradeStudent table will be combined with the StudentGrade table in the cumulative design without adding
any new fields. Thus, treatment of this user view does not change the cumulative design.

User View 12—Enrollment: When a student attempts to register for a section of a course, you must
determine whether the student has received credit for all prerequisites to the course. If the student is eligible
to enroll in the course and the number of students currently enrolled in the section is less than the maxi-
mum enrollment, enroll the student. With the data already in place in the cumulative design, you can deter-
mine what courses a student has taken. You can also determine the prerequisites for a given course. The only
remaining issue is the ability to enroll a student in a course. Because the system must retain information for
more than one semester, you must include the semester code in the table. (You must have the information
that student 381124188 enrolled in section 2345 in SP14 rather than in FA13, for example.) The additional
table is as follows:

Enroll (StudentNum, SemesterCode, ScheduleCode)

The primary key of this table matches the primary key of the StudentClass table in the cumulative
design. The fields occur in a different order here, but that makes no difference. Thus, this table will be
merged with the StudentClass table. No new fields are to be added, so the cumulative design remains
unchanged.

User View 13—Purge: Marvel College retains section information, including grades earned by the stu-
dents in each section, for two semesters following the end of the semester, at which time this information is
removed from the system. Periodically, certain information that is more than two terms old is removed from
the database. This includes all information concerning sections of courses, such as the time, room, and
instructor, as well as information about the students in the sections and their grades. The grade each student
received will remain in the database by course but not by section. For example, you will always retain the
fact that student 381124188 received an A in CS 162 during the fall semester of 2013, but once the data for
that term is purged, you will no longer know the precise section of CS 162 that awarded this grade.

If you examine the current collection of tables, you will see that all the data to be purged is already
included in the cumulative design and that you don’t need to add anything new at this point.

FINAL INFORMATION-LEVEL DESIGN

Now that you are finished examining the user views, Marvel College can review the cumulative design to
ensure that all user views have been met. You should conduct this review on your own to make certain that
you understand how the requirements of each user can be satisfied. You will assume that this review has
taken place and that no changes have been made. Therefore, Figure A-17 represents the final information-
level design.

At this point, Marvel College is ready to move on to the physical-level design process. In this process, the
appropriate team members will use the information-level design you produced to create the design for the
specific DBMS that Marvel College selects. After it has done so, it will be able to create the database, load the
data, and create the forms, reports, queries, and programs necessary to satisfy its requirements.

338

Appendix A

EXERCISES

1. Discuss the effect of the following changes on the design for the Marvel College requirements:
a. More than one instructor might teach a given section of a course, and each instructor must

be listed on the time schedule.
b. Each department offers only a single major.
c. Each department offers only a single major, and each faculty member can advise students

only in the major that is offered by the department to which the faculty member is assigned.
d. Each department offers only a single major, and each faculty member can advise students

only in the major that is offered by the department to which the faculty member is assigned.
In addition, a student can have only one major.

e. There is an additional transaction requirement: given a student’s name, find the student’s
number.

f. More than one faculty member can be assigned to one office.
g. The number of credits earned in a particular course cannot vary from student to student or

from semester to semester.
h. Instead of a course number, course codes are used to uniquely identify courses. (In other

words, department numbers are no longer required for this purpose.) However, it is still
important to know which courses are offered by which departments.

i. On the registration request form, a student may designate a number of alternates along with
his or her primary choice. These alternates are listed in priority order, with the first one
being the most desired and the last one being the least desired.

2. Complete an information-level design for Holt Distributors.
General description. Holt Distributors buys products from its vendors and sells those pro-

ducts to its customers. The Holt Distributors operation is divided into territories. Each customer
is represented by a single sales rep, who must be assigned to the territory in which the customer
is located. Although each sales rep is assigned to a single territory, more than one sales rep can
be assigned to the same territory.

When a customer places an order, the computer assigns the order the next available order
number. The data entry clerk enters the customer number, the customer purchase order
(PO) number, and the date. (Customers can place orders by submitting a PO, in which case, a
PO number is recorded.) For each part that is ordered, the clerk enters the part number, quan-
tity, and quoted price. (When it is time for the clerk to enter the quoted price, the computer
displays the price from the master price list. If the quoted price is the same as the actual price,
the clerk takes no special action. If not, the clerk enters the quoted price.)

When the clerk completes the order, the system prints the order acknowledgment/picking
list form shown in Figure A-18 and sends it to the customer for confirmation and payment.
When Holt Distributors is ready to ship the customer’s order, this same form is used to “pick”
the merchandise in the warehouse and prepare it for delivery.

339

Comprehensive Design Example: Marvel College

An order that hasn’t been shipped (filled) is called an open order; an order that has been
shipped is called a released order. When orders are released, the system prints an invoice, sends
it to the customer, and then increases the customer’s balance by the invoice amount. Some
orders are completely filled; others are only partially filled, meaning that only part of the custo-
mer’s order was shipped. In either case, when an entire order or a partial order has been
shipped, the order is considered to have been filled and is no longer considered an open order.
(Another possibility is to allow back orders when the order cannot be completely filled. In this
case, the order remains open, but only for the back-ordered portion.) When the system generates
an invoice, it removes the order from the open orders file. The system stores summary informa-
tion about the invoice (number, date, customer, invoice total, and freight) until the end of the
month. A sample invoice is shown in Figure A-19.

B/OOrder

6
4

Ship Item Number

AT414
BT222

Description

$42.00
$51.00

Price

Lounge Chair
Arm Chair

Amount

$252.00
$204.00

10/12/2013 Order 12424
HOLT DISTRIBUTORS
146 NELSON PLACE
BRONSTON, MI 49802

 SOLD SHIP
 TO: Smith Rentals TO: A & B Supplies

153 Main St. 2180 Halton Pl.
Suite 102 Arendville, MI 49232
Grandville, MI 49494

Customer P.O. No. Order Date Sales Rep
1354 PO335 10/02/2013 10-Brown, Sam

Quantity

ORDER ACKNOWLEDGMENT / PICKING LIST

FIGURE A-18 Order acknowledgment/picking list for Holt Distributors

B/OOrder

6
4

Ship Item Number

AT414
BT222

Description

$42.00
$51.00

Price

Lounge Chair
Arm Chair

Freight

Amount

$210.00
$204.00

$42.50

Pay This Amount

10/15/2013 Invoice 11025
HOLT DISTRIBUTORS
146 NELSON PLACE
BRONSTON, MI 49802

 SOLD SHIP
 TO: Smith Rentals TO: A & B Supplies

153 Main St. 2180 Halton Pl.
Suite 102 Arendville, MI 49232
Grandville, MI 49494

Customer P.O. No. Our Order No. Sales Rep
1354 PO335 12424 10-Brown, Sam

Quantity

$456.50

Ship Date
10/15/2013

Order Date
10/02/2013

5
4

1
0

FIGURE A-19 Invoice for Holt Distributors

340

Appendix A

Most companies use one of two methods to accept payments from customers: open items
and balance forward. In the open-item method, customers make payments on specific invoices.
An invoice remains on file until the customer pays it in full. In the balance-forward method,
customers have balances. When the system generates an invoice, the customer’s balance is
increased by the amount of the invoice. When a customer makes a payment, the system
decreases the customer’s balance by the payment amount. Holt Distributors uses the balance-
forward method.

At the end of each month, the system updates and ages customers’ accounts. (You’ll learn
about month-end processing requirements and the update and aging processes in the following
sections.) The system prints customer statements, an aged trial balance (described in the report
requirements section), a monthly cash receipts journal, a monthly invoice register, and a sales
rep commission report. The system then removes cash receipts and invoice summary records
from the database and sets month-to-date (MTD) fields to zero. When the system processes the
monthly data for December, it also sets the year-to-date (YTD) fields to zero.

Transaction requirements. The following transaction requirements are required by Holt
Distributors:
a. Enter and edit territories (territory number and name).
b. Enter and edit sales reps (sales rep number, name, address, city, state, zip, MTD sales, YTD

sales, MTD commission, YTD commission, and commission rate). Each sales rep represents a
single territory.

c. Enter and edit customers (customer number, name, first line of address, second line of
address, city, state, zip, MTD sales, YTD sales, current balance, and credit limit). A customer
can have a different name and address to which goods are shipped (called the “ship to”
address). Each customer has a single sales rep who is located in a single territory. The sales
rep must represent the territory in which the customer is located.

d. Enter and edit parts (part number, description, price, MTD and YTD sales, units on hand,
units allocated, and reorder point). Units allocated is the number of units that are currently
present on some open orders. The reorder point is the lowest value acceptable for units on
hand without the product being reordered. On the stock status report, which will be
described later, an asterisk indicates any part for which the number of units on hand is less
than the reorder point.

e. Enter and edit vendors (vendor number, name, address, city, state, and zip). In addition, for
each part supplied by the vendor, enter and edit the part number, the price the vendor
charges for the part, the minimum order quantity that the vendor will accept for this part,
and the expected lead time for delivery of this part from this vendor.

f. Order entry (order number, date, customer, customer PO number, and order detail lines).
An order detail line consists of a part number, a description, the number ordered, and the
quoted price. Each order detail line includes a sequence number that is entered by the user.
Detail lines on an order must print in the order of this sequence number. The system should
calculate and display the order total. After all orders for the day have been entered, the sys-
tem prints order acknowledgment/picking list reports (see Figure A-18). In addition, for each
part ordered, the system must increase the units allocated for the part by the number of
units that the customer ordered.

g. The invoicing system has the following requirements:
1. Enter the numbers of the orders to be released. For each order, enter the ship date for

invoicing and the freight amount. Indicate whether the order is to be shipped in full or
in part. If an order is to be partially shipped, enter the number shipped for each order
detail line. The system will generate a unique invoice number for this invoice.

2. Print invoices for each of the released orders. (A sample invoice is shown in Figure A-19.)
3. Update files with information from the printed invoices. For each invoice, the system

adds the invoice total to the current invoice total. It also adds the current balance and
the MTD and YTD sales for the customer that placed the order. The system also adds
the total to the MTD and YTD sales for the sales rep who represents the customer. In
addition, the system multiplies the total by the sales rep’s commission rate and adds this
amount to the MTD commission earned and the YTD commission earned. For each part

341

Comprehensive Design Example: Marvel College

shipped, the system decreases units on hand and units allocated by the number of units
of the part or parts that were shipped. The system also increases the MTD and YTD
sales of the part by the amount of the number of units shipped multiplied by the quoted
price.

4. Create an invoice summary record for each invoice printed. These records contain the
invoice number, date, customer, sales rep, invoice total, and freight.

5. Delete the released orders.

h. Receive payments on account (customer number, date, and amount). The system assigns
each payment a number, adds the payment amount to the total of current payments for the
customer, and subtracts the payment amount from the current balance of the customer.

Report requirements. The following is a list of the reports required by Holt Distributors:
a. Territory List: For each territory, list the number and name of the territory; the number,

name, and address of each sales rep in the territory; and the number, name, and address of
each customer represented by these sales reps.

b. Customer Master List: For each customer, list the customer number, the bill-to address, and
the ship-to address. Also list the number, name, address, city, state, and zip of the sales rep
who represents the customer and the number and name of the territory in which the cus-
tomer is located.

c. Customer Open Order Report: This report lists open orders organized by customer. It is
shown in Figure A-20.

d. Item Open Order Report: This report lists open orders organized by item and is shown in
Figure A-21.

HOLT DISTRIBUTORS
CUSTOMER OPEN ORDER REPORT

Item
Description

12424

Item
Number

Order
Date

AT414

Order
Qty

Lounge Chair

Quoted
Price

Order
Number

Customer 1354 - Smith Rentals

Customer 1358 -

$42.00110/02/2013

10/16/2013 PAGE 1

FIGURE A-20 Open order report (by customer)

HOLT DISTRIBUTORS
ITEM OPEN ORDER REPORT

Customer
Number

Item
Description

Order
Date

Order
Qty

AT414

BT222

Quoted
Price

Item
Number

10/16/2013 PAGE 1

Customer
Name

Order
Number

Lounge Chair

Arm Chair

1354
1358

1358

Smith Rentals
Kayland Enterprises

Kayland Enterprises

1
8
9

3

$42.00
$42.00

$51.00

12424
12489

12424

10/02/2013
10/03/2013

10/03/2013

Total on order -

FIGURE A-21 Open order report (by item)

342

Appendix A

e. Daily Invoice Register: For each invoice produced on a given day, list the invoice number,
invoice date, customer number, customer name, sales amount, freight, and invoice total. A
sample of this report is shown in Figure A-22.

f. Monthly Invoice Register: The monthly invoice register has the same format as the daily
invoice register, but it includes data for all invoices that occurred during the selected month.

g. Stock Status Report: For each part, list the part number, description, price, MTD and YTD
sales, units on hand, units allocated, and reorder point. For each part for which the number
of units on hand is less than the reorder point, an asterisk should appear at the far right of
the report.

h. Reorder Point List: This report has the same format as the stock status report. Other than
the title, the only difference is that parts for which the number of units on hand is greater
than or equal to the reorder point will not appear on this report.

i. Vendor Report: For each vendor, list the vendor number, name, address, city, state, and zip.
In addition, for each part supplied by the vendor, list the part number, the description, the
price the vendor charges for the part, the minimum order quantity that the vendor will
accept for this part, and the expected lead time for delivery of this part from the vendor.

j. Daily Cash Receipts Journal: For each payment received on a given day, list the number and
name of the customer that made the payment and the payment amount. A sample report is
shown in Figure A-23.

k. Monthly Cash Receipts Journal: The monthly cash receipts journal has the same format as
the daily cash receipts journal, but it includes all cash receipts for the month.

l. Customer Mailing Labels: A sample of the three-across mailing labels printed by the system
is shown in Figure A-24.

HOLT DISTRIBUTORS
DAILY INVOICE REGISTER FOR 10/15/2013

Customer
Number

Invoice
Date

Customer
Name

11025

Invoice
Amount

10/15/2013

Invoice
Number

$456.50

10/16/2013 PAGE 1

1354 Smith Rentals

Sales
Amount Freight

$414.00 $42.50

$3,078.70$2,840.50 $238.20

FIGURE A-22 Daily invoice register

HOLT DISTRIBUTORS
DAILY CASH RECEIPTS JOURNAL

Customer
Number

Customer
Name

5807

Payment
Amount

1354

Payment
Number

10/05/2013 PAGE 1

Smith Rentals $1,000.00

$12,235.50

FIGURE A-23 Daily cash receipts journal

343

Comprehensive Design Example: Marvel College

m. Statements: The system must produce a monthly statement for each active customer. A
sample statement is shown in Figure A-25.

n. Monthly Sales Rep Commission Report: For each sales rep, list his or her number, name,
address, MTD sales, YTD sales, MTD commission earned, YTD commission earned, and com-
mission rate.

o. Aged Trial Balance: The aged trial balance report contains the same information that is
printed on each customer’s statement.

Month-end processing. Month-end processing consists of the following actions that occur at
the end of each month:
a. Update customer account information. In addition to the customer’s actual balance, the sys-

tem must maintain the following records: current debt, debt incurred within the last 30 days,

• • •

Smith Rentals
153 Main St.
Suite 102
Grandville, MI 49494

Kayland Enterprises
267 29th St
Wyoming, MI 48222

John & Sons, Inc.
5563 Crestview
Ada, MI 49292

• • • • • • • • •

• • • • • • • • •

FIGURE A-24 Customer mailing labels

Description
Invoice
Number

10945

11025

Date

10/02/2013
10/05/2013
10/15/2013
10/22/2013

Invoice
Payment
Invoice
Payment

Smith Rentals Customer Number: 1354

 153 Main St. Sales Rep: 10 - Brown, Sam

 Suite 102

 Grandville, MI 49494 Limit: $5,000.00

Total Amount

$2,138.70 $1,686.50 $1,500.00

Current PaymentsCurrent
Invoices

Previous
Balance

Over 90
$0.00

Over 60
$198.50

Over 30
$490.20

Current
$1,686.50

Total Due >>>>>> $2,325.20

$1,230.00
$1,000.00CR

 $456.50
 $500.00CR

HOLT DISTRIBUTORS
146 NELSON PLACE

BRONSTON, MI 49802

11/01/2013

FIGURE A-25 Statement for Holt Distributors

344

Appendix A

debt that is more than 30 days past due but less than 60 days past due, debt that is 60 or
more days past due but less than 90 days past due, and debt that is 90 or more days past due.
The system updates the actual balance, the current invoice total, and the current payment
total when it produces a new invoice or receives a payment; however, the system updates
these aging figures only at the end of the month. The actual update process is as follows:
1. The system processes payments received within the last month and credits these pay-

ments to the past due amount for 90 or more days. The system then credits any addi-
tional payment to the 60 or more days past due amount, then to the more than 30 days
past due amount, and then to the current debt amount (less than 30 days).

2. The system “rolls” the amounts by adding the 60 or more days past due amount to the
90 or more days past due amount and by adding the more than 30 days past due
amount to the 60 or more days past due amount. The current amount becomes the new
more than 30 days past due amount. Finally, the current month’s invoice total becomes
the new current amount.

3. The system prints the statements and the aged trial balances.
4. The system sets the current invoice total to zero, sets the current payment total to zero,

and sets the previous balance to the current balance in preparation for the next month.
To illustrate, assume before the update begins that the amounts for customer 1354 are
as follows:

Current Balance: $2,375.20 Previous Balance: $2,138.70
Current Invoices: $1,686.50 Current: $490.20
Current Payments: $1,500.00 Over 30: $298.50

Over 60: $710.00
Over 90: $690.00

The system subtracts the current payments ($1,500.00) from the over 90 amount
($690.00), reduces the over 90 amount to zero, and calculates an excess payment of
$810.00. The system subtracts this excess payment from the over 60 amount ($710.00),
reduces the over 60 amount to zero, and calculates an excess payment of $100.00. The
system then subtracts the excess payment from the over 30 amount ($298.50) and
reduces this amount to $198.50. At this point, the system rolls the amounts and sets the
current amount to the current invoice total, producing the following:

Current Balance: $2,375.20 Previous Balance: $2,138.70
Current Invoices: $1,686.50 Current: $1,686.50
Current Payments: $1,500.00 Over 30: $490.20

Over 60: $198.50
Over 90: $0.00

The system then produces statements and the aged trial balance and updates the Previ-
ous Balance, Current Invoices, and Current Payments amounts, yielding the following:

Current Balance: $2,375.20 Previous Balance: $2,375.20
Current Invoices: $0.00 Current: $1,686.50
Current Payments: $0.00 Over 30: $490.20

Over 60: $198.50
Over 90: $0.00

b. Print the monthly invoice register and the monthly cash receipts journal.
c. Print a monthly sales rep commission report.
d. Set all MTD fields to zero. If necessary, set all YTD fields to zero.
e. Remove all cash receipts and invoice summary records. (In practice, such records would be

moved to a historical type of database for future reference. For the purposes of this assign-
ment, you will omit this step.)

345

Comprehensive Design Example: Marvel College

A P P E N D I X B
SQL REFERENCE

You can use this appendix to obtain details concerning important components and syntax for SQL. Items are
arranged alphabetically. Each item contains a description and, where appropriate, both an example and a
description of the query results. Some SQL commands also include a description of the clauses associated with
them. For each clause, there is a brief description and an indication of whether the clause is required or optional.

ALTER TABLE

Use the ALTER TABLE command to change a table’s structure. As shown in Figure B-1, you type the ALTER
TABLE command, followed by the table name, and then the alteration to perform. (Note: In Access, you usu-
ally make these changes to a table in Design view rather than using ALTER TABLE.)

The following command alters the Customer table by adding a new column named CustType:

ALTER TABLE Customer

ADD CustType CHAR(1)

;

The following command alters the Customer table by changing the length of the CustomerName column:

ALTER TABLE Customer

CHANGE COLUMN CustomerName TO CHAR(50)

;

The following command alters the Part table by deleting the Warehouse column:

ALTER TABLE Part

DELETE Warehouse

;

COLUMN OR EXPRESSION LIST (SELECT CLAUSE)

To select columns, use a SELECT clause with the list of columns separated by commas. The following
SELECT clause selects the CustomerNum, CustomerName, and Balance columns:

SELECT CustomerNum, CustomerName, Balance

Use an asterisk in a SELECT clause to select all columns in the table. The following SELECT command
selects all columns in the Part table:

SELECT *

FROM Part

;

Clause Description Required?

ALTER TABLE table name Indicates the name of the table to be altered. Yes

alteration Indicates the type of alteration to be performed. Yes

FIGURE B-1 ALTER TABLE command

Computed Fields
You can use a computation in place of a field by typing the computation. For readability, you can type the
computation in parentheses, although it is not necessary to do so.

The following SELECT clause selects the CustomerNum and CustomerName columns as well as the
results of subtracting the Balance column from the CreditLimit column:

SELECT CustomerNum, CustomerName, CreditLimit-Balance

Functions
You can use aggregate functions in a SELECT clause. The most commonly used functions are AVG (to calcu-
late an average), COUNT (to count the number of rows), MAX (to determine the maximum value), MIN (to
determine the minimum value), and SUM (to calculate a total).

The following SELECT clause calculates the average balance:

SELECT AVG(Balance)

CONDITIONS

A condition is an expression that can be evaluated as either true or false. When you use a condition in a
WHERE clause, the results of the query contain those rows for which the condition is true. You can create
simple conditions and compound conditions using the BETWEEN, LIKE, and IN operators, as described in the
following sections.

Simple Conditions
A simple condition includes the field name, a comparison operator, and another field name or a value. The
available comparison operators are ¼ (equal to), < (less than), > (greater than), <¼ (less than or equal to),
>¼ (greater than or equal to), and < > (not equal to).

The following WHERE clause uses a condition to select rows in which the balance is greater than the
credit limit:

WHERE Balance>CreditLimit

Compound Conditions
Compound conditions are formed by connecting two or more simple conditions using one or both of the fol-
lowing operators: AND and OR. You can also precede a single condition with the NOT operator to negate a
condition. When you connect simple conditions using the AND operator, all the simple conditions must be
true for the compound condition to be true. When you connect simple conditions using the OR operator, the
compound condition will be true whenever any of the simple conditions are true. Preceding a condition with
the NOT operator reverses the truth or falsity of the original condition. That is, if the original condition is
true, the new condition will be false; if the original condition is false, the new one will be true.

