

Android Apprentice
Darryl Bayliss & Tom Blankenship

Copyright ©2018 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an “as
is” basis, without warranty of any kind, express of implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in the
software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Android Apprentice

raywenderlich.com 2

Dedications
"To Rachael. For putting up with me whilst I spent nights and

weekends behind my laptop writing. To my family, for being there for
me always."

— Darryl Bayliss

"To my wife Tracy, for her love and understanding while I worked
many late nights and weekends. To my son Austin for his support

and many corrections to my rough drafts. To my daughter Alaina, for
her beautiful smiles and encouragement. To my parents who bought

my first Atari computer and set me on this great journey."

— Tom Blankenship

Android Apprentice

raywenderlich.com 3

About the authors
Darryl Bayliss is an author of this book. Darryl is a Software Engineer
from Liverpool, focusing on Mobile Development. Away from
programming he is usually reading, getting up to no good or playing
some fantastical video game involving magic and dragons. Feel free to
say hello on Twitter over at @dazindustries

Tom Blankenship is an author on this book. Tom has been addicted
to coding since he was a young teenager, writing his first programs on
Atari home computers. He currently runs his own software
development company focused on native iOS and Android app
development. He enjoys playing tennis, guitar, and drums, and
spending time with his wife and two children.

About the editors
Namrata Bandekar is a tech editor of this book. Namrata is a Mobile
Developer doing native Android and iOS development. Apart from
developing apps, she is passionate about traveling, food and hiking
with her dog. You can reach out to her on Twitter at @NamrataCodes.

Vijay Sharma is a tech editor of this book. Vijay is a husband, a
father and a senior mobile engineer. Based out of Canada's capital,
Vijay has worked on dozens of apps for both Android and iOS. When
not in front of his laptop, you can find him in front of a TV, behind a
book, or chasing after his kids. You can reach out to him on Twitter:
@v_sharm

Ellen Shapiro is a tech editor on this book. Ellen is an iOS developer
for Bakken & Bæck's Amsterdam office who also occasionally writes
Android apps. She is working in her spare time to help bring
songwriting app Hum to life. She’s also developed several
independent applications through her personal company, Designated
Nerd Software. When she's not writing code, she's usually tweeting
about it at @designatednerd

Android Apprentice

raywenderlich.com 4

Chris Belanger is an editor of this book. Chris is the Editor in Chief
at raywenderlich.com. He was a developer for nearly 20 years in
various fields from e-health to aerial surveillance to industrial
controls. If there are words to wrangle or a paragraph to ponder, he’s
on the case. When he kicks back, you can usually find Chris with
guitar in hand, looking for the nearest beach. Twitter: @crispytwit.

Tammy Coron is an editor of this book. Tammy is an independent
creative professional and the host of Roundabout: Creative Chaos.
She’s also the co-founder of Day Of The Indie and the founder of Just
Write Code. For more information visit TammyCoron.com.

Eric Soto is the final pass editor of this book. Eric is a Professional
Software Engineer and certified Agile-Scrum Master focusing on
Apple iOS & Android Apps, NodeJS and APIs. He is based in Palm
Beach Florida but works with clients all across the US including many
major brands. During his 30 year career, Eric has been able to work
with REST APIs, web applications, server back-end systems,
automated infrastructure deployments and more. Follow Eric on
Twitter: @ericwastaken

Android Apprentice

raywenderlich.com 5

Table of Contents: Overview
Introduction 17...

Book license 18...

Book source code and forums 19..................................

About the cover 20..

Section I: Your First Android App 21....................................

Chapter 1: Setting Up Android Studio 22...................

Chapter 2: Layouts 49..

Chapter 3: Activities 64...

Chapter 4: Debugging 81..

Chapter 5: Prettifying the App 92.................................

Section II: Building a Checklist App 109..............................

Chapter 6: Creating a New Project 110......................

Chapter 7: RecyclerViews 123.......................................

Chapter 8: SharedPreferences 141..............................

Chapter 9: Communicating Between
Activities 154...

Chapter 10: Completing the Detail View 169..........

Chapter 11: Using Fragments 191................................

Chapter 12: Material Design 219..................................

Android Apprentice

raywenderlich.com 6

Section III: Creating Map-Based Apps 230........................

Chapter 13: Creating a Map-Based App 231............

Chapter 14: User Location & Permissions 254........

Chapter 15: Google Places 273......................................

Chapter 16: Saving Bookmarks with Room 296......

Chapter 17: Detail Activity 322.....................................

Chapter 18: Navigation & Photos 354.........................

Chapter 19: Finishing Touches 384..............................

Section IV: Building a Podcast Manager and
Player 413..

Chapter 20: Networking 414..

Chapter 21: Finding Podcasts 433................................

Chapter 22: Podcast Details 456...................................

Chapter 23: Podcast Episodes 476...............................

Chapter 24: Podcast Subscriptions Part One 496..

Chapter 25: Podcast Subscriptions Part Two 519..

Chapter 26: Podcast Playback 537...............................

Chapter 27: Episode Player 568....................................

Android Apprentice

raywenderlich.com 7

Section V: Android Compatibility 605.................................

Chapter 28: Android Fragmentation &
Support Libraries 606...

Chapter 29: Keeping Your App Up To Date 613......

Section VI: Publishing your App 619....................................

Chapter 30: Preparing for Release 620......................

Chapter 31: Testing & Publishing 637.........................

Conclusion 655..

More Books You Might Enjoy 656...

Android Apprentice

raywenderlich.com 8

Table of Contents: Extended
Introduction 17...

Book license 18..

Book source code and forums 19...

About the cover 20..

Section I: Your First Android App 21....................................

Chapter 1: Setting Up Android Studio 22...........................
Getting started 22...
Your first Android project 25...
Android Studio 30..
Creating an Android virtual device 32...
Setting up an Android device 38..
Running the app 42..
Installing new versions of Android studio 45..
Where to go from here? 48..

Chapter 2: Layouts 49...
Getting started 50...
These are not the SDKs you’re looking for 50..
The Visual Editor 51..
Component Tree View 54...
Positioning your views 56...
Adding rules to your position 57..
Finishing the screen 60..
Where to go from here? 62..

Chapter 3: Activities 64...
Getting started 64...
Exploring Activities 69...
Hooking up the views 71...

Android Apprentice

raywenderlich.com 9

Managing strings in your app 73..
Progressing the game 75...
Starting the game 77...
Ending the game 78...
Where to go from here? 80..

Chapter 4: Debugging 81..
Getting started 81...
Add some logging 82...
Orientation changes 84...
Breakpoints 86..
Restarting the game 89..
Where to go from here? 90..

Chapter 5: Prettifying the App 92...
Getting started 93...
Changing the app bar color 93..
Animations 96...
Adding a Dialog 99...
Where to go from here? 108..

Section II: Building a Checklist App 109..............................

Chapter 6: Creating a New Project 110..............................
Getting started 111...
Creating a new Android project 114..
Targeting Android devices 116...
Creating an Activity 119...
Where to go from here? 122..

Chapter 7: RecyclerViews 123..
Getting started 124...
Adding a RecyclerView 126...
The components of a RecyclerView 127..
Hooking up a RecyclerView 128..
Setting up a RecyclerView Adapter 129...

Android Apprentice

raywenderlich.com 10

Filling in the blanks 133...
Creating the ViewHolder 133...
Binding data to your ViewHolder 138...
The moment of truth 139..
Where to go from here? 140..

Chapter 8: SharedPreferences 141......................................
Getting started 141...
Adding a Dialog 143..
Creating a list 145..
Hooking up the Activity 149..
Where to go from here? 153..

Chapter 9: Communicating Between Activities 154......
Getting started 154...
Creating a new Activity 158..
The App Manifest 160..
Intents 161..
Intents and Parcels 163...
Bringing everything together 165...
Where to go from here? 168..

Chapter 10: Completing the Detail View 169...................
Getting started 169...
Coding the RecyclerView 172...
Adapting the Adapter 175..
Visualizing the ViewHolder 180..
Getting the list back 186...
Where to go from here? 190..

Chapter 11: Using Fragments 191...
Getting started 192...
Creating a Fragment 196..
What is a Fragment? 199...
From Activity to Fragments 201..

Android Apprentice

raywenderlich.com 11

Showing the Fragment 206..
Creating your next Fragment 208...
Bringing the Activity into action 211...
Where to go from here? 218..

Chapter 12: Material Design 219..
What is Material Design? 220...
Primary and secondary colors 221...
Card views 227...
Where to go from here? 229..

Section III: Creating Map-Based Apps 230........................

Chapter 13: Creating a Map-Based App 231....................
Getting started 231...
About PlaceBook 232...
Making a plan 232..
Location service components 233...
Map wizard walk-through 234...
Google Maps API key 237...
Maps and the emulator 242...
Running the app 245...
The difficulty of determining locations 252..

Chapter 14: User Location & Permissions 254.................
Getting started 254...
Adding location services 255..
Creating the location services client 257...
Querying current location 257...
Faking locations in the emulator 264...
Tracking the user’s location 267..
My location 269..
Where to go from here? 272..

Chapter 15: Google Places 273..
Getting started 273...

Android Apprentice

raywenderlich.com 12

Places API overview 275...
Selecting points of interest 276...
Load place details 278..
Custom info window 289..
Where to go from here? 295..

Chapter 16: Saving Bookmarks with Room 296..............
Getting started 296...
Room overview 297..
Room and Android Architecture Components 298...
PlaceBook architecture 299..
Development approach 300..
Adding the architecture components 302...
Room classes 303...
Creating the Repository 309...
The ViewModel 310..
Adding bookmarks 312..
Observing database changes 316...
Where to go from here? 321..

Chapter 17: Detail Activity 322..
Getting started 322...
Fixing the info window 323..
Bookmark detail activity 332..

Chapter 18: Navigation & Photos 354.................................
Getting started 354...
Bookmark navigation 354..
Custom photos 369...
Where to go from here? 383..

Chapter 19: Finishing Touches 384.......................................
Getting started 385...
Bookmark categories 385..
Searching for places 396...

Android Apprentice

raywenderlich.com 13

Create ad-hoc bookmarks 399...
Deleting bookmarks 401...
Sharing bookmarks 404...
Color scheme 409..
Progress indicator 410...
Where to go from here? 412..

Section IV: Building a Podcast Manager and
Player 413..

Chapter 20: Networking 414...
Getting started 415...
Where are the podcasts? 419...
Android networking 419...
PodPlay architecture 420...
iTunes search service 421...
Retrofit 422..
Where to go from here? 432..

Chapter 21: Finding Podcasts 433..
Android search 433...
Where to go from here? 455..

Chapter 22: Podcast Details 456...
Getting started 456...
Defining the layouts 457...
Basic architecture 460...
Details fragment 465..
Where to go from here? 475..

Chapter 23: Podcast Episodes 476..
Getting started 476...
Updating the podcast repo 488..
Episode list adapter 490..
Where to go from here? 495..

Android Apprentice

raywenderlich.com 14

Chapter 24: Podcast Subscriptions Part One 496..........
Getting started 496...
Saving podcasts 497..
Where to go from here? 518..

Chapter 25: Podcast Subscriptions Part Two 519...........
Getting started 519...
Background methods 520..
Episode update logic 522..
Firebase JobDispatcher 525...
Where to go from here? 536..

Chapter 26: Podcast Playback 537.......................................
Getting started 537...
Media player basics 538..
Building the MediaBrowserService 540...
Connecting the MediaBrowser 542...
Foreground service 556..
Final pieces 565..
Where to go from here? 567..

Chapter 27: Episode Player 568...
Getting started 569...
Video playback 594...
Where to go from here? 604..

Section V: Android Compatibility 605.................................

Chapter 28: Android Fragmentation & Support
Libraries 606...

Android: An open operating system 606..
How fragmenting occurs 607..
The Android support libraries 608..
Where to go from here? 612..

Android Apprentice

raywenderlich.com 15

Chapter 29: Keeping Your App Up To Date 613...............
Following Android trends 613..
Managing Android updates 616...
Working with older versions of Android 617...
Where to go from here? 618..

Section VI: Publishing your App 619....................................

Chapter 30: Preparing for Release 620...............................
Where to go from here? 636..

Chapter 31: Testing & Publishing 637..................................
Release types 637..

Conclusion 655..

More Books You Might Enjoy 656...
New to iOS or Swift? 656..
Experienced iOS developer? 658...
Want to make games? 669..
Want to learn Android or Kotlin? 672..

Android Apprentice

raywenderlich.com 16

IIntroduction

This book is your introduction to building great apps in Android, using the Kotlin
language. Whether you still consider yourself a novice programmer, or have extensive
experience programming for iOS or other platforms, this is the book for you!

It's not our aim to teach you all the ins and outs of Android development or the Kotlin
language; they are huge concepts on their own and there is no way we can cover
everything. Fortunately, you really just need to master the essential building blocks of
Kotlin and Android to start creating apps. As you work on more apps, you'll find the
foundations you learn in this book will give you the knowledge you need to easily figure
out more complicated details on your own.

The most important thing you'll learn is how to think like a programmer. That will help
you approach any programming task, whether it’s a game, a utility, a mobile app that
uses web service, or anything else you can imagine.

If you’re looking for more background on the Kotlin language, we recommend our book,
the Kotlin Apprentice, which goes into depth on the Kotlin language itself:

• https://store.raywenderlich.com/products/kotlin-apprentice

raywenderlich.com 17

LBook license

By purchasing Android Apprentice, you have the following license:

• You are allowed to use and/or modify the source code in Android Apprentice in as
many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included in
Android Apprentice in as many apps as you want, but must include this attribution
line somewhere inside your app: “Artwork/images/designs: from Android Apprentice,
available at www.raywenderlich.com”.

• The source code included in Android Apprentice is for your personal use only. You are
NOT allowed to distribute or sell the source code in Android Apprentice without prior
authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without warranty
of any kind, express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim, damages or other liability,
whether in an action of contract, tort or otherwise, arising from, out of or in connection
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties of
their respective owners.

raywenderlich.com 18

BBook source code and
forums

This book comes with the source code for the starter and completed projects for each
chapter. These resources are shipped with the digital edition you downloaded from
store.raywenderlich.com.

We’ve also set up an official forum for the book at forums.raywenderlich.com. This is a
great place to ask questions about the book or to submit any errors you may find.

raywenderlich.com 19

AAbout the cover

The leafbird is a tropical bird found mainly throughout the southern Indian and Asian
subcontinents. Their predominant color is green, but the many various species of
leafbird sport various swaths of color, including orange, yellow, blue and black.

The Android OS is a lot like the leafbird; although leafbirds all share common
characteristics and coloring, all species have a slightly different appearance and
behavior. As you begin to develop for Android and experience what’s become known as
the fragmentation problem, you’ll see that each “species” or version of Android has its
own little quirks as well!

raywenderlich.com 20

Section I: Your First Android App

This is your introduction to creating apps in Android. This section will take you step-
by-step through installing Android Studio and working inside the IDE and visual
designer while you build TimeFighter, a simple game that uses many common Android
components.

Chapter 1: Setting Up Android Studio

Chapter 2: Layouts

Chapter 3: Activities

Chapter 4: Debugging

Chapter 5: Prettifying The App

raywenderlich.com 21

1Chapter 1: Setting Up
Android Studio
By Darryl Bayliss

To create that killer Android App, you’ll need to install the tools that you need as a
young apprentice. Android development happens inside Android Studio, a customized
IDE, based on IntelliJ, that gives you a powerful set of tools to work with.

In this chapter you’ll learn:

• How to set up Android Studio on your machine.

• How to set up a physical and emulated device for development.

• How to run an app on a device.

Getting started
Open up your favorite web browser and navigate to https://developer.android.com/
studio/#downloads.

raywenderlich.com 22

You have a number of download options, as Android Studio can run on a variety of
Operating Systems. Click the package for the operating system your computer uses.

Note: This chapter assumes that your computer is running macOS; however, as
Android Studio supports Windows and Linux, we’ll provide instructions for those
operating systems as well.

The downloads page will pop up a terms and conditions screen.

Check the checkbox at the bottom of the screen if you agree to the terms and then
Click the Download Android Studio button.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 23

As your computer begins to download Android Studio, your browser will show a pop-up
window with some suggestions on what to do next.

Click the blue install guide link at the bottom of the pop-up. The browser will open up
a new page containing setup videos for Android Studio for each operating system.

Follow the instructions and/or video relevant to your operating system until the
welcome to Android Studio window is open.

Note: Unless you have an extremely fast internet connection, it will take a while
for all of the components you need to download. Depending on how your system is
set up, you may need to enter your password or an administrator's password to
allow installation to complete.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 24

Your first Android project
Now that you have Android Studio installed, it’s time to create your first project. This
chapter focuses on getting your app running as quickly as possible on a device. Along
the way, you’ll encounter a few screens that you won’t quite understand at first, but
don’t worry: you’ll get a chance to experience these screens in detail later on in
"Chapter 6: Creating a New Project." For now, just enjoy the ride!

On the welcome screen, click Start a new Android Studio project:

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 25

The welcome window will disappear and a new window will take its place. This is where
you can set up a few key elements of your app.

Here’s what each field means:

1. The first and most important thing in any app is its name. In the Application name
textfield, enter Timefighter.

2. The Company domain textfield provides your app with a package name, a concept
you should be familiar with from Java or Kotlin. Here, simply enter
raywenderlich.com.

3. The Project location textfield tells Android Studio where to create the directory
containing your project.

Note: Feel free to create your project anywhere you want. The ellipsis button to
the right provides you with a system navigator to easily find the place to create
your project.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 26

4. The Include Kotlin Support checkbox informs Android Studio that your project
requires the Kotlin libraries to be added so you can write your app in Kotlin. It also
ensures the starter project code is all Kotlin. Check the box if it isn’t already
checked.

5. The Next button in the bottom right of the window moves you to the target device
section.

The next window provides a variety of checkboxes and dropdowns for you to configure
which versions of Android you want to support:

On this screen:

1. Android supports a variety of devices: phones, watches, cars and even refrigerators!
If you want to configure a new app to run on these devices, this is the screen to do
it.

Timefighter will only run on a phone, and Android Studio has already checked that
option for you. As well, it has set a minimum Android version for the app in the
dropdown box.

This book requires your apps to run on API 19, or Android KitKit in English. So click
the dropdown and click API 19: Android 4.4 (KitKat).

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 27

2. The Next button in the bottom-right of the window moves you to the project
template section.

The next window provides a variety of preset projects you can choose from to set up the
foundation of your app. Each choice provides your starter project with different code
and resources generated by Android Studio.

The Empty Activity is already selected for you by Android Studio, which is exactly what
you want. Don’t worry about what an Activity is right now; all will be revealed in the
chapters to come.

Go to the bottom of the window and press the Next button.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 28

The final window is dedicated to setting up your empty Activity — in particular, giving it
a name.

1. In the Activity Name textfield, enter the name GameActivity. You'll notice that the
name of the layout automatically updates itself to activity_game.

2. Skip past the rest of the options and click Finish.

With the project creation taken care of, Android Studio will take all the information you
provided, and gather the required libraries and resources to generate a fresh project for
you.

Note: The "gathering" phase may take a while, depending on the speed of your
internet connection.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 29

When that process finishes, Android Studio will show you your created project, with the
GameActivity.kt and activity_game.xml files already open for you:

Android Studio
With your project created, you are now free to work on your project as you please.

Android Studio is a large and complex piece of software and, if you dive in without a
good map, you may find yourself lost!

Before you start to build you app, take a look at what Android Studio has to offer as part
of your app development experience.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 30

1. The most obvious window that first appears to you is the Editor.

This window provides you with space to edit your app’s source code. It provides
syntax highlighting, auto completion for methods and objects as well as the ability
to drop breakpoints into your code while debugging. You’ll learn more about
breakpoints and debugging in "Chapter 4: Debugging." You’ll spend most of your
development time using the Editor to code your app to work exactly the way you
intend.

2. The other window that you’ll spend most of your time with is the Project
navigator, to the left of the Editor.

This window shows you everything your project contains; from code to image
assets, you can find it here. Android Studio already provides you with a lot to begin
with. You can see this by left-clicking on the arrow to the left of the items in the
Project navigator.

Don’t worry about these files for now. You’ll become well-acquainted with them in
the chapters to come.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 31

Creating an Android virtual device

Note: If you have a physical Android device you want to use for development, feel
free to skip to the next section.

Looking at editors and files is great, but after you’re done writing code, you’ll likely
want to run your app. But before you can run your app, you need a device — real or
virtual — on which to run it! Take a look at the button highlighted in the following
image.

This button allows you to create an Android Virtual Device, or AVD for short. This is
an emulator that pretends to be a device on your computer, which lets you test your app
without requiring a physical device. If you don’t have a physical device to test your app
with, you’ll need to create a virtual device before you can run your app.

Click the Android Virtual Device button, and a new window will appear.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 32

This window shows all the available AVDs that exist on your machine. Since you’ve just
installed Android Studio, no AVDs will be available yet.

Click the Create Virtual Device button in the middle of the screen and the Select
Hardware window. This window allows you to select what kind of device you want your
AVD to emulate.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 33

You will already have a device selected for you: a Nexus 5X. You’ll use this device since
it closely emulates a real device used by many people.

In the bottom-right of the window, click Next. This will display the System Image
window, where you can choose the version of Android that runs on your emulator.

A number of tabs run along the top of the list within the window. The Recommended
tab is a list of Android versions that Google recommend you use to test your apps.

At the moment, those versions are grayed out. That’s because you haven’t installed any
of them onto your machine.

You’ll download the latest and greatest recommended by Android Studio. Select the top
item in the table and click the Download button in the Release Name column.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 34

You'll see another legal agreement you need to agree to:

Select Accept, then click Next.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 35

The Component Installer window will appear and automatically download the version
of Android you selected.

Once the download has finished, Click the Finish button in the bottom-right. The
component installer window will disappear and the System Image window will appear
again. At this point, your Android version is ready to use. To move on, Click the Next
button in the bottom-right of the window.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 36

The next and final window for creating your emulated device is a summary of the
characteristics your device will have.

This window gives you the opportunity to give your AVD a name and to confirm other
aspects of the device such as the Android version. You don’t need to do anything here,
so Click Finish at the bottom-right of the screen to create your AVD.

The current window will disappear. In the original AVD window that listed all available
AVDs, you’ll see your freshly created AVD ready for use:

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 37

Setting up an Android device

Note: If you don’t have an Android device to use for development, read the
previous section on how to set up an Android Virtual Device.

One of the joys of Android development is having your app working on your own device
to show to your friends. But before you can install Timefighter onto your device, you
need to get your device up for use with Android Studio. The first thing to do is to
connect your Android device to your machine via a USB cable.

Note: If you’re using a Windows machine, you’ll need to download a USB driver
for your device first. You can download the driver and find instructions on
installing it at https://developer.android.com/studio/run/oem-usb.html.

On your device, open the Settings app.

Note: If your device is running Android 8.0 (Oreo) or above, you need to tap
System first to find the About Phone section.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 38

Scroll through the settings until you find the About Phone button and tap it.

Now for the magical part! Scroll to the bottom of the About Phone screen, until the
build number item appears:

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 39

When you see the build number item, tap it several times until you see a toast message
appear, informing you are a few steps away from being a developer. Keep tapping away
until you get another toast message telling you that you’ve become a developer.

Note: If your device is locked with a PIN, you will need to enter it first before you
can reach this stage.

So what did this magical button do? Tap the Back button to go to the previous Settings
page. Notice anything different?

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 40

A new item has appeared called Developer Options! Tap the option to check out all the
developer features available to you.

There’s a lot, here, but there is only one option you need right now: USB Debugging.
Scroll down to the option and toggle it on. A dialog will appear informing you of the
intended usage of USB debugging.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 41

Granting USB debugging privileges is a potential security hole, so most devices have
this turned off by default. Since you will need to install apps over USB as a developer,
you need to turn this on.

When you are ready, tap OK and the USB Debugging toggle will enable.

Congratulations: your device is now set up for development!

Running the app
It’s time to run Timefighter! Along the top of Android studio, there is a button that
looks like a green Play button:

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 42

Click the button, and a new window will appear over Android Studio.

This is the Select Deployment Target window, showing you all available devices and
emulators you can use to run your app.

If you have a physical device with developer mode enabled, this will appear in the
Connected Devices section. If not, then the emulator you set up will be available in the
Available Virtual Devices section. If you have both, then well done for tackling both
sections!

Select either of the devices available and click OK on the bottom-right of the window.
Android Studio will begin building Timefighter and installing the built app on your
device. You can see this happening at the bottom of Android Studio.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 43

When Android Studio finishes, Timefighter will appear on your device:

You’ve just built your very first Android App! To celebrate, let’s make it a little more
personal. Head back to Android Studio, and in the project navigator open app ‣ res ‣
layout ‣ activity_game.xml, then switch to the Text tab on the bottom.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 44

Don’t worry too much now about everything you see in this file. All you need to know is
that it represents the app screen that appeared on your device earlier. You’ll learn more
about this in the next chapter.

For now, inside the TextView tag, update android:text property to greet you with your
own name:

Click the green Play button again to run your app:

Installing new versions of Android
studio
This book was written assuming a specific version of the Android SDK; as of this
writing, we used Android Pie API version 28 as a baseline. However, you might be
reading this book long after that version has been superseded. In that case, you may
need to install the latest versions of Android Studio and the Android SDK.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 45

Note: Google engineers have decoupled Android Studio from versions of Android.
This means you can build apps in Android Studio with any version of the Android
operating system you want, including any future versions of the Android SDK.

Android Studio will do its best to prompt you when new versions of either Android
Studio or Android SDK are available; however, you don’t have to wait on Android Studio
to do that for you.

In the Android Studio menu, selecting Check for Updates will give you a dialog with
all things that can be updated on your machine, or which lets you know you're up to
date already.

If you’d like to download a newer (or older) version of the Android SDK, in the same
menu, select the Preferences... menu item.

In the Preferences dialog, drill down through the menu items in the tree to
Appearance & Behavior ‣ System Settings ‣ Android SDK.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 46

In this window, there are two tabs to note: SDK Platforms and SDK Tools. In SDK
Platforms, you should see a list of all the available Android SDK.

Clicking on any one of the SDK in the list, and then clicking OK, will install that SDK.

In SDK Tools, you will see a list of all the available build tools that Android Studio and
your app have access to.

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 47

Clicking on any one of them, and then clicking OK will install that SDK.

At this point in the book, don’t worry too much about why you would need to download
any of these items. You’ll learn more about each of these topics throughout the book.
However, it’s worth seeing these things now so that you’ll recognize them as you
encounter them in later chapters.

Where to go from here?
Well done getting your first app up and running! This is just the beginning; the next few
chapters in this section will teach you even more about the basics of Android
development. As you work through the chapters in this book, you’ll end up with a fully
featured app! Head on into the next chapter to start building out your app!

Android Apprentice Chapter 1: Setting Up Android Studio

raywenderlich.com 48

2Chapter 2: Layouts
By Darryl Bayliss

If bricks and mortar are the foundation of a sturdy building, then Layouts are the
Android equivalent of a sturdy app. Layouts are incredibly flexible and let you define
how your user interface is presented on the device to the user.

You can create layouts in one of two ways:

1. Using an XML file that lets you declare your user interface ahead of time.

2. Writing Java code to programmatically create your layout when your app runs.

In this book, you’ll define your layouts in XML. This is because Android Studio has a
powerful Layout editor that covers 90% of the cases you’ll ever need when creating a
user interface.

raywenderlich.com 49

Getting started
Before diving into the wonderful world of layouts, take a moment to think about what
makes an app. Most often, your app will be a self-contained program that lets you
perform one or more tasks.

You also want your user to accomplish those tasks quickly and intuitively, which is
where a well-thought-out user interface comes into play.

The app you’ll build in this section, TimeFighter, is no different. The app is quite
minimal in its design, so usability won’t be an issue.

Your first task is to set up your user interface, which has two TextViews and a Button.

Locate the projects folder for this chapter and open the TimeFighter app under starter.
The first time you open the project, Android Studio takes a few minutes to set up your
environment and update dependencies.

These are not the SDKs you’re looking
for
When you open the project you may get the following error in the Messages tab:

If you followed along with Chapter 1, and installed a fresh version of Android Studio,
you may not see this error, however, if you're already running Android Studio, it could
be that you don't have the version of the Android SDK that was used to create this book
available on your machine. Do not fret young padawan learner, as Android Studio will
always do its best to help resolve these sorts of issues for you. As you can see, Android
Studio provided you with a convenient link, with a single click will install the required
version of the Android SDK, and rebuild your project.

Android Apprentice Chapter 2: Layouts

raywenderlich.com 50

Once this error goes away, you should see the following in the Messages tab:

Everything is right with the world again! Continue on to the next section and get comfy
with everything Android Studio has to offer.

The Visual Editor
In the project structure sidebar on the left of Android Studio, expand the app, res,
layout folder and double click on activity_game.xml. You’ll be presented with a screen
that looks like this:

Editing activity_game.xml in Visual Editor

Android Apprentice Chapter 2: Layouts

raywenderlich.com 51

Behold the Visual Editor! In design mode, the middle of Android Studio will show a
few different screens.

The first screen of interest is the preview area in the middle, next to what looks like a
blueprint. This is where you’ll begin to build your user interface.

At the bottom of the visual editor, you’ll find two tabs labelled Design and Text. Click
Text, and you’ll be presented with a screen that looks like this:

Editing activity_game.xml in XML Editor

In the middle section of Android Studio, you’ll find the Text Editor. This shows the
XML representation of the first screen of your app. You can create your interface here if
you like — but using the Design tab is much more visual to begin with.

Click the Design tab to switch back to design mode. You’ll start by adding a TextView
to the user interface.

Android Apprentice Chapter 2: Layouts

raywenderlich.com 52

In the top left of the middle section of Android Studio, you’ll see the Palette:

Palette of interface components

This contains all the built-in user interface components you can use to build the
screens of your Android app.

What’s even more useful is that you can drag and drop from this palette straight into
the preview screen to add a component.

Head over to the Palette and select Text. The palette will change its offerings to
everything text-related for you to peruse.

Next, drag a TextView from the palette for your score label and drop it in the top left of
the preview screen. You should end up with something like this:

Android Apprentice Chapter 2: Layouts

raywenderlich.com 53

That was easy enough!

Component Tree View
Just before we move on, it's worth noting that although dragging and dropping
components into the Preview area can be extremely refreshing and easy to do, when
you're dealing with project's that have lots of views, it can be tricky to get it in the
exactly the right spot inside the right parent view. As an alternative, you can drag
components from the Palette directly into a Component Tree area, and drop it
underneath the desired parent component.

Android Apprentice Chapter 2: Layouts

raywenderlich.com 54

Keep that little feather in your hat as you progress through this book. You may find it
easier to drop components this way, and then deal with positioning them later. Ok, with
that little bit out of the way, we rejoin our originally scheduled programming already in
progress!

Android Apprentice Chapter 2: Layouts

raywenderlich.com 55

Positioning your views
At this point, you have the start of your app, with your TextView sitting in the top left-
hand corner.

Or is it?

How does the device know where to position that lonely TextView? What would happen
if someone rotated the device into landscape mode?

In fact, the app doesn’t know where to place your TextView — and you can prove it.

In the Visual Editor, drag that newly placed TextView somewhere in the middle of the
screen like so:

Layout as seen in the Visual Editor

Android Apprentice Chapter 2: Layouts

raywenderlich.com 56

Click Run 'app' in the top right of Android Studio and launch your Emulator. Once it
loads you’ll see this:

Layout as seen on device

That’s not where you placed your TextView! Perhaps it really likes to hide in that
corner?

Don’t fret — in the next section, you’ll make sure that TextView stays put.

Adding rules to your position
So why does the TextView not stay where you put it? The answer is you need to give the
TextView some rules on where it should be on the screen. There are millions of Android
devices out there that come in all shapes and sizes.

To make your app look great on all those different screens, you need to do a little layout
work.

The blueprint screen to the right of the preview gives you a visual representation of all
the rules that exist within your layout. You’ll use this tool to create new rules for your
TextView.

Android Apprentice Chapter 2: Layouts

raywenderlich.com 57

In the preview screen, click and drag your TextView to the top-left corner of the screen.
Then hover your mouse over the left side of your newly placed TextView in the
blueprint screen. A circle with a white outline will appear and a Create Connection
bubble will pop up:

Click and drag towards the left edge of the blueprint screen, and you should see your
TextView move slightly to the right. At this point, release your mouse button.

Congratulations — you just created your first layout rule!

Next, you’ll need to create the top layout rule. Move your mouse to the top of the
TextView until the outlined circle appears, and drag to the top edge of the screen until
the TextView moves down slightly. Release the mouse button again to create your
second layout rule.

Android Apprentice Chapter 2: Layouts

raywenderlich.com 58

To see what’s happened, make sure your TextView is selected, and look for a panel on
the right side of Android Studio, in the Properties window. Look at the top of the
properties window and you’ll see a square with some chevrons inside:

Layout rule for your TextView

If you look closely, you’ll see two solid lines running from the left and the top of the
rectangle, pushing against two grey rectangles with a number 8 floating beside them.
These are the rules, or constraints, you just created that hold your TextView against
the edges of your screen. They instruct your TextView how to position itself relative to
the screen edge.

Android Apprentice Chapter 2: Layouts

raywenderlich.com 59

How Android does this isn’t really important at this stage. But if you did want to more
finely position this TextView, you can adjust the margins of your constraint by clicking
the number beside the constraint line and selecting one of the preset numbers in the
dropdown or entering your own. Useful to know!

Finishing the screen
Now that you’re armed with the basic knowledge of how constraints work, you can
finish off your screen.

Head over to the Palette window and drag another TextView into the preview window,
this time putting it in the top right corner of the screen to serve as your time remaining
label.

In the blueprint window, select your new TextView and hover over the right edge of it
until the Create Connection bubble appears. Create a constraint against the right side
of the screen. Then do the same for the top of the TextView against the top of the
screen.

You should end up with something like this:

Android Apprentice Chapter 2: Layouts

raywenderlich.com 60

That takes care of your two TextViews. Now you need to add the “Tap Me!” button.

First, remove that TextView floating in the middle of the screen. Click on the “Hello
User!” TextView, press the delete key and the TextView will disappear.

With the TextView removed, you can add the button. Head over to the Palette window
and click the All tab. Once you see the Button in the Palette, click and drag it to the
center of the screen. You may even see some helpful dotted guidelines to help you
position your Button right in the center of the screen.

Now you need to create some constraints for the Button, just like you did for your
TextViews. This button needs to stay in the center of the screen, so you’re going to need
four constraints, one for each side of the button.

In the blueprint screen, hover over each side of the Button and pull it towards its
respective edge of the screen. The button will move around quite a bit as you do this,
but don’t panic! That’s just the Button trying to respect the constraints as you add
them.

Keep dragging each constraint to the edge of the screen and you’ll end up with this:

Android Apprentice Chapter 2: Layouts

raywenderlich.com 61

Finally click Run 'app' from the top menu in Android Studio, and your Emulator or
device will load the latest changes to your app. Your hard work should be rewarded with
an app that contains two correctly placed TextViews and a Button.

Where to go from here?
Nice job! Although you’ve learned a lot, you’ve only used a fraction of the power that
Constraints offer. There is a dedicated component for Constraints — ConstraintLayout
— that provides all this functionality.

There are other Layouts that provide other structures your Views can leverage, such as
LinearLayout and FrameLayout among others. It's recommended to use a
ConstraintLayout where possible however, there are times where it might be awkward
or not practical.

This book uses ConstraintLayout as its go-to Layout choice. If you want to learn more,
check out the documentation on ConstraintLayout on the Android Developer website at
https://developer.android.com/training/constraint-layout/index.html.

Android Apprentice Chapter 2: Layouts

raywenderlich.com 62

Pat yourself on the back for making it this far! You’ve taken your first step into the
world of Android development.

If you had any problems following along with the starter app, have a look at the
completed solution in the final folder for this chapter’s materials.

In the next chapter, you’ll attach some logic to your button and make those TextViews
display something more interesting than the words “TextView”. You’ll also get your first
taste of writing code. See you there!

Android Apprentice Chapter 2: Layouts

raywenderlich.com 63

3Chapter 3: Activities
By Darryl Bayliss

One of the things keeping us healthy and happy in life is a lifestyle comprised of varied
activity. These activities could be a mixture of anything, but they all have a specific
purpose or goal in mind.

Android apps are exactly the same — they’re built around a set of screens that have a
specific purpose. Each screen you see in an app is known as an Activity. An Activity is
built around a single task that you want your user to perform.

For instance, in most apps you have a settings screen to adjust the settings of the app.
There is a sign-in screen where you login using your username and password, and many
other screens that have specific purposes.

In this chapter, you’ll begin putting together an Activity focused around the gameplay
for TimeFighter — and you’ll finally get to lay down some code!

Getting started
Before you jump head first into code, you need to understand how IDs work. In Android,
IDs play a fundamental role in connecting things such as Views back to the code.

In the previous chapter, you positioned views on screen and established that the top
left TextView will show the score, the top right TextView will show the time and the
Button, when pressed, increments your score. If your code wants to connect with these
views, you’ll need to give them IDs.

If you were following along with an app, open it and keep going with it for this chapter.
If not, don’t worry. Locate the projects folder for this chapter and open the
TimeFighter app under the starter folder.

raywenderlich.com 64

The first time you open the project, Android Studio takes a few minutes to set up your
environment and update dependencies.

Open activity_game.xml where you built your layout, and make sure you’ve selected
Visual Editor. Next to the Palette tab, you should see a window called the Component
Tree:

This window provides you with an overview of all the Views available in your layout and
their relationship relative to one another.

Click on the row labeled button or buttonX where X is a number; this will highlight the
Button in the middle of the screen, and update the Properties window on the right with
details about the Button.

Android Apprentice Chapter 3: Activities

raywenderlich.com 65

The button in the screen above already has an ID value of button4 (and in your project
it might have a different number or no number at all), but this isn’t very descriptive.
Theoretically, you could leave the ID as button4, but would that mean anything to you
in a year from now? Probably not. Using descriptive IDs makes it easier to know which
IDs refers to which Views.

Change the value of the ID field from button (or whatever it is in your project) to
tap_me_button.

It would also be nice if the Button could have something more interesting than the
word “Button”. Change the value of "text" in the TextView section of the Properties
window to “Tap me!”.

Android Apprentice Chapter 3: Activities

raywenderlich.com 66

Select the text view on the top left from the Component Tree, set its ID to
game_score_text_view and change the text to “Your Score: %s”. Finally, select the text
view you added to the top right, and change its ID to time_left_text_view and its text
to “Time left: %s”.

What’s the deal with the %s in the text you added? That’s a placeholder for any string
you want to inject into your text values. You’ll fill in those placeholders later.

At build time, Android Studio will take these IDs and turn them into constants your
code can access through what’s known as the R file. You will see more about R files in
the upcoming sections, but simply know that Android will take an ID such as
game_score_text_view that you assigned to your view in your layout and create a
constant named R.id.game_score_text_view, which can then be accessed by the code.

Android Apprentice Chapter 3: Activities

raywenderlich.com 67

Run your app now in your Emulator or on a device, and you’ll see these text changes
reflected on the screen:

Now that all the views in the project have IDs, you can finally start exploring and
understanding your first Activity.

Android Apprentice Chapter 3: Activities

raywenderlich.com 68

Exploring Activities
In the project navigator on the left, ensure the app folder is expanded. Navigate to the
GameActivity.kt file, which is found in the src/main/java/
com.raywenderlich.timefighter folder. Open the file and you’ll see the following
contents:

package com.raywenderlich.timefighter

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

// 1
class GameActivity : AppCompatActivity() {
 // 2
 override fun onCreate(savedInstanceState: Bundle?) {
 // 3
 super.onCreate(savedInstanceState)
 // 4
 setContentView(R.layout.activity_game)
 }
}

This is where the logic for your game screen will live. It doesn’t do much at the
moment, but take a moment to explore what it does:

1. GameActivity is declared as extending AppCompatActivity and is your first and only
Activity in this app. What AppCompatActivity does is isn’t important right now; all
you need to know is that subclassing it is required to deal with content onscreen.

2. onCreate is the entry point to this Activity. You can see that it starts with the
keyword override meaning you’ll have to provide a custom implementation from
the base AppCompatActivity class.

3. Calling the base’s implementation of onCreate is not only important — it’s required.
You do this by calling super.onCreate. Android needs to set up a few things itself
before your own implementation executes, so you notify the base class that it can
do so at this point.

4. This line takes the layout you’ve created and puts it on your device screen by
passing in the identifier for the layout. Android Studio generates the identifier in
the R file at build time using the layout file name created in the previous chapter. So
if you had a layout called really_good_looking_screen then the identifier
generated would be R.layout.really_good_looking_screen.

Android Apprentice Chapter 3: Activities

raywenderlich.com 69

These four lines are core to creating Activities in Android. You will see them in every
activity you create. In the most general sense, any logic you add must come after you’ve
called setContentView.

Note: onCreate isn’t the only entry point available for Activities, but is the one
you should be most familiar with. onCreate also works in concert with other
methods you can override that make up an Activity’s lifecycle. We’ll cover a number
of those lifecycle methods in this book, but if you’re curious, you can find out more
over at https://developer.android.com/guide/components/activities/activity-
lifecycle.html.

Replace the entire contents of GameActivity.kt with the following skeleton:

package com.raywenderlich.timefighter

import android.os.Bundle
import android.os.CountDownTimer
import android.support.v7.app.AppCompatActivity
import android.widget.Button
import android.widget.TextView
import android.widget.Toast

class GameActivity : AppCompatActivity() {
 internal lateinit var gameScoreTextView: TextView
 internal lateinit var timeLeftTextView: TextView
 internal lateinit var tapMeButton: Button

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_game)

 // connect views to variables
 }

 private fun incrementScore() {
 // increment score logic
 }

 private fun resetGame() {
 // reset game logic
 }

 private fun startGame() {
 // start game logic
 }

 private fun endGame() {
 // end game logic
 }
}

Android Apprentice Chapter 3: Activities

raywenderlich.com 70

This contains a number of placeholder functions. You’ll explore the purpose of each one
in this chapter; however, this skeleton gives you an overview of the things you’ll need to
complete this time fighting app!

Note: Sometimes when using new objects in your Classes, Android Studio will not
recognize them until you import the class definition. This is shown by Android
Studio highlighting the object in red.

To import the class definition on a Mac, click on the object and press Alt + Return.
For Windows or Linux, press Alt + Enter.

You can also choose to let Android Studio handle imports automatically for you when
pasting code. On a Mac, select Android Studio ▸ Preferences ▸ Editor ▸ General ▸
Auto Import from the top menu. Set the Insert imports on paste dropdown to All.
Finally, tick the Add unambiguous imports on the fly checkbox.

To do this on Windows or Linux, select File ▸ Settings ▸ Editor ▸ Auto Import from
the top menu. Set the Insert imports on paste dropdown to All. Finally, tick the Add
unambiguous imports on the fly checkbox.

Hooking up the views
As an Android developer, one of the most common things your app will do is react to a
button click and convert that click into a change reflected in the app.

In GameActivity, you added three variables named gameScoreTextView,
timeLeftTextView and tapMeButton. The first thing you need to do is attach these
variables to the views you added to the layout.

In onCreate(savedInstanceState: Bundle?), add the following code right after
setContentView:

// 1
gameScoreTextView = findViewById<TextView>(R.id.game_score_text_view)

timeLeftTextView = findViewById<TextView>(R.id.time_left_text_view)

tapMeButton = findViewById<Button>(R.id.tap_me_button)

// 2
tapMeButton.setOnClickListener { v -> incrementScore() }

Android Apprentice Chapter 3: Activities

raywenderlich.com 71

Taking each commented line in turn:

1. First, findViewById searches through your activity_game layout file to find the
View that has the corresponding ID and provides a reference to it that you can store
as a variable. Note you’re using the R file constants in this case. It’s crucial that you
cast it to the View type you’re expecting because findViewById only returns a View,
not the subclass you will need.

2. setOnClickListener attaches a click, or tap, listener to the Button which calls
incrementScore. You’re instructing the button to listen for a click, then whenever it
is clicked, increment your score.

You’re nearly there now. Add a new variable to GameActivity, and initialize it to 0 as
follows:

internal var score = 0

Next, replace the contents of incrementScore with the following:

private fun incrementScore() {
 score++

 val newScore = "Your Score: " + Integer.toString(score)
 gameScoreTextView.text = newScore
}

Here you increment your new score variable to the next number and then convert that
number into a string to use with your score text view.

Finally, you use your newScore variable to set the text of gameScoreTextView.

Time to realize the fruits of your labor. Run your app and tap the button a few times.
The score in the top left corner of the screen will increment with each tap.

Android Apprentice Chapter 3: Activities

raywenderlich.com 72

You’ve just hit quite a milestone in your Android app development! You’ve created a
view, given it an ID, accessed it in your code, and reacted to some user input. These are
the fundamental tasks of app development, and you will repeat this cycle many
thousands of times in your career. Take a moment to appreciate this major
accomplishment. Well done!

Managing strings in your app
You’ve just gotten your first taste of writing code, you’ve got something up and running
resembling a game, and you undoubtedly want to take your app further.

One of the most important elements of any app is the text, or strings, displayed
onscreen. As you move ahead in your Android development career, you’ll do well to
master the ins and outs of using strings.

Android Apprentice Chapter 3: Activities

raywenderlich.com 73

For instance, you’re using English labels in your app, but that doesn’t mean it’s the only
language your app can support. Supporting multiple languages in your app can often
lead to broader markets for your app, and it’s a feature you should seriously consider
when putting your app in the app store.

In the previous section, you set the gameScoreTextView to use the string "Your Score:
" + Integer.toString(score). This works well if you’re only targeting English-
speaking users. But how would you support one, two, or a dozen other languages in the
future, without writing spaghetti code?

The answer to this is String resources.

In your project navigator, expand the res/values folder and open strings.xml. You’ll see
a file with the following content:

<resources>
 <string name="app_name">Timefighter</string>
</resources>

strings.xml gives you a place to store all the strings in your app, in order to keep
strings from being sprinkled throughout your code. This makes it really easy to add
support to your app for another language. Rather than hunting through your entire
project to change all the strings, you simply copy the file and change it to hold the
language translations of your choice. Easy!

For now you’ll use this file to keep your English text in a separate location. Add the
following lines underneath the app_name string:

<resources>
 <string name="app_name">Timefighter</string>
 <string name="tap_me">Tap me!</string>
 <string name="your_score">Your Score: %s</string>
 <string name="time_left">Time left: %s</string>
 <string name="game_over_message">Times up! Your score was: %s</string>
</resources>

Now go back to incrementScore in GameActivity.kt and replace the contents of that
method with the following:

private fun incrementScore() {
 score++

 val newScore = getString(R.string.your_score, Integer.toString(score))
 gameScoreTextView.text = newScore
}

getString is an Activity-provided method that lets you grab strings from the R file name
or ID. In this case, you’re retrieving the strings you added earlier to strings.xml.

Android Apprentice Chapter 3: Activities

raywenderlich.com 74

You’re also passing in a string for the placeholder %s you added way back at the
beginning of this chapter.

Note: To learn more about String Resources in Android, checkout the Android
developer documentation at https://developer.android.com/guide/topics/
resources/string-resource.html where you can also learn about string arrays and
plurals.

Besides following the best practices for strings, your app is also ready for porting to
another language, should you ever want to do that. Sprinkling strings throughout your
app is one of the worst types of technical debt to incur.

With that out of the way, you can get back to developing your game.

Progressing the game
Currently, the game lets you increment the score infinitely. However, for a game named
TimeFighter there isn’t much fighting of time going on. In this section, you’ll add a
countdown timer that will limit the amount of time you have to increase your score.

At the top of the GameActivity class add the following new properties underneath your
View properties:

internal var gameStarted = false

internal lateinit var countDownTimer: CountDownTimer
internal var initialCountDown: Long = 60000
internal var countDownInterval: Long = 1000
internal var timeLeft = 60

Here you declare a few new properties to give your game some life: a Boolean property
to indicate when the game has started, a countdown object named countDownTimer for
you to race against, a count down interval variable to indicate the rate at which the
countdown will decrement and finally a variable to hold an integer representation of
the countdown.

Finally, replace resetGame with the following method:

private fun resetGame() {
 // 1
 score = 0

 val initialScore = getString(R.string.your_score,
Integer.toString(score))

Android Apprentice Chapter 3: Activities

raywenderlich.com 75

 gameScoreTextView.text = initialScore

 val initialTimeLeft = getString(R.string.time_left,
Integer.toString(60))
 timeLeftTextView.text = initialTimeLeft

 // 2
 countDownTimer = object : CountDownTimer(initialCountDown,
countDownInterval) {
 // 3
 override fun onTick(millisUntilFinished: Long) {
 timeLeft = millisUntilFinished.toInt() / 1000

 val timeLeftString = getString(R.string.time_left,
Integer.toString(timeLeft))
 timeLeftTextView.text = timeLeftString
 }

 override fun onFinish() {
 // To Be Implemented Later
 }
 }

 // 4
 gameStarted = false
}

Here, you initialize your game with a default state. You may have noticed when you first
ran your game before there were some oddities like symbols appearing next to the time
left TextView or the score TextView before you started the game. This method will
ensure your game always has a default state to begin. Let’s look at it closely.

1. You first set the score to 0, convert it into a string and use getString to insert the
score value into your string stored in strings.xml. You then initialize the TextView
with this value. You then repeat the process for the time left TextView.

2. Here you create a new CountDownTimer object and pass it into the
initialCountDown and countDownInterval properties, which are set to 60000 and
1000 respectively. The CountDownTimer object will count from 60000 milliseconds,
or 60 seconds, in 1000 milliseconds, or 1 second, increments, until it hits zero.

3. Inside the CountDownTimer you have two overridden methods: onTick and
onFinish. onTick is called at every interval you passed into the timer; in this case,
once a second. Each interval, the timeLeft property is updated with the time
remaining by converting the millisecond representation into seconds. You then
update timeLeftTextView with this new time. You’ll call onFinish when
CountDownTimer has finished counting down. You’ll add some code to this later.

4. Finally, you inform your gameStarted property that the game has not started by
setting it to false.

Android Apprentice Chapter 3: Activities

raywenderlich.com 76

The next step is to hook up resetGame to run when you first create the Activity. How do
you do that? That’s right, back to your friend onCreate.

Add the following line to the bottom of the onCreate method:

resetGame()

Starting the game
Run your app, and things should look a little less jarring. The score TextView and time
left TextView now show numbers instead of placeholders. Nice!

Click the button, and — no countdown! What is this madness?

Ah — you haven’t told your countdown timer to begin counting down once the button
has been clicked. Let’s do that now. Replace startGame with the following:

private fun startGame() {
 countDownTimer.start()
 gameStarted = true
}

Here you inform the countdown timer to start. You also set gameStarted to true to
inform any interested parties that the game has indeed started.

Finally, add the following lines to the top of incrementScore:

if (!gameStarted) {
 startGame()
}

This snippet of code checks to make the game has started when you tap the button. If
not, then it starts the game for you.

Run the app to see what has changed.

Android Apprentice Chapter 3: Activities

raywenderlich.com 77

Nice! Your countdown timer is now ticking merrily away.

Ending the game
Huzzah. T-Minus 60 seconds and counting to do — what exactly? The answer is
“nothing”, because the game doesn’t know what to do after 60 seconds.

In the GameActivity class, replace replace the endGame method with the following code:

private fun endGame() {
 Toast.makeText(this, getString(R.string.game_over_message,
Integer.toString(score)), Toast.LENGTH_LONG).show()
 resetGame()
}

Here, you make use of a Toast to notify something to the user. A Toast is a small alert
that pops up briefly to inform you of some event that’s occurred — in this case, the end
of the game.

Android Apprentice Chapter 3: Activities

raywenderlich.com 78

Here, you pass into the Toast the Activity you want the Toast to appear on and the
message to display. The end game state is a good time to display the score along with
the game over message you put into strings.xml. You then inform the Toast to display
for a long time with Toast.LENGTH_LONG, which in reality is a few seconds, and then
show the Toast. Once that’s done, simply reset the game.

You need to call endGame from somewhere. The best time to call this is when
countDownTimer has finished counting.

Head over to resetGame and add the following line to onFinish:

endGame()

Run your app one more time, and keep clicking the button. The countdown will
continue to decrement until it hits 0. Once it does, you’ll see your Toast with your score
and game over message, at which point the game will reset.

Android Apprentice Chapter 3: Activities

raywenderlich.com 79

Where to go from here?
With a relatively small amount of code, you’ve created a functional game while learning
some of the foundational elements of building an Android app. Although this Activity is
rather small, Activities can quickly get very complex as you add more Views.

But no matter how large or small, creating any Activity has the same flow:

1. Create a Layout for the Activity.

2. Give your Views in your Layout some IDs.

3. Create properties in your Activity code and reference the IDs.

4. Manipulate your views as you see fit.

In the next chapter, you’ll look at some potential problems in your app and learn how to
fix them with some debugging techniques for Android.

Android Apprentice Chapter 3: Activities

raywenderlich.com 80

4Chapter 4: Debugging
By Darryl Bayliss

In the previous two chapters, you focused on developing TimeFighter into a fully-
fledged app. In this chapter, you’ll focus on how to debug your app when it begins to
exhibit bugs.

All apps have bugs at some point in their lifetime. Some will be subtle, such as oddities
within the UI, while others will be obvious, such as outright crashes. As a developer, you
need to avoid bugs in your app at all costs to make sure your users are happy as can be.

Android and Android Studio provide developers with a number of tools to help you
track down and fix bugs with relative ease. In this chapter, you will learn:

1. How to debug your app using Android Studio’s debug tools.

2. How to add landscape support to TimeFighter.

Getting started
If you were following along with an app of your own, open the project in Android Studio
and keep going with it for this chapter. If not, don’t worry. Locate the projects folder for
this chapter and open the TimeFighter app under the starter folder. The first time you
open the project, Android Studio takes a few minutes to set up your environment and
update dependencies.

TimeFighter suffers from a problem you might not be aware of. Start the app in the
emulator or on your device. Push the TAP ME button a few times, then change the
orientation of your device to landscape.

raywenderlich.com 81

Notice the issue? TimeFighter resets mid-game and leaves you to start off again. That’s
way beyond annoying. To understand why this happens, you’ll have to put on your
debugging hat and analyze the code.

Add some logging
The first basic debugging approach that’s available in most modern languages is to add
logging to your app. Logging tells you what’s what’s happening at certain points in
your code. You can even log the values of variables at runtime to check that they
contain what you think they should contain.

In the GameActivity.kt class, add the following property to the top of the existing
properties:

 // 1
internal val TAG = GameActivity::class.java.simpleName

Then add the following line underneath the call to setContentView in onCreate:

 // 2
Log.d(TAG, "onCreate called. Score is: $score")

Android Apprentice Chapter 4: Debugging

raywenderlich.com 82

What’s going on here?

1. You assign the name of your class to the TAG variable. The convention is to use the
class name in your log messages, which makes it easier to see what class the
message is coming from.

2. You Log a message when the Activity is created. You app will inform you when
onCreate is called and will also tell you what the current score is. Injecting $score
into the message is an example of string interpolation in Kotlin. At runtime, Kotlin
will look for the score variable and replace it in the log message.

Run your app again; once it’s loaded, go to Android Studio and along the bottom of the
window you will see a button labeled Logcat. Click it and the bottom of Android Studio
will display a console-like window:

Logcat lets you see everything your emulator or device is doing through log messages,
which includes messages coming from outside your app. For now, you can simply ignore
most messages and filter down to just the ones you’ve added yourself.

In the Logcat window there is a search bar with a magnifying glass in it. Any text you
enter here will filter the logs messages that match the text you are looking for. In the
Logcat search bar (the one with a magnifying glass) type the name of your activity
— GameActivity — and watch as the logs begin to clear up.

Android Apprentice Chapter 4: Debugging

raywenderlich.com 83

Huzzah! You can see the log messages you added earlier! The score is currently 0
because you haven’t yet started the game. Try to reproduce the bug by rotating the
screen as you play the game:

Huh? Why is the score reset to 0? This is due to the way Activities react to changes in
orientation, which you will learn about in the next section.

Note: You’ll only scratch the surface of Logcat in this chapter. For a more
complete explanation of what Logcat is capable of, head over to: https://
developer.android.com/studio/command-line/logcat.html

Orientation changes
From your log messages, you’ve established that the score property is reset to 0
whenever you rotate the device. The reason for this relates to how Android handles
device orientation changes. Android does three things whenever it detects a change in
orientation:

1. It attempts to save any properties for the activity specified by the developer.

2. It destroys the activity.

3. It recreates the activity for the new orientation by calling onCreate and resets any
properties specified by the developer.

Android Apprentice Chapter 4: Debugging

raywenderlich.com 84

Android performs these steps any time there’s a change to the configuration of a
device. A configuration change can be a result of many things, including changes to the
orientation or the selected language. Your activity may be destroyed or recreated
several times while your user is using the app.

This is why it’s incredibly important that you develop your app so that it can recover
cleanly from these changes.

In GameActivity.kt, add the following companion object at the bottom of properties
you’ve declared:

// 1
companion object {

 private val SCORE_KEY = "SCORE_KEY"

 private val TIME_LEFT_KEY = "TIME_LEFT_KEY"
}

Next, add the following method underneath onCreate:

// 2
override fun onSaveInstanceState(outState: Bundle) {

 super.onSaveInstanceState(outState)

 outState.putInt(SCORE_KEY, score)
 outState.putInt(TIME_LEFT_KEY, timeLeft)
 countDownTimer.cancel()

 Log.d(TAG, "onSaveInstanceState: Saving Score: $score & Time Left:
$timeLeft")
}

// 3
override fun onDestroy() {
 super.onDestroy()

 Log.d(TAG, "onDestroy called.")
}

To recap the code above:

1. You create a companion object that contains two String constants, SCORE_KEY and
TIME_LEFT_KEY, to track the variables you want to save when the orientation
changes. You’ll use these constants as keys into a dictionary of saved properties.

2. You override onSaveInstanceState and insert the values of score and timeLeft into
the passed-in Bundle object. A Bundle is effectively a dictionary which Android uses
to pass values across different screens. You also cancel the game timer and add a log
to track when the method is called.

Android Apprentice Chapter 4: Debugging

raywenderlich.com 85

3. You override onDestroy, call the super implementation so your Activity can perform
any essential cleanup, and added a final log to track when onDestroy is called.

Run your app again, play the game for a few seconds and change the orientation. Then
look at your Logcat output:

That’s looking promising!

Breakpoints
Logging can be an effective way of understanding what your app is doing. However, it
can be tedious to have to write a log message, recompile, rerun your app, and attempt
to reproduce the bug. Android Studio provides breakpoints, which let you pause the
execution of your app so you can inspect its current state.

In GameActivity.kt, scroll to onSaveInstanceState and find the log line at the bottom
of the function. Then click on the grey border (also known as the gutter) to the left of
the line:

This add a red dot to the gutter to indicate where your breakpoint sits.

Next, click the Debug button at the top of the window. This looks like a bug with a
small green play button in the bottom right:

Android Apprentice Chapter 4: Debugging

raywenderlich.com 86

Once the app has reloaded, rotate the screen. Android Studio will shift windows and
highlight the breakpoint:

Your app is paused at the line that will be executed next. In this case, it’s the log
message you added earlier where you save your game variables to a bundle.

When Android Studio hits a breakpoint, it gives you the opportunity to inspect your
app’s state at that exact moment in time. You can see much of this information in the
Debug window below your code. Move to the debugger view and click the arrow next to
this = {GameActivity}.

Android Apprentice Chapter 4: Debugging

raywenderlich.com 87

The number postfixing your GameActivity will likely be different, since this number
indicates where your activity is allocated in memory.

You’ll recognize some of the values as your own, as well as some other values you’ll be
unfamiliar with. These are values specific to an Activity and give you an appreciation of
how much work the Activity Class does behind the scenes.

Android Studio also inlines a lot of debug information within your code when it hits a
breakpoint, making it even easier to inspect the state of you code.

Time to put this knowledge to use. Expand the outState Bundle object in the debugger
and expand mMap. You should see some familiar values:

Android Apprentice Chapter 4: Debugging

raywenderlich.com 88

Compare those numbers with the values of your score and timeLeft variables, and they
should match. This tells you those values are now safely stored in the Bundle. In the
next section, you’ll see how to get those numbers back when the device orientation has
changed.

Restarting the game
Up to now you’ve only used onCreate to set up your Activity. You’ve never used the
savedInstanceState object passed in as a parameter... until now!

Inside onCreate, replace the call to resetGame with the following:

if (savedInstanceState != null) {
 score = savedInstanceState.getInt(SCORE_KEY)
 timeLeft = savedInstanceState.getInt(TIME_LEFT_KEY)
 restoreGame()
} else {
 resetGame()
}

Here, you’re checking to see if the savedInstanceState Bundle contains a value. If it
does, then attempt to get the values of score and timeLeft from the Bundle you passed
in earlier from onSaveInstanceState, assign those values to your properties, and restore
the game. If the savedInstanceState Bundle doesn’t contain a value, then simply reset
the game.

Next, implement restoreGame underneath your resetGame method:

 private fun restoreGame() {

 val restoredScore = getString(R.string.your_score,
Integer.toString(score))
 gameScoreTextView.text = restoredScore

 val restoredTime = getString(R.string.time_left,
Integer.toString(timeLeft))
 timeLeftTextView.text = restoredTime

 countDownTimer = object : CountDownTimer((timeLeft * 1000).toLong(),
countDownInterval) {
 override fun onTick(millisUntilFinished: Long) {

 timeLeft = millisUntilFinished.toInt() / 1000

 val timeLeftString = getString(R.string.time_left,
Integer.toString(timeLeft))
 timeLeftTextView.text = timeLeftString
 }

 override fun onFinish() {

Android Apprentice Chapter 4: Debugging

raywenderlich.com 89

 endGame()
 }
 }

 countDownTimer.start()
 gameStarted = true
}

restoreGame will set up your TextView and CountDownTimer’s properties to the exact
values inserted into the Bundle before the change in orientation.

Now run your app, play the game for a few seconds and rotate the device to see what
happens:

Woohoo! The score and time remaining stayed exactly the same. Bug fixed!

Where to go from here?
You’ve only scratched the surface of debugging in Android Studio. Finding and fixing
bugs is an integral part of software development, so it’s important that you become
comfortable with the tools.

Android Studio contains a number of debugging tools that are beyond the scope of this
chapter. To find out more, head over to https://developer.android.com/studio/debug/
index.html.

Android Apprentice Chapter 4: Debugging

raywenderlich.com 90

Unfortunately, sometimes you aren’t able to fix bugs due to factors beyond your control.
There may be bugs in a third-party library you’re using, or maybe even within Android
itself! At this point, it helps to be a good developer and inform the developers who
maintain that code via their bug reporting channels so they can investigate the bug in
their own code.

For now, you’re armed with enough tools and techniques to debug problems in your
own app. In the next chapter, you’ll finish up TimeFighter and add some polish so the
app looks and feels more in place in the Android ecosystem.

Android Apprentice Chapter 4: Debugging

raywenderlich.com 91

5Chapter 5: Prettifying the
App
By Darryl Bayliss

Before getting into this chapter, take a moment to congratulate yourself and recognize
what you’ve accomplished to this point. You’ve got a fully-working Android app, ready
to entertain your users by fighting the clock to score as many points as possible.

You’ve also fixed a few undiscovered bugs and added the ability for the user to play the
game in both portrait and landscape mode, regardless of the device they use. By all
accounts, you have an app ready to go and entertain people for years to come!

...but it’s not very visually exciting, is it?

Looking quite bland there!

raywenderlich.com 92

Having an app that looks visually appealing and can surprise the user in gentle ways is
one that will stick out when compared to similar apps. While it’s not integral to the
functionality of your app, it shows that you care about your app and gives it the “wow!”
factor.

In this final chapter, you’ll learn how to do the following:

1. How to adjust your app to adhere to the Material Design Guidelines.

2. How to add some small touches to give your app that polished feeling.

3. How to add a simple animation to your app to give it some life.

Getting started
If you were following along with your own app, open it and keep going with it for this
chapter. If not, don’t worry. Locate the projects folder for this chapter and open the
TimeFighter app under the starter folder. The first time you open the project, Android
Studio takes a few minutes to set up your environment and update dependencies.

Open the TimeFighter project, run the app and think about what you could do to
improve the way it looks and feels. Perhaps the color of the bar could be improved?
Maybe that button feels a little lifeless when you tap it? Why is the screen white? It’s so
silent, could we have sound effects?

It probably hasn’t taken you very long to come up with a lot of ideas for improvements.
The important thing to remember is you don’t need to do everything. You only need to
make changes that add impact to the important elements of the screen — otherwise,
you’ll end up cluttering the screen and confusing the user.

Changing the app bar color
The bar at the top of the app looks like it could use a little more color.

In the project navigator, on the left side of Android Studio, open the colors.xml file in
app > res > values. You’ll see something like this:

<resources>
 <color name="colorPrimary">#3F51B5</color>
 <color name="colorPrimaryDark">#303F9F</color>
 <color name="colorAccent">#FF4081</color>
</resources>

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 93

This file is dedicated to storing the colors used in your app, it’s similar to strings.xml.
It’s a good idea to keep your colors in a single place so you can swap them out quickly
and avoid having to go through every layout to change colors.

You define colors with a <color> tag along with a name attribute that you will use as a
reference in your app when it’s compiled into R.java. The reference will be available for
use in your XML layouts as well as during runtime in your code.

Within the <color> tag, you assign a hexadecimal representation of the color and close
off the tag using </color>.

With the theory behind you, you can move to update your file. In colors.xml, change
the values to the following:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="colorPrimary">#0C572A</color>
 <color name="colorPrimaryDark">#388E3C</color>
 <color name="colorAccent">#8BC34A</color>
 <color name="colorBackground">#D3D3D3</color>
</resources>

You might be wondering how this changes the color of the bar at the top. The answer
lies in the styles.xml file in app > res > values. Open up styles.xml and take a look at
what you see:

<resources>
 <!-- Base application theme. -->
 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
 <!-- Customize your theme here. -->
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>
 </style>
 </resources>

The important things to note here are the <item> tags. They are defining specific items
within your app to adhere to a certain color. In this case, these colors are the colors you
updated in colors.xml.

Note: Curious about what’s going on here? Your app is adhering to a Style set
within this file. This is used to set the presentation of Views and screens and can
be used to override items inherited from other themes provided by Android or
other developers. For more information, visit: https://developer.android.com/
guide/topics/ui/themes.html

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 94

One final tweak. Head over to the activity_game.xml file in app > res > layout, switch
from Design to Text and update the ConstraintLayout tag to change the color of the
background:

<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@color/colorBackground"
 tools:context="com.raywenderlich.timefighter.GameActivity">

Here you reference the new colorBackground color added in colors.xml. With that
done, give the app a run and see if you can see recognize it:

Looking quite interesting!

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 95

With a few lines of code, you’ve managed to transform your app and make it more
visually appealing.

Animations
Animations give visual emphasis to elements and help you direct the user’s
attention. When it comes to animation, the most important rule is to use it where and
when it matters — not simply because you can.

One of the most heavily-used components in your app is the Hit Me button, since that’s
what earns the user points in TimeFighter. Perhaps you could add an animation to it to
make pressing it a little more exciting?

Right-click on the res folder. In the dropdown window, navigate to New and then click
on Android resource directory.

In the New Resource Directory window, change the Resource type to anim (this will
automatically change the name of the directory as well) and click OK.

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 96

You will now have a new folder under the res folder in the project navigator named
anim.

Next, you need to create the file which defines the animation. Right click on the anim
folder, navigate to New and then click on Animation resource file on the rightmost
dropdown.

You’ll be presented with a dialog similar to the one you saw when you created the anim
folder. This time though, you need to enter the name of the file. Give it a descriptive
name that represents the animation it will contain.

In the File name text field, enter bounce, then click OK.

Android Studio will create the file and automatically open it for you. You’ll see an XML
file that looks like the following:

<?xml version="1.0" encoding="utf-8"?>
 <set xmlns:android="http://schemas.android.com/apk/res/android">

</set>

The most notable attribute here is the set attribute. This is a container which holds all
the transformations that occur over the course of your animation, since you can bundle
more than one transformation in the same animation and have them all run
concurrently.

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 97

For now though, you’ll only need to perform one transformation. Edit bounce.xml so it
looks like the following:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:fillAfter="true"
 android:interpolator="@android:anim/bounce_interpolator">
 <scale
 android:duration="2000"
 android:fromXScale="2.0"
 android:fromYScale="2.0"
 android:pivotX="50%"
 android:pivotY="50%"
 android:toXScale="1.0"
 android:toYScale="1.0" />
</set>

Stepping through the XML to see what is going on:

<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:fillAfter="true"
 android:interpolator="@android:anim/bounce_interpolator">

Here, the set is declared and instructed to fill after the animation is complete. This
means the animation will not reset the View that is animated back to its original
position before the animation took place. Instead, it will remain wherever it is when the
animation ends.

The set is also being told to use the bounce_interpolator from Android. This affects the
rate that an animation is performed over time independent of any duration you set
within your animation.

Android provides a number of built-in interpolators, and lets you create your own if you
don’t find one that suits your needs. For now though, the bounce_interpolator that
comes with Android will work nicely.

Let’s look at the next few lines:

<scale
 android:duration="2000"
 android:fromXScale="2.0"
 android:fromYScale="2.0"
 android:pivotX="50%"
 android:pivotY="50%"
 android:toXScale="1.0"
 android:toYScale="1.0" />

Here you’ve declared a scale attribute. This informs the animation that resizing of the
View should occur, you’ve also declared the duration to be 2000 milliseconds, or 2
seconds.

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 98

You also specify the scale that the animation should start from in fromXScale and
fromYScale, and that the height and width of the View should be twice the original size
at the beginning of the animation.

pivotX and pivotY specify the center point from which the animation should occur. In
this case it occurs from the center of the View. Finally, you specify to which scale the
View should shrink via the toXScale and toYScale attributes.

Here you want the View to shrink back to its original size, so the desired scale is 1.0.

So to review, the animation you’ve defined will:

• Scale the animated View to twice its size.

• Shrink it back to its original size.

• Do this over the space of two seconds.

• Using a bouncing interpolator.

Note: If you want to know more about animation resources and interpolators on
Android, then head over to https://developer.android.com/guide/topics/resources/
animation-resource.html for an in-depth review.

That’s it for your bounce animation. Open up GameActivity.kt, and modify the
tapMeButton.setOnClickListener callback in onCreate to look like the following:

tapMeButton.setOnClickListener { v ->
 val bounceAnimation = AnimationUtils.loadAnimation(this,
 R.anim.bounce);
 v.startAnimation(bounceAnimation)
 incrementScore()
}

Now, every time you click the tapMeButton, Android will load the bounce animation
defined within the anim folder, then tell your button to begin running that animation.
Run the app, and once it has updated, click the button.

That’s bound to make clicking a button a lot more interesting.

Adding a Dialog
The final thing you need to do is let everyone know who exactly built the app. Come on,
you need to give yourself some credit, don’t you? However, you don’t want people to get

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 99

distracted from playing your game. If only there was a way to do that...

Fortunately there is — in the form of Dialogs. Think of a Dialog as a way to provide a
snippet of information your users need, without being taken away from the main
content on your screen. They come in all shapes and sizes, but in this case you just want
to let your users know about the creator of the app and what version of TimeFighter
they’re running.

An easy way to do that is to set up a button in the top bar. To do that, you need to
define a menu.

Head over to your res folder and right click on it. Just like you did to create the anim
folder, right-click on the folder and select Android resource directory. In the pop-up
window, change the resource type to menu and click OK.

Right click on your newly created menu resource folder. In the pop-up menu, hover
over New, then click on Menu resource file.

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 100

In the New Resource File window, enter the file name as menu and click OK:

Android Studio will change over to the layout window and show you a similar setup to
what you’ve seen when editing layout files:

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 101

Here you have all the usual windows to help create a menu for your app. The Palette in
the top left has changed to show only menu-specific items, and the Component Tree
gives you an overview of the hierarchy for your menu.

You only want one item in your menu. To do that, move your cursor over to the Menu
Item button in the Palette window, and click and drag from the Menu Item and onto
your layout.

You should end up with something like this:

So far, so good. Now you’ll tidy it up a little. Your newly-placed menu item should now
be highlighted, and the Attributes window will be shown on the right. Let’s add/edit
some of these attributes.

First, set id for your menu item and call it action_settings. Next, move onto the title
attribute and name your menu item About.

Now you need to decide what icon you want to use for your menu item. Android comes
with plenty of embedded images to choose from, so you can use one of those.

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 102

Click the small dots next to the icon textfield. They appear like so:

Once you’ve clicked the small dots, you’ll be presented with the resources window.

This window shows you all resources that are available to use within your app, whether
they come from Android or your own custom resources. The window shows both images
(or drawables, as Android refers to them) or colors.

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 103

In the top left of the resources window is a search bar. Click in the search bar and type
ic_menu_preferences. As you type, the list of resources will filter down to match any
resources that contain the characters you type. In this case, there is only one.

Click the resource under the Android dropdown to select it, then click OK. The resource
window will close and take you back to the layout window. Now, the icon textfield will
be populated with the resource you chose.

Finally, to make sure your button is always shown, you need to set the showAsAction
attribute. This affects how your menu item is presented, and can range from a number
of choices depending on the number of items your menu contains or the screen size of
your device.

You want your menu item to always show up regardless of the circumstances. To do
that, you need to click the small dots next to the showAsAction attribute. In the dialog
that appears check Always, then click OK.

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 104

Looking good! Now for some Kotlin code. In GameActivity.kt, you need to override a
few methods to ensure your menu appears and interacts as expected.

Add the following method underneath onDestroy():

override fun onCreateOptionsMenu(menu: Menu): Boolean {
 // Inflate the menu; this adds items to the action bar if it is
present.
 super.onCreateOptionsMenu(menu)
 menuInflater.inflate(R.menu.menu, menu)
 return true
}

Here you’re hooking into the Activity callback for when it attempts to create the menu.
You first make a call to the super implementation to make sure any superclasses have a
chance to set themselves up, and then you use the Activity’s menuInflater to
programmatically setup your menu layout for the Activity. Finally, you return true to let
the Activity know that the menu is set up.

Next, underneath onCreateOptionsMenu(menu: Menu) add this method:

override fun onOptionsItemSelected(item: MenuItem): Boolean {
 if (item.itemId == R.id.action_settings) {
 showInfo()
 }

 return true
}

This method is called whenever an item in your menu is selected. If the ID of the menu
item is equal to the ID of the item you setup earlier, then run the showInfo() method.
Once again, you return true to let the Activity know the the event has been processed.

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 105

Nearly there! Just a few more lines. You need to define the showInfo() method you just
referenced. To do that add the following method to your GameActivity.kt class. It’s fine
anywhere inside the class, even as the last method in the class. Also, don’t worry about
editor errors just yet since we’ll be adding some more strings next.

private fun showInfo() {
 val dialogTitle = getString(R.string.about_title,
 BuildConfig.VERSION_NAME)
 val dialogMessage = getString(R.string.about_message)

 val builder = AlertDialog.Builder(this)
 builder.setTitle(dialogTitle)
 builder.setMessage(dialogMessage)
 builder.create().show()
}

What’s going on in this method? showInfo() handles the setting up of a dialog View for
yourself. It first creates two strings to use in the dialog, one for the title, and one for the
message. These strings are created by a mixture of the strings stored in your
strings.xml file and any strings generated when your app is built. In this case, this is
the VERSION_NAME of your app. The version name is already available, and you’ll set
up the other strings you need in strings.xml in just a moment.

Next, you create an AlertDialog.Builder object and pass in a Context instance to let
the Dialog know where it should appear. You then pass in your title and message, create
the Dialog, and finally display it.

Note: When you add the line val builder = AlertDialog.Builder(this), Android
Studio will offer to auto-import a library for you and it offers up several options.
Be sure to select the Android Support Library android.support.v7.app.

It’s time to add in those missing strings. Open up your strings.xml and add the
following strings (substituting your name in the about_message string):

<string name="about_title">Timefighter %s</string>
<string name="about_message">Created by YOUR NAME HERE</string>

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 106

Finally, run your app and check out the new wrench icon sitting in the top right of the
screen:

Tap the wrench and you’ll be presented with a dialog that doesn’t completely obscure
the screen:

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 107

There you have it. A small place where people know what version of your app they’re
using, and who created it!

Where to go from here?
Congratulations on completing this chapter and the first section of the book! You’ve
learned a lot over the last few chapters, and now know how to create a simple game app.
In the next section, you’re going to leave TimeFighter and move onto a different app to
build upon the skills and concepts you’ve picked up in this first section.

Take a moment to appreciate what you’ve achieved, then carry on to the next section!

Android Apprentice Chapter 5: Prettifying the App

raywenderlich.com 108

Section II: Building a Checklist App

Welcome to Section II of the book! You’re going to leave behind the last app you made
and create a completely new app. This new app is called ListMaker, and will allow you
and your users to create handy lists that you can look at later.

In the previous section, you had a starter project to begin building your app. But in this
section, you’re going to create your own project from scratch! You’ll go through the
steps and choices given to you to ensure your project is set up right from the very start.

Chapter 6: Creating a New Project

Chapter 7: RecyclerViews

Chapter 8: SharedPreferences

Chapter 9: Communicating Between Activities

Chapter 10: Completing the Detail View

Chapter 11: Using Fragments

Chapter 12: Material Design

raywenderlich.com 109

6Chapter 6: Creating a New
Project
By Darryl Bayliss

You’re going to leave behind the last app you made and create a completely new app.
This new app is called ListMaker, and will allow you and your users to create handy
lists that you can look at later.

In this chapter, you’ll learn to do the following:

1. Give your project an appropriate name and initial package structure.

2. Learn about each step of the project setup process and what each screen is for.

3. Set up your new project so you’re ready to begin creating your next app.

raywenderlich.com 110

Getting started
Open Android Studio and you’ll be presented with a screen like this:

Before you begin to go through the steps of creating a new app, there are some useful
features in Android Studio that are worth pointing out for each of the options in this
screen.

Start a new Android Studio project: Starts the process of creating a brand new
project for you to build your app. You’ll come back to this one.

Open an existing Android Studio project: Lets you navigate through your machine’s
file structure to find and open an Android Studio project you’ve already gotten from
somewhere else.

Check out project from Version Control: Open an Android Studio repository from the
Internet on your machine. Because Android Studio is built on IntelliJ, an IDE from the
company JetBrains, you get access to powerful version control tools right inside
Android Studio.

Clicking on the Check out project Version Control button presents you with a number
of version control systems Android Studio can work with, such as Git or Mercurial.
Android Studio also works with version control storage providers such as GitHub or
Google Cloud.

Android Apprentice Chapter 6: Creating a New Project

raywenderlich.com 111

If you don’t already use another version control system, we highly recommend checking
out the tools within Android Studio for your versioning control needs.

Profile or debug APK: Gives you the option to select an Android app (.apk) file from
your machine’s file system and run it on a device or emulator to gather useful
information about the app to learn or make improvements.

The information you can gather with this option ranges from the size of the app and its
contents, to more sophisticated information gathered during runtime such as memory
usage or network activity.

Android Apprentice Chapter 6: Creating a New Project

raywenderlich.com 112

Import project (Gradle, Eclipse ADT, etc): Provides a more sophisticated way to open
an Android project. This option allows you to convert older codebases to the newer
Gradle build system Android Studio relies on. To keep it simple, if you have a complex
Android Studio project, or an ancient project to maintain, this is the place to go.

Import an Android code sample: Lets you import a treasure trove of sample projects
provided by Google to demonstrate the features of Android. Here you can find Android
Studio projects covering all sorts of topics from using emojis in your app, to more
technical topics such keeping your users’ data secure.

You’ll keep it simple this time around. Click Start a new Android Studio project to
begin creating your own app from scratch!

Android Apprentice Chapter 6: Creating a New Project

raywenderlich.com 113

Creating a new Android project
After clicking the Start Project button, you’ll be presented with a new window asking
for a few pieces of information:

The first text field at the top is where you enter the name of your app. Type ListMaker
in this field.

The second textfield is used to identify the packages used within your app. Packages
describe how your code is structured, and it’s good practice to name them in a way that
describes what is inside each package.

This textfield allows you to set the company domain that is prefixed before a package
name. This ensures that the package you create is unique to you and will minimize any
chances of other external packages from conflicting with your own.

Packages with the same names will cause Android Studio to be confused about where to
look for specific code. In this textfield type raywenderlich.com. That seems pretty
unique!

Android Apprentice Chapter 6: Creating a New Project

raywenderlich.com 114

The final textfield is where your project will be created on your machine. Feel free to
change this to wherever you want to save your project. To the right of the textfield is a
button with three dots. Clicking this will open up your machine’s file system and let you
set your save destination.

Before you move on, take a look at what else is on this screen. The first thing is Package
Name. This shows you exactly what your default package name will look like within
your app.

Android Apprentice Chapter 6: Creating a New Project

raywenderlich.com 115

By default, this is a combination of your app’s name and company domain you entered
earlier. If you prefer it to be something else, you can click the Edit button to the right,
turning the grayed-out package name text into a textfield.

Unless you have a good reason to change this, it’s recommended to leave it as-is. Let’s
look what else is available.

Below the package name text are two checkboxes. The first one is Include C++ support.
This gives your Android app the ability to use C++. We won’t cover the use of C++ within
this book. However, if you want to use C++ in your app, or leverage some C++ code
written for other platforms, it’s worth checking this box to give you access to some C++
specific tools in your new project.

The final checkbox is labelled Include Kotlin support. Make sure this box is checked so
you can use Android Studio’s included Kotlin language support within your apps.

Previously, you could only use Java to create Android apps, since that’s the language
used to build the Android libraries. However, Google has now officially adopted Kotlin
as an additional language that can be used to create Android apps. Thanks to the clever
thinking at JetBrains, the company that created the Kotlin language, you can use Kotlin
in your apps alongside Java.

This is a setting you definitely want to keep checked, especially since we use Kotlin in
this book!

Now that everything is covered, click Next to go to the next step.

Targeting Android devices
The next screen is the Target Android Devices screen. This gives you the opportunity
to tell Android Studio what kind of Android devices you want to support in your project.

Yes, you heard that right. Android extends beyond just phones and tablets! It also runs
on various wearables such as watches and fitness trackers, television sets, automotive
systems within your car, and even various electronics grouped under that wide umbrella
you know as the “internet of things”.

Android Apprentice Chapter 6: Creating a New Project

raywenderlich.com 116

Ticking each of the various checkboxes associated with each type of device will instruct
Android Studio to configure your starter project to contain everything you need to run a
basic app on that device. You also have the ability to set the minimum SDK you want to
support — in other words, the minimum version of Android you want your app to run
on.

It can be hard to decide what minimum version of Android you want to support. More
recent versions of Android support more features, but settling on one of those means
you risk cutting off large numbers of users running older devices.

Conversely, choosing an older version means supporting more users, but having to
make hard choices on whether to use older features only and avoid newer features
found in more modern versions of Android. If only there was a way to help make this
decision!

Android Apprentice Chapter 6: Creating a New Project

raywenderlich.com 117

Fortunately, there is. Underneath the Phone and Tablet dropdown, click Help me
choose, and you’ll be presented with the Android Platform Distribution window.

This is the Android Platform Distribution window. It shows a rough distribution of
the versions of Android running throughout the world. This gives you the opportunity
to make an informed decision on which versions of Android to support.

The distribution works on a cumulative basis, as shown by the percentages running
alongside the colored boxes on the left. What this means is the earlier the Android
version you choose to support, the more Android devices there are in the world that will
be able to run your app.

Distribution isn’t the only thing this window provides: It also provides a handy
overview of what features each version of Android supports. Android Ice Cream
Sandwich is selected by default, but if you click each of the colored boxes you can see
what features each Android version provides.

If you need more in depth information, then the link in the bottom right of the window
will take you to the About page on the Android developer site for that Android version.

This is an extremely useful page, and I recommend that you use it whenever you’re
trying to decide which versions of Android to support.

Android Apprentice Chapter 6: Creating a New Project

raywenderlich.com 118

For now, you will use the default selected version of Android: Ice Cream Sandwich. Click
Cancel to go back to the Target Android Devices screen. Then click Next in the bottom
right to go to the next screen.

Creating an Activity
Now that you’ve set up the name of your app and chosen the version of Android you
want to support, your next crucial choice is to choose what kind of Activity you want to
start with.

Android Studio provides you with a number of templates to help get you started as
quickly as possible, such as an Activity that has a map embedded, or an activity with a
basic login layout ready for you to customize. The list is quite extensive.

If you had elected to support other devices in your project such as Android Wear, TV or
Auto, you would have multiple opportunities to choose the best template to start with
for each device.

For now though, you only have one choice to make for your phone app. You want
something simple so you can get started as quickly as possible. The Basic Activity will

Android Apprentice Chapter 6: Creating a New Project

raywenderlich.com 119

suit your needs for reasons that will become clear later on. Click the Basic Activity
image and then click Next.

Welcome to the final screen before you get to see your new project!

Now that you’ve chosen what kind of Activity you want to begin with, you just need to
supply a little more information about the Activity.

The first text field is for the Activity Name. This will be the class name for your Activity
where you will create all the logic for that screen. You want your Activity to be called
MainActivity for now, so let’s leave it as is.

The second text field is for the Layout Name. Remember, the Layout is the file used in
association with an Activity to describe how the screen looks. Change this one to
something more descriptive: Type activity_list into the textfield.

NOTE: When creating layout files, convention dictates that the type of object the
file is associated with is usually the first part of the name, followed by what it
does. So similar to activity_list.xml, if you were creating a FooView, you would
name a layout associated with it view_foo.xml.

Android Apprentice Chapter 6: Creating a New Project

raywenderlich.com 120

The third text field is for the Title of your activity. This is the name shown in the
colored bar at the top of your Activity screen. It makes sense for it to show the name of
your app, so type in ListMaker.

That’s all for this screen, but before you run off and click Finish, take a look at what’s
left on this screen that you didn’t touch.

First, there’s the Use a Fragment checkbox right below the title text field. Leave this
unchecked, since you’ll explore what Fragments are later in the section. For now, all
you need to know is that Fragments allow you to split your Activity up into smaller
independent pieces.