The following WHERE clause is true if those parts for which the warehouse number is equal to 3 or the
number of units on hand is greater than 20:

WHERE Warehouse¼’3’

OR OnHand>20

The following WHERE clause is true if those parts for which both the warehouse number is equal to 3
and the number of units on hand is greater than 20:

WHERE Warehouse¼’3’

AND OnHand>20

The following WHERE clause is true if the warehouse number is not equal to 3:

WHERE NOT (Warehouse¼’3’)

348

Appendix B

BETWEEN Conditions
You can use the BETWEEN operator to determine whether a value is within a range of values. The following
WHERE clause is true if the balance is between 1,000 and 5,000:

WHERE Balance BETWEEN 1000 AND 5000

LIKE Conditions
LIKE conditions use wildcards to select rows. Use the percent sign (%) to represent any collection of charac-
ters. The condition LIKE ’%Oxford%’will be true for data consisting of any character or characters followed
by the letters “Oxford” followed by any other character or characters. Another wildcard is the underscore
character (_), which represents any individual character. For example, ’T_m’represents the letter T followed
by any single character followed by the letter m and would be true for a collection of characters such as Tim,
Tom, or T3m.

Note: In Access SQL, the asterisk (*) is used as a wildcard to represent any collection of characters. (In
MySQL, the percent sign (%) is used as a wildcard to represent any collection of characters.) Another wildcard
in Access SQL is the question mark (?), which represents any individual character. Many versions of SQL,
including MySQL, use the underscore (_) instead of the question mark to represent any individual character.

The following WHERE clause is true if the value in the Street column is Ox, ford, Oxford, or any other
value that contains “Oxford”:

WHERE Street LIKE ’%Oxford%’

Access version:

WHERE Street LIKE ’*Oxford*’

IN Conditions
You can use the IN operator to determine whether a value is in some specific collection of values. The fol-
lowing WHERE clause is true if the credit limit is 7,500, 10,000, or 15,000:

WHERE CreditLimit IN (7500, 10000, 15000)

The following WHERE clause is true if the part number is in the collection of part numbers located in
warehouse 3:

WHERE PartNum IN

(SELECT PartNum

FROM Part

WHERE Warehouse=’3’)

CREATE INDEX

Use the CREATE INDEX command to create an index for a table. Figure B-2 describes the CREATE INDEX
command.

The following CREATE INDEX command creates an index named RepBal for the Customer table on the
combination of the RepNum and Balance columns:

CREATE INDEX RepBal

ON Customer (RepNum, Balance)

;

Clause Description Required?

CREATE INDEX index name Indicates the name of the index. Yes

ON table name Indicates the table for which the index is to be created. Yes

column list Indicates the column or columns on which the index is to be tested. Yes

FIGURE B-2 CREATE INDEX command

SQL Reference

349

CREATE TABLE

Use the CREATE TABLE command to create a table by describing its layout. Figure B-3 describes the
CREATE TABLE command.

The following CREATE TABLE command creates the Rep table and its associated columns and data types:

CREATE TABLE Rep

(RepNum CHAR(2),

LastName CHAR(15),

FirstName CHAR(15),

Street CHAR(15),

City CHAR(15),

State CHAR(2),

Zip CHAR(5),

Commission DECIMAL(7,2),

Rate DECIMAL(3,2))

;

Access version:

CREATE TABLE Rep

(RepNum CHAR(2),

LastName CHAR(15),

FirstName CHAR(15),

Street CHAR(15),

City CHAR(15),

State CHAR(2),

Zip CHAR(5),

Commission CURRENCY,

Rate NUMBER)

;

Note: Unlike other SQL implementations, Access doesn’t have a DECIMAL data type. To create numbers
with decimals, you must use either the CURRENCY or NUMBER data type. Use the CURRENCY data type for
fields that will contain currency values; use the NUMBER data type for all other numeric fields.

CREATE VIEW

Use the CREATE VIEW command to create a view. Figure B-4 describes the CREATE VIEW command.

Clause Description Required?

CREATE TABLE table name Indicates the name of the table to be created. Yes

(column and data type list) Indicates the columns that make up the table along with their
corresponding data types (see the “Data Types” section).

Yes

FIGURE B-3 CREATE TABLE command

Clause Description Required?

CREATE VIEW view name AS Indicates the name of the view to be created. Yes

query Indicates the defining query for the view. Yes

FIGURE B-4 CREATE VIEW command

350

Appendix B

The following CREATE VIEW command creates a view named Housewares, which consists of the part
number, description, on hand, and price for all rows in the Part table on which the Class is HW:

CREATE VIEW Housewares AS

SELECT PartNum, Description, OnHand, Price

FROM Part

WHERE Class ¼’HW’

;

DATA TYPES

Figure B-5 describes the data types that you can use in a CREATE TABLE command.

DELETE ROWS

Use the DELETE command to delete one or more rows from a table. Figure B-6 describes the DELETE
command.

The following DELETE command deletes any row from the OrderLine table on which the part number is
BV06:

DELETE

FROM OrderLine

WHERE PartNum¼’BV06’

;

Data Type Description

INTEGER Stores integers, which are numbers without a decimal part. The valid data range is -2147483648 to
2147483647. You can use the contents of INTEGER fields for calculations.

SMALLINT Stores integers but uses less space than the INTEGER data type. The valid data range is -32768 to
32767. SMALLINT is a better choice than INTEGER when you are certain that the field will store
numbers within the indicated range. You can use the contents of SMALLINT fields for calculations.

DECIMAL(p,q) Stores a decimal number p digits long with q of these digits being decimal places. For example,
DECIMAL(5,2) represents a number with three places to the left and two places to the right of the
decimal. You can use the contents of DECIMAL fields for calculations.

CHAR(n) Stores a character string n characters long. You use the CHAR type for fields that contain letters and
other special characters and for fields that contain numbers that will not be used in calculations. Because
neither sales rep numbers nor customer numbers will be used in any calculations, for example, both of
them are assigned CHAR as the data type. (Some DBMSs, such as Access, use TEXT rather than
CHAR, but the two data types mean the same thing.)

DATE Stores dates in the form DD-MON-YYYY or MM/DD/YYYY. For example, May 12, 2013, could be
stored as 12-MAY-2013 or 5/12/2013.

FIGURE B-5 Data types

Clause Description Required?

DELETE FROM table name Indicates the name of the table from which the
row or rows are to be deleted.

Yes

WHERE condition Indicates a condition. Those rows for which the
condition is true will be retrieved and deleted.

No (If you omit the WHERE
clause, all rows will be deleted.)

FIGURE B-6 DELETE command

SQL Reference

351

DROP INDEX

Use the DROP INDEX command to delete an index, as shown in Figure B-7.

The following DROP INDEX command deletes the index named RepBal:

DROP INDEX RepBal

;

DROP TABLE

Use the DROP TABLE command to delete a table, as shown in Figure B-8.

The following DROP TABLE command deletes the table named SmallCust:

DROP TABLE SmallCust

;

GRANT

Use the GRANT statement to grant privileges to a user. Figure B-9 describes the GRANT statement.

The following GRANT statement grants the user named Johnson the privilege of selecting rows from the
Rep table:

GRANT SELECT ON Rep TO Johnson

;

INSERT

Use the INSERT command and the VALUES clause to insert a row into a table by specifying the values for
each of the columns. As shown in Figure B-10, you must indicate the table into which to insert the values
and then list the values to insert in parentheses.

Clause Description Required?

GRANT privilege Indicates the type of privilege(s) to be granted. Yes

ON database object Indicates the database object(s) to which the privilege(s) pertain. Yes

TO user name Indicates the user(s) to whom the privilege(s) are to be granted. Yes

FIGURE B-9 GRANT statement

Clause Description Required?

INSERT INTO table name Indicates the name of the table into which the row will be inserted. Yes

VALUES (values list) Indicates the values for each of the columns on the new row. Yes

FIGURE B-10 INSERT command

Clause Description Required?

DROP INDEX table name Indicates the name of the table to be dropped. Yes

FIGURE B-8 DROP TABLE command

Clause Description Required?

DROP INDEX index name Indicates the name of the index to be dropped. Yes

FIGURE B-7 DROP INDEX command

352

Appendix B

The following INSERT command inserts the values shown in parentheses as a new row in the Rep table:

INSERT INTO Rep VALUES

(’16’,’Rands’,’Sharon’,’826 Raymond’,’Altonville’,’FL’,’32543’,0.00,0.05)

;

INTEGRITY

You can use the ALTER TABLE command with an appropriate CHECK, PRIMARY KEY, or FOREIGN KEY
clause to specify integrity. Figure B-11 describes the ALTER TABLE command for specifying integrity.

The following ALTER TABLE command changes the Part table so that the only legal values for the Class
column are AP, HW, and SG:

ALTER TABLE Part

CHECK (Class IN (’AP’,’HW’, ’SG’))

;

The following ALTER TABLE command changes the Rep table so that the RepNum column is the table’s
primary key:

ALTER TABLE Rep

ADD PRIMARY KEY(RepNum)

;

The following ALTER TABLE command changes the Customer table so that the RepNum column in the
Customer table is a foreign key referencing the primary key of the Rep table:

ALTER TABLE Customer

ADD FOREIGN KEY (RepNum) REFERENCES Rep

;

JOIN

To join tables, use a SELECT command in which both tables appear in the FROM clause and the WHERE
clause contains a condition to relate the rows in the two tables. The following SELECT statement lists the
customer number, customer name, rep number, first name, and last name by joining the Rep and Customer
tables using the RepNum fields in both tables:

SELECT CustomerNum, CustomerName, Customer.RepNum, FirstName, LastName

FROM Rep, Customer

WHERE Rep.RepNum ¼ Customer.RepNum

;

Note: Many implementations of SQL also allow a special JOIN operator to join tables. The following com-
mand uses the JOIN operator to produce the same result as the previous query:

SELECT CustomerNum, CustomerName, Customer.RepNum, FirstName, LastName

FROM Rep

INNER JOIN Customer

ON Rep.RepNum ¼ Customer.RepNum

;

Clause Description Required?

ALTER TABLE table name Indicates the name of the table for which integrity is being specified. Yes

integrity clause CHECK, PRIMARY KEY, or FOREIGN KEY Yes

FIGURE B-11 Integrity options

SQL Reference

353

REVOKE

Use the REVOKE statement to revoke privileges from a user. Figure B-12 describes the REVOKE statement.

The following REVOKE statement revokes the SELECT privilege for the Rep table from the user named
Johnson:

REVOKE SELECT ON Rep FROM Johnson

;

SELECT

Use the SELECT command to retrieve data from a table or from multiple tables. Figure B-13 describes the
SELECT command.

The following SELECT command groups and orders rows by rep number. It displays the rep number, the
count of the number of customers having this rep, and the average balance of these customers. It renames
the count as NumCustomers and the average balance as AverageBalance. The HAVING clause restricts the
reps to be displayed to only those having fewer than four customers.

SELECT RepNum, COUNT(*) AS NumCustomers, AVG(Balance) AS AverageBalance

FROM Customer

GROUP BY RepNum

HAVING COUNT(*)<4

ORDER BY RepNum

;

Clause Description Required?

SELECT column or expression list Indicates the column(s) and/or expression(s) to
be retrieved.

Yes

FROM table list Indicates the table(s) required for the query. Yes

WHERE condition Indicates one or more conditions. Only the rows
for which the condition(s) are true will be retrieved.

No (If you omit the WHERE
clause, all rows will be retrieved.)

GROUP BY column list Indicates the column(s) on which rows are to
be grouped.

No (If you omit the GROUP BY
clause, no grouping will occur.)

HAVING condition involving groups Indicates a condition for groups. Only groups for
which the condition is true will be included in
query results. Use the HAVING clause only if
the query output is grouped.

No (If you omit the HAVING
clause, all groups will be included.)

ORDER BY column or expression list Indicates the column(s) on which the query
output is to be sorted.

No (If you omit the ORDER BY
clause, no sorting will occur.)

FIGURE B-13 SELECT command

Clause Description Required?

REVOKE privilege Indicates the type of privilege(s) to be revoked. Yes

ON database object Indicates the database object(s) to which the privilege pertains. Yes

FROM user name Indicates the user name(s) from whom the privilege(s) are to be revoked. Yes

FIGURE B-12 REVOKE statement

354

Appendix B

SELECT INTO

Use the SELECT command with an INTO clause to insert the rows retrieved by a query into a table. As
shown in Figure B-14, you must indicate the name of the table into which the row(s) will be inserted and the
query whose results will be inserted into the named table.

The following SELECT command with an INTO clause inserts rows selected by a query into the
SmallCust table:

SELECT *

INTO SmallCust

FROM Customer

WHERE CreditLimit<¼7500

;

Oracle and MySQL do not support the previous SELECT command. To accomplish the same task, you
would create the SmallCust table using a CREATE TABLE command. You would then use an INSERT com-
mand to insert the appropriate data into the SmallCust table.

SUBQUERIES

In some cases, it is useful to obtain the results you want in two stages. You can do so by placing one query
inside another. The inner query is called a subquery and is evaluated first. After the subquery has been eval-
uated, the outer query can be evaluated.

The following command contains a subquery that produces a list of part numbers located in warehouse 3.
The outer query then produces those order numbers in the OrderLine table that are on any rows containing
a part number in the list.

SELECT OrderNum

FROM OrderLine

WHERE PartNum IN

(SELECT PartNum

FROM Part

WHERE Warehouse¼’3’)

;

UNION

Connecting two SELECT commands with the UNION operator produces all the rows that would be in the
results of the first command, the second command, or both.

Clause Description Required?

SELECT field list Indicates the list of fields to be selected. Yes

INTO table name Indicates the name of the table into which the row(s) will be inserted. Yes

remainder of query Indicates the remainder of the query (for example, FROM clause
and WHERE clause) whose results will be inserted into the table.

Yes

FIGURE B-14 SELECT command with INTO clause

SQL Reference

355

The following query displays the customer number, last name, and first name of all customers that are
represented by sales rep 65 or that have orders or both:

SELECT CustomerNum, CustomerName

FROM Customer

WHERE RepNum¼’35’

UNION

SELECT Customer.CustomerNum, CustomerName

FROM Customer, Orders

WHERE Customer.CustomerNum=Orders.CustomerNum

;

UPDATE

Use the UPDATE command to change the contents of one or more rows in a table. Figure B-15 describes the
UPDATE command.

The following UPDATE command changes to 1445 Rivard the street address on the row in the Customer
table on which the customer number is 524:

UPDATE Customer

SET Street¼’1445 Rivard’

WHERE CustomerNum¼’524’

;

Clause Description Required?

UPDATE table name Indicates the name of the table whose contents
will be changed.

Yes

SET column = expression Indicates the column to be changed, along with
an expression that provides the new value.

Yes

WHERE condition Indicates a condition. The change will occur
only on those rows for which the condition is true.

No (If you omit the WHERE
clause, all rows will be updated.)

FIGURE B-15 UPDATE command

356

Appendix B

A P P E N D I X C
“HOW DO I?” REFERENCE

This appendix answers frequently asked questions about how to accomplish a variety of tasks using SQL. Use
the second column to locate the correct section in Appendix B that answers your question.

How do I? Review the Named Section(s) in Appendix B

Add columns to an existing table? ALTER TABLE

Add rows? INSERT

Calculate a statistic (sum, average, 1. SELECT
maximum, minimum, or count)? 2. Column or Expression List (SELECT clause)

(Use the appropriate function in the query.)

Change rows? UPDATE

Create a data type for a column? 1. Data Types
2. CREATE TABLE

Create a table? CREATE TABLE

Create a view? CREATE VIEW

Create an index? CREATE INDEX

Delete a table? DROP TABLE

Delete an index? DROP INDEX

Delete rows? DELETE Rows

Drop a table? DROP TABLE

Drop an index? DROP INDEX

Grant a privilege? GRANT

Group data in a query? SELECT
(Use a GROUP BY clause.)

Insert rows using a query? SELECT INTO

Insert rows? INSERT

Join tables? Conditions
(Include a WHERE clause to relate the tables.)

Order query results? SELECT
(Use an ORDER BY clause.)

Remove a privilege? REVOKE

Remove rows? DELETE Rows

Retrieve all columns? 1. SELECT
2. Column or Expression List (SELECT clause)
(Type * in the SELECT clause.)

Retrieve all rows? SELECT
(Omit the WHERE clause.)

FIGURE C-1 How do I? reference (continued)

How do I? Review the Named Section(s) in Appendix B

Select all columns? 1. SELECT
2. Column or Expression List (SELECT clause)
(Type * in the SELECT clause.)

Select all rows? SELECT
(Omit the WHERE clause.)

Select only certain columns? 1. SELECT
2. Column or Expression List (SELECT clause)
(Type the list of columns in the SELECT clause.)

Select only certain rows? 1. SELECT
2. Conditions
(Use a WHERE clause.)

Sort query results? SELECT
(Use an ORDER BY clause.)

Specify a foreign key? Integrity
(Use a FOREIGN KEY clause in an ALTER TABLE
command.)

Specify a primary key? Integrity
(Use a PRIMARY KEY clause in an ALTER TABLE
command.)

Specify a privilege? GRANT

Specify integrity? Integrity
(Use a CHECK clause in an ALTER TABLE command.)

Specify legal values? Integrity
(Use a CHECK clause in an ALTER TABLE command.)

Update rows? UPDATE

Use a computed field? 1. SELECT
2. Column or Expression List (SELECT clause)
(Enter a calculation in the query.)

Use a compound condition in a Conditions
query?

Use a compound condition? 1. SELECT
2. Conditions
(Use simple conditions connected by AND, OR, or NOT in a
WHERE clause.)

Use a condition in a query? 1. SELECT
2. Conditions
(Use a WHERE clause.)

Use a subquery? Subqueries

Use a wildcard? 1. SELECT
2. Conditions
(Use LIKE and a wildcard in a WHERE clause.)

Use UNION operation? UNION
(Connect two SELECT commands with UNION.)

Retrieve only certain columns? 1. SELECT
2. Column or Expression List (SELECT clause)
(Type the list of columns in the SELECT clause.)

Revoke a privilege? REVOKE

FIGURE C-1 How do I? reference (continued)

358

Appendix C

A P P E N D I XD
ANSWERS TO ODD-NUMBERED
REVIEW QUESTIONS

CHAPTER 1—INTRODUCTION TO DATABASE MANAGEMENT

1. Redundancy is the duplication of data or the storing of the same data in more than one place.
Redundancy wastes space, makes the updating of data more cumbersome and time-consuming,
and can lead to inconsistencies.

3. An entity is a person, place, object, event, or idea for which you want to store and process data.
An attribute, which is also called a field or column in many database systems, is a characteristic
or property of an entity.

5. A database is a structure that can store information about multiple types of entities, the attributes
of those entities, and the relationships among the entities.

7. An E-R diagram represents a database in a visual way by using a rectangle for each entity, using a
line to connect two entities that have a relationship, and placing a dot at the end of a line to indi-
cate the “many” part of a one-to-many relationship.

9. Database design is the process of determining the table structure of the desired database.
11. It is possible to get more information from the same amount of data by using a database approach

as opposed to a nondatabase approach because all data is stored in a single database, instead of
being stored in dozens of separate files, making the process of obtaining information quicker,
easier, and even possible in certain situations.

13. The DBA (database administrator or database administration) is the central person or group in an
organization in charge of the database and the DBMS that runs the database. The DBA attempts
to balance the needs of individuals and the overall needs of the organization.

15. An integrity constraint is a rule that the data in a database must follow. A database has integrity
when the data in it satisfies all established integrity constraints. A good DBMS should provide an
opportunity for users to incorporate these integrity constraints when they design the database.
The DBMS then should ensure that these constraints are not violated.

17. Data independence is the property that lets you change the structure of a database without
requiring you to change the programs that access the database. With data independence, you
easily can change the structure of the database when the need arises.

19. The more complex a product is in general (and a DBMS, in particular, is complex), the more
difficult it is to understand and correctly apply its features. As a result of this complexity, serious
problems may result from mistakes made by users and designers of the DBMS.

21. The great complexity of a database structure makes recovery more difficult. In addition, many
users update the data at the same time, which means that recovering the database involves not
only restoring it to the last state in which it was known to be correct, but also performing the
complex task of redoing all the updates made since that time.

CHAPTER 2—THE RELATIONAL MODEL 1: INTRODUCTION, QBE, AND
RELATIONAL ALGEBRA

1. A relation is a two-dimensional table in which (1) the entries in the table are single-valued,
(2) each column has a distinct name, (3) all of the values in a column are values of the same
attribute, (4) the order of the columns is immaterial, (5) each row is distinct, and (6) the order of
the rows is immaterial.

3. An unnormalized relation is a structure that satisfies all the properties of a relation except the
restriction that entries must be single-valued. It is not a relation.

5. In the shorthand representation, each table is listed, and after each table, all the columns of the
table are listed in parentheses. Primary keys are underlined. The shorthand representation for the
Henry Books database is as follows:

Branch (BranchNum, BranchName, BranchLocation)

Publisher (PublisherCode, PublisherName, City)

Author (AuthorNum, AuthorLast, AuthorFirst)

Book (BookCode, Title, PublisherCode, Type, Paperback)

Wrote (BookCode, AuthorNum, Sequence)

Copy (BookCode, BranchNum, CopyNum, Quality, Price)

7. The primary key is the column or collection of columns that uniquely identifies a given row. In
the Henry Books database, the primary key of the Branch table is BranchNum. The primary key
of the Publisher table is PublisherCode. The primary key of the Author table is AuthorNum. The
primary key of the Book table is BookCode. The primary key of the Wrote table is the concatena-
tion (combination) of BookCode and AuthorNum. The primary key of the Copy table is the con-
catenation of BookCode, BranchNum, and CopyNum.

9. Enter the criteria in the Criteria row for the appropriate field name.
11. Type the expression instead of a field name in the design grid. Alternatively, you can enter the

expression in the Zoom dialog box.
13. Indicate the appropriate sort order (ascending or descending) in the Sort row of the design grid

for the appropriate field.
15. Include the field lists from both tables in the query design. Provided the tables have matching fields,

a join line will connect the tables. Include the desired fields from either table in the design grid.
17. Use a delete query when you want to delete all rows satisfying some criteria.
19. Relational algebra is a theoretical way of manipulating a relational database. Relational algebra

includes operations that act on existing tables to produce new tables, similar to the way the
operations of addition and subtraction act on numbers to produce new numbers in the mathe-
matical algebra with which you are familiar.

21. The PROJECT command selects only the specified columns.
23. The UNION command selects all rows that are in the first table, in the second table, or both.
25. The INTERSECT command selects all rows that are in both tables.
27. The PRODUCT command (mathematically called the Cartesian product) is the table obtained by

concatenating every row in the first table with every row in the second table.

CHAPTER 3—THE RELATIONAL MODEL 2: SQL

1. To create a table in SQL, use a CREATE TABLE command. The word TABLE is followed by the
name of the table to be created and then by the names and data types of the columns (fields) that
make up the table. The data types you can use are INTEGER (large negative and positive whole
numbers), SMALLINT (whole numbers from –32,768 to 32,767), DECIMAL (numbers that have a
decimal part), CHAR (alphanumeric strings), and DATE (date values).

360

Appendix D

3. A compound condition is formed by connecting two or more simple conditions using one or both
of the following operators: AND and OR. You can also precede a single condition with the NOT
operator to negate a condition. When you connect simple conditions using the AND operator, all
the simple conditions must be true for the compound condition to be true. When you connect
simple conditions using the OR operator, the compound condition will be true whenever any of
the simple conditions are true.

5. To use the LIKE or IN operators in an SQL query, include them in the WHERE clause. A charac-
ter string containing one or more wildcards is included after the word LIKE. The word IN is fol-
lowed by a list of values.

7. Use an SQL built-in function (COUNT, SUM, AVG, MAX, and MIN) by including it in the SELECT
clause followed by the name of the field to which it applies.

9. To group data in SQL, include the words GROUP BY followed by the field or fields on which the
data is to be grouped in the query results. If you group data, you only can include the fields on
which you are grouping or statistics in the SELECT clause.

11. To qualify the name of a field in an SQL query, precede the field with the name of the table to
which it belongs, followed by a period. It is necessary to qualify a field if the field name occurs in
more than one of the tables listed in the FROM clause.

13. The update commands in SQL are INSERT, which inserts new rows in a table; UPDATE, which
changes all the rows in a table that satisfy some condition; and DELETE, which deletes all the
rows in a table that satisfy some condition.

CHAPTER 4—THE RELATIONAL MODEL 3: ADVANCED TOPICS

1. A view is an individual user’s picture of the database. It is defined using a defining query. The
data in the view never actually exists in the form described in the view. Rather, when a user
accesses the view, his or her query is merged with the defining query of the view to form a query
that pertains to the whole database.

3. a.
CREATE VIEW PartOrder AS

SELECT Part.PartNum, Description, Price, OrderNum, OrderDate, NumOrdered, QuotedPrice

FROM Part, OrderLine, Orders

WHERE Part.PartNum ¼ OrderLine.PartNum

AND Orders.OrderNum ¼ OrderLine.OrderNum

;

b.
SELECT PartNum, Description, OrderNum, QuotedPrice

FROM PartOrder

WHERE QuotedPrice > 100

;

c.
SELECT Part.PartNum, Description, OrderNum, QuotedPrice

FROM Part, OrderLine

WHERE Part.PartNum ¼ OrderLine.PartNum

AND QuotedPrice > 100

;

5. The GRANT statement is used to assign privileges to users of a database. It relates to security
because a user who does not have the privilege of accessing a certain portion of a database cannot
access that portion of the database. The privileges that can be assigned include the privilege of
selecting rows from a table, inserting new rows, and updating existing rows. The REVOKE com-
mand is used to revoke privileges.

Answers to Odd-Numbered Review Questions

361

7. REVOKE SELECT ON Part FROM Stillwell

;

9. a.
SELECT Name

FROM Systables

WHERE Creator ¼ ’your name ’

;

b.
SELECT Colname, Coltype

FROM Syscolumns

WHERE Tbname ¼ ’Customer ’

;

c.
SELECT Tbname

FROM Syscolumns

WHERE Colname ¼ ’PartNum ’

;

11. Null is a special value that represents missing information. Nulls are used when a value is either
unknown or inapplicable. The primary key cannot accept null values. With a null value in the
primary key, the primary key could not fulfill its main purpose of being the unique identifier for
records in a table.

13. Adding an order to the Orders table on which the customer number does not match a customer
number in the Customer table would violate referential integrity. In addition, changing the cus-
tomer number on a record in the Orders table to a number that does not match a customer num-
ber in the Customer table would also violate referential integrity. If deletes do not cascade,
deleting a customer that has orders would violate referential integrity. If deletes cascade, such a
customer can be deleted, in which case all orders for that customer will automatically be deleted.

15. Stored procedures are special files containing a collection of SQL statements that will be executed
frequently. The statements in a stored procedure are compiled and optimized, enabling the stored
procedure to execute as efficiently and as rapidly as possible. It also makes the execution of the
commands in the stored procedure simpler than if the user had to type the command each time
he or she wanted to use it.

CHAPTER 5—DATABASE DESIGN 1: NORMALIZATION

1. A column (attribute) B is functionally dependent on another column A (or possibly a collection of
columns) if each value for A in the database is associated with exactly one value of B.

3. Column A (or a collection of columns) is the primary key for a relation (table) R, if: Property 1—all
columns in R are functionally dependent on A; and Property 2—no subcollection of the columns in A
(assuming A is a collection of columns and not just a single column) also has Property 1.

5. A table is in first normal form if it does not contain a repeating group.
7. A table is in third normal form if it is in second normal form and the only determinants it con-

tains are candidate keys. If a table is not in third normal form, redundant data will cause wasted
space and update problems. Inconsistent data might also be a problem.

9. An interrelation constraint is a condition that involves two or more relations. Requiring the value
of a RepNum on a row in the Customer relation to match a value of RepNum in the Rep relation
is an example of an interrelation constraint. The interrelation constraints are addressed through
foreign keys.

362

Appendix D

11. Patient (PatientNum, HouseholdNum, PatientName)

Household (HouseholdNum, HouseholdName, Street, City, State, Zip, Balance)

Service (ServiceCode, Description, Fee)

Appointment (PatientNum, ServiceCode, Date)

13. StudentNum ! StudentName

ActivityNum ! ActivityName

CourseNum ! Description

StudentNum ! ! ActivityNum

StudentNum ! ! CourseNum

Student (StudentNum, StudentName)

Activity (ActivityNum, ActivityName)

Course (CourseNum, Description)

StudentActivity (StudentNum, ActivityNum)

StudentCourse (StudentNum, CourseNum)

CHAPTER 6—DATABASE DESIGN 2: DESIGN METHOD

1. A user view is the view of data that is necessary to support the operations of a particular user. By
considering individual user views instead of the complete design problem, the database design
process is greatly simplified.

3. If the design problem were extremely simple, the overall design might not have to be broken
down into a consideration of individual user views.

5. The primary key is the column or columns that uniquely identify a given row and that furnish the
main mechanism for directly accessing a row in the table. An alternate key is a column or combi-
nation of columns that could have functioned as the primary key but was not chosen to do so. A
secondary key is a column or combination of columns that is not any other type of key but is of
interest for purposes of retrieval. A foreign key is a column or combination of columns in one
table whose values are required to match the primary key in another table. Foreign keys furnish
the mechanism through which relationships are made explicit.

7. Department (DepartmentNum, DepartmentName)

Advisor (AdvisorNum, LastName, FirstName, DepartmentNum)

FK DepartmentNum ! Department

Course (CourseCode, Description)

Student (StudentNum, LastName, FirstName, AdvisorNum)

FK AdvisorNum ! Advisor

StudentCourse (StudentNum, CourseCode, Grade)

FK StudentNum ! Student

FK CourseCode ! Course

9. a. No change is necessary.
b. Store both the AdvisorNum and DepartmentNum columns in the Student table.

11. The method presented in this text is bottom up; that is, an approach in which specific user
requirements are synthesized into a design. By initially reviewing the requirements and determin-
ing a possible list of entities prior to following the steps in this method, you can gain the advan-
tages to both top-down and bottom-up approaches.

13. Many answers are possible. Be sure the functional dependencies you represent are based on rea-
sonable assumptions and that the tables you create are in third normal form based on these
dependencies.

Answers to Odd-Numbered Review Questions

363

15. a. There is a many-to-many-to-many relationship between students, courses, and faculty
members.

b. There is a many-to-many relationship between students and courses. A faculty number func-
tionally determines a course number; that is, each faculty member is associated with exactly
one course.

c. There are separate many-to-many relationships between students and courses, courses and
faculty members, and students and faculty members.

d. There is a many-to-many relationship between students and courses. A given student
number-course number combination uniquely determines a faculty number. That is, when a
student takes a course, a single faculty member teaches the course.

e. There is a many-to-many relationship between students and courses. There is also a many-
to-many relationship between courses and faculty members. A student number functionally
determines a faculty number; that is, each student is associated with exactly one faculty
member.

17. If one 3NF relation contains a column that is a determinant for a column in another 3NF relation
with the same primary key, merging the relations will produce a relation that is not in third nor-
mal form. The following is an example of two such relations:

Student1 (StudentNum, LastName, FirstName, AdvisorNum)

Student2 (StudentNum, LastName, FirstName, AdvisorLast, AdvisorFirst)

The following is the result of merging the Student1 and Student2 relations:

Student (StudentNum, LastName, FirstName, AdvisorNum, AdvisorLast, AdvisorFirst)

This table is not in third normal form because:

AdvisorNum ! AdvisorLast, AdvisorFirst

CHAPTER 7—DBMS FUNCTIONS

1. In updating and retrieving data, users do not need to know how data is physically structured on
disk nor what processes the DBMS uses to manipulate the data. These structures and manipula-
tions are solely the responsibility of the DBMS.

3. Most PC-based DBMSs contain a catalog that maintains metadata about tables, fields, table rela-
tionships, views, indexes, users, privileges, and replicated data. Large, expensive DBMSs usually
contain a data dictionary that serves as a super-catalog containing the same metadata as a catalog
and additional metadata such as that needed to track fragmented data.

5. A lost update could occur in a concurrent update situation when two users attempt to update the
same data at the same time, and the DBMS does not have concurrency update features such as
two-phase locking or timestamping.

7. A transaction is a set of steps completed by a DBMS that accomplishes a single user task; the
DBMS must successfully complete all transaction steps or none at all for the database to remain in
a correct state.

9. Deadlock occurs in a concurrent update situation when the first user is waiting for data that has
been locked by a second user, and the second user is waiting for data that has been locked by
the first user. Unless outside action occurs, each user could wait for the other’s data forever.
Deadlock occurs when each of the two users is attempting to access data that is locked by the
other user.

11. Recovery is the process of returning the database to a state that is known to be correct from a
state known to be incorrect.

13. A DBA uses forward recovery when a catastrophe destroys a database. Forward recovery consists
of two steps. First, the DBA copies the most recent database backup over the live database.
Second, the DBMS forward recovery feature uses the log to apply after images for committed
transactions.

364

Appendix D

15. Security is the prevention of unauthorized access, either intentional or accidental, to a database.
17. Authentication refers to techniques for identifying the person who is attempting to access the

DBMS. Three types of authentication are passwords, biometrics, and database passwords. A pass-
word is a string of characters assigned by the DBA to a user that the user must enter to access to
the database. Biometrics identify users by physical characteristics such as fingerprints, voice-
prints, handwritten signatures, and facial characteristics. A database password is a string of char-
acters assigned by the DBA to a database that users must enter before they can access the
database.

19. Permissions specify what kind of access a user has to objects in a database. A workgroup is a
group of users, and a DBA usually assigns appropriate permissions to workgroups.

21. Privacy refers to the right of individuals to have certain information about them kept confidential.
Privacy and security are related because it is only through appropriate security measures that
privacy can be ensured.

23. Data independence is a property that lets you change a database structure without requiring you
to change the programs that access the database.

25. Some utility services that a DBMS should provide include: services that let you change the data-
base structure; services that let you add new indexes and delete indexes that are no longer
needed; facilities that let you use the services available from your operating system; services that
let you export data to and import data from other software products; services that provide support
for easy-to-use edit and query capabilities, screen generators, report generators, and so on;
support for both procedural and nonprocedural languages; and support for an easy-to-use
menu-driven or switchboard-driven interface that allows users to tap into the power of the DBMS
without having to resort to a complicated set of commands.

CHAPTER 8—DATABASE ADMINISTRATION

1. The DBA is the database administrator, or the person responsible for the database. The DBA is
necessary because his responsibilities are critical to success in a database environment, especially
when the database is shared among many users.

3. After the DBA determines the access privileges for each user, the DBA creates security policies
and procedures, obtains management approval of the policies and procedures, and then distri-
butes them to authorized users. The DBA uses the DBMS’s security features, such as encryption,
authentication, authorizations, and views, and also uses special security programs, if necessary.
Finally, the DBA monitors database usage to detect potential security violations and takes correc-
tive action if a violation occurs.

5. Certain data, although no longer needed in the production database, must be kept for future refer-
ence. A data archive is a place for storing this type of data. The use of data archives lets an organiza-
tion keep data indefinitely, without causing the database to become unnecessarily large. Data can be
removed from the database and placed in the data archive, instead of just being deleted.

7. A shared lock permits other users to read the data. An exclusive lock prevents other users from
accessing the data in any way.

9. Context-sensitive help means that if a user is having trouble and asks for help, the DBMS will
provide assistance for the particular feature being used at the time the user asks for help.

11. The DBA installs the DBMS, makes any changes to its configuration when they are required,
determines whether it is appropriate to install a new version of the DBMS when it becomes avail-
able, applies any vendor fixes to problems, coordinates problem resolution, and coordinates the
users so that their needs are satisfied without unduly affecting other users.

13. The DBA does some of the training of computer users. The DBA coordinates other training, such
as that provided by software vendors.

15. The production system is the hardware, software, and database for the users; the test system is a
separate system that programmers use to develop new programs and modify existing programs.

17. If users access only certain fields in a table, splitting the table results in smaller tables than the origi-
nal; the smaller amount of data moves faster between disk and memory and across a network.

Answers to Odd-Numbered Review Questions

365

CHAPTER 9—DATABASE MANAGEMENT APPROACHES

1. A distributed database is a single logical database that is physically divided among computers at
several sites on a network. A distributed database management system (DDBMS) is a DBMS capa-
ble of supporting and manipulating distributed databases.

3. A homogeneous DDDBS is one that has the same local DBMS at each site. A heterogeneous
DDBMS is one that does not; there are at least two sites at which the local DBMSs are different.
Heterogeneous systems are more complex.

5. Location transparency is the characteristic of a DDBMS that states that users do not need to be
aware of the location of data in a distributed database. Data should be accessible at a remote site
just as easily as it is at a local site; the only difference should be the response time.

7. Replication transparency is the characteristic that users do not need to be aware of any replica-
tion that has taken place in a distributed database. The DDBMS should handle updates to all
copies of the data without users being aware of the steps taken by the DDBMS.

9. Fragmentation transparency is the characteristic that users do not need to be aware of any data
fragmentation (splitting of data) in a distributed database. Users should feel as if they are using a
single central database, even if data is stored at different sites.

11. In a well-designed distributed database, you can often increase its capacity by increasing the
capacity at only one site. Also, you can increase capacity through the addition of new sites to the
network.

13. Increased efficiency is an advantage in a distributed database because data available locally can
be retrieved much more rapidly than data stored on a remote, centralized system.

15. Query processing is more complex in a distributed environment because of the difference
between the time it takes to send messages between sites and the time it takes to access a disk.

17. With a two-phase commit, one site (often the site initiating the update) acts as coordinator. In the
first phase, the coordinator sends messages to all other sites requesting they prepare to update
the database (or acquire all necessary locks). Once the coordinator receives positive replies from
all sites, the coordinator sends a message to each site to commit the update. At this point, each
site must proceed with the commit process, and all sites must abort if any reply is negative. Two-
phase commit guarantees consistency of the database.

19. The information-level design process is unaffected by the fact that the database is distributed.
21. The 12 rules against which you can measure DDBMSs are:

• Local autonomy: No site should depend on another site to perform its functions.
• No reliance on a central site: A DDBMS should not need to rely on one site more than any

other site.
• Continuous operation: Performing any function should not shut down the entire distributed

database.
• Location transparency: Users should feel as if the entire database is stored at their location.
• Fragmentation transparency: Users should feel as if they are using a single central database.
• Replication transparency: Users should not be aware of any data replication.
• Distributed query processing: A DDBMS must process queries as rapidly as possible even

though the data is distributed.
• Distributed transaction management: A DDBMS must effectively manage transaction updates

at multiple sites.
• Hardware independence: A DDBMS must be able to run on different types of hardware.
• Operating system independence: A DDBMS must be able to run on different operating

systems.
• Network independence: A DDBMS must be able to run on different types of networks.
• DBMS independence: A DDBMS must be heterogeneous.

366

Appendix D

23. Placing the business functions on the client causes a client maintenance problem. Whenever pro-
grammers change the business functions, they must place the updated business functions on
every client. Placing the business functions on the server causes a scalability problem and might
cause the server to become a bottleneck and degrade the system’s responsiveness to clients.

25. Scalability is the ability of a computer system to continue to function well even as utilization of
the system increases.

27. Compared to a file server, the advantages of a client/server architecture are: lower network traffic;
improved processing distribution; thinner clients; greater processing transparency; increased net-
work, hardware, and software transparency; improved security; decreased costs; and increased
scalability.

29. Dynamic Web pages are Web pages whose content changes in response to the different inputs and
choices made by Web clients. You can use client-side extensions embedded in HTML documents
or contained in separate files, or you can use server-side extensions usually contained in sepa-
rately executed programs.

31. XML (Extensible Markup Language) is a metalanguage derived from a restricted subset of SGML
and is designed for the exchange of data on the Web. Using XML, you can create text documents
that follow simple, specific rules for their content, and you can define new tags that define the
data in the document and the structure of the data, so that programs running on any platform can
interpret and process the document.

33. XSL Transformations (XSLT) define the rules to process an XML document and change it into
another document; this other document could be another XML document, an XSL document, an
HTML or XHTML document, or most any other type of document.

35. A data warehouse is a subject-oriented, time-variant, nonvolatile collection of data in support of
management’s decision-making process.

37. A fact table in a data warehouse consists of rows that contain consolidated and summarized data.
39. Using OLAP software, users slice and dice data, drill down data, and roll up data.
41. You can measure OLAP systems against the following 12 rules: users should be able to view data

in a multidimensional way; users should not have to know they are using a multidimensional
database; users should perceive data as a single user view; the size and complexity of the ware-
house should not affect reporting performance; the server portion of the OLAP software should
allow the use of different types of clients; each data dimension should have the same structural
and operational capabilities; missing data should be handled correctly and efficiently; OLAP
should provide secure, concurrent access; users should be able to perform the same operations
across any number of dimensions; users should not need to use special interfaces to make their
requests; users should be able to report data results any way they want; and OLAP software
should allow at least 15 data dimensions and an unlimited number of summary levels.

43. A domain is the set of values that are permitted for an attribute.
45. A method is an action defined for an object. A message is a request to execute a method. To exe-

cute the steps in a method, you must send a message to the object.
47. The Unified Modeling Language (UML) is an approach you can use to model the various aspects of

software development for object-oriented systems.
49. A visibility symbol in UML indicates whether other classes can view or update the value in an

attribute in a class.
51. Generalization is the relationship between a superclass and a subclass.

Answers to Odd-Numbered Review Questions

367

A P P E N D I X E
USING ACCESS TO CREATE AND
PUBLISH A WEB DATABASE

I N T R O D U C T I O N

A Web database is a type of database that is designed to publish data created in Access so users can access that data
with a Web browser and an Internet connection. When you create a Web database using the template installed with
Access, you can be sure that the database uses only those objects and properties that are supported by Web browsers. If
you try to convert an existing Access database to use it on the Internet, you will often experience many compatibility
issues, especially with regard to existing table relationships.

To publish a Web database to the Internet, you need to have access to a Microsoft SharePoint Server that is running
an optional component called Access Services. You can learn more about publishing a Web database using Access
Services by visiting the Microsoft Access 2010 Help site hosted by Microsoft Office.

In this appendix, you will learn about Web databases and examine some common features of a Web database. You
will also create a simple Web database and some objects. Finally, you will learn how to create and use a form to serve as
a navigation control for the database. If you have access to a SharePoint Server running Access Services, you will also
publish the Web database.

EXAMINING A WEB DATABASE

To simplify your work and help you understand how to create and use Web databases, the Web database you
will create in this appendix will contain only the Rep and Customer tables from the Premiere Products
database, along with several form objects based on the Rep and Customer tables. The Web database will also
contain a form object, called a navigation form, as shown in Figure E-1. A navigation form is a form that
contains a navigation control that lets the user access different objects in a database. As shown in Figure E-1,
the form contains tabs. Clicking a tab displays the corresponding object; the current tab in Figure E-1
displays the data in the Customer table. Access includes different templates for arranging the tabs in the
navigation form. In Figure E-1, the tabs are displayed across the top of the navigation form.

After publishing the Web database, you can access the Web database using a browser. Figure E-2 shows
the navigation form in Microsoft Internet Explorer. You can use a browser to access the Web database just as
you would using Access. You can update the data in the Web database. If you open the Web database later
using Access, you will see the updates you made using your browser. Likewise, any updates you make while
accessing the Web database in Access will be visible to someone using it through the Internet.

Tabs for other
objects in the
Web database

Fields and data in
the Customer table
in a datasheet form

Customer tab
is the currently
selected tab

URL for the
Web database

FIGURE E-2 Navigation form in a browser for the Reps and Customers Web database

Tabs for other
objects in the
Web database

Object tab for
the Main Menu
navigation form

Fields and data
in the Customer

table

Customer tab
is the currently
displayed tab

FIGURE E-1 Navigation form in Access for the Reps and Customers Web database

370

Appendix E

When the navigation form first opens, the Customer tab is selected. Although the Customer tab appears to
display the data in the Customer table in a table datasheet, the data is actually displayed using a datasheet
form, which is a form layout that displays data in a datasheet format. Because you can only include forms and
reports—but not tables and queries—in a navigation form, you must display table and query datasheets using a
datasheet form. To display the record for a specific customer, click the ID field for the desired record to display
a pop-up form with the details for that record. Figure E-3 shows the pop-up form for the customer with ID 4.
The pop-up form displays the data for the current record, but the settings for this form do not allow you to
move to any other record in the Customer datasheet form, nor do they allow you to update the data for the
displayed record. To close the pop-up form, click the Close button in the upper-right corner of the form.

To display another object, click its tab on the navigation form. For example, clicking the Rep tab displays
the datasheet form for the Rep table, as shown in Figure E-4.

Pop-up form
displays data for the
selected customer

Close button for
the pop-up form

Selected
customer

record

FIGURE E-3 Pop-up form for customer with ID 4

Rep tab is
selected

Fields and
data in the
Rep table

FIGURE E-4 Rep tab selected

Using Access to Create and Publish a Web Database

371

Clicking the ID field for a record in the Rep datasheet form opens a pop-up form with details for that rep,
as shown in Figure E-5.

Clicking the Customer-Rep Query tab displays the query results, as shown in Figure E-6, in a datasheet
form. The Customer-Rep query joins the Customer and Rep tables, and displays the CustomerNum,
CustomerName, and RepNum fields from the Customer table and the FirstName and LastName fields from
the Rep table. These tables are related using the RepNum field. In a Web database, however, you do not
create relationships as you do in a regular database. Instead, you create the relationships using lookup
fields. Thus, as you add the fields to the tables in a Web database, you must also create the required lookup
fields to relate the tables. You’ll learn how to relate tables in a Web database later in this appendix.