The final text field is called Hierarchical Parent and lets you provide the name of a
parent Activity for your new Activity. When you set this, tapping the “Up” button on
your Android device will automatically navigate from your current Activity to its parent
Activity. Pretty handy! However, since this is the first Activity in the app, leave this
blank.

Click Finish. Android Studio will take all your project settings and begin to create a new
project for you.

Once it’s finished, you’ll be presented with your project, and Android Studio will open
up with your new layout ready for editing.

Android Apprentice Chapter 6: Creating a New Project

raywenderlich.com 121

Where to go from here?
That’s it for this chapter. As you’ve seen, Android Studio provides a sophisticated way
to set up a new project with a number of templates to get you up and running as quickly
as possible. Sample code is only a click away on the welcome screen, and you’ve got the
ability to work with a number of exciting variants of Android with just a few clicks.

In the next chapter you’ll begin to build the ListMaker app. Let’s get to it!

Android Apprentice Chapter 6: Creating a New Project

raywenderlich.com 122

7Chapter 7: RecyclerViews
By Darryl Bayliss

In this chapter, you’re going to build a brand new app called ListMaker: an app to help
you organize all of your to-do lists in one handy place.

Lists are a common visual design pattern in apps, allowing a developer to group
together collections of information and display them in a way that allows users to scroll
through and interact with each item in the list.

These apps are all using RecyclerView

raywenderlich.com 123

An item in a list can be anything from a line of text; to something more complex, such
as a video with comments below, as you can see in nearly any social media app today.

In Android development, the simplest way to implement lists in your app is to use a
class named RecyclerView. As part of this chapter, you’ll learn about the following:

1. How to get started with RecyclerView.

2. How to set up a RecyclerView Adapter to populate your list with data.

3. How to setup a ViewHolder to handle the layout of each item in your list.

Getting started
If you are following along with your own app, open it up. If not, don’t worry. Locate the
projects folder for this chapter and open the ListMaker app under the starter folder.
The first time you open the project, Android Studio takes a few minutes to set up your
environment and update dependencies.

Open up your newly created Android Studio project and examine the project structure.
In particular, have a look at the following files:

• MainActivity.kt, found in the java folder.

• activity_list.xml and content_main.xml, found in the layout folder.

Kotlin (.kt) files drive the logic of your app. MainActivity.kt will contain some
familiar-looking boilerplate code related to the Activity and Menu lifecycles.

In previous chapters, you learnt how to use layout files to build up the user interface of
your app. However, there’s two layout files in this project: activity_list.xml and
content_main.xml. Previously, you only had one layout file from setting up an activity.
Why are there two?

The answer can be found by looking at activity_list.xml. Open it up and examine the
Component Tree to see what is going on:

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 124

You have a Toolbar to display menu items you create, as well as a
FloatingActionButton. You’ve used buttons before, so there’s no surprises so far.

Keep scanning, and you’ll see a final component named include. This is where
content_main.xml comes into play: the activity_list.xml layout includes the layout
defined in content_main.xml.

While it might seem odd to take this approach, this can be useful when you use a layout
in multiple places in your app, or when your layout is complex enough to benefit from
being split up into multiple files.

Open content_main.xml and have a look at its contents:

Nothing but a single TextView! That seems straightforward enough.

Now that you know how everything is strung together, click Run app to see that
glorious TextView:

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 125

There’s something important missing from ListMaker: lists! There isn’t any way to
show a list, let alone your master list of lists. It’s like Inception, but...Listception instead.
You’ll fix this in the next section.

Adding a RecyclerView
Open content_main.xml. First, select the TextView and delete it. Next, go to the
Palette and click AppCompat:

Click and drag a RecyclerView from the list of components into the middle of the
layout:

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 126

Once you’ve dropped the RecyclerView into the Layout, head over to the Attributes
window and change the ID to lists_recyclerview. This will let you reference the
RecyclerView in your Kotlin file. Next, change the layout_width and layout_height to
match_parent.

Now it’s time to use the RecyclerView you just added.

The components of a RecyclerView
RecyclerView let you display large amounts of data. In turn, each piece of data is
treated as an item within the RecyclerView. Each of these items in turn make up the
contents of the RecyclerView. Sounds a lot like a list, doesn’t it?

RecyclerView has two required components that help display your list of items:
Adapter and ViewHolders. The following diagram shows how these components work
together:

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 127

Let’s break down the flow of each component:

1. The RecyclerView asks the Adapter for an item, or a ViewHolder at a given position.

2. The Adapter reaches into a pool of ViewHolders that have been created.

3. Either a a new ViewHolder is returned, or a new one is created.

4. The Adapter then binds this ViewHolder to a data item at the given position.

5. The ViewHolder is returned back to the RecyclerView for display.

In general, Adapters give your RecyclerView the data it wants to show. They have a
clever way to calculate how many rows of data you want to show, which you’ll cover
shortly.

ViewHolders are the visual containers for your item. Think of them as cells in the
table. This is where you tell your RecyclerView what each item should look like. These
are basically little tiny layout items used to display the data at any given position in the
list of data.

As you scroll through a RecyclerView, instead of creating new ViewHolders,
RecyclerView will recycle ViewHolders that have moved offscreen and populate them
with new data, ready to be shown at the bottom of the list. This process repeats
endlessly as you scroll through your RecyclerView. This recycling of ViewHolder to
display list items helps to avoid janking in your app.

Note: Janking is common terms used to refer to dropped or missed frames while
rendering. As an app user, you might have experienced stuttering while scrolling
long lists. This is affectionately known as jank.

That concludes the whirlwind tour of RecyclerView! Now it’s time to get coding.

Hooking up a RecyclerView
Open up MainActivity.kt and add the following line to the top, just above
onCreate(savedInstanceState: Bundle?):

lateinit var listsRecyclerView: RecyclerView

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 128

Here you use the lateinit keyword to tell the compiler that a RecyclerView is going to
be created sometime in the future.

Next, add the following lines to the bottom of onCreate():

// 1
listsRecyclerView = findViewById<RecyclerView>(R.id.lists_recyclerview)
// 2
listsRecyclerView.layoutManager = LinearLayoutManager(this)
// 3
listsRecyclerView.adapter = ListSelectionRecyclerViewAdapter()

Here’s what you’re doing:

1. Set listsRecyclerView by referencing the ID of the RecyclerView you set up in your
layout.

2. Let the RecyclerView know what kind of layout you want to present your items in.
This is similar to the Layouts you can use with your XML layouts, and you’ll need
something to arrange your items in a linear format. The LinearLayoutManager will
work perfectly for this. You also pass in the Activity so the layout manager can
access its Context.

Note: LinearLayoutManager isn’t the only layout provided by RecyclerView. Out of
the box, RecyclerView provides the GridLayoutManager and
StaggeredGridLayoutManager.

3. This lets the RecyclerView know what to use as its adapter.

You’ll notice that this will show an error in Android Studio. This is because
ListSelectionRecyclerViewAdapter doesn’t exist. You’ll create this now.

Setting up a RecyclerView Adapter
Right-click on the com.raywenderlich.listmaker package in the Project Navigator. In
the floating options that appear, hover over New. In the next set of options that appear,
click Kotlin File/Class.

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 129

In the Name text field, type ListSelectionRecyclerViewAdapter and change the Kind
dropdown to Class. Click OK.

Android Studio will create your class for you. While you’re at it, create a ViewHolder
class as well.

Once again, create a new Kotlin class and name it ListSelectionViewHolder.

Now you’ll turn these classes into recycling machines! In ListSelectionViewHolder.kt,
add the following primary constructor to the class so you can pass in the View for your
ViewHolder and have it extend RecyclerView.ViewHolder:

class ListSelectionViewHolder(itemView: View?) :
 RecyclerView.ViewHolder(itemView) {
}

Open up ListSelectionRecyclerViewAdapter.kt and extend the class so it inherits
from RecyclerView.Adapter<ListSelectionViewHolder>():

class ListSelectionRecyclerViewAdapter :
 RecyclerView.Adapter<ListSelectionViewHolder>() {
}

Here you pass in the name of the ViewHolder you want your RecyclerView Adapter to
use. This makes the RecyclerView aware of the ViewHolder so you can reference it in a
few methods you’ll implement shortly.

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 130

Notice that the name of your class is now underlined with red. Move your mouse cursor
over it and Android Studio will tell you the reason for this:

This tells you that since your class inherits from RecyclerView.Adapter, it needs to
implement some further methods so it knows what to do when used in conjunction
with a RecyclerView. Fortunately, this is easy to do.

With your cursor over the class name, press Option + Enter to get a selection of
options. These will help resolve the issue Android Studio has raised.

Note: This keystroke assumes you’re using a Mac for Android development;
however, Windows and Linux versions of Android Studio provide an equivalent
shortcut through Alt + Enter.

Click the Implement Members option, and a new window will appear with options for
various methods to implement. Since your Recycler Adapter needs each one, you’ll take
them all. Make sure onCreateViewHolder() is highlighted, then Shift + click on the
bottom most available member.

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 131

Finally, click OK and Android Studio will do the rest of the work for you. Make sure
those methods are implemented in your ListSelectionRecyclerViewAdapter:

class ListSelectionRecyclerViewAdapter :
 RecyclerView.Adapter<ListSelectionViewHolder>() {

 override fun onCreateViewHolder(parent: ViewGroup?,
 viewType: Int):
 ListSelectionViewHolder {
 TODO("not implemented") //To change body of created
 //functions use File | Settings | File Templates.
 }

 override fun onBindViewHolder(
 holder: ListSelectionViewHolder?,
 position: Int) {
 TODO("not implemented") //To change body of created
 //functions use File | Settings | File Templates.
 }

 override fun getItemCount(): Int {
 TODO("not implemented") //To change body of created
 //functions use File | Settings | File Templates.
 }
}

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 132

Filling in the blanks
Now that you’ve got the basics of your Adapter and ViewHolder set up, it’s time to put
the pieces together. First, you need some sort of content for your RecyclerView to show.
For now, you’ll add some mock titles to show off the RecyclerView.

You also need to create a Layout for your ViewHolder so the RecyclerView knows how
each item within it should look. Finally, you need to bind your titles to the ViewHolder
at the right time depending on what position it has within the RecyclerView.

You’ll implement those mock list titles first. In your
ListSelectionRecyclerViewAdapter class, add the following value above the methods
you’ve implemented:

val listTitles = arrayOf("Shopping List", "Chores", "Android Tutorials")

Here you’re creating an array of strings that will be used for your list titles. In future
chapters, you’ll change this to something more sophisticated. For now, an array will do.

getItemCount() determines how many items the RecyclerView will have. You want the
size of your array to be the size of your RecyclerView, so you’ll return that.

In getItemCount(), return the size of your array like so:

override fun getItemCount(): Int {
 return listTitles.size
}

Next you need to create the Layout that your ViewHolder will use for each item in the
RecyclerView.

Creating the ViewHolder
In the Project Navigator on the left, right-click on the layout folder and create a new
layout:

In the new window that appears, enter list_selection_view_holder into the File Name
text field, enter LinearLayout for the Root element, and click OK.

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 133

Android Studio will open your new layout, ready for you to add the Views you want your
ViewHolder to contain. You need two TextViews here: one to tell you the position of the
list in the RecyclerView, and one to tell you the name of the list.

With the Design tab open, drag a TextView on to the layout.

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 134

In the Attributes window in the right of Android Studio, change the ID of the TextView
to itemNumber. Also change the layout_width and layout_height attributes to
wrap_content and remove the placeholder text from the text attribute:

To make sure the text isn’t sitting right next to the edge of the screen, you also want to
give it a bit of space on its left edge. Click the View All Attributes button at the top of
the Attributes window:

This brings up a list of attributes you can change for your TextView. Feel free to take a
look at what attributes you can change. There’s quite a lot of them!

You need to set the all parameter of the Layout_Margin attribute to add a bit of
padding to this text view. First find the Layout_Margin attribute and click the arrow
next to it to reveal a drop down for each of the parameters:

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 135

In the all text field, type 16dp. This tells the TextView to pad itself by 16 density pixels
(dp) on all sides.

Note: What’s a density pixel? They’re a virtual unit of measurement Android uses
when laying out your View relative to the size of the device screen. Because
devices have many different screen sizes, trying to use absolute pixels isn’t
feasible as your screen will render differently from device to device. To learn more,
head on over to https://developer.android.com/guide/practices/
screens_support.html.

With that done, you’ve set up your first TextView! Time to create the next one. Repeat
the process: drag another TextView into the layout so it’s underneath your first
TextView.

Then just as you did before, change the ID of your TextView, this time to itemString.
Change the layout_width and layout_height to wrap_content. Remove the
placeholder text from the text attribute and change the all parameter in the
Layout_Margin attribute to 16dp.

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 136

You’re nearly done with your layout — there’s just one more thing to do.

Currently, your TextViews are laid out in a vertical orientation. A horizontal orientation
will better suit your app. Therefore, you’ll need to change some attributes on the
LinearLayout your layout uses.

To change this, first click on the LinearLayout in the Component Tree window:

Then, in the Attributes Window, click the dropdown button on the orientation attribute
and select horizontal.

You also need to change the layout_width and layout_height attributes to
wrap_content to make your ViewHolder only as big as it needs to be:

With that done, you’re now ready to use your Layout! Head back to
ListSelectionRecyclerViewAdapter.kt and change onCreateViewHolder() to the
following:

override fun onCreateViewHolder(parent: ViewGroup?,
 viewType: Int): ListSelectionViewHolder {
 // 1
 val view = LayoutInflater.from(parent?.context)
 .inflate(R.layout.list_selection_view_holder,
 parent,
 false)
 // 2
 return ListSelectionViewHolder(view)
}

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 137

The method does the following two things:

1. First, it uses a LayoutInflater object to create a layout programmatically. It uses the
context of the Activity to create itself, and then attempts to inflate the layout you
want by passing in the layout name and the parent ViewGroup so the view has a
parent it can refer to. Don’t worry about the Boolean value; this is fine as false for
now.

Note: LayoutInflater is a system utility used to instantiates a layout XML file into
its corresponding View objects.

2. Your view is created from the layout and returned from the method. Your
RecyclerView Adapter then begins to populate the views in your layout with the
relevant information for each item.

Binding data to your ViewHolder
Now that you’ve created a ViewHolder, you just have to bind your list titles to your
ViewHolder. To do this, you need to know what Views to bind your data to. You’ve
already created the TextFields in your ViewHolder layout, but you haven’t yet
referenced these in code yet as you’ve done in the past.

Add the following properties to your ListSelectionViewHolder.kt class so your
ViewHolder has references to your new TextViews:

 val listPosition = itemView?.findViewById<TextView>(R.id.itemNumber) as
TextView

 val listTitle = itemView?.findViewById<TextView>(R.id.itemString) as
TextView

Hop back into ListSelectionRecyclerViewAdapter.kt and change onBindViewHolder()
to the following:

override fun onBindViewHolder(holder: ListSelectionViewHolder?, position:
Int) {
 if (holder != null) {
 holder.listPosition.text = (position + 1).toString()
 holder.listTitle.text = listTitles[position]
 }
}

This method binds the desired data to the ViewHolder at the appropriate position. This
will be called repeatedly as you scroll through your RecyclerView.

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 138

For each call, you check the holder passed in to make sure it isn’t null. It’s possible
something could have gone wrong during the setting up of the ViewHolder, so it’s best
to guard against that possibility.

If you have a valid ViewHolder, then you take the TextViews you created in your
ViewHolder and populate them with their position in the list and the name of the list
from the listTitles array.

The moment of truth
Finally! After much coding, you can see the fruits of your labors. Click the Run App
button at the top of Android Studio and see what happens.

Fantastic — you now have a list of titles and the position they hold in the RecyclerView.
Great job!

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 139

Where to go from here?
There are a lot of moving pieces required to use RecyclerView to display a list of data.
However, don’t be afraid to use RecyclerView, as they are an essential construct for
creating Android apps that provide fluid and intuitive user experiences. They are as
common in apps as Buttons and TextViews!

If you want to learn more about RecyclerView, check out the documentation on the
developer website https://developer.android.com/guide/topics/ui/layout/
recyclerview.html. It dives deeper into the inner workings of RecyclerView and even
describes how to animate changes to list items.

If you’re still looking for more, check out the tutorial on the Ray Wenderlich site
https://www.raywenderlich.com/170075/android-recyclerview-tutorial-kotlin which
shows you how to use different LayoutManagers, and how to swipe to delete items in
your list!

Android Apprentice Chapter 7: RecyclerViews

raywenderlich.com 140

8Chapter 8:
SharedPreferences
By Darryl Bayliss

In the previous chapter, you set up your Activity to use the powerful RecyclerView.
You’re still not yet to the point where you can use the app to track your lists, since it
only shows a few hardcoded titles to act as placeholders.

In this chapter, you’ll add functionality to ListMaker to create, save, and delete lists.
You’ll learn what SharedPreferences are and how you can use them to save and retrieve
user data.

Getting started
If you are following along with your own app, open it and keep going with it for this
chapter. If not, don’t worry. Locate the projects folder for this chapter and open the
ListMaker app under the starter folder. The first time you open the project, Android
Studio takes a few minutes to set up your environment and update dependencies.

Open the ListMaker project and run the project in the emulator.

raywenderlich.com 141

Notice the round pink button at the bottom right? That’s called a Floating Action
Button, better known as a FAB. You’ll often use a FAB to highlight an important action
on the screen. Since creating lists is the most important action in your app, it makes
sense to use that button to add new lists.

First, you’ll have to pick a more appropriate icon for the button, since an envelope
doesn’t convey the action behind the button. Open the activity_list.xml layout, and in
the Component Tree window, select the Floating Action Button.

Android Apprentice Chapter 8: SharedPreferences

raywenderlich.com 142

In the Attributes window on the right hand side of Android Studio, find the srcCompat
text field. This is where you assign the image to the button. Right now, it should have a
value of @android:drawable/ic_dialog_email.

Change the value in the srcCompat text field to @android:drawable/ic_menu_add
and press Enter. The image in the FAB will change to a more appropriate plus sign icon.

Now that users will understand what the button is for, you’ll need to add add some code
to let the users create a new list.

Adding a Dialog
Tapping the FAB in ListMaker will open a dialog to let users enter the name of the list
they wish to create. The dialog will also contain some labels to prompt users on what to
enter in the field. Instead of hardcoding the dialog strings in the app, open strings.xml
and add the strings as shown below:

<string name="name_of_list">What is the name of your list?</string>
<string name="create_list">Create</string>

It’s a good idea to keep these in a separate strings.xml file in case you want to localize
your app for different languages later on.

Open MainActivity.kt and add the following method to the bottom of the file:

private fun showCreateListDialog() {
 // 1
 val dialogTitle = getString(R.string.name_of_list)
 val positiveButtonTitle = getString(R.string.create_list)

 // 2
 val builder = AlertDialog.Builder(this)
 val listTitleEditText = EditText(this)
 listTitleEditText.inputType = InputType.TYPE_CLASS_TEXT

 builder.setTitle(dialogTitle)
 builder.setView(listTitleEditText)

 // 3
 builder.setPositiveButton(positiveButtonTitle, { dialog, i ->
 dialog.dismiss()
 })

Android Apprentice Chapter 8: SharedPreferences

raywenderlich.com 143

 // 4
 builder.create().show()
}

Here’s what you’re doing in the previous code snippet:

1. Retrieve the strings you defined in strings.xml.

2. Create an AlertDialogBuilder to help construct your Dialog and an EditText View
as well. This is the input field where the user will enter the name of the list.

You also change the inputType of your EditText to TYPE_CLASS_TEXT. Specifying the
input type tells Android what the most appropriate keyboard form is. In this case,
you want a text-based keyboard and not a numerical one, since the numerical one
would be more appropriate for entering things like telephone numbers.

You then set the title of your Dialog by calling setTitle. You also have to pass in the
content View of your dialog. In this case, you pass in the EditText View by calling
setView.

3. Inform the Dialog Builder that you would like a positive button to be added to the
Dialog, which will tell the Dialog that a positive action has occurred and something
should happen. You can also use negative buttons for doing things that you
consider negative in your app, such as canceling an action.

In this case, a positive button makes sense since you’re creating something. You
pass in "Create" as the label you want for your button and then implement a
onClickListener for your button. For now, you’ll simply dismiss the dialog. You’ll
handle the resulting actions behind the button in the next section.

4. Finally, you instruct DialogBuilder to create your dialog and display it onscreen.

Now that you have some code to show the dialog, you’ll need to call it when the user
taps the FAB. Locate the setOnClickListener called on the fab inside of onCreate.
Replace the contents of the OnClickListener with the call to your new dialog method:

fab.setOnClickListener { view ->
 showCreateListDialog()
}

Android Apprentice Chapter 8: SharedPreferences

raywenderlich.com 144

Run your app and click on the pink FAB in the bottom right of your screen. You should
see your create list dialog appear as expected.

Type in a name for your list, click Create and...nothing happens. That's because you
need to add some code to handle the creation of the list inside the onClickListener of
the positive button for the Dialog.

Creating a list
Before you can begin to work with a list, you need to let your App know what exactly a
list...is! You’ll start by creating a model for a list which you’ll use throughout the app.

Android Apprentice Chapter 8: SharedPreferences

raywenderlich.com 145

Right-click on the package containing all of your .kt files; you’ll find it in the
com.raywenderlich.listmaker folder. In the options that appear, select New ▸ Kotlin
File/Class:

In the window that appears, name your new Kotlin file TaskList, change the kind to
Class and select OK.

Android Studio will create and display your new Class. Next, add a primary constructor
to TaskList so it can be given a name and a list of associated tasks:

class TaskList(val name: String, val tasks: ArrayList<String> =
ArrayList<String>()) {

}

Next you need a way to save your list to the device. This is where SharedPreferences
comes into play.

SharedPreferences lets you save small collections of key-value pairs that you can
retrieve later. If you need a way to quickly save small bits of data in your app,
SharedPreferences is one of the first solutions you should consider.

Behind the scenes, SharedPreferences writes your key-value pairs to a single file, or you
can even configure it to write to multiple files for more complex apps. You can also
place access controls for other apps around your own app’s SharedPreferences store, if
you think that other apps might want to access your data.

Android Apprentice Chapter 8: SharedPreferences

raywenderlich.com 146

Note: SharedPreferences is a quick way to persist and retrieve data, but in later
chapters you’ll see that there are some better alternatives to SharedPreferences
when you have complex data needs.

You’ll need another class to manage your lists, so create a new Class and name it
ListDataManager. Create the primary constructor for your class as follows:

class ListDataManager(val context: Context) {
 fun saveList(list: TaskList) {
 // 1
 val sharedPreferences =
PreferenceManager.getDefaultSharedPreferences(context).edit()
 // 2
 sharedPreferences.putStringSet(list.name, list.tasks.toHashSet())
 // 3
 sharedPreferences.apply()
 }
}

You’re passing a Context into ListDataManager and adding a method named
saveList(list: TaskList) to persist your list. Here’s what’s going on:

1. Get a reference to the app’s default SharedPreference store via
PreferenceManager.getDefaultSharedPreferences(context). With the
SharedPreference objects you get back, call .edit() to get a
SharedPreferences.Editor instance. This lets you to write key-value pairs to
SharedPreferences.

2. Write TaskList to SharedPreferences as set of Strings, passing in the name of your
list as the key. Since the tasks in TaskList is an array of strings, we can’t store it
directly in a string. So you convert the tasks in TaskList to a HashSet which we can
then pass as the value to be saved.

3. You then instruct your SharedPreferences Editor instance to apply the changes. This
writes the changes to your SharedPreferences file.

That takes care of saving your lists, but that’s only half the solution. You also need a
way to retrieve your lists. Add the following method underneath saveList:

fun readLists(): ArrayList<TaskList> {
 // 1
 val sharedPreferences =
PreferenceManager.getDefaultSharedPreferences(context)
 // 2
 val sharedPreferenceContents = sharedPreferences.all
 // 3
 val taskLists = ArrayList<TaskList>()

Android Apprentice Chapter 8: SharedPreferences

raywenderlich.com 147

 // 4
 for (taskList in sharedPreferenceContents) {
 val itemsHashSet = taskList.value as HashSet<String>
 val list = TaskList(taskList.key, ArrayList(itemsHashSet))
 // 5
 taskLists.add(list)
 }

 return taskLists
}

Going through this step-by-step:

1. Grab a reference to the default SharedPreferences file. This time, you don’t request
a SharedPreferences.Editor object since you only need to read from the file, not
write to it.

2. Call sharedPreferences.all to get the contents of your SharedPreferences file as a
Map.

Note: A Map is a collection that holds pairs of objects (keys and values) and
supports efficiently retrieving the value corresponding to each key. Map keys are
unique; a map holds only one value for each key.

3. Create an empty ArrayList of type TaskList. You’ll use this to store the lists you
retrieve from SharedPreferences.

4. Iterate over all the items in the Map you received from SharedPreferences using a for
loop. In each iteration, take the value of the object and attempt to cast it to a
HashSet<String>. Recall from the SaveList earlier that you could not store a
TaskList object directly as a string, so we had converted that object into a HashSet.
You perform the reverse to retrieve an object back. Then recreate the list object by
passing the key of the sharedPreference object as the name of the TaskList and
then convert the HashSet into an ArrayList of tasks back to a structured object.

5. Finally, add your newly reconstructed list into the empty ArrayList you created
earlier.

Once you’ve iterated over the entire set of items you retrieved from SharedPreferences,
return the contents of taskLists to the caller of your method.

Android Apprentice Chapter 8: SharedPreferences

raywenderlich.com 148

Hooking up the Activity
In the previous section, you created ListDataManager to read and write the lists you
create. Time to put that to use. Open up MainActivity.kt and add the following line to
the top of the class:

val listDataManager: ListDataManager = ListDataManager(this)

This will create a new ListDataManager as soon as your Activity is created. Next, update
the positive button’s onClickListener in showCreateListDialog as follows:

builder.setPositiveButton(positiveButtonTitle, { dialog, i ->
 val list = TaskList(listTitleEditText.text.toString())
 listDataManager.saveList(list)

 val recyclerAdapter = listsRecyclerView.adapter as
ListSelectionRecyclerViewAdapter
 recyclerAdapter.addList(list)

 dialog.dismiss()
})

You take the name of the list and create an empty TaskList to save to
SharedPreferences. You then get the adapter of the RecyclerView and cast it as the
custom adapter ListSelectionRecyclerViewAdapter that you created earlier.

Pass the newly created TaskList into the adapter using addList so it knows it has
something to show. Don’t worry about the Unresolved reference error on addList
since you’ll create this method shortly.

That’s the background work done for this feature. Now you need to call these methods
from somewhere. Back on the onCreate: method, replace the setup code for your
RecyclerView starting with:

// 1
val lists = listDataManager.readLists()
listsRecyclerView = findViewById<RecyclerView>(R.id.lists_recyclerview)
listsRecyclerView.layoutManager = LinearLayoutManager(this)

// 2
listsRecyclerView.adapter = ListSelectionRecyclerViewAdapter(lists)

This is fairly straightforward code:

1. You get a list of TaskLists from your DataManager, ready for use.

2. Remember that static array of list titles you added earlier? Here you update that
with some dynamic content, changing the last line in the above code snippet so that

Android Apprentice Chapter 8: SharedPreferences

raywenderlich.com 149

the list of tasks is passed directly into the Adapter. Ignore the Too many
arguments error since you’re shortly going to update
ListSelectionRecyclerViewAdapter to accept a parameter.

Now that your RecyclerView Adapter has a source of information to display, there’s a
few changes you need to make to ensure everything can work with your new lists.

Open ListSelectionRecyclerViewAdapter.kt and update your Class definition as
follows:

class ListSelectionRecyclerViewAdapter(val lists : ArrayList<TaskList>) :
RecyclerView.Adapter<ListSelectionViewHolder>() {

Now your Class can accept the list you want to pass in.

Find onBindViewHolder and update it to use the list to populate the ViewHolder instead
of the static array of strings. The updated code is:

override fun onBindViewHolder(holder: ListSelectionViewHolder?, position:
Int) {
 if (holder != null) {
 holder.listPosition.text = (position + 1).toString()
 holder.listTitle.text = lists.get(position).name
 }
}

Modify getItemCount method so it gets the size of your list as shown:

override fun getItemCount(): Int {
 return lists.size
}

Finally, create the addList method you call from your Activity to let the adapter know
you have a new list to display. Add it to the bottom of your Adapter Class as follows:

fun addList(list: TaskList) {
 // 1
 lists.add(list)

 // 2
 notifyDataSetChanged()
}

1. Here, you update the ArrayList with the new TaskList.

2. You then call notifyDataSetChanged to inform the adapter that it should query its
underlying data and update the RecyclerView. In this case, the underlying data
(your dataset) is the ArrayList passed into the ListSelectionRecyclerViewAdapter
called list of type TaskList, and any necessary ViewHolders will be created to
populate each View with the right data for each position.

Android Apprentice Chapter 8: SharedPreferences

raywenderlich.com 150

With that done, you can remove the listTitles array at the top of the
ListSelectionRecyclerViewAdapter class as you no longer need it.

Run your app and tap the FAB to display the Create dialog and enter any name you
wish:

Android Apprentice Chapter 8: SharedPreferences

raywenderlich.com 151

Tap Create and you should see your new task list name in the RecyclerView:

You’re not quite done — there’s one thing left to verify. Does your list stick around after
you stop and restart the app? Click the Stop button in Android Studio; it’s the big
square in the top right corner.

Your device will stop running the app and head back to the home screen. Run your app
from Android Studio and, you should see your list return.

Android Apprentice Chapter 8: SharedPreferences

raywenderlich.com 152

Now you can be certain that your app persisted your list to SharedPreferences and
loaded it once your app relaunched. Great job!

Where to go from here?
SharedPreferences is a common way to persist values in any Android app, so it’s worth
keeping in your toolbox. You’ve learned how to write and read values from
SharedPreferences and put that knowledge to good use in ListMaker so your users can
save and load their lists.

The next logical step would let the user add items to their lists. And that’s exactly what
you’ll do in the next chapter.

Android Apprentice Chapter 8: SharedPreferences

raywenderlich.com 153

9Chapter 9: Communicating
Between Activities
By Darryl Bayliss

So far in this book, you’ve made use of a single Activity for your apps. It’s a pragmatic
choice if your app is simple and doesn’t require much screen space.

As your app gets more complex, trying to cram more visual elements into a single
screen becomes difficult, and can make your app confusing for users. Keeping an
Activity dedicated to a single task removes this problem.

In this chapter, you’ll do just that. As you may have realized while building ListMaker,
there is no way to add items to the lists you create. This is a perfect task to have in a
separate Activity. By the end of the chapter you’ll have learned about the following:

1. How to create another Activity.

2. How to communicate between Activities using an Intent.

3. How to pass data between Activities.

Getting started
If you are following along with your own app, open it and keep going with it for this
chapter. If not, don’t worry. Locate the projects folder for this chapter and open the
ListMaker app under the starter folder. The first time you open the project, Android
Studio takes a few minutes to set up your environment and update dependencies.

Note: If you added a few lists in the prior chapter, you will see them inside the app
still. If you want to start fresh, delete the app first from your emulator, then keep
going with this chapter. All the previous list data will be deleted when you delete
the app.

raywenderlich.com 154

Open up the ListMaker project and run the app. When the app appears on screen, tap
the Floating Action Button in the bottom right, and enter the title My List in the dialog
that comes up.

Tap Create and your new list name will show up in the RecyclerView as it did before.

Android Apprentice Chapter 9: Communicating Between Activities

raywenderlich.com 155

That works, but it’s a bit simplistic. In addition, if you tap on the title of your list in the
RecyclerView, nothing seems to happen. Right now, that’s the end of the story, and it
doesn’t seem all that useful.

What should be the next logical step in your list making app? Wouldn’t it be great to
have a more customized screen to enter the name of your list? What about something
happening when you tap on the title in the RecyclerView, too?

To do that, you’re going to create another Activity. As a good rule of thumb, Activities
should focus on a single task. That way, the logic within an Activity stays clean and
simple as you build it out. This also benefits your users because navigation between
screens becomes more intuitive.

Android Apprentice Chapter 9: Communicating Between Activities

raywenderlich.com 156

Right-click on the com.raywenderlich.listmaker package in the project navigator
(highlighted in the screenshot) to the left of Android Studio:

In the floating selection that appears, select New ▸ Activity ▸ Empty Activity.

Android Apprentice Chapter 9: Communicating Between Activities

raywenderlich.com 157

Android Studio will bring up a new window, giving you an opportunity to customize
your new Activity before creating it.

Creating a new Activity
Going through the options one by one:

• Activity Name is the name you want to give your Activity. This is used to name the
class in Kotlin or Java which is associated with your Activity.

• Generate Layout File gives you the option to generate a layout XML file to use in
conjunction with your Activity class. This is checked by default, since it’s rare that
you won’t want to create a layout.

• Launcher Activity gives you the chance to set your new Activity as the one shown
first when your app starts. This is unchecked by default. You’ll see how to change the
starting Activity later in the chapter.

• Backwards Compatibility (AppCompat) ensures that your Activity inherits from
AppCompatActivity. This ensures backwards compatibility across the many versions
of Android. You’ll learn more about this topic in Chapter 28, but for now, it’s best to
leave this checked.

Android Apprentice Chapter 9: Communicating Between Activities

raywenderlich.com 158

• Package Name lets you select the package your Activity class will be created in.
Since you only have one package in your project, this will default to
com.raywenderlich.listmaker.

• Source Language lets you choose what programming language the Activity will use.
The choices are Java and Kotlin. In this project the default is Kotlin, since you want to
be cutting-edge!

Note: If you don’t see Source Language as a choice, try scrolling inside the area
with all the choices. Depending on your screen size, the value for language might
not be visible unless you scroll.

Most of the choices here are fine at their defaults. The only thing to change is the
Activity Name: Give it the name ListDetailActivity.

As you change the name of the Activity, the Layout name also changes to something
similar: activity_list_detail. Android Studio tries to keep your filenames related to
follow Android platform conventions and to make it easier to find your files later.

It’s time to create the Activity. Click Finish in the bottom right of the window and
Android Studio will create your new Activity.

Android Studio has even hooked up your layout as well, so you don’t have to do this
yourself. How nice! But there’s still one more piece of the puzzle you need to know
about: the app manifest.

Android Apprentice Chapter 9: Communicating Between Activities

raywenderlich.com 159

The App Manifest
Every Android App has an app manifest file. It’s important, since it tells Android
everything it needs to know about your app.

Android is quite strict about its requirements for a manifest. The file name must be
AndroidManifest.xml and must be located in just the right spot in your project file
hierarchy. Without this file, Android will simply refuse to run your app.

Let’s open it up. On the left side of Android Studio in the project navigator, navigate to
app ▸ manifests ▸ AndroidManifest.xml.

NOTE: The manifests folder in the sidebar is a virtual folder generated by
Android Studio’s Android project view, and is not directly related to anything in
the file system. The actual file is kept at the root of your app’s main folder under
app/src.

As you can see, this is an XML based file containing various tags. The tags in this file are
manifest, application and activity, although there are plenty more you will use in

Android Apprentice Chapter 9: Communicating Between Activities

raywenderlich.com 160

chapters to come.

The manifest tag is the root element of the App Manifest. All other tags must be
declared within it, and the package where your code sits must also be declared within
the tag. This is a security measure to ensure that only your package is associated with
this app.

The application tag contains app-specific information for the Android system, such as
the icon to use for the app, the name of the app, and what theme style it uses. This
information tells Android exactly how to present the app on the home screen and how
to represent it in other areas such as Settings.

Perhaps the most interesting pieces of information available within the application tag
are the activity tags. Every Activity within an app should have a corresponding tag
within the manifest. This is to ensure that your app only runs Activities from within
your app, not any that may have came from elsewhere.

There’s a .MainActivity declared in there, with another tag — intent-filter — inside
this declaration. This tells Android that MainActivity is the activity to start when the
app launches.

This happens thanks to the inclusion of the action and category tags inside intent-
filter. You don’t need to be concerned about the details behind these tags at the
moment; you’ll learn more about intents later in this chapter. What you need to know is
that the intent-filter will be used to set your main activity as the startup activity.

You will also see .ListDetailActivity, which is the activity you created in the first part
of this chapter. When you create a new project or use the new activity wizard, Android
Studio does the hard work of updating the Manifest so you don’t have to.

If you prefer, you can edit the manifest manually. You’ll actually do this yourself in
future chapters. However, it’s best if you let Android Studio do the hard work to reduce
the chance of human error.

Intents
Now that you have your two Activities, it’s time to give your app the ability to navigate
between the two. In your MainActivity, you have two main points of entry for your new
activity: the first, when a user taps the name of the list in the RecyclerView; the second,
when a user enters the name of a new list and taps Create.

You will navigate between the two Activities by using an Intent. An intent is an object

Android Apprentice Chapter 9: Communicating Between Activities

raywenderlich.com 161

that encapsulates some work or action that your app will perform at some point in the
future.

The Android OS relies heavily on intents as its primary form of communication to know
what to do, so it’s best that you use them for your app communication as well. Intents
are extremely flexible and can perform a wide range of tasks such as communicating
with other apps, providing data to processes or starting up another screen.

Even your app will be launched by the Android system via an intent. Remember intent-
filter in the app manifest? That filter allows an activity to be picky about what intents
it handles. In the case of your MainActivity, it only wants to handle intents that attempt
to launch it.

An Intent is created to show another Activity on screen

Let’s get to it. In MainActivity.kt, add the following method to the bottom of the file:

private fun showListDetail(list: TaskList) {
 // 1
 val listDetailIntent = Intent(this, ListDetailActivity::class.java)
 // 2
 listDetailIntent.putExtra(INTENT_LIST_KEY, list)
 // 3
 startActivity(listDetailIntent)
}

This is a small but important method in your app: it creates an Intent like we discussed
above.

This code does the following:

1. You create an intent and pass in the current Activity and Class of the Activity you

Android Apprentice Chapter 9: Communicating Between Activities

raywenderlich.com 162

want to show on screen. Think of this as saying you are currently on this screen,
now you want to move to that screen.

2. Next you add something called an Extra. Extras are keys with associated values that
you can provide to intents to give more information to the receiver about the action
to be done. In your case, you want to display a list. This is why the method expects a
list variable to be passed in, which you use as a parameter in the putExtra method
call.

You also pass in a constant called INTENT_LIST_KEY. This is a string that the receiver
of the intent uses as a key to reference the list. You’ll add this constant shortly (so
it’s ok to ignore the Unresolved reference error for now).

3. The final line is simply a method call to inform your current activity to start another
activity, making use of all the information provided within the intent.

Intents and Parcels
You’ve already set up the presentation of your new screen. However there is a small
problem: TaskLists can’t be passed through intents, since Android doesn’t understand
how to handle that type of object. Fortunately, there is a way around that.

Open TaskList.kt and change the class declaration so it implements the Parcelable
interface:

class TaskList constructor(val name: String, val tasks: ArrayList<String>
= ArrayList()) : Parcelable

Parcelable lets you break your object down into types the intent system is already
familiar with: Strings, ints, floats, Booleans, and other objects which conform to
Parcelable. You then can shove all that information into a Parcel.

To help transfer data, intents use a Bundle object which can contain Parcelable objects.
This is exactly what you’re using to pass your list as an Extra in the intent you setup
earlier.

Next, you need to implement some required methods so your object can be parceled up.
To do that, add the following constructor and methods inside the braces of the TaskList
class:

//1
constructor(source: Parcel) : this(
 source.readString(),
 source.createStringArrayList()

Android Apprentice Chapter 9: Communicating Between Activities

raywenderlich.com 163

)

override fun describeContents() = 0

//2
override fun writeToParcel(dest: Parcel, flags: Int) {
 dest.writeString(name)
 dest.writeStringList(tasks)
}

// 3
companion object CREATOR: Parcelable.Creator<TaskList> {
 // 4
 override fun createFromParcel(source: Parcel): TaskList =
TaskList(source)
 override fun newArray(size: Int): Array<TaskList?> =
arrayOfNulls(size)
 }
}

There’s a lot of boilerplate code here, but for now you only need to know about the four
most important parts:

1. Reading from a Parcel: Here you’re adding a second constructor (as opposed to
the primary constructor in the class declaration) so that a TaskList object can be
created from a passed-in Parcel.

The constructor grabs the values from the Parcel for the title (by calling readString
on the Parcel) and the list of tasks (by calling createStringArrayList on the
Parcel), then passes them into the primary constructor using this().

2. Writing to a Parcel: This method is called when a Parcel needs to be created from
the TaskList object. The parcel being created is handed into this functions, and you
fill it in with the appropriate contents using the assorted write... functions.

3. Fulfilling static interface requirements: The Parcelable protocol requires you to
create a public static Parcelable.Creator<T> CREATOR field and override a couple
methods in it in Java. However, static methods don’t exist in Kotlin. Instead, you
create a companion object meeting the same requirements, and override the
appropriate functions within that object.

4. Actually calling your constructor: In the CREATOR companion object, you override
the interface function createFromParcel, and pass the parcel you get from this
function along to the second constructor you just created, giving back a nice new
TaskList with all the data from the Parcel.

Android Apprentice Chapter 9: Communicating Between Activities

raywenderlich.com 164

Note: For more information about the Parcelable interface, head on over to
https://developer.android.com/reference/android/os/Parcelable.html.

There is also an experimental feature in Kotlin initially released with Kotlin 1.1.4
to allow you to simply annotate your classes with @Parcelize instead of writing all
this boilerplate. It’ll certainly be nice when that’s out of experimental mode!

Bringing everything together
Now that yourTaskList is able to be passed around on Android, it’s time to add a few
things to make sure everything works as intended. The first is the INTENT_LIST_KEY
constant you’re using to place the list in the Bundle.

Add the following under the class declaration at the top of MainActivity.kt:

companion object {
 val INTENT_LIST_KEY = "list"
}

This key will be used by your intent to refer to a list whenever it needs to pass one to
your new Activity.

Now you need to hook up showListDetail in a few ways. You’ll start with the list
creation.

Inside showCreateListDialog, head to the bottom of the setPositiveButton closure
code. Add a call to showListDetail after the dialog is dismissed, so it looks like the
following:

builder.setPositiveButton(positiveButtonTitle, { dialog, i ->

 val list = TaskList(listTitleEditText.text.toString())
 listDataManager.saveList(list)

 val recyclerAdapter = listsRecyclerView.adapter as
ListSelectionRecyclerViewAdapter
 recyclerAdapter.addList(list)

 dialog.dismiss()
 showListDetail(list)
})

Now when you create a new list, your app will pass that list to your new Activity. Easy!
You also want the same thing to happen if a user taps on an existing list in the

Android Apprentice Chapter 9: Communicating Between Activities

raywenderlich.com 165

RecyclerView.

Open up ListSelectionRecyclerViewAdapter.kt and add the following new interface
above onCreateViewHolder:

interface ListSelectionRecyclerViewClickListener {
 fun listItemClicked(list: TaskList)
}

In the class declaration above that, update the constructor to allow passing in a click
listener:

class ListSelectionRecyclerViewAdapter(val lists: ArrayList<TaskList>,
val clickListener: ListSelectionRecyclerViewClickListener) :
RecyclerView.Adapter<ListSelectionViewHolder>()

Finally, edit onBindViewHolder to add an onClickListener to the View of itemHolder so
it looks like this:

override fun onBindViewHolder(holder: ListSelectionViewHolder?, position:
Int) {

 if (holder != null) {
 holder.listPosition.text = (position + 1).toString()
 holder.listTitle.text = lists.get(position).name
 holder.itemView.setOnClickListener({
 clickListener.listItemClicked(lists.get(position))
 })
 }
}

Here you’ve created an object to listen for any clicks that occur on the rows of your
RecyclerView. When a click event happens, this code tells the listener which list was
tapped.

Head back to MainActivity.kt and update the class declaration to state that it conforms
to the ListSelectionRecyclerViewClickListener interface you just created. The new
class declaration should look like this:

class MainActivity : AppCompatActivity(),
ListSelectionRecyclerViewAdapter.ListSelectionRecyclerViewClickListener

Then at the bottom of the class, add the following:

override fun listItemClicked(list: TaskList) {
 showListDetail(list)
}

This listItemClicked method calls showListDetail and passes in the selected list (the
list the user clicked/tapped on).

Android Apprentice Chapter 9: Communicating Between Activities

raywenderlich.com 166

Next, update the initialization of ListSelectionRecyclerViewAdapter in onCreate to
pass in your Activity as the listener:

listsRecyclerView.adapter = ListSelectionRecyclerViewAdapter(lists, this)

Now MainActivity is ready to send your list! Before you can see it in action though, you
need to do one last thing: Handle the intent in your ListDetailActivity class.

Recall that the intent is passing a parcel with the list that the detail activity is operating
on. So, we need a local variable to hold the list.

Open up ListDetailActivity.kt and add the following variable to the top of the class
above onCreate:

lateinit var list: TaskList

Next, in onCreate, you need to retrieve the list you passed in as an Extra. To do that,
change onCreate as follows:

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_list_detail)
 // 1
 list = intent.getParcelableExtra(MainActivity.INTENT_LIST_KEY)
 // 2
 title = list.name
}

In this code:

1. You use the key assigned to your list in MainActivity.kt to reference the list in your
intent and assign it to your list variable.

2. You assign the title of your Activity to the name of your list to let the user know
what list they’re adding.

Time to see your hard work in action!

Click the Run App button in the top right of Android Studio and select your favorite
device or emulator. Once the app is running, create a new list. Tap the Create button,
and behold! Your new activity appears on screen — with the new list.

Android Apprentice Chapter 9: Communicating Between Activities

raywenderlich.com 167

Android took the intent you created in MainActivity.kt and passed it to
ListDetailActivity.kt so it could use the list in the new Activity.

Where to go from here?
Intents are another common pattern you’ll see in all Android apps, since they’re used
for all kinds of purposes beyond starting Activities. Learning the abilities of these
objects and how to use them in your apps is another powerful tool to have in your
Android toolbox.

Android Apprentice Chapter 9: Communicating Between Activities

raywenderlich.com 168

10Chapter 10: Completing the
Detail View
By Darryl Bayliss

In the last chapter, you set up a new Activity to display the contents of a list. At the
moment, that Activity looks extremely empty.

In this chapter, you’re going to build up that Activity, use familiar components such as a
RecyclerView to display the list, and add a FloatingActionButton to add tasks to the
list.

You’ll also learn how to communicate back to the previous Activity using an Intent,
similar to what you did in the last chapter when you passed a list to your new Activity.

Getting started
If you are following along with your own app, open it and keep going with it for this
chapter. If not, don’t worry. Locate the projects folder for this chapter and open the
ListMaker app under the starter folder. The first time you open the project, Android
Studio takes a few minutes to set up your environment and update dependencies.

Open ListDetailActivity.kt and take a moment to see what is there. At the moment you
pass in a list from MainActivity.kt via an Intent and set the title of the Activity to the
name of the list.

This Activity should do a little more than that to make ListMaker a useful app! It needs
to let a user view all the items in the list, and add items to it. To do that, you’re going to
rely on the faithful RecyclerView to show all the items.

raywenderlich.com 169

Open up res\layout\activity_list_detail.xml from the layout folder, making sure the
Design tab is selected in the layout window.

In the Palette window, select the AppCompat option in the left-hand list. You will be
able to see the RecyclerView available for selection in the right-hand list.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 170

Click and drag the RecyclerView button to the whitespace in the layout shown on the
right of the Layout Window.

With your RecyclerView set up, it’s time to give it an ID and some dimensions. To the
right, in the Attributes window, change the ID of the RecyclerView to
list_items_reyclerview:

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 171

Then add constraints to the RecyclerView by clicking the four plus buttons around the
square underneath the ID textfield. Change the margins for each constraint to 0:

Underneath, update the layout_width and layout_height dropdowns to
match_constraints.

This will ensure your RecyclerView adheres to the constraints set on it and take up the
entire screen.

With your RecyclerView set up, it’s time to use it in your code.

Coding the RecyclerView
Open up ListDetailActivity.kt. At the top of the class, add the following variable to
hold a reference to your RecyclerView:

lateinit var listItemsRecyclerView : RecyclerView

If offered a choice, choose the v7.appcompat version of the RecyclerView component.

At the bottom of onCreate(savedInstanceState: Bundle?) add the following code to
reference your RecyclerView:

// 1
listItemsRecyclerView =
 findViewById<RecyclerView>(R.id.list_items_reyclerview)
// 2
listItemsRecyclerView.adapter = ListItemsRecyclerViewAdapter(list)

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 172

// 3
listItemsRecyclerView.layoutManager = LinearLayoutManager(this)

This code:

1. Finds the RecyclerView in the Activity layout and assigns it to our local variable.

2. Assigns the RecyclerView an Adapter, passing the list in. It needs to know about the
list so it can tell the RecyclerView what tasks to show. You’ll create the adapter
shortly so ignore the Unresolved reference for now.

3. Assigns the RecyclerView a layout manager to handle the presentation.

With the RecyclerView all set up, let’s tackle that Adapter. In the Project Navigator,
right click on the com.raywenderlich.listmaker package.

In the popup that appears, navigate to New ▸ Kotlin File ▸ Class.

In the window that appears, name your new Class ListItemsRecyclerViewAdapter,
ensure the Kind dropdown is set to Class and click OK.

Android Studio will create your new Kotlin Class and present it to you once it’s finished.

You’ll need to make a few adjustments to this Class. In ListDetailActivity.kt, you pass
in a list to your RecyclerView Adapter. To be able to use that list, your adapter needs a
constructor that accepts a TaskList.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 173

You also need to make your Class implement the RecyclerView.Adapter<ViewHolder>
Interface, so your adapter can create ViewHolders for your RecyclerView and reuse
them as necessary. Finally, you need to create a custom ViewHolder that you can use to
show the tasks in your list.

Let’s do this now. First, update the class definition so it has a default constructor that
accepts a TaskList, and have it conform to
RecyclerView.Adapter<ListItemViewHolder>:

 class ListItemsRecyclerViewAdapter(var list: TaskList) :
RecyclerView.Adapter<ListItemViewHolder>()

You’ll create the ListItemViewHolder shortly, so ignore the Unresolved reference here
too.

You’ll need to create another Kotlin Class, just as you did earlier, for the ViewHolder
your Adapter will use.

Set the name of the file to ListItemViewHolder, making sure to set the Kind dropdown
to Class.

Once Android Studio has created the Class, update the Class definition as follows:

 class ListItemViewHolder(itemView: View?) :
RecyclerView.ViewHolder(itemView)

This code sets up the ListItemViewHolder constructor to pass in a View you can use to
reference the ViewHolders widgets. It also makes the Class implement the
RecyclerView.ViewHolder(itemView) interface, passing in the view you want to use.

With the bare bones of your Adapter and ViewHolder set up, you now need to instruct
your Adapter how to work with your list of tasks.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 174

Adapting the Adapter
Head back to ListItemsRecyclerViewAdapter.kt. You’re now ready to begin hooking
together the adapter. As you did previously with the RecyclerView Adapter in
MainActivity.kt, your adapter must implement methods to ensure your RecyclerView
knows how to present each task in your list.

There is a way to let Android Studio do most of the work for you. Click on the class
name (the part where the red squiggly line is) and press Alt + Return:

In the popup that appears, you’ll see the first option highlighted is Implement
Members. Press Return again and you’ll be presented with a window.

This window shows all the methods you implement to conform to the
RecyclerView.Adapter Interface, which is the Interface your Class has implemented.
You need to implement all these methods. To do this, hold down Shift and click on the
bottom most method.

All the methods will be highlighted in blue. This means you’ve selected all the methods
you want Android Studio to implement. Exactly what you need! To finish, click OK.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 175

With that, Android Studio will automatically generate the chosen methods for you. It’s
up to you to write the logic behind each method.

Begin with getItemCount. This is the method that tells your RecyclerView how many
items it needs to display. You want it to show all the tasks in your list. To do that,
update the method so it returns the amount of tasks it contains:

override fun getItemCount(): Int {
 return list.tasks.size
}

That was easy! Let’s move onto something a little more difficult: creating your
ViewHolder in onCreateViewHolder(). Here, you need to let your RecyclerView know
what Layout to use as the ViewHolder.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 176

Since you haven’t created the Layout yet, you’ll add the code and then look at creating
the Layout. Update onCreateViewHolder() so it creates a view from the layout using a
LayoutInflater, which it passes into your ViewHolder, ready for use:

override fun onCreateViewHolder(parent: ViewGroup?, viewType: Int):
ListItemViewHolder {

 val view = LayoutInflater.from(parent?.context)
 .inflate(R.layout.task_view_holder, parent, false)
 return ListItemViewHolder(view)
}

Don’t worry about the Unresolved reference for task_view_holder since we’re going to
create that next.

With your ViewHolder ready to be used, all you need now is a Layout for the
LayoutInflater to inflate. To create the Layout, right click on the layout folder inside
the res folder in the project navigator to the left of Android Studio, move your cursor to
new and click on Layout Resource File.

In the window that appears, enter the file name as task_view_holder. Change the Root
Element underneath from android.support.constraint.ConstraintLayout to
LinearLayout:

This will make your layout use a LinearLayout, which allows you to stack views in a
vertical or horizontal direction. For simple views like this task_view_holder, it’s a lot
easier to use than a ConstraintLayout.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 177

Finally, click OK at the bottom to let Android Studio create your new layout.

Before you continue, you want to make sure the LinearLayout is only as tall as the
content within it. Otherwise, every row would be the size of its entire parent - in this
case, the RecyclerView, which takes up the whole screen!

To do this, update the LinearLayout’s layout_height to be wrap_content:

Now, your layout will only be as big as whatever is inside of it - and you will probably
see its height shrink down to nothing as there’s nothing in it yet.

To fix this, you need to add the Widgets you want to use with your ViewHolder. In this,
case you only need a TextView to hold a task in your list.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 178

In the Palette window, click Text and then drag a TextView into your layout.

In the Attributes window to the right of Android Studio, change the ID of the TextView
to textview_task, and set the layout_width and layout_height to wrap_content.

There’s one final tweak needed here, some margin spacings. To do that, you need to get
to the larger list of attributes for the TextView. Click the View all attributes text at the
bottom of the attributes window.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 179

The attributes will slide across to reveal the entire list of attributes available for
tweaking. Click the arrow next to the Layout_Margin, and in the left and top textfields,
enter 8dp.

With your Layout ready, it’s time to get back to coding some Kotlin!

Visualizing the ViewHolder
Now that you have a layout for your ViewHolder, you need to reference the TextView in
the layout in your code. Open ListItemViewHolder.kt and add the following line in
between the Class brackets:

val taskTextView = itemView?.findViewById<TextView>(R.id.textview_task)
 as TextView

Now when the ViewHolder is instantiated, it knows exactly how to reference the
TextView. Now you need to hook up the data to your ViewHolder.

Open ListItemsRecyclerViewAdapter.kt. In onBindViewHolder(), update it as follows:

override fun onBindViewHolder(holder: ListItemViewHolder?, position: Int)
{
 if (holder != null) {
 holder.taskTextView.text = list.tasks[position]
 }
}

This code grabs a specific task from the list, depending on the position of the row the
RecyclerView is intending to show. As before, we wrap this in a null check just in case
there was some issue when the class was created.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 180

Great job! You’ve just finished hooking up your Adapter, and your RecyclerView will
now run as expected.

Run the app on the emulator or a device and select one of the lists in the main Activity.
It runs but you’ll see... not much:

The reason for this is there’s no way to add tasks to your lists! That’s something that
needs to be fixed.

Open res\layout\activity_list_detail.xml, making sure the design tab is selected. In
the list next to the design list, next to the category selector, grab a
FloatingActionButton.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 181

Drag the FAB into the layout. Be careful to drag it into the ConstraintLayout and not
the RecyclerView, otherwise it won’t show up. A window will appear, asking you to
select a resource for the action button:

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 182

In the search bar, type add to filter the list of resources available. Click the familiar-
looking ic_menu_add resource and click OK at the bottom.

The button will now appear in the layout ready for you to position.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 183

Click on the button. In the blueprint view, drag the right button constraint to the right
edge of the layout. Then drag the bottom button constraint to the bottom edge of the
layout, so it’s positioned at the bottom right.

In the attributes window, change the ID to add_task_button. In the constraints view
underneath the ID textfield, make sure the bottom and right constraints are added. If
they’re not, add them by using the plus button. Set the margin of the bottom and right
constraints to 16.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 184

With that, you’re ready to use your new action button to add tasks to your list. Open
ListDetailActivity.kt again and add a new lateinit property to the top of the class
that will hold the reference for your new button.

lateinit var addTaskButton: FloatingActionButton

At the bottom of the onCreate() method, reference your button and add a new click
listener to it:

addTaskButton = findViewById<FloatingActionButton>(R.id.add_task_button)
addTaskButton.setOnClickListener {
 showCreateTaskDialog()
}

In the click listener, you call a method that will ask the user for the task to be added to
the list. You’ll create that method next.

Underneath onCreate(), add the new method that will prompt your users to add in a
new task:

private fun showCreateTaskDialog() {
 //1
 val taskEditText = EditText(this)
 taskEditText.inputType = InputType.TYPE_CLASS_TEXT

 //2
 AlertDialog.Builder(this)
 .setTitle(R.string.task_to_add)
 .setView(taskEditText)
 .setPositiveButton(R.string.add_task, { dialog, _ ->
 // 3
 val task = taskEditText.text.toString()
 list.tasks.add(task)
 // 4
 val recyclerAdapter = listItemsRecyclerView.adapter as
ListItemsRecyclerViewAdapter
 recyclerAdapter.notifyItemInserted(list.tasks.size)
 //5
 dialog.dismiss()
 })
 //6
 .create()
 .show()
}

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 185

The code should look familiar to you, as it’s similar to the showCreateListDialog
method you created in MainActivity.kt, but a bit shorter. Here, you’ve done the
following:

1. Created an EditText which will receive text input from the user.

2. Created an AlertDialogBuilder and used method chaining to set up various aspects
of the AlertDialog. Method chaining can happen when each method returns a value
which can then be used. Here, when any method is called on the Builder, it returns
the builder instance, modified with whatever you’ve just added.

3. In the Positive Button’s click listener, accessed the EditText which you just created
to grab the text input and create a task

4. Still in the click listener, you’ve notified the ListItemsRecyclerViewAdapter that a
new item has been added. This gives the adapter a chance to check its datasource
(that is, the list), so it can inform the RecyclerView to create any new rows with the
new information it has.

5. Finished out the click listener by dismissing the dialog.

6. Back outside the click listener, continued to use method chaining to create then
show the AlertDialog without ever needing to have the AlertDialogBuilder as a
separate variable.

As Android Studio will tell you in its angry red text, you’re missing some strings. Go to
res\values\strings.xml. Then add the following new string elements in between the
resources tags:

<string name="task_to_add">What is the task you want to add?</string>
<string name="add_task">Add</string>

These will be shown in the app when the user tries to add a new task to a list.

Finally, you need to save any new tasks added to your list. Remember that
ListDataManager you created when you first began to save lists? It’s time to use that
again to update your saved list with any new tasks it may have. We’ll look at that next.

Getting the list back
ListDataManager is declared and used in MainActivity.kt. To save your list with your
newly added task you could also declare it in ListDetailActivity.kt and save your list
anytime the user adds a new task.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 186

That would work, but it would mean you’ve got two separate spots where data is saved,
which gives you double the places where bugs could occur. Wouldn’t it be better if you
could get that list passed into the detail Activity and use the original list data manager?

With a few tweaks and additions, you can do just that! Open up MainActivity.kt and
edit showListDetail() so it looks like the following:

private fun showListDetail(list: TaskList) {
 val listDetailIntent = Intent(this, ListDetailActivity::class.java)
 listDetailIntent.putExtra(INTENT_LIST_KEY, list)

 startActivityForResult(listDetailIntent, LIST_DETAIL_REQUEST_CODE)
}

The only change here is the final line: startActivity() has been changed to
startActivityForResult(). It may seem small, but the difference is very important.
This line starts your detail Activity as intended; however, it also adds the expectation
that MainActivity.kt will hear back from ListDetailActivity.kt once it has finished
being onscreen.

Think of it as asking for someone to do something for you, and to report back with the
results when they’re done. That’s exactly what’s going on here: You want to hear back
about that list you’re passing to ListDetailActivity.kt.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 187

You should notice there is an additional parameter being passed into
startActivityForResult() too. The second parameter is a request code that lets you
know which result you’re dealing with.

You could be dealing with multiple Activities that are passing back multiple results, so
having a unique way of being able to identify results is really helpful.

Add the request code to the companion object at the top of MainActivity.kt, so it looks
like the following:

companion object {
 val INTENT_LIST_KEY = "list"
 val LIST_DETAIL_REQUEST_CODE = 123
}

Next you need to be able to deal with the returned result. To do that, you need to
override a new method in your MainActivity named onActivityResult. This method
allows your Activity to receive the result of any Activities it starts. In this case, it will
look for the result that ListDetailActivity.kt will provide once it has finished adding
tasks to a list:

override fun onActivityResult(requestCode: Int, resultCode: Int, data:
 Intent?) {
 super.onActivityResult(requestCode, resultCode, data)
 // 1
 if (requestCode == LIST_DETAIL_REQUEST_CODE) {
 // 2
 data?.let {
 // 3
 listDataManager.saveList(data.getParcelableExtra(INTENT_LIST_KEY))
 updateLists()
 }
 }
}

Let’s go through this method step by step:

1. You first check to make sure the request code is the same code you’re expecting to
get back. You don’t want to be dealing with any other requests here.

2. Assuming you’re dealing with the request you want, you unwrap the data Intent
passed in. It’s possible there isn’t any data at all here, so it’s good to first make sure
you have something to deal with.

3. Once you’ve confirmed there is data to deal with, in this case a new list. You save
the list to the list data manager and then call updateLists(), which you will create
shortly.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 188

Note: You may have noticed the data?.let block in the code snippet above.
The .let function is a short hand method available in Kotlin, allowing you to only
execute a block of code if the variable .let is used on isn’t null.

This is what is meant by unwrapping the data intent in the code snippet. You’re
trying to unwrap the optional value to get at the actual value.

You can still use a null check like in Java, it’s all down to personal preference. All
of this stuff falls under the Null Safety paradigm of Kotlin, feel free to read more
about it here: https://kotlinlang.org/docs/reference/null-safety.html

Underneath onActivityResult(), add the updateLists() method, like this:

private fun updateLists() {
 val lists = listDataManager.readLists()
 listsRecyclerView.adapter =
 ListSelectionRecyclerViewAdapter(lists, this)
}

This code will read the saved lists again so your RecyclerView is aware of any new tasks
added to a List. It also passes the lists into the detail Activity in case a user decides to
perform further updates to lists.

Finally, open ListDetailActivity.kt and add a new override method named
onBackPressed():

override fun onBackPressed() {
 val bundle = Bundle()
 bundle.putParcelable(MainActivity.INTENT_LIST_KEY, list)

 val intent = Intent()
 intent.putExtras(bundle)
 setResult(Activity.RESULT_OK, intent)
 super.onBackPressed()
}

This gives you a chance to run some code whenever you tap the back button to get back
to the List Activity. In this case, you package up the list in its current state and let
MainActivity.kt know that everything is OK.

You also quite literally bundle up the passed in list and any new tasks added into a
Bundle object, and put that into an Intent that will be passed back to MainActivity.kt.
Finally, you set the result to RESULT_OK, informing the Activity that everything
happened according to plan.

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 189

With that, it’s time to test out the app again. Click Run App at the top of Android
Studio and select your device. Go through the motions of creating a list if necessary, or
edit any other list, then once inside a list, add a task on the list detail Activity:

Tap the back button, and then click the list you added a task to. Your task should have
persisted and show up proudly! Hopefully you’re assured that your list will stay on your
phone for a while — even if your battery runs out.

Where to go from here?
Great job! You’ve reused a lot of your knowledge in this chapter and picked up a few
new tricks to reuse code in your apps in a clean way, while also learning how to pass
data back and forth between Activities.

You’ve got yourself a fully functioning list app now, which is perfectly usable. In the
next chapter, you’ll learn how to take your app and make it work on Android tablets, as
well as on Android phones!

Android Apprentice Chapter 10: Completing the Detail View

raywenderlich.com 190

11Chapter 11: Using
Fragments
By Darryl Bayliss

Thanks to the standard set of hardware and software features Android provides across
devices, adding new features can be fairly easy. However, when it comes to coding an
appealing user interface that adapts across all these devices with varying screen sizes,
things can get tricky!

Although you won’t be building an app for a fridge just yet (give it time), in this chapter
you’ll adapt ListMaker to make full use of the additional screen space a tablet can
provide. Along the way, you’ll also learn:

• What Fragments are and how they work with Activities.

• How to split up Activities into Fragments.

• How to provide different layout files for your app depending on the running device
screen size.

raywenderlich.com 191

Getting started
If you are following along with your own app, open it and keep going with it for this
chapter. If not, don’t worry. Locate the projects folder for this chapter and open the
ListMaker app under the starter folder. The first time you open the project, Android
Studio takes a few minutes to set up your environment and update dependencies.

You’ll start things off by creating a device that emulates a tablet.

Note: If you have a physical tablet available, feel free to use that instead.

Open up the ListMaker project and click the Android Virtual Device button along the
top of Android Studio.

The AVD window will pop up, showing you all the emulators already available on your
machine.

Click the Create Virtual Device at the bottom of the window.

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 192

A new window will pop up asking what hardware you want your virtual device to
emulate.

Select the Tablet category. Notice the table in the middle of the window has changed to
offer a selection of tablets.

The Pixel C will do nicely. Click the Pixel C row, then in the bottom right, click Next.

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 193

The next screen asks what version of Android you want your device to run. Make sure
the highest API level is selected, and click Next:

The final screen shows you the configuration for your device, while giving you a chance
to change some advanced settings. Don’t worry about changing anything here. Click
Finish to complete setting up your emulator.

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 194

Time to run your app on the new emulator. Close the AVD window and click the run app
button at the top of Android Studio. In the deployment target window that appears,
select the new emulator you created and click OK.

When your app loads, you’ll be happy to see that it looks exactly as it does on a phone.

Create some lists and add tasks to each list, taking note of the extra real estate in the
app.

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 195

That’s a lot of empty space for a simple list app to fill. Although the app works perfectly
well on a tablet, its design isn’t optimized for the extra space available on the screen.
It’s situations like this where you need to consider how to make your app adapt to the
size of a device’s screen.

One solution could be to split the screen in half so one side could show all your lists,
while the other half could show the tasks belonging to each list. This would certainly
make better use of the real estate available on the tablet screen. Splitting a layout in
this way may look better on large screens, but it wouldn’t quite work on a small phone
screen and could end up being quite unusable.

By the end of this chapter, you will rearrange the code in a way that will support this
dual layout based on the device screen size.

This is where the concept of Fragments comes in.

Creating a Fragment
In the project navigator to the left of Android Studio, right-click on the
com.raywenderlich.listmaker package and in the selection dialog that appears, select
New ▸ Fragment ▸ Fragment (Blank)

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 196

Click Fragment (Blank) and Android Studio will display a new window.

This window is dedicated to creating a new Fragment for your app. Don’t worry too
much about what a Fragment is for now; just think of it as something similar to an
Activity. What you’re doing in this window is creating another screen for your app.

Back to the window. Let’s go through the options available:

The Fragment Name textfield allows you to name your Fragment, just as you can name
an Activity.

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 197

Change the name in the textfield to ListSelectionFragment.

The next options are a checkbox titled Create Layout XML and another textfield
named Fragment Layout Name:

Again, just like an Activity, you can have Android Studio create a layout file for you. You
can edit the layout file to customize the screen shown by the Fragment. The Create
Layout XML checkbox is already checked and Android Studio has filled in the textfield
with the name fragment_list_selection which is based on the Fragment Name you
entered.

The next options are a little more complicated:

The first checkbox, Include fragment factory methods, tells Android Studio to
generate code to instantiate the Fragment.

The second checkbox, Include interface callbacks, tells Android Studio to generate an
interface to allow other objects to receive callbacks from the Fragment.

You’ll learn more about why factory methods and callbacks are useful for a Fragment a
little later. The important thing to know now is they are both required for your scenario.

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 198

The final option is the Source Language option box:

This option tells Android Studio whether you want the generated code for your
Fragment to be in Kotlin or Java. Select Kotlin and click the Finish button in the bottom
right of the window.

What is a Fragment?
It’s time to explain the mystery behind Fragments. What exactly are they?

A fragment is frequently a part of an activity’s user interface and contributes its own
layout to the activity.

This lets you dynamically add and remove pieces of the user interface from the app
while it’s running. You can use this to your advantage to decide how many Fragments
an Activity should have depending on the size of a screen for instance.

If ListMaker is running on a tablet, you could have an Activity display two Fragments:
one dedicated to selecting a list, and another to display the selected list. If ListMaker is
running on a phone, you could show only one of the Fragments in an Activity and show
the next Activity when a list is clicked.

Fragments give you a lot of power to ensure you’re using as much of the available space
as possible.

Fragments have their own Lifecycles that work alongside the Activity’s lifecycle in
which they are embedded. Since it’s unknown whether a Fragment will be displayed at
runtime, it’s important that they be as self contained as possible.

This is why you were given the option earlier of generating a callback interface when
you created your first Fragment. This is the way your Fragment communicates with the
outside world, without having to rely on anything besides itself.

Note: If you want to read more about Fragments, check out the official
documentation available at https://developer.android.com/guide/components/
fragments.html

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 199

To see how Fragments fit into the bigger picture, you’ll start with some code. Open up
ListSelectionFragment.kt so you can clean up the generated file to be easier to
understand.

Change the file so it looks like the following:

class ListSelectionFragment : Fragment() {
 // 1
 private var listener: OnListItemFragmentInteractionListener? = null

 interface OnListItemFragmentInteractionListener {
 fun onListItemClicked(list: TaskList)
 }

 // 2
 companion object {

 fun newInstance(): ListSelectionFragment {
 val fragment = ListSelectionFragment()
 return fragment
 }
 }

// 3
override fun onAttach(context: Context) {
 super.onAttach(context)
 if (context is OnListItemFragmentInteractionListener) {
 listener = context
 } else {
 throw RuntimeException(context.toString() + " must implement
OnListItemFragmentInteractionListener")
 }
}

 // 4
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 }

 // 5
 override fun onCreateView(inflater: LayoutInflater, container:
ViewGroup?,
 savedInstanceState: Bundle?): View? {
 return inflater.inflate(R.layout.fragment_list_selection, container,
false)
 }

 // 6
 override fun onDetach() {
 super.onDetach()
 listener = null
 }
}

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 200

There’s a lot of code here with various duties, let’s go through the file bit by bit:

1. You define a private OnListItemFragmentInteractionListener variable to hold a
reference to an object that implements the Fragment interface. The interface is also
defined underneath, requiring a single method to be implemented informing
objects that a list has been clicked. MainActivity will implement this interface.

2. You define a companion object here with a newInstance() method inside. This will
be used by any object that wants to create a new instance of the Fragment.

3. This is the first lifecycle method run by a Fragment. Fragments have lifecycle
methods very similar to like Activities. This method is run when the Fragment is
first associated with an Activity, which gives you a chance to set up anything
required before the Fragment is created. In this method, you assign the context of
the Fragment to the listener variable. This context will be the MainActivity that
will contain the Fragment.

4. The next overridden lifecycle method is onCreate(savedInstanceState: Bundle?).
This functions similarly to the method of the same name in an Activity, except it’s
used when a Fragment is in the process of being created.

5. Another lifecycle method, this one named onCreateView(). This is where the
Fragment acquires the layout it must have in order to be presented within the
Activity. Here, a layout inflater is used to inflate the layout and pass it back to the
Fragment.

6. This is the final lifecycle method to be called by a Fragment. This is called when a
Fragment is no longer attached to an Activity, which could be due to the Activity
being destroyed or the Fragment being removed. At this point within the method,
listener is set to null as the Activity is no longer available.

From Activity to Fragments
With the code cleaned up, the next job is to move parts of MainActivity.kt and its
associated layout to your new Fragment.

Remember that splitting up your code into individual, isolated Fragments makes them
reusable. It’s essential that the Fragment needs nothing inside the Activity.

Open MainActivity.kt and move the following member variables:

val listDataManager: ListDataManager = ListDataManager(this)
lateinit var listsRecyclerView: RecyclerView

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 201

To the top of ListSelectionFragment.kt with a slight modification:

lateinit var listDataManager: ListDataManager
lateinit var listsRecyclerView: RecyclerView

You should notice that we’re no longer initializing listDataManager inline since
Fragments do not extend from Context. This means you’ll have to initialize
listDataManager at the earliest moment you get a Context, which, just happens to be in
onAttach.

Update onAttach() in the Fragment so it instantiates the ListDataManager when the
Activity is attached:

override fun onAttach(context: Context) {
 super.onAttach(context)
 if (context is OnListItemFragmentInteractionListener) {
 listener = context
 listDataManager = ListDataManager(context)
 } else {
 throw RuntimeException(context.toString() + " must implement
OnListItemFragmentInteractionListener")
 }
}

Wonderful — your ListDataManager works exactly the same, except it now gets the
Context via the fragment. You will notice errors in MainActivity.kt after you remove
the last two variables. Let’s fix that up.

In onCreate() from MainActivity.kt, copy then remove the following lines (we’ll
recreate them shortly inside the Fragment):

val lists = listDataManager.readLists()

listsRecyclerView = findViewById<RecyclerView>(R.id.lists_recyclerview)
listsRecyclerView.layoutManager = LinearLayoutManager(this)
listsRecyclerView.adapter = ListSelectionRecyclerViewAdapter(lists, this)

You need to move these into a new lifecycle method in the Fragment, named
onActivityCreated(). This method runs when the Activity the Fragment is attached to
has finished running onCreate(). This ensures you have an Activity to work with and
something to show your widgets.

Add the complete onActivityCreated(). to ListSelectionFragment.kt:

override fun onActivityCreated(savedInstanceState: Bundle?) {
 super.onActivityCreated(savedInstanceState)

 val lists = listDataManager.readLists()
 view?.let {
 listsRecyclerView =

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 202

it.findViewById<RecyclerView>(R.id.lists_recyclerview)
 listsRecyclerView.layoutManager = LinearLayoutManager(activity)
 listsRecyclerView.adapter = ListSelectionRecyclerViewAdapter(lists,
this)
 }
}

The next item is to move is the ListSelectionRecyclerViewClickListener interface
implementation. This is the interface ListSelectionRecyclerViewAdapter provides to
inform any interested objects that it detected a list was selected. Since the
ListSelectionRecyclerViewAdapter no longer exists in MainActivity.kt, you can move
that to your new Fragment. Your Activity, however, still needs to be aware of the list
click event.

This is because only Activities can start other Activities. Fragments, being isolated
views, should only inform Activities of any events it should handle.

You may recall the ListSelectionFragment provides an interface you can use to talk
back to its Activity. At the top of the MainActivity.kt class, change the class declaration
as follows:

class MainActivity : AppCompatActivity(),
ListSelectionFragment.OnListItemFragmentInteractionListener {

The only change here is the Activity now implements your Fragments interface.

In MainActivity, replace listItemClicked() from
ListSelectionRecyclerViewClickListener with onListItemClicked() from
OnListItemFragmentInteractionListener:

override fun onListItemClicked(list: TaskList) {
 showListDetail(list)
}

Similar to the ListSelectionRecyclerViewClickListener interface, when this method
runs, it shows the detail of the TaskList in another Activity.

The ListSelectionRecyclerViewClickListener interface method now needs to be
moved into the Fragment. The Fragment also needs to implement the
ListSelectionRecyclerViewClickListener interface so it can receive the list item click
to pass up to the Activity.

Update the Fragment declaration so it implements the interface:

class ListSelectionFragment : Fragment(),
ListSelectionRecyclerViewAdapter.ListSelectionRecyclerViewClickListener {

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 203

Add the following method inside the Fragment Class:

override fun listItemClicked(list: TaskList) {
 listener?.onListItemClicked(list)
}

When the method receives an item click from the RecyclerView Adapter, it uses the
listener variable to inform the Activity that it has received a item click.

This in turn allows the Activity to receive the list and to start up a new Activity to show
the list while keeping your app logic intact.

So far so good. There are still a few things to move over to your Fragment, so keep at it.
The next piece of logic to move over to your Fragment is adding a list to the Data
Manager.

The data manager is now handled by your Fragment, but you still need to maintain the
previous logic that was relied on by the Activity. To make sure you can still use the logic
your Fragment will be responsible for, you need a reference to your Fragment.

At the top of the Activity, add the following line:

 private var listSelectionFragment: ListSelectionFragment =
ListSelectionFragment.newInstance()

This line creates a new instance of your Fragment when your Activity is created. In the
showCreateListDialog method of your Activity, change the positive button click
listener to the following:

builder.setPositiveButton(positiveButtonTitle, { dialog, i ->

 val list = TaskList(listTitleEditText.text.toString())
 listSelectionFragment.addList(list)

 dialog.dismiss()
 showListDetail(list)
})

The change is subtle, but important. What you’ve done is taken out the lines that added
the list to the Data Manager, and replaced them with a method call on your Fragment.

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 204

The logic that was once here needs to be moved to the Fragment, so let’s do that now.
In ListSelectionFragment.kt, add the following method:

fun addList(list : TaskList) {

 listDataManager.saveList(list)

 val recyclerAdapter = listsRecyclerView.adapter as
ListSelectionRecyclerViewAdapter
 recyclerAdapter.addList(list)
}

Next, you’ll have to save a list that is returned from the List Detail Activity. Again this
needs to be handled by your Fragment.

In MainActivity.kt, change onActivityResult so the parcelable extra is passed into a
method provided by your Fragment:

override fun onActivityResult(requestCode: Int, resultCode: Int, data:
Intent?) {
 super.onActivityResult(requestCode, resultCode, data)

 if (requestCode == LIST_DETAIL_REQUEST_CODE) {
 data?.let {

listSelectionFragment.saveList(data.getParcelableExtra<TaskList>(INTENT_L
IST_KEY))
 }
 }
}

In ListSelectionFragment.kt, add the following method so your Fragment saves the
updated state of the list and updates the RecyclerView:

fun saveList(list: TaskList) {
 listDataManager.saveList(list)
 updateLists()
}

Finally move updateLists() from the Activity, straight into your Fragment.

private fun updateLists() {
 val lists = listDataManager.readLists()
 listsRecyclerView.adapter = ListSelectionRecyclerViewAdapter(lists,
this)
}

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 205

Showing the Fragment
So far you’ve spent most of your time moving logic from your Activity to your Fragment.
If you recall, you also need to adjust your layouts so your RecyclerView is provided by
the Fragment.

You also need to ensure your Activity layout is aware it needs to show the Fragment.
This means you’re going to have to delve into the not-quite-so pretty side of layouts.

Open up content_main.xml available in res ▸ layout. If not already selected, select the
Text tab in the bottom left corner of the layout editor:

Your editor should update to look like something that resembles code, rather than a
user interface:

Up until now, you’ve used the design tab to create your layouts. For this part, you need
to copy widgets across various files. For this it’s easier to work with XML representation
of your widget. Let’s begin.

Copy the entirety of the android.support.v7.widget.RecyclerView tag:

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 206

Make sure you delete the RecyclerView tag as well from content_main.xml. Open up
the fragment_list_selection.xml layout, select the text tab and paste the RecyclerView
over the generated textview:

With the RecyclerView in its new home, it’s time to give the Fragment a home. Back in
content_main.xml, add a FrameLayout in between the ConstraintLayout tags:

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/fragment_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

FrameLayout lets you allocate space for a single item. This is perfect for something like
a Fragment that could take up an entire screen. You also give it an ID so you can
reference it in your Activity.

Open up MainActivity.kt and add a variable to hold a reference to the FrameLayout at
the top of the file:

 private var fragmentContainer: FrameLayout? = null

Update onCreate() in your Activity so it grabs the reference to the FrameLayout via the
ID you assigned it in your layout. Add this code just before fab.setOnClickListener:

fragmentContainer = findViewById(R.id.fragment_container)

supportFragmentManager
 .beginTransaction()
 .add(R.id.fragment_container, listSelectionFragment)
 .commit()

Notice the use of supportFragmentManager? A FragmentManager is an object that lets
you dynamically add and remove Fragments at runtime. This gives you a powerful tool
to make your UI as fluid as possible for various screens.

The FragmentManager uses a FragmentTransaction to begin manipulation of any
Fragments that need to change. This is performed via beginTransaction().

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 207

Once the transaction has begun, you then call add() which adds a Fragment into a
container view that will hold the Fragment.

The add() method takes two parameters to do this: the ID of the container view, and an
instance of the Fragment to be shown. You pass in the ID of the FrameLayout and the
instance of the ListSelectionFragment your Activity has.

Once the transaction has been defined, commit() informs the FragmentManager that it
should begin manipulating the Fragments as intended.

Finally, build and run your app. Click the Run App button at the top of Android Studio,
making sure you run the app on the Tablet Emulator created earlier.

Your app doesn’t look any different at this point, but under the hood you are now using
an Activity that contains a Fragment. This is a good foundation to start making use of
all that space on the tablet screen.

The next step is to replicate the ListDetailActivity screen into its own Fragment.

Creating your next Fragment
Right click on the com.raywenderlich.listmaker package in the project navigator, and
select New ▸ Fragment ▸ Fragment (Blank).

The "Create Fragment" window you used earlier will pop up. Change the fragment name
to ListDetailFragment and click Finish in the bottom right.

Android Studio will create a ListDetailFragment.kt and a fragment_list_detail.xml
file for your Fragment. Clean up the Fragment of any generated code that isn’t needed.

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 208

Your final ListDetailFragment.kt should look like the following:

class ListDetailFragment : Fragment() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 }

 override fun onCreateView(inflater: LayoutInflater?, container:
ViewGroup?,
 savedInstanceState: Bundle?): View? {
 // Inflate the layout for this fragment
 return inflater!!.inflate(R.layout.fragment_list_detail, container,
false)
 }

 companion object {

 fun newInstance(list: TaskList): ListDetailFragment {
 val fragment = ListDetailFragment()
 val args = Bundle()
 args.putParcelable(MainActivity.INTENT_LIST_KEY, list)
 fragment.arguments = args
 return fragment
 }
 }
}

The main change here to the original code is the bundle arguments passed in via
newInstance(). It now expects a TaskList to be passed in, since this Fragment is
responsible for showing your list.

Next, copy some of the variables in ListDetailActivity.kt over to your new Fragment.
From the top of the Activity, copy the following lines over to the top of the Fragment:

lateinit var list: TaskList

lateinit var listItemsRecyclerView: RecyclerView

Update onCreate() in the Fragment so it grabs the list from the bundle passed in:

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 list = arguments.getParcelable(MainActivity.INTENT_LIST_KEY)
}

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 209

Change onCreateView() to set up the RecyclerView via the ID in the Layout and
initialize the Adapter and LayoutManager:

override fun onCreateView(
 inflater: LayoutInflater?,
 container: ViewGroup?,
 savedInstanceState: Bundle?): View? {

 // Inflate the layout for this fragment
 val view = inflater!!.inflate(R.layout.fragment_list_detail, container,
false)

 view?.let {
 listItemsRecyclerView =
it.findViewById<RecyclerView>(R.id.list_items_reyclerview)
 listItemsRecyclerView.adapter = ListItemsRecyclerViewAdapter(list)
 listItemsRecyclerView.layoutManager = LinearLayoutManager(activity)
 }

 return view
}

Finally, add a method named addTask to the Fragment. This method allows the
Fragment to add new tasks to the list:

fun addTask(item: String) {

 list.tasks.add(item)

 val listRecyclerAdapter = listItemsRecyclerView.adapter as
ListItemsRecyclerViewAdapter
 listRecyclerAdapter.list = list
 listRecyclerAdapter.notifyDataSetChanged()
}

You’ll use this method later to instruct your Fragment to add tasks to your list.

Now that your Fragment is using the RecyclerView, you also need to make sure that it
exists in the Fragment Layout. Repeating your approach from previous Activity, you
need to copy over the RecyclerView from the ListDetailActivity layout to the
ListDetailFragment layout.

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 210

With the Text editor open, in layout ▸ activity_list_detail.xml, copy the following
lines from the Layout:

<android.support.v7.widget.RecyclerView
 android:id="@+id/list_items_reyclerview"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

Open layout ▸ fragment_list_selection.xml and paste the RecyclerView in between
the FrameLayout tags, once again replacing the TextView that was auto generated
when you created the Fragment.

Remove the lines are begin with app:layout_constraint. You no longer need these now
that your RecyclerView is sitting within a FrameLayout.

Bringing the Activity into action
So far you’ve focused on transferring code over from your old Activities to your new
Fragments. Remember though, that Fragments need to exist within an Activity to be of
any use. It needs to be able to coordinate how it communicates with the Fragment and
when it appears on the screen.

Your final job for this chapter is to make sure that MainActivity.kt is able to
intelligently show your new Fragments at the right time, that it provides information to
each Fragment, and lets your app shift its appearance depending on the device it runs
on.

First, you need to a create a layout that works for a large screen. In the project
navigator, right-click on the layout folder, then select New ▸ Layout resource file:

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 211

Click the highlighted option to show the new resource file window:

You’re creating a new layout file as you’ve done before. There’s a tiny difference here
though: you’re creating a version of the content_main.xml layout that will only
display on large screens.

This gives you the option to customize your UI for various sizes of screens. Android is
even intelligent enough to distinguish which layout should be used as well. Very
helpful!

In the File name textfield, name your layout content_main. In the Available
qualifiers list, select the size option and click the >>.

From here, you can select various screen sizes to determine at which sizes your layout
will be used. In the screen size dropdown, choose the X-Large option.

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 212

Click OK in the bottom right and Android Studio will create your new layout for you.
Take a moment to look at the project navigator to the left:

Android Studio shows both your layout files together, and even shows the qualifier you
set to distinguish between the two. Now you just have to populate it with the layout
you’d like.