Pop-up form
displays data for
the selected rep

Selected
rep record

FIGURE E-5 Pop-up form for rep with ID 2

Query results
displayed in a

datasheet form

FIGURE E-6 Customer-Rep Query tab selected

372

Appendix E

Clicking the Customer Details tab displays the Customer Details form, as shown in Figure E-7. Unlike the
pop-up form shown in Figure E-3, which displays a record in the Customer table that you cannot update or
use to navigate to other records in the Customer table, the settings for this form let you use it to navigate to
other records in the Customer table and to update the data. The Customer Details form is an example of a
single-item form, which displays one record at a time in the object on which it is a based.

Clicking the Rep Details tab displays the Rep Details form, as shown in Figure E-8. You can use this form
to navigate between and update records in the Rep table.

FIGURE E-7 Customer Details tab selected

FIGURE E-8 Rep Details tab selected

Using Access to Create and Publish a Web Database

373

Because you will create tables that contain the same fields as the Rep and Customer tables in the
Premiere Products database, you will use the Premiere Products database and Access to create templates that
you can use to create the fields in these same tables in the Web database. This template is called a data type
part; when you create a data type part from an existing field or collection of fields, you are creating a
user-defined data type. Creating a user-defined data type saves time because you can create a collection of
fields in a single step, instead of creating all of the fields individually.

After creating the data type parts for the Customer and Rep tables, you will use Access to create a
blank Web database from a template. You’ll create the Customer and Rep tables using the data type parts.
After you add the fields to the tables, you will create the lookup field to relate the tables. You’ll import the
data for the tables using text files that are provided with the Data Files for this text.

After creating the tables and importing data into them, you will create the navigation form. To use
a navigation form in a database, you need to set the properties for the database to display the navigation
form automatically when a user opens the database in Access or accesses the Web database using a
Web browser, so it is the first form displayed and provides a method for the user to navigate the objects
in the database.

Before publishing the Web database to a SharePoint Server running Access Services, you will run the
compatibility checker to verify that the database is compatible with the Web. Web databases have certain
limitations; not every Access database can be published to the Internet.

CREATING A USER-DEFINED DATA TYPE

To use an existing data type part to add fields to a table, click the More Fields button (Fields tab | Add &
Delete group) to open the More Fields gallery. To use a data type part to add fields to a table, click the field
in the datasheet to the right of where you want to insert the new fields. Some predefined data type parts,
such as the Category part, add a single field to a table. Others, such as the Address part, add multiple
fields (Address, City, State Province, ZIP Postal, and Country Region) to the table. When you create fields
using data type parts, the fields are created using default field properties associated with the type of field
you are creating.

To create a user-defined data type using the existing field(s) in a table, select the field(s) to use for the
user-defined data type part in the datasheet, and then click the Save Selection as New Data Type command
in the More Fields gallery, as shown in Figure E-9. If you create a user-defined data type using more than one
field, the fields must be adjacent in the datasheet.

374

Appendix E

After you select the fields to use in your user-defined data type and click the Save Selection as New Data
Type command, Access will prompt you to give the new data type a name, as shown in Figure E-10. You can
also enter an optional description, which will be displayed in a ScreenTip when a user points to the data type
you created in the More Fields gallery. The default category for a user-defined data type is called “User
Defined Types.” If you want your user-defined data type to appear in another section of the More Fields
gallery (such as in the Basic Types or Quick Start sections), you can change the category by clicking the
Category arrow, and then selecting the desired section.

More Fields
gallery with predefined

data type parts

Save Selection as New
Data Type command

Fields in the Rep
table selected to be

saved as a user-defined
data type

More Fields button
(Fields tab | Add &

Delete group)

FIGURE E-9 Creating a user-defined data type

Description of
data type

Data type will be
saved in the User Defined

Types category

Name of data
type

FIGURE E-10 Saving the user-defined data type

Using Access to Create and Publish a Web Database

375

The following steps create two user-defined data types in the User Defined Types category—one for all
the fields in the Rep table and the other for all the fields in the Customer table, except for the RepNum field.
You will not include the RepNum field in the user-defined data type for the Customer table because you will
need to enter it separately to be able to use it as a lookup field to relate the Customer and Rep tables in the
Web database.

1. Start Access and open the Premiere Products database from your Data Files.
2. Open the Rep table in Datasheet view.
3. Click the column heading for the RepNum field to select the field, press and hold the Shift key,

click the column heading for the Rate field, and then release the Shift key to select all the fields
in the Rep table.

4. Click the More Fields button (Table Tools Fields tab | Add & Delete group) to open the More
Fields gallery.

5. Click the Save Selection as New Data Type command to open the Create New Data Type from
Fields dialog box.

6. In the Name box, type Rep Fields.
7. Press the Tab key to move to the Description box, and then type All fields in the Rep table.

Notice that the default Category is already set to User Defined Types.
8. Click the OK button to save the data type. After a few seconds, Access opens a dialog box to tell

you that the template (your user-defined data type) has been created, and gives the location
where it has been stored.

9. Click the OK button.
10. Click the More Fields button (Table Tools Fields tab | Add & Delete group), and then scroll to

the bottom of the More Fields gallery. The Rep Fields data type appears in the User Defined
Types section.

11. Press the Esc key to close the gallery, and then close the Rep table.

After creating a user-defined data type, it is stored on the user’s hard drive so it is available for future use.

1. Open the Customer table in Datasheet view, and select all fields except for RepNum.
2. Create a user-defined data type named Customer Fields and with the description of All fields in

the Customer table except RepNum.
3. Save the data type in the User Defined Types category, and then close the dialog box that indi-

cates that the template was created.
4. Click the File tab on the Ribbon, and then click the Close Database command to close the

Premiere Products database without exiting Access.

CREATING A WEB DATABASE

You create a Web database using a template, similar to the way you create a regular database. Because the
Web database must be compatible with a Web browser and Internet protocols, there are limitations in the
Web database with regard to how you create and interact with its objects. For example, you cannot use
Design view when creating a table, so you must create the table in Datasheet view. Although you can change
the default field name of the primary key created in a table, you cannot change its default data type
(AutoNumber). If your table design uses a Text field as its primary key, you can specify that the Text field
must be both required and unique to work around the fact that you must accept the default AutoNumber
field as your table’s primary key. You also cannot create relationships between tables as you do in a regular
database; instead, you specify relationships using lookup fields.

You’ll create the Web database using the Blank web database template shown in Figure E-11.

376

Appendix E

After creating the Web database, Access creates a table named Table1 that includes a primary key field
named ID and that has the AutoNumber data type, as shown in Figure E-12.

The following steps create a Web database named Reps and Customers. Because it is a Web database, only
those options appropriate for Web databases will be available when you create the objects in the database.
Using the template ensures that the Web database will be compatible with the Web before you publish it.

1. If necessary, click the File tab on the Ribbon to open Backstage view, click the New tab, and
then click the Blank web database template to select it.

2. Click the Browse button to open the File New Database dialog box, type Reps and Customers in
the File name box, navigate to the drive and folder where your Data Files are stored, and then
click the OK button to return to Backstage view.

3. Click the Create button to create the Web database.

The Reps and Customers Web database opens a table named Table1 in Datasheet view. The table con-
tains one field, named ID, which is set as the table’s primary key field.

New tab in
Backstage view

Enter the database
filename here

Blank web
database template

Create button

Location where the
database will be stored

(yours might differ)

Browse
button

FIGURE E-11 Creating a Web database using a template

Object tab displays
the icon for a table
in a Web database

Default primary
key field created

FIGURE E-12 Web database created

Using Access to Create and Publish a Web Database

377

ADDING FIELDS TO A TABLE IN A WEB DATABASE

You’ll create the Rep table first, using the Rep Fields data type that you created. To add all the fields
corresponding to a data type, click the More Fields button (Table Tools Fields tab | Add & Delete group) to
open the More Fields gallery, as shown in Figure E-13. You then click the data type’s name to add its fields
to the table design.

In the following steps, you will create the fields in the Rep table using the Rep Fields data type. You’ll
designate the RepNum field as both required and unique. This way, Access will require users to enter a
unique rep number for each record, even though the ID field, and not the RepNum field, is the table’s pri-
mary key. After adding the fields, you’ll save the table.

1. Click the More Fields button (Table Tools Fields tab | Add & Delete group) to open the More
Fields gallery.

2. In the User Defined Types section, click Rep Fields. The RepNum, LastName, FirstName, Street,
City, State, Zip, Commission, and Rate fields are created in the table.

3. Click the RepNum field to select it, click the Required check box in the Field Validation group
to make the field a required field, and then click the Unique check box in the Field Validation
group so that Access will only store unique values in the field.

4. On the Quick Access Toolbar, click the Save button, type Rep in the Table Name box, and then
click the OK button.

5. Close the table.

RELATING THE TABLES IN A WEB DATABASE

Access created the first table in the Web database for you automatically. To create an additional table, click
the Table button (Create tab | Tables group). Remember that you must create lookup fields to relate the
tables in a Web database. In the Reps and Customers database, the Rep and Customer tables are related
using the common RepNum field, so you must create the RepNum field in the Customer table as a lookup

Quick Start fields

User Defined Types

More Fields
button

FIGURE E-13 More Fields gallery

378

Appendix E

field by selecting the Lookup & Relationship data type when you create the RepNum field in the Customer
table, as show in Figure E-14.

When creating the lookup field, you will indicate that the lookup field will get its values from another
table, as shown in Figure E-15.

You must select the fields to be included in the lookup field, as shown in Figure E-16.

Fields in the
Customer table

Lookup & Relationship
data type for the field

being created

Available data
types

FIGURE E-14 Creating a relationship using the Lookup & Relationship data type

Select this option
to look up values
in another table

FIGURE E-15 Lookup Wizard dialog box

Using Access to Create and Publish a Web Database

379

Because the lookup field relates the Rep and Customer tables, you are given the opportunity to enable
data integrity, as shown in Figure E-17. Enabling data integrity is the same as enforcing referential integrity,
as described in Chapter 4.

You will use the following steps to create the Customer table and the lookup field for the RepNum field to
relate the Customer and Rep tables.

1. Click the Table button (Create tab | Tables group) to create a new table. Notice that the ID pri-
mary key field is added to the table automatically.

2. Click the More Fields button (Table Tools Fields tab | Add & Delete group) to open the More
Fields gallery.

3. In the User Defined Types section, click Customer Fields to add all the customer fields, except
the RepNum field, to the table’s design.

4. Click the CustomerNum field to select the field, click the Required check box in the Field
Validation group to make the field a required field, and then click the Unique check box in the
Field Validation group so that Access will only store unique values in this field.

5. Click the Click to Add column heading to display a menu of available data types, and then click
Lookup & Relationship to open the Lookup Wizard dialog box.

Fields from the
Rep table to use in

the lookup field in the
Customer table

FIGURE E-16 Selecting the fields from the Rep table

Label for
lookup field

Enable Data
Integrity check
box is selected

FIGURE E-17 Enabling data integrity (referential integrity)

380

Appendix E

6. Make sure that the I want the lookup field to get the values from another table option button is
selected, click the Next button, and then if necessary, click Table: Rep to select it.

7. Click the Next button, and then double-click the RepNum, FirstName, and LastName fields in
the Available Fields box to move them to the Selected Fields box. These fields will be used as the
columns in the lookup field.

8. Click the Next button, click the arrow, click the RepNum field for the sort order, and then click
the Next button.

9. Make sure that the Hide key column (recommended) check box is selected, and then click the
Next button.

10. Type RepNum as the label for the lookup field, click the Enable Data Integrity check box to
select it, and then click the Finish button to create the lookup field.

11. In the Save As dialog box, type Customer in the Table Name box, click the OK button, and then
close the table.

IMPORTING DATA INTO THE TABLES

Now that you have created and related the tables, you can import the data into them using the text files
included with your Data Files. The following steps import the data.

1. Click the Text File button (External Data tab | Import & Link group) to open the Get External
Data—Text File dialog box.

2. Click the Browse button, and then browse to and select the location where your Data Files are
stored. Click the Rep text file, and then click the Open button.

3. Click the Append a copy of records to the table option button, click the arrow, click the Rep
table, and then click the OK button. The Import Text Wizard dialog box opens.

4. Make sure the Delimited option button is selected, and then click the Next button.
5. Make sure the Comma option button is selected, click the Next button, and then click the Finish

button.
6. Click the Close button to close the Get External Data—Text Box dialog box without saving the

import steps.
7. Repeat Steps 1 through 6 to import the Customer text file into the Customer table.

CREATING A QUERY IN A WEB DATABASE

In the Web database shown in Figure E-1, clicking the Customer-Rep Query tab displays the results of a
query that relates the Rep and Customer tables in a datasheet form. The following steps create this query.

1. Close the Navigation Pane (if necessary), and then click the Query button (Create tab | Queries
group) to create a new query and open the Show Table dialog box.

2. Click the Customer table, click the Add button, click the Rep table, click the Add button, and
then click the Close button to close the Show Table dialog box.

3. In the Customer field list, double-click the CustomerNum, CustomerName, and RepNum fields
to add these fields to the design grid.

4. In the Rep field list, double-click the FirstName and LastName fields to add these fields to the
design grid.

5. On the Quick Access Toolbar, click the Save button, type Customer-Rep Query in the Query
Name box, and then click the OK button.

6. Close the query.

CREATING FORMS IN A WEB DATABASE

You need to create several types of forms for this database. The Customer Details and Rep Details forms are
single-item forms. The Customer, Rep, and Customer-Rep Query forms are datasheet forms. Finally, the Main
Menu form is a navigation form. To create the forms in the database, you will use the options in the Forms

Using Access to Create and Publish a Web Database

381

group on the Create tab, as shown in Figure E-18. Before clicking the appropriate button, you must select the
table or query on which to base the form.

Creating a Single-Item Form
The following steps use the Form button to create two single-item forms. The first form, named Customer
Details, is based on the Customer table. The second form, named Rep Details, is based on the Rep table.

1. In the Navigation Pane, select the Customer table, and then click the Form button (Create tab |
Forms group) on the Create tab to create a single-item form for the Customer table.

2. On the Quick Access Toolbar, click the Save button, type Customer Details in the Form Name
box, and then click the OK button to save the form.

3. Close the form.
4. In the Navigation Pane, select the Rep table, click the Form button (Create tab | Forms group)

to create a single-item form for the Rep table.
5. Save the form using Rep Details as the form name, and then close the form.

Creating a Datasheet Form with a Macro
You create a datasheet form by selecting the table or query on which to base the form, and then clicking
the Datasheet button (Create tab | Forms group). You then save the form with the name of your choice.
To add the functionality that lets a user open a pop-up form for an individual record, as described with
Figure E-3, you need to create a macro that is associated with the On Click event for the ID field, as shown
in Figure E-19. The actions in this macro will open the pop-up form when a user clicks the ID column for a
record.

Create tab

Datasheet
button

Form button

Customer table
selected

FIGURE E-18 Creating the forms

382

Appendix E

Figure E-20 shows the macro associated with the On Click event for the ID field in the Customer form.
When a user clicks the ID field for a record, the macro will open a pop-up form that contains the data for
that record.

N O T E
The macro shown in Figure E-20 shows field names enclosed in square brackets (for example, [CustomerNum]). When used in
a macro, square brackets are required for field names that contain spaces. For example, you would write a field named
“Customer Number,” with a space between the words, as [Customer Number] when using it in a macro. Because the
CustomerNum field name does not contain any spaces, you could write it without the square brackets when using it in a
macro. However, you can enclose field names in square brackets, even when they are not required.

Close button

Save button

Macro for On
Click event

FIGURE E-20 Macro Designer for the On Click event for the ID field

ID column
selected

Property
Sheet button

On Click event

Event tab

Build button

FIGURE E-19 Creating the macro associated with the On Click event for the ID field

Using Access to Create and Publish a Web Database

383

N O T E
As you are typing field names and other items in a macro, the IntelliSense feature might open a menu as you type with suggested
options that you can click in the list, so you do not need to type the complete entries. To select an option suggested by the Intelli-
Sense feature, press the Tab key, or use the down arrow to select an option in the menu and then press the Tab key to enter it.
Access will automatically enclose field names in square brackets, even if the field name does not contain any spaces.

The macro will open the appropriate form using the OpenForm action. You will set the Form Name
argument for the OpenForm action to the name of the form to be opened, which is the Customer Details
form. The form’s purpose is only to display the selected record, so you will change the form’s properties so
users cannot update data using this form by setting the form’s Data Mode argument to Read Only. To open
the form as a pop-up form, you will set the value of the Window Mode argument to Dialog.

The form should display the record the user selected. For example, if the user clicks the ID on the row
for customer number 408, the form should display the data for customer number 408. Restricting the record
that appears in the form is accomplished using the Where Condition argument. You use the condition to
indicate that the customer number the user selected using the ID field in the Customer form needs to equal
the customer number in the Customer Details form when it opens.

In the Where Condition, you refer to an object in the form to be opened by using its name. Thus, the
name for CustomerNum in the Customer Details form is [CustomerNum]. The simplest way to refer to an
object in another form is to use a temporary variable.

In the macro shown in Figure E-20, the first action, the SetTempVar action, sets the temporary variable name
CN to the CustomerNum. The two arguments are Name, which is set to CN, and Expression, which is set to
[CustomerNum]. These arguments refer to CustomerNum in the Customer form, the form in which the macro is
being created. You can then use that temporary variable in the Where Condition argument. The expression is
[CustomerNum]=[TempVar]![CN]. The [CustomerNum] portion refers to CustomerNum in the Customer Details
form. The [TempVar]![CN] portion is the temporary variable that has been set equal to CustomerNum in the
Customer form.

The macro ends by removing the temporary variable because it is no longer needed.
The following steps use the Datasheet button to create two datasheet forms: the first form is named

Customer and displays the data in the Customer table, and the second form is named Rep and displays the
data in the Rep table.

1. In the Navigation pane, select the Customer table, and then click the Datasheet button
(Create tab | Forms group) to create a datasheet form for the Customer table.

2. Save the form using Customer as its name.
3. Click the column heading for the ID field to select the field, click the Property Sheet button

(Form Tools Datasheet tab | Tools group) to open the property sheet, and then click the Event
tab in the property sheet to display only the event properties.

4. Click the Build button (see Figure E-19) for the On Click event to open the Macro Designer.
5. Using Figure E-20, enter the macro for the On Click event for the ID field.
6. Click the Save button (Macro Tools Design tab | Close group) to save the macro, and then click

the Close button (Macro Tools Design tab | Close group) to close the macro and return to the
Customer form.

7. Save the Customer form, and then close it.
8. Repeat Steps 1 through 7 to create a datasheet form for the Rep table. Use Rep as the form

name, RN as the temporary variable name for RepNum, and set the Rep Details form as the
object to open. Save and close the Rep form.

9. Create a datasheet form for the Customer-Rep Query. Use Customer-Rep Query as the form
name, and then close it. No macro is necessary.

CREATING A NAVIGATION FORM

You can only include forms and reports on the tabs in a navigation form—you cannot include tables and
queries. The navigation form shown in Figure E-1, however, appears to include a tab that displays the
Customer table in Datasheet view. This is not the Customer table datasheet, but rather, the datasheet form
you created earlier for the Customer table.

384

Appendix E

To create a navigation form, click the Navigation button (Create tab | Forms group) to display the menu
of available navigation form layouts, as shown in Figure E-21. Selecting Horizontal tabs will create a naviga-
tion form with one row of tabs arranged horizontally across the top of the form. You can choose instead to
arrange the tabs vertically, either on the left or right side of the form, by selecting the Vertical Tabs, Left or
Vertical Tabs, Right options. You can include two rows of horizontal tabs by selecting Horizontal Tabs,
2 Levels. Finally, you can include horizontal and vertical tabs by selecting either the Horizontal Tabs and
Vertical Tabs, Left or Horizontal Tabs and Vertical Tabs, Right options.

After creating the navigation form, you can add a form or report to a tab by dragging the form or report
object from the Navigation Pane to the desired tab. The navigation form in the Web database will include five
form objects arranged in the Horizontal Tabs layout, as shown in Figure E-22.

Available navigation
form layouts

Navigation button

FIGURE E-21 Creating a navigation form

 Tabs added
to navigation

form

Navigation form
title (“Reps and

Customers”)

Navigation
form name

(“Main Menu”)

FIGURE E-22 Navigation form created

Using Access to Create and Publish a Web Database

385

The following steps create a navigation form with a single row of horizontal tabs. The steps save the
navigation form using the form name “Main Menu” and the form title “Reps and Customers.”

1. Click the Navigation button (Create tab | Forms group) to display the menu of available naviga-
tion form layouts, and then click Horizontal Tabs to create a navigation form with tabs arranged
horizontally in a single row.

2. If the field list opens, click the Add Existing Fields button (Form Layout Tools Design tab | Tools
group) to close it.

3. Save the navigation form using Main Menu as the form name.
4. Click the form title twice, once to select it and the second time to display the insertion point,

use the pointer to select the current title (“Navigation Form”), type Reps and Customers, and
then press the Enter key to change the form’s title.

5. Click the Customer form (not the Customer table) in the Forms section of the Navigation pane,
and then drag it to the first tab (with the text “[Add New]”) in the navigation form. When two
orange markers appear on the left side of the tab, release the mouse button. The Customer data-
sheet form is displayed on the first tab in the navigation form.

6. Repeat Step 5 to drag the Rep form (not the Rep table) to the second tab in the navigation form.
7. Repeat Step 5 to drag the Customer-Rep Query form, the Customer Details form, and the Rep

Details form to the third, fourth, and fifth tabs in the navigation form.
8. Save and close the navigation form.

Q & A

Question: What should I do if I make a mistake and drop a form in the wrong location?
Answer: Often, the simplest way to correct a mistake is to click the Undo button on the Quick Access
Toolbar to reverse your most recent action. You can also rearrange the tabs by dragging them to the correct
positions. Or, you can close the form without saving it, and then start over.

SETTING A STARTUP FORM

When a database uses a navigation form as its navigation control, it is common to set the navigation form as
the startup form or display form to open when the database first opens. The navigation form provides a level
of convenience to users, letting them easily open objects and work with them, and also a level of security, by
restricting access to objects that you do not want users to view. You can also designate a navigation form as a
Web display form in a Web database so the navigation form opens when the user accesses the Web database.
To set a navigation form in a Web database, use the Current Database options in the Access Options dialog
box, as shown in Figure E-23.

386

Appendix E

The following steps set the Main Menu navigation form as the startup form when the Reps and Customers
database is opened using Access or a browser.

1. On the Ribbon, click the File tab to display Backstage view, and then click the Options com-
mand. The Access Options dialog box opens.

2. On the left side of the dialog box, click Current Database to select the options for the current
database. Notice that the Display Form and Web Display Form properties are set to “(none),”
indicating that these options have not been set yet.

3. Click the Display Form arrow, and then click Main Menu to set the navigation form as the
startup form when the database is opened using Access.

4. Click the Web Display Form arrow, and then click Main Menu to set the navigation form as the
startup form when the database is opened using a Web browser.

5. Click the OK button in the Access Options dialog box to save your changes.
6. Click the OK button when Access displays a message indicating that you must close and reopen

the database for your changes to take effect. (Do not close the database.)

Before closing and reopening the database, you’ll check the Web database for compatibility problems.

Current
Database
selected

Web Display Form
set to the Main Menu

navigation form

Display Form set
to the Main Menu
navigation form

FIGURE E-23 Setting a startup form for the Web database

Using Access to Create and Publish a Web Database

387

CHECKING WEB COMPATIBILITY

Before publishing a Web database to a server, you should run the compatibility checker, as shown in Figure E-24,
to identify any problems that might prevent the database from working correctly. If the compatibility checker finds
any problems, you can correct them before publishing the Web database, and then run the compatibility checker
again to be sure that you made the correct changes. The following steps check the Web compatibility of the Reps
and Customers database before publishing it.

1. On the Ribbon, click the File tab, and then click the Save & Publish tab.
2. Click the Publish to Access Services button in the Publish area, and then click the Run

Compatibility Checker button to check Web compatibility.

If you have followed the steps in this appendix correctly, you should see a message below the Run
Compatibility button indicating that the database is compatible with the Web, as shown in Figure E-24.

Q & A

Question: What should I do if the database is not compatible with the Web?
Answer: Click the Web Compatibility Issues button to see the specific issues you need to correct. For each
issue, click the link to display information describing how to correct the issue. The most difficult issues to
correct are existing relationships, which Web databases implement using lookup fields. To fix a relationship
issue, delete the relationship, and then add the appropriate lookup field to replace it. Run the compatibility
checker again to make sure that you corrected all of the issues.

PUBLISHING A DATABASE TO A SERVER

After confirming that the Reps and Customers database is compatible with the Web, you can use the Save &
Publish tab, shown in Figure E-25, to publish the Web database to a SharePoint Server using Access Services.
Before publishing the Web database, you will need to enter the URL of the server that you will use to host the
Web database and the site name. The full URL for the Web database is the combination of the server URL
and the site name. After you have entered the complete URL on the Save & Publish tab, the Publish to
Access Services button becomes available.

Save &
Publish tab

Publish to Access
Services button

Run Compatibility
Checker button

Message indicates
the database’s compatibility

with the Web

FIGURE E-24 Checking Web compatibility for a database

388

Appendix E

To complete the process, click the Publish to Access Services button. The server will prompt you for
your user name and password, as shown in Figure E-26, to confirm that you have permission to publish to
the site.

N O T E
You need access to a SharePoint Server to complete the following steps. Do not complete the steps unless your instructor tells
you to do so. Even if you are not completing the steps, however, you should read them to make sure you understand the
process.

Publish to Access Services
button becomes active
after entering the URL

Full URL includes
the server URL and

site name

Enter the URL
for your server

here

Enter your
site name here

xxxx.xxxxxxxxxxxxx.com/RC

xxxx.xxxxxxxxxxxxx.com

FIGURE E-25 Save & Publish tab in Backstage view

Your server’s
URL appears here

Enter your
user name here

Enter your
password here

xxxx.xxxxxxxxxxxxx.com

FIGURE E-26 Windows Security dialog box

Using Access to Create and Publish a Web Database

389

The following steps publish the Reps and Customers database to a SharePoint Server using Access
Services.

1. In the Server URL box, type the full URL to your server. The full URL has the format
http://xxx.xxx.com.

2. In the Site Name box, type the site name.
3. Click the Publish to Access Services button to the left of the Server URL to publish the Web

database to Access Services. The Windows Security dialog box opens.
4. Enter your user name and password in the boxes, and then click the OK button.
5. In the Publish Access Application dialog box, click the OK button. The Synchronizing Web

Application dialog box opens and indicates the status of the transfer, and then the Publish
Access Application dialog box opens when the publish operation has been completed. The URL
to the Web database appears in the Publish Access Application dialog box.

6. Click the OK button to close the Publish Access Application dialog box.
7. Close the Reps and Customers database, and then exit Access.

Now you can view the database you just published using a browser.

N O T E
If you were not able to publish the Web database in the previous set of steps, read the following section so you know how to
access and use a Web database with a browser. You can open the database using Access to view and use the Main Menu
navigation form you created.

Viewing the Web Database
The following steps use Internet Explorer to interact with the Web database.

1. Start Internet Explorer. In the browser’s Address bar, enter the full URL for the Web database.
2. Type your user name and password in the Windows Security dialog box, and then click the OK

button. The browser displays the Main Menu navigation form.
3. Use the Main Menu navigation form to view the objects in the database and to interact with

them. (Figures E-2 through E-8 show how to use this database.)
4. Close your browser.

The MSDN Web site (http://msdn.microsoft.com) includes many resources that provide additional
information about designing, creating, publishing, and troubleshooting Web databases.

390

Appendix E

Key Terms

data type part

datasheet form

display form

navigation form

pop-up form

single-item form

startup form

user-defined data type

Web database

Web display form

Premiere Products Exercises

In these exercises, you will use the Premiere Products database included with your Data Files to create user-
defined data types for several tables. You will then create a Web database using those data types, and add
several objects to the Web database. If your instructor asks you to do so, you will publish the Web database
to a SharePoint Server using Access Services.

1. Open the Premiere Products database from your Data Files. Create a user-defined data type named Orders
Fields that includes all the fields from the Orders table. Use an appropriate description and save the data type
in the User Defined Types category. Create another user-defined data type, named Part Fields, that includes
all the fields from the Part table. Use an appropriate description and save the data type in the User Defined
Types category. Create a third user-defined data type named OrderLine Fields that contains the NumOrdered
and QuotedPrice fields from the OrderLine table. Use an appropriate description and save the data type in the
User Defined Types category. Close the Premiere Products database without exiting Access.

2. Use a template to create a blank Web database named Orders and Parts in the location where your Data
Files are stored.

3. Use the Orders Fields data type to add the Orders fields to the default table in the Web database. Change the
properties of the OrderNum field so it is required and stores unique values. Save the table as Orders, and
then close it.

4. Create a second table in the Web database. Use the Part Fields data type to add the Part fields to the table.
Change the properties of the PartNum field so it is required and stores unique values. Save the table as Part,
and then close it.

5. Create a third table in the Web database. Use the OrderLine Fields data type to add the NumOrdered and
QuotedPrice fields to the table. Save the table as OrderLine. Add a lookup field that looks up values in the
Orders table. Select the OrderNum and OrderDate fields as the lookup columns. Sort by OrderNum and hide
the key column. Use the label OrderNum and enable data integrity. Add another lookup field to the OrderLine
table that looks up values in the Part table. Select the PartNum and Description fields as the lookup columns.
Sort by PartNum and hide the key column. Use the label PartNum and enable data integrity. Save and close
the OrderLine table.

6. Import data into the Orders, Part, and OrderLine tables using the Orders.txt, Part.txt, and OrderLine.txt files
stored with your Data Files.

7. Create a query named Order-Part Query that relates all three tables. Include the following fields in the query
design, in the order listed: the OrderNum and OrderDate fields from the Orders table, the PartNum and
Description fields from the Part table, and the NumOrdered and QuotedPrice fields from the OrderLine table.
Save and close the query.

8. Create single-item forms named Orders Details, Part Details, and OrderLine Details for the Orders, Part,
and OrderLine tables, respectively. Close the forms.

9. Create a datasheet form named Orders for the Orders table. When the user clicks the ID field for an order
record, open the Order Details form as a pop-up form that shows details for the corresponding order. The user
should not be able to use the pop-up form to update the order or to move to another record. Create a similar
datasheet form for the Part table named Part and with the same functionality as the Orders datasheet form.
Create a datasheet form for the Order-Part query named Order-Part Query. Save and close the forms.

Using Access to Create and Publish a Web Database

391

10. Create a navigation form using the Vertical Tabs, Left navigation form layout. Save the form as Main Menu,
and change the title to Orders and Parts. Drag the following forms, in order from top to bottom, to appear on
the tabs: Orders, Part, Order-Part Query, Orders Details, Part Details, and OrderLine Details. Save and close
the navigation form.

11. Set the Display Form and Web Display Form properties for the database to use the Main Menu form. Do not
close the database.

12. Run the compatibility checker to verify that the database is compatible with the Web.

13. If your instructor asks you to do so, publish your database to a SharePoint Server, using Access Services, and
then use your browser to verify that the Web database works correctly. If you are not publishing your data-
base, reopen the database in Access and verify that it works correctly.

392

Appendix E

A P P E N D I X F
DETERMINING INFORMATION-LEVEL
REQUIREMENTS

I N T R O D U C T I O N

In Chapter 6, you learned a method for creating information-level database designs, in which the starting point for the
design process is a set of user views. Each user view is the set of requirements that is necessary to support the operations
of a particular database user. In this appendix, you’ll learn how to determine the specific user views, or information-level
requirements, required for a particular database.

INFORMATION SYSTEMS

A database is one of the components of an information system. As illustrated in Figure F-1, an information
system is the collection of data, people, procedures, stored data, software, hardware, and information
required to support a specific set of related functions. Examples of information systems are cell phone billing,
payroll, airline reservation, point of sale, pharmacy management, property tax assessment, online bridal
registry, and insurance premium processing. The Premiere Products, Henry Books, and Alexamara Marina
Group cases are also examples of information systems, although this book has chiefly focused on the database
components of these information systems.

As described in Chapter 1, the primary goal of an information system is to turn data (recorded facts) into
information (the knowledge gained by processing those facts). Data is input to an information system, and
the information system outputs information. Data can be input to an information system manually using, for
example, keyboards, telephones, or mobile devices, or by automated means using, for example, ATMs,
point-of-sale scanners, credit/debit card readers, and external files and databases. Information can be output
from an information system as printed reports, screen displays, external files and databases, or can be output
to specialized devices/media such as wireless, audio, and fax.

An information system is a success only when the people interacting with it and obtaining information
from it view it to be successful. The people component of an information system includes the end users
(those directly interacting with the information system), management, auditing and other support staff
groups, and often people in outside entities such as government agencies, suppliers, and financial institutions.
The people component also includes technical staff, who develop and maintain the information system and
who support the operating environment for the information system.

A procedure is a series of steps followed in a regular, specified order to accomplish one end result.
Examples of procedures in information systems are signing up a new cell phone customer, auditing a payroll’s

People
Procedures
Stored Data

Software
Hardware

InformationData

Input Processing Output

FIGURE F-1 Information system components

direct deposits, and filling a prescription at a pharmacy. Procedures are often in written form in manuals or
other information system documentation.

The data input to an information system must be retained for future processing and legal reasons. This
data is retained as stored data in a database and, especially in older information systems, in files on hard
drives and other storage media. The stored data is a critical information system component because all
information either is produced directly from stored data or is derived from stored data in the form of
calculated fields.

The software component consists of system software and application software. System software are the
programs that control the hardware and software environment. These programs include the operating
system, network managers, device drivers, and utility programs such as sorting and data backup.
Application software consists of the programs that directly support the information system in processing
the data to produce the required information.

The hardware component consists of all the physical equipment used within the information system.
This equipment includes computer hardware (such as computers, telecommunications equipment, scanners,
and printers) and noncomputer equipment (such as copy machines).

Why is it important to focus on the components of an information system? This focus is important
because you cannot analyze, design, develop, and implement a successful information system unless you
consider all its components and their requirements and connect the components and requirements properly.

SYSTEM REQUIREMENT CATEGORIES

To create the user views for an information system, you must determine all of its system requirements. A
system requirement is a feature that must be included in an information system to fulfill business, legal, or
user needs. Using the definition of an information system, system requirements can be classified into output,
input, and processing categories. You must also determine the technical and constraining requirements of an
information system.

Output Requirements
To determine an information system’s output requirements, you need to find answers to the following types
of questions about each output:

• What is the content of the output? Specifically, you need to determine the fields to include in
the output and their order and format.

• Does the output require a specified sort sequence?
• Are subtotals and totals needed in the output?
• Is the output intended to be printed, to appear on screen, to be transmitted to a special device,

to be output to a file, or to be sent to another information system or company?
• Who are the recipients of the output?
• How often must the output be produced, and what triggers its output?
• What is the size of the output? For example, what’s the estimated number of pages for a printed

report, and how many records and what’s the size of each record for an output file?
• Does the output have any security restrictions that limit who has access to it?

Input Requirements
To determine an information system’s input requirements, you need to find answers to the following types of
questions about each input:

• Who or what originates the input and what types of devices are used for that input?
• Does a source document, such as an application form or a work order, contain the data for the

input? If so, obtain blank and filled-in copies of the source document.
• What is the content of the input? Specifically, what are the fields and in which order do they

occur in the input? What is the best method for entering the content of the input into the
information system?

• What are the attributes of each field in the input? What formatting and validation requirements
are necessary for each field in the input?

394

Appendix F

• Are there unique fields in the input, so that each record can be distinguished from all other
records?

• When is the data input, how often, and in what volume?

Processing Requirements
To determine an information system’s processing requirements, you need to find answers to the following
types of questions:

• Which input data must be retained as stored data to provide the required outputs?
• What calculations must be performed?
• Are there special cycle processing requirements that occur daily, weekly, monthly, quarterly,

annually, or on some other frequency? For example, are there requirements for weekly or biweekly
payroll processing, quarterly and annual tax processing, and quarterly shareholder processing?

• Are there auditing requirements for the data in the information system?
• Which stored data has special security requirements that permit only authorized users access or

update privileges?
• Are there procedures that depend on other procedures?
• Are there procedures that occur in a specified sequence?
• Which procedures and other processing requirements are available to all end users, and which

ones are limited to only authorized personnel?

Technical and Constraining Requirements
To determine an information system’s technical and constraining requirements, you need to find answers to
the following types of questions:

• Must the information system operate with a specific operating system or with multiple operating
systems?

• Which DBMS will be used to store retained data?
• Does the hardware—entry, storage, output, and other devices—impose any restrictions or

provide special capabilities?
• Which programming languages will be used for creating the application programs for the

information system?
• How many end users must the information system support concurrently, and what response time

is expected for online processing?
• Which portions of the information system must be available to end users 24/7?

DETERMINING SYSTEM REQUIREMENTS

Many tools and methods have been developed to help you analyze and document system requirements after
you’ve determined what they are, but no similar aids exist to help you determine them in the first place.
To determine system requirements, you need to become a detective and collect the facts about the
information system using basic fact-finding techniques. The most commonly used techniques for determining
the facts about an information system are interviews, document collection, observation, and research.

Interviews
An interview is a planned meeting during which you obtain system requirements from other people. You
conduct these interviews with the individuals who represent the people component of the information
system, each of whom has a personal perspective about what the information system should do. You conduct
individual and group interviews, during which you determine how the information system operates now, how
it should operate in the future, and what requirements need to be in the new information system.

In large organizations with hundreds of end users and other people who have system requirements,
especially when they work in a large number of locations, you can’t conduct interviews with everybody.
In these situations, you can use surveys and questionnaires to allow everybody to participate and to obtain
their system requirements.

Determining Information-Level Requirements

395

Document Collection
Every information system has existing paper forms, online forms, reports, manuals, written procedures, and
other documents that contain valuable system requirements. You should review all these documents and then
confirm their validity with end users. Documents are a rich source for the data content of an information
system, and are a quicker, more accurate way of determining the data, database, and information
requirements than asking end users, although you need to verify the documents’ accuracy with end users.

Observation
Observing current operating processing provides insight into how users interact with the system and how the
interaction can be improved. Observation verifies what you learn during interviews and what is documented
in procedure manuals. Observation can also identify undocumented processing and uncover processing that
differs from standard practice.

Research
Few information systems are unique in their total system requirements. You can research journals,
periodicals, books, and the Internet to obtain information, examples, and requirements related to a specific
information system. You can also attend professional seminars and visit other companies to gain insight
from other experts.

TRANSITIONING FROM SYSTEMS ANALYSIS TO SYSTEMS DESIGN

After you’ve determined all the system requirements for an information system, you need to analyze and
document the requirements. The Unified Modeling Language, briefly discussed in Chapter 9, is one approach
you can use to model (analyze and document) system requirements; this approach uses class, use case, state,
and other diagrams and modeling tools to model an information system. Another popular approach uses data
flow diagrams to model the transformations of data into information, a data dictionary for data and table
documentation, and various process description tools and techniques. System developers have additional
approaches available to model system requirements. When you’ve completed the model, you’ve completed
the systems analysis work, which consists of both the requirements determination step and the analysis and
documentation step.

The approach you choose to transition from systems analysis to systems design will result in a large,
complicated model of the information system. You use this model to perform the system design of the
information system next. To simplify the design process, you can attack the design in smaller pieces by
considering individual user views, as described in Chapter 6.

396

Appendix F

Key Terms

application software

information system

interview

procedure

system requirement

system software

Exercises

1. Use books, the Internet, and/or other sources to investigate how best to conduct interviews to determine
system requirements and to understand and minimize the problems that can occur during interviews. Prepare
a report that explains the results of your investigation.

2. Use books, the Internet, and/or other sources to investigate the proper way to create and manage question-
naires and surveys. Prepare a report that explains the results of your investigation.

3. Use books, the Internet, and/or other sources to investigate a modeling tool such as use cases, data flow
diagrams, or any other tool approved by your instructor. Prepare a report that explains the results of your
investigation.

Determining Information-Level Requirements

397

GLOSSARY

Access delay A fixed amount of time required for every
message sent over a network.

After image A record that the DBMS places in the
journal or log that shows what the data in a row looked
liked in the database after a transaction update.

Aggregate function A function used to calculate the
number of entries, the sum or average of all the entries
in a given column, or the largest or smallest of the
entries in a given column; also called function.

ALTER TABLE The SQL command that is used to
change the structure of a table.

Alternate key A candidate key that was not chosen to
be the primary key.

AND criterion Combination of criteria in which both
criteria must be true.

Apache HTTP Server A free, open-source Web server
package that runs with most operating systems.

Application server In a three-tier client/server
architecture, a computer that performs the business
functions and serves as an interface between clients
and the database server.

Application software The programs that directly
support an information system in processing data to
produce the required information.

Archive See data archive.

Argument Additional information required by an action
in a data macro to complete the action.

Artificial key A column created for an entity to serve
solely as the primary key and that is visible to users.

Association A relationship in UML.

Attribute A characteristic or property of an entity; also
called a field or column.

Authentication A technique for identifying the person
who is attempting to access a DBMS.

Authorization rule A rule that specifies which user has
what type of access to which data in a database.

B2B See business to business.

Back-end machine See server.

Back-end processor See server.

Backup A copy of a database made periodically; the
backup is used to recover the database when it has been
damaged or destroyed. Also called a save.

Backward recovery See rollback.

Batch processing The processing of a transaction file
that contains a group, or “batch,” of records to update a
database or another file.

Before image A record that the DBMS places in the
journal or log that shows what the data in a row looked
like in the database before a transaction update.

Binary large object (BLOB) A generic term for a special
data type used by relational DBMSs to store complex
objects.

Binding The association of operations to actual program
code.

Biometrics A technique to identify users of a database
or other resource by physical characteristics such as
fingerprints, voiceprints, handwritten signatures, and
facial characteristics.

BLOB See binary large object.

Bottom-up design method A design method in
which specific user requirements are synthesized into
a design.

Boyce-Codd normal form (BCNF) A relation is in
Boyce-Codd normal form if it is in second normal form
and the only determinants it contains are candidate
keys; also called third normal form in this text.

Business to business (B2B) E-commerce between
businesses.

Calculated field See computed field.

Candidate key A minimal collection of columns (attri-
butes) in a table on which all columns are functionally
dependent but that has not necessarily been chosen as
the primary key.

Cardinality The number of items that must be included
in a relationship. Also called multiplicity.

Cartesian product The table obtained by concatenating
every row in the first table with every row in the second
table.

Cascade delete A delete option in which related records
are automatically deleted.

Cascade update An update option in which related
records are automatically updated.

Catalog A source of data, usually stored in hidden
database tables, about the types of entities, attributes,
and relationships in a database.

Category The IDEF1X name for an entity subtype.

CHAR(n) The SQL data type for character data.

CHECK The SQL clause that is used to enforce
legal-values integrity.

Class The general structure and actions of an object in
an object-oriented system.

Class diagram A UML diagram that for each class,
shows the name, attributes, and methods of the class,
as well as the relationships between the classes in a
database.

Client A computer that is connected to a network and
that people use to access data stored on a server in a
client/server system; also called a front-end machine or
a front-end processor.

Client/server (system) A networked system in which a
special site on the network, called the server, provides
services to the other sites, called the clients. Clients
send requests for the specific services they need.
Software, often including a DBMS, running on the server
then processes the requests and sends only the appro-
priate data and other results back to the clients.

Client-side extension Instructions executed by a Web
client to provide dynamic Web page capability. These
extensions can be embedded in HTML documents or be
contained in separate files that are referenced within an
HTML document.

Client-side script See client-side extension.

Column A characteristic or property of an entity; also
called an attribute or a field.

Command An instruction by a user that directs a
database to perform a certain action.

Commit A special record in a database journal or log that
indicates the successful completion of a transaction.

Communications network Several computers config-
ured in such a way that data can be sent from any one
computer on the network to any other. Also called a
network.

Comparison operator See relational operator.

Complete category In IDEF1X, a collection of subtypes
with the property that every element of the supertype is
an element of at least one subtype.

Composite entity An entity in the entity-relationship
model used to implement a many-to-many relationship.

Compound condition See compound criteria.

Compound criteria Two simple criteria (conditions) in a
query that are combined with the AND or OR operators.

Computed field A field whose value is computed from
other fields in the database; also called a calculated field.

Concatenation The combination of two or more rows in
an operation, such as a join, or the combination of two
or more columns for a primary key field to uniquely
identify a given row in the table.

Concurrent update A situation in which multiple users
make updates to the same database at the same time.

Condition See criterion.

Context-sensitive help The assistance a DBMS provides
for the particular feature being used at the time a user
asks for help.

Cookies Small files written on a Web client’s hard drive
by a Web server.

Coordinator In a distributed network, the site that
directs the update to the database for a transaction.
Often, it is the site that initiates the transaction.

CREATE INDEX The SQL command that creates an
index in a table.

CREATE TABLE The SQL command used to describe
the layout of a table. The word TABLE is followed by
the name of the table to be created and then by the

names and data types of the columns (fields) that
comprise the table.

Criteria The plural version of the word criterion.

Criterion A statement that can be either true or false. In
queries, only records for which the statement is true will
be included; also called a condition.

Cumulative design A design that supports all the user
views encountered thus far in a design process.

Data archive A place where a record of certain
corporate data is kept. Data that is no longer needed in
a corporate database but must be retained for future
reference is removed from the database and placed in
the archive. Also called an archive.