You’re going to use the Text editor again for this, as it’s faster for this particular task.
Ensure the text editor tab is selected at the bottom of the layout editor window, and
replace the existing XML with the following code for the entire layout:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://
schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:context="com.raywenderlich.listmaker.MainActivity"
 tools:showIn="@layout/activity_list">
 <!-- 1 -->
 <fragment
 android:id="@+id/list_selection_fragment"
 android:name="com.raywenderlich.listmaker.ListSelectionFragment"
 android:layout_width="300dp"
 android:layout_height="match_parent"
 android:layout_marginBottom="0dp"
 android:layout_marginLeft="0dp"
 android:layout_marginStart="0dp"
 android:layout_marginTop="8dp"
 android:layout_weight="1"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
 <!-- 2 -->
 <FrameLayout
 android:id="@+id/fragment_container"
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:layout_marginBottom="0dp"
 android:layout_marginEnd="0dp"
 android:layout_marginLeft="0dp"
 android:layout_marginStart="0dp"
 android:layout_marginTop="0dp"
 android:layout_weight="2"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 213

 app:layout_constraintHorizontal_bias="1.0"
 app:layout_constraintStart_toEndOf="@+id/list_selection_fragment"
 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

ConstraintLayout should be familiar to you now. But what is going on with the
Fragment and FrameLayout? When the larger layout is shown on a large screen, you
want both the ListSelectionFragment and ListDetailFragment to appear.

The list selection fragment will be static and never hidden, so you dedicate an entire
fragment tag to it. You even tell it which Fragment to use via the android:name
attribute.

The FrameLayout is where the list detail fragment will sit. This is changeable because
you want to show different lists depending on which list is selected in the selection
fragment. Rather than update the entire Fragment, it’s easier to load up a new one, that
contains the list for the newly selected Fragment.

Open the original content_main.xml file and change the tag in between the
ConstraintLayout tags so it only expects a single Fragment:

<fragment
 android:id="@+id/list_selection_fragment"
 android:name="com.raywenderlich.listmaker.ListSelectionFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_marginBottom="0dp"
 android:layout_marginLeft="0dp"
 android:layout_marginStart="0dp"
 android:layout_marginTop="8dp"
 android:layout_weight="1"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

This change makes it easier for you work out whether your app is running on a device
with a large screen. You’ll investigate this in detail later on.

You now need to change MainActivity.kt so it can handle both layouts. The first thing
you need is a way to know if you’re using the larger layout.

At the top of the file, add a Boolean that will track whether your larger layout is in use.
You need a ListDetailFragment instance later on, so you’ll create a property for it while
you’re here:

 private var largeScreen = false
 private var listFragment : ListDetailFragment? = null

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 214

In onCreate(), use the supportFragmentManager to find your ListSelectionFragment by
its identifier, as well as the FrameLayout. Because your FrameLayout only exists in the
larger layout, you can use a null check here to find out whether your larger layout is in
use.

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_list)
 setSupportActionBar(toolbar)

 listSelectionFragment =
supportFragmentManager.findFragmentById(R.id.list_selection_fragment) as
ListSelectionFragment

 fragmentContainer = findViewById<FrameLayout>(R.id.fragment_container)

 largeScreen = fragmentContainer != null

 fab.setOnClickListener { view ->
 showCreateListDialog()
 }
}

Update showListDetail() so it uses the Boolean to work out whether it should show the
Activity, or replace the ListDetailFragment shown by using the
supportFragmentManager. If one is showing, then it will automatically show the other
one instead:

private fun showListDetail(list: TaskList) {

 if (!largeScreen) {

 val listDetailIntent = Intent(this, ListDetailActivity::class.java)
 listDetailIntent.putExtra(INTENT_LIST_KEY, list)

 startActivityForResult(listDetailIntent, LIST_DETAIL_REQUEST_CODE)
 } else {
 title = list.name

 listFragment = ListDetailFragment.newInstance(list)

 supportFragmentManager.beginTransaction()
 .replace(R.id.fragment_container, listFragment,
getString(R.string.list_fragment_tag))
 .addToBackStack(null)
 .commit()

 fab.setOnClickListener { view ->
 showCreateTaskDialog()
 }
 }
}

Note that you’re trying to get a string above to use with the supportFragmentManager.

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 215

This string is known as a tag and is used by the supportFragmentManager incase you
wanted to reference it in the future. You need to add that string to your strings.xml.

Open up res > values > strings.xml and add the following string:

 <string name="list_fragment_tag">List Fragment</string>

Note: If you get an error stating that list_fragment_tag is unresolved, this usually
means that Android Studio hasn’t recompiled the project’s R file. Hit that build
button in the top toolbar, or from the menu Build, select Make Project.

Back in MainActivity.kt. You must also change the behavior of the
FloatingActionButton when adding tasks to a list. Since the RecyclerView was moved
into the Fragment, you will see a compilation error at this point. Modify the positive
button callback to pass in the newly created task through the Fragment by adding the
following method to MainActivity.kt:

private fun showCreateTaskDialog() {
 val taskEditText = EditText(this)
 taskEditText.inputType = InputType.TYPE_CLASS_TEXT

 AlertDialog.Builder(this)
 .setTitle(R.string.task_to_add)
 .setView(taskEditText)
 .setPositiveButton(R.string.add_task, { dialog, _ ->
 val task = taskEditText.text.toString()
 listFragment?.addTask(task)
 dialog.dismiss()
 })
 .create()
 .show()
 }

Override onBackPressed() so your Activity knows how to deal with the back button
being pressed.

override fun onBackPressed() {
 super.onBackPressed()

 title = resources.getString(R.string.app_name)

 // 1
 listFragment?.list?.let {
 listSelectionFragment?.listDataManager?.saveList(it)
 }

 // 2
 if (listFragment != null) {
 supportFragmentManager
 .beginTransaction()

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 216

 .remove(listFragment)
 .commit()
 listFragment = null
 }

 // 3
 fab.setOnClickListener { view ->
 showCreateListDialog()
 }
}

1. Since you aren’t using two Activities, you cannot rely on onActivityResult to
update your ListDataManager with any updates made to your list. Therefore, you
need to tell the ListDataManager to save the list.

2. Remove the detail fragment from the layouts. Since a user can tap the back button
as much as they wish, you’ll have to make sure that the detail fragment is only
removed once.

3. Reassign the FAB to create lists again.

With that done, you are ready to see your hard work in action! Run your app on a
phone-sized device and start playing around with it, and you will see it working as
expected:

Run your app on a tablet-sized device and you will immediately see the difference.

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 217

Your app has now displays two different screens, at the same time, making better use of
the available space!

Where to go from here?
Fragments are a very difficult concept to grasp in Android. What you’ve encountered
here is a brief dip into the benefits they can provide.

Any app that wants to succeed across multiple devices and multiple size classes needs
to use Fragments to ensure it provides the best experience for users.

Android Apprentice Chapter 11: Using Fragments

raywenderlich.com 218

12Chapter 12: Material Design
By Darryl Bayliss

When it comes to building apps, making them work is the easy part. The difficulty lies
in making them work in a way that is stylish and appealing. This means taking color,
animation and even the size of your widgets into account to ensure you convey the right
message in your app. You’ll often hear this referred to by designers as the design
language.

This is such an important topic that Google created their own design language called
Material Design. In this final chapter for Section II, you’ll learn:

• What Material Design is

• What resources are available to learn about Material design

• How to update ListMaker so it adopts some Material Design principles

raywenderlich.com 219

What is Material Design?
Material Design is a design language that aims to standardize how a user interacts with
an app. This ranges from everything to button clicks, to widget presentation and
positioning, even to animation within the app.

Before Material Design existed, there was no specific user interface an app was expected
to adhere to. This was a problem for users because different apps worked in different
ways, which meant users ended up with very different experiences from app to app.

All of that changed with the introduction of Material Design; Android developers finally
had a set of concise UI and UX guidelines for their apps to follow. In fact, Google is so
invested in Material Design it’s dedicated an entire site to it at https://material.io.

Head to the site and free to take a look around; there’s plenty to look at. Once you’re
ready to proceed, click the Design Guidelines panel halfway down the page. This is
where the Material Design guidelines are kept.

As Material Design is a living language, this page is regularly updated to represent the

Android Apprentice Chapter 12: Material Design

raywenderlich.com 220

latest changes. It’s worth checking in regularly to see what’s new.

Take a moment to look at what interests you. Once you’re ready to move on, click Style
‣ Color on the left of the page. This takes you to the section of Material Design specific
to color.

Primary and secondary colors
Color is an important tool in Material Design, as it helps draw your user’s attention to
areas of your app you want them to interact with.

While color is important, Material Design stresses that you shouldn’t overdo it. Having
too many colors in an app is distracting to a user and can confuse the purpose of
widgets.

With this in mind, Material Design focuses on two color choices: Primary and
Secondary.

The Primary Color is what you want to use most often across your app. Generally
speaking, its should be the color of your brand. Places such as action bars and
backgrounds are good spots to use primary color.

The Secondary Color is used to accent certain areas of your app, and should contrast
with your Primary Color. This helps to draw attention to areas of your app that use

Android Apprentice Chapter 12: Material Design

raywenderlich.com 221

secondary color.

Areas of your app recommended for Secondary Color are Widgets like Buttons, Floating
Action Buttons and progress bars — things you definitely want your user to notice!

It’s time to bring some life to ListMaker. Click the Color Tool button in the color tool
section at the top.

You’ll be presented with a tool that generates a color scheme for your app.

Android Apprentice Chapter 12: Material Design

raywenderlich.com 222

To begin, choose a Primary Color that you like, in the top right of the browser.
Remember that this color is the most used color in your app, so choose wisely. We’ve
chosen an indigo color, but you can choose something else that appeals to your sense of
design.

Next, in the bottom right, click the Secondary color scheme to inform the Color tool
you want to pick a secondary color.

Android Apprentice Chapter 12: Material Design

raywenderlich.com 223

Pick another color you like to be your Secondary Color. Remember this should contrast
with your Primary Color. We’ve chosen a dark red for our app.

When you’re happy with your selections, move your mouse cursor to the top right of the
browser window and click Export.

Android Apprentice Chapter 12: Material Design

raywenderlich.com 224

A popup window appears over the export button, giving you the option to export your
theme for various platforms. Click the Android button.

Check your download folder and you’ll find colors.xml sitting there, ready to be
imported into your project.

Open the ListMaker project in Android Studio and navigate to colors.xml file in res ‣
values. This file is where you’ll declare all the colors you want to use in your app.
You’re going to replace the contents of this file with the new file you retrieved from the
color tool.

Open up the colors.xml file you downloaded from the color tool, copy its contents and
paste them into the colors.xml file in your Android Studio project.

Next, open styles.xml, which is found in the same directory as colors.xml.

Android Apprentice Chapter 12: Material Design

raywenderlich.com 225

This file is responsible for declaring Themes for your app. A theme is a set of attributes
that are grouped together. You can create many themes for your app to avoid declaring
the same attributes over and over again in your layouts and widgets.

You might be seeing errors with this file, because the colors used in the AppTheme
theme no longer exist. Within the AppTheme, adjust the colorPrimary,
colorPrimaryDark and colorAccent entries like so:

<item name="colorPrimary">@color/primaryColor</item>
<item name="colorPrimaryDark">@color/primaryDarkColor</item>
<item name="colorAccent">@color/secondaryColor</item>

This tells your app which colors will be defined as the primary and secondary colors.
Time for the big reveal! Run your app and check out the difference in color:

That Floating Action Button looks nice and bold. Tap it and notice the accent color
change in the dialog:

Very nice. You’ve just updated your app to use some Material Design colors of your own!

Android Apprentice Chapter 12: Material Design

raywenderlich.com 226

Card views
While reading the Material Design site, you might notice that it often emphasizes the
use of Cards. Cards are designed as a gateway to more information.

Example of apps using Cards

This sounds like a great way to visually inform users that a list contains a number of
tasks in ListMaker.

Note: You can read more about cards on the Material Design website at: https://
material.io/guidelines/components/cards.html.

To use a Card in your app, you need to declare a new dependency in your app. Open up
build.gradle (Module: app), and to the dependencies block, add the following line:

 implementation 'com.android.support:cardview-v7:26.1.0'

Android Apprentice Chapter 12: Material Design

raywenderlich.com 227

Click the Sync Now button that appeared when you changed the Gradle script. This
rebuilds your project, pulling in any new dependencies you added from the Internet to
use in your project.

With the Cards dependency added to your project, it’s time to tell your list ViewHolder
to use cards. Open up the list_selection_view_holder.xml layout in res ‣ layout,
making sure you have the Text layout view open. Update the XML layout so it looks like
the following:

<android.support.v7.widget.CardView xmlns:android="http://
schemas.android.com/apk/res/android"
 xmlns:card_view="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginBottom="4dp"
 android:layout_marginLeft="4dp"
 android:layout_marginRight="4dp"
 card_view:cardCornerRadius="2dp">

 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <TextView
 android:id="@+id/itemNumber"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="16dp" />

 <TextView
 android:id="@+id/itemString"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="16dp" />
 </LinearLayout>
</android.support.v7.widget.CardView>

The LinearLayout and its containing TextView widgets stay the same. The big change is
that these components are now wrapped up in a CardView. Cards behave similar to
other layout widgets, with a few additional properties. To access the properties, you first
need to assign a namespace to access them, this is done via xmlns:card_view.

You then use the namespace at the end of the open CardView tag, via
cardCornerRadius. This sets the rounding of each corner of the card. The Material
Design guidelines recommend a rounding of 2 density pixels (dp), which you’ve used
here.

It’s also worth noting that the CardView has had its margins pushed 4dp from the left,

Android Apprentice Chapter 12: Material Design

raywenderlich.com 228

right and bottom. This is to ensure that it doesn’t hit the edge of the screen or isn’t
clipped by a card beneath it, which would obscure the CardView.

Run your app and you’ll see that your collection of lists are looking more appealing.

Where to go from here?
The visual flair you’ve added to ListMaker by implementing Material Design was well
worth it! You’ve only had a peek into the benefits Material Design brings to an app. In
future apps, it’s worth reading up on the Material Design guidelines and finding ways to
incorporate it into your app, ensuring you’re providing your users with a great
experience.

Keep checking https://material.io to make sure you stay up-to-date!

Android Apprentice Chapter 12: Material Design

raywenderlich.com 229

Section III: Creating Map-Based
Apps

In this section, you’ll build PlaceBook, an app that lets you bookmark your favorite
places and save some notes about each place.

Chapter 13: Creating a Map-Based App

Chapter 14: User Location and Permissions

Chapter 15: Google Places

Chapter 16: Saving bookmarks with Room

Chapter 17: Detail Activity

Chapter 18: Navigation and Photos

Chapter 19: Finishing Touches

raywenderlich.com 230

13Chapter 13: Creating a
Map-Based App
By Tom Blankenship

Have you ever been on a road trip and wanted to makes notes about places you’ve
visited? Or needed to warn your future self about some heartburn-inducing greasy food
from a roadside diner? Or have you ever wanted to keep reminders about the best menu
items at your favorite local restaurants?

If you answered “yes” to any of those question, then you’re in luck! You’re about to
build PlaceBook, an app that meets all of those needs by letting you bookmark and
make notes using a map-based interface.

Even if you didn’t answer “yes”, that’s the app you’re going to be building, so roll up
your sleeves and dive in!

Getting started
While building out PlaceBook, you’ll use familiar techniques from the previous sections
and learn about several new Android APIs. You’ll use the Google Maps API to display a
map, track the user’s location, and add custom markers. You’ll use the Google Places
API to display place information and search for nearby places. You’ll use the Room
Persistence Library to store data. You’ll also learn about Implicit Intents for sharing
your data to other apps.

raywenderlich.com 231

There’s a lot of ground to cover, so let’s get started! The final product will look like this:

About PlaceBook
PlaceBook starts by displaying a Google Map centered around your current location.
The map will display common places, and allow you to bookmark them. You can display
details for bookmarked places and edit the place data and photo.

The navigation drawer on the left will display all of your bookmarks and tapping on one
will zoom the map to that location. You can use the search icon to find nearby places
and jump directly to them on the map.

Making a plan
With a large number of features to implement, it’s easiest to think about them in bite-
sized pieces, slowly building up to the finished product. The steps will include the
following:

1. First, you’ll create a basic map to display the user’s current location. You’ll get
familiar with the Google Maps API and the Fused Location Provider.

2. You’ll then allow the user to select Places on the map and display information about
the place. You’ll learn how to load detailed information about a Place using the
Google Places API.

3. You’ll add the basic bookmarking ability by using Room to store places in a local
database and add map markers to show the user’s bookmarked locations.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 232

4. Next, you’ll add a details screen to let the user edit their bookmark details, delete
bookmarks, and replace the default bookmark photo with one from the camera or
photo gallery.

5. You’ll add a navigation drawer to let the user jump directly to any saved bookmark.

6. You’ll then use the Google Places autocomplete service to let the user search for
nearby locations.

7. You’ll add the ability to long tap any location on the map to add a bookmark that
doesn’t already have an existing place on the map.

8. Finally, you’ll add some finishing touches to make the app look better with a custom
color theme and icons.

Location service components
The Android SDK provides three main components related to location and mapping:

• Framework Location APIs: Known collectively as the location framework, this
framework has been around the longest and is the traditional means for getting the
user’s current location. However, it’s also the most difficult one to use.

• Google Maps API: The Google Maps API makes it easy to display interactive maps
within your app. It provides a lot of functionality out of the box, including everything
needed to display detailed map data and respond to user gestures. You’ll cover this
API in detail in the next chapter.

• Google Play Services location APIs: The Google Play services location APIs are
built on top of the core location framework and alleviate much of the pain involved
with tracking user location. You’ll be using the FusedLocationProviderApi
component of this API in the book.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 233

Map wizard walk-through
To save time, you’ll use the Maps Activity project template to generate an app with a
single activity that displays a map that looks like the following:

To begin, launch Android studio and select Start a new Android Studio Project.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 234

Fill out the Create Android Project dialog like this:

• Application name: PlaceBook

• Company domain: raywenderlich.com

• Project location: select a directory for the project files

• Include C++ support: unchecked

• Include Kotlin support: checked

Click Next.

Fill out the Target Android Devices dialog like this:

• Phone and Tablet: checked

• Minimum SDK: API 19

• Leave everything else unchecked.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 235

As with all other apps in the book, PlaceBook will run on devices back to API level 19.

Click Next.

Select the Google Maps Activity option on the Add an Activity to Mobile dialog and
select Next.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 236

In the Configure Activity dialog, update the title to “PlaceBook”, leave the other
options at the defaults, and select Finish.

Android Studio will now automagically generate your new project and perform an
initial build. If all goes as planned, you will be left viewing the google_maps_api.xml
file.

Google Maps API key
Before your app will work, you have to generate an API key using the Google Developer
console. You’ll need a Google account to sign in to the developer console. Don’t worry,
use of the developer console is free!

The Google Maps API communicates with the Google Map servers and will only work if
a valid key is provided by the app. Android Studio generates the google_maps_api.xml
file to make your life easier. It provides important information that will help you create
the Google Maps API key.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 237

The easiest way to create your own API key is to use the link at the top of
google_maps_api.xml, shown here and highlighted in yellow:

Take note of the Package Name and SHA-1 Fingerprint values. These are the two
requirements for generating a key. The link is just an easy way to pass those values to
the key generation page in the Google Developer Console.

Package Name is straightforward: It’s the package name you used when creating the
project. The SHA-1 Fingerprint may look a little odd if you aren’t familiar with SHA-1.
SHA-1 is a method for generated secure hashes. Just like a real fingerprint uniquely
identifies you, each SHA-1 fingerprint uniquely identifies a set of bytes.

The fingerprint in google_maps_api.xml is a SHA-1 hash of the certificate from your
debug keystore file. A keystore file contains everything needed to digitally sign an
Android application (APK) file. During development, your apps are signed with a debug
keystore file. When delivering apps to the Play Store, you sign with a release keystore
file.

The debug keystore file is automatically generated when you first install Android Studio
and is shared among all of your projects. Using a release keystore will be covered in
detail in Chapter 30, “Preparing for Release”.

If you’ve worked with Google Maps before, you may have already generated a Google
Maps API key. You can add the Package Name and SHA-1 Fingerprint to an existing key
instead of generating a new one.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 238

There are actually two versions of google_maps_api.xml in your project. One version is
used only when building the debug version, and the other only for the release version.

If you are using the Android view in the Project View, you’ll only see one version of
the file in the app/res/values folder, but you’ll see (debug) after the filename.

To see both versions, switch over to the Project Files view by selecting the Project Files
tab in the Project View window. Open up the app/app/src/debug/res/values and app/
app/src/release/res/values folders and you’ll notice that there is a
google_maps_api.xml file in each one. By placing files in these build-specific folders,
Android Studio will apply them separately to debug or release builds as appropriate.

Follow the link provided in the google_maps_api.xml file and you should see the
following page after signing in to your Google account:

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 239

Click Agree and continue, and you’ll come to a page displaying The API is enabled.

This created a project behind the scenes in your Google Developer console and enabled
the Google Maps API for you. In a later chapter, you’ll learn how to manually enable
APIs. For now just remember which Google account you created this project with so you
can later edit it further.

Click Create API key button and you’ll see the API key created dialog containing your
shiny new key:

Note: Don’t worry about the RESTRICT KEY option. The key will already be
restricted to your developer certificate SHA-1 fingerprint and package name. When
you release your app to the public, you can place further restrictions around this
to prevent unauthorized use.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 240

Copy the key from this dialog and paste it into google_maps_api.xml where it says
YOUR_KEY_HERE. The resulting file should look something like this, but with your key
instead:

<string name="google_maps_key"
 templateMergeStrategy="preserve"
 translatable="false">
 AIza5sD-_G2dq7PjafW-Ad4pKpU5a</string>

Getting the keystore fingerprint
Although Android Studio has conveniently placed your debug keystore fingerprint in
the XML file, it’s helpful to know how to get the fingerprint yourself if you ever need to
regenerate it. The following instructions will work for debug builds; getting the SHA1
key for release builds will be covered in Section VI, "Submitting Your App".

First locate your keystore file.

• On macOS, it will be found in ~/.android/.

• On Windows, you’ll find it in C:\Users\your_user_name\.android\.

On macOS, run the following command:

keytool -list -v -keystore ~/.android/debug.keystore -alias
androiddebugkey -storepass android -keypass android

On Windows, run the following command:

keytool -list -v -keystore "%USERPROFILE%\.android\debug.keystore" -alias
androiddebugkey -storepass android -keypass android.

This should produce output similar to the following:

Alias name: androiddebugkey
Creation date: Jan 01, 2013
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=Android Debug, O=Android, C=US
Issuer: CN=Android Debug, O=Android, C=US
Serial number: 4aa9b300
Valid from: Mon Jan 01 08:04:04 UTC 2013 until: Mon Jan 01 18:04:04 PST
2033
Certificate fingerprints:
 MD5: 18:5E:95:D0:A6:86:89:BC:A8:70:BA:34:FF:6A:AC:A4
 SHA1: A5:1F:AC:74:D3:21:E1:43:07:71:9B:62:90:AF:A1:66:6E:44:5D:46
 Signature algorithm name: SHA1withRSA
 Version: 3

The SHA1 key you see should match what is already in the XML file.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 241

Maps and the emulator
That’s all you should need if you’re installing on a real device, but if you’re using an
emulator, then things can get a little more complicated.

A basic requirement of the Google Maps API is that your device must have the Google
APIs installed. Not all emulators include this by default. If you don’t have one already,
follow the following steps to create an emulator with API Level 19 or newer that
includes the Google APIs.

Select Tools ▸ Android ▸ SDK Manager. Under the SDK Platforms tab, select the Show
Package Details option.

Select a version from Android with API level 19 or newer. Make sure Android SDK
Platform and Google APIs Intel x86 Atom_64 System Image are selected. If Google
APIs is an option, it should be selected also. The following shows Android 8.0 (Oreo)
with the necessary items selected.

Click OK to install the platform files.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 242

Once the installation has finished, select Tools ▸ Android ▸ AVD Manager and then
click the Create Virtual Device button.

Select your preferred device and click Next. For demonstration purposes, shown next is
an emulator set up for a Pixel device.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 243

The Recommended tab should display a choice that matches the SDK platform files
you downloaded in the previous step. Make sure the option selected is one with the
Google APIs option as shown here. If you don’t see one on the Recommended tab, then
try the x86 images tab.

Click Next.

Leave the default settings on the configuration screen and click Finish.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 244

You should now see the new virtual device shown along with any others you may have
created before. Make sure to use this virtual device when launching the app.

Running the app
Launch the app from Android Studio.

If your key is valid, you should see a map on the screen. If you see a blank screen, check
Logcat to see if there are any error messages.

If you see an error message in Logcat that looks like the one shown here, then double
check that you have pasted the correct key in google_maps_api.xml:

Google Maps Android API: Authorization failure. Please see https://
developers.google.com/maps/documentation/android-api/start for how to
correctly set up the map.
Google Maps Android API: In the Google Developer Console (https://
console.developers.google.com)
Ensure that the "Google Maps Android API v2" is enabled.
Ensure that the following Android Key exists:
API Key: YOUR_KEY_HERE
 Android Application (<cert_fingerprint>;<package_name>): 6A:27:6F:
34:38:DA:D3:04:C8:9C:8F:
41:ED:BB:B7:18:02:77:67:D2;com.raywenderlich.placebook

Look at the key shown after API Key: in Logcat and make sure it matches the one you
received when you created your key earlier.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 245

Once you have the correct key, you should see a map with a marker placed over Sydney,
Australia:

Congratulations! You’re off to a great start with your maps app. Pan and zoom around a
bit. There’s not much more you can do at this point. That will change soon enough!

Before moving on, take a moment to review the files Android Studio created for you.

Project dependencies
There are two dependencies required before you can use maps in your app. To find the
first one, open build.gradle from your application module folder. In the dependencies
section, you should see the following line.

implementation 'com.google.android.gms:play-services-maps:11.8.0'

This instructs the Gradle build system to include the Maps API in your build and is
required to use maps.

You may be wondering, “How do I know which version of the library to include?”

Good question! There are at least three ways you can find the latest version:

1. Go to https://developers.google.com/android/guides/setup. Scroll down to see the
list of APIS. This list is dynamically generated and reflects the most recent version
of each API.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 246

2. Go to https://developers.google.com/android/guides/releases. Note the latest
release of Google Play services.

3. Select File ▸ Project Structure. Select app under Modules, then select the
Dependencies tab, click the + button, and select 1 Library Dependency.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 247

Type play-services-maps and press Enter.

You should be shown the latest available version:

Note: In Google Play services versions prior to 6.5, all of the Play services were
included in one package named play-services. This would often lead to problems
with creating APK files that exceeded the 65 KB method limit.

Now, you can choose just the subset of play services required for your app, such as
the Google Maps API.

The manifest
First, from app/manifests, open up AndroidManifest.xml. It should look like this,
with your actual API key displayed in place of @string/google_maps_key:

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.raywenderlich.placebook"
 xmlns:android="http://schemas.android.com/apk/res/android">
 <!--
 The ACCESS_COARSE/FINE_LOCATION permissions are not
 required to use Google Maps Android API v2, but you
 must specify either coarse or fine location permissions
 for the 'MyLocation' functionality.
 -->
 <uses-permission
 android:name="android.permission.ACCESS_FINE_LOCATION"/>

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 248

 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <!--
 The API key for Google Maps-based APIs is defined
 as a string resource. (See the file
 "res/values/google_maps_api.xml"). Note that the
 API key is linked to the encryption key used to
 sign the APK.
 -->
 <meta-data
 android:name="com.google.android.geo.API_KEY"
 android:value="@string/google_maps_key"/>

 <activity
 android:name=".MapsActivity"
 android:label="@string/title_activity_maps">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category
 android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

This is a fairly standard manifest file, and most of it should look familiar from previous
sections. Look at the uses-permission element. As the comment in the file says, the
ACCESS_FINE_LOCATION permission is not required to show the map. You could remove
this line and your app would continue to run just fine, but you’re going to need this
later. In the next chapter, you’ll cover permissions in detail and discover why this
permission is needed when obtaining the user’s location.

The meta-data tag under the Application section is where Android Studio looks for your
API key when signing the APK. From the raw source shown above, you can see the key is
pulling from the string resource you defined in google_maps_api.xml. When viewing
the file in Android Studio, it will show you the actual key.

The activity and layout
Open MapsActivity.kt. This is the startup activity created from the Maps template.
Note that it inherits from the AppCompatActivity class and the
OnMapReadyCallback interface.

class MapsActivity : AppCompatActivity(), OnMapReadyCallback {

Map display options

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 249

There are two ways to display a map in your app:

1. As a fragment using the SupportMapFragment class. SupportMapFragment is a
subclass of Fragment and is the typical choice unless you need very fine-grained
control of the map. You can also use MapFragment, but using SupportMapFragment
provides the best support for backwards compatibility.

Remember how you used fragments to host your main UI in the CheckList app? The
MapsActivity template does the same thing by hosting the SupportMapFragment
within your main activity.

SupportMapFragment acts as a reusable component that you can easily plug into any
activity. It handles all aspects of displaying the map and gives you access to the
GoogleMap object.

2. As a view using the MapView class. MapView is a subclass of View and can be
used in two modes: Fully Interactive Mode or Lite Mode. You can place MapView
directly inside your own fragment or activity. When using this in fully interactive
mode, you are responsible for forwarding lifecycle methods to the MapView. In lite
mode, forwarding the lifecycle events is optional.

The template uses the MapFragment option. Take a look at onCreate in MapsActivity:

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_maps)
 // Obtain the SupportMapFragment and get notified when the map is ready
to be used.
 val mapFragment = supportFragmentManager
 .findFragmentById(R.id.map) as SupportMapFragment
 mapFragment.getMapAsync(this)
}

It loads the activity_maps.xml layout, then finds the map fragment from the layout
and uses it to initialize the map using getMapAsync method.

activity_maps.xml contains nothing but a container for the SupportMapFragment
mentioned earlier.

<fragment
 android:id="@+id/map"
 android:name=
 "com.google.android.gms.maps.SupportMapFragment"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:map="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.raywenderlich.placebook.MapsActivity"/>

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 250

Asynchronous map setup

When you call getMapAsync, the SupportMapFragment object handles all of the work of
setting up the map and creating a GoogleMap object. The GoogleMap object is what
you will use to control and query the map.

If you are familiar with the concept of asynchronous methods, you may have guessed
from the name that getMapAsync is asynchronous. Unlike a normal or synchronous
method, which does its work then returns to the caller, an asynchronous method starts
up a different thread to do its work and doesn’t return immediately to the caller. The
code that calls the asynchronous method goes on its merry way while the real work is
done behind the scenes.

While getMapAsync is doing its background work, you should not try to interact with the
map. So how will you know when the map is ready? That’s where OnMapReady comes to
the rescue!

Take a look at OnMapReady:

override fun onMapReady(googleMap: GoogleMap) {
 mMap = googleMap

 // Add a marker in Sydney and move the camera
 val sydney = LatLng(-34.0, 151.0)
 mMap.addMarker(MarkerOptions().position(sydney).title("Marker in
Sydney"))
 mMap.moveCamera(CameraUpdateFactory.newLatLng(sydney))
}

The override keyword on onMapReady lets you know that this is overriding a method
from the base class or an interface. In this case, onMapReady is part of the
OnMapReadyCallback interface included in the class declaration.

OnMapReady will be called by the SupportMapFragment object when the map is ready to
go. You’re passed in a GoogleMap object that is then used to interact with the map.

Note: It’s possible that the device running your app won’t have the Google Play
services installed. If this is the case, the SupportMapFragment object will prompt
the user to install the Google Play services. getMapAsync will not call onMapReady
until the services are installed.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 251

The GoogleMap object is stored away in the mMap local variable, and then a couple of
methods are used to add a marker and zoom the map to it. Don’t worry about how the
methods work for now; you’ll cover those in detail in upcoming chapters.

Note: You might be wondering why the GoogleMap object is being held in a
variable named mMap. It may seem like a typo; however, Android Studio generates
code using what’s known as Hungarian Notation. It was developed during a time
where advanced development environments like Android Studio didn’t exist. The
notation was used as a way for developers to easily identify if a variable was a class
property, or a local variable, or a static variable.

Now, development environments use colors to help you identify variables and
their scopes. You can read all about it at https://en.wikipedia.org/wiki/
Hungarian_notation. For the purposes of this book, we’ll just use sensible naming,
so go ahead and rename mMap to just map.

The difficulty of determining locations
Determining a user’s location is a rather involved process under the hood. There are
multiple sources of location data to handle, and they all affect your device’s idea of
where it is in the world.

Some of the challenges in locating the user’s location are:

• Dealing with multiple methods for determining location. Your mobile device has
several ways to determine your location, and each has its own benefits and
disadvantages. Your phone uses the GPS chip, WiFi location and cell towers to zero in
on your location. You have to decide which one to use in order to balance desired
accuracy with power consumption.

• Tracking change in user location. As the user moves around you have to know
when to update the location to reflect the current position.

• Handling different accuracy levels. Each location source offers different levels of
accuracy and can vary at any time. In some cases an older location has better
accuracy than the most recent location.

Android uses Location Providers to give access to the different location sources
mentioned above. When you need the user’s location, you decide which set of location
providers to use and instruct them to start listening for location updates through the
location manager.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 252

A typical flow to get the user’s location would look like this:

1. At a point after the application has started, begin listening for updates from your
chosen location providers.

2. Implement logic to filter out updates and select the most appropriate ones.
Remember that newer locations are not always the best.

3. Stop listening when you are done to preserve power.

4. Make use of the best location in your app logic.

For instance, the following graphic illustrates the location signals that your application
might receive as it goes along. Note the graph shows a time sequence of location
events.

Location events over time

There are many decisions to make in order to determine how to best calculate the user’s
location:

• Determine exactly when to start listening for updates. You may want to start
listening before the location is needed, so the user doesn’t perceive a delay.

• Determine the filter criteria for weeding out locations based on their accuracy
and time received. Do you want the quickest locations? The most accurate? Or
some combination of the two?

• Determine how long to listen to balance power efficiency. On a mobile device,
battery is a precious resource. Keeping the location provider running will drain this
resource faster than just about anything else on the device.

As you can see, there are a lot of moving parts, and there’s a lot of code required to
provide a seamless experience to the user. Thankfully, the location APIs are there to do
the heavy lifting for you!

That’s it for this chapter! In the next chapter you’ll get your first look at customizing
the map behavior with location tracking and markers.

Android Apprentice Chapter 13: Creating a Map-Based App

raywenderlich.com 253

14Chapter 14: User Location &
Permissions
By Tom Blankenship

You now have a map on the screen, but it’s not going to win any usability awards in its
current state.

For starters, the map always starts off centered over Sydney, Australia. Unless that’s
where the user happens to be located, they’ll have to pan and zoom around to find their
current location. The other issue is there’s no way to track the user’s location as they
move.

In this chapter, you’ll address some of these problems by adding the following features
to the app:

• Automatically center the map on the user’s location at startup.

• Allow the user to recenter the map to their current location at any time.

Getting started
If you were following along with your own app, open it and keep going with it for this
chapter. If not, don’t worry. Locate the projects folder for this chapter and open the
PlaceBook app under the starter folder. If you do use the starter app, don’t forget to add
your google_maps_key in goole_maps_api.xml. Check out Chapter 13 for more details
about the Google Maps key. The first time you open the project, Android Studio takes a
few minutes to set up your environment and update dependencies.

Let’s get going. Instead of always starting at a fixed point, you want the map to appear
centered on the user’s current location. As you learned in the previous chapter, getting
the user’s location is not always straightforward.

raywenderlich.com 254

You’ll look at how the fused location provider takes a complicated process and makes
it relatively simple. The previous chapter gave you a brief introduction to the fused
location provider. This chapter will take a more in depth look at how it works.

Fused location provider
The job of the fused location provider is to take all the different inputs provided by the
hardware and fuse them into location data that reflects the user’s accuracy requests.

OK, that was a mouthful. Let’s break down how it works in practice.

There are two primary ways to interact with the fused location provider:

1. Ask directly for the last known device location.

2. Request location updates based on hints about accuracy and power consumption.

Asking for the last known device location is a simple call to
FusedLocationProviderClient.getLastLocation(). This returns a Task that can then be
used to get the last known location of the device. This may return null if the device has
not yet retrieved a location.

In the second scenario, requesting location updates based on hints, you ask for periodic
location updates by calling FusedLocationProviderClient.requestLocationUpdates()
and indicating your priorities with LocationRequest.

The fused location provider will use the most appropriate sensors on the device to
match your priorities while preserving as much battery power as possible.

You can request location updates in two ways:

1. Using a LocationListener callback method. This method works best when your
app is running in the foreground and actively displaying the user’s location.
Whenever there is relevant location data available, this makes an asynchronous call
to a method you’ve defined yourself.

2. Using a PendingIntent. This is useful when you want to be notified of location
events, even if your app is not currently running.

Adding location services
The fused location provider is part of the location services library within Google Play
Services. Before using it, you’ll need to add a new dependency.

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 255

Open build.gradle (Module:app) and add the following line to the dependencies
section, taking care to use the same version as the existing play-services-maps
dependency in the prior chapter.

implementation 'com.google.android.gms:play-services-location:11.8.0'

This adds the location APIs to the app.

Note: The Google Play services APIs provide a wealth of useful features. You’ll
explore more of them in later sections of the book, but if you want a sense of the
depth of capabilities, check out the list of services at https://
developers.google.com/android/.

Ad-Hoc Gradle properties
Before moving on, this is a good time to practice the DRY principle in our Gradle
dependency management. Your app/build.gradle dependencies section now has two
entries for play-services that both use the 11.8.0 library version. You’ll fix that by
adding some ad-hoc properties using Gradle’s ExtraPropertiesExtension.

As your Gradle files grow with more dependencies they can be easier to manage if you
define the library versions in a single location. The place to define global Gradle ad-hoc
properties is in the project Gradle file.

Open your project build.gradle and remove the following line:

ext.kotlin_version = '1.2.21'

Note: Your version might be different depending on when you’re following this
book. Simply remove whatever ext.kotlin version your file has.

Update the first part of the buildscript section to match this:

buildscript {
 ext {
 kotlin_version = '1.2.21'
 play_services_version = '11.8.0'
 }

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 256

You now have two properties defined within the buildscript domain that can be
accessed from any .gradle file in the project.

Open app/build.gradle and update the play services dependencies to take advantage of
the new play_services_version extension property.

implementation "com.google.android.gms:play-services-maps:" +
 "$play_services_version"
implementation "com.google.android.gms:play-services-location:" +
 "$play_services_version"

Note: The single quotes must be changed to double quotes when using extension
properties. The string doesn’t need to be split up as shown in the example, that’s
only done for readability in the book.

Creating the location services client
In order to use the fused location API, you must create a Fused Location Provider Client
using the FusedLocationProviderClient class.

In MapsActivity.kt, add a new private member below the map member:

private lateinit var fusedLocationClient: FusedLocationProviderClient

Add the following method to MapsActivity under the onMapReady method:

private fun setupLocationClient() {
 fusedLocationClient =
 LocationServices.getFusedLocationProviderClient(this)
}

Finally, add a call to setupLocationClient() at the bottom of onCreate().

setupLocationClient()

Querying current location
Next, you’ll start by trying to query the user’s current location, then place a marker and
center the map on the location. Location detection requires the user’s permission
before it will work in your app.

Before moving on to the details of location permissions, a quick overview of how
permissions work on Android is in order.

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 257

Permissions overview
Each app running on your Android device lives in its own little world. This is known as
process sandboxing. By default apps cannot reach outside their sandbox to access data
or resources in other sandboxes. This is done to protect the user’s privacy as well as
system stability.

If your app needs to reach outside its sandbox and access protected features, it must
add a <uses-permission> tag to the apps manifest file. Android divides permissions into
two main categories; Normal and Dangerous.

• Normal permissions: Permissions in this category are considered less harmful and
will be granted automatically if they are listed in the manifest. Examples of normal
permissions include BLUETOOTH, ACCESS_NETWORK_STATE, INTERNET, and
SET_ALARM.

• Dangerous permissions: Permissions in this category could affect user’s privacy or
system stability. For these permissions, the system will explicitly ask the user to
allow the permissions. Examples of dangerous permissions include
READ_CALENDAR, READ_CONTACTS, CALL_PHONE, and SEND_SMS.

Android will handle the dangerous requests differently depending on the OS version.
If running Android 6.0 or higher and the app’s targetSdkVersion is 23 or higher, you
must request the user approval at run-time. On this version, the user can revoke
individual permissions at any time, so the app must check for permissions every time
it uses a protected feature. Even though you’ll request dangerous permissions at run-
time, they still must be specified in the manifest.

If running Android 5.1.1 or lower, or the app’s targetSdkVersion is 22 or lower, the
user will be asked to approve the permissions when the app is first installed. If an app
update adds new permissions , then the user will be asked to approve the new
permissions when the app is updated. On this version, the user can only remove
permissions by uninstalling the app.

In addition to the primary categories, the dangerous permissions are separated into
groups. Android will not display the specific permission when asking the user for
permission, it will only show the group that the permissions belong to.

For example, the SEND_SMS and RECEIVE_SMS permissions are part of the SMS
group. If your app requests SEND_SMS and RECEIVE_SMS permissions, only a single
SMS permission will be requested by the system.

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 258

Note: It’s also possible for an app to define its own permissions. This allows an
app to share resources or capabilities with other apps.

You can learn more about this feature at https://developer.android.com/guide/
topics/permissions/defining.html.

The first run-time permission you’ll use is ACCESS_FINE_LOCATION from the
LOCATION group. It’s already specified with the <uses-permission> tag in the
manifest file. Now, you’ll check for it at run-time before any code uses the location
features.

Permission accuracy options
Your app can choose between two levels of location accuracy:

1. ACCESS_FINE_LOCATION: Used when you want the most accurate location data
possible. This uses all location sources, including the GPS chip, and will use more
battery.

2. ACCESS_COARSE_LOCATION: The less “refined” location permission. If you don’t
need a location more accurate than a city block, then choose this option. This only
uses the Wi-Fi and cell towers to provide location data.

You should only choose one of these options.

In PlaceBook, you want to get the most accurate location readings, so you’ll use
ACCESS_FINE_LOCATION.

Adding run-time permissions
Open up MapsActivity.kt and add the following method:

private fun requestLocationPermissions() {
 ActivityCompat.requestPermissions(this,
 arrayOf(Manifest.permission.ACCESS_FINE_LOCATION),
 REQUEST_LOCATION)
}

Ignore the unresolved reference for REQUEST_LOCATION, you’ll define it next.

This method uses requestPermissions() to prompt the user to grant or deny the
ACCESS_FINE_LOCATION permission. Notice that this is the same permission as in
AndroidManifest.xml.

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 259

You pass the current activity as the context, then an array of requested permissions,
and finally a requestCode to identify this specific request.

Add the following to the MapsActivity class:

companion object {
 private const val REQUEST_LOCATION = 1
 private const val TAG = "MapsActivity"
}

REQUEST_LOCATION is a request code passed to requestPermissions(). It will be used to
identify this specific permission request when the result is returned by Android.

TAG will be passed into the Log.e method in the next code block. Log.e() is used to print
information to the Logcat window to help see with debugging.

With that in place, you’re ready to create a method to get the user’s current location.

Add the following new method:

private fun getCurrentLocation() {
 // 1
 if (ActivityCompat.checkSelfPermission(this,
 Manifest.permission.ACCESS_FINE_LOCATION) !=
 PackageManager.PERMISSION_GRANTED) {
 // 2
 requestLocationPermissions()
 } else {
 // 3
 fusedLocationClient.lastLocation.addOnCompleteListener {
 if (it.result != null) {
 // 4
 val latLng = LatLng(it.result.latitude, it.result.longitude)
 // 5
 map.addMarker(MarkerOptions().position(latLng)
 .title("You are here!"))
 // 6
 val update = CameraUpdateFactory.newLatLngZoom(latLng, 16.0f)
 // 7
 map.moveCamera(update)
 } else {
 // 8
 Log.e(TAG, "No location found")
 }
 }
 }
}

getCurrentLocation() gets the user’s current location and moves the map so it centers
on the location.

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 260

To understand this, take things one step at a time:

1. First, you check if the ACCESS_FINE_LOCATION permission has been granted before
requesting a location.

2. If permission have not been granted then requestLocationPermissions() is called.

3. This may look a little odd. Why is addOnCompleteListener called on the
lastLocation property? The reason is that the lastLocation property is actually a
Task that will run in the background to fetch the location. You request to be
notified when the location is ready by adding an OnCompleteListener to the
lastLocation Task.

When the Task is completed, it calls the default onComplete() method with a
Task<TResult> object. it.result represents a Location object containing the last
known location. it.result can be null if there is no location data available. The
reason for this will be explained soon.

4. If it.result is not null, you create a LatLng object from it.result. LatLng is just a
simple object for storing the latitude and longitude coordinate for a single map
location. You’ll see this often when working with location services.

5. You use addMarker() on map to create a marker at the location. addMarker() tells the
map to add and display the marker. There are many options when adding markers to
a map. In this case, you’re using the default marker style with a simple title that will
display if tapped on. You’ll learn more about markers in future chapters.

6. You use CameraUpdateFactory.newLatLngZoom() to create a CameraUpdate object.
CameraUpdate objects are used to specify how the map camera is updated. Let’s
cover this part in more detail.

When working with Google Maps, you can change the view of the map by adjusting
parameters on a virtual map camera. You can think of the map view as a flat plane with
the virtual camera looking straight down on it. The main camera properties you can
adjust are:

• Target: This is the location the camera is looking at. The map is always centered on
this location.

• Bearing: This is the direction that a vertical line on the map will point. This starts at
0 degrees north and increases in a clockwise direction. For example, if you wanted
the top of the map to be east, you would set the bearing to 90 degrees.

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 261

• Tilt: Maps can be shown at an angle to give a perspective view. The tilt is the angle
in degrees from the camera nadir line (the line pointing directly down from the
camera).

• Zoom: You set the scale of the map using this parameter. Larger values zoom you
closer to the map and display more detail. A zoom value of 0 will show the full Earth
on a 256dp-wide screen. A zoom level of 15 is typical for a street level view.

CameraUpdateFactory provides several convenience methods for creating CameraUpdate
objects. You use newLatLngZoom() to specify updates to the camera target and zoom.

Note: See https://developers.google.com/android/reference/com/google/android/
gms/maps/CameraUpdateFactory for additional options for CameraUpdateFactory.

7. You call moveCamera() on map to update the camera with the CameraUpdate object.

8. If result is null you log an error message.

With getCurrentLocation() implemented, it can be called once the map is ready.

Replace onMapReady() with the following code.

override fun onMapReady(googleMap: GoogleMap) {
 map = googleMap
 getCurrentLocation()
}

Here you initialize map when the map is ready to be displayed and then call the
getCurrentLocation() method you just implemented.

Finally, define the callback method to handle the user’s response to the permission
request. When requestLocationPermissions() is called, the system will be display a
permission dialog to the user. It will then call onRequestPermissionsResult() with the
results.

override fun onRequestPermissionsResult(
 requestCode: Int,
 permissions: Array<String>,
 grantResults: IntArray) {
 if (requestCode == REQUEST_LOCATION) {
 if (grantResults.size == 1 && grantResults[0] ==
 PackageManager.PERMISSION_GRANTED) {
 getCurrentLocation()
 } else {
 Log.e(TAG, "Location permission denied")
 }
 }
}

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 262

First, you check to make sure this result matches the REQUEST_LOCATION request code.
Next, you check to see if the first item in the grantResults array contains the
PERMISSION_GRANTED value. If so, the use granted permission and you call
getCurrentLocation() again. If grantResults doesn’t indicate permission was granted,
then you print an error message to the Logcat window using Log.e().

Testing permissions
Run the app on a hardware device or emulator running Android 6.0 or newer, and you
should see the following prompt:

Click DENY and the Location permission denied message will appear in Logcat.

Rotate the device and the prompt will display again with one small change, offering the
user a chance to tell the system “Don’t ask again.”

If you choose “Don’t ask again”, the dialog will never be displayed again within the app.
The only way to then grant permissions is to manually turn them on in device settings
by tapping on Apps>PlaceBook>Permissions.

Note: Google recommends that you display a more detailed reason for asking for a
permission if the user denies it multiple times. There is a built in method —
ActivityCompat.shouldShowRequestPermissionRationale — you can use to
determine if it’s time to show a detailed reason. See https://
developer.android.com/training/permissions/requesting.html#perm-request for
more information.

Now click Allow on the permission dialog. At this point, you may expect that the app
would return your current location and then zoom the map to your current location.

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 263

If you’re running on a hardware device, that’s most likely true and you’ll be looking at a
screen similar to the following, although centered at your current location.

If running on the emulator the map will likely not move, and you can see the No
location found message printed in the Logcat window:

It’s because the emulator hasn’t simulated a user location. An emulator doesn’t have
access to GPS hardware, so you need another way to supply GPS locations.

Note: If you see the No location found message on a hardware device, then check
that location services are turned on in the device settings.

Faking locations in the emulator
The problem is that the fused location provider doesn’t have any location data to pull
from. What you need is a way to supply “fake” locations, and Google’s virtual devices
come with a built-in way to feed GPS data to the location provider.

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 264

Launch your emulator and click the three dots (...) at the bottom of the floating toolbar
to bring up the extended controls, and then click the Location tab on the left.

Enter the following coordinates and click SEND.

• Longitude: -78.8704978

• Latitude: 42.90237

Close the app and run again, but the map still won’t display that location. What’s going
on?

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 265

There’s one final item to address. The fused location provider needs at least one app to
actively request a location before it will return valid data from getLastLocation().

On a real device, there are usually plenty of other processes requesting locations and
feeding the fusion location provider with data. That’s not the case on the emulator.

One way to wake up the fusion API is to run the Google Maps app. Once you run
Google Maps, click on the My Location icon (the target) and approve any prompts to
turn on location services.

Once you see that Google Maps zooms you to the entered location, close and launch the
PlaceBook app again. This time it should zoom to the location you entered.

If it doesn’t work the first time, try and try again. Sometimes the emulator can be a
little finicky, but eventually it should zoom to the entered location in Buffalo, New
York.

In upcoming chapters, you’ll update the app so it works in the emulator without being
triggered by Google Maps.

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 266

Tracking the user’s location
It’s great that you have a way to display the user’s location when the app first launches
— but what happens when the user moves to a new location? No problem. Simply
relaunch the app and it will update to your new location.

That’s not the most intuitive way to update the map. You can do better!

You need a way to keep track of the user’s location as they move around. This can be
done by directly asking the fused location provider for periodic location updates. This is
where the FusedLocationClient.requestLocationUpdates() comes into play.
FusedLocationClient.requestLocationUpdates() asks the fused location provider to
start sending the app location updates.

Calling requestLocationUpdates()
In order to request updates from the location client, you need a LocationRequest object
to describe the level of accuracy you would like to achieve. Add the following new
property at the top of MapsActivity:

private var locationRequest: LocationRequest? = null

Now, go to getCurrentLocation() and add the following before the call to
fusedLocationClient.lastLocation.addOnCompleteListener:

if (locationRequest == null) {
 locationRequest = LocationRequest.create()
 locationRequest?.let { locationRequest ->
 // 1
 locationRequest.priority =
 LocationRequest.PRIORITY_HIGH_ACCURACY
 // 2
 locationRequest.interval = 5000
 // 3
 locationRequest.fastestInterval = 1000
 // 4
 val locationCallback = object : LocationCallback() {
 override fun onLocationResult(locationResult: LocationResult?) {
 getCurrentLocation()
 }
 }
 // 5
 fusedLocationClient.requestLocationUpdates(locationRequest,
 locationCallback, null)
 }
}

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 267

You first check to see if locationRequest has already been created. If not, you create a
new one, and then if the creation succeeds you set the following properties:

1. priority: This provides a general guide to how accurate the locations should be.
The following options are allowed:

PRIORITY_BALANCED_POWER_ACCURACY: Use this setting if you only need
accuracy to the city block level, which is around 40-100 meters. This will use very
little power and only poll for location updates every 20 seconds or so. The system is
likely to only use Wi-Fi or cell tower to determine your location.

PRIORITY_HIGH_ACCURACY: Use this setting if you need the most accuracy
possible, normally within 10 meters. This uses the most battery power and typically
polls for locations about every 5 seconds.

PRIORITY_LOW_POWER: Use this setting if you only need accuracy at the city
level within 10 kilometers. This will use a minimal amount of battery power.

PRIORITY_NO_POWER: You normally only use this setting if your app can live
with or without location data. It will not actively request any location from the
system, but will return a location if another app is requesting location data.

Here you are set priority to LocationRequest.PRIORITY_HIGH_ACCURACY so it will
return the most accurate location possible. In the emulator, anything less than
PRIORITY_HIGH_ACCURACY may not trigger any updates to occur.

2. interval: This lets you specify the desired interval in milliseconds to return
updates. This is simply a hint to the system, and if other apps have requested faster
updates your app will get the updates at that rate as well.

Here you set the requested update interval to 5 seconds by setting interval to 5000.

3. fastestInterval: This sets the shortest interval in milliseconds that your app is
capable of handling. Since other apps can affect the update interval, this sets a hard
limit on how often you’ll receive updates. Here you set the shortest interval to 1
second with locationRequest.fastestInterval = 1000.

Note: Keep in mind that the LocationRequest settings are more like guidelines
than they are rules. The fused location provider will try to meet the requested
options, but there are no guarantees.

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 268

4. The fused location provider will call LocationCallBack.onLocationResult when it
has a new location ready. You define a LocationCallBack object with the
onLocationResult method. You use this opportunity to update the map to center on
the new location. Although onLocationResult() receives a list of locations that you
could use to center the map, you just call the existing getCurrentLocation() to grab
the latest location and center the map.

5. Finally, you call fusedLocationClient.requestLocationUpdates(), passing in the
LocationRequest object, and the LocationCallback object.

After calling requestLocationUpdates(), your app can go about its business and wait
for the onLocationChanged() to be called by the location services.

Add the following line in getCurrentLocation() before the call to map.addMarker:

map.clear()

Since getCurrentLocation() will be called each time the location changes, you need to
call clear() on the GoogleMap object to remove the previous marker.

Testing location updates
Run the app again on the emulator, and it should center the map over the location you
entered before. To verify that the location updates are working, try dragging the map
away from the current location. Click the SEND button on the GPS Location controls for
the emulator and you should see the map jump back to the entered location. Try
entering some other coordinates and clicking the SEND button each time.

If you run this on a hardware device, you should notice the map jumping to your current
location as you move around. If you drag the map to a new location it will jump back to
your current location within a few seconds.

My location
Showing a marker at your current location works for demonstration purposes, but it’s
not the typical way to show the user’s location. In addition, you don’t really want the
map to continually track the user’s location. The user should be able to freely pan
around the map and recenter at will.

You’ll fix these two issues by making the following changes:

1. Display a blue dot at the user’s location and have it move to keep up with the user.

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 269

2. Add a control that allows the user to recenter the map.

3. Disable the continuous map centering.

Believe it or not, changes 1 and 2 can be accomplished with one line of code with the
magic of the GoogleMap.isMyLocationEnabled property.

Using GoogleMap.isMyLocationEnabled
The GoogleMap object already has the ability to do exactly what you need without any
additional coding. The feature is called MyLocation; you enable it by setting the
isMyLocationEnabled to true.

Add the following line to getCurrentLocation() before the call to
fusedLocationClient.lastLocation:

map.isMyLocationEnabled = true

Setting isMyLocationEnabled adds a new layer to the map with several useful features:

1. It displays the trusty blue dot that always keeps up with the user’s current location.
Note that it does this without having to request location updates from the location
services.

2. It displays a target icon that will recenter the map on the user’s location if they tap
on it.

3. It will add controls to let the user choose whether the map should rotate with the
user’s current bearing.

As a bonus, turning on isMyLocationEnabled handles all of the logic to request location
updates, and you can remove the code for location updates that was added earlier.

Remove the following items:

1. Remove the following line from the top of MapsActivity:

private var locationRequest: LocationRequest? = null

2. Remove the following block of code from getCurrentLocation():

if (locationRequest == null) {
 locationRequest = LocationRequest.create()
 locationRequest?.let { locationRequest ->
 // 1
 locationRequest.priority =
 LocationRequest.PRIORITY_HIGH_ACCURACY
 // 2

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 270

 locationRequest.interval = 5000
 // 3
 locationRequest.fastestInterval = 1000
 // 4
 val locationCallback = object : LocationCallback() {
 override fun onLocationResult(locationResult: LocationResult?) {
 getCurrentLocation()
 }
 }
 // 5
 fusedLocationClient.requestLocationUpdates(locationRequest,
 locationCallback, null)
 }
}

3. Remove the following lines from getCurrentLocation():

map.clear()
map.addMarker(MarkerOptions().position(latLng)
 .title("You are here!"))

Run the app and check out the great new functionality you added with minimal effort.

Click the SEND button on the GPS Location controls, and you should see the blue dot
appear at the current location. Pan the map around and then click the My Location
icon to recenter back to the blue dot.

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 271

Where to go from here?
Congratulations — you’ve completed everything needed for the basic map controls! In
the next chapter, you’ll start working with Google Places.

Android Apprentice Chapter 14: User Location & Permissions

raywenderlich.com 272

15Chapter 15: Google Places
By Tom Blankenship

Before you can achieve your ultimate goal of allowing users to bookmark places, you
need to let them identify existing places on the map.

In this chapter, you’ll learn how to identify when a user taps on a place and use the
Google Places API to retrieve detailed information about the place.

Getting started
If you were following along with your own app, open it and keep going with it for this
chapter. If not, don’t worry. Locate the projects folder for this chapter and open the
PlaceBook app under the starter folder. If you do use the starter app, don’t forget to add
your google_maps_key in goole_maps_api.xml. Check out Chapter 13 for more details
about the Google Maps key. The first time you open the project, Android Studio takes a
few minutes to set up your environment and update dependencies.

If you’re following along with your own app, you’ll need to copy the following resource
from the starter project into yours:

• src/main/res/drawable/default_photo.png

Make sure to copy the files from all of the drawable folders (hdpi,mdpi,xhdpi,xxhdpi).

Before using the Google places API, you’ll need to take care of a bit of housekeeping
first, by enabling the Places API in the developer console and adding the Places API
dependency.

Note: The Google screens in our book might be slightly different than what you
see on the Google developer portal since Google changes these often.

raywenderlich.com 273

Enable the places API
The Google Maps API was enabled on your Google developer account when you created
the initial Google Maps key. But you’ll need to turn the Google Places API on manually.

Log into your Google developer account at https://console.developers.google.com

Ensure the project containing the Maps API key you created previously is selected.
Switch to the Library tab on the left.

Click on Google Places API for Android.

Android Apprentice Chapter 15: Google Places

raywenderlich.com 274

You should see the following screen with an Enable link at the top:

Click on ENABLE and wait while Google enables the API. Once the API is enabled the
screen will change to an overview of the API.

Click on the back arrow next to Google Places API for Android (and a few more times)
until you get back to the main Dashboard. Both the Google Maps and Google Places API
are listed.

Places API overview
The Google Places API provides a wealth of capabilities all related to — wait for it —
working with places on a map! A place is anything that can be identified on a map, such
as a household, a business or a public park. Google places gives you access to over 100
million places stored in the main Google Maps database.

Android Apprentice Chapter 15: Google Places

raywenderlich.com 275

Although referred to as a single API, you generally interact with the Places API through
a number of sub-APIs. The PlaceBook app uses the following two sub-APIs:

1. Place Autocomplete API. This lets you search places by name or address and
returns results as the user types. These results can be filtered by location.

2. Geodata API. This lets you load up detailed information about a single place. You
can access items such as address, geographic location, phone numbers, reviews and
photos.

Note: Google Places for Android enforces a default limit of 1,000 requests per 24
hour period. There will be a further API checkpoint when the app reaches 150,000
requests. To prevent your app from failing when it exceeds these limits, follow the
instructions in the usage limits guide at https://developers.google.com/places/
android-api/usage.

Add the Places API dependency
Just like the Places API, you’ll have to add the Play services dependency for Google
Places yourself.

Open app/build.gradle and add the play-services-places library to the dependencies
section as follows:

implementation "com.google.android.gms:play-services-places:
$play_services_version"

This instructs the Gradle build system to include the Places API in your build.

Selecting points of interest
You may have noticed icons with place names scattered throughout the map. These are
called points of interest, or POIs, and they will let the user look up details about each
place. You’ll begin by making the POIs a little more interesting by allowing the user to
interact with them.

The Google Map object has convenient, built-in capabilities to let you know when the
user has tapped on a POI. You simply need to set up a POI click listener and wait for the
user to tap away.

Android Apprentice Chapter 15: Google Places

raywenderlich.com 276

Like all other interactions with the map object, you’ll wait to set up the listener until
OnMapReady() is called. Open MapsActivity.kt and add the following to the end of
onMapReady():

map.setOnPoiClickListener {
 Toast.makeText(this, it.name, Toast.LENGTH_LONG).show()
}

Here, you call setOnPoiClickListener() on map and provide it a lambda that
implements the single onPoiClick() method of the PoiClickListener interface.

The map object will call your lambda anytime it detects that the user has tapped on a
POI. The lamba is passed in a single parameter of type PointOfInterest that you access
through the implicit it variable.

PointOfInterest contains only three properties:

1. latLng: The geographic location of the selected POI represented by a latitude and
longitude in decimal degrees.

2. name: The name of the POI. This will normally match what is shown on the map.

3. placeId: A string that uniquely identifies the POI. You can use the placeId to
retrieve a Place object from the places API.

Run the app and tap on a few places. You’ll see toasts pop up with the name of each
place you tap:

Android Apprentice Chapter 15: Google Places

raywenderlich.com 277

Load place details
Now that you have the placeId when a user taps a POI, you can use it to look up more
details about the place. The goal is to provide the user with a quick popup info window,
from which they can decide if they want to bookmark the place.

To retrieve the details for places, you’ll use your first Places API: GeoDataApi.

Before using the GeoDataApi, you’ll need to create a Google API client. This client is
your gateway to all of the available APIs provided by Google Play services.

To create the Google API client, you’ll use the familiar builder pattern. There are three
primary methods you’ll use with the GoogleApiClient builder:

1. enableAutoManage. This instructs the Google API client to auto manage the
connections to the Google services and prompt the user if there is a problem such
as the Google Play service requiring an update. It is rare that you would want to use
the GoogleApiClient without making this call.

2. addApi. You call this once for each required play services API.

3. addConnectionCallbacks. This sets your activity up to receive callbacks when the
client has connected to the play services.

In MapsActivity.kt, add a new private member below the map member:

private lateinit var googleApiClient: GoogleApiClient

Add the following method to MapsActivity under the onMapReady method:

private fun setupGoogleClient() {
 googleApiClient = GoogleApiClient.Builder(this)
 .enableAutoManage(this, this)
 .addApi(Places.GEO_DATA_API)
 .build()
}

This creates the GoogleApiClient with a builder, telling it to auto manage connections
and add the Places.GEO_DATA_API. You must add at least one Api with the builder, and
the Places.GEO_DATA_API will be used soon. The addConnectionCallbacks call is not
required at this time.

Android Apprentice Chapter 15: Google Places

raywenderlich.com 278

You’ll notice that you are passing in the this variable to both parameters on
enableAutoManage(). The first one is the FragmentActivity to be managed. The second
parameter is an object that implements the OnConnectionFailedListener interface.
This second parameter will be flagged as an error because you haven’t implemented the
interface yet. Let’s take care of that now.

Place the cursor over the problematic this and press Option+Return if you are using a
Mac, or Alt+Enter on Windows. This will display options to auto-correct the problem.
Click the one that says "Let 'MapsActivity' implement the interface
'GoogleApiClient.OnConnectionFailedListener'".

This will display a second dialog with an option to add onConnectionFailed().
Highlight the single method and click OK.

This will add GoogleApiClient.OnConnectionFailedListener to your class declaration
and add onConnectionFailed() to your file:

override fun onConnectionFailed(p0: ConnectionResult) {
 TODO("not implemented") //To change body of created
 // functions use File | Settings | File Templates.
}

The error about the this variable should go away.

Rename the p0 argument to connectionResult and remove the TODO item. Now
onConnectionFailed() looks like this:

override fun onConnectionFailed(connectionResult:
 ConnectionResult) {
}

If onConnectionFailed() is called, it means that there was a serious error connecting to
the Play service. At this point you can choose to display an error message, silently fail,
or try to resolve the error. For PlaceBook, you’ll silently fail with a log message.

Note: Instead of failing silently, there’s certainly more that you can be done to
give the user more information. See https://developers.google.com/android/
guides/api-client#handle_connection_failures for more details.

Add the following line to onConnectionFailed():

Log.e(TAG, "Google play connection failed: " +
 connectionResult.errorMessage)

Android Apprentice Chapter 15: Google Places

raywenderlich.com 279

Add the following method to MapsActivity.kt:

private fun displayPoi(pointOfInterest: PointOfInterest) {
 // 1
 Places.GeoDataApi.getPlaceById(googleApiClient,
 pointOfInterest.placeId)
 // 2
 .setResultCallback { places ->
 // 3
 if (places.status.isSuccess && places.count > 0) {
 // 4
 val place = places.get(0)
 // 5
 Toast.makeText(this,
 "${place.name} ${place.phoneNumber}",
 Toast.LENGTH_LONG).show()
 } else {
 Log.e(TAG,
 "Error with getPlaceById ${places.status.statusMessage}")
 }
 // 6
 places.release()
 }
}

Let’s break this down:

1. First, you make a call to getPlaceById(), passing in googleApiClient and the
unique place identifier represented by the POI placeId property. This returns a
PendingResult object.

2. You then call setResultCallback() on PendingResult and pass in a lambda that
receives the places PlaceBuffer object.

3. Next, you check to make sure the result was successful and contains at least one
place. Note that getPlaceId() can receive multiple place ids, and may return
multiple places.

4. Following that, pick the first from the places buffer.

5. Then display the place name and phone number.

6. Next, release the places buffer so it doesn’t cause a memory leak.

Note: Some PlaceBuffer properties are always available, but many of them may
return null or negative values if they are not available. Properties that are always
available include id, name, latLng and placeTypes. Properties that may not always
be available are phone, address, priceLevel, rating and websiteUri.

Android Apprentice Chapter 15: Google Places

raywenderlich.com 280

Now to update setOnPoiClickListener() to call this new method. In onMapReady(),
replace the call to map.setOnPoiClickListener() with the following:

map.setOnPoiClickListener {
 displayPoi(it)
}

This calls displayPoi() when a place on the map is tapped.

Pending results
Let’s go over the PendingResult object in more detail, since it’s commonly used
throughout the Google Places APIs.

PendingResult represents a pending result from a call made to a Google Play service
API method. Many of the Google Play API methods make network calls and can take a
long time to return. For this reason, Google Play services offloads these tasks to the
background and gives you a PendingResult that can be used in two different ways:

1. Blocking mode: In this mode, you call await() on the PendingResult and your code
stops and waits for the results to come back. This is useful if you want your logic to
proceed synchronously in-line. This mode should not be used on the UI thread
because it can block user interactions or cause your app to appear frozen.

2. Asynchronous mode: In this mode, you call setResultCallBack(), passing in a
callback method. setResultCallBack() returns immediately and your code
continues on without waiting for the results. When the results are ready, the
PendingResult object calls your method on the UI thread.

In both cases, you end up with an object that implements the Result interface and
represents the final results. The Result interface has a status property that can be used
to query the status of the result. You should always check status.isSuccess() before
working with a Result.

Google places buffers
The call to getPlaceById() returns a result of type PlaceBuffer. PlaceBuffer is one of
many buffer types used by the Google Places API, and you’ll encounter more of them
throughout the rest of this chapter. Buffers provide collections of objects that are
managed by the Google places APIs.

Android Apprentice Chapter 15: Google Places

raywenderlich.com 281

You should be aware of two key points when working with buffers:

1. Calling release() on a buffer is critical to prevent memory leaks.

2. If you need to use an object from the buffer even after it has been released, you
should call freeze() first. You can use isDataValid() on a buffer object to check if
the object has been released already.

Run the app and tap on a few more places. This time, you’ll see the place name and its
phone number, if one is available.

Note: If you don’t see the toast pop up, check the Logcat for error messages. If you
see PLACES_API_ACCESS_NOT_CONFIGURED, then check that you have enabled the
Google Places API in the developer console.

You have a lot of details about the place, but wouldn’t it be nice to also have a photo?

Getting a photo is not as simple as getting the basic place details, but armed with your
newfound knowledge of result callbacks and buffers, you’re up to the task!

You’ll use the same result callback pattern to get a photo for the selected place with a
separate call to getPlacePhotos.

Loading a place photo
You’ll use the following steps to get a photo for a selected place:

1. Call GeoDataApi.getPlacePhotos() to get back the PlacePhotoMetadataResult.

2. Get the first PlacePhotoMetadata object from the resulting
PlacePhotoMetadataBuffer of PlacePhotoMetadataResult.

3. Get a scaled down version of the first photo by calling getScaledPhoto() on
PlacePhotoMetadata.

Putting together the entire sequence to get the place details and place photo using the
asynchronous setResultCallback pattern can lead to some deeply nested code. You’ll
place each main step in its own method to keep things nice and clean. You could start
by refactoring displayPoi() to kick off the first step and this (but don’t actually do this
yet):

private fun displayPoi(pointOfInterest: PointOfInterest) {
 displayPoiGetPlaceStep(pointOfInterest)
}

Android Apprentice Chapter 15: Google Places

raywenderlich.com 282

private fun displayPoiGetPlaceStep(pointOfInterest: PointOfInterest) {
 Places.GeoDataApi
 .getPlaceById(googleApiClient, pointOfInterest.placeId)
 .setResultCallback { places ->

 if (places.status.isSuccess && places.count > 0) {
 val place = places.get(0)
 Toast.makeText(this,
 "${place.name} ${place.phoneNumber}",
 Toast.LENGTH_LONG).show()
 } else {
 Log.e(TAG, places.status.statusMessage)
 }
 places.release()
 }
}

Refactoring in Android Studio
All you really would have done here was take the code inside of displayPoi() and move
it into a new method that takes a single argument. You would then have added a call to
the new method inside displayPoi(). This is common refactoring step that Android
Studio can automate for you.

Instead of manually cutting and pasting or typing in the method call, try this:

1. Select all of the code inside displayPoi().

2. Press Cmd+Option+M on Mac or Ctrl+Alt+M on Windows to initiate the Extract
Function command.

3. Type in the name of the new method: displayPoiGetPlaceStep. Look at the preview
window and notice that Android Studio is smart enough to add the pointOfInterest
parameter that it knows you will need in the new method.

4. Click OK.

Voilà! The method is created and the call is added to displayPoi().

Android Apprentice Chapter 15: Google Places

raywenderlich.com 283

Getting the metadata
Add the following new method to MapsActivity:

private fun displayPoiGetPhotoMetaDataStep(place: Place) {
 Places.GeoDataApi.getPlacePhotos(googleApiClient, place.id)
 .setResultCallback { placePhotoMetadataResult ->

 if (placePhotoMetadataResult.status.isSuccess) {
 val photoMetadataBuffer =
 placePhotoMetadataResult.photoMetadata

 if (photoMetadataBuffer.count > 0) {
 val photo = photoMetadataBuffer.get(0).freeze()
 // next step here
 }
 photoMetadataBuffer.release()
 }
 }
}

Here you call getPlacePhotos(), passing in googleApiClient and the place ID. You call
setResultCallback() on the PendingResult, passing it a lambda. The lambda takes in a
PlacePhotoMetadataResult and checks that the call was successful. You then grab the
photoMetadataBuffer from the results and make sure that it contains at least one item.
You get the first and only PhotoMetaData item from the buffer and assign it to photo.

Replace the Toast call in displayPoiGetPlaceStep() with the following:

 displayPoiGetPhotoMetaDataStep(place)

Android Apprentice Chapter 15: Google Places

raywenderlich.com 284

Remember the call to release() that you added to make sure memory wasn’t leaked for
the places buffer? Well, that will cause an issue now that you are passing along the
place object from the buffer and using it with another asynchronous call.

To understand why, take a look at the following diagram:

Notice that the call to places.release() happens before the place object is referenced
when adding the marker. To fix this, you’ll use the previously mentioned freeze()
method on the place object. In displayPoiGetPlaceStep(), update the line that calls
places.get(0) like so:

val place = places.get(0).freeze()

Now you have guaranteed that place will be retained in memory even after the places
buffer has been released. Next, you’ll add a step to retrieve the scaled down photo from
PhotoMetaData.

Add the following new method to MapsActivity:

private fun displayPoiGetPhotoStep(place: Place, photo:
PlacePhotoMetadata) {
 photo.getScaledPhoto(googleApiClient,
 resources.getDimensionPixelSize(R.dimen.default_image_width),
 resources.getDimensionPixelSize(R.dimen.default_image_height))
 .setResultCallback { placePhotoResult ->

 if (placePhotoResult.status.isSuccess) {

Android Apprentice Chapter 15: Google Places

raywenderlich.com 285

 val image = placePhotoResult.bitmap
 // next step here
 } else {
 // next step here
 }
 }
}

Before explaining this method, fix the unresolved references for
R.dimen.default_image_width and R.dimen.default_image_height that are displayed
in red. To resolve the errors, follow these steps:

1. Place the cursor on default_image_width and press Alt + Return, then select
Create a dimen value resource 'default_image_width'.

2. In the dialog that appears, set Resource Value to 480px and leave the other values
at their defaults. Click OK.

3. Place the cursor on default_image_height and type Alt + Return, then select
Create a dimen value resource 'default_image_height'.

4. In the dialog that appears, set Resource Value to 270px and leave the other values
at their defaults. Click OK.

Android Apprentice Chapter 15: Google Places

raywenderlich.com 286

This will create two values in res/values/dimens.xml for the default image width and
height. You’ll see these values pop up again as you build out the app.

In displayPoiGetPhotoStep(), you use getScaledPhoto() on photo to get a scaled down
version of the original photo. getScaledPhoto() takes in a width and height and will
scale the image proportionally to fit the smaller of the two dimensions.

PlacePhotoMetata also contains a getPhoto method that will retrieve the full size
image.

There are two benefits to using getScaledPhoto() instead of getPhoto().

1. Memory savings: In general, you never want to load photos into memory that are
larger than required. By using the getScaledPhoto() you limit the possibility of
memory issues that can happen on lower end devices.

2. Bandwidth savings: getScaledPhoto() does the scaling on the server-side and only
sends down the final version.

Check the status of the result for success and then assign the photo to image.

Note: You could have used two hard coded numbers for the width and height
parameters to getScaledPhoto(), but these are considered "magic" numbers in the
code and should always be avoided.

Placing them in dimen.xml is two steps closer to coding nirvana: you gain reuse
and follow the DRY principle with a single location for updating the values, as well
as built-in documentation for the types of values that the numbers represent.

Android Apprentice Chapter 15: Google Places

raywenderlich.com 287

Replace the commented line // Next step here in displayPoiGetPhotoMetaDataStep()
to call your new step:

displayPoiGetPhotoStep(place, photo)

Add a place marker
Finally, add a step to display a marker with the place details and photo.

Add the following new method to MapsActivity:

private fun displayPoiDisplayStep(place: Place, photo: Bitmap?) {
 val iconPhoto = if (photo == null) {
 BitmapDescriptorFactory
 .defaultMarker()
 } else {
 BitmapDescriptorFactory.fromBitmap(photo)
 }

 map.addMarker(MarkerOptions()
 .position(place.latLng)
 .icon(iconPhoto)
 .title(place.name as String?)
 .snippet(place.phoneNumber as String?)
)
}

If photo is null you create iconPhoto as a default marker bitmap. If it’s not null, you
create iconPhoto from the photo. Next, add a marker to the map by creating a new
MarkerOptions object and setting the properties to the place details and the iconPhoto.

Using markers will be covered in more detail soon, but for now it’s enough to know that
addMarker() places a persistent marker on the map represented by an icon. The default
marker icon is a red balloon pin, but can be replaced with any bitmap image. Markers
will respond to user taps and display an info window with more details.

Replace the first commented line // Next step here in
displayPoiGetPhotoMetaDataStep() to call your new step:

displayPoiDisplayStep(place, image)

Here you pass along the place object and the bitmap image.

Replace the second commented line // Next step here in
displayPoiGetPhotoMetaDataStep() to call your new step:

displayPoiDisplayStep(place, null)

Here you include the place object and null, indicating that no image is available.

Android Apprentice Chapter 15: Google Places

raywenderlich.com 288

Run the app and tap on some places. You should see place photos appear on the map.
Tap on a photo to display an info window with the place name and phone number.

Custom info window
Now you’re making some progress! The user is able to tap places to view a photo and
details, but having large photos all over the map is a little unwieldy. A better experience
would be to display a standard marker next to each place and only show the photo and
details in a popup info window.

By default, tapping on a marker displays a standard info window. This window looks like
the following:

The standard info window will display the title and snippet as defined on the marker.

Android Apprentice Chapter 15: Google Places

raywenderlich.com 289

If you want to display additional information, a custom info window is in order.

InfoWindowAdapter class
To create a custom info window, you simply create a class that conforms to the
InfoWindowAdapter interface and then call map.setInfoWindowAdapter() with an
instance of the class.

There are two methods to implement in your InfoWindowAdapter class:

1. getInfoWindow(): This one allows you to return a custom view for the full info
window.

2. getInfoContents(): This allows you to return a custom view for the interior
contents of the info window only without changing the default outer window and
background.

In your case, only the info window contents will be replaced. Before creating a custom
info window, you need to create a layout file for the contents. The layout will look like
this:

Create a new layout resource file named res/layout/content_bookmark_info.xml with
the following contents:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:padding="5dp">

 <ImageView
 android:id="@+id/photo"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginEnd="5dp"
 android:layout_marginRight="5dp"
 android:adjustViewBounds="true"
 android:maxWidth="200dp"
 android:scaleType="fitStart"

Android Apprentice Chapter 15: Google Places

raywenderlich.com 290

 android:src="@drawable/default_photo"/>

 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <TextView
 android:id="@+id/title"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:ellipsize="end"
 android:textColor="#ff000000"
 android:textSize="14sp"
 android:textStyle="bold"
 tools:text="Place Title"/>

 <TextView
 android:id="@+id/phone"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:ellipsize="end"
 android:maxLines="1"
 android:textColor="#ff7f7f7f"
 android:textSize="12sp"
 tools:text="555-121-1212"/>

 </LinearLayout>
</LinearLayout>

You use a horizontal LinearLayout to wrap the place image and another vertical
LinearLayout for the place details. You’ll load this layout from your InfoWindowAdapter
class and populate the ImageView and both TextViews.

Create a new package named adapter and then a new Kotlin class named
BookmarkInfoWindowAdapter.kt within the adapter package.

BookmarkInfoWindowAdapter is your custom InfoWindowAdapter.

Replace the contents of BookmarkInfoWindowAdapter.kt with the following:

// 1
class BookmarkInfoWindowAdapter(context: Activity) :
 GoogleMap.InfoWindowAdapter {

 // 2
 private val contents: View

Android Apprentice Chapter 15: Google Places

raywenderlich.com 291

 // 3
 init {
 contents = context.layoutInflater.inflate(
 R.layout.content_bookmark_info, null)
 }

 // 4
 override fun getInfoWindow(marker: Marker): View? {
 // This function is required, but can return null if
 // not replacing the entire info window
 return null
 }

 // 5
 override fun getInfoContents(marker: Marker): View? {
 val titleView = contents.findViewById<TextView>(R.id.title)
 titleView.text = marker.title ?: ""

 val phoneView = contents.findViewById<TextView>(R.id.phone)
 phoneView.text = marker.snippet ?: ""

 return contents
 }
}

1. You declare BookmarkInfoWindowAdapter to take a single parameter representing the
hosting activity. The class implements the GoogleMap.InfoWindowAdapter interface.

2. You declare the property contents to hold the contents view.

3. When the GoogleMap instantiates the adapter, you inflate
content_bookmark_info.xml and save it to contents.

4. You override getInfoContents() and return null to indicate that you won’t be
replacing the entire info window.

5. You override getInfoWindow() and fill in the titleView and phoneView widgets on
the layout.

Once this object is assigned, the map will call getInfoWindow() whenever it needs to
display an info window for a particular marker.

Note that you’re not providing an image for the ImageView at this point. The only
information you are given in getInfoWindow() is the associated Marker, and it doesn’t
store the photo. This will be fixed soon, but for now you’ll continue to hook up the
window adapter.

Android Apprentice Chapter 15: Google Places

raywenderlich.com 292

Assigning the InfoWindowAdapter
In MapsActivity.kt, add the following line to onMapReady() after map is assigned:

map.setInfoWindowAdapter(BookmarkInfoWindowAdapter(this))

Here you assign your custom InfoWindowAdapter to map.

You no longer need to set the photo as the marker icon. In displayPoiDisplayStep(),
remove the lines that create the iconPhoto variable. Then remove setIcon() from
MarkerOptions. The entire body of displayPoiDisplayStep() should look like this:

 map.addMarker(MarkerOptions()
 .position(place.latLng)
 .title(place.name as String?)
 .snippet(place.phoneNumber as String?)
)

Run the app and tap on any place. A default red balloon marker will be added. Tap on
the marker to display the info window.

Marker tags
You’ll finish off the BookmarkInfoWindowAdapter by adding the place image.

So how do you associate the image with the marker? There’s several ways to tackle this
problem, but they all involve using the tag property of the Marker object.

Android Apprentice Chapter 15: Google Places

raywenderlich.com 293

Marker provides the tag property as a means to associate the marker with data you are
managing in the app. This could be a simple index into a list or dictionary, a full
complex object, or in this case, a Bitmap object.

In displayPoiDisplayStep(), replace the call to addMarker() with this:

val marker = map.addMarker(MarkerOptions()
 .position(place.latLng)
 .title(place.name as String?)
 .snippet(place.phoneNumber as String?)

)
marker?.tag = photo

Here, addMarker() returns a Marker object and you assign it to marker. You then assign
photo to the tag property.

Next, add the following lines to getInfoContents in BookmarkInfoWindowAdapter.kt
before the return contents line:

val imageView = contents.findViewById<ImageView>(R.id.photo)
imageView.setImageBitmap(marker.tag as Bitmap?)

Since you assigned the place’s image bitmap with the marker’s tag property, when the
map draws the info window contents it can set the ImageView to display the photo.

Run the app and tap on a place and the marker. This time the place photo will display in
the info window.

Android Apprentice Chapter 15: Google Places

raywenderlich.com 294

Where to go from here?
Give yourself a pat on the back for making it this far! You have everything you need to
move on to the bookmarking feature.

In the next chapter, you’ll learn how to save places to a local database and let the user
edit place details.

Android Apprentice Chapter 15: Google Places

raywenderlich.com 295

16Chapter 16: Saving
Bookmarks with Room
By Tom Blankenship

Now that the user can tap on places to get an info window pop-up, it’s time to give
them a way to bookmark and edit a place.

In this chapter, you’ll:

1. Learn about the Room Persistence Library and how it fits into the overall Android
Component Architecture system.

2. Create a Room database to manage bookmarks.

3. Store bookmarks when the user taps on a map info window.

4. Learn about LiveData and use it to automatically update the view.

Getting started
If you were following along with your own app, open it, and keep going with it for this
chapter. If not, don’t worry! Locate the projects folder for this chapter, and open the
PlaceBook app in the starter folder. If you use the starter app, don’t forget to add your
google_maps_key in goole_maps_api.xml. Check out Chapter 13 for more details about
the Google Maps key. The first time you open the project, Android Studio takes a few
minutes to set up your environment and update dependencies.

In the ListMaker app you used Shared Preferences to permanently store data. While
Shared Preferences is a great way to manage simple key-value pairs, it’s not designed to
store large amounts of structured data.

raywenderlich.com 296

For PlaceBook, you’ll use the Room Persistence Library to store the bookmarks in a
structured database. Room is built on top of SQLite and provides several advantages
over Shared Preferences.

1. Works directly with Plain Java Objects (POJOs) with minimal effort.

2. Provides advanced search and sorting through SQL queries.

3. Manages relationships between different data types.

4. Efficiently stores large amounts of data.

Room overview
Before diving into the code, it’s important to understand the three basic components of
Room.

1. Database: This is the main interface to the underlying SQLite database. This
component maintains one or more Data Access Objects (DAOs) and is annotated
with the list of all Entities used by the database. A database class inherits from
RoomDatabase and uses the @Database annotation.

2. Entity: This represents a single data type stored in the database. Room will create a
table in the database for each entity, and the rows of the table represent individual
entity items.

Entities are defined as POJO classes using the @Entity annotation. All properties on
the entity class are automatically defined as fields in the database unless you use
the @Ignore annotation. At least one entity property should be designated as the
primary key using the @PrimaryKey annotation.

3. DAO: Data Access Objects are the hero of Room. This is where you define the
interface for accessing the database. DAOs should be the only part of your app that
talks directly to the database. The database class must contain at least one abstract
method that returns a DOA annotated interface.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 297

The following diagram illustrates how these three components fit into the PlaceBook
app.

You’ll learn more about how these three components work together as you proceed
through this chapter.

Room and Android Architecture
Components
Room is part of a larger set of libraries known as the Android Architecture
Components. The other components are:

1. Lifecycle management - Provides several classes to help build lifecycle-aware
objects.

2. LiveData - Holds data that can be observed for changes and respects lifecycles.

3. ViewModel - Manages view related data without being tied to configuration
changes. This is the bridge between UI views and the rest of the app.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 298

Don’t worry about the details of these components right now, they will be covered in
more detail as you build out the app.

PlaceBook architecture
Before creating your first Room classes, let’s organize the application to achieve a clean
overall architecture. The application can be separated into distinct areas of
responsibility along these lines:

1. Data access and persistence (Room)

2. Data model (Model)

3. Data abstraction (Repository)

4. Business/Domain logic (ViewModel)

5. User interface (Activity/Fragment)

One key goal will be to ensure that communication only flows in one direction between
these layers. This will result in a loosely coupled architecture that is easy to modify
without causing side effects.

The overall architecture will look like this:

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 299

The arrows represent lines of communication and visibility. Notice that the UI layer is
completely independent of all other layers except for the ViewModel. The ViewModel
layer knows nothing about the UI layer.

As the rest of the app is built out, we’ll be uncompromising about sticking with the
communication flow shown in the above diagram. It will sometimes take a little more
work to adhere strictly to this pattern, but the payoff for larger apps is worth the effort.
Even for a small app such as PlaceBook, you can immediately recognize some benefits:

1. The way you store data in Room can be completely replaced with minimal impact.
The only layers affected would be Persistence layer itself and its immediate parent,
the Data Access layer.

2. The UI layer can be fully replaced without any other layer being any the wiser.

3. You can easily test all of the layers without any active UI running.

Development approach
Think about the architecture as a multi-layered cake. Have you ever seen somebody eat
a cake one layer at a time? That would be a little odd! Likewise, you’re not going to
build out the app one layer at a time. You’re going to take one slice at a time. Each slice
may cut through all of the layers as you slowly build out the final product.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 300

Create the following packages to help organize the project to match the architecture:

1. db - Data access and persistence. You’ll keep the Room Database and DAO objects
here.

2. model - Model objects. This will include all Room Entities as POJOs.

3. repository - Data abstraction. This provides a layer of abstraction for all data
access.

4. ui - User interface. All views and view control logic belong here.

5. viewmodel - Business/Domain logic. Contains ViewModel classes that drive your
user interface and app logic.

Drag MapsActivity from the root package to the ui package.

Accept the default settings from the dialog and click Refactor.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 301

Your project tree-view should look like this:

Adding the architecture components
The Architecture Components are provided as separate libraries from Google’s Maven
repository. The gradle file is already set up to use this repository, but you’ll need to
import the individual libraries.

First, define gradle extension properties for the library versions.

Open the project build.gradle (Project: PlaceBook) and add the following lines to the
ext section:

architecture_version = '1.1.0'
room_version = '1.0.0'

Now you’ll bring in the individual components.

Open the app build.gradle (Module: app) and add the following lines in the
dependencies section.

// 1
implementation "android.arch.lifecycle:extensions:" +
 "$architecture_version"
// 2
implementation "android.arch.persistence.room:runtime:" +
 "$room_version"
// 3
annotationProcessor "android.arch.persistence.room:compiler:" +
 "$room_version"
// 4
annotationProcessor "android.arch.lifecycle:compiler:" +
 "$architecture_version"
// 5
kapt "android.arch.persistence.room:compiler:" +
 "$room_version"

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 302

Let’s go through the above dependencies.

1. Adds the main LifeCycle class along with extensions such as LiveData.

2. Adds the Room library.

3. Adds the annotation processor for the Room library.

4. Adds the annotation processor for the lifecycle classes.

5. Adds the Kotlin annotation processor for the Room library.

Room classes
Now you’re ready to add the basic classes required by Room. This will include the
Entities, DAOs, and the Database. Behind the scenes, Room will take your class
structure and do all of the hard work to create a SQLite database with tables and
column definitions.

The database will be named PlaceBookDatabase and the model class will be named
Bookmark. The following diagram will help visualize the process that Room uses to
convert your classes into the underlying database:

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 303

Entities
The PlaceBook application only requires a single entity type to store Bookmarks.

Create a new Kotlin file named Bookmark.kt in the model package and replace the
contents with the following:

// 1
@Entity
// 2
data class Bookmark(
 // 3
 @PrimaryKey(autoGenerate = true) var id: Long? = null,
 // 4
 var placeId: String? = null,
 var name: String = "",
 var address: String = "",
 var latitude: Double = 0.0,
 var longitude: Double = 0.0,
 var phone: String = ""
)

1. The @Entity annotation tells Room that this is a database entity class.

Note: There are several attributes you can apply to the Entity annotation.

foreignKeys() - List of ForeignKey constraints.

indices() - List of indices to include on the table.

primaryKeys() - List of primary key column names. Not required if using the
PrimaryKey annotation.

tableName() - Table name to use in the database. Defaults to class name.

2. The Bookmark class primary constructor is defined using arguments for all
properties with default values defined. By defining default values you have the
flexibility to construct a Bookmark with a partial list of properties.

Note: Room will look for arguments on the constructor and class properties
when defining fields for the table.

3. The id property is defined using the @PrimaryKey annotation. There must be at least
one of these per Entity class. The autoGenerate attribute tells Room to
automatically generate incrementing numbers for this field. You can debate with
your friendly neighborhood database administrator about the use of natural vs.
surrogate primary keys, but nobody was ever fired for using a surrogate key!

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 304

4. The rest of the fields are defined with default values.

When creating the new class Bookmark.kt, you might need to import these if Android
Studio did not automatically add them for you:

import android.arch.persistence.room.Entity
import android.arch.persistence.room.PrimaryKey

DAOs
Next, you’ll define the data access object that reads and writes from the database.

Create a new Kotlin file named BookmarkDao.kt in the db package and replace the
contents with the following:

// 1
@Dao
interface BookmarkDao {

 // 2
 @Query("SELECT * FROM Bookmark")
 fun loadAll(): LiveData<List<Bookmark>>

 // 3
 @Query("SELECT * FROM Bookmark WHERE id = :arg0")
 fun loadBookmark(bookmarkId: Long): Bookmark

 @Query("SELECT * FROM Bookmark WHERE id = :arg0")
 fun loadLiveBookmark(bookmarkId: Long): LiveData<Bookmark>

 // 4
 @Insert(onConflict = IGNORE)
 fun insertBookmark(bookmark: Bookmark): Long

 // 5
 @Update(onConflict = REPLACE)
 fun updateBookmark(bookmark: Bookmark)

 // 6
 @Delete
 fun deleteBookmark(bookmark: Bookmark)
}

Note: When you add this code, you may get an error about the references to
IGNORE and REPLACE. Place the cursor on IGNORE and press Option+Return on a
Mac or Ctrl+Enter on Windows and select the
android.arch.persistence.room.OnConflictStrategy.IGNORE option.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 305

Place the cursor on REPLACE and press Option+Return on a Mac or Ctrl+Enter on
Windows and select the
android.arch.persistence.room.OnConflictStrategy.REPLACE option.

BookmarkDao defines what would traditionally be known as the CRUD database
operations. The CRUD operations consists of:

• C - Create. Create new objects in the database.

• R - Read. Read objects from the database.

• U - Update. Update objects in the database.

• D - Delete. Delete objects in the database.

All access to the Bookmark data will be through this class. You can name the methods
anything you like, but the real power is in the annotations. The @Query, @Insert,
@Update, and @Delete annotations provide Room with valuable information. Room uses
this to generate the code that automatically converts your data entities to rows in the
database and vice versa.

There are several new concepts introduced with this class; let’s explore them in detail.

1. The @Dao annotation tells Room that this is a Data Access Object. DAO classes must
be either interfaces or abstract classes. Room will create the concrete class at
runtime based on the method definitions you define.

2. loadAll() uses the @Query annotation to define a SQL statement to read all
bookmarks from the database and return them as a List of Bookmarks.

Note: SQL stands for Structured Query Language and is a well-known method
for working with relational databases such as SQLite. You won’t need to know
much SQL to build out PlaceBook. If you want to learn more about SQL and
specifically the syntax used for SQLite, take a look at https://sqlite.org/
lang.html.

You’re wrapping the returned List with LiveData, which provides a couple of
advantages:

LiveData objects can be observed by another object. LiveData will notify any
observers when the data changes. This provides a great way to keep user interface
elements up to date when items change in the database.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 306

LiveData objects do their work in a background thread. By default, Room won’t
allow you to make calls to DAO methods on the main thread. By returning LiveData
objects, your method becomes an asynchronous query, and there is no restriction to
calling it from the main thread.

3. Here the @Query annotation is used to define loadBookmark(). This method loads a
single Bookmark based on the bookmark id. Room binds the arguments from your
method to the :arg# strings in the SQL statement. You replace # with the index
number of the argument. This method returns a single Bookmark object.

You also define an asynchronous version named loadLiveBookmark that returns a
LiveData wrapper around a single Bookmark.

Note: A bug in the current Kotlin implementation requires the use of the :arg#
syntax. Once this bug is fixed, you’ll be able to use the actual names of the
method arguments.

4. The @Insert annotation is used to define insertBookmark(). This saves a single
Bookmark to the database and returns the new primary key id associated with the
new bookmark. The onConflict attribute of the @Insert annotation defines what
happens if there is an existing record with the same primary key. This is not a
concern for PlaceBook, as you’re using an autogenerated primary key.

Note: To learn more about conflict options, please see this page: https://
sqlite.org/lang_conflict.html.

5. The @Update annotation is used to define updateBookmark(). This updates a single
Bookmark in the database using the passed in bookmark argument. The onConflict
attribute of the @Update annotation is set to REPLACE so that the existing bookmark
in the database will be replaced with the new bookmark data.

6. Finally, the @Delete annotation is used to define deleteBookmark(). This deletes an
existing bookmark based on the passed in Bookmark.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 307

Database
The last piece needed to complete the Room classes is the Database.

Create a new Kotlin file named PlaceBookDatabase.kt in the db package and replace
the contents with the following:

// 1
@Database(entities = arrayOf(Bookmark::class), version = 1)
abstract class PlaceBookDatabase : RoomDatabase() {
 // 2
 abstract fun bookmarkDao(): BookmarkDao
 // 3
 companion object {
 // 4
 private var instance: PlaceBookDatabase? = null
 // 5
 fun getInstance(context: Context): PlaceBookDatabase {
 if (instance == null) {
 // 6
 instance = Room.databaseBuilder(
 context.applicationContext,
 PlaceBookDatabase::class.java,
 "PlaceBook").build()
 }
 // 7
 return instance as PlaceBookDatabase
 }
 }
}

1. The @Database annotation is used to identify a Database class to Room. entities is
a required attribute on the @Database annotation and defines an array of all entities
used by the database.

Your database class must be abstract and inherit from RoomDatabase.

2. The abstract method bookmarkDao is defined to return a DAO interface. Note that
there can be as many DAOs as you would like, but PlaceBook only needs one.

This is all that’s required for the Database class. The rest of the code is added so that
the Database interface object can be used as a singleton. This is recommended by
Google because spinning up new Database objects can be an expensive operation.

3. Define a companion object on PlaceBookDatabase.

4. Define the one and only instance variable on the companion object.

5. Define getInstance() to take in a Context and return the single PlaceBookDatabase
instance.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 308

6. If this is the first time getInstance is being called, create the single
PlaceBookDatabase instance. Room.databaseBuilder() is used to create a Room
Database based on the abstract PlaceBookDatabase class.

7. Return the PlaceBookDatabase instance.

Note: Now that you have the database defined, you can test out a great feature of
Room. It verifies the SQL in your @Query annotations at compile time. If you have
an error in the SQL syntax, such as referring to a non-existent table name, it will
give you an error. It will also warn if the return type on your method doesn’t
match the return type of your SQL statement.

Test this out by changing Bookmark to Bookmarks in one of the @Query strings in
Bookmark.kt, and then rebuild the project. This will result in a compile error that
says "Error:There is a problem with the query: [SQLITE_ERROR] SQL error or
missing database (no such table: Bookmarks)". If you’ve ever worked with Android
SQLite databases before Room was available, you’ll realize what a big help this is.
Room provides a safety net to prevent common typos in your SQL statements.

Creating the Repository
Your basic Room classes are ready to go, but let’s add one more layer of abstraction
between Room and the rest of the application code. By doing this, you make it easy to
change out how and where the app data is stored. This abstraction layer will be
provided using a Repository pattern. The repository is a generic store of data that can
manage multiple data sources but expose one unified interface to the rest of the
application.

Although the repository in PlaceBook will have a single data source, the BookmarkDao
class, the power is that it could utilize multiple data sources or swap out a data source
completely without affecting other parts of the application. The app you’ll build in
Section 4 will make full use of the Repository pattern.

Create a Kotlin file named BookmarkRepo.kt in the repository package and replace
the contents with the following:

// 1
class BookmarkRepo(private val context: Context) {
 // 2
 private var db: PlaceBookDatabase =
 PlaceBookDatabase.getInstance(context)
 private var bookmarkDao: BookmarkDao = db.bookmarkDao()
 // 3

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 309

 fun addBookmark(bookmark: Bookmark): Long? {
 val newId = bookmarkDao.insertBookmark(bookmark)
 bookmark.id = newId
 return newId
 }
 // 4
 fun createBookmark(): Bookmark {
 return Bookmark()
 }
 // 5
 val allBookmarks: LiveData<List<Bookmark>>
 get() {
 return bookmarkDao.loadAll()
 }
}

1. Define the BookmarkRepo class with a constructor that defines a single property
named context.

2. Two properties are defined that BookmarkRepo will use for its data source. The first is
the PlaceBookDatabase singleton instance, and the second is the DAO object from
PlaceBookDatabase. Note that the bookmarkDao property must follow db as it
depends on db being created first.

3. Create addBookmark() to allow a single Bookmark to be added to the repo. This
method returns the unique id of the newly saved Bookmark or null if the Bookmark
could not be saved. This method uses insertBookmark() on bookmarkDao to add the
Bookmark to the database. It then assigns the newId to the Bookmark and returns the
newId to the caller.

4. Add createBookmark() as a helper method to return a freshly initialized Bookmark
object. In this case you return a simple Bookmark object. Having your application
code get all new objects from the repository gives the repository an opportunity to
apply special initialization code if necessary.

5. Create the allBookmarks property that returns a LiveData list of all Bookmarks in the
Repository. You call loadAll() on the bookmarkDao and return the results to the
caller.

The ViewModel
The ViewModel layer serves as the intermediary between your application views and
the data provided by the BookmarkRepo. The ViewModel will drive the UI based on the
repository data and will update the repository data based on user interactions.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 310

You’ll typically have one ViewModel for each view (Activity or Fragment) in your
application. The naming convention used for ViewModel classes is to simply append
ViewModel to the view class prefix.

Create a Kotlin file named MapsViewModel.kt in the viewmodel package to go along
with the MapsActivity. Replace the contents with the following:

// 1
class MapsViewModel(application: Application) :
 AndroidViewModel(application) {

 private val TAG = "MapsViewModel"
 // 2
 private var bookmarkRepo: BookmarkRepo = BookmarkRepo(
 getApplication())
 // 3
 fun addBookmarkFromPlace(place: Place, image: Bitmap) {
 // 4
 val bookmark = bookmarkRepo.createBookmark()
 bookmark.placeId = place.id
 bookmark.name = place.name.toString()
 bookmark.longitude = place.latLng.longitude
 bookmark.latitude = place.latLng.latitude
 bookmark.phone = place.phoneNumber.toString()
 bookmark.address = place.address.toString()
 // 5
 val newId = bookmarkRepo.addBookmark(bookmark)

 Log.i(TAG, "New bookmark $newId added to the database.")
 }
}

1. When creating a ViewModel it should inherit from ViewModel or AndroidViewModel.
Inheriting from AndroidViewModel allows you to include the Application context
which is needed when creating the BookmarkRepo.

2. Create the BookmarkRepo object.

3. Declare the method addBookmarkFromPlace that takes in a Google Place and a
Bitmap image.

4. Use BookmarkRepo.createBookmark() to create an empty Bookmark object and then
fill it in using the Place data.

5. Finally, save the Bookmark to the repository and print out an info message to verify
that the bookmark was added.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 311

Adding bookmarks
You have everything in place for adding bookmarks to the database, now you just need
to detect when the user taps on a place info window.

In MapsActivity.kt, add the following property at the top of the class:

private lateinit var mapsViewModel: MapsViewModel

You’re declaring a private member to hold the MapsViewModel. This will be initialized
when the map is ready.

Add a new private method named setupViewModel:

private fun setupViewModel() {
 mapsViewModel =
 ViewModelProviders.of(this).get(MapsViewModel::class.java)
}

You may be wondering about the odd syntax for creating the MapsViewModel. A big
benefit of using the ViewModel class is that it is aware of lifecycles. In this case,
ViewModelProviders will create a new mapsViewModel only the first time the Activity is
created. If a configuration change happens, such as a screen rotation,
ViewModelProviders will return the previously created MapsViewModel.

Add a call to setupViewModel() to the end of onMapReady():

setupViewModel()

onMapReady() will continue to grow as you add new capabilities to MapsActivity. This is
a good time to do some quick cleanup before moving on.

Create a new method named setupMapListeners and move the calls to
map.setInfoWindowAdapter and map.setOnPoiClickListener into this new method:

private fun setupMapListeners() {
 map.setInfoWindowAdapter(BookmarkInfoWindowAdapter(this))
 map.setOnPoiClickListener {
 displayPoi(it)
 }
}

Add a call to setupMapListeners() before the call to setupViewModel() in onMapReady().

The new version of onMapReady() should now match this:

override fun onMapReady(googleMap: GoogleMap) {
 map = googleMap

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 312

 setupMapListeners()
 setupViewModel()
 getCurrentLocation()
}

The next step is to respond to the user tapping on an info window and then call
MapsViewModel.addBookmarkFromPlace() with the Place and Bitmap objects.

Houston, we have a problem!

As the code is now, when you add a marker, you’re setting the marker tag to the place
image only. You don’t have access to the original Place object. What’s needed is a way
to set both the full Place object and the Bitmap image as the Marker tag. This can be
solved by creating a private class to hold both pieces of information.

Add the following internal class to the bottom of the MapsActivity class:

class PlaceInfo(val place: Place? = null,
 val image: Bitmap? = null)

This defines a class with two properties to hold a Place and a Bitmap.

In displayPoiDisplayStep(), replace the line that sets the marker.tag with this line:

marker?.tag = PlaceInfo(place, photo)

Now the marker tag holds the full place object and the associated bitmap photo.

In BookmarkInfoWindowAdapter.kt, update the setImageBitmap call in
getInfoContents() to this:

imageView.setImageBitmap((marker.tag as
 MapsActivity.PlaceInfo).image)

You’re casting the marker.tag to a PlaceInfo object and then accessing the image
property to set it as the imageView bitmap. Now you’ll handle the action when the user
taps the info window for a place. Add the following method to MapsActivity.kt:

private fun handleInfoWindowClick(marker: Marker) {
 val placeInfo = (marker.tag as PlaceInfo)
 if (placeInfo.place != null && placeInfo.image != null) {
 mapsViewModel.addBookmarkFromPlace(placeInfo.place,
 placeInfo.image)
 }
 marker.remove()
}

This method will handle taps on a place info window. You get the placeInfo from the
marker.tag, verify that the data is not null, and then call mapsViewModel.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 313

addBookmarkFromPlace() to add the place to the repository. Finally, you remove the
marker from the map.

Add the following line to the end of setupMapListeners():

map.setOnInfoWindowClickListener {
 handleInfoWindowClick(it)
}

Here you set up a listener to call handleInfoWindowClick() whenever the user taps an
info window.

Now, whenever the user taps a place info window, it will call handleInfoWindowClick()
which will in turn call mapsViewModel.addBookmarkFromPlace() and add a bookmark to
the database.

Build and run the app.

Tap on a place so it shows a marker. Tap on the marker, and then tap on the info
window.

Ok, that didn’t turn out exactly as planned! It was supposed to trigger a call to
addBookmarkFromPlace() and add the bookmark to the database. Check the Logcat
window and see if you can identify the problem.

You should have seen the info message "New bookmark 1 added to the database.", but
instead the following exception was printed:

java.lang.IllegalStateException: Cannot access database on the main
thread since it may potentially lock the UI for a long period of time.

This exception is being thrown on the call to addBookmarkFromPlace() and as the
message explains, it’s because the database cannot be accessed on the main thread.
There are several ways to fix this problem, and the easiest would be to configure Room
to allow database access on the main thread. This would only be a stop-gap measure
though. The proper solution is make sure that addBookmarkFromPlace() runs in a
background thread.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 314

One way to attack the problem is to use AsyncTask, but a simpler method is to use
Kotlin Coroutines.

Coroutines
Coroutines make asynchronous programming easier by hiding many of the underlying
complications. This frees you to think about your code in a more traditional sequential
fashion that is easier to comprehend. You’ll learn more about Coroutines in future
chapters, but for now you only need to know about the launch coroutine builder.

Note: If you aren’t familiar with asynchronous programming concepts, it’s just a
fancy way to say that more than one thing is happening at a time. Normally, your
code executes in a serial fashion on the main thread of execution. With
asynchronous programming, multiple code paths are executed simultaneously by
using background threads. To learn more about asynchronous programming with
Android, please check out the following link: https://developer.android.com/
guide/components/processes-and-threads.html

A coroutine represents a suspendable computation. Suspendable means that the
computation may be suspended without stopping the main execution thread.

The launch coroutine builder is used to start a coroutine. It takes in a coroutine context
and is following by a block of code known as a suspending lambda expression. Kotlin
provides a CommonPool context that automatically dispatches your lambda expression
in a background thread.

Having the call to addBookmarkFromPlace() run in the background is as easy as
wrapping it with the launch coroutine builder.

Adding Coroutine libraries

Coroutine support is provided as a separate library and must be added to the project
dependencies before being used.

Open the app build.gradle (Module: app) and add the following line in the
dependencies section.

implementation "org.jetbrains.kotlinx:kotlinx-coroutines-core:0.19.3"

Note: After making the above change to your gradle file, don’t forget to click Sync
Now so that Gradle loads the new dependencies.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 315

Creating a Coroutine

Open MapsActivity and replace the call to addBookmarkFromPlace in
handleInfoWindowClick() with the following:

launch(CommonPool) {
 mapsViewModel.addBookmarkFromPlace(placeInfo.place,
 placeInfo.image)
}

You use the launch coroutine builder to build a coroutine as a lambda expression. The
CommonPool context is used so the code inside the lambda expressions runs in the
background.

Build and run the app again and repeat the process of tapping an info window. Check
the Logcat window and this time you’ll see the "New bookmark 1 added to the
database." message.

Observing database changes
You’ve made a huge step forward by saving bookmarks to the database, but the user has
no way of identifying places that have been bookmarked. The goal is to have the UI
automatically reflect the current state of the bookmark database. This is where your use
of the ViewModel starts to pay off.

You’re going to add a LiveData property to the ViewModel and then observe this
LiveData from the MapsActivity. You’ll display blue colored markers for all bookmarks
stored in the database.

ViewModel changes
Add the following internal class to MapsViewModel.kt:

data class BookmarkMarkerView(
 var id: Long? = null,
 var location: LatLng = LatLng(0.0, 0.0))

Note: If Android Studio can’t resolve LatLng, add import
com.google.android.gms.maps.model.LatLng to the top of MapsViewModel.kt.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 316

This will hold the information needed by the view to plot a marker for a single
bookmark.

Add the following property at the top of MapsViewModel:

private var bookmarks: LiveData<List<BookmarkMarkerView>>?
 = null

Here you are defining a LiveData object that wraps a list of BookmarkMarkerView objects.

Add the following method to MapsViewModel:

private fun bookmarkToMarkerView(bookmark: Bookmark):
 MapsViewModel.BookmarkMarkerView {
 return MapsViewModel.BookmarkMarkerView(
 bookmark.id,
 LatLng(bookmark.latitude, bookmark.longitude))
}

This is a helper method that converts a Bookmark object into a BookmarkMarkerView
object. This will be used by the next method.

Now, add the following method:

private fun mapBookmarksToMarkerView() {
 // 1
 val allBookmarks = bookmarkRepo.allBookmarks
 // 2
 bookmarks = Transformations.map(allBookmarks) { bookmarks ->
 val bookmarkMarkerViews = bookmarks.map { bookmark ->
 bookmarkToMarkerView(bookmark)
 }
 bookmarkMarkerViews
 }
}

This method maps the LiveData<List<Bookmark>> objects provided by BookmarkRepo
into LiveData<List<BookmarkMarkerView>> objects that can be used by MapsActivity.
Although you could remove the mapping and return the LiveData<List<Bookmark>>
directly to MapsActivity, you don’t want to expose MapsActivity to the details of the
underlying Bookmark object.

1. Assign a local variable allBookmarks to the BookmarkRepo.allBookmarks LiveData
object.

2. Use the Transformations class to dynamically map Bookmark objects into
BookmarkMarkerView objects as they get updated in the database. This is a
convenient way to make changes to LiveData before it gets passed along to any
observers.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 317

You use a map method to iterate over the bookmarks and call the previously defined
bookmarkToMarkerView() on each one.

Add the following method to MapsViewModel:

fun getBookmarkMarkerViews() :
 LiveData<List<BookmarkMarkerView>>? {
 if (bookmarks == null) {
 mapBookmarksToMarkerView()
 }
 return bookmarks
}

This method returns the LiveData object that will be observed by MapsActivity.
bookmarks will be null the first time this method is called. If it is null, then it calls
mapBookmarksToMarkerView() to set up the initial mapping.

That’s all of the changes required in MapsViewModel.

MapsActivity changes
Now you’re ready to update MapsActivity to listen for changes in the view model.

Open MapsActivity and add the following method:

private fun addPlaceMarker(
 bookmark: MapsViewModel.BookmarkMarkerView): Marker? {

 val marker = map.addMarker(MarkerOptions()
 .position(bookmark.location)
 .icon(BitmapDescriptorFactory.defaultMarker(
 BitmapDescriptorFactory.HUE_AZURE))
 .alpha(0.8f))

 marker.tag = bookmark

 return marker
}

This is a helper method that adds a single blue marker to the map based on a
BookmarkMarkerView. This is very similar to the code that adds a marker when tapping
on a place. The main difference is that it doesn’t use the default red color.

Now, add the following method:

private fun displayAllBookmarks(
 bookmarks: List<MapsViewModel.BookmarkMarkerView>) {
 for (bookmark in bookmarks) {
 addPlaceMarker(bookmark)
 }
}

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 318

This method walks through a list of BookmarkMarkerView objects and calls
addPlaceMarker() for each one.

Add the following method to MapsActivity:

private fun createBookmarkMarkerObserver() {
 // 1
 mapsViewModel.getBookmarkMarkerViews()?.observe(
 this, android.arch.lifecycle
 .Observer<List<MapsViewModel.BookmarkMarkerView>> {
 // 2
 map.clear()
 // 3
 it?.let {
 displayAllBookmarks(it)
 }
 })
}

This method observes changes to the BookmarkMarkerView objects from the
MapsViewModel and updates the view when they change.

1. Start by using getBookmarkMarkerViews() on MapsViewModel to retrieve a LiveData
object. To be notified when the underlying data changes on the LiveDat object, you
call the observe method. The first argument is this, and it represents the LifeCycle
Owner. The second argument is a new Observer lambda expression to process the
updated bookmarks. The lambda expression will run each time the data changes.

2. Once you have the updated data, clear all existing markers on the map.

3. Call displayAllBookmarks() passing in the list of updated BookmarkMarkerView
objects.

The only item left is to call createBookmarkMarkerObserver() when setting up the
model view.

Add the following line to the end of setupViewModel():

createBookmarkMarkerObserver()

Build and run the app. If you previously added some places to the database by tapping
on the info windows, you’ll see blue markers appear on the map.

Add a new bookmark for another place by tapping on it, and then tapping on the info
window. You’ll notice that the map automatically updates to display the new blue
marker for the saved bookmark.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 319

This happened even though you didn’t make any direct calls to display markers when
the application started!

The following illustrates how this is working:

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 320

When you first observe a LiveData, it will call your observer immediately with the
current set of data. From then on, the observer will be notified anytime the underlying
data changes.

Where to go from here?
There is one problem with this new implementation: if you tap on any of the blue
markers the app will crash. Can you guess why? Never fear, we’ll fix this crash in the
next chapter as well as add some new features to MapsActivity and give the user the
ability to edit bookmarks.

Android Apprentice Chapter 16: Saving Bookmarks with Room

raywenderlich.com 321

17Chapter 17: Detail Activity
By Tom Blankenship

In this chapter you'll add the ability to edit bookmarks. This will involve creating a new
activity to display the bookmark details with editable fields.

Getting started
If you were following along with your own app, open it and copy this resource from the
starter project into your project:

• res/drawable/ic_action_done.png

Make sure to copy the files from all of the drawable folders, including everything with
the .hdpi, .mdpi, .xhdpi and .xxhdpi extensions.

If you would rather use the starter, locate the projects folder for this chapter and open
the PlaceBook app under the starter folder. If you do use the starter app, don't forget to
add your google_maps_key in google_maps_api.xml. Check out Chapter 13 for more
details about the Google Maps key. The first time you open the project, Android Studio
takes a few minutes to set up your environment and update dependencies.

raywenderlich.com 322

Fixing the info window
Before moving on, you'll track down and fix that pesky bug left over from the last
chapter. The app currently crashes when tapping on a blue marker. The desired
behavior should be:

• If the user taps a new place, it shows a red marker and the info window. If the user
then taps on the info window, a bookmark is saved to the database and the marker
turns blue.

• If the user taps on a blue marker, it displays the saved bookmark info, including the
image.

Build and run the app again, and tap on an existing bookmark icon. After the app
crashes, check out Logcat. Look for the most recent stack trace line that has your app's
package name. You'll find the following line:

com.raywenderlich.placebook.adapter.BookmarkInfoWindowAdapter.getInfoCont
ents

The error is a ClassCastException informing you that a BookmarkMarkerView cannot be
cast to a MapActivityPlaceInfo class.

What's going on here? Click on the blue link for BookmarkAdapter.kt and it will take
you to the offending line of code:

imageView.setImageBitmap(
 (marker.tag as MapsActivity.PlaceInfo).image)

The problem is that this code assumes that marker.tag contains an object of type
MapsActivity.PlaceInfo, but that's not always the case. A marker can now represent
two types of places: one is a temporary place that hasn't been bookmarked yet, and the
other is a place that has an existing bookmark.

To fix this, you'll update the code to take a different action based on the marker tag
type.

Open BookmarkInfoWindowAdapter.kt and replace the line in getInfoContents()
that calls setImageBitmap() with the following:

when (marker.tag) {
 // 1
 is MapsActivity.PlaceInfo -> {
 imageView.setImageBitmap(

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 323

 (marker.tag as MapsActivity.PlaceInfo).image)
 }
 // 2
 is MapsViewModel.BookmarkMarkerView -> {
 var bookMarkview = marker.tag as
 MapsViewModel.BookmarkMarkerView
 // Set imageView bitmap here
 }
}

The when statement is used to run conditional code based on the class type of
marker.tag.

1. If marker.tag is a MapsActivity.PlaceInfo, you set the imageView bitmap directly
from the PlaceInfo.image object.

2. If marker.tag is a MapsViewModel.BookmarkMarkerView, you set the imageView
bitmap from the BookmarkMarkerView.

The only problem is that BookmarkMarkerView doesn't contain a bookmark image,
because you’ve never saved images with the bookmarks.

Saving an image
Although you can add an image directly to the Bookmark model class and let the Room
library save it to the database, it's not best practice to store large chunks of data in the
database. A better method is to store the image as a file that is linked to the record in
the database.

Android doesn't provide a simple way to save images to a file, so you'll first create a new
image utility class, and add a method to save an image to a file.

Create a new package named util, and then a new Kotlin class named ImageUtils.kt,
inside the util package.

Replace the contents of ImageUtils.kt with the following:

// 1
object ImageUtils {
 // 2
 fun saveBitmapToFile(context: Context, bitmap: Bitmap,
 filename: String) {
 // 3
 val stream = ByteArrayOutputStream()
 // 4
 bitmap.compress(Bitmap.CompressFormat.PNG, 100, stream)
 // 5
 val bytes = stream.toByteArray()
 // 6
 ImageUtils.saveBytesToFile(context, bytes, filename)

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 324

 }
 // 7
 private fun saveBytesToFile(context: Context, bytes:
 ByteArray, filename: String) {
 val outputStream: FileOutputStream
 // 8
 try {
 // 9
 outputStream = context.openFileOutput(filename,
 Context.MODE_PRIVATE)
 // 10
 outputStream.write(bytes)
 outputStream.close()
 } catch (e: Exception) {
 e.printStackTrace()
 }
 }
}

1. ImageUtils is declared as an object, so it behaves like a singleton. This lets you
directly call the methods within ImageUtils without creating a new ImageUtils
object each time.

2. saveBitmapToFile() takes in a Context, Bitmap and String object filename, and
saves the Bitmap to permanent storage.

3. ByteArrayOutputStream is created to hold the image data.

4. You write the image bitmap to the stream object using the lossless PNG format.
Note that the second parameters is a quality setting, but it's ignored for the PNG
format.

5. the stream is converted into an array of bytes.

6. saveBytesToFile() is called to write the bytes to a file.

7. saveBytesToFile() takes in a Context, ByteArray, and a String object filename and
saves the bytes to a file.

8. The next few calls may throw exceptions so they're wrapped in a try/catch to
prevent a crash.

9. openFileOutput is used to open a FileOutputStream using the given filename. The
Context.MODE_PRIVATE flag causes the file to be written in the private area where
only the PlaceBook app can access it.

10. The bytes are written to the outputStream and then the stream is closed.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 325

Now that you have the saveBitmapToFile utility method, you can give the Bookmark
object the ability to save a bitmap image for itself. This method will automatically
generate a filename for the bitmap that matches the bookmark ID.

Open the Bookmark class in the model package and add the following code as the
body of the class:

{
 // 1
 fun setImage(image: Bitmap, context: Context) {
 // 2
 id?.let {
 ImageUtils.saveBitmapToFile(context, image,
 generateImageFilename(it))
 }
 }
 //3
 companion object {
 fun generateImageFilename(id: Long): String {
 // 4
 return "bookmark$id.png"
 }
 }
}

1. setImage() provides the public interface for saving an image for a Bookmark.

2. If the bookmark has an id, then the image is saved to a file. The filename
incorporates the bookmark ID to make sure it's unique.

3. generateImageFilename() is placed in a companion object so it will be available at
the class level. This allows another object to load an image without having to load
the bookmark from the database.

4. generateImageFilename() returns a filename based on a Bookmark ID. It uses a
simple algorithm that simply appends the bookmark ID to the word “bookmark”.
For example, for bookmark ID 5, the associated image will be named
bookmark5.png. Since you can always infer the bookmark image filename from the
bookmark ID, there is no need to save the filename as a separate field in the
database.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 326

Adding the image to the bookmark
Now you need to set the image for a bookmark when it's added to the database.

Open MapsViewModel.kt and add the following line in addBookmarkFromPlace() after
the call to set bookmarkRepo.addBookmark().

bookmark.setImage(image, getApplication())

Here you update addBookmarkFromPlace() to call the new setImage() method.

It's important to call this after the bookmark has been saved to the database so the
bookmark has a unique ID assigned.

setImage() is used to save the image to the bookmark. The application context is
passed into setImage() using getApplication().

Simplifying the bookmark process
Before testing this new functionality, there's a small change you can make to simplify
the process of adding a new bookmark. Currently, when selecting a place, a marker is
displayed, and then the user has to tap on the marker again to display the info box. This
change will automatically display the info box when showing the marker.

Open MapsActivity.kt and add the following line to the end of
displayPoiDisplayStep():

marker?.showInfoWindow()

This instructs the map to display the info window for the marker.

Build and run the app. Tap on a new place to display a marker and info window, and
then tap on the info window. This will trigger a new bookmark to be saved, and this
time it will store the bitmap image to a file.

Using Device File Explorer
If you want to verify the image was saved, and take a peek behind the scenes at how
Android stores files, you can use the Device File Explorer in Android Studio. This is a
handy tool for working directly with the Android file system.

Click on the Device File Explorer tool on the right-side of the Android Studio window.
If you don't see it there, click View ▸ Tool Windows ▸ Device File Explorer.

In the newly displayed window, select the device on which you're running PlaceBook,
and then navigate to data/data/com.raywenderlich.placebook/files. If the image save

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 327

worked correctly, you'll see at least one bookmark?.png image in the directory.
Double-click on the image to preview it.

Loading an image
Now you need to load the image back from a file. This is considerably easier than saving
an image, because Android provides a method on the BitmapFactory class for loading
images from files.

In ImageUtils.kt add the following method:

fun loadBitmapFromFile(context: Context, filename: String):
 Bitmap? {
 val filePath = File(context.filesDir, filename).absolutePath
 return BitmapFactory.decodeFile(filePath)
}

This method is passed a context and a filename and returns a Bitmap image by loading
the image from the specified filename. A File object is used to combine the files
directory for the given context with the filename. A filePath is constructed from the
absolute path of the File. The BitmapFactory.decodeFile() does the work of loading
the image from the file, and the image is returned to the caller.

Updating BookmarkMarkerView
Now that you have the ability to load the image from where it was stored, let's update
BookmarkMarkerView to provide the image for the view.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 328

Your first instinct might be to add a new Bitmap object to BookmarkMarkerView and store
it alongside the other properties. While this might work fine for a small set of
bookmarks, you'll start eating up a lot of memory if a user has bookmarked hundreds of
places! A better solution is to load the images on-demand.

Loading images on-demand
Open MapsViewModel.kt and add the following body to BookmarkMarkerView:

{
 fun getImage(context: Context): Bitmap? {
 id?.let {
 return ImageUtils.loadBitmapFromFile(context,
 Bookmark.generateImageFilename(it))
 }
 return null
 }
}

You first check to make sure the BookmarkMarkerView has a valid ID. Then you call
generateImageFilename(), and pass in the bookmark ID represented as it.
loadBitmapFromFile() is called with the current context and Bookmark image filename,
and it returns the resulting Bitmap to the caller. You'll update the info window adapter
to load the image when it's being rendered.

First, you need a Context object to load the image. You can take advantage of the fact
that the BookmarkInfoWindowAdapter constructor already has a context passed in.

Open BookmarkInfoWindowAdapter.kt and replace the constructor with the
following:

class BookmarkInfoWindowAdapter(val context: Activity) :
 GoogleMap.InfoWindowAdapter {

The only difference is the addition of the val modifier. This makes context a property
so you can use it later to load the image.

Add the following code in getInfoContents() after the comment // Set image bitmap
here:

imageView.setImageBitmap(bookMarkview.getImage(context))

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 329

Build and run the app. Tap on a blue marker for a saved bookmark that was created after
you added the save image capability. This will display the info window with the
bookmark image.

The image is showing, but there's no bookmark information displayed. This is easily
fixed by adding the bookmark name and phone number to BookmarkMarkerView.

Updating the info window
Open MapsViewModel.kt and update the BookmarkMarkerView declaration to match
the following:

data class BookmarkMarkerView(
 var id: Long? = null,
 var location: LatLng = LatLng(0.0, 0.0),
 var name: String = "",
 var phone: String = "") {

This adds new properties for name and phone to the BookmarkMarkerView class.

Update bookmarkToMarkerView() to match the following:

private fun bookmarkToMarkerView(bookmark: Bookmark):
 MapsViewModel.BookmarkMarkerView {
 return MapsViewModel.BookmarkMarkerView(
 bookmark.id,
 LatLng(bookmark.latitude, bookmark.longitude),

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 330

 bookmark.name,
 bookmark.phone)
}

The only change is that the bookmark name and phone properties are passed into the
new BookmarkMarkerView constructor.

Open MapsActivity.kt. In addPlaceMarker(), update the call to map.addMarker() with
the following:

val marker = map.addMarker(MarkerOptions()
 .position(bookmark.location)
 .title(bookmark.name)
 .snippet(bookmark.phone)
 .icon(BitmapDescriptorFactory.defaultMarker(
 BitmapDescriptorFactory.HUE_AZURE))
 .alpha(0.8f))

The only change here is that the title and snippet items are set to the bookmark name
and phone.

Build and run the app. Tap on a blue marker for a saved bookmark. This time it will
display the name and phone number beside the image.

If you tapped on the info window, it most likely crashed on you. You’ll fix that soon.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 331

Bookmark detail activity
You've waited patiently, and it's finally time to build out the detail activity for editing a
bookmark! You'll add a new screen that allows the user to edit key details about the
bookmark, along with a custom note. You'll do this by creating a new activity that's
displayed when a user taps on an info window.

Designing the edit screen
Before creating the activity, let's go over the screen layout and the main elements that
will be incorporated.

The Bookmark Edit Layout

• The top of the activity contains an AppBarLayout.

• Within the AppBarLayout is a Toolbar.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 332

• Below the AppBarLayout is another vertical LinearLayout to hold the main list of
Bookmark items.

• The first item in the vertical layout is the image view.

• Below the image view is a series of horizontal LinearLayouts. Each LinearLayout
holds the label and edit control for a single item. The weights are set so the label
takes 20% of the layout width.

Defining styles
First, you'll define some standard styles that are required when using the support
library version of the toolbar.

Add the following to res/values/styles.xml:

<style name="AppTheme.NoActionBar">
 <item name="windowActionBar">false</item>
 <item name="windowNoTitle">true</item>
</style>

<style name="AppTheme.AppBarOverlay"
 parent="ThemeOverlay.AppCompat.Dark.ActionBar"/>
<style name="AppTheme.PopupOverlay"
 parent="ThemeOverlay.AppCompat.Light"/>

The NoActionBar style will be used to hide the native ActionBar. AppBarOverlay will give
the toolbar layout a dark theme, and PopupOverlay will give the toolbar content a light
theme.

The bookmark details activity will contain a list of text labels and fields that all have the
same style.

You'll capitalize on this by defining a couple of styles that can be applied to the labels
and fields without repeating information in the activity layout definition. This will also
make it easier in the future to update the styles of all labels and text fields with a single
change.

Add the following to res/values/styles.xml:

<style name="BookmarkLabel">
 <item name="android:layout_width">0dp</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_weight">0.2</item>
 <item name="android:layout_gravity">bottom</item>
 <item name="android:layout_marginStart">8dp</item>
 <item name="android:layout_marginLeft">8dp</item>
 <item name="android:layout_marginBottom">4dp</item>
 <item name="android:gravity">bottom</item>

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 333

</style>

<style name="BookmarkEditText">
 <item name="android:layout_width">0dp</item>
 <item name="android:layout_weight">0.8</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_marginEnd">8dp</item>
 <item name="android:layout_marginRight">8dp</item>
 <item name="android:layout_marginStart">8dp</item>
 <item name="android:layout_marginLeft">8dp</item>
 <item name="android:ems">10</item>
</style>

The BookmarkLabel style defines the attributes for all bookmark labels.
BookmarkEditText defines the attributes for all bookmark edit fields.

Creating the details layout
Finally, you'll create the bookmark details layout based on the design. The activity will
use all of the new styles just added to the project.

Create a new layout resource file at res/layout/activity_bookmark_details.xml and
replace its contents with the following:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <android.support.design.widget.AppBarLayout
 android:id="@+id/app_bar"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:fitsSystemWindows="true"
 android:theme="@style/AppTheme.AppBarOverlay">

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 app:popupTheme="@style/AppTheme.PopupOverlay"/>

 </android.support.design.widget.AppBarLayout>

 <ImageView
 android:id="@+id/imageViewPlace"
 android:layout_margin="0dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 334

 android:maxHeight="300dp"
 android:scaleType="fitCenter"
 android:adjustViewBounds="true"
 app:srcCompat="@drawable/default_photo"/>

</LinearLayout>

This defines the basic layout for the bookmark details screen. The activity is contained
within a vertical linear layout. The toolbar is defined as the first item in the layout, and
the styles you defined earlier are used to theme the toolbar. The bookmark image is
placed below the toolbar.

The layout up to this point looks like this:

Next, you'll add a series of form rows that represent the editable bookmark details. Each
of these rows will be represented by a horizontal LinearLayout with a TextView on the
left and an EditText element on the right.

First, you'll add a row for the bookmark name.

Add the following code below the <ImageView> element:

<LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="8dp"
 android:orientation="horizontal">

 <TextView

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 335

 android:id="@+id/textViewName"
 style="@style/BookmarkLabel"
 android:text="Name"/>

 <EditText
 android:id="@+id/editTextName"
 style="@style/BookmarkEditText"
 android:hint="Name"
 android:inputType="text"
 />
</LinearLayout>

You're using the BookmarkLabel and BookmarkEditText styles defined earlier to apply
the layout details to the items.

Next, add a row for the bookmark notes. Add the following code after the bookmark
name row:

<LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <TextView
 android:id="@+id/textViewNotes"
 style="@style/BookmarkLabel"
 android:text="Notes"/>

 <EditText
 android:id="@+id/editTextNotes"
 style="@style/BookmarkEditText"

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 336

 android:hint="Enter notes"
 android:inputType="textMultiLine"/>
</LinearLayout>

This repeats the formula used for the name row. The only difference is the inputType is
set to allow multiple input lines. Next, add a row for the bookmark phone number.

Add the following code after the bookmark notes row:

<LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <TextView
 android:id="@+id/textViewPhone"
 style="@style/BookmarkLabel"
 android:text="Phone"/>

 <EditText
 android:id="@+id/editTextPhone"
 style="@style/BookmarkEditText"
 android:hint="Phone number"
 android:inputType="phone"
 />
</LinearLayout>

Next, add a row for the bookmark address. Add the following code after the bookmark
phone number row:

<LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <TextView
 android:id="@+id/textViewAddress"
 style="@style/BookmarkLabel"
 android:text="Address"/>

 <EditText
 android:id="@+id/editTextAddress"
 style="@style/BookmarkEditText"
 android:hint="Address"
 android:inputType="textMultiLine"
 />
</LinearLayout>

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 337

The final layout after adding all of the rows will look like this:

Details activity class
Now that the bookmark details layout is complete, you can create the details activity to
go along with it.

Create a new Kotlin file under the ui package named BookmarkDetailsActivity.kt and
replace the contents with the following:

class BookmarkDetailsActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState:
 android.os.Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_bookmark_details)
 setupToolbar()
 }

 private fun setupToolbar() {
 setSupportActionBar(toolbar)
 }
}

This is a fairly standard Activity class that uses the support action bar. setupToolbar()
calls the built-in setSupportActionBar() to make the Toolbar act as the ActionBar for
this Activity.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 338

Note: Because the app build.gradle file contains the kotlin-android-extensions
plugin, Android Studio will automatically recognize the toolbar view from the
activity_bookmark_details layout. If you look at the top of the file, you'll notice
that it has included an import
kotlinx.android.synthetic.main.activity_bookmark_details.* statement. This
import includes the auto synthesized properties for the views in the layout.

Support design library
In order to use setSupportActionBar() you need to include the support design library.

Add the following line to the buildscript.ext section in the project build.gradle file.

support_lib_version = '26.1.0'

In the app build.gradle file, replace the support:appcompat line with the following:

implementation "com.android.support:appcompat-v7:$support_lib_version"

Add the following line after the support:appcompat line:

implementation "com.android.support:design:$support_lib_version"

This includes the design library in the app.

Updating the manifest
Next, make Android aware of the new BookmarkDetailsActivity class. Add the activity
to AndroidManifest.xml within the <application> section:

<activity
 android:name=
 "com.raywenderlich.placebook.ui.BookmarkDetailsActivity"
 android:label="Bookmark"
 android:theme="@style/AppTheme.NoActionBar"
 android:windowSoftInputMode="stateHidden">
</activity>

Note that the theme with NoActionBar is required when using the support Toolbar.
android:windowSoftInputMode is set to stateHidden to prevent the soft keyboard from
displaying when the activity is first displayed.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 339

Starting the details activity
Now you can hook up the new details activity to the main maps activity. You'll detect
when the user taps on a bookmark info window, and then start the details activity. Add
the following method to MapsActivity.kt:

private fun startBookmarkDetails(bookmarkId: Long) {
 val intent = Intent(this, BookmarkDetailsActivity::class.java)
 startActivity(intent)
}

Here, startBookmarkDetails() is used to start the BookmarkDetailsActivity using an
explicit Intent. You’ll call this method when the user taps on an info window for an
existing bookmark.

Replace handleInfoWindowClick() with the following:

private fun handleInfoWindowClick(marker: Marker) {
 when (marker.tag) {
 is MapsActivity.PlaceInfo -> {
 val placeInfo = (marker.tag as PlaceInfo)
 if (placeInfo.place != null && placeInfo.image != null) {
 launch(CommonPool) {
 mapsViewModel.addBookmarkFromPlace(placeInfo.place,
 placeInfo.image)
 }
 }
 marker.remove();
 }
 is MapsViewModel.BookmarkMarkerView -> {
 val bookmarkMarkerView = (marker.tag as
 MapsViewModel.BookmarkMarkerView)
 marker.hideInfoWindow()
 bookmarkMarkerView.id?.let {
 startBookmarkDetails(it)
 }
 }
 }
}

This method handles the action when a user taps a place info window. Previously, it was
designed to save the bookmark to the database. Now, it will save the bookmark if it
hasn't been saved before, or it will start the bookmark details activity if the bookmark
has already been saved.

Previously, this method assumed that the marker.tag would always be a PlaceInfo
object. Now you're using the when construct to take a different action based on the
marker.tag type. If it's a BookmarkMarkerView, then the info window is hidden and you
start the bookmark details activity.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 340

Build and run the app. Tap on a blue bookmark marker, and then tap on the info
window. The new bookmark details screen will be shown.

This is a good chance to verify the layout is working before populating the dialog with
the actual bookmark content. Everything looks good in portrait, but rotate the device to
landscape and you may see something like this:

Whoops! On many Android devices, you'll only see the image with no way to scroll
down and view the edit fields. This can be easily fixed by surrounding the main content
with a ScrollView.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 341

Open activity_bookmark_details.xml and add the following after </
android.support.design.widget.AppBarLayout>:

<ScrollView
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

Add the following closing tags before the last </LinearLayout>:

 </LinearLayout>
</ScrollView>

By enclosing the main content in a ScrollView, you allow the user to scroll to see the
entire details form.

Build and run the app again, and display the details for a place. Rotate to landscape
mode and scroll the view to see the edit fields.

That looks much better!

Populating the bookmark
The activity has the general look you want, but it's lacking any knowledge about the
bookmark. You'll pass the bookmark ID to the activity so it can display the bookmark
data.

Open MapsActivity.kt and add the following to the top of the companion object:

const val EXTRA_BOOKMARK_ID =
 "com.raywenderlich.placebook.EXTRA_BOOKMARK_ID"

This defines a key for storing the bookmark ID in the intent extras.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 342

Add the following line before the call to startActivity() in startBookmarkDetails():

intent.putExtra(EXTRA_BOOKMARK_ID, bookmarkId)

This adds the bookmarkId as an extra parameter on the intent. Now you'll retrieve this
parameter in the bookmark details activity, and use it to load the bookmark details.

Open BookmarkRepo.kt and add the following method:

fun getLiveBookmark(bookmarkId: Long): LiveData<Bookmark> {
 val bookmark = bookmarkDao.loadLiveBookmark(bookmarkId)
 return bookmark
}

This method returns a live bookmark from the bookmark DAO.

Just like MapsActivity, BookmarkDetailsActivity will use a ViewModel to coordinate the
data between the view and the model.

You'll need to create a new view model class for the details activity. This class will use
the bookmark repo to retrieve the bookmark details and format it for the details
activity.

Create a new Kotlin file named BookmarkDetailsViewModel.kt in the viewmodel
package, and replace the contents with the following:

class BookmarkDetailsViewModel(application: Application) :
 AndroidViewModel(application) {

 private var bookmarkRepo: BookmarkRepo =
 BookmarkRepo(getApplication())
}

BookmarkDetailsViewModel inherits from AndroidViewModel just like the MapsViewModel
class. A private BookmarkRepo property is defined and initialized with a new
BookmarkRepo instance.

You'll follow a similar pattern as you did with MapsViewModel to return data for the view.
This pattern can be repeated anytime you need to return live data for a view, and it can
be generalized as follows:

1. Define a new data class to hold the info required by the view class.

2. Define a LiveData property with the new data class.

3. Define a method to transform LiveData model data to LiveData view data.

4. Define a method to return the view data to the view.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 343

Add the following internal class to BookmarkDetailsViewModel:

data class BookmarkDetailsView(
 var id: Long? = null,
 var name: String = "",
 var phone: String = "",
 var address: String = "",
 var notes: String = ""
) {

 fun getImage(context: Context): Bitmap? {
 id?.let {
 return ImageUtils.loadBitmapFromFile(context,
 Bookmark.generateImageFilename(it))
 }
 return null
 }
}

The BookmarkDetailsView class defines the data needed by the
BookmarkDetailsActivity view. getImage() loads the image associated with the
bookmark.

Adding notes to the database
Before continuing, you'll need a way to store notes for a bookmark.

Open Bookmark.kt and update the Bookmark declaration to add in the notes property,
like so:

data class Bookmark(
 @PrimaryKey(autoGenerate = true) var id: Long? = null,
 var placeId: String? = null,
 var name: String = "",
 var address: String = "",
 var latitude: Double = 0.0,
 var longitude: Double = 0.0,
 var phone: String = "",
 var notes: String = ""
)

Now that you've changed the Bookmark class, the main database class needs to be made
aware of it.

Open PlaceBookDatabase.kt and update the @Database annotation version to 2 as
follows:

@Database(entities = arrayOf(Bookmark::class), version = 2)

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 344

The change to Bookmark requires a change to the underlying database structure
managed by Room. Setting the version to 2 lets Room know that something is different
about the database.

The first time the app is launched after updating the version, Room will try to migrate
data from the old structure to the new structure. It does this by looking for Migrations
that you have added to the database builder. If you haven't added any Migrations, then
an exception will be thrown and the app will crash.

Rather than providing Migrations, you can prevent the crash by telling Room to create
the new database from scratch and discard all old data.

In the companion object getInstance method, replace the call to Room.databaseBuilder
with the following:

instance = Room.databaseBuilder(context.applicationContext,
 PlaceBookDatabase::class.java, "PlaceBook")
 .fallbackToDestructiveMigration()
 .build()

This adds the fallbackToDestructiveMigration() call the builder. This tells Room to
create a new empty database if it can't find any Migrations.

Note: If you want to learn how to handle database schema changes using
Migrations, please see the official documentation at https://
developer.android.com/topic/libraries/architecture/room.html#db-migration.

Bookmark view model
That's all you need to support the revised Bookmark model in the database. Now you
need to convert the database model to a view model.

Go back to BookmarkDetailsViewModel.kt and add the following method to the
BookmarkDetailsViewModel class:

private fun bookmarkToBookmarkView(bookmark: Bookmark):
BookmarkDetailsView {
 return BookmarkDetailsView(
 bookmark.id,
 bookmark.name,
 bookmark.phone,
 bookmark.address,
 bookmark.notes
)
}

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 345

This method converts from a Bookmark model to a BookmarkDetailsView model.

You'll need a property to hold the current bookmark view object.

Add the following to the top of the class:

private var bookmarkDetailsView: LiveData<BookmarkDetailsView>? = null

The bookmarkDetailsView property holds the LiveData<BookmarkDetailsView> object.
This will allow the view to stay updated anytime the view model changes.

You have defined a method to convert from the database bookmark to the view
bookmark, now you just need to convert from a live database bookmark object to a live
bookmark view object.

Add the following method:

private fun mapBookmarkToBookmarkView(bookmarkId: Long) {
 val bookmark = bookmarkRepo.getLiveBookmark(bookmarkId)
 bookmarkDetailsView = Transformations.map(bookmark) { bookmark ->
 val bookmarkView = bookmarkToBookmarkView(bookmark)
 bookmarkView
 }
}

Here you get the live Bookmark from the BookmarkRepo and then transform it to the live
BookmarkDetailsView.

Finally, you can bring it all together by exposing a method to return a live bookmark
view based on a bookmark ID.

Next, add the following method:

fun getBookmark(bookmarkId: Long): LiveData<BookmarkDetailsView>? {
 if (bookmarkDetailsView == null) {
 mapBookmarkToBookmarkView(bookmarkId)
 }
 return bookmarkDetailsView
}

getBookmark() returns the BookmarkDetailsView object. If this is the first time
getBookmark() is called, mapBookmarkToBookmarkView() is used to create the
bookmarkDetailsView, otherwise the previously created bookmarkDetailsView is
returned.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 346

Retrieving the bookmark view
You're ready to add the code to retrieve the BookmarkDetailsView LiveData object.

First, you'll need some properties to hold the view model data.

Open BookmarkDetailsActivity.kt and add the following properties:

private lateinit var bookmarkDetailsViewModel:
 BookmarkDetailsViewModel
private var bookmarkDetailsView:
 BookmarkDetailsViewModel.BookmarkDetailsView? = null

And you'll need a method to initialize the view model. Add the following method:

private fun setupViewModel() {
 bookmarkDetailsViewModel =
 ViewModelProviders.of(this).get(
 BookmarkDetailsViewModel::class.java)
}

setupViewModel() creates the bookmarkDetailsViewModel using the
ViewModelProviders class. This is the standard procedure for initializing a view model.

Add the following method to populate the fields in the view:

private fun populateFields() {
 bookmarkDetailsView?.let { bookmarkView ->
 editTextName.setText(bookmarkView.name)
 editTextPhone.setText(bookmarkView.phone)
 editTextNotes.setText(bookmarkView.notes)
 editTextAddress.setText(bookmarkView.address)
 }
}

This method populates all of the UI fields using the current bookmarkView if it's not null.
You can also take the bookmark image from the view model and assign it to the image
UI element.

Add the following method:

private fun populateImageView() {
 bookmarkDetailsView?.let { bookmarkView ->
 val placeImage = bookmarkView.getImage(this)
 placeImage?.let {
 imageViewPlace.setImageBitmap(placeImage)
 }
 }
}

This method loads the image from bookmarkView and then uses it to set the
imageViewPlace.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 347

Using the intent data
When the user taps on the info window for a bookmark on the maps activity, it will pass
the bookmark ID to the details activity. You'll add a method to read this intent data, and
use it to populate the UI.

Add the following method:

private fun getIntentData() {
 // 1
 val bookmarkId = intent.getLongExtra(
 MapsActivity.Companion.EXTRA_BOOKMARK_ID, 0)
 // 2
 bookmarkDetailsViewModel.getBookmark(bookmarkId)?.observe(
 this, Observer<BookmarkDetailsViewModel.BookmarkDetailsView> {
 // 3
 it?.let {
 bookmarkDetailsView = it
 // Populate fields from bookmark
 populateFields()
 populateImageView()
 }
 })
}

Note: If Android Studio gives you two choices of imports for the Observer class,
make sure to choose import android.arch.lifecycle.Observer.

This method will be called when the activity is created. Let's break it down:

1. The bookmarkId is pulled from the intent data.

2. The BookmarkDetailsView is retrieved from BookmarkDetailsViewModel, and then
observed for changes.

3. Whenever the BookmarkDetailsView is loaded or changed, the bookmarkDetailsView
property is assigned to it and the bookmark fields are populated from the data.

Finishing the detail activity
Now you're ready to pull everything together by adding the following calls to the end of
onCreate() in BookmarkDetailsActivity.

setupViewModel()
getIntentData()

When the bookmark details activity is started, it will create the view model and process
the intent data passed in from the maps activity.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 348

Build and run the app. The previous data will be cleared out because of the database
schema change.

Add a new bookmark and view the details. The bookmark info will now be displayed.

Saving changes
The only major feature left is to save the user's edits. You'll add a checkmark toolbar
item to trigger the save.

First, you'll need a menu resource file to define a checkmark.

Create a new menu resource folder using File ▸ New ▸ Android resource directory
with a name of menu and a resource type of menu.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 349

Create a new menu resource file named menu_bookmark_details.xml in res/menu
and replace the contents with the following:

<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 tools:context=
 "com.raywenderlich.placebook.ui.BookmarkDetailsActivity">

 <item
 android:id="@+id/action_save"
 android:icon="@drawable/ic_action_done"
 android:title="Save"
 app:showAsAction="ifRoom"/>
</menu>

This defines a single menu item with an id of action_save for the detail activity toolbar.

Now you need to inflate the menu resource in the details activity.

Open BookmarkDetailsActivity.kt and add the following method:

override fun onCreateOptionsMenu(menu: android.view.Menu):
 Boolean {
 val inflater = menuInflater
 inflater.inflate(R.menu.menu_bookmark_details, menu)
 return true
}

You override onCreateOptionsMenu and provide items for the toolbar by loading in the
menu_bookmark_details menu.

To save an updated bookmark to the database, you'll need a couple of new methods in
BookmarkRepo.

Open BookmarkRepo.kt and add the following methods:

fun updateBookmark(bookmark: Bookmark) {
 bookmarkDao.updateBookmark(bookmark)
}

fun getBookmark(bookmarkId: Long): Bookmark {
 return bookmarkDao.loadBookmark(bookmarkId)
}

updateBookmark() takes in a bookmark and saves it using the bookmark DAO.
getBookmark() takes in a bookmark ID and uses the bookmark DAO to load the
corresponding bookmark.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 350

When the user makes changes to a bookmark, you'll update the bookmark view model
class. You'll need a method to convert a bookmark view model to the database
bookmark model.

Open BookmarkDetailsViewModel.kt and add the following method:

private fun bookmarkViewToBookmark(bookmarkView: BookmarkDetailsView):
 Bookmark? {
 val bookmark = bookmarkView.id?.let {
 bookmarkRepo.getBookmark(it)
 }
 if (bookmark != null) {
 bookmark.id = bookmarkView.id
 bookmark.name = bookmarkView.name
 bookmark.phone = bookmarkView.phone
 bookmark.address = bookmarkView.address
 bookmark.notes = bookmarkView.notes
 }
 return bookmark
}

This method takes a BookmarkDetailsView and returns a Bookmark with the updated
parameters from the BookmarkDetailsView. The original bookmark values are loaded
from the BookmarkRepo before updating them with the BookmarkDetailsView. It's
important to load in the original bookmark to retain the values that aren't updated by
the BookmarkDetailsView.

You can now utilize bookmarkViewToBookmark() to create a new public method to
update a bookmark in the background.

Add the following method:

fun updateBookmark(bookmarkView: BookmarkDetailsView) {
 // 1
 launch(CommonPool) {
 // 2
 val bookmark = bookmarkViewToBookmark(bookmarkView)
 // 3
 bookmark?.let { bookmarkRepo.updateBookmark(it) }
 }
}

This method updates the bookmark from a BookmarkDetailsView.

1. A coroutine is used to run the method in the background. This allows calls to be
made by the bookmark repo that access the database.

2. The BookmarkDetailsView is converted to a Bookmark.

3. If the bookmark is not null, it's updated in the bookmark repo. This will update the
bookmark in the database.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 351

Now you can modify the bookmark details activity and make use of the new
updateBookmark() method provided by the view model.

Open BookmarkDetailsActivity.kt and add the following method:

private fun saveChanges() {
 val name = editTextName.text.toString()
 if (name.isEmpty()) {
 return
 }
 bookmarkDetailsView?.let { bookmarkView ->
 bookmarkView.name = editTextName.text.toString()
 bookmarkView.notes = editTextNotes.text.toString()
 bookmarkView.address = editTextAddress.text.toString()
 bookmarkView.phone = editTextPhone.text.toString()
 bookmarkDetailsViewModel.updateBookmark(bookmarkView)
 }
 finish()
}

This method takes the current changes from the text fields and updates the bookmark.
The method doesn't do anything if the editTextName field is blank. After updating the
bookmarkView with the data from the EditText fields, updateBookmark() is called to
update the bookmark model. Finally, the activity is closed with the finish() call.

Next, you'll add code to respond to the user tapping the checkmark menu item and then
call saveChanges().

Add the following method:

override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.action_save -> {
 saveChanges()
 return true
 }
 else -> return super.onOptionsItemSelected(item)
 }
}

This method is called when the user selects a toolbar checkmark item. You check the
item.itemId to see if it matches action_save, and if so, saveChanges() is called.

Build and run the app. Go into the details activity of an existing bookmark and change
some the data. Tap the checkmark in the toolbar to save your changes. Now, display the
details for the same bookmark, and you'll see that the data reflects your changes.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 352

Congratulations! You can now edit bookmarks, but there's still more work to do. The
next chapter will wrap things up by adding some additional features and putting the
finishing touches on the app.

Android Apprentice Chapter 17: Detail Activity

raywenderlich.com 353

18Chapter 18: Navigation &
Photos
By Tom Blankenship

In this chapter, you’ll add the ability to navigate directly to bookmarks, and you’ll
replace the photo for a bookmark.

Getting started
The starter project for this chapter includes an additional icon that you’ll need in order
to complete the chapter. You can either begin this chapter with the starter project, or
copy the following resource from the starter project into yours:

• src/main/res/drawable/ic_other.png

Make sure to copy the files from all of the drawable folders, including everything with
the .hdpi, .mdpi, .xhdpi, .xxhdpi and .xxxhdpi extensions.

If you do use the starter app, don’t forget to add your google_maps_key in
google_maps_api.xml. Check out Chapter 13 for more details about the Google Maps
key.

Bookmark navigation
Currently, the only way to find an existing bookmark is to locate its pin on the map.
Let’s save a little skin on the user’s fingertips by creating a Navigation Drawer that can
be used to jump directly to any bookmark.

raywenderlich.com 354

Navigation drawer design
It’s hard to use Android very long without encountering a navigation drawer. Although
the uses vary, they share a common design pattern. The drawer is hidden to the left of
the main content view and is activated with either a swipe from the left edge of the
screen or by tapping a navigation drawer icon. Once the drawer is activated, it slides out
over-top of the main content, and slides back in once an action has been taken by the
user.

Adding a navigation drawer can be done in three steps:

• Make DrawerLayout the root view of your layout.

• Make the first view within DrawerLayout your main content.

• Make the second view within DrawerLayout your navigation drawer content.

The final navigation drawer will look like this:

Navigation drawer layout
To create the drawer layout, you’ll create a new layout file for the navigation drawer,
move the map fragment from activity_maps.xml to its own layout file, and update
activity_maps.xml to contain the DrawerLayout element.

First you’ll move the map fragment to a separate layout.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 355

Create a new Layout resource file in the res/layout folder named
main_view_maps.xml and replace the contents with the following:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.raywenderlich.placebook.ui.MapsActivity"
 android:orientation="vertical">

 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:theme="@style/AppTheme.AppBarOverlay">

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 app:popupTheme="@style/AppTheme.PopupOverlay"/>

 </android.support.design.widget.AppBarLayout>

 <fragment
 android:id="@+id/map"
 android:name="com.google.android.gms.maps.SupportMapFragment"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:map="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.raywenderlich.placebook.ui.MapsActivity"
 />

</LinearLayout>

This file will be included in activity_maps.xml. A root LinearLayout is defined to hold
a standard action bar just like the one you created for the detail activity. The action bar
is required in order to hold the navigation drawer toggle icon.

You’ll eventually add code in MapsActivity.kt to dynamically create the navigation
drawer toggle icon for the action bar.

Next, you need a layout to define the navigation drawer.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 356

Create a new Layout resource file in the res/layout folder named
drawer_view_maps.xml and replace the contents with the following:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/drawerView"
 android:layout_width="240dp"
 android:layout_height="match_parent"
 android:layout_gravity="start"
 android:orientation="vertical"
 android:background="#ddd">

 <LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="140dp"
 android:background="@color/colorAccent"
 android:gravity="bottom"
 android:orientation="vertical"
 android:paddingBottom="10dp"
 android:paddingLeft="16dp"
 android:paddingRight="16dp"
 android:paddingTop="10dp"
 android:theme="@style/ThemeOverlay.AppCompat.Dark">

 <ImageView
 android:id="@+id/imageView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:paddingTop="10dp"
 app:srcCompat="@mipmap/ic_launcher_round"/>

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:paddingTop="10dp"
 android:text="PlaceBook"
 android:textAppearance=
 "@style/TextAppearance.AppCompat.Body1"/>

 <TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="raywenderlich.com"/>

 </LinearLayout>

 <android.support.v7.widget.RecyclerView
 android:id="@+id/bookmarkRecyclerView"
 android:scrollbars="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

</LinearLayout>

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 357

This layout defines the contents of the navigation drawer. There are a few key elements
that are important to note:

• The main layout_width is set to 240dp. This is a safe width that ensures some of the
underlying view will be visible when the drawer is fully open. For mobile devices, the
maximum size recommended by the design guidelines is 280dp.

• The main layout specifies a layout_gravity of "start" instead of "left". This will place
the drawer on the right side of the screen if the user’s language is RTL (right-to-left).

• The layout defines a top header area used to display the app icon and some basic
application information.

• The area below the header contains a RecyclerView. This view will be used to display
the list of stored bookmarks.

Now you need a layout for each bookmark item that will be shown in the navigation
drawer.

Create a new Layout resource file in the res/layout folder named bookmark_item.xml
and replace the contents with the following:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:paddingTop="10dp"
 android:paddingBottom="10dp"
 android:paddingLeft="16dp"
 android:paddingRight="16dp">

 <ImageView
 android:id="@+id/bookmarkIcon"
 android:layout_width="30dp"
 android:layout_height="30dp"
 android:layout_marginEnd="16dp"
 android:adjustViewBounds="true"
 android:scaleType="fitStart"/>

 <TextView
 android:id="@+id/bookmarkNameTextView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 tools:text="Name"/>

</LinearLayout>

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 358

This defines the layout for a single bookmark entry in the RecyclerView. You define a
simple layout with a bookmark category icon on the left and the bookmark title on the
right.

That completes the new layout files needed for the navigation drawer. Now you just
need to update the main maps activity to use the new layouts. Open activity_maps.xml
and replace the contents with the following:

<?xml version="1.0" encoding="utf-8"?>

<android.support.v4.widget.DrawerLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/drawerLayout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:openDrawer="start"
 >

 <include layout="@layout/main_view_maps"/>
 <include layout="@layout/drawer_view_maps"/>

</android.support.v4.widget.DrawerLayout>

Your main activity layout previously contained a single map fragment that filled the
entire screen. Now it has a root DrawerLayout that includes the main_view_maps and the
drawer_view_maps.

To make the navigation drawer and action bar work properly, you need to do a few more
things.

Open AndroidManifest.xml and update the MapsActivity <activity> entry to match
the following:

<activity
 android:name=".ui.MapsActivity"
 android:label="@string/title_activity_maps"
 android:theme="@style/AppTheme.NoActionBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
</activity>

The only change is to add the AppTheme.NoActionBar theme style. This is standard
procedure when using the support library version of the toolbar as the action bar.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 359

The final piece is to activate support for the support toolbar in the maps activity. Open
MapsActivity.kt and add the following method to MapsActivity:

private fun setupToolbar() {
 setSupportActionBar(toolbar)
}

Note: Make sure to use import kotlinx.android.synthetic.main.
main_view_maps.* for the toolbar reference.

Again, this is standard setup code that’s required when using the support library
version of the toolbar as the action bar. Build and run the app. Swipe right starting on
the left edge of the screen; the navigation drawer will slide out. To close it, swipe left on
the navigation drawer.

Navigation toolbar toggle
Add a toggle button for the navigation drawer by creating an ActionBarDrawerToggle.

The constructor for ActionBarDrawerToggle requires two string resources for the open
and closed drawer states.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 360

Add the following lines to res/values/strings.xml:

<string name="open_drawer">Open Drawer</string>
<string name="close_drawer">Close Drawer</string>

Add the following to the end of setupToolbar() in MapsActivity.kt:

val toggle = ActionBarDrawerToggle(
 this, drawerLayout, toolbar,
 R.string.open_drawer, R.string.close_drawer)
toggle.syncState()

The ActionBarDrawerToggle will take your drawerLayout and toolbar and fully manage
the display and functionality of the toggle icon. toggle.syncState is called to ensure
the toggle icon is displayed initially. The last two arguments set the content descriptor
on the action bar, based on the navigation drawer state.

Note: If given the choice for imports on ActionBarDrawerToggle, choose
android.support.v7.app.ActionBarDrawerToggle.

All that’s left to do is call setupToolbar when the activity is created.

Add the following lines before setupGoogleClient() in onCreate():

setupToolbar()

This calls the two new methods to bind the controls and setup the toolbar with the
toggle icon.

Build and run the app. Tap the toggle (hamburger) icon to test the navigation drawer
slide.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 361

Populating the navigation bar
To populate the navigation bar, you’ll provide an adapter to the RecyclerView and use
LiveData to update the adapter any time bookmarks change in the database.

The adapter will require some view data — one option would be to create a new data
class in MapsViewModel. You already have the BookmarkMarkerView class used by the
MapsActivity for the map markers, so you’ll take advantage of the existing class and the
code that observes changes to the data.

Since you’ll be using BookmarkMarkerView to display markers and the navigation drawer
items, it needs a more generic name. This is a good opportunity to use Android Studio’s
convenient refactoring capabilities.

Open MapsViewModel.kt and find the BookmarkMarkerView declaration. Right-click
on the word BookmarkMarkerView, and then select Refactor ▸ Rename... or place the
cursor on BookmarkMarkerView and press Shift+F6.

BookmarkMarkerView will be highlighted. Change the name to BookmarkView and
press Enter.

This will automatically update all references to use BookmarkView instead of
BookmarkMarkerView. This is great feature that can save a lot of time when renaming
classes, methods or variables.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 362

Use the same rename feature to change the following:

• getBookmarkMarkerViews() ⇢ getBookmarkViews()

• mapBookmarksToMarkerView() ⇢ mapBookmarksToBookmarkView()

• bookmarkToMarkerView() ⇢ bookmarkToBookmarkView().

In MapsActivity.kt, use the rename feature to change
createBookmarkMarkerObserver() to createBookmarkObserver().

In order to populate the recycler view in the navigation drawer, you’ll need to create a
new recycler view adapter class.

Create a new Kotlin class in the adapter package and name it
BookmarkListAdapter.kt. Now replace the contents with the following:

// 1
class BookmarkListAdapter(
 private var bookmarkData: List<BookmarkView>?,
 private val mapsActivity: MapsActivity) :
 RecyclerView.Adapter<BookmarkListAdapter.ViewHolder>() {
 // 2
 class ViewHolder(v: View,
 private val mapsActivity: MapsActivity) :
 RecyclerView.ViewHolder(v) {
 val nameTextView: TextView =
 v.findViewById(R.id.bookmarkNameTextView) as TextView
 val categoryImageView: ImageView =
 v.findViewById(R.id.bookmarkIcon) as ImageView
 }
 // 3
 fun setBookmarkData(bookmarks: List<BookmarkView>) {
 this.bookmarkData = bookmarks
 notifyDataSetChanged()
 }
 // 4
 override fun onCreateViewHolder(
 parent: ViewGroup,
 viewType: Int): BookmarkListAdapter.ViewHolder {
 val vh = ViewHolder(
 LayoutInflater.from(parent.context).inflate(
 R.layout.bookmark_item, parent, false), mapsActivity)
 return vh
 }

 override fun onBindViewHolder(holder: ViewHolder,
 position: Int) {
 // 5
 val bookmarkData = bookmarkData ?: return
 // 6
 val bookmarkViewData = bookmarkData[position]
 // 7
 holder.itemView.tag = bookmarkViewData

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 363

 holder.nameTextView.text = bookmarkViewData.name
 holder.categoryImageView.setImageResource(
 R.drawable.ic_other)
 }

 // 8
 override fun getItemCount(): Int {
 return bookmarkData?.size ?: 0
 }
}

BookmarkListAdapter is a standard RecyclerView adapter you learned about in Chapter
7, “RecyclerViews”.

Note: Android Studio may not import the View class automatically. If it doesn’t,
add import android.view.View to the top of the file.

1. The adapter constructor takes two arguments; a list of BookmarkView items and a
reference to the MapsActivity. Both arguments are defined as class properties.

2. A ViewHolder class is defined to hold the view widgets.

3. setBookmarkData is designed to be called when the bookmark data changes. It
assigns bookmarks to the new BookmarkView List and refreshes the RecyclerView by
calling notifyDataSetChanged().

4. onCreateVieHolder is overridden and used to create a ViewHolder by inflating the
bookmark_item layout and passing in the mapsActivity property.

5. bookmarkData is assigned to bookmarkData if it’s not null, otherwise you return early.

6. bookmarkViewData is assigned to the bookmark data for the current item position.

7. A reference to the bookmarkViewData is assigned to the holder’s itemView.tag, and
the ViewHolder items are populated from the bookmarkViewData. For now, a default
icon is used to represent the bookmark category.

8. getItemCount() is overridden to return the number of items in the bookmarkData
list.

Now you can use the adapter in the maps activity. Open MapsActivity.kt and add the
following property to MapsActivity:

private lateinit var bookmarkListAdapter: BookmarkListAdapter

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 364

Add the following method to MapsActivity:

private fun setupNavigationDrawer() {
 val layoutManager = LinearLayoutManager(this)
 bookmarkRecyclerView.layoutManager = layoutManager
 bookmarkListAdapter = BookmarkListAdapter(null, this)
 bookmarkRecyclerView.adapter = bookmarkListAdapter
}

This method sets up the adapter for the bookmark recycler view. It gets the
RecyclerView from the layout, sets a default LinearLayoutManager for the
RecyclerView, then creates a new BookmarkListAdapter and assigns it to the
RecyclerView.

You’ll need to set up the navigation drawer at the time the activity is created. Add the
following line to the end of onCreate():

setupNavigationDrawer()

In addition, you need to make sure the list adapter is updated any time the list of
bookmarks changes. This can be handled in createBookmarkObserver().

Add the following line to createBookmarkObserver(), after the call to
displayAllBookmarks(it):

bookmarkListAdapter.setBookmarkData(it)

This sets the new list of BookmarkView items on the recycler view adapter whenever the
bookmark data changes. This will cause the navigation drawer items to update and
reflect the current state of the database.

Build and run the app. Make sure you have some bookmarks saved and then open the
navigation drawer. You’ll see it populated with the list of bookmark names. Add a new
bookmark, and the navigation drawer should update to reflect the addition.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 365

Navigation bar selections
It’s great that users can now see a list of bookmark names, but it’s not very functional!
Let’s add the ability to zoom to a bookmark when the user taps an item in the
navigation drawer.

First, you’ll add a method that centers the map on a bookmark marker and opens the
marker’s info window.

Before writing this method, you need a way to get a handle on a map marker for a given
bookmark instance. Unfortunately, there’s no direct way to get a list of all markers
managed by the GoogleMap object — you’ll just have to take matters into your own
hands!

An easy way to manage the markers is to use a HashMap that associates bookmark IDs
to map markers.

Open MapsActivity.kt and add the following property:

private var markers = HashMap<Long, Marker>()

This creates and initializes a HashMap to map a bookmark ID (Long) to a Marker.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 366

Add the following line before the return in addPlaceMarker():

bookmark.id?.let { markers.put(it, marker) }

This will add a new entry to markers when a new marker is added to the map.

In createBookmarkObserver(), add the following line after the call to map.clear():

markers.clear()

This clears markers when the bookmark data changes. markers will be populated again
as all of the bookmarks are added to the map.

You’ll also need a way to update the map to the location of a bookmark.

Start by adding a helper method to zoom the map to a specific location.

Add the following method to MapsActivity:

private fun updateMapToLocation(location: Location) {
 val latLng = LatLng(location.latitude, location.longitude)
 map.animateCamera(
 CameraUpdateFactory.newLatLngZoom(latLng, 16.0f))
}

This pans and zooms the map to center over a Location. a LatLng is created from the
Location and is used to create the LatLngZoom object for animateCamera().
animateCamera() is similar to the moveCamera() method that you used before, but it
smoothly pans the map instead of abruptly jumping to the new location.

With that in place, you can now make a new method that moves the map to a bookmark
location.

Finally, add the following method to MapsActivity:

fun moveToBookmark(bookmark: MapsViewModel.BookmarkView) {
 // 1
 drawerLayout.closeDrawer(drawerView)
 // 2
 val marker = markers[bookmark.id]
 // 3
 marker?.showInfoWindow()
 // 4
 val location = Location("")
 location.latitude = bookmark.location.latitude
 location.longitude = bookmark.location.longitude
 updateMapToLocation(location)
}

1. Before zooming the bookmark, the navigation drawer is closed.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 367

2. The markers HashMap is used to look up the Marker.

3. If the marker is found, its info window is shown.

4. A Location object is created from the bookmark, and updateMapToLocation() is
called to zoom the map to the bookmark.

The final step is to call moveToBookmark() when the user taps on a bookmark. This will
be handled by the bookmark list adapter class.

Open BookmarkListAdapter.kt and add the following method to the ViewHolder class:

init {
 v.setOnClickListener {
 val bookmarkView = itemView.tag as BookmarkView
 mapsActivity.moveToBookmark(bookmarkView)
 }
}

This method is called when a ViewHolder is initialized. It sets an onClickListener on
the ViewHolder. When the click event is fired you get the bookmarkView associated with
the ViewHolder and call moveToBookmark() to zoom the map to the bookmark.

Before wrapping up this feature, let’s add one simple change to sort the bookmarks by
name. The simplest place to do this is in the bookmark data access object.

Open BookmarkDao.kt and update the @Query attribute on loadAll() to match the
following:

@Query("SELECT * FROM Bookmark ORDER BY name")

Build and run the app. Open the navigation drawer and notice how the bookmarks are
now sorted by name. Tap on a bookmark item; the navigation drawer will close, and the
map will zoom to the selected bookmark with its info window already open.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 368

Custom photos
While Google provides a default photo for each place, your users may prefer to use that
perfect selfie instead! In this section, you’ll add the ability to replace the place photo
with one from the photo library or one you take on-the-fly with the camera.

Image option dialog
You’ll start by creating a dialog to let the user choose between an existing image or
capturing a new one.

Create a new Kotlin file under the ui package named PhotoOptionDialogFragment.kt
and set the contents as follows:

class PhotoOptionDialogFragment : DialogFragment() {
 // 1
 interface PhotoOptionDialogListener {
 fun onCaptureClick()
 fun onPickClick()
 }
 // 2
 private lateinit var listener: PhotoOptionDialogListener
 // 3
 override fun onCreateDialog(savedInstanceState: Bundle?):
 Dialog {
 // 4
 listener = activity as PhotoOptionDialogListener
 // 5
 var captureSelectIdx = -1
 var pickSelectIdx = -1
 // 6
 val options = ArrayList<String>()
 // 7
 if (canCapture(this.context)) {
 options.add("Camera")
 captureSelectIdx = 0
 }
 // 8
 if (canPick(this.context)) {
 options.add("Gallery")
 pickSelectIdx = if (captureSelectIdx == 0) 1 else 0
 }
 // 9
 return AlertDialog.Builder(activity)
 .setTitle("Photo Option")
 .setItems(options.toTypedArray<CharSequence>()) {
 _, which ->
 if (which == captureSelectIdx) {
 // 10
 listener.onCaptureClick()
 } else if (which == pickSelectIdx) {
 // 11
 listener.onPickClick()

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 369

 }
 }
 .setNegativeButton("Cancel", null)
 .create()
 }

 companion object {
 // 12
 fun canPick(context: Context) : Boolean {
 val pickIntent = Intent(Intent.ACTION_PICK,
 MediaStore.Images.Media.EXTERNAL_CONTENT_URI)
 return (pickIntent.resolveActivity(
 context.packageManager) != null)
 }
 // 13
 fun canCapture(context: Context) : Boolean {
 val captureIntent = Intent(
 MediaStore.ACTION_IMAGE_CAPTURE)
 return (captureIntent.resolveActivity(
 context.packageManager) != null)
 }
 // 14
 fun newInstance(context: Context):
 PhotoOptionDialogFragment? {
 // 15
 if (canPick(context) || canCapture(context)) {
 val frag = PhotoOptionDialogFragment()
 return frag
 } else {
 return null
 }
 }
 }
}

Note: Make sure to import the android.support.v4.app.DialogFragment and
android.support.v7.app.AlertDialog when given options for imports.

This class defines a dialog fragment that will show an AlertDialog with one or two
options, based on the device capabilities. If the device can select images from the
gallery, then a Gallery option will be included. If the device has a camera to capture new
images, then a Camera option will be included.

1. The class defines an interface that must be implemented by the parent activity.
You’ll implement this interface in BookmarkDetailsActivity.

2. A property is defined to hold an instance of PhotoOptionDialogListener.

3. This is the standard onCreateDialog method for a DialogFragment.

4. The listener property is set to the parent activity.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 370

5. The two possible option indices are initialized to -1. The option indices will be
defined dynamically, because the position Gallery and Camera options may change
based on the device capabilities.

6. An option ArrayList is defined to hold the AlertDialog options.

7. If the device has a camera capable of capturing images, then a Camera option is
added to the options array. The captureSelectIdx variable is set to 0 to indicate the
Camera option will be at position 0 in the option list.

8. If the device can pick an image from a gallery, then a Gallery option is added to the
options array. The pickSelectIdx variable is set to 0 if it’s the first option, or to 1 if
it’s the second option.

9. The AlertDialog is built using the options list, and an onClickListener is provided
to respond to the user selection.

10. If the Camera option was selected, then onCaptureClick() is called on listener.

11. If the Gallery option was selected, then onPickClick() is called on listener.

12. canPick() determines if the device can pick an image from a gallery. It determines
this by creating an intent for picking images, and then it checks to see if the Intent
can be resolved. This is a standard method for detecting if a particular Intent option
is possible on the current device.

13. canCapture() determines if the device has a camera to capture a new image. It uses
the same technique as canPick() but with a different Intent action.

14. newInstance is a helper method intended to be used by the parent activity when
creating a new PhotoOptionDialogFragment.

15. If the device can pick from a gallery or snap a new image, then the
PhotoOptionDialogFragment is created and returned, otherwise null is returned.

Open BookmarkDetailsActivity.kt and update the class declaration as follows, so that
it implements the PhotoOptionDialogListener interface:

class BookmarkDetailsActivity : AppCompatActivity(),
 PhotoOptionDialogFragment.PhotoOptionDialogListener {

This will cause an error until you implement the PhotoOptionDialogListener interface.

Add the following methods:

override fun onCaptureClick() {
 Toast.makeText(this, "Camera Capture",

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 371

 Toast.LENGTH_SHORT).show()
}
override fun onPickClick() {
 Toast.makeText(this, "Gallery Pick",
 Toast.LENGTH_SHORT).show()
}

You’ll soon implement the code to snap a photo or pick one from the gallery, but for
now they’re just place holders.

Now you can add a method that creates the photo option dialog and displays it to the
user.

Still in BookmarkDetailsActivity.kt and add the following method:

private fun replaceImage() {
 val newFragment = PhotoOptionDialogFragment.newInstance(this)
 newFragment?.show(supportFragmentManager, "photoOptionDialog")
}

You’ll call replaceImage() when the user taps on the bookmark image. You attempt to
create the PhotoOptionDialogFragment fragment. If newFragment is not null, then it’s
displayed.

All that’s left is to listen for the imageViewPlace to be tapped and call replaceImage().

Add the following code at the end of populateImageView():

imageViewPlace.setOnClickListener {
 replaceImage()
}

This sets a click listener on imageViewPlace and calls replaceImage() when the image is
tapped.

Build and run the app. Bring up the details for a bookmark and tap the photo. The
options dialog will display. Tap on one of the options and the appropriate toast should
be displayed.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 372

Now you’re ready to implement the code to capture or pick the image. You’ll start with
the capture option.