Data cube The perceived shape by a user of a multi-
dimensional database in a data warehouse.

Data dictionary A catalog, usually found in large,
expensive DBMSs, that stores data about the entities,
attributes, relationships, programs, and other objects in
a database.

Data file A file used to store data about a single entity.
It’s the computer counterpart to an ordinary paper file
you might keep in a file cabinet, an accounting ledger,
and so on. Such a file can be thought of as a table.

Data fragmentation The process of dividing a logical
object, such as the records in a table, among the various
locations in a distributed database.

Data independence The property that lets you change
the structure of a database without requiring you to
change the programs that access the database; examples
of these programs are the forms you use to interact with
the database and the reports that provide information
from the database.

Data macro In Access, a collection of actions that are
performed in response to an associated database opera-
tion, such as inserting, updating, or deleting records.
Equivalent to an SQL trigger.

Data mining The uncovering of new knowledge, pat-
terns, trends, and rules from the data stored in a data
warehouse.

Data type part A template that can be used to add one
or more fields to a table.

Data warehouse A subject-oriented, integrated, time-
variant, nonvolatile collection of data used in support of
management’s decision-making process.

Database A structure that can store information about
multiple types of entities, the attributes of these entities,
and the relationships among the entities.

Database administration (DBA) The individual or group
that is responsible for a database.

Database administrator (DBA) The individual who is
responsible for a database, or the head of database
administration.

Database design The process of determining the content
and structure of data in a database in order to support
some activity on behalf of a user or group of users.

400

Glossary

Database Design Language (DBDL) A relational-like
language that is used to represent the result of the
database design process.

Database management system (DBMS) A program, or a
collection of programs, through which users interact
with a database. DBMSs let you create forms and
reports quickly and easily, as well as obtain answers to
questions about the data stored in a database.

Database password A string of characters assigned by
the DBA to a database that users must enter before they
can access a database.

Database server In a three-tier client/server
architecture and in other architectures, a computer
that performs the database functions such as storing
and retrieving data in a database.

Datasheet form A form layout that displays data in a
datasheet format.

DATE The SQL data type for date data.

DBA See database administration. (Sometimes the
acronym stands for database administrator.)

DBDL See Database Design Language.

DBMS See database management system.

DDBMS See distributed database management system.

Deadlock A situation in which two or more database
users are each waiting to use resources that are held by
the other(s); also called deadly embrace.

Deadly embrace See deadlock.

DECIMAL(p,q) The SQL data type for decimal data.

Decrypting A process that reverses the encryption of a
database. Also called decryption.

Defining query The query that is used to define the
structure of a view.

DELETE The SQL command used to delete a table. The
word DELETE is followed by a FROM clause identifying
the table. Use a WHERE clause to specify a condition.
Any records satisfying the condition will be deleted.

Delete query A query that deletes all records that
satisfy some criterion.

Delimiter A punctuation mark, such as a semicolon,
that separates pieces of data.

Denormalizing The conversion of a table that is in third
normal form to a table that is no longer in third normal
form. Denormalizing introduces anomaly problems but
can decrease the number of disk accesses required
by certain types of transactions, thus improving
performance.

Department of Defense (DOD) 5015.2 Standard A
standard that provides data management requirements
for the DOD and for companies supplying or dealing
with the DOD.

Dependency diagram A diagram that indicates the
dependencies among the columns in a table.

Dependent entity An entity that requires a relationship
to another entity for identification.

Design grid The portion of the Query Design window in
Access where you enter fields, criteria, sort orders, and
so on.

Determinant A column in a table that determines at
least one other column.

Difference When comparing tables, the set of all rows
that are in the first table but that are not in the second
table.

Dimension table A table in a data warehouse that
contains a single-part primary key, serving as an index
into the central fact table, and other fields associated
with the primary key value.

Disaster recovery plan A plan that specifies the ongoing
and emergency actions and procedures required to
ensure data availability, even if a disaster occurs.

Distributed database A single logical database that is
physically divided among computers at several sites on a
computer network.

Distributed database management system (DDBMS) A
DBMS capable of supporting and manipulating distrib-
uted databases.

Division The relational algebra command that com-
bines tables and searches for rows in the first table that
match all rows in the second table.

Document Type Definition (DTD) A set of statements
that specifies the elements (tags), the attributes (char-
acteristics associated with each tag), and the element
relationships for an XML document. The DTD can be a
separate file with a .dtd extension, or you can include it
at the beginning of an XML document.

Documenter An Access tool that provides documenta-
tion about the objects in a database.

Domain The set of values that are permitted for an
attribute.

Drill down The process of viewing and analyzing lower
levels of aggregation, or a more detailed view of the data.

DROP INDEX The SQL command that drops (deletes)
an index from a table.

DROP TABLE The SQL command that drops (deletes)
a table from a database.

DTD See Document Type Definition.

Dynamic Web page A Web page whose content changes
in response to the different inputs and choices made by
Web clients.

E-commerce See electronic commerce.

Electronic commerce (e-commerce) Business con-
ducted on the Internet and Web.

Encapsulated In an object-oriented system, defining an
object to contain both data and its associated actions.

Encryption A security measure that converts the data
in a database to a format that’s indecipherable to normal
programs. The DBMS decrypts, or decodes, the data to
its original form for any legitimate user who accesses the
database.

Glossary

401

Entity A person, place, object, event, or idea for which
you want to store and process data.

Entity integrity The rule that no column (attribute) that
is part of the primary key may accept null values.

Entity subtype Entity A is a subtype of entity B if every
occurrence of entity A is also an occurrence of entity B.

Entity-relationship (E-R) diagram A graphic model for
database design in which entities are represented as
rectangles and relationships are represented as either
arrows or diamonds connected to the entities they relate.

Entity-relationship (E-R) model An approach to
representing data in a database that uses E-R diagrams
exclusively as the tool for representing entities,
attributes, and relationships.

Exclusive lock A lock that prevents other users from
accessing the locked data in any way.

Existence dependency A relationship in which the
existence of one entity depends on the existence of
another related entity,

Extensible The capability of defining new data types in
an OODBMS.

Extensible Hypertext Markup Language See XHTML.

Extensible Markup Language See XML.

Extensible Stylesheet Language See XSL.

Fact table The central table in a data warehouse that
consists of rows that contain consolidated and summa-
rized data.

Fat client In a two-tier client/server architecture, a cli-
ent that performs presentation functions and business
functions.

Field A characteristic or property of an entity; also
called an attribute or a column.

File server A networked system in which a special site
on the network stores files for users at other sites. When
a user needs a file, the file server sends the entire file to
the user.

First normal form (1NF) A table is in first normal form
if it does not contain a repeating group.

Foreign key A column (attribute) or collection of col-
umns in a table whose value is required either to match
the value of a primary key in a table or to be null.

FOREIGN KEY The clause in a SQL CREATE TABLE
or ALTER TABLE command that specifies referential
integrity.

Form A screen object you use to maintain, view, and
print data from a database.

Forward recovery A process used to recover a database
by reading the log and applying the after images of
committed transactions to bring the database up to date.

Fourth normal form (4NF) A table is in fourth normal
form if it is in third normal form and there are no mul-
tivalued dependencies.

Fragmentation transparency The characteristic that
users do not need to be aware of any data fragmentation

(splitting of data) that has taken place in a distributed
database.

FROM clause The part of an SQL SELECT command
that indicates the tables in the query.

Front-end machine See client.

Front-end processor See client.

Function See aggregate function.

Functional dependence See functionally dependent.

Functionally dependent Column B is functionally depen-
dent on column A (or on a collection of columns) if a value
for A determines a single value for B at any one time.

Functionally determines Column A functionally deter-
mines column B if B is functionally dependent on A.

Generalization In UML, the relationship between a
superclass and a subclass.

Global deadlock In a distributed database, deadlock
that cannot be detected solely at any individual site.

GRANT The SQL statement that is used to grant
different types of privileges to users of a database.

GROUP BY clause The part of an SQL SELECT
command that indicates grouping.

Grouping The process of creating collections of records
that share some common characteristic.

Growing phase A phase during a database update in
which the DBMS locks all the data needed for a
transaction and releases none of the locks.

HAVING clause The part of an SQL SELECT command
that restricts the groups to be displayed.

Heterogeneous DDBMS A distributed DBMS in which
at least two of the local DBMSs are different from each
other.

HIPAA (Health Insurance Portability and Accountabil-
ity Act) A federal law enacted in 1996 that specifies the
rules for storing, handling, and protecting health-care
transactions.

Homogeneous DDBMS A distributed DBMS in which all
the local DBMSs are the same.

Hot site A backup site that an organization can switch
to in minutes or hours because the site is completely
equipped with duplicate hardware, software, and data
that the organization uses.

HTML (Hypertext Markup Language) A language used
to create Web pages and derived from SGML.

HTTP (Hypertext Transfer Protocol) The data
communication method used by Web clients and Web
servers to exchange data on the Internet.

Hyperlink A tag in a Web page that links one Web page to
another or links to another location in the same Web page.

Hypertext Markup Language See HTML.

Hypertext Transfer Protocol See HTTP.

IDEF1X A type of E-R diagram; or, technically, a lan-
guage in the IDEF (Integrated Definition) family of lan-
guages that is used for data modeling.

402

Glossary

Identifying relationship A relationship that is necessary
for identification of an entity.

IIS (Internet Information Services) A Microsoft Web
server package that comes with many versions of its
operating systems.

Incomplete category In IDEF1X, a collection of
subtypes with the property that there are elements of
the supertype that are not elements of any subtype.

Independent entity An entity that does not require a
relationship to another entity for identification.

Index A file that relates key values to records that
contain those key values.

Index key The field or fields on which an index is built.

Information system The collection of data, people,
procedures, stored data, software, hardware, and infor-
mation required to support a specific set of related
functions.

Information-level design The step during database
design in which the goal is to create a clean, DBMS-
independent design that will support all user
requirements.

Inheritance The property that a subclass inherits the
structure of the class as well as its methods.

INSERT The SQL command to add new data to a table.
After the words INSERT INTO, you list the name of the
table, followed by the word VALUES. Then you list the
values for each of the columns in parentheses.

INTEGER The SQL data type for integer data.

Integrity A database has integrity if the data in it satis-
fies all established integrity constraints.

Integrity constraint A rule that must be followed by
data in a database.

Integrity rules See entity integrity, legal-values integ-
rity, and referential integrity.

Intelligent key A primary key that consists of a column
or collection of columns that is an inherent character-
istic of the entity.

Internet A worldwide collection of millions of intercon-
nected computers and computer networks that share
resources.

Internet Information Services (IIS) See IIS.

Interrelation constraint A constraint that involves more
than one relation.

INTERSECT The relational algebra command for
performing the intersection of two tables.

Intersection When comparing tables, an intersection is
a new table containing all rows that are in both original
tables.

Interview When determining system requirements,
a planned meeting during which you obtain system
requirements from other people.

INTO clause The SQL clause that inserts values into a
table. An INTO clause consists of the word INTO fol-
lowed by the name of the table to insert the values into.

Intranet An internal company network that uses
software tools typically used on the Internet and the
World Wide Web.

Join In relational algebra, the operation in which two
tables are connected on the basis of common data.

Join column The column on which two tables are
joined. Also see join.

Join line In an Access query, the line drawn between
tables to indicate how they are related.

Journal A file that contains a record of all the updates
made to a database. The DBMS uses the journal to
recover a database that has been damaged or destroyed.
Also called a log.

Journaling Maintaining a journal or log of all updates to
a database.

Key The field on which data will be sorted; also called a
sort key.

LAN See local area network.

Legal-values integrity The property that no record can
exist in the database with a value in a field other than a
legal value.

Live system See production system.

Local area network (LAN) A configuration of several
computers connected together that allows users to share
a variety of hardware and software resources.

Local deadlock In a distributed database, deadlock that
occurs at a single site.

Local site From a user’s perspective, the site in a
distributed system at which the user is working.

Location transparency The property that users do not
need to be aware of the location of data in a distributed
database.

Locking A DBMS’s denial of access by other users to
data while the DBMS processes one user’s updates to the
database.

Log A file that contains a record of all the updates made to
a database. The DBMS uses the log to recover a database
that has been damaged or destroyed. Also called a journal.

Logical key A primary key that consists of a column or
collection of columns that is an inherent characteristic
of the entity.

Major sort key See primary sort key.

Make-table query An Access query that creates a table
using the results of a query.

Mandatory role The role in a relationship played by an
entity with a minimum cardinality of 1 (that is, there
must be at least one occurrence of the entity).

Many-to-many relationship A relationship between two
entities in which each occurrence of each entity can be
related to many occurrences of the other entity.

Many-to-many-to-many relationship A relationship
between three entities in which each occurrence of each
entity can be related to many occurrences of each of the
other entities.

Glossary

403

Markup language A document language that contains
tags that describe a document’s content and appearance.

Message A request to execute a method. Also, data,
requests, or responses sent from one computer to
another computer on a network.

Metadata Data about the data in a database.

Metalanguage A language used to define another
language.

Method An action defined for a object class.

Minor sort key See secondary sort key.

Multidependent In a table with columns A, B, and C, B
is multidependent on A if each value for A is associated
with a specific collection of values for B and, further,
this collection is independent of any values for C.

Multidetermine In a table with columns A, B, and C, A
multidetermines B if each value for A is associated with
a specific collection of values for B and, further, this
collection is independent of any values for C.

Multidimensional database The perceived structure by
users of the data in a data warehouse.

Multiple-column index See multiple-field index.

Multiple-field index An index built on more than one
field (column).

Multiplicity In UML, the number of objects that can be
related to an individual object on the other side of a
relationship; also called cardinality.

Multivalued dependence In a table with columns A, B,
and C, there is a multivalued dependence of column B
on column A (also read as “B is multidependent on A” or
“A multidetermines B”), if each value for A is associated
with a specific collection of values for B and, further-
more, this collection is independent of any values for C.

Natural join The most common form of a join.

Natural key A primary key that consists of a column or
collection of columns that is an inherent characteristic
of the entity.

Navigation form A form in a database or a Web data-
base that contains a navigation control that lets a user
access different objects in a database.

Network See communications network.

Nonidentifying relationship A relationship that is not
necessary for identification.

Nonkey attribute See nonkey column.

Nonkey column An attribute (column) that is not part
of the primary key.

Nonprocedural language A language in which a user
describes the task that is to be accomplished by the
computer rather than the steps that are required to
accomplish it.

Normal form See first normal form, second normal
form, third normal form, and fourth normal form.

Normalization process The process of removing
repeating groups to produce a first normal form table.

Sometimes refers to the process of creating a third nor-
mal form table.

n-tier architecture See three-tier architecture.

Null A data value meaning “unknown” or “not
applicable.”

Object A unit of data (set of related attributes) along
with the actions that are associated with that data.

Object-oriented database management system
(OODBMS) A DBMS in which data and the methods
that operate on that data are encapsulated into objects.

Office Open XML A Microsoft file format that is a
compressed version of XML and first used in the Office
2007 suite.

OLAP See online analytical processing.

OLTP See online transaction processing.

One-to-many relationship A relationship between two
entities in which each occurrence of the first entity is
related to many occurrences of the second entity, and
each occurrence of the second entity is related to at
most one occurrence of the first entity.

One-to-one relationship A relationship between two
entities in which each occurrence of the first entity is
related to one occurrence of the second entity, and each
occurrence of the second entity is related to at most one
occurrence of the first entity.

Online analytical processing (OLAP) Software that is
optimized to work efficiently with multidimensional
databases in a data warehouse environment.

Online transaction processing (OLTP) A system that
processes a transaction by dealing with a small number
of rows in a relational database in a highly structured,
repetitive, and predetermined way.

OODBMS See object-oriented database management
system.

Optional role The role in a relationship played by an
entity with a minimum cardinality of zero (that is, there
need not be any occurrences of the entity).

OR criterion A combination of criteria in which at least
one of the criteria must be true.

ORDER BY clause The part of an SQL SELECT com-
mand that indicates a sort order.

Outer join The form of a join in which all records
appear, even if they don’t match.

Partial dependency A dependency of a column on only
a portion of the primary key.

Password A string of characters assigned by a DBA to a
user that the user must enter to access a database.

Patriot Act A federal law enacted in 2001 that specifies
data retention requirements for the identification of
customers opening accounts at financial institutions,
allows law enforcement agencies to search companies’
and individuals’ records and communications, and
expands the government’s authority to regulate financial
transactions.

404

Glossary

Permission The specification of the kind of access a
user has to the objects in a database.

Persistence The ability to have a program “remember”
its data from one execution to the next.

Physical-level design The step during database design in
which a design for a given DBMS is produced from the
final information-level design.

Polymorphism The use of the same name for different
operations in an object-oriented system.

Pop-up form A form that opens on top of other objects,
even when another object is active.

Presidential Records Act A federal law enacted in 1978
that regulates the data retention requirements for all
communications, including electronic communications,
of U.S. presidents and vice presidents.

Primary copy In a distributed database with replicated
data, the copy of the database that must be updated in
order for the update to be deemed complete.

Primary key A minimal collection of columns
(attributes) in a table on which all columns are
functionally dependent and that is chosen as the main
direct-access vehicle to individual rows. Also see
candidate key.

PRIMARY KEY The SQL clause that is used in a
CREATE TABLE or ALTER TABLE command to set a
table’s primary key field(s).

Primary sort key When sorting on two fields, the more
important field; also called a major sort key.

Privacy The right of individuals to have certain
information about them kept confidential.

Private visibility In UML, an indication that only the
class itself can view or update the attribute value.

Procedural language A language in which a user
specifies the steps that are required for accomplishing a
task instead of merely describing the task itself.

Procedure A series of steps followed in a regular,
specified order to accomplish one end result.

Product The table obtained by concatenating every row
in the first table with every row in the second table.

Production system The hardware, software, and
database for the users. Also called a live system.

PROJECT The relational algebra command used to
select columns from a table.

Protected visibility In UML, an indication that only the
class itself or public or protected subclasses of the class
can view or update the attribute value.

Public visibility In UML, an indication that any class
can view or update the attribute value.

QBE See Query-By-Example.

Qualify To indicate the table (relation) of which a given
column (attribute) is a part by preceding the column
name with the table name. For example,
Customer.Address indicates the column named Address
in the table named Customer.

Query A question, the answer to which is found in the
database; also used to refer to a command in a nonpro-
cedural language such as SQL that is used to obtain the
answer to such a question.

Query-By-Example (QBE) A data manipulation lan-
guage for relational databases in which users indicate
the action to be taken by completing on-screen forms.

RAID (redundant array of inexpensive/independent
drives) A device used to protect against hard drive
failures in which database updates are replicated to
multiple hard drives so that an organization can
continue to process database updates after losing one
of its hard drives.

RDBMS See relational DBMS.

Record A collection of related fields; can be thought of
as a row in a table.

Recovery The process of returning a database to a state
that is known to be correct from a state known to be
incorrect.

Redundancy Duplication of data, or the storing of the
same data in more than one place.

Referential integrity The rule that if a table A contains a
foreign key that matches the primary key of table B,
then the value of this foreign key must either match the
value of the primary key for some row in table B or be
null.

Relation A two-dimensional table-style collection of
data in which all entries are single-valued, each column
has a distinct name, all the values in a column are
values of the attribute that is identified by the column
name, the order of columns is immaterial, each row is
distinct, and the order of rows is immaterial. Also called
a table.

Relational algebra A relational data manipulation
language in which new tables are created from existing
tables through the use of a set of operations.

Relational database A collection of relations (tables).

Relational DBMS (RDBMS) A DBMS that supports and
manipulates a relational database.

Relational operator An operator used to compare
values. Valid operators are ¼, <, >, <¼, >¼, <>, and
!¼. Also called a comparison operator.

Relationship An association between entities.

Remote site From a user’s perspective, any site other
than the one at which the user is working.

Repeating group More than one entry at a single
location in a table.

Replica A copy of the data in a database that a user can
access at a remote site.

Replicate A duplicate of the data in a database that a
user can access at a remote site.

Replication transparency The property that users do
not need to be aware of any replication that has taken
place in a distributed database.

Glossary

405

Reserved word A word that is part of the SQL language.

REVOKE The SQL statement that is used to revoke
privileges from users of a database.

Roll up View and analyze higher levels of aggregation.

Rollback A process to recover a database to a valid
state by reading the log for problem transactions and
applying the before images to undo their updates; also
called backward recovery.

Row-and-column subset view A view that consists of a
subset of the rows and columns in a table.

Sandbox See test system.

Sarbanes-Oxley (SOX) Act A federal law enacted in
2002 that specifies data retention and verification
requirements for public companies, requires CEOs and
CFOs to certify financial statements, and makes it a
crime to destroy or tamper with financial records.

Save See backup.

Scalability The ability of a computer system to continue
to function well as utilization of the system increases.

SEC Rule 17a-4 The rule of the Security and Exchange
Commission that specifies the retention requirements of
all electronic communications and records for financial
and investment entities.

Second normal form (2NF) A relation is in second
normal form if it is in first normal form and no nonkey
attribute is dependent on only a portion of the primary key.

Secondary key A column (attribute) or collection of
columns that is of interest for retrieval purposes (and that
is not already designated as some other type of key).

Secondary sort key When sorting on two fields, the less
important field; also called minor sort key.

Security The prevention of unauthorized access to a
database.

SELECT The relational algebra command to select rows
from a table. Also, the retrieval command in SQL.

SELECT clause The part of an SQL SELECT command
that indicates the columns to be included in the query
results.

Server A computer that provides services to the clients
in a client/server system; also called a back-end
processor or a back-end machine.

Server-side extension Instructions executed by a Web
server to provide dynamic Web page capability. These
extensions are usually contained in separate files that
are referenced within the HTML documents.

Server-side script See server-side extension.

Session The duration of a Web client’s connection to a
Web server.

SGML See Standard Generalized Markup Language.

Shared lock A lock that lets other users read locked data.

Shrinking phase A phase during a database update in
which the DBMS releases all the locks previously
acquired for a transaction and acquires no new locks.

Simple condition A condition that involves only a single
field and a single value.

Single-column index See single-field index.

Single-field index An index built on a single field
(column).

Single-item form A form layout that displays one record
at a time from the object on which it is a based.

Slice and dice In a data warehouse, selecting portions of
the available data, or reducing the data cube.

SMALLINT The SQL data type for integer data for small
integers.

Smart card Small plastic cards about the size of a
driver’s license that have built-in circuits containing
processing logic to identify the cardholder.

Sort The process of arranging rows in a table or results
of a query in a particular order.

Sort key The field on which data are sorted; also called
a key.

SQL See Structured Query Language.

Standard Generalized Markup Language (SGML) A
metalanguage used to create document markup lan-
guages; SGML became a standard in 1986. Languages
based on the full SGML are used to manage large,
complex reports and technical specifications for a
variety of computer platforms, printers, and other
devices.