Capturing an image
Capturing a full-size image from Android consists of the following steps:

1. Create a unique filename to store the captured image.

2. Create an Intent with the MediaStore.ACTION_IMAGE_CAPTURE action.

3. Add the Uri to the unique filename as an extra on the Intent.

4. Invoke the Intent using startActivityForResult.

5. Respond to the activity result, and process the captured image, which will be
located at the filename Uri you provided.

Generate a unique filename

First you’ll create a helper method to generate a unique image filename.

Open ImageUtils.kt and add the following method:

@Throws(IOException::class)
fun createUniqueImageFile(context: Context): File {
 val timeStamp =
 SimpleDateFormat("yyyyMMddHHmmss").format(Date())
 val filename = "PlaceBook_" + timeStamp + "_"
 val filesDir = context.getExternalFilesDir(
 Environment.DIRECTORY_PICTURES)
 return File.createTempFile(filename, ".jpg", filesDir)
}

Note: Make sure to use import java.text.SimpleDateFormat for
SimpleDateFormat and jave.util.Date for Date.

This method returns an empty File in the app’s private pictures folder using a unique
filename. The filename is created by using the current timestamp with "PlaceBook_"
prepended.

The method is flagged with @Throws to account for File.createTempFile() possibly
throwing an IOException.

Next, you’ll add a property to the details activity in order to keep track of the image
File.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 373

Open BookmarkDetailsActivity.kt and add the following property:

private var photoFile: File? = null

This will be used to hold a reference to the temporary image file when capturing an
image.

Start the capture activity

Before you can call the image capture activity, you need to define a request code. This
can be any number you choose. It will be used to identify the request when the image
capture activity returns the image.

You’ll define this request code as a constant value in a companion object.

Add the following internal companion object to the bottom of
BookmarkDetailsActivity:

companion object {
 private const val REQUEST_CAPTURE_IMAGE = 1
}

This defines the request code to use when processing the camera capture intent. Now
it’s time to replace the temporary onCaptureClick() method with one that actually
captures an image. Replace the contents of onCaptureClick() with the following:

// 1
photoFile = null
try {
 // 2
 photoFile = ImageUtils.createUniqueImageFile(this)
 // 3
 if (photoFile == null) {
 return
 }
} catch (ex: java.io.IOException) {
 // 4
 return
}
// 5
val captureIntent =
Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE)
// 6
val photoUri = FileProvider.getUriForFile(this,
 "com.raywenderlich.placebook.fileprovider",
 photoFile)
// 7
captureIntent.putExtra(android.provider.MediaStore.EXTRA_OUTPUT,
 photoUri)
// 8
val intentActivities = packageManager.queryIntentActivities(
 captureIntent, PackageManager.MATCH_DEFAULT_ONLY)

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 374

intentActivities.map { it.activityInfo.packageName }
 .forEach { grantUriPermission(it, photoUri,
 Intent.FLAG_GRANT_WRITE_URI_PERMISSION) }
// 9
startActivityForResult(captureIntent, REQUEST_CAPTURE_IMAGE)

1. Any previously assigned photoFile is cleared.

2. photoFile is assigned to a new unique file.

3. If photoFile is null the method returns without doing anything.

4. If an exception is thrown, the method returns without doing anything.

5. A new Intent is created with the ACTION_IMAGE_CAPTURE action. This intent is used
to display the camera viewfinder and allow the user to snap a new photo.

6. FileProvider.getUriForFile() is called to get a Uri for the temporary photo file.

7. The photoUri is added as an extra on the Intent so the intent knows where to save
the full-size image captured by the user.

8. Temporary write permissions on the photoUri are given to the Intent.

9. The Intent is invoked, and the request code REQUEST_CAPTURE_IMAGE is passed in.

Note: FileProvider works by creating a content:// Uri for a file versus a file:// Uri.
This is important to allow granting of temporary access permissions to read and
write files. You can read more about FileProvider and why it is more secure than
using file:// Uris by going to https://developer.android.com/reference/android/
support/v4/content/FileProvider.html.

Using a FileProvider requires that it be registered in the AndroidManifest.xml file.

Register the FileProvider

Open AndroidManifest.xml and add the following to the <application> section:

<provider
 android:name="android.support.v4.content.FileProvider"
 android:authorities="com.raywenderlich.placebook.fileprovider"
 android:exported="false"
 android:grantUriPermissions="true">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/file_paths"/>
</provider>

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 375

This declares your FileProvider with the authority of
"com.raywenderlich.placebook.fileprovider". You can choose any unique name here; by
convention, this should start with your app’s package name. Notice that it matches the
name used when calling FileProvider.getUriForFile().

The FileProvider references an xml resource file that defines the allowed file paths.
You’ll create this resource file now.

Select File ▸ New ▸ Android resource file and set the File name to file_paths and the
Resource type to XML. The directory name should change to xml. Tap OK.

This will create a new res directory named xml containing the new file_paths.xml file.

Now you can fill in the file_paths.xml with the allowed file paths.

Replace the contents of file_paths.xml with the following:

<?xml version="1.0" encoding="utf-8"?>
<paths xmlns:android="http://schemas.android.com/apk/res/android">
 <external-path
 name="placebook_images"
 path=
 "Android/data/com.raywenderlich.placebook/files/Pictures" />
</paths>

This defines a single path to the Pictures directory within the PlaceBook file container.

Build and run the app. Tap the photo on a bookmark photo, then select the Camera
option. Verify that the device camera is activated and you are able to snap a photo.

Emulator Camera View

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 376

The photo will not update when the camera view is closed, because you haven’t written
the code to process the capture intent results yet.

Process the capture results

The images captured from the camera can be much larger than what’s needed to display
in the app. As part of the processing of the newly captured photo, you’ll downsample
the photo to match the default bookmark photo size. This calls for some new methods
in the ImageUtils.kt class.

Open ImageUtils.kt and add the following private method:

private fun calculateInSampleSize(
 width: Int, height: Int,
 reqWidth: Int, reqHeight: Int): Int {

 var inSampleSize = 1

 if (height > reqHeight || width > reqWidth) {
 val halfHeight = height / 2
 val halfWidth = width / 2
 while (halfHeight / inSampleSize >= reqHeight &&
 halfWidth / inSampleSize >= reqWidth) {
 inSampleSize *= 2
 }
 }

 return inSampleSize
}

This method is used to calculate the optimum inSampleSize that can be used to resize
an image to a specified width and height. The inSampleSize must be specified as a
power of two. This method starts with an inSampleSize of 1 (no downsampling), and it
increases the inSampleSize by a power of two until it reaches a value that will cause the
image to be downsampled to no larger than the requested image width and height.

Now that you can calculate the proper sample size for any width and height, a new
method can be added to decode a file. This method is called when an image needs to be
downsampled.

Add the following method:

fun decodeFileToSize(filePath: String,
 width: Int, height: Int): Bitmap {
 // 1
 val options = BitmapFactory.Options()
 options.inJustDecodeBounds = true
 BitmapFactory.decodeFile(filePath, options)
 // 2
 options.inSampleSize = calculateInSampleSize(

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 377

 options.outWidth, options.outHeight, width, height)
 // 3
 options.inJustDecodeBounds = false
 // 4
 return BitmapFactory.decodeFile(filePath, options)
}

This method will be called by BookmarkDetailsActivity to get the downsampled image
with a specific width and height from the captured photo file.

1. The size of the image is loaded using BitmapFactory.decodeFile(). The
inJustDecodeBounds setting tells BitmapFactory to not load the actual image, just
its size.

2. calculateInSampleSize() is called with the image width and height and the
requested width and height. Options is updated with the resulting inSampleSize.

3. inJustDecodeBounds is set to false in order to load the full image this time.

4. BitmapFactory.decodeFile() loads the downsampled image from the file and it is
returned.

The BookmarkView class now needs a new method to replace the image for a bookmark.

Add the following method to the BookmarkDetailsView class in the
BookmarkDetailsViewModel.kt file:

fun setImage(context: Context, image: Bitmap) {
 id?.let {
 ImageUtils.saveBitmapToFile(context, image,
 Bookmark.generateImageFilename(it))
 }
}

This takes in a Bitmap image and saves it to the associated image file for the current
BookmarkView.

Now that BookmarkView is able to replace its own image, you’ll create a method in the
details activity to replace the image in the imageViewPlace control and update the
bookmark view object.

Open BookmarkDetailsActivity.kt and add the following method:

private fun updateImage(image: Bitmap) {
 val bookmarkView = bookmarkDetailsView ?: return
 imageViewPlace.setImageBitmap(image)
 bookmarkView.setImage(this, image)
}

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 378

This method assigns an image to the imageViewPlace and saves it to the bookmark
image file using bookmarkDetailsView.setImage().

In order to read in and process the image captured by the system, you need to a method
that will take a file path and return the downsized image as a Bitmap.

Add the following method:

private fun getImageWithPath(filePath: String): Bitmap? {
 return ImageUtils.decodeFileToSize(filePath,
 resources.getDimensionPixelSize(
 R.dimen.default_image_width),
 resources.getDimensionPixelSize(
 R.dimen.default_image_height))
}

This method uses the new decodeFileSize method to load the downsampled image and
return it.

With all of the supporting code in place, you’re ready to process the camera results.

Add the following method:

override fun onActivityResult(requestCode: Int, resultCode: Int,
 data: Intent?) {
 super.onActivityResult(requestCode, resultCode, data)
 // 1
 if (resultCode == android.app.Activity.RESULT_OK) {
 // 2
 when (requestCode) {
 // 3
 REQUEST_CAPTURE_IMAGE -> {
 // 4
 val photoFile = photoFile ?: return
 // 5
 val uri = FileProvider.getUriForFile(this,
 "com.raywenderlich.placebook.fileprovider",
 photoFile)
 revokeUriPermission(uri,
 Intent.FLAG_GRANT_WRITE_URI_PERMISSION)
 // 6
 val image = getImageWithPath(photoFile.absolutePath)
 image?.let { updateImage(it) }
 }
 }
 }
}

onActivityResult() is called by Android when an Activity returns a result such as the
Camera capture activity.

1. First the resultCode is checked to make sure the user didn’t cancel the photo
capture.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 379

2. The requestCode is checked to see what type of activity is returning a result.

3. If the requestCode matches REQUEST_CAPTURE_IMAGE, then processing continues.

4. You return early from the method if there is no photoFile defined.

5. The permissions you set before are now revoked since they’re no longer needed.

6. getImageWithPath() is called to get the image from the new photo path, and
updateImage() is called to update the bookmark image.

Build and run the app. Edit a bookmark and tap on the photo. Tap on Camera and then
snap a new photo. The bookmark photo will update to show the new photo. Go back to
the map view, and then edit the same bookmark again to verify that the new photo is
displayed.

Select an existing image
Now you’ll add the option to pick an existing image from the device’s gallery.

When selecting from the device gallery, you don’t provide a temporary file for the image
storage. Instead, the image selection activity gives you a Uri to the selected image.

You’ll need a new method that reads an image from a Uri input stream.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 380

Open ImageUtils.kt and add the following method:

fun decodeUriStreamToSize(uri: Uri,
 width: Int, height: Int, context: Context): Bitmap? {
 var inputStream: InputStream? = null
 try {
 val options: BitmapFactory.Options
 // 1
 inputStream = context.contentResolver.openInputStream(uri)
 // 2
 if (inputStream != null) {
 // 3
 options = BitmapFactory.Options()
 options.inJustDecodeBounds = false
 BitmapFactory.decodeStream(inputStream, null, options)
 // 4
 inputStream.close()
 inputStream = context.contentResolver.openInputStream(uri)
 if (inputStream != null) {
 // 5
 options.inSampleSize = calculateInSampleSize(
 options.outWidth, options.outHeight,
 width, height)
 options.inJustDecodeBounds = false
 val bitmap = BitmapFactory.decodeStream(
 inputStream, null, options)
 inputStream.close()
 return bitmap
 }
 }
 return null
 } catch (e: Exception) {
 return null
 } finally {
 // 6
 inputStream?.close()
 }
}

This uses the same technique as decodeFileToSize() to read in the size of the image
first, calculate the sample size and then load in the downsampled image. The main
difference is that it reads from the Uri stream instead of a file.

1. inputStream is opened for the Uri.

2. If the inputStream is not null, then processing continues.

3. The image size is determined.

4. The input stream is closed and opened again, and checked for null.

5. The image is loaded from the stream using the downsampling options and is
returned to the caller.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 381

6. You must close the inputStream once it’s opened, even if an exception is thrown.

Now you’ll need a new request code to identify the results from the image selection
activity.

Open BookmarkDetailsActivity.kt and add the following to the companion object:

private const val REQUEST_GALLERY_IMAGE = 2

You can now replace the empty onPickClick() with a version that kicks off Android’s
image selection activity.

Replace the contents of onPickClick() with the following:

val pickIntent = Intent(Intent.ACTION_PICK,
 MediaStore.Images.Media.EXTERNAL_CONTENT_URI)
startActivityForResult(pickIntent, REQUEST_GALLERY_IMAGE)

In order to process the results of the image selection, you’ll need a method that returns
a downsampled Bitmap from a Uri path.

Add the following method:

private fun getImageWithAuthority(uri: Uri): Bitmap? {
 return ImageUtils.decodeUriStreamToSize(uri,
 resources.getDimensionPixelSize(
 R.dimen.default_image_width),
 resources.getDimensionPixelSize(
 R.dimen.default_image_height),
 this)
}

This method uses the new decodeUriStreamToSize method to load the downsampled
image and return it.

Now you just need to add a new case to handle existing images in onActivityResult().
This time you’ll handle the result of the image selection activity.

In onActivityResult(), add the following new clause to the when conditional block:

REQUEST_GALLERY_IMAGE -> if (data != null && data.data != null) {
 val imageUri = data.data
 val image = getImageWithAuthority(imageUri)
 image?.let { updateImage(it) }
}

If the activity result is from selecting a gallery image, and the data returned is valid,
then getImageWithAuthority() is called to load the selected image. updateImage() is
called to update the bookmark image.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 382

Build and run the app. Edit a bookmark and tap on the photo. Tap on Gallery and then
select an existing photo. The bookmark photo will update to show the selected photo.

Go back to the map view and then edit the same bookmark again to verify that the new
photo is displayed.

Where to go from here?
Great job! You’ve added some key features to the app, and have completed the primary
bookmarking features. In the next chapter you’ll add some finishing touches that will
kick the app up a notch.

Android Apprentice Chapter 18: Navigation & Photos

raywenderlich.com 383

19Chapter 19: Finishing
Touches
By Tom Blankenship

In this chapter, you’ll add some finishing touches that improve both the look and
usability of the PlaceBook app. Even though PlaceBook is perfectly functional as-is, it’s
often the little touches that make an app go from good to great. With that in mind,
you’ll wrap things up by making the following changes:

• Add categories for bookmarks

• Display category specific icons on the map

• Add place search

• Add ad-hoc bookmark creation

• Add bookmark deletions

• Add bookmark sharing

• Update the color scheme and display progress

raywenderlich.com 384

Getting started
The starter project for this chapter includes some additional resources and an updated
application icon. You can either begin this chapter with the starter project, or copy the
following resources from the starter project into yours:

• src/main/ic_launcher_round-web.png

• src/main/ic_launcher-web.png

• src/main/res/drawable/ic_gas.png

• src/main/res/drawable/ic_lodging.png

• src/main/res/drawable/ic_restaurant.png

• src/main/res/drawable/ic_search_white.png

• src/main/res/drawable/ic_shopping.png

• src/main/res/mipmap/ic_launcher_round.png

• src/main/res/mipmap/ic_launcher.png

Make sure to copy the files from all of the drawable folders, including everything with
the .hdpi, .mdpi, .xhdpi and .xxhdpi extensions.

If you’re using the starter project, remember to replace the key in
google_maps_api.xml.

Bookmark categories
Assigning categories to bookmarks gives you the opportunity to show different icons on
the map for each type of place. Google already provides category information for Places.
You’ll use this to set a default category, and let the user assign a different category if
they choose.

Update the model
Start by adding a new category property to the Bookmark model.

Open Bookmark.kt and update the Bookmark declaration to add a category property:

data class Bookmark(
 @PrimaryKey(autoGenerate = true) var id: Long? = null,

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 385

 var placeId: String? = null,
 var name: String = "",
 var address: String = "",
 var latitude: Double = 0.0,
 var longitude: Double = 0.0,
 var phone: String = "",
 var notes: String = "",
 var category: String = ""
)

Open PlaceBookDatabase.kt and update the @Database annotation version to 3:

@Database(entities = arrayOf(Bookmark::class), version = 3)

Note: As mentioned in Chapter 17, if you don’t update the version number after
modifying the model, an exception will be thrown by Room. By changing the
version number, Room will create a brand new database on the first run using the
new version number.

Converting place types
If you examine the Place class defined by the Google Play Services, you’ll notice that it
provides a fairly long list of place types such as:

int TYPE_OTHER = 0;
int TYPE_ACCOUNTING = 1;
int TYPE_AIRPORT = 2;
int TYPE_AMUSEMENT_PARK = 3;
int TYPE_AQUARIUM = 4;
int TYPE_ART_GALLERY = 5;
...

To keep things manageable, PlaceBook will support only four categories: Gas, Lodging,
Restaurant and Shopping. All other types of places will be assigned to the Other
category.

You’ll need a method to map a Google Place type to a supported PlaceBook category.
You’ll only convert the Place types that can easily map to one of the four categories. All
other types will map to the Other category.

Open BookmarkRepo.kt and add the following method:

private fun buildCategoryMap() : HashMap<Int, String> {
 return hashMapOf(
 Place.TYPE_BAKERY to "Restaurant",
 Place.TYPE_BAR to "Restaurant",
 Place.TYPE_CAFE to "Restaurant",
 Place.TYPE_FOOD to "Restaurant",

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 386

 Place.TYPE_RESTAURANT to "Restaurant",
 Place.TYPE_MEAL_DELIVERY to "Restaurant",
 Place.TYPE_MEAL_TAKEAWAY to "Restaurant",
 Place.TYPE_GAS_STATION to "Gas",
 Place.TYPE_CLOTHING_STORE to "Shopping",
 Place.TYPE_DEPARTMENT_STORE to "Shopping",
 Place.TYPE_FURNITURE_STORE to "Shopping",
 Place.TYPE_GROCERY_OR_SUPERMARKET to "Shopping",
 Place.TYPE_HARDWARE_STORE to "Shopping",
 Place.TYPE_HOME_GOODS_STORE to "Shopping",
 Place.TYPE_JEWELRY_STORE to "Shopping",
 Place.TYPE_SHOE_STORE to "Shopping",
 Place.TYPE_SHOPPING_MALL to "Shopping",
 Place.TYPE_STORE to "Shopping",
 Place.TYPE_LODGING to "Lodging",
 Place.TYPE_ROOM to "Lodging"
)
}

This builds a HashMap that relates the Place types to the category names. Any types not
included in the list will end up mapping to the “Other” category as you’ll see in
placeTypeToCategory().

Add the following property to BookmarkRepo:

private var categoryMap:
 HashMap<Int, String> = buildCategoryMap()

categoryMap is initialized to hold the mapping of place types to category names.

Add the following method:

fun placeTypeToCategory(placeType: Int): String {
 var category = "Other"
 if (categoryMap.containsKey(placeType)) {
 category = categoryMap[placeType].toString()
 }
 return category
}

This method will take in a Place type and convert it to a valid category. The category
variable is initialized to “Other” by default. If the categoryMap contains a key matching
the placeType then it’s assigned to category.

You may be wondering why toString() is used on the value retrieved from the
categoryMap HashMap. The reason is that accessing a HashMap with a missing key will
return a null value. To satisfy the compiler, you must force the value to be a string. In
this case, you’ve used containsKey() to ensure that the key is in the HashMap, so you’re
safe.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 387

Now it’s time to make use of the new icons provided in the starter project. The icons
will correspond to the categories like so:

• ic_other = Other

• ic_gas = Gas

• ic_lodging = Lodging

• ic_restaurant = Restaurant

• ic_shopping = Shopping

First, you’ll map the category names to the drawable resource files.

Add the following method to BookmarkRepo:

private fun buildCategories() : HashMap<String, Int> {
 return hashMapOf(
 "Gas" to R.drawable.ic_gas,
 "Lodging" to R.drawable.ic_lodging,
 "Other" to R.drawable.ic_other,
 "Restaurant" to R.drawable.ic_restaurant,
 "Shopping" to R.drawable.ic_shopping
)
}

This builds a HashMap that relates the category names to the category icon resource IDs.

Add the following property to BookmarkRepo:

private var allCategories: HashMap<String, Int> =
 buildCategories()

allCategories is initialized to hold the mapping of category names to resource IDs.

Add the following method:

fun getCategoryResourceId(placeCategory: String): Int? {
 return allCategories[placeCategory]
}

This method provides a public method to convert a category name to a resource ID.

Updating the view model
Now you’re ready to update the map’s view model to support bookmark categories.
Open MapsViewModel.kt and add the following private method:

private fun getPlaceCategory(place: Place): String {
 // 1

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 388

 var category = "Other"
 val placeTypes = place.placeTypes
 // 2
 if (placeTypes.size > 0) {
 // 3
 val placeType = placeTypes[0]
 category = bookmarkRepo.placeTypeToCategory(placeType)
 }
 // 4
 return category
}

This method converts a place type to a bookmark category. The task is slightly
complicated due to the possibility of multiple types being assigned to a single place.

1. The category is defaulted to "Other" just in case there’s no type assigned to the
place.

2. The method first checks the placeTypes List to see if it is populated.

3. If so, the first type is extracted from the List and placeTypeToCategory() is called to
make the conversion.

4. Finally, the category is returned.

Update addBookmarkFromPlace() and add the following assignment before the call to
addBookmark():

bookmark.category = getPlaceCategory(place)

This assigns the category to the newly created bookmark.

Update the BookmarkView class declaration to include a new category resource ID
property:

data class BookmarkView(val id: Long? = null,
 val location: LatLng = LatLng(0.0, 0.0),
 val name: String = "",
 val phone: String = "",
 val categoryResourceId: Int? = null) {

categoryResourceId is added and will hold the resource icon for the bookmark’s
category.

Update bookmarkToBookmarkView() to reflect the new BookmarkView declaration:

private fun bookmarkToBookmarkView(bookmark: Bookmark):
 MapsViewModel.BookmarkView {
 return MapsViewModel.BookmarkView(
 bookmark.id,
 LatLng(bookmark.latitude, bookmark.longitude),

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 389

 bookmark.name,
 bookmark.phone,
 bookmarkRepo.getCategoryResourceId(bookmark.category))
}

Updating the UI
You can now update the user interface to show the category icons.

Open MapsActivity.kt and replace the call to map.addMarker() in addPlaceMarker()
with the following:

val marker = map.addMarker(MarkerOptions()
 .position(bookmark.location)
 .title(bookmark.name)
 .snippet(bookmark.phone)
 .icon(bookmark.categoryResourceId?.let {
 BitmapDescriptorFactory.fromResource(it)
 })
 .alpha(0.8f))

The change here is that you’re setting the icon to a bitmap which is loaded from the
categoryResourceId property on the bookmark.

Build and run the app. Add bookmarks for a variety of place types and you’ll see the
different icons that are displayed on the map.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 390

The next UI update is a simple one. You’ll update the navigation drawer to display the
new category icons.

Open BookmarkListAdapter.kt. In onBindViewHolder(), replace the call to
setImageResource() with the following:

bookmarkViewData.categoryResourceId?.let {
 holder.categoryImageView.setImageResource(it) }

This first checks to see if the categoryResourceId has been set, and if so, it sets the
image resource to the categoryResourceId.

Build and run the app. Open the navigation drawer and marvel at the beautiful category
icons beside each bookmark!

There’s one last feature before moving on, and that’s to allow the user to change the
category assigned to a place.

You’ll start by adding a new spinner UI widget to the bookmark details activity, allowing
the user to select from the available categories.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 391

Open activity_bookmark_details.xml and add the following after the closing </
LinearLayout> tag for the editTextName EditText control:

<LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView
 android:id="@+id/textViewCategoryLabel"
 style="@style/BookmarkLabel"
 android:layout_weight='0.4'
 android:text="Category"/>
 <ImageView
 android:id="@+id/imageViewCategory"
 android:layout_width="24dp"
 android:layout_height="24dp"
 android:src="@drawable/ic_other"
 android:layout_marginStart="16dp"
 android:layout_marginLeft="16dp"
 android:layout_gravity="bottom"
 />
 <Spinner
 android:id="@+id/spinnerCategory"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight='1.4'
 android:layout_marginStart="8dp"
 android:layout_marginEnd="8dp"
 android:layout_marginTop="16dp"
 />
</LinearLayout>

This defines a row underneath the bookmark name which displays the currently
selected category icon using an ImageView, and it allows the user to select a new
category using a Spinner.

Before you can use set the image and populate the spinner, you need to add support for
bookmark categories in the view model for the detail view.

Open BookmarkDetailsViewModel.kt and update the BookmarkDetailsView
declaration to include a category property:

data class BookmarkDetailsView(var id: Long? = null,
 var name: String = "",
 var phone: String = "",
 var address: String = "",
 var notes: String = "",
 var category: String = "") {

Update the return call in bookmarkToBookmarkView() to include the category:

return BookmarkDetailsView(
 bookmark.id,

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 392

 bookmark.name,
 bookmark.phone,
 bookmark.address,
 bookmark.notes,
 bookmark.category
)

Update bookmarkViewToBookmark() to include the category assignment after the
bookmark.notes assignment line:

bookmark.category = bookmarkDetailsView.category

Add a new method to return a category resource ID from a category name:

fun getCategoryResourceId(category: String): Int? {
 return bookmarkRepo.getCategoryResourceId(category)
}

This is a simple pass-through to a similar method in the bookmark repo.

In order to fill the spinner with options, you’ll also need a method to return a list of all
possible category names.

Open BookmarkRepo.kt and add the following property:

val categories: List<String>
 get() = ArrayList(allCategories.keys)

This defines a get() accessor on the categories property that will take all of the
HashMap keys, which are the category names, and return them as an ArrayList of
strings.

Open BookmarkDetailsViewModel.kt and add the following method:

fun getCategories(): List<String> {
 return bookmarkRepo.categories
}

This is another simple pass-through method that returns the categories list from the
bookmark repo.

Open BookmarkDetailsActivity.kt and add the following new method:

private fun populateCategoryList() {
 // 1
 val bookmarkView = bookmarkDetailsView ?: return
 // 2
 val resourceId =
 bookmarkDetailsViewModel.getCategoryResourceId(
 bookmarkView.category)
 // 3

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 393

 resourceId?.let { imageViewCategory.setImageResource(it) }
 // 4
 val categories = bookmarkDetailsViewModel.getCategories()
 // 5
 val adapter = ArrayAdapter(this,
 android.R.layout.simple_spinner_item, categories)
 adapter.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item)
 // 6
 spinnerCategory.adapter = adapter
 // 7
 val placeCategory = bookmarkView.category
 spinnerCategory.setSelection(
 adapter.getPosition(placeCategory))
}

1. The method returns immediately if bookmarkDetailsView is null.

2. The category icon resourceId is retrieved from the view model.

3. If the resourceId is not null imageViewCategory is updated to the category icon.

4. The list of categories is retrieved from the view model.

5. This is the standard way to populate a Spinner control in Android. You first create
an adapter, in this case a simple ArrayAdapter built from the list of category names.
Then, using setDropDownViewResource(), the adapter is assigned a standard built-in
layout resource.

6. The adapter is then assigned to the spinnerCategory control.

7. spinnerCategory is updated to reflect the current category selection.

Add a call to populateCategoryList() in getIntentData() after the
populateImageView() call:

populateCategoryList()

Build and run the app. Open the details for a bookmark and you’ll notice the spinner
displays the assigned category and the appropriate icon is displayed to the left.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 394

If you change the category and save the bookmark, you’ll discover a couple of issues:
the category icon does not update when the value is changed, and the category change
is not saved. Let’s fix that now.

Add the following to the end of populateCategoryList():

// 1
spinnerCategory.post {
 // 2
 spinnerCategory.onItemSelectedListener = object :
AdapterView.OnItemSelectedListener {
 override fun onItemSelected(parent: AdapterView<*>, view: View,
position: Int, id: Long) {
 // 3
 val category = parent.getItemAtPosition(position) as String
 val resourceId =
bookmarkDetailsViewModel.getCategoryResourceId(category)
 resourceId?.let {
 imageViewCategory.setImageResource(it) }
 }
 override fun onNothingSelected(parent: AdapterView<*>) {
 // NOTE: This method is required but not used.
 }
 }
}

This new block of code is setting up a listener to respond when the user changes the
category selection.

1. The need to use spinnerCategory.post is due to an unfortunate side effect in
Android where onItemSelected() is always called once with an initial position of 0.
This causes the spinner to reset back to the first category regardless of the selection
you set programmatically.

Using post causes the code block to be placed on the main thread queue, and the
execution of the code inside the braces gets delayed until the next message loop.
This eliminates the initial call by Android to onItemSelected().

2. The spinnerCategory onItemSelectedListener property is assigned to an instance
of the onItemSelectedListener class that implements onItemsSelected() and
onNothingSelected().

3. When the user selects a new category, onItemSelected() is called. The new
category is determined by the current spinner selection position, and
imageViewCategory is updated to reflect the new category.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 395

Update saveChanges() to add the following line after the assignment of
bookmarkView.phone:

bookmarkView.category = spinnerCategory.selectedItem as String

This grabs the currently selected category and assigns it to the bookmarkView category.

Build and run the app. This time the category icon on the details screen will update as
you change selections, and the new category will persist when you save the changes.

Searching for places
What if the user is looking for a specific place and can’t find it on the map? No worries!
The Google Places API provides a powerful search feature that you’ll take advantage of
next. You’ll add a new search button overlay on the map to trigger the search feature.

The Google Places API provides an autocomplete search widget that you can easily
display within your app. As the user types in a place name or address, the search widget
will display a dynamic list of choices.

Note: If you want to completely customize the user experience, you can also use
the autocomplete feature programmatically. See the developer document here
https://developers.google.com/places/android-api/
autocomplete#get_place_predictions_programmatically for more details.

You can choose to either embed the autocomplete widget as a fragment, or you can
launch it as an activity with an intent. If you want a permanent search bar within your
activity, then the fragment approach is more appropriate. In our case, a search button
will be provided, and the autocomplete widget will be shown as an activity.

First, a method is needed to kick off the search feature.

Use PlaceAutocomplete search
Open MapsActivity.kt and the following property to the companion object:

private const val AUTOCOMPLETE_REQUEST_CODE = 2

Add the following method:

private fun searchAtCurrentLocation() {
 // 1
 val bounds = map.projection.visibleRegion.latLngBounds

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 396

 try {
 // 2
 val intent = PlaceAutocomplete.IntentBuilder(
 PlaceAutocomplete.MODE_OVERLAY)
 .setBoundsBias(bounds)
 .build(this)
 // 3
 startActivityForResult(intent, AUTOCOMPLETE_REQUEST_CODE)
 } catch (e: GooglePlayServicesRepairableException) {
 //TODO: Handle exception
 } catch (e: GooglePlayServicesNotAvailableException) {
 //TODO: Handle exception
 }
}

1. The bounds of the current visible region of the map is computed.

2. PlaceAutocomplete provides an IntentBuilder method to build up the intent.
PlaceAutocomplete.MODE_OVERLAY is passed to indicate that the search widget can
overlay the current activity. The other option is PlaceAutocomplete.FULLSCREEN,
which will cause the search interface to replace the entire screen.

The map bounds is passed to setBoundBias(). This tells the search widget to look for
places within the current map window before searching other areas.

3. The activity starts and is passed a request code of AUTOCOMPLETE_REQUEST_CODE.
When the user finishes the search, the results will be identified by this request code.

The code is surrounded by a try/catch block because IntentBuilder can throw
exceptions if Google Play services are not working.

Add the following method:

override fun onActivityResult(requestCode: Int, resultCode: Int,
 data: Intent?) {
 // 1
 when (requestCode) {
 AUTOCOMPLETE_REQUEST_CODE ->
 // 2
 if (resultCode == Activity.RESULT_OK && data != null) {
 // 3
 val place = PlaceAutocomplete.getPlace(this, data)
 // 4
 val location = Location("")
 location.latitude = place.latLng.latitude
 location.longitude = place.latLng.longitude
 updateMapToLocation(location)
 // 5
 displayPoiGetPhotoMetaDataStep(place)
 }
 }
}

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 397

onActivityResult() is called by Android when the user completes the search.

1. First the requestCode is checked to make sure it matches the
AUTOCOMPLETE_REQUEST_CODE passed into startActivityForResult().

2. If the resultCode indicates the user found a place, and the data is not null, then
you continue to process the results.

3. How do you get the actual place that was found by the user? Fortunately, the
PlaceAutocomplete class provides a handy method, getPlace(), that will take the
data and return back a populated Place object.

4. The place latLng is converted to a location and passed to the existing
updateMapToLocation method. This causes the map to zoom to the place.

5. Previously, when the user tapped on a place, several steps were created to process
the data. In this case, you already have the place loaded, so you don’t need all of the
steps, but you can start at the displayPoiGetPhotoMetaDataStep() and pass it the
found place. This will load the place photo and display the place info window.

Update the UI
Next, you’ll surround the main map view with a frame layout and add a floating search
button on top of the map.

Open main_view_maps.xml and the following before the top <LinearLayout> line:

<FrameLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

Add the following after the closing </LinearLayout> line:

 <android.support.design.widget.FloatingActionButton
 android:id="@+id/fab"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|end"
 android:layout_margin="16dp"
 app:srcCompat="@drawable/ic_search_white"/>

</FrameLayout>

This tells the layout engine to place the search button in the bottom right corner of the
map, with a margin of 16dp on each side.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 398

Now it’s just a matter of connecting the button to a variable and listening for a user tap.

Open MapsActivity.kt and add the following to setupMapListeners():

fab.setOnClickListener {
 searchAtCurrentLocation()
}

Build and run the app. Tap on the search icon and search for a place by name. Tap on
one of the results and the map will zoom to the place and display the info window.

Create ad-hoc bookmarks
Google’s database of places is impressive, but it’s not perfect. What if the user wants to
add a bookmark for a place that doesn’t show up on the map? You’ll make this possible
by allowing the user to "drop a pin" at any location on the map.

Currently, the MapsViewModel class has a method to create a bookmark from a place, but
now you need one to create a bookmark from a map location only.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 399

Open MapsViewModel.kt and add the following method:

fun addBookmark(latLng: LatLng) : Long? {
 val bookmark = bookmarkRepo.createBookmark()
 bookmark.name = "Untitled"
 bookmark.longitude = latLng.longitude
 bookmark.latitude = latLng.latitude
 bookmark.category = "Other"
 return bookmarkRepo.addBookmark(bookmark)
}

This takes in a LatLng location and creates a new untitled bookmark at the given
location. It returns the new bookmark ID to the caller.

Now you need a method in MapsActivity.kt to take advantage of this new method:

Open MapsActivity.kt and add the following method:

private fun newBookmark(latLng: LatLng) {
 launch(CommonPool) {
 val bookmarkId = mapsViewModel.addBookmark(latLng)
 bookmarkId?.let {
 startBookmarkDetails(it)
 }
 }
}

This method creates a new bookmark from a location and then starts the bookmark
details activity to allow editing of the new bookmark. The call to addBookmark runs
within a coroutine block, because it accesses the database and can’t run on the main
thread.

Now you just need to listen for the user to long tap on the map.

Add the following to setupMapListeners():

map.setOnMapLongClickListener { latLng ->
 newBookmark(latLng)
}

Build and run the app. Long tap anywhere on the map, and the bookmark activity
screen will display with a new untitled bookmark using a default photo.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 400

Name the bookmark, assign it a category and save the changes. The new bookmark will
appear at the location where you tapped on the map.

Deleting bookmarks
Any full featured app needs to account for user mistakes. In PlaceBook, this means
letting the user remove a bookmark that is no longer needed, or one that was added by
accident. You’ll add a trashcan action bar icon to the detail activity to let the user delete
a bookmark.

Open menu_bookmark_details.xml. Add the following before the action_save <item>:

<item
 android:id="@+id/action_delete"
 android:icon="@android:drawable/ic_menu_delete"
 android:title="Delete"
 app:showAsAction="ifRoom"/>

This adds a delete icon (trashcan) to the action bar menu to the left of the save icon.

You’ll work your way up from the bottom-level code to the top, adding in basic support
for deleting bookmarks.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 401

Create a new Kotlin file named FileUtils.kt in the utils package, and replace the
contents with the following:

object FileUtils {
 fun deleteFile(context: Context, filename: String) {
 val dir = context.filesDir
 val file = File(dir, filename)
 file.delete()
 }
}

This is a utility method that deletes a single file in the app’s main files directory. This
will be used to delete the image associated with a deleted bookmark.

Open Bookmark.kt and add the following method:

fun deleteImage(context: Context) {
 id?.let {
 FileUtils.deleteFile(context, generateImageFilename(it))
 }
}

This method uses FileUtils.deleteFile() to delete the image file associated with the
current bookmark.

Open BookmarkRepo.kt and add the following method:

fun deleteBookmark(bookmark: Bookmark) {
 bookmark.deleteImage(context)
 bookmarkDao.deleteBookmark(bookmark)
}

This method deletes the bookmark image and the bookmark from the database.

Open BookmarkDetailsViewModel.kt and add the following method:

fun deleteBookmark(bookmarkDetailsView: BookmarkDetailsView) {
 launch (CommonPool) {
 val bookmark = bookmarkDetailsView.id?.let {
 bookmarkRepo.getBookmark(it)
 }
 bookmark?.let {
 bookmarkRepo.deleteBookmark(it)
 }
 }
}

This method takes in a BookmarkView and loads the bookmark from the repo. If the
bookmark is found, it calls deleteBookmark() on the repo. The code is wrapped in a
coroutine so it runs in the background.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 402

Open BookmarkDetailsActivity.kt and add the following method:

private fun deleteBookmark()
{
 val bookmarkView = bookmarkDetailsView ?: return

 AlertDialog.Builder(this)
 .setMessage("Delete?")
 .setPositiveButton("Ok") { _, _ ->
 bookmarkDetailsViewModel.deleteBookmark(bookmarkView)
 finish()
 }
 .setNegativeButton("Cancel", null)
 .create().show()
}

This method displays a standard AlertDialog to ask the user if they want to delete the
bookmark.

If they select OK, the bookmark is deleted and the activity is closed using finish().

All the support code is in place, now you just need to respond to the delete menu
action.

In onOptionsItemSelected() add the following additional case to the when statement
before the final else:

R.id.action_delete -> {
 deleteBookmark()
 return true
}

This calls deleteBookmark() when the delete icon is tapped.

Since you are deleting a bookmark that’s being observed with LiveData, some
precautions are needed to prevent a crash.

Open BookmarkDetailsViewModel.kt and update mapBookmarkToView() as follows:

fun mapBookmarkToBookmarkView(bookmarkId: Long) {
 val bookmark = bookmarkRepo.getLiveBookmark(bookmarkId)
 bookmarkDetailsView = Transformations.map(bookmark) { bookmark ->
 bookmark?.let {
 val bookmarkView = bookmarkToBookmarkView(bookmark)
 bookmarkView
 }
 }
}

This ensures that a null bookmark is not passed to bookmarkToView by using the
bookmark?.let statement.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 403

Build and run the app. Edit an existing bookmark and use the delete icon to delete it.
The bookmark will be deleted, and you’ll return to the map activity.

Sharing bookmarks
Your users have painstakingly bookmarked some fantastic places, so why not let them
share their good finds with friends?

Android allows you to share data with other apps using an intent with an
ACTION_SEND action. All you need to do is provide the data. Android will figure out
the apps that support your data type and present the user with a list of choices.

You’ll build out an intent that shares a URL providing directions to the bookmark place.

Open BookmarkDetailsViewModel.kt and update the BookmarkDetailsView
declaration as follows:

data class BookmarkDetailsView(var id: Long? = null,
 var name: String = "",
 var phone: String = "",
 var address: String = "",
 var notes: String = "",
 var category: String = "",
 var longitude: Double = 0.0,
 var latitude: Double = 0.0,
 var placeId: String? = null) {

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 404

This adds longitude, latitude and placeId properties.

Update the return statement in bookmarkToBookmarkView() as follows:

return BookmarkDetailsView(
 bookmark.id,
 bookmark.name,
 bookmark.phone,
 bookmark.address,
 bookmark.notes,
 bookmark.category,
 bookmark.longitude,
 bookmark.latitude,
 bookmark.placeId
)

The new longitude, latitude and placeId values are added to the BookmarkView call.

Open BookmarkDetailsActivity.kt and add the following method:

private fun sharePlace() {
 // 1
 val bookmarkView = bookmarkDetailsView ?: return
 // 2
 var mapUrl = ""
 if (bookmarkView.placeId == null) {
 // 3
 val location = URLEncoder.encode("${bookmarkView.latitude},"
 + "${bookmarkView.longitude}", "utf-8")
 mapUrl = "https://www.google.com/maps/dir/?api=1" +
 "&destination=$location"
 } else {
 // 4
 val name = URLEncoder.encode(bookmarkView.name, "utf-8")
 mapUrl = "https://www.google.com/maps/dir/?api=1" +
 "&destination=$name&destination_place_id=" +
 "${bookmarkView.placeId}"
 }
 // 5
 val sendIntent = Intent()
 sendIntent.action = Intent.ACTION_SEND
 // 6
 sendIntent.putExtra(Intent.EXTRA_TEXT,
 "Check out ${bookmarkView.name} at:\n$mapUrl")
 sendIntent.putExtra(Intent.EXTRA_SUBJECT,
 "Sharing ${bookmarkView.name}")
 // 7
 sendIntent.type = "text/plain"
 // 8
 startActivity(sendIntent)
}

1. An early return is taken if bookmarkView is null.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 405

2. This section of code builds out a Google Maps URL to trigger driving directions to
the bookmarked place. Check out the documentation at https://
developers.google.com/maps/documentation/urls/guide for details about
constructing map URLs.

There are two different styles of URL to use depending on whether a place ID is
available. If the user created an ad-hoc bookmark, then the directions will go
directly to the latitude/longitude of the bookmark. If the bookmark was created
from a place, then the directions will go to the place based on its ID.

3. A string with the latitude/longitude separated by a comma is constructed. It’s
encoded to allow the command to work in the URL. The final mapUrl is constructed
using the location string. The final URL string will look like this: https://
www.google.com/maps/dir/?
api=1&destination=-84.56536026895046%2C35.+351035752390054

4. For the option with the place ID available, the destination will contain the place
name. The name string is URL encoded to make the input safe. The final mapUrl is
constructed using the name string and the place ID. The final URL string will look
like this: https://www.google.com/maps/dir/?
api=1&destination=Riverstone+Plaza&destination_place_id=ChIJAAAAAAAAAAAR
1tSJBrRUoKI

5. The sharing activity Intent is created and the action set to ACTION_SEND. This tells
Android that this Intent is meant to share its data with another application
installed on the device.

6. There are multiple types of extra data that can be added to the intent. The
application that receives the intent can choose which of the data items to use and
which to ignore. For example, an email app will use the ACTION_SUBJECT, but a
messaging app will likely ignore it. There are several other extras available
including EXTRA_EMAIL, EXTRA_CC, and EXTRA_BCC.

7. The intent type is set to a MIME type of “text/plain”. This instructs Android that
you intend to share plain text data. Any application in the system that registers an
intent filter for the “text/plain” MIME type will be offered as a choice in the share
dialog. If you were sharing binary data such as an image, you might use an MIME
type of “image/jpeg”.

8. Finally the sharing activity is started.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 406

Now you’ll add a floating share button to trigger the sharePlace method. Because you’ll
use the same technique as you did when adding the search button on the map activity,
we’ll move through this with minimal explanation.

Open activity_bookmark_details.xml and replace the top <LinearLayout> with the
following:

<FrameLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

<LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

Add the following after the closing </LinearLayout> line:

 <android.support.design.widget.FloatingActionButton
 android:id="@+id/fab"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="16dp"
 android:layout_gravity="bottom|end"
 app:srcCompat="@android:drawable/ic_dialog_email"/>

</FrameLayout>

Open BookmarkDetailsActivity.kt and add the following method:

private fun setupFab() {
 fab.setOnClickListener { sharePlace() }
}

Add the following to the end of onCreate():

setupFab()

Build and run the app. Open a bookmark and tap the sharing button. You should see a
share dialog similar the following. Your actual choices will vary depending on the
applications installed on your device.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 407

Tap on Gmail and it will launch the Gmail app and populate the subject and message
body.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 408

Color scheme
It’s a minor change, but updating the color scheme to match our bookmark icon colors
will make the app look much better.

Open values/colors.xml and update the three colors:

<color name="colorPrimary">#3748AC</color>
<color name="colorPrimaryDark">#2A3784</color>
<color name="colorAccent">#E3A60B</color>

The Primary color is a nice shade of blue and will be used by the main action bar. The
PrimaryDark color is used by the status bar at the top and is a slightly darker version of
the Primary color. The Accent color matches the yellow color of the bookmark icons. It
will be used by the floating buttons and the highlight color when a field is in focus.

Build and run the app. The overall app colors should look much better now.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 409

Progress indicator
It’s always good practice to let the user know when a potentially long running operation
is in progress. It also makes sense to prevent user interaction during this time. You’ll
accomplish both of these tasks next.

Open main_view_maps.xml and add the following before the final </FrameLayout>:

<ProgressBar
 android:id="@+id/progressBar"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:visibility="gone"/>

This creates a hidden progress bar at the center of the Activity. In this case, “progress
bar” is not the most appropriate term since what gets displayed is actually a circular
progress indicator.

Open MapsActivity.kt and add the following new methods:

private fun disableUserInteraction() {
 window.setFlags(WindowManager.LayoutParams.FLAG_NOT_TOUCHABLE,
 WindowManager.LayoutParams.FLAG_NOT_TOUCHABLE)
}

private fun enableUserInteraction() {
 window.clearFlags(
 WindowManager.LayoutParams.FLAG_NOT_TOUCHABLE)
}

disableUserInteraction() sets a flag on the the main window to prevent user touches.

enableUserInteraction() clears the flag set by disableUserInteraction().

Add the following new methods:

private fun showProgress() {
 progressBar.visibility = ProgressBar.VISIBLE
 disableUserInteraction()
}

private fun hideProgress() {
 progressBar.visibility = ProgressBar.GONE
 enableUserInteraction()
}

showProgress() makes the progress bar visible and disables user interaction.

hideProgress() hides the progress bar and enables user interaction.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 410

Now you just need to show and hide the progress bar in a few strategic locations.

You want to show progress when a place or place photo is being loaded. You must
ensure that all calls to showProgress() are matched with a call to hideProgress() or the
UI will remain frozen.

Add a call to showProgress() as the first line in displayPoi():

showProgress()

This will display the progress bar when a place is tapped.

Add a call to showProgress() in onActivityResult(), after the call to
updateMapLocation():

showProgress()

This will display the progress bar after searching for a place but before the place photo
is loaded.

That’s it for showing the progress bar. Now you just need to ensure that it goes away
whether the place is successfully loaded or not.

Add a call to hideProgress() in displayPoiGetPlaceStep(), after the call to Log.e():

hideProgress()

This will hide the progress bar if the place cannot be retrieved and the displayPoi steps
end here.

In displayPoiGetPhotoMetaDataStep(), add an else statement containing a call to
hideProgress() for the if (photoMetadataBuffer.count > 0) clause.

} else {
 hideProgress()
}

In displayPoiGetPhotoMetaDataStep(), add an else statement containing a call to
hideProgress() for the if (placePhotoMetadataResult.status.isSuccess) clause.

} else {
 hideProgress()
}

Both of these will hide the progress bar if there is no photo and the displayPoi steps end
here.

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 411

In displayPoiGetPhotoStep() add a call to hideProgress() as the first line in the
getScaledPhoto() result callback:

hideProgress()

This will hide the progress bar after the final step to load the place photo is completed.

Build and run the app. Tap on a place to see the progress bar. Depending on the speed
of your internet connection, it may flash almost too quickly to see, or it may spin for a
couple of seconds.

Where to go from here?
Congratulations! You’ve made it through the entire PlaceBook application section.
You’ve built a useful map-based application and learned a lot of new concepts along the
way.

In the following section, you’ll take your Android skills to the next level and learn about
networking, media playback and more. Give yourself a well deserved break, and then
move on to the next section when you’re ready!

Android Apprentice Chapter 19: Finishing Touches

raywenderlich.com 412

Section IV: Building a Podcast
Manager and Player

This section gets a bit more advanced. You’re going to build a podcast manager and
player app named PodPlay. You’ll cover networking, working with REST and XML, and
the Android media libraries.

Chapter 20: Networking

Chapter 21: Finding Podcasts

Chapter 22: Podcast Details

Chapter 23: Podcast Episodes

Chapter 24: Podcast Subscriptions Part One

Chapter 25: Podcast Subscriptions Part Two

Chapter 26: Podcast Playback

Chapter 27: Episode Player

raywenderlich.com 413

20Chapter 20: Networking
By Tom Blankenship

In this section, you’re going to utilize many of the skills you’ve already learned and dive
into some more advanced areas of Android development. You’ll build a full-featured
Podcast manager and player app named PodPlay. This app will allow searching and
subscribing to podcasts from iTunes and provide a playback interface with speed
controls.

The following new topics will be covered:

• Android networking

• Retrofit REST API library

• XML Parsing

• Search activity

• MediaPlayer library

raywenderlich.com 414

Getting started
The app will contain these main features:

1. Quick searching of podcasts by keyword or name.

2. Display for previewing podcast episodes.

Android Apprentice Chapter 20: Networking

raywenderlich.com 415

3. Playback of audio and video podcasts.

4. Subscribing to your favorite podcasts.

5. Playback at various speeds.

Project set up
You’ll start by creating a project with a single empty activity. This app will use the same
structure as MapBook, but it will add a new services layer.

Open Android Studio and select Start a new Android Studio project.

Fill out the Create Android Project dialog:

• Application name: PodPlay

• Company domain: raywenderlich.com

Android Apprentice Chapter 20: Networking

raywenderlich.com 416

• Project Location: Select your own location

• Include C++ support: unchecked

• Include Kotlin support: checked

Click Next.

Fill out the Target Android Devices dialog:

• Phone and Tablet: checked

• Minimum SDK: API 19

• Leave everything else unchecked.

Click Next.

In the Add an Activity to Mobile dialog, select Empty Activity, and then click Next.

Fill out the Configure Activity dialog:

• Activity Name: PodcastActivity

• Generate Layout File: checked

• Layout Name: activity_podcast

• Backwards Compatibility (AppCompat): checked

Click Finish. Next, under the com.raywenderlich.podcast package, create a new
package named ui.

Android Apprentice Chapter 20: Networking

raywenderlich.com 417

Move the PodcastActivity.kt file into the ui package using drag-and-drop. In the Move
refactor dialog, leave all of the options set to their defaults.

If you have the option to “Compact/Hide” empty middle packages turned on in the
Android Project view, then you’ll see something like this:

If you have the option to “Compact/Hide” empty middle packages turned off, it will look
like this:

Android Apprentice Chapter 20: Networking

raywenderlich.com 418

Where are the podcasts?
Before we get to the fun part of podcast playback, we need to answer a fundamental
question: where do podcasts come from? The answer is just about anywhere. Podcasts
are distributed using a standard format called RSS (Rich Site Summary, commonly
referred to as Really Simple Syndication).

RSS feeds are based on the standard XML format and are used by websites to deliver a
variety of content feeds. Most podcast feeds can be found on the main website that
promotes or produces the podcast. There’s normally a feed button that will provide a
URL to the podcast feed.

In the XML returned by the RSS feed, you have access to a lot of information regarding
the podcast, such as, the title of the podcast, the date is was published, associated
artwork, a descriptive summary of the podcast and, obviously, a link to the audio file
where the podcast is hosted.

For a podcast management app like PodPlay, it would great if there was a consolidated
listing of all of the various podcast feeds spread throughout the internet. As it turns
out, just about every podcast in existence is available through the iTunes podcast
directory. Apple provides an API that you’ll use to allow the user to search for podcast
by keywords, making it easy to subscribe to a podcast.

Android networking
All of the apps you’ve built during your apprenticeship so far have been self-contained.
They have not had to directly access any remote or network-based services. Although
PlaceBook did access Google Places and download place photos, that was all handled by
the Play Services library. That’s all about to change with the PodPlay app.

PodPlay will require direct access to the iTunes podcast directory, as well as the ability
to download individual RSS feeds. As with database access operations, network access
operations are required to run in the background on Android. If you attempt to perform
network operations on the UI thread, you’ll be shamed with a
NetworkOnMainThreadException error.

Android Apprentice Chapter 20: Networking

raywenderlich.com 419

There are several built-in ways to handle network access in the background, including:

• AsyncTask

• Handler

• IntentService

• AsyncTaskLoader

• Executor

• JobScheduler

• Coroutines

Each of these options has a different level of complexity and its own benefits and
drawbacks. The alternative is a third party library that handles the details and lets us
concentrate on building app functionality.

There are few obvious choices in this area:

• Volley: Google provided library with a simple interface for accessing network
resources asynchronously.

• OkHttp: Similar to Volley, and developed by Square Engineering.

• Retrofit: Also developed by Square Engineering, it builds on top of OkHttp.

You’ll be using Retrofit for PodPlay. It’s a popular library that makes it easy to do
asynchronous network calls and process JSON data into model objects.

Note: Although RSS feeds are formatted using an XML structure, iTunes will
return a list of these feeds with a JSON structure.

PodPlay architecture
Continuing with our layered architecture, you’ll create a service layer that will handle
all network access to iTunes and hide the details of that communication. This will make
it easy to swap out different methods for network access, without affecting any other
parts of the code.

You’ll start by creating a single service to search the iTunes podcast directory. This will
be called when the user searches for podcasts in the app.

Android Apprentice Chapter 20: Networking

raywenderlich.com 420

iTunes search service
If you regularly listen to, or have ever created a podcast, you’re probably familiar with
the iTunes podcast directory. This provides a single place to find just about any podcast
from a huge variety of categories.

Lucky for us, Apple also provides an API to allow searching the podcast directory. The
full API documentation can be found here:

https://affiliate.itunes.apple.com/resources/documentation/itunes-store-web-service-
search-api/

There are a variety of options when calling the API, and it supports many types of
media besides podcasts. The method you’re interested in allows searching for podcasts
by titles or keywords. It looks like this:

https://itunes.apple.com/search?term=Android+Developer&media=podcast

The media=podcast part tells iTunes to only search for podcasts.
term=Android+Developer is the search term. The plus sign is used because the search
term must be URL-encoded. URL-encoding replaces all spaces with plus symbols, and
encodes all other special characters except: letters, numbers, periods (.), dashes (-),
underscores (_) and asterisks (*).

You can plug this URL into your browser and get back the search results, but a better
way to explore web APIs is to use the excellent open source Postman app. You can find
Postman at https://www.getpostman.com. Download and install Postman for your OS
and launch the app.

Using the default GET method, put in the search URL from above and click Send.

Android Apprentice Chapter 20: Networking

raywenderlich.com 421

In the search results, set the output type to JSON and turn off line wrapping. You’ll end
up with a nicely formatted JSON display:

Scroll through the results array in the JSON output. There’s a lot of information for
each found podcast, but you’ll only use a small number of items to display the search
results to the user.

Retrofit
Now that you know how to get search results, the next step is to turn them into data
models.

If you manually performed the steps to download and convert to a model, it would look
something like this:

1. Initiate a network request to the iTunes search URL in a background process.

2. Capture the response to the network request as a JSON formatted string.

3. Parse the string based on JSON formatting rules.

4. Create a PodcastResponse object for each podcast item, and set the properties from
the JSON data.

Android Apprentice Chapter 20: Networking

raywenderlich.com 422

Here is a visual picture of mapping the JSON response to a PodcastResponse data
model:

This is where Retrofit swoops in and makes your development life much easier! Retrofit
lets you define a Kotlin interface that is a direct representation of the API you’re
accessing. Once you have defined the interface, you use the Retrofit Builder to create a
concrete implementation of the interface. With the implementation in hand, you can
make calls to the API and get back ready-to-use response objects.

Retrofit performs this magic with the help of Annotations. The annotation data is used
by Retrofit to determine how to call the API endpoints and parse the returned data into
model objects.

You’ll create a simple service that encapsulates everything needed to define the service
interface, and build the service implementation with Retrofit.

Android Apprentice Chapter 20: Networking

raywenderlich.com 423

Defining Retrofit dependencies
First you need to define the Retrofit dependency.

Open the project build.gradle file and replace the ext.kotlin_version line with the
following:

ext {
 kotlin_version = '1.2.21'
 retrofit_version = '2.3.0'
}

Open the app build.gradle file and add the following lines to the dependencies section:

implementation "com.squareup.retrofit2:retrofit:$retrofit_version"
implementation "com.squareup.retrofit2:converter-gson:$retrofit_version"

The retrofit dependency is the core Retrofit library. The converter-gson dependency
adds support for JSON parsing.

A warning about changing Gradle files will be shown at the top of the editor. Click on
Sync Now.

Creating the podcast response model
Now you’ll create the model that represents a response from the iTunes service.

Create a new package named service under the project root.

Note: In order to create the package under com.raywenderlich.podplay, you
may need to change the settings in the project window to disable “Compact/Hide
Empty Middle Packages”.

Android Apprentice Chapter 20: Networking

raywenderlich.com 424

Once you add the service package, you can re-enable the Hide/Compact Empty
Middle Packages, and your project structure should look like this:

In the service package, create a new Kotlin file named PodcastResponse.kt, and then
replace the contents with the following:

data class PodcastResponse(
 val resultCount: Int,
 val results: List<ItunesPodcast>) {

 data class ItunesPodcast(
 val collectionCensoredName: String,
 val feedUrl: String,
 val artworkUrl30: String,
 val releaseDate: String
)
}

This defines a data class that directly mirrors the layout and hierarchy of the JSON data
returned by the iTunes search API. Notice the variable names exactly match the keys in
the iTunes search JSON data. While it’s possible to use Annotations to allow different
variable names than the JSON keys, this way is the most compact method to define the
model. Also, it’s not a problem to leave out the fields you don’t need — the JSON parser
used by Retrofit will ignore extra fields.

Note: You may be wondering why the PodcastResponse model was created in the
service package instead of a separate model package. This is really a matter of
personal preference, but this particular model will be limited to handling
responses from the iTunes Service, so it makes sense to keep it in the service
package.

Android Apprentice Chapter 20: Networking

raywenderlich.com 425

In the service package, create a new Kotlin file named ItunesService.kt, and then
replace the contents with the following:

interface ItunesService {
 // 1
 @GET("/search?media=podcast")
 // 2
 fun searchPodcastByTerm(@Query("term") term: String):
 Call<PodcastResponse>
 // 3
 companion object {
 // 4
 val instance: ItunesService by lazy {
 // 5
 val retrofit = Retrofit.Builder()
 .baseUrl("https://itunes.apple.com")
 .addConverterFactory(GsonConverterFactory.create())
 .build()
 // 6
 retrofit.create<ItunesService>(ItunesService::class.java)
 }
 }
}

Note: If you have any unresolved references, with multiple resolutions, make sure
to resolve them from the retrofit library.

This defines an interface with a single method searchPodcastByTerm. This interface also
contains a companion object that returns an instance of the interface as a singleton.
This ensures that the interface is only instantiated once during the app’s lifetime.

Let’s go through this in detail:

1. This is your first encounter with a Retrofit annotation. Annotations always start
with the @ symbol. This annotation is a “function” annotation, meaning that it
applies to a function.

Retrofit defines several function annotations that represent standard HTTP requests
such as GET, POST and PUT. The @GET annotation takes a single parameter: the path
of the endpoint that should be called. The annotation applies to the function that
immediately follows.

2. The method searchPodcastByTerm takes a single parameter that has a Retrofit
@Query annotation. This annotation tells Retrofit that this parameter should be
added as a query term in the path defined by the @GET annotation. The annotation
takes a single parameter that represents the name of the query term.

You should always wrap the return type with the Call interface. When you call

Android Apprentice Chapter 20: Networking

raywenderlich.com 426

searchPodcastByTerm(), it doesn’t directly call the URL defined by the function
annotation. Instead, it returns a Call object that then allows you to synchronously
or asynchronously invoke the URL and get back a Response object containing the
PodcastResponse.

As an example, calling searchPodcastByTerm("Android Developer") will result in
Retrofit using a final URL of /search?media=podcast&term=Android+Developer.
Retrofit will automatically URL-Encode the parameter names and values when
constructing the URL.

3. A companion object is defined in the ItunesService interface.

4. The instance property of the companion object will hold the one and only
application-wide instance of the ItunesService. This property looks a little
different than ones you’ve defined in the past — and for good reason.

This definition allows the instance property to return a Singleton object. When the
application needs to use ItunesService, it will simply reference
ItunesService.instance.

Singleton objects are objects that have a single instance for the lifetime of the
application. No matter how many times the instance property is accessed, it will
only perform the initialization one time and will always return the same
ItunesService object.

This is accomplished by using a Kotlin concept known as property delegation. As
the name implies, property delegation allows you to delegate the property setters
and getters to a class.

You specify a property delegate with the keyword by, followed by a delegate class
instance. Here is a simple example (don’t type this in code):

class SomeClass: {
 val someProperty: String by SomeDelegateClass()
}

The SomeDelegateClass class must provide a setValue() and a getValue() method.
get() and set() for someProperty will be delegated to the setValue() and
getValue() methods. Here’s a simple implementation of the SomeDelegateClass
class (don’t type this in code):

class SomeDelegateClass {
 operator fun getValue(thisRef: Any?, property: KProperty<*>):
 String {
 return "A delegated return value"
 }

Android Apprentice Chapter 20: Networking

raywenderlich.com 427

 operator fun setValue(thisRef: Any?, property: KProperty<*>,
 value: String) {
 // No body required
 }
}

You won’t be using a custom delegate class for PodPlay, but if want to learn more,
please refer to https://kotlinlang.org/docs/reference/delegated-properties.html.

Kotlin provides some standard delegates that also come in handy. The one used for
the instance property is the Lazy<T> delegate, and it’s accompanied by the built-in
lazy method. The lazy method takes a lambda and returns an instance of Lazy<T>.

The end result of using the lazy method is that the first time the instance property
is accessed, it executes the lambda and stores the result (an instance of
ItunesService). All subsequent calls to the instance property return the original
result.

5. This is the first part of the lazy lambda method. Retrofit.Builder() is used to
create a retrofit builder object. Retrofit.Builder allows you specify several options
that let Retrofit know how it should ultimately create the concrete implementation
of the ItunesService interface. In this case, you are specifying the following
options:

baseUrl: sets the base URL for the service. This will be prepended to the path
specified in the function annotations.

addConverterFactory: adds a converter factory to handle the translation of the
JSON data to the PodcastResponse model object. A number of converter factories are
available, but you’ll use GsonConverterFactory to create an instance of the Gson
Converter to handle the JSON parsing and conversion. Gson is a library developed
by Google used to convert between Java objects and JSON.

6. Finally, create<ItunesService>() is called on the retrofit builder object to create
the ItunesService instance. Since this is the last line evaluated in the lambda, it’s
used as the value assigned to the instance property.

Next, you’ll add some temporary code in the PodcastActivity.kt to test the service call,
but first you need to give the app permission to use the internet.

Open AndroidManifest.xml and add the following before the <Application> section:

<uses-permission android:name="android.permission.INTERNET"/>

Android Apprentice Chapter 20: Networking

raywenderlich.com 428

Open PodcastActivity.kt and add the following to the onCreate():

val TAG = javaClass.simpleName

val itunesService = ItunesService.getServiceInstance()

val podcastCall = itunesService.searchPodcastByTerm(
 "Android Developer")

podcastCall.enqueue(object : Callback<PodcastResponse> {
 override fun onFailure(call: Call<PodcastResponse>?,
 t: Throwable?) {
 Log.i(TAG, "Call to ${call?.request()?.url()} " +
 "failed with ${t.toString()}")
 }

 override fun onResponse(call: Call<PodcastResponse>?,
 response: Response<PodcastResponse>?) {
 Log.i(TAG, "Got response with status code " +
 "${response?.code()} and message " +
 "${response?.message()}")
 val body = response?.body()
 Log.i(TAG, "Response body = $body")
 }
})

Note: If you have any unresolved references with multiple choices for resolving,
make sure to resolve them from the retrofit library.

This code will be explained further in the next section.

Build and run the app. The default “Hello World” screen will display.

Android Apprentice Chapter 20: Networking

raywenderlich.com 429

Check the Logcat window and you should see log results for I/PodcastActivity similar to
this:

I/PodcastActivity: Got response with status code 200 and message OK
I/PodcastActivity: Response body = PodcastResponse(resultCount=3,
results=[ItunesPodcast(collectionCensoredName=Fragmented - Android
Developer Podcast, feedUrl=https://rss.simplecast.com/podcasts/1684/rss,
artworkUrl30=http://is5.mzstatic.com/image/thumb/Music62/v4/4a/6f/
e7/4a6fe7c8-7ca1-c43f-241d-f7e84a014f1b/source/30x30bb.jpg,
releaseDate=2017-09-18T05:00:00Z),
ItunesPodcast(collectionCensoredName=Android Developers Backstage,
feedUrl=http://feeds.feedburner.com/blogspot/AndroidDevelopersBackstage,
artworkUrl30=http://is3.mzstatic.com/image/thumb/Music62/v4/15/
c9/96/15c996fd-4856-79bb-12ba-1d25c67d77d7/source/30x30bb.jpg,
releaseDate=2017-09-11T17:20:00Z),
ItunesPodcast(collectionCensoredName=The Android Cast, feedUrl=http://
www.buzzsprout.com/60878.rss, artworkUrl30=http://is1.mzstatic.com/image/
thumb/Music71/v4/8d/b5/4c/8db54c53-75c0-b214-9606-a228e19f49f9/source/
30x30bb.jpg, releaseDate=2016-10-08T07:00:00Z)])

Great, the service is working as designed! The next step is to hide the service behind a
repository just like you did with the database in the PlaceBook app. The repository will
be the only part of the app that touches the ItunesService.

Create a new package named repository under the project root. Inside that package,
create a new file named ItunesRepo.kt, and replace the contents with the following:

// 1
class ItunesRepo(private val itunesService: ItunesService) {
 // 2
 fun searchByTerm(term: String,
 callBack: (List<ItunesPodcast>?) -> Unit) {
 // 3
 val podcastCall = itunesService.searchPodcastByTerm(term)
 // 4
 podcastCall.enqueue(object : Callback<PodcastResponse> {
 // 5
 override fun onFailure(call: Call<PodcastResponse>?,
 t: Throwable?) {
 // 6
 callBack(null)
 }
 // 7
 override fun onResponse(
 call: Call<PodcastResponse>?,
 response: Response<PodcastResponse>?) {
 // 8
 val body = response?.body()
 // 9
 callBack(body?.results)
 }
 })
 }
}

Android Apprentice Chapter 20: Networking

raywenderlich.com 430

1. The primary constructor for ItunesRepo is defined to require an existing instance of
the ItunesService interface. This is an example of the Dependency Injection
principle. By passing in the ItunesService to ItunesRepo, it makes it possible for
the calling code to pass in a different implementation for the ItunesService.
ItuneRepo doesn’t care about the implementation, as long as it conforms to the
ItunesService interface.

2. ItunesRepo contains a single method named searchByTerm. This method takes a
search term as the 1st parameter and a method as the 2nd parameter. The method
defines a single parameter as a List of iTunesPodcast objects.

3. The call to searchPodcastByTerm() is made, passing in a search term. This returns a
Retrofit Call object.

4. The enqueue method is invoked on the Call object and it runs in the background to
retrieve the response from the web service. The enqueue method takes a Retrofit
CallBack interface that defines two callback methods: onFailure() and
onResponse().

5. onFailure() is called if anything goes wrong with the call such as a network error or
an invalid URL.

6. The callBack method is called with a null value if there’s an error.

7. onResponse() is called if the call succeeds.

8. The populated PodcastResponse model is retrieved with a call to response.body().

9. The callBack method is called with the results object from the PodcastResponse
model.

This gets rid of the extra objects from the raw PodcastResponse object that aren’t
needed and returns just the resulting ItunesPodcast object.

You can replace the temporary code in PodcastActivity.onCreate() with the following:

val TAG = javaClass.simpleName

val itunesService = ItunesService.getServiceInstance()

val itunesRepo = ItunesRepo(itunesService)

itunesRepo.searchByTerm("Android Developer", {
 Log.i(TAG, "Results = $it")
})

Android Apprentice Chapter 20: Networking

raywenderlich.com 431

This now uses the new ItunesRepo to search for the podcast and prints the results to
the Logcat window.

ItunesService.getServiceInstance() is called to get an instance of the ItunesService
and it’s passed to a new ItunesRepo instance. searchByTerm() is called with the search
term and is passed an anonymous method to receive the results.

Build and run the app. After the default “Hello World” screen is displayed again, check
your Logcat window for the following results:

I/PodcastActivity: Results =
[ItunesPodcast(collectionCensoredName=Fragmented - Android Developer
Podcast, feedUrl=https://rss.simplecast.com/podcasts/1684/rss,
artworkUrl30=http://is5.mzstatic.com/image/thumb/Music62/v4/4a/6f/
e7/4a6fe7c8-7ca1-c43f-241d-f7e84a014f1b/source/30x30bb.jpg,
releaseDate=2017-09-18T05:00:00Z),
ItunesPodcast(collectionCensoredName=Android Developers Backstage,
feedUrl=http://feeds.feedburner.com/blogspot/AndroidDevelopersBackstage,
artworkUrl30=http://is3.mzstatic.com/image/thumb/Music62/v4/15/
c9/96/15c996fd-4856-79bb-12ba-1d25c67d77d7/source/30x30bb.jpg,
releaseDate=2017-09-11T17:20:00Z),
ItunesPodcast(collectionCensoredName=The Android Cast, feedUrl=http://
www.buzzsprout.com/60878.rss, artworkUrl30=http://is1.mzstatic.com/image/
thumb/Music71/v4/8d/b5/4c/8db54c53-75c0-b214-9606-a228e19f49f9/source/
30x30bb.jpg, releaseDate=2016-10-08T07:00:00Z)]

Notice that this time the response contains just the list of ItunesPodcast objects. You
can remove the test code in PodcastActivity.

Where to go from here?
In the next chapter, you’ll start building out the user interface to allow the user to
search for podcasts.

Android Apprentice Chapter 20: Networking

raywenderlich.com 432

21Chapter 21: Finding
Podcasts
By Tom Blankenship

Now that the groundwork to search iTunes has been laid, you’ll build out a user
interface that allows the user to search for podcasts.

Your goal is to provide a search box at the top of the screen where the user can enter a
search term. The ItunesRepo you created in the last chapter will be used to fetch the list
of matching podcasts. The results will be shown in a RecyclerView and will include the
podcast artwork.

Creating a search interface can be as simple as adding a text view, responding to the
user entering text, and populating a RecyclerView with the results. While this method
works fine, the Android SDK provides a built-in search feature that helps future-proof
your apps.

Android search
If you are following along with your own app, open it and keep going with it for this
chapter. If not, don’t worry. Locate the projects folder for this chapter and open the
PodPlay app under the starter folder. The first time you open the project, Android
Studio takes a few minutes to set up your environment and update dependencies.

Android’s search functionality provides part of the search interface. It can be displayed
either as a search dialog at the top of an activity, or as a search widget, which can be
placed within an activity or on the action bar.

The way it works is like this: Android handles the user input and then passes the search
query to an activity. This makes it easy to add search capability to any activity within
your app, while only using a single dedicated activity to display the results.

raywenderlich.com 433

Some benefits to using Android search include:

• Displaying suggestions based on previous queries

• Displaying suggestions based on actual search data

• Having the ability to search by voice

• Adding search suggestions to the system-wide Quick Search Box

When running on Android 3.0 or later, Google suggests that you use a search widget
instead of a search dialog, which is exactly what you’ll do in PodPlay — you’ll use the
search widget and insert it as an action view in the app bar.

An action view is a standard feature of the support library Toolbar that allows for
advanced functionality within the app bar. When the search widget is added as an
action view, it displays a collapsable search view — located in the app bar — and handles
all of the user input.

The following illustrates an active search widget, which gets activated when the user
taps the search icon. It includes an EditText view with some hint text, along with a
back arrow used to close out the search:

Implementing search
To implement search capabilities, several steps are required. You need to:

1. Create a search configuration XML file.

2. Declare a searchable activity.

3. Add an options menu.

4. Set the searchable configuration in onCreateOptionsMenu.

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 434

Search configuration file

The first step is to create a search configuration file. This file lets you define some
details about the search behavior. It may contain several attributes such as:

• label: This should match the name of your application.

• hint: A hint thats displays in the search field before any text is entered.

• inputType: The type of data expected for the search field.

There are also multiple settings to control search suggestion behavior, voice search
behavior, Quick Search box settings and more. The only required attribute is the label.
Because you’ll be implementing a basic search for PodPlay, you will only define the
label and hint attributes.

Note: The Android developer site has extensive documentation on the more
advanced search options at https://developer.android.com/guide/topics/search/
searchable-config.html

By convention, the search configuration file is named searchable.xml, and it must be
stored in the res\xml folder.

To create this file in the proper location, right-click on the res folder and select New ▸
Android resource file. Set the values in the dialog as follows:

• File name: searchable

• Resource type: XML

• Root element: searchable

• Source set: main

• Directory name: xml

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 435

Click OK and the file — as well as the xml resource directory — will be created. Replace
the contents of searchable.xml with this:

<?xml version="1.0" encoding="utf-8"?>
<searchable xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:label="@string/app_name"
 android:hint="@string/search_hint" >
</searchable>

This will display an error for the missing @string/search_hint resource. To fix this,
open res\values\strings.xml and add the following line:

<string name="search_hint">Enter podcast search</string>

Searchable activity

The next step is to designate a searchable Activity. The search widget will start this
activity using an Intent that contains the users’s search term. It’s the activity’s
responsibility to take the search term, look it up and display the results to the user.

In some cases, you may want to have a separate activity display the search results.
However, PodPlay is going to use a single Activity for the entire app, and you’ll use
fragments to display the different views. This makes adding the searchable activity
straightforward — you’ll designate PodcastActivity as the searchable activity.

The searchable activity is set on the <activity> element in your manifest file. There are
two things you need to do to set up a searchable activity:

1. Add an intent filter for action Intent.ACTION_SEARCH. This is a static property in
the Intent class, and is defined with the value "android.intent.action.SEARCH". The
value is required in the manifest, but you’ll use Intent.ACTION_SEARCH in code.

2. Specify the searchable configuration file that you defined earlier using a meta-data
element.

Open app\manifests\AndroidManifest.xml and update the PodcastActivity element
to match this:

<activity android:name=".ui.PodcastActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <action android:name="android.intent.action.SEARCH"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 <meta-data android:name="android.app.searchable"
 android:resource="@xml/searchable"/>
</activity>

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 436

Adding the options menu

Since the search widget will be shown as an action view in the app bar, you’ll need to
define an options menu with a single search button item.

To do this, right-click on the res folder, then select New ▸ Android Resource File. Set
the resource type to Menu, which will automatically set the root element type to menu
and the folder to menu. Name your file menu_search:

Click OK, then open res\menu\menu_search.xml and replace the existing text with
the following:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 tools:context=
 "com.raywenderlich.podplay.ui.PodcastActivity">

 <item android:id="@+id/search_item"
 android:title="@string/search"
 android:icon="@android:drawable/ic_menu_search"
 app:showAsAction=
 "collapseActionView|ifRoom"
 app:actionViewClass=
 "android.support.v7.widget.SearchView"/>
</menu>

This defines an options menu with a single menu_search item that is shown as an action
view and uses the built-in ic_menu_search icon from the Android operating system.

The showAsAction pipe-separated options are set to collapse the action view by default
and display in the app bar, if there’s room. The actionViewClass must be set as
android.support.v7.widget.SearchView since you want your shiny search bar to be
backwards-compatible with older versions of Android.

Notice that you still need to define the value of the search resource string, which is
indicated by the red text. You’ve already seen how to do that manually, but Android
Studio offers another way to add a missing String resource directly from the code where
you’ve tried to use it.

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 437

Place the cursor within the red @string/search text and press Option+Return on Mac
or Alt+Enter on Windows to bring up the context menu, and select Create string
value resource 'search':

In the dialog that appears, type in Search for the Resource value field and click OK.

This will add the appropriate line to your strings.xml file, and the menu file will update
so that all the text is a happy green, indicating that all of your resources exist.

Next, you need to load the options menu and configure it properly.

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 438

Loading the options menu

Open PodcastActivity.kt and override the onCreateOptionsMenu method; note that you
do not need to call super:

override fun onCreateOptionsMenu(menu: Menu): Boolean {
 // 1
 val inflater = menuInflater
 inflater.inflate(R.menu.menu_search, menu)
 // 2
 val searchMenuItem = menu.findItem(R.id.search_item)
 val searchView = searchMenuItem?.actionView as SearchView
 // 3
 val searchManager = getSystemService(Context.SEARCH_SERVICE)
 as SearchManager
 // 4
 searchView.setSearchableInfo(
 searchManager.getSearchableInfo(componentName))

 return true
}

Note: Be sure to import android.support.v7.widget.SearchView and NOT the
non-support version to resolve the SearchView reference.

What’s happening in this code?

1. First, the options menu is inflated. If you had only these two lines, you would have a
basic search view which activates when the action button is tapped. The rest of the
method is what makes it a fully functioning search widget.

2. The search action menu item is found within the options menu, and the search view
is taken from the item’s actionView property.

3. The system SearchManager object is loaded. SearchManager provides some key
functionality when working with search services. It will be used later to load the
searchable info xml file you created earlier.

4. searchManager is used to load the search configuration and assign it to the
searchView.

Build and run the app. You’ll see a search icon displayed in the app bar:

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 439

Tap the search icon and it will expand into the search view. Notice the features built
into the search widget:

• A back arrow is displayed to cancel the search, hide the keyboard and return to the
normal app bar.

• The hint you included in the search configuration is shown in the search view.

• A clear button is added to clear out the search text after at least one character has
been entered.

Enter a search phrase and hit return. The search view goes away, and nothing else
happens! The search widget is knocking on the activity’s door, but no one is answering.
It’s now up to you to implement the actual search logic.

Implementing the search
By default, the search widget starts the searchable activity that you defined in the
manifest, and it sends it an Intent with the search query as an extra data item on the
intent. In this case, the searchable activity is already running, but you don’t want two
copies of it on the activity stack.

To get around this undesired behavior, you can set the android:launchMode of
PodcastActivity to singleTop.

Open manifests\AndroidManifest.xml and update the PodcastActivity’s activity
element to add this attribute:

<activity android:name=".ui.PodcastActivity"
 android:launchMode="singleTop">

This tells the system to skip adding another PodcastActivity to the stack if it’s already
on top. Now instead of creating a new copy of PodcastActivity to receive the search
intent, a call is made to onNewIntent() on the existing PodcastActivity.

Open ui\PodcastActivity.kt and add the following method:

private fun performSearch(term: String) {
 val itunesService = ItunesService.getServiceInstance()
 val itunesRepo = ItunesRepo(itunesService)

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 440

 itunesRepo.searchByTerm(term, {
 Log.i(TAG, "Results = $it")
 })
}

This method contains the same code that you had in onCreate(), except that the search
term is not hard-coded. If the search code is still in onCreate(), go ahead and remove it.

Next, add the following method to handle incoming intents:

private fun handleIntent(intent: Intent) {
 if (Intent.ACTION_SEARCH == intent.action) {
 val query = intent.getStringExtra(SearchManager.QUERY)
 performSearch(query)
 }
}

This method takes in an intent and checks to see if it’s an ACTION_SEARCH. If so, it
extracts the search query string and passes it to performSearch().

Finally, override onNewIntent so it can receive the updated intent when a new search is
performed:

override fun onNewIntent(intent: Intent) {
 super.onNewIntent(intent)
 setIntent(intent)
 handleIntent(intent)
}

This method will be called when the intent is sent from the search widget. It calls
setIntent() to make sure the new intent is saved with the Activity. handleIntent() is
called to perform the search.

Build and run the app. Tap the search icon, enter a search term and press return. The
raw results of the search will be written to the Logcat window:

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 441

Now that you’re getting the search results back from iTunes, you’re finally ready to
display those results to the user!

Displaying search results
You’ll display results using a standard RecyclerView, with one podcast per row. iTunes
includes a cover image for each podcast, which you’ll display along with the podcast
title and last updated date; this will give the user a quick overview of each podcast.

Start by doing some housekeeping to replace the standard action bar with the
appcompat version. This is same technique used in the PlaceBook app; to save time, the
dependencies are already set up, but there are still a few things which need to be done:

Appcompat app bar

Open the project build.gradle file and add the following to the ext section:

support_lib_version = '26.1.0'

Open the module build.gradle file and change the appcompat-v7 dependency to the
following:

implementation "com.android.support:appcompat-v7:$support_lib_version"

Add the following new line to the dependencies:

implementation "com.android.support:design:$support_lib_version"

Open \res\values\styles.xml and add the following:

<style name="AppTheme.NoActionBar">
 <item name="windowActionBar">false</item>
 <item name="windowNoTitle">true</item>
</style>

<style name="AppTheme.AppBarOverlay"
 parent="ThemeOverlay.AppCompat.Dark.ActionBar"/>

<style name="AppTheme.PopupOverlay"
 parent="ThemeOverlay.AppCompat.Light"/>

Open AndroidManifest.xml and add the following attribute to the PodcastActivity
activity element:

android:theme="@style/AppTheme.NoActionBar"

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 442

Open res\layout\activity_podcast.xml and replace the <TextView> with the following:

<android.support.design.widget.AppBarLayout
 android:id="@+id/app_bar"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:fitsSystemWindows="true"
 android:theme="@style/AppTheme.AppBarOverlay">

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 app:popupTheme="@style/AppTheme.PopupOverlay"/>

</android.support.design.widget.AppBarLayout>

Open PodcastActivity.kt and make sure the activity can see the variables created in the
layout by importing it with KotlinExtensions:

import kotlinx.android.synthetic.main.activity_podcast.*

Next, add the following method:

private fun setupToolbar() {
 setSupportActionBar(toolbar)
}

This is the same technique used in "Chapter 17: Detail Activity" to get ActionBar
support for the activity. setSupportActionBar() is a built-in method that makes the
Toolbar act as the ActionBar for this Activity.

Finally, call that method from the end of onCreate():

setupToolbar()

SearchViewModel

To display the results in the activity, you’ll need a view model first. Remember from
previous architecture discussions that views using Architecture Components only get
data from view models. You’ll create a SearchViewModel and the PodcastActivity will
use it to display the results.

SearchViewModel will inherit from AndroidViewModel, which is part of the lifecycle
component of the Android architecture components.

Open the project build.gradle file and add the following to the ext section:

architecture_version = '1.1.0'

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 443

Open the module build.gradle file and add the following to the dependencies section:

implementation "android.arch.lifecycle:extensions:$architecture_version"

Right click on the com.raywenderlich.podplay folder, and create a new package
named viewmodel to help keep your view models organized. Add new empty Kotlin file
within the viewmodel package named SearchViewModel.kt.

Open it up, and set up the initial search view model class:

class SearchViewModel(application: Application) :
 AndroidViewModel(application) {
}

The application parameter is required by the AndroidViewModel superclass. In fact, you
can’t add additional parameters to this class’s constructor because of how it is provided
through the Architecture components, so you must set up any additional properties
separately.

In this case, add a property for an ItunesRepo which will fetch the information:

var iTunesRepo: ItunesRepo? = null

This is optional and initialized to null since it’s expected that the caller — in this case,
the PodcastActivity — will pass this object in before calling any method to fetch the
data.

Next, define a data class within your view model that has only the data which is actually
necessary for the view, and that has default empty string values:

data class PodcastSummaryViewData(
 var name: String? = "",
 var lastUpdated: String? = "",
 var imageUrl: String? = "",
 var feedUrl: String? = "")

Next, add a helper method to convert from the raw model data to the view data:

private fun itunesPodcastToPodcastSummaryView(
 itunesPodcast: PodcastResponse.ItunesPodcast):
 PodcastSummaryViewData {
 return PodcastSummaryViewData(
 itunesPodcast.collectionCensoredName,
 itunesPodcast.releaseDate,
 itunesPodcast.artworkUrl30,
 itunesPodcast.feedUrl)
}

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 444

Finally, define a method to perform the search, which will eventually be called by
PodcastActivity:

// 1
fun searchPodcasts(term: String,
 callback: (List<PodcastSummaryViewData>) -> Unit) {
 // 2
 iTunesRepo?.searchByTerm(term, { results ->
 if (results == null) {
 // 3
 callback(emptyList())
 } else {
 // 4
 val searchViews = results.map { podcast ->
 itunesPodcastToPodcastSummaryView(podcast)
 }
 // 5
 searchViews.let { it -> callback(it) }
 }
 })
}

Let’s go through the code of this method step-by-step:

1. The first parameter is the search term. The callback parameter is a method that’s
called with the results. Since the iTunes repo’s search method runs asynchronously,
this method needs a way to let its caller know when the work is done.

2. iTunesRepo is used to perform the search asynchronously.

3. If the results are null, then an empty list is passed to the callback method.

4. If the results are not null, then they’re mapped to PodcastSummaryViewData
objects. This follows the principle of providing the view with just enough data for
presentation.

5. If the mapped results are valid (in this case, non-null) they are passed to the
callback method so they can be displayed.

Next, you’ll add the RecyclerView to display the search results.

Results RecyclerView

First, define the layout for a single search result item. Create a new file in the
res\layout folder named search_item.xml and set the contents to the following:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="horizontal"

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 445

 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:paddingTop="10dp"
 android:paddingBottom="10dp"
 android:paddingLeft="5dp"
 android:paddingRight="5dp">
 <ImageView
 android:id="@+id/podcastImage"
 android:layout_width="40dp"
 android:layout_height="40dp"
 android:layout_marginEnd="5dp"
 android:adjustViewBounds="true"
 android:scaleType="fitStart"/>

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginRight="5dp"
 android:orientation="vertical">

 <TextView
 android:id="@+id/podcastNameTextView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="top"
 android:layout_marginBottom="5dp"
 android:textStyle="bold"
 tools:text="Name"/>

 <TextView
 android:id="@+id/podcastLastUpdatedTextView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="top"
 android:textSize="12sp"
 tools:text="Last updated"/>
 </LinearLayout>
</LinearLayout>

This layout defines an image on the left, and a podcast name and last updated date on
the right:

Next, open xml/layout/activity_podcast.xml and add the following below the closing
tag of the AppBarLayout:

<android.support.v7.widget.RecyclerView
 android:id="@+id/podcastRecyclerView"
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:layout_marginEnd="0dp"

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 446

 android:layout_marginStart="0dp"
 android:scrollbars="vertical"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@id/app_bar"/>

<ProgressBar
 android:id="@+id/progressBar"
 android:layout_width="40dp"
 android:layout_height="40dp"
 android:layout_gravity="center"
 android:visibility="gone"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:visibility="visible"/>

This defines a RecyclerView to hold the search results and a ProgressBar to display
while the search is being performed.

Glide image loader

Before defining the adapter for the RecyclerView, you need to consider the best way to
display the cover art efficiently. The user may do many searches in a row, and each one
will return up to 50 results.

If you decided to pre-fetch the image for each one and store it locally or in memory, it
wouldn’t make for an enjoyable user experience; there could potentially be a large delay
before any results would show up.

You may try to get a little smarter about it and only load the images as they’re needed
by the RecyclerView adapter, but this will result in clunky scrolling performance.

Your next step to image loading nirvana might be to load the images on-demand in the
background, so the scrolling remains smooth. At about this point in the development
process you’re probably thinking, "This sounds like a lot of work. There has to be a
better way!" and fortunately there is!

There are several third party libraries made to handle this exact situation. They perform
on-demand loading in the background and do intelligent caching to keep the most
recently loaded images ready for quick retrieval. One popular library recommended by
Google is named Glide.

Glide was developed to make image scrolling as smooth as possible, but it can be used
in any situation where you need to load images from a remote source.

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 447

Using Glide is as simple as making a single chain of calls that specifies a context, the
remote image url and a view to place the image. Glide handles all of the details,
including background loading and cancelling the image load when the parent view goes
away.

To use Glide, add the following to the dependencies section in the module build.gradle
file:

implementation "com.github.bumptech.glide:glide:4.2.0"

Create a new package under com.raywenderlich.podplay named adapter. Add a new
Kotlin file to this package named PodcastListAdapter.kt and update it with the
following contents:

class PodcastListAdapter(
 private var podcastSummaryViewList:
 List<PodcastSummaryViewData>?,
 private val podcastListAdapterListener:
 PodcastListAdapterListener,
 private val parentActivity: Activity) :
 RecyclerView.Adapter<PodcastListAdapter.ViewHolder>() {

 interface PodcastListAdapterListener {
 fun onShowDetails(podcastSummaryViewData:
 PodcastSummaryViewData)
 }

 inner class ViewHolder(v: View,
 private val podcastListAdapterListener:
 PodcastListAdapterListener) :
 RecyclerView.ViewHolder(v) {

 var podcastSummaryViewData: PodcastSummaryViewData? = null
 val nameTextView: TextView =
 v.findViewById(R.id.podcastNameTextView)
 val lastUpdatedTextView: TextView =
 v.findViewById(R.id.podcastLastUpdatedTextView)
 val podcastImageView: ImageView =
 v.findViewById(R.id.podcastImage)

 init {
 v.setOnClickListener {
 podcastSummaryViewData?.let {
 podcastListAdapterListener.onShowDetails(it)
 }
 }
 }
 }

 fun setSearchData(podcastSummaryViewData:
 List<PodcastSummaryViewData>) {
 podcastSummaryViewList = podcastSummaryViewData
 this.notifyDataSetChanged()
 }

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 448

 override fun onCreateViewHolder(
 parent: ViewGroup,
 viewType: Int):
 PodcastListAdapter.ViewHolder {
 return ViewHolder(LayoutInflater.from(parent.context)
 .inflate(R.layout.search_item, parent, false),
 podcastListAdapterListener)
 }

 override fun onBindViewHolder(holder: ViewHolder,
 position: Int) {
 val searchViewList = podcastSummaryViewList ?: return
 val searchView = searchViewList[position]
 holder.podcastSummaryViewData = searchView
 holder.nameTextView.text = searchView.name
 holder.lastUpdatedTextView.text = searchView.lastUpdated
 //TODO: Use Glide to load image
 }

 override fun getItemCount(): Int {
 return podcastSummaryViewList?.size ?: 0
 }
}

Most of this has already been covered in earlier chapters on RecyclerViews, so we won’t
cover it again in detail here.

Now, replace the TODO in onBindViewHolder with the following:

Glide.with(parentActivity)
 .load(searchView.imageUrl)
 .into(holder.podcastImageView)

This uses Glide’s fluent API to efficiently load the podcast image into the image view.
The with() call can take an Activity, Fragment, View or Context. By providing Glide
with the parentActivity that was passed in with the constructor, it will be tied to the
Activity Lifecycle and properly clean up image usage.

The load() call specifies the remote URL of the image to be loaded. The into() call
specifies the ImageView to place the image into once it’s loaded.

Glide also allows you to load images directly into Bitmap images instead of into a
specified ImageView. There are several other calls that can be added to the fluent API to
control options and do image manipulation such as transformations and animated
transitions.

You now have everything in place to display the data from the view model — it’s time to
hook up the view model data to the RecyclerView.

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 449

Populating the RecyclerView

Open PodcastActivity.kt and add the following lines to the top of the class:

private lateinit var searchViewModel: SearchViewModel
private lateinit var podcastListAdapter: PodcastListAdapter

Add the following method to set up view models — for now, just the SearchViewModel:

private fun setupViewModels() {
 val service = ItunesService.instance
 searchViewModel = ViewModelProviders.of(this).get(
 SearchViewModel::class.java)
 searchViewModel.iTunesRepo = ItunesRepo(service)
}

This creates an instance of the ItunesService, and then uses the ViewModelProviders
class to get an instance of the SearchViewModel. It then creates a new ItunesRepo object
with the ItunesService and assigns it to the SearchViewModel.

Next, add the following method to set up the RecyclerView with a PodcastListAdapter:

private fun updateControls() {
 podcastRecyclerView.setHasFixedSize(true)

 val layoutManager = LinearLayoutManager(this)
 podcastRecyclerView.layoutManager = layoutManager

 val dividerItemDecoration =
 android.support.v7.widget.DividerItemDecoration(
 podcastRecyclerView.context, layoutManager.orientation)
 podcastRecyclerView.addItemDecoration(dividerItemDecoration)

 podcastListAdapter = PodcastListAdapter(null, this, this)
 podcastRecyclerView.adapter = podcastListAdapter
}

Add the following lines calling the setup methods you just made to the end of
onCreate():

setupViewModels()
updateControls()

Next, update the PodcastActivity class declaration to adopt the
PodcastListAdapterListener interface for PodcastActivity:

class PodcastActivity : AppCompatActivity(),
 PodcastListAdapterListener {

This is required by the PodcastListAdapter created in updateControls().

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 450

Now, add the following method to satisfy the PodcastListAdapterListener interface:

override fun onShowDetails(
 podcastSummaryViewData: PodcastSummaryViewData) {
 // Not implemented yet
}

This will be called when the user taps on a podcast in the RecyclerView. You’ll complete
the implementation in the next chapter.

Next, add the following helper methods to encapsulate showing and hiding the progress
bar during searching:

private fun showProgressBar() {
 progressBar.visibility = View.VISIBLE
}

private fun hideProgressBar() {
 progressBar.visibility = View.INVISIBLE
}

The last thing you’ll need to do in PodcastActivity.kt is update the performSearch
method to use the view model you set up:

private fun performSearch(term: String) {
 showProgressBar()
 searchViewModel.searchPodcasts(term, { results ->
 hideProgressBar()
 toolbar.title = getString(R.string.search_results)
 podcastListAdapter.setSearchData(results)
 })
}

Finally, add the following line to your res/values/strings.xml file to satisfy the
@string/search_results reference.

<string name="search_results">Search Results</string>

This uses SearchViewModel to find the podcasts based on the search term. It displays the
progress bar before the search starts and hides it as soon as it’s over. The toolbar title is
updated and the RecyclerView adapter is updated with the results.

Build and run the app. Tap the search icon and enter a search term. The results are
displayed and you’ll see the cover art images load in after the main content is displayed.
If your search returns enough results, scroll through the list as quickly as possible and
the movement should remain smooth no matter how many results and images are
loading.

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 451

That doesn’t look too bad, but the last updated date is formatted more for computers
than for humans. Time to fix that!

Date formatting

Create a new package under com.raywenderlich.podplay named util. To it, add a new
Kotlin file named DateUtils.kt with the following contents:

object DateUtils {
 fun jsonDateToShortDate(jsonDate: String?): String {
 //1
 if (jsonDate == null) {
 return "-"
 }

 // 2
 val inFormat = SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss")
 // 3
 val date = inFormat.parse(jsonDate)
 // 4
 val outputFormat = DateFormat.getDateInstance(DateFormat.SHORT,
 Locale.getDefault())
 // 6
 return outputFormat.format(date)
 }
}

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 452

Note: Make sure you import java.text.DateFormat and
java.text.SimpleDateFormat rather than their android counterparts!

This defines a method named jsonDateToShortDate that converts the date returned
from iTunes into a simple month, date and year format using the user’s current locale.

1. First, check that the jsonDate string coming in is not null. If it is, simply return a
string, which doesn’t need to be translated (to avoid calling in to Android
Resources), indicating that no date was provided.

2. A SimpleDateFormat is defined to match the date format returned by iTunes.

3. The jsonDate string is parsed and placed into a Date object, named date.

4. The output format is defined as a short date to match the currently defined locale.
By passing in the Locale.getDefault(), Android will honor the locale and date
settings set by the user.

5. The date is formatted and returned.

Open SearchViewModel.kt, and in itunesPodcastToPodcastSummaryView(), replace the
itunesPodcast.releaseDate line with the following:

DateUtils.jsonDateToShortDate(itunesPodcast.releaseDate),

You’re calling jsonDateToShortDate() to convert the date before it’s returned from the
SearchViewModel — that way the View never has to know that the date has been
formatted, but it will still look much nicer to the user.

Build and run the app. Search for podcasts again and notice the date is now shown in a
shorter format and based on the device language settings.

For instance, if you’re in the US, the date will be formatted similar to the screenshots
above, because en-US is most likely your default locale. If you’re in a country that uses
Day/Month/Year formatting, such as the UK, then the date will be formatted as 28/9/17
instead of 9/28/17.

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 453

Want to double check? Go to to Android’s Settings app and drill down to System ▸
Languages & Input ▸ Languages and add a language that uses a different date format
— for example, if you’re from the US, add UK English, or if you’re from the UK, add US
English. Drag the language you just added to the top of the list:

Now return to the app and...

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 454

What happened to the search results?! Turns out that when you changed the language
settings, Android triggered a configuration change and restarted the PodcastActivity.

This is where saving the search intent in newIntent() method pays off. You can grab the
saved intent when the activity is restarted and then redo the search.

Open PodcastActivity.kt and add the following line to the end of onCreate():

handleIntent(intent)

This gets the saved intent and passes it to the existing handleIntent() method.

Build and run the app. Search for some podcasts, and then change language settings
again by dragging your primary language back up to the top. This time, the changes are
reflected immediately when you re-enter the application:

Any configuration change — including rotating the screen — will now be handled
correctly.

Where to go from here?
In the next chapter, you’ll build out a detailed display for a single podcast and all of its
episodes. You’ll also build out a data layer for subscribing to podcasts.

Android Apprentice Chapter 21: Finding Podcasts

raywenderlich.com 455

22Chapter 22: Podcast Details
By Tom Blankenship

Now that the user can find their favorite podcasts, you’re ready to add a podcast detail
screen. In this chapter, you’ll complete the following:

1. Design and build the podcast detail fragment.

2. Expand on the app architecture.

3. Add a podcast detail fragment.

Getting started
If you are following along with your own app, open it and keep going with it for this
chapter. If not, don’t worry. Locate the projects folder for this chapter and open the
PodPlay app under the starter folder. The first time you open the project, Android
Studio takes a few minutes to set up your environment and update dependencies.

You’ll start by designing a layout for the podcast detail screen. The purpose of the detail
screen is to give the user a quick overview of the podcast, including the title,
description, album art and a list of recent episodes. It will also provide a Subscribe
action.

raywenderlich.com 456

The layout will contain the album art and title at the top, a scrollable description below
that and a list of episodes below the description. Each episode will contain the title,
description, published date and length. The final layout will look like this:

Rather than defining a new activity for the podcast detail, you’ll use a fragment to swap
out the main podcast listing view with the podcast detail view. The advantage of using
fragments will become more clear as you build out the full user interface in later
chapters.

Defining the layouts
Create a new layout named fragment_podcast_details.xml and replace the contents
with the following:

<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 457

 android:layout_height="match_parent">

 <android.support.constraint.ConstraintLayout
 android:id="@+id/headerView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="#eeeeee"
 android:maxHeight="300dp"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent">

 <ImageView
 android:id="@+id/feedImageView"
 android:layout_width="60dp"
 android:layout_height="60dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:src="@android:drawable/ic_menu_report_image"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

 <TextView
 android:id="@+id/feedTitleTextView"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginEnd="8dp"
 android:layout_marginStart="8dp"
 android:maxHeight="100dp"
 android:text=""
 android:textSize="14sp"
 android:textStyle="bold"
 app:layout_constraintBottom_toBottomOf="@+id/feedImageView"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toEndOf="@+id/feedImageView"
 app:layout_constraintTop_toTopOf="@+id/feedImageView"/>

 <TextView
 android:id="@+id/feedDescTextView"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginEnd="8dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="4dp"
 android:maxHeight="100dp"
 android:paddingBottom="8dp"
 android:scrollbars="vertical"
 android:text=""
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/feedImageView"/>

 </android.support.constraint.ConstraintLayout>

 <android.support.v7.widget.RecyclerView
 android:id="@+id/episodeRecyclerView"
 android:layout_width="0dp"
 android:layout_height="0dp"

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 458

 android:layout_marginEnd="8dp"
 android:layout_marginStart="8dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/headerView"
 />

</android.support.constraint.ConstraintLayout>

This defines the main layout for the detail fragment.

Create a new layout named episode_item.xml, which will layout each episode in the
RecyclerView in the podcast detail view, and replace the contents with the following:

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginBottom="8dp"
 android:layout_marginTop="8dp"
 >

 <TextView
 android:id="@+id/titleView"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_gravity="top"
 android:layout_marginEnd="0dp"
 android:textStyle="bold"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_chainStyle="spread"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:text="Title"/>

 <TextView
 android:id="@+id/releaseDateView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="top"
 android:layout_marginTop="4dp"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/descView"
 tools:text="01/01/18"/>

 <TextView
 android:id="@+id/durationView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="top"
 android:layout_marginTop="4dp"

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 459

 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/descView"
 tools:text="00:00"/>

 <TextView
 android:id="@+id/descView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="top"
 android:layout_marginTop="4dp"
 android:maxLines="3"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/titleView"
 tools:text="Description"/>

</android.support.constraint.ConstraintLayout>

This defines the layout for a single episode detail item.

Open the activity_podcast.xml layout file and add the following before the
RecyclerView widget:

<FrameLayout
 android:id="@+id/podcastDetailsContainer"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@id/app_bar"/>

This is the container that will hold the podcast detail fragment. It’s configured to cover
the entire activity view below the app bar. Nothing is displayed in the container until
you load the podcast detail fragment, after the user taps on a podcast row.

Basic architecture
As in previous chapters, you’ll define the basic architecture components consisting of a
repository, a service and a view model in order to display the podcast detail. There’s no
need for any database layer at this point.

Let’s start with a basic implementation to get the navigation working.

Podcast models
Two models are required to store the podcast data. One defines the detail for a single
podcast episode, and the other is the podcast detail containing a list of episode models.

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 460

Create a new package under com.raywenderlich.podplay named model.

In the model package, create a new file named Episode.kt and replace the contents
with the following:

data class Episode (
 var guid: String = "",
 var title: String = "",
 var description: String = "",
 var mediaUrl: String = "",
 var mimeType: String = "",
 var releaseDate: Date = Date(),
 var duration: String = ""
)

This defines the data for a single podcast episode. These properties are required for
display, management or playback of an episode.

• guid: Unique identifier provided in the RSS feed for an episode.

• title: The name of the episode.

• description: A description of the episode.

• mediaUrl: The location of the episode media. This will be either an audio or video
file.

• mimeType: Determines the type of file located at the mediaUrl.

• releaseDate: Date the episode was released.

• duration: Duration of the episode as provided in the RSS feed.

Again in the model package, create another new file named Podcast.kt and replace the
contents with the following:

data class Podcast(
 var feedUrl: String = "",
 var feedTitle: String = "",
 var feedDesc: String = "",
 var imageUrl: String = "",
 var lastUpdated: Date = Date(),
 var episodes: List<Episode> = listOf()
)

This defines the data for a single podcast.

• feedUrl: Location of the RSS feed.

• feedTitle: Title of the podcast.

• feedDesc: Description of the podcast.

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 461

• imageUrl: Location of the podcast album art.

• lastUpdated: Date the podcast was last updated.

• episodes: List of episodes for the podcast.

Podcast repository
A repo will be responsible for retrieving the podcast details and returning it to the view
model.

In the repository package, create a new file named PodcastRepo.kt and replace the
contents with the following:

class PodcastRepo {
 fun getPodcast(feedUrl: String,
 callback: (Podcast?) -> Unit) {
 callback(
 Podcast(feedUrl, "No Name", "No description", "No image")
)
 }
}

PodcastRepo defines a single method, getPodcast(). This method has parameters for a
feed URL and a callback method. You’ll eventually add code to retrieve the feed from
the URL and parse it into a Podcast object. For now, a simple version of the Podcast
object is created and passed to the callback method.

Podcast view model
In the viewmodel package, create a new file named PodcastViewModel.kt and replace
the contents with the following:

class PodcastViewModel(application: Application) :
 AndroidViewModel (application) {

 var podcastRepo: PodcastRepo? = null
 var activePodcastViewData: PodcastViewData? = null

 data class PodcastViewData(
 var subscribed: Boolean = false,
 var feedTitle: String? = "",
 var feedUrl: String? = "",
 var feedDesc: String? = "",
 var imageUrl: String? = "",
 var episodes: List<EpisodeViewData>
)

 data class EpisodeViewData (
 var guid: String? = "",
 var title: String? = "",

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 462

 var description: String? = "",
 var mediaUrl: String? = "",
 var releaseDate: Date? = null,
 var duration: String? = ""
)
}

This defines the PodcastViewModel for the detail fragment. The property podcastRepo
will be set by the caller. The property activePodcastViewData will hold the most
recently loaded podcast view data. PodcastViewData contains everything needed to
display the details of a podcast.

The repo returns a list of Episode models, so you’ll need a method to convert these
models into EpisodeViewData view models.

Add the following method to the class:

private fun episodesToEpisodesView(episodes: List<Episode>):
 List<EpisodeViewData> {
 return episodes.map {
 EpisodeViewData(it.guid, it.title, it.description,
 it.mediaUrl, it.releaseDate, it.duration)
 }
}

This method uses map to do the following:

• Iterate over a list of Episode models.

• Convert Episode models to EpisodeViewData objects.

• Collect everything back into a list.

You’ll also need a method to convert the Podcast models from the repo into
PodcastViewData view objects.

Add the following method:

private fun podcastToPodcastView(podcast: Podcast):
 PodcastViewData {
 return PodcastViewData(
 false,
 podcast.feedTitle,
 podcast.feedUrl,
 podcast.feedDesc,
 podcast.imageUrl,
 episodesToEpisodesView(podcast.episodes)
)
}

This method converts a Podcast model to a PodcastViewData object.

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 463

All that’s left to do is implement a method to retrieve a podcast from the repo.

Add the following method:

// 1
fun getPodcast(podcastSummaryViewData: PodcastSummaryViewData,
 callback: (PodcastViewData?) -> Unit) {
 // 2
 val repo = podcastRepo ?: return
 val feedUrl = podcastSummaryViewData.feedUrl ?: return
 // 3
 repo.getPodcast(feedUrl, {
 // 4
 it?.let {
 // 5
 it.feedTitle = podcastSummaryViewData.name ?: ""
 // 6
 it.imageUrl = podcastSummaryViewData.imageUrl ?: ""
 // 7
 activePodcastViewData = podcastToPodcastView(it)
 // 8
 callback(activePodcastViewData)
 }
 })
}

Let’s take a closer look at what’s happening:

1. getPodcast() takes a PodcastSummaryViewData object and a callback method.

2. Local variables are assigned to podcastRepo and podcastSummaryViewData.feedUrl.
If either one is null, the method returns early.

3. getPodcast() from the podcast repo is called with the feed URL.

4. The podcast detail object is checked to make sure it’s not null.

5. The podcast title is set to the podcast summary name. This line is required because
you haven’t built out the full implementation of repo.getPodcast(). In future
chapters, repo.getPodcast() will fill in this item, and this line will be removed.

6. The podcast detail image is set to match the podcast summary image URL if it’s not
null.

7. The Podcast object is converted to a PodcastViewData object and assigned to the
activePodcastViewData property.

8. The callback method is called and passed the podcast view data.

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 464

Details fragment
The detail fragment will be responsible for displaying the podcast details. It will get its
data from the PodcastViewModel. This is also where the user will be able to Subscribe to
a podcast. First, you’ll add an action menu with a single Subscribe item.

Open the strings.xml resource file and add the following line:

<string name="subscribe">Subscribe</string>

Create a menu resource file named menu_details.xml and replace the contents with
the following:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item
 android:id="@+id/menu_feed_action"
 android:title="@string/subscribe"
 app:showAsAction="ifRoom"
 />
</menu>

This defines the content of a menu that will display when the details fragment is active.
It contains a single item with the label "Subscribe".

In the ui package, create a new file named PodcastDetailsFragment.kt and replace the
contents with the following:

class PodcastDetailsFragment : Fragment() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 // 1
 setHasOptionsMenu(true)
 }

 override fun onCreateView(inflater: LayoutInflater?,
 container: ViewGroup?, savedInstanceState: Bundle?):
 View? {

 return inflater!!.inflate(R.layout.fragment_podcast_details,
 container, false)
 }

 override fun onActivityCreated(savedInstanceState: Bundle?) {
 super.onActivityCreated(savedInstanceState)
 }

 // 2
 override fun onCreateOptionsMenu(menu: Menu?,
 inflater: MenuInflater?) {

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 465

 super.onCreateOptionsMenu(menu, inflater)
 inflater?.inflate(R.menu.menu_details, menu)
 }
}

Note: Be sure to use import android.support.v4.app.Fragment when resolving
the Fragment class.

This is standard procedure for setting up a fragment, except for a couple of important
details:

1. The call to setHasOptionsMenu() tells Android that this fragment wants to add
items to the options menu. This will cause the fragment to receive a call to
onCreateOptionsMenu().

2. onCreateOptionsMenu() inflates the menu_details options menu so its items will be
added to the podcast activity menu.

Next, you’ll give the fragment access to the main podcast view model.

Add the following property to the class:

private lateinit var podcastViewModel: PodcastViewModel

Add the following method:

private fun setupViewModel() {
 podcastViewModel = ViewModelProviders.of(activity)
 .get(PodcastViewModel::class.java)
}

This retrieves an instance of the PodcastViewModel from ViewModelProviders.

In previous chapters, you used different techniques to communicate between activities
and fragments. By using ViewModelProviders to manage your view models, you can use
a shared view model data as the communication mechanism between a fragment and its
host activity.

By passing in the activity to ViewModelProviders.of(), you’ll get the same instance of
the PodcastViewModel that was created in the PodcastActivity. Because the instance
was already created in the Activity and assigned the podcast repo, all you need to do is
request the already existing instance.

Note: The usage here illustrates a key benefit of using view models: View models

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 466

can be seamlessly shared with any fragments managed by the activity. In addition,
view models survive configuration changes, so they don’t need to be created again
if the screen rotates.

Add the following line to the end of onCreate():

setupViewModel()

This calls setupViewModel() when the fragment is created.

That handles all of the initial setup. Now, it’s time to fill out the user interface controls.

Still inside PodcastDetailsFragment.kt, add the following method:

private fun updateControls() {
 val viewData = podcastViewModel.activePodcastViewData ?:
 return
 feedTitleTextView.text = viewData.feedTitle
 feedDescTextView.text = viewData.feedDesc
 Glide.with(activity).load(viewData.imageUrl)
 .into(feedImageView)
}

Note: If Android Studio complains about not being able to resolve
feedTitleTextView and feedDescTextView, add import
kotlinx.android.synthetic.main.fragment_podcast_details.* to the top of the
file.

This first line checks to make sure there is view data available (that we have something
in activePodcastViewData which we defined earlier to hold the most recently loaded
podcast view data). It then uses the view data to populate the title and description
TextView elements, as well as load the podcast image using Glide.

Add the following to the end of onActivityCreated():

updateControls()

This calls updateControls() after the activity is created. By placing this call here, you
ensure that the podcast view data has already been loaded by the main activity.

The last thing you need is a method that the activity can use to create an instance of
the fragment.

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 467

Add the following method:

companion object {
 fun newInstance(): PodcastDetailsFragment {
 return PodcastDetailsFragment()
 }
}

This is a convenience method that returns an instance of the PodcastDetailsFragment.
This may seem unnecessary, but by allowing the fragment to control its own creation,
you’re giving your code more future flexibility.

Displaying details
Now it’s time to show the fragment. Jump over to the PodcastActivity and wire it up.

Much of the code you’re about to write should look familiar from your previous
experience with managing fragments. If you need a refresher, check out chapter 11,
"Using Fragments".

Open PodcastActivity.kt and add the following:

companion object {
 private val TAG_DETAILS_FRAGMENT = "DetailsFragment"
}

This defines a tag to uniquely identify the details fragment in the fragment manager.

Add the following method to PodcastActivity:

private fun createPodcastDetailsFragment():
 PodcastDetailsFragment {
 // 1
 var podcastDetailsFragment = supportFragmentManager
 .findFragmentByTag(TAG_DETAILS_FRAGMENT) as
 PodcastDetailsFragment?

 // 2
 if (podcastDetailsFragment == null) {
 podcastDetailsFragment =
 PodcastDetailsFragment.newInstance()
 }

 return podcastDetailsFragment
}

This method will either create the details fragment or use an existing instance if it
exists. Let’s take a closer look at how it works:

1. supportFragmentManager.findFragmentByTag() is used to check if the fragment
already exists.

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 468

2. If there is no existing fragment, then a new one is created using the newInstance()
method on the fragment’s companion object.

3. The fragment object is returned.

When the detail fragment is shown, it’s a good idea to hide the search icon. But first,
you need to save a reference to the search icon menu item to allow you to hide/show
the icon.

Add the following property to the top of the class:

private lateinit var searchMenuItem: MenuItem

In onCreateOptionsMenu(), remove the var keyword from the line that assigns
searchMenuItem:

searchMenuItem = menu.findItem(R.id.search_item)

Update the next line in onCreateOptionsMenu() to remove the ? safe call operator:

val searchView = searchMenuItem.actionView as SearchView

Now you can add the method that displays the details fragment:

private fun showDetailsFragment() {
 // 1
 val podcastDetailsFragment = createPodcastDetailsFragment()
 // 2
 supportFragmentManager.beginTransaction().add(
 R.id.podcastDetailsContainer,
 podcastDetailsFragment, TAG_DETAILS_FRAGMENT)
 .addToBackStack("DetailsFragment").commit()
 // 3
 podcastRecyclerView.visibility = View.INVISIBLE
 // 4
 searchMenuItem.isVisible = false
}

Let’s take a look at what’s going on with that method:

1. The details fragment is created or retrieved from the fragment manager.

2. The fragment is added to the supportFragmentManager. The TAG_DETAILS_FRAGMENT
constant you defined earlier is used to identify the fragment. addToBackStack() is
used to make sure the back button works to close the fragment.

3. The main podcast RecyclerView is hidden so the only thing showing is the detail
fragment.

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 469

4. The searchMenuItem is hidden so the the search icon is not shown on the details
screen.

Note: Adding the fragment to the back stack is important for proper app
navigation. If you don’t add the call to addToBackStack(), then pressing the back
button, while the fragment is displayed, will close the app.

Add the following to the bottom of onCreateOptionsMenu() before the return:

if (podcastRecyclerView.visibility == View.INVISIBLE) {
 searchMenuItem.isVisible = false
}

This ensures that the searchMenuItem remains hidden if podcastRecyclerView is not
visible.

You may be asking, "Why is this added to onCreateOptionsMenu()?"

Great question! onCreateOptionsMenu() is called a second time when the fragment is
added. Even though you hid the searchMenuItem in showDetailsFragment(), it will get
shown again when the menu is recreated. This is because you requested that the
fragment add to the options menu, so Android recreates the menu from scratch when
adding the fragment.

The next thing to do is replace onShowDetails() with code that loads the
PodcastViewModel and calls showDetailsFragment(). Before you do that, define the
following helper method:

private fun showError(message: String) {
 AlertDialog.Builder(this)
 .setMessage(message)
 .setPositiveButton(getString(R.string.ok_button), null)
 .create()
 .show()
}

This displays a generic alert dialog with an error message. You’ll show this dialog to
handle all error cases.

To define the ok_button string, add the following line to strings.xml:

<string name="ok_button">OK</string>

Next you’ll create the PodcastViewModel that will be used to hold the podcast details
view data.

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 470

Add the following property to PodcastActivity.kt:

private lateinit var podcastViewModel: PodcastViewModel

Add the following to the bottom of setupViewModels():

podcastViewModel = ViewModelProviders.of(this)
 .get(PodcastViewModel::class.java)
podcastViewModel.podcastRepo = PodcastRepo()

This initializes the podcastViewModel object when the activity is created. If the activity
is being created for the first time, ViewModelProviders will create a new instance of the
PodcastViewModel object. If it’s just a configuration change, it will use an existing copy
of the PodcastViewModel object instead.

Now the podcastViewModel object is ready to use when onShowDetails() is called in
response to the user tapping on a podcast row. Let’s code that now.

Replace onShowDetails() with the following:

override fun onShowDetails(podcastSummaryViewData:
 SearchViewModel.PodcastSummaryViewData) {
 // 1
 val feedUrl = podcastSummaryViewData.feedUrl ?: return
 // 2
 showProgressBar()
 // 3
 podcastViewModel.getPodcast(podcastSummaryViewData, {
 // 4
 hideProgressBar()
 if (it != null) {
 // 5
 showDetailsFragment()
 } else {
 // 6
 showError("Error loading feed $feedUrl")
 }
 })
}

This method will be called when the user taps on a podcast. Here’s how it works:

1. The feedUrl is taken from the podcastSummaryViewData object if it’s not null,
otherwise the method returns without doing anything.

2. The progress bar is displayed to show the user that the app is busy loading the
podcast data.

3. podcastViewModel.getPodcast() is called to load the podcast view data.

4. After the data is returned, the progress bar is hidden.

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 471

5. If the data is not null, then showDetailsFragment() is called to display the detail
fragment.

6. If the data is null, then the error dialog is displayed.

Build and run the app. Search for a podcast and then tap on one. The detail screen will
display showing the podcast image, title and the temporary description. The
SUBSCRIBE menu option is shown but not yet functional.

Tap the back button, and the detail fragment should go away. However, there’s
something wrong! The search icon is missing and the display is blank. Where did the
list of podcasts go?

The problem exists because the podcastRecyclerView was hidden before the details
fragment was displayed, but it was never made visible again!

You need to make the podcastRecyclerView visible again, but how do you know when
the details fragment is closed?

One solution is to add a listener to supportFragmentManager so you’re notified when the
back stack changes.

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 472

Back in PodcastActivity.kt, add the following method:

private fun addBackStackListener()
{
 supportFragmentManager.addOnBackStackChangedListener {
 if (supportFragmentManager.backStackEntryCount == 0) {
 podcastRecyclerView.visibility = View.VISIBLE
 }
 }
}

This adds a lambda method that can respond to changes in the fragment back stack.
This is called when items are added or removed from the stack. If the
backStackEntryCount is 0, then all fragments have been removed and it’s safe to make
the podcast RecyclerView visible again.

Add the following line to the end of onCreate():

addBackStackListener()

This will add the back stack listener to the fragment manager when the activity is
created.

Build and run the app. Bring up the detail screen and tap the back button. The screen
will now look correct.

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 473

Before you call it a day, try and rotate the screen. You’ll get an interesting mash up of
the search results and the podcast details. Whoops!

As this test demonstrates, your Android UI is not complete until you’ve tested it by
rotating the screen. Fortunately, this is an easy fix: you need to hide the podcast
RecyclerView after a configuration change.

Add the following in onCreateOptionsMenu() after the line that calls
searchView.setSearchableInfo():

if (supportFragmentManager.backStackEntryCount > 0) {
 podcastRecyclerView.visibility = View.INVISIBLE
}

Now, when the device is rotated, the activity is created again. When
onCreateOptionsMenu() is called — and if there are any fragments on the back stack —
the podcastRecyclerView is hidden.

Build and run the app. For one last time in this chapter, bring up the detail screen for a
podcast and rotate the device. The screen will now look as expected.

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 474

Where to go from here?
Congratulations, you made a lot of progress, but the detail screen is still missing some
key information, including the list of podcast episodes and the ability to subscribe to
the podcast.

But don’t worry. You’ll fix this in the next chapter by fetching the actual RSS feed and
using it to add these missing pieces.

Android Apprentice Chapter 22: Podcast Details

raywenderlich.com 475

23Chapter 23: Podcast
Episodes
By Tom Blankenship

Until this point, you’ve only dealt with the top-level podcast details. Now it’s time to
dive deeper into the podcast episode details, and that involves loading and parsing the
RSS feeds.

In this chapter, you’ll accomplish the following:

1. Use OkHttp to load an RSS feed from the internet.

2. Parse the details in an RSS file.

3. Display the podcast episodes.

If you are following along with your own app, open it and keep going with it for this
chapter. If not, don’t worry. Locate the projects folder for this chapter and open the
PodPlay app under the starter folder. The first time you open the project, Android
Studio takes a few minutes to set up your environment and update dependencies.

Getting started
In previous chapters, you worked with the iTunes Search API, which is great for getting
the basics about a podcast. But what if you need more information? What if you’re
looking for information about the individual episodes? That’s where RSS feeds come
into play!

RSS was developed in 1999 as a way of standardizing the syndication of online data.
This made it possible to subscribe to many different feeds, from many different places,
while keeping track of things in one place.

raywenderlich.com 476

RSS feeds are formatted using XML 1.0, and they initially stored only textual data. But
that all changed in 2000 when podcasting adopted RSS feeds and started adding media
files. With the release of RSS 0.92, a new element was added: the enclosure element.

Note: Although it’s not necessary to fully understand how feeds are formatted, it’s
not a bad idea to read the full RSS specification, which can be found at http://
www.rssboard.org/rss-specification.

Let’s take a look at a sample RSS file for a fictitious podcast:

<?xml version="1.0" encoding="UTF-8"?>
<rss xmlns:itunes="http://www.itunes.com/dtds/podcast-1.0.dtd"
 version="2.0">
 <channel>
 <title>Android Apprentice Podcast</title>
 <link>http://rw.aa.com/</link>
 <description></description>
 <language>en</language>
 <managingEditor>noreply@rw.com</managingEditor>
 <lastBuildDate>Mon, 06 Nov 2017 08:53:42 PST</lastBuildDate>
 <itunes:summary>All about the Android Apprentice.</itunes:summary>
 <item>
 <title>Episode 999: Kotlin Basics</title>
 <link>http://rw.aa.com/episode-999.html</link>
 <author>developers@rw.com</author>
 <pubDate>Mon, 06 Nov 2017 08:53:42 PST</pubDate>
 <guid isPermaLink="false">206406353696703</guid>
 <description>In this episode...</description>
 <enclosure url="https://rw.aa.com/Kotlin.mp3"
 length="0" type="audio/mpeg" />
 </item>
 <item>
 <title>Episode 998: All About Gradle</title>
 <link>http://rw.aa.com/episode-998.html</link>
 <author>developers@rw.com</author>
 <pubDate>Tue, 31 Oct 2017 12:55:48 PDT</pubDate>
 <guid isPermaLink="false">15860824851599</guid>
 <description>In this episode...</description>
 <enclosure url="https://rw.aa.com/Gradle.mp3"
 length="0" type="audio/mpeg" />
 </item>
 </channel>
</rss>

Generally speaking, podcast feeds contain a lot more data than what is shown in the
example; you also don’t always need everything included in the feed. Regardless of the
extras, they all share some common elements.

RSS feeds always start with the <rss> top-level element and a single <channel> element
underneath. The <channel> element holds the main podcast details. For each episode,
there’s an <item> element.

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 477

Notice the <enclosure> element under each <item>. This is the element that holds the
playback media.

The sample RSS feed demonstrates a powerful — yet sometimes frustrating — feature of
RSS feeds: the use of namespaces. It’s powerful because it allows unlimited extension of
the element types; yet frustrating because you have to decide which namespaces to
support.

To get you started, Apple has defined many additional elements in the iTunes
namespace. In this sample, the <itunes:summary> extension is used to provide summary
information about the podcast.

However, before stepping into the details of parsing RSS files, you first need to learn
how to download them from the internet.

In Android, there are many choices for handling network requests. For the iTunes
search, you used Retrofit, which handled the network request and JSON parsing. But
parsing XML podcast feeds is slightly more challenging.

Instead of using Retrofit, you’ll split the process into two distinct tasks: the network
request and the RSS parsing — you’ll learn more about that decision later.

Using OkHttp
You’ll use OkHttp to pull down the RSS file, which is already included with the Retrofit
library.

Start by creating a response model to hold the parsed RSS feed response.

In the service package, create a new file named RssFeedResponse.kt and add:

data class RssFeedResponse(
 var title: String = "",
 var description: String = "",
 var summary: String = "",
 var lastUpdated: Date = Date(),
 var episodes: MutableList<EpisodeResponse>? = null
) {

 data class EpisodeResponse(
 var title: String? = null,
 var link: String? = null,
 var description: String? = null,
 var guid: String? = null,
 var pubDate: String? = null,
 var duration: String? = null,
 var url: String? = null,
 var type: String? = null
)

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 478

}

This represents all of the data you’ll retrieve from an RSS feed.

RssFeedResponse

• title: The podcast title.

• description: The podcast description.

• summary: The podcast summary.

• lastUpdated: The last update date for the podcast.

• episodes: The list of episodes for the podcast.

EpisodeResponse

• title: The episode title.

• link: URL link to the episode media file.

• description: The episode description.

• guid: Unique ID for the episode.

• pubDate: Publication date of the episode.

• duration: Episode duration.

• url: URL to the the episode landing page.

• type: Type of media for the episode ('audio' or 'video').

Next, create a new service to process the RSS feed.

In the service package, create a new file named RssFeedService.kt and add the
following:

class RssFeedService: FeedService {
 override fun getFeed(xmlFileURL: String,
 callBack: (RssFeedResponse?) -> Unit) {

 }
}

interface FeedService {
 // 1
 fun getFeed(xmlFileURL: String,
 callBack: (RssFeedResponse?) -> Unit)
 // 2
 companion object {
 val instance: FeedService by lazy {

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 479

 RssFeedService()
 }
 }
}

This is the basic outline of the RSS feed service. It provides a generic interface named
FeedService, with a single method named getFeed(). It provides a FeedService
implementation named RssFeedService that will eventually implement getFeed().

Looking a little deeper at the code:

1. getFeed() takes a URL pointing to an RSS file and a callback method. After the file is
loaded and parsed, the callback method gets called with the final RSS feed response.

2. A companion object is used to provide a singleton instance of the FeedService.

Now you’ll start implementing the getFeed() method. The first task is to download the
RSS file.

Add the following code to getFeed() in RssFeedService:

// 1
val client = OkHttpClient()
// 2
val request = Request.Builder()
 .url(xmlFileURL)
 .build()
// 3
client.newCall(request).enqueue(object : Callback {
 // 4
 override fun onFailure(call: Call, e: IOException) {
 callBack(null)
 }
 // 5
 @Throws(IOException::class)
 override fun onResponse(call: Call, response: Response) {
 // 6
 if (response.isSuccessful) {
 // 7
 response.body()?.let { responseBody ->
 // 8
 println(responseBody.string());
 // Parse response and send to callback
 return
 }
 }
 // 9
 callBack(null)
 }
})

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 480

Note: Be sure to select okhttp3.Request, okhttp3.Callback, okhttp3.Call,
okhttp3.Response to satisfy the Request, Callback, Call and Request
dependencies.

Let’s break the code apart:

1. A new instance of OkHttpClient is created. You’ll use the OkHttp client to
asynchronously fetch the RSS file. This will ensure that the main thread is not
blocked during the fetch.

2. To make a call with OkHttpClient, an HTTP Request object is required. In this case,
you build the object using the URL of the RSS file. If you need to have fine-grained
control of the HTTP Request, you can specifying headers, caching control and the
request method type.

3. Once you have a Request object, pass it into the client through the newCall()
method, which returns a Call object. The Call object’s enqueue method
synchronously executes the Request. A Callback object is passed to enqueue().
When the Request is complete, OkHttp will call either onFailure() or onResponse()
on the callback object.

4. onFailure() is defined to handle the call from OkHttp if the Request fails. The main
callBack method is called with null to indicate a failure.

5. If the Request succeeds, onResponse() is called by OkHttp. The Response object
contains all of the details about the returned object, including the HTTP status code
and the main response body.

6. The response is checked for success. Behind the scenes, this is checking to see if the
server hosting the RSS file returned an HTTP status code in the 200s.

7. The response body is checked for null.

8. The responseBody is converted to a string and printed out. This is just a placeholder
to check that everything is returned correctly. You’ll implement the actual XML
parsing method later.

Note: The responseBody object is represented as a one shot stream and can be
consumed only once. Anything that reads the full stream, such as calling string()
or bytes(), will empty and close the stream. Try calling println twice with the
responseBody.string() and you’ll see how easy it is to crash the app with an
java.lang.IllegalStateException: closed exception!

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 481

To test the getFeed() method, open PodcastRepo.kt and add the following to the top
of getPodcast():

val rssFeedService = RssFeedService()

rssFeedService.getFeed(feedUrl, {
})

Build and run the app. Now find a podcast, and tap on a single episode to display the
details. Take a look at the Logcat window, and view the output of the RSS XML file.

XML to DOM
Even though Retrofit can be used to parse XML and comes with a built-in XML parser,
there are too many edge cases to make Retrofit usable as-is; you need to properly
handle namespaces and ignore duplicate elements. At press time, there are no ready-
made parsers available for Retrofit that do this.

Fortunately, the DOM parser provided in the standard Android libraries can read the
XML data. DOM stands for Document Object Model and represents HTML and XML
data as a node-based tree structure. The object returned from the DOM parser is a
single top-level Document object with child Nodes underneath. Each node contains a
node type, a list of child nodes, a name, text content and optional attributes.

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 482

Here’s a simple XML file:

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
 <channel>
 <title>Android Apprentice Podcast</title>
 <link>http://rw.aa.com/</link>
 <item>
 <title>Episode 999: Kotlin Basics</title>
 <link>http://rw.aa.com/episode-999.html</link>
 <enclosure url="https://rw.aa.com/Kotlin.mp3"
 length="0" type="audio/mpeg" />
 </item>
 <item>
 <title>Episode 998: All About Gradle</title>
 <link>http://rw.aa.com/episode-998.html</link>
 <enclosure url="https://rw.aa.com/Gradle.mp3"
 length="0" type="audio/mpeg" />
 </item>
 </channel>
</rss>

Parsing this file results in the following tree structure:

rss
+--channel
 |--title
 |--link
 |--item
 | |--title
 | |--link
 | +--enclosure
 +--item
 |--title
 |--link
 +--enclosure

The names shown in the tree are taken from the node name property. If an XML
element contains attributes, such as url in <enclosure>, the node will store those in an
attributes array. All of the data within a node is stored in the textContent property. The
key to parsing nodes into your data model structure is recognizing the correct node
types, and then identifying the node’s location within the tree.

Before writing the parser, you first need to read the RSS file into a Document object.
The Document object represents the top-level node in the XML tree and derives from the
Node class.

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 483

In getFeed(), replace the call to println, and the comment underneath it, with the
following:

val dbFactory = DocumentBuilderFactory.newInstance()
val dBuilder = dbFactory.newDocumentBuilder()
val doc = dBuilder.parse(responseBody.byteStream())

DocumentBuilderFactory provides a factory that can be used to obtain a parser for XML
documents. DocumentBuilderFactory.newInstance() creates a new document builder
named dBuilder. dBuilder.parse() is called with the RSS file content stream and the
resulting top level XML Document is assigned to doc.

That’s all there is to parsing the XML file into a DOM.

DOM parsing
Now you need to turn the Document object into an RssFeedResponse.

First, add a helper method to convert from an XML date string to a Date object.

Open DateUtils.kt and add the following method:

fun xmlDateToDate(date: String?): Date {
 val date = date ?: return Date()
 val inFormat = SimpleDateFormat("EEE, dd MMM yyyy HH:mm:ss z")
 return inFormat.parse(date)
}

This converts a date string found in the RSS XML feed to a Date object.

Open RssFeedService.kt and add the following method to the RssFeedService class:

private fun domToRssFeedResponse(node: Node,
 rssFeedResponse: RssFeedResponse) {
 // 1
 if (node.nodeType == Node.ELEMENT_NODE) {
 // 2
 val nodeName = node.nodeName
 val parentName = node.parentNode.nodeName
 // 3
 if (parentName == "channel") {
 // 4
 when (nodeName) {
 "title" -> rssFeedResponse.title = node.textContent
 "description" -> rssFeedResponse.description = node.textContent
 "itunes:summary" -> rssFeedResponse.summary = node.textContent
 "item" -> rssFeedResponse.episodes?.
 add(RssFeedResponse.EpisodeResponse())
 "pubDate" -> rssFeedResponse.lastUpdated =
 DateUtils.xmlDateToDate(node.textContent)
 }
 }

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 484

 }
 // 5
 val nodeList = node.childNodes
 for (i in 0 until nodeList.length) {
 val childNode = nodeList.item(i)
 // 6
 domToRssFeedResponse(childNode, rssFeedResponse)
 }
}

This is a simplified version of the final parser. It only parses the top-level RSS feed info.
You’ll add item parsing next.

This method is designed to be recursive. It operates on a single node at a time, and then
calls itself to process each child node of the current node.

Don’t worry if this block seems a little confusing at this point. It will become more clear
when you add episode item parsing next.

Here’s what’s going on with this code:

1. First the nodeType is checked to make sure it’s an XML element.

2. You store the node’s name and parent name. Each node, except the top-level one,
contains a parent node. You use the name of the parent node to determine where
the current node resides in the tree.

3. If the current node is a child of the channel node, extract the top level RSS feed
information from this node.

4. You use the when expression to switch on the nodeName. Depending on the name, you
fill in top level rssFeedResponse data with the textContent of the node. If the node
is an episode item, a new empty EpisodeResponse object is added to the episodes
list.

5. nodeList is assigned to the list of child nodes for the current node.

6. For each child node, you call domToRssFeedResponse(), passing in the existing
rssFeedResponse object. This allows domToRssFeedResponse() to keep building out
the rssFeedResponse object in a recursive fashion.

Now you just need to call domToRssFeedResponse(), and pass in the Document XML
object and a new RssFeedResponse object.

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 485

Add the following after the assignment of the doc variable in rssFeed():

val rssFeedResponse = RssFeedResponse(episodes = mutableListOf())
domToRssFeedResponse(doc, rssFeedResponse)
callBack(rssFeedResponse)
println(rssFeedResponse)

This creates a new empty RssFeedResponse and then calls domToRssFeedResponse() to
parse the RSS document into the rssFeedResponse object. It then passes the
rssFeedResponse to the callBack method and prints out the results.

Build and run the app. Once again, locate and display a podcast episode.

Look at the Logcat window and you’ll see that the RssFeedResponse top-level
information has been populated, along with a series of blank episode items.

You’re now ready to finish out the domToRssFeedResponse() by adding the episode item
parsing.

In domToRssFeedResponse(), add the following below the assignment of parentName:

// 1
val grandParentName = node.parentNode.parentNode?.nodeName ?: ""
// 2
if (parentName == "item" && grandParentName == "channel") {
 // 3
 val currentItem = rssFeedResponse.episodes?.last()
 if (currentItem != null) {
 // 4
 when (nodeName) {
 "title" -> currentItem.title = node.textContent
 "description" -> currentItem.description = node.textContent
 "itunes:duration" -> currentItem.duration = node.textContent
 "guid" -> currentItem.guid = node.textContent
 "pubDate" -> currentItem.pubDate = node.textContent
 "link" -> currentItem.link = node.textContent
 "enclosure" -> {
 currentItem.url = node.attributes.getNamedItem("url")
 .textContent
 currentItem.type = node.attributes.getNamedItem("type")

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 486

 .textContent
 }
 }
 }
}

Let’s take a look at what’s going on with this code:

1. In addition to the name of the parent node, you also need to know the name of the
parent of the parent; in other words, the grandparent node.

2. If this node is a child of an item node, and the item node is a child of a channel
node, then you know it is an episode element.

3. Because the parsing is recursive, you know that the parent item was parsed already
and an empty episode object was added to episodes list in the rssFeedResponse
object. The currentItem variable is assigned to the last episode in the episodes list.

4. The when expression is used to switch on the current node’s name. Based on the
node name, the current episode item’s details are populated from the node’s
textContent property. If the node is an enclosure, the url and type are extracted
from the node’s attributes and set on the currentItem.

Build and run the app. Just as before, locate and display a podcast episode.

Look at the Logcat window and you’ll see that the RssFeedResponse is now fully
populated with podcasts and episode details.

Congratulations, you created an RSS feed service that returns an RSS response object
for any feed you throw at it!

Now you can use the new RssFeedService to revisit the PodcastRepo class and add in
the missing podcast details from earlier.

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 487

Updating the podcast repo
Open PodcastRepo.kt and update the class declaration to the following:

class PodcastRepo(private var feedService: FeedService) {

This declares a new feedService property that will be passed into the constructor.

Now you need need a helper method to convert the RssResponse data into Episode and
Podcast objects.

Add the following method:

private fun rssItemsToEpisodes(episodeResponses:
List<RssFeedResponse.EpisodeResponse>): List<Episode> {
 return episodeResponses.map {
 Episode(
 it.guid ?: "",
 it.title ?: "",
 it.description ?: "",
 it.url ?: "",
 it.type ?: "",
 DateUtils.xmlDateToDate(it.pubDate),
 it.duration ?: ""
)
 }
}

This uses the map method to convert a list of EpisodeResponse objects into a list of
Episode objects. The pubDate string is converted to a Date object using the new
xmlDateToDate method.

With this method in place, you can convert the full RssFeedResponse to a Podcast
object.

Add the following new method:

private fun rssResponseToPodcast(feedUrl: String, imageUrl:
 String, rssResponse: RssFeedResponse): Podcast? {
 // 1
 val items = rssResponse.episodes ?: return null
 // 2
 val description = if (rssResponse.description == "")
 rssResponse.summary else rssResponse.description
 // 3
 return Podcast(feedUrl, rssResponse.title, description, imageUrl,
 rssResponse.lastUpdated, episodes = rssItemsToEpisodes(items))
}

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 488

Here’s what’s happening with the code:

1. The list of episodes is assigned to the items variable provided it’s not null;
otherwise the method returns null.

2. If the description is empty, the description property is set to the response
summary; otherwise it’s set to the response description.

3. A new Podcast object is created using the response data and it’s returned to the
caller.

Now you can update the getPodcast() method to use the new capabilities.

Since feedService.getFeed() is using the OkHttp client to retrieve the podcast feed
asynchronously, it will execute the callBack method in a background thread.

To prevent problems with updating UI elements, you’ll use coroutines to jump back to
the main thread before returning the podcast details from the podcast repo.

Open the project build.gradle file and add the following to the ext element:

coroutines_version = '0.19.3'

Open the application build.gradle file and add the following to the dependencies
element:

implementation "org.jetbrains.kotlinx:kotlinx-coroutines-core:
$coroutines_version"
implementation "org.jetbrains.kotlinx:kotlinx-coroutines-android:
$coroutines_version"

Now, sync the project.

Back in PodcastRepo.kt, replace the contents of getPodcast() with the following:

feedService.getFeed(feedUrl, { feedResponse ->
 var podcast: Podcast? = null
 if (feedResponse != null) {
 podcast = rssResponseToPodcast(feedUrl, "", feedResponse)
 }

 launch(UI) {
 callback(podcast)
 }
})

If the feedResponse is null, then a null is passed to the callBack method. If
feedResponse is valid, then it’s converted to a Podcast object and passed to the
callback method.

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 489

Note that the calls to the callback method are surrounded with launch(UI). This is a
feature of coroutines that forces the enclosing code to run on the main thread.

Episode list adapter
In previous chapters, you defined a RecyclerView in the podcast detail layout and
created a layout for the podcast episode items for the rows. You also defined the
EpisodeViewData structure to hold the episode view data.

Now, you just need to add a list adapter to populate the RecyclerView using
EpisodeViewData items.

In the adapter package, create a new file named EpisodeListAdapter.kt and replace
the contents with the following:

class EpisodeListAdapter(
 private var episodeViewList: List<EpisodeViewData>?) :
 RecyclerView.Adapter<EpisodeListAdapter.ViewHolder>() {

 class ViewHolder(v: View) : RecyclerView.ViewHolder(v) {
 var episodeViewData: EpisodeViewData? = null
 val titleTextView: TextView = v.findViewById(R.id.titleView)
 val descTextView: TextView = v.findViewById(R.id.descView)
 val durationTextView: TextView = v.findViewById(R.id.durationView)
 val releaseDateTextView: TextView =
 v.findViewById(R.id.releaseDateView)
 }

 fun setViewData(episodeList: List<EpisodeViewData>) {
 episodeViewList = episodeList
 this.notifyDataSetChanged()
 }

 override fun onCreateViewHolder(parent: ViewGroup,
 viewType: Int):
EpisodeListAdapter.ViewHolder {
 return ViewHolder(LayoutInflater.from(parent.context)
 .inflate(R.layout.episode_item, parent, false))
 }

 override fun onBindViewHolder(holder: ViewHolder, position: Int) {
 val episodeViewList = episodeViewList ?: return
 val episodeView = episodeViewList[position]

 holder.episodeViewData = episodeView
 holder.titleTextView.text = episodeView.title
 holder.descTextView.text = episodeView.description
 holder.durationTextView.text = episodeView.duration
 holder.releaseDateTextView.text = episodeView.releaseDate.toString()
 }

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 490

 override fun getItemCount(): Int {
 return episodeViewList?.size ?: 0
 }
}

This is a standard list adapter that creates RecyclerView items from a list of
EpisodeViewData objects. You’ve seen this pattern several times in previous chapters, so
we’ll skip the detailed explanation and move on to hooking up the adapter in the
podcast detail fragment.

Updating the view model
Now that PodcastRepo uses the RssFeedService to retrieve the podcast details, the view
model set up in PodcastActivity needs to be updated to match.

Open PodcastActivity.kt and replace the assignment of
podcastViewModel.podcastRepo in setupViewModels() with the following:

val rssService = FeedService.instance
podcastViewModel.podcastRepo = PodcastRepo(rssService)

This creates a new instance of the FeedService and uses it to create a new PodcastRepo
object. The PodcastRepo object is assigned to the podcastViewModel.podcastRepo
property.

All that’s left to do now is to set up the RecyclerView with the EpisodeListAdapter.

RecyclerView set up
Open PodcastDetailsFragment.kt and add the following property to the class:

private lateinit var episodeListAdapter: EpisodeListAdapter

Add the following new method:

private fun setupControls() {
 // 1
 feedDescTextView.movementMethod = ScrollingMovementMethod()
 // 2
 episodeRecyclerView.setHasFixedSize(true)

 val layoutManager = LinearLayoutManager(activity)
 episodeRecyclerView.layoutManager = layoutManager

 val dividerItemDecoration =
 android.support.v7.widget.DividerItemDecoration(
 episodeRecyclerView.context, layoutManager.orientation)
 episodeRecyclerView.addItemDecoration(dividerItemDecoration)
 // 3

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 491

 episodeListAdapter = EpisodeListAdapter(
 podcastViewModel.activePodcastViewData?.episodes)
 episodeRecyclerView.adapter = episodeListAdapter
}

Here’s what’s going on:

1. This allows the feed title to scroll if it gets too long for its container.

2. This section is standard set up code for the episode list RecyclerView.

3. The EpisodelistAdapter is created with the list of episodes in the
activePodcastViewData object and assigned to the episodeRecyclerView.

In onActivityCreated(), add the call to setupControls(), before the call to
updateControls():

setupControls()

Build and run the app. Once again, find a podcast and display the details for an episode.

Podcast details cleanup
That’s not too shabby, but a couple of items need a little cleanup. For some podcasts,
the episode text may contain HTML formatting which will need some extra processing.
You also need to format the dates on the episodes.

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 492

To fix the HTML formatting, create a utility method that uses an Android built-in
method for converting HTML text into a series of character sequences which can be
rendered properly in a standard TextView.

In the util package, create a new file named HtmlUtils.kt and replace the contents with
the following:

object HtmlUtils {
 fun htmlToSpannable(htmlDesc: String): Spanned {
 // 1
 var newHtmlDesc = htmlDesc.replace("\n".toRegex(), "")
 newHtmlDesc = newHtmlDesc.replace("(<(/)img>)|(<img.+?>)".
 toRegex(), "")

 // 2
 val descSpan: Spanned
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.N) {
 descSpan = Html.fromHtml(newHtmlDesc, Html.FROM_HTML_MODE_LEGACY)
 } else {
 @Suppress("DEPRECATION")
 descSpan = Html.fromHtml(newHtmlDesc)
 }
 return descSpan
 }
}

A single htmlToSpannable method is defined to convert an HTML string into a spanned
character sequence. Here’s how it works:

1. Before converting the text to a Spanned object, some initial cleanup is required.
These two lines strip out all \n characters and elements from the text.

2. Android’s Html.fromHtml method is used to convert the text to a Spanned object.
This breaks the text down into multiple sections that Android will render with
different styles.

Note: The second parameter to fromHtml() is a flag added in Android N. This
version of the call is only made if the app is running on Android N or higher.
The flag can be set to either Html.FROM_HTML_MODE_LEGACY or
Html.FROM_HTML_MODE_COMPACT, and controls how much space is added between
block-level elements. The earlier version of fromHtml() has been deprecated,
but is still required when running on Android M or lower.
@Suppress("DEPRECATION") is used to allow the code to compile even though it
is deprecated.

Now you’ll update the list adapter to fix the text formatting as it populates the TextView
widgets.

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 493

Open EpisodeListAdapter.kt. In onBindViewHolder(), replace the line that assigns
holder.descTextView.text with the following:

holder.descTextView.text =
 HtmlUtils.htmlToSpannable(episodeView.description ?: "")

That takes care of the episode descriptions. You’re ready to clean up the episode date
display. First, add a new helper method to convert a Date object to a short date
formatted string. Open DateUtils.kt and add the following method:

fun dateToShortDate(date: Date): String {
 val outputFormat = DateFormat.getDateInstance(
 DateFormat.SHORT, Locale.getDefault())
 return outputFormat.format(date)
}

This is the same code you used in jsonDateToShortDate() to create a locale-aware short
date string.

Go back to EpisodeListAdapter.kt. In onBindViewHolder(), replace the line that
assigns holder.releaseDateTextView.text with the following:

holder.releaseDateTextView.text = episodeView.releaseDate?.let {
 DateUtils.dateToShortDate(it)
}

If the releaseDate is not null, then it’s converted to a short date string and assigned to
the episode date text view. Build and run the app, and display the details for a podcast.
The episode text and date formatting look much better now!

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 494

Where to go from here?
In the next chapter, you’ll finally hook up the SUBSCRIBE button and build out the
persistence layer, which will let users store podcast data offline.

Android Apprentice Chapter 23: Podcast Episodes

raywenderlich.com 495

24Chapter 24: Podcast
Subscriptions Part One
By Tom Blankenship

By giving users the ability to search for podcasts and displaying the podcast episodes,
you made great progress in the development of the podcast app. In this section, you’ll
add the ability to subscribe to favorite podcasts.

Over the next two chapters, you’ll add the following features to the app:

1. Storing the podcast details and episode lists locally for quick access. (this chapter)

2. Displaying the list of subscribed podcasts by default. (this chapter)

3. Notifying the user when new episodes are available. (next chapter)

You’ll cover several new topics over the span of these two chapters including:

1. Using Room to store multiple related database tables.

2. Using JobScheduler services to periodically check for new episodes.

3. Using local notifications to alert users when new episodes are available.

Getting started
If you are following along with your own app, open it and keep going with it for this
chapter. If not, don’t worry. Locate the projects folder for this chapter and open the
PodPlay app under the starter folder. The first time you open the project, Android
Studio takes a few minutes to set up your environment and update dependencies.

raywenderlich.com 496

Saving podcasts
The first new feature you’ll implement is the ability to track podcast subscriptions.
You’ll take the models already created and make them persistent entities by adding
Room attributes. The database will only contain podcasts the user subscribes to.

Your first goal is to hook up the subscribe menu item so it will save the current podcast.

Setting up the database code follows the same general approach used in the MapBook
app:

1. Annotate the podcast and episode models with Room attributes.

2. Create a database access object (DAO) used by the repositories in the app.

3. Create a RoomDatabase object to manage the models and provide the DAO.

Things will be slightly more difficult this time because you have two models — podcast
and episode — to manage instead of just one. You’ll also have to manage the
relationship between these two models. For example, if a podcast is deleted from the
database, all associated episodes should also be deleted from the database. However,
don’t fret! This is only slightly more difficult; Room will do all the heavy lifting for you.

The database diagram will look like this:

If you recall, the Episode table is nearly a one-to-one match with the Episode model.
The only difference here is in the table — we add a foreign ID (podcastId) pointing the
model back to a Podcast model. We’ll dive more deeply into this relationship later in
the chapter.

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 497

Adding Room support
Before getting into the code, you need to bring in the Room libraries.

Open the project build.gradle file and add the following to the buildscript.ext
section:

room_version = '1.0.0'

Open the application module build.gradle file and add the following to the
dependencies:

implementation "android.arch.persistence.room:runtime:$room_version"
annotationProcessor "android.arch.persistence.room:compiler:
$room_version"
kapt "android.arch.persistence.room:compiler:$room_version"

These are the same libraries you used in the PlaceBook app. See "Chapter 16: Saving
bookmarks with Room" for details about these dependencies.

Sync the gradle file.

Annotating the models
Your first task is to properly annotate the existing models so Room knows how to store
the data. Start by getting the Podcast class into shape.

Open Podcast.kt and update the class declaration with the @Entity annotation, like so:

@Entity
data class Podcast(...)

The @Entity annotation is the basic requirement for a class managed by Room.

Next, you’ll need to add a primary key for the Podcast table.

Add the following as the first property declaration to the Podcast class:

@PrimaryKey(autoGenerate = true) var id: Long? = null,

This defines an id property that will auto generate as new items are added to the
Podcast table.

By adding a new property to the class constructor, you broke the code that constructs a
Podcast object. Fortunately, this only occurs in one place in the app.

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 498

Open PodcastRepo.kt and update the return call in rssResponseToPodcast() to match
the following:

return Podcast(null, feedUrl, rssResponse.title, description, imageUrl,
 rssResponse.lastUpdated, episodes = rssItemsToEpisodes(items))

The only change is to pass in null for the id argument.

Now, bring the Episode class up-to-speed and make it an official database entity.

Open Episode.kt and update the class declaration with the @Entity annotation:

@Entity(
 foreignKeys = [
 ForeignKey(
 entity = Podcast::class,
 parentColumns = ["id"],
 childColumns = ["podcastId"],
 onDelete = ForeignKey.CASCADE
)
],
 indices = [Index("podcastId")]
)
data class Episode (

Note: If given a choice for importing ForeignKey and Index, make sure to select
the following versions respectively:

import android.arch.persistence.room.ForeignKeyimport
android.arch.persistence.room.Index

Here, you’re just adding a couple of new attributes to define a foreign key and an index
on the database.

When you have multiple entities or models that are related, it’s helpful to let Room
know about these relationships. The foreignKeys attribute lets you define these
relationships and add constraints on them. This helps maintain the database integrity
without any extra work on your part.

In this case, you define a single ForeignKey that relates the podcastId property in the
Episode entity to the property id in the Podcast entity. There are four fields defined on
the ForeignKey attribute:

1. entity: Defines the parent entity.

2. parentColumns: Defines the column names on the parent entity (the Podcast class).

3. childColumns: Defines the column names in the child entity (the Episode class).

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 499

4. onDelete: Defines the behavior when the parent entity is deleted. CASCADE indicates
that any time a podcast is deleted, all related child episodes will be deleted
automatically.

Room recommends creating an index on the child table. This prevents a full scan of the
database when performing cascading operations. In this case, the indices attributes
defines the podcastId property as the index.

There is no need to add a new property for the PrimaryKey attribute on the Episode
entity. Instead, you’ll use the existing guid property. In database terminology this is
known as a natural key, where the id you added to the Podcast class acts as a surrogate
key.

The purpose of a primary key is to provide a unique value for each row in the database,
and the guid value naturally meets this criteria.

Update the guid property with the @PrimaryKey annotation as follows:

@PrimaryKey var guid: String = "",

Now you need to add the podcastId property that defines the foreign key to the Podcast
entity. Add the following property below the guid and above the title property in
Episode:

var podcastId: Long? = null,

Now that you’ve add a new property to the constructor, you need to fix any places in the
code that create a new Episode. Open PodcastRepo.kt and update the return call in
rssItemsToEpisodes() with the following:

return episodeResponses.map {
 Episode(
 it.guid ?: "",
 null,
 it.title ?: "",
 it.description ?: "",
 it.url ?: "",
 it.type ?: "",
 DateUtils.xmlDateToDate(it.pubDate),
 it.duration ?: ""
)
}

For the second argument, you pass in null for the podcastId. You’ll fill in this value
after inserting the parent Podcast into the database.

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 500

Data access object
Before you can define the main Room database object, you’ll create the DAO to read and
write to the database. This is where you define all of the SQL statements for the basic
database operations.

You’ll add additional methods later, but for now, all you need is the ability to save and
load podcasts and their corresponding episodes.

Under com.raywenderlich.podplay, create a new package named db.

Now, under the db package, create a new file named PodcastDao.kt and replace the
contents with the following:

// 1
@Dao
interface PodcastDao {
 // 2
 @Query("SELECT * FROM Podcast ORDER BY FeedTitle")
 fun loadPodcasts(): LiveData<List<Podcast>>
 // 3
 @Query("SELECT * FROM Episode WHERE podcastId = :arg0
 ORDER BY releaseDate DESC")
 fun loadEpisodes(podcastId: Long): List<Episode>
 // 4
 @Insert(onConflict = REPLACE)
 fun insertPodcast(podcast: Podcast): Long
 // 5
 @Insert(onConflict = REPLACE)
 fun insertEpisode(episode: Episode): Long
}

Note: If given a choice for importing Query and REPLACE, make sure to select the
following versions respectively:

import android.arch.persistence.room.Queryimport
android.arch.persistence.room.OnConflictStrategy.REPLACE

Let’s break the code down a bit:

1. The PodcastDao interface is defined with the @Dao annotation. This indicates to the
Room library that this is a managed DAO class.

2. loadPodcasts() loads all of the podcasts from the database and returns a LiveData
object. The @Query annotation is defined to select all podcasts and sort them by
their title in ascending order.

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 501

3. loadEpisodes() loads all of the episodes from the database. The @Query annotation
is defined to select all episodes that match a single podcastId and sort them by the
release date in descending order.

4. insertPodcast() inserts a single podcast into the database. No SQL statement is
required on the @Insert annotation. onConflict is set to REPLACE to tell Room to
replace the old record if a record with the same primary key already exists in the
database.

5. insertEpisode() inserts a single episode into the database.

Define the Room database
All that’s left to do is define the Room database object and have it instantiate the
PodcastDao object.

Create a new file named PodPlayDatabase.kt in the db package and replace the
contents with the following:

// 1
@Database(entities = arrayOf(Podcast::class, Episode::class),
 version = 1)
abstract class PodPlayDatabase : RoomDatabase() {
 // 2
 abstract fun podcastDao(): PodcastDao
 // 3
 companion object {
 // 4
 private var instance: PodPlayDatabase? = null
 // 5
 fun getInstance(context: Context): PodPlayDatabase {
 if (instance == null) {
 // 6
 instance = Room.databaseBuilder(context.applicationContext,
 PodPlayDatabase::class.java, "PodPlayer").build()
 }
 // 7
 return instance as PodPlayDatabase
 }
 }
}

Let’s take a look at what the code is doing:

1. PodPlayDatabase is defined as an abstract class that implements the RoomDatabase
interface. The @Database annotation is used to define this as a Room database with
two tables: Podcast and Episode.

2. The abstract method podcastDao is defined to return a PodcastDao object. Room will
take care of creating the final implementation of the PodcastDao class.

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 502

3. A companion object is defined to hold the single instance of the PodPlayDatabase.

4. The single instance of the PodPlayDatabase is defined and set to null.

5. getInstance() will return a single application-wide instance of the
PodPlayDatabase.

6. If an instance of PodPlayDatabase hasn’t been created before, it will be created now.
Room.databaseBuilder() is used to instantiate the PodPlayDatabase object.

7. The PodPlayDatabase object is returned to the caller.

Go ahead and build the project using Command-F9 (Control-F9 on Windows) and you
will get the following errors from the compiler:

- Cannot figure out how to save this field into database. You can
consider adding a type converter for it.
- Cannot figure out how to read this field from a cursor.

Unfortunately, Android Studio may not point you to the location of the errors.

The error message is telling you that Room doesn’t know how to handle one or more of
the fields in your models. Why is that? Because Room only knows how to deal with basic
and boxed basic types, not complex types.

Note: A boxed basic type is one that has been wrapped in an object so it can be
made nullable. For example, Integer is the boxed type for the basic type int.

Looking at the Podcast and Episode models, there are three complex properties:

In Podcast:

var lastUpdated: Date = Date()
var episodes: List<Episode> = listOf()

In Episode:

var releaseDate: Date = Date()

To handle the Date and List<Episode> complex types, you’ll use something called
TypeConverters.

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 503

Room type converters
Although Room can’t handle complex types directly, it provides a concept known as
TypeConverters that let you define how to convert them to-and-from basic types. This
is the perfect solution for the Date properties.

The List<Episode> property is another matter. In this case, you’re not trying to store
episodes in the Podcast table, instead you are defining a relationship to Episode objects
stored in the Episode table.

Let’s take care of the Date properties first and then address the episodes reference.

All you need to do is let Room know how to convert a date to a basic type and then back
again. Using type converters, you can easily convert the Date object to a Long, and a
Long back to a Date.

Open PodPlayDatabase.kt and add the following class before the PodPlayDatabase
class definition:

class Converters {
 @TypeConverter
 fun fromTimestamp(value: Long?): Date? {
 return if (value == null) null else Date(value)
 }

 @TypeConverter
 fun toTimestamp(date: Date?): Long? {
 return (date?.time)
 }
}

Note: If given a choice of imports for Date, make sure to use java.util.Date

The Converters class is a holder for the two TypeConverter methods. fromTimestamp()
converts a Long to a Date, and toTimestamp() converts a Date to a Long. The
@TypeConverter annotation is required on all type converters.

To let Room know to use these type converters, you need to add a new annotation to
the PodPlayDatabase class.

In the PodPlayDatabase class, sandwich a @TypeConverters annotation between the
@Database annotation and the class declaration, so it looks like this:

@Database(entities = arrayOf(Podcast::class, Episode::class),
 version = 1)
@TypeConverters(Converters::class)
abstract class PodPlayDatabase : RoomDatabase() {...}

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 504

This tells Room to look in the Converters class to find all methods annotated by
@TypeConverter. Room will recognize the two methods for handling Dates, and it will
call them when reading and writing the releaseDate and lastUpdated fields to the
database.

Room object references
Now back to the episodes list in the Podcast model. Since Room does not support
defining object references in Entity classes, you need to tell it to ignore the episodes
property.

Note: You may be wondering why Room doesn’t allow object references. That’s a
valid question, and the Room designers have some good reasons why this isn’t
allowed. If you’re curious about the reasons, the following page gives a good
explanation: https://developer.android.com/training/data-storage/room/
referencing-data.html#understand-no-object-references.

Open Podcast.kt and update the episodes property to match the following:

@Ignore
var episodes: List<Episode> = listOf()

With this field ignored, Room will not attempt to populate it when loading a Podcast
from the database.

Build the app again to verify the errors are gone.

That handles all of the database access layer, now you need to define some methods in
the podcast repo to read and write podcasts and episodes.

Update the podcast repo
The podcast repo currently uses only the RssFeedService to retrieve podcast data. One
benefit of using the repository pattern is that a single repository can access data from
multiple sources or services.

Now it’s time to add the ability for the podcast repo to access the podcast DAO in
addition to the feed service.

Open PodcastRepo.kt and update the constructor from this:

class PodcastRepo(private var feedService: FeedService) {

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 505

To this:

class PodcastRepo(private var feedService: FeedService,
 private var podcastDao: PodcastDao) {

This adds a new property to hold the PodcastDao object.

Next you need to update the podcast activity to properly instantiate the PodcastRepo
class with the new podcastDao property.

Open PodcastActivity.kt and replace the following line in setupViewModels():

podcastViewModel.podcastRepo = PodcastRepo(rssService)

with this:

val db = PodPlayDatabase.getInstance(this)
val podcastDao = db.podcastDao()
podcastViewModel.podcastRepo = PodcastRepo(rssService, podcastDao)

An instance of the PodPlayDatabase is created and the PodcastDao object is retrieved
from it. The PodcastRepo is updated to pass in the podcast DAO object in addition to the
RSS service.

Great! Now you can go back to the podcast repo and update it with the database access
methods.

Open PodcastRepo.kt and add the following method:

fun save(podcast: Podcast) {
 launch(CommonPool) {
 // 1
 val podcastId = podcastDao.insertPodcast(podcast)
 // 2
 for (episode in podcast.episodes) {
 // 3
 episode.podcastId = podcastId
 podcastDao.insertEpisode(episode)
 }
 }
}

This method uses the podcastDao object to insert a Podcast and its associated Episodes
into the database.

Let’s take a closer look at how this works:

1. First, the Podcast is inserted into the database. insertPodcast() returns the new
primary key assigned to the podcast.

2. The for loop is used to walk through each episode belonging to the podcast.

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 506

3. The episode’s podcastId is assigned to the id of the inserted Podcast to create a
relationship between the two.

4. Finally, the episode is inserted in the database.

Now that the episode is in the database, you need a method to load it from the database.

Add the following new method:

fun getAll(): LiveData<List<Podcast>>
{
 return podcastDao.loadPodcasts()
}

This just passes the LiveData object from the DAO through to the caller.

Updating the view model
One more step is needed before you can connect the subscribe menu item. Since the
view only talks to the view model, you need to update the podcast view model to use
the new repository methods.

First, you need a method to save a podcast. To make it easy to save the currently loaded
podcast, add a new property to store the active podcast. This will be updated any time
the view loads a new podcast.

Open PodcastViewModel.kt and add the following property to the top of the class:

private var activePodcast: Podcast? = null

In getPodcast(), after the line that reads activePodcastViewData =
podcastToPodcastView(it), add the following:

activePodcast = it

This will assign the activePodcast to the podcast loaded by the getPodcast() method.
This allows the podcast view model to keep track of the most recently loaded podcast.

Now you can add a method to save the active podcast. Add the following method:

fun saveActivePodcast() {
 val repo = podcastRepo ?: return
 activePodcast?.let {
 repo.save(it)
 }
}

This method first checks to make sure the podcastRepo and the activePodcast are not
null. If they’re both not null, then the activatePodcast is saved to the repo.

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 507

The final addition to the view model is a method to return a view of all the subscribed
podcasts.

You’ll return a LiveData version of the podcasts formatted for the summary view.

When you built out the search feature, the SearchViewModel class used a summary view
model to return data for the search results. You can reuse this model to format the list
of subscribed podcasts.

First, add the following method that converts from a podcast model to a summary view
model.

private fun podcastToSummaryView(podcast: Podcast):
 PodcastSummaryViewData {
 return PodcastSummaryViewData(
 podcast.feedTitle,
 DateUtils.dateToShortDate(podcast.lastUpdated),
 podcast.imageUrl,
 podcast.feedUrl)
}

Next, create a method that returns the LiveData list of podcast summary view objects.
It’s designed to be invoked multiple times, yet only create the LiveData object once.

Add the following property to the top of the class:

var livePodcastData: LiveData<List<PodcastSummaryViewData>>? = null

This is used to hold the LiveData list of podcast view objects.

Add the following new method:

fun getPodcasts(): LiveData<List<PodcastSummaryViewData>>? {
 val repo = podcastRepo ?: return null
 // 1
 if (livePodcastData == null) {
 // 2
 val liveData = repo.getAll()
 // 3
 livePodcastData = Transformations.map(liveData) { podcastList ->
 podcastList.map { podcast ->
 podcastToSummaryView(podcast)
 }
 }
 }

 // 4
 return livePodcastData
}

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 508

Let’s take a closer look:

1. If livePodcastData is null, create it.

2. The LiveData object is retrieved from the podcast repo. This is the list of Podcast
data objects that now needs to be converted to versions formatted for the view.

3. The list of LiveData podcast objects are converted to a list of LiveData
PodcastSummaryViewData objects.

4. The livePodcastData object is returned to the caller.

Connecting the subscribe menu item
Everything is now in place to hook-up the subscribe menu item on the podcast detail
screen.

The activity is the best place to determine what action should take place and then
update the view accordingly. Therefore, the detail fragment will listen for the tap on the
menu item, and the podcast activity will handle the action.

Open PodcastDetailsFragment.kt and add the following to the end of the class.

interface OnPodcastDetailsListener {
 fun onSubscribe()
}

PodcastDetailsFragment will require its parent activity — in this case, the
PodcastActivity — to implement the interface and will call the onSubscribe() method
when the user activates the menu item.

You might be wondering why you should bother adding this level of abstraction? Why
not just use PodcastActivity directly? Because doing it this way is considered good
practice if you plan on using PodcastDetailsFragment in other activities.

Add the following property and method to PodcastDetailsFragment:

private var listener: OnPodcastDetailsListener? = null

override fun onAttach(context: Context?) {
 super.onAttach(context)
 if (context is OnPodcastDetailsListener) {
 listener = context
 } else {
 throw RuntimeException(context!!.toString() +
 " must implement OnPodcastDetailsListener")
 }
}

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 509

The property holds a reference to the listener. onAttach() is called by the fragment
manager when the fragment is attached to its parent activity. The context argument is
a reference to the parent activity. If the activity implements the
OnPodcastDetailsListener interface, then you assign the listener property to it. If it
doesn’t implement the interface, then an exception is thrown.

Now you just need to listen for the user tapping on the subscribe menu item, and call
the onSubscribe method on the listener.

Add the following override method:

override fun onOptionsItemSelected(item: MenuItem): Boolean {
 when (item.itemId) {
 R.id.menu_feed_action -> {
 podcastViewModel.activePodcastViewData?.feedUrl?.let {
 listener?.onSubscribe()
 }
 return true
 }
 else ->
 return super.onOptionsItemSelected(item)
 }
}

onOptionsItemSelected() is called when the user selects a menu item. If the menu
itemId matches the menu_feed_action (subscribe) item, and the active podcast is not
null, then onSubscribe() is called on the listener.

Perfect! Now you need to jump back to the activity to handle the onSubscribe() call.

Open PodcastActivity.kt and update the class declaration as follows:

class PodcastActivity : AppCompatActivity(), PodcastListAdapterListener,
 OnPodcastDetailsListener {

To implement the OnPodcastDetailsListener interface add the following method:

override fun onSubscribe() {
 podcastViewModel.saveActivePodcast()
 supportFragmentManager.popBackStack()
}

Here, you’re using the view model to save the active podcast and then you remove the
PodcastDetailsFragment by calling popBackStack() on the fragment manager.

Displaying subscribed podcasts
That completes the code to subscribe to a podcast. Of course, subscribing to a podcast is
not very useful if you don’t let the user see their subscriptions!

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 510

The main podcast activity already contains a recycler view that displays a list of
podcasts generated from search results. You can reuse the same recycler view to display
a list of subscribed podcasts.

The idea is that the app will initially display the subscribed podcasts; when the user
performs a search, those will be replaced with the search results.

You’ll start by updating the podcast activity to load all of the podcasts and display them
in the recycler view when the view is first created.

Open PodcastActivity.kt and add the following method:

private fun showSubscribedPodcasts()
{
 // 1
 val podcasts = podcastViewModel.getPodcasts()?.value
 // 2
 if (podcasts != null) {
 toolbar.title = getString(R.string.subscribed_podcasts)
 podcastListAdapter.setSearchData(podcasts)
 }
}

Let’s take a look at what’s going on with this code:

1. getPodcasts() is called on the view model to get the podcasts LiveData object. The
value is the most recently returned object of the LiveData instance. This value may
be null if the LiveData object does not have any observers attached yet, but you’ll
observe the LiveData object when the activity is created.

2. If podcasts is not null, then the podcast list adapter is updated with the podcasts
object.

Add the following line to strings.xml to satisfy the subscribed_podcasts resource
reference.

<string name="subscribed_podcasts">Subscribed</string>

Add the following method back in PodcastActivity.kt:

private fun setupPodcastListView() {
 podcastViewModel.getPodcasts()?.observe(this, Observer {
 if (it != null) {
 showSubscribedPodcasts()
 }
 })
}

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 511

Note: If given import options on Observer make sure to choose import
android.arch.lifecycle.Observer.

You’ll call this method when the activity is created. It calls getPodcasts() on the view
model and observes the changes to the data. When the data changes,
showSubscribedPodcasts() is called and the podcast list adapter is updated with the
latest list of podcasts.

Now you just need to call setupPodcastListView() when the view is created.

In onCreate(), add the following line after the call to updateControls():

setupPodcastListView()

Build and run the app.

Search and display the details for a podcast. Tap the subscribe button, and the app will
return to the search results.

Behind the scenes, the Observer you created in setupPodcastListView() will be called
when the database is updated with the subscribed podcast. This will, in turn, update the
RecyclerView and display the podcast in the list.

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 512

This is working fairly well, but there are a few things that need to be cleaned up:

1. When you tap on a subscribed podcast, it loads the episodes from the feed URL
instead of using what you already have stored in the database. This may not be
obvious at first, but if you disable your internet connection, the issue will become
clear!

2. You can subscribe to a podcast more than once and it will keep adding to the list.

3. You can’t unsubscribe to a podcast.

4. There is no way to get back to the subscribed podcast lists once you do a search.

You can fix the first issue by updating the podcast repo to check the database before it
fetches a feed from the internet. First, you need a new method in the DAO that loads a
podcast from the database based on the feed URL. Open PodcastDao.kt and add the
following method:

@Query("SELECT * FROM Podcast WHERE feedUrl = :arg0")
fun loadPodcast(url: String): Podcast?

Next, you need to update the repo logic so it attempts to load from the database first.

Open PodcastRepo.kt and add the following to the beginning of getPodcast():

launch(CommonPool) {

 val podcast = podcastDao.loadPodcast(feedUrl)

 if (podcast != null) {
 podcast.id?.let {
 podcast.episodes = podcastDao.loadEpisodes(it)
 launch(UI){
 callback(podcast)
 }
 }
 } else {

Also, add a closing brace to the end of getPodcast():

 }
}

This attempts to load the podcast from the database. If the podcast is not null, then it
loads in the matching episodes from the database and passes the podcast to the
callback method.

If the podcast is null, then the existing code block executes and loads the podcast from
the internet.

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 513

To fix the second and third problems, you need to make the detail fragment a little
smarter. That means it needs to recognize the subscription status of a podcast; if
already subscribed, the menu item shows as “Unsubscribe”; if not, the menu item shows
as “Subscribe”.

First, you need the view to determine if a podcast is subscribed to or not.

The PodcastViewData object already has a subscribed property, but it’s not being used
yet. So it’s time to update the view model to set the subscribed property.

Open PodcastViewModel.kt and update the return call in podcastToPodcastView():

return PodcastViewData(
 podcast.id != null,
 podcast.feedTitle,
 podcast.feedUrl,
 podcast.feedDesc,
 podcast.imageUrl,
 episodesToEpisodesView(podcast.episodes)
)

The only change is to the first parameter passed into PodcastViewData, which is the
subscribed flag. If a podcast contains a non-null id value, that means it was loaded
from the database. You can use that to determine how to set the subscribed property
on PodcastViewData. Set it to true if the podcast id is not equal to null; or false if it is.

Now you can update the detail fragment so it sets the state of the subscribe menu item
based on the value stored in the subscribed property. You can also update the details
listener interface to support an unsubscribe action.

Open PodcastDetailsFragment.kt and add the following line to the
OnPodcastDetailsListener interface declaration:

fun onUnsubscribe()

In order to update the menu item text to dynamically display either “Subscribe” or
“Unsubscribe”, you need to save the MenuItem in a local property.

Add the following property to the PodcastDetailsFragment class:

private var menuItem: MenuItem? = null

A new method is needed in order to update the menu item title based on the subscribed
state of the podcast.

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 514

Add the following method:

private fun updateMenuItem() {
 // 1
 val viewData = podcastViewModel.activePodcastViewData ?: return
 // 2
 menuItem?.title = if (viewData.subscribed)
 getString(R.string.unsubscribe) else getString(R.string.subscribe)
}

The code you just added:

1. Verifies that there is an active podcast on the view model.

2. Sets the menu item title based on the subscribed property. If the user already
subscribed to the podcast, the title is set to “Unsubscribe”; if not, the title is set to
“Subscribe”.