Star schema A multidimensional database whose
conceptual shape resembles a star.

Startup form A form that opens when a user first
accesses a database and contains controls that let the
user easily open objects and work with them, and also
provides a level of security by restricting access to
objects.

Stateless A condition for a communication protocol,
such as HTTP, in which the connection between the
sender and the receiver, such as a Web server and a
Web client, is closed once the sender responds to the
sender’s request and the sender retains no information
about the request or the sender.

Statement history The area of memory in MySQL that
stores the most recently entered command.

Static Web page A Web page that displays the exact
same content for all Web clients.

Stored procedure A file containing a collection of
compiled and optimized SQL statements that are
available for future use.

Structured Query Language (SQL) A very popular
relational data definition and manipulation language
that is used in many relational DBMSs.

Stylesheet A document that specifies how to process the
data contained in another document and present the
data in a Web browser, in a printed report, on a mobile
device, in a sound device, or in other presentation
media.

406

Glossary

Subclass A class that inherits the structure and meth-
ods of another class and for which you can define addi-
tional attributes and methods.

Subquery In SQL, a query that appears within another
query.

SUBTRACT The relational algebra command for per-
forming the difference of two tables.

Superclass In UML, a class that has subclasses.

Surrogate key A system-generated primary key that is
usually hidden from users.

Synchronization The periodic exchange by a DBMS of
all updated data between two databases in a replica set.

Synthetic key A system-generated primary key that is
usually hidden from users.

Syscolumns The portion of the system catalog that
contains column information.

Sysindexes The portion of the system catalog that con-
tains index information.

Systables The portion of the system catalog that con-
tains table information.

System catalog A structure that contains information
about the objects (tables, columns, indexes, views, and
so on) in a database.

System requirement A feature that must be included in
an information system to fulfill business, legal, or user
needs.

System software The programs that control the hard-
ware and software environment. These programs
include the operating system, network managers, device
drivers, and utility programs such as sorting and data
backup.

Sysviews The portion of the system catalog that con-
tains view information.

Table See relation.

Tag A command in a Web page that a Web browser
processes to position and format the text on the screen
or to link to other files.

TCP/IP (Transmission Control Protocol and Internet
Protocol) The standard protocol for all communication
on the Internet.

Test system The hardware, software, and database that
programmers use to develop new programs and modify
existing programs. Also called a sandbox.

Thin client In a client/server architecture, a client that
performs only presentation functions.

Third normal form (3NF) A table is in third normal
form if it is in second normal form and the only deter-
minants it contains are candidate keys.

Three-tier architecture A client/server architecture in
which the clients perform the presentation functions, a
database server performs the database functions, and
the application servers perform the business functions
and serve as an interface between clients and the data-
base server. Also called an n-tier architecture.

Timestamp The unique time when the DBMS starts a
transaction update to a database.

Timestamping The process of using timestamps to avoid
the need to lock rows in a database and to eliminate the
processing time needed to apply and release locks and to
detect and resolve deadlocks.

Top-down design method A design method that begins
with a general database design that models the overall
enterprise and then repeatedly refines the model to
achieve a design that supports all necessary applications.

Transaction A set of steps completed by a DBMS to
accomplish a single user task.

Transmission Control Protocol and Internet Protocol
See TCP/IP.

Trigger An action that automatically occurs in response
to an associated database operation such as INSERT,
UPDATE, or DELETE.

Tuning The process of changing the database design to
improve performance.

Tuple The formal name for a row in a table.

Two-phase commit An approach to the commit process
in distributed systems in which there are two phases. In
the first phase, each site is instructed to prepare to
commit and must indicate whether the commit will be
possible. After each site has responded, the second
phase begins. If every site has replied in the affirmative,
all sites must commit. If any site has replied in the neg-
ative, all sites must abort the transaction.

Two-phase locking An approach to locking that is used
to manage concurrent update in which there are two
phases: a growing phase, in which the DBMS locks more
rows and releases none of the locks, and a shrinking
phase, in which the DBMS releases all the locks and
acquires no new locks.

Two-tier architecture A client/server architecture in
which the clients perform the presentation functions,
and a database server performs the database functions.
In a fat client configuration, the clients perform the
business functions, whereas in a thin client configura-
tion, the database server performs the business
functions.

UML See Unified Modeling Language.

Unified Modeling Language (UML) An approach used
to model all the aspects of software development for
object-oriented systems.

Uniform Resource Locator See URL.

Union A combination of two tables consisting of all
records that are in either table.

Union compatible Two tables are union compatible if
they have the same number of fields and if their corre-
sponding fields have identical data types.

Unnormalized relation A structure that satisfies the
properties required to be a relation (table) with the
exception of allowing repeating groups (the entries in
the table do not have to be single-valued).

Glossary

407

UPDATE The SQL command used to make changes to
existing table data. After the word UPDATE, you indi-
cate the table to be updated. After the word SET, you
indicate the field to be changed, followed by an equals
sign and the new value. Finally, you can include a con-
dition in the WHERE clause, in which case, only the
records that satisfy the condition will be changed.

Update anomaly An update problem that can occur in a
database as a result of a faulty design.

Update query In Access, a query that updates the con-
tents of a table.

UPS (uninterruptable power supply) A power source
such as a battery or fuel cell, for short interruptions and
a power generator for longer outages.

URL (Uniform Resource Locator) An Internet address
that identifies where a Web page is stored—both the
location of the Web server and the name and location of
the Web page on that server.

User view The view of data that is necessary to support
the operations of a particular user.

User-defined data type A data type part that was cre-
ated from a collection of one or more existing fields.

Utility services DBMS-supplied services that assist in
the general maintenance of a database.

Validation rule In Access, a rule that data entered in a
field must satisfy.

Validation text In Access, a message that is displayed
when a validation rule is violated.

Victim In a deadlock situation, the deadlocked user’s
transaction that the DBMS chooses to abort to break the
deadlock.

View An application program’s or an individual user’s
picture of a database.

Visibility symbol In UML, a symbol preceding an
attribute in a class diagram to indicate whether other
classes can view or change the value in the attribute.
The possible visibility symbols are public visibility (þ),
protected visibility (#), and private visibility (�). With
public visibility, any other class can view or change the
value. With protected visibility, only the class itself or
public or protected subclasses of the class can view or
change the value. With private visibility, only the class
itself can view or change the value.

W3C (World Wide Web Consortium) An international
organization that develops Web standards, specifica-
tions, guidelines, and recommendations.

Warm site A backup site that is equipped with an organ-
ization’s duplicate hardware and software but not data.

Weak entity An entity that depends on another entity
for its own existence.

Web (World Wide Web) A vast collection of digital
documents available on the Internet.

Web browser A computer program that retrieves a Web
page from a Web server and displays it on a Web client.

Web client A computer requesting a Web page from a
Web server.

Web database A database that is designed to publish
data created in Access so users can access that data with
a Web browser and an Internet connection.

Web display form A form that opens when a user first
accesses a Web database and contains controls that let
the user easily open objects and work with them, and
also provides a level of security by restricting access to
objects.

Web page A digital document on the Web.

Web server A computer on which an individual or
organization stores Web pages for access on the
Internet.

WHERE clause The part of an SQL SELECT command
that indicates the condition rows must satisfy to be
displayed in the query results.

Workgroup In Access, a group of users who are assigned
the same permissions to various objects in a database.

World Wide Web See Web.

World Wide Web Consortium See W3C.

XHTML (Extensible Hypertext Markup Language)
A markup language that is stricter version of HTML
and that is based on XML.

XML (Extensible Markup Language) A metalanguage
derived from a restricted subset of SGML and designed
for the exchange of data on the Web. You can customize
XML tags to describe the data an XML document con-
tains and how that data should be structured.

XML declaration An XML statement clause that speci-
fies to an XML processor which version of XML to use.

XML schema A set of statements that specifies the ele-
ments (tags), the attributes (characteristics associated
with each tag), and the element relationships for an
XML document. The XML schema can be a separate
file with a .xsd extension, or you can include it at the
beginning of an XML document. It’s a newer form of
DTD that more closely matches database features and
terminology.

XQuery A language for querying XML, XSL, XHTML,
other XML-based documents, and similarly structured
data repositories.

XSL (Extensible Stylesheet Language) A standard W3C
language for creating stylesheets for XML documents.

XSL Transformations See XSLT.

XSLT (XSL Transformations) A language that defines
the rules to process an XML document and change it
into another document; this other document could be
another XML document, an XSL document, an HTML or
XHTML document, or most any other type of document.

408

Glossary

INDEX

Note: Page numbers in boldface indicate
key terms.

SYMBOLS
* (asterisk), 77, 88, 92–93, 347, 349
: (colon), 45, 123
$ (dollar sign), 142, 143
" (double quotes), 38
… (ellipsis), 177
¼ (equal sign), 39
- (hyphen), 81, 306
() (parentheses), 34, 43, 104, 143
% (percent sign), 349
(pound sign), 81, 306
? (question mark), 89, 349
; (semicolon), 75, 142, 143
0 (single quotes), 38, 79, 81, 104
[] (square brackets), 43, 73, 383
_ (underscore), 89, 73, 349

1NF (first normal form), 161, 162, 173,
176–177

2NF (second normal form), 162, 163,
164–166, 173, 176

3NF (third normal form), 165, 166,
168–169, 172, 175–177, 217

4NF (fourth normal form), 173–174,
175, 176

A
access

delay, 278
privileges, 258–261

Access (Microsoft)
creating tables and, 106
data macros and, 144–145
functions, 44
grouping records and, 46–47
indexes and, 271
integrity rules and, 133–134
join operations and, 51–55
key constraints and, 249
metadata and, 231
new columns and, 45
popularity of, 10
QBE and, 34, 35
security and, 246
simple queries and, 35–37
sorting and, 47–51
SQL and, 71–83
structure changes and, 137–139
version 2007, 72
version 2010, 72, 75–76, 144–145
views and, 126
XML and, 292–293

ADO.NET, 290
After Delete event, 147
after image, 242
After Update event, 146

aggregate functions, 44
aggregation, 301
Alexamara Marina Group example,

22–27, 30, 70, 152–153, 181, 227,
255–256, 313

ALTER TABLE command, 131, 133,
137, 347, 353

alternate keys, 161
AND condition, 42
AND criterion, 39
AND operator, 42, 82–83, 86, 100, 102
Answer table, 59
Apache HTTP Server, 289, 290
API (Application Program Interface),

290, 291
application software, 394
archives, 262, 263
arguments, 146
artificial keys, 187
ASP.NET, 290
associations, 305
asterisk (*), 77, 88, 92–93, 347, 349
attributes, 34, 302

data independence and, 13–14
described, 4
survey forms and, 203

authentication, 246, 247
Author table, 16, 198
authorization rules, 247
AVG function, 44, 46, 92, 94, 348

B
B2B (business to business) e-commerce,

292
back-end processors, 286
backups

database administration and, 266
DDBMSs and, 284
described, 242

backward recovery (rollback), 245
Basic, 252
batch processing, 237
BCNF (Boyce-Codd normal form),

167, 176
before image, 242
Berners-Lee, Tim, 292
BETWEEN operator, 85–86, 348, 349
binding

described, 307
late, 307

biometrics, 246
BLOBs (binary large objects), 301
Book table, 17, 198–199
bottom-up design method, 202, 203
Branch table, 15
Brookings Direct example, 232–234,

239, 242–246
browsers. See Web browsers
Bush, George W., 262

C
C (high-level language), 266
Cþþ (high-level language), 9, 252, 266
calculated fields, 42, 43–44, 86–88, 348
candidate key, 161
cardinality, 221, 222
Cartesian product, 64
cascade delete, 134
cascade update, 134
catalog(s)

described, 140
overview, 140–142
services, providing, 231–232

categories
described, 214
representing, 216

CGI (Common Gateway Interface),
290

CHAR data type, 74, 351
CHECK clause, 136
Chen, Peter, 217
class(es)

DDBMSs and, 301–303, 307
described, 303
diagrams, 305, 306
overview, 301–303
sub-, 304, 307
super-, 307
types of, 307

client(s). See also client/server systems
described, 142
fat, 287
-side extensions (scripts), 290
thin, 287, 288

client/server systems. See also clients
advantages of, 288–289
DDBMSs and, 285–288, 300
described, 142

COBOL, 252
Codd, E. F., 300
ColdFusion, 290
colon (:), 45, 123
column(s). See also fields

determinants of, 167
listing, 34
names, 34, 45, 73–74, 94

command, use of the term, 71. See also
specific commands

commit, use of the term, 242, 243
communications network. See network
comparison operators, 39, 40, 79
compatibility checkers, 388
complete categories, 216
complexity, increased, in DBMSs, 14
composite entities, 219
compound criteria (conditions), 100,

348. See also conditions
described, 39
overview, 40–42, 82–86

computational completeness, 307
computed fields, 42, 43–44, 86–88, 348

CONCAT function, 87
concatenation, 60, 64, 87, 158
concurrent updates, 232–235, 266, 283

DDBMSs and, 308
described, 232
overview, 232–249

conditions. See also criteria
overview, 348–349
simple, 348

consistency, facilitation of, 13
constraint(s)

integrity, 13, 248–249, 267
inter-relation, 178

context-sensitive help, 267
cookies, 291
coordinators, 284
Copy table, 19–21, 199–200
Count function, 44, 92, 93, 97, 348
CREATE INDEX command, 129, 349
CREATE PROCEDURE command, 143
CREATE TABLE command, 72, 73,

74–75, 105–106, 131, 133, 139,
350–351

CREATE VIEW command, 120, 123,
124, 350–351

criteria. See also compound criteria
(conditions); conditions

described, 37
functions and, 44–45
simple, 37–39

cross-dimensional operations, 301
crow’s foot, 221
cumulative design, 184
CURRENCY data type, 72, 74
Customer table, 6, 32–34, 44–45, 57, 80,

105, 113
catalog services and, 232–233
database administration and,

259–260, 272–273
DDBMSs and, 306
indexes and, 126–129
integrity rules and, 131, 134
joining and, 100
navigation forms and, 369–370
normalization and, 158, 160,

165–173
relational algebra and, 59, 60, 61, 63
relationships and, 209–210,

250–251
structure changes and, 137
union operations and, 103
views and, 121
Web databases and, 369–370,

378–387
CustomerAddress table, 272
CustomerFinancial table, 272
CustomerPart table, 212
CustomerRep table, 58

D
data. See also data types

cube, 297, 298
definition, 75, 266

deleting, 231
dictionaries, 232, 252, 268, 284
files, 5
fragmentation, 280, 281
getting more information from the

same amount of, 12
importing, 381
inconsistent, 163, 166
independence, 13, 14, 126, 250, 251
mining, 300
redundancy, 2, 13, 170
restructuring, 266
sharing, 12–13
warehouses, 295, 296, 297–301

data macros, 144, 145
data type(s). See also data types (listed

by name)
CREATE TABLE command and, 351
DDBMSs and, 307
integrity constraints and, 248
overview, 74
parts, 374
specifying, 74
user-defined, 374, 375–376

data types (listed by name). See also
data types

CHAR data type, 74, 351
CURRENCY data type, 72, 74
DATE data type, 74, 351
DECIMAL data type, 72, 74, 351
INTEGER data type, 74, 351
NUMBER data type, 72, 74
SMALLINT data type, 74, 351
TEXT data type, 38, 74

database(s). See also specific subjects
advantages of, 12–13
disadvantages of, 14
master, 251–252
passwords, 246
servers, 287
terminology, 4–5

database administration. See also DBAs
(database administrators)

DBMS evaluation/selection,
264–268

enforcement, 258–263
overview, 257–276
policy formation, 258–263

database design. See also design grid
comprehensive example, 315–345
database administration and, 269
DBMSs and, 10
DDBMSs and, 284
described, 10
exercises, 190–201
methods, 183–227
normalization and, 155–181
transition from systems analysis

to, 396
datasheet forms, 371
Date, C. J., 285
DATE data type, 74, 351
DB2, 10, 233
DBAs (database administrators). See

also database administration
authentication and, 246

authorizations and, 247
catalog services and, 232–233
described, 13
overview, 257–276
security and, 13, 260–261

DBDL (Database Design Language)
described, 187
entity subtypes and, 215
examples, 191–193
overview, 187–189
physical-level design and,

201–202
DBMSs (database management systems).

See also DDBMSs (distributed
database management systems)

catalogs and, 140–142
described, 9
evaluation/selection of, 264–268
independence of, 285
indexes and, 126–130
integrity rules and, 135–136
maintenance of, 268
overview, 9–14
ROLLBACK command and, 103
table/column name restrictions

for, 73
views and, 120–126

DDBMSs (distributed database manage-
ment systems). See also DBMSs
(database management systems);
distributed databases

advantages of, 281
characteristics of, 279–281
client/server systems and,

285–288
described, 278
disadvantages of, 282–284
overview, 277–313
rules for, 285

deadlocks
described, 240, 241
detecting/handling, 241

deadly embrace, 240
DECIMAL data type, 72, 74, 351
decompositions, incorrect, 169–173
decryption, 246
defining query, 120
DELETE command, 105, 143, 351
delete query, 55, 56
delimiters, 142
denormalization, 272
Department of Defense (DOD)

Standard, 262
Department table, 201
dependency diagrams, 164
design grid

compound criteria and, 39–42
described, 35
functions and, 44
join operations and, 53–54
sorting and, 49, 50

determinants, 167
difference

operation, 64
of two tables, 62

dimension tables, 297

410

Index

disaster recovery plans, 261, 262
distributed databases. See also DDBMSs

(distributed database manage-
ment systems)

advantages of, 281
database administration and, 267
described, 28
disadvantages of, 282–284
rules for, 285

division process, 65
document(s)

collection, for system requirements,
396

existing, obtaining information from,
204–208

type definitions (DTDs), 294, 295
from vendors, 267

dollar sign ($), 142, 143
domains, 302, 303
double quotes ("), 38
drill down, 299
DROP INDEX command, 130, 352
DROP TABLE command, 139, 352
DTDs (Document Type Definitions),

294, 295
dynamic

sparse matrix handling, 301
Web pages, 290

E
e-commerce (electronic commerce)

described, 290
types of, 292

Edit Record action, 146
ellipsis (…), 177
Employee table, 133, 187–188

normalization and, 161
physical-level design and,

201–202
encapsulated data/actions, 301
encapsulation, 307
encryption, 246
entities. See also E-R

(entity-relationship) model
composite, 219
data independence and, 13–14
described, 4
properties of, determining, 185
subtypes, 213, 214, 215–216
survey forms and, 203

entity integrity, 131
equal sign (¼), 39
E-R (entity-relationship) model, 9, 22,

27. See also entities
described, 217
entity subtypes and, 214
overview, 188–189, 217–222

errors
comparison operations and, 79
integrity rules and, 134, 135
typing, correcting, 72

exclusive lock, 266
existence dependency, 221
extensibility, 307

F
FacCommittee table, 176
FacStudent table, 176
fact tables, 297
Faculty table, 174–176
failure, impact of, 14
fat clients, 287
field(s). See also columns

adding, 250, 378
computed (calculated), 42, 43–44,

86–88, 348
concatenating, 87
deleting, 138
described, 4
design grid and, 35, 36
length of, 250
names, 43, 123, 383–384

file servers. See also servers
DDBMSs and, 285–286
described, 285

file sizes, larger, 14
First function, 44
foreign keys

described, 133
indexes and, 128

FOREIGN KEY clause, 133
form(s)

creating, 381–384
datasheet, 382–384
described, 10
navigation, 384–386
pop-up, 371
single-item, 382
startup, 386, 387
survey, 203–204

forward recovery, 244
fragmentation transparency,

280–281
FROM clause, 75, 99, 102, 105
front-end processors, 286
function(s). See also functions (listed by

name)
aggregate, 44
built-in (aggregate), 92–95
described, 44
overview, 44–46

functional dependence, 165, 170, 194,
205–208

described, 157
overview, 157–159
survey forms and, 203–204

functions (listed by name). See also
functions

AVG function, 44, 46, 92, 94, 348
CONCAT function, 87
Count function, 44, 92, 93,

97, 348
First function, 44
Last function, 44
MAX function, 44, 92, 94, 348
MIN function, 44, 92, 94
StDev function, 44
SUM function, 44, 92, 93, 94, 348
Var function, 44

future plans, 268

G
generalization, 307
generic dimensionality, 300
global deadlock, 283
GRANT statement, 130, 131,

260, 352
GROUP BY clause, 96
Group By operator, 46
grouping, 46, 47, 96–98
growing phase, 240
GUI (graphical user interface), 266

H
hardware transparency, 288
HAVING clause, 97, 98
help, context-sensitive, 267
Henry Books database example,

14–22, 29–30, 69–70, 151–152,
181, 226–227, 255, 313

heterogeneous DDBMS, 279
HIPAA (Health Insurance Portability and

Accountability Act), 262
Holt Distributors example, 204–205
homogeneous DDBMS, 279
hot sites, 262
Housewares table, 120, 122–124
HTML (HyperText Markup Language),

291, 294, 295. See also Web
pages

classification of, as a markup
language, 292

described, 290
HTTP (HyperText Transfer Protocol),

289, 290, 291
hyperlinks, 290
hyphen (-), 81, 306

I
IBM (International Business

Machines), 71
IDEF1X

categories and, 214, 216
described, 188

IIS (Internet Information Services), 289
importing data, 381
IN operator, 88–90, 348, 349
incomplete categories, 214
independent entities, 196
index keys, 128
indexes

creating, 250
deleting, 128
described, 126
multiple-field, 129, 130
overview, 126–130
single-field, 129

information
hiding, 307
-level design, 183, 184–190, 320–338
-level requirements, 393–397
systems, 393

inheritance, 304, 307

411

Index

Inmon, W. H., 296
input requirements, 394–395
INSERT command, 72, 104, 139, 143,

352–353
INTEGER data type, 74, 351
integrity

ALTER TABLE command and, 353
constraints, 13, 248–249, 267
described, 13
legal-values, 135, 136, 248
rules, 131–136

inter-relation constraints, 178
Internet, 289. See also networks; World

Wide Web
Internet Explorer browser (Microsoft).