Add the following line to strings.xml to define the R.string.unsubscribe string
resource.

<string name="unsubscribe">Unsubscribe</string>

Now you can assign the menuItem property to the menu action item and call
updateMenuItem().

Back in PodcastDetailsFragment.kt, add the following to the end of
onCreateOptionsMenu():

menuItem = menu?.findItem(R.id.menu_feed_action)
updateMenuItem()

This assigns the menuItem property to the menu item widget and then calls
updateMenuItem().

That’s enough to set the correct menu item title, now you need to update the menu
action handling code to subscribe or unsubscribe based on the current state.

Update the line in onOptionsItemSelected() from this:

 listener?.onSubscribe()

To this:

if (podcastViewModel.activePodcastViewData?.subscribed) {
 listener?.onUnsubscribe()
} else {
 listener?.onSubscribe()
}

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 515

If the podcast is already subscribed to, then call onUnsubscribe() on the listener. If the
podcast is not subscribed to, then call onSubscribe() on the listener.

To complete this feature, you just need to define the onUnsubscribe() method in the
podcast activity. Unsubscribing requires removing the podcast from the database, so
you’ll need some additional database code first.

Open PodcastDao.kt and add the following method:

@Delete
fun deletePodcast(podcast: Podcast)

Note: Deleting the podcast will automatically delete all related episodes thanks to
the foreign key defined in the @Entity annotation on the Episode model.

Open PodcastRepo.kt and add the following method:

fun delete(podcast: Podcast) {
 launch(CommonPool) {
 podcastDao.deletePodcast(podcast)
 }
}

This calls the deletePodcast method in the background.

Open PodcastViewModel.kt and add the following method:

fun deleteActivePodcast() {
 val repo = podcastRepo ?: return
 activePodcast?.let {
 repo.delete(it)
 }
}

This method first checks to make sure the podcastRepo and the activePodcast are not
null. If both are not null, then the activatePodcast is deleted from the repo.

Open PodcastActivity.kt and add the following method:

override fun onUnsubscribe() {
 podcastViewModel.deleteActivePodcast()
 supportFragmentManager.popBackStack()
}

This uses the view model to delete the active podcast and then removes the podcast
details fragment.

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 516

Note: If you created duplicate podcast entries by subscribing to the same one
multiple times, you’ll need to delete the app before running it again. If you don’t
do this, the database will not load in the existing episodes correctly.

Build and run the app.

Tap on a previously subscribed podcast to display the details screen. The menu action
will now show “UNSUBSCRIBE”.

Tap on “UNSUBSCRIBE”. The app will return to the main activity, and the podcast will
be gone.

The final issue you’ll address is getting back to the subscribed podcast list after
performing a search.

This is easy enough to correct by listening for the search menu item to close, and then
reloading the subscribed podcast list.

Menu items in Android allow you to assign a listener object that responds to the menu
expanding and collapsing. You’ll assign the listener, and listen for the collapse action to
indicate when the subscribed podcast should be shown again.

Open PodcastActivity.kt. In onCreateOptionsMenu(), after the assignment of the
searchMenuItem, add the following:

searchMenuItem.setOnActionExpandListener(object:
MenuItem.OnActionExpandListener {
 override fun onMenuItemActionExpand(p0: MenuItem?): Boolean {
 return true
 }
 override fun onMenuItemActionCollapse(p0: MenuItem?): Boolean {
 showSubscribedPodcasts()
 return true
 }
})

An OnActionExpandListener object is defined with two required overrides and assigned
using setOnActionExpandListener(). You’re not interested in the menu item
expanding, so the onMenuItemActionExpand() method is empty.

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 517

onMenuItemActionCollapse() is called when the user closes the search widget. In
response, showSubscribedPodcasts() is called to display the subscribed podcast items
in place of the search results.

Build and run the app.

Search for a podcast, and then press the back arrow to close out the search widget. The
display will return back to the list of subscribed podcasts.

Where to go from here?
Good job! You made it through the first part of podcast subscriptions. Take a breather,
and pick up with part two when you’re ready to finish!

Android Apprentice Chapter 24: Podcast Subscriptions Part One

raywenderlich.com 518

25Chapter 25: Podcast
Subscriptions Part Two
By Tom Blankenship

Now that the user can subscribe to podcasts, it’s helpful to notify them when new
episodes are available. In this chapter, you’ll update the app to periodically check for
new episodes in the background and post a notification if any are found.

Getting started
If you are following along with your own app, the starter project for this chapter
includes an additional icon that you’ll need to complete the section. You can either
begin this chapter with the starter project or copy the following resources from the
starter project into yours:

• src/main/res/drawable-hdpi/ic_episode_icon.png

• src/main/res/drawable-mdpi/ic_episode_icon.png

• src/main/res/drawable-xhdpi/ic_episode_icon.png

• src/main/res/drawable-xxhdpi/ic_episode_icon.png

raywenderlich.com 519

When you’re done, the res\drawable folder in Android Studio should look like this:

Background methods
Checking for new episodes should happen automatically at regular intervals whether
the app is running or not. There are several methods available for an application to
perform tasks when it’s not running. It’s important to choose the correct one so that it
doesn’t affect the performance of other running applications.

There are four primary methods to run tasks in the background:

Alarms
You can use the AlarmManager class to wake up the app at a specified time so it can
perform operations. An Intent is sent to the application to wake it up, and then it can
perform the work.

This is not intended for doing tasks at regular intervals, and therefore not a good
solution for this app.

Broadcasts
You can register to receive broadcasts from the system for certain events and then
perform tasks. This option is highly restricted to a limited number of broadcasts in apps
that target API level 26 or higher.

This is obviously not an option for running a task at regular intervals.

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 520

Services
Android provides foreground and background services.

Foreground services are intended to perform work that is visible to the user. For
example, in the next chapter, you’ll use a foreground service to play podcasts that will
keep playing when the app does not have focus.

Background services are intended for operations that are not visible to the user. Due to
concerns with the performance of multiple application running background services at
the same time, Android does not allow them for apps targeting API level 26 or higher.

This option is also not a good fit for the PodPlay app.

Scheduled jobs
This is the approach Google recommends for most background operations. You can
specify detailed criteria about when the job will run. Android intelligently determines
the best time and takes advantage of system idle time.

This sounds like the perfect choice for periodically checking for new episodes, but
there’s one issue. The platform supported API for scheduling jobs is through the
JobScheduler class. The JobScheduler was introduced with API level 21, and at the time
of this writing, Google has not released a backward compatible version.

This means you can only use JobScheduler if you’re targeting API 21 or higher. To
support back to API 19, a nice alternative is the Firebase JobDispatcher.

Firebase JobDispatcher
Firebase JobDispatcher is an open source library created by Google that has a similar
API to the JobScheduler, but works all the way back to API 9. The only additional
requirement is that the user’s device must have Google Play services installed.

Before getting into the details of the JobDispatcher, you’ll build out the underlying
logic to update podcast episodes.

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 521

Here’s a diagram showing how it will all fit together:

Episode update logic
To keep with the current architecture of using the repo for updating podcast data, you’ll
add a new method in the repo to handle the episode update logic.

The update logic will work as follows:

1. Walk through all subscribed podcasts.

2. Download the latest podcast feed.

3. Determine which episodes are new.

4. Add the new episodes to the database.

5. Notify the user when new episodes are available.

Because LiveData doesn’t do much good in the background, you need a method in the
DAO class to load the podcasts and episodes without using the LiveData wrapper.

Open db\PodcastDao.kt and add the following method:

@Query("SELECT * FROM Podcast ORDER BY FeedTitle")
fun loadPodcastsStatic(): List<Podcast>

You’ll also need a method that takes a single podcast and returns a list of new episodes
available.

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 522

Open repository\PodcastRepo.kt and add the following method:

private fun getNewEpisodes(localPodcast: Podcast,
 callBack: (List<Episode>) -> Unit) {
 // 1
 feedService.getFeed(localPodcast.feedUrl, { response ->
 if (response != null) {
 // 2
 val remotePodcast = rssResponseToPodcast(localPodcast.feedUrl,
 localPodcast.imageUrl, response)
 remotePodcast?.let {
 // 3
 val localEpisodes = podcastDao.loadEpisodes(localPodcast.id!!)
 // 4
 val newEpisodes = remotePodcast.episodes.filter { episode ->
 localEpisodes.find { episode.guid == it.guid } == null
 }
 // 5
 callBack(newEpisodes)
 }
 } else {
 callBack(listOf())
 }
 })
}

This method takes a subscribed podcast and downloads its latest episodes. This uses the
network to download the episodes in the background, therefore, it accepts a callBack
method as the second argument. It executes the callBack method after the episodes are
retrieved. Let’s walk through it step-by-step:

1. Use the feedService to download the latest podcast episodes.

2. Convert the feedService response to the remotePodcast object.

3. Load the list of local episodes from the database.

4. Filter the remotePodcast episodes to contain only the ones that are not found in the
localEpisodes list and assign to newEpisodes.

5. Pass the newEpisodes list to the callBack method.

6. Return an empty list if the feedService does return a response.

You’ll also need a new method that updates an existing podcast with a new episode.

Add the following method:

private fun saveNewEpisodes(podcastId: Long, episodes: List<Episode>) {
 launch(CommonPool) {
 for (episode in episodes) {
 episode.podcastId = podcastId
 podcastDao.insertEpisode(episode)

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 523

 }
 }
}

This method inserts the list of episodes into the database for the given podcastId.

Before you can create the main podcast update method, you need one small class. This
class will hold the update details for a single podcast.

Add the following inner class to the PodcastRepo class:

class PodcastUpdateInfo (val feedUrl: String, val name: String,
 val newCount: Int)

Now you’re ready to create the podcast update method.

Add the following method:

fun updatePodcastEpisodes(callback: (List<PodcastUpdateInfo>) -> Unit) {
 // 1
 val updatedPodcasts: MutableList<PodcastUpdateInfo> = mutableListOf()
 // 2
 val podcasts = podcastDao.loadPodcastsStatic()
 // 3
 var processCount = podcasts.count()
 // 4
 for (podcast in podcasts) {
 // 5
 getNewEpisodes(podcast, { newEpisodes ->
 // 6
 if (newEpisodes.count() > 0) {
 saveNewEpisodes(podcast.id!!, newEpisodes)
 updatedPodcasts.add(PodcastUpdateInfo(podcast.feedUrl,
 podcast.feedTitle, newEpisodes.count()))
 }
 // 7
 processCount--
 if (processCount == 0) {
 // 8
 callback(updatedPodcasts)
 }
 })
 }
}

This method walks through all of the subscribed podcasts and updates them with the
latest episodes. It executes the passed in callback method with a summary of the
podcasts that were updated. Here’s the step-by-step explanation:

1. Initialize an empty list of PodcastUpdateInfo objects.

2. Load the subscribed podcasts from the database without the LiveData wrapper.

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 524

3. processCount is initialized to keep track of the background processing.

4. The podcasts are processed one at a time.

5. getNewEpisodes() is called to fetch any new episodes. Because getNewEpisodes()
runs in the background, it won’t actually run until the loop has iterated over all
podcasts and returned to the caller. The processCount is used as a way to track
when all background processing has completed. When processCount reaches 0, it’s
time to pass the updatedPodcasts list to the callback method.

6. If there were new episodes, they are saved to the database, and the updatedPodcasts
list is appended with a new PodcastUpdateInfo object. This object stores the feed
URL, podcast name and the numbers of episodes added.

7. The process count is decremented.

8. If the process count reaches 0, indicating that all podcasts have been processed,
then the callback method gets called and passes the list of updated podcasts.

Firebase JobDispatcher
Now that all of the support code is in place to update podcast episodes, you can turn
your attention back to job scheduling.

Using the JobDispatcher class consists of the following steps:

1. Define a custom JobService class that executes the job logic.

2. Create a FirebaseJobDispatcher object.

3. Define a Job with the required scheduling parameters and your JobService class.

4. Schedule the Job through the FirebaseJobDispatcher object.

JobService
Your first task is to define a class that extends JobService. This class gets activated by
the JobDispatcher when the job is ready to run.

The Firebase JobDispatcher library must be added to the project first.

Open the module build.gradle file and add the following line to the dependencies
section:

implementation "com.firebase:firebase-jobdispatcher:0.8.5"

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 525

Sync the project.

In the service package, create a new Kotlin file named EpisodeUpdateService.kt and
replace the contents with the following:

class EpisodeUpdateService : JobService() {

 override fun onStartJob(jobParameters: JobParameters): Boolean {
 return true
 }

 override fun onStopJob(jobParameters: JobParameters): Boolean {
 return true
 }
}

Note: Make sure to use com.firebase.jobdispatcher.JobService and
com.firebase.jobdispatcher.JobParameters instead of the built-in
android.app.job.JobService and android.app.job.JobParameters imports.

Kotlin’s autocomplete will attempt to bring in the JobParameters parameters on
onStartJob and onStopJob as optionals, since the Java methods where they are
declared do not have nullability annotations. This is an effort to keep unannotated
Java APIs from accidentally causing crashes in your Kotlin code. In this particular
case, it’s known from documentation that the parameters are guaranteed to be
there at runtime so that you can remove the ?. Since the method isn’t annotated,
the compiler won’t complain.

You’re required to define two methods on your JobService class:

• onStartJob(): This is where you’ll perform the episode updating logic. This method
should return true if you’re processing the job on a background thread, which you
will be doing. If your job does something simple and returns without starting a
background thread, then you should return false.

The job dispatcher will call this method when it’s time for you to perform your work.
A WakeLock will be kept on your application as long as the job is running to make sure
the application doesn’t get killed by the system before the job completes.

Upon completion of your job logic, the jobFinished() method on your JobService
must be called to release the WakeLock and prevent battery drain. Keep in mind that
onStartJob() is called on the main thread and is expected to return to the system
quickly. You’ll need to make sure the episode update logic runs in the background.

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 526

• onStopJob(): This is where you’ll stop the currently running job if it hasn’t
completed yet. Don’t ignore this call or the app will likely not behave correctly.

Android will release the WakeLock on the app when this is called. You should return
true if you want the job to be retried again later. Return false if the job can be
dropped.

The job dispatcher will call this method if the criteria for running the job is no longer
valid. For instance, if the job should only run when the device is plugged in, then
unplugging the device will trigger a call to onStopJob().

Just like any other Service in Android, the job service must be registered in the
manifest file.

Open AndroidManifest.xml and add the following beneath the main activity
element, but still within the application element:

<service
 android:exported="false"
 android:name=".service.EpisodeUpdateService">
 <intent-filter>
 <action android:name="com.firebase.jobdispatcher.ACTION_EXECUTE"/>
 </intent-filter>
</service>

Now you can start adding some supporting methods to the job service.

The purpose of using job scheduling is to allow the episodes to be checked in the
background, even if the app is not running. But what happens then? Right now, nothing
happens until the user returns to the application, but they’re not likely to do that if
they don’t know there are new episodes.

You need a way to notify the user from outside the app when new episodes are
available. This is where Android Notifications come in to play.

Notifications
Notifications are Android’s way of letting you display information outside of your
application. The notifications appear as icons in the notification display area at the top
of the screen as shown here:

You use the NotificationManager class to trigger notifications based on a Notification
object that is created with the NotificationCompat.Builder class.

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 527

When you create a notification it requires the following items at a minimum:

1. Small icon: Set with setSmallIcon().

2. Title: Set with setContentTitle().

3. Detailed text: set with setContentText().

Starting with API level 26 (Oreo), you also need a notification channel. This gives the
user more control over the types of notifications they get from the application.

When you create a notification channel, you define some initial settings such as
vibration, but then the user can customize each channel and decide how it behaves. For
PodPlay, you’ll use a single notification channel.

In addition to the required settings, there are many more ways to customize
notifications. PodPlay will stick with the basics, but you’re encouraged to view the
documentation at https://developer.android.com/reference/android/support/v4/app/
NotificationCompat.Builder.html to learn more about the other notification options.

Before creating the notification channel, you need a unique channel ID.

Open EpisodeUpdateService.kt and add the following companion object to the
EpisodeUpdateService class:

companion object {
 val EPISODE_CHANNEL_ID = "podplay_episodes_channel"
}

This defines a channel ID that will identify this channel to the notification system. This
can be any string that is unique to your app.

Add the following method that will create the PodPlay notification channel:

// 1
@RequiresApi(Build.VERSION_CODES.O)
private fun createNotificationChannel() {
 // 2
 val notificationManager =
 getSystemService(Context.NOTIFICATION_SERVICE) as
 NotificationManager
 // 3
 if (notificationManager.getNotificationChannel(EPISODE_CHANNEL_ID)
 == null) {
 // 4
 val channel = NotificationChannel(EPISODE_CHANNEL_ID, "Episodes",
 NotificationManager.IMPORTANCE_DEFAULT)
 notificationManager.createNotificationChannel(channel)
 }
}

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 528

1. Since notification channels are only supported in API 26 or newer, the RequiresApi
annotation is used to notify the compiler that this method should only be called
when running on API 26 or newer (in this case API 26 is the letter 'O' for 'Oreo' and
therefore we use Build.VERSION_CODES.O).

2. The notification manager is retrieved using getSystemService(). You should never
create the notification manager directly.

3. The notification manager is used to check if the channel already exists.

4. If the channel does not exist, then a new NotificationChannel object is created
with the name “Episodes”. The notification manager is instructed to create the
channel.

Now you’ll create the method to display a single notification. This method requires a
couple of new string resources.

Open res\values\strings.xml and add the following:

<string name="episode_notification_title">New episodes</string>
<string name="episode_notification_text">%1$d new episode(s) for %2$s</
string>

The %1$d and %2$s bits are placeholders for parameters that are passed in when this
string is accessed.

%1 indicates that it’s a placeholder for the first parameter, $d indicates that this first
parameter will be a digit. Similarly, %2$s indicates that the second parameter will be a
string.

Jump back to EpisodeUpdateService.kt and add a new constant to the companion
object:

val EXTRA_FEED_URL = "PodcastFeedUrl"

Then add the following method:

private fun displayNotification(podcastInfo:
 PodcastRepo.PodcastUpdateInfo) {
 // 1
 val contentIntent = Intent(this, PodcastActivity::class.java)
 contentIntent.putExtra(EXTRA_FEED_URL, podcastInfo.feedUrl)
 val pendingContentIntent = PendingIntent.getActivity(this, 0,
 contentIntent, PendingIntent.FLAG_UPDATE_CURRENT)
 // 2
 val notification = NotificationCompat.Builder(this, EPISODE_CHANNEL_ID)
 .setSmallIcon(R.drawable.ic_episode_icon)
 .setContentTitle(getString(R.string.episode_notification_title))
 .setContentText(getString(R.string.episode_notification_text,

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 529

 podcastInfo.newCount, podcastInfo.name))
 .setNumber(podcastInfo.newCount)
 .setAutoCancel(true)
 .setContentIntent(pendingContentIntent)
 .build()
 // 4
 val notificationManager =
 getSystemService(Context.NOTIFICATION_SERVICE)
 as NotificationManager
 // 5
 notificationManager.notify(podcastInfo.name, 0, notification)
}

Note: If given the choice of imports for NotificationCompat, make sure to choose
android.support.v4.app.NotificationCompat.

1. The notification manager needs to know what content to display when the user taps
the notification. You do this by providing a PendingIntent that points to the
PodcastActivity.

When the user taps the notification, the system will use the intent within the
PendingIntent to launch the PodcastActivity. The podcast feedUrl is set as an
extra on the intent, and you’ll use this information to display the podcast details
screen.

2. The Notification is created with the following options:

setSmallIcon(): Set to the PodPlay episode icon.

setContentTitle(): This is the main title shown above the detailed text.

setContentText(): This is the detailed text. It will let the user know the name of the
podcast and the number of new episodes available.

setNumber(): This tells Android the number of new items associated with this
notification. In some cases, this number is shown to the right of the notification.

setAutoCancel(): Setting this to true tells Android to clear the notification once
the user taps on it.

setContentIntent(): Sets the pending intent that was defined earlier.

3. The notification manager is retrieved using getSystemService.

4. The notification manager is instructed to notify the user with the notification object
created by the builder.

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 530

The first parameter defines a tag, and the second parameter is an id number. These two
items combine to create a unique name for the notification. In this case, the podcast
name is unique enough, so the id number is always 0. If notify() is called multiple
times with the same tag and ID then it will replace any existing notification with the
same tag and id.

Finally, you’re ready to update onStartJob() to implement update logic and trigger the
notifications.

Replace the contents of onStartJob() with the following:

// 1
val db = PodPlayDatabase.getInstance(this)
val repo = PodcastRepo(FeedService.instance, db.podcastDao())
// 2
launch(CommonPool) {
 // 3
 repo.updatePodcastEpisodes({ podcastUpdates ->
 // 4
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 createNotificationChannel()
 }
 // 5
 for (podcastUpdate in podcastUpdates) {
 displayNotification(podcastUpdate)
 }
 // 6
 jobFinished(jobParameters, false)
 })
}

return true

1. Instantiate a repo object.

2. Define a coroutine to run the update process in the background.

3. Call repo.updatePodcastEpisodes() to update the podcast episodes.

4. If the device is running Android O or later, create the required notification channel.

5. Call displayNotification() for each updated podcast.

6. After all of the podcasts have been processed, call jobFinished() to let the job
dispatcher know that the job is complete.

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 531

JobDispatcher Scheduling
Now that EpisodeUpdateService is updating podcast episodes and notifying the user,
you’ll finish up by using the Firebase JobDispatcher to schedule the
EpisodeUpdateService.

Firebase JobDispatcher provides several features to control when jobs are executed.
This helps ensure that PodPlay is a good citizen and doesn’t drain battery unnecessarily
or adversely impact the performance of other applications.

Besides controlling the interval that your job should execute, you can place other
constraints on when the job should execute. These constraints include network,
charging state and idle state.

For example, with the network type, you can request the job only runs if the network is
unmetered (i.e., not on a cell network). You can combine multiple constraints.

An excellent place to configure and start the JobDispatcher is in the main podcast
activity.

First, you’ll need a new constant to define the job tag.

Open ui\PodcastActivity.kt and add the following line to the companion object:

private val TAG_EPISODE_UPDATE_JOB = "com.raywenderlich.podplay.episodes"

Add the following method:

private fun scheduleJobs()
{
 // 1
 val dispatcher = FirebaseJobDispatcher(GooglePlayDriver(this))
 // 2
 val oneHourInSeconds = 60*60
 val tenMinutesInSeconds = 60*10
 val episodeUpdateJob = dispatcher.newJobBuilder()
 .setService(EpisodeUpdateService::class.java)
 .setTag(TAG_EPISODE_UPDATE_JOB)
 .setRecurring(true)
 .setTrigger(Trigger.executionWindow(oneHourInSeconds,
 (oneHourInSeconds + tenMinutesInSeconds)))
 .setLifetime(Lifetime.FOREVER)
 .setConstraints(
 Constraint.ON_UNMETERED_NETWORK,
 Constraint.DEVICE_CHARGING
)
 .build()

 dispatcher.mustSchedule(episodeUpdateJob)
}

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 532

That’s all you need to kick off a job with FirebaseJobDispatcher.

1. Instantiate the FirebaseJobDispatcher using the GooglePlayDriver.
FirebaseJobDispatcher is designed to allow different drivers to be swapped in to
control the low-level job scheduling. The only driver currently available is the
GooglePlayDriver.

2. Create a new job builder and use it to build the episodeUpdateJob. The following
parameters are set on the job:

setService: Tells the job to use the EpisodeUpdateService service when it’s time to
run the job.

setTag: Sets a unique tag to identify the job. You can use this tag to cancel the job.

setRecurring: Setting this to true will cause the job to repeat.

setTrigger: This controls how often the job repeats. Trigger.executionWindow
defines the earliest time and the latest time the job should start from the last time
it was executed. The times are in seconds and are defined as 1 hour and 1 hour 10
minutes. Keep in mind that even with this window, the job still has to meet all
constraints before it’s executed.

setLifetime: This tells the job to work even when the device is rebooted. If you want
the job to end when the device is rebooted, you can pass in
Lifetime.UNTIL_NEXT_BOOT.

setConstraints: The job is set to only run on an unmetered network and only when
the device is plugged in.

Note: You’ll need to remove the unmetered network setting if you want to test
on an emulator.

Because the job should continue to execute even if the device is rebooted, the
application must specify one additional permission in the manifest file.

Open AndroidManifest.xml and add the following permission line just above the
opening tag of application:

<uses-permission
android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 533

Now you just need to call scheduleJobs() when the activity is started. Go back to
PodcastActivity.kt and add the following line to the end of onCreate():

scheduleJobs()

Notification Intent
At this point, the episode job will run, and the notifications will work. If the user taps
the notification, it will activate the PodcastActivity. The only thing left is to handle
the notification intent and use it to display the podcast details.

Currently, the only time the app navigates to the podcast details screen is when the
user taps a podcast. When this happens, the podcast is made active in the view model
and onShowDetails() is called. You’ll simulate this same behavior when the notification
intent is received.

First, you need a new method in the podcast view model to set the activate podcast
based on a feed URL.

Open viewmodel\PodcastViewModel.kt and add the following method:

fun setActivePodcast(feedUrl: String,
 callback: (PodcastSummaryViewData?) -> Unit) {

 val repo = podcastRepo ?: return

 repo.getPodcast(feedUrl, { podcast ->
 if (podcast == null) {
 callback(null)
 } else {
 activePodcastViewData = podcastToPodcastView(podcast)
 activePodcast = podcast
 callback(podcastToSummaryView(podcast))
 }
 })
}

This method loads the podcast from the database based on the feedUrl. If the podcast
is found, it’s converted to a podcast view and set as the active podcast. The podcast
summary view data is then passed to the callback.

Now you can look for the intent data in the podcast activity and use it to set the active
podcast and display the details screen.

Open PodcastActivity.kt and add the following to the end of handleIntent():

val podcastFeedUrl = intent
 .getStringExtra(EpisodeUpdateService.EXTRA_FEED_URL)
if (podcastFeedUrl != null) {

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 534

 podcastViewModel.setActivePodcast(podcastFeedUrl, {
 it?.let { podcastSummaryView -> onShowDetails(podcastSummaryView) }
 })
}

The podcastFeedUrl is extracted from the intent. If it’s not null, then
setActivePodcast() is called on the view model. After it retrieves the podcast,
setActivePodcast() executes the callback and passes in the podcastSummaryView
object. Finally, onShowDetails() is called with the podcastSummaryView to display the
podcast podcast details screen.

Build and run the app.

You may find it a little difficult to test the new features. You’ll only see evidence that
it’s working when one of your subscribed podcasts are updated with new episodes, and
this may not happen for days depending on the frequency of the podcast releases.

One way to force the notification to kick in is to remove a single episode when you
subscribe to a podcast. This will result in the initial subscription missing an episode and
will cause the podcast update logic to download the missing episode and trigger the
notification.

If you want to test with this method, open PodcastViewModel.kt and add the
following line in saveActivePodcast() before the call to repo.Save():

it.episodes = it.episodes.drop(1)

This drops the first episode from the Podcast you are subscribing to before it’s saved to
the database.

You may also want to reduce the execution window times on the job to have the job run
without waiting an hour.

Note: Firebase JobScheduler may not kick in while the app is being debugged on
the device. If you wait the reduced amount of time and nothing happens, try
disconnecting your device from the debugger and then running through the
subscribe/wait steps again.

Here’s the notification area showing two notifications icons for PodPlay:

If you pull down on the notification area you’ll see the notification details:

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 535

Tap on a notification, and it will launch the podcast details page.

Where to go from here?
After testing, don’t forget to remove the temporary code you added to drop the first
podcast when subscribing, and put back in the original execution window times.

Congratulations on making it this far! You’ve completed the main podcast management
part of the application. In the next chapter, you’ll finally make the PodPlay app live up
to its namesake by implementing the media playback interface!

Android Apprentice Chapter 25: Podcast Subscriptions Part Two

raywenderlich.com 536

26Chapter 26: Podcast
Playback
By Tom Blankenship

So far, you’ve built a decent podcast management app — too bad there’s no way to listen
to content. Time to fix that!

In this chapter, you’ll learn how to build a media player that plays audio and video
podcasts, and integrates into the Android ecosystem. Building a good media player
takes some work. The payoff, however, is an app that works well in the foreground and
also while the user performs other tasks on their device.

Getting started
If you are following along with your own app, the starter project for this chapter
includes some additional icons that you’ll need to complete the chapter. You can either
begin this chapter with the starter project or copy all of the drawable resources from
the starter project into yours:

• src/main/res/drawable/ic_pause_white.png

• src/main/res/drawable/ic_play_arrow_white.png

• src/main/res/drawable/ic_episode_icon.png

Make sure to copy the files from all of the drawable folders, including everything with
the .hdpi, .mdpi, .xhdpi, .xxhdpi and .xxxhdpi extensions.

raywenderlich.com 537

Media player basics

Note: The Media classes mentioned here have backward compatible versions that
you’ll use when building the app. The Compat part of the class names have been
left out for brevity (i.e., MediaPlayer = MediaPlayerCompat).

The architecture for an app that requires media playback can be confusing. Getting a
birds-eye view of how it works is often the best place to start:

As daunting as this diagram can be, it’s meant to show you that adding media playback
to an Android app requires two large pieces: the playback UI (PlayerFragment) and the
playback service (MediaBrowserService).

MediaPlayer
The built-in core tool that Android provides for media playback is the MediaPlayer
class. This class handles both audio and video and can play content stored locally or
streamed from an external URL. MediaPlayer has standard calls for loading media,
starting playback, pausing playback and seeking to a playback position.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 538

MediaSession
Android provides another class named MediaSession that is designed to work with any
media player, either the built-in MediaPlayer or one of your choosing. The
MediaSession provides callbacks for onPlay(), onPause() and onStop() that you’ll use to
create and control the media player.

One significant advantage to using a MediaSession is that systems other than your
application can access it.

MediaController
The MediaController is used directly by the user interface, which in turn,
communicates with a MediaSession, isolating your UI code from the MediaSession.
MediaController provides callbacks for major MediaSession events and this can be used
to update your UI.

MediaBrowserService
For a better listening experience, you’ll let the podcast play in the background and give
the user playback controls from outside the PodPlay app. There are many ways a user
may want to control audio from outside an application, and MediaBrowserService
makes it possible.

MediaBrowserService runs as foreground service when playing audio. When a service is
running in foreground mode, Android makes sure it sticks around.

With other background services, Android tends to kill them off — which isn’t something
you want when the user is listening to a long-running podcast.

One central feature of the MediaBrowserService is that it’s discoverable and other apps
can use it to playback your media, which allows advanced features, such as playback
from Android Wear or Android Auto devices.

MediaBrowser
To control the MediaBrowserService service, you’ll use the MediaBrowser class.
MediaBrowser connects to the MediaBrowserService service and provides it with a
MediaController. Your UI will then use a MediaController to control the playback
operations. Other apps can also use their own MediaBrowser to connect to the PodPlay
MediaBrowserService.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 539

Building the MediaBrowserService
The MediaBrowserService is where all the hard work of managing the podcast playback
will happen. You’ll start with a basic implementation that’s just enough to get a podcast
playing and then expand the service later.

In the service package, create a new file named PodplayMediaService.kt with the
following contents:

class PodplayMediaService : MediaBrowserServiceCompat() {

 override fun onCreate() {
 super.onCreate()
 }

 override fun onLoadChildren(parentId: String,
 result: Result<MutableList<MediaBrowserCompat.MediaItem>>) {
 // To be implemented
 }

 override fun onGetRoot(clientPackageName: String,
 clientUid: Int, rootHints: Bundle?): BrowserRoot? {
 // To be implemented
 return null
 }
}

This represents the basic outline of a MediaBrowserServiceCompat class with overloaded
methods for onLoadChildren() and onGetRoot(). We’ll come back to these methods
later in the chapter.

Just like other services, PodplayMediaService needs an entry in the manifest.

Open AndroidManifest.xml and add the following under the main <application>
section:

<service android:name=".service.PodplayMediaService">
 <intent-filter>
 <action android:name="android.media.browse.MediaBrowserService" />
 </intent-filter>
</service>

This allows a MediaBrowser to find your media browser service.

Create a MediaSession
At the heart of the MediaBrowserService is the MediaSession. As PodPlay and other
applications interact through MediaBrowserService, MediaSession responds. But before
it can, you need to create the MediaSession when the service first starts.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 540

Open PodplayMediaService.kt and add the following property:

private lateinit var mediaSession: MediaSessionCompat

Now add the following method:

private fun createMediaSession() {
 // 1
 mediaSession = MediaSessionCompat(this, "PodplayMediaService")
 // 2
 mediaSession.setFlags(MediaSessionCompat.FLAG_HANDLES_MEDIA_BUTTONS or
 MediaSessionCompat.FLAG_HANDLES_TRANSPORT_CONTROLS)
 // 3
 setSessionToken(mediaSession.sessionToken)
 // 4
 // Assign Callback
}

Let’s walk through the code:

1. The mediaSession property is initialized with a new MediaSessionCompat object.

2. setFlags indicates which actions the media session supports. If you miss this step,
the media session won’t respond to any events! You’ll support media buttons (i.e.,
play/pause hardware buttons on headphones), and transport controls such as play
and pause commands from a media controller. When you build the MediaBrowser
part of PodPlay, it will use the transport controls.

3. The unique token for the media session is retrieved and applied as the session token
on the PodplayMediaService, which links the service to the media session.

4. The only missing part is assigning a Callback class to the media session. You’ll
create this next.

To finish out the initialization of the media session, you’ll need to define a
MediaSessionCompat.Callback to handle media events.

In the service package, create a new file named PodplayMediaCallback.kt and replace
its contents with the following:

class PodplayMediaCallback(val context: Context,
 val mediaSession: MediaSessionCompat,
 var mediaPlayer: MediaPlayer? = null) :
 MediaSessionCompat.Callback() {

 override fun onPlayFromUri(uri: Uri?, extras: Bundle?) {
 super.onPlayFromUri(uri, extras)
 println("Playing ${uri.toString()}")
 onPlay()
 }

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 541

 override fun onPlay() {
 super.onPlay()
 println("onPlay called")
 }

 override fun onStop() {
 super.onStop()
 println("onStop called")
 }

 override fun onPause() {
 super.onPause()
 println("onPause called")
 }
}

This is just the skeleton code for the Callback; it doesn’t do anything yet. Although you
can handle other events, these are sufficient for the PodPlay app.

You’ll come back to this later, and fill in the details of each callback method. Now, you
can finish out the media session initialization.

In PodplayMediaService.kt, add the following to the end of createMediaSession():

val callBack = PodplayMediaCallback(this, mediaSession)
mediaSession.setCallback(callBack)

This creates a new instance of PodplayMediaCallback and sets it as the media session
callback.

Add the following to the end of onCreate():

createMediaSession()

Before diving into the detailed implementation on PodplayMediaService, let’s connect a
MediaBrowser to the service and test the communication between the browser and
service.

Connecting the MediaBrowser
There’s no podcast episode player UI in the app yet — which is where you’d normally
create the MediaBrowser and connect it to the PodplayMediaService — so for now,
you’ll add the MediaBrowser code to the podcast details screen instead.

There are four steps to complete when adding MediaBrowser capabilities to an activity
or fragment:

1. Create the MediaBrowser object and connect it to the MediaBrowserService.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 542

2. Define a MediaBrowser.ConnectionCallback to handle the browser service
connection messages.

3. Define a MediaController.Callback class to handle data and state changes from the
browser service.

4. Connect and disconnect the MediaBrowser based on lifecycle events.

Create callbacks
You’ll define the callback classes before adding the MediaBrowser object.

First, create the MediaController.Callback class. This class will receive messages when
the playback state changes and is where you would typically update your player UI to
reflect the current state.

Open PodcastDetailsFragment.kt and add the following inner class:

inner class MediaControllerCallback: MediaControllerCompat.Callback() {
 override fun onMetadataChanged(metadata: MediaMetadataCompat?) {
 println("metadata changed to $
{metadata?.getString(MediaMetadataCompat.METADATA_KEY_MEDIA_URI)}")
 }
 override fun onPlaybackStateChanged(state: PlaybackStateCompat?) {
 println("state changed to $state")
 }
}

You haven’t implemented a playback UI yet, so the callback methods will just print out
information for now.

Now, create the MediaBrowser.ConnectionCallback class. This requires a
MediaControllerCallback object and a MediaBrowser object.

Add the following properties to the top of the PodcastDetailsFragment class:

private lateinit var mediaBrowser: MediaBrowserCompat
private var mediaControllerCallback: MediaControllerCallback? = null

Add the following method:

private fun registerMediaController(token: MediaSessionCompat.Token) {
 // 1
 val mediaController = MediaControllerCompat(activity, token)
 // 2
 MediaControllerCompat.setMediaController(activity, mediaController)
 // 3
 mediaControllerCallback = MediaControllerCallback()
 mediaController.registerCallback(mediaControllerCallback!!)
}

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 543

1. Create the MediaController and associate it with the session token from the
MediaSession object. This connects the media controller with the media session.

Note: Don’t confuse this MediaController class with the one from the Android
widget library. The MediaController widget is designed to provide a basic UI
for media playback controls. This MediaController class is part of the Android
media session package, and it used to communicate with an active media
session.

2. Assign the MediaController to the activity so that it can be retrieved later with
getMediaController().

3. Create a new instance of MediaControllerCallback and set it as the callback object
for the media controller.

Add the following inner class:

inner class MediaBrowserCallBacks:
 MediaBrowserCompat.ConnectionCallback() {
 // 1
 override fun onConnected() {
 super.onConnected()
 // 2
 registerMediaController(mediaBrowser.sessionToken)
 println("onConnected")
 }

 override fun onConnectionSuspended() {
 super.onConnectionSuspended()
 println("onConnectionSuspended")
 // Disable transport controls
 }

 override fun onConnectionFailed() {
 super.onConnectionFailed()
 println("onConnectionFailed")
 // Fatal error handling
 }
}

When you create the media browser object, an instance of MediaBrowserCallBacks is
passed to the constructor. The MediaBrowserService will eventually call onConnected()
upon successful connection to the MediaBrowserService, or it will call
onConnectionFailed() if there’s an issue.

1. onConnected() is called after a successful connection. This is your chance to assign
a MediaController controller to the activity, and to register the
MediaControllerCallback class with the mediaController.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 544

2. The MediaController is registered.

Init the MediaBrowser
With the two callback classes created, you’re ready to create the media browser object.
This asynchronously kicks off the connection to the browser service.

Add the following method:

private fun initMediaBrowser() {
 mediaBrowser = MediaBrowserCompat(activity,
 ComponentName(activity, PodplayMediaService::class.java),
 MediaBrowserCallBacks(),
 null)
}

Here, you instantiate a new MediaBrowserCompat object using the following arguments:

1. context: The current activity hosting the fragment.

2. serviceComponent: This tells the media browser that it should connect to the
PodplayMediaService service.

3. callback: The callback object to receive connection events.

4. rootHints: Optional service specific hints to pass along as a Bundle object.

Now you can call this method when the fragment is created. Add the following line to
the end of onCreate():

initMediaBrowser()

The final step is to connect the media browser and unregister the media controller at
the appropriate times.

Connect the MediaBrowser
The media browser should be connected when the activity or fragment is started. Add
the following method:

override fun onStart() {
 super.onStart()
 if (mediaBrowser.isConnected) {
 if (MediaControllerCompat.getMediaController(activity) == null) {
 registerMediaController(mediaBrowser.sessionToken)
 }
 } else {
 mediaBrowser.connect()
 }
}

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 545

First, check to see if the media browser is already connected. This will happen when a
configuration change occurs, such as a screen rotation. If it is connected, then all that’s
needed is to register the media controller. If it’s not connected, then you call connect(),
and delay the media controller registration until the connection is completed.

Unregister the controller
The media controller callbacks should be unregistered when the activity or fragment is
stopped.

Add the following method:

override fun onStop() {
 super.onStop()
 if (MediaControllerCompat.getMediaController(activity) != null) {
 mediaControllerCallback?.let {
 MediaControllerCompat.getMediaController(activity)
 .unregisterCallback(it)
 }
 }
}

If the media controller is available and the mediaControllerCallback is not null, the
media controller callbacks object is unregistered.

It’s time to make sure everything is connected correctly before adding some playback
code.

Build and run the app. Display the details for a podcast, and tap on a single episode.

Look at Logcat. Things didn’t go as planned.

There are error messages from the MediaBrowserService and the MediaBrowser, and
onConnectionFailed() was called on your MediaBrowserCallBacks object.

I/MediaBrowserService: No root for client com.raywenderlich.podplay from
service android.service.media.MediaBrowserService$ServiceBinder$1
E/MediaBrowser: onConnectFailed for
ComponentInfo{com.raywenderlich.podplay/
com.raywenderlich.podplay.service.PodplayMediaService}
I/System.out: onConnectionFailed

Handle media browsing
To properly handle media browsing, there’s one part of PodplayMediaService you need
to complete.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 546

onGetRoot() and onLoadChildren() are designed to work in concert and provide a
hierarchy of media content to a media browser. A media browser will call these two
methods to get a list of browsable menu items to show the user.

onGetRoot() should return the root media ID of the content tree. onLoadChildren()
should return the list of child media items given a parent media ID. If onGetRoot()
returns null then the connection fails.

Media browsing is an optional feature, and a media browser can still connect to and
control a media service without full media browsing capabilities. PodPlay will not allow
media browsing, but you still need to return an empty root ID from onGetRoot().

Define a new media ID representing the empty root media and return it in onGetRoot().

Open PodplayMediaService.kt and add the following companion object:

companion object {
 private const val PODPLAY_EMPTY_ROOT_MEDIA_ID =
 "podplay_empty_root_media_id"
}

Replace the contents of onGetRoot() with the following:

return MediaBrowserServiceCompat.BrowserRoot(
 PODPLAY_EMPTY_ROOT_MEDIA_ID, null)

Now, tell onLoadChildren() to return an empty list of children for the empty root ID.

Replace the contents of onLoadChildren() with the following:

if (parentId.equals(PODPLAY_EMPTY_ROOT_MEDIA_ID)) {
 result.sendResult(null)
}

Build and run the app. Display the details for a podcast, and tap on a single episode
again.

Look at Logcat, and you’ll see the onConnected message indicating the media browser
connected to the media browser service without any problems.

I/System.out: onConnected

Sending playback commands
With the successful connection in place, it’s time to test out the ability to send play
commands and recognize state changes.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 547

For now, to keep things simple, you’ll send a play command to the
PodplayMediaService when the user taps on a podcast episode.

Start by adding some code to detect when the user taps on an episode.

Open EpisodeListAdapter.kt and add the following to the top of the class:

interface EpisodeListAdapterListener {
 fun onSelectedEpisode(episodeViewData: EpisodeViewData)
}

PodcastDetailsFragment will implement this interface and be notified when the user
taps an episode.

Update the EpisodeListAdapter definition to match the following:

class EpisodeListAdapter(
 private var episodeViewList: List<EpisodeViewData>?,
 private val episodeListAdapterListener: EpisodeListAdapterListener) :
 RecyclerView.Adapter<EpisodeListAdapter.ViewHolder>() {

This adds in the episodeListAdapterListener argument to the constructor.

Update the ViewHolder definition to the following:

class ViewHolder(
 v: View, private
 val episodeListAdapterListener: EpisodeListAdapterListener) :
 RecyclerView.ViewHolder(v) {

This adds the episodeListAdapterListener argument to the class declaration.

Update the return in onCreateViewHolder() to add in the new argument:

return ViewHolder(LayoutInflater.from(parent.context)
 .inflate(R.layout.episode_item, parent, false),
 episodeListAdapterListener)

Add the following method to the ViewHolder class:

init {
 v.setOnClickListener {
 episodeViewData?.let {
 episodeListAdapterListener.onSelectedEpisode(it)
 }
 }
}

You set an onClickListener on the view holder. When the user taps an episode,
onSelectedEpisode() is called on the adapter listener.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 548

That’s it! EpisodeListAdapter will now call onSelectedEpisode() when the user taps an
episode.

From here, you can make PodcastDetailsFragment implement the
episodeListAdapterListener interface. First, define a method to start the playback
from an EpisodeViewData item.

Open PodcastDetailsFragment.kt and add the following method:

private fun startPlaying(
 episodeViewData: PodcastViewModel.EpisodeViewData) {
 val controller = MediaControllerCompat.getMediaController(activity)
 controller.transportControls.playFromUri(
 Uri.parse(episodeViewData.mediaUrl), null)
}

This method takes a single EpisodeViewData item and uses the media controller
transport controls to initiate the media playback. The call to playFromUri() triggers the
onPlayFromUri() callback in PodplayMediaService.

Next, implement the episodeListAdapterListener interface in
PodcastDetailsFragment.

Update the PodcastDetailsFragment class definition as follows:

class PodcastDetailsFragment : Fragment(), EpisodeListAdapterListener {

Add the following method to implement the onSelectedEpisode logic:

override fun onSelectedEpisode(episodeViewData: EpisodeViewData) {
 // 1
 var controller = MediaControllerCompat.getMediaController(activity)
 // 2
 if (controller.playbackState != null) {
 if (controller.playbackState.state ==
 PlaybackStateCompat.STATE_PLAYING) {
 // 3
 controller.transportControls.pause()
 } else {
 // 4
 startPlaying(episodeViewData)
 }
 } else {
 // 5
 startPlaying(episodeViewData)
 }
}

This is called when the user taps an episode. Use this opportunity to either play or
pause the current episode depending on the current playback state.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 549

Let’s go over things in detail:

1. You get the media controller that was previously assigned to the activity.

2. If the playback state is not null, then the state is checked.

3. If the playback state is “playing”, then you pause the episode using the transport
controls.

4. If the playback state is “paused”, then you call startPlaying() to play the episode.

5. If the playback state is null, then you call startPlaying() to play the episode.

In setupControls(), update the call to EpisodeListAdapter() to pass in the
EpisodeListAdapterListener argument:

episodeListAdapter =
 EpisodeListAdapter(podcastViewModel.activePodcastViewData?.episodes,
 this)

Updating media session state
Finally, update the media service to set the playback states based on the incoming play
commands.

Open PodplayMediaCallback.kt and add the following method to the class:

private fun setState(state: Int) {
 var position: Long = -1

 val playbackState = PlaybackStateCompat.Builder()
 .setActions(
 PlaybackStateCompat.ACTION_PLAY or
 PlaybackStateCompat.ACTION_STOP or
 PlaybackStateCompat.ACTION_PLAY_PAUSE or
 PlaybackStateCompat.ACTION_PAUSE)
 .setState(state, position, 1.0f)
 .build()

 mediaSession.setPlaybackState(playbackState)
}

This is a helper method to set the current state on the media session. The media
session state is configured with a PlaybackState object that provides a Builder to set
all of the options. This takes a simple playback state such as STATE_PLAYING and uses it
to construct the more complex PlaybackState object. setActions() specifies what
states the media session will allow.

Now you can use this method to update the state as playback commands are processed.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 550

Add the following line to the end of onPlayFromUri():

mediaSession.setMetadata(MediaMetadataCompat.Builder()
 .putString(MediaMetadataCompat.METADATA_KEY_MEDIA_URI,
 uri.toString())
 .build())

Metadata is set on the mediaSession object to use the METADATA_KEY_MEDIA_URI key. You
can set a variety of metadata on the media session — more will be added later. This data
is used by media browsers to display details about the audio track being played.

Add the following line to the end of onPlay():

setState(PlaybackStateCompat.STATE_PLAYING)

When receiving the play command, the media session playback state is set to
STATE_PLAYING.

Add the following line to the end of onPause():

setState(PlaybackStateCompat.STATE_PAUSED)

When receiving the pause command, the media session playback state is set to
STATE_PAUSED.

You aren’t playing or pausing anything yet, but at least the state is set correctly!

Build and run the app. Once again, display the details for a podcast, then tap on a single
episode and then tap on it again.

You’ll see the following output in Logcat showing that the onPlay and onPause methods
are getting called in the media service, and the state changes are getting picked up by
the media controller callbacks.

I/System.out: onConnected
I/System.out: onPlayFromUri https://audio.simplecast.com/2be4cd5d.mp3
I/System.out: onPlay
I/System.out: metadata changed to https://audio.simplecast.com/
2be4cd5d.mp3
I/System.out: state changed to PlaybackState {state=3, position=0,
buffered position=0, speed=1.0, updated=71964629, actions=519, error
code=0, error message=null, custom actions=[], active item id=-1}
I/System.out: onPause
I/System.out: state changed to PlaybackState {state=2, position=0,
buffered position=0, speed=1.0, updated=71975052, actions=519, error
code=0, error message=null, custom actions=[], active item id=-1}

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 551

Using MediaPlayer
Now that you have the MediaBrowser talking to the MediaBrowserService, it’s time to
hear some audio!

It’s up to you to provide the media playback capabilities in response to the media
session events. You can use any means you want — including third-party media players
— to play back the media.

For PodPlay, Android’s built-in MediaPlayer will do the job. In this section, after
creating the MediaPlayer, you’ll add a few helper methods to control playback.

To begin using MediaPlayer, you’ll initialize it when playback is first requested for a
given media item.

You’ll store the most recently requested media item and keep track of whether the item
is new or not.

Add the following properties to the PodplayMediaCallback class:

private var mediaUri: Uri? = null
private var newMedia: Boolean = false
private var mediaExtras: Bundle? = null

mediaUri will keep track of the currently playing media item, and newMedia will indicate
if it’s a new item. mediaExtras will keep track of the media information passed into
onPlayFromUri().

First, create a method to store a new media item and set the metadata on the media
session.

Add the following method:

private fun setNewMedia(uri: Uri?) {
 newMedia = true
 mediaUri = uri
}

This sets the newMedia flag to true, and stores the current media in mediaUri.

Next, create a method to grab audio focus.

Add the following method:

private fun ensureAudioFocus(): Boolean {
 val audioManager = this.context.getSystemService(
 Context.AUDIO_SERVICE) as AudioManager
 val result = audioManager.requestAudioFocus(null,
 AudioManager.STREAM_MUSIC,

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 552

 AudioManager.AUDIOFOCUS_GAIN)
 return result == AudioManager.AUDIOFOCUS_REQUEST_GRANTED
}

Android uses the concept of audio focus to make sure that apps cooperate with each
other and the system, ensuring that audio is played at the appropriate times. Only one
app has audio focus at a time, although more than one app can play audio at the same
time.

For instance, if you have a navigation app running that needs to announce an upcoming
turn, it will request audio focus. If another app, such as PodPlay is playing a podcast, it
will receive notification that it should pause or lower the volume while the navigation
instructions are announced.

ensureAudioFocus() asks the system to give the PodPlay app audio focus. It returns
true if the focus was granted, or false otherwise.

Update onPlay() to surround the code with a call to ensureAudioFocus() as follows:

if (ensureAudioFocus()) {
 mediaSession.isActive = true
 initializeMediaPlayer()
 prepareMedia()
 startPlaying()
}

You’ll also need a method to give up audio focus. Add the following method:

private fun removeAudioFocus() {
 val audioManager = this.context.getSystemService(
 Context.AUDIO_SERVICE) as AudioManager
 audioManager.abandonAudioFocus(null)
}

Now, create a method to initialize the MediaPlayer.

Add the following method:

private fun initializeMediaPlayer() {
 if (mediaPlayer == null) {
 mediaPlayer = MediaPlayer()
 mediaPlayer!!.setOnCompletionListener({
 setState(PlaybackStateCompat.STATE_PAUSED)
 })
 }
}

This creates a new instance of the MediaPlayer if it doesn’t already exist. It also sets up
a listener for when playback completes and pauses the player upon completion.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 553

Remove the call to mediaSession.setMetadata from onPlayFromUri() since it will be
called here instead.

Create a method to prepare the media for the MediaPlayer.

Add the following method to PodplayMediaService:

private fun prepareMedia() {
 if (newMedia == true) {
 newMedia = false
 mediaPlayer?.let { mediaPlayer ->
 mediaUri?.let {
 mediaPlayer.reset()
 mediaPlayer.setDataSource(context, mediaUri)
 mediaPlayer.prepare()
 mediaSession.setMetadata(MediaMetadataCompat.Builder()
 .putString(MediaMetadataCompat.METADATA_KEY_MEDIA_URI,
 mediaUri.toString())
 .build())
 }
 }
 }
}

If it’s a new media item and the media player and media URI are valid, the media player
state is reset, and the data source is set to the media item. Once the data source is set,
then prepare is called. prepare() puts the MediaPlayer in an initialized state ready to
play the media provided as the data source.

Previously, the setState() you defined assigned a playback position of -1. Now that you
have a media player, this can be updated to grab the actual position from the player.

Add the following after the var position: Long = -1 line in setState():

mediaPlayer?.let {
 position = it.getCurrentPosition().toLong()
}

Add the following method to start the playback of the audio media.

private fun startPlaying() {
 mediaPlayer?.let { mediaPlayer ->
 if (!mediaPlayer.isPlaying()) {
 mediaPlayer.start()
 setState(PlaybackStateCompat.STATE_PLAYING)
 }
 }
}

If the mediaPlayer is not null and it’s not already playing, then it is instructed to play
the media. The media session state is updated to STATE_PLAYING.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 554

Add the following method to pause playback of the audio media.

private fun pausePlaying() {
 removeAudioFocus()
 mediaPlayer?.let { mediaPlayer ->
 if (mediaPlayer.isPlaying) {
 mediaPlayer.pause()
 setState(PlaybackStateCompat.STATE_PAUSED)
 }
 }
}

Start by removing the audio focus from the app. If the mediaPlayer is not null and it’s
already playing, then it’s instructed to pause the media. The media session state is
updated to STATE_PAUSED.

Finally, you need to handle the case where playback is stopped.

Add the following method to PodplayMediaCallback:

private fun stopPlaying() {
 removeAudioFocus()
 mediaSession.isActive = false
 mediaPlayer?.let { mediaPlayer ->
 if (mediaPlayer.isPlaying) {
 mediaPlayer.stop()
 setState(PlaybackStateCompat.STATE_STOPPED)
 }
 }
}

This is similar to pausePlaying(), but it sets the media session to inactive and the state
to STATE_STOPPED.

That’s all of the supporting methods; now you just need to call them at the appropriate
times.

Add the following lines before the call to onPlay() in onPlayFromUri():

if (mediaUri == uri) {
 newMedia = false
 mediaExtras = null
} else {
 mediaExtras = extras
 setNewMedia(uri)
}

If the uri passed in is the same as before, then the newMedia flag is set to false, and
mediaExtras is set to null. There is no need to set the new media or mediaExtras if a
new media item is not being set. If the uri is new, then the media extras are stored and
setNewMedia() is called.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 555

Replace the call to setState() in onPlay() with the following lines:

initializeMediaPlayer()
prepareMedia()
startPlaying()

The media player is initialized, the media is prepared for playback, and then the media
player is told to start playing.

Replace the call to setState() in onPause() with the following:

pausePlaying()

Call stopPlaying() when the event comes in. Add the following line to the end of
onStop():

stopPlaying()

Build and run the app.

Display the details for a podcast and tap on an episode. Make sure your audio is turned
up on your device or emulator. The episode should start streaming within a few
seconds.

Note: If you don’t hear any sound and are running on Emulator, check your
computer’s default sound output. Also, check Logcat and if you see playback
errors, try restarting both the Emulator and Android Studio, then retry.

Tap the episode again, and the playback will pause. Tap the same episode and playback
will begin again where it left off.

Congratulations, you’re finally able to listen to a podcast!

Now that basic playback is working, it’s time to take the service to the next level and
make it a true foreground service. As it stands now, the service runs in the background
and is likely to get killed by Android at any time. It will also get shut down if you close
the PodPlay app.

Foreground service
To keep the audio playing, PodplayMediaService will be set as a foreground service. Any
foreground service requires that it display a visible notification to the user. This will be
done at the time the podcast begins playing.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 556

Media notification
To display the notification, you’ll build it using the same APIs as you did the new
episode notification in the last chapter, but this time the expanded notification will
display playback controls. You’ll use a special style named MediaStyle on the
notification that automatically displays and handles the playback controls.

Two possible actions will be assigned to the notification. A play action is used if the
media is not currently playing. A pause action is used if the media is currently playing.
Whenever the media playback state changes, the notification will be replaced and the
appropriate action assigned.

Start by creating the two possible notification actions:

Open PodplayMediaService.kt and add the following method:

private fun getPausePlayActions():
 Pair<NotificationCompat.Action, NotificationCompat.Action> {
 val pauseAction = NotificationCompat.Action(
 R.drawable.ic_pause_white, getString(R.string.pause),
 MediaButtonReceiver.buildMediaButtonPendingIntent(this,
 PlaybackStateCompat.ACTION_PAUSE))

 val playAction = NotificationCompat.Action(
 R.drawable.ic_play_arrow_white, getString(R.string.play),
 MediaButtonReceiver.buildMediaButtonPendingIntent(this,
 PlaybackStateCompat.ACTION_PLAY))

 return Pair(pauseAction, playAction)
}

Note: Make sure to choose android.support.v4.app.NotificationCompat for the
NotificationCompat import.

Pause and play actions are created and returned to the caller. Each action has an
associated icon, title, and pending intent. buildMediaButtonPendingIntent() creates a
pending intent that triggers a playback action on the media service.

Add the following strings to the strings.xml file:

<string name="pause">Pause</string>
<string name="play">Play</string>

To decide whether to use the pause or play action, you’ll need a method to determine if
the MediaPlayer is currently playing media.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 557

Add the following method:

private fun isPlaying(): Boolean {
 if (mediaSession.controller.playbackState != null) {
 return mediaSession.controller.playbackState.state ==
 PlaybackStateCompat.STATE_PLAYING
 } else {
 return false
 }
}

This checks the current playback state and returns true if it is playing.

The Notification also needs a pending intent to launch the main PodcastActivity
when the notification is tapped.

Add the following method:

private fun getNotificationIntent(): PendingIntent {
 val openActivityIntent = Intent(this, PodcastActivity::class.java)
 openActivityIntent.setFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP)
 return PendingIntent.getActivity(
 this@PodplayMediaService, 0, openActivityIntent,
 PendingIntent.FLAG_CANCEL_CURRENT)
}

This creates a pending intent that will open the PodcastActivity.

Notifications also require a channel. Create a new channel ID and a method to create
the channel.

Add the following line to the companion object in PodplayMediaService:

private const val PLAYER_CHANNEL_ID = "podplay_player_channel"

Add the following method:

@RequiresApi(Build.VERSION_CODES.O)
private fun createNotificationChannel()
{
 val notificationManager =
 getSystemService(Context.NOTIFICATION_SERVICE)
 as NotificationManager
 if (notificationManager.getNotificationChannel(PLAYER_CHANNEL_ID)
 == null) {
 val channel = NotificationChannel(PLAYER_CHANNEL_ID, "Player",
 NotificationManager.IMPORTANCE_LOW)
 notificationManager.createNotificationChannel(channel)
 }
}

This is similar to the channel you created for the episode update notification in the last
chapter. The only difference is the channel ID.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 558

Now you can build out the notification. Add the following method:

// 1
private fun createNotification(mediaDescription: MediaDescriptionCompat,
 bitmap: Bitmap?): Notification {
 // 2
 val notificationIntent = getNotificationIntent()
 // 3
 val (pauseAction, playAction) = getPausePlayActions()
 // 4
 val notification = NotificationCompat.Builder(
 this@PodplayMediaService, PLAYER_CHANNEL_ID)
 // 5
 notification
 .setContentTitle(mediaDescription.title)
 .setContentText(mediaDescription.subtitle)
 .setLargeIcon(bitmap)
 .setContentIntent(notificationIntent)
 .setDeleteIntent(
 MediaButtonReceiver.buildMediaButtonPendingIntent(this,
 PlaybackStateCompat.ACTION_STOP))
 .setVisibility(NotificationCompat.VISIBILITY_PUBLIC)
 .setSmallIcon(R.drawable.ic_episode_icon)
 .addAction(if (isPlaying()) pauseAction else playAction)
 .setStyle(
 android.support.v4.media.app.NotificationCompat.MediaStyle()
 .setMediaSession(mediaSession.sessionToken)
 .setShowActionsInCompactView(0)
 .setShowCancelButton(true)
 .setCancelButtonIntent(
 MediaButtonReceiver.buildMediaButtonPendingIntent(this,
 PlaybackStateCompat.ACTION_STOP)))

 // 6
 return notification.build()
}

Let’s go over this in detail:

1. The method accepts a MediaDescriptionCompat object and a bitmap. These contain
all the details required to construct the notification.

2. The main notification intent is created. This will be set as the content intent on the
notification. This is what allows the PodcastActivity to launch when the
notification is tapped.

3. The pause and play actions are created.

4. The notification builder is created using the player channel ID.

5. The builder is used to create the details of the notification.

setContentTitle: Sets the main title on the notification from the media description
title.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 559

setContentText: Sets the content text on the notification from the media
description subtitle.

setLargeIcon: Sets the icon (album art) to display on the notification.

setContentIntent: Set the content intent, so PodPlay is launched when the
notification is tapped.

setDeleteIntent: Send an ACTION_STOP command to the service if the user swipes
away the notification.

setVisibility: Make sure the transport controls are visible on the lock screen.

setSmallIcon: Set the icon to display in the status bar.

addAction: Add either the play or pause action based on the current playback state.

setStyle: Uses the special `MediaStyle`` to create a style that is designed to display
up to five transport control buttons in the expanded view.

The following items are used to control how the MediaStyle behaves:

setStyle.setMediaSession: Indicates that this is an active media session. The
system uses this as a flag to activate special features such as showing album artwork
and playback controls on the lock screen.

setStyle.setShowActionsInCompactView: Indicates which action buttons to
display in compact view mode. This takes up to three index numbers to specify the
order of the controls.

setStyle.setShowCancelButton: Displays a cancel button on versions of Android
before Lollipop (API 21).

setStyle.setCancelButtonIntent(): Pending intent to use when the cancel button
is tapped.

6. The notification is built and returned to the caller.

Now let’s tie this all together and create a method to display the notification.

First, you’ll need a unique notification ID when starting the foreground service.

Add the following to the companion object:

private const val NOTIFICATION_ID = 1

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 560

Add the following method to PodplayMediaCallback:

private fun displayNotification() {
 // 1
 if (mediaSession.controller.metadata == null) {
 return
 }
 // 2
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 createNotificationChannel()
 }
 // 3
 val mediaDescription = mediaSession.controller.metadata.description
 // 4
 Glide.with(this)
 .asBitmap()
 .load(mediaDescription.iconUri)
 .into(object : SimpleTarget<Bitmap>() {
 // 5
 override fun onResourceReady(resource: Bitmap?,
 transition: Transition<in Bitmap>?) {
 // 6
 val notification = createNotification(mediaDescription,
 resource)
 // 7
 ContextCompat.startForegroundService(
 this@PodplayMediaService,
 Intent(this@PodplayMediaService,
 PodplayMediaService::class.java))
 // 8
 startForeground(NOTIFICATION_ID, notification)
 }
 })
}

Note: Make sure to choose com.bumptech.glide.request.transition.Transition
as the Transition import.

1. If there is no metadata on the mediaSession.controller, then the method is
abandoned.

2. Android O or newer requires a notification channel.

3. The MediaDescription is extracted from the media session.

4. Glide is used to load in the album artwork. You’ve used Glide before to load an
image directly into an ImageView. This is a slightly different use case where you
define your own target for the image in the into() call.

5. Glide calls onResourceReady() on your target when the image has been downloaded
or retrieved from the cache.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 561

6. After the image is loaded, you create the notification.

7. startForegroundService() starts the service in foreground mode.

8. startForeground() displays the notification icon. You pass in a unique notification
ID and the notification object.

Now, display the notification when the playback starts or pauses, and hide it when
playback stops.

To do this, you need to know when playback has started, and that is handled in the
PodplayMediaCallback class.

You’ll create a listener object on PodplayMediaCallback so it can emit some key events
to the MediaBrowserService class.

Note: You may be wondering why the notification code wasn’t included directly in
the PodplayMediaCallback class instead of setting up the listener and handling it
in MediaBrowserService. The reason is that PodplayMediaCallback will be shared
by the video player in the next chapter and notifications are specific to the media
browser service implementation.

Open PodplayMediaCallback.kt and add the following interface to the class:

interface PodplayMediaListener {
 fun onStateChanged()
 fun onStopPlaying()
 fun onPausePlaying()
}

Three methods are defined that will be called by PodplayMediaCallback in response to
key playback events.

First, you’ll need a listener property that can be set by the media browser service.

Add the following property to PodplayMediaCallback:

var listener: PodplayMediaListener? = null

Call onStateChanged() when the state changes to playing or paused.

Add the following to the end of setState():

if (state == PlaybackStateCompat.STATE_PAUSED ||
 state == PlaybackStateCompat.STATE_PLAYING) {
 listener?.onStateChanged()
}

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 562

Call onStopPlaying() when playback stops.

Add the following to the end of stopPlaying():

listener?.onStopPlaying()

Call onPausePlaying() when playback pauses.

Add the following to the end of pausePlaying():

listener?.onPausePlaying()

Now you can implement PodplayMediaListener on the media browser service.

Open PodplayMediaService.kt and update the class declaration to the following:

class PodplayMediaService : MediaBrowserServiceCompat(),
 PodplayMediaListener {

Add the following methods to implement the PodplayMediaListener interface:

override fun onStateChanged() {
 displayNotification()
}

override fun onStopPlaying() {
 stopSelf()
 stopForeground(true)
}

override fun onPausePlaying() {
 stopForeground(false)
}

onStateChanged() displays the notification when the state changes between play and
paused.

onStopPlaying() stops the service and removes it from the foreground. You pass in true
to remove the notification at the same time. It’s important to stop the service when
playback stops; otherwise, it will keep running indefinitely.

onPausePlaying() removes the service from the foreground but passes in false, so the
notification is not removed.

Finally, set the listener on the media session callback.

In PodplayMediaService.kt, add the following line in createMediaSession() before the
call to mediaSession.setCallback():

callBack.listener = this

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 563

Media metadata
There’s still one missing part. You haven’t told the media service about the details of
the podcast episode yet. You need to pass in the additional episode details and add
them to the media session metadata.

Open PodcastDetailsFragment.kt and replace the following line in startPlaying():

controller.transportControls.playFromUri(
 Uri.parse(episodeViewData.mediaUrl), null)

with this:

val viewData = podcastViewModel.activePodcastViewData ?: return
val bundle = Bundle()
bundle.putString(MediaMetadataCompat.METADATA_KEY_TITLE,
 episodeViewData.title)
bundle.putString(MediaMetadataCompat.METADATA_KEY_ARTIST,
 viewData.feedTitle)
bundle.putString(MediaMetadataCompat.METADATA_KEY_ALBUM_ART_URI,
 viewData.imageUrl)

controller.transportControls.playFromUri(
 Uri.parse(episodeViewData.mediaUrl), bundle)

This grabs the active podcast data and uses it to create a bundle with some extra
information to pass along to the playFromUri() call.

It’s up to you what keys to use and what information to pass in the Bundle. For
consistency, use the same keys here that will be used when setting the metadata on the
media session.

Now you can update the media service to read in the values from the bundle and set
them as metadata on the media session.

Open PodplayMediaCallback.kt and replace the call to setMetadata in prepareMedia()
with the following:

mediaExtras?.let { mediaExtras ->
 mediaSession.setMetadata(MediaMetadataCompat.Builder()
 .putString(MediaMetadataCompat.METADATA_KEY_TITLE,
 mediaExtras.getString(MediaMetadataCompat.METADATA_KEY_TITLE))
 .putString(MediaMetadataCompat.METADATA_KEY_ARTIST,
 mediaExtras.getString(MediaMetadataCompat.METADATA_KEY_ARTIST))
 .putString(MediaMetadataCompat.METADATA_KEY_ALBUM_ART_URI,
 mediaExtras.getString(
 MediaMetadataCompat.METADATA_KEY_ALBUM_ART_URI))
 .build())
}

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 564

This takes the three items set on the Bundle and uses them to set the metadata on the
media session. This will be used by the notification and the other media players to
display details about the currently playing podcast episode.

Final pieces
One more item is required to stop the playback if the user dismisses the app from the
recent applications list. Add the following method to the PodplayMediaService class:

override fun onTaskRemoved(rootIntent: Intent?) {
 super.onTaskRemoved(rootIntent)
 mediaSession.controller.transportControls.stop()
}

onTaskRemoved() is called if the user swipes away the app in the recent apps list. This
stops the playback and removes the service. This is all you would need if running on API
21 or higher. For versions before API 21, you have to use a built-in broadcast receiver to
get button events from the notification.

Add the following to the <application> section in AndroidManifest.xml:

<receiver
android:name="android.support.v4.media.session.MediaButtonReceiver" >
 <intent-filter>
 <action android:name="android.intent.action.MEDIA_BUTTON" />
 </intent-filter>
</receiver>

There’s one last minor change to help improve the look of the album art when shown in
the notification view: update the iTunesPodcast model to use a higher resolution
version of the album artwork.

Open PodcastResponse.kt and rename artworkUrl30 to artworkUrl100 in the
iTunesPodcast class as follows:

val artworkUrl100: String,

Open SearchViewModel.kt and replace artworkUrl30 with artworkUrl100 in
itunesPodcastToPodcastSummaryView():

itunesPodcast.artworkUrl100,

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 565

Build and run the app. Once again, display the details for a podcast, and tap on an
episode to start it playing. This time, a notification icon will display in the status bar.
Pull down the notification to reveal the expanded view. Tap on the pause button to stop
the playback.

Depending on the version of Android you’re running, the notification will display with a
different style. Notice on Android Oreo that the notification takes on a tint color based
on the album artwork.

From left to right, Android Oreo (8), Android Marshmallow (6), Android Lollipop (5)

Exit out of the PodPlay app. The podcast will keep playing, and you can still control it
from the notification view.

Turn off the phone and display the lock screen. The notification will show in the lock
screen, allowing you to control the playback.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 566

Android Marshmallow Lockscreens

If you have an Android Wear watch that’s connected to your device, it will display a
media playback screen allowing you to control the playback from the watch.

Android Wear

Where to go from here?
That was a lot of work to get playback working, but it’s worth it to have podcasts that
play properly in the background! Take a break and find a relaxing podcast to listen to
while you get ready for the next chapter.

In the final chapter of this section, you’ll wrap up the PodPlay app by building a full
episode details screen with playback controls. Plus, you’ll add a few more finishing
touches.

Android Apprentice Chapter 26: Podcast Playback

raywenderlich.com 567

27Chapter 27: Episode Player
By Tom Blankenship

In the last chapter, you succeeded in adding audio playback to the app, but you stopped
short of adding any built-in playback features. In this final chapter of the book, you’ll
finish up the PodPlay app by adding a full playback interface and support for videos.

If you are following along with your own app, the starter project for this chapter
includes additional resources you’ll need to complete the section. You can either begin
this chapter with the starter project or copy the following drawable resources from the
starter project into yours. Make sure to copy the .png files from all of the various dpi
folders.

• res/drawable-?dpi/ic_forward_30_white.png

• res/drawable-?dpi/ic_replay_10_white.png

• res/drawable/ic_play_pause_toggle.xml

raywenderlich.com 568

Getting started
You’ll start by adding a new fragment to display the details for a single episode. This
fragment gets loaded when the user taps on an episode.

The episode detail screen will provide an overview of the episode and playback controls.
The design will look like this:

The album art is in the upper-left corner. The episode title is to the right. The
description takes up the entire center of the layout. Because episode descriptions can
be long, the TextView is scrollable so the user can see the full description.

At the bottom is the player controls area. This area has a black background and the
following controls:

• Play/Pause toggle: Starts and stops playback.

• Skip back: Skips back 10 seconds.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 569

• Skip forward: Skips forward 30 seconds.

• Speed control: Allows the playback speed to be increased.

• Scrubber: Displays playback progress and allows scrubbing to any part of the
episode.

You’ll start by creating the basic layout.

Episode player layout
In the res/layout folder, create a new file named fragment_episode_player.xml, and
replace the contents with the following:

<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@android:color/black"
 tools:context="com.raywenderlich.podplay.ui.EpisodePlayerFragment">

 <SurfaceView
 android:id="@+id/videoSurfaceView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 android:visibility="invisible"/>

 <android.support.constraint.ConstraintLayout
 android:id="@+id/headerView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="#eeeeee"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent">

 </android.support.constraint.ConstraintLayout>

 <TextView
 android:id="@+id/episodeDescTextView"
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:background="@android:color/white"
 android:padding="8dp"
 android:scrollbars="vertical"
 app:layout_constraintBottom_toTopOf="@+id/playerControls"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/headerView"

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 570

 tools:text="Episode description"/>

 <android.support.constraint.ConstraintLayout
 android:id="@+id/playerControls"
 android:layout_width="match_parent"
 android:layout_height="76dp"
 android:background="@android:color/background_dark"
 app:layout_constraintBottom_toBottomOf="parent">

 </android.support.constraint.ConstraintLayout>

</android.support.constraint.ConstraintLayout>

This uses ConstraintLayout for the main layout, along with an embedded
ConstraintLayout to contain the headerView. There’s also an embedded
ConstraintLayout to contain the playerControls area.

Finally, there’s a SurfaceView, which takes up the entire view and is hidden by default;
it’s only visible when a video is playing. The player controls will overlay the video.

It’s time to add the album art and episode title.

In the headerView ConstraintLayout section, add the following:

<ImageView
 android:id="@+id/episodeImageView"
 android:layout_width="60dp"
 android:layout_height="60dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 android:src="@android:drawable/ic_menu_report_image"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

<TextView
 android:id="@+id/episodeTitleTextView"
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:layout_marginEnd="8dp"
 android:layout_marginStart="8dp"
 android:text=""
 app:layout_constraintBottom_toBottomOf="@+id/episodeImageView"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toEndOf="@+id/episodeImageView"
 app:layout_constraintTop_toTopOf="@+id/episodeImageView"
 tools:text="Episode Title"/>

This places the image view in the upper-left corner and the episode title in the right.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 571

Now to take care of the primary player transport controls. In the playerControls
ConstraintLayout section, add the following:

<ImageButton
 android:id="@+id/replayButton"
 android:layout_width="34dp"
 android:layout_height="34dp"
 android:layout_marginEnd="24dp"
 android:layout_marginTop="8dp"
 android:background="@android:color/transparent"
 android:scaleType="fitCenter"
 android:src="@drawable/ic_replay_10_white"
 app:layout_constraintEnd_toStartOf="@+id/playToggleButton"
 app:layout_constraintTop_toTopOf="parent"/>

<Button
 android:id="@+id/playToggleButton"
 android:layout_width="34dp"
 android:layout_height="34dp"
 android:layout_marginTop="8dp"
 android:background="@drawable/ic_play_pause_toggle"
 android:scaleType="fitCenter"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.5"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

<ImageButton
 android:id="@+id/forwardButton"
 android:layout_width="34dp"
 android:layout_height="34dp"
 android:layout_marginStart="24dp"
 android:layout_marginTop="8dp"
 android:background="@android:color/transparent"
 android:scaleType="fitCenter"
 android:src="@drawable/ic_forward_30_white"
 app:layout_constraintStart_toEndOf="@+id/playToggleButton"
 app:layout_constraintTop_toTopOf="parent"/>

<Button
 android:id="@+id/speedButton"
 android:layout_width="54dp"
 android:layout_height="34dp"
 android:layout_marginEnd="8dp"
 android:layout_marginTop="8dp"
 android:background="@android:color/transparent"
 android:text="1x"
 android:textColor="@android:color/white"
 android:textSize="14sp"
 android:textAllCaps="false"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

This adds the skip back, play/pause, skip forward and speed buttons at the top of the
play controls section.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 572

Next, after the player transport control buttons, add the following within the
playerControls ConstraintLayout section:

<TextView
 android:id="@+id/currentTimeTextView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="8dp"
 android:layout_marginStart="8dp"
 android:text="0:00"
 android:textColor="@android:color/white"
 android:textSize="12sp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="@+id/seekBar"/>

<SeekBar
 android:id="@+id/seekBar"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginBottom="8dp"
 android:layout_marginEnd="8dp"
 android:layout_marginStart="8dp"
 android:progressBackgroundTint="@android:color/white"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toStartOf="@+id/endTimeTextView"
 app:layout_constraintStart_toEndOf="@+id/currentTimeTextView"/>

<TextView
 android:id="@+id/endTimeTextView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="8dp"
 android:layout_marginEnd="8dp"
 android:text="0:00"
 android:textColor="@android:color/white"
 android:textSize="12sp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintTop_toTopOf="@+id/seekBar"/>

This adds the seek bar (scrubber) with current and end times to the bottom of the
player controls section.

Episode player fragment
It’s time to build out the episode player fragment. This fragment will display the
episode layout and handle all playback logic. You’ll move the media related code from
the PodcastDetailsFragment class into this new episode player fragment.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 573

In the ui package, create a new file named EpisodePlayerFragment.kt with the
following content:

class EpisodePlayerFragment : Fragment() {

 companion object {
 fun newInstance(): EpisodePlayerFragment {
 return EpisodePlayerFragment()
 }
 }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 retainInstance = true
 }

 override fun onCreateView(inflater: LayoutInflater,
 container: ViewGroup?,
 savedInstanceState: Bundle?): View?{
 return inflater.inflate(R.layout.fragment_episode_player,
 container, false)
 }

 override fun onActivityCreated(savedInstanceState: Bundle?) {
 super.onActivityCreated(savedInstanceState)
 }

 override fun onStart() {
 super.onStart()
 }

 override fun onStop() {
 super.onStop()
 }
}

This is the minimum code required to display the fragment. It provides a companion
object to create an instance of the fragment and loads the fragment_episode_player
layout in onCreateView().

Note: Make sure to choose android.support.v4.app.Fragment for the Fragment
import.

Episode player navigation
Before finishing the fragment code, hook up the navigation.

PodcastActivity will control the navigation, but it’ll need to know when the user
selects an episode in the detail view. For that, you can add a new method to the
OnPodcastDetails listener which gets triggered when the selection is made.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 574

Open PodcastDetailsFragment.kt and add the following code to the OnPodcastDetails
interface.

fun onShowEpisodePlayer(episodeViewData: EpisodeViewData)

Replace the code in onSelectedEpisode() with the following:

listener?.onShowEpisodePlayer(episodeViewData)

When the user selects an episode, this calls onShowEpisodePlayer() on the listener — in
this case, PodcastActivity.

Now you can implement onShowEpisodePlayer() in the podcast activity.

Open PodcastActivity.kt and add the following new method to satisfy the
OnPodcastDetailsListener interface:

override fun onShowEpisodePlayer(episodeViewData: EpisodeViewData) {
}

Before you can add the code for this method, you need some supporting code. Start with
a method that creates the episode player fragment.

Open PodcastActivity.kt and add the following code to the companion object:

private const val TAG_PLAYER_FRAGMENT = "PlayerFragment"

This tag keeps track of the episode player fragment.

Now, add the following method:

private fun createEpisodePlayerFragment(): EpisodePlayerFragment {
 var episodePlayerFragment =
 supportFragmentManager.findFragmentByTag(TAG_PLAYER_FRAGMENT) as
 EpisodePlayerFragment?

 if (episodePlayerFragment == null) {
 episodePlayerFragment = EpisodePlayerFragment.newInstance()
 }

 return episodePlayerFragment
}

This method uses the supportFragmentManager.findFragmentByTag() to first check if
the player fragment was created before. If not, then a new instance is created using
EpisodePlayerFragment.newInstance(). The episode player fragment is then returned
to the caller.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 575

You can use the existing PodcastViewModel class to keep track of the currently active
episode. This will make it simple to retrieve the active episode from the new episode
player fragment.

Open PodcastViewModel.kt and add the following property to the class:

var activeEpisodeViewData: EpisodeViewData? = null

Back in the podcast activity, you need a method to create and show the player fragment.
This will look similar to the existing showDetailsFragment() method.

Open PodcastActivity.kt and add the following new method:

private fun showPlayerFragment() {
 val episodePlayerFragment = createEpisodePlayerFragment()

 supportFragmentManager.beginTransaction().replace(
 R.id.podcastDetailsContainer,
 episodePlayerFragment,
 TAG_PLAYER_FRAGMENT
).addToBackStack("PlayerFragment").commit()
 podcastRecyclerView.visibility = View.INVISIBLE
 searchMenuItem.isVisible = false
}

This method creates the episode player fragment, displays the fragment and hides the
podcast list recycler view. It then hides the search menu item.

Now that all of the supporting methods are in place, you’re ready to implement
onShowEpisodePlayer().

Add the following to onShowEpisodePlayer():

podcastViewModel.activeEpisodeViewData = episodeViewData
showPlayerFragment()

This sets the active episode on the podcast view model and calls showPlayerFragment()
to display the player fragment.

Build and run the app.

Display the details for a podcast and tap on an episode. Although the episode player
fragment is displayed, it’ll be blank since you haven’t populated any of the views yet.
Press the back button, and it will navigate back to the podcast details screen.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 576

Episode player details
It’s time to get some episode data on the player screen. You’ll use the active episode
view data from the podcast view model to populate the views.

Open EpisodePlayerFragment.kt and add the following property to the class:

private lateinit var podcastViewModel: PodcastViewModel

Now, add the following method:

private fun setupViewModel() {
 podcastViewModel = ViewModelProviders.of(activity)
 .get(PodcastViewModel::class.java)
}

This assigns the podcastViewModel property to the active podcast view model.

Next, add the following to the bottom of onCreate():

setupViewModel()

The view model is set up when the fragment is created.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 577

Now, you need to create a method to set up the view controls using the view model
data. Add the following new method:

private fun updateControls() {
 // 1
 episodeTitleTextView.text =
 podcastViewModel.activeEpisodeViewData?.title

 // 2
 val htmlDesc =
 podcastViewModel.activeEpisodeViewData?.description ?: ""
 val descSpan = HtmlUtils.htmlToSpannable(htmlDesc)
 episodeDescTextView.text = descSpan
 episodeDescTextView.movementMethod = ScrollingMovementMethod()

 // 3
 Glide.with(activity)
 .load(podcastViewModel.activePodcastViewData?.imageUrl)
 .into(episodeImageView)
}

Let’s take this one item at a time:

1. Set the episode title text view to the episode title.

2. Just like the podcast description that is shown on the podcast details view, the
episode description can have HTML formatting that will cause display issues if set
directly on a text view widget. This code uses the previously created
htmlToSpannable() method to clean up the episode description and make it display
correctly.

3. Use Glide to load in the podcast album art and assign it to the episode image view
widget.

Add the call to updateControls() to the bottom of onActivityCreated():

updateControls()

Build and run the app.

Load a podcast episode to view the details. If the episode description is long enough,
you can scroll to read the full content.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 578

Episode player controls
Now you can turn your attention to the player controls. You’ll get the basic play, pause
and skip controls working first; then you’ll focus on the seek bar and speed control.

Start by moving some media playback code from the PodcastDetailsFragment class to
the new EpisodePlayerFragment class.

Note: Make sure to delete the code from PodcastDetailsFragment when moving it
to EpisodePlayerFragment.

Let’s break this process out step-by-step:

1. Move the following properties from PodcastDetailsFragment.kt to
EpisodePlayerFragment.kt:

private lateinit var mediaBrowser: MediaBrowserCompat
private var mediaControllerCallback: MediaControllerCallback? = null

If Android Studio changes MediaControllerCallback to
PodcastDetailsFragment.MediaControllerCallback, change it back to
MediaControllerCallback; it will show a compile error until you get to step five.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 579

2. Move the startPlaying() method from PodcastDetailsFragment.kt to
EpisodePlayerFragment.kt.

3. Move the code below super.onStart() from onStart() in
PodcastDetailsFragment.kt to onStart() in EpisodePlayerFragment.kt.

4. Move the code below super.onStop() from onStop() in
PodcastDetailsFragment.kt to onStop() in EpisodePlayerFragment.kt.

5. Move the MediaBrowserCallBacks and MediaControllerCallback inner classes from
PodcastDetailsFragment.kt to EpisodePlayerFragment.kt.

6. Move the initMediaBrowser() method from PodcastDetailsFragment.kt to
EpisodePlayerFragment.kt.

7. Move the registerMediaController() method from PodcastDetailsFragment.kt to
EpisodePlayerFragment.kt.

8. Move the call to initMediaBrowser() from onCreate() in
PodcastDetailsFragment.kt to onCreate() in EpisodePlayerFragment.kt.

Play/Pause button

Now it’s time to hook up the Play/Pause button to start and stop playback.

Add the following method to EpisodePlayerFragment:

private fun togglePlayPause() {
 val controller = MediaControllerCompat.getMediaController(activity)
 if (controller.playbackState != null) {
 if (controller.playbackState.state ==
 PlaybackStateCompat.STATE_PLAYING) {
 controller.transportControls.pause()
 } else {
 podcastViewModel.activeEpisodeViewData?.let { startPlaying(it) }
 }
 } else {
 podcastViewModel.activeEpisodeViewData?.let { startPlaying(it) }
 }
}

This is very similar to the playback code you created in the previous chapter — it gets
the current media controller, then it either pauses or starts playback, based on its
current state.

Add the following method to listen for the tap on the play/pause button:

private fun setupControls() {
 playToggleButton.setOnClickListener {

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 580

 togglePlayPause()
 }
}

This sets a listener on playToggleButton and calls togglePlayPause() when it’s tapped.

That’s enough to get the media playing, but you also need to update the play/pause
button to show the pause icon when playing and the play icon when paused.

You can update the button icon directly in togglePlayPause(), but that won’t keep it in
sync if playback is changed from outside the app. To keep the play/pause button in sync
— regardless of how the state is changed — use the onPlaybackStateChanged() event
from the media controller.

First, create a method to handle playback state changed.

Add the following method:

private fun handleStateChange(state: Int) {
 val isPlaying = state == PlaybackStateCompat.STATE_PLAYING
 playToggleButton.isActivated = isPlaying
}

This sets the play/pause button state to activated if the media is playing or not
activated if the media is paused. This results in the button icon changing because the
button background in the layout XML is set to the ic_play_pause_toggle.xml selector.
If you open this selector, you’ll see that it specifies the play button for the inactive state
and the pause button for the active state.

Call this method when the playback state changes. Add the following to
onPlaybackStateChanged() in the MediaControllerCallback inner class:

val state = state ?: return
handleStateChange(state.getState())

Finally, add the call to setupControls() before the call to updateControls() in
onActivityCreated():

setupControls()

Speed control button

Next, you’ll hook up the speed control button. This button will increase the speed by
0.25x times each time it’s tapped up to a maximum of 2.0x. It will go to 0.75x after
reaching the max of 2.0x.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 581

Unlike the play and pause commands, the media session doesn’t have a built-in
command to change the playback speed. So how do you inform that media browser
service that you want to change the speed? The answer is a custom command!

You’ll add a new method to intercept custom commands when they come into the
media session callback class. The custom command will have a name and a Bundle
object with the command parameters.

First, define some constants for the custom command name and the key used in the
Bundle object.

Open PodplayMediaCallback.kt and add the following companion object:

companion object {
 const val CMD_CHANGESPEED = "change_speed"
 const val CMD_EXTRA_SPEED = "speed"
}

This defines a speed change command string and key for the speed.

Next, update setState() to handle a speed option.

Change the setState() declaration to the following:

private fun setState(state: Int, newSpeed: Float? = null) {

This allows an optional newSpeed parameter to be passed to setState().

Before making the changes to setState(), take a look at the setState call that’s
executed on the PlaybackStateCompat.Builder() object. Notice there’s a speed
parameter as part of the state.

This speed parameter does not change the playback speed! It only sets the state on the
Media Session. You need to change the speed setting directly on the MediaPlayer to
affect the playback speed.

In setState(), add the following before the call to PlaybackStateCompat.Builder():

// 1
var speed = 1.0f
// 2
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
 if (newSpeed == null) {
 // 3
 speed = mediaPlayer?.getPlaybackParams()?.speed ?: 1.0f
 } else {
 // 4
 speed = newSpeed
 }

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 582

 mediaPlayer?.let {
 // 5
 try {
 it.playbackParams = it.playbackParams.setSpeed(speed)
 }
 catch (e: Exception) {
 // 6
 mediaPlayer?.reset()
 mediaPlayer?.setDataSource(context, mediaUri)
 mediaPlayer?.prepare()
 // 7
 it.playbackParams = it.playbackParams.setSpeed(speed)
 // 8
 mediaPlayer?.seekTo(position.toInt())
 // 9
 if (state == PlaybackStateCompat.STATE_PLAYING) {
 mediaPlayer?.start()
 }
 }
 }
}

Let’s go over this one step at a time:

1. Start by setting the default speed to 1.0.

2. The MediaPlayer gained the ability to change the speed beginning with Android 6.0
(Marshmallow). If the version supports speed control, then the code block is
executed.

3. If no new speed has been specified, then speed is set to the media player’s current
speed.

4. If a new speed is present, then speed is set to the new speed.

5. The media player speed is updated to the new speed by setting a new
mediaPlayer.playbackParams property. You can’t change the speed directly on the
playbackParams. A new playbackParams object must be assigned to the media
player. This call can throw an exception on some versions of Android, so it is
surrounded by a try block.

6. If the update to playbackParams throws an exception, then the player needs to be
reset to clear the state. After a reset, the data source must be set again on the
player.

7. Now that the player has been reset, it’s safe to update the playbackParams.

8. Resetting the player will set the playback position back to 0. seekTo() is called to
set it back to the previous position.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 583

9. If the state is set to playing, then the player is started after the reset.

In setState(), update the call to setState() on PlaybackStateCompat.Builder() to
pass in the speed for the third parameter:

.setState(state, position, speed)

Next, add a method to extract the speed from a bundle object and call setState() with
the speed:

private fun changeSpeed(extras: Bundle) {
 var playbackState = PlaybackStateCompat.STATE_PAUSED
 if (mediaSession.controller.playbackState != null) {
 playbackState = mediaSession.controller.playbackState.state
 }
 setState(playbackState, extras.getFloat(CMD_EXTRA_SPEED))
}

When the speed is changed, you don’t want to change the playback state. This is
accomplished by taking the current playback state and passing it into setState().
playbackState is set to the current playback state if it is valid. If not, playbackState is
set to the default state of STATE_PAUSED. You call setState() with playbackState and
the new playback speed.

Now you can add the method to process the custom command.

Add the following method to the PodplayMediaCallback class:

override fun onCommand(command: String?, extras: Bundle?,
 cb: ResultReceiver?) {
 super.onCommand(command, extras, cb)
 when (command) {
 CMD_CHANGESPEED -> extras?.let { changeSpeed(it) }
 }
}

Note: Make sure to select import android.os.ResultReceiver for the
ResultReceiver import.

onCommand() is called by the media session when a custom command is received. You
check for the CMD_CHANGESPEED command and then call changeSpeed() with the extras
Bundle object.

Now, the episode player fragment just needs to send the custom command when the
user changes the speed.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 584

First, you’ll need a property to keep track of the current playback speed. Open
EpisodePlayerFragment.kt and add the following property to the
EpisodePlayerFragment class:

private var playerSpeed: Float = 1.0f

This property keeps track of the current speed.

Next, add a method to change the speed by sending the custom command to the media
controller.

Add the following method:

private fun changeSpeed() {
 // 1
 playerSpeed += 0.25f
 if (playerSpeed > 2.0f) {
 playerSpeed = 0.75f
 }
 // 2
 val bundle = Bundle()
 bundle.putFloat(CMD_EXTRA_SPEED, playerSpeed)
 // 3
 val controller = MediaControllerCompat.getMediaController(activity)
 controller.sendCommand(CMD_CHANGESPEED, bundle, null)
 // 4
 speedButton.text = "${playerSpeed}x"
}

Let’s break this down.

1. Increase playerSpeed by 0.25. If the speed goes past 2.0, it’s set back to 0.75.

2. Create a bundle and set the CMD_EXTRA_SPEED key to the value of playerSpeed.

3. The CMD_CHANGESPEED command is sent to the media controller along with the
bundle object.

4. Update the speed button text label to show the current playback speed.

You also need to make sure the speed control label is correct after a screen rotation.
Add the following line to the end of updateControls():

speedButton.text = "${playerSpeed}x"

Now, the speed control button needs to call changeSpeed().

Add the following to the end of setupControls():

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
 speedButton.setOnClickListener {

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 585

 changeSpeed()
 }
} else {
 speedButton.visibility = View.INVISIBLE
}

This first checks to see if the device supports the speed setting. If it does, the
onClickListener is set on the speed button. The listener calls changeSpeed() when the
user taps the speed button. If the device does not support speed control, then the speed
button is hidden.

Skip buttons

OK, it’s time to implement the skip forward and back functionality. The media
controller allows you to change the playback position directly. To perform a skip, you’ll
take the current playback position, add a plus or minus offset to get a new position, and
then set the new position.

Before adding the changes to the player fragment, you need to update the media
browser to allow seeking to a specific playback position. This is done by overriding an
additional method in the PodplayMediaCallback class.

Open PodplayMediaCallback.kt and add the following method:

override fun onSeekTo(pos: Long) {
 super.onSeekTo(pos)
 // 1
 mediaPlayer?.seekTo(pos.toInt())
 // 2
 val playbackState: PlaybackStateCompat? =
 mediaSession.controller.playbackState
 // 3
 if (playbackState != null) {
 setState(playbackState.state)
 } else {
 setState(PlaybackStateCompat.STATE_PAUSED)
 }
}

onSeekTo() is called by the media session when the seekTo command is received.

Here’s what’s going on.

1. Call seekTo() on the mediaPlayer to change the playback position.

2. Retrieve the playback state from the media controller.

3. Call setState() so any media browser clients will know about the change in
position. This is an important step, as it keeps all media browser client UIs in sync.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 586

If playbackState is not null, then setState() is called with the current state. This
ensures that the player keeps playing or stays paused depending on the current
playback state.

If playbackState is null, then playback state is set to paused.

Next, you need a method in the episode player fragment that performs the seek using
the media controller.

Open EpisodePlayerFragment.kt and add the following method:

private fun seekBy(seconds: Int) {
 val controller = MediaControllerCompat.getMediaController(activity)
 val newPosition = controller.playbackState.position + seconds*1000
 controller.transportControls.seekTo(newPosition)
}

This starts by grabbing the media controller and then computes a new playback
position by adding to the current playback position. The seconds are multiplied by 1000
to convert to milliseconds as used by the media controller.

Call seekTo() on the media controller transport controls.

This will invoke the onSeekTo() method you defined in the media browser service.

Now you’ll add listeners on the skip buttons and call the new seekBy method.

Add the following to the bottom of setupControls():

forwardButton.setOnClickListener {
 seekBy(30)
}
replayButton.setOnClickListener {
 seekBy(-10)
}

This sets a listener on the forwardButton that calls seekBy() with a forward skip of 30
seconds. It sets a listener on the replayButton that calls seekBy() with a backward skip
of 10 seconds.

The skip buttons are now fully operational.

Build and run the app.

Bring up a podcast episode and test out the playback controls. You can play and pause
the episode, skip forward and backward and change the speed.

Pull down the notification drawer and pause the playback from there. Notice that the
play/pause button icon in the app stays in sync.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 587

The final playback control to implement is the scrubber with its associated time labels.

Scrubber control

There are a few steps required to make the scrubber functional.

1. Update the end time label to reflect the episode duration.

2. Keep the scrubber position and current time label updated to match the current
playback position.

3. Update the playback position when the user drags the scrubber.

Setting the end time label is reasonably straightforward, but not as straightforward as it
seems. You may be tempted to take the duration stored in the Episode model and use it
to set the label. Unfortunately, the duration provided in the RSS feed is not always
accurate, and not always formatted consistently.

The safest way to set the end time is to get the episode duration from the media
controller metadata. There’s just one problem; your media browser service doesn’t set
the duration! You need to fix that first.

Open PodplayMediaCallback.kt and add the following line to
MediaMetadataCompat.Builder() calls in prepareMedia():

.putLong(MediaMetadataCompat.METADATA_KEY_DURATION,
 mediaPlayer.duration.toLong())

This takes the duration reported by the media player and sets the proper metadata key
on the media session.

Now the episode player can use this metadata when the playback state changes.

Open EpisodePlayerFragment.kt and add the following property to the
EpisodePlayerFragment class:

private var episodeDuration: Long = 0

This will store the current episode duration.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 588

Add the following method:

private fun updateControlsFromMetadata(metadata: MediaMetadataCompat) {
 episodeDuration =
 metadata.getLong(MediaMetadataCompat.METADATA_KEY_DURATION)
 endTimeTextView.text = DateUtils.formatElapsedTime(
 episodeDuration / 1000)
}

Note: Make sure to select android.text.format.DateUtils for the DateUtils
import.

This sets the episodeDuration from the METADATA_KEY_DURATION metadata value. If the
value doesn’t exist, then the duration is set to 0. It then uses the duration to set the end
time label.

DateUtils.formatElapsedTime() takes the time in seconds and returns a formatted
time string as hours:minutes:seconds.

Now call this new method when the metadata changed.

Add the following to the bottom of onMetadataChanged() in the inner
MediaControllerCallback class:

metadata?.let { updateControlsFromMetadata(it) }

This calls updateControlsFromMetadata() if the metadata is not null.

Next, you’ll add code to keep the scrubber and the current time label in sync with the
current playback position.

Add the following line to the end of updateControlsFromMetadata():

seekBar.setMax(episodeDuration.toInt())

This sets the range of the scrubber seekBar to match the episode duration. This lets you
set the progress value on the seekBar directly to the playback position in milliseconds,
and it will place the progress indicator at the correct position.

Next, you’ll update the current time label as the scrubber indicator position changes,
and update the playback position after the user drags the scrubber indicator to a new
position.

You can handle both of these tasks by implementing a change listener on the scrubber
bar.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 589

First, add a property to keep track of when the user is dragging the scrubber indicator.
The reason for this will be explained shortly.

Add the following property to the EpisodePlayerFragment class:

private var draggingScrubber: Boolean = false

Add the following to the end of setupControls():

// 1
seekBar.setOnSeekBarChangeListener(
 object : SeekBar.OnSeekBarChangeListener {
 override fun onProgressChanged(seekBar: SeekBar, progress: Int,
 fromUser: Boolean) {
 // 2
 currentTimeTextView.text = DateUtils.formatElapsedTime(
 (progress / 1000).toLong())
 }
 override fun onStartTrackingTouch(seekBar: SeekBar) {
 // 3
 draggingScrubber = true
 }
 override fun onStopTrackingTouch(seekBar: SeekBar) {
 // 4
 draggingScrubber = false
 // 5
 val controller = MediaControllerCompat.getMediaController(activity)
 if (controller.playbackState != null) {
 // 6
 controller.transportControls.seekTo(seekBar.progress.toLong())
 } else {
 // 7
 seekBar.progress = 0
 }
 }
})

Let’s step through the code.

1. Set a change listener object on the seekBar.

2. seekBar calls onProgressChanged() each time the scrubber position changes. You
use this as an opportunity to update the current time label and format it to
hours:minutes:seconds.

3. seekBar calls onStartTrackingTouch() when the user starts to drag the scrubber
indicator. draggingScrubber is set to true.

4. seekBar calls onStopTrackingTouch() when the user stops dragging the scrubber
indicator. draggingScrubber is set to false, and the playback position is updated.

5. Retrieve the controller object from the activity.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 590

6. If the controller playback state is valid, then seek directly to the new playback
position where the user stopped dragging the scrubber indicator.

7. If the controller playback state is valid, set the scrubber position back to the
beginning.

That’s all you need to allow the user to drag the scrubber to any playback position.

Now you need to update the scrubber position as the play continues. There are several
ways you can do this.

One option is to use a ScheduledExecutorService that runs a method every second. In
this method, you query for the current playback state position from the media
controller and update the scrubber position accordingly.

For PodPlay, you’ll treat the scrubber movement as an animation. You know how much
time is left in the episode and the playback speed, so you can use this to smoothly
animate the scrubber indicator until it reaches the end of the scrubber bar.

You’ll implement the animation using a ValueAnimator. You can think of the
ValueAnimator as an engine that pumps out values at a steady rate. You’ll use these
values to update the scrubber as long as the playback continues.

First, you need a property to hold the ValueAnimator object so it can be canceled if
needed.

Add the following property to the EpisodePlayerFragment class:

private var progressAnimator: ValueAnimator? = null

Now you can create a method to build the animation and kick it off.

Add the following method to the EpisodePlayerFragment class:

// 1
private fun animateScrubber(progress: Int, speed: Float) {
 // 2
 val timeRemaining = ((episodeDuration - progress) / speed).toInt()
 // 3
 progressAnimator = ValueAnimator.ofInt(
 progress, episodeDuration.toInt())
 progressAnimator?.let { animator ->
 // 4
 animator.duration = timeRemaining.toLong()
 // 5
 animator.interpolator = LinearInterpolator()
 // 6
 animator.addUpdateListener {
 if (draggingScrubber) {

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 591

 // 7
 animator.cancel()
 } else {
 // 8
 seekBar.progress = animator.animatedValue as Int
 }
 }
 // 9
 animator.start()
 }
}

Here’s what’s happening:

1. animateScrubber() takes in the current progress and playback speed.

2. You compute the time remaining until the end of the episode.

3. Create a new ValueAnimator with the starting and ending value of the animation
and assign it to the progressAnimator property.

4. The animation duration is set to the time remaining. This stops the animation when
it reaches the end of the episode.

5. By default, the ValueAnimator uses a non-linear time interpolation where it
accelerates at the beginning and decelerates at the end of the animation. The
interpolation is set to linear to ensure an even animation.

6. Set an update listener on the animator. This listener is called by the animator on
each step of the animation.

7. This is where the draggingScrubber property you set earlier comes into play. If the
user is dragging the scrubber then you need to cancel the animation, or it will get
into a tug-of-war with the user, and it will not end well.

8. If the user is not dragging the scrubber, then update the scrubber indicator to the
current value from the animator.

9. Start the animation.

Now use this new method when the playback state changes to playing.

You can also make sure the scrubber position is updated when the playback state
changes. First, update handleStateChange() to use the current playback position and
speed.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 592

Update handleStateChange() declaration to the following:

private fun handleStateChange(state: Int, position: Long, speed: Float) {

Add the following to the end of handleStateChange():

val progress = position.toInt()
seekBar.progress = progress
speedButton.text = "${playerSpeed}x"

if (isPlaying) {
 animateScrubber(progress, speed)
}

This starts by getting the current progress from the playback state, and then it sets the
scrubber to the current progress position and updates the speed control label. If the
media is playing, then start the scrubber animation.

Update the call to handleStateChange() in onPlaybackStateChanged() to the following:

handleStateChange(state.state, state.position, state.playbackSpeed)

This passes in the additional parameters added to handleStateChange().

You also need to stop the animation when the playback stops. Add the following to the
beginning of handleStateChange():

progressAnimator?.let {
 it.cancel()
 progressAnimator = null
}

If the animator is not null, then cancel it and set it back to null.

Finally, cancel the animation when the fragment is stopped.

Add the following after the call to super.onStop() in onStop():

progressAnimator?.cancel()

One minor addition is needed to update the controls after the screen is rotated.

Create the following method to update the controls based on the media controller
state:

private fun updateControlsFromController() {
 val controller = MediaControllerCompat.getMediaController(activity)
 if (controller != null) {
 val metadata = controller.metadata
 if (metadata != null) {
 handleStateChange(controller.playbackState.state,

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 593

 controller.playbackState.position, playerSpeed)
 updateControlsFromMetadata(controller.metadata)
 }
 }
}

This method calls handleStateChange and updateControlsFromMetadata to make sure
the controls match the playback state after a screen rotation.

Now you’ll call this new method from a couple of key places.

Add the call to the end of onConnected() in MediaBrowserCallBacks:

updateControlsFromController()

Add the call to onStart() before the else statement.

updateControlsFromController()

Build and run the app. Start playback for an episode.

Notice that the current time on the left of the scrubber stays in sync with the playback
position and the end time displays the episode duration.

The scrubber indicator moves along with the playback, and you’re able to drag the
scrubber to jump to any playback position.

Video playback
The last feature you’ll implement is video playback. If you try to play a video podcast
with PodPlay now, only the audio part will play.

Unlike audio, video playback is a captive experience and is intended to run in the
foreground with a UI. For this reason, you’ll abandon the client/server architecture used
for audio playback when playing back videos.

You’ll still use a MediaSession and MediaPlayer along with the
PodplayMediaCallback class, but it will be controlled from EpisodePlayerFragment
instead of MediaBrowserService.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 594

Identifying videos
The first thing you need is a means to identify if the episode media is a video.

Open PodcastViewModel.kt and add the following to EpisodeViewData:

 var isVideo: Boolean = false

Replace the contents of episodesToEpisodesView() with the following:

return episodes.map {
 val isVideo = it.mimeType.startsWith("video")
 EpisodeViewData(it.guid, it.title, it.description, it.mediaUrl,
 it.releaseDate, it.duration, isVideo)
}

This checks the mime type on each episode to see if it starts with the string “video”. If
so, the isVideo property on the EpisodeViewData is set to true.

Now you need to update EpisodePlayerFragment.kt to handle video playback.

To start video playback, you’ll need to perform a few tasks:

1. Create a media session and media player. This is handled in MediaBrowserService
for audio files, but for video, it needs to be done in EpisodePlayerFragment.

2. Update the UI to make the video visible and hide the other UI elements.

3. Prepare the SurfaceView to playback the video.

Media session
You’ll need a MediaSession object to manage the video playback.

Open EpisodePlayerFragment.kt and add the following property to the class:

private var mediaSession: MediaSessionCompat? = null

Add the following method to initialize the media session:

private fun initMediaSession() {
 if (mediaSession == null) {
 // 1
 mediaSession = MediaSessionCompat(activity, "EpisodePlayerFragment")
 // 2
 mediaSession?.setFlags(
 MediaSessionCompat.FLAG_HANDLES_MEDIA_BUTTONS or
 MediaSessionCompat.FLAG_HANDLES_TRANSPORT_CONTROLS)
 // 3
 mediaSession?.setMediaButtonReceiver(null)
 }

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 595

 registerMediaController(mediaSession!!.sessionToken)
}

This is similar to the code created in the last chapter for MediaBrowserService.

1. Create the media session if it does not already exist.

2. Set flags to indicate the session will handle media buttons and transport controls.

3. Set the media button receiver to null so media buttons will be ignored if the app is
not in the foreground.

Media player
You’ll also need a MediaPlayer object just like you did with the MediaBrowserService:

Add the following property to EpisodePlayerFragment:

private var mediaPlayer: MediaPlayer? = null

And you’ll need to know if the user taps the play button before the media is ready to
play.

Add the following property to EpisodePlayerFragment:

private var playOnPrepare: Boolean = false

The media player needs a view on which to display the video. This is where the
videoSurfaceView comes into the picture.

Once the media player has loaded the video, the videoSurfaceView needs to be resized
to match the video aspect ratio.

Add the following method to resize the video surface view.

private fun setSurfaceSize() {
 // 1
 val mediaPlayer = mediaPlayer ?: return
 // 2
 val videoWidth = mediaPlayer.videoWidth
 val videoHeight = mediaPlayer.videoHeight
 // 3
 val parent = videoSurfaceView.parent as View
 val containerWidth = parent.width
 val containerHeight = parent.height
 // 4
 val layoutAspectRatio = containerWidth.toFloat() / containerHeight
 val videoAspectRatio = videoWidth.toFloat() / videoHeight
 // 5
 val layoutParams = videoSurfaceView.layoutParams
 // 6

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 596

 if (videoAspectRatio > layoutAspectRatio) {
 layoutParams.height = (containerWidth / videoAspectRatio).toInt()
 } else {
 layoutParams.width = (containerHeight * videoAspectRatio).toInt()
 }
 // 7
 videoSurfaceView.layoutParams = layoutParams
}

This method’s job is to make the video view match the size of the podcast video and
keep the video aspect ratio intact. It does this by taking the longest side of the video
and making it fit the view, and then adjusting the other side to keep the original ratio
intact.

1. If the media player is null, the method returns early

2. Retrieve the current width and height of the video.

3. Retrieve the current width and height of the video surface container view.

4. Compute the surface view layout aspect ratio.

5. Compute the video aspect ratio.

6. If the video ratio is larger than the surface view layout ratio, then the surface view
layout width is retained, and the height is shrunk to keep the video aspect ratio.

7. If the video ratio is smaller than the surface view layout ratio, then the surface view
layout height is retained, and the width is shrunk to keep the video aspect ratio.

Now you can call this from the media player initialization code.

Add the following method:

private fun initMediaPlayer() {
 if (mediaPlayer == null) {
 // 1
 mediaPlayer = MediaPlayer()
 mediaPlayer?.let {
 // 2
 it.setAudioStreamType(AudioManager.STREAM_MUSIC)
 // 3
 it.setDataSource(podcastViewModel.activeEpisodeViewData?.mediaUrl)
 // 4
 it.setOnPreparedListener {
 // 5
 val episodeMediaCallback = PodplayMediaCallback(activity,
 mediaSession!!, it)
 mediaSession!!.setCallback(episodeMediaCallback)
 // 6
 setSurfaceSize()
 // 7

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 597

 if (playOnPrepare) {
 togglePlayPause()
 }
 }
 // 8
 it.prepareAsync()
 }
 } else {
 // 9
 setSurfaceSize()
 }
}

Let’s break this down.

1. If the media player is null, create a new one.

2. Set the media player audio stream type to music.

3. Set the media player data source to the episode media URL.

4. Set the onPreparedListener method on the media player.

5. Once the media is ready, the PodplayMediaCallback object is created and assigned
as the callback on the current media session.

6. Set the video surface size to match the video.

7. If playOnPrepare is true, indicating that the user has already tapped the play button,
then the video is started.

8. Call prepareAsync() on the media player to have it prepare the video in the
background.

9. If the media player is not null then you only need to set the video surface size. This
will happen if there is a configuration change, such as a screen rotation.

The playOnPrepare flag should be set to true when the play button is tapped. It doesn’t
matter that it gets set each time, as long as you know that it was tapped at least once.

Add the following to the beginning of togglePlayPause():

playOnPrepare = true

Finally, add the following method to initialize the video surface and call the new
initMediaPlayer method:

private fun initVideoPlayer() {
 // 1
 videoSurfaceView.visibility = View.VISIBLE
 // 2

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 598

 val surfaceHolder = videoSurfaceView.holder
 // 3
 surfaceHolder.addCallback(object: SurfaceHolder.Callback {
 override fun surfaceCreated(holder: SurfaceHolder) {
 // 4
 initMediaPlayer()
 mediaPlayer?.setDisplay(holder)
 }
 override fun surfaceChanged(var1: SurfaceHolder, var2: Int,
 var3: Int, var4: Int) {
 }
 override fun surfaceDestroyed(var1: SurfaceHolder) {
 }
 })
}

SurfaceView overview

This method warrants some explanation on how surface views interact with the media
player. To display videos, the MediaPlayer object requires access to a SurfaceView.
Surface views provide a dedicated drawing surface within your view hierarchy.

When a surface view is made visible, Android must prepare it for use. Surface views
provide a SurfaceHolder object that can be used to determine the surface availability.

Surface holders provide a SurfaceHolder.Callback interface to provide notifications
about the surface state. The surface view is only available when the surfaceCreated()
method is called on the surface holder callback object.

With that in mind, let’s go over the method one step at a time.

1. The video surface view is made visible.

2. You get a reference to the underlying surface holder.

3. You call addCallback() and provide a SurfaceHolder.Callback object to detect
when the surface is created.

4. Once the surface is created, the media player is initialized, and the surface is
assigned as the display object for the media player.

Now you’ll add some conditional code that skips the MediaBrowser creation and usage if
it is a video.

First, create a property to store the video state.

Add the following property to EpisodePlayerFragment:

private var isVideo: Boolean = false

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 599

Add the following to the end of setupViewModel():

isVideo = podcastViewModel.activeEpisodeViewData?.isVideo ?: false

Now, set a condition around all the code that references the media browser:

Surround the call to initMediaBrowser() in onCreate() as follows:

if (!isVideo) {
 initMediaBrowser()
}

initMediaBrowser() is only called if the media is not a video.

Surround the code in onStart() with a check for isVideo:

if (!isVideo) {
 if (mediaBrowser.isConnected) {
 if (MediaControllerCompat.getMediaController(activity) == null) {
 registerMediaController(mediaBrowser.sessionToken)
 }
 updateControlsFromController()
 } else {
 mediaBrowser.connect()
 }
}

The media browser connection logic is only implemented if the media is not a video.

Add the following code to the end of onStop():

if (isVideo) {
 mediaPlayer?.setDisplay(null)
}

Clearing the display surface is required on some versions of Android to prevent issues
when the screen is rotated.

Next, add conditional code that initializes the player if the episode is a video.

Add the following before the call to updateControls() in onActivityCreated():

if (isVideo) {
 initMediaSession()
 initVideoPlayer()
}

This initializes the media session and video player when the activity is created.

There’s one last bit of conditional code for videos. When a video is playing, you want to
hide the episode header, episode description and action bar, while making the media
controls container partly transparent.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 600

This will allow the video to take up the maximum amount of screen space.

Add the following method to set up the video UI changes.

private fun setupVideoUI() {
 episodeDescTextView.visibility = View.INVISIBLE
 headerView.visibility = View.INVISIBLE
 val activity = activity as AppCompatActivity
 activity.supportActionBar?.hide()
 playerControls.setBackgroundColor(Color.argb(255/2, 0, 0, 0))
}

This hides everything on the screen except the video controls. It sets the background
color to a 50% transparency level.

Call setupVideoUI() when the video is playing:

Add the following as the first line inside the "if (isPlaying) {" section of
handleStateChange():

if (isVideo) {
 setupVideoUI()
}

You’ll need to manually stop the playback when the fragment is exited.

Add the following to the end of onStop():

if (!activity.isChangingConfigurations) {
 mediaPlayer?.release()
 mediaPlayer = null
}

If the fragment is not stopping due to a configuration change, then stop the playback
and release the media player. If the fragment is stopped during a configuration change,
such as a screen rotation, then the media player is not recreated.

There’s one more change required to handle the playback controls properly when the
screen is rotated.

Add the following to the end of updateControls():

mediaPlayer?.let {
 updateControlsFromController()
}

If the mediaPlayer object is not null, then the controls are updated from the media
controller state.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 601

There is one minor change required in PodplayMediaCallback.kt to make sure the
media player is not prepared a second time. This is needed because prepareAsync() is
already called in the episode player fragment when the media is a video.

In PodplayMediaCallback.kt, add the follow property to the PodplayMediaCallback
class:

private var mediaNeedsPrepare: Boolean = false

This property will be used to indicate if the media player needs to be prepared.

In initializeMediaPlayer(), add the following line after the call to
setOnCompletionListener().

mediaNeedsPrepare = true

This sets mediaNeedsPrepare to true only if the mediaPlayer is created by
PodplayMediaCallback. When playing back videos, the mediaPlayer is created by the
EpisodePlayerFragment and passed into PodplayMediaCallback, so mediaNeedsPrepare
will not be set to true.

In prepareMedia(), replace the following code,

mediaPlayer.reset()
mediaPlayer.setDataSource(context, mediaUri)
mediaPlayer.prepare()

with this block:

if (mediaNeedsPrepare) {
 mediaPlayer.reset()
 mediaPlayer.setDataSource(context, mediaUri)
 mediaPlayer.prepare()
}

The mediaPlayer is only prepared if mediaNeedsPrepare is true.

That’s all the changes required in the shared PodplayMediaCallback object to support
video playback. All of the existing controls, including skip and speed, will work without
any changes.

Build and run the app.

Find a video podcast and bring up an episode. When the episode player is first
displayed, it won’t look any different than a standard audio podcast. Once you tap the
play button, it will show the video.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 602

Note: Depending on your connection, there can be a 1-5 second delay after you
press the play button before the video starts playing.

If the video fills the screen, the playback controls will overlay the video. If you rotate
the screen, the video will keep playing and adapt to the new screen orientation.

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 603

Where to go from here?
Congratulations, you now have a very functional Podcast player worthy of praise and
bragging rights! Pat yourself in the back because you’ve accomplished a lot.

There are plenty of opportunities to improve and take the Podcast player to the next
level. Here are just a few ideas:

• Start from the last playback position when a user resumes a podcast. Hint: Add a new
lastPosition property to the Episode model, and update it when playback stops.

• Notify your users periodically with a curated list of the top podcasts. Hint: Use
Firebase Cloud Messaging. Learn more at https://firebase.google.com/docs/cloud-
messaging/.

• Add the ability to create playlists.

• Add an option to download episodes for offline listening. Hint: Check out
DownloadManager at https://developer.android.com/reference/android/app/
DownloadManager.html.

• Add an option to manually add a podcast from an RSS URL.

In the next few chapters, we’re going to discuss some important topics like how to keep
your app up to date, preparing to release it, even testing and publishing. So, sit back,
relax and let’s put a bow on these new skills of yours!

Android Apprentice Chapter 27: Episode Player

raywenderlich.com 604

Section V: Android Compatibility

This section covers two Android topics that are almost as important as your Android
app itself: how to handle the collection of Android versions out there, known as the
fragmentation problem, and how to best keep your app up to date in the face of constant
updates to Android.

Chapter 28: Android Fragmentation & Support Libraries

Chapter 29: Keeping Your App Up To Date

raywenderlich.com 605

28Chapter 28: Android
Fragmentation & Support Libraries
By Darryl Bayliss

In a perfect world, every Android device would run a single version of Android and app
development would be easy. Sadly, the world isn’t perfect. As of May 2017, there were
two billion active Android devices around the world, all running various versions and
flavors of Android. That’s an impressive statistic for Google — but terrifying to a
developer who wants their app to work on as many devices as possible.

This chapter explores the history of Android versions, and how developers can target as
many versions of Android as possible. You’ll learn the following:

• What problems Android faces from fragmentation and why they exist.

• What the Android Support Libraries are, and how they reduce the impact of
fragmentation.

• How an app you created earlier in the book uses the Support Libraries to be
backwards compatible.

Android: An open operating system
To understand where the fragmentation problem came from, it’s important to know
how Android came to be the most popular operating system on the planet.

Google originally acquired Android by buying a company called Android Inc in 2005.
Android Inc was a company that saw potential for mobile devices to become smarter
than ever before, and Google wanted a piece of the action. Once Android was in
Google’s hands, they began turning Android from the prototype they bought, into a
production-ready operating system.

raywenderlich.com 606

Meanwhile, Google began to share their vision of the future of mobile with various
phone manufacturers such as Samsung, LG and HTC. What Google offered to phone
manufacturers was a a stable operating system: one that could be altered to work for a
particular manufacturer’s needs.

For Google, it was a way to reach users like never before. For the phone manufacturers,
it was a way of keeping up with competition. The approach towards openness
ultimately convinced phone manufacturers to adopt Android as the operating system
for their devices.

When Google publicly announced Android in November 2007, it also announced the
creation of the Open Handset Alliance (http://www.openhandsetalliance.com), a
consortium of phone manufacturers agreeing to work towards a set of open standards
for mobile devices. Those standards materialized in the form of Android.

To ensure these standards were openly available, the Android Open Source Project
(https://source.android.com) was created, which allows anyone to download and
contribute to the Android Operating system.

How fragmenting occurs
As years went by, it was logical that devices would eventually need to receive updates
for their Android OS. However, many devices didn’t receive updates for months at a
time. This was because phone manufacturers had to take the time to test that the
updated versions of Android were compatible with their own in-house changes they’d
made to their particular flavors of Android.

Differences between stock Android and the versions that phone manufacturers included
in their operating system varied. Some changes were minor UI tweaks, while others
were dramatic changes to underlying components of Android that only worked for
particular devices.

If you were to look at the leading Android devices of today, you’d first notice differences
in the user interface. If you could dive deeper into the internals of the devices, it’s likely
you’d find some manufacturer-specific apps and features that you can’t remove on your
own. Dive deeper still, and it’s possible you will find some deeply embedded processes
that are unique to a particular phone manufacturer and not part of the core Android
operating system.

The delay in Android updates, magnified across multiple manufacturers and devices has
led to what tech journalists to declare that Android has a fragmentation problem.

Android Apprentice Chapter 28: Android Fragmentation & Support Libraries

raywenderlich.com 607

Google has made efforts to combat the delay in Android updates getting to devices.
Their stock apps are downloadable only from the Google Play store, and are only
available on devices whose manufacturers pay Google a licensing fee for their Google
Mobile Services suite. Google has even gone so far as to isolate certain parts of Android
via a project called Project Treble (https://source.android.com/devices/architecture/
treble), aiming to abstract away the core of Android and providing interfaces for
manufacturers to use in their own Android implementations.

The Nexus and Pixel devices from Google run unmodified versions of Android, often
called the “vanilla” version. This means these devices can be quickly updated with the
latest version of the operating system without the need to test device-specific
modifications.

These are all changes aimed at reducing the time it takes for an Android update to be
received by a device. That is great for users, but fragmentation is still a reality and one
you must deal with as a developer.

The Android support libraries
To ensure developers were not held back by the delayed Android updates, the
engineering teams at Google introduced the Android Compatibility Library in 2011.
This library aimed to ensure Android was easy to develop for across multiple versions of
the operating system.

Since then, the library has grown to encompass a range of libraries that provide
backwards compatibility for many Android features and UI components. It has since
been renamed as the Android Support Library.

Backward compatibility across Android versions is so important that Android Studio, by
default, uses the Support Libraries in the code it generates. You may or may not have
noticed that you’ve been using the Support Libraries all this time as you’ve worked
through this book.

Take a look through the ListMaker app you created in Section II. You’ll see the Support
Libraries are used throughout and how they come in handy.

The first sign of the Support Libraries can be found in the build.gradle file for the app
module. Open build.gradle (Module: app) and scroll down to the dependencies block:

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])
 implementation "org.jetbrains.kotlin:kotlin-stdlib-
jre7:$kotlin_version"

Android Apprentice Chapter 28: Android Fragmentation & Support Libraries

raywenderlich.com 608

 implementation 'com.android.support:appcompat-v7:26.1.0'
 implementation 'com.android.support.constraint:constraint-layout:
1.0.2'
 implementation 'com.android.support:design:26.1.0'
 implementation 'com.android.support:support-v4:26.1.0'
 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'com.android.support.test:runner:1.0.0'
 androidTestImplementation
'com.android.support.test.espresso:espresso-core:3.0.0'
}

The dependencies prefixed with com.android.support: are all part of the support
library collection, specifically created for backward compatibility of newer features to
older versions of Android.

It’s thanks to the Support Libraries that Constraint Layouts are compatible all the way
back to Android Gingerbread. Gingerbread was released in December 2010, while
Constraint Layouts were introduced in February 2017. That’s an incredible amount of
support for old software.

It’s obvious that Constraint Layouts are used to build up the Layout for the UI in your
app. However, other uses of the other support libraries may not be so apparent.

Open the ListMaker project and then open MainActivity.kt. Holding the Command
button, if you’re using a Mac, hover the mouse cursor over the AppCompatActivity
subclass at the top and left-click it:

Android Apprentice Chapter 28: Android Fragmentation & Support Libraries

raywenderlich.com 609

Note: For Windows / Linux users, hold Ctrl and left-click.

Android Studio will jump to the AppCompatActivity.java class file. AppCompatActivity
is part of the com.android.support:appcompat-v7:26.1.0 library. You can tell by
package name at the top of the file:

package android.support.v7.app;

Support packages all begin with the android.support prefix as part of the package
name, and often include the word Compat somewhere in the class name. The most
obvious backwards compatible feature AppCompatActivity brings is the ease of
supplying a ToolBar to the top of the Activity.

Head back to MainActivity.kt, hold the Command button, hover your mouse over
setSupportActionBar(toolbar) in onCreate() and left-click to jump to the
implementation.

Android Studio will take you back in to AppCompatActivity.java, the same support
class you saw earlier. This is important to note because the ToolBar was first
introduced in Android Lollipop. Any devices that tried to run an app using a ToolBar
would crash quickly because the device doesn’t know what a ToolBar is.

This is where the Support Library and AppCompatActivity.java comes in. If a device is
running an earlier version of Android that doesn’t know what a ToolBar is, the Support
Library provides the device with the class. This ensures the app functions as intended
and developers can rely on using consistent APIs that support earlier versions of
Android.

Android Apprentice Chapter 28: Android Fragmentation & Support Libraries

raywenderlich.com 610

Let’s take a look at a few other examples. Open ListSelectionFragment.kt, hold the
Command button, hover the mouse cursor over the Fragment() subclass at the top and
left-click it.

Android Studio will open up Fragment.java, the class definition for the Fragment.
Scroll to the top of the class and take note of the package:

package android.support.v4.app;

Even Fragments exist in the Support Library! Although Fragments allow your UI to
provide flexibility depending on the screen of a device, they were introduced in
Android’s Honeycomb release.

Thanks to the Support Library implementation, Fragments can now be used all the way
back to Android Donut: a version of Android that was released two years prior to
Fragments being introduced.

Head back to ListSelectionFragment.kt and Command + left-click over the
RecyclerView defined at the top of the class.

Android Studio will show you RecyclerView.java: the class definition for a
RecyclerView. Scroll to the top of the class and inspect the package name:

package android.support.v7.widget;

Another support library component you’ve used without knowing! RecyclerView was
first introduced to Android in 2014 with Android Lollipop. However, instead of bundling

Android Apprentice Chapter 28: Android Fragmentation & Support Libraries

raywenderlich.com 611

RecyclerView into the Lollipop update, Google Engineers decided to put it straight into
the Support Library as they had recognized how integral the libraries had become.

This decision meant RecyclerViews were not released in a particular version of Android.
As part of the Support Libraries, they became a crucial element of UI that are
backwards-compatible all the way back to Android Eclair, released in 2009.

Reducing the impact of fragmentation in your app
Although fragmentation is a real problem for Android, the engineering teams at Google
have provided a way for developers to avoid its effects, ensuring your apps can reach as
many users and devices as possible.

While not every single feature can be backported, the most important ones that provide
consistency for the user experience are there for you to use.

Above all, use the Support Libraries whenever possible. Even if you don’t think you
need them, assume that your first user will use your app on the oldest version of
Android possible. Optimizing for the worst experience means you’re giving your users
the best experience you can — on whatever device they’re using!

Where to go from here?
The Support Libraries are an integral part of Android development, for without them,
development across multiple Androids versions would be incredibly painful.

• For more information on how to use the Support Libraries, visit the Support Library
page on the developer website at https://developer.android.com/topic/libraries/
support-library/index.html.

• You can find a list of all the features the Support Libraries provide at https://
developer.android.com/topic/libraries/support-library/features.html.

• Finally, you can find a list of all the Support Library dependencies you can include in
your apps at https://developer.android.com/topic/libraries/support-library/
packages.html.

Android Apprentice Chapter 28: Android Fragmentation & Support Libraries

raywenderlich.com 612

29Chapter 29: Keeping Your
App Up To Date
By Darryl Bayliss

Building a great app requires hard work and determination. Continually updating your
app requires not just a firm belief in the original vision, but the discipline to evolve your
app as time passes. Overnight success is a rare thing. Instead, it’s more likely that a
trickle of users will download the app; some will uninstall it a few minutes later; and a
very few will genuinely find your app useful and use it regularly, perhaps even leaving
reviews. This last group contains the users you owe your attention and commitment to.

The more you commit to your app, the more value your users will see in the product.
Keeping your app up-to-date is an incentive to growing that important group of users.
Publishing an app is an achievement, but supporting an app over the years to come is
an even greater achievement.

This chapter covers what you need to know when it’s time to update your app,
including:

• How to leverage data from Google to target what you should update

• How to target the latest version of Android, including preview releases

• How to decide when to drop support for older versions of Android

Following Android trends
Data that can help you make an informed decision can be invaluable in helping you
make the most of your development time and money.

There are two sources you can draw on for high quality data. The first option is the
Google Play Console (https://developer.android.com/distribute/console/
features.html).

raywenderlich.com 613

Besides providing a portal for app distribution, the console provides useful metrics
about devices that have downloaded your app. This includes the device type and version
of Android your users are running.

You’ll dive deeper into the Google Play Console in the following chapters when you look
at deploying your app, but what you need to know is that it can be a great source of
information when deciding on how best to keep your app up-to-date.

If you require less targeted data and prefer a snapshot of the whole distribution of
Android devices in the world, Google offers a number of dashboards at (https://
developer.android.com/about/dashboards/index.html) that detail key metrics:

• Android versions

• Screen size and density

• OpenGL versions

This information is generated from devices that visited the Google Play Store within the
last seven weeks, so you can rely on the dashboards to provide an accurate portrait of
Android within the Google ecosystem.

Choosing the right platform to target can lead to more engaging apps if you’re not
preoccupied trying to backport features or trying to fallback gracefully. Looking at this
dashboard can help you decide to leave versions in the dust. We’ll explore this idea later
on in this section.

Android Apprentice Chapter 29: Keeping Your App Up To Date

raywenderlich.com 614

Keeping an eye on the most common screen sizes and densities can help you decide to
not consider some sizes when designing your user interface. Keeping up with the latest
trends here can help you shed unneeded assets and keep your APK slim.

OpenGL may not be common in all apps, however, but it carries the same considerations
you may have when picking and choosing platform versions or screen sizes to support.
Newer versions of OpenGL contain some cool features you might need in your games,
that you may have put off because not enough devices have said version. However,
keeping an eye on this dashboard may be enough motivation to consider increasing the
minimum bar on OpenGL support.

Android Apprentice Chapter 29: Keeping Your App Up To Date

raywenderlich.com 615

How you use the data Google provides to focus your development efforts depends
entirely on your personal goals for your app and, ultimately, your business. Once you’ve
decided what versions of Android to support, you’ll have to decide if it’s worth adding
support for newer versions of Android, and whether it makes send to drop support for
older versions. In the next section, you’ll see what it means to keep up with the latest
version of Android.

Managing Android updates
As a good developer, you want to make sure your app runs on the latest and greatest
version of Android. Major updates to the Android OS occur on a yearly cycle and are
announced at Google IO (https://events.google.com/io/), Google’s developer
conference, where a range of new products and services across the company are
showcased.

Google also regularly releases minor updates to Android, containing everything from
under-the-hood bug fixes, to entire new Android libraries for you to use.

The best way to be notified on any upcoming Android updates is to regularly check the
Android Developers Blog (https://android-developers.googleblog.com). It’s updated
regularly and has lots of information about the current and future direction of Android.

Google also allows developers to download preview releases of upcoming Android
versions. This gives developers a chance to iron out any issues their apps might have
with the new versions before the new OS is released to the general public. Nothing is
more disheartening for users than updating their devices to the latest Android release,
only to find out their favorite app doesn’t work.

Developers are notified of opportunities to install and test a preview release of Android
through the developer blog (https://android-developers.googleblog.com/2017/11/final-
preview-of-android-81-now.html), or through the developer documentation provided
on the Android Developer Website.

Android Developer Previews are available a few weeks in advance of public release. For
major updates, Google extends this to a few months, which gives you plenty of time to
test your app. It also gives you an opportunity to give Google engineers feedback on any
issues or bugs you find as you work with the preview version of Android.

Android Apprentice Chapter 29: Keeping Your App Up To Date

raywenderlich.com 616

Although you should make an effort to update your app to support the latest release of
Android, it might not the end of the world if you don’t. The engineers at Google have
done some excellent work in making various libraries on Android backwards-
compatible, which just might cover you for a few releases.

The takeaway here is to keep on top of new Android releases and how the update may
or may not affect your app. Knowing what’s coming down the pipe lets you adjust your
development ahead of time — or even make the call to not update your app at all.

Working with older versions of Android
Although there is a lot of support in Android for backwards compatibility, sometimes it
makes sense to break with old versions of Android and only develop for the newer
versions. This is a good strategy in some cases — but it comes at a cost.

Using newer APIs means you expect a minimum version of Android in order for your
app to run. If the API you’re targeting doesn’t exist on a older version of Android, then
your app won’t appear in the Google Play Store for devices with older versions of
Android.

This is where you, as the developer, need to decide how to support older versions of
Android. Fortunately, you have several options.

The bleeding edge approach
The first option is to be ruthless and only support the versions of Android that your app
absolutely needs. This means your app is guaranteed to work, and you don’t need to
consider any backward compatibility for Android versions that don’t support your
target API. Moreover, you free yourself from having develop and test workarounds for
devices that don’t have the APIs you want. It sounds like a developer’s dream, doesn’t
it?

The downside is that you’ll shut out huge numbers of potential users with older devices
— users who might still want to download your app and spread the word about it! That’s
one of the realities of dealing with fragmentation in the Android world.

Android Apprentice Chapter 29: Keeping Your App Up To Date

raywenderlich.com 617

The soft decline approach
The second option is to engineer your app so that it degrades gracefully for older
versions of Android: newer Android users get the benefit of all your app’s features,
while older Android users can still use your app with some functional limitations. This
means you keep the market open for your app, and you don’t penalize users on older
devices.

The downside is that this approach takes more development effort on your part, as you
need to consider how the app will react on older devices, and whether the app will still
function as you intended on older versions of Android.

The backport approach
The third option is to to rely on backported features. This involves leveraging third-
party libraries or support code you write yourself to support features that older devices
wouldn’t normally have. This is the argument Google uses for persuading developers to
use the Android Support Libraries, and many third-party libraries backport their
features for the very same reason. The benefits of supporting as many Android users as
possible can’t be overstated.

The downside in this case is that you’ll need to take the time to learn how to use these
libraries in your app, or even roll your own code when there’s no clear way to support
your app with Google’s or other third-person libraries.

Where to go from here?
The decision to drop older versions of Android, or to invest the time to support them,
depends entirely on the kind of app you make, what your user base looks like, and the
amount of effort you want to put into app development.

Think about the future direction of Android, think about what your users want from
your app, think about your personal and business goals for your app and let that drive
your choice on which approach to use. Supporting apps as new versions of Android roll
out of Google is the ultimate test of a developer’s commitment. Whether to stay up-to-
date with new Android versions, or to drop support for older ones, is an important and
difficult choice for any developer. Regular updates show users that your app is being
actively developed and supported, which also bodes well for the adoption rate of your
app. Leaving your app to stagnate sends a sign that you’ve abandoned development of
the app, and users won’t hesitate to look for another solution in the Play Store.

Android Apprentice Chapter 29: Keeping Your App Up To Date

raywenderlich.com 618

Section VI: Publishing your App

Now that you’ve created your app, you need to get it out to the world! This section has
two chapters that teach you how to prepare your app for release, how to test your app,
and how to publish your app to your waiting fans!

Chapter 30: Preparing for Release

Chapter 31: Testing and Publishing

raywenderlich.com 619

30Chapter 30: Preparing for
Release
By Tom Blankenship

So you finally built that app you’ve been dreaming about. Now it’s time to share it with
the world! But where do you start?

This chapter will help you get your app ready for release. Although this chapter will
focus primarily on preparing the app for the Google Play store, most of the steps will
apply regardless of the publishing platform.

Here’s a quick overview of each step involved:

1. Clean up any debugging code you may have in the source.

2. Check the app version information.

3. Create a release version of the app with the correct signing key.

4. Test the release version on as many devices as possible.

5. Create a Google Play Console developer account.

6. Create screenshots, promotional graphics and videos.

7. Fill out the application details on the play console.

Let’s walk through these items in detail.

raywenderlich.com 620

Code cleanup
The first step is to make sure your project and code are ready for release. Here are a few
items to consider:

• Choose a good package name. Once you submit an app to the store, you cannot
change the package name. The package name is embedded in AndroidManifest.xml
but can be set in your app’s build.gradle.

The package name must be unique from all other apps in the Play store. One of the
best ways to ensure this is to use a reverse naming convention based on a domain
name that you own. For example, the PodPlay app published by raywenderlich.com
has a package name of com.raywenderlich.podplay.

defaultConfig {
 applicationId "com.raywenderlich.podplay"
 ...
}

• Turn off debugging for release builds. By default, Android Studio creates debug and
release build types for new projects.

For the release build type, debugging is disabled by default. You can verify this by
looking at app.gradle in the buildTypes section. Check that it has the following
definition for the release build type:

buildTypes {
 release {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
}

If you have a debuggable true line in the release build type, remove it.

minifyEnabled enables ProGuard. ProGuard is a tool that helps shrink your code for
release. It removes unused code and libraries, and it obfuscates class, property and
method names.

• Remove logging by deleting Log calls in the code or let ProGuard remove the calls
during the release build.

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 621

To use ProGuard, add the following lines to proguard-rules.pro in the root of your
project:

-assumenosideeffects class android.util.Log {
 public static boolean isLoggable(java.lang.String, int);
 public static int v(...);
 public static int d(...);
 public static int i(...);
}

This removes verbose, debug and information log calls, but it leaves warnings and
errors. Make sure that any remaining warning or error messages do not log any personal
data.

• Verify production settings. If your app communicates with external services, has
update URLs, API keys or other configuration items that are different during
development, change them to the proper production settings.

• Check for stray files in your project. Look inside src to make sure it contains only
source files. Check assets and res for outdated raw files, drawables, layouts and other
items. If found, remove them from the project.

• Perform any final localization tasks such as translating your string files to other
languages.

Versioning information
Before releasing the app, make sure you have a good versioning strategy. This is critical
to maintaining the app and keeping a handle on support issues that may arise.

Users should be able to identify the version number and trace it back to a specific
source code snapshot; this helps with debugging.

The best place to specify your app version is in the app.gradle build file. Two primary
settings control versioning: versionCode and versionName. These are normally
located in the defaultConfig section as shown below:

defaultConfig {
 applicationId "com.raywenderlich.podplay"
 minSdkVersion 19
 targetSdkVersion 26
 versionCode 1
 versionName "1.0"
 testInstrumentationRunner
"android.support.test.runner.AndroidJUnitRunner"
}

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 622

• versionCode: This is the internal version number, which the user cannot see. It’s an
integer value, and you should increase it with each new build you upload to the play
store. The play store uses this number to determine if one build is older than
another; it will not allow installs that downgrade to an older version.

• versionName: This is the external version number visible to the user. You have full
control over how it’s formatted. Most apps use a major.minor.point release format for
versionName. The key is to have a consistent formatting convention. Just don’t forget
to update the string with each new release.

Note: The major.minor.point release scheme is often referred to as Semantic
Versioning. For more information on this scheme, check out https://semver.org/.

Build release version
Each time you build and run your app during development, Android Studio produces an
APK file and installs it on the emulator or device. This APK file contains your app’s
executable code as well as all of its resources.

When using the default debug build type, the APK produced is signed with a debug key,
which is automatically generated by Android Studio. This debug APK also has a special
debuggable flag set and includes extra information to make debugging easier.

You can’t submit an APK built for debugging to the play store because Google won’t
allow it. Also, you should not distribute it directly to users.

To make sure the debuggable flag is not set, and to have Android Studio build an
optimized Release version of the APK, use the Release build type. Just like the debug
version, the release APK must be signed, but in this case, it should be with your own
private signing key.

Create a signing key

Your first step in building a release version is to generate a signing key, which you’ll use
to sign the app. This key is stored in a keystore file, and any future versions of the same
app must be signed with the same key.

This key is critical to the security of your app. It should always be kept private and in a
safe place. If you lose the keystore, you won’t be able to release a new version of your
app under the same package name!

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 623

Note: Google has a Google Play App Signing feature. This service lets Google
manage your signing key, giving you some options if you lose your key or it gets
compromised. When using this method, you’ll sign the app with an Upload Key,
and then Google will resign the app with your actual app signing key. This will be
covered more in the next chapter, but you can learn more here: https://
developer.android.com/studio/publish/app-signing.html#google-play-app-
signing.

Use the following steps inside Android Studio to create your signing key:

1. Click Build ▸ Generate signed APK... from the menu.

2. Select the module (usually “app”), and click Next.

3. Select Create new... to create a new keystore. A keystore can hold multiple signing
keys, with each one referred to by an alias name.

4. The "New Key Store" dialog appears.

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 624

5. Select the Key store path where you want to store the file. There’s no standard
extension required for this file; however, most people use .jks.

6. Fill in the keystore Password and repeat it in the Confirm field. Make sure to store
this password safely, because you’ll need it whenever you access the keystore.

7. Fill in the following items for the Key:

Alias: Enter a name for the key. Usually the name of your application.

Password: Enter a password to protect the keystore file.

Confirm: Repeat your password.

Validity (years): Leave this at 25 years. The key will expire after this time.

Certificate: Enter your personal information in these fields. The user won’t see your
data, but it will be part of the signing certificate in the APK file.

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 625

8. Click OK, and the original dialog, with the values already populated, will appear.

9. If don’t want to enter passwords each time you build a release version, check
Remember passwords.

10. Click Next.

11. Fill in the APK Destination Folder. Normally, this a folder outside of your main
project folder.

Be sure to select both V1 and V2 signatures, so your apps can be installed on older
and newer device.

The Build Type should be set to release.

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 626

12. Click Finish.

Android Studio builds and signs the release APK file and places it in the destination
folder. A popup will display in the bottom right corner of Android Studio when the
build is complete.

The final output file is named app-release.apk.

You’ll follow these same steps each time you build a release version. However, you can
skip steps 3-7 since you already created the keystore and key.

Note: It’s worth mentioning one more time that it’s critical that you keep your
release keystore secure! If someone else gets a hold of your key, they can do all
sorts of damage, such as possibly distributing malicious apps under your identity.

Check file size

Check the size of the APK file. If it’s over 100MB, you won’t be able to publish it as-is to
the Play store. You can get around this limitation by using expansion files. This is not
an issue for most applications, but if you find yourself with a large APK file, you can find
details about using expansion files here: https://developer.android.com/google/play/
expansion-files.html

Release testing
Test the release file on as many devices as you possibly can. Subtle bugs can show up
when running the release vs. debug versions of your app, especially when running on
different hardware devices. At a minimum, you’ll want to test on at least one phone and
one tablet.

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 627

You can use the following adb command to install the release APK onto a device:

adb -s [DeviceId] install app-release.apk

Google Play Store
Now that your release APK is ready, it’s time to go over the steps to create a Google Play
store listing.

Google Play Console signup

The first step is to sign up for a Google Play Console account. The Google Play Console
is your gateway to managing and publishing your apps on the Google Play store.

Go here to sign in or sign up for a new Google Play Console account:

https://play.google.com/apps/publish/

Verify that you’re signed in with the correct account first. Read and agree to the
developer agreement, and then click CONTINUE TO PAYMENT. The current
registration fee is $25, and it only has to be paid once.

After you finish the payment, you’re taken to the Developer Profile screen. Make sure
you pick a good Developer name as it will be shown in the Play Store below the name
of your application.

The main console

Once you’re finished with signup, you’ll get to the main console.

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 628

You have the following options on the left:

• All Applications: This is where you add new applications or manage existing ones.

• Game Services: This provides a lot of additional features for games. You can find
more info here: https://developers.google.com/games/services/.

• Order Management: If you have a paid app or in-app purchases, you can manage
orders here, including giving refunds.

• Download Reports: This section provides a variety of reports, including crashes,
reviews, statistics, user acquisition and financial records.

• Alerts: Here you can see any alerts generated by the Play store for your apps.

• Settings: This provides several sub-sections.

• Developer Account: You can manage profile settings, add other console users,
control API access and set up payment options.

• Developer Page: Here’s where you can configure how your developer page looks in
the Play store. Your developer page won’t be available until you publish your first
app.

• Manage Testers: You can manage alpha and beta testers from this section.

• Preferences: This is where you set notification preferences and control privacy
settings.

Creating your first app

To get started, click the PUBLISH AN ANDROID APP ON GOOGLE PLAY button on
the main console screen.

Note: At this point, you’re just preparing the store listing and creating a draft
version of the application; nothing gets published until you use the Publish step.

First, fill in the title of your app and click CREATE.

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 629

This will create the application and present you with several pages of information
related to the app.

The first page you’ll see is the Store listing. Here’s a partial view of this page:

Go back to the home console screen, and you’ll see the new application you just added,
with a status of Draft.

Take a look at the left side of the screen. The items with exclamation points to the right
represent the things you must complete before publishing the app.

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 630

You’ll start with the Store Listing first, but before you can begin, you’ll need to gather a
few items.

Store graphic assets

There are some graphic assets your app is expected to have. They are:

• Screenshots: You’re required to upload at least two screenshots, although you can
have up to eight per device type. The size of a screenshot has to be at least 320px on
the shortest side and no longer than 3840px on the longest side. You can upload
portrait or landscape orientation screenshots.

Note: You can create screenshots from the emulator by using the camera icon on
the emulator toolbar.

• High-res icon: A high-res icon is required with a size of 512px x 512px. This gets
displayed in the play store only. Your app’s launcher icon is still shown on the user’s
device.

• Featured graphic: The featured graphic is required and should be 1024px by 500px.
It’s shown at the top of your app listing.

Privacy policy
If your app requests access to sensitive information or is in the Designed for Families
program, you must provide a link to a privacy policy. This privacy policy must discuss
specific privacy policies related to the app.

Determining content rating
Google provides a questionnaire that you must complete to determine your app rating.
Click Content rating on the left, and click CONTINUE to start the survey.

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 631

You’re required to provide an email address for the International Age Rating Coalition
(IARC). This can be the same as your primary Play Store email.

Next, select from one of the primary categories:

• Reference, News, Or Educational

• Social Networking, Forums, Blogs, And Ugc Sharing

• Content Aggregators, Consumer Stores, Or Commercial Streaming Services

• Game

• Entertainment

• Utility, Productivity, Communication, Or Other

Next, you’ll walk through a series of Yes/No questions.

Click the Learn More link for questions you’re not sure about.

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 632

After answering all of the questions, click SAVE QUESTIONNAIRE and then
CALCULATE RATING.

The calculated rating is shown for different countries and regions in the world. Here’s
the rating for the PodPlay app after selecting “No” to all questions.

Click APPLY RATING to apply the rating to the store listing.

The Content Rating section on the left will show a green checkmark.

Pricing and distribution
You also need to provide pricing information and specify where your app will be
distributed.

Click the Pricing & Distribution link.

By default, the app will be set to FREE. If you plan on charging for the app, you’ll need
to set up a Google merchant account first. The details for that won’t be covered here,
but setting up a merchant account involves filling out details about your business, and
providing Google with a bank account in which to deposit payments.

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 633

Next, determine the countries in which you want to make the app available. You can
enable individual countries, or you can allow them all by selecting the toggle at the top
of the list. The next screenshot shows that PodPlay is available in 142 countries after
making them all available.

There are several items required on this page:

• Primarily Child-Directed: If this is set on, you must opt-in to the Designed for
Families program.

• Contains ads: If this is set on, users will see a Contains ads label on the application.

• Content guidelines: You must agree to follow the Android Content Guidelines.

• US export laws: You must agree to comply with US export laws.

Several more optional items are shown on the page. You can read through these items
to see if any of them apply to your app.

Click SAVE DRAFT. If you’ve completed everything, the Pricing & Distribution
section will show a green checkmark.

The only item remaining is to complete the Store listing section.

Store listing
Click Store listing and fill out the following required items:

• Short description: Up to 80 characters. Mention the most important feature of your
app and explain why a user would want to install it. Think of this as the app
promotional text.

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 634

• Full Description: Up to 4000 characters. Provide the full benefits and features of
your app. Use keywords in the description that users are likely to use when searching
for an app like yours.

List out the main features one-by-one and highlight the most important ones. You can
use rich formatting in your description, but some of it may only appear in the Google
Play store app. This includes URL links, UTF-8 characters and Emojis.

• Screenshots: Drag your screenshots to the appropriate device tabs.

• High-res icon: Drag your high-res icon into place.

• Feature graphic: Drag your feature graphic into place.

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 635

• Application Type: Choose between application or game.

• Category: Select the category that best matches your app. Music & Audio was
chosen for the PodPlay app.

• Contact Details: Check your contact details to make sure they’re accurate. This
information is displayed on the app page.

• Private Policy: Enter the URL for your privacy policy if required by your app.

Click SAVE DRAFT. If everything checks out, the Store listing section will show a
green checkmark along with the other two sections you have already completed.

Where to go from here?
Congratulations, most of the hard work is done! All that’s left is to create a new app
release and upload your signed APK file. You’ll cover this and the publishing step in the
next chapter.

Take some time and go through all the menu items of the play console. You’ll discover
that Google provides developers with tons of tools to help apps succeed once they’re in
the Play store.

You should also check out the YouTube video Use Android Vitals in the Google Play
Console to Understand and Improve Your App’s Performance from Google I/O 2017.
Members of the Google Play team go over some of the fantastic tools available to
developers.

Android Apprentice Chapter 30: Preparing for Release

raywenderlich.com 636

31Chapter 31: Testing &
Publishing
By Tom Blankenship

In this chapter, you’ll complete the app publishing process and discover additional ways
to distribute your app. You’ll also go through the Alpha and Beta testing process to
make sure your app is ready to share with the world.

Note: You don’t have to release your app through Alpha and Beta channels. You’re
free to take your initial release straight to production!

Release types
Google provides three different release types: Alpha, Beta and Production.

The Alpha and Beta release types provide an excellent way to get feedback to help make
sure your final release is as polished and stable as possible. The only requirement for
testers is an Android device and an @gmail or G Suite account.

Time to dive into the details of each release type as well as open vs. closed testing.

Alpha release
You’ll start by creating an Alpha release. This release is typically done with a small
group of internal testers. An Alpha release may not be stable yet, but it still needs to be
tested in release mode on real devices.

raywenderlich.com 637

Bring up the main Google Play console website and follow these steps:

1. Click App releases on the left side of the page. The list of Production, Beta and
Alpha release types are shown.

2. Click MANAGE ALPHA.

This is where you can create a new Alpha release, upload the APK and manage the
testers.

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 638

3. Click CREATE RELEASE.

At this point, if you don’t already have it set up, you’ll be given an option to start
using Google Play App Signing. For more information about app signing, refer to
Chapter 10, “Preparing for Release.”

When using Google Play App Signing, your app gets signed locally with an upload
key. After you upload the app, Google replaces the upload key with the actual app
signing key. The upload key’s only purpose is to authenticate you as the developer.

The advantage to using Google Play App Signing is that even if you lose your upload
key, or it’s stolen, you can request that Google revoke the key, and then you can
generate a new one. This puts the burden on Google to securely maintain your app
signing key.

Using Google Play App Signing during this phase makes it much easier than turning
it on later. Google will automatically generate an app signing key and store it; all
you have to do is upload the APK you already signed. The key you generated earlier
becomes your upload key. If you decide to enable Google Play App Signing later,
you’ll have to go through several more steps to make the switch.

Note: If you click CONTINUE to opt-in, you’ll be permanently enrolled in
Google App Play Signing for this app.

4. Click CONTINUE if you’d like to enroll in Google Play App Signing, and ACCEPT
the terms of service.

Google generates an app signing key and shows that Google Play App Signing is
enabled.

5. Click BROWSE FILES and select your signed release APK file.

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 639

6. This shows the versionCode for the app, taken from the setting in the app gradle
file. End users won’t see this code. You can also specify a Release name so it’s
easier to identify in the play console. By default, it’s the same as the versionName
in the app gradle file.

7. Enter the release notes for this version. Make sure to place the notes within the
language tags as shown in the template.

8. Click SAVE. Google validates what you’ve entered and then enables the REVIEW
button.

9. Click REVIEW. This shows a summary of the release and a warning that you need to
add users before you can roll it out.

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 640

10. Click the back arrow to go back to the main Alpha release screen.

You’ll see the Manage testers section at the top.

11. Select either Open, Closed or Google Groups or Google+ Communities testing
method.

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 641

Open: Allow anyone with a link to access the release. Keep in mind that running an
open test means that anyone can find your app in the Play store. If you run an open
test, make sure your Play Store listing is ready for viewing.

Closed: Only allow a specific list of email accounts to access the release. It will not
show up in searches of the Play Store.

Google Groups: Allow anyone within a Google Group to access the release. It also will
not show up in searches of the Play Store.

If you select the Open method, you can optionally specify the maximum number of
users allowed in the test group. You can also provide a feedback page URL that is visible
on the app’s release page.

If you select the Closed method, you’ll need to supply a list of users and email
addresses. You can also provide a feedback page URL.

If you select the Google Groups method, you’ll need to supply the Google Group email
or Google+ Community URL.

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 642

12. Fill in the required fields and click SAVE.

If everything checks out, the App releases row on the left will show a green check,
and all yellow triangles will be gone. The top of the page indicates that your app is
“Ready to publish”.

Now you’re ready to roll out the Alpha release to your testers.

13. Tap the App releases link on the left.

14. Tap the EDIT RELEASE button under the Alpha release section.

15. Tap the REVIEW button at the bottom of the page. This displays a summary of the
release and waits for you to confirm the rollout.

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 643

16. Tap the START ROLLOUT TO ALPHA button at the bottom of the page if
everything looks good.

17. Tap CONFIRM in the popup dialog.

And that’s it. Congratulations on publishing your first app to the Play store!

You may notice that the top of the screen shows a status of Pending publication.

This is a temporary state while Google does all of the processing required to generate
the Play store listing. Take this opportunity to reward yourself with a break, and check
back in on the progress in about 30 minutes.

Even before the app is fully published, you can start exploring the new options that are
now available for the application.

You have access to a Dashboard with a variety of device install information, a detailed
statistics page, the Android vitals page with access to crash reports, User acquisition,
User feedback sections and more.

Take a few minutes to dive into the different sections of the console and see what
information is provided.

There’s also a Pre-launch report that can provide valuable information about how your
app is performing on real devices. On this page, you can see screenshots of your app
running on a large variety of devices, security scan results and performance and crash
reports.

The Pre-launch section can provide valuable insights into how your app runs on actual
hardware devices even before testers have downloaded it.

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 644

Pre-launch Performance Tab

Pre-launch Screenshots Tab

Pre-launch Security Tab

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 645

Once the app status changes to Published, which you’ll see at the top of the page, head
back to the App releases page and click MANAGE ALPHA.

You’ll notice a few new options on the page now. There’s a Rollout history that shows
how long ago the app was rolled out. There are also buttons that let you quickly release
this version to beta and production.

Expand the Manage testers section to view the new Opt-in URL. You can send this
URL to your testers. Google won’t send emails to your testers for you; you must notify
them when the release is ready and include the Opt-in URL.

When a tester brings up the Opt-in URL, they’ll see a message like the following:

Once the user clicks BECOME A TESTER, they’ll get a confirmation screen with a link
to the Google Play store listing.

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 646

When they visit the store link from a desktop computer, the final listing will look like
this:

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 647

Here’s the final listing at the Play store on a device:

This looks like any other Play store listing; the only difference is that you have control
over who can install the app.

Version codes
Before moving on to Beta testing, let’s take a quick look at how to use Version codes
through the different release phases. Typically, you want your Alpha release to have the
highest version code since it should be testing the most recent changes. Your Beta
release will have the next highest version code, and Production will have the lowest
version code.

If an Alpha tester is a member of the Alpha and Beta test groups, and you upload a Beta
with a higher version code than the Alpha, the tester gets updated to the Beta version.

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 648

Note that some users may be in the Alpha group only, Beta group only or in both groups
of testers.

Here’s a typical lifecycle an app might follow through the first few releases.

1. Release Version 1 to Alpha.

2. Alpha testers install Version 1 and complete testing.

3. Promote Version 1 to Beta.

4. Beta testers install Version 1 and find some issues.

5. Address issues in Version 2.

6. Release Version 2 to Alpha.

7. Beta only testers continue with Version 1. Alpha testers update to Version 2.

8. Version 2 testing is complete.

9. Promote Version 2 to Beta. Beta testers update to version 2.

10. Release Version 2 to Production, which means users can download it from the Play
Store.

11. Release Version 3 to Alpha.

12. Alpha testers update to Version 3. Beta only testers and general public remain on
version 2.

Beta release
Use the Beta option for publishing to select users that may not be internal to your
organization, or run an Open Beta that lets anyone on the Play Store sign up for Beta
testing.

Once you’re satisfied with Alpha testing, it’s a simple step to move to the Beta phase.

Note: You can only have one test phase active at a time for either open or closed
test types. For example, you can’t have a Closed Alpha and Closed Beta happening
at the same time. You can, however, have a Closed Alpha and an Open Beta at the
same time.

Go to the App release ▸ MANAGE ALPHA section and click RELEASE TO BETA.

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 649

This creates a release in Beta using the same version you have in Alpha and takes you to
the release screen where you can verify the details.

You can update the release notes or upload a new APK at this point. If you’re just
promoting the Alpha release as-is, then you don’t need to make any changes.

Click the REVIEW button. You’ll get a warning that you don’t have any testers set up
yet for the Beta test.

Click the back arrow to go back to the Beta management page and open the Manage
testers section. These are the same steps you went through when setting up the Alpha
testers.

Select a testing method and save your changes. If you choose Closed testing, you’ll
have the option of using the previous list of users from the Alpha release, or you can
create an additional or separate list of users for the Beta.

Click EDIT RELEASE under the Beta section and then click REVIEW again. This time,
there’s no warning about not having testers.

Click START ROLLOUT TO BETA. You may see additional warnings, such as pre-
launch warnings about crashes on devices. It’s up to you to decide if these warnings are
critical, or if you should go ahead with the rollout.

After the rollout to Beta is complete, the App release overview page shows that the
Alpha version was promoted to Beta.

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 650

Production release
Once the Alpha and Beta testing is complete, you’re ready for the final release to
Production! This is as simple as promoting the final Beta version to Production.

Go to the App release ▸ MANAGE BETA section and click RELEASE TO
PRODUCTION.

This creates a release in Production and displays the release screen to verify the details.
Just like the Alpha and Beta release, you need to review the release information before
it’s published to the Play store.

When your ready, click REVIEW. If everything checks out, the START ROLLOUT TO
PRODUCTION button is displayed.

For first-time app publishers, this can be both an exciting and stress-inducing moment.
The app you’ve worked so hard on will finally be available for the public to enjoy!

Don’t be nervous, go ahead and click START ROLLOUT TO PRODUCTION.

Pay attention to any warnings that may crop up. If everything looks good, click
CONFIRM.

Within a short amount of time, your app will be live in the Play store. Go ahead and
celebrate. Throw a launch party and spread the news about your first published app!

But don’t party too long, because you’re not done yet. Just like a newborn child, your
production app can’t be left on its own. It needs some loving care and attention to
thrive!

Post-production
Here are some final tips to help keep your app in top shape.

• Review your app stats on a regular basis. The Play Console provides a wealth of
information about the number and types of installs, number and frequency of
crashes and overall ratings. Look for spikes or drops in any these categories to stay
on top of changes. Don’t assume items will fix themselves; be proactive and address
issues as soon as they appear.

• Check reviews and look for problem trends. It’s inevitable that even the best-
made apps will get some negative reviews. Look for common threads in the reviews.
If a large number of users are all complaining about the same thing, that’s an
excellent hint to focus on that issue. Positive reviews can also provide valuable
feedback about what you’re doing right and help drive future product development.

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 651

• Be aware of new Android releases. In some cases, a new Android OS release can
impact how your existing app performs. Make sure to keep up with beta releases of
the Android OS, and make sure your app performs as expected before the OS is
released to the public.

• List well-known issues. If you have issues that are known and can’t be fixed quickly,
consider mentioning them in the Play store description along with a workaround if
possible. It’s better if users know about these before being surprised after they
download the app.

• Consider using staged rollouts. Google has built-in support for staged rollouts only
for app updates, not on the initial release. When using staged rollouts, you specify
the percentage of users that will be updated to the new release. You can also limit the
update to specific countries. For the first release, you might consider rolling out to a
single, smaller country, before targeting your primary countries.

Other publishing methods
In some cases, you may need to distribute an app without going through the Play store.
It might be an enterprise app that will never go public, or it might be a side project that
you’re distributing to friends and family.

There are a few ways to distribute an app directly.

Email distribution

Email requires the least amount of work on your part. All you do is attach the APK file
to an email, and have your users open the email on a compatible Android device.

Users will need to configure their device to allow "unknown sources" before the APK can
be installed. It’s a good idea to include instructions in the email when sending out the
APK.

If a user is running Android 8.0 or newer, they should look for the Install unknown
apps section in the device settings.

If a user is running a version before Android 8.0, they should enable Unknown sources
in the Security section of the device settings.

When the user opens an email with an APK attached, they can download the APK.

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 652

The user will then find the APK in their downloads app or by pulling down the
notifications view. When they tap on the APK file, they’ll be prompted to install the
app.

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 653

Website distribution

Another option is to host the APK file on your website. You can either send a link to the
download location or point the users to the download page on your site. Whether the
user taps on the link from an email or the browser on the device, they’ll be prompted to
install the APK.

As with email distribution, the device must be configured to allow unknown sources.

Other app stores

There are some other app stores available for publishing your app; you should take time
to explore which options are available. One of the most well-known stores is the
Amazon Appstore. Amazon’s Appstore is installed by default on Amazon devices such
as the Fire TV and Fire Tablet. It contains apps made especially for the Amazon
products as well as many apps that can also be found in the Google Play store.

There are some fundamental differences between Google and Amazon in the way apps
are purchased and how in-app billing is handled. However, in both cases, you’ll get 70%
of the app earnings.

One big difference is that you can’t switch a free app on Google Play to a paid one. That
decision must be made during the initial rollout. Amazon lets you start your app as free
and change to paid at any time.

You can always start by releasing to the Google Play store and then decide later if you
also want to distribute the app to other app stores.

Android Apprentice Chapter 31: Testing & Publishing

raywenderlich.com 654

CConclusion

Congratulations! You’ve completed the first steps of your journey as an Android
developer. When a toddler learns to walk, it can be those first few steps that seem the
most gratifying. But we all know that those initial, wobbly steps are only a starting
point. Likewise, the skills and knowledge that you have gained throughout these
chapters will act as your foundation for many future projects and creative endeavors.

Take time to enjoy the success that you’ve found in completing the material provided in
this book, and then look forward. A developer’s world is a blank canvas, just waiting for
the stroke of the creator. Endless possibilities await; projects that need the special
touch of your talent, creativity, and unique ideas. Take your next step into Android
development, and press onward with confidence.

If you have any questions or comments as you work through this book, please stop by
our forums at http://forums.raywenderlich.com and look for the particular forum
category for this book.

Thank you again for purchasing this book. Your continued support is what makes the
tutorials, books, videos, conferences and other things we do at raywenderlich.com
possible, and we truly appreciate it!

Wishing you all the best in your continued Android adventures,

– Darryl, Tom, Vijay, Namrata, Ellen, Tammy, Eric and Chris

The Android Apprentice team

raywenderlich.com 655

MMore Books You Might
Enjoy

We hope you enjoyed this book! If you’re looking for more, we have a whole library of
books waiting for you at https://store.raywenderlich.com.

New to iOS or Swift?
Learn how to develop iOS apps in Swift with our classic, beginner editions.

iOS Apprentice
https://store.raywenderlich.com/products/ios-apprentice

raywenderlich.com 656

The iOS Apprentice is a series of epic-length tutorials for beginners where you’ll learn
how to build 4 complete apps from scratch.

Each new app will be a little more advanced than the one before, and together they
cover everything you need to know to make your own apps. By the end of the series
you’ll be experienced enough to turn your ideas into real apps that you can sell on the
App Store.

These tutorials have easy to follow step-by-step instructions, and consist of more than
900 pages and 500 illustrations! You also get full source code, image files, and other
resources you can re-use for your own projects.

Swift Apprentice
https://store.raywenderlich.com/products/swift-apprentice

This is a book for complete beginners to Apple’s brand new programming language —
Swift 4.

Everything can be done in a playground, so you can stay focused on the core Swift 4
language concepts like classes, protocols, and generics.

This is a sister book to the iOS Apprentice; the iOS Apprentice focuses on making apps,
while Swift Apprentice focuses on the Swift 4 language itself.

Android Apprentice More Books You Might Enjoy

raywenderlich.com 657

Experienced iOS developer?
Level up your development skills with a deep dive into our many intermediate to
advanced editions.

Data Structures and Algorithms in Swift
https://store.raywenderlich.com/products/data-structures-and-algorithms-in-swift

Understanding how data structures and algorithms work in code is crucial for creating
efficient and scalable apps. Swift’s Standard Library has a small set of general purpose
collection types, yet they definitely don’t cover every case!

In Data Structures and Algorithms in Swift, you’ll learn how to implement the most
popular and useful data structures, and when and why you should use one particular
datastructure or algorithm over another. This set of basic data structures and
algorithms will serve as an excellent foundation for building more complex and special-
purpose constructs. As well, the high-level expressiveness of Swift makes it an ideal
choice for learning these core concepts without sacrificing performance.

Android Apprentice More Books You Might Enjoy

raywenderlich.com 658

Realm: Building Modern Swift Apps with Realm Database
https://store.raywenderlich.com/products/realm-building-modern-swift-apps-with-
realm-database

Realm Platform is a relatively new commercial product which allows developers to
automatically synchronize data not only across Apple devices but also between any
combination of Android, iPhone, Windows, or macOS apps. Realm Platform allows you
to run the server software on your own infrastructure and keep your data in-house
which more often suits large enterprises. Alternatively you can use Realm Cloud which
runs a Platform for you and you start syncing data very quickly and only pay for what
you use.

In this book, you’ll take a deep dive into the Realm Database, learn how to set up your
first Realm database, see how to persist and read data, find out how to perform
migrations and more. In the last chapter of this book, you'll take a look at the
synchronization features of Realm Cloud to perform real-time sync of your data across
all devices.

Android Apprentice More Books You Might Enjoy

raywenderlich.com 659

Design Patterns by Tutorials
https://store.raywenderlich.com/products/design-patterns-by-tutorials

Design patterns are incredibly useful, no matter what language or platform you develop
for. Using the right pattern for the right job can save you time, create less maintenance
work for your team and ultimately let you create more great things with less effort.
Every developer should absolutely know about design patterns, and how and when to
apply them. That's what you're going to learn in this book!

Move from the basic building blocks of patterns such as MVC, Delegate and Strategy,
into more advanced patterns such as the Factory, Prototype and Multicast Delegate
pattern, and finish off with some less-common but still incredibly useful patterns
including Flyweight, Command and Chain of Responsibility.

Android Apprentice More Books You Might Enjoy

raywenderlich.com 660

Server Side Swift with Vapor
https://store.raywenderlich.com/products/server-side-swift-with-vapor

If you’re a beginner to web development, but have worked with Swift for some time,
you’ll find it’s easy to create robust, fully-featured web apps and web APIs with Vapor 3.

Whether you’re looking to create a backend for your iOS app, or want to create fully-
featured web apps, Vapor is the perfect platform for you.

This book starts with the basics of web development and introduces the basics of Vapor;
it then walks you through creating APIs and web backends; creating and configuring
databases; deploying to Heroku, AWS, or Docker; testing your creations and more!

Android Apprentice More Books You Might Enjoy

raywenderlich.com 661

iOS 11 by Tutorials
https://store.raywenderlich.com/products/ios-11-by-tutorials

This book is for intermediate iOS developers who already know the basics of iOS and
Swift development but want to learn the new APIs introduced in iOS 11.

Discover the new features for developers in iOS 11, such as ARKit, Core ML, Vision, drag
& drop, document browsing, the new changes in Xcode 9 and Swift 4 — and much, much
more.

Android Apprentice More Books You Might Enjoy

raywenderlich.com 662

Advanced Debugging and Reverse Engineering
https://store.raywenderlich.com/products/advanced-apple-debugging-and-reverse-
engineering

In Advanced Apple Debugging and Reverse Engineering, you'll come to realize
debugging is an enjoyable process to help you better understand software. Not only will
you learn to find bugs faster, but you’ll also learn how other developers have solved
problems similar to yours.

You'll also learn how to create custom, powerful debugging scripts that will help you
quickly find the secrets behind any bit of code that piques your interest.

After reading this book, you'll have the tools and knowledge to answer even the most
obscure question about your code — or someone else’s.

Android Apprentice More Books You Might Enjoy

raywenderlich.com 663

RxSwift: Reactive Programming with Swift
https://store.raywenderlich.com/products/rxswift

This book is for iOS developers who already feel comfortable with iOS and Swift, and
want to dive deep into development with RxSwift.

Start with an introduction to the reactive programming paradigm; learn about
observers and observables, filtering and transforming operators, and how to work with
the UI, and finish off by building a fully-featured app in RxSwift.

Android Apprentice More Books You Might Enjoy

raywenderlich.com 664

Core Data by Tutorials
https://store.raywenderlich.com/products/core-data-by-tutorials

This book is for intermediate iOS developers who already know the basics of iOS and
Swift 4 development but want to learn how to use Core Data to save data in their apps.

Start with with the basics like setting up your own Core Data Stack all the way to
advanced topics like migration, performance, multithreading, and more!

Android Apprentice More Books You Might Enjoy

raywenderlich.com 665

iOS Animations by Tutorials
https://store.raywenderlich.com/products/ios-animations-by-tutorials

This book is for iOS developers who already know the basics of iOS and Swift 4, and
want to dive deep into animations.

Start with basic view animations and move all the way to layer animations, animating
constraints, view controller transitions, and more!

Android Apprentice More Books You Might Enjoy

raywenderlich.com 666

watchOS by Tutorials
https://store.raywenderlich.com/products/watchos-by-tutorials

This book is for intermediate iOS developers who already know the basics of iOS and
Swift development but want to learn how to make Apple Watch apps for watchOS 4.

Android Apprentice More Books You Might Enjoy

raywenderlich.com 667

tvOS Apprentice
https://store.raywenderlich.com/products/tvos-apprentice

This book is for complete beginners to tvOS development. No prior iOS or web
development knowledge is necessary, however the book does assume at least a
rudimentary knowledge of Swift.

This book teaches you how to make tvOS apps in two different ways: via the traditional
method using UIKit, and via the new Client-Server method using TVML.

Android Apprentice More Books You Might Enjoy

raywenderlich.com 668

Want to make games?
Learn how to make great-looking games that are deeply engaging and fun to play!

2D Apple Games by Tutorials
https://store.raywenderlich.com/products/2d-apple-games-by-tutorials

In this book, you will make 6 complete and polished mini-games, from an action game
to a puzzle game to a classic platformer!

This book is for beginner to advanced iOS developers. Whether you are a complete
beginner to making iOS games, or an advanced iOS developer looking to learn about
SpriteKit, you will learn a lot from this book!

Android Apprentice More Books You Might Enjoy

raywenderlich.com 669

3D Apple Games by Tutorials
https://store.raywenderlich.com/products/3d-apple-games-by-tutorials

Through a series of mini-games and challenges, you will go from beginner to advanced
and learn everything you need to make your own 3D game!

This book is for beginner to advanced iOS developers. Whether you are a complete
beginner to making iOS games, or an advanced iOS developer looking to learn about
SceneKit, you will learn a lot from this book!

Android Apprentice More Books You Might Enjoy

raywenderlich.com 670

Unity Games by Tutorials
https://store.raywenderlich.com/products/unity-games-by-tutorials

Through a series of mini-games and challenges, you will go from beginner to advanced
and learn everything you need to make your own 3D game!

This book is for beginner to advanced iOS developers. Whether you are a complete
beginner to making iOS games, or an advanced iOS developer looking to learn about
SceneKit, you will learn a lot from this book!

Android Apprentice More Books You Might Enjoy

raywenderlich.com 671

Want to learn Android or Kotlin?
Get a head start on learning to develop great Android apps in Kotlin, the newest first-
class language for building Android apps.

Android Apprentice
https://store.raywenderlich.com/products/android-apprentice

If you’re completely new to Android or developing in Kotlin, this is the book for you!

The Android Apprentice takes you all the way from building your first app, to
submitting your app for sale. By the end of this book, you’ll be experienced enough to
turn your vague ideas into real apps that you can release on the Google Play Store.

You’ll build 4 complete apps from scratch — each app is a little more complicated than
the previous one. Together, these apps will teach you how to work with the most
common controls and APIs used by Android developers around the world.

Android Apprentice More Books You Might Enjoy

raywenderlich.com 672

Kotlin Apprentice
https://store.raywenderlich.com/products/kotlin-apprentice

This is a book for complete beginners to the new, modern Kotlin language.

Everything in the book takes place in a clean, modern development environment, which
means you can focus on the core features of programming in the Kotlin language,
without getting bogged down in the many details of building apps.

This is a sister book to the Android Apprentice the Android Apprentice focuses on
making apps for Android, while the Kotlin Apprentice focuses on the Kotlin language
fundamentals.

Android Apprentice More Books You Might Enjoy

raywenderlich.com 673