See Web browsers
INTERSECT command, 63
intersection, of two tables, 62, 63
interviews, 295
INTO clause, 105, 355
intranets, 267

J
Java, 9, 266, 290
JavaScript, 290
JDBC (Java Database Connectivity), 290
join columns, 60
JOIN command, 62
join line, 51
JOIN operator, 353
joining tables

described, 51
overview, 51–55, 99–102, 353
relational algebra and, 60–62

journaling, 242, 243–244
journals, 242

K
key(s). See also primary keys

alternate, 161
artificial, 187
candidate, 161
foreign, 128, 133
index, 128
integrity constraints, 248–249
major sort, 47, 50, 91
minor sort, 47, 48, 91
natural, 186
normalization and, 159–161
surrogate, 187

L
LANs (local area networks), 267
Last function, 44
legal-values integrity, 135, 136, 248
LIKE operator, 88–90, 348, 349
local deadlock, 283
local sites, 279
location transparency, 279, 285
locking

described, 237

on PC-based DBMSs, 241
logs, 242, 243, 245
lost update problem, 236–237

M
macros, 144, 145, 382–384
maintenance, 268
major sort key, 47, 50, 91
Make Table button, 57
Make Table dialog box, 57–58
make-table query, 56, 57–58
mandatory role, 222
many-to-many relationships, 211–213,

218, 219
described, 185
creating, 185–186

many-to-many-to-many relationship,
212, 213, 218

Marina table, 23
MarinaSlip table, 24
markup languages, 292
Marvel College example, 173–176,

315–345
master databases, 251–252
MAX function, 44, 92, 94, 348
message(s)

described, 278
OODBMSs and, 303–304
overview, 303–304

metadata, 231
metalanguage, 292
methods

DDBMSs and, 303–304
described, 303

Microsoft Access
creating tables and, 106
data macros and, 144–145
functions, 44
grouping records and, 46–47
indexes and, 271
integrity rules and, 133–134
join operations and, 51–55
key constraints and, 249
metadata and, 231
new columns and, 45
popularity of, 10
QBE and, 34, 35
security and, 246
simple queries and, 35–37
sorting and, 47–51
SQL and, 71–83
structure changes and, 137–139
version 2007, 72
version 2010, 72, 75–76, 144–145
views and, 126
XML and, 292–293

MIN function, 44, 92, 94
minor sort key, 47, 48, 91
MIT Sloan School of Management, 217
MSDN Web site, 390
multidimensional

conceptual views, 300
databases, 297

multiple-field index, 129, 130

multiplicity, 306
multiuser support, 301
multivalued dependence, 173–174, 175,

176–177
MySQL, 71, 143–144

CONCAT function and, 87
creating tables and, 105–106
getting started with, 72–73
popularity of, 10
-Premiere script, 72
ROLLBACK command and, 103
simple retrieval and, 76–77
stored procedures and, 143

N
naming conventions, 73–74
natural join, 62
natural keys, 186
navigation forms, 369, 384–386
Navigation Pane, 139
network(s). See also World Wide Web

DDBMSs and, 285, 288–292
described, 277
intranets, 267
local area (LANs), 267
transparency, 288

nonidentifying relationships, 196
nonkey columns, 163.

See also attributes
nonprocedural language, 252, 266
nonvolatile data, 296
normal form(s). See also normalization

1NF (first normal form), 161, 162,
173, 176–177

2NF (second normal form), 162, 163,
164–166, 173, 176

3NF (third normal form), 165, 166,
168–169, 172, 175–177, 217

4NF (fourth normal form), 173–174,
175, 176

described, 155
normal set operations, 62–64
normalization, 155–181, 186–187.

See also normal forms
de-, 272
described, 155
keys and, 159–171

NOT operator, 39, 84
n-tier architecture, 287
null values, 62, 213–216
NUMBER data type, 72, 74

O
object(s)

complex, 307
described, 301
identity, 307
overview, 301–303

ODBC (Open Database Connectivity),
290, 291

Office (Microsoft), 10, 71, 293, 295
Office Open XML format, 295

412

Index

OLAP (online analytical processing),
297, 298, 300–301

OLTP (online transaction processing),
295, 296

one-to-many relationships, 5, 9,
185–186, 189, 192, 197, 203,
211, 218, 219, 221

one-to-one relationships, 185, 186,
208–211, 218, 219

OODBMSs (object-oriented database
management systems)

described, 301
overview, 301–308
rules for, 307–309

Open dialog box, 246
operator(s). See also operators (listed

by name)
comparison, 39, 40, 79
relational, 39

operators (listed by name). See also
operators

AND operator, 42, 82–83, 86,
100, 102

BETWEEN operator, 85–86,
348, 349

Group By operator, 46
IN operator, 88–90, 348, 349
JOIN operator, 353
LIKE operator, 88–90, 348, 349
NOT operator, 39, 84
Where operator, 44

optional role, 222
OR criteria, 39, 41, 102
OR operator, 82–83
Oracle

catalog services and, 233
creating tables and, 106
popularity of, 10
ROLLBACK command and, 103

Order, use of the term, 7
ORDER BY clause, 90, 96
OrderLine table, 6, 32, 55–56,

219–220
data macros and, 146, 147
database administration and, 263, 273
DDBMSs and, 306
joining and, 101
locking and, 239
normalization and, 158, 160, 165,

194–195
relational algebra and, 65
subqueries and, 95
views and, 121

Orders form, 11
Orders table, 6–8, 32–33, 36–37

database administration
and, 263

DBDL and, 195
DDBMSs and, 306
functional dependencies and, 194
joining and, 100–101
locking and, 239
normalization and, 158, 161–162,

164, 165
relational algebra, 64
union operations and, 103

views and, 121
outer join, 62
output requirements, 394
Owner table, 23

P
parentheses, 34, 43, 104, 143
Part form, 11
Part report, 11–12
Part table, 6, 32, 120, 258

catalogs and, 141
data macros and, 146
DDBMSs and, 280–281, 302–303,

306
joining and, 101
listing, 107
normalization and, 158, 160, 165,

194–195
relational algebra and, 64, 65
SELECT clause and, 77
structure changes and, 138
views and, 121–122

partial dependencies, 164
PartRep table, 212
passwords

assigning, 246–247
DBAs and, 13
described, 246

Patriot Act, 262
percent sign (%), 349
performance, 267, 281, 308

reporting, 300
tuning, 270, 271–273

Perl, 9
permissions, 247, 252
persistence, 308
PHP, 9, 290
physical-level design, 183, 201–202
plus sign (þ), 306
polymorphism, 307
pop-up forms, 371
portability, 267
pound sign (#), 81, 306
Premier Products example, 1–14, 34,

258–261, 271
DDBMSs and, 279, 280–281, 287,

301–305
deadlock and, 240
E-R diagrams for, 9, 220
exercises, 29, 68–69, 150–151,

180–181, 226, 255, 313,
391–392

indexes and, 126
integrity rules and, 132–133,

135–136
locking and, 239
normalization and, 155–159,

180–181
redundancy and, 13
relational databases and, 31–33
relationships and, 208–211, 250
scripts, provided with Data Files, 72
security and, 247
SQL and, 72

structure changes and, 137–139
updating tables and, 103, 230–237
views and, 120–121, 124–125
XML and, 292–293

Presidential Records Act, 262
primary copy, 282, 283
primary key(s), 128, 131, 159.

See also keys
described, 34
determining, 185
normalization and, 159–161, 164,

166, 172, 177
types of, 186–187

PRIMARY KEY clause, 131
privacy, 247
private visibility, 306
procedural language, 252, 266
procedures

described, 393, 394
stored, 142, 143

processing requirements, 395
product, of two tables (Cartesian

product), 64
production system, 269
productivity, increasing, 13
PROJECT command, 59, 60, 61, 62
protected visibility, 306
public visibility, 306
Publisher table, 15

Q
QBE (Query-By-Example), 34, 35,

39–42, 59
queries. See also SQL (Structured Query

Language). See also queries
creating, 381
creating tables from, 105–106
DDBMSs and, 285
defining, 120
delete, 55, 56
described, 34
functions and, 44–46
make-table, 56, 57–58
more complex processing of, with

DDBMSs, 282–283
simple, 35–37
sorting and, 47–51
sub-, 95, 355

Query Design button, 72
Query Tools Design tab, 36, 44, 55,

56, 57
Query Type group, 55, 57
Query window, 35, 51
question mark (?), 89, 349

R
RAID (redundant array of inexpensive/

independent disks), 262
RAM (random-access memory), 232,

233, 234, 235
RDBMSs (relational database manage-

ment systems), 295–296, 301. See
also relational databases

413

Index

records
counting, 45, 92–93
deleting, 56
described, 34
grouping, 46–47
sorting, 47–51

recovery
backward (rollback), 245
database administration and, 266
DDBMSs and, 283–284, 308
described, 242
forward, 244
overview, 14, 242–246
on PC-based DBMSs, 245–246

redundancy, 2, 13, 170
referential integrity

described, 133
overview, 132–135

relational databases. See also RDBMSs
(relational database management
systems)

advanced topics, 120–153
described, 33
overview, 31–34

relational algebra, 58, 59–65
relational operators, 39
relations, 33
relationships

adding, 250–251
changing, 250–251
described, 5
many-to-many, 185, 186, 211–213,

218, 219
many-to-many-to-many, 212, 213,

218
one-to-many, 5, 9, 185–186, 189,

192, 197, 203, 211, 218, 219, 221
one-to-one, 185, 186, 208–211, 218,

219
survey forms and, 203

remote sites, 279
Rep table, 6, 32, 33, 57, 121, 373–374

catalogs and, 140
CREATE TABLE command and,

74–75
creating, 107
database administration and, 258
DDBMSs and, 306
integrity and, 132–133, 134, 135
joining and, 99
normalization and, 157, 158,

167–168, 170–171
relationships and, 209, 250–251
user views and, 191
XML and, 292–294

RepCustomer table, 212
repeating groups, 33, 161
replicas, 251. See also replication
replication, 251–252, 267, 282

described, 251
transparency, 279, 285

reporting
flexible, 301
performance, 300

requirements, balancing conflicting, 13
research, for system requirements, 396

reserved words
described, 75
field names and, 43

Results group, 36
retrieve data functions, 230–231
REVOKE statement, 130, 131, 354
Ribbon, 72, 246
roll up, 300
ROLLBACK command, 103
row-and-column subset view, 124
Run button, 36, 55, 56

S
Sales table, 211, 212
sandbox, 269
Sarbanes-Oxley (SOX) Act, 262
scalability, 287, 289
script(s)

described, 290
running, 72

SEC Rule 17a-4, 262
secondary keys, 186
security

access privileges, 258–261
authentication, 246, 247
biometrics, 246
database administration and, 267
DDBMSs and, 284, 288
described, 13
encryption, 246
expanding, 13
overview, 130–131
publishing Web databases and, 389
services, 246–247

SELECT clause, 77, 87, 139, 347–348
described, 75
joining and, 99, 102

SELECT command, 59, 120, 250,
347–348, 353–355

SELECT INFO command, 139
SELECT-FROM-WHERE command,

75–82
semicolon (;), 75, 142, 143
SeniorStudent table, 215
SEQUEL, 71
Sequence field, 18
server(s). See also client/server systems

Apache HTTP Server, 289, 290
database, 287
described, 142
overview, 286
publishing Web databases to,

388–390
ServiceCategory table, 24
ServiceRequest table, 25–26
sessions, 291
SGML (Standard Generalized Markup

Language), 292
shared lock, 266
SharePoint Server, 389–390
Show check box, 35, 122
SHOW COLUMNS command, 142
SHOW INDEX command, 142
SHOW TABLES command, 142

Show Tables dialog box, 72
Show/Hide group, 44
shrinking phase, 240
simple condition, 79
single quotes (0), 38, 79, 81, 104
single-field index, 129
single-item form, 373
slice and dice, 298, 299
SmallCust table, 105–106, 113, 139
SMALLINT data type, 74, 351
smart cards, 246
software,

application, 394
system, 394
transparency, 288

sort keys, 47, 48–51
sorting

described, 47
on multiple keys, 48–51
order, 47–48, 50
overview, 47–51, 90–92

SOURCE command, 72
SQL (Structured Query Language). See

also queries
built-in functions, 92–95
command summary, 107–113
compound conditions and, 82–86
computed fields and, 86–88
described, 71
getting started with, 71–73
grouping and, 96–98
naming conventions, 73–74
overview, 71–117
simple retrieval and, 75–82
special operators and, 88–90
use of spaces and, 73

SQL Server (Microsoft), 10
square brackets ([]), 43, 73, 383
star schema, 297
startup forms, 386, 387
stateless protocols, 291
statement history, 72, 73
static Web pages, 290
StDev function, 44
stored procedures, 142, 143
structure changes, 137–139
Student table, 213–215
StudentDorm table, 213, 215
subclasses, 304, 307
subqueries, 95, 355
SUBTRACT command, 64
subtypes, 213, 214, 215–216, 307
SUM function, 44, 92, 93, 94, 348
superclasses, 307
surrogate keys, 187
survey forms, 203–204
synchronization, 252
Syscolumns, 140, 141, 142
Sysindexes, 140, 142
Systables, 140, 142
system catalog. See catalog
system requirements, 394–396
system software, 394
systems analysis, transition from, to

systems design, 396
Sysviews, 140, 142

414

Index

T
Table Tools Table tab, 144–145
table(s)

creating, from queries, 105–106
merging, 217
names, 73–74
product of two (Cartesian product),

64
tags, 290
TCP/IP (Transmission Control Protocol/

Internet Protocol), 289, 290, 291
technical requirements, 395
Temp table, 60–62
Territory table, 250–251
test system (sandbox), 269
testing, 269–270
TEXT data type, 38, 74
Text fields, 38
thin clients, 287, 288
three-tier architecture, 287, 288, 290
timestamping, 242
timestamps, 242
top-down design method, 202, 203
Totals button, 44
training, 267–268
transaction(s)

described, 240
management, DDBMSs and, 285

Transaction Processing Performance
Council, 267

transparency
fragmentation, 280–281
hardware, 288
location, 279, 285
network, 288
replication, 279, 285
software, 288

triggers, 143, 144–147
troubleshooting, 269, 390
tuples, 34. See also rows
two-phase commit, 284
two-phase locking, 237–239, 240
two-tier architecture, 287
typing errors, correcting, 72

U
UML (Unified Modeling Language), 396

class diagrams, 305, 306
DDBMSs and, 304–307
described, 304

underscore (_), 89, 73, 349

UNION command, 63
union compatible tables, 63
union operation, 62–64, 102–103,

355–356
unnormalized relations, 33, 161
update(s)

anomalies, 155, 163, 165, 166, 173
functions, 230–237
lost, 236–237
overview, 103–105
queries, 55

Update button, 55
UPDATE command, 104, 143, 144, 356
UPS (uninterruptible power supply), 262
URLs (Uniform Resource Locators)

described, 289
parts of, 289
for Web databases, 388–389

USE command, 72
USE PREMIERE command, 72
user view(s)

described, 184
examples, 190–201
representing, as a collection of tables,

184–186
user-defined data types, 374, 375–376
utility services, 252, 253

V
validation

rules, 136
text, 136

Var function, 44
vendor support, 267
victim, use of the term, 241
view(s). See also user views

described, 120
overview, 120–126
security and, 247

visibility symbol, 306
Visual Basic (Microsoft), 9

W
W3C (World Wide Web Consortium),

292, 294, 295
warm sites, 262
weak entities, 221
Web. See World Wide Web
Web browsers, 289, 369–370, 390

Web clients, 289
Web database(s)

adding fields to tables in, 378
checking compatibility for, 388
creating, 376–377
described, 369
publishing, 369–392
relating tables in, 378–381
viewing, 390

Web display form, 386, 387
Web page(s). See also HTML

(HyperText Markup Language)
described, 289
dynamic, 290
static, 290

Web servers, 289. See also servers
WHERE clause, 62, 78–79, 89, 348–349

compound conditions and, 85
DELETE command and, 105
described, 75
grouping and, 97, 98
joining and, 99, 100, 101, 102
LIKE operator and, 88
updating tables and, 104

wildcard characters, 88–89
workgroups, 247, 252
World Wide Web. See also Web browsers;

Web databases; Web pages
DDBMSs and, 289–292
described, 289

Wrote table, 18, 198–201

X
XHTML (Extensible Hypertext Markup

Language), 294, 295
XML (Extensible Markup Language)

declarations, 293
described, 292
overview, 292–295
schema, 294
specification, 293

XQuery, 295
XSL (Extensible Stylesheet Language),

294, 295
XSLT (XSL Transformations), 294

Z
Zoom dialog box, 43

415

Index

	Table of Contents������������������������
	Preface��������������
	Ch 1: Introduction to Database Management��
	Premiere Products Background�����������������������������������
	Database Background��������������������������
	Database Management Systems����������������������������������
	Advantages of Database Processing��
	Disadvantages of Database Processing���
	Introduction to the Henry Books Database Case��
	Introduction to the Alexamara Marina Group Database Case���
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Premiere Products Exercises����������������������������������
	Henry Books Case�����������������������
	Alexamara Marina Group Case����������������������������������

	Ch 2: The Relational Model 1: Introduction, QBE, and Relational Algebra��
	Relational Databases���������������������������
	Query-By-Example (QBE)�����������������������������
	Simple Queries���������������������
	Simple Criteria����������������������
	Compound Criteria������������������������
	Computed Fields����������������������
	Functions����������������
	Grouping���������������
	Sorting��������������
	Joining Tables���������������������
	Using an Update Query����������������������������
	Using a Delete Query���������������������������
	Using a Make-Table Query�������������������������������
	Relational Algebra�������������������������
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Premiere Products Exercises: QBE���������������������������������������
	Premiere Products Exercises: Relational Algebra��
	Henry Books Case�����������������������
	Alexamara Marina Group Case����������������������������������

	Ch 3: The Relational Model 2: SQL��
	Getting Started with SQL�������������������������������
	Table Creation���������������������
	Simple Retrieval�����������������������
	Compound Conditions��������������������������
	Computed Fields����������������������
	Using Special Operators (LIKE and IN)��
	Sorting��������������
	Built-In Functions�������������������������
	Subqueries�����������������
	Grouping���������������
	Joining Tables���������������������
	Union������������
	Updating Tables����������������������
	Creating a Table from a Query������������������������������������
	Summary of SQL Commands������������������������������
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Premiere Products Exercises����������������������������������
	Henry Books Case�����������������������
	Alexamara Marina Group Case����������������������������������

	Ch 4: The Relational Model 3: Advanced Topics��
	Views������������
	Indexes��������������
	Security���������������
	Integrity Rules����������������������
	Structure Changes������������������������
	System Catalog���������������������
	Stored Procedures������������������������
	Triggers���������������
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Premiere Products Exercises����������������������������������
	Henry Books Case�����������������������
	Alexamara Marina Group Case����������������������������������

	Ch 5: Database Design 1: Normalization���
	Functional Dependence����������������������������
	Keys�����������
	First Normal Form������������������������
	Second Normal Form�������������������������
	Third Normal Form������������������������
	Incorrect Decompositions�������������������������������
	Multivalued Dependencies and Fourth Normal Form��
	Avoiding the Problem with Multivalued Dependencies���
	Application to Database Design�������������������������������������
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Premiere Products Exercises����������������������������������
	Henry Books Case�����������������������
	Alexamara Marina Group Case����������������������������������

	Ch 6: Database Design 2: Design Method���
	User Views�����������������
	Information-Level Design Method��������������������������������������
	Database Design Examples�������������������������������
	Physical-Level Design����������������������������
	Top-Down versus Bottom-Up Design���������������������������������������
	Survey Form������������������
	Obtaining Information from Existing Documents��
	One-to-One Relationship Considerations���
	Many-to-Many Relationship Considerations���
	Nulls and Entity Subtypes��������������������������������
	Avoiding Problems with Third Normal Form when Merging Tables���
	The Entity-Relationship Model������������������������������������
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Premiere Products Exercises����������������������������������
	Henry Books Case�����������������������
	Alexamara Marina Group Case����������������������������������

	Ch 7: DBMS Functions���������������������������
	Update and Retrieve Data�������������������������������
	Provide Catalog Services�������������������������������
	Support Concurrent Update��������������������������������
	Recover Data�������������������
	Provide Security Services��������������������������������
	Provide Data Integrity Features��������������������������������������
	Support Data Independence��������������������������������
	Support Data Replication�������������������������������
	Provide Utility Services�������������������������������
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Premiere Products Exercises����������������������������������
	Henry Books Case�����������������������
	Alexamara Marina Group Case����������������������������������

	Ch 8: Database Administration������������������������������������
	Database Policy Formulation and Enforcement��
	Other Database Administrative Functions��
	Technical Functions��������������������������
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Premiere Products Exercises����������������������������������
	Henry Books Case�����������������������
	Alexamara Marina Group Case����������������������������������

	Ch 9: Database Management Approaches���
	Distributed Databases����������������������������
	Characteristics of Distributed DBMSs���
	Advantages of Distributed Databases��
	Disadvantages of Distributed Databases���
	Rules for Distributed Databases��������������������������������������
	Client/Server Systems����������������������������
	Web Access to Databases������������������������������
	XML����������
	Data Warehouses����������������������
	Object-Oriented DBMSs����������������������������
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Premiere Products Exercises����������������������������������
	Henry Books Case�����������������������
	Alexamara Marina Group Case����������������������������������

	Appendix A Comprehensive Design Example: Marvel College��
	Marvel College Requirements����������������������������������
	Marvel College Information-Level Design��
	Final Information-Level Design�������������������������������������
	Exercises����������������

	Appendix B SQL Reference�������������������������������
	Alter Table������������������
	Column or Expression List (Select Clause)��
	Conditions�����������������
	Create Index�������������������
	Create Table�������������������
	Create View������������������
	Data Types�����������������
	Delete Rows������������������
	Drop Index�����������������
	Drop Table�����������������
	Grant������������
	Insert�������������
	Integrity����������������
	Join�����������
	Revoke�������������
	Select�������������
	Select into������������������
	Subqueries�����������������
	Union������������
	Update�������������

	Appendix C "How Do I?" Reference
	Appendix D Answers to Odd-Numbered Review Questions��
	Chapter 1-Introduction to Database Management
	Chapter 2-The Relational Model 1: Introduction, QBE, and Relational Algebra
	Chapter 3-The Relational Model 2: SQL
	Chapter 4-The Relational Model 3: Advanced Topics
	Chapter 5-Database Design 1: Normalization
	Chapter 6-Database Design 2: Design Method
	Chapter 7-DBMS Functions
	Chapter 8-Database Administration
	Chapter 9-Database Management Approaches

	Appendix E Using Access to Create and Publish a Web Database���
	Examining a Web Database�������������������������������
	Creating a User-Defined Data Type��
	Creating a Web Database������������������������������
	Adding Fields to a Table in a Web Database���
	Relating the Tables in a Web Database��
	Importing Data into the Tables�������������������������������������
	Creating a Query in a Web Database���
	Creating Forms in a Web Database���������������������������������������
	Creating a Navigation Form���������������������������������
	Setting a Startup Form�����������������������������
	Checking Web Compatibility���������������������������������
	Publishing a Database to a Server��
	Key Terms����������������
	Premiere Products Exercises����������������������������������

	Appendix F Determining Information-Level Requirements��
	Information Systems��������������������������
	System Requirement Categories������������������������������������
	Determining System Requirements��������������������������������������
	Transitioning from Systems Analysis to Systems Design��
	Key Terms����������������
	Exercises����������������

	Glossary���������������
	Index������������

