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A graphics platform acts as the intermediary between the application and the underlying graphics
hardware, providing a layer of abstraction to shield the programmer from the details of driving the
graphics processor. As CPUs and graphics peripherals have increased in speed and memory capa-
bilities, the feature sets of graphics platforms have evolved to harness new hardware features and
to shoulder more of the application development burden. After a brief overview of the evolution of
2D platforms, we explore a modern package (Windows Presentation Foundation), showing how to
construct an animated 2D scene by creating and manipulating a simple hierarchical model. WPF’s
declarative XML-based syntax, and the basic techniques of scene specification, will carry over to the
presentation of WPF’s 3D support in Chapter 6.
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We describe a software implementation of an idea shown by Dürer. Doing so lets us create a per-
spective rendering of a cube, and introduces the notions of transforming meshes by transforming
vertices, clipping, and multiple coordinate systems. We also encounter the need for visible surface
determination and for lighting computations.
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Preface

This book presents many of the important ideas of computer graphics to stu-
dents, researchers, and practitioners. Several of these ideas are not new: They have
already appeared in widely available scholarly publications, technical reports,
textbooks, and lay-press articles. The advantage of writing a textbook sometime
after the appearance of an idea is that its long-term impact can be understood bet-
ter and placed in a larger context. Our aim has been to treat ideas with as much
sophistication as possible (which includes omitting ideas that are no longer as
important as they once were), while still introducing beginning students to the
subject lucidly and gracefully.

This is a second-generation graphics book: Rather than treating all prior work
as implicitly valid, we evaluate it in the context of today’s understanding, and
update the presentation as appropriate.

Even the most elementary issues can turn out to be remarkably subtle. Sup-
pose, for instance, that you’re designing a program that must run in a low-light
environment—a darkened movie theatre, for instance. Obviously you cannot use
a bright display, and so using brightness contrast to distinguish among different
items in your program display would be inappropriate. You decide to use color
instead. Unfortunately, color perception in low-light environments is not nearly as
good as in high-light environments, and some text colors are easier to read than
others in low light. Is your cursor still easy to see? Maybe to make that simpler,
you should make the cursor constantly jitter, exploiting the motion sensitivity of
the eye. So what seemed like a simple question turns out to involve issues of inter-
face design, color theory, and human perception.

This example, simple as it is, also makes some unspoken assumptions: that the
application uses graphics (rather than, say, tactile output or a well-isolated audio
earpiece), that it does not use the regular theatre screen, and that it does not use
a head-worn display. It makes explicit assumptions as well—for instance, that a
cursor will be used (some UIs intentionally don’t use a cursor). Each of these
assumptions reflects a user-interface choice as well.

Unfortunately, this interrelatedness of things makes it impossible to present
topics in a completely ordered fashion and still motivate them well; the subject is
simply no longer linearizable. We could have covered all the mathematics, the-
ory of perception, and other, more abstract, topics first, and only then moved
on to their graphics applications. Although this might produce a better reference
work (you know just where to look to learn about generalized cross products,

xxxv
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for instance), it doesn’t work well for a textbook, since the motivating applica-
tions would all come at the end. Alternatively, we could have taken a case-study
approach, in which we try to complete various increasingly difficult tasks, and
introduce the necessary material as the need arises. This makes for a natural pro-
gression in some cases, but makes it difficult to give a broad organizational view of
the subject. Our approach is a compromise: We start with some widely used math-
ematics and notational conventions, and then work from topic to topic, introducing
supporting mathematics as needed. Readers already familiar with the mathemat-
ics can safely skip this material without missing any computer graphics; others
may learn a good deal by reading these sections. Teachers may choose to include
or omit them as needed. The topic-based organization of the book entails some
redundancy. We discuss the graphics pipeline multiple times at varying levels of
detail, for instance. Rather than referring the reader back to a previous chapter,
sometimes we redescribe things, believing that this introduces a more natural flow.
Flipping back 500 pages to review a figure can be a substantial distraction.

The other challenge for a textbook author is to decide how encyclopedic to
make the text. The first edition of this book really did cover a very large fraction
of the published work in computer graphics; the second edition at least made pass-
ing references to much of the work. This edition abandons any pretense of being
encyclopedic, for a very good reason: When the second edition was written, a sin-
gle person could carry, under one arm, all of the proceedings of SIGGRAPH, the
largest annual computer graphics conference, and these constituted a fair represen-
tation of all technical writings on the subject. Now the SIGGRAPH proceedings
(which are just one of many publication venues) occupy several cubic feet. Even a
telegraphic textbook cannot cram all that information into a thousand pages. Our
goal in this book is therefore to lead the reader to the point where he or she can
read and reproduce many of today’s SIGGRAPH papers, albeit with some caveats:

• First, computer graphics and computer vision are overlapping more and
more, but there is no excuse for us to write a computer vision textbook;
others with far greater knowledge have already done so.

• Second, computer graphics involves programming; many graphics applica-
tions are quite large, but we do not attempt to teach either programming or
software engineering in this book. We do briefly discuss programming (and
especially debugging) approaches that are unique to graphics, however.

• Third, most graphics applications have a user interface. At the time of this
writing, most of these interfaces are based on windows with menus, and
mouse interaction, although touch-based interfaces are becoming common-
place as well. There was a time when user-interface research was a part of
graphics, but it’s now an independent community—albeit with substantial
overlap with graphics—and we therefore assume that the student has some
experience in creating programs with user interfaces, and don’t discuss
these in any depth, except for some 3D interfaces whose implementations
are more closely related to graphics.

Of course, research papers in graphics differ. Some are highly mathematical,
others describe large-scale systems with complex engineering tradeoffs, and still
others involve a knowledge of physics, color theory, typography, photography,
chemistry, zoology. . . the list goes on and on. Our goal is to prepare the reader to
understand the computer graphics in these papers; the other material may require
considerable external study as well.
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Historical Approaches

The history of computer graphics is largely one of ad hoc approaches to the imme-
diate problems at hand. Saying this is in no way an indictment of the people
who took those approaches: They had jobs to do, and found ways to do them.
Sometimes their solutions had important ideas wrapped up within them; at other
times they were merely ways to get things done, and their adoption has inter-
fered with progress in later years. For instance, the image-compositing model
used in most graphics systems assumes that color values stored in images can
be blended linearly. In actual practice, the color values stored in images are non-
linearly related to light intensity; taking linear combinations of these does not
correspond to taking linear combinations of intensity. The difference between the
two approaches began to be noticed when studios tried to combine real-world and
computer-generated imagery; this compositing technology produced unacceptable
results. In addition, some early approaches were deeply principled, but the associ-
ated programs made assumptions about hardware that were no longer valid a few
years later; readers, looking first at the details of implementation, said, “Oh, this is
old stuff—it’s not relevant to us at all,” and missed the still important ideas of the
research. All too frequently, too, researchers have simply reinvented things known
in other disciplines for years.

We therefore do not follow the chronological development of computer graph-
ics. Just as physics courses do not begin with Aristotle’s description of dynamics,
but instead work directly with Newton’s (and the better ones describe the limita-
tions of even that system, setting the stage for quantum approaches, etc.), we try to
start directly from the best current understanding of issues, while still presenting
various older ideas when relevant. We also try to point out sources for ideas that
may not be familiar ones: Newell’s formula for the normal vector to a polygon in
3-space was known to Grassmann in the 1800s, for instance. Our hope in refer-
encing these sources is to increase the reader’s awareness of the variety of already
developed ideas that are waiting to be applied to graphics.

Pedagogy

The most striking aspect of graphics in our everyday lives is the 3D imagery being
used in video games and special effects in the entertainment industry and adver-
tisements. But our day-to-day interactions with home computers, cell phones, etc.,
are also based on computer graphics. Perhaps they are less visible in part because
they are more successful: The best interfaces are the ones you don’t notice. It’s
tempting to say that “2D graphics” is simpler—that 3D graphics is just a more
complicated version of the same thing. But many of the issues in 2D graphics—
how best to display images on a screen made of a rectangular grid of light-emitting
elements, for instance, or how to construct effective and powerful interfaces—are
just as difficult as those found in making pictures of three-dimensional scenes.
And the simple models conventionally used in 2D graphics can lead the student
into false assumptions about how best to represent things like color or shape. We
therefore have largely integrated the presentation of 2D and 3D graphics so as to
address simultaneously the subtle issues common to both.

This book is unusual in the level at which we put the “black box.” Almost every
computer science book has to decide at what level to abstract something about the
computers that the reader will be familiar with. In a graphics book, we have to
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decide what graphics system the reader will be encountering as well. It’s not hard
(after writing a first program or two) to believe that some combination of hardware
and software inside your computer can make a colored triangle appear on your
display when you issue certain instructions. The details of how this happens are
not relevant to a surprisingly large part of graphics. For instance, what happens
if you ask the graphics system to draw a red triangle that’s below the displayable
area of your screen? Are the pixel locations that need to be made red computed
and then ignored because they’re off-screen? Or does the graphics system realize,
before computing any pixel values, that the triangle is off-screen and just quit?
In some sense, unless you’re designing a graphics card, it just doesn’t matter all
that much; indeed, it’s something you, as a user of a graphics system, can’t really
control. In much of the book, therefore, we treat the graphics system as something
that can display certain pixel values, or draw triangles and lines, without worrying
too much about the “how” of this part. The details are included in the chapters on
rasterization and on graphics hardware. But because they are mostly beyond our
control, topics like clipping, antialiasing of lines, and rasterization algorithms are
all postponed to later chapters.

Another aspect of the book’s pedagogy is that we generally try to show how
ideas or techniques arise. This can lead to long explanations, but helps, we hope,
when students need to derive something for themselves: The approaches they’ve
encountered may suggest an approach to their current problem.

We believe that the best way to learn graphics is to first learn the mathematics
behind it. The drawback of this approach compared to jumping to applications is
that learning the abstract math increases the amount of time it takes to learn your
first few techniques. But you only pay that overhead once. By the time you’re
learning the tenth related technique, your investment will pay off because you’ll
recognize that the new method combines elements you’ve already studied.

Of course, you’re reading this book because you are motivated to write pro-
grams that make pictures. So we try to start many topics by diving straight into a
solution before stepping back to deeply consider the broader mathematical issues.
Most of this book is concerned with that stepping-back process. Having inves-
tigated the mathematics, we’ll then close out topics by sketching other related
problems and some solutions to them. Because we’ve focused on the underlying
principles, you won’t need us to tell you the details for these sketches. From your
understanding of the principles, the approach of each solution should be clear, and
you’ll have enough knowledge to be able to read and understand the original cited
publication in its author’s own words, rather than relying on us to translate it for
you. What we can do is present some older ideas in a slightly more modern form
so that when you go back to read the original paper, you’ll have some idea how its
vocabulary matches your own.

Current Practice

Graphics is a hands-on discipline. And since the business of graphics is the pre-
sentation of visual information to a viewer, and the subsequent interaction with
it, graphical tools can often be used effectively to debug new graphical algo-
rithms. But doing this requires the ability to write graphics programs. There are
many alternative ways to produce graphical imagery on today’s computers, and
for much of the material in this book, one method is as good as another. The
conversion between one programming language and its libraries and another is
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routine. But for teaching the subject, it seems best to work in a single language so
that the student can concentrate on the deeper ideas. Throughout this book, we’ll
suggest exercises to be written using Windows Presentation Foundation (WPF), a
widely available graphics system, for which we’ve written a basic and easily mod-
ified program we call a “test bed” in which the student can work. For situations
where WPF is not appropriate, we’ve often used G3D, a publicly available graph-
ics library maintained by one of the authors. And in many situations, we’ve written
pseudocode. It provides a compact way to express ideas, and for most algorithms,
actual code (in the language of your choice) can be downloaded from the Web;
it seldom makes sense to include it in the text. The formatting of code varies; in
cases where programs are developed from an informal sketch to a nearly com-
plete program in some language, things like syntax highlighting make no sense
until quite late versions, and may be omitted entirely. Sometimes it’s nice to have
the code match the mathematics, leading us to use variables with names like xR,
which get typeset as math rather than code. In general, we italicize pseudocode,
and use indentation rather than braces in pseudocode to indicate code blocks. In
general, our pseudocode is very informal; we use it to convey the broad ideas
rather than the details.

This is not a book about writing graphics programs, nor is it about using them.
Readers will find no hints about the best ways to store images in Adobe’s latest
image-editing program, for instance. But we hope that, having understood the
concepts in this book and being competent programmers already, they will both be
able to write graphics programs and understand how to use those that are already
written.

Principles

Throughout the book we have identified certain computer graphics principles
that will help the reader in future work; we’ve also included sections on cur-
rent practice—sections that discuss, for example, how to approximate your ideal
solution on today’s hardware, or how to compute your actual ideal solution more
rapidly. Even practices that are tuned to today’s hardware can prove useful tomor-
row, so although in a decade the practices described may no longer be directly
applicable, they show approaches that we believe will still be valuable for years.

Prerequisites

Much of this book assumes little more preparation than what a technically savvy
undergraduate student may have: the ability to write object-oriented programs; a
working knowledge of calculus; some familiarity with vectors, perhaps from a
math class or physics class or even a computer science class; and at least some
encounter with linear transformations. We also expect that the typical student has
written a program or two containing 2D graphical objects like buttons or check-
boxes or icons.

Some parts of this book, however, depend on far more mathematics, and
attempting to teach that mathematics within the limits of this text is impossible.
Generally, however, this sophisticated mathematics is carefully limited to a few
sections, and these sections are more appropriate for a graduate course than an
introductory one. Both they and certain mathematically sophisticated exercises
are marked with a “math road-sign” symbol thus: . Correspondingly, topics that
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use deeper notions from computer science are marked with a “computer science
road-sign,” .

Some mathematical aspects of the text may seem strange to those who have
met vectors in other contexts; the first author, whose Ph.D. is in mathematics, cer-
tainly was baffled by some of his first encounters with how graphics researchers
do things. We attempt to explain these variations from standard mathematical
approaches clearly and thoroughly.

Paths through This Book

This book can be used for a semester-long or yearlong undergraduate course, or as
a general reference in a graduate course. In an undergraduate course, the advanced
mathematical topics can safely be omitted (e.g., the discussions of analogs to
barycentric coordinates, manifold meshes, spherical harmonics, etc.) while con-
centrating on the basic ideas of creating and displaying geometric models, under-
standing the mathematics of transformations, camera specifications, and the stan-
dard models used in representing light, color, reflectance, etc., along with some
hints of the limitations of these models. It should also cover basic graphics appli-
cations and the user-interface concerns, design tradeoffs, and compromises neces-
sary to make them efficient, possibly ending with some special topic like creating
simple animations, or writing a basic ray tracer. Even this is too much for a sin-
gle semester, and even a yearlong course will leave many sections of the book
untouched, as future reading for interested students.

An aggressive semester-long (14-week) course could cover the following.

1. Introduction and a simple 2D program: Chapters 1, 2, and 3.

2. Introduction to the geometry of rendering, and further 2D and 3D pro-
grams: Chapters 3 and 4. Visual perception and the human visual system:
Chapter 5.

3. Modeling of geometry in 2D and 3D: meshes, splines, and implicit models.
Sections 7.1–7.9, Chapters 8 and 9, Sections 22.1–22.4, 23.1–23.3, and
24.1–24.5.

4. Images, part 1: Chapter 17, Sections 18.1–18.11.

5. Images, part 2: Sections 18.12–18.20, Chapter 19.

6. 2D and 3D transformations: Sections 10.1–10.12, Sections 11.1–11.3,
Chapter 12.

7. Viewing, cameras, and post-homogeneous interpolation. Sections 13.1–
13.7, 15.6.4.

8. Standard approximations in graphics: Chapter 14, selected sections.

9. Rasterization and ray casting: Chapter 15.

10. Light and reflection: Sections 26.1–26.7 (Section 26.5 optional); Section
26.10.

11. Color: Sections 28.1–28.12.

12. Basic reflectance models, light transport: Sections 27.1–27.5, 29.1–29.2,
29.6, 29.8.

13. Recursive ray-tracing details, texture: Sections 24.9, 31.16, 20.1–20.6.
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14. Visible surface determination and acceleration data structures; overview
of more advanced rendering techniques: selections from Chapters 31, 36,
and 37.

However, not all the material in every section would be appropriate for a first
course.

Alternatively, consider the syllabus for a 12-week undergraduate course on
physically based rendering that takes first principles from offline to real-time ren-
dering. It could dive into the core mathematics and radiometry behind ray tracing,
and then cycle back to pick up the computer science ideas needed for scalability
and performance.

1. Introduction: Chapter 1

2. Light: Chapter 26

3. Perception; light transport: Chapters 5 and 29

4. A brief overview of meshes and scene graphs: Sections 6.6, 14.1–5

5. Transformations: Chapters 10 and 13, briefly.

6. Ray casting: Sections 15.1–4, 7.6–9

7. Acceleration data structures: Chapter 37; Sections 36.1–36.3, 36.5–36.6,
36.9

8. Rendering theory: Chapters 30 and 31

9. Rendering practice: Chapter 32

10. Color and material: Sections 14.6–14.11, 28, and 27

11. Rasterization: Sections 15.5–9

12. Shaders and hardware: Sections 16.3–5, Chapters 33 and 38

Note that these paths touch chapters out of numerical order. We’ve intention-
ally written this book in a style where most chapters are self-contained, with cross-
references instead of prerequisites, to support such traversal.

Differences from the Previous Edition

This edition is almost completely new, although many of the topics covered
in the previous edition appear here. With the advent of the GPU, triangles are
converted to pixels (or samples) by radically different approaches than the old
scan-conversion algorithms. We no longer discuss those. In discussing light, we
strongly favor physical units of measurement, which adds some complexity to
discussions of older techniques that did not concern themselves with units. Rather
than preparing two graphics packages for 2D and 3D graphics, as we did for the
previous editions, we’ve chosen to use widely available systems, and provide tools
to help the student get started using them.

Website

Often in this book you’ll see references to the book’s website. It’s at http://
cgpp.net and contains not only the testbed software and several examples

http://cgpp.net
http://cgpp.net
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derived from it, but additional material for many chapters, and the interactive
experiments in WPF for Chapters 2 and 6.
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earlier. Don’t let that constrain you. If you want to know about something, use the
index and start reading. Sometimes you’ll find yourself lacking background, and
you won’t be able to make sense of what you read. When that happens, read the
background material. It’ll be easier than reading it at some other time, because
right now you have a reason to learn it. If you stall out, search the Web for some-
one’s implementation and download and run it. When you notice it doesn’t look
quite right, you can start examining the implementation, and trying to reverse-
engineer it. Sometimes this is a great way to understand something. Follow the
practice-theory-practice model of learning: Try something, see whether you can
make it work, and if you can’t, read up on how others did it, and then try again.
The first attempt may be frustrating, but it sets you up to better understand the
theory when you get to it. If you can’t bring yourself to follow the practice-theory-
practice model, at the very least you should take the time to do the inline exercises
for any chapter you read.

Graphics is a young field, so young that undergraduates are routinely coau-
thors on SIGGRAPH papers. In a year you can learn enough to start contributing
new ideas.

Graphics also uses a lot of mathematics. If mathematics has always seemed
abstract and theoretical to you, graphics can be really helpful: The uses of math-
ematics in graphics are practical, and you can often see the consequences of a
theorem in the pictures you make. If mathematics has always come easily to you,
you can gain some enjoyment from trying to take the ideas we present and extend
them further. While this book contains a lot of mathematics, it only scratches the
surface of what gets used in modern research papers.

Finally, doubt everything. We’ve done our best to tell the truth in this book,
as we understand it. We think we’ve done pretty well, and the great bulk of what
we’ve said is true. In a few places, we’ve deliberately told partial truths when
we introduced a notion, and then amplified these in a later section when we’re
discussing details. But aside from that, we’ve surely failed to tell the truth in other
places as well. In some cases, we’ve simply made errors, leaving out a minus sign,
or making an off-by-one error in a loop. In other cases, the current understanding
of the graphics community is just inadequate, and we’ve believed what others have
said, and will have to adjust our beliefs later. These errors are opportunities for
you. Martin Gardner said that the true sound of scientific discovery is not “Aha!”
but “Hey, that’s odd. . . .” So if every now and then something seems odd to you,
go ahead and doubt it. Look into it more closely. If it turns out to be true, you’ll
have cleared some cobwebs from your understanding. If it’s false, it’s a chance for
you to advance the field.

For the Teacher

If you’re like us, you probably read the “For the Student” section even though
it wasn’t for you. (And your students are probably reading this part, too.) You
know that we’ve advised them to graze through the book at random, and to doubt
everything.

We recommend to you (aside from the suggestions in the remainder of this
preface) two things. The first is that you encourage, or even require, that your
students answer the inline exercises in the book. To the student who says, “I’ve
got too much to do! I can’t waste time stopping to do some exercise,” just say, “We
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don’t have time to stop for gas . . . we’re already late.” The second is that you assign
your students projects or homeworks that have both a fixed goal and an open-
ended component. The steady students will complete the fixed-goal parts and learn
the material you want to cover. The others, given the chance to do something fun,
may do things with the open-ended exercises that will amaze you. And in doing
so, they’ll find that they need to learn things that might seem just out of reach,
until they suddenly master them, and become empowered. Graphics is a terrific
medium for this: Successes are instantly visible and rewarding, and this sets up
a feedback loop for advancement. The combination of visible feedback with the
ideas of scalability that they’ve encountered elsewhere in computer science can be
revelatory.

Discussion and Further Reading

Most chapters of this book contain a “Discussion and Further Reading” section
like this one, pointing to either background references or advanced applications of
the ideas in the chapter. For this preface, the only suitable further reading is very
general: We recommend that you immediately begin to look at the proceedings
of ACM SIGGRAPH conferences, and of other graphics conferences like Euro-
graphics and Computer Graphics International, and, depending on your evolving
interest, some of the more specialized venues like the Eurographics Symposium
on Rendering, I3D, and the Symposium on Computer Animation. While at first
the papers in these conferences will seem to rely on a great deal of prior knowl-
edge, you’ll find that you rapidly get a sense of what things are possible (if only
by looking at the pictures), and what sorts of skills are necessary to achieve them.
You’ll also rapidly discover ideas that keep reappearing in the areas that most
interest you, and this can help guide your further reading as you learn graphics.
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Chapter 1

Introduction

This chapter introduces computer graphics quite broadly and from several per-
spectives: its applications, the various fields that are involved in the study of
graphics, some of the tools that make the images produced by graphics so effec-
tive, some numbers to help you understand the scales at which computer graphics
works, and the elementary ideas required to write your first graphics program.
We’ll discuss many of these topics in more detail elsewhere in the book.

1.1 An Introduction to Computer Graphics

Computer graphics is the science and art of communicating visually via a com-
puter’s display and its interaction devices. The visual aspect of the communica-
tion is usually in the computer-to-human direction, with the human-to-computer
direction being mediated by devices like the mouse, keyboard, joystick, game
controller, or touch-sensitive overlay. However, even this is beginning to change:
Visual data is starting to flow back to the computer, with new interfaces being
based on computer vision algorithms applied to video or depth-camera input. But
for the computer-to-user direction, the ultimate consumers of the communica-
tions are human, and thus the ways that humans perceive imagery are critical in
the design of graphics1 programs—features that humans ignore need not be pre-
sented (nor computed!). Computer graphics is a cross-disciplinary field in which
physics, mathematics, human perception, human-computer interaction, engineer-
ing, graphic design, and art all play important roles. We use physics to model
light and to perform simulations for animation. We use mathematics to describe
shape. Human perceptual abilities determine our allocation of resources—we
don’t want to spend time rendering things that will not be noticed. We use engi-
neering in optimizing the allocation of bandwidth, memory, and processor time.
Graphic design and art combine with human-computer interaction to make the
computer-to-human direction of communication most effective. In this chapter,

1. Throughout this book, when we use the term “graphics” we mean “computer graphics.”

1



ptg11539634

2 Introduction

we discuss some application areas, how conventional graphics systems work, and
how each of these disciplines influences work in computer graphics.

A narrow definition of computer graphics would state that it refers to taking a
model of the objects in a scene (a geometric description of the things in the scene
and a description of how they reflect light) and a model of the light emitted into the
scene (a mathematical description of the sources of light energy, the directions of
radiation, the distribution of light wavelengths, etc.), and then producing a repre-
sentation of a particular view of the scene (the light arriving at some imaginary eye
or camera in the scene). In this view, one might say that graphics is just glorified
multiplication: One multiplies the incoming light by the reflectivities of objects in
the scene to compute the light leaving those objects’ surfaces and repeats the pro-
cess (treating the surfaces as new light sources and recursively invoking the light-
transport operation), determining all light that eventually reaches the camera. (In
practice, this approach is unworkable, but the idea remains.) In contrast, computer
vision amounts to factoring—given a view of a scene, the computer vision system
is charged with determining the illumination and/or the scene’s contents (which
a graphics system could then “multiply” together to reproduce the same image).
In truth, of course, the vision system cannot solve the problem as stated and typ-
ically works with assumptions about the scene, or the lighting, or both, and may
also have multiple views of the scene from different cameras, or multiple views
from a single camera but at different times.

In the field of computer graphics, the word “model” can refer to a geometric
model or a mathematical model. A geometric model is a model of something
we plan to have appear in a picture: We make a model of a car, or a house, or
an armadillo. The geometric model is enhanced with various other attributes
that describe the color or texture or reflectance of the materials involved in the
model. Starting from nothing and creating such a model is called modeling,
and the geometric-plus-other-information description that is the result is called
a model.

A mathematical model is a model of a physical or computational process.
For instance, in Chapter 27 we describe various models of how light reflects
from glossy surfaces. We also have models of how objects move and models of
things like the image-acquisition process that happens in a digital camera. Such
models may be faithful (i.e., may provide a predictive and correct mathemat-
ical model of the phenomenon) or not; they may be physically based, derived
from first principles, or perhaps empirical or phenomenological, derived from
observations or even intuition.

In actual fact, graphics is far richer than the generalized multiplication pro-
cess of rendering a view, just as vision is richer than factorization. Much of the
current research in graphics is in methods for creating geometric models, methods
for representing surface reflectance (and subsurface reflectance, and reflectances
of participating media such as fog and smoke, etc.), the animation of scenes by
physical laws and by approximations of those laws, the control of animation,
interaction with virtual objects, the invention of nonphotorealistic representa-
tions, and, in recent years, an increasing integration of techniques from computer
vision. As a result, the fields of computer graphics and computer vision are grow-
ing increasingly closer to each other. For example, consider Raskar’s work on a
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Figure 1.1: A nonphotorealistic camera can create an artistic rendering of a scene by
applying computer vision techniques to multiple flash-photo images and then rerender-
ing the scene using computer graphics techniques. At left is the original scene; at right is
the new rendering of the scene. (Courtesy of Ramesh Raskar; ©2004 ACM, Inc. Included
here by permission.)

nonphotorealistic camera: The camera takes multiple photos of a single scene,
illuminated by differently placed flash units. From these various images, one can
use computer vision techniques to determine contours and estimate some basic
shape properties for objects in the scene. These, in turn, can be used to create a
nonphotorealistic rendering of the scene, as shown in Figure 1.1.

In this book, we emphasize realistic image capture and rendering because this
is where the field of computer graphics has had the greatest successes, represent-
ing a beautiful application of relatively new computer science to the simulation
of relatively old physics models. But there’s more to graphics than realistic image
capture and rendering. Animation and interaction, for instance, are equally impor-
tant, and we discuss these disciplines throughout many chapters in this book as
well as address them explicitly in their own chapters. Why has success in the
nonsimulation areas been so comparatively hard to achieve? Perhaps because
these areas are more qualitative in nature and lack existing mathematical mod-
els like those provided by physics.

This book is not filled with recipes for implementing lots of ideas in computer
graphics; instead, it provides a higher-level view of the subject, with the goal of
teaching you ideas that will remain relevant long after particular implementations
are no longer important. We believe that by synthesizing decades of research, we
can elucidate principles that will help you in your study and use of computer
graphics. You’ll generally need to write your own implementations or find them
elsewhere.

This is not, by any means, because we disparage such information or the books
that provide it. We admire such work and learn from it. And we admire those who
can synthesize it into a coherent and well-presented whole. With this in mind,
we strongly recommend that as you read this book, you keep a copy of Haines,
Möller, and Hoffman’s book on real-time rendering [AMHH08] next to you. An
alternative, but less good, approach is to take any particular topic that interests you
and search the Internet for information about it. The mathematician Abel claimed
that he managed to succeed in mathematics because he made a practice of reading
the works of the masters rather than their students, and we advise that you follow
his lead. The aforementioned real-time rendering book is written by masters of
the subject, while a random web page may be written by anyone. We believe that
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it’s far better, if you want to grab something from the Internet, to grab the original
paper on the subject.

Having promised principles, we offer two right away, courtesy of Michael
Littman:

THE KNOW YOUR PROBLEM PRINCIPLE: Know what problem you are solv-
ing.

THE APPROXIMATE THE SOLUTION PRINCIPLE: Approximate the solution,
not the problem.

Both are good guides for research in general, but for graphics in particular,
where there are so many widely used approximations that it’s sometimes easy
to forget what the approximation is approximating, working with the unapproxi-
mated entity may lead to a far clearer path to a solution to your problem.

1.1.1 The World of Computer Graphics

The academic side of computer graphics is dominated by SIGGRAPH, the Asso-
ciation for Computing Machinery’s Special Interest Group on Computer Graph-
ics and Interactive Techniques; the annual SIGGRAPH conference is the premier
venue for the presentation of new results in computer graphics, as well as a large
commercial trade show and several colocated conferences in related areas. The
SIGGRAPH proceedings, published by the ACM, are the most important refer-
ence works that a practitioner in the field can have. In recent years these have
been published as an issue of the ACM Transactions on Graphics.

Computer graphics is also an industry, of course, and it has had an enor-
mous impact in the areas of film, television, advertising, and games. It has also
changed the way we look at information in medicine, architecture, industrial pro-
cess control, network operations, and our day-to-day lives as we see weather maps
and other information visualizations. Perhaps most significantly, the graphical
user interfaces (GUIs) on our telephones, computers, automobile dashboards, and
many home electronics devices are all enabled by computer graphics.

1.1.2 Current and Future Application Areas

Computer graphics has rapidly shifted from a novelty to an everyday phenomenon.
Even throwaway devices, like the handheld digital games that parents give to chil-
dren to keep them occupied on airplane trips, have graphical displays and inter-
faces. This corresponds to two phenomena: First visual perception is powerful,
and visual communication is incredibly rapid, so designers of devices of all kinds
want to use it, and second, the cost to manufacture computer-based devices is
decreasing rapidly. (Roy Smith [Smi], discussing in the 1980s various claims that
a GPS unit was so complex that it could never cost less than $1000, said, “Any-
thing made of silicon will someday cost five dollars.” It’s a good rule of thumb.)

As graphics has become more prevalent, user expectations have risen. Video
games display many millions of polygons per second, and special effects in
films are now so good that they’re no longer readily distinguishable from
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non-computer-generated material. Digital cameras and digital video cameras give
us huge streams of pixels (the individual items in an array of dots that consti-
tutes the image2) to be processed, and the tools for processing them are rapidly
evolving. At the same time, the increased power of computers has allowed the pos-
sibility of enriched forms of graphics. With the availability of digital photography,
sophisticated scanners (Figure 1.2), and other tools, one no longer needs to explic-
itly create models of every object to be shown: Instead, one can scan the object
directly, or even ignore the object altogether and use multiple digital images of it
as a proxy for the thing itself. And with the enriched data streams, the possibility
of extracting more and more information about the data—using techniques from
computer vision, for instance—has begun to influence the possible applications
of graphics. As an example, camera-based tracking technology lets body pose or
gestures control games and other applications (Figure 1.3).

Figure 1.2: A scanner that
projects stripes on a model that
is slowly rotated on a turntable.
The camera records the pattern
of stripes in many positions to
determine the object’s shape.
(Courtesy of Polygon Technology,
GMBH).

Figure 1.3: Microsoft’s Kinect
interface can sense the user’s
position and gestures, allowing a
scientist to adjust the view of his
data by “body language”, with-
out a mouse or keyboard. (Data
view courtesy of David Laid-
law; image courtesy of Emanuel
Zgraggen.)

Figure 1.5: Two users interact
with different portions of a large
artwork on a large-scale touch-
enabled display and a touch-
enabled tablet display. (Courtesy
of Brown Graphics Group.)

While graphics has had an enormous impact on the entertainment industry, its
influence in other areas—science, engineering (including computer-aided design
and manufacturing), medicine, desktop publishing, website design, communi-
cation, information handling, and analysis are just a few examples—continues
to grow daily. And new interaction settings ranging from large to small form
factors—virtual reality, room-size displays (Figure 1.4), wearable displays con-
taining twin LCDs in front of the user’s eyes, multitouch devices, including large-
scale multitouch tables and walls (Figure 1.5), and smartphones—provide new
opportunities for even greater impact.

For most of the remainder of this chapter, when we speak about graphics appli-
cations we’ll have in mind applications such as video games, in which the most

Figure 1.4: An artist stands in a Cave (a room whose walls are displays) and places paint
strokes in 3D. The displays are synchronized with stereo glasses to display imagery so that
it appears to float in midair in the room. Head-tracking technology allows the software to
produce imagery that is correct for the user’s position and viewing direction, even as the
user shifts his point of view. (Courtesy of Daniel Keefe, University of Minnesota).

2. We’ll call these display pixels to distinguish them from other uses of the term “pixel,”
which we’ll introduce in later chapters.



ptg11539634

6 Introduction

critical resources are the processor time, memory, and bandwidth associated with
rendering—causing certain objects or images to appear on the display. There is,
however, a wide range of application types, each with its own set of requirements
and critical resources (see Section 1.11). A useful measure of performance to keep
in mind, therefore, is primitives per second, where a primitive is some building
block appropriate to the application; for an arcade-like video game it might be
textured polygons, while for a fluid-flow-visualization system it might be short
colored arrows. The number of primitives displayed per second is the product of
the number of primitives displayed per frame (i.e., the displayed image) and the
number of frames displayed per second. While some applications may choose to
display more primitives per frame, to do so they will need to reduce their frame
rates; others, aiming at smoothness in the animation, will want higher frame rates,
and to achieve them they may need to reduce the number of primitives displayed
per frame (or, perhaps, reduce the complexity of each primitive by approximating
it in some way).

1.1.3 User-Interface Considerations

The defining change in computer graphics over the past 30 years might appear
to be the improvement in visual fidelity of both static and dynamic images, but
equally important is the new interactivity of everyday computer graphics.3 No
longer do we just look at the pictures—we interact with them. Because of this,
user interfaces (UIs) are increasingly important.

Two parallel and related trends required the com-
moditization of graphics hardware as well as enor-
mous advances in software and CPU speed. The
first was the quality and speed of image genera-
tion, making high-quality imagery part of every-
day applications. The second was the development
of the GUI, which has made computer applications
so intuitive and easy to learn that even preliterate
children can use them.

Indeed, the field of user interfaces has evolved in its own
right and can no longer be considered a tiny portion of com-
puter graphics, but the two remain closely integrated. Unfor-
tunately, as of this writing, the state of commercial desktop
UIs has not drastically changed from the research systems
of a generation ago—input to the computer is still primarily
through the keyboard and mouse, and much of what we do
with the mouse consists of clicking on buttons, pointing to
locations in text or images, or selecting menu items. And
even though this point-and-click WIMP (windows, icons,
menus, and pointers) interface has dominated for the past
30 years, high-quality and well-designed interfaces are rare,
and interface design, at least in the early days, was too often
an afterthought. Touch-based interfaces are a step forward, but many of them still
mimic the WIMP interface in various ways. With increasing user sophistication
and demands, interface design is now a significant part of the development of
almost any application.

Why are interfaces so important? One reason is economics. In 1960, comput-
ers took up large rooms or small buildings; they cost millions of dollars and were
shared by multiple users, each with a comparatively small salary. By 2000, com-
puters were small and their costs were a fraction of the salary of the people using
them. Figure 1.6 shows the trend of the dimensionless ratio of the salary of a user
to the cost of the computer used. While in 1960 it was critical that the computer
be used efficiently at all times, and users were obliged to do lots of things to make

3. Early graphics systems used in computer-aided design/computer-aided manufacturing
(CAD/CAM) were often interactive at some level, but they were so expensive and
complex that ordinary computer users never encountered them.
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that happen, by 2000 the situation was entirely reversed: The user had become the
precious resource while the computer was a relatively low-cost item. The UI is
the place where user time is consumed, even in large and slow-running programs:
Once the user sets the program running, he or she can do other things. Hence, we
should concentrate more and more effort on interfaces and interaction.

1960 2010
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Figure 1.6: The log of the ratio
between the cost of a computer
and the salary of a person using
the computer (roughly amortized
for multiuser systems), plotted
against the year.

What sorts of issues affect UI design? Many of them are related to psychol-
ogy, perception, and the general area called human factors. It’s one thing to use
color in your UI; it’s another to make sure the UI works for color-deficient users
as well. It’s one thing to have all necessary menu items present; it’s another to
order and group them so that a typical user can find what s/he is looking for
quickly and select it easily: The menu items must be organized, and each item
must be large enough to make the selection process easy. And it’s still another
thing to be certain that your UI is appropriate for whatever kind of device you
might be using: a desktop machine, a smartphone, a PDA, or a video game
controller.

Despite the importance of interfaces, we will not discuss them much; UI
research is now its own field, related to graphics but no longer a part of it. In some
cases, there are interface elements for which those with experience in graphics can
offer particular insight. Chapter 21 discusses some of these as applications of the
modeling and transformation technology developed earlier in the book.

From this discussion, it’s clear that the goals of computer graphics are not
purely based on physics or algorithms, but they depend critically on human beings.
We don’t merely compute the transfer of light energy in a scene; we must also con-
sider the human perception of the results: Was the extra computation time used in
a way that mattered to the viewer? We don’t merely create an application program
that provides functionality and performance that are appropriate for the some par-
ticular endeavor (e.g., playing music from a library or helping a physician main-
tain notes on patients); we also concern ourselves with whether the interface the
program presents makes the program easy to use. Ease of use is obviously closely
tied to human perception. We therefore present an introduction to perception in
Chapter 5.

1.2 A Brief History
Graphics research has followed a goal-directed path, but one in which the goal
has continued to shift; the first researchers worked in a context of limited pro-
cessor power, and thus they frequently made choices that got results as quickly
and easily as possible. Early efforts were divided between trying to make draw-
ings (e.g., blueprints) and trying to make pictures (e.g., photorealistic images). In
each case, many assumptions were made, usually in concession to available pro-
cessor power and display technologies. When a single display cost as much or
more than an engineer’s salary, every picture displayed had to have some value.
When displaying a few hundred polygons took minutes, approximating curved
surfaces with relatively few polygons made a lot of sense. And when processor
speeds were measured in MIPS (millions of instructions per second) but images
contained 250,000 or 500,000 pixels, one could not afford to perform a lot of
computations per pixel. (In the 1960s and early 1970s, many institutions had at
most a single graphical display!) Typical simplifying assumptions were that all
objects reflected light more or less as flat latex paint does (although some more-
sophisticated reflectance models were used in a few systems), that light either
illuminated a surface directly or bounced around in the scene so often that it
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eventually provided a general ambient light that illuminated things even when
they weren’t directly lit, and that the colors at the interior points of any triangle
could be inferred from the colors computed at the triangle’s vertices.

Gradually, richer and richer models—of shape, of light, and of reflectance—
were added, but even today the dominant model for describing the light in a scene
includes the term “ambient,” meaning a certain amount of light that’s “all over the
place in the scene” without any clear origin, ensuring that any object that’s visible
in the scene is at least somewhat illuminated. This ad hoc term was added to
address aspects of light transport, such as interobject reflections, that could not be
directly computed with 1960s computers; but it remains in use today. While many
books follow the historical development of light transport, we’ll choose a different
approach and discuss the ideal (the physical simulation of light transport), how
current algorithms approximate that ideal, how some earlier approaches did so as
well, and how the vestiges of those approximations remain in common practice.
The exception to this is that we’ll introduce, in Chapter 6, a reflectance model that
represents the scattering of light from a surface as a sum of three terms: “diffuse,”
corresponding to light that’s reflected equally in all directions; “specular,”4 used
to model more directional reflection, ranging from things like rough plastic all the
way to the nearly perfect reflection of mirrors; and ambient. We will refine this
model somewhat in Chapter 14, and then examine it in detail in Chapter 27. The
advantage of the early look is that it allows you to experiment with modeling and
rendering scenes early, even before you’ve learned how light is actually reflected.

Graphics displays have improved enormously over the years, with a shift from
vector devices to raster devices—ones that display an array of small dots, for
example, like CRTs or LCD displays—in the 1970s to 1980s, and with steadily
but slowly increasing resolution (the smallness of the individual dots), size (the
physical dimensions of the displays), and dynamic range (the ratio of the bright-
est to the dimmest possible pixel values) over the past 25 years. The performance
of graphics processors has also progressed in accordance with Moore’s Law (the
rate of exponential improvement has been greater for graphics processors than for
CPUs). Graphics processor architecture is also increasingly parallel; how far this
can go is a matter of some speculation.

In both processors and displays, there have also been important leaps along
with steady progress: The switch from vector devices to raster displays, and their
rapid infiltration of the minicomputer and workstation market, was one of these.
Another was the introduction of commodity graphics cards (and their associated
software), which made it possible to write programs that ran on a wide variety
of machines. At about the same time as raster displays became widely adopted
another major change took place: the adoption of Xerox PARC’s WIMP GUIs.
This is when graphics moved from being a laboratory research instrument to being
an unspoken component of everyday interaction with the computer.

One last leap is worth noting: the introduction of the programmable graphics
card. Instead of sending polygons or images to a graphics card, an application
could now send certain small programs describing how subsequent polygons and
images were to be processed on their way to the display. These so-called “shaders”

4. The word “specular” has multiple meanings in graphics, from “mirrorlike” to “any-
where from sort of glossy to a perfect mirror.” Aside from its use in Chapter 6 we’ll
use “specular” as a synonym for mirror reflection, and “glossy” for things that are shiny
but not exactly mirrorlike.
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opened up whole new realms of effects that could be generated without any addi-
tional CPU cycles (although the GPU—the Graphics Processing Unit—was work-
ing very hard!). We can anticipate further large leaps in graphics power in the next
few decades.

1.3 An Illuminating Example

Let’s now look at a simple scene and ask ourselves how we can make a picture
of it.

A 100 W pinpoint lamp hangs above a table that’s painted with gray latex paint
at a height of 1 m, in an otherwise dark room. We look at the table from above,
from 2 m away. What do we see? Regardless of the visible-light output of the
lamp and the exact reflectivity of the surface, the pattern of illumination in the
scene—brighter just beneath the lamp, dimmer as we move away—is determined
by physics. We can do a thought experiment and imagine an ideal “picture” of
this scene. And we can hope that a computer graphics system, asked to render a
picture of this scene, would produce a result that would be a good approximation
of this picture.

Nonetheless, it’s difficult to write a conventional program with a standard
graphics package to even display the general pattern of illumination. Most stan-
dard packages have no notion of units like “meters” or “grams” or “joules”; even
their descriptions of light omit any mention of wavelength. Furthermore, conven-
tional graphics packages compute the brightness of incoming light in a way that
varies with the distance from the source. However, it does not vary as 1/d2, as
we know it must from physics, but rather according to a different rule. To be fair,
one can make the conventional package have a quadratic falloff, but the resultant
picture still looks wrong.5 That’s in part because of nonlinearities in displays and
the use of a small range of values (typically 0 to 255) to represent light amounts,
together with the limited dynamic range of many displays (one cannot display
very brightly lit or very dimly lit things faithfully). Using a linear falloff (often
with a small quadratic term mixed in) partly compensates for these and results in
a better-looking picture. But it’s really just an ad hoc solution to a collection of
other problems.

To correctly make a picture of the simple scene described above, it’s probably
best to model the physics directly and only then worry about the display of the
resultant data. By the end of Chapter 32 you’ll be able to do so.

In asking for a physically correct result in this example, we’re examining a
particular area of graphics—that of realism. It’s remarkable that the quest for real-
ism should have gone so very well in the early years of graphics, given the lack
of any physical basis for most of the computations. This can be attributed to the
remarkable robustness of the human visual system (HVS): When we present to
the eyes anything that remotely resembles a physically realistic image, our visual
system somehow makes sense of it. More recent trends in which captured imagery
(e.g., digital photographs) are combined with graphics imagery have shown how
important it can be to get things right: A mismatch in the brightness of real and
synthetic objects is instantly noticeable.

5. The wrongness is not from the unfamiliarity of the point-light source; even if we made
a graphical model of a larger-area light source, the results would be wrong.
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But often in graphics we seek not a physical simulation but a way to present
information visually (like a book or newspaper layout). In these cases, the typical
viewing situation is a well-lit room, with light of approximately constant intensity
arriving from all directions, and with the reflectance of the items on the page
varying by a factor of perhaps 103. Simply setting the intensities of screen pixels
to reasonable values that vary over a similar range works well, and there’s no
reason to do a physical simulation of the reflecting page. However, there may
be a reason to be sure that what’s displayed is faithful to the original (i.e., that
the colors you see on your display are the same ones I see on mine); displays of
fashion items or paint colors need to be accurate for users to understand how they
really look.

Indeed, such a situation is a good opportunity for abstraction, which is a key
element in visual communication in general: Because the physical characteristics
of the document will not have a large impact on the viewer’s experience as s/he
encounters it, one can instead discuss the document in more abstract terms of
shape and color and form. It’s imperative, of course, that these abstractions cap-
ture what’s important and leave out what’s unimportant about whatever is being
discussed; this is a key characteristic of the process of modeling, which we will
return to frequently throughout this book.

1.4 Goals, Resources, and Appropriate
Abstractions

The lightbulb example gives us another principle: In any simulation, first under-
stand the underlying physical or mathematical processes (to the degree they’re
known), and then determine which approximations will best provide the results
we need (our goals), given the constraints of time, processor power, and similar
factors (our resources).

This approach applies both to 2D display graphics—the kinds of graphical
objects found in the interface to your web browser, for instance, like the buttons
that help you navigate and the display of the successive lines of text—and to 3D
renderings used for special effects. In the former case, the dominant phenomena
may not be those of physics but of perception and design, but they must still be
understood. In addition to choosing a rich-enough abstraction, part of modeling
wisely is choosing the right representation in which to work: To represent a real-
valued function on a plane, you might use a rectangular array of values; divide the
plane into triangular regions of various shapes and sizes, with values stored at the
triangle vertices (this is common when making models of things like fluid flow);
or use a data structure that stores the rectangular value array in such a way that
whenever adjacent values agree they are merged into a larger “cell” so that detail
is only present in the areas where the function is changing rapidly.

We summarize the preceding discussion in a principle:

THE WISE MODELING PRINCIPLE: When modeling a phenomenon, under-
stand the phenomenon you’re modeling and your goal in modeling it, then
choose a rich-enough abstraction, and then choose adequate representations
to capture your abstraction within the bounds of your resources. Once this is
done, test to verify that your abstraction was appropriate.
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The testing will vary with the situation: If the design abstracts something about
human perception, then the test may involve user studies; if the design abstracts
something physical (“We can safely model small ocean waves with sinusoids”),
then the test may be quantitative.

Barzel [Bar92] argues that most physical models for computer graphics come
in three parts: the physical model itself, a mathematical model, and a numeri-
cal model. (As an example, the physical model might be that ocean waves are
represented by vertical displacements of the water’s surface, and their motion is
governed solely by the forces arising from differences in nearby heights [rather
than by wind, for example]; the mathematical model might be that these displace-
ments are represented by time-dependent functions defined at integer points in
some coordinate grid on the ocean’s surface, with intermediate values being inter-
polated; and the computational model might be that the water’s state one moment
in the future can be determined from its state now by approximating all deriva-
tives with “finite differences” and then solving a linearized version of the resultant
equations.) Including this separation in your programs can help you debug them.
This means, however, that during debugging, you must remember your model and
its level of abstraction and the limitations these impose on your intended results.
(In our example, the physical model itself says that you cannot hope to see break-
ing waves, while the mathematical model says that you cannot hope to see details
of the water’s surface at a scale smaller than the coordinate grid.) Within computer
science, this is very unusual: In most other areas of computer science, you’ve got
either a computational model or a machine model, and this single model provides
your foundation. In graphics, we have physical, mathematical, numerical, compu-
tational, and perceptual models, all interacting with one another.

In both 2D and 3D graphics, it’s critically important to consider the eventual
goal of your work, which is usually communication in some form, and usually
communication to a human. This end goal influences many things that we do,
and should influence everything. (This is just a restatement of the “form follows
function” dictum, as valuable in graphics as it is anywhere else.) As a simple
example, consider how we treat light, which is just a kind of electromagnetic radi-
ation: Because humans can only detect certain frequencies of light with their eyes,
we usually don’t worry about simulating radio waves or X-rays in graphics, even
though the light emitted by conventional lamps (and the sun) includes many ener-
gies outside the visible spectrum. Hence, a limitation of the visual system becomes
a computational savings for our programs. Similarly, because the eye’s sensitivity
to light energy is approximately logarithmic, we build our display hardware (to a
first approximation) so that equal differences in pixel values correspond to equal
ratios of displayed light energy.

THE VISUAL SYSTEM IMPACT PRINCIPLE: Consider the impact of the
human visual system on your problem and its models.

As another example, even in 2D display graphics there are perceptual issues
to consider: The limits of human visual acuity tell us that the things we display
must be of a certain size to be perceptually meaningful; at the same time, the
limits of human motor control tell us that interaction must be designed in ways
that fit those limits. We cannot ask a user to click on a sequence of pixels in a
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1280 × 1024-pixel, 17 -inch display with an ordinary mouse—clicking on a par-
ticular pixel is virtually impossible.

We don’t mean to suggest that perception should influence every decision
made in graphics; in Chapter 28 we’ll see the risks that arise from treating
light throughout the rendering process in a way that captures only our three-
dimensional perception of color rather than the full spectral representation. How-
ever, in many situations where the range of brightness is small, the logarithmic
nature of the eye’s sensitivity is not particularly important, and common practice
therefore often involves such things as averaging pixel values that represent log
brightnesses; such techniques often serve their purposes admirably.

1.4.1 Deep Understanding versus Common Practice

Because computer graphics is actually in use all around us, we have to make con-
cessions to common practice, which has generally evolved because it produced
good-enough results at the time it was developed. But after a discussion of com-
mon practice, we’ll often have a stand-back-and-look critique of it as well so
that the reader can begin to understand the limitations of various approaches to
graphics problems.

1.5 Some Numbers and Orders of Magnitude
in Graphics

Because we will start our study of graphics with a discussion of light, it’s use-
ful to have a few rough figures characterizing the light encountered in ordinary
scenes. Visible light, for instance, has a wavelength between approximately 400
and 700 nanometers (a nanometer is 10× 10−9 m). A human hair has a diameter
of about 10× 10−4 m, so it’s about 100 to 200 wavelengths thick, which helps
give a human scale to the phenomena we’re discussing.

1.5.1 Light Energy and Photon Arrival Rates

A single photon (the indivisible unit of light) has an energy E that varies with the
wavelength λ according to

E = hc/λ, (1.1)

where h ≈ 6.6× 10−34 J sec is Planck’s constant and c ≈ 3× 108 m/sec is the
speed of light; multiplying, we get

E ≈ 1.98× 10−25 J m
λ

. (1.2)

Using 650 nm as a typical photon wavelength, we get

E ≈ 1.98× 10−25 J m

650× 10−9 m
≈ 3× 10−19 J (1.3)

as the energy of a typical photon.
An ordinary 100 Watt incandescent bulb consumes 100 W, or 100 J/sec, but

only a small fraction of that—perhaps 2% to 4% for the least efficient bulbs—is
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converted to visible light. Dividing 2 J/sec by 3× 10−19 J, we see that such a bulb
emits about 6. 6 × 1018 visible photons per second. An office—say, 4 m × 4 m ×
2.5 m—together with some furniture has a surface area of very roughly 100 m2 =
1× 106 cm2; thus, in such an office illuminated by a single 100 W bulb on the
order of 1012 photons we arrive at a typical square centimeter of surface each
second.

By contrast, direct sunlight provides roughly 1000 times this arrival rate; a
bedroom illuminated by a small night-light has perhaps 1/100 the arrival rate.
Thus, the range of energies that reach the eye varies over many orders of magni-
tude. There is some evidence that the dark-adapted eye can detect a single photon
(or perhaps a few photons). At any rate, the ratio between the daytime and night-
time energies of the light reaching the eye may approach 1010.

1.5.2 Display Characteristics and Resolution of the Eye

Because we also work with computer displays, and the computers driving these
displays typically draw polygons on the screen, it’s valuable to have some num-
bers describing these. A typical 2010 display had between 1 million and 1.5 mil-
lion pixels (individually controllable parts of the display6)—which will soon grow
to 4 million pixels; with displays that are 37 cm (about 15 inches) wide, the diago-
nal distance between pixel centers is on the order of 0.25 mm. The dynamic range
of a typical monitor is about 500:1 (i.e., the brightest pixels emit 500 times the
energy emitted by the darkest pixels). The display on a well-equipped 2010 desk-
top subtended an angle of about 25◦ at the viewer’s eye.

The human eye has an angular resolution of about one minute of arc; this
corresponds to about 300 mm at a 1 km distance, or (more practical for viewing
computer screens) about 0.3 mm at a 1 m distance. When pixels get about half
as large as they are now, it will be nearly impossible for the eye to distinguish
them.7 A one-pixel shift in a single character’s position on a line of text may be
completely unnoticeable. Furthermore, the eye’s resolution far from the center of
the view is much less, so pixel density at the edge of the display screen may well be
wasted much of the time. On the other hand, the eye is very sensitive to motion,
so two adjacent pixels in a gray region that alternately flash white may give an
illusion of motion that’s easily detectable, which might be useful for attracting the
user’s attention.

1.5.3 Digital Camera Characteristics

The lens of a modern consumer-grade digital camera has an area of about 0.1 cm2;
suppose that we use it to photograph a typical 100 W incandescent bulb, filling
the frame with the image of the bulb. To do so, we place the lens 10 cm from the

6. Each display part may actually consist of several pieces, as in a typical LCD display
in which the red, green, and blue parts are three parallel vertical strips that make up
a rectangle, or may be the result of a combination of multiple things, like the light
emitted by the red, green, and blue phosphors of each triad of phosphors on a CRT
screen.

7. This doesn’t mean it won’t be worth further reducing their size; 300 dot-per-inch (dpi)
printers use dots that are about 0.1 mm, and their quality is noticeably poorer than that
of 1200 dpi printers, even when viewed at a distance of a half-meter. Distinguishing
between adjacent pixels and detecting the smoothness of an overall image are evidently
rather different tasks.
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Figure 1.7: The standard teapot, created by Martin Newell, a model that’s been used thou-
sands of times in graphics.

bulb. The surface area of a sphere with radius 10 cm is about 1200 cm2; our lens
therefore receives about 1/10,000 of the light emitted by the bulb, or 6.6× 1014

photons per second. If we take the picture with a 0.01 sec exposure and we have
an approximately 1-million-pixel sensor, then each sensor pixel receives about
106 photons. Photographing a dark piece of carpet in our imaginary office above
might result in each sensor pixel receiving only 100 photons.

1.5.4 Processing Demands of Complex Applications

Computer games are some of the most demanding applications at present; to make
objects appear on the user’s screen, these applications send polygons to a graphics
processor. These polygons have various attributes (like color, texture, and trans-
parency) and are displayed with various technologies (antialiasing, smooth shad-
ing, and others, all of which we’ll discuss in detail later). For a polygon to be
displayed, certain pixels must be colored in certain ways. Thus, polygon rate (the
number of polygons displayed per second) and fill rate (the number of pixels
colored per second) are both used to measure performance. The numbers are con-
stantly changing, and there’s a huge difference between a textured, antialiased,
transparent polygon covering 500 pixels and a flat-shaded 10-pixel triangle, so
comparisons are difficult. But complex scenes for interactive display can easily
contain 1 million polygons, of which maybe 100,000 are visible (the others being
hidden by things in front of them or outside the field of view), each occupying
perhaps 10 pixels on average. In many cases, a single polygon occupies less than
a single pixel. This happens in part because complex shapes are often modeled
with polygonal meshes (see Figure 1.7). For high-quality, noninteractive, special-
effects production, the resolution of the final image may be considerably higher,
but at the same time, scenes can contain many millions of polygons; the “polygon
is smaller than a pixel” rule of thumb continues to apply.

1.6 The Graphics Pipeline

The functioning of a standard graphics system is typically described by an abstrac-
tion called the graphics pipeline. The term “pipeline” is used because the trans-
formation from mathematical model to pixels on the screen involves multiple
steps, and in a typical architecture, these are performed in sequence; the results
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Figure 1.8: The graphics pipeline, version 1.

of one stage are pushed on to the next stage so that the first stage can begin pro-
cessing the next polygon immediately.

Figure 1.8 shows a simplified view of this pipeline: Data about the scene being
displayed enters at various points to produce output pixels.

For many purposes, the exact details of the pipeline do not matter; one can
regard the pipeline as a black box that transforms a geometric model of a scene
and produces a pixel-based perspective drawing of those polygons. (Parallel-
projection drawings are also possible, but we’ll ignore these for the moment.)
On the other hand, some understanding of the nature of the processing is valuable,
especially in cases where efficiency is important. The details of the boxes in the
pipeline will be revealed throughout the book.

Even with this simple black box you can write a great many useful programs,
ignoring all physical considerations and treating the transformation from model
to image as being defined by the black box rather than by physics (like the non-
quadratic light-intensity falloff mentioned above).

The past decade has, to some degree, made the pipeline shown above
obsolete. While graphics application programming interfaces (APIs) of the past
provided useful ways to adjust the parameters of each stage of the pipeline, this
fixed-function pipeline model is rapidly being superseded in many contexts.
Instead, the stages of the pipeline, and in some cases the entire pipeline, are being
replaced by programs called shaders. It’s easy to write a small shader that mimics
what the fixed-function pipeline used to do, but modern shaders have grown
increasingly complex, and they do many things that were impossible to do on the
graphics card previously. Nonetheless, the fixed-function pipeline makes a good
conceptual framework onto which to add variations, which is how many shaders
are in fact created.

1.6.1 Texture Mapping and Approximation
One standard component of the black box is the texture map. With texture map-
ping, we take a polygon (or a collection of polygons) and assign a color to each
point via a lookup in a texture image; the technique is a little like applying a stencil
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Figure 1.9: (a) The image at left depicts a normal map. Each image point has x- and y-
coordinates that correspond to the latitude and longitude of a point on the sphere. The
RGB color triple stored at each point determines how much to tilt the normal vector at the
corresponding point of the sphere. The pale purple color indicates no tilt, while the four
stripes tilt the normal vector up and down or left and right. (b) The resultant shape, which
looks bumpy; you can tell it’s actually smooth by looking at the silhouette. Note that it has
also been “color textured” with a reflected sky.

to a surface or gluing a decal onto an object. You can think of the texture image,
which can be a piece of artwork scanned into the system, a photo taken with a dig-
ital camera, or an image created in a paint program, for instance, as a rubber sheet
with a picture on it. The texture coordinates describe how this sheet is stretched
and deformed to cover some part of the object.

The idea of using a texture to modify the color characteristics of each point of
an image is only one of many applications of texture mapping. The central ideas
of texture mapping have been generalized and applied to many surface properties.
The appearance of a surface, for instance, depends in part on the surface’s normal
vector (or normal), which is the vector that’s perpendicular to the surface at each
point. This normal vector is used to compute how light reflects from the surface.
Since the surface is typically represented by a mesh of polygons, these surface
normal vectors are usually computed at the polygon vertices and then interpolated
over the interior of the polygon to give a smooth (rather than faceted) appearance
to the shape.

If instead of using the true normal to a surface (or its approximation by inter-
polation as above) we use a substantially different one at different points of each
polygon, the surface will have a different appearance at different points, appearing
to tilt more toward or away from us, for instance. If we apply this idea across a
whole surface we can generate what seems to be a lumpy surface (see Figure 1.9),
while the underlying shape is actually nearly smooth.

The surface appears to have lots of geometric variation even though it’s actu-
ally spherical. Unfortunately, near the silhouette of the surface the unvarying
nature is evident; this is a common limitation of such mapping tricks. On the other
hand, being able to draw just a few normal-mapped polygons instead of thousands
of individual ones can be enough of an advantage to make this choice appropriate.
This kind of choice is commonplace in graphics—one must decide between phys-
ical correctness (which might require huge models) and approximately correct
imagery made with smaller models. If model size and processing time constitute a
significant portion of your engineering budget, these are the sorts of tradeoffs you
have to make.

1.6.2 The More Detailed Graphics Pipeline
As we said above, a pipeline architecture lets us process many things simultane-
ously: Each stage of the pipeline performs some task on a piece of data and hands
the result to the next stage; the original pipeline stage can then begin performing
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Figure 1.10: In this depiction of a larger graphics pipeline, the application program per-
forms some work (e.g., animation) to determine the geometry to be displayed; this geomet-
ric description is handed to the graphics pipelines; the resultant image is displayed. At the
same time, user input, in response to the displayed image, may affect the next operations of
the application program, as may data read back from the graphics pipeline itself.

the task on the next piece of data. When such a pipeline is properly designed this
can result in improved throughput, although as stages are added, the total amount
of time it takes for an input datum to produce a result continues to increase.
In systems where interactive performance is critical, this lag or latency can be
important.

The graphics pipeline consists of four main parts: vertex geometry processing
and transformation, triangle processing (through rasterization) and fragment gen-
eration, texturing and lighting, and fragment-combination operations for assem-
bling the final image, all of which we’ll summarize presently (and which are
covered in more detail in Chapters 15 and 38). You can think of this pipeline
as part of a larger pipeline that captures the structure of a typical program (see
Figure 1.10, in which the vertex processing portion is labeled “Geometric transfor-
mation”; the fragment generation, texturing, and lighting are collected into a sin-
gle box; and the portion representing the final processing of fragments is labeled
“Image assembly”).

In this larger pipeline, an application program generates data to be displayed,
and the graphics pipeline displays it. But there may be user input (possibly in
response to the displayed images) that controls the application, as well as infor-
mation read back from the graphics pipeline and also used in the computation of
the next image to be shown.

Each part of the graphics pipeline may involve several tasks, all performed
sequentially. The exact implementations of these tasks may vary, but the user of
such a system can still regard them as sequential; graphics programmers should
have this abstraction in mind while creating an application. This programmer’s
model is the one provided by most APIs that are used to control the graphics
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pipeline. In actual practice (see Chapter 38), the exact order of the tasks within
the parts (or even the parts to which they are allocated) may be altered, but a
graphics system is required to produce results as if they were processed in the
order described. Thus, the pipeline is an abstraction—a way to think about the
work being done; regardless of the underlying implementation, the pipeline allows
us to know what the results will be.

The vertex geometry part of the pipeline is responsible for taking a geometric
description of an object, typically expressed in terms of the locations of certain
vertices of a polygonal mesh (which you can think of informally as an arrangement
of polygons sharing vertices and edges to cover an object, i.e., to approximate
its surface), together with certain transformations to be applied to these vertices,
and computing the actual positions of the vertices after they’ve been transformed.
The polygons of the mesh, which are defined in terms of the vertices, are thus
implicitly transformed as well.

The triangle-processing stage takes the polygons of the mesh—most often
triangles—and a specification for a virtual camera whose view we are rendering,
and processes the polygons one by one in a process called rasterization, to con-
vert them from a continuous-geometry representation (triangle) into the discrete
geometry of the pixelized display (the collection of pixels [or portions of pixels]
that this triangle contains).

The resultant fragments (pixels or portions of pixels that belong to the triangle
and may eventually appear on the display if they’re not obscured by some other
fragment) are then assigned colors based on the lighting in the scene, the textures
(e.g., a leopard’s spots) that have been assigned to the mesh, etc.

If several fragments are associated to the same pixel location, the frontmost
fragment (the one closest to the viewer) is generally chosen to be drawn, although
other operations can be performed on a per-pixel basis (e.g., transparency compu-
tations, or “masking” so that only certain fragments get “drawn,” while others that
are masked are left unchanged).8

In modern systems, all of this work is usually done on one or more Graphics
Processing Units (GPUs), often residing on a separate graphics card that’s plugged
into the computer’s communication bus. These GPUs have a somewhat idiosyn-
cratic architecture, specially designed to support rapid and deep pipelining of the
graphics pipeline; they have also become so powerful that some programmers
have started treating them as coprocessors and using them to perform computa-
tions unrelated to graphics. This idea—having a separate graphics unit that even-
tually becomes so powerful that it gets used as a (nongraphics) coprocessor—is
an old one and has been reinvented multiple times since the 1960s. In early gen-
erations, this coprocessor was typically moved closer and closer to the CPU (e.g.,
sharing memory with the CPU) and grew increasingly powerful until it became so
much a part of the CPU that designers began creating a new graphics processor
that was closely associated to the display; this was called the wheel of reincarna-
tion in a historically important paper by Myer and Sutherland [MS68]. The notion
may be slightly misleading, however, as observed by Whitted [Whi10]: “We

8. Note that the choice of a representation by a raster grid implies something about the
final results: The information in the result is limited! You cannot “zoom in” to see
more detail in a single pixel. But sometimes in computing, what should be displayed
in a single pixel requires working with subpixel accuracy to get a satisfactory result.
We’ll frequently encounter this tension between the “natural” resolution at which to
work (the pixel) and the need to sometimes do subpixel computations.
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sometimes forget that the famous ‘wheel of reincarnation’ translates as it rotates,
transporting us to unfamiliar technological territory even if we recognize historical
similarities.”

Figure 1.11: The lamp, cour-
tesy of Jack Hughes, has just
five strokes. Matisse’s “Face of a
Woman” depicts both shape and
mood in just 13 strokes.

1.7 Relationship of Graphics to Art, Design,
and Perception

The simple lamp at the top of Figure 1.11 conveys both a shape and a design style
in just a few strokes. Henri Matisse’s “Face of a Woman,” shown at the bottom
of Figure 1.11, contains no more than 13 pen strokes but is nonetheless able to
convey an enormous amount to a human viewer; it’s far more recognizable as a
face than many of the best contemporary face renderings in graphics. This is partly
because of the uncanny valley—an idea from robotics [Mor70] that states that as
robots got increasingly humanlike, a viewer’s sense of familiarity would increase
to a point, but then it would drop precipitously until the robot was very human-
like, at which point the familiarity would rise rapidly above its previous level. The
uncanny valley is the region in which familiarity is low but human resemblance
is high. In the same way, graphics images of humans that are “almost right” are
often described as “creepy” or “weird.” But ignoring this for a moment, there’s
another important difference: Matisse’s drawing is simple, whereas an enormous
amount of computational effort is expended in making a realistic face rendering.
This is because artists and designers have reverse-engineered the human visual
system to get the greatest effect for the least amount of “drawing budget.” Look-
ing at their work helps us understand that the goal of all graphics is communi-
cation, and that sometimes this is best achieved not with realism but with other
means. Auto-repair manuals, for instance, can be illustrated with photos, but the
top-quality manuals are instead illustrated with drawings (see Figure 1.12) that
emphasize important details and elide other details. Which details are important?
That depends on the intent of the person creating the image and on the human
visual system. We know, for instance, that the human visual system is sensitive
to sharp transitions in brightness and is somewhat more sensitive to vertical and
horizontal lines than to diagonal ones; this partly explains why line drawings are
effective, and why one can afford to leave out diagonal lines preferentially over
verticals and horizontals.

Figure 1.12: A repair manual
shows details where needed, but
omits unnecessary material.

In every engineering problem, there’s a budget; graphics is no different. You
are limited in graphics by things like the number of polygons you can send to
the pipeline before you have to draw the next frame to display, the number of
pixels that can be filled, and the amount of computation you can afford to do
in the CPU to decide what polygons you want to draw in the first place. Artists
who are drawing something have a similar budget: the amount of effort spent in
placing marks on a page, the time before the scene being rendered changes (you
can’t paint a sunset-in-progress at midnight), etc. They’ve developed techniques
that allow them to convey a scene on a low budget: For instance, contour drawings
work well, and flat fill-in color adds contrast that helps separate individual objects,
etc. We can learn from the artists’ reverse engineering of the human visual system
and use their techniques to render more efficiently. And because most computer-
generated images are intended to be viewed by a human, the human brain is the
ultimate measurement tool for what’s satisfactory. There’s another budget to con-
sider as well: the viewer’s attention. Graphics is also limited by the time and effort
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Figure 1.13: Each strip is a single color, but the left side of each strip looks a little brighter
and the right side looks a little darker, which has the effect of accentuating the dividing line
between the strips; this effect is known as Mach banding.

the human viewer can be expected to spend to understand what is being com-
municated. Of course, our standard for satisfaction varies with time: The images
produced in the 1960s and 1970s seemed amazing at the time, but are completely
unsatisfactory by today’s standards.

On the other hand, sometimes the nature of the visual system lets us make very
effective but simple approximations of reality that are entirely convincing; early
cloud models [Gar85] used extremely simple approximations of cloud shapes very
effectively, because the eye is not terribly sensitive to the geometry of a cumulus
cloud, as long as it looks fluffy. But all too often, such simplifications fail badly.
For instance, we could attempt to make a mesh appear to have a smoothly chang-
ing color by filling each triangle with its own color (flat shading) and then making
the individual triangles small so that the changes from one triangle to the next are
tiny. Unfortunately, unless the triangles are very tiny, this leads to something called
Mach banding (see Figure 1.13), which is extremely distracting to the eye.

1.8 Basic Graphics Systems

A modern graphics system consists of a few interaction devices (keyboard,
mouse, perhaps a tablet or touch screen), a CPU, a GPU, and a display. Today’s
displays are either liquid-crystal displays (LCDs) or cathode-ray tube (CRT)
displays, although new technologies like plasma displays and OLEDs (organic
light-emitting diodes) are constantly changing the landscape. Each displays a
rectangular array of pixels, or regions that can be lit to varying degrees in varying
colors by the control of three colored parts, typically red, green, and blue. In the
case of a CRT, when a single pixel is turned on it produces a glowing, approxi-
mately circular area containing an RGB triad of phosphors on the screen, an area
that is bright in the center and rapidly fades at the edges so that the bright areas
of adjacent pixels overlap only a little. In the case of an LCD, there is a backlight
behind the screen, and each pixel is a set of three small rectangles that allow some
amount of the backlight in the red, green, or blue spectrum to pass through to the
viewer. There is a very small space between the pixels (like the grout on a tile
floor), but for most purposes we can treat the LCD pixels as completely covering
the screen. The brightness of each pixel (on either type of display) can be con-
trolled by a program; we can also assume, except in the most rigorous situations,
that all pixels are capable of displaying the same brightnesses, and that there is no
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substantial variation of their apparent brightness with position (i.e., pixels at the
display’s edge look just as bright as those at the center when they’re “turned on”
to the same degree).

A typical graphics program runs on the CPU, processing input from the UI
devices and sending instructions to the GPU describing what should be displayed;
this, in turn, prompts further user interaction, and the cycle continues. In almost all
cases, this structure is provided by a graphics platform that serves as an interme-
diary between a graphics application and the hardware, but for now, let’s consider
the simple case where we’re building a basic graphics program from scratch. Fre-
quently the display is steadily changing (e.g., it is being updated every 1/30 of a
second), and user input may come only occasionally. The simplest model for the
application program is to issue for each redisplay cycle new display instructions
to the GPU, often resulting in a frame rate that’s typically 15 to 75 frames per sec-
ond. Too-low frame rates can severely degrade the quality of interaction, as can
too-great latency (the time between an action—be it a user-initiated click, or the
initiation of a frame redisplay—and its effect), so this simple model must be used
with caution.

1.8.1 Graphics Data

Typically graphical models are created in some convenient coordinate system; a
cube that is to be used as one of a pair of dice might be modeled as a unit cube,
centered at the origin in 3-space, with all x-, y-, and z-coordinates between −0. 5
and 0. 5. This coordinate system is called modeling space or object space.

This cube is then placed in a scene—a model of a collection of objects and
light sources. Perhaps the dice are on a table that’s six units tall in y; in the scene
description, they’re moved there by applying some transformation to the coordi-
nates of all the vertices (the corners) of the cube. In the case of the die, perhaps
all six vertices have 6.5 added to their y-coordinates so that the bottom of the die
sits on the top of the table. The resultant coordinates are said to be in world space
(see Figure 1.14). (Chapter 2 describes an example of this modeling process in
great detail.)

x

z

y

Figure 1.15: The virtual camera
looks at a scene from a specified
location, and with some orienta-
tion or attitude. We can create
a coordinate system whose ori-
gin is at the center of the cam-
era, whose z-axis points oppo-
site the view direction, and whose
x- and y-axes point to the right
and to the top of the camera,
respectively. The coordinates of
points in this coordinate system
are called camera coordinates.

The location and direction of a virtual camera is also given in world space,
as are the positions and physical characteristics of virtual lights. Consider a set
of coordinate axes (see Figure 1.15) whose origin is at the center of the virtual

Figure 1.14: On the left, a die is centered on its own axes in modeling coordinates. The
same die is placed in the world (on the right) by adding 6.5 to each y-coordinate (the
y-direction points “up”) to get world coordinates for the die.
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camera, whose x-axis goes to the right side of the camera (as seen from the back),
whose y-axis points up along the back of the camera, and whose negative z-axis
points along the camera view. All objects in world space have coordinates in this
coordinate system as well; these coordinates are called camera-space coordi-
nates or simply camera coordinates. Computing these camera-space coordinates
from world coordinates is relatively simple (Chapter 13) and is one of the services
typically provided by a graphics platform.

These camera coordinates are transformed into normalized device coordi-
nates, in which the visible objects have floating-point xy-values between −1
and 1, and whose z-coordinate is nonpositive. (Objects with xy-values outside this
range are outside the camera’s field of view; objects with z > 0 are behind the
camera rather than in front of it.) Finally, the visible fragments are transformed
to pixel coordinates, which are integers (with (0, 0) being the upper-left corner
of the display and (1280, 1024) being the lower-right corner of the display) by
scaling and rounding the xy-coordinates. These resultant numbers are sometimes
said to be coordinates in image space. Returning to the cube that’s to be used as
one of a pair of dice, we want each side of the cube to look like the side of a die.
To do this, we might use a texture map containing a picture of each side of a die.
The vertices9 of each face of the cube will then also be given texture coordinates
indicating what portion of the texture should be applied to them (see Figure 1.16).

Figure 1.16: The vertices of each of the six faces of the die (shown in an exploded view) are
assigned texture coordinates (a few are indicated by the arrows in the diagram); the texture
image is then used to determine the appearance of each face of the die, as if the texture
were a rubber sheet stretched onto the face. Note that a single 3D location may have many
texture coordinates associated to it, because it is part of many different faces. In the case
of the die, this is moot, because all instances of the 3D point get the same texture color
assigned. Chapter 20 discusses topics like this at greater length. The resultant textured die
is shown on the right.

9. The word “vertices” (VERT-uh-sees) is the plural of “vertex,” although “vertexes”
is sometimes used. Occasionally our students mistakenly back-construct the singu-
lar “vertice.” Please avoid this. Other similarly formed plurals are index–indices and
simplex–simplices.
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The various conversions from the continuous geometry of Euclidean space to
the rasterized geometry of the screen (with rasterized textures being used along
the way) involve many subtleties, to be discussed in Chapter 18.

1.9 Polygon Drawing As a Black Box

Given the difficulties of carrying out the steps in the pipeline (especially those
that involve the transformation from continuous to discrete geometry), we can,
for the time being, treat polygon drawing as a black box: We have a graphics
system which, when told to draw a polygon, somehow makes the right pixels on
the display be illuminated with the right colors. This black-box approach will let
us experiment with interaction, color, and coordinate systems. We’ll then return
to the details in later chapters.

1.10 Interaction in Graphics Systems

Graphics programs that display images in some form typically feature some level
of user interaction as well. For example, in many programs the user clicks on
things with the mouse, selects menu items, and types at the keyboard. However,
the level of interaction in some programs (indeed, in many 3D games) is far more
complex.

Graphics programs typically support such interaction by having two parallel
threads of execution; one thread handles the main program and the other handles
the GUI. Each component of the GUI—button, checkbox, slider, etc.—is asso-
ciated with a callback procedure in the main program. For instance, when the
user clicks a button the GUI thread calls the button’s callback procedure. That
procedure in turn may alter some data, and may also ask the GUI to change
something.

As an example, imagine a trivial game in which a user has to guess a number
that the computer has chosen—either one, two, or three. To do so, the user clicks
on one of three buttons. If the user clicks on the correct button, the display reads
“You win!”; if not, it reads “Try again.” In this scenario, when the user clicks
button 2 but the secret number is 1, the button-2 callback does the following.

1. It checks to see whether 2 was the secret number.

2. Because 2 is not the secret number, it asks the GUI to display the “try
again” message.

3. It asks the GUI to gray out (disable) the “2” button so that the user is not
able to guess the same wrong answer more than once.

Of course, the button-1 and button-3 callbacks would be very similar, and in
each case, if the guess was correct the button would ask the GUI to display the
fact that the user had won.

For more complex programs, the structure of the callbacks can be far more
complex, of course, but the general idea is this simple one. One speaks of the code
in the callback as the button’s “behavior”; thus interaction components have both
appearance and behavior. Not surprisingly, many successful interfaces correlate
the two—the behavior of a component can, to some extent, be inferred by the user
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who is confronted with its appearance. (The simplest example of this is that of a
button with text on it. A Quit button should, when clicked, cause the program [or
some action] to quit!)

The entire matter of scheduling the GUI thread and the application thread is
typically handled by a graphics framework, via the operating system, in a way
that’s usually completely transparent to the programmer.

1.11 Different Kinds of Graphics Applications

A wide variety of applications use computer graphics, and many different charac-
teristics determine the overall characteristics of these applications. With the cur-
rent explosion of applications and application areas, it’s impossible to classify
them all. Instead, we will examine how these applications differ.

The following are some of the relevant criteria.

• Is the display changing on every refresh cycle (typical of many computer
games) or changing fairly rarely (typical of word processors)?

• Are the coordinates used by the program described by an abstraction in
which they’re treated as floating-point numbers in programs (as in many
games), or are individual pixel coordinates the defining way to measure
positions (as in certain early paint programs)?

• Usually a model of the data is being displayed; is the transformation from
this view to the display described in terms of a camera model (typical of 3D
games) or something different (like the viewable portion of a text document
that one sees in a word processing program)? In each case, there’s a need
to clip (not display) the part of the data that lies outside some rectangle on
the display.

• Are objects being displayed with associated behaviors? The buttons and
menus on a GUI are such objects; the pictures of the “bad guys” in a video
game typically are not. (Clicking on a bad guy has no effect. Shooting a
gun at the bad guy may kill him, but this is a separate kind of interaction,
based on the game logic rather than on the interaction behavior of displayed
objects.)

• Is the display trying to present a physically realistic representation of an
object, or is it presenting an abstract representation of the object? A tool
for creating schematic diagrams of electronic circuits does not aim to show
how those diagrams, if printed on paper and viewed in a sunlit office, would
appear. Instead, it presents an abstract view of the diagrams, in which all
lines are equally dark and all parts of the background are equally light, and
the lightness/darkness of each is a user-determined property rather than a
result of some physical simulation. By contrast, the displays in 3D com-
puter games often aim for photorealism, although some now aim for delib-
erately nonphotorealistic effects to convey mood.

Less critical, but still important, are the following.

• Do the abstract floating-point coordinates have units (feet, centimeters,
etc.), or are they simply numbers? One advantage of having units is that
a single program can adapt itself by determining what sort of display is
being used—a 19-inch desktop display or a 1.5-inch cellphone display. The
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desktop display of, say, driving directions might show the entire route,
while the cellphone display might show a scrollable and zoomable small
portion. Since display pixel sizes vary widely, physical units make more
sense than pixel counts in many cases.

• Does the graphics platform handle updates via a changing model? If the
platform has you update a model of what is to be displayed and then auto-
matically updates the display whenever necessary, querying that model as
needed, the programming demands are relatively simple but the way in
which updates are handled may be beyond your control. A system that does
not provide such updating would, for example, require the application to
do “damage repair” when movement of overlapped windows reveals new
areas to be displayed. Programs in which screen display can be very expen-
sive (some image-editing programs are like this) prefer to handle damage
repair themselves so that when a user moves a window in which an image
is displayed, the newly revealed parts are only filled in occasionally dur-
ing the move, since constantly filling in the parts could make the move too
slow for comfortable use.

Many 2D graphics fall into the category in which there is little physical real-
ism, most of the objects displayed have associated behaviors, and the display is
updated relatively infrequently. Much of 2.5D graphics applications, in which one
works with multiple 2D objects that are “stacked one on top of the other” (the lay-
ers in many image-editing programs fit this model), also produce imagery that is
far from realistic. The cost of updating the display may become a critical resource
in some of these programs. By contrast, many 3D graphics applications rely on
simulation and realism, and objects in 3D scenes tend to have less “behavior” in
the sense of “reactions to interactions with devices like the mouse or keyboard,”
although this is rapidly changing.

Not surprisingly, the different requirements of 2D, 2.5D, and 3D programs
means that there is no one best answer to many questions in graphics. The circuit-
design program doesn’t need physically realistic rendering capability, just as the
twitch game doesn’t typically need much of an interaction-component hierarchy.

1.12 Different Kinds of Graphics Packages

The programmer who sets out to write a graphics program has a wide choice of
starting points. Because graphics cards—the hardware that generates data to be
displayed on a screen—or their equivalent chipsets vary widely from one machine
to the next, it’s typical to use some kind of software abstraction of the capabilities
of the graphics card. This abstraction is known as an application programming
interface or API. A graphics API could be as simple as a single function that lets
you set the colors of individual pixels on the display (although in practice this
functionality is usually included as a tiny part of a more general API), or it could
be as complex as a system in which the programmer describes a scene consisting
of high-level objects and their properties, light sources and their properties, and
cameras and their properties via the API, and the objects in the scene are then
rendered as if they were illuminated by the light sources and seen from the par-
ticular cameras. Often such high-level APIs are just a part of a larger system for
application development, such as modern game engines, which may also provide
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features like physical simulation, artificial intelligence for characters, and systems
for adapting display quality to maintain frame-rates.

A range of software systems are available to assist graphics programs, from
simple APIs that give fairly direct access to the hardware all the way to more
complex systems that handle all interaction, display refresh, and model represen-
tation. These can reasonably be called “graphics platforms,” a term we’ve been
using somewhat vaguely until now. The variety of systems and their features are
the subject of Chapter 16.

1.13 Building Blocks for Realistic Rendering:
A Brief Overview

When you want to go from models of reality to the creation, in the user’s mind, of
the illusion of seeing something in particular, you have to have the following:

• An understanding of the physics of light

• A model for the materials with which light interacts, and for the process of
interaction

• A model for the way we capture light (with either a real or a virtual camera,
or with the human eye) to create an image

• An understanding of how modern display technology produces light

• An understanding of the human visual system and how it perceives incom-
ing light

• And an understanding of a substantial amount of mathematics used in the
description of many of these things

The difficulty with a bottom-up approach to this material is that you have
to learn a great deal before you make your first picture; many reasonable stu-
dents will ask, “Why don’t I just grab something from the Web, run it, and then
start tinkering until I get what I want?” (The answer is “You can do that, but it
will probably take longer for you to get to the end result than if you try to have
some understanding first.”) As authors, we have to contend with this tension. Our
approach is to tell you a few basic things about each of the items above—enough
so that you know, as you start making your first pictures, which things you’re doing
are approximations and which are correct—and then take you through some very
effective approximate approaches to making pictures. Only then do we return to
the higher-level goal of understanding the ideal and how we might approach it.

1.13.1 Light
Chapter 26 describes the physics of light in considerable detail. Right now, we
rely on your intuitive understanding of light and lay out some basic principles that
we’ll refine in later chapters.

• Light propagates along straight-line rays in empty space, stopping when it
meets a surface.

• Light bounces like a billiard ball from any shiny surface that it meets,
following an “angle of incidence equals angle of reflection” model, or
is absorbed by the surface, or some combination of the two (e.g., 40%
absorbed, 60% reflected).



ptg11539634

1.13 Building Blocks for Realistic Rendering: A Brief Overview 27

• Most apparently smooth surfaces, like the surface of a piece of chalk, are
microscopically rough. These behave as if they were made of many tiny,
smooth facets, each following the previous rule; as a result, light hitting
such a surface scatters in many directions (or is absorbed, as in the mirror-
reflection case mentioned in the preceding bulleted item).

• A pinhole in a flat sheet of material admits a bundle of light rays, all of
which pass through or very near to the center of the pinhole.

• A pixel of a camera, or one of the cells in the eye that detects light, sums up
(by integration) all the light that arrives at a small area over a small period
of time. The value of the integral is the sensor response that corresponds to
how much total light, based on the number of incident photons, the pixel
(or cell) “saw.”

• A pixel of a display can be adjusted to emit light of a specified intensity
and color.

That’s it! This is enough of a model of light to produce very realistic pictures.
Each of the bulleted items above is only approximately correct, but each is cor-
rect enough for a great many purposes. With them in hand, three big challenges
remain. First, we need some data structures for representing the surfaces, cam-
era, and lights in a scene. Second, we need an algorithm for evaluating all of the
light bounces and integration. Third, and most important, both the data structures
and the algorithm have to be efficient. Nature uses about 1021 photons per square
meter per second to produce images of scenes lit by the sun; even if computers
were a billion times more powerful than they are today, we still couldn’t afford
to write loops or data structures that actually simulate the motion of every single
photon.

1.13.2 Objects and Materials
Our initial assumption about objects is that they are composed of materials that
either reflect or absorb light (or do both, in varying amounts) at their surfaces.
We assume that air does neither—light simply passes through it. And we ignore,
for the time being, materials that transmit light, like water and glass, and to some
degree, materials like skin.

Because we assume that light only interacts with the surfaces of materials,
we represent objects by their surfaces, which are in turn generally represented by
polyhedra with triangular faces. Because the edges between faces have no surface
area, we ignore them and treat all light–object interactions as happening at the
interior of triangles. Each triangular facet T of a polyhedron lies in some plane,
and there’s a unit vector n perpendicular to this plane that points away from the
object and into the air (or empty space); we call this the normal vector to the
triangle T . If the polygonal object approximates the original surface well, then
this normal vector approximates (and is often treated as) the surface normal to
the original surface, or a vector perpendicular to the surface at some particular
point (see Figure 1.17).

For a perfectly reflective surface like a mirror (a specular surface), light that
arrives10 in a direction � and hits the triangle T is reflected in the �n-plane, with

10. There are two possible choices for describing the light arriving at a surface: Either
record the direction of travel of the photons (the transport-centered view), or record
the direction from the surface point to the light (the reflection-centered view). For now,
we’ll use � for the former; many papers use L for the latter.
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Figure 1.17: A semitransparent smooth surface and a normal vector to it (red), with a
polygonal approximation (white) within, and a normal vector to the polygonal mesh at a
corresponding point (green).

the angle between the outgoing vector and n being the same as the angle between
� and n.

For other surfaces, incoming light scatters in many directions.
For completely diffuse surfaces, light scatters in every direction (Figure 1.18)

but the brightness of the reflected light varies in proportion to the absolute value of
the dot product11 |� · n|, that is, the cosine of the angle between the surface normal
and the incoming light direction.12 So a surface that faces the light appears bright
from wherever one sees it, while a surface that’s tilted a bit away from the light
appears dimmer. This kind of scattering was described by Lambert long before the
development of computer graphics. As a precondition for scattering, the surface
must be facing the light, that is, � · n < 0. (This Lambertian reflectance model
is discussed further in Chapters 6 and 27.)

,

Figure 1.18: Light arrives trav-
eling in direction �; it’s reflected
in all directions. For a source
of fixed brightness, the intensity
of the reflected light is greatest
when � is perpendicular to the
surface.

For somewhat shiny surfaces, the appearance of the surface depends on your
viewpoint; if you look at a surface in a well-lit room and move your head back and
forth, you may see highlights move on the surface. This can be modeled, with an
empirically decent fit, by saying that the reflected light is in proportion to (n · h)k

for some exponent k, where h is computed from the average of the vector−� from
the surface to the light and the vector e from the surface to the eye, by adjusting
that vector to have unit length, that is:

h =
e− �

‖e− �‖ . (1.4)

This model of scattering is due to Phong [Pho75] and Blinn [Bli77], and has been
widely used in graphics.

For surfaces in general, the reflected light is a combination of the diffuse,
somewhat shiny, and specular cases.

11. The dot product is reviewed in Section 7.6.4.
12. This description is so vague that it’s almost meaningless; to make it sensible, we need

to discuss how we measure light brightness (a term we’re using informally here), which
is quite subtle. For now, you should just imagine that brightness is measured from zero
to one in some unstated units.
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1.13.3 Light Capture
The sensor in a camera and the human eye both respond to light in a similar way:
They accumulate light energy for some period of time and then report that accu-
mulated energy. In the case of the sensor, the time period is determined by the
shutter opening; in the case of the cell in the eye, the cell sends a signal when
the accumulated light reaches some level, so the frequency of signals is propor-
tional to the arriving light intensity. Simulating such a sensor (or cell) therefore
involves computing an integral of the incoming light over the area of the sensor.
Writing down an analytic solution to this integral for any but the simplest scenes
is impractical. For more interesting scenes, we have to perform numerical integra-
tion. That necessarily introduces some error, but it also opens up a vast array of
computational options for trading quality against time and space. We must approx-
imate the integral by numerical integration, which involves evaluating the inte-
grand at several places (this is called sampling) and then combining these samples
to estimate the overall value. The simplest possible version of this approach is to
evaluate the incoming light at the sensor center only, and multiply this sample by
the area of the sensor to estimate the overall incoming light integral. If the incom-
ing light intensity changes slowly as a function of position, this works quite well;
if it changes rapidly, the single-sample approximation introduces many kinds of
errors.

1.13.4 Image Display
Modern displays typically are divided into small squares called pixels; each small
square13 is individually addressable and can be told to send out a mix of red, green,
and blue (RGB) light by specifying a triple of numbers (r, g, b), each between 0
and 255. The amount of light emitted from the square is not directly proportional
to the numbers; instead, it follows a relation so that equal differences in numbers
correspond approximately to equal differences in perceived brightness. You’ve
probably encountered the use of RGB triples in some photo-editing program; typ-
ically the RGB values each occupy a single byte, and hence are represented by
numbers between 0 and 255, and sometimes are written as two-digit hexadeci-
mals. Thus, a color expressed as 0xFF00CC can be read as “Red is FF, which
is 255, there’s no green at all, and there’s CC worth of blue, which is 204 deci-
mal; that means it’s a somewhat reddish purple.” It isn’t obvious what any given
color triple or set of hexadecimal values will yield as a hue; color specification is
discussed in Chapter 28.

1.13.5 The Human Visual System
Our eyes respond to light that arrives at the lens, passes through the pupil, and
reaches the cornea. While direct sunlight is almost 1010 times as bright as the
faint light in a dark bedroom, our eyes can detect and process both, but not at
the same time. In fact, our eyes adapt to the general illumination around us, and
once adapted we can distinguish light intensities that range over a factor of about
1000: The faintest thing we can distinguish from black is presenting light to our
eyes that’s about 1/1000 the intensity of the thing we perceive as being “as bright

13. The term “pixel” is also used to denote one of the values stored in an image, or a small
physical portion of a sensor. There are subtle differences in these denotations, and you
should not say “a pixel is a little square” [Smi95].
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as possible.” Our perception of brightness is not linear, however: If you print thin
black stripes on a piece of white paper so that only 20% of the white paper remains
visible, it will reflect only 20% of the light that falls on it. But if you place that
piece of paper next to a blank piece of the same type of white paper and view both
from a distance great enough that the stripes are not visible, the printed paper will
appear about half as bright as the unprinted paper. Roughly speaking, for an eye
adapted to a given level of light, reducing the incoming light intensity by 80% will
make the light seem half as bright.

Our visual system organizes the patterns of light and darkness that arrive at
the eye and attempts to make sense of them. The visual system is extremely well
adapted to bad input: We can take a black-and-white photograph and add noise
(grayscale variation) to it and still be able to recognize the objects in it. We can
recognize our homes even in a rainstorm. We can recognize a friend in bright sun-
light or in a dark room. In fact, our visual systems are so well tuned to seeing
shapes that even when we are watching the static patterns on an old analog tele-
vision, we occasionally believe we see recognizable patterns. One consequence
of this adaptation to bad input is that any stimulus that triggers approximately
the right responses leads to recognition: A photograph of a pair of dice, a pencil
drawing of them, and a bad computer graphics rendering of them all generate in
our brains the perception that we are seeing a pair of dice. This has proved to be
a blessing and a curse for the field of computer graphics; it means that even very
bad approximations of reality make images that we recognize, so it’s easy to get
started in graphics. On the other hand, it’s also easy to believe that the bad approx-
imations are correct because they “look good,” and this can impede progress in the
field. The adaptability of the visual system has two effects. First, hacking away at
graphics can be very satisfying, because even initial results look good enough,
on account of adaptability, to make you believe you’re getting somewhere. And
second, results that appear visually very close to perfect may in fact be generated
by programs that are not at all correct, because your visual system is hiding errors
from you. Hacking away is really fun (and we encourage you to do it at every
opportunity), but it may lead you away from your real goal. We have therefore
structured this book so that you get the satisfaction of making fairly good pictures
right away, but you also learn, as you do so, the limitations of the techniques that
you’re learning so that you’re better prepared for the more advanced techniques
you’ll encounter later. If you find yourself asking, “But won’t that look wrong in
such-and-such a case?” the answer is almost surely “Yes!,” and the later chapters
will help you understand how to address these limitations.

To return to the importance of perception, in resource-critical applications an
understanding of the perception process lets us make informed decisions about
what kinds of approximations we can make while still retaining visual fidelity.

1.13.6 Mathematics
Rather than trying to briefly introduce all the mathematics involved in computer
graphics, we’ll introduce the ideas as they arise; most of them are not directly rele-
vant to a basic understanding of graphics, but rather to the efficient representation
or approximation of things we use in graphics. However, after giving you a first
taste of 2D and 3D graphics in Chapters 2 and 6, we will review in Chapter 7
some of the mathematics that we assume is familiar to our readers, in part to
establish the notational conventions that we’ll follow throughout the book. You
can write graphics programs with only a knowledge of arithmetic and algebra, but
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to really work with things in a reasonable way, you’ll want to be familiar with the
following:

• Trigonometry

• Operations on small vectors and matrices (which we already discussed in
this chapter)

• Integrals and derivatives

• And some geometric and topological notions, like continuity, the geometry
of surfaces in three dimensions, and curvature

All of this is made easier by a working knowledge of basic linear algebra, which
we assume throughout the book.

1.13.7 Integration and Sampling
The most fully developed area of computer graphics is photorealistic
rendering—producing an image from some model of a scene and the lights in
it. Each pixel of a rendered image can be thought of as representing a measure-
ment of the light passing along certain rays in the scene, just as each pixel of a
digital photograph is a measurement of all the light that hit one small region of
the photo sensor in the camera. This can be seen as an integral of the incoming
light energy over that region. Since it’s impractical to evaluate most such integrals
exactly, we end up using approximations (e.g., the rule we mentioned earlier that
states that the “integral is approximately the value at the center of the region, mul-
tiplied by the area of the region”). In doing this, we’ve replaced the desired value
by a value computed from a single sample; we could have used more samples,
but in practice, we’ll always be using a finite number of samples, and using these
to estimate some integral. Thus, the process of sampling, and of approximating
integrals through samples, is central to rendering.

Every measurement in science is an act of statistics: Our measuring device
may function differently from day to day; the thing we measure may be just one
of many possible, nearly equivalent, measurements (think of measuring the tem-
perature in a beaker of water; you only really measure it in one part of the beaker).
In the case of rendering, the statistic is some integral; the random variable is the
set of samples that we use to evaluate it, and the result is that a given rendering of a
scene usually depends on some random number generator: Multiple renderings of
the same scene with the same software will produce different values for any par-
ticular pixel. This distribution of values will typically cluster around some mean
value, which one hopes is correct, and will have some variance. If the variance of
adjacent pixels is uncorrelated, it may appear in the output as speckle, or visual
noise. If it’s correlated, it may appear as jaggies—a staircaselike representation of
what should be a smooth diagonal line. This means that assessing the quality of
an algorithm also entails statistical measurements.

1.14 Learning Computer Graphics
The subject matter of computer graphics is no longer linearizable in any reason-
able way. Each topic ends up so intertwined with all others that there’s no way
to decide which one to discuss first, and any presentation ends up with succes-
sive disclosures: a first description, a later correction, a further improvement,
etc. Readers, naturally, like books to be organized; when you want to review
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something about polygon meshes, you hope there will be a chapter that has all
the polygon-mesh information in it, for instance. Then again, a book that treated
each subject in its entirety before moving on to any other would have you make
your first pictures at the end of an entire semester of study, at the earliest!

We have compromised: In this introductory chapter, we’ve given you some
very informal information about light, perception, the representation of shapes,
and the interaction of light with shapes so that you can understand how to make
some pictures right away. When you do make pictures with these sloppy models of
things, the pictures won’t be very good. Sure, your picture of a boxy robot will be
recognizable as a boxy robot, but in looking at it critically, you’ll soon realize that
there’s no way you could make a real robot shape (from cardboard, tape, and paint,
say) and photograph it with a real camera and end up with anything like the picture
you’ve made. It’s not photorealistic. But making those first pictures will give you
experience with creating models, with certain applications of linear algebra, with
polygonal meshes, and with some key ideas for rendering, all of which will make
you better able to understand and experiment with richer or more accurate models
of light, reflection, objects, etc., as you encounter them.

The next few chapters introduce Microsoft’s Windows Presentation Founda-
tion (WPF), a framework for writing graphics programs, some basic ideas from
rendering, an introduction to visual perception, and quite a lot of mathematics
that’s useful throughout graphics.

Chapter 2 introduces the 2D aspects of WPF to get you familiar with drawing
simple 2D shapes. WPF uses a declarative specification of graphics—in contrast
to more traditional APIs—which is valuable both because it provides a higher
level of abstraction and because its interpretive nature makes it very useful for
rapid prototyping. Modeling in WPF is based on a hierarchical representation of
shapes that’s widely used in almost all graphics APIs.

Chapter 3 describes a program for making very simple pictures of very simple
3D shapes so that you can understand from the start how simple graphics can be.
Chapter 4 describes two WPF programs that you’ll use when conducting experi-
ments in graphics throughout much of the remainder of the book.

Chapter 5, which covers perception, describes some of the most pertinent
aspects of the human visual system.

In Chapter 6 we present an introduction to the 3D aspects of WPF, which
also informally introduces the geometric tools used for shape modeling, and the
application of the simple models of how light and objects interact that we have
described in this chapter. It also continues the description of hierarchical models
of compound shapes introduced in Chapter 2.

With the experience of using both the 2D and 3D versions of WPF, you will be
prepared for Chapter 7’s review of mathematical essentials for graphics. Chapters
8 through 13 introduce the linear algebra that lies at the core of a great deal of
computer graphics, together with certain data structures that represent the topol-
ogy and geometry from which we make images.

Following this, we again discuss (in Chapter 14) the conventional approxima-
tions to reality—the models—that are used in many basic graphics systems. We
describe models of light, of shape, of material, and of how light is transported in a
scene, in each case with more detail than in this chapter. This rather long chapter
not only prepares you for the later material on rendering, shape representation,
and material representation, but also introduces many topics that are essential for
understanding legacy programs.
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With an understanding of basic models of light and reflection, we can
make preliminary versions of two renderers: a ray tracer and a rasterizer
(Chapter 15). Doing so introduces the key ideas and challenges of each kind
of rendering; because our preliminary versions are so basic, Chapter 15 also
introduces some of the problems of each, and of the conventional approximations
to reality.

In Chapter 16 we discuss various graphics systems, comparing and contrasting
them with WPF; by the end of that chapter, you will have encountered much of
what was traditionally taught in computer graphics.

The remaining chapters in the book discuss images and signal processing,
light, color, materials, texturing, and rendering; cover some interaction techniques,
geometric algorithms and data structures that support rendering as well as many
interaction methods, and various approaches to modeling shapes; and introduce
animation and graphics hardware. These chapters are less sequential and more
interdependent than the chapters preceding them. You can skip forward and read
about splines and subdivision surfaces if you want to learn how to create interest-
ing shapes, but you’ll find references to the ideas of convolution and filtering that
were introduced in Chapters 17 through 19. You can read about some of the best
available rendering algorithms in Chapter 32, but you’ll find that the discussion
relies heavily on the discussion of rendering theory in Chapter 31. This should not
prevent you from taking this approach; for many students, it’s the desire to make
the practical algorithms work that motivates them to learn more about the theory,
and if you read Chapter 31 with particular questions in mind, you may find the
material easier to absorb.
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Chapter 2

Introduction to 2D
Graphics Using WPF

2.1 Introduction

Having presented a broad overview of computer graphics, we now introduce a
more immediately practical topic: application programming using a commercial
graphics platform. After an overview of the history of 2D platforms, we examine
a specific one, Microsoft Windows Presentation Foundation (WPF).

We chose WPF because it is one of the few modern graphics platforms that
support both 2D and 3D applications, providing user-interface as well as rendering
functionality using a consistent programmer’s model. In addition, it is an excellent
rapid-prototyping platform for experimenting with the principles of 2D and 3D
graphics. Its Extensible Application Markup Language (XAML) is a declarative
language (in the style of HTML) that provides a concise way to construct scenes,
and XAML interpreters provide virtually instantaneous testing/debugging cycles.
This allows us to introduce you rapidly to a number of fundamental concepts in
2D and 3D graphics and to let you experiment almost immediately without a time-
consuming learning curve.

Of course, declarative languages have their limitations, particularly in support
for conditionality and flow of control, so WPF developers can extend XAML with
procedural code written in an imperative programming language such as C#. This
hybrid strategy is simplified by WPF’s cross-language consistency; for example,
each XAML element type corresponds to a WPF class, and the element’s proper-
ties correspond to data members of that WPF class.

Our dedication of a chapter to 2D may surprise you. First, we feel that
many 3D concepts—such as specification and transformation of geometric shapes,
hierarchical modeling, and animation—are easier to understand when initially
presented in a 2D context, free of complex 3D-related requirements such as sim-
ulating the interaction between lights and materials. Second, we note the dom-
inance of 2D graphics in applications across all platforms from smartphone to

35
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tablet to desktop, and the common integration of 3D renderings together with 2D
user interfaces and visualizations such as maps, schematics, data grids/charts, etc.

This chapter and its 3D continuation (Chapter 6) form a sequence, so a good
understanding of this material and comfort with XAML are a prerequisite to
Chapter 6. Thus, we strongly suggest that you perform the associated exercises
using the accompanying lab software, which presents small XAML programs
inside an integrated editor/interpreter providing instant feedback, thus reducing
the learning curve and making experimentation easy and stimulating.

2.2 Overview of the 2D Graphics Pipeline
In Chapter 1, we saw that a graphics platform is an intermediary between the appli-
cation and the display hardware, providing functionality related to both output
(instructing the GPU to display information) and input (invoking callback func-
tions in the application to respond to user interaction). To prepare for a discussion
of the various types of graphics platforms, let’s take a high-level view of a 2D
graphics application, shown in Figure 2.1.

It is rare that an application’s purpose is only to paint pixels. Usually some
data—which we call the application model (AM)—is being represented by the
rendered image and manipulated via user interaction with the application. In a
typical desktop/laptop environment, the application is running in conjunction with
a window manager, which determines the area of the screen allocated to each
application and takes care of the display of and interaction with the window
chrome (i.e., the title bar, resize handles, close/minimize buttons, etc., shown
in pale green in Figure 2.1). The application’s focus is on drawing inside the
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Figure 2.1: Graphics platform as an intermediary between a 2D application and display-
device screen-space resources allocated by the window manager.
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client area (red in Figure 2.1) that is the interior of the window, by making calls
to the graphics platform API. The platform responds to those calls by driving the
GPU to produce the desired rendering.

Typically the application uses the client area for two purposes: Some por-
tion of the area is devoted to the application’s user-interface (UI) controls, and
the remaining area contains the viewport that is used to display the rendering of
the scene, which is extracted or derived from the AM by the application’s scene
generator module. As you can see in the diagram, the UI generator module that
generates the user interface is distinct from, and operates very differently from, the
scene generator, even though they both use the underlying 2D platform to drive
the display.

Our use of the terms “scene” and “viewport” for 2D may surprise those with
experience in 3D graphics, in which those terms have 3D-centric usages. In the 2D
domain, we use the term “scene” analogously to mean the collection of 2D shapes
that will be rendered to create a particular view of the AM. Note that the 2D
scene generator corresponds directly to the scene generator for 3D applications
that feeds a 3D platform to produce a rendering. Similarly, our 2D use of the
term “viewport”—to mean an area in which the scene’s rendering will appear—is
consistent with 3D usage.

Consider an interior-design application that displays and enables editing of a
furniture layout. The application model records all data associated with a given
furniture layout, including nongraphical data such as manufacturer, model num-
ber, pricing, weight, and other physical characteristics. Some of this information
is needed to produce a graphical view of the model, and some is used only for
nongraphical functionality (e.g., purchasing). It is the task of the application’s
scene generator to traverse the application model, extract or compute the geomet-
ric information relevant to the desired scene, and invoke the graphics platform API
to specify the scene for rendering.

The scene may contain a visualization of all the geometry described in the
application model or it may represent a subset (e.g., showing only one room of
the house being designed). Moreover, analogous to multiple views of databases,
the application may be able to provide multiple views using different presenta-
tion styles for the same geometric information (e.g., showing furniture either as
outlines or as shapes filled with textures simulating fabric or wood).

In the above example, the application model is inherently geometric. However,
in other applications the AM may contain no geometric data at all, as is typical
in information visualization applications. For example, consider a database stor-
ing population and GDP statistics for a set of countries. In this case, the scene
will often be a chart or graph, derived from the AM by the scene generator and
designed to present these statistics in an intuitive visualization. Other examples
of data visualization applications include organizational charts, weather data, and
voting patterns superimposed on a map background.
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2.3 The Evolution of 2D Graphics Platforms

Graphics platforms have experienced the same low- to high-level evolution
(depicted in Figure 2.2) that has taken place in programming languages and soft-
ware development platforms. Each new generation of raster graphics platform has
offered an increasingly higher level of abstraction, absorbing common tasks that
previously were the responsibility of the application.
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2.3.1 From Integer to Floating-Point Coordinates

We’ll start with the state of the art of raster graphics in the 1980s and early 1990s.
The typical popular 2D raster graphics platform (e.g., Apple’s original QuickDraw
and Microsoft’s original GDI) provided the ability to paint pixels on a rectangular
canvas, using an integer coordinate system. Instead of painting individual pixels,
the application painted a scene by calling procedures that drew primitives that
were either geometric shapes (such as polygons and ellipses) or preloaded rect-
angular images (often called bitmaps or pixmaps, used to display photos, icons,
static backgrounds, text characters extracted from font glyph sets, etc.). Addition-
ally, the appearance of each geometric primitive was controlled via specification
of attributes; in Microsoft APIs, the brush attribute specified how the interior of
a primitive should appear, and the pen attribute controlled how the primitive’s
outline should appear.

For example, the simple clock image shown in Figure 2.3 is composed of four
primitives: an ellipse filled using a solid-gray brush, two polygons filled using a
solid-navy brush for the clock’s hour and minute hands, and a red-pen line segment
for the second hand.

In the original GDI’s simplest-usage scenario, the application uses integer
coordinates that map directly (one-to-one) to screen pixels, with the origin (0,0)
located in the upper-left corner of the canvas, and with x values increasing toward
the right and y values increasing toward the bottom.

The application specifies each primitive via a function (e.g., FillEllipse)
that receives the integer geometry specifications along with appearance attributes.
(The GDI source code for this example application is available as part of the online
material for this chapter.) The specification is reminiscent of plotting on graph
paper; for example, the geometry of the gray circular clock face is passed to the
FillEllipse function via this data pair:

Center point: (150,150)

Bounding box (smallest axis-aligned enclosing rectangle): upper left at
(50,50), dimensions of 200 × 200

Figure 2.3: Clock scene with GDI
coordinate-system overlay.

How large will this clock face appear when rendered onto the output device?
There’s no definitive answer to that question. The displayed size depends on the
resolution1 (e.g., dots per inch, or dpi) of the output device. Suppose our clock
application was originally designed for a 72dpi display screen. If the application
were tested on a higher-resolution device (e.g., a 300dpi printer or screen), the
clock’s image would be smaller and possibly illegible. Conversely, if the target
display were changed to the small, low-resolution screen of an early-generation
smartphone, the image might become too big, with only a small portion of it
visible.

The raster graphics community solved this problem of resolution depen-
dence by borrowing ideas long present in vector graphics, using floating point to
support alternative coordinate systems that insulate geometry specification from
device-specific characteristics. In Section 2.4, we’ll introduce and compare two
such coordinate systems: physical (based on actual units of measurement like

1. This use of the term “resolution” contrasts with another common usage, the total num-
ber of display pixels (e.g., “LCD monitor with 2560 × 1440 resolution”).
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millimeters and typographic points) and abstract (with application-determined
semantics).

2.3.2 Immediate-Mode versus Retained-Mode
Platforms

The evolution from integer-based specification to floating point was shared by
all major 2D graphics platforms, but eventually a “split” occurred, creating two
architectures with different goals and functionality: immediate mode (IM) and
retained mode (RM).

The former category includes platforms (like Java’s awt.Graphics2D, Apple’s
Quartz, and the second-generation GDI+) that are thin layers providing efficient
access to graphics output devices. These lean platforms do not retain any record of
the primitives specified by the application. For example, when the FillEllipse

function of GDI+ is invoked, it immediately (thus the term “immediate mode”)
performs its task—mapping the ellipse’s coordinates into device coordinates and
painting the appropriate pixels in the display buffer—and then returns control to
the application. At its most basic, the programmer’s model for working in IM is
straightforward: To effect any change in the rendered image, the scene generator
traverses the application model to regenerate the set of primitives representing the
scene.

The lean nature of IM platforms makes them attractive to application develop-
ers who want to program as close to the graphics hardware as possible for maxi-
mum performance, or whose products must keep as small a resource footprint as
possible.

But other application developers look for platforms that offload as many
development tasks as possible. To satisfy these developers, RM platforms retain
a representation of the scene to be viewed/rendered in a special-purpose database
that we call a scene graph (discussed further in Chapters 6 and 16). As shown in
Figure 2.4, the application’s UI and scene generators use the RM platform’s API
to create the scene graph, and can specify changes incrementally by simply edit-
ing the scene graph. Any incremental change causes the RM platform’s display
synchronizer to automatically update the rendering in the client area. Because it
retains the entire scene, the RM platform can take on many common tasks con-
cerning not only the display, but also user interaction (e.g., pick correlation, the
determination of which object is the target of a user click/tap, as described in
Section 16.2.10).

App client area

Graphics application

Retained-mode
graphics platform

Application
model

Display
synchronizer

Scene
graph

API: Create
graphics
objects

API: Modify
scene
graph

UI
generator

Scene
generator

Figure 2.4: Schematic of a graph-
ics application atop a retained-
mode platform storing a scene
graph.

All RM packages can be traced back to Sketchpad [Sut63], Ivan Sutherland’s
pioneering project from the early 1960s, which launched the field of interactive
graphics. Sketchpad supported the creation of master templates, which could be
instantiated one or more times onto the canvas to construct a scene. Each template
was a group of primitives and possibly instances of subordinate templates, bundled
to compose a single unified graphics object. Each instance could be geometrically
transformed—that is, positioned, oriented, and scaled—but in all other respects,
the instance retained the appearance of its master, and changes to the master would
immediately be reflected in all instances.

These key ideas from Sketchpad survive in all modern RM packages, mak-
ing these platforms excellent foundations for creating user interfaces. UI con-
trols (also known as widgets) are templated objects that, as an integrated collec-
tion, have an inherent, consistent look and feel. In this commonly used phrase,
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the word “look” refers to the graphical design/appearance (size, shape, font,
coloring, drop shadow, etc.). The word “feel” pertains to the controls’ dynamic
behaviors, typically in response to user interaction, which can be subdivided
into built-in automated feedback behaviors and semantic/application behaviors.
Examples of built-in feedback include the graying-out of a control that is cur-
rently disabled, the glow highlighting of a button when the pointer enters its
region, and the display of a blinking cursor when the user is typing into a
control’s text box. These feedback behaviors often include nice-looking anima-
tions, performed by the platform with no application involvement. Of course,
the application must get involved when the user initiates an application action
(e.g., clicks a button to submit a form for processing). To spark such activity, the
RM simply invokes the application callback function attached to the manipulated
control.

Most RM UI platforms also include layout managers that spatially arrange
controls in a pleasing and organized way, with consistent dimensions and spacing,
and that provide for automatic revision of the layout in reaction to programmatic
or user-initiated changes in the size or shape of the UI region.

A well-designed set of UI controls requires significant work by a team with
expertise in graphic and UI design; it is no small feat to construct a pleasing and
intuitive UI framework. Rendering and laying out the UI, and handling user inter-
action, make up a large portion of the work involved in building an interactive
application, so it should be no surprise that the use of RM UI platforms, which
offload many tasks as described above, is pervasive. Indeed, it would be hard to
find a modern 2D application that does not use an RM UI platform to handle
virtually all of its needs for interaction through components such as menus, but-
tons, scroll bars, status bars, dialog boxes, and gauges/dials.

In contrast with retained mode’s high popularity in the 2D domain, its use in
3D is less pervasive. Even though 3D RM platforms offer powerful features—
such as simplifying hierarchical modeling and rigid-body animation—these
features carry a high resource cost. We address this topic in greater detail in
Chapter 16.

2.3.3 Procedural versus Declarative Specification

Traditionally, each graphics platform has provided one of the following tech-
niques to developers for the purpose of specification of user interfaces and/or
scenes:

• Procedural code written in an imperative programming language (typ-
ically, but not necessarily, object-oriented), interfacing with the display
devices via any of dozens of graphics APIs, such as Java Swing, Mac OS
X Cocoa, Microsoft WPF or DirectX, Linux Qt or GTK, etc.

• Declarative specification expressed in a markup language, such as SVG
or XAML

Software
engineers

Designers/
artists

Development tools

XAML

API

Figure 2.5: WPF application/
developer interface layers.

One of WPF’s distinguishing characteristics is that it offers developers
a choice of specification techniques, as shown in Figure 2.5 and described
below.
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2.3.3.1 Lowest Layer: Object-Oriented API
The core layer is a set of classes providing all WPF functionality. Program-
mers can use any of the Microsoft .NET languages (e.g., C# or Visual Basic)
or Dynamic Language Runtime languages (such as IronRuby) to specify appli-
cation appearance and behavior at this level. A WPF application can be created
via this layer alone, but the other two layers provide improvements in developer
efficiency and convenience, and the ability to include designers and implementers
in less technical roles.

2.3.3.2 Middle Layer: XAML
The middle layer provides an alternative way to specify a large subset of the
functionality of the API, via the declarative language XAML, whose syntax is
readily understandable by anyone familiar with HTML or XML. Its declarative
nature facilitates support for rapid prototyping via interpreted execution, and it is
more conducive to use by nonprogrammers (in the same way that HTML is more
approachable than PostScript).

2.3.3.3 Highest Layer: Tools
As with any language, there is a learning curve associated with adopting XAML.
The highest layer of the WPF application/developer interface comprises the util-
ities that designers and engineers can use to generate XAML, including tools for
drawing graphics (e.g., Microsoft Expression Design or Adobe Illustrator), build-
ing 3D geometric models (e.g., ZAM 3D), and creating sophisticated user inter-
faces (e.g., Microsoft Expression Blend or ComponentArt Data Visualization).

2.4 Specifying a 2D Scene Using WPF

As explained earlier, WPF provides for both the construction of user-interface
regions and the specification of what we call “2D scenes.” The former is beyond
the scope of this textbook, so our focus here is on the specification of 2D scenes.

2.4.1 The Structure of an XAML Application

Figure 2.6: WPF-based clock
application.

Throughout Section 2.4, we’ll be building a simple XAML application that dis-
plays the analog clock shown in Figure 2.6.

If you are familiar with HTML syntax, XAML should be instantly accessi-
ble. An HTML file specifies a multimedia web page by creating a hierarchy of
elements—with the root being <HTML>, its children being <HEAD> and <BODY>, all
the way down to paragraph and “text-span” elements for formatting, such as <B>

for boldface and <I> for italics. Other elements provide support for media presen-
tation and script execution.

An XAML program similarly specifies a hierarchy of elements. However, the
set of element types is distinct to XAML, and includes layout panels (e.g., a Stack-
Panel for arranging tightly packed controls/menus, and a Grid for creating spread-
sheetlike layouts), user-interface controls (e.g., buttons and text-entry boxes), and
a rectangular “blank slate” scene-drawing area called the Canvas.

In a fully formed application, like the one shown in Figure 2.1, the applica-
tion’s appearance is specified via a hierarchy of layout panels, UI controls, and
a Canvas element acting as the viewport displaying the application’s scene; how-
ever, for our first simple XAML example, let’s just create a standalone Canvas:
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1
2
3
4
5
6
7
8

<Canvas
xmlns=
"http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x=
"http://schemas.microsoft.com/winfx/2006/xaml"

ClipToBounds="True"
>
</Canvas>

The setting of ClipToBounds to True is almost always desired; it simply
ensures that the canvas is bounded, that is, it does not display any data outside
its assigned rectangular area.

We have not specified the size of the canvas, so its size will be controlled
by the application in which it appears. For example, the lab software for
Sections 2.4 and 2.5 (provided as part of the online materials) includes a “split-
screen” layout with the WPF canvas in one pane, vertically stacked on top of a
second pane displaying the XAML source code. The lab uses WPF layout man-
agers to allocate space between the two panes, and uses a draggable-separator
control to allow the user to exert some control over that allocation.

You will note that XAML has syntactic idiosyncrasies (such as the strange
xmlns properties in the Canvas tag shown above), but they rarely obscure the
semantics of the tags and properties, which are well named for the most part.
If you choose to investigate the more cryptic parts of the syntax, just use the
lab software: Click on any maroon-highlighted XAML code to request a brief
explanation.

2.4.2 Specifying the Scene via an Abstract
Coordinate System

Our sample application’s scene—the simple clock—is a composite of several
objects: the face and three individual hands. The face object is a single ellipse
primitive filled with a solid-gray color. Two of the clock hands (minute and hour)
are navy-filled polygons, similar in shape but differing in size. Finally, there is the
red line forming the second hand.

Note that thus far in our simple scene graph, all the components are primitives,
but in a more complex scenario (introduced in Section 2.4.6), there may be a
hierarchy in which components may be composed of lower-level subcomponents.

With our list of components in hand, we now refine our specification by detail-
ing the precise geometry of each primitive.

Take a blank sheet of graph paper, choose and mark the (0,0) origin, and draw
the x-axis and y-axis—the result is the 2D Cartesian coordinate system. One of
its characteristics is that any two real numbers form an (x, y) coordinate pair that
uniquely identifies exactly one point on the plane.

But there’s a limit to the lack of ambiguity of a graph-paper coordinate system.
People asked to draw a 4×4 square on graph paper will all produce a square shape
encompassing 16 grid squares, but these shapes will not have an identical areas in
terms of physical units (e.g., cm2), because there is no single standard grid/ruling
size for graph paper.

Indeed, a sheet of graph paper is, by itself, an abstract coordinate system
in that it does not describe positions or sizes in the physical world. Using an
abstract system for geometry specification is perfectly fine—in fact, we are about
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to construct our clock using one. But the “real world” must be reckoned with
when it’s time to display such a scene, and at that point the abstract system must
be mapped to the display’s physical coordinate system. We’ll describe that map-
ping shortly, but first let’s start the process of geometric specification. We will use
the abstract coordinate system shown in Figure 2.7.

x

y

(0,0)

Figure 2.7: Abstract coordinate
system.

Which primitive should we draw first? By default, the order of specification
does matter, so an element E, constructed after element D, will (partially) occlude
D if they overlap.2 The term “two-and-a-half dimensional” is sometimes used
to describe this stacking effect.

Thus, we should work from back (farthest from the viewer) to front (closest to
the viewer), so let’s start with the circular clock face.

x

y

(0,0)

Top-left:
(210,210)

H
eight: 20

Width: 20

Figure 2.8: Defining the clock
face’s geometry using our ab-
stract coordinate system.

Figure 2.8 shows a simple single-circle design for the face. We’ve arbitrarily
chosen a radius of ten graph-paper units, because that size is convenient on this
particular style of graph paper. This decision is truly arbitrary; there is no one
correct diameter for this clock, since the coordinate system is abstract.

The syntax for specifying a solid-color-filled circular ellipse is:

1
2
3
4
5

<Ellipse
Canvas.Left=... Canvas.Top=...
Width=... Height=...
Fill=...

/>

where Canvas.Left and Canvas.Top specify the x- and y-coordinates for the
upper-left corner of the primitive’s bounding box, and Fill is either a standard
HTML/CSS color name or an RGB value in hexadecimal notation (#RRGGBB—
e.g., #00FF00 being full-intensity green).

We now are ready to construct a WPF application that places this primitive on
a canvas:

1
2
3
4
5
6

<Canvas ... >
<Ellipse
Canvas.Left="-10.0" Canvas.Top="-10.0"
Width="20.0" Height="20.0"
Fill="lightgray" />

</Canvas>

(Note: In this and the remaining XAML code displays in this chapter, we high-
light the new or modified portion for your convenience.)

Although this specification is unambiguous, it’s not obvious what this ellipse
will look like when displayed. What is the on-screen size of a circle of diameter
20 units, where our unit of measurement was determined by an arbitrary piece of
graph paper?

Figure 2.9: Rendered result of
revision V.01 of our XAML clock
application, exhibiting problems
with both image size and posi-
tioning.

We suggest you run the lab software (available in the online resources), and
select V.01 to see the result of the execution of the above XAML. A screenshot
of the rendered result (shown in Figure 2.9, along with a mouse cursor for scale)
shows that the result is not acceptable for two reasons: The gray circle is too small
to act as a usable clock face, and we are only seeing one quadrant.

The schematic view shown in Figure 2.10 depicts this ellipse specification,
with the left side (light-pink box) representing the abstract geometric data that

2. This default order-dependent stacking order can be overridden by the optional attribute
Canvas.ZIndex.
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Application coordinate system

Circle of 20 3 20 units, centered at origin x

The visible quadrant
of a WPF canvas

Figure 2.10: Schematic view of our application’s initial specification of the clock-face
ellipse.

lives in the application with no physical representation, and the red arrow repre-
senting the rendering process that produces the displayed image.

Here, we are seeing the effect of delivering abstract coordinates directly to the
graphics platform. It is OK to use abstract coordinates to design your scene, but
when it’s time to worry about how it will appear on the display, we must consider
(1) characteristics of the display device, such as size, resolution, and aspect ratio;
(2) how we want the rendered image to be sized and positioned in consideration of
the form factor’s constraints; and (3) how to specify the geometry to the graphics
platform in order to achieve the desired result.

In Section 2.6, we will discuss these considerations in the scope of full-featured
applications. Here, for our simple clock application, let’s assume that the canvas
will be displayed on a laptop screen, that the clock should be an “icon-sized” 1
inch in diameter, and that the clock should appear in the upper-left corner of the
canvas. How can we revise our application to achieve this desired appearance?

2.4.3 The Spectrum of Coordinate-System Choices

We now have a specific physical size (one inch in diameter) in mind for our clock
scene. So, should we reconsider our decision to design the geometry using an
abstract coordinate system? To answer this question, let’s consider two alternative
coordinate systems we might choose for scene description.

We could consider using an integer-pixel-based coordinate system like that
described in Section 2.3.1, but that is not appropriate given our need to control the
displayed size of our scene, independent of screen resolution.

Alternatively, we can consider designing our scene using the WPF canvas
coordinate system, which is “physical”—the unit of measurement is 1/96 of an
inch—and not resolution dependent. For example, an application can draw a rect-
angle of size 1/8 × 1/4 inches by specifying a width of 12 units and a height of
24 units.3 Thus, we can create a circle that is 1 inch in diameter by specifying the
diameter as 96 units.

Although direct use of the WPF coordinate system does provide resolution
independence, we do not recommend that strategy, for there are two other kinds
of independence worthy of pursuit.

• Software-platform independence: By using the coordinate system of a
specific graphics platform, we are unnecessarily tying portions of our appli-
cation code to that platform, potentially increasing the work that would be
necessary to later “port” the application to other platforms.

3. There are limitations to physical coordinate systems. Perfect accuracy in the sizes of
displayed shapes cannot be guaranteed due to dependencies on disparate parts, includ-
ing the device driver and the screen hardware.
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• Display-form-factor independence: The display screens on today’s
devices come in a huge variety of sizes and aspect ratios (also known as
form factors). To ensure compatibility with a large variety of form factors,
from phone to tablet to desktop, a developer should keep scene geometry
as abstract as possible and nail down the geometry at runtime using logic
that considers the current situation (form factor, window size, etc.). For
example, in deciding on a 1-inch diameter for our clock, we were thinking
about icons on a laptop form factor; we might well choose a different opti-
mal size for a smartphone device. An abstract coordinate system allows for
runtime decision making on actual physical sizing. For further discussion
on this important topic, see Section 2.6.

We now see that the use of an abstract coordinate system is advantageous in
several ways, so let’s continue with that strategy.

There’s a further advantage to the abstract coordinate system: It’s often easier
to specify a shape using small numbers—for example, to say, “I want a disk that
goes from−1 to 1 in x and y, and then I want to move it to be centered at (37, 12),”
rather than saying, “I want a disk that goes from 36 to 38 in x and from 11 to 13
in y.” In the former specification, it’s easy to see that the radius of the disk is 1,
and that it’s a circular disk rather than an elliptical one. This idea—that it’s easier
to work in some coordinate systems than in others—will arise again and again,
and we embody it in a principle:

THE COORDINATE-SYSTEM/BASIS PRINCIPLE: Always choose a coordi-
nate system or basis in which your work is most convenient, and use transfor-
mations to relate different coordinate systems or bases.

2.4.4 The WPF Canvas Coordinate System

At this point, you have been informed of only one characteristic of WPF canvas
coordinates. Figure 2.11 demonstrates the other important features: The origin
(0,0) lies at the upper-left corner of the canvas, the positive x-axis extends to the
right, the positive y-axis extends downward, and the canvas is “bounded” on all
four sides (represented by the light-blue rectangle in the figure). That is to say,
each WPF canvas has a definitive width and height (usually controlled by layout
logic as described previously). In the common case of ClipToBounds=”True”,
these bounds are strictly enforced, so any visual information lying outside the
bounds is invisible.4

With this information, we can now return to developing our clock applica-
tion. Let’s prepare by reviewing the sequence of “spaces” through which the
scene’s geometry travels from abstract to physical to device, shown in Figure 2.12.
We already discussed the application and WPF canvas coordinate systems, and in
Section 2.4.5 we show you how the former system is mapped to the latter. So here
we’ll briefly address the final transition shown in the sequence, the mapping of the
WPF canvas to actual pixels on the display device. This part of the pipeline is not

4. As we implement this application throughout Section 2.4, we’ll assume the canvas
is large enough to show the entire clock, but Inline Exercise 2.5 will invite you to
investigate what happens when it’s not.
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Figure 2.11: A WPF canvas of size 168 × 96 units, with ClipToBounds=True. Note the
hardwired location of the origin and the hardwired semantics of 96 units to the physical
inch. On the display device, when rendered by an accurate device driver, this canvas will
appear with a size of 1. 75×1 inches. The canvas is bounded on all four sides and displays
only the visual information lying within the bounds.

fully under application control; rather, it is performed by a collaboration between
a number of modules: the WPF layout managers (created and configured by the
application to control the location and size of all components in the client area,
including the canvas), the window manager (controlling the location and size of
the application’s client area), and the low-level rasterization pipeline (composed
of a sequence of modules such as an immediate-mode package like DirectX or
OpenGL, a low-level device driver, and the graphics hardware itself).

Unbounded

Meaning of
units chosen
by the
application

Bounded

Each unit 5
1/96 of an
inchz

WPF canvas
providing the
viewport
within the
application’s
client area

Application
coordinate system

WPF canvas
coordinate system

Figure 2.12: Progression from an
application’s abstract coordinate
system, then into the WPF can-
vas coordinate system, and finally
onto the display device as a part
of the application window’s client
area.

In the mid-1980s, the standard device-independent unit (DIU) for both Mac
and Windows was 1/72 of an inch, corresponding to the dpi of typical display
monitors at the time. But research by Microsoft revealed that the typical com-
puter user sits one-third farther away from a display screen than from a printed
page. Thus, to ensure that text rendered at a given point size appears roughly
equivalent on screen and on paper, the DIU for GDI was scaled up by 33% to
96dpi.

Keep in mind that graphics software platforms do not have control over the
accuracy of display hardware, so the DIU is only an approximation. A line of
length 96 units on a WPF canvas will appear to be one inch long on an “ideal
device,” but not necessarily on an actual display screen.

2.4.5 Using Display Transformations

At last, we now understand why our clock face, as defined in our abstract system,
produces the unacceptable result of Figure 2.9.

• The circle has a radius of 20 units. We now know that 20 units on the WPF
canvas is less than 1/4 inch, unacceptably small.

• The circle is specified with its center at the origin. We now know that the
WPF canvas shows only data in the (+x,+y) quadrant, so most of our circle
is hidden.
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To repair our application, we will set up a display transformation to
mathematically adjust the entire scene’s geometry from the abstract application
coordinate system to the WPF canvas system in a way that (a) makes the clock
completely visible and (b) makes it the right size.

First, consider the need to resize. Our clock’s diameter is 20 units in our
abstract system. We would like that to map to 1 inch on the WPF canvas; thus,
we want it to map to 96 WPF units. Consequently, we want to multiply each
graph-paper coordinate by 96/20, or 4.8, on both axes. To request that the canvas
perform this scale transformation, we attach a RenderTransform5 to the canvas
to specify a geometric operation that we want to be applied to all objects in the
scene:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

<Canvas ... >

<!- THE SCENE ->
<Ellipse ... />

<!- DISPLAY TRANSFORMATION ->
<Canvas.RenderTransform>
<!- The content of a RenderTransform is a TransformGroup

acting as a container for ordered transform elements. ->
<TransformGroup>
<!- Use floating-point scale factors:

1.0 to represent 100%, 0.5 to represent 50%, etc. ->
<ScaleTransform ScaleX="4.8" ScaleY="4.8"

CenterX="0" CenterY="0"/>
</TransformGroup>

</Canvas.RenderTransform>

</Canvas>

Note that when you specify a 2D scale operation, you must specify the center
point, which is the point on the plane that is stationary—all other points move
away from (or toward) the center point as a result of the scale. Here, we use the
origin (0, 0) as the center point.

The effect of our new revision (V.02 in the laboratory) is depicted in
Figure 2.13. Clearly, we have solved the size problem, but still only one quad-
rant of the circle is present on the visible portion of the canvas.

Thus, we want to add another transform to our canvas, to move our scene to
ensure full visibility. We will use a translate transformation:

1 <TranslateTransform X="..." Y="..."/>

How many units do we need to translate? Since our scale transform has
ensured that our circle has a 1-inch diameter on the WPF canvas, and we’re seeing
only one-half of the circle on each dimension, we need to move the circle a half-
inch down and a half-inch toward the right (i.e., 48 canvas units on each axis) to
ensure full visibility.

5. WPF’s use of the term “RenderTransform” for a transformation is somewhat mis-
leading since it implies it is used only to control display. A better name would be
“GeometricTransform” since this element type performs 2D geometric transforma-
tions to achieve a wide variety of purposes, for both modeling and display control,
as is demonstrated throughout this chapter.
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Figure 2.13: Schematic view of our application now enhanced with a scale transform.

Here is the revised XAML (V.03 in the lab); its effect is depicted in
Figure 2.14.

1
2
3
4
5
6
7
8
9

10
11
12

<Canvas ... >
<!- THE SCENE ->
<Ellipse ... />

<!- THE DISPLAY TRANSFORM ->
<Canvas.RenderTransform>
<TransformGroup>
<ScaleTransform ScaleX="4.8" ScaleY="4.8" ... />
<TranslateTransform X="48" Y="48" />

</TransformGroup>
</Canvas.RenderTransform>

</Canvas>

NOTE: Animated versions of all of the application schematic views in this
chapter are provided as part of the online material.

To review: We have used a sequence of transforms, attached to the canvas,
to perform what we call a display transformation to execute the geometric adap-
tations necessary to make our scene have the desired spatial appearance on the
display device. The display transformation maps our application coordinate sys-
tem to WPF’s canvas coordinate system; we indicate this goal state by highlighting
the coordinate system’s representation with a drop shadow.

Application coordinate system

Circle of 20 3 20 units, centered at origin

WPF canvas coordinate system

Scale transform
by 4.8 on both axes

Translate transform
x: 148 y: 148

x

y

Application coordinate system

Circle of 20 3 20 units, centered at origin

Scale transform
by 4.8 on both axes

Figure 2.14: Schematic view of our application now enhanced with a two-step display-
transform sequence (scale and translate).
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Because the display transformation is attached to the canvas, it operates on
the entire scene, no matter how large or complex. At this point our scene is a
single primitive, but as we continue developing this application and the scene
becomes more complex, the value of this display transformation will be more
apparent.

Inline Exercise 2.1: Performing the scale before the translate is one way to
accomplish this display transformation; however, the reverse order will work
as well, with different values for the numeric properties. Using the laboratory,
visit V.03 and edit the XAML code to reverse the order of the two transforms.
First, change the order without adjusting the numeric properties, notice how the
rendered scene changes, and then change the properties as needed to restore the
desired target rendering.

Inline Exercise 2.2: Note that the circle is “hugging” the top and left side of
the canvas. Edit V.03 to move the circle 1/8 of an inch to the right and 1/8
of an inch down, to give it some “breathing room.” Here again, the correct
numeric values will depend on the order of the transforms.

Inline Exercise 2.3: Edit V.03 to add a small blue dot to act as the 12:00
marker.

In Inline Exercise 2.1, you noted the order dependency of a transformation
sequence: Scale followed by translate doesn’t yield the same results as translate
followed by scale. The reason for the order dependency is based on laws of linear
algebra. As you will discover in Chapter 12, each transformation, like rotation and
translation, is represented internally by a matrix. Sequencing a number of trans-
formations is implemented via matrix multiplication, a noncommutative opera-
tion. Thus, it should be no surprise that the order of sequential transformations is
important.

2.4.6 Creating and Using Modular Templates

These same transformation utilities are also used for the purpose of construct-
ing a scene by positioning and adjusting copies of reusable stencils called control
templates.6 Unlike physical templates that cannot change their size, graphics tem-
plates can be rotated, translated, and scaled.

y 5 21

y 5 9

x

y

Figure 2.15: Geometry of our
clock-hand template.

Consider how we might approach defining the hour and minute clock hands.
We would like both to share a similar shape, but we’d like the hour hand to be
shorter and stouter, a variation that can be achieved via a nonuniform scaling of
the same polygon that generates the minute hand. So let’s consider how we might
construct and place those two hands by defining and using the template shown in
Figure 2.15.

6. WPF’s use of the word “control” in its template nomenclature refers to a typical use of
this kind of template: the construction of reusable custom GUI controls.
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The WPF element type Polygon is used to create an outlined or filled
polygon via a sequential (either clockwise or counterclockwise) specification of the
vertices. Here is the XAML specification of our canonical clock hand, to be filled
with a navy color; note the use of spaces to separate coordinate pairs. Also notice
that we define the clock hand using our application’s abstract coordinate system.

1
2
3

<Polygon
Points="-0.3, -1 -0.2, 8 0, 9 0.2, 8 0.3, -1"
Fill="Navy" />

We want this Polygon element to be a reusable template, defined once and
then instantiated (added to the scene) any number of times. A control template
is specified in the resource section of the root element (in this case, the Canvas

element). Each template must be given a unique name (using the x:Key attribute)
so that it can be referenced for the purpose of instantiation.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

<Canvas ... >

<!- First, we define reusable resources,
giving each a unique key: ->

<Canvas.Resources>
<ControlTemplate x:Key="ClockHandTemplate">
<Polygon ... />

</ControlTemplate>
</Canvas.Resources>

<!- THE SCENE ->
<Ellipse ... />

<!- THE DISPLAY TRANSFORM ->
<Canvas.RenderTransform> ... </Canvas.RenderTransform>

</Canvas>

If we were to execute our application now, with this new template specifica-
tion, we would not detect any change. Still, only the gray clock face would be
visible. We must instantiate this template to actually change the displayed scene.

To do so, we add a Control element—which instantiates by reference to the
ClockHandTemplate resource—to our scene, resulting in revision V.04:

1
2
3
4
5
6
7
8

<!- THE SCENE ->

<!- The clock face ->
<Ellipse ... />

<!- The minute hand: ->
<Control Name="MinuteHand"

Template="{StaticResource ClockHandTemplate}"/>

How will this new revision of our application look on the screen? Because
the display-transformation sequence is attached to the entire canvas, the minute-
hand polygon will be subjected to the entire display sequence—in essence, it
will “tag along” with the circle through the transformation sequence, as shown in
Figures 2.16 through 2.18.
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Application coordinate system

Hand template in its original shape/size x

Figure 2.16: Minute hand subjected to the display-transform sequence (1 of 3).
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Figure 2.17: Minute hand subjected to the display-transform sequence (2 of 3).
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Figure 2.18: Minute hand subjected to the display-transform sequence (3 of 3).

Thus far, it may seem that our use of a template did nothing but make the
XAML more complicated. After all, we could have simply specified a Polygon

after specifying the Ellipse. But now, as we build the hour hand—and later, when
you perform the suggested exercises—you will appreciate this template strategy.

We will now construct the hour hand via the same approach—instantiating the
template—but we are going to make two adjustments.

First, we want to adjust its shape to distinguish it from the minute hand. To
do so, we attach a scale transformation to the instance. Although we used scale
transforms earlier in this chapter, here we pursue a different goal. Whereas our
previous use of a transform sequence was to control our scene’s size and place-
ment on the output device—a display transformation—here we are using scaling
to construct a component of the scene—what we call a modeling transformation.
This distinction between two uses of transformations has meaning to us as devel-
opers, but is unknown to the underlying platform since the same mechanism—
RenderTransform—is used for both. (It’s a “what-for” distinction, not a “how-to”
distinction.)

Second, to make it easy to distinguish between the two clock hands when the
full scene is composed, we want to adjust the scene so that they don’t both lie on
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the y-axis overlapping each other. Thus, we are going to rotate the hour hand 45◦

clockwise, so the clock will show the time of 7:30. To do so, we need the third
WPF transformation type, RotateTransform:

1 <RotateTransform Angle=... CenterX=... CenterY=... />

To instantiate the hour hand, we use the same Control tag we used for the
minute hand; however, we attach a RenderTransform to this instantiation to per-
form our modeling transformation sequence. This results in the code shown in
revision V.05 in the lab.

1
2
3
4
5
6
7
8
9

<!- The hour hand: ->
<Control Name="HourHand" Template="{StaticResource ClockHandTemplate}">

<Control.RenderTransform>
<TransformGroup>
<ScaleTransform ScaleX="1.7" ScaleY="0.7" CenterX="0" CenterY="0"/>
<RotateTransform Angle="45" CenterX="0" CenterY="0"/>

</TransformGroup>
</Control.RenderTransform>

</Control>

Note that to specify a rotation, you must provide not only the amount of rota-
tion (clockwise, in degrees), but also the center of rotation, which is the point
around which the rotation is to occur. One of the nice features of our custom
coordinate system is that (0,0) represents the center of the clock, so the origin
conveniently serves as the center of rotation for the clock hands (and also as the
center point for the scaling operation).

Our scene’s XAML specification now has two uses of RenderTransform ele-
ments: one acting as a modeling transformation (built from two basic transforma-
tions) to “construct” the hour hand, and one acting as the display transformation
that maps the entire scene to the canvas for display.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

<Canvas ... >
<!- RESOURCES ATTACHED TO THE CANVAS ->
<Canvas.Resources>
<ControlTemplate x:Key="ClockHandTemplate">
<Polygon ... />

</ControlTemplate>
</Canvas.Resources>

<!- THE SCENE ->
<!- The clock face: ->
<Ellipse ... />
<!- The minute hand: ->
<Control Name="MinuteHand"

Template="{StaticResource ClockHandTemplate}"/>
<!- The hour hand: ->
<Control Name="HourHand"

Template="{StaticResource ClockHandTemplate}">
<Control.RenderTransform>

The modeling transform for the hour hand should be here.
</Control.RenderTransform>

</Control>
<!- THE DISPLAY TRANSFORM ->
<Canvas.RenderTransform>

The display transform for the scene should be here.
</Canvas.RenderTransform>

</Canvas>
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Let’s watch the hour hand’s progress through the modeling transformation. In
Figure 2.19, we see the hand template instantiated with its original geometry; the
hand’s image is tiny, since this is prior to display transformation, so our schematic
includes a magnification callout for clarity.

The first modeling transform is a nonuniform scale that produces the desired
shorter, wider shape. The effect of this transformation is the desired hour-hand
shape, as shown in Figure 2.20.

The second modeling transformation rotates it into the desired 7:30 location,
as shown in Figure 2.21.

The hour hand is now ready to be exposed to the display transformation. It
effectively “tags along” with the other members of the scene (clock face and
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Figure 2.19: Instance of hand template, prior to modeling transform.
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Figure 2.20: Instance of hand template, transformed into hour-hand shape.



ptg11539634

54 Introduction to 2D Graphics Using WPF

Scale transform
x by 1.7 / y by 0.7

Rotate transform
clockwise 45 degrees

Scale transform
by 4.8 on both axes

Translate transform
x: 148 y: 148

y

x

Magnified
view

Application coordinate system

Hand template in its original shape/size

Application coordinate system

Instance “remodeled” into 7:30 hour hand

WPF canvas coordinate system

Scale transform
x by 1.7 /x y by 0.7

f

Scale transform
byy 4.8 on both axes

Translate transform
x: 148 y: 148

AppAppliclicatiationon coocoordirdinatnate se systystemem

Hand template in its original shape/size

WPF canvas coordinate system

Purpose:
Modeling

Purpose:
Display

H

H
Figure 2.21: Final result of modeling transform that constructs an hour hand at the 7:30
position.

minute hand) through the display-transformation sequence. The result is the full
clock image, depicting the time of 7:30. Note that this chapter’s online resources
include an animation showing the complete operation of this sequence of model-
ing and display transformations.

Inline Exercise 2.4: To ensure your complete understanding of how we’ve
built the entire static clock scene, launch an XAML development environment
and start with just a blank canvas. Add all the XAML code necessary to build
a clock scene showing the time of 1:45. Add a 12:00 dot if you wish.

Inline Exercise 2.5: When using the WPF canvas in the recommended manner
(ClipToBounds=“True”), visual information that would lie outside the canvas’s
bounds is hidden; that is, the image is “clipped” to the canvas boundary.
(a) To see what happens when the canvas is too small to show the entire clock
image, use your window manager to radically reduce the size of the window in
which the lab software runs.
(b) Jump ahead to read Section 2.6, which describes a couple of the ways
a full-featured application might adapt to situations in which the canvas is
forced to be too small to show the entire scene. Think about how an application
could use WPF display transformations to implement either the zoom-out or
the pan/scroll solutions presented in that section.

Inline Exercise 2.6: Construct a thin, red-colored second hand by creating a
new resource template with its own distinct polygonal shape. Instantiate it on
top of your solution to Inline Exercise 2.4 to test your work. Our solution is in
the lab (V.06).
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Inline Exercise 2.7: The more complex a template is, the more value its
reusability provides. Add some additional visual elements to the clock-hand
template (e.g., a thin line bisecting it longitudinally), or give it a more com-
plex shape . . . and watch how its instances automatically adapt to show the
template’s new definition.

Hint: The ControlTemplate will complain if you put more than one prim-
itive inside it, so you’ll need to wrap its contents in a Canvas element. (Indeed,
Canvas is used for multiple purposes, including acting as a general-purpose
wrapper around multiple primitives.) Don’t put any attributes in the Canvas

start tag for this usage.
Our use of this simple clock-hand template is a very basic, single-level

example of hierarchical modeling, which is a sophisticated technique for
constructing highly complex objects and scenes. See Chapter 6 for a proper
introduction to, and example of, this technique.

2.5 Dynamics in 2D Graphics Using WPF

A retained-mode architecture supports the implementation of simple dynamics;
the application focuses on maintaining the scene graph (including keeping it in
sync with the application model if one is present), and the platform carries the
burden of keeping the displayed image in sync with the scene graph. In this sec-
tion, we examine two types of dynamics available to WPF applications:

• Automated, noninteractive dynamics in which 2D shapes are manipulated
by animation objects specified in XAML

• And traditional user-interface dynamics, in which methods written in pro-
cedural code (callbacks) are activated by user manipulation of GUI con-
trols, such as buttons, list boxes, and text-entry areas

2.5.1 Dynamics via Declarative Animation

WPF provides the ability to specify simple animations without procedural code,
via XAML animation elements that can force object properties to change using
interpolation over time. The application creates an animation element, connects
it to the property to be manipulated, and specifies the animation’s characteristics:
starting value, ending value, speed of interpolation, and desired behavior at ter-
mination (e.g., that the animation should be repeated when the ending value is
reached). Lastly, the application specifies what event should trigger the start of
the animation. Once set up, the animation element works automatically, without
the need for intervention by the application.

Virtually every XAML element property can be the target of an animation.
Examples include the following.

• The origin point of a shape (e.g., the upper-left corner of an ellipse) can be
manipulated by an animation element to make the shape appear to vibrate.

• The fill-color, edge-color, and edge-thickness properties of a shape prim-
itive can be manipulated by an animation element to perform feedback
animations, such as glowing or pulsing.
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• The angle property of a rotation transform can be manipulated by an ani-
mation element to make the affected objects rotate.

That last example is of interest to us as clock builders. We can use three ani-
mation elements, one for each hand, to provide for the clock’s movement.

Let’s look at the current status of our hour hand’s modeling transform, as
designed previously.

1
2
3
4
5
6

<Control.RenderTransform>
<TransformGroup>

<ScaleTransform ScaleX="1.7" ScaleY="0.7" />
<RotateTransform Angle="45"/> <!- for 7:30 ->

</TransformGroup>
</Control.RenderTransform>

The instance transform already contains a RotateTransform placing the hand
into a 7:30 position. It would be best to have 12:00 be the hour hand’s “normal-
ized” default position, now that we’re looking into adding time semantics to our
application, so let’s change that rotate transform:

1
2

<!- Rotate into 12 o’clock default position ->
<RotateTransform Angle="180"/>

Additionally, to prepare for automated manipulation of the hand’s position,
let’s add another RotateTransform and give it a tag (ActualTimeHour) to allow
its manipulation by an animator. With these two changes, the TransformGroup

becomes this:

1
2
3
4
5
6
7

<TransformGroup>
<ScaleTransform ScaleX="1.7" ScaleY="0.6" />
<!- Rotate into 12 o’clock default position ->
<RotateTransform Angle="180"/>
<!- Additional rotation for animation to show actual time: ->
<RotateTransform x:Name="ActualTimeHour" Angle="0"/>

</TransformGroup>

Now, let’s look at the declaration of the animation element that will rotate the
hour hand. WPF provides one animation element type for each data type that one
might want to automate. To control a rotation’s angle, which is a double-precision
floating-point number, use the element type DoubleAnimation:

1
2
3
4
5
6
7

<DoubleAnimation
Storyboard.TargetName="ActualTimeHour"
Storyboard.TargetProperty="Angle"
From="0.0" To="360.0" Duration="1:00:00.0"
RepeatBehavior="Forever"

/>

The animation is connected to the hour hand through the setting of the
TargetName and TargetProperty attributes, which point to the Angle property
of the target RotateTransform element. The From and To attributes determine the
range and direction of the rotation, and Duration controls how long it should take
to move the property’s value through that range. Duration is specified using this
convention:

1 Hours : Minutes : Seconds . FractionalSeconds
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The RepeatBehavior="Forever" setting ensures that the clock hand will con-
tinue moving as long as the application is running; as soon as the value reaches
the “To” destination, it “wraps around” to the “From” value and continues the
animation.7

You may well wonder about the accuracy of the actual animation, considering
how precise the specifications are. Will the animation operate if the CPU is
under heavy load or is insufficiently powered?

Although the smoothness of the animation may suffer (become “jumpy”) when
the CPU is stressed, the image will keep up with where it needs to be at any
given time. The animation engine works in an absolute way—newly calculat-
ing where the property values should be at the present time—instead of in a
relative way based on accumulating deltas. Thus, even if the application has
been denied adequate CPU time for a long period, the image will jump to
the correct state when the application next receives sufficient CPU cycles for
image refreshing.

The final step is to install the animation in the XAML code. We want the
animation to start as soon as the clock face is made visible. Thus, we create an
EventTrigger and use it to set the Triggers property of the canvas. A trigger
must specify what type of event launches it (in this case, as soon as the canvas’s
content has been fully loaded) and what action it performs (in this case, a set
of three simultaneous animation elements, encapsulated into what WPF calls a
Storyboard):

1
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3
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11
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23

<Canvas ... >

The specification of the clock scene should be located here.

<Canvas.Triggers>
<EventTrigger RoutedEvent="FrameworkElement.Loaded">

<BeginStoryboard>
<Storyboard>
<DoubleAnimation
Storyboard.TargetName="ActualTimeHour"
Storyboard.TargetProperty="Angle"
From="0.0" To="360.0"
Duration="01:00:00.00" RepeatBehavior="Forever" />

Two more DoubleAnimation elements should be located
here to animate the other clock hands.

</Storyboard>
</BeginStoryboard>

</EventTrigger>
</Canvas.Triggers>

</Canvas>

7. Other available behavior types include reverse motion (i.e., “bouncing back”) and sim-
ply stopping (for “one-shot” motions).
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Revision V.07 of the laboratory shows this animated clock, but its XAML has
been modified to make the hour hand move unnaturally fast to make it easier to
notice and test the animation’s movement. We recommend the following exercises
to those who want to test their understanding of this section.

Inline Exercise 2.8: Study the XAML code of revision V.07, and then do the
following.

a. The minute hand is currently instantiated into the scene with no modeling
transformation. Add the necessary tagging to attach a transform group to it
and install the two rotation transforms (one to place it in the default 12:00
position, the other to facilitate animation). Add the necessary tagging to
the storyboard to animate it to rotate once per minute.

b. Set up animation of the second hand similarly.

c. Repair the animation of the hour hand so that it is accurate.

d. If you’d like to demo the clock to a friend, manually change the “default
position” rotate transformations to initialize the hands to better approxi-
mate the actual time at your location, and then commence execution and
watch the clock keep accurate time.

e. The ultimate solution for the clock-initialization problem is to use pro-
cedural code to initialize the clock. If you have access to Visual Studio
software and tutorials, take this XAML prototype and “productize” it by
adding initialization logic to create a fully functional WPF clock applica-
tion that shows the correct local time.

Inline Exercise 2.9: For a more thorough exercise in template-based model-
ing and animation, visit the online resources to download instructions for the
“Covered Wagon” programming exercise.

2.5.2 Dynamics via Procedural Code

Obviously, there is a limit to the richness of an application built using XAML
alone. Procedural code is necessary for the performance of processing, logic,
database access, and sophisticated interactivity. WPF developers use XAML for
what it’s best suited (scene initialization, resource repository, simple animations,
etc.), and use procedural code to complete the specification of the application’s
behavior. For example, in a real clock application, procedural code would be used
to determine the correct local time, to support alarm features, to respond to user
interaction, etc.

2.6 Supporting a Variety of Form Factors

The wide variety of raster display devices—ranging from small smartphone
screens to wall-size LCD monitors—poses a challenge to applications. These
problems are similar to the ones faced by a desktop application when its window’s
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size is decreased beyond a certain reasonable limit. In both cases, the application
needs to adapt to changes in form factor.

A well-designed application uses logic to examine its current form factor and
adapt its appearance as needed. Let’s look at adaptation strategies for both of the
key areas in a typical application: its UI area and its scene-display area.

When the screen area allocated for a set of UI controls becomes limited, it is
rarely wise to adapt by zooming out (scaling down) the controls. The usability of
UI controls, and the user’s reliance on “spatial memory” for quick access to com-
monly used controls, are adversely affected by such a technique. An application
can instead respond by elision (e.g., hiding controls that are less often used) or by
rearrangement of the layout.

An example of the latter is shown in the three-part Figure 2.22. Part (a) shows
the menu bar and toolbar in their optimal layout. If the window’s width is reduced
significantly, the bars are clipped at the right side, as shown in part (b), and “expan-
sion” buttons labeled "�" are revealed to provide access to the menus and controls
that had to be hidden. Part (c) shows the result of the use of an expansion button
to reveal the remainder of the toolbar.

Figure 2.22: Example of auto-
mated UI layout adaptation in a
Windows application.

Figure 2.23: Example of auto-
mated scene adaptation in a pop-
ular PDF viewer.

A different set of strategies should be considered for scene display when the
viewport’s size is restricted. Potential solutions include the following.

• The application can zoom out (scale down) the rendering to make more of
(or all of) the scene fit within the viewport.

• The application can clip the rendering to the viewport’s boundaries and
provide an interface supporting panning (scrolling) to access any part of
the scene.

These choices are by no means mutually exclusive, and applications often
employ a combination of both scaling and clipping; an example, the Adobe Reader
thumbnail pane, is shown in Figure 2.23. In this example, the selected document
is a long PDF document; think of it as a very tall and narrow scene, one stan-
dard page width in width, and 136 standard page heights in height. This applica-
tion uses a different approach for handling height versus width. For the former, it
"clips" the scene and shows only a few pages at a time, providing scrolling fea-
tures for navigation. For the latter, it uses a zoom-out/scale-down strategy to adapt
the scene so that its width exactly matches the width of the pane. The user can
choose to widen the thumbnail pane, thus increasing the thumbnails’ width, and
reducing the intensity of the downscaling, making the thumbnail more "readable".

In both of these example adaptations, the application is responsible for the
logic to determine the policy to use for a particular form factor/screen size, but the
WPF platform provides much of the mechanism needed to implement the policy.
For example, WPF’s UI layout tools simplify UI adaptations like the one described
above. And, for scene adaptations, transformations are of great service: Scaling
facilitates zooming in/out, and translation facilitates scrolling/panning effects.

2.7 Discussion and Further Reading

In this chapter we’ve seen how to create collections of primitives in the abstract
application coordinate system that is our 2D world, and how to reuse primitives as
instances of defined templates. Although we haven’t shown templates composed
of simpler templates, we will treat that common form of geometric modeling in
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our discussion of WPF 3D in Chapter 6. We have made use of transforms, both
for modeling and for mapping from abstract application coordinates to WPF can-
vas coordinates and then on to physical device coordinates; we will discuss the
underlying mathematics of transformations in subsequent chapters. Finally, we
have seen the advantages of a retained-mode graphics platform for factoring out
a number of tasks that are common to many applications, including simple ani-
mations. Most importantly, we’ve introduced the basic features of declarative pro-
gramming useful for rapid prototyping that can be conveniently extended to do
geometric modeling and rendering in WPF 3D.

We have not discussed UI callbacks in response to user interactions like button
presses. If such interactions change the thing to be drawn, we must redraw it,
just as we must change the application model’s state if they change that. Such
a callback response is now fairly standard for any program that has a UI, which
means most modern programs, and we do not discuss it further.

There’s also a second kind of interaction to consider: interaction within the
viewport, that is, the clicks and drags that the user may perform on the displayed
scene. To respond appropriately to these, we often need to know things like which
object in the scene the user clicked on, and where the drag started and ended.
Determining which object was clicked is known as pick correlation, and we dis-
cuss this in the context of 3D in Chapter 6. Responding to click-and-drag oper-
ations in a 3D scene often requires careful work with the modeling transform
hierarchy; we discuss some examples in Chapter 21.

There are a great many other graphics packages in the world, and you’re likely
to encounter at least a few as you work with computer graphics. We encourage
you to browse the Web and read about OpenGL, for instance, and Swing, to get
a sense of the variety of features provided by various packages and some of the
commonality and differences among them.
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Chapter 3

An Ancient Renderer
Made Modern

3.1 A Dürer Woodcut

In 1525, Albrecht Dürer made a woodcut demonstrating a method by which one
could create a perspective drawing of almost any shape (see Figure 3.1); in the
woodcut, two men are making a drawing of a lute. In this chapter, we’ll develop a
software analog of the method depicted by Dürer.

The apparatus consists of just a few parts. First, there is a long string that
starts at the tip of a small pointer, passes through a screw eye attached to a
wall, and ends at a small weight that maintains tension in the string. The pointer
can be moved around by one person to touch various spots on an object to be
drawn.

Second, there is a rectangular frame, with a board, which we’ll call the shut-
ter, attached to it by a hinge so that the board can be moved aside (as shown in
the woodcut) or rotated to cover the opening, as a shutter covers a window. On
the board is mounted a piece of paper on which the drawing is to be made. In the
woodcut, you can see a drawing of a lute partially made on the paper. The first
man has moved the pointer to a new location on the lute itself. The string passes
through the frame, and at the point where it does so, the second man holds a pen-
cil. The string is pushed aside, the shutter is closed, and the pencil makes a new
mark on the paper. This process is repeated until the whole drawing (in the form of
many pencil marks) emerges. The man holding the pencil must hold it very steady
for this to work, of course!

The result is a drawing of the lute consisting of many pencil marks on the
paper, which can be connected together to make a more complete drawing. The
drawing is a perspective view of the lute, showing the way the lute would look to a
viewer whose eye was at the exact point where the string passes through the screw
eye on the wall. Note that the height of the screw eye on the wall and the position

61
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Figure 3.1: Two people using an early “rendering engine” to make a picture of a lute.

of the table can both be changed, so the relative positions of the viewpoint and the
drawing should be regarded as parameters of this scene-rendering engine.

The drawing’s fidelity can be attributed to three main factors. First, light trav-
els along straight lines, so the stretched string represents a light path from the lute
to the eye. Second, the drawing of the lute sits in the scene, and when the shutter
is closed, it too sends light to the eye, from a corresponding direction. The points
of high contrast in the scene are represented by marks in the drawing, which are
themselves points of high contrast. Third, our visual system seems to “understand”
a scene largely in terms of high-contrast edges in the scene, so marks on the paper
and the real-world scene tend to provoke related responses in our visual systems.

Notice that the string always passes through the frame. If the first man moves
the pointer to a place that cannot be seen from the screw eye through the frame,
the string will touch the frame itself and bend around it. In this case, no mark is
made on the paper.

We’ll now make our description of this “rendering” process slightly more for-
mal, as shown in Listing 3.1.

Listing 3.1: Pseudocode for the Dürer perspective rendering algorithm.

1
2
3
4
5
6
7
8

Input: a scene containing some objects, location of eye-point
Output: a drawing of the objects

initialize drawing to be blank
foreach object o

foreach visible point P of o
Open shutter
Place pointer at P
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9
10
11
12
13
14
15

if string from P to eye-point touches boundary of frame
Do nothing

else
Hold a pencil at point where string passes through frame
Hold string aside
Close shutter to make pencil-mark on paper
Release string

Three aspects of this algorithm deserve note, all within the loop that iterates
over all points. First, the iteration is over visible points, so determining visibil-
ity will be important. Second, there may be an infinite number of visible points.
Third, we’ve said what to do in the event that the string hits the frame rather than
passing through the open area bounded by the frame. This is sure to happen if the
object is so large that only a part of it is visible from the screw eye through the
frame.

We’ll discuss the first issue presently; the second is addressed by agreeing to
make an approximate rendering, which we do by selecting only a finite number of
points, but choosing them so that the marks on the paper end up representing the
shape well. The process of choosing a finite number of computations to perform,
in order to best approximate a result that in theory requires an infinite number of
computations, is critical, and will arise in many places in this book. In this chapter,
we’ll render an object that is so simple that we can set this problem aside for the
time being.

The third issue—avoiding drawing points that are outside the view—is also
representative of a common operation in graphics. Generally, the process of
avoiding wasting time on things outside the view region (the part of the world
that the eye or camera can see) is called clipping. Clipping may be as simple
as observing that a point (or a whole object) is outside the view region, or it
may involve more complex operations, like taking a triangle that’s partly out-
side the view region and trimming it down until it’s a polygon completely inside
the view region. For now, we’ll use a very simple version of clipping that’s
appropriate for points only—we’ll just ignore points that are outside the view
region.

We’ve made one useful simplification: To determine whether the tip of
the pointer is inside the view region (a 3D volume), we check whether the place
where the string passes through the frame is within the paper area (rather than
the string touching the frame). The two tests are equivalent, but when it comes to
implementing them, doing a point-in-rectangle test is easier than doing a point-in-
3D-volume test.

Inline Exercise 3.1: Imagine that you can move the lute in Dürer’s
woodcut.

a. How could you move it to ensure that “touches boundary of frame” is true
for each iteration of the inner loop, thus resulting in almost all the work of
the algorithm (aside from setup costs) falling into that clause?

b. How would you move it to ensure that no work fell into that clause?

(Your answers should be of the form “Move it closer to the frame and lift it up
a little,” i.e., they should describe motions of the lute within the room.)
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Figure 3.2: A different Dürer rendering approach.

Inline Exercise 3.2: Imagine that, instead of moving the pointer at the end of
the string to points on the lute and then seeing where they pass through the
paper, the two men start with a piece of graph paper. For each square on
the graph paper, the man with the pencil holds it at the center of the square; the
shutter is then opened, and the man with the pointer moves it so that the string
passes by the pencil point and so that the end of the string is touching either
the lute, or the table, or the wall. The object being touched is noted, and when
the shutter is closed again, the man with the pencil fills in the grid square
with some amount of pencil-shading, corresponding to how dim or bright the
touched point looks: If it appears dark, the grid square is filled in completely. If
it’s light, the grid square is left empty. If it’s somewhere between light and dark,
the grid square is shaded a light grey tone. Think for yourself for a moment
about what kind of picture this produces. This approach (working “per pixel”
and finding out what’s seen through that pixel) is the essence of ray tracing,
as discussed in Chapter 14. A slightly different version of this approach, also
developed by Dürer, is shown in Figure 3.2: The graph paper is on the table; the
corresponding grid in the shutter consists of wires stretched across the shutter,
or semitransparent graph paper, and the string and pointer are replaced by the
line of sight through a small hole in front of the artist.

The renderings produced by the string-and-pointer method and the graph-
paper method are quite different. The first produces an outline of the shapes in
the scene (provided the first man chooses his points wisely). The second ignores
the scene completely in choosing what to draw, and merely assigns a grayscale
value to each grid square. In the event that the scene is very simple—that there
are few outlines in the scene—the first method is quite fast. If the scene is very
complex (imagine it consists of a bowl full of spaghetti!), then the second method,
with its fixed number of grid squares, is faster. Of course, it’s only faster because
we can, in the physical world, determine which point is visible instantaneously,
which we’ll discuss further in the next section. In general, though, many tech-
niques in graphics involve tradeoffs that are determined by scene complexity; this
is just the first we’ve encountered.

Now that we have an understanding of this basic rendering process, how can
we modernize it so that it becomes useful in computer graphics? We’ll focus on
creating the drawing, or, more accurately, we’ll create a program that models this
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method of rendering. Through this, we hope you’ll gain insight into the ways
we represent the real world in computer graphics. We start with a discussion of
visibility.

3.2 Visibility

The matter of selecting only visible points might not even have occurred to Dürer,
but it is important for us. One way for Dürer to determine whether a point P is
visible is to place the pointer on P and see whether the string runs in a straight
line to the screw eye, or has to bend around some other part of the lute or other
object to get there. In making our simplified model of the process, we’ll dis-
regard the issue of visibility determination, for the time being, not because it’s
unimportant—Chapter 36 is entirely about data structures for improving visibility
computations—but because it is both tricky in general and unnecessary for the
model we’ll be drawing in this simple renderer.

3.3 Implementation

To mimic the woodcut’s algorithm, we’ll use algebra and geometry, and a very
simple description of a very simple shape: We’ll describe a cube by giving the
locations of its six corners (or vertices), and by noting which pairs of vertices are
connected by an edge. Thus, our model of a cube can be considered a wire-frame
model, in which an object is created by connecting pieces of wire together.

To make the geometry simple, we’ll establish a particularly nice way of
measuring coordinates in the room. The origin of our coordinate system (see
Figure 3.3) will be at the screw eye on the wall, and will be denoted E (for “eye”).
The drawing frame will be in the z = 1 plane (i.e., we measure the distance from
the screw eye to the plane of the drawing frame, and choose a system of units in
which this distance is 1). The point on this plane that’s closest to the screw eye
will be called T; its coordinates are (0, 0, 1). We’ll make the y-axis vertical and
the x-axis horizontal, as shown.

The frame, within the z = 1 plane, will extend from the point (xmin, ymin, 1) to
the point (xmax, ymax, 1), where xmin < xmax and ymin < ymax, as the names suggest,
and where, for simplicity and consistency with the drawing (in which the frame
appears fairly square1), we’ll assume that the width, xmax − xmin, is the same as
the height, ymax− ymin. To be precise, two opposite corners of the frame are points
whose 3D coordinates are (xmin, ymin, 1) and (xmax, ymax, 1).

Inline Exercise 3.3: What are the coordinates of the other two corners of the
frame?

We’ll also imagine that the paper that fills the frame (when the shutter is
closed) is actually graph paper, whose lower-left corner is labeled (xmin, ymin)
and whose upper-right corner is labeled (xmax, ymax), therefore providing us with

1. The panel that fills the frame does not appear square, however; we’ll stick with square-
ness for simplicity.
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Figure 3.3: The coordinate system for the Dürer woodcut: The origin is at the screw eye,
labeled E, and the y- and z-coordinate axes are shown there. The picture frame lies in the
plane z = 1, parallel to the plane of the wall, z = 0. The x-coordinate arrow is horizontal,
lying in the plane of the wall, approximately in the direction of the shading lines on the
wall, while the z-coordinate arrow is horizontal and perpendicular to the wall. Due to the
effects of perspective, the x-direction and z-direction appear almost parallel, but pointing
in opposite directions, at the screw eye. The point T is the point in the frame of the drawing
plane (z = 1) closest to the screw eye. The z-direction points from the screw eye toward T,
making the xyz-coordinates of T be (0, 0, 1).

coordinates within the plane of the paper. Thus, to every 3D point (x, y, 1) whose
last coordinate is 1, we have associated graph-paper coordinates (x, y).

Now let’s suppose that we observe a point P = (x, y, z) of our object, as shown
in Figure 3.4; the line from P to E (the string) passes through the frame at a point2

P′ = (x′, y′, z′). We need to determine the coordinates (x′, y′, z′) from the known
coordinates x, y, and z.

In Figure 3.5, we’ve drawn two similar triangles in the x = 0 plane. The
vertices of the red triangle are (1) the point E = (0, 0, 0), (2) the projection of P′

onto the x = 0 plane, which is (0, y′, 1), and (3) the point (0, y′, 0), just below E.
The vertices of the blue triangle are (1) the point E, (2) the projection of P onto
the x = 0 plane, which is (0, y, z), and (3) the point (0, y, 0) well below E.

Similarity tells us that the ratio of the vertical to the horizontal side in the two
triangles must be equal, that is, y′/1 = y/z. A similar argument, using triangles
in the y = 0 plane (best visualized by imagining a bird’s-eye view of the scene),
shows that x′/1 = x/z, which can be simplified to give

x′ =
x
z

, (3.1)

y′ =
y
z

. (3.2)

2. The use of P and P′ to denote a point and another point associated to it can be very help-
ful in keeping the association in mind; unfortunately, most programming languages
disallow the use of primes and other such marks in variable names, so in our code, we
must use a different convention.
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E 5 (0, 0, 0)T

P 5 (x, y, z)

P9 5 (x9, y9, z9)

Figure 3.4: The point P = (x, y, z) is on our object. The string from P to the eye, E, will
pass through the window frame at some location P′ = (x′, y′, z′). Note that z′ = 1, because
we chose our coordinates to make that happen.

(0, y, 0)

(0, 0, 0)
(0, y9, 0)

(0, y, z)

(0, y9, 1)

Figure 3.5: Two similar triangles overlaid on the picture in the x = 0 plane. The vertical
edges of the small red and large blue triangles have lengths y′ and y, respectively. What
are the lengths of their horizontal edges?

We now know how to find the coordinates of P′ from those of P in general! So we
can describe our revised algorithm as shown in Listing 3.2.

Listing 3.2: Simple-implementation version of the Dürer rendering algorithm.

1
2
3
4
5
6
7
8

Input: a scene containing some objects
Output: a drawing of the objects

initialize drawing to be blank
foreach object o
foreach visible point P = (x, y, z) of o
if xmin ≤ (x/z) ≤ xmax and ymin ≤ (y/z) ≤ ymax

make a point on the drawing at location (x/z, y/z)

Let’s pause for a moment to examine this: We’ve now got the x- and
y-coordinates of the pencil marks in the picture plane. But if we are to view the
eventual picture from the location of the screw eye in the wall, the direction of



ptg11539634

68 An Ancient Renderer Made Modern

increasing x will point to our left. (The direction of increasing y will still point
up, as expected.) We could choose to plot our points on a piece of graph paper in
which we decide that x increases to the left, or we can flip the sign on x to make
it increase to the right. We’ll do the latter, because it’s consistent with the more
general approach we’ll take later. So we revise the last part of our algorithm to the
code shown in Listing 3.3.

Listing 3.3: Minor alteration to the Dürer rendering algorithm.

1
2

if xmin ≤ (x/z) ≤ xmax and ymin ≤ (y/z) ≤ ymax
make a point on the drawing at location (-x/z, y/z)

To complete our modern-day implementation, we need (1) a scene, (2) a model
of the objects in the scene, and (3) a method for drawing things.

For simplicity, our scene will consist of a single cube. Our model of the cube
will initially consist of a set containing the cube’s eight vertices. A basic cube can
be described by the following table:

Index Coordinates

0 (−0.5, −0.5, −0.5)
1 (−0.5, 0.5, −0.5)
2 ( 0.5, 0.5, −0.5)
3 ( 0.5, −0.5, −0.5)
4 (−0.5, −0.5, 0.5)
5 (−0.5, 0.5, 0.5)
6 ( 0.5, 0.5, 0.5)
7 ( 0.5, −0.5, 0.5)

Unfortunately, this cube is centered on the eyepoint, rather than being out in
the area of interest, beyond the frame. By adding 3 to each z-coordinate, we get a
cube in a more reasonable location:

Index Coordinates

0 (−0.5, −0.5, 2.5)
1 (−0.5, 0.5, 2.5)
2 ( 0.5, 0.5, 2.5)
3 ( 0.5, −0.5, 2.5)
4 (−0.5, −0.5, 3.5)
5 (−0.5, 0.5, 3.5)
6 ( 0.5, 0.5, 3.5)
7 ( 0.5, −0.5, 3.5)

3.3.1 Drawing

The vertices of a cube are indeed interesting points, but we should draw points
from all over the surface of the cube to really mimic Dürer’s drawing. On closer
inspection, however, we see that the points selected by the two apprentices lie on
what we could call “important lines” like the outline of the lute, or sharp edges
between pairs of surfaces.3 For the cube, these important lines consist of all the
points on the edges of the cube. Drawing all these points (or even a large number

3. The question of which lines in a scene are important is of considerable interest in
nonphotorealistic or expressive rendering, as discussed in Chapter 34.
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of them) might be needlessly computationally expensive; fortunately, there’s a
way around this expense: If A and B are vertices with an edge between them, and
we project A and B to points A′ and B′ in the drawing, then we can see that the
points between A and B will project to points on the line segment between A′ and
B′. We could verify this geometrically, or simply rely on the familiar experience
that photographs of straight lines always appear straight.4 So, instead of finding
many points on the edge and drawing them all, we’ll simply compute A′ and B′

and then draw a line segment between them.

Inline Exercise 3.4: The preceding paragraph suggests that we can say that
“Perspective projection from space to a plane takes lines to lines” or “takes
line segments to line segments.” Think carefully about the first claim and find
a counterexample. Hint: Is our perspective projection defined for every point
in space?

A word to the wise: The sorts of subtleties you discovered in this exercise are
not mere nitpicking! They are the kinds of things that lead to bugs in graphics
programs. Because graphics programs tend to operate on a great deal of data,
nearly every possible part of a program will often be tested in a sample execution.
Thus, bugs that might survive testing on a less demanding system will often reveal
themselves early in graphics programs.

For those who did not come up with counterexamples, we give them here.
First, for a line that passes through the eye, the perspective projection is not even
defined for the eyepoint. And the non-eyepoints of the line project to a single point
rather than to an entire line. If we agree to ignore points at which the projection is
undefined, there’s a further problem: The eye is at location (0, 0, 0), and the projec-
tion plane is parallel to the xy-plane. This means that any line segment that passes
through the z = 0 plane contains a point that cannot be projected. The projection
of such a segment will consist of two separate pieces. Convince yourself of this by
projecting the segment from ( 1

2 , 0, 1) to ( 1
2 , 0,−1) onto the z = 1 plane by hand.

In the language of projective geometry, “perspective projection takes extended
lines to extended lines, except that it is undefined on the pencil of lines containing
the projection point.”

Returning to our program, we enhance our model of the cube to include a list
of edges, described by the vertex indices of their endpoints:

Index Endpoints

0 (0, 1)
1 (1, 2)
2 (2, 3)
3 (3, 0)
4 (0, 4)
5 (1, 5)
6 (2, 6)
7 (3, 7)
8 (4, 5)
9 (5, 6)
10 (6, 7)
11 (7, 4)

4. For cameras with high-quality, nondistorting lenses anyhow!
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Figure 3.6: The labels for the vertices and edges of our cube model. Edge indices are in
circles. The eyepoint and frame from the Dürer woodcut are also included, although we
have chosen to adjust their relative positions by placing the frame in this case so that it
extends from − 1

2 to 1
2 in both x and y. Thus, we’re viewing the cube “at eye level” rather

than “from above,” as Dürer viewed the lute.
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Figure 3.7: The result of the rendering algorithm, (a) shown in place (i.e., drawn in the
frame), with rays from the eye to the four near corners of the cube shown, projecting those
corners onto the picture plane, and (b) seen directly, with the surrounding square (which
ranges from − 1

2 to 1
2 in both x and y) drawn to give context.

This enhanced model is shown in Figure 3.6.
Now let’s determine a method for drawing this enhanced representation. To

update our algorithm to a version that draws lines, we have to make a choice.
Do we iterate through the edges, and for each edge, compute where its endpoints
project, and then connect them with a line? Or do we iterate through the vertices
first, computing where each vertex projects, and then iterate through the edges,
using the precomputed projected vertices? Since each vertex is shared by three
edges, the first strategy involves three times as many projection computations;
the second involves three times as many data-structure accesses. For such a small
model, the performance difference is insignificant. For larger models, these are
important tradeoffs; the “right” answer can depend on whether the work is done in
hardware or in software, and if in hardware, the precise structure of the hardware,
as we’ll see in later chapters. We’ll use the second approach, but the first is
equally viable. The results of this approach to rendering the cube are shown in
Figure 3.7, both in 3-space and in the plane of the frame.

Furthermore, there’s another problem: When we were transforming only
points, we could perform clipping on a point-by-point basis. But now that we plan
to draw edges, we have to do something if one endpoint is inside and the other
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is outside the frame. We’ll ignore this problem, and assume that if we ask our
graphics library to draw a line segment in our picture, and the coordinates of the
line segment go outside the bounds of the picture, nothing gets drawn outside the
bounds. (This is true, for example, for WPF.) A preliminary sketch of the program
is given in Listing 3.4.

Listing 3.4: Edge-drawing version of the Dürer rendering algorithm.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Input: a scene containing one object ob
Output: a drawing of the objects

initialize drawing to be blank;
for (int i = 0; i < number of vertices in ob; i++){

Point3D P = vertices[i];
pictureVertices[i] = Point(-P.x/P.z, P.y/P.z);

}
for {int i = 0; i < number of edges in ob; i++){

int i0 = edges[i][0];
int i1 = edges[i][1];
Draw a line segment from pictureVertices[i0]

to pictureVertices[i1];
}

Finally, we have to observe that this algorithm depends on the “picture rectan-
gle” having coordinates that run from (xmin, ymin) to (xmax, ymax). We can, however,
remove this dependency by using coordinates that range from 0 to 1 in both direc-
tions, as is very common in graphics libraries. We can convert the x-coordinates
as follows. First, subtract xmin from the x-coordinates; the new coordinates will
range from 0 to xmax − xmin. Then divide by xmax − xmin, and the new coordinates
will range from 0 to 1. So we have

xnew =
x− xmin

xmax − xmin
; (3.3)

an analogous expression gives us y-values that range from 0 to 1. Because we’ve
required that xmax−xmin = ymax−ymin, we get no distortion by transforming x and
y this way: Both are divided by the same factor. The program, modified to include
this transformation, is shown in Listing 3.5.

Recall that we negated x so that the picture would be correctly oriented. When
we negate xnew, however, the resulting values will range from −1 to 0. We there-
fore add 1 to return the result to the range 0 to 1, in line 11 of Listing 3.5.

Listing 3.5: Edge-based implementation with the limits of the view square
included as parameters.

1

2
3
4
5
6
7
8
9

10
11
12

Input: a scene containing one object o, and a square
xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax in the z = 1 plane.

Output: a drawing of the object in the unit square

initialize drawing to be blank;
for(int i= 0; i < number of vertices in o; i++){

Point3D P = vertices[i];
double x = P.x/P.z;
double y = P.y/P.z;
pictureVertices[i] =

Point(1 - (x - xmin)/(xmax - xmin),
(y - ymin)/(ymax - ymin));

}
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13
14
15
16
17
18

for{int i = 0; i < number of edges in o; i++){
int i0 = edges[i][0];
int i1 = edges[i][1];
Draw a line segment from pictureVertices[i0] to

pictureVertices[i1];
}

These zero-to-one coordinates are often called normalized device coordi-
nates: They can be thought of as describing a fraction of the left-to-right or
top-to-bottom range of a display device; if the display device isn’t square, then
a coordinate of 1. 0 represents the smaller of the two dimensions. A typical desk-
top monitor might have vertical coordinates that range from 0 to 1, but horizontal
coordinates that range from 0 to 1. 33.

The normalization process—converting from the range [xmin, xmax] to the
range [0, 1]—occurs often; it’s worth memorizing the form of Equation 3.3.

Inline Exercise 3.5: Verify, in Listing 3.5, that a vertex that happens to be
located at the lower-left corner of the view square, that is, (xmin, ymin, 1),
does indeed transform to the lower-left corner of the final picture, that is, the
corresponding pictureVertex is (0, 0); similarly, verify that (xmax, ymax, 1)
transforms to (1, 1).

3.4 The Program

We’ll use a simple WPF program, based on a standard test bed described exten-
sively in the next chapter, to implement this algorithm. The resultant program is
downloadable from the book’s website for you to run and to experiment with.
For this application, the critical elements of the test bed are the ability to create
and display dots (small disks that indicate points) and segments (line segments
between dots) on a Canvas that we call the GraphPaper. Positions on our graph
paper are measured in units of millimeters, which are more readily comprehended
than WPF default units, which are about 1

96 of an inch. To make the drawing a
reasonable size, we’ll multiply our algorithmic results (coordinates ranging from
zero to one) by 100. The important parts of the program are shown in Listing 3.6,
with elisions indicated by [...].

Before you examine the code, though, we’ll warn you that this use of WPF is
very different from what you saw in Chapter 2. In that chapter, we demonstrated
the declarative aspects of WPF that are easy to expose through XAML. The test
bed uses these declarative aspects to build a window, some menus, and controls,
and to lay out the GraphPaper on which we’ll do our drawing. But the production
of actual pictures within the GraphPaper is all done in C#. That’s because for most
of the programs we’ll want to write, expressing things in XAML is either cum-
bersome or impossible (not every feature of WPF is exposed through XAML).
In general, it makes sense to use the declarative specification whenever possible,
especially for layout and for data dependencies, and to use C# whenever substan-
tial algebraic manipulations may be needed.
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Listing 3.6: C# portion of the implementation of the Dürer algorithm.

1
2
3
4
5
6
7
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

public Window1()
{

InitializeComponent();
InitializeCommands();

// Now add some graphical items in the main Canvas,
whose name is "Paper"

gp = this.FindName("Paper") as GraphPaper;

// Build a table of vertices:
int nPoints = 8;
int nEdges = 12;

double[,] vtable = new double[nPoints, 3]
{

{-0.5, -0.5, 2.5}, {-0.5, 0.5, 2.5},
{0.5, 0.5, 2.5}, ...};

// Build a table of edges
int [,] etable = new int[nEdges, 2]
{

{0, 1}, {1, 2}, ...};

double xmin = -0.5; double xmax = 0.5;
double ymin = -0.5; double ymax = 0.5;

Point [] pictureVertices = new Point[nPoints];

double scale = 100;
for (int i = 0; i < nPoints; i++)
{

double x = vtable[i, 0];
double y = vtable[i, 1];
double z = vtable[i, 2];
double xprime = x / z;
double yprime = y / z;

pictureVertices[i].X = scale * (1 - (xprime - xmin) /
(xmax - xmin));

pictureVertices[i].Y = scale * (yprime - ymin) /
(ymax - ymin);

gp.Children.Add(new Dot(pictureVertices[i].X,
pictureVertices[i].Y));

}

for (int i = 0; i < nEdges; i++)
{

int n1 = etable[i, 0];
int n2 = etable[i, 1];

gp.Children.Add(new Segment(pictureVertices[n1],
pictureVertices[n2]));

}

...
}

We begin with a few comments. First, the code is not at all efficient (e.g.,
there was no need to declare the variables x, y, and z), but it follows the algo-
rithm very closely. For making graphics programs that are debuggable, this is an
excellent place to start in general: Don’t be clever until your code works and you
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find that you need to be clever. Second, we’ve used names for all the important
things that we might consider changing, like xmin and nEdges. That’s because
most test programs like this one survive far longer than originally intended, and
get altered for other uses; symbolic names help us communicate with our former
selves (who wrote the program originally). Third, the program is not “software
engineered”: We didn’t define a class to represent general shapes, for instance—
we just used an array of a fixed size to represent one shape, the cube. That was
deliberate. The program was meant to be used, experimented with, and thrown
away (or perhaps reused in another experiment). The point of this program was to
verify our understanding of a simple concept. It’s not a prototype for some large-
scale project. Indeed, if you find yourself building something of even a modest
scale atop this framework, you’re making a big mistake: The pieces of this frame-
work were designed to make testing and debugging easy. If you run the program
and place your cursor over one of the dots, for instance, a tool-tip will appear
telling you the dot’s coordinates; the same goes for the edges. That makes sense
when you’re debugging, but by the time you’re drawing 10,000 edges, it’s a huge
amount of overhead. Remember that this framework is a test bed for experiments,
and that all the code you write within it should be considered disposable. While
this advice may seem contradictory—we’ve said to throw away code, but to code
decently because you’ll be reusing it—it reflects our experience: Even code we
intend to throw away does get reused, often for other throwaway applications!
It’s worth investing a little time to make these future uses easier, but not worth
investing so much that it takes hours to code up a simple idea and confirm your
understanding.

The results are what we expect (see Figure 3.8): a perspective picture of a wire-
frame cube. We’ve created our first rendering! There’s clearly a long way to go

Figure 3.8: The result of the Dürer program: a wire-frame cube, shown in perspective, on
a background that looks like graph paper. The axes on the graph paper are part of the
GraphPaper itself, set up by the test bed, and are not drawn by the Dürer rendering part
of the program.
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from this to the kinds of special effects seen in video games and Hollywood films,
but some of the important ideas—building a mathematical model, converting it to
a 2D picture5—are present in our simple renderer in a basic form.

3.5 Limitations
We will now step back and look critically at this success. When you run the pro-
gram, you see a perspective view of a cube, consisting of 12 line segments (with
dots at the corners of the cube as well), as expected.

There are several limitations to the program. First, the wire-frame drawing
means that we can see both the back and the front of the cube. We could address
this in much the same way we addressed the drawing of edges: We could observe
that all points on a face of a cube (one of the square sides of the cube) will project
to points in the quadrilateral defined by the projections of the four vertices. So,
instead of keeping an edge table, we could keep a face table, and for each face,
we could draw a filled polygon in two dimensions. (We could draw both faces and
edges, of course.) Using this approach, our main concern will be to find a way to
draw only polygons that face toward the eye rather than away from it. There are
many strategies for doing this, but all of them require either more mathematics
than we wish to introduce in this chapter, or more complex data structures than
we wish to discuss at this time.

Second, although we all know that we see objects because of the light they
emit (which enters our eyes and causes us to perceive something, as described
in Chapters 5 and 28), there’s nothing in our current program that describes any-
thing about light (except that our use of straight lines for projection is based on
the understanding that light travels along straight lines). We would get the same
picture of a cube whether we imagined any light being present or not. This also
means that all kinds of other light-dependent features, like shadows and shaded
parts of the surface, cannot manifest themselves. It’s possible to add these with-
out an explicit model of light, but it’s a mistake to do so, according to the Wise
Modeling principle.

Third, when this program runs, it only shows one model (the cube), and only
shows it in one position. We did a lot of work for not much output; our program
is not versatile enough to display other scenes without changing the code. This
can be addressed by storing the data representing the cube in a file that can be
read by the program; a typical representation would begin with a vertex count, a
list of vertices, an edge count, and a list of edges. Although it’s less compact, it’s
wise to make such files contain explicit tags on the data, and to allow comments;
it will make debugging your programs much easier. Here’s an example file for
representing a cube:

1
2
3
4
5
6
7
8
9

# Cube model by jfh
nVerts: 8
vertTable:
0 -0.5 -0.5 -0.5
1 -0.5 0.5 -0.5
...
7 0.5 0.5 0.5
# Note that each edge of cube has length = 1

5. We’re using the term “picture” informally here, as in “something you can look at.”
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10
11
12
13
14

edgeTable:
0 0 1
1 1 2
...
11 7 8

Other formats are certainly possible; indeed, there are many, many formats for
specifying models of all sorts, and programs for interconverting them (sometimes
losing some data in the conversion). Because the choice of formats is subject to
the whims of fashion, and changes quickly, we’ll make no attempt to survey them.

With any such storage format, one can define multiple shapes, such as the
cube, a tetrahedron, or even a faceted sphere, and enhance the program to load
each one in turn, adding some variety. To do so will require that you understand
the test bed more fully by reading parts of the next chapter, however.

We can also enhance the program by adding a limited form of animation: The
xy-coordinates of the bottom (or top) four vertices of our cube are four equally
spaced points on a circle of radius r =

√
2/2, namely r(cos θ, sin θ), where θ =

π
4 , 3π

4 , 5π
4 , and 7π

4 . We can create a slightly rotated cube by making θ = π
4 +t, 3π

4 +

t, 5π
4 + t, and 7π

4 + t for the four corners, for some small value of t. By gradually
increasing t, and redrawing the model each time, we can display a rotating cube.

This method of explicitly changing the coordinates of the cube and then redis-
playing it is not particularly efficient. The cube effectively becomes a parameter-
ized model, with the rotation amount, t, serving as the parameter. The problem
is that when we want to rotate the cube6 in the yz-plane instead of the xy-plane,
we need to change the model. And if we want to rotate first in one plane, then in
the other, we must do some messy algebra and trigonometry. It’s actually far sim-
pler to model the cube just once, and then learn how to transform its vertices by
a rotation (or other operations). We’ll discuss this extensively in the next several
chapters.

On the other hand, there are models that are defined parametrically, and are
animated by changing these parameters. So-called “spline” models are a particu-
larly important example, discussed in Chapter 22, but others abound, particularly
in physical simulations: A model of fluid, for instance, has parameters like the
viscosity and the density of the fluid, as well as the initial positions and velocities
of the fluid particles. The effects of these parameters on the appearance of the fluid
at some time are rather indirect—we have to perform a simulation to understand
the effects—but it is a parameterized model nonetheless.

3.6 Discussion and Further Reading

The “rendering” in this chapter was a little unusual, in the sense that we converted
our 3D scene into a collection of 2D things (points and lines), which we then drew
with a 2D renderer. In this sense, the process somewhat resembles a compiler
that turns a high-level language into low-level assembly language. Only when
this assembly language is further processed into machine language and executed
does the computation take place. In the same way, only when we actually draw

6. We speak of rotation in the xy-plane rather than “around the z-axis,” because rotation
in a plane generalizes to all dimensions, while rotation about an axis is specific to three
dimensions. Chapter 11 discusses this further.
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the points and lines with WPF’s 2D rendering tools do we get a picture. Trans-
formations like this into intermediate representations occur elsewhere in graphics
as well. In some expressive rendering algorithms, input images are transformed
into an intermediate representation that consists of edges detected by some image-
processing algorithms and regions bounded by those edges, for instance. Choosing
a good intermediate representation can make the difference between success and
failure.

The discovery of perspective in Western art, and the working out of the asso-
ciated mathematics, is a fascinating subject. When lines that are parallel in the
world appear to converge in the rendered picture, the eye is drawn to the point
of convergence, or vanishing point. Almost as fascinating as the development of
perspective is the clever use by artists of this property of vanishing points; some-
times artists created different vanishing points for different regions of a picture,
drawing the viewer’s eye to multiple things in the scene (The Resurrection, by
Piero della Francesca, is said to have this property.) It’s not known whether this
was in fact deliberate. There are many systematic ways of creating proper per-
spective renderings using so-called “vanishing points” and ideas from projective
geometry. These too can be considered basic rendering engines like the one shown
in the Dürer woodcut.

Also intriguing is the understanding one can gain of non-Western art. Rock’s
book on perception [Roc95], for instance, explains that the view seen in some
Chinese scroll paintings, which appears odd to the Western eye, is actually a
perspective-correct view for a view from a very high point, with the projection
plane perpendicular to the ground plane.

Perspective projections do not preserve relative lengths (think of a picture of
railroad tracks disappearing into the distance—the equal distances between adja-
cent railroad ties become unequal distances in the picture), but they do preserve
some other properties. The study of projections and the transformations of space
that are associated to them became the field of projective geometry; for the math-
ematically curious, the books of Hartshorne [Har09]and Samuel [SL88] are excel-
lent introductions.

Representations of polyhedral models by arrays of vertices together with
arrays of faces described by vertex indices are sometimes called indexed face
sets; a large repository of models stored in this way has been collected in the
Brown Mesh Set [McG]. While not particularly compact, it is an easy-to-parse
format. Similarly simple is the PLY2 format. Many example models are available
on the Internet in both forms. More complex model formats, using more compact
binary representations, abound. One fairly common format was 3DS, developed
for use with the 3D Studio Max software (now known as 3ds Max), and widely
adopted or imported by other tools. 3ds Max now uses the .max format, which is
proprietary, but many 3DS models are still available. And Maya, another popular
shape-modeling program, has its own proprietary format, .mb. Both are essen-
tially meta-formats, which specify the plugin (shared library) that should be used
to parse each subpiece of a model; in practice, it’s impractical to reverse-engineer
such a format, and as a result, for hobbyist and classroom use people continue to
use older and simpler formats.

What we called the “view region” in this chapter—the portion of the world
that’s visible in the picture we’re making—is an instance of the more general
notion of view volume; the difference is that a view volume, rather than being an
infinite pyramid, may be truncated so that objects farther away than some distance
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are ignored, as are those closer than some other distance. These “near” and “far”
distances can be adjusted to make some algorithms more efficient (by reducing the
set of objects we need to consider during rendering) or more accurate (by using
fixed-point arithmetic to more precisely represent a range of values). The general
matter of defining a view volume is discussed extensively in Chapter 13.

3.7 Exercises
Exercise 3.1: Suppose that the apprentice holding the pencil in the Dürer drawing
not only made a mark, but also wrote next to it the height (above the floor) of the
weight at the end of the string. That number would be the distance from the eye
to the object (plus some constant). Now suppose we make a first drawing-with-
distances of a lute, whose owner then takes it home. We later decide that we’d
really like to have a candlestick in the picture, in front of the lute (i.e., closer to
the eye).
(a) If we place the candlestick on the now-empty table, but in the correct position,
and make a second drawing-with-distances, describe how one might algorithmi-
cally combine the two to make a composite drawing showing the candlestick in
front of the lute. This idea of depth compositing is one of many applications of
the z-buffer, which you’ll encounter again in Chapters 14, 32, 36, and 38. The
recording of depths at each point is rather like the values stored in a z-buffer,
although not identical.
(b) Try to think of other things you might be able to do if each point of an image
were annotated with its distance from the viewpoint.

Exercise 3.2: The dots at the corners of the rendered cube in Figure 3.8 appear
behind the edges, which doesn’t look all that natural; alter the program to draw
the dots after the segments so that it looks better. Alter it again to not draw the
dots at all, and to draw only the segments.

Exercise 3.3: We can represent a shape by faces instead of edges; the cube in
the Dürer program, for instance, might be represented by six square faces rather
than the cube’s 12 edges. We could then choose to draw a face only if it faces
toward the eye. “Drawing,” in this case, might consist of just drawing the edges
of the face. The result is a rendering of a wire-frame object, but with only the
visible faces shown. If the object is convex, the rendering is correct; if it’s not,
then one face may partly obscure another. For a convex shape like a cube, with
the property that the first two edges of any face are not parallel, it’s fairly easy
to determine whether a face with vertices (P0, P1, P2, . . .) is visible: You compute
the cross product7 w = (P2−P1)×(P1−P0) of the vectors, and compare it to the
vector v from the eye, E, to P0, that is, v = P0−E. If the dot product of v and w is
negative, the face is visible. This rule relies on ordering the vertices of each face
so that the cross product w is a vector that, if it were placed at the face’s center,
would point into free space rather than into the object.
(a) Write down a list of faces for the cube, being careful to order them so that the
computed “normal vector” w for each face points outward.
(b) Adjust your program to compute visibility for each face, and draw only the
visible faces.
(c) The cross- and dot-product based approach to visibility determination
described in this exercise fails for more complex shapes, but later in the book

7. We review the dot product and cross product of vectors in Chapter 7.
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we’ll see more sophisticated methods for determining whether a face is visible.
For now, give an example of an eyepoint, a shape, and a face of that shape with
the property that (i) the dot product of v and w is negative, and (ii) the face is not
visible from the eye. You may describe the shape informally. Hint: Your object
will have to be nonconvex!

Exercise 3.4: As in the preceding exercise, we can alter a wire-frame drawing
to indicate front and back objects in other ways. We can, for instance, consider
all the lines of the object (the edges of the cube, in our example) and sort them
from back to front. If two line segments do not cross (as seen from the viewpoint)
then we can draw them in either order. If they do cross, we draw the one far-
ther from the eye first. Furthermore, to draw a line segment (in black on a white
background), we first draw a thicker version of the line segment in white, and then
the segment itself in black at ordinary thickness. The result is that nearer lines
“cross over and hide” farther lines.
(a) Draw an example of this on paper, using an eraser to simulate laying down the
wide white strip.
(b) Think about how the lines will appear at their endpoints—will the white strips
cause problems?
(c) Suppose two lines meet at a vertex but not at any other point. Does the order in
which they’re drawn matter? This “haloed line” approach to creating wire-frame
images that indicate depth was used in early graphics systems [ARS79], when
drawing filled polygons was slow and expensive, and even later to help show inter-
nal structures of objects.

Exercise 3.5: Create several simple models, such as a triangular prism, a tetra-
hedron, and a 1× 2× 3 box, and experiment with them in the rendering program.

For the final two exercises, you may need to read parts of Chapter 4.

Exercise 3.6: Enhance the program by adding a “Load model” button, which
opens a file-loading dialog, lets the user pick a model file, loads that model, and
makes a picture of it.

Exercise 3.7: Implement the suggestion about displaying a rotating cube in
the program. Add a button that, when the cube is loaded, can update the locations
of the cube vertices by computing them with a new value of t, the amount to rotate.
To make the animation look smooth, try changing t by .05 radians per button click.
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Chapter 4

A 2D Graphics Test Bed

4.1 Introduction

Now that you are familiar with some aspects of WPF and have seen our promised
test bed in use in building the Dürer renderer, we show you the details of the
test bed—a framework for testing out ideas in graphics without a huge amount
of overhead. There are actually two of these: one for 2D and one for 3D. This
chapter introduces the 2D test bed; more complete documentation, along with
the 3D test bed, are available on the book’s website. We refer to these as test
beds because they resemble the test apparatus that an electrical engineer might
use: a collection of instruments, power sources, and prototyping boards on which
various circuits can be assembled and tested. Our design aims are modest: We
want a basic framework in which it’s easy to write and debug simple programs.
Ease of debugging is favored over speed; simplicity is favored over generality.

Throughout this book, we present exercises that involve writing small
programs designed to investigate some subject that you’ve studied. For instance,
when we discuss the mathematical modeling of shapes, we start with polygons
and show how to make curves shaped by them. Figure 4.1 shows an example of
this: You can take a closed polyline—a connect-the-dots sequence of segments in
a plane—and perform a corner-cutting operation on it in which each segment is
divided into thirds, the first and last thirds of each segment are removed, and the
remaining segments are joined up in sequence.

Figure 4.1: Top: A polyline in the
plane. Middle: Each segment has
been divided into thirds, and the
division points have been marked
with dots. Bottom: The middle
thirds of the segments are con-
nected together to form a new,
smoother polyline.

It appears that if you do this repeatedly, the resultant polyline becomes increas-
ingly smooth, approximating a smooth curve. While it’s possible (and valuable)
to analyze this process mathematically, we believe that a picture is worth a thou-
sand words and that interaction is worth many thousands more. We therefore give
you the tools to answer a variety of questions you may have—such as whether the
curve will always get smoother, whether there are starting polylines that result in
curves that have sharp corners, regardless of the number of iterations, and what
happens if you keep the middle half of each segment instead of the middle third—
so that you can get a visceral understanding of the process. At the same time, writ-
ing programs to implement such ideas frequently helps you understand subtleties.

81
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If we chose to discuss corner cutting for polylines rather than closed polylines,
you would have to determine what to do with the starting and ending segments as
you write the code; such boundary cases are often the source of both complexity
and understanding, as well as errors.

We could have opted to explain how to draw individual points, and then how to
draw lines, detect mouse clicks, and create menus and buttons and associate them
with actions in your program, all of which are interesting and valuable topics.
But we want you to be able to start learning graphics visually right away. To do
that requires that we give you some tools whose inner workings you won’t yet
understand.

With this goal in mind—providing easy-to-modify programs in which you can
experiment with various ideas in graphics—the remainder of this chapter presents
our 2D test bed.

Following the introduction of the 2D program, we show how to use it to imple-
ment corner cutting in 2D, and provide some exercises in which you can conduct
some experiments that will prepare you for the ideas presented in later chapters.

The test-bed program itself is meant to isolate you, at this point, from under-
standing many of the details of a graphics program. All on-screen graphics
eventually involve setting the color values for individual pixels on the screen. In
Chapter 38 we discuss the underlying software and hardware that work at this low
level. For now, we are letting that hardware and software do the heavy lifting for
us so that we can work at a higher level of abstraction: We assume that we can
create high-level shapes and images and that WPF and Direct3D will take care of
making the pixels look the way we indirectly said they should.

4.2 Details of the Test Bed

As we said, our program is based on WPF, a subject to which entire books and
thousands of web pages are devoted. In our experience, it is always easier to mod-
ify an existing program than to start from scratch. We therefore built the 2D test
bed and included a sample program with it that does a number of things. You’ll
typically use the test bed by copying this sample, deleting most of it, and then mod-
ifying the remainder. The sample displays things such as a photographic image, an
image created in software, a polygon, a mesh, and a quiver of arrows (a collection
of arrows specified by their basepoints and directions). It also has some buttons
(one of which changes which software image is displayed) and a slider (which can
be used to move one vertex of a polygon). From these examples, it should be easy
for you to generalize and add your own interaction elements to the program.

Note that this program is constantly under development; we anticipate aug-
menting it as students indicate ways in which they would like to see it enhanced.
Because those augmentations may cause minor changes to the program, we will
include notes about any such changes on the book’s website. The website also
includes more thorough documentation of the entities included in the test bed;
this chapter is an introduction to the test bed and its use, not the complete docu-
mentation.

4.2.1 Using the 2D Test Bed

At this point in reading this chapter, you should pause, visit the book’s web-
site, and download the 2D test bed as directed there. You should also prepare a
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development environment in which you would like to work. In the examples in
this book, we used Visual Studio 2010 in a freely distributed “basic edition,”
along with the Microsoft Windows SDK for browsing documentation, among
other things. Follow the directions on the website for getting the 2D test bed up
and running, and then experiment with the sample program: Try clicking a button
or moving a slider and see what happens. Browse through the code to see if you
can begin to piece together how it works. Then read on.

We assume that you are familiar with an integrated development environment
like Visual Studio and that you know a programming language like C#, C++, or
Java. (The test bed is written in C#, but anyone familiar with C++ or Java will find
it easy to use C#.)

4.2.2 Corner Cutting

In Section 4.6, we develop the corner-cutting application step by step. To prepare
for that exercise, download the Subdivide application from the book’s website and
then run it. When the application starts, click several times in the main window
to create a polygon; then click on the Subdivide button to see the corner-cutting
operation, or the Clear button to start over.

Examine the Window1.xaml code. You’ll see the words “Subdivide” and
“Clear”; the XAML code around these words creates the buttons you were
clicking, and Click="b1Click" tells WPF that when one of those buttons is
clicked, a procedure called b1Click should be invoked. We’ll see more details
of this later; here, we want you to gain a broad picture of where the working parts
of this example lie.

Now examine the Window1.xaml.cs code. The initializations for the Window1
class create a pair of Polygon objects, which are initialized in the constructor for
Window1 and are then added to something called gp (for “graph paper”), which
represents everything that will be drawn on the display. The polygon initialization
code sets up certain properties for the polygons; lots of other properties could also
be set, but these are left with their default values. Finally, the b2click and b1click

procedures describe what should happen when the user clicks on the two buttons.
Look at them briefly. The handling of the Clear button should seem reasonably
simple to you; the handling of the Subdivide button is more complicated, but you
can see that at its core, it involves multiplying various coordinates by 1/3 and 2/3,
as you’d expect.

Those are the essential parts of the corner-cutting application. Almost every-
thing else is boilerplate—the bits of code that make it easy to write applications
like this. In fact, we created this corner-cutting application by starting with the
test bed, which creates points, lines, arrows, a mesh, and various moving things,
deleting most of them, and then editing the XAML to remove some user-interface
components that weren’t needed and renaming a few others. With this example in
mind, we can now look at the rest of the test bed.

4.2.3 The Structure of a Test-Bed-Based Program

As you learned in Chapter 3, WPF applications are typically specified in two parts:
one in XAML, the other in C#. The two parts cooperate to make the whole. Indeed,
one can have object classes that have this same two-part separation, or that are
purely C#; our code has both types.
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The highest-level portion of the application is called Testbed2DApp;
it is implemented in the files Testbed2DApp.xaml (the XAML file) and
Testbed2DApp.xaml.cs (the associated C# file).

The XAML file (see Listing 4.1) declares that Testbed2D is an object of class
Application, which means that it has certain properties, events, and methods pre-
defined; we use almost none of these, with the exception of the Startup event
handler, which we’ll see in the C# file.1

Listing 4.1: The code in Testbed2DApp.xaml.

1
2
3
4
5
6

<Application x:Class="Testbed2D.Testbed2DApp"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Startup="AppStartingUp">

<Application.Resources />
</Application>

The code in Listing 4.1 simply declares an application and some infor-
mation about where to find certain name resolutions (the xmlns lines) for
this XML namespace. The key element, from our point of view, is the line
Startup="AppStartingUp", which says that the Startup event is to be handled by
code that will be found in the AppStartingUp method of the Testbed2D.xaml.cs

file. This is the equivalent of main() in a C++ or Java program.
The corresponding C# file is shown in Listing 4.2. The keyword partial tells

us that part of the class’s description is here, but part of it is elsewhere (in the
XAML file). The AppStartingUp method has been defined to create a Window1

and to show it. The arguments to AppStartingUp are unused. The remaining event
handlers, methods, etc., for the Testbed2DApp remain unchanged from the defaults
inherited from the Application class.

Listing 4.2: The corresponding C# file, Testbed2DApp.xaml.cs.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

using System;
using ...

namespace Testbed2D
{
public partial class Testbed2DApp : Application
{

void AppStartingUp(object sender, StartupEventArgs e)
{

Window1 mainWindow = new Window1();
mainWindow.Show();

}
}

}

So, if we run the Testbed2DApp, upon startup a Window1 will be created and
shown.

This Window1 class is somewhat richer than the Testbed2DApp class: It corre-
sponds to the main window of a conventional application and includes things like

1. Other events are things like OnExit, which occurs when the program exits, and
Activated, which occurs when the application becomes the foreground application;
all the details of every class in WPF are documented online, but part of the goal in the
test bed is to shield you from having to know most of them.
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a menu bar, buttons, and sliders, as well as a large area in which we can draw
things. The arrangement of these items is determined in the Window1.xaml file:
When you want to add a button to the test bed, you’ll edit that file; when you
want to arrange a connection between a slider drag and a certain action in your
program, you’ll edit that file, etc.

The Window1.xaml.cs file is concerned almost entirely with creating the con-
tents of the one large area in which we can draw things.

We’ll examine both of the Window1 files now. We’ll omit large sections of each,
sections that are repetitive or boilerplate, and concentrate on the details that you’ll
use as you write your own programs.

A complex XAML file like Window1.xaml (see Listing 4.3) can describe sev-
eral things at once: layout (the positioning of things within the window), event
handling (what happens when you press a keyboard key or click on a button),
styles (the font in which text appears, the color of a button), etc. For now, we’ll
concentrate on the layout aspects. Start by examining the code and trying to figure
out what’s going on, and we’ll explain a few details shortly.

Listing 4.3: The XAML code for the test bed.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

<Window
x:Class="Testbed2D.Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/ ..."
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:h="clr-namespace:Testbed2D"
Title="2D Testbed"
KeyDown="KeyDownHandler"
Height="810"
Width="865"
>

<DockPanel LastChildFill="True">
<Menu DockPanel.Dock="Top">
<MenuItem Header="File">
<MenuItem Header="New" Background="Gray"/>
<MenuItem Header="Open" Background="Gray" ...

</MenuItem>
<MenuItem Header="Edit"/> ...

</Menu>

<StackPanel DockPanel.Dock ="Left" Orientation="Vertical" Background="#ECE9D8">
<TextBlock Margin="3" Text="Controls"/>
<Button Margin="3,5" HorizontalAlignment="Left" Click="b1Click">Next </Button>
<Button Margin="3,5" HorizontalAlignment="Left" Click="b2Click">Do It </Button>
<Slider Width="100" Value="0" Orientation="Horizontal"
ValueChanged="slider1change" HorizontalAlignment="Left"
IsSnapToTickEnabled="True" Maximum="20" TickFrequency="2"
AutoToolTipPlacement="BottomRight" TickPlacement="BottomRight"
AutoToolTipPrecision="2" IsDirectionReversed="False"
IsMoveToPointEnabled="False"/>

</StackPanel>
<h:GraphPaper x:Name="Paper">
</h:GraphPaper>

</DockPanel>

</Window>

First, there are several namespaces involved in this code: We use standard
WPF entities, which are defined in a WPF namespace, as well as entities like
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our GraphPaper class, which are defined in the Testbed2D namespace. The ini-
tial xmlns statements say that we’ll use the namespaces that WPF requires. We’ll
explain the last two xmlns statements shortly.

Recall that each large-scale element (Window, DockPanel, StackPanel, etc.)
is paired with a closing for that element (/Window, /DockPanel, etc.). Between
these are other items that constitute the content of these large-scale elements.
Thus, everything in the XAML file is between Window and /Window, indicating
that everything will be within a window.

Examining the XAML, we see that the window contains a DockPanel, which
in turn contains everything else. A DockPanel is a panel (a rectangular area of the
window) in which other elements can be placed, and such elements are automati-
cally placed relative to the boundaries of the DockPanel in a way indicated by the
XAML. For instance, line 17,

<Menu DockPanel.Dock="Top">

indicates that we want a Menu in the DockPanel, and we want it docked (attached)
at the Top of the panel. Other options are Bottom, Left, Right, and None. The dock
panel also contains a StackPanel, docked at the left, and a GraphPaper, whose
docking position is unspecified. Because the DockPanel has its LastChildFill

property set to True, this GraphPaper will fill up all the available space in the
DockPanel. We’ll soon discuss what a GraphPaper actually is; for now, suffice it
to say that it’s a specialized kind of Canvas.

WPF transforms this entire specification of the layout into a user interface that
looks the way you’ve specified it should look. There’s no need to say how many
pixels tall the menu bar is, for instance, and if the user resizes the application
while it’s running, reasonable things will happen automatically to adjust the layout
appropriately. This is one of the enormous advantages of the XAML portion of
WPF: The language for specifying the appearance of a user interface is very high-
level.

Continuing down a level, it’s easy to read the MenuItem blocks of XAML:
They say that there’s a File menu with elements New and Open, and an Edit menu,
among other things. (Some of these use the <TAG ... /> syntax, in which a final /
in a tag replaces the closing </TAG>.)

Inline Exercise 4.1: Modify the menu bar to add a new menu, named Foo,
with menu items named Bar and Baz, and rerun the program to ensure that
they appear. Then remove them.

In the StackPanel (which simply adds elements from the top down, “stacking”
them from top to bottom2) we find a TextBlock, two Buttons, and a Slider. The
TextBlock serves as a label for this panel (it says “Controls”). The buttons and
slider let us control the appearance of the canvas. The Margins in each tell WPF
how much room we’d like around the sides of each element in the StackPanel; the
HorizontalAlignment tells WPF how to position the item within any additional
space. The Click=b1Click specifies what method (in this case, b1click) should
be called when the user clicks the Next button. And finally, between the <Button>

2. This top-to-bottom order is because the StackPanel has its Orientation set to
Vertical; if it were Horizontal, the stacking would be left-to-right.
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and </Button> tags, we have the button’s content, which is just a simple piece
of text.

The Slider in lines 25–30 is similar: We’ve set several options, specifying
the slider’s width, its initial value (0), its maximum value (20, when the slider
thumb is all the way to the right), the fact that it should be horizontal, where
to place tick marks, and how many to place. The most interesting feature is
the ValueChanged=slider1change, which means that when the user changes the
slider’s value, WPF should call the slider1change method of the Window1 class.

We’ve now examined almost all the XAML code. You could probably, with
some confidence, edit this file to add a few more buttons and a few more sliders,
or even figure out how to change the colors of the buttons, or break the StackPanel
into a pair of StackPanels, one for buttons and one for sliders, side by side. (Hint:
You could include both in a new DockPanel with its orientation being horizontal.)

Inline Exercise 4.2: Add a new button or slider to the StackPanel, but don’t
include the Click= or ValueChanged=, respectively. Run your program to
ensure that the new item actually appears where you expect it.

Inline Exercise 4.3: Rearrange the Controls StackPanel, as suggested above,
into one panel full of buttons and another panel containing only sliders. Verify
that your modification works.

If you were to add a new button, set Click=b3Click, and then try to compile
the application, it would fail because you’d need to write the b3click method of
the Window1 class; we’ll discuss this in more detail in a moment.

Inline Exercise 4.4: Add a button with Click=b3Click, and verify that the
application no longer works. Try to parse the error message and make sense of
it. Then remove the new button.

The last item in the XAML code is a GraphPaper. The syntax here is a little
peculiar. Listing 4.4 shows the XAML code, much reduced.

Listing 4.4: The part of Window1.xaml that creates a GraphPaper.

1
2
3
4
5
6
7
8
9

10
11

<Window
x:Class="Testbed2D.Window1"
xmlns= ..."
xmlns:h="clr-namespace:Testbed2D"
...>
...
<h:GraphPaper x:Name="Paper">
</h:GraphPaper>

</DockPanel>

</Window>

The highlighted xmlns line indicates that the XML namespace called h refers
to the Common Language Runtime (clr) namespace defined by Testbed2D. This
means that GraphPaper is not a standard WPF class, but rather a class defined by
this project, a class called GraphPaper instead of WPF’s Canvas class. In fact, a
GraphPaper is a lot like a Canvas (it is, in fact, derived from Canvas), except that it



ptg11539634

88 A 2D Graphics Test Bed

Figure 4.2: The Testbed2D application running. All the things in the large graph-paper
window are drawn by the Window1.xaml.cs code and are not described in the XAML file.

comes with a graph-paper-like grid and coordinate axes predrawn, and distances
on a GraphPaper are measured in millimeters rather than in WPF units (which
are sized at 1/96 of an inch).3 We won’t examine the entire description of the
GraphPaper class; we’ll just use it. After you’ve read the next two chapters, it’ll be
worth your time to examine the XAML and C# that together define GraphPaper.

Down at the bottom of the Window1 XAML file we create an instance of a
GraphPaper; to do so, we have to say that it’s an h:GraphPaper, telling the pro-
gram what namespace to find it in. We also give it a name—Paper—by which we
can refer to it within the C# file.

Figure 4.2 shows the appearance of the program when it’s run. All the interest-
ing content is generated by the C# code, but the entire appearance of the interface
is determined by the XAML code.

4.3 The C# Code

The associated C# code (Window1.xaml.cs) is also relatively simple (see List-
ing 4.5). There is no fancy software engineering involved; this test bed is meant
to act as the equivalent of a pad of scratch paper, not as a foundation for large
systems. If you plan to build a large application atop WPF, you should get famil-
iar with WPF itself, not the distilled portion of it that we have used for this 2D
test bed.

Recall that we’ve only partially described a Window1 in the XAML; the C#
file contains the remainder of the definition. Because we’re displaying a polygon,

3. There’s one exception: If you set your display’s dpi setting to something that does not
match the actual number of dots per inch of your physical display, then a WPF unit
will not appear as 1/96 of an inch.
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three images, a mesh, and a quiver of arrows in this sample, we’ll declare each
of those as an instance variable for the class. If you were to write a program that
needed to display only a single image, you’d delete all but one of these.

Listing 4.5: The C# portion of the Window1 class definition.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

using ...

namespace Testbed2D
{

public partial class Window1 : Window
{
GraphPaper gp = null;

Polygon myTriangle = null;
GImage myImage1 = null;
GImage myImage2 = null;
Mesh myMesh = null;
Quiver myQuiver = null;

// Are we ready for interactions like slider-changes to
// alter the parts of our display (like polygons or images
// or arrows)?
// Probably not until those things have been constructed!
bool ready = false;

public Window1()
{

InitializeComponent();
InitializeCommands();

// Now add some graphical items in the main Canvas,
// whose name is "GraphPaper"
gp = this.FindName("Paper") as GraphPaper;

// A triangle whose top point will be dragged
// by the slider.
myTriangle = new Polygon();
myTriangle.Points.Add(new Point(0, 10));
myTriangle.Points.Add(new Point(10, 0));
myTriangle.Points.Add(new Point(-10, 0));
myTriangle.Stroke = Brushes.Black;
myTriangle.StrokeThickness = 1.0; // 1 mm thick line
myTriangle.Fill = Brushes.LightSeaGreen;
gp.Children.Add(myTriangle);

// A draggable Dot, which is the basepoint of an arrow.
Dot dd = new Dot(new Point(-40, 60));
dd.MakeDraggable(gp);
gp.Children.Add(dd);

Arrow ee = new Arrow(dd, new Point(10, 10),
Arrow.endtype.END);

gp.Children.Add(ee);
[lots more shape-creating code omitted]

ready = true; // Now we’re ready to have sliders and
// buttons influence the display.

}
[interaction-handling code omitted]

The constructor for Window1 first initializes the component—a step that’s
required for any top-level WPF window, causing all the subparts to be laid out;
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it then initializes the menu- and keyboard-command handling. Following this,
we add the graphical items to the GraphPaper that we named Paper; we locate
that with the FindName method. A Canvas has a Children collection, and with
gp.Children.Add(myTriangle), we make the triangle we’ve created a child of
the Canvas, which makes it get displayed within the Canvas.

Now let’s look at the details of the creation of the triangle. We declare the
triangle to be a new Polygon and then add several Points to the Polygon. This
describes the geometry of the triangle, but not its appearance. In WPF, appearance
is characterized by a Stroke (how lines are drawn) and a Fill (how regions are
filled in), each of which is defined by a Brush, which can be remarkably com-
plex; in our case, we’ll use simple predefined strokes and fills, available from the
Brushes class. The lines will be drawn in black, and the triangle will be filled with
a light green color. The thickness of the stroke is set to 1.0; because of the way
GraphPaper is defined, that’s 1. 0 mm. Indeed, recall that all units in a GraphPaper
refer to millimeters. The grid is based on 5 mm distances between grid lines, and
the triangle we’ve created will be 10 mm tall (although with a brush thickness of
1. 0, it will actually be slightly taller; we imagine the brush being dragged around
the outline, with the brush center passing along the geometric figure4). In sum-
mary, the GraphPaper called Paper provides a place in which to draw geometric
shapes; the units used on the graph paper are millimeters, and the coordinates have
been set up so that (0, 0) is positioned more or less in the center of the canvas, with
the first coordinate increasing as we move to the right and the second coordinate
increasing as we move up. This latter coordinate direction is not the choice made
in WPF, in which the second coordinate would increase as we move downward.

4.3.1 Coordinate Systems

Why does the second coordinate increase downward in WPF? There are a number
of possible justifications for this (some of which may not even have been in the
designers’ minds), and some reasonable criticisms as well. The natural criticism
is that anyone who has studied mathematics is used to the conventional Cartesian
coordinates, in which the y-axis points upward; those only slightly more familiar
with mathematics are used to angles measured from the x-axis and increasing as
the other ray of the angle moves counterclockwise. Why, with all these years of
experience, would one change things?

The counterargument is that several other things are naturally described with a
coordinate that increases as we move downward. Matrices, for instance, have row
and column indices, with the first row at the top, the second row below it, etc. If
we think of a matrix as containing a collection of grayscale values, we can think
of it as describing a black-and-white image. It would be nice if, when it was dis-
played “in the obvious way,” the resultant image looked the way we expected from
the matrix representation (see Figure 4.3). But if we use Cartesian coordinates in
the obvious way, the resultant image ends up upside down. [By the way, there’s the
further problem that matrix indices are almost always given as “(row, column)”
pairs; unfortunately, the column corresponds to horizontal position and the row

4. The brush in this case actually draws lines that are mitered at the corners so that the
shape remains triangular; this can be adjusted as a property of the Brush, however. At
very sharp corners, the miter can extend a long distance; because of this, one can also
set a MiterLimit.
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Entry (1,2)

(a) (b) (c)

Cartesian

WPF
.1 .9 .7 1
.5 .1 .7 .5
.1 .1 .1 .5

Figure 4.3: (a) A 3 × 4 matrix with entries between 0 and 1 representing various shades
of gray, from black (0) to white (1). If we convert each entry to a small rectangle of the
corresponding shade of blue, we get the “shaded matrix” shown in (b). (c) If we display
the matrix by displaying the values in column j and row i as a small square centered at
location (i, j) in the Cartesian plane, the resultant image is flipped across the horizontal
axis. If, on the other hand, we do the same thing in WPF coordinates, the result is not
inverted.

to vertical position, which is exactly the opposite of the (x, y) convention of both
Cartesian and WPF coordinates.]

A further argument, beyond images, is that text in Western writing flows from
top to bottom and from left to right, and thus our way of thinking about 2D layout
also flows in that way. Furthermore, our conventional interfaces start at the top
(that’s where the menu bar is) and draw our eyes downward into the content.
Finally, many early raster graphics systems tended to describe the individual pixels
in this way, with (0, 0) in the top-left corner of the screen.

Regardless of the rationale, this is the convention chosen by the WPF devel-
opers. Fortunately, they also included a mechanism by which one can change
the coordinates used in a canvas.5 Thus, our test bed has conventional Cartesian
coordinates.

A second version of the test bed, using the y-increases-down coordinate sys-
tem, is also available on the book’s website. You’ll probably choose to use that
version when you’re experimenting with image data, for instance.

4.3.2 WPF Data Dependencies

Our triangle is a Polygon made from three Points. Built into WPF is the capabil-
ity to determine when things have changed in a way that necessitates redrawing.
When we say that the GraphPaper is to add this triangle to its collection of chil-
dren, we’re not saying anything about actually drawing the triangle. When WPF
decides that it needs to display the canvas, it displays all the canvas’s children. We
have simply told it what one of those children is. One thing that prompts WPF to
redisplay the canvas is the information that one of the children has changed. For
example, if we removed the triangle as a child, the canvas would be automatically

5. More precisely, they included something that says how canvas coordinates should be
converted to coordinates in the containing object—a window, a panel, etc.—and this
allows us to invert the y-coordinate and to move (0, 0) to the center of the canvas, much
as we did with the clock example in Chapter 2.
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redisplayed, with the triangle absent. If we somehow changed the triangle, that
too would prompt a redisplay.

Unfortunately, this “watching for changes in children” extends to only a cer-
tain level of detail. If the Collection of Points that makes up the Polygon

changes, this in fact becomes a change in the Polygon itself, which prompts a
redisplay of the containing GraphPaper. But what does it mean for a Collection

to change? The designers of WPF chose to make it mean “the collection of refer-
ences must change” rather than “one of the objects referred to by the references
must change.” Thus, deleting or inserting an item in the collection is treated as
a change, but merely altering an item—for example, changing the x-coordinate
of the first point—is not. So, if we alter the first coordinate of the first Point

that defines the polygon, nothing happens: The Point itself changes, but the
Collection containing the Point does not recognize the change and propagate
it. Instead, we can remove the Point from the collection, create a new Point with
a changed coordinate, and insert this new Point into the collection, resulting in a
change that propagates upward. We’ll see details of this in the next section.

The choice of what constitutes a “change” in a system like WPF can have
a huge impact on performance: If it’s too fine-grained, all the platform’s com-
putational power will be spent watching for changes; if it’s too coarse-grained,
application programmers will need to do lots of change notifications and may
eventually abandon the system-provided change tracking in favor of handling it
all themselves, because they can then do so consistently.

4.3.3 Event Handling

WPF takes user interaction, in the form of key presses, mouse clicks, and mouse
drags, and treats them as events. When an event is detected, it sets off a complex
sequence of activities, which ends with some event handler being called by WPF.
To be more precise, a great many event handlers may be called by WPF, but in our
case, we’ll use just a single handler for an event and then mark the event as “han-
dled” so that no further handlers will be called. Sometimes the event handlers are
part of WPF; sometimes they are callback procedures provided by the application
programmer.

In particular, when WPF detects that a button has been clicked, it invokes
that button’s Click handler. In the case of our first button (defined on line 25 in
Listing 4.3), we set the Click handler to be b1Click back in the XAML code. The
b1Click method is rather simple: It prints a debugging message and then declares
that this click has been handled by setting a flag on the event (see Listing 4.6).

Listing 4.6: The handler for a click on the first button.

1
2
3
4
5

public void b1Click(object sender, RoutedEventArgs e)
{

Debug.Print("Button one clicked!\n");
e.Handled = true; // don’t propagate the click any further

}

The sender in this code is the entity in WPF from which the click was relayed
to us; this relaying of clicks is part of a complex hierarchy, one that we can largely
ignore, in which a click on a piece of text displayed on a button in a grid on a
canvas will trigger responses from the text object, the button, the grid, and the
canvas. To break this chain of events, we set the RoutedEventArgs Handled field
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to True, which says that we’ve processed the button click, and no other part of our
code needs to do anything about it.

A more complex example of event handling is demonstrated by the handler
for a change in the value of the slider, namely slider1change, which is shown
in Listing 4.7. As you can see, we print a message indicating the new value
(e.NewValue) that was passed in, and then adjust the x-coordinate of the triangle’s
first point. Rather than removing and reinserting the point, we simply reassign the
entire Points array, since there are only three points. This causes the triangle to
be marked as “changed,” which provokes a redisplay of the entire canvas, with the
result that as we adjust the slider with the mouse, the top of the triangle moves
from side to side.

Listing 4.7: The slider1change method that moves a triangle vertex.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

void slider1change(
object sender,
RoutedPropertyChangedEventArgs<double> e)

{
Debug.Print("Slider changed, ready = " + ready +

", and val = " + e.NewValue + ".\n");
e.Handled = true;
if (ready)
{

PointCollection p = myTriangle.Points.Clone();
Debug.Print(myTriangle.Points.ToString());
p[0].X = e.NewValue;
myTriangle.Points = p;

}
}

What about the flag called ready in lines 19 and 50 of Listing 4.5, and line 8
of Listing 4.7? Well, in the course of creating the Window1 in our application,
WPF creates the slider and sets its initial value to the predetermined value in
the XAML code. That in turn raises a ValueChanged event,6 which makes WPF
invoke the slider1change method. But all this happens in the course of the
InitializeComponent process, so the triangle has not yet been created. If we try
to alter the coordinates of one of its Points, that’ll be a bug. We therefore ignore
all events like this until the Window1 is ready, as indicated by the ready flag.

Inline Exercise 4.5: Modify the test bed so that it displays a diamond-shaped
object rather than a triangle, and make the slider adjust the x-coordinate of both
the top and bottom vertices at the same time (and in the same direction). Add
a second slider, and make it vary the y-coordinate of the left and right vertices
of the diamond too.

4.3.4 Other Geometric Objects

The test bed also supports several kinds of geometry besides polygons. These
include dots, which are like points but are displayed and have a tool-tip that says
where they’re located; arrows (used for depicting vectors) and quivers, which are
collections of arrows; segments, which are line segments between either points or

6. The value has changed from “undefined” to the specified initial value.
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dots; meshes; and images. The details of these various entities are given on the
book’s website.

4.4 Animation

As you saw in Chapter 2, WPF contains tools for creating animations. You can
animate almost any kind of value—a double, a Point, etc.—and then use that
changing value to make the display change. You can define animations in XAML
code or in C#. For XAML, there are many predefined animations that you can
combine to make quite complex motions. In C# code, you can use these predefined
animations or you can create your own using arbitrarily complex programs. You
might, for instance, write a program that computes the position of a bouncing ball
over time, and then use that varying position to control the location of some shape
(like a disk) shown on the display. Writing the simulation program in XAML isn’t
really feasible, so it’s more natural to write such a program in C#.

In our sample, we have just one animation, but it shows off the key ideas
(see Listing 4.8). In the code, we constructed a segment with one endpoint being
at a Dot called p1. In this code, we animate a point by specifying the start-
ing and ending locations, how long the animation should take (it starts at time
0, i.e., when the program is run, and takes five seconds), and the fact that it
should auto-reverse and should repeat forever. (This relatively simple anima-
tion is an example of something that could be easily described in XAML, by
the way.) The result is a point that moves back and forth between the two
specified locations over time. Note that this point is not actually displayed
on the GraphPaper; it’s just a Point whose value changes constantly. But the
line p1.BeginAnimation(Dot.PositionProperty, animaPoint1); says that the
PositionProperty of the Dot called p1 should be animated by animaPoint1;
this causes that Dot to move back and forth on the display. Once again, WPF’s
dependency mechanism is doing the hard work: It is detecting every change in
animaPoint1 and making sure that the PositionProperty of p1 is changed as
well; this property is what determines the location of the Dot on the canvas so that
we see motion.

Listing 4.8: Code to animate a Point.

1
2
3
4
5
6
7

PointAnimation animaPoint1 = new PointAnimation(
new Point(-20, -20),
new Point(-40, 20),
new Duration(new TimeSpan(0, 0, 5)));

animaPoint1.AutoReverse = true;
animaPoint1.RepeatBehavior = RepeatBehavior.Forever;
p1.BeginAnimation(Dot.PositionProperty, animaPoint1);

We’ve been working with Points quite freely, assigning values to their x- and
y-coordinates. Rigid adherence to object-oriented programming doctrine might
require that we treat these coordinates as instance variables to be hidden, and
that we access them only through accessor/mutator (or get/set) methods. In fact, a
Point is rather more like a Pascal record or a C struct than a typical C++ or Java
object. In blurring the distinction between records (collections of related values)
and objects, C# allows such uses, which can have a huge impact on efficiency with
relatively little impact on debuggability.
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4.5 Interaction

We already discussed how button clicks and slider-value changes are handled in
the test bed (and in WPF in general): A Click or ValueChanged method is called.

Keyboard interaction is a little different. Key presses that happen anywhere in
the main Window are handled in two stages: First, some of them are recognized as
commands (like “Alt-X” for “Exit the program”); second, those not recognized as
commands are handled by a method called KeyDownHandler, which responds to
all key presses by either ignoring them (for presses on modifier keys like Control
or Shift) or displaying a small dialog box indicating which key was pressed. As
you write more complex programs, you may want to adapt this part of the code to
do particular things when certain keys are pressed.

Finally, the actions taken when menu items are selected get defined in the
InitializeCommands method. For many commands (like Application.Close,
indicating that the application should close a window), there’s already a prede-
fined way to handle them and a predefined key press associated with the com-
mand. For these, one can simply write things like CommandBindings.Add(new

CommandBinding(ApplicationCommands.Close, CloseApp)); where CloseApp

is a small procedure that pops up a dialog to confirm that the user does, in fact,
want to close the application. For others, slightly more complex mechanisms must
be invoked. As we do not expect you to add any new commands, we leave it to
you to decide whether to examine the mechanism for doing so.

4.6 An Application of the Test Bed

Let’s now return to the corner-cutting example we discussed at the beginning of
the chapter. To create an application that demonstrates this, we’ll need to remove
most of the code in Window1.cs and start with a simple polygon created by the
user. We’ll describe the interaction sequence and then write the code.

The GraphPaper starts out empty; there are two buttons, labeled “Clear” and
“Subdivide”. When the user clicks on the graph paper a polygon P1 appears, with
vertices at the clicked locations (after two clicks, the polygon consists of two iden-
tical line segments; after three, a triangle; etc). When the user clicks the Subdivide
button, a subdivided version, P2, of the first polygon appears; subsequent clicks
on Subdivide replace P1 with P2, and P2 with a subdivided version of P2, etc. so
that a polygon and its subdivision are always both shown. A click on the Clear but-
ton clears the graph paper. Once the user has subdivided the polygon, we disable
further clicks on the graph paper; you might want such clicks to add new points
to the subdivided polygon, but it’s not clear where, in the subdivided polygon, the
new points ought to be added, and so we simply avoid the issue.

With that description in mind, let’s write the code.7 We’ll need an
isSubdivided flag (initially false) to tell us whether the user has subdivided the
polygon or not. The Clear button should reset this, as well as clearing the graph
paper. And if there are no points in the polygon yet, Subdivide should have no
effect.

We start from a copy of the test bed code, and modify the XAML to remove
the slider and to change the text on the buttons:

7. The entire program is available on the book’s website for download.
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1
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4
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7
8

<StackPanel DockPanel.Dock ="Left"
Orientation="Vertical" Background="#ECE9D8">

<TextBlock Margin="3" Text="Controls"/>
<Button Margin="3,5" HorizontalAlignment="Left"
Click="b1Click">Subdivide </Button>
<Button Margin="3,5" HorizontalAlignment="Left"
Click="b2Click">Clear</Button>

</StackPanel>

Now we modify the C# code in Window1.xaml.cs. We start by initializing both
polygons to be empty:
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8
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11
12
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public partial class Window1 : Window
{

Polygon myPolygon = new Polygon();
Polygon mySubdivPolygon = new Polygon();
bool isSubdivided = false;
GraphPaper gp = null;
[...]
public Window1()
{

[...]
initPoly(myPolygon, Brushes.Black);
initPoly(mySubdivPolygon, Brushes.Firebrick);
gp.Children.Add(myPolygon);
gp.Children.Add(mySubdivPolygon);

ready = true; // Now we’re ready to have sliders
// and buttons influence the display.

}

The polygon initialization procedure also sets the polygons to have different
colors and a standard line thickness, and to make sure that when two edges meet
at a sharp angle they are truncated, as shown at the bottom of Figure 4.4, instead
of having the joint extended in a long miter as shown in the middle.

Figure 4.4: When we thicken the
vertex join at the top, we must
miter it, as shown in the middle.
At the bottom, the miter is limited.
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7

private void initPoly(Polygon p, SolidColorBrush b)
{

p.Stroke = b;
p.StrokeThickness = 0.5;// 0.5 mm thick line
p.StrokeMiterLimit = 1; // no long pointy bits
p.Fill = null; // at vertices

}

Handling a click on the Clear button is straightforward: We simply remove all
points from each polygon and set the isSubdivided flag back to false:

1
2
3
4
5
6
7
8
9

// Clear button
public void b2Click(object sender, RoutedEventArgs e)
{

myPolygon.Points.Clear();
mySubdivPolygon.Points.Clear();
isSubdivided = false;

e.Handled = true; // don’t propagate click further
}

The Subdivide button is more complex. First, if the polygon is already subdi-
vided, we want to replace myPolygon’s points with those of the subdivided poly-
gon. Then we can subdivide myPolygon and put the result into mySubdivPolygon.
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Subdivision amounts to determining, for each vertex, the previous and next ver-
tices and then combining coordinates in a two-thirds-to-one-third fashion to find
the location of the corner-cutting points. (This combination is closely analogous
to the idea of averaging the coordinates of two points to find the coordinates of
the midpoint of the segment between them, which you’ll recall from elementary
geometry.)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

// Subdivide button
public void b1Click(object sender, RoutedEventArgs e)
{

Debug.Print("Subdivide button clicked!\n");
if (isSubdivided)
{

myPolygon.Points = mySubdivPolygon.Points;
mySubdivPolygon.Points = new PointCollection();

}

int n = myPolygon.Points.Count;
if (n > 0)
{

isSubdivided = true;
}
for (int i = 0; i < n; i++)
{

int nexti = (i + 1) % n; // index of next point.
int lasti = (i + (n - 1)) % n ; // previous point
double x = (1.0f/3.0f) * myPolygon.Points[lasti].X

+(2.0f/3.0f) * myPolygon.Points[i].X;
double y = (1.0f/3.0f) * myPolygon.Points[lasti].Y

+(2.0f/3.0f) * myPolygon.Points[i].Y;
mySubdivPolygon.Points.Add(new Point(x, y));

x = (1.0f/3.0f) * myPolygon.Points[nexti].X
+(2.0f/3.0f) * myPolygon.Points[i].X;

y = (1.0f/3.0f) * myPolygon.Points[nexti].Y
+(2.0f/3.0f) * myPolygon.Points[i].Y;

mySubdivPolygon.Points.Add(new Point(x, y));
}
e.Handled = true; // don’t propagate click further

}

Finally, we must handle mouse clicks. Anytime the user presses the mouse
button, we want to add a new vertex to the polygon unless it’s already subdivided.
We therefore check the isSubdivided flag, and if it’s false, we add the point to
our Polygon.
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public void MouseButtonDownA(object sender,
RoutedEventArgs e)

{
if (sender != this) return;
System.Windows.Input.MouseButtonEventArgs ee =
(System.Windows.Input.MouseButtonEventArgs)e;

if (!isSubdivided)
{

myPolygon.Points.Add(ee.GetPosition(gp));
}
e.Handled = true;

}
}

}
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That’s it! You can run the program to see how well it works. When you click
only two points, your polygon looks like a line segment. When you then subdi-
vide, the line segment appears shorter. Explain to yourself why subdividing again
doesn’t make it shorter still.

A similar process can be used to take a 3D polyhedron and “cut corners” in an
attempt to smooth it out. Will it always get smoother? We’ll discuss this further
in Chapter 23. In the meantime, having seen how rapidly subdivision seems to
smooth out curves, you can ask yourself, “How could I analyze whether the curve
approaches a limit, and whether such a limit is smooth at a particular point?” This
is addressed (for a somewhat different subdivision method, but the principles are
similar) in Chapter 22.

4.7 Discussion

We’ve given you the tools to create simple applications in WPF for experiment-
ing with ideas from graphics, and worked through a subdivision application as
an example of using those tools. The exercises in this chapter will give you the
opportunity to explore the power of the 2D test bed, and to discover some inter-
esting ideas in graphics that you’ll encounter again later in this book. We strongly
advise you to complete at least a couple of these exercises so that working with
this framework will be simple for you in the future.

This test bed was built for a reason. Lots of years of working in computer
graphics have taught us another principle:

THE FIRST PIXEL PRINCIPLE: The first pixel is the hardest.

When you write a new program in graphics, the most common first result is
a completely black screen. That’s almost impossible to debug, because any of
a million things could be causing the problem. Usually when you manage to get
anything to show up on the screen, you’re finished with a great deal of your debug-
ging. It’s therefore proven useful to start with a program that does something like
what you’re trying to do, and to gradually modify it until it does do what you want,
but make the modifications so that at every stage you can tell, by looking at it, that
it’s doing what you expected. The test bed provides you with a starting point for
a whole host of possible programs. We hope it will save you countless hours of
debugging.

4.8 Exercises

Exercise 4.1: Modify the corner-cutting program to place the cutoff points one-
fourth and three-fourths of the way along the line; describe the results.

Exercise 4.2: Modify the corner-cutting program to be a “dualizing” program:
It replaces a polygon with its dual, a polygon whose vertices are the midpoints of
the original polygon, connected in the same order, so that the dual of a square is a
diamond. Experiment: Does repeated dualizing tend to remove crossings of self-
intersecting polygons? Can you find a polygon whose successive duals are always
self-intersecting?
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Exercise 4.3: Modify the test bed to display only a single image (e.g., the
water lilies) until a button is clicked; each time the button is clicked, a new image
should be displayed (perhaps cycling through a collection of four or five images).
To make a new image appear, you’ll need to update the BitmapSource. This exer-
cise is somewhat harder than the previous ones, because we’ve given you less
guidance.

Exercise 4.4: Read about motion-induced blindness at the end of Chapter 5,
and then write a program that lets you experiment with it, including changing the
grid spacing and colors, changing the color and size of the “disappearing” dots,
and altering the speed with which the grid rotates. Try to determine the settings
that induce the “blindness” in you most effectively.
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Chapter 5

An Introduction to Human
Visual Perception

5.1 Introduction

The human eye dominates the field of computer graphics, for without it, graph-
ics would be almost useless. Everyone working in graphics should understand
something about how the visual system works. Until some day when graphics is
“perfect” and somehow indistinguishable from reality, we must try to best use our
computational and display resources to convince the visual system that it’s per-
ceiving reality, which entails omitting work that produces undetectable (or barely
detectable) differences from the ideal.

This chapter introduces some important basic ideas, as well as outlining the
limitations of our current understanding. The science of human vision and the
related science of machine vision are lively areas of research precisely because
of the richness of these limitations. Of course, a great deal is known, and we’ll
summarize some of it here.

The visual system’s remarkable parallel processing powers allow enormous
amounts of information to be transferred from the computer to the user. (The lim-
itations on bandwidth in the other direction—human to computer—are a source
of frustration and opportunity for clever design; see Chapter 21.) The visual sys-
tem is both tolerant of bad data (which is why the visual system can make sense
of a child’s stick-figure drawing, or an image rendered with a very crude lighting
model), and at the same time remarkably sensitive. Indeed, the eye is so sensitive
to certain kinds of error that debugging graphics programs entails special chal-
lenges: A single tiny error (one red pixel in a 1-million-pixel grayscale image of
a lighted sphere) stands out, while a one-in-a-million error in many other compu-
tations might never be noticed. There’s a converse to this as well, which we men-
tioned earlier: We can use imagery to convey an enormous amount about what a
program is doing, so good graphics programmers use visual displays to help them
understand and debug their code.

101
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THE VISUAL DEBUGGING PRINCIPLE: Use visual displays to help you
debug and understand your graphics programs.

In graphics, output from the computer to the user is typically in the form of
light emitted by a display toward the user’s eyes. The display might be a con-
ventional flat-panel display, a projector, a head-mounted display, or a heads-up
display for an aircraft pilot or automobile driver. In all cases, the light reaches
us through the eye. The eye’s responses to that light are processed by the visual
system.

There are other modes of interaction as well, of course: Haptics (touch) and
sound are often used as part of the computer-to-human communication channel.
But the great bulk of the communication is through the visual system, which is
why we concentrate on it. The visual system is powerful in part because light,
which carries information to the visual system, has some special properties that are
not shared by sound, touch, smell, or taste. For instance, light isn’t directionally
diffuse: A beam of light that starts in some direction travels in that direction only;
it can travel without a supporting medium, and when traveling through air (the
most common medium) it’s largely uninfluenced by the air (although variations
in the air’s index of refraction as a function of density can distort light—think of
seeing the desert “ripple” on a hot day). By contrast, the chemicals responsible
for smell and taste not only diffuse, but also are advected by moving air, and
sound’s direction of propagation can be substantially altered by wind shear. Light
is remarkably good at carrying information from a source to our eyes. Touch, by
contrast, only works when the sensor (e.g., your finger) is collocated with the thing
being observed.

It’s tempting to try to reduce the visual system’s response to stimuli in various
ways that will make it easier to formulate a model of it. For example, because
the first step in our processing of light is detection by the sensory elements of
the eye, it’s tempting to say, “The response of the visual system depends only
on the incoming light; if you apply the same pattern of light, you get the same
response.” That’s wrong, however, at both the physical and mental levels. At the
physical level, seeing a sunny beach after walking out of a dark restaurant, for
instance, causes you to squint your eyes reflexively, while seeing that same beach
after having been outdoors for a few minutes causes no such physical, physiolog-
ical, or psychological reaction. At the mental level, it’s been shown that if you’ve
recently been shown an object, you’ll notice another object like it in a jumble of
others more quickly. So, any model of visual processing must depend not only on
the current stimuli, but on the recent past as well. More significantly, our pattern
recognition ability is also influenced by training and learning. Once you’ve learned
to identify a shape, you will recognize it much faster the next time you encounter
it; a good example is the reading of the characters or glyphs that make up text.
Almost every aspect of the visual system is similarly complicated; there seem to
be no easy explanations. On the other hand, there is a wealth of experimental evi-
dence that helps us understand some of what the visual system is doing [Roc95].
In this chapter, we focus on the visual system and how it perceives the world, but
the discussion is necessarily abbreviated; we limit the discussion to the aspects of
the system that are likely to have an impact within graphics systems. The chapter
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does however, conclude with a few brief remarks on the relationship between the
visual system and other perceptual modes, like hearing and touch.

Each section concludes with a paragraph or two labeled “Applications,” in
which ideas from the section are related to applications in graphics.

5.2 The Visual System

Low-level

Mid-level

Eye

Optic nerve

Visual cortex

High-level

Figure 5.1: The components of
the visual system.

The human visual system (see Figure 5.1) consists of the eye (which focuses light
and contains sensors that respond to incoming light), the optic nerve, and parts of
the brain collectively called the visual cortex. The exact functioning of the parts
of the visual cortex is not completely known, but it is known that some “early
vision” parts (i.e., those that handle the first few steps in the processing of the
visual signal) detect sharp contrasts in brightness, small changes in orientation
and color, and spatial frequencies, that is, the number of alternations between
light and dark per centimeter. We could summarize this by saying that we are
adept at detecting and noting changes in what we might loosely call “patterns.”
The detection of orientation or color or frequency changes is local, that is, we
are sensitive to adjacent things having different colors, but small color differences
between things that are far apart in our visual field are not detected by the early-
vision system. Also in the early-vision system are parts that assemble the local
information into slightly larger-scale information (“This little bit of edge here and
this little bit next to it constitute a larger piece of boundary between two regions”).

Later regions of the visual cortex seem to be responsible for detecting motion,
objects (“This is the thing in the foreground; all that other stuff is in the back-
ground”), and shapes, handling “attention,” and providing control of the eye (i.e.,
muscle control to help the eye track an object of interest).

The simplicity suggested by Figure 5.1 is misleading: While there is certainly
a “pipeline” structure to the visual system at a large scale, a wealth of parallel
processing goes on as well, along with substantial feedback from later levels to
earlier ones.

The visual system performs many tasks extremely well, such as determining
size and orientation regardless of your viewpoint or distance, recognizing color
invariantly under a variety of lighting conditions, and recognizing shapes, even
in the presence of noise and distortions. It performs other tasks poorly, such as
determining absolute brightness, recognizing parallel lines, and detecting identi-
cal but nonadjacent colors. And some of these strengths and weaknesses seem
almost contradictory: We’re great at noticing a tiny thing that’s different from its
surroundings (e.g., a black pebble on white sand), but we’re also great at ignoring
many things that are different from their surroundings, which lets us watch old
films with lots of film grain and scratches and other noise and not be distracted.
It’s natural to explain the visual system’s particular “talents” on an evolutionary
basis, often based on the ideas that the visual system helps us (a) find food, and (b)
avoid predators.1 Thus, for example, humans are very sensitive to motion (which
would help one detect predators that are trying to camouflage themselves), but
we’re not particularly good at remembering colors from one day to the next. The
visual system is also very good at detecting color similarity under different light-
ing conditions (you want to be able to recognize food both at noon and at dusk, and

1. Mating and obstacle avoidance may also be influences.
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you want to recognize that something is all banana, even if part of it is in sunlight
and part of it is in shade). It’s reasonably good at determining depth, especially
for nearby objects—which is very useful for coordinating your hand movement as
you reach out to pick a berry or fruit. Indeed, hand–eye coordination, especially
in the movements of an athlete or craftsperson, is a marvel of multiple systems
working together efficiently while completely bypassing the conscious aspects of
the cognitive system.

The details of color perception are discussed extensively in Chapter 28; we’ll
touch on them only briefly in this chapter. Similarly, the perception of motion is
discussed in Section 35.3.2.

It’s rather tempting to believe that we know how we see. We say things like,
“Well, it’s obvious that I look for things with similar color, like the leaves of
a tree, and try to group them together into a coherent whole so that I perceive
the leaves and the trunk-and-branches as separate groups.” But what’s obvious is
not necessarily true; a few moments spent examining various so-called “optical
illusions” demonstrates this immediately [Bac].

The visual system’s functioning matters in immediate ways in computer
graphics. In graphics, we often want to ask, “Is the image I have rendered per-
ceptually different from the ideal image, or is it close enough to generate the same
percept in the viewer’s mind, in which case I need not compute anything further?”
In other words, the ultimate measure of rendering-and-display success is percep-
tual. There’s an easy way to measure the similarity between two images (take
the pixel-by-pixel difference of the image, square all the resultant numbers, sum
them, and take the square root; this is called the sum-squared difference, L2 dif-
ference, or L2 distance2), but this measure of difference does not always match
actual differences in perception. Figure 5.2 shows a grayscale instance of this: The
L2 distances from the top 41 × 41-pixel image (in which all pixel values are 118
in a range of 0 [black] to 255 [white]) to the middle (all pixels 128) is the same as
the distance to the bottom (all pixels 118, except the middle, which has a value of
255), even though the bottom one looks much more different.

There’s been substantial work in trying to develop a “distance function” that
tells how far apart two images are, perceptually speaking [LCW03], but much
remains to be done. In the meantime, there are some useful rules to guide design
choices. The logarithmic sensitivity of the visual system described later means
that our visual system is more sensitive to radiance3 errors (of a fixed magnitude)
in dark areas than in light ones. The local adaptability of the visual system means
that changes in intensity tend to matter more than absolute intensity (as suggested
by Figure 5.2); if you have a choice, you should aim to get the gradients (i.e., the
local changes in the intensity) right rather than the values.

Figure 5.2: Three 41 × 41-pixel
images. The top image has all
pixel values 118; the middle has
all pixel values 128; the bottom
has all pixel values 128, except
the center, which is 255. The L2

distances from the top image to
each of the others are approxi-
mately equal, but this does not
match our own understanding of
“sameness.”

We now know the following about the visual system: first, that our percep-
tion of things is fairly independent of lighting (e.g., when you see an object lit
by bright sunlight or by the remaining light at dusk, you still identify it as “the
doorknob to my home”), and second, that the early portions of the visual system
tend to detect edges (i.e., boundaries between regions of different brightness) and
assemble them into something that the brain perceives as a whole. From these,
it seems reasonable to say that images are similar if the pixel-by-pixel ratio of

2. Closely related is the notion of “root mean square” or RMS difference, which is the L2

difference per pixel.
3. Radiance is a physical unit for measuring light, described in detail in Chapter 26.
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brightness is locally fairly constant, and if the set of “edges” in each image are in
the same locations. The notion of “locally” depends on how the image is viewed:
If each pixel subtends 1◦ at the eye, “locally” may mean “over a region a few
pixels wide,” while if each pixel subtends 0. 01◦, “locally” may mean “several
hundred pixels.” Indeed, it’s possible to make images that appear similar at one
distance but distinct at another distance. A simple example is a black-and-white
checkerboard pattern and a gray rectangle: Close up, they’re quite distinct; at a
large distance (great enough that the visual system cannot distinguish the indi-
vidual checkerboard squares) they appear identical. More complex examples (see
Figure 5.3) are described by Oliva [OTS06].

Figure 5.3: Close up, you see
Einstein; from a distance, you
see Marilyn Monroe. (Image
courtesy of Aude Oliva, MIT.)

Applications. How much does all this matter for graphics? Since much of
graphics is used to make people say that they are seeing some particular thing
when they view their computer’s display, it’s quite important. On the other hand,
our understanding of the visual system is still relatively sparse, so adapting our
imagery to affect perception at the retinal level may be relatively easy, while try-
ing to adjust it to affect the way in which whole objects are perceived may be
more challenging and more prone to unexpected results. Furthermore, there’s an
interaction between low-level vision (the parts of our visual system responsible
for detecting things like rapid changes in brightness in a particular area, typically
the early-vision parts) and high-level vision (the parts responsible for forming
hypotheses like “I’m seeing a surface with a pattern on it”) that is still not well
understood. Mumford, in an essay on pattern theory [Mum02], cites a remark-
able analogous example from the auditory system: Psychologists recorded various
sentences—“The heel is on the shoe,” “The wheel is on the car,” “The peel is on
the orange”—and replaced the first phoneme of the second word in each sentence
with noise, resulting in “The #eel is on the shoe,” for example, where the hash
mark denotes noise. Subjects who listened to these sentences perceived not the
noise-replaced sentences, but the originals, and indeed, did not notice a phoneme
was missing. Thus, as Mumford notes, the actual auditory signal did not reach
consciousness. On the other hand, the replacement phoneme could only be deter-
mined from the larger context of the sentence. Mumford conjectures that vision
may, in many cases, work the same way: While low-level information is often
extracted from what you see, in some cases the way in which it’s treated may be
influenced by the results of higher-level understandings that you get from partially
assembling the low-level information. For example, when you see someone lean-
ing against a railing, you form the hypothesis that the railing continues behind the
person, without ever consciously considering it. When you see something through
the spinning blades of a fan, you assemble the parts you see at different times into
a coherent whole, rather than assuming that the obscured parts at one instant are
unrelated to the unobscured parts in the same portion of your visual field a moment
later. Because of these interactions between high-level and low-level vision, we’ll
concentrate primarily on the low-level aspects, which are better understood.

Do we really “see” things? It’s more accurate to say that our visual system
contructs a model of the world from its input, forming this model with a combina-
tion of perceptual and cognitive processes that resolve apparent contradictions in
the perceptual data (as in the experiment Mumford describes). This lets the brain
eventually form an object hypthesis (“I see this thing!”), albeit with some back-
tracking if your cognitive abilities contradict what you think you saw (“That can’t
be a flying elephant!”). Thus, the end result of vision is a construction created by
the mind, and not objective reality.
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5.3 The Eye

Despite our limited understanding of the visual system, there are physical charac-
teristics of the eye that limit what it can possibly do, and these can help govern the
design of graphics systems. For instance, there is a smallest detectable brightness
difference, and a smallest angular resolution for the eye. A display whose pixels
could show brightness differences smaller than those, or whose pixels subtended
an angle only 1/10 as large as this smallest angular resolution, would be unneces-
sarily complex. We’ll regard the eye as stopping at the optic nerve, with the nerve
and the visual cortex constituting the remainder of the visual system.

5.3.1 Gross Physiology of the Eye

At a large scale, the eye consists of a globe-shaped object, held in place by the
skull, various muscles that are attached to it, and other soft tissue surrounding it
(see Figure 5.4).

The control of the rotation of a pair of eyes is coordinated by our visual system
so that the received pattern of light on the retinas of the eyes can be integrated
to form a single coherent view of the world; the left-eye and right-eye views of
a scene are generally different, and the disparity between these views helps us
estimate the depth of objects in the world. (You can experiment with this easily:
Mark a spot on the wall of a room, and place several objects more or less between
you and this mark, at different distances. While staring at the mark, cover first one
eye and then the other, and notice how the left–right positions of objects near you
seem to move as you switch eyes.)

A

(b)
B

(a)

Figure 5.5: Light from point A is
in focus when it arrives at the sur-
face at right; point B is out of
focus.

At a coarse level, the path from an object that’s either emitting light (a light
bulb) or reflecting it (a book on your desk) to your retina—through the pupil and
lens and vitreous humor (the gel-like liquid in the eyeball)—can be modeled by
a simple lens, mounted between the light-producing object and an imaging plane
(see Figure 5.5). Light from an object is emitted along many rays, which hit dif-
ferent points of a lens and are refracted (bent) as they pass into and out of the lens,

Vitreous humor

Retina

Fovea

Visual axis

Optic disk

Optic
nerve

Aqueous
humor

Cornea
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Iris

Orbital muscles

Figure 5.4: Light enters the eye through the pupil, then passes through the lens and vitreous
humor, and arrives at the retina.
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with the result (if the lens is properly shaped) that the rays all converge again at
some point on the other side. If this point happens to lie on the imaging plane, we
say that the object is “in focus.” If the point of convergence is not on the imaging
plane, then instead of producing a bright point of light, the rays generate a dim
disk of light on the imaging plane. If the imaging plane is the sensor array for a
digital camera, for instance, then the point B appears out of focus and blurry.

The convergence of all rays to a single point depends on the index of refrac-
tion (see Chapter 26)—a number that describes how much light bends as it passes
from air to the lens and back to air—being independent of the wavelength of the
light. For most materials, the index of refraction does vary slightly with wave-
length; this can make objects of one color be in focus while those of another color
are not, which accounts for the rainbow-colored fringe on the edges of objects
when they’re viewed through a magnifying glass, for instance.

Because the eyes can slightly modify their lenses’ shape, the visual system can
use focus/defocus to detect distance from the eye to an object, at least for nearby
objects (defocus becomes less severe the farther away objects are). The amount
of defocus-from-depth depends on the lens diameter. For very small diameters,
there is a much larger depth range that’s almost in focus (this range is described in
photography as depth of field); for large diameters, the depth of field tends to be
small. For an idealized pinhole camera, in which light passes through an infinites-
imal hole on its way to the image plane, depth of field is infinite; unfortunately,
the light-gathering ability of such an idealized device is zero. The human eye also
has an adjustable pupil. In low light, the pupil opens wide and gathers more light,
but at the cost of reduced depth of field; in bright light, the pupil closes, enhancing
depth of field. Contrary to common wisdom, this pupil adjustment is hardly sig-
nificant in the matter of adapting to a wide range of brightness levels—the pupil’s
area changes by a factor of, at most, ten, while the largest arriving radiance in
ordinary experience is about ten orders of magnitude larger than the smallest, but
the response is fast, making the pupil very effective at short-term adjustments. The
longer-term adjustment is a chemical process in the receptors.

5.3.2 Receptors in the Eye

A large portion of the inner back surface of the eye, the retina, is covered with
cells that respond to the light that arrives at them. These are primarily in two
groups: rods and cones, which we discuss further in Chapter 28. Rods are respon-
sible for detecting light in low-light situations (e.g., night vision), while cones
detect light in higher-light situations. There are three kinds of cones, each respon-
sive to light of different wavelengths; the combination of the three responses gen-
erates the sensation of color (discussed further in Chapter 28). There are far more
rods than cones (a ratio of about 20:1), and the distribution of rods and cones
is not uniform: At the fovea, a region opposite the pupil, the cone cell density is
especially high. Deering [Dee05] gives detailed descriptions of these distributions,
and a computational model for the eye’s response to light. There’s another special
area of the retina, the optic disk, where the optic nerve attaches to the eye. In this
region, there are no rods or cones at all. Despite this, you do not have the sense,
as you look around, that there is a “blind spot” in your perception of the world;
this is an instance of higher-level processing masking out (or filling in) the details
of low-level information. The blind spot is very much present, but if you were to
notice it all the time, it would distract you constantly.
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There is another set of recently discovered cells in our eyes that respond pri-
marily to light in the blue region of the spectrum; their responses are not carried
by the optic nerve and do not go to the visual cortex. Instead, they are used in
controlling circadian rhythms in mammals.

bright

dim

Raw response

Inhibition from
all neighbors

Total response =
raw – inhibition

Figure 5.6: The raw response of
receptors in the bright and dark
regions (in blue, at top), the lat-
eral inhibition amounts (in red,
middle), and their difference—
the actual response—shown in
green at the bottom. Notice the
enhanced contrast at the edge
between light and dark, indicated
by the dotted line.

The receptors in the eye detect light, provoking a response in the visual sys-
tem; very roughly speaking, each doubling of the arriving light at a receptor gen-
erates the same increment of response. If light B appears half as bright to you as a
geometrically identical light A, then the energy emitted by B is about 18% that of
light A. A light C whose energy is 18% of that from B will appear half as bright as
B, etc. This logarithmic response helps us handle the wide range of illumination
we encounter in everyday life. We discuss the perception of brightness of light
further in Chapter 28. The logarithmic response of the visual system also deter-
mines something about display technology: An effective display must be able to
show a wide range of intensities, and this range of intensities should not be divided
into even steps, but rather into even ratios of intensity. This notion drives the idea
of gamma correction discussed in Chapter 28. Brightness is the name used to
describe the perception of light; by contrast, what we’ve been informally calling
“intensity” of light is more precisely measured in units of radiance, described in
detail in Chapter 26. What we’ve been saying is that, all other things being equal,
brightness is roughly proportional to the log of radiance.

In general, it’s useful to know that the eye adapts to its circumstances. When
you’re in your bedroom at night, reading, your eyes are adapted to the level of
light in the room, an adaptation that’s centered on the intensity4 of the page you’re
looking at; when you turn off the light to go to sleep, everything in the room looks
black, because the page’s intensity is now well below the range of intensities to
which your eye has adapted. But a few minutes later you can begin to distinguish
things in your room that are illuminated by just moonlight, as your eye begins to
adapt to the new, lower, light level. If you turn the light on again to resume reading,
the page will initially seem very bright to you, until your eye has readapted.

The receptor cells in the eye do not act entirely independently. When the eye
is generally adapted to ambient illumination, an extra bit of light arriving at one
receptor will not only increase the sensation of brightness there, but also slightly
reduce the sensitivity of the neighboring receptors, an effect known as lateral
inhibition. The result of this (see Figure 5.6) is that the edge contrast between
regions of light and dark is enhanced compared to the contrast between the centers
of the regions: The dark side of the edge is perceived as being darker and the
light side as being lighter. This is the origin of the Mach banding discussed in
Section 1.7.

This has an important consequence for computer graphics. In early graphics
systems, polygons were often “flat shaded.” That is, relatively large areas of the
screen were given constant colors. When a shape like a cylinder (approximated by
an extruded polygon) was illuminated by light from one direction, adjacent facets
were assigned differing constant shades depending on how directly they faced the
light source. The eye, instead of blending together the slightly different adjacent

4. We’re using this term informally to describe the amount of light energy leaving the
page and arriving at your eye.
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shades, tended to enhance the differences at the edges, emphasizing the faceted
structure.

Given this enhanced sensitivity to edges, it’s natural to ask how small an edge
the eye can detect. We can make a drawing of alternating parallel black and white
stripes and move it away from the eye until it appears gray. This turns out to
happen at a distance where two adjacent stripes subtend about 1.6 minutes of arc
(a minute is 1/60 of 1◦).

The receptors in the eye adapt chemically to the overall brightness of what the
eye is seeing. For many ordinary illumination levels, the eye can detect a ratio of
intensities of about 100:1 within a small area. Figure 5.7 shows that this adaptation
allows us to detect the brightness of arriving light only over a modest range for
each level of adaptation. On the other hand, the eye can adapt very quickly to mod-
est changes in illumination, so you can, for example, quickly search for a pencil
in your dark backpack, even outdoors on a sunny day. Full adaptation to a major
reduction in illumination, however, which involves chemical changes in the recep-
tor cells, requires about a half-hour. After such adaptation, one can detect very low
illumination levels; the ratio of the brightest distinguishable daytime levels to the
dimmest distinguishable nighttime levels is more than 1,000,000:1. Many displays
advertise contrast ratios of 10,000:1; since the eye can only discern ratios of about
100:1, why would such a range be important? Because the adaptation of the eye is
partly local: As you stare from your unlit bedroom through a small window to the
sunny outdoors, one part of your eye may be able to distinguish between things
of different brightnesses in the room, while another distinguishes between things
of different brightnesses outdoors. To generate this same percept, a display screen
must be able to present comparable stimuli to the different regions of your eye.
As an example of the extremes of perception, on a clear night you may be able to
see a magnitude-3 star, while also seeing the moon clearly; the stellar magnitude
for the moon is about−12. 5. Since 5 stellar magnitudes represents a factor of 100
in intensity, this represents an intensity range of about 1 million. But if the moon
is reasonably close (in your visual field) to that magnitude-3 star, you’ll almost
certainly be unable to see the star.

Response

Stimulus

1

100 Dark-
adapted Light-

adapted

Figure 5.7: The dark-adapted
eye’s response to light “satu-
rates” at a fairly low stimulus
level; the light-adapted eye can-
not detect differences between
various low-light-level stimuli.

Applications. The visual system’s ability to detect distance to an object
through two different mechanisms—the eye can focus, or the two eyes together
can use parallax, which we’ll discuss presently—means that it’s possible to have
divergent distance detections when the eyes are fed different data. For instance,
if a user wears a pair of glasses whose lenses are replaced by individual displays,
we can fool the user into seeing “in 3D” by displaying different images on the
two displays, making the user believe that the things seen are at various distances,
creating a “stereo” effect. But to see these two distinct images at all, the user must
focus on the displays, which are just a few inches from the user’s eyes (or can
be made to seem more distant with the use of lenses). The two percepts of depth
contradict each other, and this makes many “3D display” experiences unpleasant
for some users.

The adaptation of the eye to surrounding light levels, and the limited dynamic
range within an adapted eye, means that we need not contruct displays with enor-
mous contrast ratios between pixels, although it may be useful to be able to adjust
the mean intensity over a large range. On the other hand, it also means that when
we’re displaying something very bright, like the sun shining through the leaves
of a tree, we can eliminate most of the detail near the sun, since small variations
in brightness of the leaves will be “masked” by the eye’s local adaptation to the
brightness of the sun.
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The concentration of receptors near the center of the visual field means that
we can afford to make peripheral displays less precise. Our sensitivity to motion
in our peripheral field, however, means that we cannot be too sloppy.

The limitations of edge detection tell us how many lightness levels we need to
be able to display to generate imagery that’s apparently smooth.

5.4 Constancy and Its Influences

Somehow our visual systems go from received light to a perception of the world
around us (“That’s my car over there next to the red truck!”). The process is
remarkably robust, in the sense that substantial changes in the input result in
almost no change in the resultant percept: You can identify your car as being
next to the red truck in bright sunlight, at dusk, or in late evening; you can iden-
tify it whether you’re standing three feet away or 300 feet away (and when you’re
300 feet away, you don’t say, “Gosh, my car has shrunk!”); you can recognize it
when you see it from the front or the right side or the left side or the back, without
saying, “It’s changed shape!”

On the other hand, the stimuli that provoke these constant percepts are very
different: The light entering the eye from the car at night is very different from
the light entering the eye from the car at midday. It’s less intense, and probably
has many more short-wavelength components (which humans tend to see as blue),
at least if the streetlights use mercury-vapor lamps. Different cells are responding
to the light (the rods are in the range of light at which they begin to discriminate
illumination levels). So the visual cortex must do some interesting things to gen-
erate the same general percept. Of course, the percept is not entirely the same:
You know you’re seeing the car at night rather than during the day, but you don’t
believe, because of the different illumination, that the car’s color has changed.
This is an instance of color constancy. Similarly, you don’t believe, when you
look at it from a different location, that the car’s shape or size has changed; these
are examples of shape constancy and size constancy.

Constancy is a wonderful thing (in terms of preventing perpetual confusion).
On the other hand, it’s also responsible for making our visual systems rather bad
at some things at which other visual systems (e.g., digital cameras) are good.
As mentioned, we’re not very reliable at determining when two colors are the
same, unless they’re adjacent. But a digital camera can do so quite reliably. One
consequence of this is that, as we work in computer graphics, it’s important to
know what “visual system” will be processing the images we produce: If it’s a
human eye, then small color errors in patches that are far from one another may
not matter; if, however, we’re using computer-graphics-produced images to test a
computer-vision system whose input comes from digital cameras, then such errors
may be significant.

Figure 5.8: All the center squares
have the same lightness; the
apparent lightness, however, is
profoundly influenced by the sur-
rounding squares.

It’s often helpful, in understanding a system, to know of instances where it
fails (e.g., we use such instances in debugging). In the case of the visual sys-
tem, “failure” may not be well defined, but we certainly have examples where our
visual system does not do what we expect it to do. For instance, you can see how
bad humans are at determining the absolute lightness of a region by noting your
sensation of lightness when that region is surrounded by other regions of varying
lightness, as in Figure 5.8.

This might seem like a failure of constancy—after all, the center squares in
Figure 5.8 are “all the same.” But if we model the center square and its surrounding
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square as being painted on a surface and illuminated by lights of varying intensity,
we get a very different set of images, as in Figure 5.9, in which the center square’s
gray values are all different, but you have the perception that the center squares are
all fairly comparably dark. This is an instance of lightness constancy under varying
illumination. (An even more spectacular example of lightness constancy—and its
nonrelation to incoming intensity—is shown in Figure 28.15.)

The materials available on this book’s website discuss further constancy
effects.

Applications. The various constancy illusions show that surrounding bright-
ness can affect our perception of the brightness of a surface or of a light. This leads
to the use of different gamma values (discussed in Section 28.12) for studio mon-
itors, theatre projection, and ordinary office or home displays, where the average
brightness of the surroundings affects the appearance of displayed items. It also
suggests that during rendering, if you want to visually compare two renderings,
you should surround each with an identical neutral-gray “frame” to help avoid any
context-based bias in your comparison.

The other consequence of constancy, at least for brightness, is that relative
brightnesses matter more than absolute ones (which helps explain why edge detec-
tion is so important in early vision). This suggests that if we want to compare two
images, it may be the ratio of corresponding pixels that matters more than the
difference.

Figure 5.9: The ratio of the cen-
ter square’s darkness to the sur-
rounding square’s darkness is
approximately the same in each
example; you tend to see the cen-
ter squares as exhibiting far less
variation in lightness than those
in the previous figure.

5.5 Continuation

When one object seems to disappear behind another, and then reappear on the
other side (see Figure 5.10), your visual system tends to associate the two parts as
belonging to a whole rather than as separate things; this is an instance of the idea
from Gestalt psychology that the brain tends to perceive things as a whole, rather
than just as individual parts.

One proposed partial mechanism for this perception is the C1 random walk
theory [?, Wil94] in which we suppose that at T-junctions (where an outline of
one object appears to pass behind another object), the brain “continues” the line
in the same general direction it was going when it disappeared, but with some
random variation in direction. Some such continuations happen to terminate at the
other T-junction, headed in the appropriate direction. If we consider all such con-
nections between the two, some are more probable than others (depending on the
probability model for variation in direction, and on the lengths of continuations).
Each point in the obscured area occurs on some fraction of all such continuations
(i.e., there’s a probability density p with the property that the probability that a
random connection passes through the area A is the integral of p over A). The
ridge lines of the distribution p turn out to constitute very plausible estimates of
the “inferred” connection between the T-junctions, with the integral of p over the
curve providing a measure of “likelihood” that the lines are connected at all. If
the T-junctions are offset from each other (i.e., if the two segments are not part
of a single line), the probability decreases; if the two segments are nonparallel,
the probability decreases; only when the T-junctions are perfectly aligned is the
probability of connection at its maximum. Is such a “diffusion of probability of
connection” really taking place in the brain? That’s not known. But this notion
that the ridge lines of p form the most likely connections cannot, as stated, tell the
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whole story, because there’s a peculiar effect in the matching of diagonal lines,
which we now discuss.

When you see a diagonal line pass behind a vertical strip, as in Figure 5.11,
you tend to fail to correctly perceive when the diagonal parts are aligned (the
explanation seems to involve misperception of acute angles). Nonetheless, the
effect can be drastically reduced by placing ends on the vertical strip to make
it a parallelogram (or to give other cues, like a texture that appears to have per-
spective foreshortening) so that the diagonal line appears to lie in a plane parallel
to that of the strip (see Figure 5.12).

Applications. Such peculiarities of the visual system have an important
impact when we examine nonphotorealistic or expressive rendering, in which we
seek to create imagery whose goal is not faithfulness to reality, but rather the
expression of the creator’s intent, which may be to draw the eye to a particular
portion of the image through judicious choices of what to show. Consider, for
example, an illustration in an automobile repair manual, where the area being dis-
cussed is drawn in detail, and surrounding regions are simplified to just a few lines
to avoid confusion. When we simplify our imagery by eliminating detail, are we
also losing important cues that the visual system uses to understand the presented
scene? In some cases, it’s clear that we do lose important features; a failure to
draw shadows can cause a viewer to misunderstand which objects are touching
others, for instance. But even in an example like that of Figure 5.12, suppose that
our abstraction removes the “texture” on the vertical strip in (b). The diagonal line
then will appear mismatched, as in Figure 5.11(b).

Continuation can also be used to infer meaning from a user’s sketch of a
shape [KH06]: When one contour is obscured by another, we can use a model
of continuation to infer where the user thinks it goes.

(a)

(b)

(c)

Figure 5.10: The diagonal line in
(a) seems to pass behind the ver-
tical strip. You strongly sense the
two diagonal segments are part of
a continuous whole, as shown in
(b), rather than each terminating
behind the vertical strip, as in (c).

(a) (b)

Figure 5.11: Which of (a) and
(b) seems to be a single contin-
uous straight line passing behind
a strip, and which looks like the
two segments are parallel but
not part of the same line? Place
a straightedge on the figure to
determine the truth.

5.6 Shadows

Shadows provide remarkably powerful cues to our visual system, but these cues
are not always exactly what we think they are. For instance, shadows help us
estimate the depth (distance from the viewer) of objects that are not on the ground
plane. Keren et al. [LKMK97] demonstrated this compellingly with an example
like the one shown in Figure 5.13, in which the motion of a ball in a scene is very
strongly disambiguated by means of shadow cues: With no shadow cues, it’s easy
to convince yourself that the ball is either moving in a plane of constant distance
from the eye, rising as it moves right, or moving at constant height from a point
above the front-left corner of the tray to a point above the rear-right corner. When
shadows are included, one choice or the other is forced on the perceptual system.
It’s interesting to experiment with this example, because it turns out that the effect
is almost equally strong when the shadow does not correspond to the shape of the
object—a small square instead of a disklike shadow, for instance. Furthermore, the
shadow cue can easily overwhelm other visual cues like the foreshortening due to
perspective (in the front-to-back motion, the sphere will subtend a smaller visual
angle when it’s far away than when it’s close, so a constant-size sphere should
appear to be always moving in the constant-distance plane; nonetheless, with a
shadow cue, you see it moving along the front-left/rear-right diagonal).

From this, we might infer that shadows provide some kind of depth or posi-
tion information, but are less informative about shape. But shadows where an
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object meets a surface actually do convey something about shape, as shown in
Figure 5.14. Such shadows are also very strong cues in helping us determine object
contact; a drawing without contact shadows can lead us to see objects as “floating
above” a surface rather than resting on it.

Applications. Although a shadow may be quite faint, and hence not terri-
bly important in the L2 difference between two images, the perceptual difference
between the images can be huge. Rendering shadows is essential; getting them
exactly right is not.

5.7 Discussion and Further Reading

Perception is a huge subject, of which this brief overview only touches on a few
items of particular interest in graphics. There are physiological, mental, and philo-
sophical aspects to the subject; there are also large unexplored areas. Static per-
ception has been given a great deal of attention and study, but the effects of motion
(not only how humans perceive motion, but also what effects motion has on our
perception) are far less understood. Hoffman [Hof00] and Rock [Roc95] both pro-
vide fine overviews, but brain science is advancing at such a rate that you’re prob-
ably best advised to look at recent journal articles rather than surveys in books to
find out the best current thinking on the subject (which will surely change rapidly).

(a) (b)

Figure 5.12: When we truncate
the vertical lines so that the
obscuring strip seems to be a
plane parallel to one containing
the line, the illusion from Fig-
ure 5.11 disappears; the same
effect happens when the strip is
given a texture that indicates this
tilted orientation.

(a)

(b)

(c)

Figure 5.13: (a) A ball moves
above a three-sided tray with-
out shadows; its motion is not
strongly determined. (b) and (c)
Shadows force an interpretation
of the motion as being in a ver-
tical or horizontal plane.

We’ve described constancy effects, but there are higher-level effects in vision
as well. To some degree, what you see is highly dependent on what you’re look-
ing for. Simons and Chabris [SC99] showed that many viewers told to count how
often a basketball is passed by some players fail to notice a person in a gorilla
suit walking through the midst of them. Thus, semantic expectations regulate
perception.

We haven’t discussed stereo viewing in detail because it’s rather specialized.
In stereo the two eyes are presented with different images which the visual system
must resolve. Typically, differences between the images result in the powerful per-
cept of depth variation across the field of view. Unfortunately, as we mentioned
earlier, the images presented to the eyes by a stereo-graphics system are typically
displayed on flat surfaces that are not very distant from the eye; the adaptation of
the eyes’ lenses to focus on this display plane gives a depth signal that is at odds
with the depths that the brain is inferring for the various things in the scene. This
kind of contradictory evidence being presented to the visual system makes it quite
difficult to know what a user will actually perceive. Furthermore, while stereo is
a key cue in depth perception for most people, there are people who lack stereo

Figure 5.14: The appearance of a contact shadow tells us quite a lot about shapes and their
relationship. You perceive the two identically drawn forms quite differently when shown
their nonidentical shadows.
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vision but have sufficient depth perception to perform tasks as complex as flying
airplanes, thanks to their ability to read other cues such as perspective foreshort-
ening, intensity modulation with distance, and especially motion parallax.

We’ve already mentioned that rendering is really a process of integration, and
that the integration is typically done with randomized sampling. In building a ren-
derer, we get to choose samples for the integrator. In regions of the image where
there are more samples, we tend to get better estimates of the integrals we’re
computing. If that area is one which has little perceptual significance (e.g., if
it’s part of a salt-and-pepper texture), then the extra sampling effort is wasted;
if it’s perceptually salient (e.g., the edge of a dark shadow on a light surface), then
the extra sampling is valuable. Greenberg et al. [Gre99] describe the inclusion
of perceptual factors as a driving influence in rendering. One challenge is that to
apply these ideas straightforwardly, one must model the perceptual process and
then compare the ideal image (which may not be available) to the approximate
one in the post-perception state. Ramasubramanian et al. [RPG99] developed an
approach in which measurements made directly on images were closely related to
perceptual measurements, allowing image formation to be more easily guided by
estimated perceptual importance. Walter et al.[WPG02] applied a similar approach
to reduce rendering effort substantially in textured regions where such a reduction
would be imperceptible.

Perceptual difference measures are also used in image compression. JPEG
image compression, for instance, attempts to approximate an input image in mul-
tiple ways, and then selects among these by choosing the one whose perceptual
distance (in some measure) from the original is smallest. MPEG compression of
moving image sequences operates similarly.

Differences that matter to the visual system when items are viewed in isola-
tion may be ignored when they are viewed in a larger context, particularly one
with lots of visual complexity. Recent work by Ramanarayanan et al. [RBF08]
demonstrates that our perceptions of aggregates (a mixture of marbles and dice,
or of two kinds of plants in a garden) have some surprising weaknesses. Related
work [RFWB07] from the same group demonstrates that even though two pictures
may be perceptually distinguishable, the distinction may not matter.

The field of perception is constantly advancing in new and surprising ways.
As an example of the sort of stunning discovery that’s being made even now,
consider motion-induced blindness, in which certain objects can be made to dis-
appear, depending on the motion of others. If the arrangement of crosses shown
in Figure 5.15 is slowly rotated, and you stare at the tiny dot in the center, the
three fixed surrounding dots can disappear completely from view. The effect is
weak when the grid is the same color as the dots, but quite strong when they are
different; a blue grid and yellow dots work well. The effect is also present over a
wide range of rotation speeds and dot sizes.

Figure 5.15: The grid of crosses
is rotated about its center at a
speed approaching ten seconds
per complete rotation. The user is
instructed to fixate on the center
of rotation. After a moment, one
or more of the other dots in the
image seem to disappear.

As mentioned at the beginning of this chapter, visual perception is not the
only mode of computer-to-human communication; sound and touch are also in
frequent use. When both hearing and vision are used, and they contradict each
other, which one dominates? Shams et al. [SKS02] report an interesting instance in
which sound dominates; they “report a visual illusion which is induced by sound:
when a single flash of light is accompanied by multiple auditory beeps, the sin-
gle flash is perceived as multiple flashes.” What about touch and vision? Randy
Pausch [personal communication] reported that when a display shows an appar-
ently dented surface, and a haptic device is used to “touch it” and is guided by
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data that hides the dent, users report being able to feel the dent regardless. A care-
ful study has been carried out by Burns et al. [BWR+05], supporting the idea of
visual dominance. These are, however, isolated and controlled instances of multi-
modal sensation. The degree to which these different modalities interact in more
complex situations is still unmeasured.

5.8 Exercises

Exercise 5.1: Write a program that displays an image consisting of parallel stripes,
sitting above another image that’s pure gray. Make the gray level adjustable (by
slider, buttons, keystrokes, or any other means you like). Stand far enough away
that the stripes are indistinguishable from one another, and adjust (or have a friend
adjust) the gray level of the solid rectangle until you say it matches the apparent
gray of the stripes. Now move toward the display screen until you can detect
the stripes individually; measure your distance from the display, and compute the
angle subtended at your eye by a pair of parallel stripes. You should make sure that
you’re not fooling yourself by having the display (after the press/click of a button)
show either vertical or horizontal stripes next to the gray rectangle (at random)
and have the position of the stripes and the solid rectangle exchanged or not (at
random).

Exercise 5.2: Implement the motion-induced-blindness experiment; include
buttons to increase/decrease the speed of rotation and the size of the “disappear-
ing” dots, and allow the user to choose the color of the grid and the dots. Experi-
ment with which colors work best at making the dots disappear.

Exercise 5.3: Write a program that draws three black dots of radius 0.25 at
x = 0, 1, 2 along the x-axis. Then display instead three black dots at positions
t, t + 1, and t + 2 (using t = 0. 25 initially). Make the display toggle back and
forth between the two sets of dots, once every quarter-second. Do you tend to see
the dots as moving? What if you increase t to 0. 5? Include a slider that lets you
adjust t from 0 to 3. Does the illusion of the dots moving ever weaken? When
t = 1, you could interpret the motion as “the outer dot jumps back and forth from
the far left (x = 0) to the far right (x = 3) while the middle two dots remain fixed.”
Can you persuade yourself that this is what you’re seeing? The strong impression
that the dots are moving as a group is remarkably hard to abandon, supporting the
Gestalt theory.

Exercise 5.4: Write a program to imitate Figure 5.13, where a slider controls
the position of the red ball along its trajectory. Include a set of radio buttons that
lets you change the “shadow” of the ball from an ellipse to a disk to a square to
a small airplane shape, and see how the change affects your perception of the red
ball’s position. You can write the program using the 3D test bed or the 2D test
bed—there’s no particular need to get the perspective projection exactly right, so
merely mimicking the figure will suffice.



ptg11539634

This page intentionally left blank 



ptg11539634

Chapter 6

Introduction to
Fixed-Function 3D
Graphics and Hierarchical
Modeling

6.1 Introduction

You’ve been introduced to how a 3D scene is projected to 2D to produce a ren-
dered image, and you know the basic facts (substantially clarified in later chap-
ters) about light, reflectance, sensors, and displays. The other required ingredi-
ent for an understanding of graphics is mathematics. We’ve found that students
understand mathematics better when they encounter it experimentally (as we saw
with the order-of-transformations issue in Chapter 2). But performing experiments
using 3D graphics requires either that you build your own graphics system, for
which the preliminary mathematics is critical, or that you use something premade.
WPF is a good example of the latter, providing an easy-to-use foundation for 3D
experimentation.

In this chapter, you learn how to use WPF’s 3D features (which we’ll refer
to as WPF 3D) to specify a 3D scene, configure lighting of the scene, and use a
camera to produce a rendered image. WPF’s classic fixed-function model of light
and reflectance is not based on physics directly, and does not produce images
of the quality needed for entertainment products like animated films; however,
because of the enormous adaptability of the human visual system, it does make
pictures that our minds perceive as a 3D scene. The fixed-function model also
has the advantage of being widely used in other graphics libraries; it’s a model
that researchers in graphics should know due to its extensive use in early graphics
research and commercial practice, even though it’s being rapidly superseded. The
desire to produce more realistic pictures motivates the extensive discussions of
light, materials, and reflectance found throughout the remainder of this book.
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6.1.1 The Design of WPF 3D
There are dozens of commonly used 3D graphics platforms, covering a wide vari-
ety of design goals. Some are focused on image quality/realism regardless of cost
(e.g., systems used to compute the frames for high-quality 3D animated films),
while others target real-time interactivity with more-or-less realistic simulation
of physical properties (e.g., systems used for creating 3D virtual-reality environ-
ments or video games), and yet others make compromises on image quality in
order to achieve reasonably fast performance across a wide variety of hardware
platforms.

As described in Chapter 2, WPF is a retained-mode (RM) platform—the appli-
cation uses XAML and/or the WPF .NET API to specify and maintain a hierar-
chical scene graph stored in the platform. (You’ll learn in Section 6.6.4 why it’s
called a “graph”; for now, just think of it as a scene database.) The platform, in
conjunction with the GPU, automatically keeps the rendered image in sync with
the scene graph. This kind of platform is significantly different from immediate-
mode platforms such as OpenGL or Direct3D, which do not offer any editable
scene retention. For a comparison of these two different architectures in the con-
text of 3D platforms, see Chapter 16.

WPF’s primary goal is to bring 3D into the domain of interactive user inter-
faces, and as such it was designed to meet these requirements:

• Support a large variety of hardware platforms

• Support dynamics for low-complexity scenes with a real-time level of per-
formance on hardware that meets basic requirements

• And provide an approximation of illumination and reflection sufficiently
efficient for real-time creation of visually acceptable 3D scenes

Here we use WPF 3D to introduce some 3D modeling and lighting techniques by
example, taking advantage of WPF’s easily editable scene descriptions to give you
a hands-on understanding.

6.1.2 Approximating the Physics of the Interaction
of Light with Objects

Each object in a 3D scene reflects a certain portion of incident light, based on
the reflection characteristics of the object’s material composition. Moreover, each
point on the surface of an object receives light both directly from light sources
(those that are not blocked by other objects) and indirectly by light reflected from
other objects in the scene. The complex physics-based algorithms that directly
model the intrinsically recursive nature of interobject reflection (described in
Chapters 29 through 32) require lots of processing; if real-time performance is
the goal, they often require more processing power than today’s commodity hard-
ware can provide. Thus, real-time computer graphics is currently dominated by
approximation techniques that range from loosely physics-based to eye-fooling
“tricks” that are not based on physical laws in any way.

The approximation techniques that generate the highest level of realism
demand the most computation. Thus, interactive game applications (for which
animating at a high number of frames per second is essential for success) must
rely on the fast algorithms that compromise on realism. On the other hand, movie
production applications have the luxury of being able to devote hours to comput-
ing a single frame of animation.
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Many classic approximation algorithms were developed decades ago, when
the power of computing and graphics hardware was a tiny fraction of what is
available today, to meet two key goals: minimizing processing and storage require-
ments, and maximizing parallelism (especially in GPUs). These algorithms had
their roots in software implementations that began in the late 1960s, grew in gen-
erality through the 1970s and 1980s, and were then implemented in increasingly
more powerful commercial GPU hardware starting in the 1990s.

A particular sequence of the most successful of these algorithms, commonly
called the fixed-function 3D graphics pipeline, has been in use for three decades
and was dominant in GPU design until the late 1990s. This pipeline renders trian-
gular meshes, approximating both polyhedral objects and curved surfaces, using
simple surface lighting equations (for calculating reflected intensity at triangle
vertices, as described in Sections 6.2.2 and 6.5) and shading rules (for estimating
reflected intensity at interior points, as described in Sections 6.3.1 and 6.3.2). An
application uses the fixed-function pipeline via software APIs of the type found in
classic commodity 3D packages such as earlier versions of OpenGL and Direct3D.
WPF is one of the newer APIs providing a fixed-function pipeline, and as we
present its basic feature set throughout the rest of this chapter, we will provide
a brief introduction to the classic approximation techniques, how well they “fool
the eye,” and what their limitations are.

Although the fixed-function pipeline is an excellent way to start experimenting
with the use of 3D graphics platforms (thus our choice of WPF here), it is no
longer de rigueur in modern graphics applications, for which the programmable
pipeline (introduced in Sections 16.1.1 and 16.3) is now the workhorse. As GPU
technology continues its rapid evolution, higher-quality approximations become
more feasible in real time, and the ability to simulate the physics of light–object
interaction in real time becomes ever more feasible.

6.1.3 High-Level Overview of WPF 3D

WPF’s 3D support is closely integrated with the 2D feature set described in Chap-
ter 2, and is accessed in the same way. XAML can be used to initialize scenes
and implement simple animation, and procedural code can be used for interac-
tivity and runtime dynamics. To include a 3D scene in a WPF application, you
create an instance of Viewport3D (which acts as a rectangular canvas on which
3D scenes are displayed) and use a layout manager to integrate it into the rest of
your application (e.g., alongside any panel of UI controls).

A Viewport3D is similar to a WPF Canvas in that it is blank until given a
scene to display. To specify and render a scene, you must create and position a set
of geometric objects, specify their appearance attributes, place and configure one
or more lights, and place and configure a camera.

The 3D equivalent of the 2D abstract application coordinate system is the
world coordinate system, with x-, y-, and z-axes in a right-handed orientation (as
explained later in Figure 7.8). The unit of measurement is abstract; the application
designer can choose to use a physical unit of measurement (such as millimeter,
inch, etc.), or to assign no semantics to the coordinates. The scene’s objects, the
camera, and the lights are placed and oriented using world coordinates.

The use of physical units is optional, but can be helpful to accurately emulate
some kind of physical reality (e.g., meters for modeling an actual neighborhood’s
houses and streets, or millimicrons for modeling molecules). The WPF platform
itself is not informed of any semantics the application might attach to the units.
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The scene is rendered to the display device via the pipeline represented at a
very high level in Figure 6.1. The camera is positioned in the modeled world using
world coordinates, and it is configured by specification of several parameters (e.g.,
field of view) that together describe a view volume—the pyramid-shaped object
shown in the middle subfigure. (You’ll learn a great deal about camera specifica-
tion and view volumes in Chapter 13, and we’ll examine the camera specification
from the OpenGL perspective in Chapter 16.) The portion of the scene captured
in the view volume is then projected to 2D, resulting in the rendering shown in the
viewport, which will appear in the application’s window. Camera

setup

Projection to
2D/transform
to viewport

World
coordinate

system

Figure 6.1: Very high-level
overview of WPF’s 3D geometry
pipeline.

As is the case in WPF 2D, the platform automatically keeps the rendering in
sync with the modeled world. For example, making a change to the scene or to
the camera’s configuration automatically causes an update to the rendering in the
viewport. Thus, animation is performed by editing the scene at runtime, perform-
ing actions such as the following:

• Adding or removing objects

• Changing the geometry of an object (e.g., editing its mesh specification)

• Transforming (e.g., scaling, rotating, or translating) objects, the camera, or
geometric (in-scene) light sources

• Changing the properties of a material

• Changing the characteristics of the camera or lights

6.2 Introducing Mesh and Lighting
Specification

In this section, we will use XAML to build a four-sided, solid-color pyramid,
depicted atop a sandy desert floor in Figure 6.2 from the point of view of a low-
flying helicopter. In this section, we focus on the construction and lighting of just
the pyramid (ignoring the sky and desert floor).

Figure 6.2: Overhead view of
pyramid.

6.2.1 Planning the Scene

Let’s assume our desert floor is coplanar with the xz ground plane of the right-
handed 3D coordinate system, as shown in Figure 6.3. To honor the great
Mesoamerican Pyramid of the Sun (75 meters in height) near Mexico City, we’ll
give our pyramid that height, with a base of 100 m2. As such, we’ll choose meters
as our unit of measurement. We will place our pyramid so that its base is on the xz
ground plane, with its center located at the origin (0, 0, 0), its four corners located
at (±50, 0,±50), and its apex located at (0, 75, 0).

6.2.1.1 Preparing a Viewport for Content
To be visible, the viewport must live inside a WPF 2D structure such as a window
or a canvas. For this example, we chose to use a WPF Page as the 2D container
for the viewport, as it simplifies the use of interpreted development environments
such as Kaxaml. Here we create a Page and populate it with a viewport of size
640× 480 (measured in WPF canvas coordinates, as described in Chapter 2):
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1
2
3
4
5
6
7
8
9

10
11

<Page
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

>
<Page.Resources>

Materials and meshes will be specified here.
</Page.Resources>
<Viewport3D Width="640" Height="480">

The entire 3D scene, including camera, lights, model, will be specified here.
</Viewport3D>

</Page>

Note: Here again, as in Chapter 2, some of XAML’s “syntactic vinegar” will be
obvious and may inspire questions. However, this chapter is not intended to be an
XAML reference or to replace .NET’s documentation; our focus is on semantics,
not syntax.

Figure 6.3: WPF’s 3D right-
handed coordinate system situ-
ated in a desert scene.

The camera, the lights, and the scene’s objects are specified inside the
Viewport3D tag. The basic template of a viewport and its content looks like this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

<Viewport3D ... >

<Viewport3D.Camera>
<PerspectiveCamera described below />

</Viewport3D.Camera>

<!- The ModelVisual3D wraps around the scene’s content ->
<ModelVisual3D>
<ModelVisual3D.Content>
<Model3DGroup>

Lights and objects will be specified here.
</Model3DGroup>

</ModelVisual3D.Content>
</ModelVisual3D>

</Viewport3D>

We want the camera to be initially placed so that it lies well outside the pyra-
mid, but is close enough to ensure that the pyramid dominates the rendered image.
So we will position the camera at (57, 247, 41) and “aim” it toward the pyramid’s
center point.1

1
2
3
4
5
6
7

<PerspectiveCamera
Position="57, 247, 41"
LookDirection="-0.2, 0, -0.9"
UpDirection="0, 1, 0"
NearPlaneDistance="0.02" FarPlaneDistance="1000"
FieldOfView="45"

/>

The camera is a geometric object, placed in the scene’s world coordinate sys-
tem (via the Position attribute) and oriented via two vectors.

1. Determining the numeric values that make a scene “look right” is often the result of
trial and error; thus, scene design is greatly facilitated by interactive 3D development
environments that offer instant feedback while a designer experiments with the place-
ment and orientation of objects, cameras, and lights.
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• LookDirection is a vector specifying the direction of the camera projec-
tion, in world coordinates. Think of the LookDirection as the center line
of the barrel of the lens that you are pointing toward the central object.

• UpDirection rotates the camera about the look-direction vector to specify
what will constitute the “up” direction to the viewer. In our example, in

which the ground plane is the xz-plane, the up-direction vector
[
0, 1, 0

]T
simulates a stationary tripod on the desert sand set up to photograph the
pyramid, with the image plane perpendicular to the ground plane.

Additionally, the width of the camera’s field of view can be specified as
an angle in degrees; for example, a wide-angle lens can be simulated with
a wide field of view such as 160°. Also, two clipping planes can be speci-
fied to prevent anomalies that occur when objects are too close to the camera
(NearPlaneDistance property), and to reduce computation expense by ignoring
objects that are very distant (FarPlaneDistance property) and thus too small to
resolve due to perspective foreshortening.

Next we light the scene with nondirectional ambient light that applies a con-
stant amount of illumination on all surfaces regardless of location or orientation.
(We’ll supplement this with more realistic lighting later.) Ambient light ensures
that each surface is illuminated to some degree, preventing unrealistic pure-black
regions on surfaces facing away from light sources. (Such regions would, in the
“real world,” be subjected to at least some level of interobject reflection.) The
amount of ambient light is kept to a minimum when used in combination with
other lighting, but in this initial scene, ambient is the only lighting type, so we’ll
use full-intensity white to ensure a bright rendering. We specify this light by
adding an AmbientLight element inside the Model3DGroup element:

<AmbientLight Color="white"/>

Inline Exercise 6.1: At this point, we recommend that you start running mod-
ule #1 (“Modeling Polyhedra. . . ”) of the laboratory software for this chapter,
available in the online resources. We will refer to this module throughout this
section.

6.2.1.2 Placing the First Triangle
It is no coincidence that we have selected a pyramid as our first example object,
since the triangular mesh is the only 3D primitive type currently supported by
WPF (and is the most common format generated by interactive modeling appli-
cations). The first step in creating a 3D object is to define a resource object of
type MeshGeometry3D by providing a list of 3D Positions (vertices) and a list
of triangles. The latter is specified via the TriangleIndices property, in which
we specify each triangle via a sequence of three integer indices into the zero-
based Positions array. In this case, we are specifying a mesh containing just one
triangle, the first face of our pyramid. Figure 6.4 shows a tabular representation of
the mesh.

50
–50

X
0 0

50
50
0

0
0

75
Index

1
2

Y Z
Positions

TriangleIndices

0,1,2

Figure 6.4: Tabular representa-
tion of the geometric specifica-
tion of a single-triangle mesh.

It is the programmer’s responsibility to identify the front side of each trian-
gle, because the front/back distinction is important, as we will soon discover.
Thus, when specifying a vertex triplet in the TriangleIndices array, list the
vertex indices in a counterclockwise order from the point of view of someone
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facing the front side. For example, consider how we are presenting the vertices of
the single triangle of our current model. In the TriangleIndices array, the three
indices into the Positions array are in the order 0, 1, 2. Thus, the vertices are
in the sequence (0, 75, 0), (−50, 0, 50), (50, 0, 50), which is a counterclockwise
ordering, as shown in Figure 6.5.

(250, 0, 50) (50, 0, 50)

(0, 75, 0)

V1

V0

V2

Figure 6.5: Identification of the
front side of a mesh triangle
via counterclockwise ordering of
vertices.

The XAML representation of this mesh is as follows:

1
2
3

<MeshGeometry3D x:Key="RSRCmeshPyramid"
Positions="0,75,0 -50,0,50 50,0,50"
TriangleIndices="0 1 2" />

This mesh specification appears in the resource section of the XAML, and thus
is similar to a WPF 2D template resource in that it has no effect until it is used
or instantiated. So the next step is to add the 3D object to the viewport’s scene by
creating an XAML element of type GeometryModel3D, whose properties include
at least the following.

• The geometry specification, which will be a reference to the geometry
resource we created above.

• The material specification, which is usually also a reference to a resource.
The material describes the light-reflection properties of the surface; WPF’s
materials model provides approximations of a variety of material types, as
we shall soon see in Section 6.5.

Let’s keep things basic for now, and define a basic solid-yellow material
resource, earmarked for the front side of each surface, giving it a unique key for
later referencing:

1
2

<!- Front material uses a solid-yellow brush ->
<DiffuseMaterial x:Key="RSRCmaterialFront" Brush="yellow"/>

We now are ready to create the element that will add this single-triangle mesh
to our scene. We place this XAML as a child of the Model3DGroup element:

1
2
3

<GeometryModel3D
Geometry="{StaticResource RSRCmeshPyramid}"
Material="{StaticResource RSRCmaterialFront}"/>

Our image of the model now appears as shown in Figure 6.6.

Figure 6.6: First triangle’s front
side rendered using a uniformly
yellow material.

Inline Exercise 6.2: In the lab, select the “Single face” option in the model
drop-down list. If you wish, click on the XAML tab to examine the source
code generating the scene. Activate the turntable to rotate this triangle around
the y-axis.

If we were to rotate this triangular face 180° around the y-axis, to examine its
“back side,” we would obtain the puzzling image shown in Figure 6.7.

Figure 6.7: First triangle’s back
side, invisible due to lack of spec-
ification of a material for the
back side.

The triangle disappears due to a rendering optimization: WPF by default does
not render the back sides of faces. This behavior is satisfactory for the common
case of a “closed” object (such as the pyramid we intend to construct) whose
exterior is composed of the front sides of the mesh’s triangles. For such a closed
figure, the back sides of the triangles, whose surface normals point toward the
object’s interior, are invisible and need not be rendered.



ptg11539634

124 Introduction to Fixed-Function 3D Graphics and Hierarchical Modeling

For our current simple model—a lone triangle—it is useful to disable this
optimization and show the back face in a contrasting color, by setting the
BackMaterial property to refer to a solid-red material that we will add to the
resource section with the key RSRCmaterialBack:

1
2
3
4

<GeometryModel3D
Geometry="{StaticResource RSRCmeshPyramid}"
Material="{StaticResource RSRCmaterialFront}"
BackMaterial="{StaticResource RSRCmaterialBack}"/>

As a result, the back face now is visible when the front faces away from the
camera, as shown in Figure 6.8.

Figure 6.8: First triangle’s back
side, rendered using a uniformly
red material.

Inline Exercise 6.3: In the lab, check the box labeled “Use back material” and
keep the model spinning.

With the first face of the pyramid now in place, let’s add the second face, using
the strategy represented in a tabular form in Figure 6.9. Notice that the vertices
shared by the two faces (V0 and V2) have separate entries in the Positions array,
effectively being listed redundantly.

1
2
3
4

<MeshGeometry3D x:Key="RSRCmeshPyramid"
Positions="0,75,0 -50,0,50 50,0, 50

0,75,0 50,0,50 50,0,-50"
TriangleIndices="0 1 2 3 4 5" />
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–50

0
50
50

X
0 0

50
50

0
50

–50

0

0
0

75
0
0

75
Index

1
2
3
4
5

Y Z
Positions

TriangleIndices

0,1,2
3,4,5

Figure 6.9: Tabular representa-
tion of geometric specification of
a two-triangle mesh.

Inline Exercise 6.4: In the lab, select the “Two faces” model and keep the
model spinning.

The result appears in two snapshots of the spinning model shown in Figure 6.10.

Figure 6.10: Renderings of the
partial pyramid in two distinct
orientations, in an environment
containing only ambient light.

6.2.2 Producing More Realistic Lighting

There is an obvious problem with this rendering: A single constant color value is
being applied to both faces of the model, regardless of orientation. But in a day-
time desert scene, one would expect variation in the brightness of the pyramid’s
faces, with a bright reflection from those facing the sun and lesser reflection from
those facing away from the sun.

The use of the artificial construct of nondirectional ambient lighting as the sole
light source produces this unrealistic appearance. In the real world, lights are part
of the scene and the light energy hitting a point P on a surface has a direction (a
vector, represented by the symbol �, from the light source to point P). Moreover,
the energy reflected toward the camera from P is not a constant, but instead is
based on a number of variables such as the camera’s location, the surface’s orien-
tation at P, the direction �, the reflection characteristics of the object’s material,
and others. In Section 6.5 we will examine a lighting equation that takes many of
these kinds of variables into consideration, but here let’s take a high-level look at
one example of a more realistic light source: the point light, which is a geomet-
ric light, having a position in the scene and radiating light in all directions equally
(as shown in Figure 6.11). A point light’s presence can introduce a great deal of
variation into a scene via its infinite set of values for �, which ensures that each
point on a surface facing the light receives its energy from a unique � direction.
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We’ll examine the characteristics and impact of point and other geometric light
sources in more detail in Section 6.5, but here let’s start with a simplification: the
“degenerate case” of a point light source that is located at an infinite distance
from the scene. WPF distinguishes this kind of light source from geometric ones,
calling this a directional light. Its rays are parallel (with a constant �, as shown in
Figure 6.12), providing an approximation of light from an infinitely distant sun.

,1 ,2

Surface

,3

Figure 6.11: Rays emanating
from a point light source in the
scene, striking points on a planar
surface at an infinite variety of
angles.

,

Figure 6.12: Rays emanating
from a directional light source,
infinitely distant from the pla-
nar surface, striking the surface’s
points at identical angles.

So, let’s replace the ambient light source with a directional one. We’ll specify

its color as full-intensity white, and its direction � as
[
1,−1,−1

]T
to simulate the

sun’s position being behind the viewer’s left shoulder:

<DirectionalLight Color="white" Direction="1, -1, -1" />

The direction � for this light (shown as a scene annotation in the lab and in
Figure 6.13) is at a 45° angle relative to all three axes, and when projected onto
the xz ground plane, it is a vector that travels from the (−x,+z) quadrant to the
(+x,−z) quadrant.

Figure 6.13: Our desert scene’s
coordinate system with annota-
tion showing the direction of the
rays emanating from the direc-
tional light source.

Inline Exercise 6.5: A static 2D image is not the best way to depict 3D infor-
mation like our light’s � value, so we recommend that you use the lab to follow
along with this section’s discussion. Select directional lighting, note the “Light
direction” annotation, and use the trackball-like mouse interaction within the
viewport to move around in the scene.

As introduced in Section 1.13.2, for a completely diffuse surface like that of
our pyramid, the light is reflected with equal brightness in all viewer directions
and is therefore view-angle-independent. The brightness of the reflected light is
only dependent on how directly the incident light hits the surface. Figure 6.14
demonstrates how this directness is measured, by determining the angle θ between
� and the surface normal n. The larger the value of θ, the more oblique the light
is, and thus the less energy reflected.

,

u

n

Figure 6.14: The angle θ, defined
as the angle between the incom-
ing light direction ray � and the
surface normal n.

Given the angle θ and the incident light’s intensity Idir, the reflected intensity
is calculated by Lambert’s cosine rule, which was introduced in Section 1.13.2:

I = Idir cos θ. (6.1)

We’ve described light with the word “intensity” without a precise definition.
Intensity is a vague term, not even defined in the international standard for
units. Precisely defining “how much light is arriving here” turns out to be a bit
tricky. Chapter 14 gives some initial ideas, and Chapter 26 gives full detail.

It does seem as if getting “intensity” wrong ought to bring our work to a
stop, but the human visual system is coming to our rescue. It’s mostly sensitive
to changes in light (either over time, or between nearby arriving-light direc-
tions), and exact magnitudes don’t seem to matter much. In fact, if you take a
grayscale image with values between 0 and 1 and you replace each gray-value
g with g2 or g3 and redisplay, the image is still perfectly understandable.

By the way, the word “brightness” is used to describe the perception of
light; it’s a psychophysical measurement rather than a physical one. Many
papers in graphics have nonetheless used it as a proxy for “intensity.”

For now, treat “intensity” as meaning “some sort of measurement of light,
where bigger intensity means more light,” and wait until Chapter 26 to get the
whole story.
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Figure 6.15: Brightness computed by Lambert’s cosine law for three values of θ.

Figure 6.15 demonstrates this equation’s effect on a single-triangle model, for
various values of θ achieved by rotating the pyramid on an invisible turntable. In
the figure, the length of each dashed red vector depicts the intensity of the reflected
energy in its indicated direction, for the given value of θ. With perfectly diffuse
reflection, light is reflected with equal intensity in all directions, and therefore,
that length is a constant for any given value of θ. The locus of the endpoints of the
reflection vectors for all possible reflection angles is thus a perfect hemisphere in
the case of diffuse reflection. (In our 2D figure, of course, this envelope appears
as a semicircle.) Figure 6.16: Rendering of the

pyramid with directional lighting,
with θ close to 90° for the right-
most visible face.

This equation, being independent of viewing angle, cannot simulate glossy
materials such as metals and plastic that exhibit highlights at certain viewing
angles. Another oversimplification in the equation is an unrealistic lossless reflec-
tion of all incoming light energy when θ = 0°. In reality, some amount of light
energy is absorbed by the material and thus is not reflected. Section 6.5 describes
a more complete model that corrects these and other problems.

With directional lighting replacing ambient lighting, processed by the Lambert
lighting model, the results are more realistic, as you can see in the images in
Figures 6.16 and 6.17.

Figure 6.17: Rendering of the
pyramid with directional lighting,
with θ approximately 70° for the
rightmost visible face.

Inline Exercise 6.6: In the lab, activate the directional lighting by selecting
“directional, over left shoulder” and enabling turntable rotation. Observe the
dynamic nature of the lighting of the yellow front face; it may help to occa-
sionally pause/resume the turntable’s motion. Observe the display of the value
of θ and cos θ, and note how the yellow face approaches zero illumination as θ
approaches and passes 90°. Select different models and examine the two-face
and full four-face models in this new lighting condition.
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Lambert’s cosine rule for idealized diffuse reflection has two key characteris-
tics: (1) The reflected intensity is independent of view angle and (2) it depends
only on the cosine of the angle between the incoming light direction � and the
normal at a point on the surface. To gain an intuitive understanding of these
phenomena, find a matte surface such as a clean chalkboard or a painted wall
without any sheen, and point a bright light at the surface. Now pick a bright
spot on the illuminated area and look at it from a variety of locations through
a tube with a diameter so tiny that all you see is a uniformly lit “dot” (simu-
lating what a radiometer would detect). Note that as you move your point of
view, the dot’s apparent brightness will remain constant, while it would vary
if you performed this same experiment with a shiny surface. Varying the angle
of incidence of the light source, however, will cause the reflected brightness to
vary with the cosine of the angle. If you are curious about the math behind this
rule, consult Section 7.10.6.

6.2.3 “Lighting” versus “Shading” in Fixed-Function
Rendering

The Lambert equation presented above, and the more complete equation presented
in Section 1.13.1, are examples of functions that compute the amount of light
energy that is reflected from a given surface point P toward the specified camera
position.

A lighting equation, like the Lambert equation, is an algorithmic represen-
tation of the way a surface’s material reflects light. From a theoretical point of
view, a renderer processes a given visible surface by “loading” the lighting equa-
tion for its material, and “executing” it for points on that surface. (Interestingly,
in programmable-pipeline hardware, this abstraction isn’t too far from the truth!)
For which surface points should the equation be executed? A reasonable approach
is to perform the calculation once for each pixel covered by the surface’s ren-
dered image, executing the equation for a representative surface point for each
such pixel. Offline rendering systems use an approach like this, but that strategy is
too computationally expensive for real-time rendering systems running on today’s
commodity hardware. The approach taken by many such systems—including
fixed-function pipelines such as WPF’s, as well as programmable pipelines—is
to compute the lighting only at key points on the surface, and to use lower-cost
shading rules2 to determine values for surface points lying between the key points.

Figure 6.18: Flat-shaded render-
ing of a dolphin mesh model,
with three triangles highlighted
to demonstrate the concept of the
key vertex.

For example, let’s examine the simplest shading technique, known as flat
shading or constant shading, in which one vertex of each triangle is selected
as the key vertex for that triangle. The lighting equation is executed to compute
the illumination value for that vertex, and the entire triangle is filled with a copy of
that value. An example rendered image using flat shading is shown in Figure 6.18,
in which we’ve highlighted three triangles and the key vertex that was the deter-
minant for each.

Flat shading may be appropriate for pyramids, but as Figure 6.18 shows,
when the triangular mesh is approximating a curved surface a more sophisticated

2. As discussed in Section 27.5.3, this classic use of the term “shading” to refer to efficient
determination of lighting at interior points conflicts with modern uses of the terms
“shading” and “shader.”



ptg11539634

128 Introduction to Fixed-Function 3D Graphics and Hierarchical Modeling

shading technique is clearly needed. In the next section, we describe a popular
real-time shading technique designed to address the problem of rendering curved
surfaces.

6.3 Curved-Surface Representation
and Rendering

Survey the room around you and you’ll find that most objects have some curved
surfaces or rounded edges. A purely faceted polyhedron like our simple pyramid
is quite rare in the “real world.” Thus, in most cases, a triangular mesh in a 3D
scene is not being used to represent an object exactly, but rather is being used to
approximate an object.

For example, we can approximate a circular cone using a many-sided pyramid.
With just 16 faces, flat shading produces a fairly good approximation of a cone
(as seen in Figure 6.19), but it doesn’t really “fool the eye” into accepting it as a
curved surface.

Figure 6.19: Flat-shaded render-
ing of a cone with 16 sides.

Increasing the number of facets (e.g., to 64 sides, as shown in Figure 6.20)
does help improve the result, but the approximation is still apparent. Attempting to
solve the problem merely by increasing the mesh’s resolution is not only expensive
(in terms of storage/processing costs) but also ineffective: If the camera’s position
is moved toward the mesh, at some point the faceting will become apparent.

Figure 6.20: Flat-shaded render-
ing of a cone with 64 sides,
reducing (but not eliminating) the
obvious faceting.

Inline Exercise 6.7: You might want to visit the “Modeling Curved Surfaces”
module of the laboratory to see the effect of changes in the facet count when
flat shading is in effect. You can zoom in/out by dragging the mouse (when
the cursor is within the viewport) while holding down the right mouse button.
Note how increasing the number of facets can only fool the eye at a distance—
zooming in exposes the fraud easily. Note also that motion of the object makes
the approximation even more obvious, especially at the bottom edge.

6.3.1 Interpolated Shading (Gouraud)

Figure 6.21: Flat-shaded render-
ing of the classic “Utah” teapot
model.

Figure 6.22: Gouraud-shaded
rendering of the same teapot
model.

The task of finding an efficient way to produce acceptable images of curved sur-
faces from low-resolution mesh approximations was particularly urgent in the
early days of computer graphics, when computer memory was measured in kilo-
bytes and processors were many orders of magnitude less powerful than they are
today. Per-vertex lighting with flat shading was widely used, but there was an
obvious need for a shading technique that would fool the eye and allow the ren-
dered image to approximate the curved surface represented by the mesh, even for
a low-resolution mesh, at minimal processor and memory cost. In the early 1970s,
University of Utah Ph.D. student Henri Gouraud refined a shading technique based
on interpolation of intensity values at mesh vertices, using algorithms like those
described in the opening sections of Chapter 9. To appreciate the difference in
quality between flat shading and Gouraud shading, compare the two renderings of
the Utah teapot in Figures 6.21 and 6.22.

Let’s first examine Gouraud interpolation in two dimensions. In Figure 6.23,
the curved 2D surface is shown in yellow, the approximation mesh of 2D
line segments in black, and the vertices in green. At each vertex, the lighting
model (in this case, diffuse Lambert illumination) has computed a color for that
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,

V1

V2

Yellow curve shows
the actual surface.

Black lines and green
vertex dots demonstrate

the approximation mesh.

Per-vertex
computed lighting

Copying
(flat shading)

Interpolation
(Gouraud shading)

V3

V4

Figure 6.23: Comparison of flat shading and Gouraud shading, two different techniques
for determining intensity values between the vertices at which lighting calculations were
performed.

vertex. The result of the process of shading (to compute the color across the inte-
rior points) is shown for both flat shading and Gouraud interpolated shading.
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Figure 6.24: Calculating a vertex
normal in 2D, as an average of
the normals of the two adjacent
line segments.

As we have seen, the Lambert lighting equation depends on the value of n,
the surface normal. Thus, to produce the color value at vertex V , the renderer
must determine what we call the vertex normal—that is, the surface normal at
the location of V . How should this be determined?

If the curved surface is analytical, for example, a perfect sphere, the equation
used to generate the surface can provide the surface normal for any point. How-
ever, the approximation mesh itself is often the only information known about
the surface’s geometry. This limitation is alleviated by use of Gouraud’s simple
strategy for determining the vertex normal via averaging.

In 2D, the vertex normal is computed by averaging the surface normals of the
adjacent line segments, as shown in Figure 6.24. For example, the vertex normal
for V2 is the average of the surface normals for the line segments V1V2 and V2V3.

In 3D, the vertex normal is computed by averaging the surface normals of all
adjacent triangles, as depicted in Figure 6.25 for a scenario in which four triangles
share the vertex.

n1

n4

n3

n2

nv

Figure 6.25: Calculating a vertex
normal in 3D, as an average of
the surface normals of all trian-
gles sharing the vertex.

The success of this technique lies in the fact that, for a mesh that is sufficiently
fine-grained, the vertex normal computed via averaging is typically a very good
approximation of the surface normal of the actual surface being approximated.
(Chapter 25 discusses some limitations of this approximation.) For example, in
the 2D representation shown in Figure 6.24, note that nv2 looks like a very good
estimate of the normal to the yellow surface at the location of V2. The accuracy of
the computed normal is of course dependent on the granularity of the mesh, and
the granularity requirement increases in areas of discontinuity.

Inline Exercise 6.8: We suggest that you return to the curved-surface module
of the lab, and select “Gouraud shading.” Note the success of the interpolation
even with a minimal number of facets. You will notice that, if the granularity
is extremely low (e.g., 4 or 8) and/or the model is rotating, the silhouette of the
cone—its bottom edge where it meets the ground—unfortunately continues to
exhibit the mesh’s structure, reducing the effectiveness of the “trick.”
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6.3.2 Specifying Surfaces to Achieve Faceted
and Smooth Effects
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Figure 6.26: Tabular representa-
tion of geometric specification of
a two-triangle mesh with reuse of
shared vertices (the apex and the
shared base vertex).

V0

V1

V2

V3

Figure 6.27: Assignment of
indices to the vertices in our
pyramid model.

WPF’s rendering engine uses Gouraud shading unconditionally; in other words,
WPF does not offer a rendering “mode” allowing the application to select between
flat shading and smooth shading. Yet, in Section 6.2 we were able to create a pyra-
mid with a faceted appearance, and in Figure 6.21 we showed a WPF-generated
flat-shaded depiction of the teapot. How were we able to force WPF to generate a
flat look?

Examine Figure 6.9 to review how we specified the first two pyramid faces
in Section 6.2. Each shared vertex was placed redundantly in the Positions list
to ensure that each was referenced by only one face. This causes the calculation
of the vertex normal to involve no averaging, since each vertex is attached to
only one triangle. The normal at each vertex will thus match the triangle’s surface
normal. Since Gouraud smoothing at edges and vertices is based on the averaging
of vertex normals, the use of an unshared vertex effectively disables smoothing at
that vertex.

Now, suppose that these two faces are part of a pyramid approximating a cir-
cular cone. In this case, we do want smooth shading. So, let’s specify the same
two triangular faces, but in the TriangleIndices list, let’s “reuse” the vertex data
for the shared apex (V0 in Figure 6.27) and the shared basepoint (V2):

1
2
3

<MeshGeometry3D x:Key="RSRCmeshPyramid"
Positions="0,75,0 -50,0,50 50,0, 50 50,0,-50"
TriangleIndices="0 1 2 0 2 3" />

In this specification (shown in Figure 6.26), vertices V0 and V2 are shared by
two triangles, resulting in their vertex normals being computed via the averag-
ing technique. The result is shown in Figure 6.28, with a smoothing of the edge
between V0 and V2 being quite apparent.

Figure 6.28: Gouraud shaded
pyramid, produced in WPF by
specifying that the two triangles
share vertices V0 and V2, caus-
ing their vertex normals to be the
average of the surface normals of
the two triangles.

In summary, WPF mesh specification requires following a simple rule: You
should share vertices that need to participate in Gouraud smoothing, and you
should duplicate vertices (i.e., so that each is referenced by only face) that need to
be points of discontinuity in the rendered image.

You will find a need for both of these techniques, because typically, complex
objects are a hybrid of both smooth curved surfaces and discontinuities where
a crease or seam is located and needs to be visible in the rendering. Examples of
discontinuities include the location on a teapot where the spout joins the body, and
the seam on an airplane where wings join the fuselage. By using vertex sharing
appropriately, you can easily represent such hybrid surfaces.

6.4 Surface Texture in WPF

We posit that any computer graphics professional confronted with the question,
“What was the single most effective reality-approximation trick in the early his-
tory of real-time rendering?” will scarcely skip a beat before exclaiming, “Tex-
ture mapping!” When faced with the need to display a “rough” or color-varying
material such as gravel, brick, marble, or wood—or to create a background such
as a grassy plain or dense forest—it is not advisable to try to create a mesh



ptg11539634

6.4 Surface Texture in WPF 131

representing every detail of the fine-grained structure of the material. Consider
the complexity of the mesh that would be required to model the dimples and cran-
nies of the rough-hewn stone of an ancient pyramid—our simple four-triangle
mesh would balloon into a mesh of millions of triangles, exploding the memory
and processing requirements of our application.

Through the “trick” of texture mapping (wrapping a 3D surface with a 2D
decal), complex materials (such as linen or asphalt) and complex scenes (such as
farmland viewed from an airplane) can be roughly simulated with no increase in
mesh complexity. (Chapters 14 and 20 discuss this idea in detail.) For example,
the desert sand in our scene was modeled as a square (two adjacent coplanar right
triangles) wrapped with the image shown in Figure 6.29.

Figure 6.29: Square 64 × 64
image of a tan-hued pattern to
simulate a sandy desert floor.

“Texturing” a 3D surface in WPF corresponds to the act of covering an object
with a stretchable sheet of decorated contact paper. Theoretically, we must spec-
ify, for each point P on the surface, exactly which point on the paper should
touch point P. In practice, however, we specify this mapping only for each ver-
tex on the surface, and interpolation is used to apply the texture to the interior
points.

This specification requires a coordinate system for referring to positions within
the texture image. By convention, instead of using exact integer pixel coordinates,
we refer to points on the image using the floating-point texture coordinate sys-
tem shown in Figure 6.30, whose axes u and v have values limited to the range
0 to 1.

(1,0)

(1,1)

(0,1)

(0,0) u-axis

v-
ax

is

Figure 6.30: Floating-point tex-
ture coordinate system applied to
the sand-pattern image, with the
origin located at the upper-left
corner.

In XAML, the first step is to register the image as a diffuse material in the
resource dictionary. We have used a solid-color brush previously, but here we
create an image brush to define the material:

1
2
3
4
5

<DiffuseMaterial x:Key="RSRCtextureSand">
<DiffuseMaterial.Brush>

<ImageBrush ImageSource="sand.gif" />
</DiffuseMaterial.Brush>

</DiffuseMaterial>

The next step is to register into the resource database the simple two-triangle
mesh representing the ground, using the same technique as before, but adding a
new attribute to specify the corresponding texture coordinate for each vertex in
the Positions array:

1
2
3
4
5
6
7
8

<MeshGeometry3D x:Key="RSRCdesertFloor"
Positions="-9999, 0, -9999

9999, 0, -9999
9999, 0, 9999

-9999, 0, 9999"
TextureCoordinates=" 0,0 1,0 1,1 0,1 "
TriangleIndices="0 1 3 1 2 3"

/>

Since this is a mapping from a square (the two coplanar triangles in the 3D
model) to a square (the texture image), we declare texture coordinates that are
simply the corners of the unit-square texture coordinate system, as shown in
Figure 6.31.

(1,0)

(9999,0,29999)(29999,0,29999)

(1,1)(0,1)

(0,0)
u-axis

v-
ax

is

x-axis

z-
ax

is

(9999,0,9999)(29999,0,9999)

Figure 6.31: Mapping world-
coordinate vertices on the two-
triangle model of the desert
floor to corresponding texture
coordinates.

With the material and geometry registered as resources, we are ready to instan-
tiate the desert floor:
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1
2
3

<GeometryModel3D
Geometry="{StaticResource RSRCdesertFloor}"
Material="{StaticResource RSRCtextureSand}"/>

The result is shown in Figure 6.32, from a point of view high above the pyra-
mid. The result is not acceptable; there is some subtle variation in the color of the
desert floor, but the color patches are huge (in comparison with the pyramid). Figure 6.32: Sand texture over-

stretched to cover the entire
desert floor.

The problem is that our tiny 64 × 64-pixel sand decal (which was designed
to represent about one square inch of a sandy floor) has been stretched to cover
the entire desert floor. The result looks nothing like sand even though our decal
provides fairly good realism when viewed unscaled.

Our failure to simulate desert sand here is a case of a reasonable texture image
being applied to the model incorrectly. Implementing texturing in WPF requires
choosing between two mapping strategies: tiling and stretching.

6.4.1 Texturing via Tiling Figure 6.33: Square image of a
brick pattern.If the texture is being used to simulate a material with a consistent look and no

obvious points of discontinuity (e.g., sand, asphalt, brick), the texture image is
replicated as needed to cover the target surface. In this case, the texture is typically
a small sample image (either synthetic or photographic) of the material, which
has been designed especially to ensure that adjacent tiles fit together seamlessly.
As an example, consider the texture image of Figure 6.33 showing six rows of
red brick.

Figure 6.34: Result of stretching
one copy of the brick texture onto
each wall.

Applying it to each face of a rectangular prism without tiling produces a decent
image (Figure 6.34) but the number of rows is insufficient for representing a tall
brick fortress. Tiling allows the number of apparent brick rows to be multiplied,
producing an image (Figure 6.35) that is more indicative of a tall fortress.

Figure 6.35: Result of tiling mul-
tiple copies of the brick texture
onto each wall.

Consult the texture-mapping module of the lab for details on how to enable
and configure tile-based texturing in WPF.

6.4.2 Texturing via Stretching

If a texture is being used as a substitute for a highly complex model (e.g., a city
as seen from above, or a cloudy sky), the texture image is often quite large (to
provide sufficiently high resolution) and may be either photographic or original
artwork (e.g., if being used to represent a landscape in a fantasy world). Most
importantly, this kind of texture image is a “scene” that would look unnatural
if tiled. The correct application of this kind of texture image is to set the mesh’s
texture coordinates in such a way as to stretch the texture image to cover the mesh.

For example, in our desert scene, the background sky (as seen often in
Figures 6.5 through 6.17) is modeled as a cylinder whose interior surface is
stretch-textured with the actual sky photograph shown in Figure 6.36.

Figure 6.36: Image of a sky
image.

Consult the texture-mapping module of the lab for details on how to enable and
configure stretch-based texturing in WPF. More information, including algorithms
for computing texture coordinates for curved surfaces and a discussion of common
texture-mapping problems, is presented in Section 9.5 and in Chapter 20.
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6.5 The WPF Reflectance Model

In Section 6.2.2, we presented Lambert’s simple cosine rule for calculating
reflected light from a diffuse surface. That simple equation is just one part of
the complete WPF reflectance model, which is based on a classic approximation
strategy that provides results of acceptable quality, without complex physics-based
calculations, on a wide variety of commodity graphics hardware.

6.5.1 Color Specification

The word “color” is used to describe multiple things: the spectral distribution of
wavelengths in light, the amount of light of various wavelengths that a surface will
reflect, and the perceptual sensation we experience on seeing an object. Represent-
ing color precisely is a serious matter to which Chapter 28 is dedicated. Indeed,
specifying color via RGB triples—the common approach in graphics APIs and
drawing/painting applications—may well be the grossest of all the approxima-
tions made in computer graphics practice!

When describing a scene, we specify the colors of the light sources and of the
objects themselves. In WPF, specifying the former is straightforward (see Sec-
tion 6.2.2), but describing the latter is far more complex, requiring the separa-
tion of the material into three distinct components. Section 6.5.3 is dedicated to
describing this specification technique and the effects it can achieve.

6.5.2 Light Geometry

The two WPF lighting types we have used thus far (ambient and directional)
are useful approximations but decidedly unrealistic: They are not considered to
be emanating from a specific point in the scene, and their brightness is uniform
throughout the entire scene.

A geometric light source adds realism in that it is located in the scene and is
attenuated—that is, the amount of energy reaching a particular surface point P is
dependent on the distance from P to the light source. WPF offers two geometric
light source types.

• A point light emanates energy equally in all directions, simulating a naked
bulb suspended from a ceiling without any shade or baffles. Specification
parameters include its position and the attenuation type/rate (constant, lin-
ear, or quadratic, as described in Section 14.11.9). The lab software for this
chapter allows experimentation with this type of light source.

• A spotlight is similar, but it simulates a theatre spotlight in that it spreads
light uniformly but restricts it to a cone-shaped volume.

Geometric lights are useful but should still be considered only approximations,
since real physical light sources (described in Section 14.11.6) have volume and
surface area, and thus do not emit light from a single point.

6.5.3 Reflectance

In our modeling of desert scenes throughout this chapter, we have applied material
to our meshes by specifying either a solid color or a texture image. However, there
is more to a material than its color. If you’ve shopped for interior-wall paint, you
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know that you must also choose the finish (flat, eggshell, satin, semigloss), which
describes how the painted surface will reflect light.

The physics of how light is reflected from a surface is extremely complex,
so for decades, the fixed-function pipeline has relied on a classic approximation
strategy called the Phong reflectance (lighting) model that yields an effective
simulation of reflection at very little computational cost.3 In the Phong model,
a material is described by configuring three distinct components of reflection:
ambient (a small constant amount of light, providing a gross simulation of inter-
object reflection), diffuse (representing viewer-independent light reflected equally
in all directions), and specular4 (providing glossy highlights on shiny surfaces
when the viewpoint is close to the reflection ray). The values calculated for the
three components—Figure 6.37, (a) through (c)—are summed to produce the final
appearance, shown in part (d) of that figure.

Figure 6.37: Renderings of a
teapot, showing the contribution
of each of the three compo-
nents generated by the Phong
lighting equation: (a) ambient,
(b) diffuse, (c) specular, and (d)
result generated by summing the
contributions.

The independent nature of the diffuse and specular components allows us to
generate the approximate appearance of materials having multiple layers with dis-
tinct reflectance characteristics. Consider a polished red apple: On top of its dif-
fuse red layer lies a colorless waxy coating that provides glossy highlights based
on the color of the light source (not of the apple). This same pattern of reflec-
tion is also very common in plastics, although it is not generated by a multilayer
reflectance, but by the nature of the plastic material itself. Our blue plastic teapot
(in Figure 6.37) shows this: Its glossy highlights have the colorless hue of the
incoming white light, while the diffuse reflections have the blue hue of the plas-
tic. In Section 6.5.3.3 we’ll provide more detail on how to produce this effect. Of
course, this simplistic technique of summing noninteracting layers is inadequate
for complex materials such as human skin; Section 14.4 presents an introduction
to richer, more accurate material models, and Chapter 27 gives full details.

In this section, we describe the lighting equation for WPF’s reflectance model,
which is heavily based on, but not completely identical to, the Phong model. Let’s
first examine the equation’s inputs that are specified as properties of the material
resources (e.g., in WPF elements such as DiffuseMaterial and others enumerated
in this chapter’s online materials):

Symbol Description Format

Cd Innate color of “diffuse layer” (Cd,R, Cd,G, Cd,B)
Cs Innate color of “specular layer” (Cs,R, Cs,G, Cs,B)
ka Efficiency of diffuse layer at reflecting

ambient light
(ka,R, ka,G, ka,B)

kd Efficiency of diffuse layer at reflecting
directional/geometric light

(kd,R, kd,G, kd,B)

ks Efficiency of specular layer at reflecting
directional/geometric light

(ks,R, ks,G, ks,B)

3. This non-physics-based reflectance model was invented early in the history of raster
graphics and rendering research in the 1970s initially by University of Utah Ph.D.
student Bui Tuong Phong and then slightly modified by Blinn, and has been remarkably
long-lived, especially in real-time graphics.

4. For this chapter only, we are following the convention that “specular” refers to some-
what concentrated reflections rather than to perfect mirror reflection. Elsewhere spec-
ular means “mirrorlike,” while sort-of-specular reflection is called “glossy.” The use
of “specular” for glossy follows both Phong’s original paper and the WPF convention,
but conflicts with its ordinary meaning of “having the properties of a mirror.”
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For a solid-color material, the innate colors for the diffuse and specular layers
are constant across a surface. For a textured material, the texture image and texture
algorithm together determine the diffuse-layer color at each individual surface
point.

The three efficiency factors are each expressed as an RGB triple, with each
entry being a number between 0 and 1, with 0 meaning “no efficiency” and 1
meaning “full efficiency.” For example, we would specify ka,R = 0. 5 for a diffuse
layer that reflects exactly half of the red component of the ambient light in the
scene.

What we’ve called “reflection efficiency” here is closely related to the physical
notion of reflectivity, which we’ll examine in detail in Chapter 26.

Next, let’s examine the inputs that are specified by or derived from the lights
that have been placed in the scene, via any of WPF’s light-specification elements,
such as DirectionalLight:

Symbol Description Format

Ia Color/intensity of the scene’s ambient light (Ia,R, Ia,G, Ia,B)
Idir Color/intensity of a directional light source (Idir,R, Idir,G, Idir,B)

Igeom Color/intensity of a geometric light source (Igeom,R, Igeom,G, Igeom,B)
Fatt Attentuation factor for geometric lights a single real number

A geometic light’s actual contribution is subject to attenuation. The attenuation
factor Fatt is calculated for each surface point P, based on the light’s characteristics
and distance from P. Thus, the actual light arriving from at the surface point P
from the geometric light source is

(FattIgeom,R; FattIgeom,G; FattIgeom,B).

Now that we have enumerated all of the inputs, we are ready to examine the
WPF lighting equation. Here is the equation that computes the intensity of the
red light that reaches the camera from a specific surface point (we examine each
component in detail below):

IR = (6.2)(
Ia,R ka,R Cd,R

)
(6.3)

+
∑

directional lights

(
Idir,R kd,R Cd,R (cos θ)

)
(6.4)

+
∑

geometric lights

(
Fatt Igeom,R kd,R Cd,R (cos θ)

)
(6.5)

+
∑

directional lights

(
Idir,R ks,R Cs,R (cos δ)s

)
(6.6)

+
∑

geometric lights

(
Fatt Igeom,R ks,R Cs,R (cos δ)s

)
(6.7)

The sums in the equations above are over all lights of various kinds, which
we’ll describe shortly.

If the scene contains multiple lights, and/or if the material uses multiple com-
ponents (e.g., both ambient and diffuse) with high reflection efficiency coeffi-
cients, the computed result may be greater than 100% intensity, which has no
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meaning since the pixel’s range of red values is limited to the range of 0% to 100%
illumination. Simple lighting models simply clamp excessive values to 100%. The
“extra” illumination is thus discarded, which can have a negative impact on ren-
derings, including unintended changes in hue or saturation. More sophisticated
techniques for dealing with this situation—primarily the use of physical units—
are discussed in Chapters 26 and 27. This failure is a consequence of the ill-
defined nature of “intensity” that we discussed earlier, and presents a practical and
widespread incidence of the failure of the Wise Modeling principle. The model of
intensity as a number that varies from 0 to 1 was clearly a bad choice as the scale
of scenes and complexity of lighting grew.

Inline Exercise 6.9: As we present the various components of the WPF
reflectance model below, you may want to experiment with the effects of the
configurable terms by using the lighting/materials laboratory software, and
accompanying list of suggested exercises, available in the online resources for
this chapter.

6.5.3.1 Ambient Reflection
Ambient light is constant throughout the scene, so the computation of the ambient
reflection component is extremely simple and devoid of geometric dependencies.
In the WPF reflectance model, there is no ambient innate color, so the material’s
diffuse color is used. The red component of the ambient reflection is computed
via:

Ia,R ka,R Cd,R (6.8)

We encourage you to immediately perform the ambient-related experiments
suggested in the lighting exercises presented online.

6.5.3.2 Diffuse Reflection
Directional light appears in the diffuse term of the reflectance model, computed
by Lambert’s cosine rule described in Section 6.2.2. Here is the red portion of this
term, which takes into account all the directional lights in the scene:∑

directional lights

Idir,R kd,R Cd,R (cos θ) (6.9)

The sum here is over all directional lights in the scene. The angle θ will gen-
erally be different for each one, as will the intensity Idir,R.

A similar equation sums over the set of geometric light sources, to take into
account their attenuation characteristics. This equation is shown as part of the
diffuse term in the full equation shown in the table above.

We encourage you to immediately perform the diffuse-related experiments
suggested in the lighting exercises presented online.

Note that for solid-color materials, the distinction between the two terms Cd

and kd is unnecessary, as far as the math is concerned; you can think of them as
a single term. That is, you can fix kd,R at 1. 0 and use Cd,R to achieve any effect,
and conversely you could fix Cd,R and specify only kd,R. However, the distinction
between the two terms is meaningful when the innate color Cd is being provided
via texture mapping; in that case, there is a need for a kd,R factor affecting the
reflection of the varying color Cd specified by the texture.
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6.5.3.3 Specular Reflection
The specular reflectance term is the sum of a computed intensity for each direc-
tional and geometric light in the scene. Let’s examine this sum for the directional
lights: ∑

directional lights

Idir ks Cs (cos δ)s (6.10)
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Figure 6.38: Phong’s original
technique for computing specular
reflection, depicted in a context in
which the camera position is very
close to the reflection ray.

Most materials produce a specular reflection that is some mixture of its diffuse
color and the light source’s color, but the ratio of the former to the latter varies.
You may have noticed that some shiny materials show a specular highlight that
is essentially a brighter version of the diffuse color of the material. For example,
the shiny highlights on a brass kettle illuminated by a bright light source are a
“tinted” version of the light’s color, highly affected by the innate brass color. But,
as explained earlier, for plasticlike materials, specular highlights take on primar-
ily the color of the light source rather than of the diffuse color. To achieve this
plasticlike appearance, ensure that the product of ks and Cs is a value not biased
toward any component color (red, green, or blue) so as to preserve the hue of the
incoming light.

This computation also includes a cosine-based attenuation factor, differing
from that of Lambert’s law in two ways. First, Lambert’s law compares incom-
ing light to the orientation of the surface alone, and is therefore viewpoint inde-
pendent. However, specular reflection is highly viewpoint dependent, and thus
relies on a different value δ, which in Phong’s original formulation measures the
angle between the reflection vector r (computed via the “angle of reflection equals
angle of incidence” rule mentioned in Section 1.13.1) and the surface-to-camera
vector e, as shown in Figures 6.38 and 6.39. The use of cos δ ensures that the
specular effect is strongest when the viewpoint lies on vector r, and weaker as the
surface-to-camera vector varies more from vector r.

,

d

n

e

r

Figure 6.39: Phong’s original
technique for computing specular
reflection, depicted in a context
in which the camera position is
not close to the reflection ray. The
significant difference in the value
of cos δ makes an even greater
difference when it’s raised to a
large power, so the specular term
is nearly zero for this view.

Second, whereas cos δ ensures an intensity drop-off as e varies further from
r, we also need to control how “fast” that drop-off is. For a perfect mirror, there
is no gradual drop-off; rather, the reflection’s intensity is at a maximum when the
viewpoint is directly on vector r, and is zero if not. This binary situation doesn’t
occur in real-world materials; instead, there is a large variety in fall-off velocity
among different materials. Thus, the equation provides for control of the amount
of specularity through the variable s, known as the specular exponent (or spec-
ular power) of the material. Values of s for highly shiny surfaces are typically
around 100 to 1000, providing a very sharp fall-off. A polished apple, on the other
hand, might have an s of about 10, and thus a larger but dimmer area of measurable
specular contribution. The lab software lets you experiment with different values
of s to become familiar with its effect on specular appearance, and we encourage
you to perform the specular-lighting exercises provided in the online material.

The exponent s on the specular term is sometimes denoted n, which can con-
flict with the name of the normal vector, often written n. It’s also sometimes
denoted ns, with the “s” denoting “specular.” Our experience is that artists suc-
ceed better in adjusting the specularity when they’re given a control that adjusts
the logarithm of this exponent. As the artist moves a slider from 0 to 3, the
specular exponent moves from 1 to 1000: the value 0 on the slider produces an
appearance like latex paint, 1 like a polished apple, 2 like a shiny coin, and 3
like a mirror.
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In this chapter, we describe the classic Phong definition of the angle δ. WPF
and many popular fixed-function pipelines actually use a very similar, but com-
putationally more efficient, variant known as the Blinn-Phong model, which
uses a different approach for measuring δ, described in Section 14.9.3.

6.5.3.4 Emissive Lighting
Many rendering systems additionally offer the artificial notion of self-luminous
emissive lighting that allows a surface to “reflect” light that is not actually present
externally. Emission is independent of geometry and is not subject to any attenua-
tion. The specification is simply a single color (solid or textured), which is added
to the other three components to yield the final intensity value. Note that emis-
sion is most useful when emitting a texture—for example, to emulate a nighttime
cityscape background or a star-filled sky—but it can also be used to model neon
lights that have the particular “look” of a neon tube, although they do not illumi-
nate anything else in the scene. We encourage you to perform the emissive-lighting
exercises provided in the online material.

6.6 Hierarchical Modeling Using a Scene Graph

What’s a desert without camels? In this section, we will design a simple articulated
robotic camel with some pin joints (highlighted in Figure 6.40) supporting rigid-
body rotations on a single axis. This section builds on the modeling and animation
techniques you first encountered with the clock example in Chapter 2. While the
XAML code examples below are particular to WPF, these techniques for compos-
ing and animating complex models are common to all scene-graph platforms.

Figure 6.40: WPF’s rendering of
the camel constructed via hierar-
chical modeling, with joints for
legs and neck animation.

Throughout this section we will refer you to activities in the “Hierarchical
Modeling” module of this chapter’s laboratory. We strongly recommended that
you perform the lab activities while reading this section.

6.6.1 Motivation for Modular Modeling

When designing any complex model, a developer should modularize the specifica-
tion of the geometry by dividing the model into parts that we call subcomponents.
There are many reasons for avoiding a monolithic (single-mesh) model.

• Materials are typically specified at the level of the mesh (e.g., the
GeometryModel3D element in WPF). Thus, if you want the materials to
vary (e.g., to render the camel’s foot using a different material from its
shin), you must use subcomponents.

• When a component appears at multiple places in the model (e.g., the
camel’s four legs), it is convenient to define it once and then instantiate
it as needed. Reusability of components is as fundamental to 3D modeling
as it is to software construction, and is a key optimization technique for
complex scenes.

• The use of subcomponents facilitates the animation/motion of subparts. If a
complex object is defined via a single mesh, movement of subparts requires
editing the mesh. But if the design is modular, a simple transformation (of
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the kind we used in animating the clock in Chapter 2) can be applied to a
subcomponent to simulate a motion such as the bending of a knee.

• Pick correlation (the identification of which part of the model is the target
of a user’s click/tap action) is more valuable if your model is modularized
well. If the user clicks on a single-mesh camel, the result of correlation is
simply the identity of the camel as a whole. But if the camel is modularized,
the result includes more detail; for example, “the shin of the front-left leg.”

• Editing a single-mesh model is difficult due to interdependencies among
the various parts—for example, extending the height of the camel’s legs
would, as a side effect, require revising all the vertices in the camel’s head
and torso. But when a model is defined using a hierarchy of subparts, the
geometry of a subcomponent can be edited in isolation in its own coordi-
nate system, and the assembly process can use transformations to integrate
the parts into a unified whole.

These reasons are so compelling that we abstract them into a principle:

THE HIERARCHICAL MODELING PRINCIPLE: Whenever possible, construct
models hierarchically. Try to make the modeling hierarchy correspond to a func-
tional hierarchy for ease of animation.

6.6.2 Top-Down Design of Component Hierarchy

One strategy for designing a complex model for animation is to analyze the target
object to determine the locations of joints at which movement might be desired.
For example, as depicted in Figure 6.40, we might want our camel to have knee
and hip joints for leg movements, and a neck joint for head movement.5 The joint
locations, along with other requirements such as variations in materials, are then
used to determine the necessary component breakdown. Let’s focus first on just
the camel’s leg: We need to implement hip and knee joints, and we’d like the
option of a distinct material for the foot.

Leg

Thigh Lower leg

Foot Shin

Key

Instance transform

Joint transform

Grouping component

Primitive component

Figure 6.41: Scene graph of
the camel-leg model. Here, and
below, we use a beige back-
ground to highlight a portion of
the graph that is being used as a
component or submodel.

The hierarchy shown in Figure 6.41 fits our needs. In the figure, we distin-
guish between primitive nodes (meshes with associated materials) and higher-
level grouping nodes that combine subordinate grouping nodes and/or primitive
nodes. Also, on the lines connecting components, we distinguish between two
different types of modeling transformations. As you may recall from Chapter 2,
we identify two slightly different uses of modeling transformations.

• An instance transform is used to position, resize, and orient a subcom-
ponent in order to position it properly into a scene or into a higher-level
composite object. In our clock application in Chapter 2, we used instance
transforms to position the clock hands relative to the clock face, and to
reshape a stencil clock hand to form the distinctive shapes of the hour

5. Here, our use of the term “joint” is informal and simply identifies locations at which we
might want to implement an axis of rotation on a subcomponent to simulate a biological
joint or a construction hinge. In sophisticated animation technologies, a joint is far
more complex, may support more than one axis, and is often an actual object (distinct
from the model’s subcomponents) with structure, appearance, and behaviors derived
from principles of physics and biomechanics.
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and minute hands. Since the need for proper placement of a subcompo-
nent may be present anytime instantiation is performed, we tend to include
an instance transform on each subcomponent in our hierarchical design.

• A joint transform is used to simulate movement at a joint during anima-
tion. For example, the knee joint is implemented by a rotation transforma-
tion acting on the lower leg, and the hip joint is implemented by a rotation
transformation acting on the entire leg. In our clock application, we used
this to implement movement of the clock hands.

6.6.3 Bottom-Up Construction and Composition

Now we demonstrate how XAML can be used to construct the model. The order
is bottom-up: first generating the primitive components (foot, shin, etc.) and then
composing the parts to create the higher-level components.

The activities involved in bottom-up construction are summarized in this table:

Intended Goal Where WPF Element/Properties

Specify the geometry
of a primitive
component

Resource section MeshGeometry3D element

Instantiate a primitive
component

Inside the content of a
viewport, as a direct
child of the
Model3DGroup

representing its parent in
the hierarchy

GeometryModel3D element
Name property provides a unique
ID useful for animation and pick
correlation
Geometry property points to the
corresponding
MeshGeometry3D resource
GeometryModel3D.Transform

property can be used to specify
an instance transform and/or
joint transform, often in the form
of a TransformGroup

Construct a
composite component

Inside the content of a
viewport, as a direct
child of the
Model3DGroup

representing its parent
in the hierarchy

Model3DGroup element
Name and
Model3DGroup.Transform

properties as described above

6.6.3.1 Defining Geometries of Primitive Components

Figure 6.42: Rendering of the
foot model, at its canonical posi-
tion at the origin.

The design of each primitive component should be an independent task, with its
geometry specified in its own coordinate system, as we did for the clock hand
in Chapter 2. The abstract coordinate system in which an object is specified is
sometimes called the object coordinate system. For convenience, the component
should be at a canonical position and orientation—for example, at the origin, cen-
tered on one of the coordinate axes, resting on one of the three coordinate planes.

Choosing a physical unit of measurement is optional, but composing the parts
is simpler if the dimensions of components are consistent. For example, we have
designed the foot as 19 units high (Figure 6.42) and the shin as 30 units high
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(Figure 6.43) to ensure that composing the two (to form the lower leg) requires
only translation of the shin, as shown in Figure 6.45. (We’ll work through the
details of the lower leg construction in the next section.) No stretching/compress-
ing (scaling) or rotation actions are necessary. Similarly, the thigh is consistently
sized so that the full leg can be built by translating the thigh to connect it to the
top of the lower leg.

Note that a typical interactive 3D modeling environment makes it very easy to
build canonical, consistent atomic components, via features such as ruler overlays,
templates of common volumes, and snap-to-grid editing assistance.

Figure 6.43: Rendering of the
shin model, at its canonical posi-
tion at the origin.

Naturally, if your design incorporates subcomponents obtained from third
parties, inconsistencies can be expected, and additional transformations (e.g.,
resizing or reshaping via scaling) may be required to facilitate composing them
with the components you designed. Similar transformation-based adjustments
may be necessary when incorporating a completed composite model into an
existing scene. For example, if we wish to place our completed camel model
(which is well over 100 abstract units in height) into the pyramid scene we
constructed previously, we will have to take into account that our scene’s world
coordinate system is a physical one with each unit representing 1 meter. Our
camel, if placed in that scene without scale adjustment, would be 100 meters tall,
towering over our 75-meter pyramid!

As a little hint for future work, it’s always nice if you can build the parts of your
model in a way that makes it simple to place them in your scene. Aligning them
with coordinate axes or planes is a good start, but making their proportions
correct is also a good idea. It means that you can place the parts in the scene
using only translation, rotation, and uniform scaling (i.e., scaling by the same
amount in each axis). Such transformations turn out to be much easier to work
with than more general scaling transformations.

6.6.3.2 Instantiating a Primitive Component
Once the primitive components have been designed and their meshes stored in the
resource dictionary, each one can be “test-viewed” by instantiating it alone in the
viewport, via creation of a GeometryModel3D element. The XAML shown below
adds an instance of the foot primitive to our desert-scene viewport:

Figure 6.44: Rendering of a first
draft of a lower-leg model, con-
structed by composing the two
subcomponents without moving
them from their canonical posi-
tions at the origin of the coordi-
nate system.

1
2
3
4
5
6
7

<ModelVisual3D.Content>
<Model3DGroup>

Lights will be specified here.
<GeometryModel3D Geometry="{StaticResource RSRCmeshFoot}"

Material=... />
</Model3DGroup>

</ModelVisual3D.Content>

Note that the instantiated foot is not being transformed, so it will appear at the
origin of the world coordinate system of the scene, as you can see in Figure 6.42.

Inline Exercise 6.10: Use the Model listbox, along with the turntable feature,
to examine the various primitive components of the camel in their canonical
positions at their local origins. For example, the shin in its canonical position
appears as shown in Figure 6.43.
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6.6.3.3 Constructing a Composite Component
A composite node is specified via the instantiation of subcomponents within a
Model3DGroup element; the subcomponents are accumulated into the composite
node’s own coordinate system.

6.6.3.4 Creating the Lower Leg
Here is a first draft of our camel’s lower leg:

1
2
3
4
5
6

<Model3DGroup x:Name="LowerLeg">
<GeometryModel3D Geometry="{StaticResource RSRCmeshFoot}"

Material=... />
<GeometryModel3D Geometry="{StaticResource RSRCmeshShin}"

Material=... />
</Model3DGroup>

Testing this composite by instantiating it into the viewport yields the rendering
shown in Figure 6.44.

Figure 6.45: Rendering of the
lower-leg model, now corrected
via application of a modeling
transformation on the shin sub-
component.

Inline Exercise 6.11: Back in the lab, select the model “Lower leg (shin +
foot)”.

This unsatisfactory result, in which the two models co-inhabit space causing
the foot’s ankle region to intersect the shin, occurs because each component is, by
design, positioned at the origin of its local coordinate system. When composing
parts, we must use instance transforms to properly position the subcomponents
relative to one another. Our goal is for the bottom of the shin to be connected to
the top (ankle) part of the foot.

Thus, we need to translate the shin in the positive y direction; an offset of 13
units is satisfactory. Note that the foot is already properly positioned for its role in
the lower-leg composite and thus needs no transform.

Below is our second draft of the XAML specification for this composite com-
ponent (with the new lines of code highlighted). A couple of views of the result
are shown in Figures 6.45 and 6.46.

Figure 6.46: Rendering of the
lower-leg model from a second
point of view.
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<Model3DGroup x:Name="LowerLeg">

<GeometryModel3D Geometry="{StaticResource RSRCmeshFoot}"
Material=... />

<GeometryModel3D Geometry="{StaticResource RSRCmeshShin}"
Material=... >
<GeometryModel3D.Transform>

<TranslateTransform3D OffsetY="13"/>
</GeometryModel3D.Transform>

</GeometryModel3D>@</Model3DGroup>

Inline Exercise 6.12: Return to the lab, and use the hierarchy viewer/editor to
add a transform to the shin to repair the lower-leg composite.
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6.6.3.5 Creating the Full Leg
Let’s continue our bottom-up implementation by going up to the next level. The
“whole leg” is a composition of the lower leg (itself a composite) and the thigh
(a primitive). Let’s first compose these two components to form a rigid locked
object, and then we’ll attack the challenge of adding a knee joint.

As was the case for the lower leg, one of the subcomponents needs an instance
transform (i.e., the thigh needs to be raised 43 units in the y direction) and the other
is already at a suitable location. The resultant image is shown in Figure 6.47; the
XAML code is as follows:
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<Model3DGroup x:Name="Leg">

<!-Build the lower-leg composite(same ẊAML shown earlier).->
<Model3DGroup x:Name="LowerLeg"> . . . </Model3DGroup>

<!- Instantiate and transform the thigh. ->
<GeometryModel3D Geometry="{StaticResource RSRCmeshThigh}"

Material=. . . >
<GeometryModel3D.Transform>

<TranslateTransform3D OffsetY="43"/>
</GeometryModel3D.Transform>

</GeometryModel3D>

</Model3DGroup>

Figure 6.47: Rendering of the
complete leg model.Inline Exercise 6.13: Return to the lab, and select “Thigh” from the list of

models to examine that component in isolation. Then select the model “Whole
leg”. The undesired merging of the two subcomponents will be obvious. Repair
by adding an instance transform to the thigh to translate it on the y-axis. (If
you wish, you can jump straight to our solution by choosing “Whole leg auto-
composed” from the list of models.)

6.6.3.6 Adding the Knee Joint
The leg is currently locked in a straight position. But, by adding a rotation trans-
formation to the lower leg, we can provide a “hook” that animation logic can use
to simulate bending at the knee.

Figure 6.48 shows the leg in its canonical location at the origin, but with a 37◦

rotation at the knee. (The invisible axis of rotation has been added to this rendered
image for clarity.)

Figure 6.48: Result of specifying
a 37◦ rotation at the knee joint,
annotated with a red line through
the joint, parallel to the x-axis,
showing the axis of rotation.

The WPF element for expressing 3D rotation requires specification of the axis
and the rotation amount. The axis is configured via two parameters: an arbitrary

directional vector (e.g.,
[
1 0 0

]T
representing any line that is parallel to the

x-axis) and a center point lying on that vector (e.g., the center of the “knee” part
of the lower leg, which is (0, 50, 0) in the lower leg’s coordinate system).

Inline Exercise 6.14: Return to the whole-leg model in the lab. Implement
the simulated knee joint by adding a rotation transform to the lower-leg com-
ponent. Set the rotation axis as needed, and then use the numeric spinner to
change the rotation amount to produce a knee-bend animation.
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The XAML for the lower leg—with the joint transformation in effect to bend
the knee—now appears as follows:
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<!- Construct the lower-leg composite (same XAML shown earlier) ->
<Model3DGroup x:Name="LowerLeg">
<Model3DGroup.Transform>
<!-- Joint transform for the knee -->
<RotateTransform3D CenterX="0" CenterY="50" CenterZ="0">
<RotateTransform3D.Rotation>
<AxisAngleRotation3D x:Name="KneeJointAngle" Angle="37" Axis="1 0 0"/>

</RotateTransform3D.Rotation>
</RotateTransform3D>

</Model3DGroup.Transform>
<GeometryModel3D Geometry="{StaticResource RSRCmeshFoot}" Material=... />
<GeometryModel3D Geometry="{StaticResource RSRCmeshShin}" Material=... >
<GeometryModel3D.Transform>
<TranslateTransform3D OffsetY="14"/>

</GeometryModel3D.Transform>
</GeometryModel3D>

</Model3DGroup>

Manipulation of the joint’s rotation amount can be performed by procedural
code, or by the declarative animation features introduced in Section 2.5.1.

6.6.4 Reuse of Components

With our leg designed, let’s move up one more level and consider how we might
compose the entire camel. The leg is the first component that is going to be multi-
ply instantiated into its parent. Reusing components is fundamental to hierarchical
modeling; however, there are two types of reuse, each achieving different goals
and appropriate for different scenarios.

First, consider a scenario in which we must show the camel walking or gallop-
ing in a realistic way. To achieve this, we need to be able to individually control
the amount of rotation at each of the four hip joints and each of the four knee
joints. To achieve hip and knee rotation, we construct the camel as a tree of nodes,
with each node being used only once, as shown in Figure 6.49. Thus, there are
four hip joints and four knee joints, each independently manipulable.

Is any “reuse” going on in this model? Well, you could say that we are reusing
the design of the leg, since the model has four copies of the leg component hier-
archy we designed above. But there is no reuse of the actual components in the
constructed model. The front-left leg is a tree of components dedicated to repre-
senting only the front-left leg; there is a completely independent tree of compo-
nents for each of the four legs. The advantage of this approach is that each leg is
independent of the others, and the effect of manipulating one leg’s joints is limited
in scope to just that leg.

It is useful to search a model for rigid subcomponents that do not have any
internal joints; they are candidates for being extracted and turned into reusable
components. In the model discussed above, the lower-leg component is indeed
rigid, because our design does not include an ankle joint that would allow the
foot to rotate relative to the shin. Thus, we can reuse the lower-leg component
hierarchy without any loss of animation flexibility, by constructing the camel using
the structure shown in Figure 6.50. Here, our model is no longer a tree—it is a
directed acyclic graph (DAG) now that component reuse is in effect; this topology
is the reason this kind of structure is known as a “scene graph.”
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Figure 6.49: Scene graph of a camel constructed without reusable components, allowing
individual control of each joint.
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Thigh
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Thigh

Rear left leg
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Thigh

Front right leg

Foot Shin

Lower leg

Figure 6.50: Reducing the storage cost by reusing a lower-leg submodel, with no loss of
flexibility in joint control.

As the figure makes clear, each instantiation of the reusable LowerLeg has its
own knee joint transform, so there is no loss in flexibility—each knee joint is still
individually controllable. This DAG-based design is identical in functionality to
the tree-based design above.

Thus far, we have been focused on supporting a high-fidelity animation of the
camel’s movement, but there other scenarios of interest. Consider a desert scene
in which hundreds of camels, seen from afar, are crossing dunes in a caravan.
The amount of processing needed to animate each hip and knee joint individually
might be considered not worth the cost, especially if the caravan is so far from the
viewpoint that such details would not be apparent to the viewer. In such a case,
we might choose a lower-fidelity motion in which the camels move in unison,
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with all left legs, both front and back, in the scene sharing a particular knee-bend
animation, and all right legs sharing a different knee-bend animation.

A model using this approach is depicted in Figure 6.51. Here we have our
first reusable components that include internal joint transforms: The reusable left
leg has a left-knee joint, and the reusable right leg has its own right-knee joint.
If we were to do a test instantiation of just one camel designed in this way, we
would be able to control both left knees by manipulating just the one left-knee
joint transform, and both right knees via the one right-knee joint transform.

But the processing advantage gained by reuse becomes much more apparent
if you increase the number of camels to simulate the entire caravan. Consider
Figure 6.52, which depicts a model of a caravan featuring reuse of the entire camel
model.

Camel

Head Torso Left leg

Thigh Thigh

Right leg

Lower leg

Left front hip Left rear hip Right front hip Right rear hip

Left knee Right knee

Foot Shin

Figure 6.51: Reducing the storage cost by reusing a model for the left-side legs and a
separate model for the right-side legs, with great loss of flexibility in joint control.

Camel

Caravan

Head Torso Left leg

Thigh Thigh

Right leg

Lower leg

Left front hip Left rear hip Right front hip Right rear hip

Left knee Right knee

Foot Shin

Figure 6.52: Modeling a caravan by reusing a single camel model, a highly scalable
approach at the cost of excessive synchronized leg movement.
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With this new scene graph, we have a caravan that is extremely scalable. No
matter how many camels we place in this caravan, the number of joint transforms
requiring manipulation for the animation of the legs is constant. By manipulat-
ing just four hip joints and two knee joints, the entire caravan’s leg motion will be
affected. Of course, this scalability comes at a cost: the uncanny and unnatural per-
fect synchronization of the entire caravan. At a distance, this type of low-fidelity
caravan might be perfectly adequate, but if a bit more variety is desired, we could
choose to have a handful of different limb animation sequences, create a distinct
reusable camel “stencil” for each such sequence, and have each camel in the cara-
van be an instance of one of the stencils, chosen at random. Without much loss in
scalability, we could thus achieve animation that is not quite so unnatural.

Of course, our caravan needs to be moving across the desert too; otherwise, the
leg motions will look awfully silly. Thus, our animation logic must perform time-
based manipulation of instance transforms on the camel objects simultaneously
with the manipulation of the joint transforms.

Inline Exercise 6.15: How can we make the caravan’s movement across the
desert scalable? Is there a scene graph that would allow a single instance trans-
form to move the entire caravan, without the loss of the scalable knee/hip con-
trol we just designed? What loss in realism would occur with such a plan?

If you are interested in knowing more about how to implement reusable com-
ponents in XAML and WPF, consult the online materials for this chapter.

WPF is, of course, just one of many scene-graph platforms, and all implement
reusability as part of their support for controlling scene complexity. For more
information on scene-graph platforms, see Chapter 16.

6.7 Discussion

We have demonstrated the techniques common to most real-time fixed-function
3D platforms that are useful for displaying simple scenes composed of triangle-
mesh objects, covered with solid or texture-mapped materials, and rendered using
the classic Phong reflectance model with interpolated or flat shading.

Our focus on WPF as the example platform is designed to allow you to exper-
iment and build prototype scenes using XAML, so you can exercise these tech-
niques without the need to work with a procedural language and compile/build
cycles.

It is important to note that a platform-resident scene graph is only applicable
to projects for which “the picture is the thing.” For most nontrivial applications,
where the image is meant to be a visualization of some application data, there is an
application model (database) storing both geometric and nongeometric informa-
tion, acting as the source from which a scene graph is derived for display purposes.
This topic is discussed more extensively in Chapter 16.
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Chapter 7

Essential Mathematics
and the Geometry of
2-Space and 3-Space

7.1 Introduction

Unlike other chapters in this book, this one covers a great deal of material with
which you may already be familiar in some form. The goals of this organization
of the material are

• To have it all in one place, where you can easily refer to it

• To present it in a way that has a somewhat different approach from
what you may have seen in the past, one that’s particularly useful for
graphics

Much of the chapter will be easy reading; the material will look familiar. To
be sure it really is familiar, we include a number of exercises in the chapter itself;
you should work through these exercises to be certain you really are understanding
what you’re reading. We assume that you’ve encountered some linear algebra, and
are familiar with vectors, matrices, linear transformations, and notions like “basis”
and “linear independence.”

One test, as you read this material, is to ask yourself, “Could I write code to
implement this idea?” If the answer is no, you should spend more time under-
standing the concept. This is sufficiently important that we embody it in a prin-
ciple, which one of us first heard expressed by Hale Trotter of Princeton in the
1970s.

THE IMPLEMENTATION PRINCIPLE: If you understand a mathematical pro-
cess well enough, you can write a program that executes it.

149
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We add to this the idea that often, writing such a program removes the neces-
sity of understanding the details in the future: If you’ve done a good job, you can
reuse your program.

7.2 Notation

We’ll use conventional mathematical notation, in which most variables appear in
italics; vectors will be written in roman boldface (e.g., u), as will matrices. In
general, vectors will be lowercase, matrices uppercase. When a variable has a
subscript used for indexing, it’s italic, as in the i in

∑
i xi. When a subscript or

superscript is mnemomic, as in ρdh, the “directional hemispherical reflectance,”
it’s in roman font.

Certain special sets have predefined names and are written in boldface font:
R is the set of real numbers; C is the set of complex numbers; R+ (pronounced
“R plus”) is the set of positive real numbers; and R+

0 (pronounced “R plus zero”)
is the set of non-negative reals.

7.3 Sets

Sets are generally denoted by capital letters. The Cartesian product of the sets B
and C is the set

B× C = {(b, c) : b ∈ B, c ∈ C}1, (7.1)

which is pronounced “B cross C”; despite this, it is called a “Cartesian” product
rather than a “cross product”; that term is reserved for the cross product of vectors
discussed in Section 7.6.4.

The product R×R is denoted R2; higher order products are R3, R4, etc., with
the n-fold product being Rn.

The closed interval [a, b] is the set of all real numbers between a and b, inclu-
sive, that is,

[a, b] = {x : a ≤ x ≤ b}. (7.2)

If b < a, then the interval is empty; if b = a, the interval contains just the num-
ber b. We’ll also occasionally use intervals that contain just one of their endpoints
(i.e., half-open intervals):

[a, b) = {x : a ≤ x < b}, (7.3)

(a, b] = {x : a < x ≤ b}. (7.4)

We also define the following two notational conventions:

[a,∞) = {x : a ≤ x}, (7.5)

(−∞, b] = {x : x ≤ b}. (7.6)

1. This notation means “the set of all pairs (b, c) such that b is in B and c is in C.” That is,
the colon is read “such that.”



ptg11539634

7.4 Functions 151

7.4 Functions

The notion of a function is already familiar to you from both mathematics and
programming. We’ll use a particular notation to express functions; an example is

f : R→ R : x 
→ x2. (7.7)

The name of the function is f . Following the colon are two sets. The one to the
left of the arrow is called the domain; the one to the right is called the codomain
(some books use the term “range” for this; however, “range” is also used in a
similar but different sense, leading to confusion). Following the second colon is a
description of the rule for associating to an element of the domain, x, an element
of the codomain.

This corresponds closely to the definition of a function in many programming
languages, which tends to look like this:

1
2
3
4

double f(double x)
{

return x * x;
}

Once again, the function is named; the domain is explicitly defined (“x can be
any double”), and the codomain is explicitly defined (“this function produces dou-
bles”). The rule for associating the typical domain element, x, with the resultant
value is given in the body of the function.

Mathematics allows somewhat subtler definitions than do most programming
languages. For example, we can define

g : R→ R+
0 : x 
→ x2 (7.8)

in mathematics, but most languages lack a data type which is a “non-negative real
number.” The distinction between f and g is important, however: In the case of
g the set of values produced by the function (i.e., the set {x2 : x ∈ R}) turns
out to be the entire codomain, while in f it is a proper subset of the codomain.
The function g is said to be surjective, while f is not. (Some books say that “g is
onto.”).

If we define

h : R+
0 → R+

0 : x 
→ x2, (7.9)

we get yet a different function. The function h is not only surjective, it has another
property: No two elements of the domain correspond to the same element of the
codomain; that is, if h(a) = h(b), then a and b must be equal. Such a function
is called injective.2 A function like h that’s both injective and surjective has an
inverse, denoted h−1, a function that “undoes” what h does. The domain of h−1

is the codomain of h, and vice versa. In the case of our particular function, the
inverse is

h−1 : R+
0 → R+

0 : x 
→ √x. (7.10)

2. Some books use the term “one-one” or “one-to-one,” but others use the same term to
mean both injective and surjective.
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More generally, if

f : C→ D (7.11)

is an injective and surjective (or bijective) function, its inverse,

f−1 : D→ C, (7.12)

is the unique function satisfying

f−1( f (x)) = x, for all x ∈ D, and (7.13)

f ( f−1(y)) = y, for all y ∈ C. (7.14)

Figure 7.1 illustrates these three classes of functions.

(a)

(b)

(c)

Figure 7.1: Three different func-
tions: (a) is surjective but not
injective; (b) is injective but not
surjective; and (c) is bijective.

Inline Exercise 7.1: Which of the following functions have inverses? Describe
the inverses when they exist.
(a) The negation function N : R→ R : x 
→ −x.
(b) q1 : R→ R : x 
→ arctan(x).
(c) q2 : R→ [−π/2,π/2] : x 
→ arctan(x).

In describing functions, we’ll always describe the domain, the codomain, and
the rule that associates elements in the first to elements in the second. Sometimes
these rules may involve cases, as in

u : R→ R : x 
→
{

1 −1 ≤ x ≤ 1

0 otherwise
, (7.15)

just as the code for a function may involve an if statement. We will also always
speak of functions by name (e.g., “the function f is continuous”) rather than saying
“the function f (x) is continuous,” because f (x) denotes the value of the function
at a point x; this value is usually not a function. If we need to include the vari-
able name for some reason, we will write “the function x 
→ f (x) is continuous at
x = 0, but not elsewhere,” for instance. This careful distinction becomes impor-
tant when we discuss functions like the Fourier transform, F, which operate on
functions, producing other functions. If we speak of “the function f 
→ F( f ),” we
are referring to the Fourier transform F; if we speak of “the function F( f ),” we
are referring to its value on a particular function f .

(x, y)

y

x

u

Figure 7.2: How is θ related to x
and y?

7.4.1 Inverse Tangent Functions

Mathematicians tend to define arctan, the inverse tangent function, from R to the
open interval (−π/2,π/2). We’ll sometimes use this, and denote it u 
→ tan−1(u).
A frequent use of the inverse tangent is to find the angle, θ, in the situation shown
in Figure 7.2: We have the point with coordinates (x, y) and want to know θ. The
usual answer is that when x > 0, it’s tan−1(y/x), followed by several special
cases for when x < 0, y > 0, or x < 0, y = 0, etc. These special cases have
been built into a single function, atan2, which takes a pair of arguments, rather
than a single one. It’s almost always used in the form θ = atan2(y, x), which does
exactly what you would expect: It returns the angle between the x-axis and the ray
from (0, 0) to (x, y). The returned angle is between −π and π. In the case where x
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and y are both zero, the returned value is zero. This makes atan2 discontinuous at
the origin, as well as along the negative x-axis. On the negative x-axis, the IEEE
version of atan2(y, x) returns either +π or −π depending on whether y = +0 or
−0. The only tricky part is remembering that y comes first. You can remember
this by knowing that if −π < θ < π, then

atan2(sin θ, cos θ) = θ. (7.16)

We’ll use atan2 not only in programs, but also in equations.

,2

,1(4, 2)

Figure 7.3: The Cartesian plane,
in which points are specified by x-
and y-coordinates.

7.5 Coordinates

The Cartesian plane shown in Figure 7.3 is a model for Euclidean geometry: All
of the axioms of geometry hold in the Cartesian plane, and we can use our geo-
metric intuition to reason about it. A tabletop (or to be more accurate, an infi-
nite tabletop) is also a model for Euclidean geometry. The difference between
the two is that each point of the Cartesian plane has a pair of real numbers—its
coordinates—associated to it. This lets us transform geometric statements like
“the point P lies on the lines �1 and �2” to algebraic statements, like “the coordi-
nates of the point P satisfy these two linear equations.” We can, of course, draw
two perpendicular lines on the infinite tabletop, declare them to be the x- and
y-axes, place equispaced tick marks along each, and use perpendicular projection
onto these lines to define coordinates. But the choices we made—which line to
call the x-axis, which to call the y-axis, what point to use as the origin, etc.—were
arbitrary.3 It’s important to distinguish between the properties of a point or a line,
and the properties of its coordinates; the underlying geometric properties don’t
change when we change coordinate systems, while numerical properties of the
coordinates do change. In Figure 7.4, you can see that the point P is on the line
�—that’s a geometric property; it’s true independent of any coordinate system.

,P

Figure 7.4: The Cartesian plane
with multiple coordinate systems.

As an example of coordinate-dependent properties, the coordinates of P in the
black coordinate system are (3, 5), while in the blue coordinate system they are
(2, 2). Similarly, the equation of the line � in the black coordinate system is y = 5,
while in the blue coordinate system it’s x + y = 4. Thus, the point’s coordinates
and the line’s equation are coordinate-dependent. But the fact that the point is on
the line is coordinate-independent: Although P’s coordinates and �’s equation are
different in the two systems, the black coordinates of P satisfy the black equation
for �, and similarly for the blue.

From now on when we speak of “the coordinates of a point,” it will always be
with respect to some coordinate system; much of the time the coordinate system
will be obvious and we won’t mention it. For example, in R2, the set of ordered
pairs of real numbers, the “standard” coordinates of the point (x, y) are just x and y.

7.6 Operations on Coordinates

P

Q

M

Figure 7.5: The coordinates of M
in each coordinate system are the
average of the coordinates of P
and Q in that coordinate system;
thus, the geometric operation of
finding the midpoint of a seg-
ment corresponds to the algebraic
operation of averaging coordi-
nates, independent of what coor-
dinate system we use.

Suppose (see Figure 7.5) we have the points P = (2, 5) and Q = (4, 1) in the
plane, where the coordinates are with respect to the coordinate system drawn in
horizontal and vertical black lines. If we average the coordinates of these points

3. Indeed, Descartes did not even require that the two axes be perpendicular, although we
now always choose them so.
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(averaging the x-coordinates and then averaging the y-coordinates) we get M =
(3, 3), which turns out to be the midpoint of the segment between them. This is an
interesting situation: The midpoint is defined purely geometrically, independent of
coordinates. But we’ve got a formula, in coordinates, for computing it. Suppose
we look at the coordinates of P and Q in the blue coordinate system, which is
rotated 45◦ from the black one, and has its origin to the right and below, and
average those: The coordinates are (2, 2) and (2, 4); the average is (2, 3). In the
blue coordinate system, the point (2, 3) is exactly at the same location as the black
coordinate system point (3, 3). In short, while the coordinate computations differ,
the underlying geometric result is the same.

P

P9

P0

Figure 7.6: The operation
“divide the coordinates of a
point by two” produces different
results (P′ and P′′) in the two
coordinate systems—this simple
algebraic operation is not inde-
pendent of the coordinate system,
so it doesn’t correspond to any
geometric operation.

Contrast this with the operation “divide the coordinates of a point by two”
(Figure 7.6). Under this operation, the point P with black-line coordinates (2, 5)
becomes the point P′ with coordinates (1, 2. 5). But if we apply the same oper-
ation in blue-line coordinates, where P has coordinates (4, 7), the new blue-line
coordinates are (2, 3. 5), and the point P′′ corresponding to those coordinates is
far from P′. What’s the difference between the averaging and the divide-by-two
operations? Why does “averaging coordinates” give the same result in any two
coordinate systems, while “dividing coordinates by two” gives different ones?
We’ll answer this in greater detail in Section 7.6.4. For now, let’s just examine the
distinction algebraically: Let’s write down the average of the coordinates of points
(x1, y1) and (x2, y2). It’s just

M =

(
x1 + x2

2
,

y1 + y2

2

)
. (7.17)

If we agree to temporarily define a “multiplication” of a point’s coordinates by a
number with the rule

s(x, y) = (sx, sy), (7.18)

and addition of points by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), (7.19)

then this averaging can be written

M =
1
2
(x1, y1) +

1
2
(x2, y2), (7.20)

while the “dividing coordinates by two” operation can be written
1
2
(x, y). (7.21)

The key difference, it turns out, is that the first operation involves summing up
terms where the coefficients sum to one (because 1

2 + 1
2 = 1), while the second

does not. A combination where the coefficients sum to one is called an affine
combination of the points, and it is combinations like these that are invariant
when we change coordinate systems. (You should try a few others to convince
yourself of this.)

Since affine combinations have the property of being “geometrically meaning-
ful,” we’ll now examine them more closely. Suppose that instead of averaging, we
took a 1

3 − 2
3 combination of the points, that is, we computed (for the points P and

Q in Figure 7.5)

1
3

P +
2
3

Q. (7.22)
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We’d get the point ( 10
3 , 7

3 ), which also lies on the line between P and Q, but is
closer to Q. In fact, we can compute

(1− α)P + αQ (7.23)

for any number α: With α = 1 we get Q; with α = 0 we get P; with α = 1
2 we

get M; and with any value of α between 0 and 1 we get points on the line segment
between P and Q.

What happens when we consider values of α that are less than 0? Those cor-
respond to points on the line beyond P; similarly, ones with α > 1 are beyond Q.
In summary:

As α ranges over the real numbers, the points (1 − α)P + αQ range over
the line containing P and Q, with α = 1 corresponding to P and α = 0
corresponding to Q, and values of α between 0 and 1 corresponding to points
between P and Q.

With this in mind, we can define a function

γ : R→ R2 : t 
→ (1− t)P + tQ. (7.24)

The image of this function is the line between P and Q; if we restrict the domain
to the interval [0, 1], then the image is the line segment between P and Q. We call
this the parametric form of the line between P and Q, where the argument t is
the parameter. (In Section 7.6.4 we’ll justify this particular use of the multiply-
by-scalars-and-add operation applied to points.)

Inline Exercise 7.2: We discussed that certain coordinate constructions are
invariant under changes in coordinate systems. If two people place coordinate
systems on the same tabletop and compute lengths, angles, and areas, will they
always get the same results? In other words, are lengths, angles, and areas
invariant under changes of coordinates? If not, can you think of particular con-
ditions on the coordinate systems under which these are invariant? Note: The
length of the segment from (x1, y1) to (x2, y2) in a Cartesian coordinate system
is defined to be

√
(x2 − x1)2 + (y2 − y1)2; you’ll need to figure out similar

definitions of angle and area to answer this question.

7.6.1 Vectors

We’ll return to lines presently; before we do so, however, we’ll codify some of
the ideas above by relating them to vectors. The term “vector” gets used in many
fields to mean many things. For now, we’ll content ourselves with one particular
type of vector, a coordinate vector, which is simply a list of real numbers. An
n-vector is a list of n numbers; we’ll write these between square brackets, orga-
nized vertically: ⎡

⎣ 1
−4
0

⎤
⎦ , (7.25)
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for example, is a 3-vector. A generalization of this notion is that of matrices,
which are doubly indexed lists of real numbers, named by the number of rows and
the number of columns. Thus, ⎡

⎣ 1 2
−4 0
0 6

⎤
⎦ (7.26)

is a 3 by 2 (often written 3 × 2) matrix. Entries of the matrix are indicated by
subscripts, with the row index first; if A is a matrix, then aij denotes the entry in
row i, column j. An n-vector can be considered an n × 1 matrix. An important
operation on matrices is transposition: An n×k matrix A becomes a k×n matrix
whose ij entry is the ji entry of A. Thus, the transpose of the matrix above is[

1 −4 0
2 0 6

]
. (7.27)

The transpose of the matrix A is written AT. Because horizontal lists fit typog-
raphy better than do vertical ones, we’ll often describe a vector by its transpose.

Thus, if v is the vector above, we might write “Let v =
[
1 −4 0

]T
. . . ” as a

way of introducing it into the discussion.

7.6.1.1 Indexing Vectors and Arrays
In mathematics, vectors and matrices use one-based indexing: If v is a vector,
its first element is written v1, its second v2, etc. If M is a matrix, the element in
row i and column j is denoted mij; when i and j are particular integers, these are
sometimes separated by commas, as in m1,2.

7.6.1.2 Certain Special Vectors
In R2, any vector

[
a b

]T
can be expressed in the form[

a
b

]
= a

[
1
0

]
+ b

[
0
1

]
; (7.28)

the two vectors on the right are called e1 and e2. In R3, we have a similar set of
vectors; the names are reused:

e1 =

⎡
⎣1

0
0

⎤
⎦ , e2 =

⎡
⎣0

1
0

⎤
⎦ , and e3 =

⎡
⎣0

0
1

⎤
⎦ . (7.29)

In general, in Rn, the name ei refers to a vector whose entries are zeroes, except
the ith, which is 1.

The vector whose entries are all zero (in any dimension) is denoted 0; note the
boldface font.

v

w

Figure 7.7: The arrows labeled
v and w are often considered to
be “the same,” even though they
are clearly different entities. If
we think of each of them as rep-
resenting a displacement of the
plane (i.e., a motion of all points
of the plane up and to the right),
then although the arrows them-
selves are distinct, they represent
the same displacement.

7.6.2 How to Think About Vectors

It’s common for students to say, “A vector is an arrow.” So, when asked if the
vectors v and w in Figure 7.7 are the same, they answer “yes,” although the two
arrows, being in different places, are clearly different. A better way to think of a
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vector is as a displacement—it represents an amount by which you must move
to get from one place to another. For example, to get from the point (3, 1) to the
point (5, 0), you must move by 2 in the x-direction and by −1 in the y-direction.

This displacement is represented by the vector
[
2 −1

]T
. It’s exactly the same

as the displacement needed to move from (4, 1) to (6, 0). With this interpretation,
addition of vectors makes sense: You add corresponding terms. And multiplication
by a constant is similarly defined by multiplying each entry by that constant, thus
increasing or decreasing the displacement.

If the word “displacement” is not satisfactory, you can also think of vectors
as “differences between points,” that is, as a description of the amount you would
have to move the first point to reach the second. The same pair of points, moved
to a different location by a shift in x and y, correspond to the same vector, because
the difference between them is unchanged.

7.6.3 Length of a Vector

The length (or norm) of the vector v, denoted ‖v‖, is the square root of the sum of

the squares of the entries of v. If v =
[
1 2 3

]T
, then ‖v‖ = √12 + 22 + 32 =√

14. This corresponds, when we think of v as a displacement, to the distance that
we moved. A vector whose length is 1 is called a unit vector.

You can convert a nonzero vector v to a unit vector, which is called normaliz-
ing it, by dividing it by its length. We write

S(v) = v/‖v‖ (7.30)

for this, with the letter “S” being chosen for “sphere,” since normalizing a vector
in 3-space amounts to adjusting its length so that its tip lies on the unit sphere.

7.6.4 Vector Operations

We can add vectors and multiply a vector by a constant (called scalar multipli-
cation); more generally, if we have several vectors v1, v2, . . . , vn, and numbers
c1, c2, . . . , cn, we can form the linear combination

c1v1 + c2v2 + . . .+ cnvn. (7.31)

The set of all linear combinations of a single nonzero vector v is the line
containing v (where here we are reverting temporarily to the notion of the vector
v representing the endpoint of an arrow starting at the origin); the set of all linear
combinations of two nonzero vectors v and w is, in general, the plane that contains
both of them. One exception is when one vector is a multiple of the other, in which
case the result is the line containing both.

Aside from addition and multiplication by a constant, there are two other oper-
ations on vectors that we’ll often use: dot product and cross product.

7.6.4.1 Cross Product
The cross product is usually defined for pairs of vectors in 3-space as follows:⎡

⎣ vx

vy

vz

⎤
⎦×

⎡
⎣ wx

wy

wz

⎤
⎦ =

⎡
⎣ vywz − vzwy

vzwx − vxwz

vxwy − vywx

⎤
⎦ . (7.32)
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The cross product is anticommutative, that is, v× w = −w× v (the labeling and
ordering of the subscripts was chosen to make this self-evident). It’s distributive
over addition and scalar multiplication, but not associative. One of the main uses
of the cross product is that

‖v× w‖ = ‖v‖‖w‖| sin θ| (7.33)

where θ is the angle between v and w. That means that half the length of the
cross product is the area of the triangle with vertices (0, 0, 0), (vx, vy, vz), and
(wx, wy, wz).

The cross product can be generalized to dimension n; in dimension n, it’s a
product of n − 1 vectors (which explains why the n = 3 case is the most often
used). Aside from dimension 3, our most frequent use will be in dimension 2,
where it’s a “product” of one vector. The cross product of the vector is

×
[

vx

vy

]
=

[ −vy

vx

]
. (7.34)

This cross product has an important property: Going from v to ×v involves a
rotation by 90◦ in the same direction as the rotation that takes the positive x-axis
to the positive y-axis. Because of this, it’s sometimes also denoted by v⊥.

In the same way, going from v to w to v× w describes a right-handed coor-
dinate system, one in which placing your right-hand pinkie on the first vector and
curling it toward the second makes your thumb point in the direction of the third
(see Figure 7.8). In general, in n dimensions, the cross product z of n− 1 vectors
v1, . . . , vn−1 lies in a line perpendicular to the subspace containing v1, . . . , vn−1.
The length of z is (n− 1)! times the (n− 1)-dimensional volume of the pyramid-
like shape whose vertices are the origin and the endpoints of vi. Assuming this
volume is nonzero, z is oriented so that v1, v2, . . . , vn−1, z is “positively oriented”
in analogy with the right-hand rule in three dimensions.

v

w

u

Figure 7.8: The uvw directions
form a right-handed coordinate
system.

7.6.4.2 Dot Product
From linear algebra, you’re familiar with the dot product of two n-vectors v and
w, defined by

v · w = v1w1 + v2w2 + . . .+ vnwn. (7.35)

This is sometimes denoted 〈v, w〉; in this form, it’s usually called the inner prod-
uct. The dot product is used for measuring angles. If v and w are unit vectors,
then

v · w = cos(θ), (7.36)

where θ is the angle between the vectors (Figure 7.9). This is most often used in
the form

θ = cos−1 v · w
‖v‖‖w‖ (7.37)

which gives the angle between any two nonzero vectors, expressed as a number
between 0 and π, inclusive.

1
1

v

u

u

Figure 7.9: The dot product of
unit vectors gives the cosine of
the angle θ between them.

Fix the vector w ∈ R2 for a moment. The function

φw : R2 → R : v 
→ w · v (7.38)
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tells “how much v is like w” in the sense that as v ranges over all displacements
of a fixed length—say, length 1—this function is most positive when v is parallel
to w, most negative when it’s a displacement in the direction opposite w, and zero
for displacements that are in directions perpendicular to w.

The dot product is central to much of linear algebra; a surprising number of
computations and simplifications can be done by working with vectors and their
dot products rather than with their coordinates. This often leads to insight into the
underlying operations.

v
v9

w

u

Figure 7.10: Decomposing a dis-
placement w as a sum of two
displacements, one parallel to a
given vector v and one perpen-
dicular to v.

7.6.4.3 The Projection of w on v
As an example of the use of dot products, suppose we want to write the displace-
ment w as a sum,

w = v′ + u, (7.39)

where v′ is parallel to v and u is perpendicular to it (see Figure 7.10). How can we
find v′? First, we know it’s a multiple sv of v; all we need to find is s. Consider
the dot product of v with both sides of Equation 7.39:

v · w = v · v′ + v · u (7.40)

= v · (sv) + 0 (7.41)

= s(v · v), so (7.42)

s =
v · w
v · v . (7.43)

The projection is therefore

v′ =
v · w
v · v v. (7.44)

And u is just

u = w− v′. (7.45)

When v is a unit vector, the expression for v′ simplifies to

v′ = (v · w)v. (7.46)

7.6.4.4 Operations on Points and Vectors
With the notion of a vector as a difference between points, or as a displacement,
we can write down a number of operations.

• The difference between points P and Q, denoted by P− Q, is a vector.

• The sum of a point P and a vector v is another point. In particular, P+(Q−
P) = Q.

• The sum or difference of vectors is defined by elementwise addition or
subtraction.

• The sum of two points isn’t defined at all.

Thus, although for both points and vectors in the plane we represent each with a
pair of real numbers, we use the typographical convention that points are denoted
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by tuples like (3, 6), while vectors are denoted by 2× 1 matrices in square brack-
ets. In software (see Chapter 12), it’s helpful to also make vectors and points
have different types. In an object-oriented language, we would define the classes
Point and Vector. The first would contain an AddToVector operation, but not an
AddToPoint operation; the second would have both (with results of types Vector

and Point, respectively). Such a distinction allows the compiler to save us from
mistakes in our mathematical treatment of points and vectors.

If we, for a moment, use E2 to denote the set of points, but R2 to denote
vectors, then we have defined

difference : E2 × E2 → R2 : (P, Q) 
→ P− Q, and (7.47)

sum : E2 × R2 → E2 : (P, v) 
→ P + v. (7.48)

(Note that E2 × E2 is the Cartesian product of E2 with itself, i.e., the set of all
pairs of points.) These definitions generalize in a natural way to Rn and En. In
general, using these operations, we can define an affine combination of points.
Even though we said we could not add points, we saw earlier that computing the
midpoint between P and Q could be expressed nicely if we allowed ourselves to
write things like

1
2

P +
1
2

Q. (7.49)

We’ll now make sense of that. The expression

αP + βQ, (7.50)

which we call an affine combination of P and Q, will be defined only when
α+β = 1. If we pretend for a moment that all sorts of arithmetic on points is well
defined, then we can add βP and subtract it, to get

αP + βQ = αP + βP + βQ− βP (7.51)

= (α+ β)P + β(Q− P) (7.52)

= P + β(Q− P). (7.53)

With this cavalier bit of algebra as motivation, we define αP + βQ to mean

P + β(Q− P), (7.54)

which makes sense because Q − P is a vector, and hence β(Q − P) is as well;
this vector can be added to the point P to get a new point. This definition naturally
generalizes to an affine combination of more than two points; for instance, αP +
βQ + γR, where α+ β + γ = 1,

P + β(Q− P) + γ(R− P). (7.55)

We’ll frequently encounter such affine combinations of points, especially
when we discuss splines in Chapter 22. Mann et al. [MLD97] make a case
for treating all of graphics in terms of such “affine geometry,” and abandon-
ing coordinates to the degree possible. In fact, it makes sense to include an
AffineCombination method for Points, to avoid errors or code that can be baf-
fling. Listing 7.1 shows a possible implementation.
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Listing 7.1: Code in C# for creating an affine combination of points, with a
special case for two points.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

public Point AffineCombination(double[] weights, Point[] Points)
{
Debug.assert(weights.length == Points.length);
Debug.assert(sum of weights == 1. 0);
Debug.assert(weights.length > 0);

Point Q = Points[0];
for (int i = 1; i < weights.length; i++) {
Q = Q + weights[i]* (Points[i] - Points[0]);

}
return Q;

}

public Point AffineCombination(Point P, double wP,
Point Q, double wQ)

{
Debug.assert( (wP + wQ) == 1.0);

Point R = P;
R = R + wQ * (Q - P);
return R;

}

7.6.5 Matrix Multiplication

The product of two matrices A and B is defined only when the number of columns
of A matches the number of rows of B. If A is n × k and B is k × p, then the
product AB is an n × p matrix. If we let the ith row of A be the transpose of the
vector ri, and the jth column of B be the vector ci, then the ijth entry of AB is just
ri · cj. The following picture may help you remember this:

·

p︷ ︸︸ ︷⎡
⎣

⎛
⎝ .

.

.

⎞
⎠ cj

⎤
⎦
⎫⎬
⎭ k

n

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣
(

. . .
)

ri

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
k

⎡
⎢⎢⎢⎢⎣

↓
→ ri · cj

⎤
⎥⎥⎥⎥⎦

(7.56)

Thus, we see that the dot product of the vectors v and w is just the matrix product
vTw:

v · w = vTw = wTv. (7.57)

This leads to an interpretation of the product of the matrix A (with rows ai)
and a vector v: If w = Av, then the ith entry of w tells “how much v looks like
aT

i ” (in the sense described when we discussed Equation 7.38).
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There’s another equally useful interpretation of Av. If we let bi denote the
columns of A, then

Av = v1b1 + v2b2 + . . .+ vnbn, (7.58)

that is, the product of A with v is a linear combination of the columns of A.
One particularly useful consequence of the definition of Av is that if we want

to multiply A by several vectors v1, v2, . . . , vk, we can express this product by
concatenating the vectors vi into a matrix V whose columns are v1, v2, etc.; the
product

AV (7.59)

is then a matrix W whose ith column is Avi. This is no more computationally
efficient than multiplying A by each individual vector. The key application of this
idea is when we have one set of vectors v1, v2, . . . , vk and a second set of vectors
w1, w2, . . . , wk, and we wish to find a matrix with Avi = wi for i = 1, . . . , k, that
is, we wish to have

AV = W. (7.60)

Often it’s impossible to achieve exact equality, but it will turn out that we can find
the “best” such matrix A by straightforward operations on the matrices V and W,
but we’ll wait to present the main ideas in context in Section 10.3.9.

In general, matrix multiplication is not commutative: AB �= BA.

Inline Exercise 7.3: (a) If A is a 2 × 3 matrix and B is a 3 × 1 matrix, show
that AB makes sense, but BA does not.
(b) Let A =

[
1 2 3

]T
and B =

[
0 1 1

]
. Compute both AB and BA.

7.6.6 Other Kinds of Vectors

The spaces R2 and R3 that we’ve been discussing, and Rn in general, have
certain properties. There’s a notion of addition (which is commutative and asso-
ciative), and of scalar multiplication (again associative, and distributive over addi-
tion). There’s also a zero vector with the property that 0 + v = v + 0 = v for
any vector v. And there are additive inverses: Given a vector v, we can always
find another vector w with w + v = 0. These properties, taken together, make Rn

a vector space. There are a few other vector spaces we’ll encounter in graphics;
some of these will arise in our discussion of images, others in our discussion of
splines, and still others in our discussion of rendering. Most have a common form:
They are spaces whose elements are all functions.

Recall that, if we had a vector w ∈ R2, we built a function

φw : R2 → R : v 
→ w · v. (7.61)

This is a linear function on R2, and in fact, any linear function from R2 to R has
this particular form.
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Inline Exercise 7.4: Let f : R2 → R be a linear function. Let a = f (e1), b =

f (e2), and w =
[
a b

]T
. Show that for any vector v, we have f (v) = φw(v).

You’ll need to use the fact that f is linear.

The collection of all such functions, that is,

R2� = {φw : w ∈ R2}, (7.62)

forms a vector space: The sum of any two linear functions is again linear; the
zero element of the vector space is φ0; and the additive inverse of φw is φ−w.
Scalar multiplication deserves a brief comment. What does it mean to multiply a
function from R2 to R by, say, 11? If f is such a function, then g = 11f is the
function defined by

g : R2 → R : v 
→ 11f (v), (7.63)

that is, one multiplies the output of f by 11.

Inline Exercise 7.5: Suppose that w ∈ R2. Explain why 3φw = φ3w.

This space of linear functions from R2 to R is called the dual space of R2,
and its elements are sometimes called dual vectors or covectors. This same idea
generalizes to R3 or even Rn. There’s an obvious correspondence between ele-
ments of R2 and elements of R2∗, namely we can associate the vector w with the
covector φw. So why not just call them “the same”? It will turn out that treating
them distinctly has substantial advantages; in particular, we’ll see that when we
transform all the elements of a vector space by some operation like rotation, or
stretching the y-axis, the covectors transform differently in general.

In coordinate form, if w =
[
a b

]T
, then the function φw can be written

φw : R2 → R :

[
x
y

]

→ [a b

] [x
y

]
. (7.64)

Some books therefore identify covectors with row vectors, and ordinary vectors
with column vectors.

Note that in designing software, just as it made sense to distinguish Point and
Vector, it makes sense to have a CoVector class as well.

Covectors are particularly useful in representing triangle normals (the normal
to a triangle is a nonzero vector perpendicular to the plane of the triangle, and is
used in computing things like how brightly the triangle is lit by light coming in a
certain direction). Although people often talk about normal vectors, such vectors
are almost always used as covectors. To be precise, when we have a vector n
normal to a triangle, we will almost never add n to another vector or a point, but
we’ll often use it in expressions like n · � (where � might be, for instance, the
direction that light is arriving from). Thus, it’s really the covector

u 
→ n · u (7.65)

that’s of interest.



ptg11539634

164 Essential Mathematics and the Geometry of 2-Space and 3-Space

7.6.7 Implicit Lines

We’ve already encountered the parametric form of a line (Equation 7.24). There’s
another way to describe the line between P and Q: Instead of writing a function
t 
→ γ(t) whose value at each real number t is a point of the line, we can write
a different kind of function—one that tells, for each point (x, y) of R2, whether
the point (x, y) is on the line. Such a function is said to define the line implicitly
rather than parametrically. Such implicit descriptions are frequently useful; we’ll
see shortly that computing the intersection of two parametrically described lines is
more difficult than computing the intersection of a parametrically defined line and
an implicitly defined one. Since the operation of intersecting lines (or rays) with
objects is one that arises frequently in graphics (we’re very interested in where
light, which travels in rays, hits objects in a scene!), we’ll examine such implicit
descriptions more fully.

If F : R2 → R is a function, then for each c, we can define the set

Lc = {(x, y) : F(x, y) = c}, (7.66)

which is called the level set for F at c. As an example, consider an ordinary
weather map. To each point (x, y) on the map there’s an associated temperature
T(x, y). The set of all points where the temperature is 80◦F is a level set, as are
the sets where the temperature is 70◦F, 60◦F, etc. These sets are typically drawn
as curves on the map; each of them is a level set for the temperature function.
Similarly, a contour map like the one in Figure 7.11 typically has contour lines for
various heights—these curves represent the level sets of the height function. In
graphics, we often build a function F whose level set for c = 0 constitutes some
shape. This set is called the zero set of F.

Figure 7.11: A contour map
shows the height above sea level
with contour lines.Inline Exercise 7.6: Can two temperature-contour curves on a weather map

ever cross? Why or why not?

7.6.8 An Implicit Description of a Line in a Plane
How can we find a function F whose value, on points of the line containing two
distinct points P and Q, is zero, but whose value elsewhere is nonzero, that is, how
can we find an implicit description of the line? Ponder that question briefly, then
read on.

P

Q
X

n

Figure 7.12: The vector n =
(Q − P)⊥ is perpendicular to the
line through P and Q. A typical
point X of this line has the prop-
erty that (X − P) is also per-
pendicular to n. Indeed, a point
X is on the line if and only if
(X − P) · n = 0.

First,4 let n = ×(Q−P) = (Q−P)⊥; then the vector n is perpendicular to the
line (see Figure 7.12). A nonzero vector with this property is said to be a normal
vector or simply a normal to the line.

Inline Exercise 7.7: The vector n is called a normal rather than the normal;
show that this is justified by explaining why 2n and −n are also normals to the
line.

If X is a point of the line, then the vector X − P points along the line, and so
is also perpendicular to n. If X is not on the line, then X − P does not point along
the line, and hence is not perpendicular to n. Thus,

4. Note that we’re using the 2D cross product defined in Equation 7.34 here.
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(X − P) · n = 0 (7.67)

completely characterizes points X that lie on the line. We can therefore define

F(X) = (X − P) · n, (7.68)

which serves as an implicit description of the line. We’ll call this the standard
implicit form for a line.

Inline Exercise 7.8: What are the domain and codomain of the function F just
defined?

Inline Exercise 7.9: Our discussion assumes that P and Q are distinct. What
set does the function F implicitly define if P and Q are identical?

As a concrete example, if P = (1, 0) and Q = (3, 4), then Q − P =

[
2
4

]
and

n =

[−4
2

]
. Letting X have coordinates (x, y), we have

F(x, y) =

[
x− 1
y− 0

]
·
[−4

2

]
= 0 (7.69)

as the implicit form of our line; expressed in coordinates, this says

−4(x− 1) + 2y = 0 (7.70)

or

−4x + 2y− 1 = 0, (7.71)

which is the familiar Ax + By + C = 0 form for defining a line.
Both the implicit and parametric descriptions of lines generalize to three

dimensions: Given two points in 3-space, the parametric form of Equations 7.28
given above will determine a line between them. The implicit form (i.e., (X −
P) · n = 0) determines a plane passing through P and perpendicular to the vector
n; to determine a single line, we must take two such plane equations with two
nonparallel normal vectors.

7.6.9 What About y = mx + b?

In graphics we generally avoid the “slope-intercept” formulation of lines (an equa-
tion of the form y = mx + b; m is called the slope and the point (0, b) is the
y-intercept, i.e., the point where the line meets the y-axis), because we cannot use
it to express vertical lines; the “two-point” implicit and parametric forms above
are far more general, and formulas involving them generally don’t need special-
case handling.

7.7 Intersections of Lines

We now have two forms for describing lines in the plane: implicit and paramet-
ric. (The parametric form extends to lines in Rn.) With the help of the exercises,
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you can easily convert between them. If we have two lines whose intersection
we need to compute, we could do an implicit-implicit, parametric-parametric, or
parametric-implicit computation. The implicit-implicit version is messy enough
that it’s better to convert one line to parametric form and use the implicit-
parametric intersection approach. We’ll begin by computing the intersection of
two lines in parametric form, mostly so that you see the benefit of the later
implicit-parametric form. In general, we find that intersections between implicit
and parametric forms tend to produce the simplest algebra.

7.7.1 Parametric-Parametric Line Intersection

Suppose we have two lines in parametric form, that is, two functions

γ : R→ R2 : t 
→ tA + (1− t)B, (7.72)

η : R→ R2 : s 
→ sC + (1− s)D, (7.73)

whose images are (respectively) the line AB and the line CD (see Figure 7.13).
We’d like to find the point P where these lines intersect. That point will lie on the
line determined by γ, that is, it will be γ(t0) for some real number t0; similarly,
it’ll be η(s0) for some real number s0. Equating these gives

t0A + (1− t0)B = s0C + (1− s0)D, (7.74)

which can also be written

B− D = −t0(A− B) + s0(C − D), (7.75)

which is a nice form because it involves only vectors (i.e., differences between
points).

A

P

C
B

g(1)

h(0)

g(0)

h(1)

D

Figure 7.13: The lines AB and
CD are the images of the para-
metric functions γ and η; they
intersect at the unknown point P.

If we write out Equation 7.74 in terms of the known coordinates of the points
A, B, C, and D, we get two equations in the two unknowns s0 and t0 and can
solve for them. We can then compute P by computing either t0A + (1 − t0)B or
s0C + (1− s0)D.

An alternative, and preferable, approach is to use the vector form shown in
Equation 7.75. Letting v = A− B and u = C − D, we have

B− D = −t0v + s0u. (7.76)

Taking the dot product of both sides with ×v, we get

(B− D) · (×v) = −t0v · (×v) + s0u · (×v) (7.77)

(B− D) · (×v) = s0u · (×v) (7.78)

(B− D) · (×v)
u · (×v)

= s0 (7.79)

where the simplification arises because×v is perpendicular to v, so their dot prod-
uct is zero. The last trick—eliminating a term from an equation by taking the dot
product of both sides with a vector orthogonal to that term—is often useful.
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7.7.2 Parametric-Implicit Line Intersection

Now suppose we’re given a parametric form for one line and an implicit form for
a second line. How can we compute their intersection? We need to find the value
t0 of t with the property that

γ(t0) = (1− t0)P + t0Q (7.80)

is on the line defined by � = {X : (X − S) · n = 0}.
For this to be true, we need that

(γ(t0)− S) · n = 0, (7.81)

that is

((1− t0)P + t0Q− S) · n = 0. (7.82)

Once again the vector form becomes useful as we simplify:

(P + t0(Q− P)− S) · n = 0, so (7.83)

(t0(Q− P) + (P− S)) · n = 0. (7.84)

Writing u = Q− P and v = P− S, we have

t0u · n + v · n = 0 (7.85)

t0u · n = −v · n (7.86)

t0 =
−v · n
u · n . (7.87)

Plugging this into the formula for γ(t0) yields the xy-coordinates of the intersec-
tion point P.

Inline Exercise 7.10: Carry out this final computation to find the coordinates
of P. Try to do all your computations using dot products and vector operations
rather than explicit coordinate computations.

Note that this computation gives us two things. It tells us where along the line
determined by γ the intersection lies, by giving us t0; if t0 is between 0 and 1, for
instance, we know that the intersection lies between P and Q. It also tells us the
actual coordinates of the intersection point (x0, y0), that is, it provides an explicit
point on the line that’s determined implicitly by Ax+By+C = 0. If we only care
about intersections between P and Q, but find t0 is not between 0 and 1, we can
avoid the second part of the computation.

7.8 Intersections, More Generally

In talking about intersections of lines, we’ve advocated the use of vectors and
inner products. There are several advantages to this approach.

• Rather than writing out everything two (in two dimensions) or three (in
three dimensions) times, once per coordinate, we write things just once,
reducing the chance of error.
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• Frequently the vector form of a computation generalizes naturally to n
dimensions, while the generalization of the coordinate form may not be
obvious (a nice example is the decomposition of a vector into a part par-
allel to a given vector u and a part that’s perpendicular to u; our formula
works in 2-space, 3-space, 4-space, etc.).

• Our programs become easier to read and debug when we write less code.
Programs written to reflect the vector description of computations are usu-
ally simpler.

We’ll consider two more examples of the vector form of computation of inter-
sections: the intersection of a ray with a plane and with a sphere.

7.8.1 Ray-Plane Intersection

Let’s intersect a ray, given by its starting point P and direction vector d (so that a
typical ray point is P + td, with t ≥ 0), with a plane, specified by a point Q of the
plane and a normal vector n. A point X of the plane therefore has the property that

(X − Q) · n = 0, (7.88)

which generalizes the standard implicit form of a line in R2.
We seek a value, t ≥ 0, with the property that the point P + td is on the plane,

for this point will be on both the plane and the ray, that is, at their intersection.
Let’s proceed by assuming that such an intersection point exists and is unique;
we’ll return to this assumption shortly.

For P + td to lie on the plane, it must satisfy

((P + td)− Q) · n = 0. (7.89)

We can now simplify this considerably and solve for t as follows:

((P + td)− Q) · n = 0 (7.90)

(P− Q + td) · n = 0 (7.91)

(P− Q) · n + td · n = 0 (7.92)

td · n = −(P− Q) · n (7.93)

td · n = (Q− P) · n (7.94)

t =
(Q− P) · n

d · n (7.95)

The reader will notice that this is essentially the same computation we did in
Equation 7.87 earlier; once again, the vector form generalizes nicely.

Inline Exercise 7.11: In the algebra shown above, why did we not write
P · n + td · n− Q · n = 0 as a simplification of the first equation?

Knowing t, we can now compute the intersection point P + td. Two small
concerns remain:

• The possibility of division by zero in the expression for t

• The assumption that an intersection exists and is unique
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These two concerns, it turns out, are identical! If d · n = 0, then the ray
is parallel to the plane; that means it’s either contained in the plane (in which
case there are infinitely many intersections) or disjoint from the plane, in which
case there are none. In the first case, both the numerator and denominator are zero;
in the second, only the denominator is.

Inline Exercise 7.12: What happens if we solve for t and find that it’s negative?
That can happen if either the numerator or denominator is negative, and the
other is positive. Describe each of these situations geometrically, as in “In the
first case, P is on the positive side of the plane (i.e., the half-space into which
n points), and . . .”

Let’s carry out the computation again, in this case with a plane specified by a
point Q that lies in the plane, and two vectors, u and v, that lie in the plane and
are linearly independent. Now, points in the plane can be written in the form

Q + αu + βv (7.96)

for some real numbers α and β. This version of the problem seems distinctly
more difficult, in the sense that a solution will give us t, α, and β; that impression
is partially correct, as we’ll see.

We want to find a value t ≥ 0 with the property that

P + td = Q + αu + βv (7.97)

for some values α and β. The first algebraic steps are similar. Move the points
around so that a difference of points appears, and we’ll be working only with
vectors:

P + td = Q + αu + βv (7.98)

P− Q + td = αu + βv (7.99)

P− Q = αu + βv− td. (7.100)

Letting h = P−Q, we can see that now the problem is “Express the vector h as a
linear combination of u, v, and d.” We could let M be the matrix whose columns
are these three vectors, and the solution becomes[

α β −t
]
= M−1(P− Q). (7.101)

To implement this, we’d need to invert a 3 × 3 matrix, which is not difficult, but
masks some of the essential features of the problem. First, it’s possible that M is
not invertible, but even if this happens, there may be a solution to

M
[
α β −t

]
= (P− Q). (7.102)

(M is noninvertible when the ray is parallel to the plane; the solution exists when
the ray lies in the plane, and indeed, in this case there are infinitely many solu-
tions.) Second, the inversion must be redone for each new ray we want to intersect
with the plane; that makes ray-plane intersection computationally intensive, which
is bad.
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An alternative is to say, “Let’s just compute n = u× v,” and use the previous
solution; that’s an excellent choice, because the cross-product computation can be
performed once, and stored for later reuse. The point here is that computing a ray
intersection with the implicit form is computationally far easier than doing so with
the parametric form of the plane.

7.8.2 Ray-Sphere Intersection

Once again, suppose we have a ray whose points are of the form P + td, with
t ≥ 0. We want to compute its intersection with a sphere given by its center, Q,
and its radius, r.

The implicit description of this sphere is that the point X is on the sphere if the
distance from X to Q is exactly r; this is equivalent to the squared distance (which
is almost always easier to work with) being r2, that is,

(X − Q) · (X − Q) = r2, (7.103)

where we’ve used the fact that the squared length of a vector v is just v · v.
Now let’s ask, “Under what conditions on t is P + td on the sphere?” It must

satisfy

((P + td)− Q) · ((P + td)− Q) = r2. (7.104)

Because the vector P − Q is going to come up a lot, we’ll give it a name, v; now
we can simplify the expression above:

((P + td)− Q) · ((P + td)− Q) = r2 (7.105)

((P− Q) + td) · ((P− Q) + td) = r2 (7.106)

(v + td) · (v + td) = r2 (because v = P− Q) (7.107)

(v · v) + 2(td · v) + (td · td) = r2 (7.108)

(v · v− r2) + t(2d · v) + t2(d · d) = 0. (7.109)

This last equation is a quadratic in t, which therefore has zero, one, or two real
solutions.

Inline Exercise 7.13: Describe geometrically the conditions under which this
equation will have zero, one, or two solutions, as in “If the ray doesn’t intersect
the sphere, there will be no solutions; if . . . ”

Fortunately, it’s easy to tell whether a quadratic c+bt+at2 = 0 has zero, one,
or two real solutions. The quadratic formula tells us that the solutions are

t =
−b±√b2 − 4ac

2a
, (7.110)

which are real if b2 − 4ac ≥ 0; the two solutions are identical precisely if the
square root is zero, that is, if b2 = 4ac. In our case, this turns out to mean that
there are two solutions if
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A

C

R 5 (12s)Q 1 sC

Q 5 (12t)A 1 tB

B

Figure 7.14: The point Q = (1 − t) A + tB is on the edge between A and B (provided
t ∈ [0, 1]), and (1 − s) Q + sC is on the line segment from Q to C (when s ∈ [0, 1]).

(d · v)2 > (v · v− r2)(d · d) (7.111)

and one solution if the two sides are equal.
Note that if we choose to represent our ray with a vector d that has unit length,

this computation simplifies somewhat, since d · d = 1.
The examples above—line-line intersection, line-plane intersection, ray-

sphere intersection—all serve to illustrate the following general principle.

THE PARAMETRIC/IMPLICIT DUALITY PRINCIPLE: There’s a duality
between parametric and implicit forms for shapes. In general, it’s easy to find
an intersection between shapes where one is described implicitly and the other
parametrically, and harder when either both are implicit or both are parametric.

7.9 Triangles

Triangles, which are familiar from geometry, are the building blocks of much of
computer graphics. If a triangle has vertices A, B, and C, then a point of the form
Q = (1 − t)A + tB, where 0 ≤ t ≤ 1 is on the edge between A and B (see
Figure 7.14). Similarly, a point of the form R = (1 − s)Q + sC is on the line
segment between Q and C if 0 ≤ s ≤ 1. Expanding this out, we get

R = (1− s)(1− t)A + (1− s)tB + sC. (7.112)

Equation 7.112 is worth examining carefully in several ways. First, we can
define a function,

F : [0, 1]× [0, 1]→ R2 : (s, t) 
→ (1− s)(1− t)A + (1− s)tB + sC, (7.113)

whose image is exactly the triangle ABC (see Figure 7.15). F sends the entire
right edge (s = 1) of the square to the single point C. Vertical lines (s = constant)
are sent to lines parallel to AB. Horizontal lines (t = constant) are sent to lines
through C and a point of the edge AB. This parameterization of the triangle (the
variables s and t are the parameters) is often used in graphics.

t

s

t

A

B

C

s

Figure 7.15: The function F :
[0, 1] × [0, 1] → R2 : (s, t) �→
(1 − s) (1 − t)A + (1 − s)tB+
stC, from the unit square to the
triangle ABC, sends the entire
s = 1 edge to the point C. All
other lines in the square are sent
to lines in the triangle as shown.
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7.9.1 Barycentric Coordinates

Let’s also look at the coefficients in Equation 7.112: They are (1 − s)(1 − t),
(1−s)t, and s. It’s easy to see that for 0 ≤ s, t ≤ 1, all three are positive; summing
them up we get

(1− s)(1− t) + (1− s)t + s = (1− s)((1− t) + t) + s (7.114)

= (1− s) + s (7.115)

= 1. (7.116)

(This is good: Combinations of multiple points are only defined when the coeffi-
cients sum to one.) So we can say that the points of the triangle are of the form

αA + βB + γC, (7.117)

where α + β + γ = 1, and α,β, γ ≥ 0. Points where α = 0 lie on the edge BC;
points where β = 0 lie on the edge AC; points where γ = 0 lie on the edge AB.
If P = αA + βB + γC, then the numbers α, β, and γ are called the barycentric
coordinates of P with respect to the triangle ABC.

Inline Exercise 7.14: (a) What are the barycentric coordinates of the midpoint
of the edge AB in the triangle ABC? (b) What about the centroid?

Inline Exercise 7.15: Suppose A = (1, 0, 0), B = (0, 1, 0), and C = (0, 0, 1),
and the point P of triangle ABC has barycentric coordinates α,β, and γ. What
are the 3D coordinates of P?

Two other descriptions of the barycentric coordinates of a point in a triangle
are often useful.

• In a nondegenerate triangle ABC, the A-coordinate of a point P is the per-
pendicular distance of P from the edge BC, scaled so that the A-coordinate
of the point A is exactly one. There are two ways to see this. The first is to
simply write everything out in terms of coordinates. The other is to realize
that the “perpendicular distance” function and the “A-coordinate” function
are both affine functions on the plane, and they agree at three points (A, B,
and C), and this suffices to determine them uniquely.

• From the preceding description, it’s easy to see that the area of the triangle
PCB, being half the product of the length of BC and the length of the per-
pendicular from P to BC, is proportional to that perpendicular length. So
the A-coordinate of P is proportional to the area of triangle PBC. The pro-
portionality constant is exactly the area of ABC, that is, the A-coordinate
of P is

Area(�PBC)

Area(�ABC)
. (7.118)

The same proof works for this case. In short, the point P provides a nat-
ural partition of the triangle ABC into three subtriangles; the fractions of
the area of ABC represented by each of these triangles are the barycentric
coordinates of P (Figure 7.16).

A
B

C

Area 5 a
P

Figure 7.16: The point P divides
triangle ABC into three smaller
triangles, whose areas are frac-
tions α,β, and γ of the whole; the
barycentric coordinates of P are
α,β, and γ, that is, P = αA +
βB + γC.
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7.9.2 Triangles in Space

The formulas given above—the parameterization of the triangle by a square, and
the barycentric coordinates—don’t depend on the dimension. They work just as
well when the points A, B, and C are in 3-space as in the plane! There is one
aspect of a triangle in 3-space that’s different from the planar case: A triangle in
3-space is contained in a particular plane defined by an implicit equation of the
form F(X) = (X − P) · n = 0. For P, we can use any of the three vertices of the
triangle; for n, we can use the cross product

n = (B− A)× (C − B). (7.119)

If the angle at B is very near zero or π, this computation can be numerically unsta-
ble (see Section 7.10.4).

With this in mind, let’s solve a frequently occurring problem: finding the inter-
section of a ray t 
→ P+td with a triangle ABC in 3-space. There are several cases.
The intersection might occur where t < 0; the line containing the ray might not
intersect the triangle at all; or the ray and the triangle might be in the same plane,
and their intersection could be empty, a point, or a line segment. These last few
cases have the property that a tiny numerical error—a slight change to one of the
coordinates—can change the answer entirely. Such instabilities make the answers
we compute almost useless. So, if the direction vector d is sufficiently close to per-
pendicular to the normal vector n, we’ll return a result of “UNSTABLE” rather
than computing an intersection. Our strategy is to first find the parameter t at which
the ray intersects the plane of the triangle, then find Q = P + td, the intersection
point in the plane, and finally find the barycentric coordinates of Q, which in turn
tell us whether Q is inside the triangle.

For the most common situation—we’ll make many ray-intersect-triangle com-
putations for a single triangle—it’s worth storing some additional data, per trian-
gle, to speed the computation. We’ll precompute the normal vector, n, and two
vectors AB⊥ and AC⊥, in the plane of ABC with the property that (a) AB⊥ is
perpendicular to AB, and (C − A)· AB⊥ = 1, and similarly for AC⊥. If X is the
point X = αA + βB + γC in the plane of ABC, then we can compute γ easily
as γ = AB⊥ · (X − C), and a similar computation gives us β. Finally, we find
α = 1− (β + γ).

With these ideas in mind, Listing 7.2 shows the actual structure.
If you consider any plane equation of the form f (X) = (X − A) · u = 0, then

the value

f (P + td) = (P + td− A) · u (7.120)

is a linear function of t. For instance, if f is the equation of the plane of the tri-
angle, we can solve for t to find the intersection of the ray with that plane. But
suppose that f is the equation for the plane containing the edge AB and the normal
vector n. Then f , when restricted to the triangle plane, is zero on the line AB, and
nonzero on the point C (assuming the triangle is nondegenerate). That means that
some multiple of f —namely X 
→ f (X)/f (C)—gives the barycentric coordinate
at C. Now when we look at f (P + td), we can see how fast the C-coordinate of
the projection of P + td into the triangle plane is changing. When we find the
t-value at which the intersection occurs, we can therefore easily find the barycen-
tric coordinate for the intersection point, as long as we know this plane equation.
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Listing 7.2: Intersecting a ray with a triangle.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

// input: ray P + td; triangle ABC
// precomputation

n = (B − A)× (C − A)
AB⊥ = n × (B − A)
AB⊥ /= (C − A) · AB⊥
AC⊥ = n × (A − C)
AC⊥ /= (B − A) · AC⊥

// ray-triangle intersection
u = n · d
if (|u| < ε) return UNSTABLE

t = (A−P)·n
u

if t < 0 return RAY_MISSES_PLANE

Q = P + td
γ = (Q − C) · AC⊥
β = (Q − B) · AB⊥
α = 1 − (β + γ)
if any of α,β, γ is negative or greater than one

return (OUTSIDE_TRIANGLE, α, β, γ)
else

return (INSIDE_TRIANGLE, α, β, γ)

Section 15.4.3 applies this idea in developing an alternative ray-triangle intersec-
tion procedure—one which, at its core, is very similar to the one we’ve given, but
which, when you read it, may seem completely opaque. Why have more than one
method? Ray-triangle intersection testing is at the heart of a great deal of graphics
code. It’s one of those places where the slightest gain in efficiency has an impact
everywhere. We wanted to show you two different approaches in hopes that you
might find another, even faster approach, and to show you some of the optimiza-
tion tricks that might help you improve your own inner-loop code.

7.9.3 Half-Planes and Triangles

From algebra we know that the function F(x, y) = Ax+By+C (where A and B are
not both zero) has a graph that’s a plane intersecting the xy-plane in a line �. We’ve
seen that the ray from the origin to (A, B) is perpendicular to �. The zero set of F
is exactly the line �, that is, if P ∈ �, then F(P) = 0. On one side of � the function
F is positive; on the other it’s negative (see Figure 7.17). Thus, an inequality like
F(x, y) = Ax + By + C ≥ 0 defines a half-plane bounded by �, provided that A
and B are not both zero. But which side of the line � does it describe? The answer
is this: If you move from � in the direction of the normal vector

[
A B

]T
, you are

moving to the side where F > 0.

(A, B)

Figure 7.17: The graph of a lin-
ear function on R2 defined by
F(x, y, z) = Ax+By+C is a
plane shown in red, which is
tilted relative to the large pale
gray z = 0 plane as long as either
A or B is nonzero; it intersects the
z = 0 plane in a line � (a por-
tion of which is shown as a heavy
black segment). The ray from the
origin to the point (A, B) is per-
pendicular to �.

A triangle in the plane can also be characterized as the intersection of three
half-planes. If the vertices are P, Q, and R, one can consider the half-plane
bounded by the line PQ and containing R, the one bounded by QR and containing
P, and the one defined by PR and containing Q. Such a description can be used
for testing whether a point is contained in a triangle. If the three inequalities are
F1 ≥ 0, F2 ≥ 0, and F3 ≥ 0, one can test a point X for inclusion in the triangle as
follows:
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• If F1(X) < 0 then outside

• If F2(X) < 0 then outside

• If F3(X) < 0 then outside

• Else inside.

Notice that this sequence of tests does early rejection: If X is on the wrong side
of one edge, we don’t bother computing whether it’s on the right or wrong side of
the others.

Building these functions Fi is similar to what we just did in Section 7.9.2. The
function for testing against edge AB in that case would be a dot product of X − A
with the vector AB⊥, for example.

For a triangle in 3-space specified with three vertices, P0, P1, and P2, the nor-
mal is (P1 − P0) × (P2 − P0), normalized. What happens if we re-order the ver-
tices? We get one of two answers, depending on whether we do an even or an odd
permutation. Every triangle therefore has two orientations; we’ll stick with the
convention above that the vertices of a triangle are always named in some order,
and that this order determines the normal vector that you mean. When we build
solid objects from collections of triangles, we’ll make a policy that the normals
always point “to the outside.”

7.10 Polygons

A polygon is a shape like the ones shown in Figure 7.18; we typically describe a
polygon by listing its vertices in order. Some polygons are non-self-intersecting
((a), (b), (d)); these are called simple polygons. Among these, some are convex,
in the sense that a line segment drawn between any two points on the edge (like
the dashed gray horizontal line shown in (a)) lies entirely inside the polygon. In
the case of nonsimple polygons like (c) and (e), the angles at the vertices may all
be nonzero, or they may, like the angle at the upper right in (e), be zero; such a
point is sometimes called a reflex vertex.

(a)

(b)

(c)

(d)

(e)

Figure 7.18: Polygons (a), (b),
and (d) are simple, while (c) and
(e) are not. Polygon (e) has a
reflex vertex, (i.e., one with vertex
angle zero) at the upper right.

7.10.1 Inside/Outside Testing

A polygon in the plane, in classic geometry, was simply a shape like the ones in
Figure 7.18; because we attach an order to the vertices, we have slightly more
structure. This allows us to define inside and outside for a larger class of poly-
gons. Suppose that (P0, P1, . . . , Pn) is a polygon. The line segments P0P1, P1P2,
etc., are the edges of the polygon; the vectors v0 = P1 − P0, v1 = P2 − P1,
. . . vn = P0 − Pn are the edge vectors of the polygon.5 For each edge PiPi+1, the
inward edge normal is the vector ×vi; the outward edge normal is −× vi. For
a convex polygon whose vertices are listed in counterclockwise order, the inward
edge normals point toward the interior of the polygon, and the outward edge nor-
mals point toward the unbounded exterior of the polygon, corresponding to our
ordinary intuition. But if the vertices of a polygon are given in clockwise order,

5. It’s convenient to write vi = Pi+1 − Pi, i = 0, . . . , n; unfortunately, this formula fails
at i = n because Pn+1 is undefined. Henceforth, it will be understood that in cases like
this, Pn+1 = P0, Pn+2 = P1, etc. In other words, we continue the labeling cyclically;
the same goes for indices less than zero: P−1 = Pn.
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the interior and exterior swap roles. This is convenient in many situations. For
example, imagine a polygon-shaped hole in a piece of metal. The interior of this
polygon can (by suitable ordering of the vertices) be made to be the rest of the
metal sheet. A light ray, trying to get from one side of the metal sheet to the other,
is occluded exactly if it meets the interior of this polygon.

P0
P4

P2

P1
P3

Q

Figure 7.19: To test whether Q
is in the interior of the polygon,
we cast a ray in an arbitrary
direction, and then count enter-
ing and leaving intersections with
the edges. In this case, there
are two leaving intersections (the
first and third) and one enter-
ing intersection, so the point is
inside.

We can test whether a point in the plane is in the interior or exterior of a poly-
gon, as shown in Figure 7.19, by casting a ray from the point in any direction.
We find all intersections of the ray with polygon edges, and classify each as either
entering (if the direction vector of the ray and the outward edge normal for the
edge have a positive inner product) or leaving (if the inner product is negative).
A point with more leaving intersections than entering ones is inside. Indeed, the
difference between the number of leaving intersections and the number of enter-
ing intersections is called the winding number of the polygon about the point,
and captures the notion of “how many times the polygon wraps around the point,
counting counterclockwise.” The simple description above depends on the inter-
sections of the ray and the polygon being a finite set. It doesn’t work when the
ray actually contains an entire edge, and the answer, when the test point lies on
an edge, depends on one’s definition of the intersection of a ray and a segment
(as does the answer when the ray passes through a vertex of the polygon). This
ray-casting approach to computing the winding number implicitly uses a strong
theorem that says that the ray-casting computation results in the same value as
the computation of the winding number itself, which is defined in a very different
way: For a polygon with vertices P1, P2, . . . , Pn, the winding number about a point
Q is defined by considering the angles between successive rays from Q to each Pi.
If these angles sum to 2π, the winding number is 1; if they sum to 4π, it’s 2, etc.
Formally,

WindingNumber(Q, {P1, P2, . . . , Pn}) = 1
2π

n∑
i=1

cos−1

(
(Pi+1 − Q) · (Pi − Q)

‖Pi+1 − Q‖ ‖Pi − Q‖
)

.

(7.121)

Note that this is undefined if Q happens to be one of the vertices Pi, because the
denominator is then zero. We also treat it as undefined when the argument to cos−1

is −1; this occurs when Q is on an edge of the polygon.
With these various definitions of the winding number, one can think of a curve

as dividing the plane into a collection of regions. Within each region, the winding
number is a constant; the labeling of regions by their winding numbers goes back
to Listing, a student of Gauss [Lis48].

Inline Exercise 7.16: (a) Develop a small program to test whether a point
is in the interior of a convex polygon by testing whether it’s strictly on the
proper side of each edge. What’s the running time in terms of the number n of
polygon vertices? (b) Assuming that you want to test many points to determine
whether they’re inside or outside a single convex polygon, you can afford to
do some preprocessing. Using a ray-casting test like the one described in this
chapter, and a horizontal ray, show how you can create an O(log n) algorithm
for inside/outside testing. Hint: Because the polygon is convex, you need only
test ray intersection with a small number of edges. If you sort the vertices by
their y-coordinates, how can you quickly find those edges?
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(a)

2

1

–1

(b) (c) (d)

Figure 7.20: (a) A nonsimple polygon whose regions have been labeled by Listing’s rule,
(b) the interior defined by the positive winding number rule, (c) by the even-odd rule, and
(d) by the nonzero winding number rule.

7.10.2 Interiors of Nonsimple Polygons

Most of the polygons we’ll encounter will be triangles, and therefore simple.
But occasionally we’ll encounter nonsimple polygons in the plane, and there are
several alternatives (see Figure 7.20) for defining the interior of these. All first
compute the winding number of the polygon about the point P as before; in this
case, though, the winding number may be different from one or zero. The pos-
itive winding number rule says that points with positive winding numbers are
inside; the odd winding number rule says that those with odd winding numbers
are inside—the result is a checkerboardlike appearance for the inside and outside
regions; the nonzero winding number rule says that points with nonzero winding
numbers are inside. Each has its uses; drawing programs should probably allow
all three as alternatives.

7.10.3 The Signed Area of a Plane Polygon: Divide
and Conquer

If P1 = (x1, y1) and P2 = (x2, y2) are points in the xy-plane (see Figure 7.21), and
Q = (0, 0) is the origin, then the signed area of the triangle QP1P2 is given by

1
2
(x1y2 − y1x2). (7.122)

The signed area is positive if the vertices Q, P1, P2 are in counterclockwise order
around the triangle, and negative if they’re in clockwise order. (It will be easy to
prove this after you read Chapter 10, which discusses transformations in the plane:
You first verify that the formula doesn’t change when the triangle is rotated, so you
can assume that P1 lies on the positive x-axis, and therefore, P1 = (x1, 0) with
x1 > 0. The triangle is then clockwise if and only if P2 = (x2, y2) is in the y > 0
half-space, that is, y2 > 0. But the area formula then gives the area as 1

2 x1y2 > 0.
The clockwise case is similarly easy to verify.)

Q = (0, 0)

P1 = (x1, y1)

P2 = (x2, y2)

Figure 7.21: The signed area of
the triangle QP1P2 is positive if
the path from Q to P1 to P2 to
Q is counterclockwise, and nega-
tive if it’s clockwise. In the exam-
ple shown, the signed area is
positive.

From this formula for the area of a triangle, we can write a formula for the
signed area of a triangle with vertices P0 = (x0, y0), P1 = (x1, y1), and P2 =
(x2, y2): If we change to a coordinate system based at P0, the new coordinates of
P1 and P2 are (x1 − x0, y1 − y0) and (x2 − y0, y2 − y0). Applying the formula to
these coordinates gives

1
2
((x1y2 − x2y1) + (x2y0 − x0y2) + (x0y1 − x1y0)) =

1
2

2∑
i=0

(xiyi+1 − xi+1yi),

(7.123)

where indices are considered modulo 3, so x3 means x0 and y3 means y0.



ptg11539634

178 Essential Mathematics and the Geometry of 2-Space and 3-Space

To find the (signed) area of a polygon P0P1 . . .Pn, we can use the same tech-
nique (see Figure 7.22): We compute the signed area of QP0P1, of QP1P2, . . . ,
and of QPnP0; the parts of those areas that are outside the polygon cancel, while
the ones inside add up to the correct total area. The final form is

area =
1
2

n∑
i=0

(xiyi+1 − yixi+1), (7.124)

where xn+1 denotes x0 (i.e., the indices are taken modulo (n + 1)).

0

1

2

Figure 7.22: The pale yellow tri-
angle is negatively oriented; the
blue one positively. The next three
will be negative, positive, and
negative, and their signed areas
will sum to give the gray poly-
gon’s area.

7.10.4 Normal to a Polygon in Space

A triangle P0P1P2 in space has a normal n as we computed earlier, given by n =
(P1 − P0) × (P2 − P1). We could use this formula to compute the normal to a
polygon in space as well, applying it to three successive vertices. But if these
vertices happen to be collinear, we’ll get n = 0.

A more interesting approach, essentially due to Plücker [Plü68], is based on
projected areas (see Figure 7.23 for an example where the polygon is a triangle):
If one projects the polygon to the xy-, yz-, and zx-planes, one gets three planar
polygons, each of whose areas can be computed; call these Axy, Ayz, and Azx. The
normal vector to the polygon is then⎡

⎣ Ayz

Azx

Axy

⎤
⎦ ; (7.125)

this is not generally a unit vector. In fact, its length is the area of the polygon.

Figure 7.23: The gray triangle projects to three triangles, one in each coordinate plane.
The signed areas of the orange, yellow, and blue triangles form the coordinates for the
normal vector to the gray triangle.
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We can see this, in the case that the polygon is a triangle, by examining coordi-
nates: If Pi = (xi, yi, zi) for i = 0, 1, 2, then n1, the first entry of the cross product,
is just

n1 = (y1 − y0)(z2 − z1)− (y2 − y1)(z1 − z0). (7.126)

The area formula for a plane polygon, Equation 7.124, applied to the projec-
tion of P0P1P2 to the yz-plane, gives

Axy =
1
2

n∑
i=0

(yizi+1 − ziyi+1), so (7.127)

2Axy = (y0z1 − z0y1) + (y1z2 − z1y2) + (y2z0 − z2y0). (7.128)

The eight terms in the expansion of the expression for n1 match the six terms in
the expression for 2Axy because two y1z1 terms have opposite signs and cancel.
The computations for n2 and n3 are similar. Thus, the vector

a =

⎡
⎣ Ayz

Azx

Axy

⎤
⎦ (7.129)

is twice the cross product; since half the length of the cross product is that triangle
area, we see that the length of a is the triangle area.

The more general case follows by decomposing the polygon into a union of
triangles.

The advantage of Plücker’s formula as applied to polygons in space is that if
there are small numerical errors in the coordinates of a single vertex, they have
relatively little impact on the computed normal vector.

7.10.5 Signed Areas for More General Polygons

If we have a polygon P0P1 . . .Pn in a plane S whose normal is the unit vector n,
we can find two orthogonal unit vectors x and y in S such that x, y, n is positively
oriented, that is, n = x × y. Choosing some point of the plane as the origin, we
have a coordinate system. We can then write the coordinates of each Pi in the xyn-
coordinate system; the third coordinate will be zero, so the coordinates of Pi will
be (xi, yi, 0). We can apply the formula for a signed area to these coordinates. In
the case of a triangle, if the signed area is positive (resp. negative), we say that
the triangle is positively (resp. negatively) oriented. Notice, though, that if we
had used−n instead of n, the signs would have changed: The signed area, and the
orientation of a triangle, are only defined relative to a plane-with-normal.

Just as in the case of the xz-plane, a triangle is positively oriented in a plane
with normal n if, as we look from the tip of n toward the plane, the vertices of the
triangle appear in counterclockwise order.

When we speak of the signed area of a polygon in the zx-plane, we mean that

we’re using a coordinate system in which the first basis vector is
[
0 0 1

]T
, the

second is
[
1 0 0

]T
, and the normal vector is

[
0 1 0

]T
; a parallel description

applies to the xy- and yz-planes.
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Inline Exercise 7.17: Confirm that this definition of signed area for a triangle
in an arbitrary plane in 3-space agrees with our definition of signed area for a
triangle in the xy-plane.

P

P′

T

T′

n′

n

Figure 7.24: A tilted triangle and
its projection.

7.10.6 The Tilting Principle
One situation that arises repeatedly in computer graphics is shown in Figure 7.24:
We have a triangle T ′ in a plane P′ with unit normal n′, and we project it to
a triangle T in a plane P with unit normal n, the projection being along n. For
instance, if P is the zx-plane, the projection is along the y-axis, taking (a, b, c) to
(a, 0, c).

The (signed) areas of T ′ and T are related by a cosine.
We call this the tilting principle.

THE TILTING PRINCIPLE: If T ′ is an oriented triangle in plane P′ with normal
n′, and T is its projection to plane P, the projection being along the unit normal
n to P, then the signed area of T is n′ · n times the signed area of T ′.

Once we’ve shown that the tilting principle applies to triangles, it also will
apply to a polygon and its projection: We simply triangulate the polygon, and
form a corresponding triangulation on its projection, and consider the area ratios
one triangle at a time.

We’ll prove this claim about the ratio of signed areas for the case where the
plane P is the xz-plane, and the triangle T ′ has vertices A′, B′, and C′ with coordi-
nates (ax, ay, az), etc.; the corresponding vertices of T are A = (ax, 0, az), etc.

Proving the principle in this special case is sufficient. We can always choose a
coordinate system for space that makes the plane P be the xz-plane. Furthermore,
we can rotate the coordinate system until the x-coordinate of the unit normal n′ to
T ′ is zero. Figure 7.25 shows this situation.

The vector n′ has the form
[
0 y z

]T
and length 1, so y2 + z2 = 1. Letting

θ = atan2(y, z), we can write n′ =
[
0 cos θ sin θ

]T
. The dot product of n′ with

the xz-plane’s unit normal n =
[
0 1 0

]T
is exactly cos θ.

Let’s compute the two signed areas. For T , the formula is

sa(T) = Azx =
1
2
(azbx − axbz) + (bzcx − czbx) + (czax − azcx). (7.130)

B = (bx, 0, bz)

B′ = (bx, by, bz)

C = (cx, 0, cz)
C′ = (cx, cy, cz)

A = (ax, 0, az)

A′ = (ax, ay, az)

0
y
z

n′ =

Figure 7.25: A triangle projected to the xz-plane.
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For T ′, the (unsigned) area is the length of the vector a′ =
[
A′

yz, A′
zx, A′

xy

]
. Because

T ′ is tilted only in the yz-plane, A′
yz = 0. And because the x- and z-coordinates for

T and T ′ agree, we have

A′
zx = Azx. (7.131)

That leaves only A′
xy to consider:

A′
xy = (axby − aybx) + (bxcy − cxby) + (cxay − axcy). (7.132)

Remembering that the normal to the plane of T is
[
0 cos θ sin θ

]T
, we know

the plane equation: Every point (x, y, z) on this plane must satisfy

0x + cos(θ)y + sin(θ)z = K (7.133)

where K is some constant. (You should make sure that you understand why this is
true.) This means that for any point (x, y, z) on the plane,

y = − tan(θ)z +
K

cos(θ)
. (7.134)

Applying this to ay, by, and cy in Equation 7.132 and canceling many terms, we
get

A′
xy = (ax tan(θ)bz − tan(θ)azbx) + (bx tan(θ)cz − cx tan(θ)bz)

+ (cx tan(θ)az − ax tan(θ)cz) (7.135)

= − tan(θ)Azx. (7.136)

The length of a′ (hence the area of T ′) is thus

area =
√
(A′

yz)
2 + (A′

zx)
2 + (A′

xy)
2 (7.137)

=
√

02 + A2
zx + (− tan(θ)Azx)2 (7.138)

=
√
(1 + tan2(θ)A2

zx (7.139)

= ± sec(θ)|Azx|, (7.140)

while the area of T is |Azx|. Thus, the area of T ′ is | cos θ| times that of T .
There remains the question of the sign. If cos θ > 0, and the signed area of

�A′B′C′ is positive, then the vertices A, B, and C are organized counterclockwise
as viewed from the tip of n, and hence the signed area of �ABC is also positive.
On the other hand, if cos θ < 0 and the signed area of �A′B′C′ is positive, then
the vertices A, B, and C as viewed from the tip of n are organized clockwise, and
hence the signed area of �ABC is negative. If we reverse the order of A, B, and
C, in both cases, both signed areas change sign. So, in all four possible cases, the
ratio of unsigned areas is | cos θ|, and the sign of the ratio of signed areas is the
sign of cos θ, hence the ratio of signed areas is exactly cos θ = n · n′.

Inline Exercise 7.18: Suppose that instead of projecting T ′ onto the xy-plane
by projecting in the y-direction, we projected in the n′ direction. What would
be the relationship between the signed area of the projected triangle T ′′ and
that of T ′?
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7.10.7 Analogs of Barycentric Coordinates

Barycentric coordinates provide a very useful way to discuss point locations
within a triangle, because they are invariant under affine transformations. That
is, if the point Q has barycentric coordinates (s0, s1, s2) in the triangle P0P1P2,
and we transform the triangle by applying the same transformation T to each Pi

and to Q, and if T is an affine transformation—that is, a rotation, a translation,
a dilation, or a combination of these—then the barycentric coordinates of T(Q)
in the triangle T(P0)T(P1)T(P2) will still be (s0, s1, s2). Furthermore, on the edge
between P0 and P1, we have s2 = 0, and similarly for the other two edges. The
barycentric coordinates are all positive for points inside the triangle, but for any
point outside the triangle, at least one barycentric coordinate is negative. Is there
an analogous set of “coordinates” for a point in a polygon? Warren and others have
studied this question extensively, developing generalized barycentric coordinates
for points in a convex polygon or set [War96] [WSHD04] and a generalization to
coordinates that use all points of a mesh to define coordinates on points in and
around that mesh [JSW05].

7.11 Discussion
The lessons to take away from this chapter are as follows.

• Be careful to say what you mean precisely when you use mathematics. Give
your functions both domains and codomains; examine what happens when
a formula could lead to a division by zero; and generalize to n dimensions
whenever possible to better understand the intrinsic nature of the problem
you’re solving.

• Whenever possible, express computations that need to be done in R2 or
R3 as vector computations, involving vector operations, point-vector com-
binations, point-point differences, and inner products, and thereby avoid
per-coordinate expressions.

• Try to understand geometric problems geometrically rather than in terms
of coordinates; use coordinates for computations only.

These approaches lead to clearer understanding and more easily maintainable
programs, and can often lead to insights about algorithms because the compact-
ness of well-expressed mathematics allows us to see patterns that might otherwise
be obscure.

7.12 Exercises
Exercise 7.1: (a) Show that if s is a number and v is a vector, then ‖sv‖ = |s|‖v‖.
(b) Give an example of a number s and vector v for which ‖sv‖ �= s‖v‖.

Exercise 7.2: We showed how to get from a point P on a line and a vector n
normal to the line to the more familiar Ax + By + C = 0 form. Figure out how to
go the other way: Given a line defined by Ax + By+ C = 0, with at least one of A
and B nonzero, find a point on the line. Hint: A normal vector to the line is given

by n =

[
A
B

]
. Use this to determine a point of the form O + αn (where O is the

origin) that lies on the line, by solving for α.
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Exercise 7.3: The expression u · (×v) that arose in studying line intersections
occurs quite often (as do its generalizations to higher dimensions). Show that it
equals the determinant of a matrix whose first column is v and whose second
column is u. As a point of information, this works more generally: In 3-space,
u · (v×w) is the same as the determinant of a matrix whose columns are v, w, and
u and similar formulas hold in higher dimensions.

Exercise 7.4: Find the parametric form of the line between the points (1, 1)
and (2, 2). Then find the parametric form of the line between the points (3, 3)
and (5, 5). Are the two functions identical? Are the lines they describe identical?
Explain why the mapping defined by the parametric line formula is actually a
map from “two distinct points in the plane” to “a parametric representation of
the line between these points,” rather than from the line itself to a parametric
representation.

Exercise 7.5: The same reasoning as in Exercise 7.4 applies to the implicit
form of a line: Depending on the points chosen, we get different “standard implicit
forms.” Fortunately, all define the same line. Furthermore, any two standard
implicit forms are proportional. Write down the implicit form of the line between
the points (1, 1) and (2, 2). Then find the implicit form of the line between the
points (3, 3) and (5, 5). Are the two implicit functions identical? Are they propor-
tional? Are the points where they are zero identical?

Exercise 7.6: Since any two standard implicit forms of a line are proportional,
is there a way to choose a “standard representative” once and for all? Suppose
that Ax + By + C and A′x + B′y + C′ = 0 describe the same line. Then we
know that the triples (A, B, C) and (A′, B′, C′) are proportional, and that any other
triple proportional to these (except (0,0,0)) will determine the same line. Can we
choose just one and call it the “normal form of the line”? For instance, we might
say, “Take your triple (A, B, C) and convert to a normal form where B = 1 by
dividing through by B to get (A/B, 1, C/B).” Unfortunately, this doesn’t work if
B = 0; the same goes for A and C. We can take the triple (A, B, C) and divide
by
√

A2 + B2 + C2 to get a “normal form”; if we do this, the only ambiguity is
a sign: The standard form for (A, B, C) and the one for (−A,−B,−C), which
determine the same line, end up being opposites. Explain why (a) if λ �= 0, the
lines determined by (A, B, C) and (λA,λB,λC) are identical; (b) if λ > 0, they
have the same normal form; and (c) the factor

√
A2 + B2 + C2 is never zero when

Ax + By + C = 0 determines a line.
Exercise 7.7: Barycentric coordinates can be used to describe lines within a

triangle PQR. For instance, all points on the line PQ satisfy the equation γ = 0
(where α,β, and γ are the barycentric coordinates). Let S be a point that’s one-
third of the way from P to Q, and consider the line passing through S and R. What
equation, in barycentric coordinates, determines this line? (Hint: Draw a picture,
and find the barycentric coordinates of at least two points on the line.)

Exercise 7.8: The inequality 4x+2y−6 ≥ 0 defines a half-plane; its boundary
is the line � consisting of solutions to 4x + 2y − 6 = 0. Find the point of � that’s
on the x-axis, and the point of � that’s on the y-axis. Is the origin in the half-space
defined by the inequality? Draw the normal ray for the equation of �, and verify
that it points toward the positive half-space, as described in Section 7.9.3.

Exercise 7.9: Generalize to 3-space the result about normal vectors and the
defining equation for half-planes: that for the half-plane defined by Ax+By+C ≥
0, the vector

[
A
B

]
points from the edge of the half-plane into the positive half-

plane.



ptg11539634

184 Essential Mathematics and the Geometry of 2-Space and 3-Space

Exercise 7.10: The winding number of a parametric curve γ about a point z0

of the complex plane is defined as

n(z0, γ) =
1

2πi

∫
γ

dz
z− z0

. (7.141)

Show that by parameterizing each edge of the polygon with vertices P1, . . . , Pn

with an interval of length 1, and treating the point with coordinates (x, y) as the
complex number x+ iy, we can reduce this integral definition to the simplified one
we gave for polygons.

Exercise 7.11: (a) Show that the normal vector to a triangle with vertices
P0, P1, P2 computed by Plücker’s method is indeed perpendicular to P1 − P0; a
similar computation works to show it’s perpendicular to P2 − P0.
(b) Verify that for P0 = (0, 0, 0), P1 = (1, 0, 0), and P2 = (0, 1, 0), the normal
computed by Plücker’s method points along the positive z-axis so that the vectors
P2 − P0, P1 − P0, and n form a right-handed coordinate system.

(c) Explain why the conclusion of part (b) holds regardless of the location of
P0, P1, and P2, as long as they do not lie on a single line.

Exercise 7.12: Let P0P1P2 be a triangle in 3-space, and n its Plücker normal.
Thinking of n as a covector, consider the function v 
→ n · v. What is its value on
vectors lying in the plane of the triangle?

Exercise 7.13: The inside-outside test for polygons based on ray intersections
depends on the ray intersecting each edge in a single point. It also depends on the
ray not passing through any polygon vertex, because if it did so, the intersections
with both of the edges at the vertex would be counted. How can we avoid these
problems?
(a) A randomized algorithm, in which the ray direction is chosen randomly, will
fail with probability zero (assuming we are using infinite-precision numbers). If
the chosen ray is a failure case, we can randomly choose a new one, and with
probability one the algorithm will finish.
(b) We can find the set of all direction vectors of all edges in the polygon, and of
all rays from the test point to all polygon vertices, and choose a direction which is
different from all of these. Explain why, in the case of a very small quadrilateral,
with vertices at (±ε, 0) and (0,±ε), where ε is the smallest floating-point num-
ber representable on the computer, and with a test point Q at the origin, both of
these approaches fail in practice. Will the more complex sum-of-inverse-cosines
formula for computing the winding number work in this case?

Exercise 7.14: (To do this exercise, you’ll need to know something about
transformations of the plane; these will be covered in Chapter 10.)
(a) Show that the area formula in Equation 7.122 is correct when P1, P2, and Q do
not lie on a line, and when P1 is not on the y-axis, by doing two transformations:
Shear in y to move P1 to the x-axis; then shear in x to move P2 to the y-axis. Show
that shearing doesn’t change the computed area; Cavalieri’s principle shows that
it doesn’t change the actual area.
(b) Show that the formula is right for the two remaining cases by presenting
an argument for each. The formula for area is a continuous function of the
coordinates of P1, P2, and Q. The actual area is also a continuous function of
these coordinates. At this point we have shown that these two functions agree
almost everywhere (e.g., whenever the three points do not lie on a line). By a
continuity argument, they must therefore agree everywhere.
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(c) Show that the formula is correct by arguing that area is a continuous
function of coordinates, and that there is, at most, one extension of a continu-
ous function on X to a continuous function on X∪boundary(X) when X is a subset
of Rn.

Exercise 7.15: Another approach to generalizing the area formula from the
“one vertex at the origin” case to the general case is this: Compute the signed
area of the triangle P0P1P2 by computing the signed areas of QP0P1, QP1P2, and
QP2P0 and then adding or subtracting appropriately. Draw a picture to figure out
what the relationship among the four signed areas should be, and use it to derive
the general formula for the signed area of P0P1P2.

Exercise 7.16: Numerical considerations: In the formula for the area of a poly-
gon, suppose that we are using finite precision arithmetic and we add L, where L is
a very large number, to the x-coordinates of all the polygon’s vertices. What hap-
pens to the computation? What if we instead perform the computation by writing
the coordinates of the vertices in a coordinate system based at the “center” of the
polygon—the average of all the vertices?

Exercise 7.17: Consider a ray that starts at P = (−3,−3) and has direction

d =

[
1
2

]
. It intersects the ellipse defined by ( x

3 )
2 + y2 = 1 at two points. To find

these points, we can write

R(t) = P + td (7.142)

R(t)T
[

1/3 0
0 1

]
R(t) = 1 (7.143)

where the T indicates transpose. If we solve the second equation for t, we will
have found the parameters t1 and t2 of the intersection points, from which we can
compute the points.
(a) Draw a picture representing this situation.
(b) Confirm that the equations above really do determine the points of intersection
by writing out the product explicitly.
(c) Now consider the intersection of the ray defined by the point Q = (−1,−3)

and the direction e =

[
1/3

2

]
, with the unit circle. Once again, draw a picture and

express this problem as a similar pair of equations; the matrix in this case will be
the identity matrix.
(d) Expand these latter equations; compare them to the ones you arrived at in
part (b).
(e) Explain the similarity: How are d and e related? How are the ellipse and the
unit circle related? We’ll return to this kind of transformation from a general prob-
lem (compute an intersection with an ellipse) to an equivalent standard problem
(compute an intersection of a different ray with the unit circle) when we study ray
tracing.

Exercise 7.18: The function γ : R → R2 : t 
→ (3 + 2t, 4 − 3t) describes a
line in parametric form.
(a) Find two distinct points P and Q on the line. (There are an infinite number of
correct answers to this part.)
(b) Use these two to find an implicit form for the line; convert via algebra to the
form Ax + By + C = 0.
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Exercise 7.19: (a) You’re given two nondegenerate line segments in the plane,
the first with endpoints A and B and the second with endpoints C and D, and all
coordinates are integers. Your job is to determine whether the segments intersect,
and the intersection point, if any.
(a) Write a short program to do this. If the segments are parallel, there are three
cases: They’re disjoint (return false), they share an endpoint (return false), or
they overlap in an interval (return true, but don’t return an intersection point, since
it’s not unique). If the segments are nonparallel and intersect, they may share an
endpoint (return false), the endpoint of one may be interior to the other (return
true, and the endpoint), or the interiors of the segments may intersect at some
point (x, y) whose coordinates may not be integers, but will be rational numbers.
In this case, you should return an integer triple (x, y, w), where the intersection is
at (x/w, y/w).
(b) Explain why returning an integer triple is more useful than returning a floating-
point representation of the rational coordinates.
(c) Suppose you have two integer triples of the form above, (x1, y1, w1) and
(x2, y2, w2). How would you test them for “equality,” that is, how would you test
whether they represent the same rational point in the plane?
(d) For an extra challenge, try to write all your code in part (a) so that there are
no divisions, and the code is as clean as possible. The sort of multiple-case mess
that’s implicit in programs like this arises from the multiple possible ways that
segments can intersect; you can’t really make the code too clean.
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Chapter 8

A Simple Way to Describe
Shape in 2D and 3D

8.1 Introduction

We now turn to a discussion of the triangle mesh, the most widely used repre-
sentation of shape in graphics. Triangle meshes consist of many triangles joined
along their edges to form a surface (see Figure 8.1). Other meshes, in which the
basic elements are quads (quadrilaterals), or other polygons are sometimes used,
but there can be problems associated with them. For instance, it’s easy to create a
quadrilateral whose four vertices do not all lie in a plane; how should the interior
be filled in? For triangles, this is not a problem: There’s always a plane containing
any three vertices. Because triangle meshes are so widespread, we concentrate on
them in this chapter.

Figure 8.1: A triangle mesh, con-
sisting of vertices, edges, and tri-
angular faces.

It’s easy to see how to create certain shapes with triangle meshes. Starting with
any polyhedron, for instance, we can subdivide the faces into triangles. Figure 8.2
shows this for the cube. For more complex shapes, it’s possible to approximate
the shape with a mesh. One way to do this is to find the locations of many points
on the shape, and then connect adjacent locations with a mesh structure. Such an
approximation, if the points are close enough to one another, can look very much
like a smooth surface. Consider the case of the icosahedron, which looks a lot
like a sphere: Each point of the icosahedral mesh is very close to a point of the
sphere, and vice versa. Similarly, each normal vector to a triangle mesh is very
close to a vector normal to the sphere at a corresponding point, and vice versa.
There is a distinction, however: The function that assigns normal vectors to points
of the sphere is continuous, while for the icosahedron, it’s piecewise constant
(the normal vector doesn’t change as you move about on a triangular facet). This
distinction can be important when we try to consider the reflection of light from
surfaces described with planar facets.

187
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Figure 8.2: A triangle mesh that has the geometry of a cube.

One of the nicest properties of triangle meshes is their uniformity. This uni-
formity allows us to apply various operations to them with guarantees that have
relatively simple proofs; it also makes it easy to try simple ideas. Among the most
interesting operations we can perform on a mesh is subdivision, in which a single
triangle is replaced by several smaller triangles in a fairly simple way. (There are
many subdivision algorithms, some of which we’ll discuss in Chapter 22.) Typi-
cally subdivision is used to smooth out a mesh that has sharp points or edges, so
as to approach a limit surface that’s fairly smooth. Of course, repeated subdivision
operations increase the triangle count substantially; this can have a major impact
on rendering performance.

Another important operation on meshes is simplification, in which a mesh
is replaced by another mesh that’s similar to it, topologically or geometrically,
but has a more compact structure. If this is done repeatedly, one can arrive at a
collection of simpler and simpler representations of the same surface, suitable for
viewing at greater and greater distances. (A 10, 000-polygon object that covers
only a single display pixel can almost certainly be rendered with fewer polygons,
for instance—a simplified mesh is ideal here.) Hoppe [Hop96, Hop98] has studied
this problem extensively.

Meshes are in common use in part because we are familiar with the geometry
of triangles. Not every object in the world is well suited to mesh representation.
Certain shapes, for instance, are characterized by having geometric detail at every
scale (e.g., mica or fractured marble). Others have structure that is uniform in a
way particularly unsuited for mesh representation, like hair, whose bent tubular
structure can be far more compactly represented than with a mesh approximation.

Nonetheless, many research laboratories and commercial companies have
managed to produce a great many successful images using an approach in which
all shapes were approximated by triangle meshes.



ptg11539634

8.2 “Meshes” in 2D: Polylines 189

8.2 “Meshes” in 2D: Polylines

The analog of a triangle mesh in space, taken one dimension lower, is a collec-
tion of line segments in the plane. (The space in which we work is one dimension
lower, and the objects we’re working with are one dimension lower: line segments
instead of triangles.) We’ll discuss these briefly as an introduction to mesh struc-
tures. We’ll call one of these a 1D mesh.

A 1D mesh (see Figure 8.3) consists of vertices and edges, which are line
segments joining the vertices. Because the line segment between two vertices is
completely determined by the vertices themselves, we can describe such a struc-
ture in two parts.

• A listing of the vertices and their locations. Typically the vertices are
denoted by small integers; their locations are points in the plane.

• A listing of the edges, consisting of a collection of ordered pairs of vertices.

The following tables describe a simple 1D mesh:

Vertices
1 (0, 0)
2 (0.5, 0)
3 (1.5, 1)
4 (0, 2.0)
5 (3, 0)
6 (4, 0)

Edges
1 (1, 2)
2 (2, 3)
3 (3, 4)
4 (4, 1)
5 (5, 6)

This data structure has an interesting property: The topology of the mesh (which
edges meet which other edges) is encoded in the Edges table, while the geometry
is encoded in the Vertices table. If you adjusted one of the entries in the Vertices
table a little, the number of connected components, for instance, would not vary.

One might argue that if you moved the vertices enough, then two edges might
intersect when they didn’t intersect before. That’s true, but such intersections can
be removed by adjusting the vertices; the fact that the edge (1, 2) intersects the
edge (2, 3) cannot be altered by moving the vertices.

Indeed, one can treat the edge table (together with a listing of the vertex
indices, in case some vertex is not in any edge) as describing an abstract graph
(in the sense of graph theory). From this one can compute things like the Euler
characteristic, the number of components, etc.

(a) (b) (c) (d)

Figure 8.3: A 1D mesh consists of a collection of vertices and straight-line edges between
them. The ones that most often interest us (shown in (a) and (b)) have one or two edges
meeting each vertex, and no two edges intersect except at a vertex. But there are also
meshes with more than two edges at some vertices, like (c), and ones where edges do inter-
sect at nonvertex points (d).
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8.2.1 Boundaries

The boundary of a 1D mesh defined as a formal sum of the vertices of the mesh
in which the coefficient of each vertex is determined as follows: Each edge from
vertex i to vertex j adds +1 to the coefficient for j, and −1 to the coefficient for i;
we sometimes write that the boundary of the edge ij is j − i. Applying this to the
mesh above, we find that the boundary formal sum is (reading edge by edge, and
writing vi for the ith vertex)

(v2 − v1) + (v3 − v2) + (v4 − v3) + (v1 − v4) + (v6 − v5), (8.1)

which simplifies to v6 − v5. Informally, we say that the boundary consists of ver-
tices 5 and 6.

The reason for the formalism arises when we consider more interesting
meshes, like the one shown in Figure 8.4. The boundary in this case consists of
v1 + v2 + v3 + v4 + v5 − 5v0.

v0
v1

v2

v3

v4
v5

Figure 8.4: A wagon-wheel-
shaped mesh. An arrow from
vertex i to vertex j indicates that
(i, j) is an edge of the mesh, and
not ( j, i).

A 1D mesh whose boundary is zero (i.e., the formal sum in which all coeffi-
cients are zero) has the property that it’s easy to define “inside” and “outside” by a
rule like the winding number rule for polygons in the plane. Such a mesh is called
closed.

A 1D mesh where each vertex has degree 2 (i.e., where each vertex has an
arriving edge and a leaving edge) is said to be a manifold mesh: In the abstract
graph, every point has a neighborhood (a set of all points sufficiently near it) that
resembles a small part of the real number line. A point in the interior of an edge,
for example, has the edge interior as such a neighborhood. A vertex has the union
of the interiors of the two adjacent edges, together with the vertex itself, as such a
neighborhood.

We use the term “manifold mesh” to suggest that such meshes are like man-
ifolds, which we will not formally define; there are many books that introduce
the idea of manifolds with the appropriate supporting mathematics [dC76, GP10].
Informally, however, an n-dimensional manifold is an object M with the property
that for any point p ∈ M, there’s a neighborhood of p (i.e., a set of all points in
M close to p, defined appropriately) that looks like the set {x ∈ Rn : ‖x‖ < 1}
(the “open ball”) in Rn. “Looks like” means that there’s a continuous map from the
ball to the neighborhood and back. (These continuous maps are also required to be
“consistent” with one another wherever their domains overlap; the precise details
are beyond the scope of this book.) For example, the unit circle in the plane is a
1-manifold because one neighborhood of the point with angle coordinate θ con-
sists of all points with coordinates θ − 0. 1 to θ + 0. 1; the correspondence to the
unit ball in R (i.e., the open interval −1 < x < 1) is u 
→ 10(u − θ). Similarly,
familiar smooth surfaces in 3-space like the sphere, or the surface of a donut, are
2-manifolds. An atlas (i.e., a book showing maps of the whole world) is a kind of
demonstration that the sphere is a manifold: Each page of the atlas gives a corre-
spondence between some region of the globe (e.g., Western Europe) and a portion
of the plane (i.e., the page of the atlas that shows Western Europe).

Shapes with corners (like a cube) can also be manifolds, but they are
not smooth manifolds, which is what’s usually meant when the term is used
informally—a continuous map that takes a small region around the corner of
the cube and sends it to the plane ends up distorting things too much for all the
required conditions for “smoothness” to hold.
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Self-intersecting shapes like a figure eight in the plane fail to be manifolds,
because any small neighborhood of the crossing point in the middle of the fig-
ure eight looks like a small letter “x,” which cannot be made to correspond to a
unit interval in a bicontinuous way. The technicalities in defining manifolds are
quite subtle (indeed, it took several decades for them to eventually settle into their
modern form). Fortunately for us, the shapes we use in graphics are generally
“polyhedral manifolds.” The definitions are still subtle, but there are key theorems
that tell us that in the one- and two-dimensional cases, we can instead verify that
something’s a manifold by using far simpler methods. Those simpler methods are
precisely the content of our notions of a manifold vertex-and-edge mesh, and a
manifold triangle mesh (which we’ll define shortly).

Your goal, in reading the definitions here, should not be to gain a deep under-
standing that you could use to prove theorems—that requires a much more thor-
ough treatment. But you should, when done, be able to say, “Sure, I can look
at a simple mesh and identify it as a manifold mesh, or perhaps manifold-with-
boundary mesh.”

Manifold meshes are commonplace and particularly easy to work with (and
to prove theorems about). Note that the definition does not say that a manifold
mesh must have only one connected component; indeed, a mesh consisting of two
nonintersecting triangles is a valid manifold mesh. So is the empty mesh.

The meshes we’ve described, in which each edge is an ordered pair, are called
oriented meshes; if we had described edges by unordered pairs, we would have
had an unoriented mesh, in which case the definition of “boundary” would have
made no sense. We’ll have no further use for such meshes, however.

8.2.2 A Data Structure for 1D Meshes

To prepare for the discussion of 2D meshes in 3-space, we’ll describe a data struc-
ture for 1D meshes in 2-space first, one which has strong analogies with more
complex structures. The components are

• A vertex table, consisting of vertex indices and the associated points in the
plane

• An edge table, consisting of ordered pairs of edges

• A neighbor-list table, consisting of an ordered cyclic list of edges meeting
a vertex so that one can read off the list of edges at a vertex (in counter-
clockwise order)

We already encountered such a structure when we discussed subdivision of
curves (see Figure 8.5) in Chapter 4.

The operations supported by this data structure (and their implementations)
are as follows.

• Insert a vertex: Add it to the vertex table; leave other tables untouched.

• Insert an edge (i, j): Add it to the vertex table and the edge table (both
O(1)); add it to the neighbor-list table both at vertex i and at vertex j. Inser-
tion in the neighbor list for vertex i can take O(e) time, where e is the
number of edges in the table (one must insert it in the right place in the
counterclockwise ordering of edges around vertex i, which might contain
all e edges). In a manifold mesh, however, where there can be, at most, two
edges at a vertex, this operation is O(1).
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• Get the edges meeting vertex i. (This is O(1), since it consists of the neigh-
bor list for vertex i.)

• Given a vertex i and an edge e containing i, find the other end of e.

• Given an edge e, find its two endpoints.

• Delete an edge. This requires deletion from the edge table, and if the edge
is (i, j), deleting the edge from the neighbor lists for i and j, which may be
an O(e) operation, but in the manifold case is O(1).

The choice of how to implement the vertex and edge tables depends on the
expected use. An array implementation is convenient if there will be no deletions.
But if there will be deletions, one must do one of the following.

• Mark array entries as invalid somehow.

• Shift the array contents to “fill in” when an item is deleted (which requires
updating indices stored in other tables).

The marked-entries approach can create large but mostly empty tables if there
are many insertions and deletions so that the “list all vertices” or “list all edges”
operations become slow. The content-shifting approach actually works quite well,
however. To start with a simple case, if there are n vertices and we want to delete
vertex n, we just declare the end of the array to be the n− 1st element, and delete
all references to vertex n in other tables. To delete a different vertex—say, the
second one—we reduce the problem to the earlier case: We exchange the second
and the nth vertices, and then delete the nth. This requires replacing all references
to vertex index 2 with vertex index n, and vice versa, in the other tables, but that’s
fairly straightforward.

Note that the choice to store the edges that meet a vertex is also application-
dependent. It makes finding all vertices of topological distance one from vertex i
very fast, but at the cost of making edge addition somewhat slow in the worst case.
If you do not anticipate needing to find the neighbors of vertex i, maintaining a
neighbor list is pointless. Similarly, the choice to store the neighbor lists in a
counterclockwise-sorted order is useful primarily if one is interested not only in
the structure of the 1D mesh, but also in the structure of the 2D regions into which
it divides the plane; if these are of no interest, then the neighbor lists can be stored
in hash tables or other similarly efficient structures (or in a two-element array, in
the case of manifold meshes).

Figure 8.5: The square at left
is subdivided to become the
octagon at right. Note that for
each vertex of the square, there’s
a vertex in the octagon, and for
each edge of the square, its mid-
point is a vertex of the octagon as
well.

Figure 8.6: A triangle with a dan-
gling edge, like the one shown
here, cannot be represented by
our mesh structure.

8.3 Meshes in 3D

The situation in 3D is analogous to that in 2D: To describe a mesh, we list the ver-
tices and the triangles of the mesh. What about the edges? The tradition in graphics
has been to infer the edges from the triangles: If vertices i, j, and k form a triangle,
then the edges (i, j), ( j, k), and (k, i) are assumed to be part of the mesh structure.
This means that one cannot have dangling edges (see Figure 8.6), although iso-
lated vertices are still allowed. The general descriptions of mesh structures (con-
sisting of vertices, edges, triangles, tetrahedra, etc., with coordinates associated
only to the vertices, and then extended to higher-dimensional pieces by interpo-
lation) have been at the foundation of topology for more than 100 years [Spa66];
the student interested in such structures should consult the topology literature to
avoid reinventing things.
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In graphics, however, the structure of a vertex table and “face table” or “trian-
gle table” is well established. As in the 1D case, insertion of vertices and triangles
is fast, and deletion of vertices is slow (because all associated triangles must be
found and deleted). If we store a neighbor list for each vertex, deletion becomes
faster. Because the neighbor list of triangles meeting a vertex is unordered, the
insertion cost is low, but the deletion cost is high. When additional constraints are
imposed on the mesh, the triangle list for a vertex can be ordered, slightly increas-
ing insertion and deletion costs, but simplifying other operations like finding the
two faces adjacent to an edge.

What about edges? While we cannot insert an edge, we can ask questions like
“Is this pair of vertices an edge of the mesh?” In other words, is it the edge of
some triangle of the mesh? And given a triangle with vertices i, j, and k, we can
ask, “What are the other triangles that contain the edge (i, j)? These questions
are O(T), in the sense that answering them requires an exhaustive search of the
triangle list. In special cases, which we discuss in the next section, they can be
made faster.

If you are eager, at this point, to get on with making objects and pictures of
objects, you can safely skip the remainder of this chapter and use the vertex- and
triangle-table structure for meshes until you encounter problems with space or
efficiency, at which point the remaining sections will be of use to you. If, on the
other hand, you’d like to know more about how to work with meshes effectively,
read on.

8.3.1 Manifold Meshes

A finite 2D mesh is a manifold mesh if the edges and triangles meeting a vertex
v can be arranged in a cyclic order t1, e1, t2, e2, . . . , tn, en without repetitions such
that edge ei is an edge of triangles ti and ti+1 (indices taken mod n). This implies
that for each edge, there are exactly two faces that contain it.

We can store a manifold mesh in a data structure analogous to the one we
described for 1D meshes, consisting of a vertex table, a triangle table, and a
neighbor-list table.

The neighbor list for vertex i consists of the triangles surrounding vertex i, in
some cyclic order (so the kth and k + 1st triangles in the list share an edge). (One
can no longer disambiguate between the two possible cyclic orderings around a
vertex with a notion like “counterclockwise,” unfortunately, unless the manifold
is oriented, which we describe in the next section.)

3

1
(1, 2, 3)

2

Figure 8.7: Two adjacent trian-
gles in a mesh with consistent
normal vectors (i.e., the normal
vector tips are on the “same
side” of the mesh). Note that
the edge (i, j) is an edge of one
triangle, but ( j, i) is an edge
of the other. In general, in a
consistently oriented mesh, each
edge appears twice, in opposite
directions.

Manifold meshes unfortunately don’t admit insertions or deletions of trian-
gles: Any insertion or deletion ruins the manifold property. But it is easy to find
the vertices adjacent to a given vertex (i.e., given a vertex index i, we can find all
vertex indices j such that (i, j) is an edge): We simply take the set of all vertices of
all triangles in the neighbor list for vertex i, and then remove vertex i.

It’s also fairly easy, given a triangle containing edge (i, j), to find the other
triangle containing that edge.

8.3.1.1 Orientation
We’ll often have reason to care about the orientation of triangles in a mesh
(see Figure 8.8) so that the triangles (1, 2, 3) and (2, 1, 3) are considered dif-
ferent (the triples are listings of vertex indices). One use of an orientation is in
the determination of a normal vector: If the vertices of a nondegenerate triangle
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(i.e., one with a nonzero area) are at locations Pi, Pj, and Pk, then we can compute
(Pj−Pi)×(Pk−Pi), which is a vector perpendicular to the plane of the triangle.1

Note that if we exchange vertices Pj and Pk, the resultant vector is negated. Since
we often use the normal to a triangle in a mesh to determine what’s “inside” or
“outside” the mesh, the ordering of the vertices is critical.

k
(i, j, k)

(h, j, i)

j

h

i

Figure 8.8: The triangles of this
mesh are oriented; the circular
arrows indicate the cyclic order-
ing of the vertices. Note that
the vertex triples (1, 2, 3) and
(2, 3, 1) indicate the same ori-
ented triangle (i.e., there are
three equivalent descriptions of
every oriented triangle).

If two adjacent triangles (see Figure 8.7) have consistently oriented normal
vectors, then the edge they share will appear as (i, j) in one triangle and as ( j, i)
in the other. And if a manifold mesh can have its triangles oriented so that this is
true, it can also be given consistently oriented normal vectors. This is a nontrivial
theorem from combinatorial topology.

When a manifold is oriented, the triangles around a vertex have a natural
order. Suppose that surrounding vertex 1 there are the triangles (5, 1, 2), (4, 3, 1),
(1, 5, 4), and (1, 3, 2). We can cyclically permute each to put vertex 1 first:
(1, 2, 5), (1, 4, 3), (1, 5, 4), and (1, 3, 2). Now starting with the first triangle, we
can consider its “first” and “last” edges, (1, 2) and (5, 1). We choose, as our next
triangle, the one whose first edge is the opposite, (1, 5), of this last edge. That’s
(1, 5, 4). And the last edge of (1, 5, 4) is (4, 1); (1, 4) is the first edge of (1, 4, 3),
whose last edge is (3, 1); (3, 1) is the first edge of (1, 3, 2), and we’ve ordered the
triangles: (1, 2, 5), (1, 5, 4), (1, 4, 3), (1, 3, 2).

8.3.1.2 Boundaries
More interesting than manifold meshes (and more common as well) are meshes
whose vertices are manifold or boundarylike (see Figure 8.9), in the sense that
instead of the adjacent triangles forming a cycle, they form a chain, whose first
and last elements share only one of their edges with other triangles in the chain;
the other edge of the first triangle that meets the vertex is contained only in the first
triangle, and not in any other triangle of the mesh. (The same condition applies to
the last triangle.) This unshared edge is called a boundary edge, and the vertex
is called a boundary vertex. Vertices that are not boundary vertices are called
interior vertices.

Figure 8.9: (left) A manifold
vertex has a cycle of triangles
around it; (right) by contrast, a
boundarylike vertex v has a chain
of triangles around it—the start-
ing and ending triangles of the
chain each share only one of
their edges with other triangles
of the chain. The other edges of
those triangles that contain v are
boundary edges.

8.3.1.3 Boundaries and Oriented 2D Meshes
Just as we defined the boundary of an edge from vertex i to vertex j to be the formal
sum vj − vi, we can define the boundary of a triangle in a mesh with vertices i, j,
and k to consist of the formal sum of edges

(i, j) + ( j, k) + (k, i). (8.2)

Furthermore, we can define an algebra on these formal sums in which the vertex
(i, j) is identified with −1( j, i) so that the boundary above could be written

(i, j) + ( j, k)− (i, k) (8.3)

instead. We can define the boundary of a collection of oriented triangles as the
formal sum of their boundaries.

For an oriented manifold mesh, this boundary will be zero (i.e., the coefficient
of each edge will be zero), because if (i, j) is part of the boundary of one face, then
( j, i) = −(i, j) is part of the boundary of another.

1. The description of the cross product and further discussion of normal vectors was given
in Chapter 7.
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For an oriented manifold-with-boundary mesh, the boundary will consist of
exactly the edges we identified above as “boundary edges.” In general, an oriented
mesh with no boundary edges is called closed.

8.3.1.4 Operations on Manifold-with-Boundary Meshes
Manifold-with-boundary meshes support operations like vertex and face insertion
and deletion. The efficiency of each operation depends on the implementation. If
the representation is simply vertex tables and face tables, then insertion is O(1),
and deletion (after the “exchange with the last item in the list” trick) is too. If we
maintain a neighbor list for each vertex, then insertion becomes O(T), where T is
the number of triangles, as does deletion.

Note that computing the boundary of such a mesh can be done in O(T) time.
(Use a hash table to count the number of times each edge appears, with sign. If the
edge appears zero times, delete it from the hash table.) But one can also maintain
a record of the boundary during insertions and deletions so that reporting it at any
time is an O(1) operation.

Figure 8.10: The shared vertex is
nonmanifold: No neighborhood
looks planar.

8.3.2 Nonmanifold Meshes

Just as in the 1D case, we sometimes encounter shapes that are not well rep-
resented by manifolds or manifolds with boundary. The two cubes shown in
Figure 8.10 share a vertex which is a nonmanifold vertex; two cubes sharing an
edge are similarly nonmanifold. There is an important difference between the two
cases, however: It’s easy to encounter a nonmanifold vertex in the course of con-
structing a manifold with boundary (see Figure 8.11). But once we construct a
nonmanifold edge (one with three or more faces meeting it), it can never become
a manifold edge through further additions.

Figure 8.11: The pyramid at left
has six faces; the bottom square
is divided into two triangles that
you cannot see. If we construct
the pyramid so that after four
triangles have been added, it
appears as shown at the right,
then the apex vertex is neither
an interior vertex nor a bound-
ary vertex according to the def-
initions, so this shape is neither
a manifold nor a manifold with
boundary. Once we add another
face, it becomes a manifold with
boundary, and when we add the
last face, it becomes a manifold.

Each vertex in the directed-edge structure also contains a reference to one of
the edges containing it (see Figure 8.12). This allows one to compute the neigh-
borhood of the vertex (all edges and triangles that meet it) in time proportional to
the size of the neighborhood.

Campagna et al. [CKS98] show how this structure can be extended to handle
non-manifold vertices and edges, and how to trade time for space by simplifying
the structure for very large meshes.

next

Vertices
xa ya za er

xb yb zb eq

Directed edges
va vb eneighbor enext eprevious

…

vb

eq

er

va

prev

neighbor

Figure 8.12: The directed-edge data structure (following Figures 4 and 5 of [CKS98]). A
directed edge stores a reference to its starting and ending vertex, to the previous and next
edges, and to its neighbor. For each real edge of the mesh, there are two directed edges, in
opposite directions. Each vertex stores its coordinates and a reference to one of the directed
edges that leaves it.
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For more general planar meshes, in which the faces may not be triangles, one
can use the winged-edge data structure [Bau72], which associates to each edge of
the mesh the next edge of the face to its right, the next edge of the face to its left,
and the previous edges of each of these as well (see Figure 8.13). This suffices
to recover all the faces and edges, provided that all faces are simply connected
(i.e., no face has a ringlike shape, like the surface of a moat). The winged-edge
structure also stores, for each vertex, its xyz-coordinates, and a reference to one of
the edges that it lies on (from which one can find all other edges). For each face,
the structure stores a reference to one edge of the face (from which one can find
all the others).

Vertices
xa ya za er

xb yb zb eq
…

Faces
er

es
…

Winged edges
va vb fi fj er ep es eq
…

vb

va

ep

er

eq

es

fi et fj

Figure 8.13: The winged-edge
data structure records a “previ-
ous” and “next” pointer for the
faces on each side of each edge.

8.3.3 Memory Requirements for Mesh Structures

Each of the structures we’ve described for representing meshes has certain mem-
ory requirements. Assuming 4-byte floating-point representations and 4-byte
integers, we can compare their memory requirements as done by Campagna
et al. [CKS98].

The vertex-table-and-triangle-table approach takes 12V bytes for the V ver-
tices and 12T bytes for the T triangles. How are the number of vertices and tri-
angles related? For a mesh representing a closed surface, Euler’s formula tells us
that V − E + F = 2− 2g, where g is the genus of the surface.2 Assuming further
that every vertex is actually part of some triangle (so that the vertex table does not
contain lots of unused vertices), and that the mesh is closed, we can simplify this:
Each triangle has three edges, and each edge is shared by two triangles. So the
number of edges, E, is 3

2 T . Thus,

V − 3
2

T + T = 2− 2g, (8.4)

which simplifies to

V − 1
2

T = 2− 2g. (8.5)

For low-genus surfaces with fine tessellations, the right-hand side is negligible
compared to the left, so we find that the number of triangles is approximately twice
the number of vertices; this gets us a total of 12(T + V) ≈ 12(3V) = 36V ≈ 18T
bytes of storage. For the remaining mesh representations, we’ll assume that we’re
representing closed manifolds of low genus so that we can replace V with T

2 and
vice versa.

For the winged-edge structure, each vertex uses 16 bytes (three floats and an
edge reference); each face uses four bytes (one edge reference), and each edge has
four edge references, two face references, and two vertex references, for a total of
eight references or 32 bytes. The total, again assuming we use triangular faces
only, is 16V + 32E + 4T ≈ 8T + 32 3

2 T + 4T = 60T .
For the directed-edge data structure (in the store-all-references form), each

vertex uses 12 bytes for coordinates and four for an edge reference. Each directed

2. The genus of a closed surface is, informally, the number of holes in it. A sphere has
genus zero, a torus has genus one, a two-holed torus has genus two, etc. A slice of
Swiss cheese tends to have quite high genus.
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edge contains references to two vertices and three edges, using 20 bytes. Triangu-
lar faces are not explicitly represented. So the memory use is

16V + 40E ≈ 8T + 60T = 68T (8.6)

bytes. Note that in the analysis above, we assumed that a vertex or edge reference
required only a single byte; for more complex meshes, this byte count may have
to to be increased to roughly �log2(

3T
2 )�.

va vb

Figure 8.14: The edge from ver-
tex a to vertex b is collapsed;
the edge itself and the two adja-
cent faces are removed from the
data structure; and the other two
edges of the upper face, drawn in
blue, become one, as do the two
edges of the lower face, drawn
in red. Nothing else changes. The
two vertices va and vb become a
single vertex.

8.3.4 A Few Mesh Operations

One of the advantages of triangle meshes is that their homogeneity makes certain
operations easy to perform. For manifold meshes, the homogeneity is even greater.
In mesh simplification, for instance, one of the standard operations is an edge
collapse, in which one edge is shrunk until it has length zero, resulting in the two
adjacent triangles disappearing. In mesh beautification (where we try to make a
mesh have nearly equilateral triangles and other nice properties), the edge-swap
operation helps turn two long and skinny triangles into two more nearly equilateral
ones. Both involve minimal operations on the data structure itself.

A B
Q

Figure 8.15: Different geometric
choices for an edge collapse in
2D. The edge AB is collapsed;
one can (a) place the collapsed
vertex at A for computational
simplicity, (b) at the midpoint of
the segment AB, or (c) at a point
Q that minimizes the maximum
(or average) distance from every
old mesh point to the nearest new
mesh point. Other goals are pos-
sible as well.

8.3.5 Edge Collapse

In the edge-collapse operation (see Figure 8.14), a single edge of a mesh is
removed [HDD+93]. The two triangles that contain this edge are both eliminated,
and the other two edges of each of them become a single edge in the new mesh.
The vertices at the end of the eliminated segment become a single vertex.

The description above is purely topological; there’s a geometric question as
well: When we merge the two vertices, we must choose a location for the merged
vertex. The location we choose depends on the goal of our simplification (see
Figure 8.15). If computation is at a premium, simply using one of the old vertices
as the new one is very fast. If we want to preserve some sort of shape, averaging
the two vertices is easy. If such an averaging process moves a lot of points, and
this will be visually distracting, we can choose a new location that minimizes the
average or extreme distance between the old and new meshes. There is no one
“right answer.” As in most of graphics, the choice you make depends on your
intended use of the data structure.

8.3.6 Edge Swap

Meshes that get distorted or deformed in the course of an application’s use of them
may eventually get so deformed that individual triangles are long and skinny. Such
triangles are characterized by their bad aspect ratios. In general, one can define an
aspect ratio for a planar shape (see Figure 8.16) by finding, among all rectangles
that enclose the object and touch it on all four sides (these are called bounding
boxes), the one whose length-to-width ratio is greatest. This ratio is then called the
aspect ratio. High-aspect-ratio triangles produce bad artifacts in many situations,
so it’s nice to be able to eliminate them when possible. An edge-swap operation
(see Figure 8.17) can convert two adjacent high-aspect-ratio triangles to two with
lower aspect ratios. (It can also, done in reverse, do the opposite: Selecting the
right edge to swap in order to beautify a mesh requires examining the impact of
each possible swap.)
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Notice that the swap removes two triangles from the mesh structure and
replaces them with two others. In the simple vertex- and triangle-table structure,
this operation is trivial. In the directed-edge structure, the implementation is more
complex, because (a) some vertex may point to the edge that’s being swapped out,
and this edge pointer needs to be found and replaced; and (b) it makes sense to
replace the two old triangles with the two new ones, but there’s substantial shuf-
fling of directed edges in this process, and making sure that the new directed edges
point to the correct new triangles is messy.

W

L

Figure 8.16: The aspect ratio
of a planar shape is determined
by finding the bounding box for
the object for which the ratio of
length to width is greatest.

vb vb

vava

vc vd vdvc

Figure 8.17: The triangles adja-
cent to the edge from va to vb

both have bad aspect ratios. By
replacing the edge vavb with the
edge vcvd, we get a new pair of
triangles whose aspect ratios are
better.

8.4 Discussion and Further Reading

Triangle mesh representations and other representations for nontriangle meshes,
for planar graphs, and for simplicial complices—assemblies of vertices, edges,
triangles, tetrahedra, etc.—are widely studied in areas other than graphics; each
representation is tuned to the application area. We’ve described a few representa-
tions here that are particularly suited to work in graphics, but those who develop
CAD programs, for instance, may have to deal with computing the union and
intersections of shapes represented by meshes. Unfortunately, the union of two
manifold meshes (e.g., two cubes) may not be a manifold mesh (if the cubes share
just one vertex, or just one edge), so structures suitable for nonmanifold represen-
tations may be essential. Those working in finite-element modeling of mechanical
structures or fluid flow have their own constraints, such as the need for triangles
and tetrahedra to be nicely shaped (no small angles in any triangles), or to have
their size vary depending on the region in which they lie (e.g., turbulent flow may
require a fine triangulation, while smooth flow may be adequately represented by
a coarse one).

For most elementary graphics, the vertex- and triangle-table representations
are adequate; their incredible simplicity makes them very versatile, and if you’re
implementing your own mesh structures, they’re very easy to program properly.
As your needs evolve, more complex structures may be suitable; be certain that
you evaluate the more complex structures to ensure that their complexity solves
your particular problem.

One structure we’ve completely ignored is the “list each triangle separately as
a triple of xyz-coordinates structure.” Although this is simple, it has so many dis-
advantages that we can never recommend its use. In particular, the only way to tell
whether two triangles or edges share a vertex is with floating-point comparisons:
If you move one copy of a vertex, you must move all others if you want to pre-
serve the adjacency structure of the mesh; and determining any sort of adjacency
information is, in general, O(T).

8.5 Exercises

Exercise 8.1: Suppose you know that triangle (i, j, k) is one of the triangles of a
manifold mesh that’s represented by a vertex table and a face table. Then edge
(i, j) is in the mesh. Describe how to find the other triangle containing edge (i, j).
Express the running time of this operation in terms of T , the number of triangles
in the mesh. Draw an exemplar class of meshes that shows that the upper bound
you found is actually realized in practice.
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Exercise 8.2: Implement a form of the 1D mesh structure that’s suitable for
implementing a subdivision operation on manifold meshes. Given such a mesh, M,
the associated subdivision mesh M′ has one vertex for each vertex v of M: If the
neighbors of v are u and w, the new vertex is at location α

2 u + α
2 w + (1 − α)v.

M′ also has one vertex for each edge of M: If the edge is between vertices t and
u, the associated vertex of M′ is at 1

2 (t + u). Vertices in M′ are connected by an
edge if their associated vertices and/or edges in M meet (i.e., the vertex associated
to the edge from u to v is connected to the vertex associated to u and to the vertex
associated to v). Figure 8.5 shows an example. The parameter α determines the
nature of the subdivision. The example shown in the figure uses α = 0. 5; on
repeated subdivision, the square becomes a smoother and smoother curve. What
happens for other values of α? Use the standard 2D test bed to make a program
with which you can experiment. Note: Not every manifold mesh has just a single
connected component.

Exercise 8.3: Draw examples to show how adding a triangle to a mesh can
cause each of the four changes described in the nonmanifold vertex representation.

Exercise 8.4: Write pseudocode explaining how, given a vertex reference in a
directed-edge data structure, to determine the list of all directed edges leaving that
vertex in time proportional to the output size.

Exercise 8.5: Explain, in pseudocode, how, given a reference to a face in the
winged-edge data structure, one can find all the edges of the face.

Exercise 8.6: Suppose that M is a connected manifold mesh with no boundary.
M may be orientable without being oriented: It’s possible that there’s a consistent
orientation of the faces of M, but that some faces are oriented inconsistently.
(a) Assuming that M is connected, describe an algorithm, based on depth-first
search, for determining whether M is orientable.
(b) If M is orientable, explain why there are, at most, two possible orientations.
Hint: Your algorithm may show why, once a single triangle orientation is chosen,
all other triangle orientations are determined.
(c) If M is orientable, explain why there are exactly two orientations of M.
(d) Now suppose that M is not connected, but has k ≥ 2 components. How many
orientations of M are there?

Exercise 8.7: The 2D test bed was designed to aid in the study of things like
meshes. Use it to build a program for drawing polylines in a 2D plane, getting
mouse clicks, and reporting the closest vertex to a click (perhaps by changing the
color of the vertex).

Exercise 8.8: Add a feature so that a shift-click on a vertex initializes edge
drawing: The starting vertex is highlighted, and the next vertex clicked is con-
nected to the starting vertex with an edge; if there’s already an edge between the
two, it should be deleted. And if the next click is not on a vertex, a vertex is created
there and an edge from the preselected vertex to the new one is added. Modify the
program to handle 2D meshes (i.e., vertices and triangles) by allowing the user to
control-click on three vertices to create a triangle (or delete it if it already exists).
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Chapter 9

Functions on Meshes

9.1 Introduction

In mathematics, functions are often described by an algebraic expression, like
f (x) = x2 +1. Sometimes, on the other hand, they’re tabulated, that is, the values
for each possible argument are listed, as in

f : {1, 2, 3} → {0, 9}; (9.1)

f (1) = f (2) = 0; f (3) = 9. (9.2)

A third, and very common, way to describe a function is to give its values
at particular points and tell how to interpolate between these known values. For
instance, we might plot the temperature at noon and midnight of each day of a
week; such a plot consists of 15 distinct dots (see Figure 9.1). But we could also
make a guess about the temperatures at times between each of these, saying, for
instance, that if it was 60◦ at noon and 24◦ at midnight, that drop of 36◦ took place
at a steady rate of 3◦ per hour. In other words, we would be linearly interpolating
to define the function for all times rather than just at noon and midnight each day.
The resultant function, defined on the whole week rather than just the 15 special
times, is a connect-the-dots version of the original.

Let’s now write that out in equations. Suppose that t0 < t1 < t2 < . . . < tn
are the times at which the temperature is known, and that f0, f1, . . . , fn are the
temperatures in degrees Fahrenheit at those times.

Then

f : [t0, tn]→ R : t 
→ (1− s)fi + sfi+1 (9.3)

where

ti ≤ t ≤ ti+1 and (9.4)

s =
t − ti

ti+1 − ti
. (9.5)

201
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Figure 9.1: The temperature at noon and midnight for each day in a week. The domain of
this function consists of 15 points. When we linearly interpolate the values between pairs of
adjacent points, we get a function defined on the whole week—a connect-the-dots version
of the original.

Further suppose that the times are measured in 12-hour units, starting at midnight
Sunday, so t0 = 0, t1 = 1, etc.

In this formulation i is the index of the interval containing t, and s describes
the fraction of the way from ti to ti+1 where t lies (when t = ti, s is zero; when
t = ti+1, s is one).

Inline Exercise 9.1: Suppose that t0 = 0, t1 = 1, etc., and that f0 = 7, f1 = 3,
and f2 = 4; evaluate f (1. 2) by hand. If we changed f0 to 9, would it change the
value you computed? Why or why not?

Just as we can have barycentric coordinates on a triangle (see Section 7.9.1),
we can place them on an interval [ p, q] as well. The first coordinate varies from
one at p to zero at q; the second varies from zero at p to one at q. Their sum is
everywhere one that is, for every point of the interval [ p, q], the sum is one (see
Exercise 9.8). With these barycentric coordinates, we can write a slightly more
symmetric version of the formula above:

f (t) = c0(t) fi + c1(t) fi+1, (9.6)

where c0(t) is the first barycentric coordinate of t and c1(t) is the other.
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Figure 9.2: The point P is in the triangle with vertices v0, v1, and v2, where the function has
values f0, f1, and f2, respectively. What value should we assign to the point P?

This “continuous extension” of f has analogs for other situations. Before we
look at those, let’s examine some of the properties. First, the value of the interpo-
lated function at noon or midnight each day (ti) is just fi; it doesn’t depend at all
on the values at noon or midnight on the other days. Second, the value at noon on
one day influences the shape of the graph only for the 12 hours before and the 12
hours after. Third, the interpolated function is in fact continuous.

Now let’s consider interpolating values given at discrete points on a surface.
Since we often use triangle meshes in graphics to represent surfaces, let’s suppose
that we have a function whose values are known at the vertices of the mesh; the
value at vertex i is fi. How can we “fill in” values at the other points of all the
triangles in the mesh?

By analogy, we use barycentric coordinates. Consider a point P in a triangle
with vertices v0, v1, and v2 (see Figure 9.2); we can define

f (P) = c0 f0 + c1 f1 + c2 f2 (9.7)

where (c0, c1, c2) are the barycentric coordinates of P with respect to v0, v1, and v2.
Once again, the interpolated function has several nice properties. First, the

value at the vertex vi is just fi; the value along the edge from vi to vj (assuming
they are adjacent) depends only on fi and fj; thus, for a point q on such an edge,
it doesn’t matter which of the two triangles sharing the edge from vi to vj is used
to compute f (q)—the answer will be the same! Second, the value fi at vertex vi

again influences other values only locally, that is, only on triangles that contain
the vertex vi. Third, the interpolated function is in fact continuous.

The remainder of this chapter investigates this idea of interpolating across
faces, its relationship to barycentric coordinates, and some applications.

9.2 Code for Barycentric Interpolation

The discussion so far has been somewhat abstract; we’ll now write some code to
implement these ideas. Let’s start with a simple task.

Input:

• A triangle mesh in the form of an n× 3 table, vtable, of vertices

• A k × 3 table, ftable, of triangular faces, where each row of ftable con-
tains three indices into vtable
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• An n× 1 table, fntable, of function values at the vertices of the mesh

• A point P of the mesh, expressed by giving the index, t, of the triangle in
which the point lies, and its barycentric coordinates α,β, γ in that triangle

Output:

• The value of the interpolated function at P

The first thing to realize is that only the tth row of ftable is relevant to our
problem: The point P lies in the tth triangle; the other triangles might as well not
exist. If the tth triangle has vertex indices i0, i1, and i2, then only those entries in
vtable matter. With this in mind, our code is quite simple:

1
2
3
4
5
6
7
8
9

10
11

double meshinterp(double[,] vtable, int[,] ftable,
double[] fntable, int t, double alpha, double beta, double gamma)

{
int i0 = ftable[t, 0];
int i1 = ftable[t, 1];
int i2 = ftable[t, 2];
double fn0 = fntable[i0];
double fn1 = fntable[i1];
double fn2 = fntable[i2];
return alpha*fn0 + beta*fn1 + gamma*fn2;

}

Now suppose that P is given differently: We are given the coordinates of P in
3-space rather than the barycentric coordinates, and we are given the index t of the
triangle to which P belongs, and we need to find the barycentric coordinates α,β,
and γ. If we say that the vertices of the triangle t are A, B, and C, we want to have

αAx + βBx + γCx = Px (9.8)

where the subscript x indicates the first coordinate of a point; we must also satisfy
the same equations for y and z. But there’s one more equation that has to hold:
α+ β + γ = 1. We can rewrite that in a form that’s analogous to the others:

α1 + β1 + γ1 = 1. (9.9)

Now our system of equations becomes⎡
⎢⎢⎣

Ax Bx Cx

Ay By Cy

Az Bz Cz

1 1 1

⎤
⎥⎥⎦
⎡
⎣αβ
γ

⎤
⎦ =

⎡
⎢⎢⎣

Px

Py

Pz

1

⎤
⎥⎥⎦ . (9.10)

There’s really no solution here except to directly solve the system of equations.
The problem is that we have four equations in three unknowns, and most solvers
want to work with square matrices rather than rectangular ones. (Section 7.9.2
presented an alternative approach to this problem using some precomputation, but
that precomputation amounts to doing much of the work of solving the system of
equations.)

The good news is that the four equations are in fact redundant: The fact that P
is given to us as a point of the triangle ensures that if we simply solve the first three
equations, the fourth will hold. That assurance, however, is purely mathematical—
computationally, it may happen that small errors creep in. There are several viable
approaches.
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• Express P as a convex combination of four points of R4: the three already
written and a fourth, with coordinates nx, ny, nz, and 0, where n is the nor-
mal vector to the triangle. The expression will have a fourth coefficient, δ,
in the solution, representing the degree to which P is not in the plane of
A, B, and C. We ignore this and scale up the computed α,β, and γ accord-
ingly, using α/(1 − δ),β/(1 − δ), and γ/(1 − δ) as the barycentric coor-
dinates. This is a good solution (in the sense that if the numerical error in
P is entirely in the n direction, the method produces the correct result), but
it requires solving a 4× 4 system of equations.

• Delete the fourth row of the system in Equation 9.10; adjust α,β, and γ to
sum to one by dividing each by α + β + γ. This reduces the problem to a
3×3 system, but it lacks the promise of correctness for normal-only errors.

• Use the pseudoinverse to solve the overconstrained system (see Sec-
tion 10.3.9). This has the advantage that it’s already part of many numer-
ical linear algebra systems, and that it works even when the triangle is
degenerate (i.e., the three points are collinear), in the sense that if P
lies in the triangle, then the method produces numbers α,β, and γ with
αA + βB + γC = P, even though the solution in this case is not unique.
Better still, if P is not in the plane of A, B, and C, the solution returned will
have the property that αA + βB + γC is the point in the plane of A, B, and
C that’s closest to P. This is therefore the ideal.

So the restated problem looks like this.
Input:

• A triangle mesh in the form of an n× 3 table, vtable, of vertices

• A k × 3 table, ftable, of triangles, where each row of ftable contains
three indices into vtable

• A point P of the mesh, expressed by giving the index, t, of the triangle in
which the point lies, and its coordinates in 3-space

Output:

• The value of the barycentric coordinates of P with respect to the vertices
of the kth triangle

And our revised solution is this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

double[3] barycentricCoordinates(double[,] vtable,
int[,] ftable, int t, double p[3])

{
int i0 = ftable[t, 0];
int i1 = ftable[t, 1];
int i2 = ftable[t, 2];
double[,] m = new double[4, 3];
for (int j = 0; j < 3; j++) {

for (int i = 0; i < 3; i++) {
m[i,j] = vtable[ftable[t, j], i];

}
m[3,j] = 1;

}

k = pseudoInverse(m);
return matrixVectorProduct(k, p);

}
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Here we’ve assumed the existence of a matrix-vector product procedure and a
pseudoinverse procedure, as provided by most numerical packages.

The two procedures above can be combined, of course, to produce the function
value at a point P that’s specified in xyz-coordinates.

Input:

• A triangle mesh in the form of an n× 3 table, vtable, of vertices

• A k × 3 table, ftable, of triangles, where each row of ftable contains
three indices into vtable

• An n× 1 table, fntable, of function values at the vertices of the mesh

• A point P of the mesh, expressed by giving the index, t, of the triangle in
which the point lies, and its coordinates in 3-space

Output:

• The value of the function defined by the function table at the point P

1
2
3
4
5
6
7
8

double meshinterp2(double[,] vtable, int[,] ftable, double[] fntable,
int t, double p[3])
{
double[] barycentricCoords =

barycentricCoordinates(vtable, ftable, t, p);
return meshinterp2(vtable, ftable, fntable, t,

barycentricCoords[0], barycentricCoords[1], barycentricCoords[2]);
}

Of course, the same idea can be applied to the ray-intersect-triangle code of
Section 7.9.2, where we first computed the barycentric coordinates (α,β, γ) of
the ray-triangle intersection point Q with respect to the triangle ABC, and then
computed the point Q itself as the barycentric weighted average of A, B, and C.
If instead we had function values fA, fB, and fC at those points, we could have
computed the value at Q as fQ = αfA + βfB + γfC. Notice that this means we can
compute the interpolated function value fQ at the intersection point without ever
computing the intersection point itself!

Computing barycentric coordinates (α,β, γ) for a point P of a triangle ABC,
where A, B, C ∈ R2, is somewhat simpler than the corresponding problem in
3-space (see Figure 9.3). We know that the lines of constant α are parallel to
BC. If we let n = (C − B)⊥, then the function defined by f (P) = (P − B) · n is
also constant on lines parallel to B − C. Scaling this down by f (A) gives us the
function we need: It’s zero on line BC, and it’s one at A. So we let

g : R2 → R : P 
→ (P− B) · n
(A− B) · n , (9.11)

and the value of g(P) is just α. A similar computation works for β and γ.
The resultant code looks like this:

1
2
3
4
5
6
7
8

double[3] barycenter2D(Point P, Point A, Point B, Point C)
C[2])
{
double[] result = new double[3];
result[0] = helper(P, A, B, C);
result[1] = helper(P, B, C, A);
result[2] = helper(P, C, A, B);
return result;
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(P2B) • n 5 2

(P2B) • n 5 1

(P2B) • n 5 0
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a 5 1

a 5 0.8

a 5 0.6
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a 5 0.2
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Figure 9.3: To write the point P as αA + βB + γC, we can use a trick. For points on line
BC, we know α = 0; on any line parallel to BC, α is also constant. We can compute the
projection of P − B onto the vector n that’s perpendicular to BC; this also gives a linear
function that’s constant on lines parallel to BC. If we scale this function so that its value at
A is 1, we must have the function α.

9
10
11
12
13
14
15
16

double helper(Point P, Point A, Point B, Point C)
{

Vector n = C - B;
double t = n.X;
n.X = -n.Y; // rotate C-B counterclockwise 90 degrees
n.Y = t;
return dot(P - B, n) / dot(A - B, n);

}

Of course, if the triangle is degenerate (e.g., if A lies on line BC), then the dot
product in the denominator of the helper procedure will be zero; then again, in this
situation the barycentric coordinates are not well defined. In production code, one
needs to check for such cases; it would be typical, in such a case, to express P as
a convex combination of two of the three vertices.

9.2.1 A Different View of Linear Interpolation

One way to understand the interpolated function is to realize that the interpolation
process is linear. Suppose we have two sets of values, { fi} and {gi}, associated
to the vertices, and we interpolate them with functions F and G on the whole
mesh. If we now try to interpolate the values { fi + gi}, the resultant function will
equal F + G. That is to say, we can regard barycentric interpolation on the mesh
as a function from “sets of vertex values” to “continuous functions on the mesh.”
Supposing there are n vertices, this gives a function

I : Rn → C(M) (9.12)

where C(M) is the set of all continuous functions on the mesh M. What we’ve just
said is that

I( f + g) = I( f ) + I(g) (9.13)

where f denotes the set of values { f1, f2, . . . , fn}, and similarly for g; the other
linearity rule—that I(αf ) = αI( f ) for any real number α—also holds.
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Figure 9.4: (a) The 2D inter-
polating basis function is tent-
shaped near its center; (b) in 3D,
for a mesh in the xy-plane, we can
graph the function in z and again
see a tentlike graph that drops off
to zero by the time we reach any
triangle that does not contain v.

A good way to understand a linear function is to examine what it does to a
basis. The standard basis for Rn consists of elements that are all zero except for a
single entry that’s one. Each such basis vector corresponds to interpolating a func-
tion that’s zero at all vertices except one—say, v—and is one at v (see Figure 9.4).
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The resultant interpolant is a basis function that has a graph that looks tentlike,
with the peak of the tent sitting above the vertex where the value is one.

If we add up all these basis functions, the result is the function that interpolates
the values 1, 1, . . . , 1 at all the vertices; this turns out to be the constant function 1.
Why? Because the barycentric coordinates of every point in every triangle sum
to one.

One might look at these tent-shaped functions and complain that they’re
not very continuous in the sense that they are continuous but not differentiable.
Wouldn’t it be nicer to use basis functions that looked like the ones in Figure 9.5?
It would, but it turns out to be more difficult to have both the smoothness property
and the property that the interpolant for the “all ones” set of values is the constant
function 1. We’ll discuss this further in Chapter 22.
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Figure 9.5: Basis functions for
(a) 2D and (b) 3D interpolations
that are smoother than the bary-
centric-interpolation functions.

9.2.1.1 Terminology for Meshes
This section introduces a few terms that are useful in discussing meshes. First,
the vertices, edges, and faces of a mesh are all called simplices. Simplices come
in categories: A vertex is a 0-simplex, an edge is a 1-simplex, and a face is a
2-simplex. Simplices contain their boundaries, so a 2-simplex in a mesh contains
its three edges and a 1-simplex contains its two endpoints.

The star of a vertex (see Figure 9.6) is the set of triangles that contain that ver-
tex. More generally, the star of a simplex is the set of all simplices that contain it.

The boundary of the star of a vertex is called the link of the vertex. This is
useful in describing functions like the tent functions above: We can say that the
tent has value 1 at the vertex v, has nonzero values only on the star of v, and is
zero on the link of v.

There’s a notion of “distance” in a mesh based on edge paths between vertices:
The distance from v to w is the smallest number of edges in any chain of edges
from v to w. Thus, all the vertices in the link of v have a mesh distance of one
from v.

The sets of vertices at various distances from v have names as well. The 1-ring
is the set of vertices whose distance from v is one or less; the 2-ring is the set of
vertices whose distance from v is two or less, etc.

9.2.2 Scanline Interpolation

Frequently in graphics we need to compute some value at each point of a triangle;
for example, we often compute an RGB color triple at each vertex of a trian-
gle, and then interpolate the results over the interior (perhaps because doing the

(a) (b) (c)

Figure 9.6: The star of a simplex. (a) The star of a vertex is the set of triangles containing
it, (b) the star of an edge is the two triangles containing it, and (c) the star of a triangle is
the triangle itself.
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computation that produced the RGB triple at the vertices would be prohibitive if
carried out for every interior point).

In the 1980s, when raster graphics (pixel-based graphics) technology was new,
scanline rendering was popular. In scanline rendering, each horizontal line of the
screen was treated individually, and all the triangles that met a line were pro-
cessed to produce a row of pixel values, after which the renderer moved on to the
next line. Usually the new scanline intersected many of the same triangles as the
previous one, and so lots of data reuse was possible. Figure 9.7 shows a typical
situation: At row 3, only the orange pixel meets the triangle; at row 4, the two
blue pixels do. At row 6, the four gray pixels meet the triangle, and after that the
intersecting span begins to shrink.
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Figure 9.7: The processing of
a single triangle by a scanline
renderer.One scheme that was used for interpolating RGB triples was to interpolate the

vertex values along each edge of the triangle, and then to interpolate these across
each scanline.

It’s not difficult to show that this results in the same interpolant as the barycen-
tric method we described (see Exercise 9.4).

But now suppose that we apply this method to a more interesting shape, like
a quadrilateral. It’s easy to see that the two congruent squares in Figure 9.8, with
gray values of 0, 40, 0, and 40 (in a range of 0 to 40) assigned to their vertices in
clockwise order, lead to different interpolated values for the points P and P′, the
first being 20 and the second being 40.

The interpolated values in each configuration look decent, but when one makes
an animation by rotating a shape, the interior coloring or shading seems to “swim”
in a way that’s very distracting.

What went wrong?
The problem was to infer values at the interior points of a polygon, given val-

ues at the vertices. But the solution depends on something unrelated to the prob-
lem, namely the scanlines in the output; this dependence shows up as an artifact
in the results. The difficulty is that the solution is not based on the mathematics
and physics of the problem, but rather on the computational constraints on the
solution. When you limit the class of solutions that you’re willing to examine a
priori, there’s always a chance that the best solution will be excluded. Of course,
sometimes there’s a good reason to constrain the allowable solutions, but in
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4040
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0

P9

Figure 9.8: The congruent squares in these two renderings have the same gray values at
corresponding vertices, but the scanline-interpolated gray values at P and P′ differ.
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doing so, you should be aware of the consequences. We embody these ideas in a
principle:

THE DIVISION OF MODELING PRINCIPLE: Separate the mathematical
and/or physical model of a phenomenon from the numerical model used to
represent it.

Attempting to computationally solve a problem often involves three separate
choices. The first is an understanding of the problem; the second is a choice of
mathematical tools; the third is a choice of computational method. For example,
in trying to model ocean waves, we have to first look at what’s known about them.
There are large rolling waves and there are waves that crest and break. The first
step is to decide which of these we want to simulate. Suppose we choose to sim-
ulate rolling (nonbreaking) waves. Then we can represent the surface of the water
with a function, y = f (t, x, z), expressing the height of the water at the point
(x, z) at time t. Books on oceanography give differential equations describing how
f changes over time. When it comes to solving the differential equation, there
are many possible approaches. Finite-element methods, finite-difference methods,
spectral methods, and many others can be used. If we choose, for example, to
represent f as a sum of products of sines and cosines of x and z, then solving the
differential equations becomes a process of solving systems of equations in the
coefficients in the sums. If we limit our attention to a finite number of terms, then
this problem becomes tractable.

But having made this choice, we can see certain influences: Because there’s
a highest-frequency sine or cosine in our sum, there’s a smallest possible wave-
length that can be represented. If we want our model to contain ripples smaller
than this, the numerical choice prevents it. And if, having solved the problem, we
decide we’d like to make waves that actually crest and break, our mathematical
choice precludes it. We can, of course, add a “breaking wave” adjustment to the
output of our model, altering the shapes of certain wave crests, but it should come
as no surprise that such an ad hoc addition is more likely to produce problems than
good results. Furthermore, it will make debugging of our system almost impos-
sible, because without a clear notion of the “right solution,” it’s very difficult to
detect an error conclusively.

The idea of carefully structuring your models and separating the mathematical
from the numerical is discussed at length by Barzel [Bar92].

9.3 Limitations of Piecewise Linear Extension

The method of extending a function on a triangle mesh from vertices to the inte-
riors of triangles is called piecewise linear extension. By looking at the basis
functions—the tent-shaped graphs—we can see that the graphs of such extensions
will have sharp corners and edges. Depending on the application, these artifacts
may be significant. For instance, if we interpolate gray values across a triangle
mesh, the human eye tends to notice the second-order discontinuities at triangle
edges: When the gray values change linearly across the triangle interiors, things
look fine; when the rate of change changes at a triangle edge, the eye picks it out.
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Some people tend to see “bands” near such discontinuities; the effect is called
Mach banding (see Section 1.7).

If we use piecewise linear interpolation in animation, having computed the
positions of objects at certain “key” times, then between these times objects move
with constant velocities, and hence zero acceleration; all the acceleration is con-
centrated in the key moments. This can be very distracting.

9.3.1 Dependence on Mesh Structure

If we have a polyhedral shape with nontriangular faces, we can triangulate each
face to get a triangle mesh. Then we can, as before, interpolate function values at
the vertices over the triangular faces. But the results of this interpolation can vary
wildly depending on the particular triangulation. It’s easiest to see this with a very
simple example (see Figure 9.9) in which a function defined on the corners of a
square is extended to the interior in two different ways. The results are evidently
triangulation-dependent.

(a)

(b)

(c)

Figure 9.9: (a) A square with
heights assigned at the four cor-
ners; (b) one piecewise linear
interpolation of these values; and
(c) a different interpolation of the
same values.

9.4 Smoother Extensions

As we hinted above, taking function values at the vertices of a mesh and trying
to find smoothly interpolated values over the interior of the mesh is a difficult
task. Part of the difficulty arises in defining what it means to be a smooth function
on a mesh. If the mesh happens to lie in the xy-plane, it’s easy enough: We can
use the ordinary definition of smoothness (existence of various derivatives) on the
plane. But when the mesh is simply a polyhedral surface in 3-space (e.g., like a
dodecahedron), it’s no longer clear how to measure smoothness.

Of course, if we replace the dodecahedron with the sphere that passes through
its vertices, then defining smoothness is once again relatively easy. Each point
of the dodecahedron corresponds to a point on the surrounding sphere (e.g., by
radial projection), and we can declare a function that’s smooth on the sphere to
be smooth on the dodecahedron as well. Unfortunately, finding a smooth shape
that passes through the vertices of a polyhedron is itself an instance of the exten-
sion problem: We have a function (the xyz-coordinates of a point) defined at
each vertex of the mesh; we’d like a function (the xyz-coordinates of the smooth-
surface points) that’s defined on the interiors of triangles. Such a function is what
a solution to the smooth interpolation problem would give us. Thus, in suggest-
ing that we use a smooth approximating shape, we haven’t really simplified the
problem at all.

A partial solution to this is provided by creating a sequence of meshes through
a process called subdivision of the original surface. These subdivided meshes
converge, in the limit, to a fairly smooth surface. We’ll discuss this further in
Chapter 22.

9.4.1 Nonconvex Spaces

The piecewise linear extension technique works when the values at the vertices
are real numbers; it’s easy to extend this to tuples of real numbers (just do the
extension on one coordinate at a time). It’s also easy to apply it to other spaces in
which convex combinations, that is,



ptg11539634

212 Functions on Meshes

(a) (b) (c) (d)

? ?

Figure 9.10: (a) If we take convex combinations of points on a circle in R2, the result is a
point in R2, but it is not generally on the circle; (b) if we radially project back to the circle,
it works better . . . but the value is undefined when the original convex combination falls
at the origin. (c) If we do angular interpolation, the point halfway between 355◦ and 5◦

turns out to be 180◦. (d) If we try angular interpolation along the shortest route, our blend
becomes undefined when the points are opposites.

cifi + cjfj + ckfk, where c1 + c2 + c3 = 1 and c1, c2, c3 ≥ 0, (9.14)

make sense. For example, if you have a 2×2 symmetric matrix associated to each
vertex, you can perform barycentric blending of the matrices, because a convex
combination of symmetric matrices is still a symmetric matrix.

Unfortunately, there are many interesting spaces in which convex combina-
tions either don’t make sense or fail to be defined for certain cases. The exemplar
is the circle S1. If you treat the circle as a subset of R2, then (see Figure 9.10)
forming convex combinations of two points makes sense . . . but the result is a
point in the unit disk D2 ⊂ R2, and generally not a point on S1.

The usual attempt at solving this is to “re-project” back to the circle, replacing
the convex combination point C with C/‖C‖. Unfortunately, this fails when C
turns out to be the origin. The problem is not one that can be solved by any clever
programming trick.

It’s a fairly deep theorem of topology that if

h : D2 → S1 (9.15)

has the property that h(p) = p for all points of S1, then h must be discontinuous
somewhere.

Another possible approach is to treat the values as angles, and just interpolate
them. Doing this directly leads to some oddities, though: Blending some points
in S1 that are very close (like 350◦ and 10◦) yields a point (180◦ in this case)
that’s far from both. Doing so by “interpolating along the shorter arc” addresses
that problem, but it introduces a new one: There are two shortest arcs between
opposite points on the circle, so the answer is not well defined.

Once again, a theorem from topology explains the problem. If we simply con-
sider the problem of finding a halfway point between two others, then we’re seek-
ing a function

H : S1 × S1 → S1 (9.16)

with certain properties. For instance, we want H to be continuous, and we want
H(p, p) = p for every point p ∈ S1, and we want H(p, q) = H(q, p), because “the
halfway point between p and q” should be the same as “the halfway point between
q and p.” It turns out that even these two simple conditions are too much: No such
function exists.



ptg11539634

9.5 Functions Multiply Defined at Vertices 213

The situation is even worse, however: Interpolation between pairs of points,
if it were possible, would let us extend our function’s domain from vertices to
edges of the mesh. Suppose that somehow we were given such an extension;
could we then extend continuously over triangles? Alas, no. The study of when
such extensions exist is a part of homotopy theory, and particularly of obstruction
theory [MS74]. We mention this not because we expect you to learn obstruction
theory, but because we hope that the existence of theorems like the ones above will
dissuade you from trying to find ad hoc methods for extending functions whose
codomains don’t have simple enough topology.

9.4.2 Which Interpolation Method Should I Really Use?

The problem of interpolating over the interior of a triangle applies in many situa-
tions. If we are interpolating a color value, then linear interpolation in some space
where equal color differences correspond to equal representation distances (see
Chapter 28) makes sense. If we are interpolating a unit normal vector value, then
linear interpolation is surely wrong, because the interpolated normal will gener-
ally not end up a unit vector, and if you use it in a computation that relies on unit
normals, you’ll get the wrong answer. And if the value is something discrete, like
an object identifier, then interpolation makes no sense at all.

All of this seems to lead to the answer, “It depends!” That’s true, but there’s
something deeper here:

THE MEANING PRINCIPLE: For every number that appears in a graphics
program, you need to know the semantics, the meaning, of that number.

Sometimes this meaning is given by units (“That number represents speed in
meters per second”); sometimes it helps you place a bound on possible values for
a variable (“This is a solid angle,1 so it should be between 0 and 4π ≈ 12.5”
or “This is a unit normal vector, so its length should be 1.0”); and sometimes
the meaning is discrete (“This represents the number of paths that have ended
at this pixel”). It’s important to distinguish the meaning of the number from its
representation. For instance, we often are interested in the coverage of a pixel
(how much of a small square is covered by some shape) as a number α between
zero and one, but α is sometimes represented as an 8-bit unsigned integer, that is,
an integer between 0 and 255. Despite the discrete nature of the representation, it
makes perfectly good sense to average two coverage values (although representing
the average in the 8-bit form may introduce a roundoff error, of course).

9.5 Functions Multiply Defined at Vertices

Until now, we’ve discussed the very common case of functions that have a single
value at each vertex and need to be interpolated across faces. But another situa-
tion arises frequently in graphics: a function where there’s a value at each vertex
for each triangle that meets that vertex. Consider, for instance, the colored octa-
hedron in Figure 9.11. Each triangle has a color gradient across it, but no two

1. Solid angles are discussed in Chapter 26.
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Figure 9.11: An octahedron on which each face has a different color gradient. At each
vertex of the octahedron, we need to store four different colors, one for each of the faces.

triangles have the same color at each vertex. The way to generate a color function
for this shape is to consider a function defined on a larger domain than the ver-
tices. Consider all vertex-triangle pairs in which the triangle contains the vertex,
that is,

Q = {(v, t) : v ∈ t} ⊂ V×T , (9.17)

where V and T are the sets of vertices and triangles of the mesh, respectively.
Until now, we’ve taken a function defined h in V and extended it to all points of
the mesh. We now instead define a function on Q and extend this to all points
of the mesh. A point in a triangle t with vertices i, j, and k gets its value by a
barycentric interpolation of the values h( i, t), h( j, t), and h(k, t).

This leads to one important problem: A point on the edge (i, j) is a point of
two different triangles. What color should it have? The answer is “It depends.”
From a strictly mathematical standpoint, there’s no single correct answer; there
will be a color associated to the interpolation of colors on one face, and a different
one associated to the interpolation of colors on the other face. Neither is implicitly
“right.” The best we can do is to say that interpolation defines a function on

U = {(P, t) : P ∈ t} ⊂ M×T , (9.18)

where P is a point of the mesh M; that is, for each point P and each triangle t
that contains it, we get a value h(P, t). Since most points are in only one trian-
gle, the second argument is generally redundant. But for those in more than one
triangle, the function value is defined only with reference to the triangle under
consideration.

9.6 Application: Texture Mapping
We mentioned in Chapter 1 that models are often described not only by geometry,
but by textures as well: To each point of an object, we can associate some property
(surface color is a common one), and this property is then used in rendering the
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P

CA

B

Figure 9.12: The point P of the triangle T = �ABC has its color determined by a texture
map. The points A, B, and C have been assigned to points in the checkerboard image, as
shown by the arrows; the point P corresponds to a point in a white square, so its texture
color is white.

object. At a high level, when we are determining the color of a pixel in a rendering
we typically base that computation on information about the underlying object
that appears at that pixel; if it’s a triangle of some mesh, we use, for instance, the
orientation of that triangle in determining how brightly lit the point is by whatever
illumination is in the scene. In some cases, the triangle may have been assigned a
single color (i.e., its appearance under illumination by white light), which we also
use, but in others there may be a color associated to each vertex, as in the previous
section, and we can interpolate to get a color at the point of interest. Very often,
however, the vertices of the triangle are associated to locations in a texture map,
which is typically some n × k image; it’s easy to think of the triangle as having
been stretched and deformed to sit in the image. The color of the point of interest
is then determined by looking at its location in the texture map, as in Figure 9.12,
and finding the color there.

9.6.1 Assignment of Texture Coordinates
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Figure 9.13: Texture-mapping a
globe.

When we say that sometimes the vertices of the triangle are associated to locations
in a texture map, it’s natural to ask, “How did they get associated?” The answer is
“by the person who created the model.” There are some simple models for which
the association is particularly easy. If we start with an n × k grid of triangles as
shown in Figure 9.13, top, with n = 6 and k = 8, we can associate to each vertex
(i, j) of this mesh a point in 3-space by setting

θ = 2πj/(k − 1) (9.19)

φ = φ = −π

2
+ πi/(n− 1) (9.20)

X = cos(θ) cos(φ) (9.21)

Y = sin(φ) (9.22)

Z = sin(θ) cos(φ), (9.23)

that is, letting θ and φ denote longitude and latitude, respectively. The approx-
imately spherical shape that results is shown in the middle. We also have a
100 × 200 texture image of an “unprojected” map of the Earth (the vertical
coordinate is proportional to latitude; the horizontal proportional to longitude).
We assign texture coordinates 100i/(n − 1), 200j/(k − 1) to the vertex at posi-
tion (i, j), and the resultant globe is shown rendered with the texture map at the
bottom.
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In this case, the way we created the mesh made it natural to create the tex-
ture coordinates at the same time. There is one troubling aspect of this approach,
though: The texture coordinates depend on the number of pixels in the image that
we use as our world map. If we created this shape and decided that the result
looked bad, we might want to use a higher-resolution image, but that would entail
changing the texture coordinates as well. Because of this, texture coordinates are
usually specified as numbers between zero and one, representing a fraction of the
way up2 or across the image, so texture coordinates (0. 75, 0. 5) correspond to a
point three-quarters of the way up the texture image (regardless of size) and mid-
way across, left to right.

It’s commonplace to name these texture coordinates u and v so that a typical
vertex now has five attributes: x, y, z, u, and v. Sometimes texture coordinates are
referred to as uv-coordinates.

9.6.2 Details of Texture Mapping

If we have a mesh with texture coordinates assigned at each vertex, how do we
determine the texture coordinates at some location within a triangle? We use the
techniques of this chapter, one coordinate at a time. For instance, we have a
u-coordinate at every vertex; such an assignment of a real value at every vertex
uniquely defines a piecewise linear function at every point of the mesh: If P is a
point of the triangle ABC, and the u-coordinates of A, B, and C are uA, uB, and uC,
we can determine a u-coordinate for P using barycentric coordinates. We write
P in the form

P = αA + βB + γB (9.24)

and then define

u(P) = αuA + βuB + γuC. (9.25)

We can do the same thing for v, and this uniquely determines the uv-coordinates
for P.

If the triangle ABC happens to cover many pixels, we’ll do this computation—
find the barycentric coordinates and use them to combine the texture coordinates
from the vertices—many times. Fortunately, the regularity of pixel spacing makes
this repeated computation particularly easy to do in hardware, as described in
Chapter 38.

9.6.3 Texture-Mapping Problems

If a triangle has texture coordinates that make it cover a large area of the texture
image, but the triangle itself, when rendered, occupies a relatively small portion
of the final image, then each pixel in the final image (thought of as a little square)
corresponds to many pixels in the texture image. Our approach finds a single point
in the texture image for each final image pixel, but perhaps it seems that the right
thing to do would be to blend together many texture image pixels to get a com-
bined result. If we do not do this, we get an effect called texture aliasing, which
we’ll discuss further in Chapters 17, 20 and 38. If we do blend together texture

2. Or down, if the image pixels are indexed from top to bottom, as often happens.
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image pixels for each pixel to be rendered, the texturing process becomes very
slow. One way to address this is through precomputation; we’ll discuss a particu-
lar form of this precomputation, called MIP mapping, in Chapter 20.

9.7 Discussion

The main idea of this chapter is so simple that many graphics researchers tend to
not even notice it: A real-valued function on the vertices of a mesh can be extended
piecewise linearly to a real-valued function on the whole mesh, via the barycentric
coordinates on each triangle. In a triangle with vertices vi, vj, and vk, where the
values are fi, fj, and fk, the value at the point whose barycentric coordinates are
ci, cj, and ck is cifi + cjfj + ckfk. This extension from vertices to interior is so
ingrained that it’s done without mention in countless graphics papers. There are
other possible extensions from values at vertices to values on whole triangles,
some of which are discussed in Chapter 22, but this piecewise linear interpolation
dominates.

This same piecewise linear interpolation method works for functions with
other codomains (e.g., R2 or R3), as long as those codomains support the idea
of a “convex combination.” For domains that do not (like the circle, or the sphere,
or the set of 3×3 rotation matrices) there may be no reasonable way to extend the
function over triangles.

Solving problems like this interpolation from vertices in the abstract helps
avoid implementation-dependent artifacts. If we had studied the problem in the
context of interpolating values represented by 8-bit integers across the interior of
a triangle in a GPU, we might have gotten distracted by the low bit-count repre-
sentation, rather than trying to understand the general problem and then adapt the
solution to our particular constraints. This is another instance of the Approximate
the Solution principle.

One important application of piecewise linear interpolation is texture map-
ping, in which a property of a surface is associated to each vertex, and these prop-
erty values are linearly interpolated over the interiors of triangles. If the property
is “a location in a texture image,” then the interpolated values can be used to add
finely detailed variations in color to the object. Chapter 20 discusses this.

9.8 Exercises

Exercise 9.1: The basis functions we described in this chapter, shown in Fig-
ure 9.4(a), not only correspond to a basis for Rn, they also form a basis of another
vector space—a subspace of the vector space of all continuous functions on the
domain [1, n]. To justify this claim, show that these functions are in fact linearly
independent as functions.

Exercise 9.2: (a) Draw a tetrahedron; pick a vertex and draw its link and its
star. Suppose v and w are distinct vertices of the tetrahedron. What is the intersec-
tion of the star of v and the star of w?
(b) Draw an octahedron, and answer the same question when v is the top vertex
and w is the bottom one.

Exercise 9.3: Think about a mesh that contains vertices, edges, triangles, and
tetrahedra. You could call this a solid mesh rather than a surface mesh. Consider a
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nonboundary vertex of such a mesh. What is the topology of the star of the vertex?
What is the topology of the link of the vertex?

Exercise 9.4: Show that the interpolation of values across a triangle using
the scanline method is the same as the one defined using the barycentric method.
Hint: Show that if the triangle is in the xy-plane, then each of the methods defines
a function of the form f (x, y) = Ax + By + C. Now suppose you have two such
functions with the same values at the three vertices of a triangle. Explain why they
must take the same values at all interior points as well.

Exercise 9.5: The function H of Equation 9.16 cannot exist; here’s a reason
why. Suppose that it did. Define a new function

K : [0, 2π]× [0, 2π]→ [0, 2π] : (θ,φ) 
→ H(θ,φ), (9.26)

where we’re implicitly using the correspondence of the number θ in the interval
[0, 2π] with the point (cos θ, sin θ) of S1. Now consider the loop in the domain of
K consisting of three straight lines, from (0, 0) to (2π, 0), from (2π, 0) to (2π, 2π),
and from (2π, 2π) back to (0, 0).
(a) Draw this path.
(b) For each point p of this path, K(p) is an element of S1. Restricting K to this
path gives a map from the path to S1 ⊂ R2. We can compute the winding number
of this path about the origin in R2. Explain, using the assumed properties of H,
why the winding numbers of the first two parts of the path must be equal.
(c) Explain why the winding number of the last part must be one.
(d) Conclude that the total winding number must be odd.
(e) Now consider shrinking the triangular loop toward the center of the triangle.
The winding number will be a continuous integer-valued function of the triangle
size. Explain why this means the winding number must be constant.
(f) When the triangle has shrunk to a single point, explain why the winding number
must be zero.
(g) Explain why this is a contradiction.

Exercise 9.6: Use the 2D test bed to create a program to experiment with
texture mapping. Display, on the left, a 100 × 100 checkerboard image, with
10 × 10 squares. Atop this, draw a triangle whose vertices are draggable. On
the right, draw a fixed equilateral triangle above a 100 × 100 grid of tiny squares
(representing display pixels). For each of these display pixels, compute and store
the barycentric coordinates of its center (with respect to the equilateral triangle).
Using the locations of the three draggable vertices in the checkerboard as texture
coordinates, compute, for each display pixel within the equilateral triangle, the
uv-coordinates of the pixel center, and then use these uv-coordinates to determine
the pixel color from the checkerboard texture image (see Figure 9.14). Experiment
with mapping the equilateral triangle to a tiny triangle in the texture image, and
to a large one; experiment with mapping it to a tall and narrow triangle. What
problems do you observe?

Exercise 9.7: Suppose that you have a polyline in the plane with vertices
P0, P1, . . . , Pn and you want to “resample” it, placing multiple points on each
edge, equally spaced, for a total of k + 1 points Q0 = P0, . . . , Qk = Pn.
(a) Write a program to do this: First compute the total length L of the polyline,
then place the Qs along the polyline so that they’re separated by L/k. This will
require special handling at each vertex of the original polyline.
(b) When you’re done, you’ll notice that if n and k are nearly equal, many “cor-
ners” tend to get cut off the original polyline. It’s natural to say, “I want equally
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Figure 9.14: A screen capture for the texture-mapping program of Exercise 9.6, showing
the texture on the left, a large triangle, and the locations of the triangle’s vertices in texture
coordinates atop the texture. The resultant texturing on the triangle’s interior is shown on
the right.

spaced points, but I want them to include all the original points!” That’s gener-
ally not possible, but we can come close. Suppose that the shortest edge of the
original polygon has length s. Show that you can place approximately L/s points
Q0, Q1, . . . on the original polyline, including all the points P0, . . . , Pn, with the
property that the ratio of the greatest gap between adjacent points and the smallest
gap is no more than 2.
(c) Suppose you let yourself place CL/s points with the same constraints as in
the previous part, for some C greater than one. Estimate the max-min gap ratio in
terms of C.

Exercise 9.8: Consider the interval [p, q] where p �= q. If we define α(x) =
x−p
q−p and β(x) = x−q

p−q , then α and β are called the barycentric coordinates of x.
(a) Show that for x ∈ [p, q], both α(x) and β(x) are between 0 and 1.
(b) Show that α(x) + β(x) = 1.

(c) Clearly α and β can be defined on the rest of the real line, and these defi-
nitions depend on p and q; if we call them αpq and βpq, then we can, for another
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interval [p′, q′], define corresponding barycentric coordinates. How are αpq(x) and
αp′,q′(x) related?

Exercise 9.9: Suppose you have a nondegenerate triangle in 3-space with ver-
tices P0, P1, and P2 so that v1 = P1 − P0 and v2 = P2 − P0 are nonzero and
nonparallel. Further, suppose that we have values f0, f1, f2 ∈ R associated with the
three vertices. Barycentric interpolation of these values over the triangle defines a
function that can be written in the form

f (P) = f0 + (P− P0) · w (9.27)

for some vector w. We’ll see this in two steps: First, we’ll compute a possible
value for w, and then we’ll show that if it has this value, f actually matches the
given values at the vertices.
(a) Show that the vector w must satisfy vi ·w = fi− f0 for i = 1, 2 for the function
defined by Equation 9.27 to satisfy f (P1) = f1 and f (P2) = f2.
(b) Let S be the matrix whose columns are the vectors v1 and v2. Show that the
conditions of part (a) can be rewritten in the form

STw =

[
f1 − f0
f2 − f0

]
, (9.28)

and that therefore w must also satisfy

SSTw = S
[

f1 − f0
f2 − f0

]
. (9.29)

(c) Explain why SST must be invertible.

(d) Conclude that w = (SST)−1S
[

f1 − f0
f2 − f0

]
.

(e) Verify that if we use this formula for w, then f (Pi) = fi for i = 0, 1, 2.
(f) Suppose that w′ = w + αn, where n = v1 × v2 is the normal vector to the
triangle. Show that we can replace w with w′ in the formula for f and still have
f (Pi) = fi for i = 0, 1, 2.
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Transformations in
Two Dimensions

10.1 Introduction

As you saw in Chapters 2 and 6, when we think about taking an object for which
we have a geometric model and putting it in a scene, we typically need to do three
things: Move the object to some location, scale it up or down so that it fits well
with the other objects in the scene, and rotate it until it has the right orientation.
These operations—translation, scaling, and rotation—are part of every graphics
system. Both scaling and rotation are linear transformations on the coordinates
of the object’s points. Recall that a linear transformation,

T : R2 → R2, (10.1)

is one for which T(v + αw) = T(v) + αT(w) for any two vectors v and w in R2,
and any real number α. Intuitively, it’s a transformation that preserves lines and
leaves the origin unmoved.

Inline Exercise 10.1: Suppose T is linear. Insert α = 1 in the definition of
linearity. What does it say? Insert v = 0 in the definition. What does it say?

Inline Exercise 10.2: When we say that a linear transformation “preserves
lines,” we mean that if � is a line, then the set of points T(�) must also lie in
some line. You might expect that we’d require that T(�) actually be a line, but
that would mean that transformations like “project everything perpendicularly
onto the x-axis” would not be counted as “linear.” For this particular projection
transformation, describe a line � such that T(�) is contained in a line, but is not
itself a line.

221
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The definition of linearity guarantees that for any linear transformation T , we
have T(0) = 0: If we choose v = w = 0 and α = 1, the definition tells us that

T(0) = T(0 + 10) = T(0) + 1T(0) = T(0) + T(0). (10.2)

Subtracting T(0) from the first and last parts of this chain gives us 0 = T(0). This
means that translation—moving every point of the plane by the same amount—
is, in general, not a linear transformation except in the special case of translation
by zero, in which all points are left where they are. Shortly we’ll describe a trick
for putting the Euclidean plane into R3 (but not as the z = 0 plane as is usually
done); once we do this, we’ll see that certain linear transformations on R3 end up
performing translations on this embedded plane.

For now, let’s look at only the plane. We assume that you have some famil-
iarity with linear transformations already; indeed, the serious student of computer
graphics should, at some point, study linear algebra carefully. But one can learn a
great deal about graphics with only a modest amount of knowledge of the subject,
which we summarize here briefly.

In the first few sections, we use the convention of most linear-algebra texts:

The vectors are arrows at the origin, and we think of the vector

[
u
v

]
as being

identified with the point (u, v). Later we’ll return to the point-vector distinction.
For any 2× 2 matrix M, the function v 
→Mv is a linear transformation from

R2 to R2. We refer to this as a matrix transformation. In this chapter, we look
at five such transformations in detail, study matrix transformations in general, and
introduce a method for incorporating translation into the matrix-transformation
formulation. We then apply these ideas to transforming objects and changing coor-
dinate systems, returning to the clock example of Chapter 2 to see the ideas in
practice.

10.2 Five Examples

We begin with five examples of linear transformations in the plane; we’ll refer to
these by the names T1, . . . , T5 throughout the chapter.

Example 1: Rotation. Let M1 =

[
cos 30◦ − sin 30◦

sin 30◦ cos 30◦

]
and

T1 : R2 → R2 :

[
x
y

]

→M1

[
x
y

]
=

[
cos 30◦ − sin 30◦

sin 30◦ cos 30◦

] [
x
y

]
. (10.3)

Recall that e1 denotes the vector

[
1
0

]
and e2 =

[
0
1

]
; this transformation sends

e1 to the vector

[
cos 30◦

sin 30◦

]
and e2 to

[− sin 30◦

cos 30◦

]
, which are vectors that are 30◦

counterclockwise from the x- and y-axes, respectively (see Figure 10.1).

Before

y

x

After

x

y

Figure 10.1: Rotation by 30◦.

There’s nothing special about the number 30 in this example; by replacing 30◦

with any angle, you can build a transformation that rotates things counterclock-
wise by that angle.
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Inline Exercise 10.3: Write down the matrix transformation that rotates every-
thing in the plane by 180◦ counterclockwise. Actually compute the sines and
cosines so that you end up with a matrix filled with numbers in your answer.
Apply this transformation to the corners of the unit square, (0, 0), (1, 0), (0, 1),
and (1, 1).

Example 2: Nonuniform scaling. Let M2 =

[
3 0
0 2

]
and

T2 : R2 → R2 :

[
x
y

]

→M2

[
x
y

]
=

[
3 0
0 2

] [
x
y

]
=

[
3x
2y

]
. (10.4)

This transformation stretches everything by a factor of three in the x-direction
and a factor of two in the y-direction, as shown in Figure 10.2. If both stretch
factors were three, we’d say that the transformation “scaled things up by three”
and is a uniform scaling transformation. T2 represents a generalization of this
idea: Rather than scaling uniformly in each direction, it’s called a nonuniform
scaling transformation or, less formally, a nonuniform scale.

Before

y

x

After

x

y

Figure 10.2: T2 stretches the
x-axis by three and the y-axis
by two.

Once again the example generalizes: By placing numbers other than 2 and 3
along the diagonal of the matrix, we can scale each axis by any amount we please.
These scaling amounts can include zero and negative numbers.

Inline Exercise 10.4: Write down the matrix for a uniform scale by −1. How
does your answer relate to your answer to inline Exercise 10.3? Can you
explain?

Inline Exercise 10.5: Write down a transformation matrix that scales in x by
zero and in y by 1. Informally describe what the associated transformation does
to the house.

Example 3: Shearing. Let M3 =

[
1 2
0 1

]
and

T3 : R2 → R2 :

[
x
y

]

→M3

[
x
y

]
=

[
1 2
0 1

] [
x
y

]
=

[
x + 2y

y

]
. (10.5)

As Figure 10.3 shows, T3 preserves height along the y-axis but moves points
parallel to the x-axis, with the amount of movement determined by the y-value.
The x-axis itself remains fixed. Such a transformation is called a shearing trans-
formation.

Before

y

x

After

x

y

Figure 10.3: A shearing transfor-
mation, T3.

Inline Exercise 10.6: Generalize to build a transformation that keeps the y-axis
fixed but shears vertically instead of horizontally.

Example 4: A general transformation. Let M4 =

[
1 −1
2 2

]
and

T4 : R2 → R2 :

[
x
y

]

→M4

[
x
y

]
=

[
1 −1
2 2

] [
x
y

]
. (10.6)
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Figure 10.4 shows the effects of T4. It distorts the house figure, but not by just a
rotation or scaling or shearing along the coordinate axes.

Example 5: A degenerate (or singular) transformation Let

T5 : R2 → R2 :

[
x
y

]

→
[

1 −1
2 −2

] [
x
y

]
=

[
x− y

2x− 2y

]
. (10.7)

Figure 10.5 shows why we call this transformation degenerate: Unlike the
others, it collapses the whole two-dimensional plane down to a one-dimensional
subspace, a line. There’s no longer a nice correspondence between points in the
domain and points in the codomain: Certain points in the codomain no longer
correspond to any point in the domain; others correspond to many points in the
domain. Such a transformation is also called singular, as is the matrix defining it.
Those familiar with linear algebra will note that this is equivalent to saying that

the determinant of M5 =

[
1 −1
2 −2

]
is zero, or saying that its columns are linearly

dependent.

Before

y

x

After

x

y

Figure 10.4: A general transfor-
mation. The house has been quite
distorted, in a way that’s hard to
describe simply, as we’ve done
for the earlier examples.

10.3 Important Facts about Transformations

Here we’ll describe several properties of linear transformations from R2 to R2.
These properties are important in part because they all generalize: They apply
(in some form) to transformations from Rn to Rk for any n and k. We’ll mostly be
concerned with values of n and k between 1 and 4; in this section, we’ll concentrate
on n = k = 2.

Before

y

x

After

x

y

Figure 10.5: A degenerate trans-
formation, T5.

10.3.1 Multiplication by a Matrix Is a Linear
Transformation

If M is a 2× 2 matrix, then the function TM defined by

TM : R2 → R2 : x 
→Mx (10.8)

is linear. All five examples above demonstrate this.
For nondegenerate transformations, lines are sent to lines, as T1 through T4

show. For degenerate ones, a line may be sent to a single point. For instance, T5

sends the line consisting of all vectors of the form

[
b
b

]
to the zero vector.

Because multiplication by a matrix M is always a linear transformation, we’ll
call TM the transformation associated to the matrix M.

10.3.2 Multiplication by a Matrix Is the Only Linear
Transformation

In Rn, it turns out that for every linear transform T , there’s a matrix M with
T(x) = Mx, which means that every linear transformation is a matrix transfor-
mation. We’ll see in Section 10.3.5 how to find M, given T , even if T is expressed
in some other way. This will show that the matrix M is completely determined
by the transformation T , and we can thus call it the matrix associated to the
transformation.
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As a special example, the matrix I, with ones on the diagonal and zeroes off
the diagonal, is called the identity matrix; the associated transformation

T(x) = Ix (10.9)

is special: It’s the identity transformation that leaves every vector x unchanged.

Inline Exercise 10.7: There is an identity matrix of every size: a 1×1 identity,
a 2× 2 identity, etc. Write out the first three.

10.3.3 Function Composition and Matrix Multiplication
Are Related

If M and K are 2×2 matrices, then they define transformations TM and TK. When
we compose these, we get the transformation

TM ◦ TK : R2 → R2 : x 
→ TM(TK(x)) = TM(Kx) (10.10)

= M(Kx) (10.11)

= (MK)x (10.12)

= TMK(x). (10.13)

In other words, the composed transformation is also a matrix transformation,
with matrix MK. Note that when we write TM(TK(x)), the transformation TK is
applied first. So, for example, if we look at the transformation T2◦T3, it first shears
the house and then scales the result nonuniformly.

Inline Exercise 10.8: Describe the appearance of the house after transforming
it by T1 ◦ T2 and after transforming it by T2 ◦ T1.

10.3.4 Matrix Inverse and Inverse Functions Are Related

A matrix M is invertible if there’s a matrix B with the property that BM =
MB = I. If such a matrix exists, it’s denoted M−1.

If M is invertible and S(x) = M−1x, then S is the inverse function of TM,
that is,

S(TM(x)) = x and (10.14)

TM(S(x)) = x. (10.15)

Inline Exercise 10.9: Using Equation 10.13, explain why Equation 10.15
holds.

If M is not invertible, then TM has no inverse.
Let’s look at our examples. The matrix for T1 has an inverse: Simply replace

30 by−30 in all the entries. The resultant transformation rotates clockwise by 30◦;
performing one rotation and then the other effectively does nothing (i.e., it is the
identity transformation). The inverse for the matrix for T2 is diagonal, with entries
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1
3 and 1

2 . The inverse of the matrix for T3 is

[
1 −2
0 1

]
(note the negative sign).

The associated transformation also shears parallel to the x-axis, but vectors in
the upper half-plane are moved to the left, which undoes the moving to the right
done by T3.

For these first three it was fairly easy to guess the inverse matrices, because
we could understand how to invert the transformation. The inverse of the matrix
for T4 is

1
4

[
2 1
−2 1

]
, (10.16)

which we computed using a general rule for inverses of 2 × 2 matrices (the only
such rule worth memorizing):[

a b
c d

]−1

=
1

ad − bc

[
d −b
−c a

]
. (10.17)

Finally, for T5, the matrix has no inverse; if it did, the function T5 would be
invertible: It would be possible to identify, for each point in the codomain, a single
point in the domain that’s sent there. But we’ve already seen this isn’t possible.

Inline Exercise 10.10: Apply the formula from Equation 10.17 to the matrix
for T5 to attempt to compute its inverse. What goes wrong?

10.3.5 Finding the Matrix for a Transformation

We’ve said that every linear transformation really is just multiplication by some
matrix, but how do we find that matrix? Suppose, for instance, that we’d like to find
a linear transformation to flip our house across the y-axis so that the house ends
up on the left side of the y-axis. (Perhaps you can guess the transformation that
does this, and the associated matrix, but we’ll work through the problem directly.)

The key idea is this: If we know where the transformation sends e1 and e2, we
know the matrix. Why? We know that the transformation must have the form

T

[
x
y

]
=

[
a b
c d

] [
x
y

]
; (10.18)

we just don’t know the values of a, b, c, and d. Well, T(e1) is then

T

[
1
0

]
=

[
a b
c d

] [
1
0

]
=

[
a
c

]
. (10.19)

Similarly, T(e2) is the vector

[
b
d

]
. So knowing T(e1) and T(e2) tells us all the

matrix entries. Applying this to the problem of flipping the house, we know that
T(e1) = −e1, because we want a point on the positive x-axis to be sent to the
corresponding point on the negative x-axis, so a = −1 and c = 0. On the other
hand, T(e2) = e2, because every vector on the y-axis should be left untouched, so
b = 0 and d = 1. Thus, the matrix for the house-flip transformation is just[−1 0

0 1

]
. (10.20)
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u2 e2

u1
e1

v1

v2

Mx x
x Kx

x

x

KM21x

M21x

Figure 10.6: Multiplication by the matrix M takes e1 and e2 to u1 and u2, respectively,
so multiplying M−1 does the opposite. Multiplying by K takes e1 and e2 to v1 and v2, so
multiplying first by M−1 and then by K, that is, multiplying by KM−1, takes u1 to e1 to v1,
and similarly for u2.

Inline Exercise 10.11: (a) Find a matrix transformation sending e1 to

[
0
4

]
and

e2 to

[
1
1

]
.

(b) Use the relationship of matrix inverse to the inverse of a transform, and the

formula for the inverse of a 2× 2 matrix, to find a transformation sending

[
0
4

]
to e1 and

[
1
1

]
to e2 as well.

As Inline Exercise 10.11 shows, we now have the tools to send the standard
basis vectors e1 and e2 to any two vectors v1 and v2, and vice versa (provided
that v1 and v2 are independent, that is, neither is a multiple of the other). We can
combine this with the idea that composition of linear transformations (performing
one after the other) corresponds to multiplication of matrices and thus create a
solution to a rather general problem.

Problem: Given independent vectors u1 and u2 and any two vectors v1 and
v2, find a linear transformation, in matrix form, that sends u1 to v1 and u2 to v2.

Solution: Let M be the matrix whose columns are u1 and u2. Then

T : R2 → R2 : x 
→Mx (10.21)

sends e1 to u1 and e2 to u2 (see Figure 10.6). Therefore,

S : R2 → R2 : x 
→M−1x (10.22)

sends u1 to e1 and u2 to e2.
Now let K be the matrix with columns v1 and v2. The transformation

R : R2 → R2 : x 
→ Kx (10.23)

sends e1 to v1 and e2 to v2.
If we apply first S and then R to u1, it will be sent to e1 (by S), and thence to

v1 by R; a similar argument applies to u2. Writing this in equations,

R(S(x)) = R(M−1x) (10.24)

= K(M−1x) (10.25)

= (KM−1)x. (10.26)
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Thus, the matrix for the transformation sending the u’s to the v’s is just KM−1.
Let’s make this concrete with an example. We’ll find a matrix sending

u1 =

[
2
3

]
and u2 =

[
1
−1

]
(10.27)

to

v1 =

[
1
1

]
and v2 =

[
2
−1

]
, (10.28)

respectively. Following the pattern above, the matrices M and K are

M =

[
2 1
3 −1

]
(10.29)

K =

[
1 2
1 −1

]
. (10.30)

Using the matrix inversion formula (Equation 10.17), we find

M−1 =
−1
5

[−1 −1
−3 2

]
(10.31)

so that the matrix for the overall transformation is

J = KM−1 =

[
1 2
1 −1

]
· −1

5

[−1 −1
−3 2

]
(10.32)

=

[
7/5 −3/5
−2/5 3/5

]
. (10.33)

As you may have guessed, the kinds of transformations we used in WPF in
Chapter 2 are internally represented as matrix transformations, and transformation
groups are represented by sets of matrices that are multiplied together to generate
the effect of the group.

Inline Exercise 10.12: Verify that the transformation associated to the matrix
J in Equation 10.32 really does send u1 to v1 and u2 to v2.

Inline Exercise 10.13: Let u1 =

[
1
3

]
and u2 =

[
1
4

]
; pick any two nonzero

vectors you like as v1 and v2, and find the matrix transformation that sends
each ui to the corresponding vi.

The recipe above for building matrix transformations shows the following:
Every linear transformation from R2 to R2 is determined by its values on two
independent vectors. In fact, this is a far more general property: Any linear trans-
formation from R2 to Rk is determined by its values on two independent vectors,
and indeed, any linear transformation from Rn to Rk is determined by its values
on n independent vectors (where to make sense of these, we need to extend our
definition of “independence” to more than two vectors, which we’ll do presently).
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10.3.6 Transformations and Coordinate Systems

We tend to think about linear transformations as moving points around, but leaving
the origin fixed; we’ll often use them that way. Equally important, however, is their
use in changing coordinate systems. If we have two coordinate systems on R2 with
the same origin, as in Figure 10.7, then every arrow has coordinates in both the
red and the blue systems. The two red coordinates can be written as a vector, as

can the two blue coordinates. The vector u, for instance, has coordinates

[
3
2

]
in

the red system and approximately

[−0.2
3.6

]
in the blue system.

s

r
u

Figure 10.7: Two different coor-
dinate systems for R2; the vector
u, expressed in the red coor-
dinate system, has coordinates
3 and 2, indicated by the dot-
ted lines, while the coordinates
in the blue coordinate system
are approximately −0.2 and 3.6,
where we’ve drawn, in each case,
the positive side of the first coor-
dinate axis in bold.

Inline Exercise 10.14: Use a ruler to find the coordinates of r and s in each of
the two coordinate systems.

We could tabulate every imaginable arrow’s coordinates in the red and blue
systems to convert from red to blue coordinates. But there is a far simpler way to
achieve the same result. The conversion from red coordinates to blue coordinates
is linear and can be expressed by a matrix transformation. In this example, the
matrix is

M =
1
2

[
1 −√3√
3 1

]
. (10.34)

Multiplying M by the coordinates of u in the red system gets us

v = Mu (10.35)

=
1
2

[
1 −√3√
3 1

] [
3
2

]
(10.36)

=
1
2

[
3− 2

√
3

3
√

3 + 2

]
(10.37)

≈
[−0.2

3.6

]
, (10.38)

which is the coordinate vector for u in the blue system.

Inline Exercise 10.15: Confirm, for each of the other arrows in Figure 10.7,
that the same transformation converts red to blue coordinates.

By the way, when creating this example we computed M just as we did at the
start of the preceding section: We found the blue coordinates of each of the two
basis vectors for the red coordinate system, and used these as the columns of M.

In the special case where we want to go from the usual coordinates on a vector
to its coordinates in some coordinate system with basis vectors u1, u2, which are
unit vectors and mutually perpendicular, the transformation matrix is one whose
rows are the transposes of u1 and u2.

For example, if u1 =

[
3/5
4/5

]
and u2 =

[−4/5
3/5

]
(check for yourself that

these are unit length and perpendicular), then the vector v =

[
4
2

]
, expressed in

u-coordinates, is
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[
3/5 4/5
−4/5 3/5

] [
4
2

]
=

[
4
−2

]
. (10.39)

Verify for yourself that these really are the u-coordinates of v, that is, that the
vector v really is the same as 4u1 + (−2)u2.

10.3.7 Matrix Properties and the Singular Value
Decomposition

Because matrices are so closely tied to linear transformations, and because lin-
ear transformations are so important in graphics, we’ll now briefly discuss some
important properties of matrices.

First, diagonal matrices—ones with zeroes everywhere except on the diag-
onal, like the matrix M2 for the transformation T2—correspond to remarkably
simple transformations: They just scale up or down each axis by some amount
(although if the amount is a negative number, the corresponding axis is also
flipped). Because of this simplicity, we’ll try to understand other transformations
in terms of these diagonal matrices.

Second, if the columns of the matrix M are v1, v2, . . . , vk ∈ Rn, and they are
pairwise orthogonal unit vectors, then MTM = Ik, the k × k identity matrix.

In the special case where k = n, such a matrix is called orthogonal. If the
determinant of the matrix is 1, then the matrix is said to be a special orthogonal
matrix. In R2, such a matrix must be a rotation matrix like the one in T1; in R3, the
transformation associated to such a matrix corresponds to rotation around some
vector by some amount.1

Less familiar to most students, but of enormous importance in much graph-
ics research, is the singular value decomposition (SVD) of a matrix. Its exis-
tence says, informally, that if we have a transformation T represented by a matrix
M, and if we’re willing to use new coordinate systems on both the domain and
codomain, then the transformation simply looks like a nonuniform (or possibly
uniform) scaling transformation. We’ll briefly discuss this idea here, along with
the application of the SVD to solving equations; the web materials for this chapter
show the SVD for our example transformations and some further applications of
the SVD.

The singular value decomposition theorem says this:
Every n× k matrix M can be factored in the form

M = UDVT, (10.40)

where U is n × r (where r = min(n, k)) with orthonormal columns, D is r × r
diagonal (i.e., only entries of the form dii can be nonzero), and V is r × k with
orthonormal columns (see Figure 10.8).

By convention, the entries of D are required to be in nonincreasing order (i.e.,
|d1,1| ≥ |d2,2| ≥ |d3,3| . . .) and are indicated by single subscripts (i.e., we write
d1 instead of d1,1). They are called the singular values of M. It turns out that
M is degenerate (i.e., singular) exactly if any singular value is 0. As a general

1. As we mentioned in Chapter 3, rotation about a vector in R3 is better expressed as
rotation in a plane, so instead of speaking about rotation about z, we speak of rotation
in the xy-plane. We can then say that any special orthogonal matrix in R4 corresponds
to a sequence of two rotations in two planes in 4-space.
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M U

(a) (b)

D Vt=

=

M U D Vt=

=

Figure 10.8: (a) An n × k matrix, with n > k, factors as a product of an n × n matrix with
orthonormal columns (indicated by the vertical stripes on the first rectangle), a diagonal
k×k matrix, and a k×k matrix with orthonormal rows (indicated by the horizontal stripes),
which we write as UDVT, where U and V have orthonormal columns. (b) An n × k matrix
with n < k is written as a similar product; note that the diagonal matrix in both cases is
square, and its size is the smaller of n and k.

guideline, if the ratio of the largest to the smallest singular values is very large
(say, 106), then numerical computations with the matrix are likely to be unstable.

Inline Exercise 10.16: The singular value decomposition is not unique. If we
negate the first row of VT and the first column of U in the SVD of a matrix M,
show that the result is still an SVD for M.

In the special case where n = k (the one we most often encounter), the matri-
ces U and V are both square and represent change-of-coordinate transformations
in the domain and codomain. Thus, we can see the transformation

T(x) = Mx (10.41)

as a sequence of three steps: (1) Multiplication by VT converts x to v-coordinates;
(2) multiplication by D amounts to a possibly nonuniform scaling along each
axis; and (3) multiplication by U treats the resultant entries as coordinates in the
u-coordinate system, which then are transformed back to standard coordinates.

10.3.8 Computing the SVD

How do we find U, D, and V? In general it’s relatively difficult, and we rely on
numerical linear algebra packages to do it for us. Furthermore, the results are by no
means unique: A single matrix may have multiple singular value decompositions.
For instance, if S is any n× n matrix with orthonormal columns, then

I = SIST (10.42)

is one possible singular value decomposition of the identity matrix. Even though
there are many possible SVDs, the singular values are the same for all decompo-
sitions.

The rank of the matrix M, which is defined as the number of linearly inde-
pendent columns, turns out to be exactly the number of nonzero singular values.

10.3.9 The SVD and Pseudoinverses

Again, in the special case where n = k so that U and V are square, it’s easy to
compute M−1 if you know the SVD:

M−1 = VD−1UT, (10.43)
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where D−1 is easy to compute—you simply invert all the elements of the diagonal.
If one of these elements is zero, the matrix is singular and no such inverse exists;
in this case, the pseudoinverse is also often useful. It’s defined as

M† = VD†UT, (10.44)

where D† is just D with every nonzero entry inverted (i.e., you try to invert the
diagonal matrix D by inverting diagonal elements, and every time you encounter
a zero on the diagonal, you ignore it and simply write down 0 in the answer). The
definition of the pseudoinverse makes sense even when n �= k; the pseudoinverse
can be used to solve “least squares” problems, which frequently arise in graphics.

The Pseudoinverse Theorem:

(a) If M is an n× k matrix with n > k, the equation Mx = b generally represents
an overdetermined system of equations2 which may have no solution. The vector

x0 = M†b (10.45)

represents an optimal “solution” to this system, in the sense that Mx0 is as close
to b as possible.

(b) If M is an n × k matrix with n < k, and rank n, the equation Mx = b
represents an underdetermined system of equations.3 The vector

x0 = M†b (10.46)

represents an optimal solution to this system, in the sense that x0 is the shortest
vector satisfying Mx = b.

Here are examples of each of these cases.

Example 1: An overdetermined system

(4, 3)

2
1

Figure 10.9: The equations

t

[
2
1

]
=

[
4
3

]
have no common

solution. But the multiples of the
vector [2 1]T form a line in the
plane that passes by the point
(4, 3), and there’s a point of this
line (shown in a red circle on the
topmost arrow) that’s as close to
(4, 3) as possible.

The system [
2
1

] [
t
]
=

[
4
3

]
(10.47)

has no solution: There’s simply no number t with 2t = 4 and 1t = 3 (see Fig-

ure 10.9). But among all the multiples of M =

[
2
1

]
, there is one that’s closest to

the vector b =

[
4
3

]
, namely 2.2

[
2
1

]
=

[
4. 4
2.2

]
, as you can discover with elemen-

tary geometry. The theorem tells us we can compute this directly, however, using
the pseudoinverse. The SVD and pseudoinverse of M are

M = UDVT = (
1√
5

[
2
1

]
)
[√

5
] [

1
]

(10.48)

M† = VD†U =
[
1
] [

1/
√

5
]
(

1√
5

[
2 1

]
) (10.49)

=
[
0.4 0.2

]
. (10.50)

2. In other words, a situation like “five equations in three unknowns.”
3. That is, a situation like “three equations in five unknowns.”
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And the solution guaranteed by the theorem is

t = M†b =
[
0.4 0.2

] [4
3

]
= 2.2. (10.51)

Example 2: An underdetermined system

The system

[
1 3

] [x
y

]
= 4 (10.52)

has a great many solutions; any point (x, y) on the line x + 3y = 4 is a solution
(see Figure 10.10). The solution that’s closest to the origin is the point on the line
x + 3y = 4 that’s as near to (0, 0) as possible, which turns out to be x = 0.4; y =
1.2. In this case, the matrix M is

[
1 3

]
; its SVD and pseudoinverse are simply

M = UDVT =
[
1
] [√

10
] [

1/
√

10 3/
√

10
]

and (10.53)

M† = VD†U =

[
1/
√

10
3/
√

10

] [
1/
√

10
] [

1
]
=

[
1/10
3/10

]
. (10.54)

And the solution guaranteed by the theorem is

M†b =

[
1/10
3/10

] [
4
]
=

[
0.4
1.2

]
. (10.55)

x + 3y = 4

x = 4

y = 3/4

Figure 10.10: Any point of the
blue line is a solution; the red
point is closest to the origin.

Of course, this kind of computation is much more interesting in the case where
the matrices are much larger, but all the essential characteristics are present even
in these simple examples.

A particularly interesting example arises when we have, for instance, two
polyhedral models (consisting of perhaps hundreds of vertices joined by trian-
gular faces) that might be “essentially identical”: One might be just a translated,
rotated, and scaled version of the other. In Section 10.4, we’ll see how to represent
translation along with rotation and scaling in terms of matrix multiplication. We
can determine whether the two models are in fact essentially identical by listing
the coordinates of the first in the columns of a matrix V and the coordinates of the
second in a matrix W, and then seeking a matrix A with

AV = W. (10.56)

This amounts to solving the “overconstrained system” problem; we find that A =
V†W is the best possible solution. If, having computed A, we find that

AV = W, (10.57)

then the models are essentially identical; if the left and right sides differ, then the
models are not essentially identical. (This entire approach depends, of course, on
corresponding vertices of the two models being listed in the corresponding order;
the more general problem is a lot more difficult.)

10.4 Translation

We now describe a way to apply linear transformations to generate translations,
and at the same time give a nice model for the points-versus-vectors ideas we’ve
espoused so far.
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The idea is this: As our Euclidean plane (our set of points), we’ll take the plane
w = 1 in xyw-space (see Figure 10.11). The use of w here is in preparation for
what we’ll do in 3-space, which is to consider the three-dimensional set defined
by w = 1 in xyzw-space.

Having done this, we can consider transformations that multiply such vectors
by a 3 × 3 matrix M. The only problem is that the result of such a multiplication
may not have a 1 as its last entry. We can restrict our attention to those that do:⎡

⎣a b c
d e f
p q r

⎤
⎦
⎡
⎣x

y
1

⎤
⎦ =

⎡
⎣x′

y′

1

⎤
⎦ . (10.58)

For this equation to hold for every x and y, we must have px + qy + r = 1 for all
x, y. This forces p = q = 0 and r = 1.

y
x

w

Figure 10.11: The w = 1 plane in
xyw-space.

Thus, we’ll consider transformations of the form⎡
⎣a b c

d e f
0 0 1

⎤
⎦
⎡
⎣x

y
1

⎤
⎦ =

⎡
⎣x′

y′

1

⎤
⎦ . (10.59)

If we examine the special case where the upper-left corner is a 2 × 2 identity
matrix, we get ⎡

⎣1 0 c
0 1 f
0 0 1

⎤
⎦
⎡
⎣x

y
1

⎤
⎦ =

⎡
⎣x + c

y + f
1

⎤
⎦ . (10.60)

As long as we pay attention only to the x- and y-coordinates, this looks like a
translation! We’ve added c to each x-coordinate and f to each y-coordinate (see
Figure 10.12). Transformations like this, restricted to the plane w = 1, are called
affine transformations of the plane. Affine transformations are the ones most
often used in graphics.

On the other hand, if we make c = f = 0, then the third coordinate becomes
irrelevant, and the upper-left 2×2 matrix can perform any of the operations we’ve
seen up until now. Thus, with the simple trick of adding a third coordinate and
requiring that it always be 1, we’ve managed to unify rotation, scaling, and all the
other linear transformations with the new class of transformations, translations,
to get the class of affine transformations.

10.5 Points and Vectors Again

Back in Chapter 7, we said that points and vectors could be combined in certain
ways: The difference of points is a vector, a vector could be added to a point

T

Figure 10.12: The house figure, before and after a translation generated by shearing par-
allel to the w = 1 plane.
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to get a new point, and more generally, affine combinations of points, that is,
combinations of the form

α1P1 + α2P2 + . . .+ αkPk, (10.61)

were allowed if and only if α1 + α2 + . . .+ αk = 1.
We now have a situation in which these distinctions make sense in terms of

familiar mathematics: We can regard points of the plane as being elements of
R3 whose third coordinate is 1, and vectors as being elements of R3 whose third
coordinate is 0.

With this convention, it’s clear that the difference of points is a vector, the sum
of a vector and a point is a point, and combinations like the one in Equation 10.61
yield a point if and only if the sum of the coefficients is 1 (because the third
coordinate of the result will be exactly the sum of the coefficients; for the sum to
be a point, this third coordinate is required to be 1).

You may ask, “Why, when we’re already familiar with vectors in 3-space,
should we bother calling some of them ‘points in the Euclidean plane’ and others
‘two-dimensional vectors’?” The answer is that the distinctions have geometric
significance when we’re using this subset of 3-space as a model for 2D transfor-
mations. Adding vectors in 3-space is defined in linear algebra, but adding together
two of our “points” gives a location in 3-space that’s not on the w = 1 plane or
the w = 0 plane, so we don’t have a name for it at all.

Henceforth we’ll use E2 (for “Euclidean two-dimensional space”) to denote
this w = 1 plane in xyw-space, and we’ll write (x, y) to mean the point of E2

corresponding to the 3-space vector

⎡
⎣x

y
1

⎤
⎦. It’s conventional to speak of an affine

transformation as acting on E2, even though it’s defined by a 3× 3 matrix.

10.6 Why Use 3 × 3 Matrices Instead
of a Matrix and a Vector?

Students sometimes wonder why they can’t just represent a linear transformation
plus translation in the form

T(x) = Mx + b, (10.62)

where the matrix M represents the linear part (rotating, scaling, and shearing) and
b represents the translation.

First, you can do that, and it works just fine. You might save a tiny bit of
storage (four numbers for the matrix and two for the vector, so six numbers instead
of nine), but since our matrices always have two 0s and a 1 in the third column, we
don’t really need to store that column anyhow, so it’s the same. Otherwise, there’s
no important difference.

Second, the reason to unify the transformations into a single matrix is that it’s
then very easy to take multiple transformations (each represented by a matrix)
and compose them (perform one after another): We just multiply their matrices
together in the right order to get the matrix for the composed transformation. You
can do this in the matrix-and-vector formulation as well, but the programming is
slightly messier and more error-prone.
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There’s a third reason, however: It’ll soon become apparent that we can also
work with triples whose third entry is neither 1 nor 0, and use the operation
of homogenization (dividing by w) to convert these to points (i.e., triples with
w = 1), except when w = 0. This allows us to study even more transformations,
one of which is central to the study of perspective, as we’ll see later.

The singular value decomposition provides the tool necessary to decompose
not just linear transformations, but affine ones as well (i.e., combinations of linear
transformations and translations).

10.7 Windowing Transformations

As an application of our new, richer set of transformations, let’s examine window-
ing transformations, which send one axis-aligned rectangle to another, as shown
in Figure 10.13. (We already discussed this briefly in Chapter 3.)

We’ll first take a direct approach involving a little algebra. We’ll then examine
a more automated approach.

We’ll need to do essentially the same thing to the first and second coordinates,
so let’s look at how to transform the first coordinate only. We need to send u1 to
x1 and u2 to x2. That means we need to scale up any coordinate difference by the
factor x2−x1

u2−u1
. So our transformation for the first coordinate has the form

t 
→ x2 − x1

u2 − u1
t + something. (10.63)

If we apply this to t = u1, we know that we want to get x1; this leads to the
equation

x2 − x1

u2 − u1
u1 + something = x1. (10.64)

Solving for the missing offset gives

x1 − x2 − x1

u2 − u1
u1 = x1

u2 − u1

u2 − u1
− x2 − x1

u2 − u1
u1 (10.65)

=
x1u2 − x1u1 − x2u1 + x1u1

u2 − u1
(10.66)

=
x1u2 − x2u1

u2 − u1
, (10.67)

so that the transformation is

t 
→ x2 − x1

u2 − u1
t +

x1u2 − x2u1

u2 − u1
. (10.68)

u

v

(u1, v1) (u2, v1)

(u2, v2)

x

y

(x1, y1)

(x2, y2)

(x2, y1)

Figure 10.13: Window transfor-
mation setup. We need to move
the uv-rectangle to the xy-
rectangle.

Doing essentially the same thing for the v and y terms (i.e., the second coordi-
nate) we get the transformation, which we can write in matrix form:

T(x) = Mx, (10.69)

where

M =

⎡
⎣ x2−x1

u2−u1
0 x1u2−x2u1

u2−u1

0 y2−y1

v2−v1

y1v2−y2v1

v2−v1

0 0 1

⎤
⎦ . (10.70)
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Inline Exercise 10.17: Multiply the matrix M of Equation 10.70 by the vector[
u1 v1 1

]T
to confirm that you do get

[
x1 y1 1

]T
. Do the same for the

opposite corner of the rectangle.

We’ll now show you a second way to build this transformation (and many
others as well).

10.8 Building 3D Transformations

Recall that in 2D we could send the vectors e1 and e2 to the vectors v1 and v2

by building a matrix M whose columns were v1 and v2, and then use two such
matrices (inverting one along the way) to send any two independent vectors v1

and v2 to any two vectors w1 and w2. We can do the same thing in 3-space: We
can send the standard basis vectors e1, e2, and e3 to any three other vectors, just
by using those vectors as the columns of a matrix. Let’s start by sending e1, e2,
and e3 to three corners of our first rectangle—the two we’ve already specified and
the lower-right one, at location (u2, v1). The three vectors corresponding to these
points are ⎡

⎣u1

v1

1

⎤
⎦ ,

⎡
⎣u2

v2

1

⎤
⎦ , and

⎡
⎣u2

v1

1

⎤
⎦ . (10.71)

Because the three corners of the rectangle are not collinear, the three vectors are
independent. Indeed, this is our definition of independence for vectors in n-space:
Vectors v1, . . . , vk are independent if there’s no (k−1)-dimensional subspace con-
taining them. In 3-space, for instance, three vectors are independent if there’s no
plane through the origin containing all of them.

So the matrix

M1 =

⎡
⎣u1 u2 u2

v1 v2 v1

1 1 1

⎤
⎦ , (10.72)

which performs the desired transformation, will be invertible.
We can similarly build the matrix M2, with the corresponding xs and ys in it.

Finally, we can compute

M2M−1
1 , (10.73)

which will perform the desired transformation. For instance, the lower-left cor-
ner of the starting rectangle will be sent, by M−1

1 , to e1 (because M1 sent e1 to
the lower-left corner); multiplying e1 by M2 will send it to the lower-left corner
of the target rectangle. A similar argument applies to all three corners. Indeed,
if we compute the inverse algebraically and multiply out everything, we’ll once
again arrive at the matrix given in Equation 10.7. But we don’t need to do so: We
know that this must be the right matrix. Assuming we’re willing to use a matrix-
inversion routine, there’s no need to think through anything more than “I want
these three points to be sent to these three other points.”

Summary: Given any three noncollinear points P1, P2, P3 in E2, we can find
a matrix transformation and send them to any three points Q1, Q2, Q3 with the
procedure above.
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10.9 Another Example of Building a 2D
Transformation

Suppose we want to find a 3×3 matrix transformation that rotates the entire plane
30◦ counterclockwise around the point P = (2, 4), as shown in Figure 10.14. As
you’ll recall, WPF expresses this transformation via code like this:

<RotateTransform Angle="-30" CenterX="2" CenterY="4"/>

An implementer of WPF then must create a matrix like the one we’re about to
build.

(2, 4)

(2, 4)

y

x

x

y

Figure 10.14: We’d like to rotate
the entire plane by 30◦ counter-
clockwise about the point P =
(2, 4).

Here are two approaches.
First, we know how to rotate about the origin by 30◦; we can use the transfor-

mation T1 from the start of the chapter. So we can do our desired transformation
in three steps (see Figure 10.15).

1. Move the point (2, 4) to the origin.
2. Rotate by 30◦.
3. Move the origin back to (2, 4).

The matrix that moves the point (2, 4) to the origin is⎡
⎣1 0 −2

0 1 −4
0 0 1

⎤
⎦ . (10.74)

The one that moves it back is similar, except that the 2 and 4 are not negated. And
the rotation matrix (expressed in our new 3× 3 format) is⎡

⎣cos 30◦ − sin 30◦ 0
sin 30◦ cos 30◦ 0

0 0 1

⎤
⎦ . (10.75)

The matrix representing the entire sequence of transformations is therefore⎡
⎣1 0 2

0 1 4
0 0 1

⎤
⎦
⎡
⎣cos 30◦ − sin 30◦ 0
sin 30◦ cos 30◦ 0

0 0 1

⎤
⎦
⎡
⎣1 0 −2

0 1 −4
0 0 1

⎤
⎦ . (10.76)

Inline Exercise 10.18: (a) Explain why this is the correct order in which to
multiply the transformations to get the desired result.
(b) Verify that the point (2, 4) is indeed left unmoved by multiplying[
2 4 1

]T
by the sequence of matrices above.

The second approach is again more automatic: We find three points whose
target locations we know, just as we did with the windowing transformation above.
We’ll use P = (2, 4), Q = (3, 4) (the point one unit to the right of P), and R =
(2, 5) (the point one unit above P). We know that we want P sent to P, Q sent to
(2+cos 30◦, 4+sin 30◦), and R sent to (2−sin 30◦, 4+cos 30◦). (Draw a picture
to convince yourself that these are correct). The matrix that achieves this is just
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⎡
⎣2 2 + cos 30◦ 4− sin 30◦

4 4 + sin 30◦ 4 + cos 30◦

1 1 1

⎤
⎦
⎡
⎣2 3 2

4 4 5
1 1 1

⎤
⎦−1

. (10.77)

y

y

y

x

x

x

Figure 10.15: The house after
translating (2, 4) to the origin,
after rotating by 30◦, and after
translating the origin back to
(2, 4).

Both approaches are reasonably easy to work with.
There’s a third approach—a variation of the second—in which we specify

where we want to send a point and two vectors, rather than three points. In this
case, we might say that we want the point P to remain fixed, and the vectors e1

and e2 to go to ⎡
⎣cos 30◦

sin 30◦

0

⎤
⎦ and

⎡
⎣− sin 30◦

cos 30◦

0

⎤
⎦ , (10.78)

respectively. In this case, instead of finding matrices that send the vectors e1, e2,
and e3 to the desired three points, before and after, we find matrices that send those
vectors to the desired point and two vectors, before and after. These matrices are⎡

⎣2 1 0
4 0 1
1 0 0

⎤
⎦ and

⎡
⎣2 cos 30◦ − sin 30◦

4 sin 30◦ cos 30◦

1 0 0

⎤
⎦ , (10.79)

so the overall matrix is⎡
⎣2 cos 30◦ − sin 30◦

4 sin 30◦ cos 30◦

1 0 0

⎤
⎦
⎡
⎣2 1 0

4 0 1
1 0 0

⎤
⎦−1

. (10.80)

These general techniques can be applied to create any linear-plus-translation
transformation of the w = 1 plane, but there are some specific ones that are good
to know. Rotation in the xy-plane, by an amount θ (rotating the positive x-axis
toward the positive y-axis) is given by

Rxy(θ) =

⎡
⎣cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤
⎦ . (10.81)

In some books and software packages, this is called rotation around z; we prefer
the term “rotation in the xy-plane” because it also indicates the direction of rotation
(from x, toward y). The other two standard rotations are

Ryz(θ) =

⎡
⎣1 0 0

0 cos θ − sin θ
0 sin θ cos θ

⎤
⎦ (10.82)

and

Rzx(θ) =

⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦ ; (10.83)

note that the last expression rotates z toward x, and not the opposite. Using this
naming convention helps keep the pattern of plusses and minuses symmetric.
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10.10 Coordinate Frames
In 2D, a linear transformation is completely specified by its values on two indepen-
dent vectors. An affine transformation (i.e., linear plus translation) is completely
specified by its values on any three noncollinear points, or on any point and pair of
independent vectors. A projective transformation on the plane (which we’ll dis-
cuss briefly in Section 10.13) is specified by its values on four points, no three
collinear, or on other possible sets of points and vectors. These facts, and the cor-
responding ones for transformations on 3-space, are so important that we enshrine
them in a principle:

THE TRANSFORMATION UNIQUENESS PRINCIPLE: For each class of
transformations—linear, affine, and projective—and any corresponding coor-
dinate frame, and any set of corresponding target elements, there’s a unique
transformation mapping the frame elements to the correponding elements in
the target frame. If the target elements themselves constitute a frame, then the
transformation is invertible.

To make sense of this, we need to define a coordinate frame. As a first exam-
ple, a coordinate frame for linear transformations is just a “basis”: In two dimen-
sions, that means “two linearly independent vectors in the plane.” The elements
of the frame are the two vectors. So the principle says that if u and v are linearly
independent vectors in the plane, and u′ and v′ are any two vectors, then there’s a
unique linear transformation sending u to u′ and v to v′. It further says that if u′

and v′ are independent, then the transformation is invertible.
More generally, a coordinate frame is a set of geometric elements rich enough

to uniquely characterize a transformation in some class. For linear transformations
of the plane, a coordinate frame consists of two independent vectors in the plane,
as we said; for affine transforms of the plane, it consists of three noncollinear
points in the plane, or of one point and two independent vectors, etc.

In cases where there are multiple kinds of coordinate frames, there’s always
a way to convert between them. For 2D affine transformations, the three non-
collinear points P, Q, and R can be converted to P, v1 = Q− P, and v2 = R − P;
the conversion in the other direction is obvious. (It may not be obvious that the
vectors v1 and v2 are linearly independent. See Exercise 10.4.)

There’s a restricted use of “coordinate frame” for affine maps that has some
advantages. Based on the notion that the origin and the unit vectors along the posi-
tive directions for each axis form a frame, we’ll say that a rigid coordinate frame
for the plane is a triple (P, v1, v2), where P is a point and v1 and v2 are perpendic-
ular unit vectors with the rotation from v1 toward v2 being counterclockwise (i.e.,

with

[
0 −1
1 0

]
v1 = v2). The corresponding definition for 3-space has one point

and three mutually perpendicular unit vectors forming a right-hand coordinate
system. Transforming one rigid coordinate frame (P, v1, v2) to another (Q, u1, u2)
can always be effected by a sequence of transformation,

TQ ◦ R ◦ T−1
P , (10.84)

where TP(A) = A+P is translation by P, and similarly for TQ, and R is the rotation
given by

R = [u1; u2] · [v1; v2]
T, (10.85)
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where the semicolon indicates that u1 is the first column of the first
factor, etc.

The G3D library, which we use in examples in Chapters 12, 15, and 32, uses
rigid coordinate frames extensively in modeling, encapsulating them in a class,
CFrame.

10.11 Application: Rendering from a Scene
Graph

Figure 10.16: Our clock model.

We’ve discussed affine transformations on a two-dimensional affine space, and
how, once we have a coordinate system and can represent points as triples, as in

x =
[
x y 1

]T
, we can represent a transformation by a 3 × 3 matrix M. We

transform the point x by multiplying it on the left by M to get Mx. With this in
mind, let’s return to the clock example of Chapter 2 and ask how we could start
from a WPF description and convert it to an image, that is, how we’d do some of
the work that WPF does. You’ll recall that the clock shown in Figure 10.16 was
created in WPF with code like this,

1
2
3
4
5
6
7
8
9

10
11
12
13
14

<Canvas ... >
<Ellipse

Canvas.Left="-10.0" Canvas.Top="-10.0"
Width="20.0" Height="20.0"
Fill="lightgray" />

<Control Name="Hour Hand" .../>
<Control Name="Minute Hand" .../>
<Canvas.RenderTransform>

<TransformGroup>
<ScaleTransform ScaleX="4.8" ScaleY="4.8" />
<TranslateTransform X="48" Y="48" />

</TransformGroup>
</Canvas.RenderTransform>

</Canvas>

where the code for the hour hand is

1
2
3
4
5
6
7
8
9

<Control Name="HourHand" Template="{StaticResource ClockHandTemplate}">
<Control.RenderTransform>
<TransformGroup>
<ScaleTransform ScaleX="1.7" ScaleY="0.7" />
<RotateTransform Angle="180"/>
<RotateTransform x:Name="ActualTimeHour" Angle="0"/>

</TransformGroup>
</Control.RenderTransform>

</Control>

y 5 21

y 5 9

x

y

Figure 10.17: The clock-hand
template.

and the code for the minute hand is similar, the only differences being that
ActualTimeHour is replaced by ActualTimeMinute and the scale by 1.7 in X and
0.7 in Y is omitted.

The ClockHandTemplate was a polygon defined by five points in the plane:
(−0. 3,−1), (−0.2, 8), (0, 9), (0.2, 8), and (0. 3,−1) (see Figure 10.17).

We’re going to slightly modify this code so that the clock face and clock hands
are both described in the same way, as polygons. We could create a polygonal
version of the circular face by making a regular polygon with, say, 1000 vertices,
but to keep the code simple and readable, we’ll make an octagonal approximation
of a circle instead.



ptg11539634

242 Transformations in Two Dimensions

Now the code begins like this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

<Canvas ...
<Canvas.Resources>
<ControlTemplate x:Key="ClockHandTemplate">
<Polygon
Points="-0.3,-1 -0.2,8 0,9 0.2,8 0.3,-1"
Fill="Navy"/>

</ControlTemplate>
<ControlTemplate x:Key="CircleTemplate">
<Polygon

Points="1,0 0.707,0.707 0,1 -.707,.707
-1,0 -.707,-.707 0,-1 0.707,-.707"

Fill="LightGray"/>
</ControlTemplate>

</Canvas.Resources>

This code defines the geometry that we’ll use to create the face and hands of the
clock. With this change, the circular clock face will be defined by transforming
a template “circle,” represented by eight evenly spaced points on the unit circle.
This form of specification, although not idiomatic in WPF, is quite similar to scene
specification in many other scene-graph packages.

The actual creation of the scene now includes building the clock face from the
CircleTemplate, and building the hands as before.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

<!- 1. Background of the clock ->
<Control Name="Face"

Template="{StaticResource CircleTemplate}">
<Control.RenderTransform>

<ScaleTransform ScaleX="10" ScaleY="10" />
</Control.RenderTransform>

</Control>

<!- 2. The minute hand ->
<Control Name="MinuteHand"

Template="{StaticResource ClockHandTemplate}">
<Control.RenderTransform>

<TransformGroup>
<RotateTransform Angle="180" />
<RotateTransform x:Name="ActualTimeMinute" Angle="0" />

</TransformGroup>
</Control.RenderTransform>

</Control>

<!- 3. The hour hand ->
<Control Name="HourHand" Template="{StaticResource ClockHandTemplate}">

<Control.RenderTransform>
<TransformGroup>
<ScaleTransform ScaleX="1.7" ScaleY="0.7" />
<RotateTransform Angle="180" />
<RotateTransform x:Name="ActualTimeHour"

Angle="0" />
</TransformGroup>

</Control.RenderTransform>
</Control>

All that remains is the transformation from Canvas to WPF coordinates, and the
timers for the animation, which set the ActualTimeMinute and ActualTimeHour

values.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

<Canvas.RenderTransform>
...same as before...

</Canvas.RenderTransform>

<Canvas.Triggers>
<EventTrigger RoutedEvent="FrameworkElement.Loaded">

<BeginStoryboard>
<Storyboard>
<DoubleAnimation
Storyboard.TargetName="ActualTimeHour"
Storyboard.TargetProperty="Angle"
From="0.0" To="360.0"
Duration="00:00:01:0" RepeatBehavior="Forever"
/>

<DoubleAnimation
Storyboard.TargetName="ActualTimeMinute"
Storyboard.TargetProperty="Angle"
From="0.0" To="4320.0"
Duration="00:00:01:0" RepeatBehavior="Forever"
/>

</Storyboard>
</BeginStoryboard>

</EventTrigger>
</Canvas.Triggers>

</Canvas>

As a starting point in transforming this scene description into an image, we’ll
assume that we have a basic graphics library that, given an array of points rep-
resenting a polygon, can draw that polygon. The points will be represented by a
3×k array of homogeneous coordinate triples, so the first column of the array will
be the homogeneous coordinates of the first polygon point, etc.

We’ll now explain how we can go from something like the WPF description to
a sequence of drawPolygon calls. First, let’s transform the XAML code into a tree
structure, as shown in Figure 10.18, representing the scene graph (see Chapter 6).

We’ve drawn transformations as diamonds, geometry as blue boxes, and
named parts as beige boxes. For the moment, we’ve omitted the matter of instanc-
ing of the ClockHandTemplate and pretended that we have two separate identical
copies of the geometry for a clock hand. We’ve also drawn next to each transfor-
mation the matrix representation of the transformation. We’ve assumed that the
angle in ActualTimeHour is 15◦ (whose cosine and sine are approximately 0.96
and 0.26, respectively) and the angle in ActualTimeMinutes is 180◦ (i.e., the clock
is showing 12:30).

Inline Exercise 10.19: (a) Remembering that rotations in WPF are specified
in degrees and that they rotate objects in a clockwise direction, check that the
matrix given for the rotation of the hour hand by 15◦ is correct.
(b) If you found that the matrix was wrong, recall that in WPF x increases to the
right and y increases down. Does this change your answer? By the way, if you
ran this program in WPF and debugged it and printed the matrix, you’d find
the negative sign on the (2, 1) entry instead of the (1, 2) entry. That’s because
WPF internally uses row vectors to represents points, and multiplies them by
transformation matrices on the right.
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WPF

Canvas

Minute hand

Hand 1

Hour hand

Hand 2

Face

Circle

Scale
10 10

Trans
48, 48

Scale
4.8, 4.8

Rot 180 

Rot 180 Rot 15

Rot 180
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1.7, 0.7

1
0.7

1.73 4
1

–1
13 41

–1
–13 4

1
–1

–13 41
10

103 4
1

0.26 0.96
0.96 –0.263 4

1
4.8

4.83 4
1

48
48

1
13 4

Figure 10.18: A scene-graph representation of the XAML code for the clock.

The order of items in the tree is a little different from the textual order, but
there’s a natural correspondence between the two. If you consider the hour hand
and look at all transformations that occur in its associated render transform or
in the render transform of anything containing it (i.e., the whole clock), those are
exactly the transforms you encounter as you read from the leaf node corresponding
to the hour hand up toward the root node.

Inline Exercise 10.20: Write down all transformations applied to the circle
template that’s used as the clock face by reading the XAML program. Confirm
that they’re the same ones you get by reading upward from the “Circle” box in
Figure 10.18.

In the scene graph we’ve drawn, the transformation matrices are the most
important elements. We’re now going to discuss how these matrices and the coor-
dinates of the points in the geometry nodes interact.

Recall that there are two ways to think about transformations. The first is to say
that the minute hand, for instance, has a rotation operation applied to each of its
points, creating a new minute hand, which in turn has a translation applied to each
point, creating yet another new minute hand, etc. The tip of the minute hand is at
location (0, 9), once and for all. The tip of the rotated minute hand is somewhere
else, and the tip of the translated and rotated minute hand is somewhere else again.
It’s common to talk about all of these as if they were the same thing (“Now the
tip of the minute hand is at (3, 17). . . ”), but that doesn’t really make sense—the tip
of the minute hand cannot be in two different places.
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The second view says that there are several different coordinate systems, and
that the transformations tell you how to get from the tip’s coordinates in one sys-
tem to its coordinates in another. We can then say things like, “The tip of the
minute hand is at (0, 9) in object space or object coordinates, but it’s at (0,−9)
in canvas coordinates.” Of course, the position in canvas coordinates depends on
the amount by which the tip of the minute hand is rotated (we’ve assumed that the
ActualTimeMinute rotation is 180◦, so it has just undergone two 180◦ rotations).
Similarly, the WPF coordinates for the tip of the minute hand are computed by fur-
ther scaling each canvas coordinate by 4.8, and then adding 48 to each, resulting
in WPF coordinates of (48, 4.8).

The terms object space, world space, image space, and screen space are
frequently used in graphics. They refer to the idea that a single point of some
object (e.g., “Boston” on a texture-mapped globe) starts out as a point on a unit
sphere (object space), gets transformed into the “world” that we’re going to
render, eventually is projected onto an image plane, and finally is displayed on
a screen. In some sense, all those points refer to the same thing. But each point
has different coordinates. When we talk about a certain point “in world space”
or “in image space,” we really mean that we’re working with the coordinates
of the point in a coordinate system associated with that space. In image space,
those coordinates may range from −1 to 1 (or from 0 to 1 in some systems),
while in screen space, they may range from 0 to 1024, and in object space, the
coordinates are a triple of real numbers that are typically in the range [−1, 1]
for many standard objects like the sphere or cube.

For this example, we have seven coordinate systems, most indicated by pale
green boxes. Starting at the top, there are WPF coordinates, the coordinates used
by drawPolygon(). It’s possible that internally, drawPolygon() must convert to,
say, pixel coordinates, but this conversion is hidden from us, and we won’t dis-
cuss it further. Beneath the WPF coordinates are canvas coordinates, and within
the canvas are the clock-face coordinates, minute-hand coordinates, and hour-hand
coordinates. Below this are the hand coordinates, the coordinate system in which
the single prototype hand was created, and circle coordinates, in which the pro-
totype octagonal circle approximation was created. Notice that in our model of
the clock, the clock-face, minute-hand, and hour-hand coordinates all play similar
roles: In the hierarchy of coordinate systems, they’re all children of the canvas
coordinate system. It might also have been reasonable to make the minute-hand
and hour-hand coordinate systems children of the clock-face coordinate system.
The advantage of doing so would have been that translating the clock face would
have translated the whole clock, making it easier to adjust the clock’s position
on the canvas. Right now, adjusting the clock’s position on the canvas requires
that we adjust three different translations, which we’d have to add to the face, the
minute hand, and the hour hand.

We’re hoping to draw each shape with a drawPolygon() call, which takes
an array of point coordinates as an argument. For this to make sense, we have
to declare the coordinate system in which the point coordinates are valid. We’ll
assume that drawPolygon() expects WPF coordinates. So when we want to tell
it about the tip of the minute hand, we’ll need the numbers (48, 4.8) rather
than (0, 9).
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Here’s a strawman algorithm for converting a scene graph into a sequence
of drawPolygon() calls. We’ll work with 3 × k arrays of coordinates, because
we’ll represent the point (0, 9) as a homogeneous triple (0, 9, 1), which we’ll write
vertically as a column of the matrix that represents the geometry.

1
2
3
4
5
6
7
8
9

10
11

for each polygonal geometry element, g
let v be the 3 × k array of vertices of g
let n be the parent node of g
let M be the 3 × 3 identity matrix
while (n is not the root)

if n is a transformation with matrix S
M = SM

n = parent of n

w = Mv
drawPolygon(w)

As you can see, we multiply together several matrices, and then multiply the
result (the composite transformation matrix) by the vertex coordinates to get
the WPF coordinates for each polygon, which we then draw.

Inline Exercise 10.21: (a) How many elementary operations are needed,
approximately, to multiply a 3× 3 matrix by a 3× k matrix?
(b) If A and B are 3×3 and C is 3×1000, would you rather compute (AB)C or
A(BC), where the parentheses are meant to indicate the order of calculations
that you perform?
(c) In the code above, should we have multiplied the vertex coordinates by
each matrix in turn, or was it wiser to accumulate the matrix product and only
multiply by the vertex array at the end? Why?

If we hand-simulate the code in the clock example, the circle template coordi-
nates are multiplied by the matrix⎡

⎣1 0 48
0 1 48
0 0 1

⎤
⎦
⎡
⎣4.8 0 0

0 4.8 0
0 0 1

⎤
⎦
⎡
⎣10 0 0

0 10 0
0 0 1

⎤
⎦ . (10.86)

The minute-hand template coordinates are multiplied by the matrix⎡
⎣1 0 48

0 1 48
0 0 1

⎤
⎦
⎡
⎣4.8 0 0

0 4.8 0
0 0 1

⎤
⎦
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦ . (10.87)

And the hour-hand template coordinates are multiplied by the matrix⎡
⎣1 0 48

0 1 48
0 0 1

⎤
⎦
⎡
⎣4.8 0 0

0 4.8 0
0 0 1

⎤
⎦
⎡
⎣0.96 −0.26 0

0.26 0.96 0
0 0 1

⎤
⎦

·
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦
⎡
⎣1.7 0 0

0 0.7 0
0 0 1

⎤
⎦ . (10.88)
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Inline Exercise 10.22: Explain where each of the matrices for the minute hand
arose.

Notice how much of this matrix multiplication is shared. We could have com-
puted the product for the circle and reused it in each of the others, for instance.
For a large scene graph, the overlap is often much greater. If there are 70 transfor-
mations applied to an object with only five or six vertices, the cost of multiplying
matrices together far outweighs the cost of multiplying the composite matrix by
the vertex coordinate array.

We can avoid duplicated work by revising our strawman algorithm. We per-
form a depth-first traversal of the scene graph, maintaining a stack of matrices as
we do so. Each time we encounter a new transformation with matrix M, we mul-
tiply M by the current transformation matrix C (the one at the top of the stack)
and push the result, MC, onto the stack. Each time our traversal rises up through a
transformation node, we pop a matrix from the stack. The result is that whenever
we encounter geometry (like the coordinates of the hand points, or of the ellipse
points), we can multiply the coordinate array on the left by the current transfor-
mation to get the WPF coordinates of those points. In the pseudocode below, we
assume that the scene graph is represented by a Scene class with a method that
returns the root node of the graph, and that a transformation node has a matrix

method that returns the matrix for the associated transformation, while a geometry
node has a vertexCoordinateArray method that returns a 3× k array containing
the homogeneous coordinates of the k points in the polygon.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

void drawScene(Scene myScene)
s = empty Stack
s.push( 3 × 3 identity matrix )
explore(myScene.rootNode(), s)

void explore(Node n, Stack& s)
if n is a transformation node
push n.matrix() * s.top() onto s

else if n is a geometry node
drawPolygon(s.top() * n.vertexCoordinateArray())

foreach child k of n
explore(k, s)

if n is a transformation node
pop top element from s

In some complex models, the cost of matrix multiplications can be enormous.
If the same model is to be rendered over and over, and none of the transformations
change (e.g., a model of a building in a driving-simulation game), it’s often worth
it to use the algorithm above to create a list of polygons in world coordinates that
can be redrawn for each frame, rather than reparsing the scene once per frame.
This is sometimes referred to as prebaking or baking a model.

The algorithm above is the core of the standard one used for scene traversals
in scene graphs. There are two important additions, however.

First, geometric transformations are not the only things stored in a scene
graph—in some cases, attributes like color may be stored as well. In a simple
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version, each geometry node has a color, and the drawPolygon procedure is passed
both the vertex coordinate array and the color. In a more complex version, the
color attribute may be set at some node in the graph, and that color is used for
all the geometry “beneath” that node. In this latter form, we can keep track of the
color with a parallel stack onto which colors are pushed as they’re encountered,
just as transformations are pushed onto the transformation stack. The difference is
that while transformations are multiplied by the previous composite transforma-
tion before being pushed on the stack, the colors, representing an absolute rather
than a relative attribute, are pushed without being combined in any way with pre-
vious color settings. It’s easy to imagine a scene graph in which color-alteration
nodes are allowed (e.g., “Lighten everything below this node by 20%”); in such
a structure, the stack would have to accumulate color transformations. Unless the
transformations are quite limited, there’s no obvious way to combine them except
to treat them as a sequence of transformations; matrix transformations are rather
special in this regard.

Second, we’ve studied an example in which the scene graph is a tree, but
depth-first traversal actually makes sense in an arbitrary directed acyclic graph
(DAG). And in fact, our clock model, in reality, is a DAG: The geometry for the
two clock hands is shared by the hands (using a WPF StaticResource). During
the depth-first traversal we arrive at the hand geometry twice, and thus render two
different hands. For a more complex model (e.g., a scene full of identical robots)
such repeated encounters with the same geometry may be very frequent: Each
robot has two identical arms that refer to the same underlying arm model; each
arm has three identical fingers that refer to the same underlying finger model,
etc. It’s clear that in such a situation, there’s some lost effort in retraversal of
the arm model. Doing some analysis of a scene graph to detect such retraversals
and avoid them by prebaking can be a useful optimization, although in many of
today’s graphics applications, scene traversal is only a tiny fraction of the cost, and
lighting and shading computations (for 3D models) dominate. You should avoid
optimizing the scene-traversal portions of your code until you’ve verified that they
are the expensive part.

10.11.1 Coordinate Changes in Scene Graphs

Returning to the scene graph and the matrix products, the transformations applied
to the minute hand to get WPF coordinates,⎡

⎣1 0 48
0 1 48
0 0 1

⎤
⎦
⎡
⎣4.8 0 0

0 4.8 0
0 0 1

⎤
⎦
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦ , (10.89)

represent the transformation from minute-hand coordinates to WPF coordinates.
To go from WPF coordinates to minute-hand coordinates, we need only apply
the inverse transformation. Remembering that (AB)−1 = B−1A−1, this inverse
transformation is⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦
⎡
⎣1/4.8 0 0

0 1/4.8 0
0 0 1

⎤
⎦
⎡
⎣1 0 −48

0 1 −48
0 0 1

⎤
⎦ . (10.90)

You can similarly find the coordinate transformation matrix to get from any one
coordinate system in a scene graph to any other. Reading upward, you accumulate
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the matrices you encounter, with the first matrix being farthest to the right; reading
downward, you accumulate their inverses in the opposite order. When we build
scene graphs in 3D, exactly the same rules apply.

For a 3D scene, there’s the description not only of the model, but also of how
to transform points of the model into points on the display. This latter description
is provided by specifying a camera. But even in 2D, there’s something closely
analogous: The Canvas in which we created our clock model corresponds to the
“world” of a 3D scene; the way that we transform this world to make it appear on
the display (scale by (4.8, 4.8) and then translate by (48, 48)) corresponds to the
viewing transformation performed by a 3D camera.

Typically the polygon coordinates (the ones we’ve placed in templates) are
called modeling coordinates. Given the analogy to 3D, we can call the canvas
coordinates world coordinates, while the WPF coordinates can be called image
coordinates. These terms are all in common use when discussing 3D scene graphs.

As an exercise, let’s consider the tip of the hour hand; in modeling coordinates
(i.e., in the clock-hand template) the tip is located at (0, 9). In the same way, the
tip of the minute hand, in modeling coordinates, is at (0, 9). What are the Canvas

coordinates of the tip of the hour hand? We must multiply (reading from leaf
toward root) by all the transformation matrices from the hour-hand template up to
the Canvas, resulting in

⎡
⎣0.96 −0.26 0

0.26 0.96 0
0 0 1

⎤
⎦
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦
⎡
⎣1.7 0 0

0 0.7 0
0 0 1

⎤
⎦
⎡
⎣0

9
1

⎤
⎦ (10.91)

=

⎡
⎣−1.64 −.18 0
−0.44 −0.68 0

001

⎤
⎦
⎡
⎣0

9
1

⎤
⎦ =

⎡
⎣ 1.63
−6.09

1

⎤
⎦ , (10.92)

where all coordinates have been rounded to two decimal places for clarity. The
Canvas coordinates of the tip of the minute hand are

⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦
⎡
⎣0

9
1

⎤
⎦ =

⎡
⎣0

9
1

⎤
⎦ . (10.93)

We can thus compute a vector from the hour hand’s tip to the minute hand’s

tip by subtracting these two, getting
[−1.63 15.08 0

]T
. The result is the

homogeneous-coordinate representation of the vector
[−1.63 15.08

]T
in Canvas

coordinates.
Suppose that we wanted to know the direction from the tip of the minute hand

to the tip of the hour hand in minute-hand coordinates. If we knew this direction,
we could add, within the minute-hand part of the model, a small arrow that pointed
toward the hour-hand. To find this direction vector, we need to know the coordi-
nates of the tip of the hour hand in minute-hand coordinates. So we must go from
hour-hand coordinates to minute-hand coordinates, which we can do by working
up the tree from the hour hand to the Canvas, and then back down to the minute
hand. The location of the hour-hand tip, in minute-hand coordinates, is given by
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⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦−1 ⎡⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦−1 ⎡⎣0.96 −0.26 0

0.26 0.96 0
0 0 1

⎤
⎦

·
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦
⎡
⎣1.7 0 0

0 0.7 0
0 0 1

⎤
⎦
⎡
⎣0

9
1

⎤
⎦ . (10.94)

We subtract from this the coordinates, (0, 9), of the tip of the minute hand (in the
minute-hand coordinate system) to get a vector from the tip of the minute hand to
the tip of the hour hand.

As a final exercise, suppose we wanted to create an animation of the clock in
which someone has grabbed the minute hand and held it so that the rest of the
clock spins around the minute hand. How could we do this?

Well, the reason the minute hand moves from its initial 12:00 position on the
Canvas (i.e., its position after it has been rotated 180◦ the first time) is that a
sequence of further transformations have been applied to it. This sequence is rather
short: It’s just the varying rotation. If we apply the inverse of this varying rotation
to each of the clock elements, we’ll get the desired result. Because we apply both
the rotation and its inverse to the minute hand, we could delete both, but the struc-
ture is more readable if we retain them. We could also apply the inverse rotation
as part of the Canvas’s render transform.

Inline Exercise 10.23: If we want to implement the second approach—
inserting the inverse rotation in the Canvas’s render transform—should it
appear (in the WPF code) before or after the scale-and-translate transforms
that are already there? Try it!

10.12 Transforming Vectors and Covectors

We’ve agreed to say that the point (x, y) ∈ E2 corresponds to the 3-space

vector
[
x y 1

]T
, and that the vector

[
u
v

]
corresponds to the 3-space vector[

u v 0
]T

. If we use a 3 × 3 matrix M (with last row
[
0 0 1

]
) to transform

3-space via

T : R3 → R3 : x 
→Mx, (10.95)

then the restriction of T to the w = 1 plane has its image in E2 as well, so we can
write

(T|E2) : E2 → E2 : x 
→Mx. (10.96)

But we also noted above that we could regard T as transforming vectors, or
displacements of two-dimensional Euclidean space, which are typically written

with two coordinates but which we represent in the form
[
u v 0

]T
. Because

the last entry of such a “vector” is always 0, the last column of M has no effect on
how vectors are transformed. Instead of computing
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M

⎡
⎣u

v
0

⎤
⎦ , (10.97)

we could equally well compute⎡
⎣m1,1 m1,2 0

m2,1 m2,2 0
0 0 0

⎤
⎦
⎡
⎣u

v
0

⎤
⎦ , (10.98)

and the result would have a 0 in the third place. In fact, we could transform such
vectors directly as two-coordinate vectors, by simply computing[

m1,1 m1,2

m2,1 m2,2

] [
u
v

]
. (10.99)

For this reason, it’s sometimes said for an affine transformation of the Euclidean
plane represented by multiplication by a matrix M that the associated transforma-
tion of vectors is represented by

M =

[
m1,1 m1,2

m2,1 m2,2

]
. (10.100)

What about covectors? Recall that a typical covector could be written in the
form

φw : R2 → R2 : v 
→ w · v, (10.101)

where w was some vector in R2. We’d like to transform φw in a way that’s con-
sistent with T . Figure 10.19 shows why: We often build a geometric model of
some shape and compute all the normal vectors to the shape. Suppose that n is
one such surface normal. We then place that shape into 3-space by applying some
“modeling transformation” TM to it, and we’d like to know the normal vectors to
that transformed shape so that we can do things like compute the angle between a
light-ray v and that surface normal. If we call the transformed surface normal m,

m

n

u

TM(P)
P

(a) (b)

Mu

Figure 10.19: (a) A geometric shape that’s been modeled using some modeling tool; the
normal vector n at a particular point P has been computed too. The vector u is tangent to
the shape at P. (b) The shape has been translated, rotated, and scaled as it was placed into
a scene. At the transformed location of P, we want to find the normal vector m with the
property that its inner product with the transformed tangent Mu is still 0.
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we want to compute v ·m. How is m related to the surface normal n of the original
model?

The original surface normal n was defined by the property that it was orthog-
onal to every vector u that was tangent to the surface. The new normal vector m
must be orthogonal to all the transformed tangent vectors, which are tangent to
the transformed surface. In other words, we need to have

m ·Mu = 0 (10.102)

for every tangent vector u to the surface. In fact, we can go further. For any vector
u, we’d like to have

m ·Mu = n · u, (10.103)

that is, we’d like to be sure that the angle between an untransformed vector and n
is the same as the angle between a transformed vector and m.

n

m

y

y

x

x

Figure 10.20: For a rotation, the
normal vector rotates the same
way as all other vectors.

Before working through this, let’s look at a couple of examples. In the case
of the transformation T1, the vector perpendicular to the bottom side of the house
(we’ll use this as our vector n) should be transformed so that it’s still perpendicular
to the bottom of the transformed house. This is achieved by rotating it by 30◦ (see
Figure 10.20).

If we just translate the house, then n again should be transformed just the way
we transform ordinary vectors, that is, not at all.

But what about when we shear the house, as with example transformation T3?
The associated vector transformation is still a shearing transformation; it takes a
vertical vector and tilts it! But the vector n, if it’s to remain perpendicular to the
bottom of the house, must not be changed at all (see Figure 10.21). So, in this
case, we see the necessity of transforming covectors differently from vectors.

n

m

y

y

x

x

Figure 10.21: While the vertical
sides of the house are sheared,
the normal vector to the house’s
bottom remains unchanged.

Let’s write down, once again, what we want. We’re looking for a vector m that
satisfies

m · (Mu) = n · u (10.104)

for every possible vector v. To make the algebra more obvious, let’s swap the order
of the vectors and say that we want

(Mu) ·m = u · n. (10.105)

Recalling that a · b can be written aTb, we can rewrite this as

(Mu)Tm = uTn. (10.106)

Remembering that (AB)T = ATBT, and then simplifying, we get

(Mu)Tm = uTn (10.107)

(uTM
T
)m = uTn (10.108)

uT(M
T

m) = uTn, (10.109)

where the last step follows from the associativity of matrix multiplication. This
last equality is of the form u · a = u · b for all u. Such an equality holds if and
only if a = b, that is, if and only if

M
T

m = n, (10.110)
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so

m = (M
T
)−1n, (10.111)

where we are assuming that M is invertible.
We can therefore conclude that the covector φn transforms to the covector

φ
(M

T
)−1n

. For this reason, the inverse transpose is sometimes referred to as the
covector transformation or (because of its frequent application to normal vec-
tors) the normal transform. Note that if we choose to write covectors as row
vectors, then the transpose is not needed, but we have to multiply the row vector

on the right by M
−1

.
The normal transform, in its natural mathematical setting, goes in the opposite

direction: It takes a normal vector in the codomain of TM and produces one in the
domain; the matrix for this adjoint transformation is MT. Because we need to
use it in the other direction, we end up with an inverse as well.

Taking our shearing transformation, T3, as an example, when written in xyw-
space the matrix M for the transformation is⎡

⎣1 2 0
0 1 0
0 0 1

⎤
⎦ , (10.112)

and hence M is [
1 2
0 1

]
, (10.113)

while the normal transform is

(M
−1

)T =

[
1 −2
0 1

]T

=

[
1 0
−2 1

]
. (10.114)

Hence the covector φn, where n =

[
2
1

]
, for example, becomes the covector φm,

where m =

[
1 0
−2 1

]
n =

[
2
−3

]
.

Inline Exercise 10.24: (a) Find an equation (in coordinates, not vector form)

for a line passing through the point P = (1, 1), with normal vector n =

[
2
1

]
.

(b) Find a second point Q on this line. (c) Find P′ = T3(P) and Q′ = T3(Q),
and a coordinate equation of the line joining P′ and Q′. (d) Verify that the

normal to this second line is in fact proportional to m =

[
2
−3

]
, confirming

that the normal transform really did properly transform the normal vector to
this line.

Inline Exercise 10.25: We assumed that the matrix M was invertible when we
computed the normal transform. Give an intuitive explanation of why, if M is
degenerate (i.e., not invertible), it’s impossible to define a normal transform.
Hint: Suppose that u, in the discussion above, is sent to 0 by M, but that u · n
is nonzero.
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10.12.1 Transforming Parametric Lines

All the transformations of the w = 1 plane we’ve looked at share the property that
they send lines into lines. But more than that is true: They send parametric lines to
parametric lines, by which we mean that if � is the parametric line � = {P + tv :
t ∈ R}, and Q = P + v (i.e., � starts at P and reaches Q at t = 1), and T is the
transformation T(v) = Mv, then T(�) is the line

T(�) = {T(P) + t(T(Q)− T(P)) : t ∈ R}, (10.115)

and in fact, the point at parameter t in � (namely P + t(Q− P)) is sent by T to the
point at parameter t in T(�) (namely T(P) + t(T(Q)− T(P))).

This means that for the transformations we’ve considered so far, transforming
the plane commutes with forming affine or linear combinations, so you can either
transform and then average a set of points, or average and then transform, for
instance.

10.13 More General Transformations

Let’s look at one final transform, T , which is a prototype for transforms we’ll use
when we study projections and cameras in 3D. All the essential ideas occur in 2D,
so we’ll look at this transformation carefully. The matrix M for the transformation
T is

M =

⎡
⎣2 0 −1

0 1 0
1 0 0

⎤
⎦ . (10.116)

It’s easy to see that TM doesn’t transform the w = 1 plane into the w = 1 plane.

Inline Exercise 10.26: Compute T(
[
2 0 1

]T
) and verify that the result is

not in the w = 1 plane.

x
y

w

Figure 10.22: The blue w = 1
plane transforms into the tilted
gray plane under TM.

Figure 10.22 shows the w = 1 plane in blue and the transformed w = 1 plane
in gray. To make the transformation T useful to us in our study of the w = 1 plane,
we need to take the points of the gray plane and “return” them to the blue plane
somehow. To do so, we introduce a new function, H, defined by

H : R3 − {
⎡
⎣x

y
0

⎤
⎦ : x, y,∈ R} → R3 :

⎡
⎣ x

y
w

⎤
⎦ 
→ [x/w, y/w, 1

]
. (10.117)

x

w

w = 1

PO

P�

H(P)

Figure 10.23: Homogenization[
x
w

]
�→

[
x/w

1

]
in two dimensions.

Figure 10.23 show how the analogous function in two dimensions sends every
point except those on the w = 0 line to the line w = 1: For a typical point P,
we connect P to the origin O with a line and see where this line meets the w = 1
plane. Notice that even a point in the negative-w half-space on the same line gets
sent to the same location on the w = 1 line. This connect-and-intersect operation
isn’t defined, of course, for points on the x-axis, because the line connecting them
to the origin is the axis itself, which never meets the w = 1 line. H is often called
homogenization in graphics.
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With H in hand, we’ll define a new transformation on the w = 1 plane by

S(v) = H(TM(v). (10.118)

This definition has a serious problem: As you can see from Figure 10.22, some
points in the image of T are in the w = 0 plane, on which H is not defined so that
S cannot be defined there. For now, we’ll ignore this and simply not apply S to any
such points.

Inline Exercise 10.27: Find all points v =
[
x y 1

]T
of the w = 1 plane

such that the w-coordinate of TM(v) is 0. These are the points on which S is
undefined.

x

y

Figure 10.24: Objects in the
w = 1 plane before transforma-
tion.

The transformation S, defined by multiplication by the matrix M, followed
by homogenization, is called a projective transformation. Notice that if we fol-
lowed either a linear or affine transformation with homogenization, the homog-
enization would have no effect. Thus, we have three nested classes of transfor-
mations: linear, affine (which includes linear and translation and combinations of
them), and projective (which includes affine and transformations like S).

y

x

Figure 10.25: The same objects
after transformation by S.

Figure 10.24 shows several objects in the w = 1 plane, drawn as seen looking
down the w-axis, with the y-axis, on which S is undefined, shown in pale green.
Figure 10.25 shows these objects after S has been applied to them. Evidently, S
takes lines to lines, mostly: A line segment like the blue one in the figure that
meets the y-axis in the segment’s interior turns into two rays, but the two rays
both lie in the same line. We say that the line y = 0 has been “sent to infinity.” The
red vertical line at x = 1 in Figure 10.24 transforms into the red vertical line at
x = 0 in Figure 10.25. And every ray through the origin in Figure 10.24 turns into
a horizontal line in Figure 10.25. We can say even more: Suppose that P1 denotes
radial projection onto the x = 1 line in Figure 10.24, while P2 denotes horizontal
projection onto the z = 0 line in Figure 10.25. Then

S(P1(X)) = P2(S(X)) (10.119)

for any point X that’s not on the y-axis. In other words, S converts radial projection
into parallel projection. In Chapter 13 we’ll see exactly the same trick in 3-space:
We’ll convert radial projection toward the eye into parallel projection. This is use-
ful because in parallel projection, it’s really easy to tell when one object obscures
another by just comparing “depth” values!

y

x

Figure 10.26: The line � passes
through P at t = 0 and Q at
t = 1; the black points are
equispaced in the interval 0 ≤
t ≤ 1.

Let’s look at how S transforms a parameterized line. Consider the line � start-
ing at a point P and passing through a point Q when t = 1,

�(t) =

⎡
⎣1

0
1

⎤
⎦+ t

⎡
⎣2

1
0

⎤
⎦ (10.120)

= P + t(Q− P), (10.121)

where P =
[
1 0 1

]T
and Q =

[
3 1 1

]T
so that in the w = 1 plane, the

line starts at (x, y) = (1, 0) when t = 0 and goes to the right and slightly upward,
arriving at (x, y) = (3, 1) when t = 1 (see Figure 10.26).
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The function T transforms this to the line �′ that starts at T(P) =
[
1 0 1

]T
when t = 0 and arrives at T(Q) =

[
5 1 3

]T
when t = 1, and whose equation is

�′(t) =
[
1 0 1

]
+ t
[
4 1 2

]
(10.122)

= T(P) + t(T(Q)− T(P)). (10.123)

Figure 10.27 shows the line in 3-space, after transformation by TM; the point spac-
ing remains constant.

y

x

w

Figure 10.27: After transforma-
tion by TM, the points are still
equispaced.

We know that this is the parametric equation of the line, because every lin-
ear transformation transforms parametric lines to parametric lines. But when we
apply H, something interesting happens. Because the function H is not linear,
the parametric line is not transformed to a parametric line. The point �′(t) =[
1 + 4t t 1 + 2t

]T
is sent to

m(t) =

⎡
⎣(1 + 4t)/(1 + 2t)

t/(1 + 2t)
1

⎤
⎦ (10.124)

=

⎡
⎣1

0
1

⎤
⎦+

t
1 + 2t

⎡
⎣2

1
0

⎤
⎦ (10.125)

Equation 10.125 has almost the form of a parametric line, but the coefficient
of the direction vector, which is proportional to S(Q)− S(P), has the form

at + b
ct + d

, (10.126)

which is called a fractional linear transformation of t. This nonstandard form
is of serious importance in practice: It tells us that if we interpolate a value at
the midpoint M of P and Q, for instance, from the values at P and Q, and then
transform all three points by S, then S(M) will generally not be at the midpoint
of S(P) and S(Q), so the interpolated value will not be the correct one to use if
we need post-transformation interpolation. Figure 10.28 shows how the equally
spaced points in the domain have become unevenly spaced after the projective
transformation.

x

y

Figure 10.28: After homogeniza-
tion, the points are no longer
equispaced.

In other words, transformation by S and interpolation are not commuting
operations. When we apply a transformation that includes the homogenization
operation H, we cannot assume that interpolation will give the same results
pre- and post-transformation. Fortunately, there’s a solution to this problem (see
Section 15.6.4).

Inline Exercise 10.28: (a) Show that if n and f are distinct nonzero numbers,
the transformation defined by the matrix

N =

⎡
⎣ f

f−n 0 fn
n−f

0 1 0
1 0 0

⎤
⎦ , (10.127)

when followed by homogenization, sends the line x = 0 to infinity, the line
x = n to x = 0, and the line x = f to x = 1.
(b) Figure out how to modify the matrix to send x = f to x = −1 instead.
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Inline Exercise 10.29: (a) Show that if T is any linear transformation on R3,
then for any nonzero α ∈ R and any vector v ∈ R3, H(T(αv)) = H(T(v)).
(b) Show that if K is any matrix, then H(TK(v)) = H(TαK(v)) as well.
(c) Conclude that in a sequence of matrix operations in which there’s an H at
the end, matrix scale doesn’t matter, that is, you can multiply a matrix by any
nonzero constant without changing the end result.

Suppose we have a matrix transformation on 3-space given by T(v) = Kv,
and T is nondegenerate (i.e., T(v) = 0 only when v = 0). Then T takes lines
through the origin to lines through the origin, because if v �= 0 is any nonzero
vector, then {αv : α ∈ R} is the line through the origin containing v, and when
we transform this, we get {αT(v) : α ∈ R}, which is the line through the origin
containing T(v). Thus, rather than thinking of the transformation T as moving
around points in R3, we can think of it as acting on the set of lines through the
origin. By intersecting each line through the origin with the w = 1 plane, we
can regard T as acting on the w = 1 plane, but with a slight problem: A line
through the origin in 3-space that meets the w = 1 plane may be transformed
to one that does not (i.e., a horizontal line), and vice versa. So using the w = 1
plane to “understand” the lines-to-lines version of the transformation T is a
little confusing.

The idea of considering linear transformations as transformations on the
set of lines through the origin is central to the field of projective geometry.
An understanding of projective geometry can lead to a deeper understand-
ing of the transformations we use in graphics, but is by no means essential.
Hartshorne [Har09] provides an excellent introduction for the student who has
studied abstract algebra.

Transformations of the w = 1 plane like the ones we’ve been looking at in this
section, consisting of an arbitrary matrix transformation on R3 followed by H,
are called projective transformations. The class of projective transformations
includes all the more basic operations like translation, rotation, and scaling of
the plane (i.e., affine transformations of the plane), but include many others as
well. Just as with linear and affine transformations, there’s a uniqueness theorem:
If P, Q, R, and S are four points of the plane, no three collinear, then there’s
exactly one projective transformation sending these points to (0, 0), (1, 0), (0, 1),
and (1, 1), respectively. (Note that this one transformation might be described by
two different matrices. For example, if K is the matrix of a projective transforma-
tion S, then 2K defines exactly the same transformation.)

For all the affine transformations we discussed in earlier sections, we’ve deter-
mined an associated transformation of vectors and of normal vectors. For projec-
tive transformations, this process is messier. Under the projective transformation
shown in Figures 10.24 and 10.25, we can consider the top and bottom edges of
the tan rectangle as vectors that point in the same direction. After the transforma-
tion, you can see that they have been transformed to point in different directions.
There’s no single “vector” transformation to apply. If we have a vector v start-
ing at the point P, we have to apply “the vector transformation at P” to v to find
out where it will go. The same idea applies to normal vectors: There’s a different
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normal transformation at every point. In both cases, it’s the function H that leads
to problems. The “vector” transformation for any function U is, in general, the
derivative DU. In the case of a matrix transformation TM that’s being applied only
to points of the w = 1 plane, the “vectors” lying in that plane all have w = 0, and
so the matrix used to transform these vectors can have its third column set to be
all zeroes (or can be just written as a 2 × 2 matrix operating on vectors with two
entries), as we have seen earlier. But since

S = H ◦ TM, (10.128)

we have (using the multivariable chain rule)

DS(P) = DH(TM(P)) · DTM(P). (10.129)

Now, since H(

⎡
⎣ x

y
w

⎤
⎦) =

⎡
⎣x/w

y/w
1

⎤
⎦, we know that

DH(

⎡
⎣ x

y
w

⎤
⎦) =

⎡
⎣1/w 0 −x/w2

0 1/w −y/w2

0 0 0

⎤
⎦ (10.130)

=
1

w2

⎡
⎣w 0 −x

0 w −y
0 0 0

⎤
⎦ (10.131)

and

DTM(P) = M =

⎡
⎣2 0 −1

0 1 0
1 0 0

⎤
⎦ . (10.132)

So, if P =
[
x, y, 1

]
is a point of the w = 1 plane and v =

⎡
⎣s

t
0

⎤
⎦ is a vector in that

plane, then S(P) =

⎡
⎣2x− 1

y
x

⎤
⎦ and

DS(P)(v) = DH(

⎡
⎣2x− 1

y
x

⎤
⎦) · DT(P)v =

⎡
⎣s

t
0

⎤
⎦ (10.133)

=
1
x2

⎡
⎣x 0 −(2x + 1)

0 x −y
0 0 0

⎤
⎦
⎡
⎣2 0 −1

0 1 0
1 0 0

⎤
⎦
⎡
⎣s

t
0

⎤
⎦ (10.134)

=
1
x2

⎡
⎣−1 0 −x
−y x 0

0 0 0

⎤
⎦
⎡
⎣s

t
0

⎤
⎦ =

⎡
⎣ −s/x2

(tx− sy)/x2

0

⎤
⎦ . (10.135)

Evidently, the “vector” transformation depends on the point (x, y, 1) at which
it’s applied. The normal transform, being the inverse transpose of the vector trans-
form, has the same dependence on the point of application.
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10.14 Transformations versus Interpolation

When you rotate a book on your desk by 30◦ counterclockwise, the book is rotated
by each intermediate amount between zero and 30◦. But when we “rotate” the
house in our diagram by 30◦, we simply compute the final position of each point
of the house. In no sense has it passed through any intermediate positions. In the
more extreme case of rotation by 180◦, the resultant transformation is exactly the
same as the “uniform scale by −1” transformation. And in the case of rotation by
360◦, the resultant transformation is the identity.

This reflects a limitation in modeling. The use of matrix transformations to
model transformations of ordinary objects captures only the relationship between
initial and final positions, and not the means by which the object got from the
initial to the final position.

Much of the time, this distinction is unimportant: We want to put an object
into a particular pose, so we apply some sequence of transformations to it (or its
parts). But sometimes it can be quite significant: We might instead want to show
the object being transformed from its initial state to its final state. An easy, but
rarely useful, approach is to linearly interpolate each point of the object from its
initial to its final position. If we do this for the “rotation by 180◦” example, at the
halfway point the entire object is collapsed to a single point; if we do it from the
“rotation by 360◦” example, the object never appears to move at all! The problem
is that what we really want is to find interpolated versions of our descriptions
of the transformation rather than of the transformations themselves. (Thus, to go
from the initial state to “rotated by 360” we’d apply “rotate by s” to the initial
state, for each value of s from 0 to 360.)

But sometimes students confuse a transformation like “multiplication by the
identity matrix” with the way it was specified, “rotate by 360◦,” and they can be
frustrated with the impossibility of “dividing by two” to get a rotation by 180◦,
for instance. This is particularly annoying when one has access only to the matrix
form of the transformation, rather than the initial specification; in that case, as the
examples show, there’s no hope for a general solution to the problem of “doing a
transformation partway.” On the other hand, there is a solution that often gives rea-
sonable results in practice, especially for the problem of interpolating two rather
similar transformations (e.g., interpolating between rotating by 20◦ and rotating
by 30◦), which often arises. We’ll discuss this in Chapter 11.

10.15 Discussion and Further Reading

We’ve introduced three classes of basic transformations: linear, which you’ve
already encountered in linear algebra; affine, which includes translations and can
be seen as a subset of the linear transformations in xyw-space, restricted to the
w = 1 plane; and projective, which arises from general linear transformations on
xyw-space, restricted to the w = 1 plane and then followed by the homogenization
operation that divides through by w. We’ve shown how to represent each kind of
transformation by matrix multiplication, but we urge you to separate the idea of a
transformation from the matrix that represents it.

For each category, there’s a theorem about uniqueness: A linear transforma-
tion on the plane is determined by its values on two independent vectors; an
affine transformation is determined by its values on any three noncollinear points;
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a projective transformation is determined by its values on any four points, no three
of which are collinear. In the next chapter we’ll see analogous results for 3-space,
and in the following one we’ll see how to use these theorems to build a library for
representing transformations so that you don’t have to spend a lot of time building
individual matrices.

Even though matrices are not as easy for humans to interpret as “This trans-
formation sends the points A, B, and C to A′, B′, and C′,” the matrix representation
of a transformation is very valuable, mostly because composition of transforma-
tion is equivalent to multiplication of matrices; performing a complex sequence
of transformations on many points can be converted to multiplying the points’
coordinates by a single matrix.

10.16 Exercises

Exercise 10.1: Use the 2D test bed to write a program to demonstrate windowing
transforms. The user should click and drag two rectangles, and you should com-
pute the transform between them. Subsequent clicks by the user within the first
rectangle should be shown as small dots, and the corresponding locations in the
second rectangle should also be shown as dots. Provide a Clear button to let the
user restart.

Exercise 10.2: Multiply M =

[
a c
b d

]
by the expression given in Equa-

tion 10.17 for its inverse to verify that the product really is the identity.
Exercise 10.3: Suppose that M is an n × n square matrix with SVD M =

UDVT.
(a) Why is VTV the identity?
(b) Let i be any number from 1 to n. What is VTvi, where vi denotes the ith column
of V? Hint: Use part (a).
(c) What’s DVTvi?
(d) What’s Mvi in terms of ui and di, the ith diagonal entry of D?
(e) Let M′ = d1u1vT

1 + . . .+ dnunvT
n . Show that M′vi = diui.

(f) Explain why vi, i = 1, . . . , n are linearly independent, and thus span Rn.
(g) Conclude that w 
→ Mw and w 
→ M′w agree on n linearly independent
vectors, and hence must be the same linear transformation of Rn.
(h) Conclude that M′ = M. Thus, the singular-value decomposition proves the
theorem that every matrix can be written as a sum of outer products (i.e., matrices
of the form vwT).

Exercise 10.4: (a) If P, Q, and R are noncollinear points in the plane, show
that Q− P and R− P are linearly independent vectors.
(b) If v1 and v2 are linearly independent points in the plane, and A is any point in
the plane, show that A, B = A + v1 and C = A + v2 are noncollinear points. This
shows that the two kinds of affine frames are equivalent.
(c) Two forms of an affine frame in 3-space are (i) four points, no three coplanar,
and (ii) one point and three linearly independent vectors. Show how to convert
from one to the other, and also describe a third possible version (Three points and
one vector? Two points and two vectors? You choose!) and show its equivalence
as well.

Exercise 10.5: We said that if the columns of the matrix M are v1, v2, . . . , vk ∈
Rn, and they are pairwise orthogonal unit vectors, then MTM = Ik, the k × k
identity matrix.
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(a) Explain why, in this situation, k ≤ n.
(b) Prove the claim that MTM = Ik.

Exercise 10.6: An image (i.e., an array of grayscale values between 0 and 1,
say) can be thought of as a large matrix, M (indeed, this is how we usually
represent images in our programs). Use a linear algebra library to compute the
SVD M = UDVT of some image M. According to the decomposition theorem
described in Exercise 10.3, this describes the image as a sum of outer products of
many vectors. If we replace the last 90% of the diagonal entries of D with zeroes
to get a new matrix D′, then the product M′ = UD′V deletes 90% of the terms in
this sum of outer products. In doing so, however, it deletes the smallest 90% of the
terms. Display M′ and compare it to M. Experiment with values other than 90%.
At what level do the two images become indistinguishable? You may encounter
values less than 0 and greater than 1 during the process described in this exercise.
You should simply clamp these values to the interval [0, 1].

Exercise 10.7: The rank of a matrix is the number of linearly independent
columns of the matrix.
(a) Explain why the outer product of two nonzero vectors always has rank one.
(b) The decomposition theorem described in Exercise 10.3 expresses a matrix M
as a sum of rank one matrices. Explain why the sum of the first p such outer
products has rank p (assuming d1, d2, . . . , dp �= 0). In fact, this sum Mp is the rank
p matrix that’s closest to M, in the sense that the sum of the squares of the entries
of M−Mp is as small as possible. (You need not prove this.)

Exercise 10.8: Suppose that T : R2 → R2 is a linear transformation repre-
sented by the 2×2 matrix M, that is, T(x) = Mx. Let K = maxx∈S1 ‖T(x)‖2, that
is, K is the maximum squared length of all unit vectors transformed by M.
(a) If the SVD of M is M = UDVT, show that K = d2

1.
(b) What is the minimum squared length among all such vectors, in terms of D?
(c) Generalize to R3.

Exercise 10.9: Show that three distinct points P, Q, and R in the Euclidean

plane are collinear if and only if the corresponding vectors (vP =

⎡
⎣Px

Py

1

⎤
⎦, etc.) are

linearly dependent, by showing that if αPvP + αQvQ + αRvR = 0 with not all the
αs being 0, then
(a) none of the αs are 0, and
(b) the point Q is an affine combination of P and R; in particular, Q = −αP

αQ
P −

αR
αP

R, so Q must lie on the line between P and R.
(c) Argue why dependence and collinearity are trivially the same if two or more
of the points P, Q, and R are identical.

Exercise 10.10: It’s good to be able to recognize the transformation repre-
sented by a matrix by looking at the matrix; for instance, it’s easy to recognize a
3×3 matrix that represents a translation in homogeneous coordinates: Its last row
is
[
0 0 1

]
and its upper-left 2 × 2 block is the identity. Given a 3 × 3 matrix

representing a transformation in homogeneous coordinates,
(a) how can you tell whether the transformation is affine or not?
(b) How can you tell whether the transformation is linear or not?
(c) How can you tell whether it represents a rotation about the origin?
(d) How can you tell if it represents a uniform scale?

Exercise 10.11: Suppose we have a linear transformation T : R2 → R2, and
two coordinate systems with bases {u1, u2} and {v1, v2}; all four basis vectors are
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unit vectors, u2 is 90◦ counterclockwise from u1, and similarly v2 is 90◦ counter-
clockwise from v1. You can write down the matrix Mu for T in the u-coordinate
system and the matrix Mv for T in the v-coordinate system.

(a) If Mu is a rotation matrix

[
cos θ sin θ
sin θ cos θ

]
, what can you say about Mv?

(b) If Mu is a uniform scaling matrix, that is, a multiple of the identity, what can
you say about Mv?

(c) If Mu is a nonuniform scaling matrix of the form

[
a 0
0 b

]
, with a �= b, what

can you say about Mv?
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Chapter 11

Transformations in Three
Dimensions

11.1 Introduction

Transformations in 3-space are in many ways analogous to those in 2-space.

• Translations can be incorporated by treating three-dimensional space
as the subset E3 defined by w = 1 in the four-dimensional space of
points (x, y, z, w). A linear transformation whose matrix has the form⎡
⎢⎢⎣

1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

⎤
⎥⎥⎦, when restricted to E3, acts as a translation by

[
a b c

]T
on E3.

• If T is any continuous transformation that takes lines to lines, and O
denotes the origin of 3-space, then we can define

T̂(x) = T(x)− T(O) (11.1)

and the result is a line-preserving transformation T̂ that takes the origin
to the origin. Such a transformation is represented by multiplication by a
3 × 3 matrix M. Thus, to understand line-preserving transformations on
3-space, we can decompose each into a translation (possibly the identity)
and a linear transformation of 3-space.

• Projective transformations are similar to those in 2-space; instead of being
undefined on a line, they are undefined on a whole plane. Otherwise, they
are completely analogous.

• Scale transformations can again be uniform or nonuniform; those that are
nonuniform are characterized by three orthogonal invariant directions and
three scale factors rather than just two, but nothing else is significantly
different. The matrix for an axis-aligned scale by amounts a, b, and c along
the x-, y-, and z-axes, respectively, is

263
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⎡
⎢⎢⎣

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 1

⎤
⎥⎥⎦ . (11.2)

Scale transformations in which one or three of a, b, and c are negative
reverse orientation: A triple of vectors v1, v2, v3 that form a right-handed
coordinate system will, after transformation by such a matrix, form a left-
handed coordinate system. A uniform scale by a negative number has all
three diagonal entries negative, and hence reverses orientation.

• Similarly, shearing transformations continue to leave a line fixed. Points
not on this line are moved by an amount that depends on their position
relative to the line, but this position is now measured in two dimensions
instead of just one. There are also shears that leave a plane fixed.

• Reflections in 2D were either reflections through a point (the transforma-
tion x 
→ −x), which turns out to be the same as rotation by an angle π,
or reflections through a line. In 3D, there are reflections through a point,
a line, or a plane. Reflection through a line corresponds to rotation about
the line by π. Reflection through a point is still given by the map x 
→ −x;
in contrast to the two-dimensional case, this map is orientation-reversing.
Finally, reflection through a plane is given by the map

x 
→ x− 2(x · n)n, (11.3)

where n is the unit normal vector to the plane. This is algebraically analo-
gous to reflection through a line in two dimensions, but in three dimensions
it is orientation-preserving. The matrix for this map is

I− 2nnT =

⎡
⎢⎢⎣

1− 2n2
x −2nxny −2nxnz 0

−2nxny 1− 2n2
y −2nynz 0

−2nxnz −2nynz 1− 2n2
z 0

0 0 0 1

⎤
⎥⎥⎦ , (11.4)

but it should come as no surprise at this point that we recommend that
you use the expression I − 2nnT to create a reflection matrix rather than
explicitly typing in the matrix entries, which is prone to error.

The most important difference between two and three dimensions arises when
we consider rotations. In two dimensions, the set of rotations about the origin
corresponds nicely with the unit circle: If R is a rotation, we look at R(e1), which
is a point on the unit circle. This gives a mapping from rotations to the circle;
the inverse mapping is given by taking each point [x, y]T on the unit circle and
associating to it the rotation whose matrix is

[
x −y
y x

]
, (11.5)

for which it’s easy to verify that e1 is sent to [x, y]T. Thus, we can say that the
set of rotations in two dimensions is a one-dimensional shape: Knowing a single
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number (the angle of rotation) completely determines the rotation.1 By contrast,
we’ll see in Section 11.2 that in 3-space, the set of rotations is three-dimensional.
Furthermore, there’s no nice one-to-one correspondence with a familiar object like
a circle.

Although you should, in general, use code like that described in the next chap-
ter to perform transformations, during debugging you’ll often find yourself look-
ing at matrices. It’s a good skill to be able to recognize translations and scales
instantly, and to be able to guess quickly that the upper-left 3×3 block of a matrix
is a rotation: If all entries are between −1 and 1, and the sum of the squares of
the entries in a column looks like it’s approximately one, it’s probably a rotation.
Finally, if the bottom row is not [0 0 0 1], you generally know that your transfor-
mation is projective rather than affine.

11.1.1 Projective Transformation Theorems

While projective transformations on 3-space are analogous to those in two dimen-
sions, it’s worth explicitly writing down a few of their properties.

A projective transformation is completely specified by its action on a projec-
tive frame, which consists of five points in space, no four of them coplanar. (The
proof is exactly analogous to the two-dimensional proof.)

Every projective transformation on 3-space is determined by a linear trans-
formation of the w = 1 subspace of 4-space, represented by a 4 × 4 matrix M,
followed by the homogenizing transformation

H(x, y, z, w) = (
x
w

,
y
w

,
z
w

, 1). (11.6)

If the last row of the matrix M is
[
0 0 0 1

]
, then the transformation takes the

w = 1 plane to itself, so H has no effect, and the projective transformation is in
fact an affine transformation whose matrix is M.

Inline Exercise 11.1: Suppose the last row of M is
[
0 0 0 k

]
for some

k �= 0, 1. Show that in this case, the projective transformation defined by M is
still affine. What is the matrix for this affine transformation? Hint: It’s not M!

The matrix M representing a projective transformation is not unique (as you
can conclude from Inline Exercise 11.1). If M represents some transformation,
so does cM for any nonzero constant c, because if k = Mv, then (cM)v = ck;
homogenizing ck involves divisions like ckx

ckw
= kx

kw
, which produce the same results

as homogenizing k itself.
The last row of the matrix M for a projective transformation determines the

equation of the plane on which the transformation is undefined (i.e., the “plane

sent to infinity”). If the last row is
[
A B C D

]
, then a point

[
x y z 1

]T
1. Formally, we should say that SO(2), the set of 2 × 2 rotation matrices, is a one-

dimensional manifold, which is, informally, a smooth shape with the property that at
every point, there is essentially only one direction in which to move; in the case of
the circle, this “direction” is that of increasing or decreasing angle. By contrast, the
surface of the Earth is a 2-manifold, because at each point there are two independent
directions for motion—at any point except the poles, one can take these to be north-
south and east-west; any other direction is a combination of these two.
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will be sent to infinity exactly if, after transformation, its w-coordinate is zero, that
is, if

Ax + By + Cz + D = 0. (11.7)

That equation defines a plane in 3-space.

Inline Exercise 11.2: In the case described above in which a projective trans-
formation is actually affine, which points in xyzw-coordinates form the “plane
sent to infinity”? It’s important to include w in your computation.

11.2 Rotations

Rotations in 3-space are much more complicated than those in the plane, but much
of that complexity is of little significance for the casual user. We therefore present
the essentials in this section, but we provide a much longer discussion of rotations
in the web materials for this chapter.

We begin with some easily derived formulas that you’re likely to use often.
Then we’ll discuss how to use notions like pitch, roll, and yaw (which are called
Euler angles) to describe rotations, and how to describe a rotation by giving an
axis of rotation and an angle through which to rotate (Rodrigues’ formula), as
well as how to find the axis and angle for a rotation (a computation that’s also
due to Euler). Both of these descriptions of rotations have limitations that make
them unsuitable for interpolating between rotations, so we’ll consider a third way
to describe rotations: To each point q of the sphere S3 in four-dimensional space
R4, we can associate a rotation K(q) in a very natural way. There’s a small prob-
lem, however: The points q and −q of S3 correspond to the same rotation, so our
correspondence is two-to-one. It turns out to still be easy to use this description of
rotations to perform interpolation.

11.2.1 Analogies between Two and Three Dimensions

Rotations in two dimensions given by matrices of the form[
cos θ − sin θ
sin θ cos θ

]
(11.8)

generalize nicely to three dimensions and higher. For instance, we can take the
matrix for rotation through the angle θ in two dimensions and expand it to get

Rxy(θ) =

⎡
⎣cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤
⎦ , (11.9)

which is the rotation by angle θ in the xy-plane of 3-space. As we mentioned
in Chapter 10, this is also sometimes called rotation about z by the angle θ. The
advantage of calling it rotation in the xy-plane is that there is an easy mnemonic
associated to it: For small values of θ, the unit vector in the x-direction is rotated
toward the unit vector in the y-direction. Corresponding statements are true of Ryz



ptg11539634

11.2 Rotations 267

and Rzx, which are written below. There’s another advantage: While rotations in
3-space always have an axis (see the web material for a proof) those in 2-space
do not (e.g., there’s no vector in R2 left invariant by rotation through 30◦), and
neither do those in 4-space. But in all cases rotations can be described in terms of
planes of rotation.

The analogous rotations in the yz- and zx-planes are given by

Ryz(θ) =

⎡
⎣1 0 0

0 cos θ − sin θ
0 sin θ cos θ

⎤
⎦ and (11.10)

Rzx(θ) =

⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦ , (11.11)

which can also be called rotation about x and rotation about y, respectively.
In contrast to the two-dimensional situation, where we found that the set of

3 × 3 rotation matrices was one-dimensional, in three dimensions the set SO(3)
of 3 × 3 rotation matrices is three-dimensional. It is not, however, just a three-
dimensional Euclidean space. One way to see it’s three-dimensional is to find a
mostly one-to-one mapping from an easy-to-understand three-dimensional object
to SO(3) (just as the latitude-longitude parameterization of the 2-sphere shows
us that the 2-sphere is two-dimensional). We’ll actually describe three such map-
pings, each with its own advantages and disadvantages. The first of these map-
pings is through Euler angles. This mapping is “mostly one-to-one,” in much the
same way that the mapping of latitude and longitude to points on the globe is
mostly one-to-one: Each point on the international date line has two longitudes
(180E and 180W), and each pole has infinitely many longitudes, but each other
sphere point corresponds to a single latitude-longitude pair.

11.2.2 Euler Angles

Euler angles are a mechanism for creating a rotation through a sequence of three
simpler rotations (called roll, pitch, and yaw). This decomposition into three sim-
pler rotations can be done in several ways (yaw first, roll first, etc.); unfortunately,
just about every possible way is used in some discipline. You’ll need to get used
to the idea that there’s no single correct definition of Euler angles.

The most commonly used definition in graphics describes a rotation by Euler
angles (φ, θ,ψ) as a product of three rotations. The matrix M for the rotation is
therefore a product of three others:

M = Ryz(ψ)Rzx(θ)Rxy(φ). (11.12)

Thus, objects are first rotated by angle φ in the xy-plane, then by angle θ in the
zx-plane, and then by angle ψ in the yz-plane. The number φ is called pitch, θ is
called yaw, and ψ is called roll. If you imagine yourself flying in an airplane (see
Figure 11.1) along the x-axis (with the y-axis pointing upward) there are three
direction changes you can make: Turning left or right is called yawing, pointing
up or down is called pitching, and rotating about the direction of travel is called
rolling. These three are independent in the sense that you can apply any one with-
out the others. You can, of course, also apply them in sequence.
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Yawing

Pitching

Rolling

yz

x

Figure 11.1: An airplane that flies along the x-axis can change direction by turning to the
left or right (yawing), pointing up or down (pitching), or simply spinning about its axis
(rolling).

Writing this out in matrices, we have

M =

⎡
⎣1 0 0

0 cosψ − sinψ
0 sinψ cosψ

⎤
⎦
⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦
⎡
⎣cosφ − sinφ 0
sinφ cosφ 0

0 0 1

⎤
⎦

(11.13)

=

⎡
⎣cos θ cosφ − cos θ sinφ sin θ

∗ ∗ − sinψ cos θ
∗ ∗ cosψ cos θ

⎤
⎦ . (11.14)

With the proper choice of φ, θ, and ψ, such products represent all possible
rotations. To see this, we’ll show how to find φ, θ, and ψ from a rotation matrix
M. In other words, having shown how to convert a (φ, θ,ψ) triple to a matrix, we’ll
show how to convert a matrix M to a triple (φ′, θ′,ψ′), a triple with the property
that if we convert it to a matrix, we’ll get M.

The (1, 3) entry of M, according to Equation 11.14, must be sin θ, so θ is
just the arcsine of this entry; the number thus computed will have a non-negative
cosine. When cos θ �= 0, the (1, 1) and (1, 2) entries of M are positive multiples of
cosφ and − sinφ by the same multiplier; that means φ = atan2(−m21, m11). We
can similarly compute ψ from the last entries in the second and third rows. In the
case where cos θ = 0, the angles φ and ψ are not unique (much as the longitude
of the North Pole is not unique). But if we pick φ = 0, we can use the lower-
left corner and atan2 to compute a value for ψ. The code is given in Listing 11.1,
where we are assuming the existence of a 3 × 3 matrix class, Mat33, which uses
zero-based indexing. The angles returned are in radians, not degrees.

Listing 11.1: Code to convert a rotation matrix to a set of Euler angles.

1
2
3
4
5
6
7
8

void EulerFromRot(Mat33 m, out double psi,
out double theta,
out double phi)

{
theta = Math.asin(m[0,2]) //using C# 0-based indexing!
double costheta = Math.cos(th);
if (Math.abs(costheta) == 0){

phi = 0;
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9
10
11
12
13
14
15
16

psi = Math.atan2(m[2,1], m[1,1]);
}
else
{

phi = atan2(-m[0,1], m[0,0]);
psi = atan2(-m[1,2], m[2,2]);

}
}

It remains to verify that the values of θ,φ, and ψ determined produce matrices
which, when multiplied together, really do produce the given rotation matrix M,
but this is a straightforward computation.

Inline Exercise 11.3: Write a short program that creates a rotation matrix
from Rodrigues’ formula (Equation 11.17 below) and computes from it the
three Euler angles. Then use Equation 11.14 to build a matrix from these three
angles, and confirm that it is, in fact, your original matrix. Use a random unit
direction vector and rotation amount in Rodrigues’ formula.

Aside from the special case where cos θ = 0 in the code above, we have a
one-to-one mapping from rotations to (θ,φ,ψ) triples with −π/2 < θ ≤ π/2 and
−π < φ,ψ ≤ π. Thus, the set of rotations in 3-space is three-dimensional.

In general, you can imagine controlling the attitude of an object by speci-
fying a rotation using θ,φ, and ψ. If you change any one of them, the rotation
matrix changes a little, so you have a way of maneuvering around in SO(3). The
cos θ = 0 situation is tricky, though. If θ = π/2, for instance, we find that multiple
(φ,ψ) pairs give the same result; varying φ and ψ turns out to not produce inde-
pendent changes in the attitude of the object. This phenomenon, in various forms,
is called gimbal lock, and is one reason that Euler angles are not considered an
ideal way to characterize rotations.

11.2.3 Axis-Angle Description of a Rotation

One way to rotate 3-space is to pick a particular axis (i.e., a unit vector) and rotate
about that direction by some amount. The matrix Rxy does this when the axis is
the z-axis, for instance. We show, in the web materials, that every rotation in 3-
space is rotation about some axis by some angle. Rodrigues [Rod16] discovered a
formula to build a rotation for any axis and angle of rotation, and thus to produce
any rotation matrix. We let

v =

⎡
⎣vx

vy

vz

⎤
⎦ (11.15)

denote the unit-vector axis of rotation and θ the amount of rotation about v (mea-
sured counterclockwise as viewed from the tip of v looking toward the origin).

To express the rotation we seek, we’ll need to use cross products a good deal.
The function v 
→ v×v is a linear transformation from R3 to itself; the matrix for
this transformation is

Jv =

⎡
⎣ 0 −vz vy

vz 0 −vx

−vy vx 0

⎤
⎦ . (11.16)



ptg11539634

270 Transformations in Three Dimensions

Inline Exercise 11.4: (a) What’s v×v?
(b) Show that Jvv = 0 as expected.
(c) Suppose that v is a unit vector perpendicular to v. Explain why v×v is
perpendicular to both, and why v×(v×v) = −v.

The rotation matrix we seek is then

M = I + sin(θ)Jv + (1− cos θ)J2
v. (11.17)

From Inline Exercise 11.4, it’s clear that Mv = v. And if v is perpendicular
to v, then

Mv = Iv + sin(θ)Jvv + (1− cos θ)J2
vv (11.18)

= v + sin(θ)v×v + (1− cos θ)(v×(v×v)) (11.19)

= v + sin(θ)v×v + (1− cos θ)(−v) (11.20)

= sin(θ)v×v + cos(θ)(v), (11.21)

which is just the rotation of v in the plane perpendicular to v by an angle θ. Since
M does the right thing to v and to vectors perpendicular to v, it must be the right
matrix, as per the Transformation Uniqueness principle (see Figure 11.2).

u

v v 3 v

v

cos(u)v 1 sin(u)(v 3 v)

Figure 11.2: When v is orthogo-
nal to v, v and v×v form a basis
for the plane perpendicular to v.

In coordinate form, it’s

M = sin θ

⎡
⎣ 0 −vz vy

vz 0 −vx

−vy vx 0

⎤
⎦ (11.22)

+(1− cos θ)

⎡
⎣−v2

y − v2
z vxvy vzvx

vxvy −v2
z − v2

x vyvz

vzvx vyvz −v2
x − v2

y

⎤
⎦+ I, (11.23)

where we’ve used the fact that v is a unit vector to simplify things a little. But the
earlier form is far easier to program correctly.

11.2.4 Finding an Axis and Angle from a Rotation Matrix

As we said earlier, it’s a theorem that every rotation of 3-space has an axis (i.e.,
a vector that it leaves untouched). We can use Rodrigues’ formula to recover the
axis from the matrix. We’ll follow the approach of Palais and Palais [PP07].

We know every rotation matrix has an axis v and an amount of rotation, θ,
about v; Rodrigues’ formula tells us the matrix must be

M = I + sin(θ)Jv + (1− cos θ)J2
v (11.24)

for some unit vector v and some angle θ.
The trace of this matrix (the sum of the diagonal entries) is

tr(M) = tr(I + sin(θ)Jv + (1− cos θ)J2
v)

= tr(I) + sin(θ)tr(Jv) + (1− cos θ)tr(J2
v)

= 3 + (1− cos θ)(−2(v2
x + v2

y + v2
z ))

= 3 + (1− cos θ)(−2)

= 1 + 2 cos θ,
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so we can recover the angle of rotation by computing

θ = cos−1

(
tr(M)− 1

2

)
. (11.25)

Two special cases arise at this point, corresponding to the two ways that sin θ
can be zero.

1. If θ = 0, then any unit vector serves as an “axis” for the rotation, because
the rotation is the identity matrix.

2. If θ = π, then twice the rotation has angle 2π, and thus is the identity, that
is, our rotation M must satisfy M2 = I. From this we find that

M(M + I) = M2 + M = I + M = M + I. (11.26)

That means that when we multiply M by M + I, every column of M + I
remains unchanged. So any nonzero column of M + I, when normalized,
can serve as the axis of rotation. We know that at least one column of
M + I is nonzero; otherwise, M = −I. But this is impossible, because the
determinant of −I is −1, while that of M is +1.

In the general case, when sin θ �= 0, we can compute M−MT to get

M−MT = I + sin(θ)Jv + (1− cos θ)J2
v−

(IT + sin(θ)JT
v + (1− cos θ)(J2

v)
T). (11.27)

Because JT
v = −Jv and (J2

v)
T = J2

v, this simplifies to

M−MT = 2 sin(θ)Jv. (11.28)

Dividing by 2 sin θ gives the matrix Jv, from which we can recover v. The code
is given in Listing 11.2.

Listing 11.2: Code to find the axis and angle from a rotation matrix.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

void RotationToAxisAngle(
Mat33 m,
out Vector3D omega,
out double theta)

{
//converta 3x3 rotationmatrix m to an axis-anglerepresentation

theta = Math.acos( (m.trace()-1)/2);
if (θ is near zero)
{

omega = Vector3D(1,0,0); // any vector works
return;

}
if (θ is near π)
{

int col = column with largest entry of m in absolute value;
omega = Vector3D(m[0, col], m[1, col], m[2, col]);
return;

}
else
{

mat 33 s = m - m.transpose();
double x = -s[1,2], y = s[0,2]; z = -s[1,1];
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24
25
26
27
28

double t = 2 * Math.Sin(theta);
omega = Vector3D(x/t, y/t, z/t);
return;

}
}

A few observations are in order.

• For small θ, M is nearly the identity.

• For small θ, the coefficient of the last term is approximately θ, while the
coefficient of the middle term is 1 − cos(θ) ≈ − θ2

2 ; thus, the middle term
is far smaller than the last term. So to first order, M ≈ I + sin θJv.

11.2.5 Body-Centered Euler Angles

Suppose we have a model of an airplane whose vertices are stored in an n × 3
array V. We’ve rotated the model to some position that we like by multiplying all
the vertices by some rotation matrix M, that is, we’ve computed

W = MV. (11.29)

We now decide that we’d like to have the airplane model pitch up a little more (as
if the pilot had pulled on the joystick). We could apply some Euler-angle rotations
to the rotated vertices, that is, we could compute⎡
⎣1 0 0

0 cosψ − sinψ
0 sinψ cosψ

⎤
⎦
⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦
⎡
⎣cosφ − sinφ 0
sinφ cosφ 0

0 0 1

⎤
⎦W. (11.30)

The problem is that this would take the already rotated vertices and rotate them
first about the world z-axis, which might point diagonally through the airplane,
and then about the world y-axis, and then about the world x-axis. It would be very
hard to choose ψ, θ, and φ to have the effect we are seeking. Such a transformation
would be called a world-centered rotation, because the description of the rotation
is in terms of the axes of the world coordinate system. We could instead compute

M

⎡
⎣1 0 0

0 cosψ − sinψ
0 sinψ cosψ

⎤
⎦
⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦
⎡
⎣cosφ − sinφ 0
sinφ cosφ 0

0 0 1

⎤
⎦V,

(11.31)

that is, apply some rotations to the object’s vertices before applying the rotation
M to the object. Such an operation is called a body-centered rotation or object-
centered rotation. In this case, performing the rotation we seek is easy: We sim-
ply adjust the pitch angle φ. Of course, if we then want to adjust it further, we
have to apply another body-centered rotation, and it appears that we’re destined to
accumulate a huge sequence of matrices. One solution is to explicitly compute the
product so that we always have at most one matrix, plus three others temporarily
being adjusted until they too can be folded into the matrix. Another approach is
to represent matrices with quaternions, as we’ll see below. In general, if M is the
current transformation applied to the vertex set V, and we alter it to M1 = MA,
then A is called a body-centered operation, while if we alter it to M2 = CM, then
C is called a world-centered operation.
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11.2.6 Rotations and the 3-Sphere

The set SO(3) of all 3 × 3 rotation matrices can be difficult to understand. It is,
in some sense, a subset of R9: Just read the nine entries of the matrix M in order
to get the point in R9 that corresponds to M. In a web extra, we give consider-
able detail on this set and its properties. Here, we’ll give just the essentials. The
main tool used to understand SO(3), to make computations involving SO(3) more
numerically robust, and to let us reason about operations in SO(3) (like interpo-
lation) by means of a familiar space, is S3, the 3-sphere, or the set of all points[
w x y z

]T
in 4-space whose distance from the origin is 1. We’ve shuffled the

coordinates on purpose to make some of what we say below involve less shuffling.
We’ll also, in this section, talk about points of S3, but we’ll always write them as
vectors so that we can form linear combinations of them. Figure 11.3: Wrapping a line

onto a circle.

Figure 11.4: Wrapping a disk
onto a sphere; all points of the
circular edge of the disk are sent
to the North Pole.

Just as you can wrap a line segment into a circle (joining the two bound-
ary points into one point of the circle, as in Figure 11.3), or wrap a disk into a
sphere (with the whole boundary circle becoming one point of the sphere, as in
Figure 11.4), you can wrap a solid ball in 3-space into a 3-sphere, by collaps-
ing the whole boundary sphere to a point. To do so, you must work in the fourth
dimension, but the idea is to reason about the 3-sphere by analogy.

u
v

w
cos(u)v 1 sin(u)w

Figure 11.5: The set of all cosine-
sine combinations of v and w
wraps around the whole circle.

For instance, if we take two perpendicular unit vectors u and v in the unit cir-
cle and construct all points of the form cos(θ)u + sin(θ)v, these points cover the
whole circle (see Figure 11.5). Similarly, in the 2-sphere, if we have two perpen-
dicular unit vectors, their cosine-sine combinations form a great circle, that is,
the intersection of the sphere with a plane through its center (see Figure 11.6). In
fact, the same thing is true for the 3-sphere as well: Cosine-sine combinations of
perpendicular vectors traverse a great circle on the 3-sphere. And the arc of this
circle from u to v (i.e, from θ = 0 to π/2) is the shortest path between them, just
as in the lower dimensions.

There’s a mapping from S3 to SO(3), given by

K : S3 → SO(3) : (11.32)⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦ 
→

⎡
⎣a2 + b2 − c2 − d2 2(bc− ad) 2(ac + bd)

2(ad + bc) a2 − b2 + c2 − d2 2(cd − ab)
2(bd − ac) 2(ab + cd) a2 − b2 − c2 + d2

⎤
⎦ .

(11.33)

The map K has several nice properties.

• It’s almost one-to-one. In fact, it’s a two-to-one map; for any q ∈ S3,
K(q) = K(−q), as you can see by looking at the formula.

• Great circles on S3 are sent, by K, to geodesics (paths of shortest length) in
SO(3).

• K(
[
1 0 0 0

]T
) = I.

This mapping arises from a definition of a kind of “multiplication” on R4,
closely analogous to the way we can treat points of R2 as complex numbers
and multiply them together. The multiplication on R4 is not commutative, which
causes some difficulties, but otherwise it’s closely analogous to multiplication of
complex numbers. The set R4, together with this multiplication operation, is called
the quaternions (which is why we use a boldface q for a typical element of S3).
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The web material for this chapter describes the quaternions in detail, derives the
mapping K above, and shows how it’s related to Rodrigues’ formula. For most
purposes in graphics, it’s sufficient to know the three properties above, and one
more fact, which we now develop.

u

v

cos(u)v 1 sin(u)w
w

Figure 11.6: All cosine-sine com-
binations of two perpendicular
unit vectors in the sphere again
form a unit circle, called a great
circle.

If we have a point q =
[
a b c d

]T ∈ S3, we know −1 ≤ a ≤ 1, so a is
the cosine of some number. We let

θ = arccos(a). (11.34)

Furthermore, since
[
a b c d

]T ∈ S3, we know that a2 + b2 + c2 + d2 = 1.
Thus,

1 = a2 + b2 + c2 + d2 (11.35)

= cos2(θ) + b2 + c2 + d2 (11.36)

so that
[
b c d

]T
is a vector of squared length sin2(θ). If a �= ±1, then

sin(θ) �= 0, and we can let

v =
[
0 b

sin(θ)
c

sin(θ)
d

sin(θ)

]T
, (11.37)

and say that

q = cos(θ)
[
1 0 0 0

]T
+ sin(θ)v. (11.38)

In the case where sin(θ) = 0, we can choose any unit vector for v. In short, every
element of S3 can be written in the form

q = cos(θ)
[
1 0 0 0

]T
+ sin(θ)v, (11.39)

where 0 ≤ θ ≤ π and v is a unit vector in the xyz-subspace of S3, that is, perpen-

dicular to
[
1 0 0 0

]T
.

With a good deal of algebra, you can plug in a = cos(θ), b = sin(θ)vx,
c = sin(θ)vy, and d = sin(θ)vz in Equation 11.32, and discover that it’s exactly
the same matrix you get if you apply Rodrigues’ formula to build a rotation about
the xyz-vector v by angle 2θ (note the factor of two!).

The map K has a great deal in common with the map K1 : S1 → S1 :
(cos(θ), sin(θ)) 
→ (cos(2θ), sin(2θ)). Like K, the map K1 is also two-to-one.
For instance, the points at θ = 0 and θ = π both get sent to the point at θ = 0
by K1. In fact, the points at θ and θ + π are both sent to the point at θ, for any
angle θ; in other words, K1 maps each pair of antipodal points to the same point.
If you wanted to interpolate between, say, π/4 and 3π/4 in the codomain, you
could pick the points π/8 and 3π/8 in the domain, interpolate between them, and
then apply K1 to the interpolated angles and get the result you expect. Of course,
if instead of picking 3π/8, you pick 11π/8, then the interpolation will run along
the long path between π/4 and 3π/4, as shown in Figure 11.7.

3p/8

u

2u

3p/4

11p/8

p/8

p/4

Figure 11.7: The blue path in the
domain transforms to the short
arc between π/4 and 3π/4 in
the codomain, while the red one
transforms to the long arc.

By the way, although K is not invertible, it’s easy to build a kind of inverse:
Given M ∈ SO(3), we can find an element q ∈ S3 with K(q) = M; we just cannot
claim that it is the element with this property. Recall that Rodrigues’ formula tells
us that every rotation matrix has the form

M = I + sin(θ) Jv + (1− cos θ)J2
v, (11.40)
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where v is a unit vector that’s the axis of rotation of the matrix and θ is the angle
of rotation. And we discussed how to recover the axis v and the angle θ from an
arbitrary rotation matrix (except that when the matrix was I, the axis could be any
unit vector and the angle was 0). The associated element q of S3 has cos(θ/2)
as its first coordinate and sin(θ/2)v as its last three coordinates. The case where
θ = 0 and v is indeterminate presents no problem, because sin(θ/2) = 0, so the
last three entries are all zeroes. There is an ambiguity, however: When we found
the axis v and the angle θ we could instead have found −v and −θ; those two
would have produced −q instead of q. So our “inverse” to K really can produce
one of two opposite values, depending on choices made in the axis-and-angle
computation. To make all this concrete, we’ll give pseudocode for a function L
whose domain is SO(3) and whose codomain is pairs of antipodal points in S3;
L will act as an inverse to K, in the sense that if M ∈ SO(3) is a rotation matrix
and L(M) = {q1,−q1} are two elements of S3, then K(q1) = K(−q1) = M. In
the pseudocode in Listing 11.3, neither q1 nor q2 is guaranteed to be a continuous
function of the entries of the matrix m.

Listing 11.3: Code to convert a rotation matrix to the two corresponding
quaternions.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

void RotationToQuaternion(Mat33 m, out Quaternion q1, out Quaternion q2)
{
// convert a 3x3 rotation matrix m to the two quaternions
// q1 and q2 that project to m under the map K.
if (m is the identity)
{
q1 = Quaternion(1,0,0,0);
q2 = -q1;
return;

}

Vector3D omega;
double theta;
RotationToAxisAngle(m, omega, theta);

q1 = Quaternion(Math.cos(theta/2), Math.sin(theta/2)*omega);
q2 = -q1;

}

We now have a method for going from S3 to SO(3) and for going from SO(3)
back to pairs of elements of S3. To interpolate between rotations in SO(3), we’ll
interpolate between points of S3.

11.2.6.1 Spherical Linear Interpolation
Suppose we have two points q1 and q2 of the unit sphere, and that q1 �= −q2, that
is, they’re not antipodal. Then there’s a unique shortest path between them, just
as on the Earth there’s a unique shortest path from the North Pole to any point
except the South Pole. (There is a shortest path from the North to the South Pole;
the problem is that it’s no longer unique—any line of longitude is a shortest path.)

We’ll now construct a path γ that starts at q1 (i.e., γ(0) = q1), ends at q2
(i.e., γ(1) = q2), and goes at constant speed along the shorter great arc between
them. This is called spherical linear interpolation and was first described for use
in computer graphics by Shoemake [Sho85], who called it slerp. There are three
steps.
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1. Find a vector v ∈ S3 that’s in the q1–q2 plane and is perpendicular to q1.
We subtract the projection (q2 ·q1)q1 of q2 onto q1 from q2 to get a vector
perpendicular to q1, and normalize:

v =
q2 − (q2 · q1)q1

‖q2 − (q2 · q1)q1‖
. (11.41)

2. Find a unit-speed path along the great circle from q1 through v. That’s
just γ(t) = cos(t)q1 + sin(t)v. This path reaches q2 at t = θ, where θ =
cos−1(q1 · q2) is the angle between the two vectors.

3. Adjust the path so that it reaches q2 at time 1 rather than at time θ, by
multiplying t by θ.

The resultant code is shown in Listing 11.4.

Listing 11.4: Code for spherical linear interpolation between two quaternions.

1
2
3
4
5
6
7
8
9

10

double[4] slerp(double[4] q1, double[4] q2, double t)
{
assert(dot(q1, q1) == 1);
assert(dot(q2, q2) == 1);
// build a vector in q1-q2 plane that’s perp. to q1
double[4] u = q2 - dot(q1, q2) * q2;
u = u / length(u); // ...and make it a unit vector.
double angle = acos(dot(q1, q2));
return cos(t * angle) * q1 + sin(t * angle) * u;

}

As the argument to the cosine ranges from 0 to angle, the result varies from q1

to q2.

11.2.6.2 Interpolating between Rotations
We now have all the tools we need to interpolate between rotations. Suppose
that M1 and M2 are rotation matrices, with M1 corresponding to the quaternions
±q1 and M2 corresponding to the quaternions ±q2, as indicated schematically in
Figure 11.8. Starting with q1, we determine which of q2 and −q2 is closer, and
then interpolate along an arc between q1 and this point; to find interpolating
rotations, we project to SO(3) via K.

Listing 11.5 shows the pseudocode.

Listing 11.5: Code to interpolate between two rotations expressed as matrices.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Mat33 RotInterp(Mat33 m1, Mat33 m2, double t)
// find a rotation that’s t of the way from m1 to m2 in SO(3).
// m1 and m2 must be rotation matrices.
{

if ( m1mT
2 = −I){

Report error; can’t interpolate between opposite rotations.
}
Quaternion q1, q1p, q2, q2p;
RotationToQuaternion(m1, q1, q1p);
RotationToQuaternion(m2, q2, q2p);
if (Dot(q1, q2) < 0) q2 = q2p;
Quaternion qi = Quaternion.slerp(q1, q2, t);
return K(qi); // K is the projection from S3 to SO(3)

}
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M1

M2

q
2

q
1

2q
2

2q
1

Figure 11.8: We have two rotation matrices, M1 and M2; the first corresponds to a pair of
antipodal quaternions, ±q1, and the second to a different pair of antipodal quaternions,
±q2. Starting at q1, we choose whichever of q2 and −q2 is closer (in this case, −q2)
and interpolate between them (as indicated by the thick red arc); we then can project the
interpolated points to SO(3) to interpolate between M1 and M2.

B

C

A

D

Figure 11.9: We can compute the midpoint of the quadrilateral ABCD by finding the mid-
points of AB and CD (marked by circles), and then the midpoint of the segment between
them, or by doing the same process to the edges AD and BC (whose midpoints are marked
by squares); the resultant quadrilateral midpoint (indicated by the diamond) is the same in
both cases. This does not happen when we work with quaternions.

With this notion of “interpolate between rotations” or “interpolate between
quaternions” in hand, other operations, like blending together three or four rota-
tions, also become possible. Indeed, even operations like the curve subdivision we
did in Chapter 4 become possible in SO(3) instead of R2. One must be careful,
however. While it’s nice to be able to interpolate between quaternions in the same
way we construct a segment between points in the plane, the analogy has some
weaknesses: In the plane, we can construct points (1 − t)A + tB for t between 0
and 1, and they lie between A and B. If we use t > 1, we get a point “beyond B.”
On the other hand, if we do spherical linear interpolation between quaternions q1
and q2, as we increase t further and further, the result eventually wraps around the
sphere and returns to q1.

Other “obvious” things fail as well. In the plane, we can find the center of
a quadrilateral by bisecting opposite sides and finding the midpoint of the edge
between these points. It doesn’t matter which pair of opposite sides we choose—
the result is the same, as shown in Figure 11.9. But with quaternions, it’s generally
not the same.

Inline Exercise 11.5: On the 2-sphere, let A = B = (0, 1, 0), C = (1, 0, 0),
and D = (0, 0, 1). Compute (by drawing—you should not need to perform any
algebra) the center of the quadrilateral ABCD twice, once using each pair of
opposite sides, to verify that the results are not the same.
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Buss [BF01] discusses thoroughly the challenges of working with such “affine
combinations” of quaternions.

11.2.7 Stability of Computations

You probably recall solving problems in calculus where you know a position x(t)
at time t = 0, and you’re given a formula for velocity x′(t) for all t, and you need
to find x at times other than t = 0. The simple method is to say that at t = 0.1,
your position is approximately

x(0.1) ≈ x(0) + 0.1x′(0) (11.42)

and then compute x(0.2) ≈ x(0.1)+ 0.1x′(0.1), etc. This is called Euler integra-
tion of the position with a time step of 0.1, and it gives a crude approximation of
the solution to the problem. Picking a time step smaller than 0.1 produces better
results, but at a cost of greater computational effort. Chapter 35 discusses this, and
better approximations, extensively.

The analogy for the attitude (i.e., the rotation matrix currently applied to some
model) is that you’re given the attitude at time t = 0, and the change in attitude
for all t, and you have to “integrate” to find the attitude at all times. The “update”
step is

M(0.1) = M(0)(I + 0.1M′(0)) (11.43)

so that it’s multiplicative rather than additive. One problem is that I+ 0.1M′(0) is
not actually a rotation matrix. It’s very close, but not quite. So, after the update, we
have to convert M into a rotation matrix, typically by applying the Gram-Schmidt
process to the columns of M (i.e., normalize the first column; make the second
perpendicular to it; normalize the second; make the third perpendicular to both;
normalize the third column). This is computationally fairly expensive.

As an alternative, we can store the current attitude as a unit quaternion q. The
update, in that case, looks like this:

q(0.1) = q(0) + 0.1q′(0). (11.44)

Once again, the resultant vector at t = 0.1 is not quite what we want: It may not
be a unit vector, so we have to normalize it. Notice, however, that normalizing
a vector requires much less work than performing the Gram-Schmidt process on
a whole matrix. And while a matrix can fail to be a rotation in many ways (one
or more columns not unit length, various pairs of columns not perpendicular), a
quaternion can fail to be a unit quaternion in only one way. For this reason, anima-
tion systems often represent attitude with a quaternion, converting it to a rotation
matrix with the map K only when necessary. Computations on a quaternion tend
to be more numerically stable than those on a rotation matrix as well.

11.3 Comparing Representations

We’ve now seen four ways to represent a 3D rigid reference frame (i.e., a set of
three orthogonal unit vectors forming a right-handed coordinate system, based at
some location P).



ptg11539634

11.4 Rotations versus Rotation Specifications 279

1. A 4×4 matrix M, which we apply to the standard basis vectors at the origin
to get the three vectors, and to the origin itself to get the basepoint P. The
last row of the matrix must be

[
0 0 0 1

]
, and the upper-left 3 × 3

submatrix S must be a rotation matrix.

2. A 3× 3 rotation matrix S and a translation vector t = P− origin.

3. Three Euler angles and a translation vector.

4. A unit quaternion and a translation vector.

Each has its advantages.
Option 1 is nice because it’s easy to consider it as a transformation, which

can be combined with other transformations by matrix multiplication. It makes
sense to use this in a geometric modeling system. Converting between options 1
and 2 is straightforward, but option 2 has the advantage that it’s easy to check
that the matrix S is orthogonal by checking STS = I. If several such matrices
have been multiplied, accumulating round-off errors, you can apply the Gram-
Schmidt orthogonalization process to the result to adjust it back into orthogo-
nal form, although this involves many multiplications and divisions, and several
square roots.

Option 3 is useful, especially in a body-centered form, for representing things
like aircraft or other first-person-control situations. Converting to and from matrix
form is somewhat messy, however.

Option 4 is much favored in rigid-body animation. Converting to matrix form
is easy; converting from matrix form is slightly messier because of the two-to-
one nature of the quaternion-to-rotation map. Interpolation is particularly easy in
quaternion form, and the equivalent of “reorthogonalization” in the matrix form
is vector normalization for the quaternion, which is very fast. This is discussed
further in Section 35.5.2.

11.4 Rotations versus Rotation Specifications

We’ve defined a rotation as a transformation having certain properties; in partic-
ular, it’s a linear function from R3 to R3 represented by multiplication by some
matrix. Thus, for instance, the transformation represented by multiplication by⎡

⎣0 −1 0
1 0 0
0 0 1

⎤
⎦ (11.45)

can be called rotation about the z-axis (or in the xy-plane) by 90◦. But it’s impor-
tant to understand that multiplying a vector v by this matrix doesn’t rotate v about
the z-axis in the sense that this phrase is commonly used. The vector v is at no
point rotated by 10◦, or 20◦, or 30◦. The function simply takes the coordinates of
v and returns the coordinates of the rotated-by-90◦ version of v. Indeed, looking
at the coordinates returned by the rotation, there’s no way to tell whether they
arose as the result of rotation by 90◦, −270◦, or 450◦. This might seem irrelevant
in the sense that we got the rotation we wanted, but when we consider the prob-
lem of interpolating rotations it’s really quite significant. If we attempt to build
an interpolation procedure interp(M1, M2, t) that takes as input two matrices
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M1 and M2 and a fraction t by which to interpolate them, what should happen
when M1 arises from the operation “rotate not at all” and so does M2? Obviously,
the interpolated rotation will not rotate at all (i.e., it’ll be the identity rotation).
But what if M1 comes from “rotate not at all” and M2 comes from “rotate 360◦

about the z-axis”? We know that we want the halfway interpolation (t = 0. 5) to
be “rotate 180◦ about the z-axis,” but there’s no way for our procedure to compute
this: In both our cases, the matrices M1 and M2 are the identity!

In many situations, the underlying desire is not to interpolate rotation matrices
or rotation transformations, but to interpolate the rotation specifications and then
compute the transformation associated to the interpolated specification. Unfortu-
nately, interpolating specifications is not so easy. In the case of axis-angle spec-
ifications, it’s easy when the axis doesn’t change: One simply interpolates the
angle. But interpolating the axis is a trickier matter. And suppose we consider two
instances of the problem.

1. Rotation 1: Rotate by 0 about the x-axis. Rotation 2: Rotate by 90◦ about
the x-axis.

2. Rotation 1: Rotate by 0 about the y-axis. Rotation 2: Rotate by 90◦ about
the x-axis.

Should the halfway interpolated rotation in these two cases be the same or
different? The initial and final rotations are identical in the two cases. The only
difference is in the specification of the irrelevant direction in the no-angle rotation.
Should that make a difference?

Yahia and Gagalowicz [YG89] describe a method for axis-angle interpolation
in which the axis always has an effect, even when the angle is a multiple of 2π;
aside from this artifact, the method is quite reasonable.

11.5 Interpolating Matrix Transformations

Despite the claim of the preceding section that, in general, we want to interpolate
rotation specifications rather than the transformations themselves, there are several
circumstances in which directly acting on the transformations makes sense. For
instance, if we’ve written a physics simulator that computes the orientations and
positions of bodies at certain times, but we’d like to fill in orientations and posi-
tions at intermediate times, we can ensure that the values provided at the key times
by the simulator will be fairly close to the neighboring values (i.e., an object isn’t
going to spin 720◦ between key times) by working with small enough time steps.
Given two such “nearby” transformations, can we interpolate between them?

Alexa et al. [Ale02] describe a method for interpolating transformations and
more generally for forming linear combinations of transformations, provided that
the transformations being combined are “near enough.” The web material for this
chapter describes this method, but since it involves the matrix exponential and
other mathematical topics we don’t wish to delve into, we omit it here.

11.6 Virtual Trackball and Arcball

As an application of our study of the space of rotations, we’ll now examine two
methods for controlling the attitude of a 3D object that we’re viewing. These two
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user-interface techniques are really a part of the general topic of 3D interaction
(see Chapter 21, where we give actual implementations), but we discuss them
here because they are so closely related to the study of SO(3).

Our standard 3D test program can display geometric objects modeled as
meshes. Imagine that we have a fixed mesh K with vertices P0, P1, . . . , Pk. We
can, before displaying the mesh K, apply a transformation to each of the points Pi

to create a new mesh. By displaying this new mesh, we see a transformed version
of K. If we repeatedly vary the transformation applied to the mesh K, we’ll see a
sequence of new meshes that appears to move over time.

An alternative view of this is that we leave the mesh K fixed, but repeatedly
change our virtual camera’s position and orientation. We’ll take the first approach
here, however. Not surprisingly, the two are closely related: Moving the object in
one direction is equivalent to moving the virtual camera in the opposite direction,
for instance (as long as there’s only one object in the world).

Suppose we want to be able to view the object from all sides. We’ll assume
that it’s positioned at the origin so that applying rotations to it keeps it in the same
location, but with a varying attitude. How can we control the viewing direction?

One easy-to-understand metaphor is to imagine the object as being encased
in a large spherical block of glass (see Figure 11.10). This glass ball is so large
that if it were drawn on the display, it would fill up as much of the display as
possible. (For a square display, it would touch all four sides of the display.) We
can now imagine interacting with this virtual sphere by clicking on some point of
the sphere, dragging some distance, and releasing. If we click first at a point P and
release at the point Q, this is supposed to rotate the sphere so as to make the point
P move to the point Q along a great-circle arc (i.e., to rotate in the plane defined
by P, Q, and the origin).

Of course, when we click on a point of the display with the mouse cursor we’re
not actually clicking on the sphere—what we get are the coordinates of the point
on the display surface. This in turn must be used to determine a point of the sphere
itself. Suppose, for now, that we know the position C of the virtual camera, and
that in response to a mouse-click, we are given the position of a corresponding
point S on a plane in 3-space that corresponds to our display (see Figure 11.11).

Move

Figure 11.10: The object being viewed is imagined as lying in a large glass sphere. Moving
a point on the surface of the sphere moves the object inside.
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click!

C

S

P

Figure 11.11: When the user clicks near the lower-right corner of the display, we can
recover the 3-space coordinates of a corresponding point S of the imaging plane in 3-space;
we’ll use this to determine where a ray from the eye through this point hits the virtual
sphere.

To determine the point P corresponding to this click, we ask where the ray
parameterized by

R(t) = C + t(S− C) (11.46)

meets the virtual sphere, which we’ll assume, for simplicity, is the unit sphere
defined by x2 + y2 + z2 = 1. In other words, the unit sphere, if displayed, would
just touch two sides of our display rectangle. For the point R(t) to lie on the sphere,
its coordinates (which we’ll call rx, ry, and rz) must satisfy the defining equation
of the sphere, that is,

r2
x + r2

y + r2
z = 1. (11.47)

Alternatively, we can consider the vector from the origin O to R(t), that is, C +
t(S − C) − O; this vector must have unit length, which means it must satisfy
(R(t)−O) · (R(t)−O) = 1. Letting u denote S− C, this becomes

(C −O + tu) · (C −O + tu) = 1, (11.48)

which we can simplify and expand; letting c = C −O, we get

(u · u)t2 + (2c · u)t + c · c = 1, (11.49)

which is a quadratic in t; we solve to get

t =
−c · u±√(c · u)2 − (u · u)(c · c)

u · u . (11.50)

The smaller t value—call it t1—corresponds to the first intersection of the ray with
the sphere; using this, we can compute the sphere point

P = C + t1(S− C). (11.51)

(It’s possible that both solutions for t are not real numbers, in which case the ray
does not intersect the sphere: The user did not click on the image of the virtual
sphere on the display.)

As the user drags the mouse, we can, at each instant, compute the correspond-
ing sphere point Q in the same way. From P and Q, we compute a rotation of the
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sphere that takes P to Q along a great circle; this rotation must be about a unit vec-
tor orthogonal to P and Q, and it must have magnitude cos−1(P · Q). Rodrigues’
formula provides the matrix.

We use this matrix to multiply all vertex coordinates of the original mesh to
get a new mesh for display; the resultant operation feels completely natural to
many people.

Two problems remain: What happens when the user drags to a point outside
the virtual sphere? And what happens when the user’s initial click is outside the
virtual sphere?

Various solutions have been implemented. When the user drags outside the
virtual sphere, one good solution is to treat the point Q as being the nearest point
on the sphere to the ray that the user is describing; this corresponds to using
t = −c · u/u · u in the quadratic solution.

When the user clicks outside the virtual sphere, one can treat subsequent
mouse-drags as instructions to rotate about the view direction, like the “rotate
object” interaction in most 2D drawing programs.

One problem with the virtual-sphere controller described so far is that the
action of the controller depends on the first point the user clicked; in a long inter-
action sequence, this may be gradually forgotten. An improved approach is to
treat each mouse-drag event as defining a new motion of the sphere, taking the
start point to the endpoint. Thus, a click and drag becomes a sequence of mouse
positions P0 = P, P1, P2, . . . , Pn = Q, and the object is rotated by a sequence of
virtual-sphere rotations from P0 to P1, followed by the rotation defined by P1 and
P2, etc.

With this modified version of the virtual sphere, it can be difficult to return to
one’s starting position; in trade for this, one gets the advantage that a click-and-
drag-in-small-circles motion causes the object to spin about the view direction,
which users seem to learn instinctively.

There’s a different approach to virtual-sphere rotation developed by Shoe-
make [Sho92], in which a click and drag from P to Q rotates the sphere from
P toward Q, but by double the angle used in the virtual sphere. A click at the cen-
ter of the virtual arcball followed by a drag to the edge of the arc ball produces not
a 90◦ rotation, but a 180◦ rotation. This has the advantage that one can achieve
any desired rotation of the object by a single click and drag (e.g., spins about the
view direction are generated by dragging from one point near the boundary of the
ball to another).

11.7 Discussion and Further Reading

For the mathematically inclined, the study of SO(n) is covered in several
books [Che46, Hus93, Ste99], and some of the basic properties of Sn and SO(n)
are discussed in many introductory books on manifolds [GP10, Spi79a].

The classic work on quaternions is by Hamilton [Ham53], but more modern
expositions [Che46, Hus93] are much easier to read.

Quaternions are an instance of a more general phenomenon developed by
Grassmann [Gra47] in which noncommutative forms of multiplication played a
central role. Unfortunately, Grassmann’s ideas were so confusingly expressed that
they were largely ignored by his contemporaries. There has been some renewed



ptg11539634

284 Transformations in Three Dimensions

interest in them in physics (and some related interest in graphics), with recent
developments being given the name geometric algebra [HS84, DFM07].

11.8 Exercises

Exercise 11.1: We computed the matrix for reflection through the line determined
by the unit vector u by reasoning about dot products. But this reflection is also
identical to rotation about u by 180◦. Use the axis-angle formula for rotation to
derive the reflection matrix directly.

Exercise 11.2: In Rn, what is the matrix for reflection through the subspace
spanned by e1, . . . , ek, the first k standard basis vectors? In terms of k, tell whether
this reflection is orientation-preserving or reversing.

Exercise 11.3: Write down the matrices for rotation by 90◦ in the xy-plane and
rotation by 90◦ in the yz-plane. Calling these M and K, verify that MK �= KM,
thus establishing that in general, if R1 and R2 are elements of SO(3), it’s not true
that R1R2 = R2R1; this is in sharp contrast to the set SO(2) of 2 × 2 rotation
matrices, in which any two rotations commute.

Exercise 11.4: In Listing 11.2, we have a condition “if θ is near π” which
handles the special case of very-large-angle rotations by picking a nonzero column
v of M + I as the axis. If θ is not exactly π, then v will not quite be parallel to an
axis. Explain why v + Mv will be much more nearly parallel to the axis. Adjust
the code in Listing 11.2 to apply this idea repeatedly to produce a very good
approximation of the axis.

Exercise 11.5: Consider the parameterization of rotations by Euler angles,
with θ = π/2. Show that simultaneously increasing φ and decreasing ψ by the
same amount results in no change in the rotation matrix at all.

Exercise 11.6: The second displayed matrix in Equation 11.23 is the square of
the first (Jv); it’s also symmetric. This is not a coincidence. Show that the square
of a skew-symmetric matrix is always symmetric.

Exercise 11.7: Find the eigenvalues and all real eigenvectors for Jv. Do the
same for J2

v.
Exercise 11.8: Suppose that A is a rotation matrix in R3.

(a) How many eigenvalues does a 3× 3 matrix have?
(b) Show that the only real eigenvalue that a rotation matrix can have is ±1. Hint:
A rotation preserves length.
(c) Recall that for a real matrix, nonreal eigenvalues come in pairs: If z is an
eigenvalue, so is z̄. Use this to conclude that A must have either one or three real
eigenvalues.
(d) Use the fact that if z is a nonzero complex number, then zz̄ > 0, and the fact that
the determinant is the product of the eigenvalues to show that if A has a nonreal
eigenvalue, it also has a real eigenvalue which much be 1, and that if A has only
real eigenvalues, at least one of them must be 1.
(e) Conclude that since 1 is always an eigenvalue of A, there’s always a nonzero
vector v with Av = v, that is, the rotation A has an axis.

Exercise 11.9: The skew-symmetric matrix Jv associated to a vector v is the
matrix for the linear transformation v 
→ v×v.
(a) Show that every 3 × 3 skew-symmetric matrix S represents the cross product
with some vector v, that is, describe an inverse to the mapping v 
→ Jv.
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(b) Now use this to explain why every 3 × 3 skew-symmetric matrix has 0 as
an eigenvalue, hence det S = 0.

Exercise 11.10: In the description of the virtual-sphere controller, we used the
angle θ = cos−1(P ·Q), which involves a dot product of points rather than vectors.
This worked only because we assumed that the center of our virtual sphere was
the origin.
(a) Suppose the center was some other point B; how would we have computed θ?
(b) Now suppose that the virtual sphere was no longer assumed to be a unit sphere.
How would we compute θ?

Exercise 11.11: Use the 3D test bed to implement virtual-sphere control for
viewing.

Exercise 11.12: Given a point P and a direction v, describe how to build a
transformation on R3 that rotates by θ about the line determined by P and v so
that the plane through P, orthogonal to v, rotates counterclockwise by θ when
viewed from the point P + v.

Exercise 11.13: We saw in Chapter 7 that if f is the test function for the plane
containing the point Q and with normal n, that is, f (P) = (P − Q) · n, then we
could compute the intersection of the ray t 
→ A + tw with this plane by writing
g(t) = A + tw and solving f (g(t)) = 0. Suppose that T is a linear transformation
with 4 × 4 matrix M—perhaps translation by some amount, or a rotation about
the y-axis by 30◦. We can imagine applying T to every point of the plane defined
by f to get a new plane, and then finding the intersection of our ray with the new
plane.
(a) George proposes that a test function f̄ for the new plane can be defined by
f̄ (P) = f (T(P)). Is he correct? If not, adjust his claim to a correct one.
(b) Show that f̄ (g(t)) = 0 if and only if f (ḡ(t)) = 0, where ḡ(t) = M−1A +
tM−1w.
(c) Describe how you can use the idea of part (b) to compute a ray-object inter-
section between a ray and an object that has been transformed by some affine
transformation, assuming you know how to do ray-object intersection for some
standard form of the object. This allows you, for instance, to ray-trace a stretched,
rotated unit sphere (i.e., an ellipsoid) if you know only how to ray-trace the stan-
dard unit sphere.

(d) Often in ray tracing it’s necessary to determine not only the intersec-
tion point, but also the normal vector at the intersection point. Suppose that
instead of intersecting a ray R with a transformed sphere, you intersect an inverse-
transformed version of R with the unit sphere at the origin, and find the inter-

section is at a point P = (x, y, z) with normal vector n =
[
x y z

]T
. How can

you find the normal vector to the transformed sphere? Note: This approach to ray
tracing is somewhat out of favor for complex scenes, as traversing the modeling
hierarchy for every ray is a big cost. Instead, flattening the hierarchy by converting
everything to triangles and using a spatial data structure to accelerate intersection
testing turns out to be faster in general, but not always: In a forest of 1 million
identical trees, each a copy of a single million-triangle tree, the spatial data struc-
ture approach fails. Instead, we make a spatial data structure whose leaves are
bounding boxes for the individual trees, use the transforming-rays trick of this
exercise, and proceed to trace each ray in the archetype tree’s modeling space,
possibly using a spatial data structure there to accelerate the computation. This is
another application of the Coordinate-System/Basis principle.
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Chapter 12

A 2D and 3D
Transformation Library
for Graphics

12.1 Introduction

The ideas of the previous chapters can be nicely condensed into an
implementation—a collection of cooperating classes that help to maintain the
point/vector distinction, the distinction between a transformation T that acts on
points and the associated transformations of vectors and covectors, and some of
the other routine computations that are often done in graphics.

This chapter can be regarded as an instance of the Implementation principle:
that if you understand a mathematical idea well enough, you can implement it in
code, and thereafter be insulated from the need for further understanding.

The book’s website has such an implementation in C#, starting with the pre-
defined Point, Vector, Point3D, and Vector3D WPF classes that you’ve already
seen. You should download the implementation and look at it as you read this
chapter.

The implementation depends on a matrix library—one capable of invert-
ing matrices, solving linear systems, multiplying matrices, etc. We’ve chosen to
import the MathNet.Numerics.LinearAlgebra library [Mat], but if you prefer
another one, it should be easy to substitute, as our use of the library is highly
localized.

In most of the classes there are procedures that can fail under certain cir-
cumstances. For instance, if you ask for a linear transformation that sends v1

to w1 �= 0, and also sends v1 to 2w1, there is no satisfactory answer. All such
failures amount to some matrix being noninvertible. We raise exceptions in these
situations. They are discussed in the code and its documentation, but not in this
chapter.

287
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The approach taken in our implementation is not the only one possible. Our
approach depends on transformations as the primitive notion, but it’s quite pos-
sible and reasonable to think instead of coordinate systems as the fundamental
entity. Just as in Chapter 10 we discussed the interpretation of a linear transfor-
mation as a change of coordinates, you can approach much of graphics with this
point of view. You end up having coordinate frames for vector spaces (for a 2D
space, you have two independent vectors; for a 3D space, you have three inde-
pendent vectors), for affine spaces (typically a coordinate frame for a 2D affine
space consists of three points, from which you determine barycentric coordinates,
but you can also build a frame from one point and two vectors), and for projective
spaces (where in 2D, a projective frame is represented by four points in “general
position,” which we’ll discuss shortly). This coordinate frame approach is taken
by Mann et al. [MLD97].

12.2 Points and Vectors

The predefined Point and Vector classes in WPF already implement the main
ideas we’ve discussed (for two dimensions): There are operators defined so that
you can add one Point and one Vector to get a new Point, but there is no operator
for adding two Points, for instance. Certain convenience operations have been
included, like the dot product of Vectors.

There are idiosyncrasies in the design of the classes, however. The two coor-
dinates of a point P are P.X and P.Y; there’s no way to refer to them as elements
of an array of length 2, nor even a predefined “cast” operation to convert to a
double[2]. There is, however, a predefined CrossProduct operation for Vectors,
which treats the vectors as lying in the xy-plane of 3-space, computes the 3D cross
product (which always points along the z-axis), and returns the z-component of the
resultant vector. In deference to the convenience of having data types that work
well with the remainder of WPF, we’ve ignored these idiosyncrasies and simply
used the parts of the Point and Vector classes (and their 3D analogs) that we like.
We’ve also added some geometric functions to our LIN_ALG namespace (in which
all the transformation classes reside) to compute things like the two-dimensional
cross product of one vector.

12.3 Transformations

While WPF also has a class called Matrix, its peculiarities made it unsuitable
for our use. Furthermore, we wanted to build a library in which the fundamental
idea was that of a transformation rather than the matrix used to represent it. We
therefore define four classes.

• MatrixTransformation2: A parent class for linear, affine, and projective
transformations. Since all three can be represented by 3 × 3 matrices, a
MatrixTransformation holds a 3× 3 matrix and provides certain support
procedures to multiply and invert such matrices.

• LinearTransformation2: A transformation that takes Vectors to Vectors.

• AffineTransformation2: A transformation that can operate on both
Points and Vectors.
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• ProjectiveTransformation2: A transformation that operates on Points
in their homogeneous representation and includes a division by the last
coordinate after the matrix multiplication.

(There are four corresponding classes for transformations in 3D.)
In each case, we’ve defined composition of transformations by overloading

the * operator, and the application of a transformation to a Point or Vector by
overloading the * operator again. To translate a point and then rotate it by π/6, we
could write

1
2
3
4

Point P = new Point(...);
AffineTransformation2 T = AffineTransformation2.Translate(Vector(3,1));
AffineTransformation2 S = AffineTransformation2.RotateXY(Math.PI/6);
Point Q = (S * T) * P;

If we were planning to operate on many points with this composed transfor-
mation, we’d precompute the composed transformation and instead write

1
2
3

...
AffineTransformation2 T2 = (S * T);
Point Q = T2 * P;

12.3.1 Efficiency

Applying a transformation to a point or vector involves some memory allocation,
a method invocation, and a matrix multiplication. If you simply stored the matrix
yourself, you could avoid most of this cost. And since graphics programs end up
applying lots of transformations to lots of points and vectors, you might think
that doing it yourself is the best possible approach. If you’re writing a program
that will be doing real-time graphics on a processor where computation is a real
bottleneck (e.g., a game that runs on a battery-powered device), it may well be.
But as a student of computer graphics, you’re likely to write a lot of programs
that get run just a few times. The great “cost” in your programs is your time as
a developer. Using a high-level approach can help reduce bugs and even increase
efficiency, as you notice ways to restructure your code that would be difficult to
see if you were looking at every detail all the time. A profiler can help you to
determine exactly where in your code it’s worth the trouble of working with a
low-level construct rather than a high-level one.

Nonetheless, there are places where one can get a certain amount of efficiency
at no cost. For instance, the LinearTransformation2 class uses a 3× 3 matrix to
represent a transformation, but that matrix always has the form⎡

⎣a b 0
c d 0
0 0 1

⎤
⎦ , (12.1)

so it’s much easier to invert than a general 3× 3 matrix (we just invert the upper-
left 2×2 matrix); in the same way, multiplying two of these is much less work than
multiplying two 3 × 3 matrices (we just multiply the upper-left 2 × 2 matrices).
By overriding the MatrixTransform2 methods for inversion and multiplication,
we get a large efficiency improvement.
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Inline Exercise 12.1: Without looking at the code, consider whether you can
find a more efficient way to invert an affine transformation on R2 than by invert-
ing its 3× 3 matrix. Hint: The bottom row of the matrix is always

[
0 0 1

]
.

12.4 Specification of Transformations

For each kind of transformation, the default constructor generates the identity
transformation. (The constructor for MatrixTransformation2 is protected, as
only the derived classes are supposed to ever create a MatrixTransformation.)
In general, though, transformations are constructed by static methods with
mnemonic names. For the AffineTransformation2 class, for instance, there are
eight static methods (all public static AffineTransform2) that construct trans-
formations.

1
2
3
4
5
6
7
8
9

10

RotateXY(double angle)
Translate(Vector v)
Translate(Point p, Point q)
AxisScale(double x_amount, double y_amount)
RotateAboutPoint(Point p, double angle)
PointsToPoints(Point p1, Point p2, Point p3,Point q1, Point q2, Point q3)
PointAndVectorsToPointAndVectors(Point p1, Vector v1, Vector v2,

Point q1, Vector w1, Vector w2)
PointsAndVectorToPointsAndVector(Point p1, Point p2, Vector v1,

Point q1, Point q2, Vector w1)

The naming convention is straightforward: “From” comes before “to” so that

Translate(Point p, Point q)

creates a translation that sends p to q, and within a collection of arguments, points
come before vectors so that in

PointAndVectorsToPointAndVectors

the point p1 is sent to the point q1, the vector v1 is sent to the vector w1, and the
vector v2 is sent to the vector w2. The method name tells you that there is one point
and more than one vector; since an affine transformation of the plane is determined
by its values on three points, or one point and two vectors, or two points and one
vector, you know that the arguments must be one point and two vectors.

Methods that produce particular familiar transformations—translations, rota-
tions, axis-aligned scales—have names indicating these. While the names are
sometimes cumbersome, they are also expressive; it’s easy to understand code
that uses them.

12.5 Implementation

Most of the transformations are easy to implement. For instance, we first imple-
mented the
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PointAndVectorsToPointAndVectors

method for AffineTransformation2; once we’d done this, the PointsToPoints

method was straightforward:

1
2
3
4
5
6
7
8
9

10

public static AffineTransform2 PointsToPoints(
Point p1, Point p2, Point p3,
Point q1, Point q2, Point q3)

{
Vector v1 = p2 - p1;
Vector v2 = p3 - p1;
Vector w1 = q2 - q1;
Vector w2 = q3 - q1;
return AffineTransform2.PointAndVectorsToPointAndVectors(p1, v1, v2, q1, w1, w2);

}

The PointAndVectorsToPointAndVectors code is implemented in a relatively
straightforward way: We know that the vectors v1 and v2 must be sent to the
vectors w1 and w2; in terms of the 3 × 3 matrix, that means that the upper-left
corner must be the 2× 2 matrix that effects this transformation of 2-space. So we
invoke the LinearTransformation2 method VectorsToVectors to produce the
transformation. Unfortunately, the resultant transformation does not send p1 to q1

in general. To ensure this, we precede this vector transform with a translation that
takes p1 to the origin (the translation has no effect on vectors, of course); we then
perform the linear transformation; we then follow this with a transformation that
takes the origin to q1. The net result is that p1 is sent to q1, and the vectors are
transformed as required.

This approach relies on the VectorsToVectors method for LinearTrans-
formation2. Writing that is straightforward: We place the vectors v1 and v2 in
the first two columns of a 3 × 3 matrix, with a 1 in the lower right. This trans-
formation T sends e1 to v1 and e2 to v2. Similarly, we can use the w’s to build a
transformation S that sends e1 to w1 and e2 to w2. The composition T ◦ S−1 sends
v1 to e1 to w1, and similarly for v2, and hence solves our problem.

12.5.1 Projective Transformations

The only really subtle implementation problem is the PointsToPoints method for
ProjectiveTransformation2. Explaining this code requires a bit of mathematics,
but it’s all mathematics that we’ve seen before in various forms.

We’re given four points P1, P2, P3, and P4 in the Euclidean plane, and we are
to find a projective transformation that sends them to the four points Q1, Q2, Q3,
and Q4 of the Euclidean plane.

Before we go any further, we should mention a limitation. When we described
the VectorsToVectors method of LinearTransformation2, we promised to send
v1 and v2 to w1 and w2, but there was, in fact, a constraint. If v1 = 0 and w1 �= 0,
there’s no linear transformation that accomplishes this. In fact, if v1 is a multiple
of v2, in general there’s no linear transformation that solves the problem (except
in the very special case where w1 is the same multiple of w2, in which case there
are an infinite number of solutions). The implicit constraint was that v1 and v2

must be linearly independent for our solution to work (or for the general problem
to have a solution). In the case of PointsToPoints, we require something similar:
The points Pi (i = 1, . . . , 4) must be in general position, which means that (a) no
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two of them can be the same, and (b) none of them can lie on the line determined
by two others (see Figure 12.1). In more familiar terms, this is equivalent to saying
(a) that P1, P2, and P3 form a nondegenerate triangle, and (b) that the barycentric
coordinates of P4 with respect to P1, P2, and P3 are all nonzero. We’ll further
require that the Qis are similarly in general position.1

Returning to the main problem of sending the Ps to the Qs, when we express
the points Pi and Qi as elements of 3-space, we append a 1 to each of them to
make it a vector whose tip lies in the w = 1 plane. We’ll call these vectors p1, p2,
etc. Our problem can then be expressed by saying that we seek a 3× 3 matrix M
with the property that

Mp1 = αq1 (12.2)

Mp2 = βq2 (12.3)

Mp3 = γq3 (12.4)

Mp4 = δq4 (12.5)

for some four nonzero numbers α,β, γ, and δ (because, for instance, αq1, when
we divide through by the last coordinate, will become q1). The problem is that we
do not know the values of the multipliers.

P3

P1
P2

P4

Figure 12.1: The four points are
in general position, because (a)
none of them lies on a line pass-
ing through another pair or (b)
the first three form a nondegen-
erate triangle, and the fourth is
not on the extensions of any of the
sides of this triangle. These two
descriptions are equivalent.

This problem, as stated, is too messy. If there were no multipliers, we’d be
looking for a 3× 3 matrix with Mpi = qi (i = 1, . . . , 4). We can only solve such
problems for three vectors at a time, not four. Thus, the multipliers are essential—
without them, there’d be no solution at all in general. But they also complicate
matters: We’re looking for the nine entries of the matrix, and the four multipliers,
which makes 13 unknowns. But we have four equations, each of which has three
components, so we have 12 equations and 13 unknowns, a large underdetermined
system. It’s easy to see why the system is underdetermined, though: If we found a
solution (M,α,β, γ, δ), then we could double everything and get another equally
good solution (2M, 2α, 2β, 2γ, 2δ) to Equations 12.2–12.5.

Inline Exercise 12.2: Verify this claim.

So the first step is to make the solution unique by declaring that we’re looking
for a solution with δ = 1. This gives 13 equations in 13 unknowns. We could just
solve this linear system. But there’s a simpler approach that involves much less
computation in this 3× 3 case, and even greater savings in the 4× 4 case.

Inline Exercise 12.3: Show that fixing δ = 1 is reasonable by showing that
if there is any solution to Equations 12.2–12.5, then there is a solution with
δ = 1. In particular, explain why any solution must have δ �= 0.

We’ll follow the pattern established in Chapter 10 in simplifying the problem.
To send the p’s to the q’s, we’ll instead find a way to send four standard vectors
to the q’s, and the same four vectors to the p’s, and then compose one of these
transformations with the inverse of the other. The four standard vectors we’ll use
are e1, e2, e3, and u = e1 + e2 + e3. We’ll start by finding a transformation that
sends these to multiples of q1, q2, q3, and q4, respectively.

1. This latter condition is overly stringent, but it simplifies the analysis somewhat.
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Step 1: The matrix whose columns are q1, q2, and q3 sends e1 to q1, e2 to q2,
and e3 to q3. Unfortunately, it does not necessarily send u to q4; instead, it sends
u = e1 + e2 + e3 to q1 + q2 + q3, that is, the sum of the columns. If we scale
up each column by a different factor, the resultant matrix will still send ei to a
multiple of qi for i = 1, 2, 3, but it will send u to a sum of multiples of the q’s. We
therefore, as a first step, write q4 as a linear combination of q1, q2, q3,

q4 = αq1 + βq2 + γq3, (12.6)

which is exactly the same thing as writing Q4 in barycentric coordinates with
respect to Q1, Q2, and Q3. Note that because of the general position assumption,
α,β, and γ are all nonzero.

Inline Exercise 12.4: Explain this last statement.

In terms of code, to find α,β, and γ we build a matrix2 Q =
[
q1; q2; q3

]
and let ⎡

⎣αβ
γ

⎤
⎦ = Q−1q4. (12.7)

Inline Exercise 12.5: Explain why the solution to Equation 12.7 is in fact a
solution to Equation 12.6.

Now consider the matrix

A = [αq1;βq2; γq3]. (12.8)

It’s straightforward to verify that it sends ei to a multiple of qi for i = 1, 2, 3, and
it sends u to the sum of its columns, which is, by Equation 12.7, exactly q4.

Step 2: Repeating this process, we can find a matrix transformation with
matrix B sending e1, e2, e3, u to multiples of p1, p2, p3, p4.

Step 3: The matrix AB−1 then sends the p’s to multiples of the correspond-
ing q’s.

Note that in solving this problem we solved a 3 × 3 system of equations and
inverted a 3×3 matrix—which required far less computation than solving a 13×13
system of equations.

Inline Exercise 12.6: Explain why the matrix B=
[
α′p1 β′p2 γ′p3

]
, where

α′,β′, γ′ are the barycentric coordinates of P4 with respect to P1, P2, and P3,
is invertible. Hint: Write B=PS, where S is diagonal and P has p1, p2, p3
as columns. Now apply the general-position assumption about the points
Pi(i = 1, . . . , 4).

12.6 Three Dimensions

The 3D portion of the library is completely analogous to the 2D one, except that
rotations are somewhat more complicated. To implement rotation about an arbi-
trary vector, we use Rodrigues’ formula; to implement rotation about an arbitrary

2. Recall that semicolons indicate that the items listed are the columns of the matrix.
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ray (specified by a point and direction), we translate the point to the origin, rotate
about the vector, and translate back. The projective PointsToPoints method uses
the same general approach that we used in two dimensions, replacing the solution
of 21 simultaneous equations with a solution of four simultaneous equations and
a 4× 4 matrix inversion.

12.7 Associated Transformations

When we have an affine transformation T on Euclidean space, we’ve said that
we can transform either points or vectors, and we’ve incorporated this into our
code. For an affine transformation, we’ve also seen how to transform covec-
tors; in the code, we’ve defined a Covector structure (which is very similar to
the Vector structure in the sense of storing an array of doubles). And for affine
transformations, there’s an associated transformation, T.NormalMap, of covectors.
We’ve bowed to convention here in calling this the “normal map” rather than the
“covector map,” since its use in graphics is almost entirely restricted to normal
(co)vectors to triangles.

For a projective transformation, the associated map on vectors typically varies
from point to point. In Figure 10.24, for instance, the top and bottom edges of the
small square in the domain may be regarded as two identical vectors; after trans-
formation, these vectors are no longer parallel. The associated map of vectors
transformed them differently because they were based at different points. Thus,
the associated vector transformation takes both a point and a vector as arguments.
The details, and detailed rationale, are presented in a web addendum. The covec-
tor transform (for a projective transformation) similarly depends on the point of
application.

One consequence of the point dependence for the vector and covector transfor-
mations of a projective transformation is that many operations—particularly those
involving dot products of vectors, like computing how much light reflects from a
surface—are best performed before the projective transformation near the end of
the rendering pipeline.

12.8 Other Structures

Depending on how you plan to use the linear algebra library, it might make
sense to create classes to represent other common geometric entities like rays,
lines, planes in 3-space, ellipses, and ellipsoids (which are transformed to ellipses
and ellipsoids, respectively, by nondegenerate linear and affine maps). A ray, for
instance, might be represented by a Point and a direction Vector. It’s then natural
either to define

public static Ray operator*(AffineTransformation2 T, Ray r)

or to include in the AffineTransformation2 class a method like

public Ray RayTransform(Ray r)

A good implementation would transform the ray’s Point by T , and would trans-
form its direction Vector and normalize the result, because many computations
on rays are easier when their directions are expressed as unit vectors.
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12.9 Other Approaches

We mentioned that there are other approaches to encapsulating the various trans-
formation operations needed in graphics, including basing them on coordinate
frames rather than linear transformations.

There’s a particularly efficient way to create a restricted transformation library
in the case that we only want to describe rigid transformations of objects. This
eliminates all scaling—both uniform and nonuniform—and all nonaffine projec-
tive transformations. Thus, every transformation is simply a translation, rotation,
or combination of the two. There are two advantages of considering only such
transformations.

• There are no “degeneracies.” In the case of the PointsToPoints transfor-
mations we discussed earlier, there was a possibility of failure if the starting
points were not in general position. No such problem arises here.

• When we need to invert such a rigid transformation, no matrix inversion
procedure is needed, because the inverse of a rotation matrix A is its trans-
pose AT.

There are disadvantages as well.

• We can no longer easily use a PointsToPoints specification for a transfor-
mation. The pairwise distances of the starting points must exactly match
those of the target points, because a rigid transformation preserves dis-
tances between points. It’s impractical to try to specify target points with
this property, even when the source points are (0, 0), (1, 0), and (0, 1), for
instance.

• We cannot make larger or smaller instances of objects in a scene using this
design. (A typical solution is to provide a method for reading objects from
a file with a scale factor so that you create a large sphere by reading a
standard sphere with a scale factor of 6.0, for instance.)

Figure 12.2: A simple scene.

G3D, a package we’ll use in Chapter 32 for the implementation of two ren-
derers, uses the rigid-motion approach. It contains a class CFrame (for “coordinate
frame”); the standard instance of this is the standard coordinate frame based at the
origin. The model for the scene in Figure 12.2 involves quite a lot of code, most
of which describes material properties, etc. The essence of the geometric part of
the modeling3 is given in Listing 12.1, from which we’ve removed all modeling
of light sources and materials.

Listing 12.1: Modeling a simple scene.

1
2
3
4
5
6
7
8
9

void World::loadWorld1() {
modeling of lights omitted
// A sphere, slightly to right, shiny and red.
addSphere(Point3(1.00f, 1.0f, -3.0f), 1.0f, material specification );
// LEFT sphere
addTransparentSphere(Point3(-0.95f, 0.7f, -3.0f), 0.7f, material specifications );

// And a ground plane...
addSquare(4.0, Point3(0.0f, -0.2f, -2.0f),

3. The camera is specified elsewhere in the program.
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10
11
12
13
14
15
16

Vector3(1.0f, 0.0f, 0.0f), Vector3(0.0f, 1.0f, 0.0f), material specifications );

// And a back plane...
addSquare(4.0, Point3(0.0f, 2.0f, -4.00f),
Vector3(1.0f, 0.0f, 0.0f), Vector3(0.0f, 0.0f, 1.0f), material specifications );

...
}

A sphere is specified by its center point and radius; a square by its edge length,
center point, a vector aligned with one axis of the square, and the normal vector to
the square. These two vectors, as specified, must be perpendicular, or the code will
fail. The code for adding a sphere or square to the scene is given in Listings 12.2
and 12.3.

Listing 12.2: The shape-adding methods.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

void World::addTransparentSphere(const Point3& center, float radius,
material parameters ){
ArticulatedModel::Ref sphere =
ArticulatedModel::fromFile(System::findDataFile("sphere.ifs"), radius);

lots of material specification omitted
insert(sphere, CFrame::fromXYZYPRDegrees(center.x, center.y, center.z, 0));

}

void World::addSquare(float edgeLength, const Point3& center, const Vector3&
axisTangent, const Vector3& normal, const Material::Specification& material){

ArticulatedModel::Ref square = ArticulatedModel::fromFile(
System::findDataFile("squarex8.ifs"), edgeLength);

material specification code omitted

Vector3 uNormal = normal / normal.length();
Vector3 firstTangent(axisTangent / axisTangent.length());
Vector3 secondTangent(uNormal.cross(firstTangent));

Matrix3 rotmat(
firstTangent.x, secondTangent.x, uNormal.x,
firstTangent.y, secondTangent.y, uNormal.y,
firstTangent.z, secondTangent.z, uNormal.z);

CoordinateFrame cFrame(rotmat, center);
insert(square, cFrame);

}

Listing 12.3: The methods for inserting a shape into the scene.

1
2
3
4
5
6
7
8
9

void World::insert(const ArticulatedModel::Ref& model, const CFrame& frame) {
Array<Surface::Ref> posed;
model->pose(posed, frame);
for (int i = 0; i < posed.size(); ++i) {

insert(posed[i]);
m_surfaceArray.append(posed[i]);
Tri::getTris(posed[i], m_triArray, CFrame());

}
}

As you can see, the sphere-adding code reads the model from a file and accepts
a scaling parameter that says how much to scale the model up or down. The
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returned object represents a shape; its coordinates are assumed to be in the stan-
dard coordinate frame. This shape is then added to our world (represented by the
object m_surfaceArray) by specifying a coordinate frame using

CFrame::fromXYZYPRDegrees(center.x, center.y, center.z);

This method specifies a coordinate frame by saying how much to translate the
standard frame in x, y, and z (the “XYZ” part of the name), and then how much
yaw, pitch, and roll (the “YPR”) to apply, with the amounts specified in degrees.
The default values for yaw, pitch, and roll are 0, so we didn’t specify them.

In the insert method, the model is “posed” in this new frame, that is, its coor-
dinates are now taken to be relative to that new frame. Since that new frame is
based at the specified center, we end up with a sphere translated to the specified
location. This transformed surface is added to the world-description member vari-
able m_surfaceArray, while its representation as a collection of triangles is added
to another member variable, m_triArray, which is used in visibility testing.

The square-insertion code is slightly more complex. The standard unit square
is read from a file, scaled up by the edge length. Since the standard square is cen-
tered at the origin, with edge length 1, and is aligned with the axes of the xy-plane,
the x and y unit vectors are tangent to the square and the z unit vector is normal
to it. We’ll need to build a new coordinate frame whose first axis is the specified
axisTangent and whose third axis is the specified normal. To do so, we build a
matrix transformation that sends the x-, y-, and z-axes to the axisTangent, a sec-
ond tangent, and the normal, respectively, although we assist the user slightly by
not requiring that either specified vector be unit length. To build the new coordi-
nate frame, we build a matrix that transforms the standard frame to the desired
new one, and then construct the new frame using cFrame(rotmat, center);, one
of the CoordinateFrame class’s standard constructors.

12.10 Discussion

Which kind of linear algebra support you choose will depend on both personal
taste and the kinds of programming you’re doing. If peak efficiency in matrix oper-
ations is essential, you may choose to work directly with arrays of floats. If expres-
sive convenience matters to you, you may choose the style we first described, with
methods like PointsToPoints. If you’ll frequently be inverting transformations,
perhaps the G3D approach will work best for you.

In general, however, your programs will be easier to write and debug if you
rely on a few carefully written and tested programs for building and applying
transformations, and use your language’s type system to help you keep track of
the difference between points and vectors. The more your linear algebra module
can support the expression of what rather than how (e.g., “I want the camera to
look in this direction” rather than “I want to rotate the camera 37◦ in x, then 12. 3◦

in y”) the easier it will be to both understand and maintain your programs.

12.11 Exercises

Exercise 12.1: Create a Ray class to represent a ray in the plane, and build the asso-
ciated ray transformation in the AffineTransformation2 class. Do the same for a
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Line. What constructors should the Line class have? What about a Segment class?
What methods should Segment have that Line lacks? Can you develop a way

to make rays, lines, and segments cooperate with the ProjectiveTransformation
class, or are there insurmountable problems? Think about what happens when a
ray crosses the line on which a projective transformation is undefined.

Exercise 12.2: General position of the points Pi(i = 1, . . . , 4) was needed to
invert the matrix B in the construction of the PointsToPoints method for pro-
jective maps. We also assumed that the points Qi(i = 1, . . . , 4) were in general
position, but that assumption was stronger than necessary. What is the weakest
geometric condition on the Qi that allows the PointsToPoints transformation to
be built?

Exercise 12.3: Explain why the two characterizations of general position for
four points in the plane—that (a) no point lies on a line passing through another
pair and (b) the first three form a nondegenerate triangle, while the fourth is not
on the extensions of any of the sides of this triangle—are equivalent. Pay partic-
ular attention to the failure cases, that is, show that if four points fail to satisfy
condition (a), they also fail to satisfy condition (b), and vice versa.

Exercise 12.4: Enhance the library by defining one-dimensional trans-
formations as well (LinearTransformation1, AffineTransformation1,
ProjectiveTransformation1). The first two classes will be almost trivial. The
third is more interesting; include a constructor ProjectiveTransform1(double

p, double q, double r) that builds a projective map sending 0 to p, 1 to q,
and∞ to r (i.e., limx→∞ T(x) = r). From such a constructor it’s easy to build a
PointsToPoints transformation.

Exercise 12.5: Enhance the library we presented by adding a constructor
TransformXYZYPRDegrees(Point3 P, float yaw, float pitch, float roll) to
create a transformation that translates the origin to the point P, and applies the
specified yaw, pitch, and roll to the standard basis for 3-space.

Exercise 12.6: By hand, find a transformation sending the points P1 =
( 1

2 , 1), P2 = (1, 1), P3 = ( 1
2 ,−1), and P4 = (1,−1) to the points Q1 = ( 1

2 , 1
2 ),

Q2 = P2, Q3 = ( 1
2 ,− 1

2 ), and Q4 = P4.
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Chapter 13

Camera Specifications
and Transformations

13.1 Introduction

In this chapter, we briefly discuss camera specifications, which you already
encountered in Chapter 6. Recall that we specified a camera in WPF in code like
that shown below:

1
2
3
4
5
6
7

<PerspectiveCamera
Position="57, 247, 41"
LookDirection="-0.2, 0, -0.9"
UpDirection="0, 1, 0"
NearPlaneDistance="0.02" FarPlaneDistance="1000"
FieldOfView="45"

/>

From such a specification, we will create a sequence of transformations that
will transform the world coordinates of a point on some model to so-called “cam-
era coordinates,” and from there to image coordinates. We’ll do so by repeatedly
using the Transformation Uniqueness principle.

Since an affine coordinate frame in three dimensions consists of four
noncoplanar points, this says that if we know where we want to send each of
four noncoplanar points, we know that there’s exactly one affine transformation
that will do it for us. The corresponding theorem for the plane says that if we know
where we want to send some three noncollinear points, then there’s a unique affine
transformation that will do it.

We start with an example of this kind of transformation in the plane. Next
we discuss basic perspective camera specifications and how we can convert such
specifications to a set of affine transformations, plus one projective transformation.
We briefly treat the case of “parallel” cameras, and discuss the details of that case
and of skewed projections, in this chapter’s web materials.

299
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13.2 A 2D Example

While Chapter 10 showed how to build transformations and compose them, it’s
often easiest to use a higher-level construction to build transformations: Rather
than saying how to create a transformation as a sequence of elementary trans-
formations, we say what we want the transformation to accomplish. Using our
linear algebra package (see Chapter 12), we can simply say that we want a linear
map that takes certain points to certain others, and let the package find the unique
solution to this problem.

Suppose we want to map the square −1 ≤ u, v ≤ 1 (which we’ll call the
imaging rectangle in anticipation of a later use of such a transformation) to a
display with square pixels, 1024 pixels wide, 768 pixels tall. The upper-left pixel is
called (0, 0); the lower-left is (0, 767); and the lower-right is (1023, 767). We want
to find a transformation T with the property that it sends the square−1 ≤ u, v ≤ 1
to a square region on the left-hand side of the display, one that fills as much of
the display as possible. To do so, we need coordinates on the plane of the display.
Because pixel coordinates refer to the upper-left corner of each pixel, as shown in
Figure 13.1, that is, the center of pixel (0, 0) is at (0.5, 0.5), the display coordinates
range from (0, 0) to (1024, 768).

(0.5, 0.5)(1.5, 0.5)

(0,0)
Pixel (0,0)

Figure 13.1: The center of the
upper-left pixel has coordinates
(0. 5, 0. 5); the pixel is called
pixel (0,0). In other words, it is
named by its upper-left corner.

This means that we want the point (−1,−1) (the lower-left corner of the imag-
ing rectangle) to be sent to (0, 768) (the lower-left corner of the display), and we
want (−1, 1) (the upper-left corner) to be sent to (0, 0). To completely specify an
affine transformation on a two-dimensional space, we need to know where three
independent points are sent. We’ve already determined where two are sent. For
our third point, we choose the lower-right corner: (1,−1) must go to (768, 768)
(to keep the image square). The code that implements this is

1
2
3
4

Transform t =
Transform.PointsToPoints(
Point2(-1, -1), Point2(-1, 1), Point2(1, -1),
Point2(0, 768), Point2(0, 0), Point2(768, 768));

For a specification like this (specifying which points go to which points) we
must be certain that the source points constitute a coordinate frame; in two dimen-
sions, this means “noncollinear,” which is clearly the case here: Any three corners
of a square are noncollinear.

The obvious generalization of this to an arbitrary viewing window of r rows by
k columns (without the constraint on squareness) is called the windowing trans-
formation, with matrix Mwind. It can be generated by code like

1
2
3
4

Transform t =
Transform.PointsToPoints(
Point2(-1, -1), Point2(-1, 1), Point2(1, -1),
Point2(0, k), Point2(0, 0), Point2(r, k));

or, for those who prefer the matrix to be expressed directly, as

Mwind =

[
r 0 0
0 k 0

]⎡⎣ 1
2 0 1

2

0 − 1
2

1
2

0 0 1

⎤
⎦ =

1
2

[
r 0 r
0 −k k

]
. (13.1)
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13.3 Perspective Camera Specification

The WPF camera specification uses six parameters to specify a camera: position
(a point), look direction and up direction (two vectors), near-plane distance and
far-plane distance (two scalars), and field of view (an angle in degrees).

Why don’t we just render everything we can see? Our field of view is about
180◦. Even if you say, “Sure, I can detect stuff in my peripheral vision, but I
really see stuff within about a 120◦ view, sort of a cone extending in front of
my eyes,” you’ll find that if you specify a 120◦ field of view, your pictures will
look peculiar and distorted. That’s partly because we tend to view pictures so
that they occupy a relatively small portion of our field of view. A computer
monitor at a comfortable viewing distance may represent only a 25◦ field of
view, for instance, while your cell-phone screen may be just a few degrees
wide.

If we do make a wide-angle picture and then display it in a way that makes
the image occupy a large portion of our field of view, the results can seem less
distorted, but there’s some evidence that even this doesn’t give the viewer a
completely satisfactory sense of “seeing everything” [Koe11].

So we compromise and take the approach used by photographers: We ren-
der only a modest portion of the eye’s field of view.

Figure 13.2 shows these. You can think of the camera being specified as a
pinhole camera so that all rays entering the camera do so through a single point,
specified as the position of the camera. You could also think of this as the cen-
ter of the camera lens in a more conventional camera. In setting up a real-world
photograph, we generally establish several things: the camera position, its orien-
tation, and the field of view (often adjusted with a zoom control on the camera).
For fancier cameras, we may also be able to adjust the focal distance (the distance
to the points that are most in focus in the image), the depth of field (how far in
front of and behind the focal distance things will be in focus), and even the tilt
and offset of the camera lens relative to the camera body. The WPF specification,
and that of most basic graphics systems, omits these latter aspects, since an ideal
pinhole camera is in focus at all depths, and the pinhole is typically centered over
the film or imaging sensor. We’ll return to these topics in Section 13.9.

Location

f
n

Look direction

Up direction

uw

uh

Figure 13.2: The parts of a WPF camera specification.
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Returning to the WPF camera model, the look direction specifies in which
direction the camera is pointed. If we trace a ray in the scene starting at the position
and pointing in the look direction, we’ll hit some object. That object will appear
in the exact center of the “picture” taken by our camera. The field-of-view angles
describe how far from the look direction, in degrees, the camera sees. The basic
WPF camera produces a square picture, so the field of view is the same in both
the horizontal and vertical directions. In some other systems, you get to specify
both a horizontal and vertical field of view (see Exercise 13.1). Others, including
WPF, let you specify both the aspect ratio and the horizontal field of view, and
compute the vertical field of view for you. In fact, in WPF you specify the aspect
ratio indirectly. You specify the width and height of the viewport (a rectangle on
the display used for exhibiting the image), and the aspect ratio is determined by
the ratio of the width to the height. In the remainder of our presentation, we’ll
specify the view in terms of both horizontal and vertical field of view, and we’ll
discuss the relationship to aspect ratio afterward.

The only subtle point is the specification of the up direction, which orients
the camera about the look direction, just as you can look out a window with your
head tilted either left or right. If we imagine a vertical unit vector v painted on
the back of the camera body, then this vector, together with the look direction,
determines a plane. You might think that we should require the user to specify the
vector v directly, but that’s rather difficult to do in general. Instead, we require
the user to specify any nonzero vector in the plane (except the look direction),
and from this we compute the vector v. Figure 13.3 shows this: Any of three
different vectors can be used as the up direction, from which we can compute the
vector v that is in the vertical plane of the camera and is perpendicular to the look
direction. Often in practice the UpDirection is set to Vector3D(0,1,0), that is,
the y-direction. As long as the camera does not look straight up or down, this is the
most natural direction in which to hold it.1 If the camera does look straight up,
then the computed vector v will be zero; if the camera looks nearly straight up,
the computation of v from vup will involve division by a number that’s almost
zero, and hence will be numerically unstable.

v3

v2

v1

v

Look direction

Figure 13.3: The vectors v1, v2,
and v3 all lie in the plane of
LookDirection and v, and any
one of them can be used as the
UpDirection and result in the
same view.

At this point, the view specification tells where the camera is, in which direc-
tion it’s looking, and how the camera body is rotated around that view direction;
the field of view determines how wide an area the camera “sees.” We’ve indirectly
described a four-sided view volume with a rectangular cross section in space.

Two more parts of the specification remain: the near-plane and far-plane dis-
tances shown in Figure 13.4. The near and far planes cut out a frustum of the
view cone. Objects within this frustum will be displayed in our image, but objects
outside will not (see Figure 13.5).

This can be a useful device: By setting the near-plane distance to be almost
the distance to the subject, we guarantee that objects between us and the subject
do not interfere with the picture. We also avoid ever considering objects that are
behind the camera, which can be a huge time-saver. And by setting the far-plane
distance so that it is not too large, we can similarly save lots of time, by never
considering all the objects in the world that are potentially within our view but
would hardly affect it at all, such as a person standing 30 miles away.

1. In CAD, the horizontal plane is often xy, with z used for the vertical direction; in that
case, of course, the up vector would be Vector3D(0,0,1).
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Near clip plane
Aspect ratio 5
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Far clip plane

Look vector
Viewing volume
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f

Figure 13.4: The distances to the near and far planes are measured along the look direction.

Discarded Rendered

Near clipping
plane

Far clipping
plane

Clipped Discarded

Figure 13.5: Objects outside the view frustum will not be rendered.

It is not only the utility of being able to set the near- and far-plane distances
that motivates their use, as you’ll see presently; they also allow a rasterizing ren-
derer to avoid certain floating-point-comparison problems that generate errors in
images.

Clipping planes have often been used in games to help reduce rendering time
by removing distant objects, but sometimes as you move forward in a game, a dis-
tant object will “pop” into view, which can be distracting. The general solution to
this problem was to render objects in the distance as being obscured by fog so that
they appeared gradually as you approached them. In more modern games, we have
better rendering systems, and many objects are represented with multiple different
levels of detail (see Section 25.4) so that when they are distant, they can be ren-
dered with fewer polygons, making the use of fog less common than it once was.

13.4 Building Transformations from
a View Specification

We’ll now convert from a view specification to some specific geometry. From a
specification, we’ll build (a) an orthonormal coordinate system based at the cam-
era position, and (b) several points on the view cone, as shown in Figure 13.6.
We’ll use these in building the transformations we need. Having a coordinate
frame based at the camera is very convenient, since we’ll later be transform-
ing the camera to the origin and aligning its coordinate frame with the standard
xyz-coordinate system at the origin.
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P

A
B

C

w

v

u

Near plane
Up

Far plane

n f

Look

Figure 13.6: The uvw frame for a camera, the look and vup vectors, and the points P, A, B,
and C.

In writing the equations, we’ll use vup and look to indicate the up vector
and look direction, respectively; these shorter names make the equations more
comprehensible. The point P is just a shorter name for the camera’s Position.

We’ll build the orthonormal basis, u, v, w, in reverse order. First, w is a unit
vector pointing opposite the look direction, so

w =
−look
‖look‖ = S(look). (13.2)

To construct v, we first project vup onto the plane perpendicular to w, and
hence perpendicular to the look direction as well, and then adjust its length:

v̄ = vup − (vup · w)w (13.3)

v =
v̄
‖v̄‖ = S(v̄). (13.4)

Finally, to create a right-handed coordinate system, we let

u = v × w. (13.5)

Inline Exercise 13.1: Some camera software (like Direct3D, but not OpenGL)
starts by letting w = S(look), without negation.
(a) Show that this makes no difference in the computation of v.
(b) Show that in this case, if we want u, v to retain the same orientation on the
view plane (i.e., u pointing right, v pointing up), then the computation of u
becomes u = w × v.
(c) Is the resultant uvw-coordinate system right- or left-handed?

Now we’ll compute the four points P, A, B, and C. The only subtlety con-
cerns determining the length of edges AB and AC. The edge AB subtends half the
horizontal field of view at P, and is at distance f from P, so

tan

(
θh

2

)
=

AB
f

, so (13.6)

AB = f tan

(
θh

2

)
, (13.7)

where θh denotes the horizontal field of view angle, converted to radians,

θh = FieldOfView
π

180
, (13.8)
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y

z

x

Figure 13.7: The standard perspective view volume is the pyramid that ranges from
−1 to 1 in x and y, and from 0 to −1 in z. The scale in z is exaggerated.

and similar expressions determine θv, the vertical field of view, and the length
of AC:

P = Position (13.9)

A = P − f w (13.10)

B = A + f tan

(
θh

2

)
u = P + f tan

(
θh

2

)
u − f w (13.11)

C = A + f v = P + f tan

(
θv

2

)
v − f w. (13.12)

Notice that the near-plane distance n has not entered into our computations
yet.

We now use the four points P, A, B, and C to transform the view frustum to
the standard view frustum shown in Figure 13.7, and known as the standard per-
spective view volume.

All we need to do is say where the four points should be sent. We want to send
P to the origin, A to the midpoint of the back face, which is (0, 0,−1), B to the
mid-right edge of the back face, which is (1, 0,−1), and C to the mid-top edge,
which is (0, 1,−1). The matrix that performs this transformation is denoted Mper

(for “perspective”), so we’ll call the associated transformation Tper. The code that
creates our transformation is

1
2
3
4

Transform3 Tper =
Transform3.PointsToPoints(
P, A, B, C,
Point3(0, 0, 0), Point3(0, 0, -1)), Point3(1, 0, -1), Point3(0, 1, -1));

Under this transformation, points of the far plane are transformed to the
z = −1 plane. Since distances along the ray from P to A must transform linearly,
points of the near plane are transformed to the plane z = −n/f . We’re nearly done
at this point: We’ve transformed the view volume to a standard view volume, and
from this point onward, almost everything we’ll do is independent of the camera
parameters, the exception being that the ratio −n/f will enter into some of our
computations.
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This may appear too simple to you. Indeed, in an earlier edition of this book,
the development of the transformation took several pages. But it’s an example
of the power of proving one good theorem and writing the associated code.

The transformation can also be realized step-by-step. We can take the cam-
era’s view volume and apply a sequence of transformations to it: translate it
so that P moves to the origin; rotate it several times around various coordi-
nate axes so that the uvw-axes align with the xyz-axes; scale in z so that the
far plane ends up at z = −1 instead of z = −f ; and scale in x and y to make
the view frustum have a width and height of 2. Letting Px, Py, and Pz denote
the world coordinates of P, and similarly for u, v, and w, the matrix for the
transformation is then

Mper =

⎡
⎢⎢⎢⎣

1
f tan

θh
2

1
f tan θv

2
1
f

1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

ux uy uz 0
vx vy vz 0
wx wy wz 0

0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 −Px

1 −Py

1 −Pz

0 0 0 1

⎤
⎥⎥⎦ .

(13.13)

The rightmost matrix effects the translation; the middle one transforms u to e1,
v to e2, and w to e3; the leftmost scales each axis appropriately.

We present these merely for your interest and strongly advocate using the
PointsToPoints method instead, as it’s far less prone to errors in order of
matrix multiplication, in copying of coordinates, etc.

At this point, it’s easy to project points in the standard perspective view
volume onto the back plane, for instance, using the nonlinear transformation
(x, y, z) 
→ (x/z, y/z, 1). This is more or less the process we followed when we
rendered the cube in Chapter 3: Our uvw basis was already aligned with the xyz-
axes, and our center of projection was chosen to be the center of our coordinate
system, so all we had to do was the projection step.

Inline Exercise 13.2: Review the rendering code in Chapter 3 to verify that it
matches this description.

Rather than take that approach, however, we’re going to apply two
transformations—the first to “open up” our pyramidal view volume into a rect-
angular parallelepiped, and the second to project along the z-axis. There are two
reasons for this.

• When we discuss “parallel” cameras and projections rather than the per-
spective cameras we’ve seen so far, the parallelepipedal volume will be a
more natural target than the pyramidal one.

• When we project along the z-axis, it’s especially easy to determine which
objects obscure which other objects, that is, visibility testing becomes
trivial. This property is essential in the design of the so-called z-buffer
algorithm at the heart of most graphics hardware.
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Figure 13.8: The standard parallel view volume.
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Figure 13.9: The unhinging transformation.

Our standard parallel view volume (see Figure 13.8) is a parallelepiped that
ranges from −1 to 1 in x and y, and from 0 to −1 in z. Its near clipping plane is
z = 0; its far clipping plane is z = −1. (This differs from the parallel view volume
used in either Direct3D or OpenGL, but only slightly.)

Now we’ll transform the portion of the standard perspective view volume
between the transformed near and far planes (i.e., the portion between z = −n/f
and z = −1) to the standard parallel view volume. The transformation we use
will be a projective transformation in which all the rays passing from the view
volume toward the origin are transformed into rays passing from the view volume
toward the xy-plane in the positive-z direction (see Figure 13.9). (This is some-
times called an unhinging transformation, because the planes defining opposite
sides of the view frustum meet along a “hinge line,” which this transformation
“sends to infinity.”)
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z 521/4
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y y

Figure 13.10: The standard perspective view volume at left (with a near clipping plane
at z = −1/4) contains a small square, which is transformed into a parallelogram in the
parallel view volume at right.

Applying this transformation has no impact on the final results of our render-
ing because the perspective projection (i.e., (x, y, z) 
→ (x/z, y/z, 1)) of a shape
in the pre-transformed volume is the same as the parallel projection ((x, y, z) 
→
(x, y, 1)) of the transformed shape in the post-transformed volume. This is easy to
see if we look at a two-dimensional slice of the situation, just the yz-plane. Con-
sider, for instance, the small square shown in Figure 13.10 that occupies the mid-
dle half of a perspective view of the scene. Occlusion (which points are obscured
by others) is determined by the ordering of points along rays from the viewpoint
into the scene so that the point B is obscured by the near edge of the square. After
transformation, that ray from the viewpoint into the scene becomes a ray in the
−z direction; once again, the point B′ is obscured by the front edge of the square.
And once again, the transformed square ends up filling the middle half of the par-
allel view of the scene. The essential underlying fact is that light (the underlying
agent of vision) travels in straight lines, and the transformation we’ll build con-
verts straight lines to straight lines (and in particular, the projection rays from the
perspective view to projection rays for the parallel view).

Recall from Section 11.1.1 that a projective transformation on R3 can be writ-
ten as a linear transformation on R4 (the homogeneous-coordinate representation
of points in 3-space), followed by the homogenizing transformation

H(x, y, z, w) =
( x

w
,

y
w

,
z
w

, 1
)

. (13.14)

Letting c = −n
f denote the z-coordinate of the front clipping plane after trans-

formation to the standard perspective view volume (here at last the parameter n is
being used!), we’ll simply write down the linear transformation from perspective
to parallel, which we call Mpp:

Mpp =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1/(1 + c) −c/(1 + c)
0 0 −1 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 f/( f − n) n/( f − n)
0 0 −1 0

⎤
⎥⎥⎦ .

(13.15)
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Because we’ll be homogenizing in a moment, we can multiply through by f − n
and instead use the matrix

Mpp =

⎡
⎢⎢⎣

f − n 0 0 0
0 f − n 0 0
0 0 f n
0 0 −( f − n) 0

⎤
⎥⎥⎦ . (13.16)

The derivation of this matrix is slightly messy and not particularly informative;
we cover it in this chapter’s web materials. For now, all we need to do is verify
that it does in fact transform the frustum between the near and far planes (z = c
and z = −1, respectively) in the standard perspective view volume to the standard
parallel view volume. We’ll do so by looking at corners.

z

w

w 5 1

(c, 1)(0, 1) (21, 1)

Figure 13.11: Side view of frus-
tum and view volume in the zw-
plane before unhinging.

The only interesting part of the unhinging matrix of Equation 13.15 is in the
zw-plane, so it’s worth looking at that more closely, remembering that after this
transformation, all points will be homogenized (i.e., projected radially from
the origin onto the w = 1 line in the diagram). Figure 13.11 shows the slice
of the view volume before transformation. The thick blue segment at the right
on the w = 1 line represents the zw-slice of the view frustum between the near
and far clipping planes. The thick red segment at the left is the part of the view
cone between the near plane and the eye. The red point on the y-axis is the
eye. The transformation tilts and stretches the w = 1 line (see Figure 13.12).
Points at z = −1 (the far clipping plane) remain fixed. The near clipping plane
is transformed to lie on the z = 0 line. The eye is transformed onto the w = 0
line. After homogenization (see Figure 13.13), the front clipping plane remains
at z = 0, while the eyepoint is sent to “infinity on the z-axis,” causing the lines
that used to meet at the eye to become parallel lines that “meet at infinity
on the z-axis” (i.e., parallel lines that are parallel to the z-axis). These three
constraints on the transformation are enough to uniquely determine the matrix
(see Exercise 13.9).

z

w

w 5 1

(c, 1)(0, 1) (21, 1)

Figure 13.12: After applying
Mpp.

z

w

w 5 1

Figure 13.13: After
homogenization.

Consider the upper-right front corner of the frustum. It’s at the location
(−c,−c, c). (Recall that c = −n/f is negative, so −c is positive.) Under the
transformation Mpp it becomes

⎡
⎢⎢⎣

f − n 0 0 0
0 f − n 0 0
0 0 f n
0 0 −( f − n) 0

⎤
⎥⎥⎦ ·
⎡
⎢⎢⎣
−c
−c

c
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−c( f − n)
−c( f − n)

cf + n
−( f − n)c

⎤
⎥⎥⎦ . (13.17)

Homogenizing, we get

[
1 1 cf+n

−( f−n)c 1
]T

=
[
1 1 0 1

]T
, (13.18)

the upper-right front corner of the standard perspective view volume, as promised,
where the last step depends on cf + n = − n

f f + n = 0.
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Inline Exercise 13.3: Perform the corresponding computation for the lower-
right rear vertex of the perspective view volume, and continue until you’re
convinced that the transformation works as promised.

Our unhinging transformation places the view volume in the standard parallel
view volume, which extends from 0 to −1 in z; objects with more positive
z-values obscure those with more negative z-values. In a hardware z-buffer,
the z-values are often stored as unsigned integers; storing them as negative
numbers wastes 1 bit for the sign. So, rather than unhinging to a view volume
that ranges from 0 to −1, with −1 being “far away,” they unhinge to a view
volume that ranges from 0 to 1, with 1 being far away. To do this, you need
only negate the z-row of the unhinging matrix Mpp.

Alternatively, instead of having the standard parallel view volume extend
from 0 to −1 in z, we could have it extend from 1 to 0 in z (i.e., we simply
add one to each transformed z-value). Then, although most transformed values
would cluster near zero, the problem would be minimized, because if we store
them as floating-point numbers, there are many more floating-point numbers
near zero than near one. This does in fact improve matters somewhat [AS06].

13.5 Camera Transformations and the
Rasterizing Renderer Pipeline

We described in Chapter 1 how graphics processing is typically done. First, geo-
metric models, like the ones created in Chapter 6, are placed in a 3D scene by
various geometric transformations. Then these models are “viewed” by a camera,
which amounts to transforming their world-space coordinates into coordinates in
the standard perspective view volume, and then transforming to the standard par-
allel view volume. Finally, they are projected to a 2D image, and this image is
transformed to the viewport where we see a picture.

Along the way, the geometric representation of each model must be processed
as shown in Figure 13.14. The 3D world coordinates of primitives (typically tri-
angles) are “clipped” against a view volume; in other words, those outside the
view volume are removed from consideration. A triangle that’s partly inside the

3D world-coordinate
output primitives

Clipped
world coordinates

2D device
 coordinates

Clip against
view 

volume

Project onto
film plane

Transform
into viewport
in 2D device
coordinates
for display

Figure 13.14: Processing of geometry to create images.
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2D device 
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Figure 13.15: Transformation to standard view volume makes clipping simpler.

view volume and partly outside may be truncated to a quadrilateral (and then typ-
ically subdivided into two new triangles). Alternatively, a system may determine
that the truncation and retriangulation is more expensive than handling the small
amount of work of generating pixel data that will never be shown; this depends on
the architecture of the hardware doing the rasterization. The clipping operation is
discussed in more detail in Chapters 15 and 36.

We’ll show how to implement this abstract rendering process in the con-
text of camera transformations. Instead of clipping world coordinates against the
camera’s view volume, we’ll transform the world coordinates to a standard view
volume, where clipping is far simpler. In the standard view volume, we end up
clipping against coordinate planes like z = −1, or against simple planes like
x = z or y = −z. The projection to the film plane in the second step of the
sequence is no longer a generic projection onto a plane in 3-space, but a projec-
tion onto a standard plane in the standard parallel view volume, which amounts to
simply forgetting the z-coordinate. The revised sequence of operations is shown
in Figure 13.15.

The dark gray section (the left half) of the sequence shown in Figure 13.15
can be further expanded for the perspective camera, as shown in Figure 13.16. In
this case, we multiply by Mpp to transform from the standard perspective view
volume to the standard parallel view volume, but before homogenizing, we clip
out objects with z < 0. Why? Because an object with z < 0 and w < 0, after
homogeneous division, will transform to one with z > 0 and w = 1. In practice,
this means that objects behind the camera can reappear in front of it, which is not
what we want.

Transform to
standard

perspective
view volume

Transform to
standard

parallel volume,
unhomogenized

Clip to remove
z < 0 points

Homogenize

Clip in x
and y, and

remove z < 21
points

3D world
coordinates
for geometry

Coordinates
in standard
view volume

General 4D
coordinates

3D
coordinates
with w 5 1

Figure 13.16: Clipping in the
perspective case.

Following this first clipping phase, we can homogenize and clip against x and y
and the far plane in z, all of which are simple because they involve clipping against
planes parallel to coordinate planes.

To interpret the entire sequence of operations mathematically, we start with
our world coordinates for triangle vertices and then do the following.

1. Multiply by MppMper, transforming points into the standard perspective
view volume with Mper, and thence toward the standard parallel view vol-
ume (Mpp), stopping just short of homogenization.

2. Clip to remove points with z < 0. This, and step 4, actually requires knowl-
edge of triangles rather than just the vertex data.

3. Apply the homogenizing transformation (x, y, z, w) 
→ ( x
w , y

w , z
w , 1), at

which point we can drop the w-coordinate.
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4. Clip against x = ±1, y = ±1, and z = −1.

5. Multiply by Mwind to transform the points to pixel coordinates.

This description omits two critical steps, which are the determination of the
color at each vertex, and the interpolation of these colors across the triangles as
we determine which pixels each triangle covers. The first of these was originally
called lighting, as you learned in Chapter 2, but now the two together are often
performed at each pixel by a small GPU program called a shader, and the whole
process is therefore sometimes called “shading.” These are discussed in several
chapters later in this book. For efficiency, however, it’s worth noting that lighting
is an expensive process, so it’s worth delaying as late as possible so that you do
the lighting computation for a vertex (or pixel) only if it makes a difference in the
final image. The clipping stage is an ideal place to do this. You can avoid work for
all the objects that are not visible in the final output. And for many basic lighting
rules, it’s possible to do the lighting after transforming to the standard perspective
view volume, or even after transforming to the standard parallel view volume,
although not after homogenization.2 Because of this, it makes sense to do all the
clipping in the pre-homogenized parallel view volume, then do the lighting, and
finally homogenize, convert to pixel coordinates, and draw filled polygons with
interpolated colors.

P'

Q'

P

Q

Figure 13.17: The projection of
the midpoint of PQ is not the
same as the midpoint of the seg-
ment P′Q′.

What about interpolation of colors over the interior of a triangle, given the
color values at the corners? The answer is “It’s not as simple as it looks at first.”
In particular, linearly interpolating in pixel coordinates will not work. To see this,
look at the simpler problem shown in Figure 13.17: You’ve got a line segment PQ
in the world, with a value—say, temperature—at each end, and the temperature
is interpolated linearly along this line segment so that the midpoint is at a tem-
perature exactly halfway between the endpoints, for instance. Suppose that line
segment is transformed into the line segment P′Q′ in the viewport. If we take the
midpoint P + Q

2 and compute the point it transforms to, it will in general not be
P′ + Q′

2 , so the temperature assigned to P′ + Q′
2 should not be the average of the

temperatures for P′ and Q′.
The only case where linear interpolation does work is when the endpoints P

and Q are at the same depth in the scene (measured from the eye). The classic pic-
ture of train tracks converging to a point on the horizon provides a good instance
of this. Although the crosspieces of the train track (“sleepers” in the United King-
dom, “ties” in the United States) are at constant spacing on the track itself, their
spacing in the image is not constant: The distant ties appear very close together
in the image. If we assign a number to each tie (1, 2, 3, . . .), then the tie number
varies linearly in world space, but nonlinearly in image space.

This suggests that interpolation in image space may be very messy, but the
truth is that it’s also not as complicated as it looks at first. In Section 15.6.4.2 we
will return to this topic and explain how to perform perspective-correct interpola-
tion simply.

2. Many shading rules depend on dot products, and while linear transformations alter
these in ways that are easy to undo, the homogenizing transformation’s effects are not
easy to undo.
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13.6 Perspective and z-values

Suppose we consider the perspective-to-parallel transformation Mpp for the case
c = − 1

2 . (Recall that c = −n/f is the z-position of the near plane in the standard
perspective view volume.) If we take a sequence of points equally spaced between
c and−1 on the z-axis, and apply the transformation and homogenize, then we get
a sequence of points between 0 and−1 in the parallel view volume, but they’re no
longer equally spaced. Figure 13.18 shows the relationship of the new coordinates
(z′) to the input coordinates (z) for several values of c. When c is near −1, the
relationship is near linear; when c is near 0, the relationship is highly nonlinear.
You can see how the output values all cluster near z′ = −1.

Now suppose that the z′-values are to be multiplied by N for some integer N
and discretized to integer values between 0 and N − 1, as is common in many
z-buffers, which use these discretized z′-values to determine which polygon is
visible at a given pixel. If c is very small, then all the z′-values will be so near
to 1 that they almost all discretize to N − 1, and the z-buffer will be unable to
determine occlusion. In consequence, if you choose a near plane that’s too near
the eye, or a far plane that’s too distant, then your z-buffer may not perform as
expected. The near-plane distance is by far the more important: To avoid so-called
z-fighting, you always want to push the near plane as far from the eye as possible
while still seeing everything you need to see.

13.7 Camera Transformations and the
Modeling Hierarchy

Recall that in Section 10.11 we made a hierarchy of transformations to represent
the clock face of Chapter 2, and we said that a similar hierarchy could be created
for a 3D model. For a 3D model, the product of all the matrices representing
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Figure 13.18: Points equispaced in depth in the perspective view volume transformed to
unevenly spaced ones in the parallel view volume.
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transformations from the world-coordinate system down to some primitive
element (typically a triangle specified by its vertex coordinates) is called the com-
posite modeling transformation matrix or CMTM.

This matrix, multiplied by the modeling coordinates of some vertex, produces
the world coordinates of the corresponding point on the modeled object. (Remem-
ber that all coordinates need to be expressed homogeneously, to allow us to gen-
erate translations, so the CMTM is a 4 × 4 matrix.)

Inline Exercise 13.4: Explain why the last row of the CMTM, assuming that
the transformations in the modeling hierarchy are all translations, rotations,
and scaling transformations (i.e., they are all affine transformations), must be[
0 0 0 1

]
.

To transform world coordinates to the standard parallel view volume, we must
multiply these coordinates by Mper and then Mpp, and then homogenize. The
product

CTM = Mpp ·Mper · CMTM (13.19)

is called (in OpenGL) the modelview projection matrix or composite transfor-
mation matrix or CTM.

We can consider the uvw triple of vectors, determined by the camera specifi-
cation, together with the camera location, as defining another coordinate system,
eye coordinates. To transform a vertex from world to eye coordinates, we must
multiply by the matrix

N =

⎡
⎢⎢⎣

ux uy uz 0
vx vy vz 0
wx wy wz 0

0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 −Px

0 1 0 −Py

0 0 1 −Pz

0 0 0 1

⎤
⎥⎥⎦ . (13.20)

Inline Exercise 13.5: Confirm that N transforms P to the origin, transforms

the vector u to
[
1 0 0 0

]T
, and similarly for v and w.

The product NCMTM is called the modelview matrix in OpenGL.

Inline Exercise 13.6: Suppose you’ve modeled a scene—two robots talking—
and have placed a camera so as to view the scene. You want to show a friend the
“larger context”—a more distant view of both robots and a geometric represen-
tation of the camera: a small pyramid whose vertex is at the eye. Fortunately,
you happen to have a vertex-and-triangle-table representation of the standard
perspective view volume, shortened by a factor of two in the y direction so that
it’s twice as wide as it is tall. What transformation would you apply to this
model to place it in the scene with its apex at the eye and its base parallel to
the uv-plane, with its y-axis (the shorter one) aligned with v?
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Figure 13.19: OpenGL transformations compared to our transformations.

OpenGL defines another matrix—the projection matrix—that performs the
transformation to the pre-homogenization standard parallel view volume. If we
call this K, then the correspondence with the matrices we’ve defined is

KN = MppMper. (13.21)

A comparison of the OpenGL sequence of transformations and ours is shown
in Figure 13.19.

Inline Exercise 13.7: Let’s return to the two-robots-talking example. Assume
that the first robot’s right hand is modeled as a unit cube (− 1

2 ≤ x, y, z ≤ 1
2 ),

with its z = − 1
2 face being attached to the wrist and its y = 1

2 face being the
one that’s on top when the arms are held in front of the robot (see Figure 13.20),
and that the CMTM for this cube is the matrix H. Now suppose that the hand
is actually a camera whose eye position is at the center of the z = 1

2 face (in
modeling coordinates), shown as a red dot in the figure. The camera has a 90◦

field of view, both vertical and horizontal, a near-plane distance of 0. 5, and a
far-plane distance of 10. Describe how to find Mper for this camera so that you
can show what the first robot “sees” with its hand camera. Your answer should
involve H.

13.8 Orthographic Cameras

y 5 1/2

z 5 1/2
x 5

21/2

Figure 13.20: The robot hand’s
sides.

P1

P2

P3

Figure 13.21: Perspective cam-
eras becoming more and more
parallel.

While perspective projections are familiar to us from ordinary photographs, many
images are created using parallel projections or orthographic projections. In
these projections, we project from the world to the film plane not using a collec-
tion of lines that all meet at the eyepoint, but instead using a collection of parallel
lines. Imagine a perspective camera with a “film plane” at a fixed location in space,
but whose eyepoint moves farther and farther from the film plane, resulting in the
lines of projection becoming increasingly parallel (Figure 13.21); we can thus
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Figure 13.22: The specification of an orthographic camera.

think of a parallel projection as a kind of limit of these perspective projections as
the eyepoint moves to infinity. An orthographic projection is one in which the
parallel lines along which we project are all orthogonal to the film plane. It may
seem surprising that you’d ever want the projection lines to not be orthogonal to
the film plane, but many mechanical drawings are produced this way. This chap-
ter’s online materials describe this in some detail. We’ll discuss only orthographic
cameras here.

An orthographic camera is an abstraction and does not correspond to any phys-
ical camera. Figure 13.22 shows how the parts of an orthographic camera are
labeled, which corresponds closely to the labeling for a perspective camera. The
key distinction is that the “Position” for an orthographic camera does not repre-
sent the eyepoint, but rather an arbitrary location in space relative to which we
can define the other parts of the camera. The other distinction is that rather than
having horizontal and vertical field-of-view angles, we have a width and a height.

For an orthographic camera, we transform directly from the camera’s view
volume to the standard parallel view volume; the critical step in the construction is

1
2
3

Transform3 t = Transform3.PointAndVectorsToPointAndVectors(
P - n * w, (width/2.0) * u, (height/2.0) * v, (n - f) * w,
Point3(0,0,0),Vector3(1,0,0),Vector3(0,1,0),Vector3(0,0,1));

where we’ve used the points-and-vectors form this time, just to show how it can be
done. We leave it to you to verify that we have specified the correct transformation.

Inline Exercise 13.8: Rewrite the code for the camera transformation using
the points-to-points version.

13.8.1 Aspect Ratio and Field of View

Suppose you want to display a 200 × 400 image on-screen, a rendering of some
virtual world. You need to define a perspective or parallel camera to make that
view. Let’s work with the somewhat simpler parallel case. It’s clear that your par-
allel camera should have its width set to be twice its height. If you set the width
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and height equal, and then display the resultant image on a 200 × 400 window,
horizontal distances will appear stretched compared to vertical ones.

To get a nondistorted on-screen view, assuming that the screen display has
square pixels, we need the aspect ratio of the viewport and the image to be the
same. Some camera-specification systems let the user specify not the width and
height, but instead any two of width, height, and aspect ratio. It’s also possible to
make the specification of a viewport accept any two of these, making it easier to
get cameras and viewports that match. (It’s easier to specify width and aspect ratio
for both than to specify width and height for both, because in the latter case you’ll
have to choose the second height to match the aspect ratio established by the first.)

The three parameters—width, height, and aspect ratio—are not independent;
if the user specifies all three, it should be treated as an error.

Note that for a perspective camera, the ratio of the vertical and horizontal field-
of-view angles is not the aspect ratio of the view rectangle (see Exercise 13.1).

13.9 Discussion and Further Reading

The camera model introduced in this chapter is very simple. It’s a “camera” suited
to the “geometric optics” view of the world, in which light travels along infinites-
imally thin rays, etc. Real-world cameras are more complex, the main complexity
being that they have lenses (or more often, multiple lenses stacked up to make
a lens assembly). These lenses serve to focus light on the image plane, and to
gather more light than one can get from a pinhole camera, thus allowing them to
produce brighter images even in low-light situations. Since we’re working with
virtual imagery anyhow, brightness isn’t a big problem: We can simply scale up
all the values stored in an image array. Nonetheless, simulating the effects of real-
world lenses can add to the visual realism of a rendered image. For one thing,
in real-world cameras, there’s often a small range of distances from the camera
where objects are in focus; outside this range, things appear blurry. This happens
with our eyes as well: When you focus on your computer screen, for instance, the
rim of your eyeglasses appears as a blur to you. Photographs made with lenses
with a narrow depth of field give the feeling of being like what we see with our
own narrow-depth-of-field eyes.

To simulate the effects of cameras with lenses in them, we must, for each pixel
we want to render, consider all the ways that light from the scene can arrive at that
pixel, that is, consider rays of light passing through each point of the surface of
the lens. Since there are infinitely many, this is impractical. On the other hand,
by sampling many rays per pixel, we can approximate lens effects surprisingly
well. And depending on the detail of the lens model (Does it include chromatic
aberration? Does it include nonsphericity?) the simulation can be very realistic.
Cook’s work on distribution ray tracing [CPC84] is the place to start if you
want to learn more about this.

There’s a rather different approach we can take, based on phenomenology:
We can simply take polygons that need to be rendered and blur them somewhat,
with the amount of blur varying as a function of distance from the camera. This
can achieve a kind of basic depth-of-field effect even in a rasterizing renderer,
at very low cost. If, however, the scene contains long, thin polygons with one
end close to the camera and the other far away, the blurring will not be effective.
Such approaches are better suited for high-speed scenes in video games than for a
single, static rendering of a scene.
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13.10 Exercises

Exercise 13.1: (a) Suppose that a perspective camera has horizontal and vertical
field-of-view angles θh and θv. What is the aspect ratio (width/height) of the film?
(b) Show that if θh and θv are both small, then the film aspect ratio and the ratio
θh/θv are approximately equal.

Exercise 13.2: Equations 13.2–13.5 show how to determine the uvw frame
from the look and up directions. Show that the following approach yields the same
results:

w =
−look
‖look‖ (13.22)

t = w × vup (13.23)

u =
t
‖t‖ (13.24)

v = u × w, (13.25)

Also explain why it’s not necessary to normalize v.
Exercise 13.3: We noted that as the viewpoint in a perspective view moved

farther and farther from the film plane, the view approached a parallel view. Con-
sider the case where the eye is at position (0, 0, n), the near plane is at z = 0, and
the far plane is at z = −1 so that f = n + 1. Let θv = θh = arctan( 1

f ) so that the
viewing area on the far plane is −1 ≤ x, y ≤ 1. Write down the product MppMper,
as a function of n, and see what happens in the limit as n→∞. Explain the result.

Exercise 13.4: Just as a projective transformation of the plane is determined
by its value on four points, a projective transformation of the line is determined
by its value on three points. Such a projective transformation always has the form
t 
→ at+b

ct+d , where a, b, c, and d are real numbers with ad − bc ≥ 0.
(a) Suppose you want to send the points t = 0, 1,∞ to 3, 7, and 2, respectively.
Find values of a, b, c, and d that make this happen. The value at t =∞ is defined
as the limit of values as t→∞, and turns out to be a/c.
(b) Generalize: If we want t = 0, 1,∞ to be sent to A, B, and C, find the appropri-
ate values of a, b, c, and d.

Exercise 13.5: Create examples to show that a connected n-sided polygon in
the plane, when clipped against a square, can produce up to �n/2� disconnected
pieces within the square (ignore the parts that are “clipped away”). What is the
largest number of pieces that can be produced if the polygon is convex? Explain.

Exercise 13.6: Construct a pinhole camera from a shoebox and a sheet of
tissue paper by cutting off one end of the shoebox and replacing it with tissue
paper, punching a tiny hole in the other end, and taping the top of the box in place.
Stand inside a darkened room that looks out on a bright outdoor scene; look at the
tissue paper, pointing the pinhole end of the box toward the window. You should
see a faint inverted view of the outdoor scene appear on the tissue paper. Now
enlarge the hole somewhat, and again view the scene; notice how much blurrier
and brighter the image is. What happens if you make the pinhole a square rather
than a circle?

Exercise 13.7: Find a photograph of a person, and estimate the distance from
the camera to the subject—let’s say it’s 3 meters. Have a friend stand at that dis-
tance, and determine at what distance you would have to place the photograph



ptg11539634

13.10 Exercises 319

so that the person in the photo occupies about the same visual area as your friend.
Is this in fact the distance at which you are likely to view the photo? Try to explain
what your brain might be doing when it views such a photo at a distance other than
this “ideal.”

Exercise 13.8: (a) Fixate on a point on a wall in front of you, and place your
arms outstretched to either side. Wiggle your fingers, and move your arms forward
until you can just detect, in your peripheral vision, the motion on both sides, while
remaining fixated on the point in front of you. Have a friend measure the angle
subtended by your two arms, at your eyepoint. This gives you some idea of your
actual field of view, at least for motion detection.
(b) Have a friend stand behind you, holding his hands out in place of yours, but
showing either one, two, or three fingers on each hand. Ask him to move them
forward until you can tell how many fingers he’s holding up on each hand (while
still fixating on the wall). Measure the angle subtended by his hands at your eyes
to get a sense of your field of view for nonmoving object comprehension.

Exercise 13.9: We said that the unhinging transform in the zw-plane was
uniquely determined by three properties: The plane z = −n/f transforms to z = 0;
the eye, at (z, w) = (0, 1), transforms to a point with w = 0; and the plane z = −1
remains fixed. In this exercise, you’ll prove this. Restricting to the x = y = 0
plane, this last constraint says that the point (z, w) = (−1, 1) transforms to itself.

To start with, the matrix we seek is unknown: M =

[
a b
c d

]
.

(a) Show that the condition on the transformation of the eyepoint implies that
d = 0.
(b) Now setting d = 0, show that the third condition implies that c = −1 and
a = b + 1.
(c) Finally, show that the first condition implies b = n/( f − n), and solve for a as
well.
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Chapter 14

Standard Approximations
and Representations

14.1 Introduction

The real world contains too much detail for us to simulate it efficiently from first
principles of physics and geometry. Mathematical models of the real world and
the data structures and algorithms that implement them are always approxima-
tions. These approximations make graphics computationally tractable but intro-
duce restrictions and error. The models and approximations are both geometric
and algorithmic. For example, a ball is a simple geometric model of an orange.
A simple computational model of light interaction might specify that the light
passing through glass does not refract or lose energy.

In this chapter, we survey some pervasive approximations and their limita-
tions. This chapter brings together a number of key assumptions about models
and data structures for representing them that are implicit in the rest of the book
and throughout graphics. It contains some of the engineering conventional wisdom
and practical mathematical techniques accumulated over the past 50 years of com-
puter graphics. It is what you need to know to apply your existing mathematics
and computer science knowledge to computer graphics as it is practiced today. In
order to quickly communicate a breadth of material, we’ll stay relatively shallow
on details. Where there are deep implications of choosing a particular approxima-
tion, a later chapter on each particular topic will explain those implications with
more nuance. To keep the text modular (and save you a lot of flipping), there is
some duplication of ideas from both prior and succeeding chapters, and we’ve
used some terms and units that have not yet been introduced, like steradians, but
whose precise details don’t matter in a first reading at this stage.

The code samples in this chapter are based on the freely available OpenGL
API (http://opengl.org) and G3D Innovation Engine library (http://g3d.sf.net). We
recommend examining the details in the documentation for those or equivalent
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alternatives for further study of how these common approximations and represen-
tations manifest themselves in programming practice.

14.2 Evaluating Representations

In many cases, there are competing representations that have different properties.
Which representation is best suited to a particular application depends on the
goals of that application. Choosing the right representation for an application is a
large part of the art of system design. Some factors to consider when evaluating a
representation are

• Physical accuracy

• Perceived accuracy

• Design goals

• Space efficiency

• Time efficiency

• Implementation complexity

• Associated cost of content creation

Physical accuracy is the easiest property to measure objectively. We can use a
calibrated camera to measure the energy reflected from a known scene and com-
pare that to a rendering of the scene, for example, as is often done with the Cornell
Box (see Figure 14.1).

Figure 14.1: The Cornell box,
a carefully measured five-sided,
painted plywood box with a light
source at the top, is used as a
standard test model for rendering
algorithms. Here it’s rendered by
photon mapping with 1 million
photons.

But physical accuracy is rarely the most important consideration in the cre-
ation of images. When the image is to be viewed by a human observer, errors that
are imperceptible are less significant than those that are perceptible. So physical
accuracy is the wrong metric for image quality. That’s also fortunate—regardless
of how well we simulate a virtual scene, we are forced to accept huge errors from
our displays. Today’s displays cannot reproduce the full intensity range of the real
world and don’t create true 3D light fields into which you can focus your eyes.

Perceived accuracy is a better metric for quality, but it is hard to measure.
There are many reasonable models that measure how a human observer will per-
ceive a scene. These are used both for scientific analysis of new algorithms and
directly as part of those algorithms—for example, video compression schemes fre-
quently consider the perceptual error introduced by their compression. However,
as discussed in Chapter 5, human perception is sensitive to the viewing environ-
ment, the task context, the image content, and of course, the particular human
involved. So, while we can identify important perceptual trends, it is not possible
to precisely quantify the reduction in perceived image quality at the level that we
can quantify, say, a reduction in performance.

Even perceptual accuracy is not necessarily a good measure of image quality.
A line drawing has little perceptual relationship to the hues and tones in a photo-
graph, yet a good line drawing may be considered a higher-quality depiction of a
scene than a poorly composed photograph, as shown in Figure 14.2. The model
with best image quality is the one that best communicates the virtual scene to the
viewer, in the style that the designer desires. This may be, for example, wireframe
in a CAD program, painterly in an art piece, cartoony in a video game, or pho-
torealistic for film. Often artists and designers intentionally simplify and deform
geometric models, stylize lighting, and remove realism from rendering to better
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Figure 14.2: A map contains less information and detail than a satellite photograph, but
presents its information in a way that better communicates the salient elements to a human
viewer. This is evidence that capturing many aspects of reality is not always the most effec-
tive way to model a scene. (Credit: © 2012 Google - Map data © 2012 Cnes/Spot Image,
DigitalGlobe, GeoEye, MassGIS, Commonwealth of Massachusetts EOEA, New York GIS,
USDA Farm Service Agency)

communicate their ideas. This kind of image quality is beyond objective measure-
ment, which is one of the reasons that designing a graphics system is a subjective
art as well as an engineering exercise.

Space and time efficiency and implementation complexity go beyond math-
ematical modeling and into implementation. We seek to actually implement the
algorithms that we design and apply them to real problems. For real-time interac-
tive rendering, efficiency is paramount. A low-quality animation that is interactive
almost always leads to a better experience in a virtual world than a high-quality
one with limited or high-latency interaction. The accessibility and viability of a
system in the market is driven by price. The computational and memory require-
ments, and developer-time costs to build a system, must be balanced against the
quality of the images produced.

14.2.1 The Value of Measurement

We can draw some lessons by considering measurements of image quality.
Advances in graphics have largely focused on space and time efficiency and
physical image quality, even though we claim that perceptual quality, fidelity
to the designer’s vision, and implementation complexity are also important fac-
tors. This is likely because efficiency and physical quality are more amenable
to objective measurement. They aren’t necessarily easier to optimize for, but
the objective measurements allow quantitative optimization. So the first lesson
is that if you want something to improve, find an objective way to quantify it.
Today’s physical image quality is very high, and within some limits we can also
achieve very good perceptual image quality. Feature films regularly contain com-
pletely computer-generated images that are indistinguishable from photographs,
and even low-power mobile devices feature interactive 3D graphics. The second
lesson is to make sure that you optimized for what you really wanted. (This is
an instance of the Know Your Problem principle from Chapter 1!) Despite the
many advances in image quality, the process of modeling, animating, and ren-
dering scenes using either tools or code has not advanced as far as one might
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hope. Implementation complexity has skyrocketed over the past 50 years despite
(and sometimes because of) graphics middleware libraries and standardization
of certain algorithms. Progress has been very slow outside of photorealism, per-
haps because the quality of nonphotorealistic renderings is evaluated subjectively.
Computer graphics does not today empower the typical user with the expressive
and communicative ability of an artist using natural media.

14.2.2 Legacy Models

Beware that in this chapter we describe both the representations that are preferred
for current practice and some that are less frequently recommended today. Some
of the older techniques make tradeoffs that one might not select intentionally if
designing a system from a blank slate today. That can be because they were devel-
oped early in the history of computer graphics, before certain aspects were well
understood. It can also be because they were developed for systems that lacked
the resources to support a more sophisticated model.

We include techniques that we don’t recommend using for two reasons. First,
this chapter describes what you need to know, not what you should do. Classic
graphics papers contain great key ideas surrounded by modeling artifacts of their
publication date. You need to understand the modeling artifacts to separate them
from the key ideas. Graphics systems contain models needed to support legacy
applications, such as Gouraud interpolation of per-vertex lighting in OpenGL. You
will encounter and likely have to help maintain such systems and can’t abandon
the past in practice.

Second, out-of-fashion ideas have a habit of returning in systems. As we
discussed in this section, the best model for an application is rarely the most
accurate—there are many factors to be considered. The relative costs of address-
ing these are highly dynamic. One source of change in cost is due to algorithmic
discoveries. For example, the introduction of the fast Fourier transform, the rise
of randomized algorithms, and the invention of shading languages changed the
efficiency and implementation complexity of major graphics algorithms. Another
source of change is hardware. Progress in computer graphics is intimately tied to
the “constant factors” prescribed by the computers of the day, such as the ratio
of memory size to clock speed or the power draw of a transistor relative to bat-
tery capacity. When technological or economic factors change these constants, the
preferred models for software change with them. When real-time 3D computer
graphics entered the consumer realm, it adopted models that the film industry had
abandoned a decade earlier as too primitive. A film industry server farm could
bring thousands of times more processing and memory to bear on a single frame
than a consumer desktop or game console, so that industry faced a very different
quality-to-performance tradeoff. More recently the introduction of 3D graphics in
mobile form factors again resurrected some of the lower-quality approximations.

14.3 Real Numbers

An implicit assumption in most computer science is that we can represent real
numbers with sufficient accuracy for our application in digital form. In graph-
ics we often find ourselves dangerously close to the limit of available precision,
and many errors are attributable to violations of that assumption. So, it is worth
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explicitly considering how we approximate real numbers before we build more
interesting data structures that use them.

Fixed point, normalized fixed point, and floating point are the most perva-
sive approximations of real numbers employed in computer graphics programs.
Each has finite precision, and error tends to increase as more operations are per-
formed. When the precision is too low for a task, surprising errors can arise. These
are often hard to debug because the algorithm may be correct—for real numbers—
so mathematical tests will yield seemingly inconsistent results. For example, con-
sider a physical simulation in which a ball approaches the ground. The simulator
might compute that the ball must fall d meters to exactly contact the ground. It
advances the ball d − 0. 0001 meters, on the assumption that this will represent
the state of the system immediately before the contact. However, after that trans-
formation, a subsequent test reveals that the ball is in fact partly underneath the
ground. This occurs because mathematically true statements, such as d = d−a+a
(and especially, a = (a/b) ∗ b), may not always hold for a particular approxima-
tion of real numbers. This is compounded by optimizing compilers. For example,
a = b + c; e = a + d may yield a different result than e = b + c + d due to dif-
fering intermediate precision, and even if you write the former, your optimizing
compiler may rewrite it as the latter. Perhaps the most commonly observed preci-
sion artifact today is self-shadowing “acne” caused by insufficient precision when
computing the position of a point in the scene independently relative to the camera
and to the light. When these give different results with an error in one direction,
the point casts a shadow on itself. This manifests as dark parallel bands and dots
across surfaces.

More exotic, and potentially more accurate, representations of real numbers
are available than fixed and floating point. For example, rational numbers can be
accurately encoded as the ratio of two bignums (i.e., dynamic bit-length integers).
These rational numbers can be arbitrarily close approximations of real numbers,
provided that we’re willing to spend the space and time to operate on them. Of
course, we are seldom willing to pay that cost.

14.3.1 Fixed Point

Fixed-point representations specify a fixed number of binary digits and the loca-
tion of a decimal point among those digits. They guarantee equal precision inde-
pendent of magnitude. Thus, we can always bound the maximum error in the rep-
resentation of a real number that lies within the representable range. Fixed point
leads to fairly simple (i.e., low-cost) hardware implementation because the imple-
mentation of fixed-point operations is nearly identical to that of integer operations.
The most basic form is exact integer representation, which almost always uses the
two’s complement scheme for efficiently encoding negative values.

Fixed-point representations have four parameters: signed or unsigned, normal-
ized or not, number of integer bits, and number of fractional bits. The latter two
are often denoted using a decimal point. For example, “24.8 fixed point format”
denotes a fixed-point representation that has 32 bits total, 24 of which are devoted
to the integer portion and eight to the fractional portion.

An unsigned normalized b-bit fixed-point value corresponding to the integer
0 ≤ x ≤ 2b − 1 is interpreted as the real number x/(2b − 1), that is, on the range
[0, 1]. A signed normalized fixed-point value has a range of [−1, 1]. Since direct
mapping of the range [0, 2b− 1] to [−1, 1] would preclude an exact representation
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of 0, it is common to map the two lowest bit patterns to −1, thus sliding the
number line slightly and making −1, 0, and 1 all exactly representable.

Normalized values are particularly important in computer graphics because
we frequently need to represent unit vectors, dot products of unit vectors, and
fractional reflectivities using compact storage.

A terse naming convention is desirable for expressing numeric types in a
graphics program because there are frequently so many variations. One common
convention for fixed point decorates int, or fix with prefixes and suffixes. In this
convention, the prefix u denotes unsigned, the prefix n denotes normalized, and
the suffix denotes the bit allocations using an underscore instead of a period. For
example, uint8 is an 8-bit unsigned fixed-point number with range [0, 255] and
ufix5_3 is an unsigned fixed-point number with 5 integer bits and 3 fractional bits
on the range [0, 25 − 2−3] = [0, 31.875]. An even more terse variation of this in
OpenGL is the use of I to represent non-normalized fixed point and an assump-
tion of unsigned normalized representation. For example, GL_R8 indicates an 8-bit
normalized value (unint8) on the range [0, 1] and GL_RI8 indicates an integer on
the range [0, 255].

Some common fixed-point formats currently in use in hardware graphics are
unsigned normalized 8-bit for reflectivity, normalized 8-bit for unit vectors, and
24.8 fixed point for 2D positions during rasterization. Fixed-point is infrequently
used in modern software rendering. CPUs are not very efficient for most opera-
tions on fixed-point formats and software rendering today tends to focus on qual-
ity more than performance, so one less frequently seeks minimal data formats
if they are inconvenient. The exception is software rasterization—24.8 format is
used in hardware, not for performance but because fixed-point arithmetic is exact:
a + b − b = a (so long as the intermediate results do not overflow), which is not
the case for most floating-point a and b.

14.3.2 Floating Point

Floating-point representations allow the location of the decimal point to move—in
some cases, far beyond the number of digits. Although the details of the commonly
used IEEE 754 floating-point representations are slightly more complicated than
scientific notation, the key ideas are similar. A number can be represented as a
mantissa and an exponent; for example, a× 10b can be encoded by concatenating
the bits of a and b, which are themselves integer or fixed-point numbers. In prac-
tice, the IEEE 754 representations allow explicit representation of concepts like
“not a number” (e.g., 0/0) and positive and negative infinity. These could be, but
rarely are, represented as specific bit patterns in fixed point. Floating point offers
increased range or precision over fixed point at the same bit count; the catch is that
it rarely offers both at the same time. The magnitude of the error in the approxi-
mation of a real number depends on the specific number; it tends to be larger for
larger-magnitude numbers (see Figures 14.3, 14.4). This makes it complicated to
bound the error in algorithms that use this representation. Floating point also tends
to require more complicated circuits to implement.

Both 32-bit and 64-bit floating-point numbers (sometimes called single-
and double-precision) are common across all application domains. The 32-bit
float is often preferred in graphics for space and time efficiency. Graphics also
employs other floating-point sizes that are less common in other areas, such as
16-bit “half” precision and some very special-purpose sizes like 10-bit floating



ptg11539634

14.3 Real Numbers 327

2100

2`

2`

1`

1`
210 21 0
Binary Real Number System

Subset of binary real-numbers that can be represented with
IEEE single-precision (32-bit) floating-point format

1 10 100

2100 210 21 0 1 10 100

Figure 14.3: Subset of binary real numbers that can be represented with IEEE single-
precision (32-bit) floating-point format. (Credit: Courtesy of Intel Corporation)
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versus 32-bit floating point [AS06] over the range [10−4, 1). Floating-point representation
accuracy varies with magnitude. ©2006 ACM, Inc. Included here by permission.

point (a.k.a. 7e3). Ten bits may seem like a strange size given that most
architectures prefer power-of-two sizes for data types. In the context of a
3-vector storing XYZ or RGB values, three 10-bit values fit within a 32-bit
word (the remaining two bits are then unused). Shared-exponent formats effi-
ciently combine separate mantissas for each vector element with a single expo-
nent [War94]. These are particularly useful for images, in which values may span
a large range.

14.3.3 Buffers

The term of art, “buffer,” usually refers to a 2D rectangular array of “pixel” values
in computer graphics; for example, an image ready for display or a map of the
distance from the camera to the object seen at each pixel. Beware that in general
computer science, a “buffer” is often a queue (and that sometimes a “2D vector”
refers to a 2D array, not a geometric vector!); to avoid confusion, we never use the
general computer science terminology in this book.
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The color buffer holds the image shown on-screen in a graphics system. A
reasonable representation might be a 2D array of pixel values, each of which stores
three fields: red, green, and blue. Set aside the interpretation of those fields for the
moment and consider the implementation details of this representation.

The fields should be small, that is, they should contain few bits. If the color
buffer is too large then it might not fit in memory, so it is desirable to make each
field as compact as possible without affecting the perceived quality of the final
image. Furthermore, ordered access to the color buffer will be substantially faster
if the working set fits into the processor’s memory cache. The smaller the fields,
the more pixels that can fit in cache.

The size of each pixel in bits should be an integer multiple or fraction of the
word size of the machine. If each pixel fits into a single word, then the memory
system can make aligned read and write operations. Those are usually twice as fast
as unaligned memory accesses, which must make two adjacent aligned accesses
and synthesize the unaligned result. Aligned memory accesses are also required
for hardware vector operations in which a set of adjacent memory locations are
read and then processed in parallel. This might give another factor of 32 in perfor-
mance on a vector architecture that has 32 lanes. If a pixel is larger than a word by
an integer multiple, then multiple memory accesses are required to read it; how-
ever, vectorization and alignment are still preserved. If a pixel is smaller than a
word by an integer multiple, then multiple pixels may be read with each aligned
access, giving a kind of super-vectorization.

One common buffer format is shown in Figure 14.5. This figure shows a 3×3
buffer in the GL_R5G6B5 format. This is a normalized-fixed point format for 16-bit
pixels. On a 64-bit computer, four of these pixels can be read or written with a
single scalar instruction.

R G B R G B R G B

R G

16-bit pixel

5-bit channels
6-bit channels

B R G B R G B

R G B R G B R G B

Figure 14.5: The GL_R5G6B5

buffer format packs three normal-
ized fixed-point values represent-
ing red, green, blue, and cover-
age values, each on [0, 1], into
every 16-bit pixel. The red and
blue channels each receive five
bits. Because 16 is not evenly
divisible by three, the “extra” bit
is (mostly arbitrarily) assigned to
the green channel.Five bits per channel is not much considering that the human eye can distin-

guish hundreds of shades of gray. Eight bits per channel enable 256 monochrome
shades. But three 8-bit channels consume 24 bits, and most memory systems are
built on power-of-two word sizes. One solution is to round up to a 32-bit pixel
and simply leave the last eight bits of each pixel unused. This is a common prac-
tice beyond graphics—compilers often align the fields of data structures with such
unused bits to enable efficient aligned memory access. However, it is also common
in graphics to store some other value in the available space. For example, the com-
mon GL_RGBA8 format stores three 8-bit normalized fixed-point color channels and
an additional 8-bit normalized fixed-point value called α (or “alpha,” represented
by an “A”) in the remaining space (see Figure 14.6). This value might represent
coverage, where α = 0 is a pixel that the viewer should be able to see through and
α = 1 is a completely opaque pixel.

Obviously, on most displays one cannot see through the display itself when a
color buffer pixel has α = 0; however, the color buffer may not be intended for
direct display. Perhaps we are rendering an image that will itself be composited
into another image. When writing this book, we prepared horizontal and vertical
grid lines of Figure 14.5 as an image in a drawing program and left the pixels that
appear “white” on the page as “transparent.” The drawing program stored those
values with α = 0. We then pasted the grid over the text labels “R,” “G,” etc.
Because the color buffer from the grid image indicated that the interior of the grid
cells had no coverage, the text labels showed through, rather than being covered
with white squares. We return more extensively to coverage and transmission in
Section 14.10.2.
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The compositing example is one of many cases where a buffer is intended
as input for an algorithm rather than for direct display to a human as an image,
and α is only one of many common quantities found in buffers that has no direct
visible representation. For example, it is common to store “depth” in a buffer
that corresponds 1:1 to the color buffer. A depth buffer stores some value that
maps monotonically to distance from the center of projection to the surface seen
at a pixel (we motivate and show how to implement and use a depth buffer in
Chapter 15, and evaluate variations on the method and alternatives extensively in
Chapter 36 and Section 36.3 in particular).

R G B A

32-bit pixel

8-bit channels

R G B A

R G B A

R G B A

R G B A

R G B A

R G B A

R G B A

R G B A

Figure 14.6: The GL_RGBA8

buffer format packs three 8-bit
normalized fixed-point values
representing red, green, blue,
and coverage values, each on
[0, 1], into every 32-bit pixel.
This format allows efficient,
word-aligned access to an entire
pixel for a memory system with
32-bit words. A 64-bit system
might fetch two pixels at once
and mask off the unneeded
bits—although if processing
multiple pixels of an image in
parallel, both pixels likely need
to be read anyway.

Another example is a stencil buffer, which stores arbitrary bit codes that are
frequently used to mask out parts of an image during processing in the way that a
physical stencil (see Figure 14.7) does during painting.

Figure 14.7: A real “stencil” is
a piece of paper with a shape
cut out of it. The stencil is
placed against a surface and then
painted over. When the stencil
is removed, the surface is only
painted where the holes were. A
computer graphics stencil is a
buffer of data that provides sim-
ilar functionality.

Stencil buffers typically use very few bits, so it is common to pack them into
some other buffer. For example, Figure 14.8 shows a 3×3 combined depth-and-
stencil buffer in the GL_DEPTH24STENCIL8 format.

A framebuffer1 is an array of buffers with the same dimensions. For example,
a framebuffer might contain a GL_RGBA8 color buffer and a GL_DEPTH24STENCIL8

depth-and-stencil buffer. The individual buffers act as parallel arrays of fields at
each pixel. A program might have multiple framebuffers with many-to-many rela-
tionships to the individual buffers.

Why create the framebuffer level of abstraction at all? In the previous example,
instead of two buffers, one storing four channels and one with two, why not sim-
ply store a single six-channel buffer? One reason for framebuffers is the many-to-
many relationship. Consider a 3D modeling program that shows two views of the
same object with a common camera but different rendering styles. The left view
is wireframe with hidden lines removed, which allows the artist to see the tes-
sellation of the meshes involved. The right view has full, realistic shading. These
images can be rendered with two framebuffers. The framebuffers share a single
depth buffer but have different color buffers.

Another reason for framebuffers is that the semantic model of channels of
specific-bit widths might not match the true implementation, even though it
was motivated by implementation details. For example, depth buffers are highly
amenable to lossless spatial compression because of how they are computed from
continuous surfaces and the spatial-coherence characteristics of typically ren-
dered scenes. Thus, a compressed representation of the depth buffer might take
significantly less space (and correspondingly take less time to access because
doing so consumes less memory bandwidth) than a naive representation. Yet the
compressed representation in this case still maintains the full precision required
by the semantic buffer format requested through an API. Unsurprisingly given
these observations, it is common practice to store depth buffers in compressed
form but present them with the semantics of uncompressed buffers [HAM06].
Taking advantage of this compressibility, especially using dedicated circuitry
in a hardware renderer, requires storing the depth values separately from the

1. The framebuffer is an abstraction of an older idea called the “frame buffer,” which
was a buffer that held the pixels of the frame. The modern parallel-rendering term
is “framebuffer” as a nod to history, but note that it is no longer an actual buffer. It
stores the other buffers (depth, color, stencil, etc.). Old “frame buffers” stored multiple
“planes” or kinds of values at each pixel, but they often stored these values in the pixel,
using an array-of-structs model. Parallel processors don’t work as well with an array
of structs, so a struct of arrays became preferred for the modern “framebuffer.”
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other channels. Thus, the framebuffer/color buffer distinction steers the high-level
system toward an efficient low-level implementation while abstracting the details
of that implementation.

14.4 Building Blocks of Ray Optics

In the real world, light sources emit photons. These scatter through the world and
interact with matter. Some scatter from matter, through an aperture, and then onto
a sensor. The aperture may be the iris of a human observer and the sensor that per-
son’s retina. Alternatively, the aperture may be at the lens of a camera and the sen-
sor the film or CCD that captures the image. Photorealistic rendering models these
systems, from emitter to sensor. It depends on five other categories of models:

1. Light

2. Light emitters

3. Light transport

4. Matter

5. Sensors and their imaging apertures and optics (e.g., cameras and eyes)

We now explore the concepts of each category and some high-level aspects that
can be abstracted to conserve space, time, and implementation complexity. Later
in the chapter we return to specific common models within each category. We must
defer that until later because the models interact, so it is important to understand
all before refining any.

Z S Z S Z S

Z

32-bit pixel

24-bit channels 8-bit channels

S Z S Z S

Z S Z S Z S

Figure 14.8: The GL_DEPTH24

STENCIL8 buffer format encodes
a 24-bit normalized fixed point
“depth” value with eight stencil
bits used for arbitrary masking
operations.

Although the first few sections of this chapter have covered a great many
details, there is a high-level message as well, one that we summarize in a prin-
ciple we apply throughout the remainder of the chapter:

THE HIGH-LEVEL DESIGN PRINCIPLE: Start from the broadest possible
view. Elements of a graphics system don’t separate as cleanly as we might
like; you can’t design the ideal representation for an emitter without considering
its impact on light transport. Investing time at the high level lets us avoid the
drawbacks of committing, even if it defers gratification.

14.4.1 Light

14.4.1.1 The Visible Spectrum
The energy of real light is transported by photons. Each photon is a quantized
amount of energy, so a powerful beam of light contains more photons than a weak
beam with the same spectrum, not more powerful photons. The exact amount of
energy per photon determines the frequency of the corresponding electromagnetic
wave; we perceive it as color. Low-frequency photons appear red to us and high-
frequency ones appear blue, with the entire rainbow spectrum in between (see
Figure 14.9). “Low” and “high” here are used relative to the visible spectrum.
There are photons whose frequencies are outside the visible spectrum, but those
can’t directly affect rendering, so they are almost always ignored.

The human visual system perceives light containing a mixture of photons
of different frequencies as a color somewhere between those created by the
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Figure 14.9: The visible spectrum is part of the full electromagnetic spectrum. The color
of light that we perceive from an electromagnetic wave is determined by its frequency.
The relationship between frequency and wavelength is determined by the medium through
which the wave is propagating. (Courtesy of Leonard McMillan)

individual photons. For example, a mixture of “red” and “green” photons appears
yellow, and is mostly indistinguishable from pure “yellow” photons. This alias-
ing (i.e., the substitutability of one item for another) is fortunate. It allows dis-
plays to create the appearance of many colors using only three relatively narrow
frequency bands. Digital cameras also rely on this principle—because the image
will be displayed using three frequencies, they only need to measure three.2 Most
significantly for our purposes, almost all 3D rendering treats photons as belong-
ing to three distinct frequencies (or bands of frequencies), corresponding to red,
green, and blue. This includes film and games; some niche predictive rendering
does simulate more spectral samples. We’ll informally refer to rendering with
three “frequencies,” when what we really mean is “rendering with three frequency
bands,” Using only three frequencies in simulation minimizes both the space and
time cost of rendering algorithms. It creates two limitations. The first is that certain
phenomena are impossible to simulate with only three frequencies. For example,
the colors of clothing often appear different under fluorescent light and sunlight,
even though these light sources may themselves appear fairly similar. This is partly
because fluorescent bulbs produce white light by mixing a set of narrow frequency
bands, while photons from the sun span the entire visible spectrum. The second
limitation of using only three frequencies is that renderers, cameras, and displays
rarely use the same three frequencies. Each system is able to create the perception
of a slightly different space of colors, called a gamut. Some colors may simply be
outside the gamut of a particular device and lost during capture or display. This
also means that the input and output image data for a renderer must be adjusted
based on the color profile of the device. Today most devices automatically convert
to and from a standard color profile, called sRGB, so color shifts are minimized
on such devices but gamut remains a problem.

2. This is not strictly true; Chapter 28 explains why.
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The different appearance of cloth under fluorescent light and sunlight is the
first example of the Noncommutativity principle—the idea that order matters
in some operations we perform in graphics, but that this is often ignored for
the sake of speed or simplicity. In this case, the computation of the spectrum of
reflected light should be carried out with a full representation of the spectrum,
and the light should be represented by three samples only when it comes time to
store an image preparatory to it being shown on a three-color display. Instead,
we’ve sampled both the spectrum of the emitted light from the source and
the reflectance characteristics of the cloth, and multiplied samples rather than
spectra. This often produces good-enough results, but can lead to errors.

THE NONCOMMUTATIVITY PRINCIPLE: The order of operations often mat-
ters in graphics. Swapping the order of operations can introduce both efficien-
cies in computations and errors in results. You should be sure that you know
when you’re doing so.

14.4.1.2 Propagation
The speed of propagation of a photon is determined by a material. In a vacuum, it
is about c = 3× 108 m/s, which is therefore called the speed of light. The index
of refraction of a material is the ratio of the speed of light in a vacuum to the rate
s of propagation in that material:

η =
c
s

. (14.1)

For everyday materials, s < c, so η ≥ 1 (e.g., household glass has η ≈ 1. 5).
The exact propagation speed and index of refraction depend on the wavelength
of the photon, but the variation is small within the visible spectrum, so it is
common to use a single constant for all wavelengths. The primary limitation of
this approximation is that the angle of refraction at the interface to a transmis-
sive material is constant for all wavelengths, when it should in fact vary slightly.
Effects like rainbows and the spectrum seen from a prism cannot be rendered
under this approximation—but when simulating only three wavelengths, rainbows
would have only three colors anyway.

Beware that it is common in graphics to refer to the wavelength λ of a photon,
which is related to temporal frequency3 f by

λ =
s
f

. (14.2)

Because the speed of propagation changes when a stream of photons enters a
different medium, the wavelength also changes. Yet in graphics we assume that
each of our spectral samples is fixed independent of the speed of propagation, so
frequency is really what is meant in most cases.

3. Waves have a temporal frequency measured in 1/s (i.e., Hz) and a spatial frequency
measured in 1/m. The spatial frequency of a photon is necessarily 1/λ and is rarely
used in graphics because it varies with the speed of propagation.
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Photons propagate along rays within a volume that has a uniform index of
refraction, even if the material in that volume is chemically or structurally inho-
mogeneous. Photons are also selectively absorbed, which is why the world looks
darker when seen through a thick pane of glass. At the boundary between vol-
umes with different indices of refraction, light scatters by reflecting and refract-
ing in complex ways determined by the microscopic geometry and chemistry of
the material. Chapter 26 describes the physics and measurement of light in detail,
and Chapter 27 discusses scattering.

14.4.1.3 Units
Photons transport energy, which is measured in joules. They move immensely fast
compared to a human timescale, so renderers simulate the steady state observed
under continuous streams of photons. The power of a stream of photons is the
rate of energy delivery per unit time, measured in watts. You are familiar with
appliance labels that measure the consumption in watts and kilowatts. Common
household lighting solutions today convert 4% to 10% of the power they consume
into visible light, so a typical “100 W” incandescent lightbulb emits at best 10 W
of visible light, with 4 W being a more typical value.

In addition to measuring power in watts, there are two other measurements of
light that appear frequently in rendering. The first is the power per unit area enter-
ing or leaving a surface, in units of W/m2. This is called irradiance or radiosity
and is especially useful for measuring the light transported between matte sur-
faces like painted walls. The second is the power per unit area per unit solid angle,
measured4 in W/(m2 sr), which is called radiance. It is conserved along a ray
in a homogeneous medium. It is the quantity transported between two points on
different surfaces, and from a point on a surface to a sample location on the image
plane.

14.4.1.4 Implementation
It is common practice to represent all of these quantities using a generic 3-vector
class (e.g., as done in the GLSL and HLSL APIs), although in general-purpose
languages it is frequently considered better practice to at least name the fields
based on their frequency, as shown in Listing 14.1.

Listing 14.1: A general class for recording quantities sampled at
three visible frequencies.

1
2
3
4
5
6
7
8
9

10
11
12
13

class Color3 {
public:

/** Magnitude near 650 THz ("red"), either at a single
frequency or representing a broad range centered at
650 THz, depending on the usage context. 650 THz
photons have a wavelength of about 450 nm in air.*/

float r;

/** Near 550 THz ("green"); about 500 nm in air. */
float g;

/** Near 450 THz ("blue"); about 650 nm in air. */
float b;

4. The unit “sr” is “steradians,” a measure of the size of a region on the unit sphere,
described in more detail in Section 14.11.1.
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14
15
16
17
18
19
20
21

Color3() : r(0), g(0), b(0) {}
Color3(float r, float g, float b) : r(r), g(g), b(b);
Color3 operator*(float s) const {
return Color3(s * r, s * g, s * b);

}
...

};

One could use the type system to help track units by creating distinct classes
for power, radiance, etc. However, it is often convenient to reduce the complexity
of the types in a program by simply aliasing these to the common “color”5 class,
as shown, for example, in Listing 14.2.

Listing 14.2: Aliases of Color3 with unit semantics.

1
2
3
4

typedef Color3 Power3;
typedef Color3 Radiosity3;
typedef Color3 Radiance3;
typedef Color3 Biradiance3;

Because bandwidth and total storage space are often limited resources, it is
common to employ the fewest bits practical for your needs for each frequency-
varying quantity. One implementation strategy is to parameterize the class, as
shown in Listing 14.3.

Listing 14.3: A templated Color class and instantiations.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

template<class T>
class Color3 {
public:

T r, g, b;

Color3() : r(0), g(0), b(0) {}
...

};

/** Matches GL_RGB8 format */
typedef Color3<unint8> Color3un8;

/** Matches GL_RGB32F format */
typedef Color3<float> Color3f32;

/** Matches GL_RGB16I format */
typedef Color3<unsigned short> Color3ui16;

14.4.2 Emitters

Emitters are fairly straightforward to model accurately. They create and cast
photons into the scene. The photons have locations, propagation directions, and
frequencies (i.e., “colors”), and are emitted at some rate. Given probability dis-
tributions for those parameters, we can generate many representative photons and

5. We discuss why color is not a quantifiable phenomenon in Chapter 28; here we use the
term in a nontechnical fashion that is casual jargon in the field.
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trace them through the scene. We say “representative” because real images are
formed by trillions of photons, yet graphics applications can typically estimate the
image very well from only a few million photons, so each graphics photon rep-
resents many real ones. Today’s computers and rendering algorithms can execute
a simulation in this model for rendering images in a few minutes. The emission
itself isn’t particularly expensive. Instead, the later steps of the tracing consume
most of the processing time because each representative photon must be handled
individually, and the interaction of millions of photons with millions or billions of
polygons can be complicated.

To render even faster, we can simplify the emission model so that an aggregate
of photons along a light ray can be considered by the later light transport steps.
This is a common approximation for real-time rendering. The simplified models
tend to fix the origin for all photons from an emitter at a single point. Doing so
allows algorithms to amortize the cost of processing light rays from an emitter
over the large number of light rays that share a single origin. As we said earlier,
it is common practice to consider a small number of frequencies, to simplify the
spectral representation, and to treat photons in the aggregate by measuring the
average rate of energy emitted at each of those frequencies. Three frequencies
loosely corresponding to “red,” “green,” and “blue” are almost always chosen to
represent the visible spectrum, where each represents a weighted sum of the spec-
tral values over an interval of the true spectrum, but is treated during simulation as
a point sample, say, at the center of the interval. For an example of a more refined
model, Pharr and Humphreys [PH10] describe a renderer with a nice abstraction
of spectral curves.

14.4.3 Light Transport

In computer graphics, light transport is almost always modeled by (steady-state)
ray optics on uncollimated, unpolarized light. This substantially simplifies the
simulation by neglecting phase and polarization. In this model, photons propagate
along straight lines through empty space. They do not interfere with one another,
and their energy contribution simply sums. Under this simplification and with a
discrete set of frequency samples, a geometric ray and a radiance vector (indicat-
ing radiance in the red, green, and blue portions of the spectrum) are sufficient to
represent a stream of photons.

In more sophisticated models of light, some physicists model the phase of pho-
tons. Such photons can interfere with one another in certain conditions, giving
rise to phenomena such as Newton rings. But Newton rings and other small-
scale diffraction events rarely occur at noticeable levels in common experience,
so we generally ignore them in graphics.

We’ll see in Chapter 27 that ignoring photon interference and polarization to
simplify the representation of light energy is what forces us to complicate our rep-
resentation of matter. For example, glossy and perfect reflection arises from the
interference of nearly parallel streams of photons. This interference does not arise
under ray optics, so we must introduce specific terms (such as Fresnel terms) to
materials to model the same phenomena. One could use a richer model of light
and a simpler model of a surface to produce the same image. However, a simple
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model of matter is not necessarily one that is easy to describe in terms of macro-
scopic phenomena, either for specification or for digital representation. Represent-
ing and modeling a brick as a rough, reddish slab of dried clay is both intuitive
and compact. Representing it as a collection of 1026 or so molecules of varying
composition is unwieldy at best.

14.4.4 Matter

There are many models of matter in graphics. The simplest is that matter is geom-
etry that scatters light, and further, that this light scattering takes place only at the
surfaces of opaque objects, ignoring the very small interactions of photons with
air over short distances and any subsurface interaction effects. The surface scatter-
ing model builds on these assumptions by modeling only the surfaces of opaque
objects. This reduces the complexity of a scene substantially. For example, a com-
puter graphics car might have no engine, and a computer graphics house might
be only a façade. Only the parts of objects that can interact with light need to be
modeled. Of course, this approach poorly represents matter with deep interaction,
such as skin and fog, and is only sufficient for rendering. To animate objects, for
instance, we need to know properties such as joint locations and masses.

A consequence of computer graphics relying on complex models of matter is
that different models are often employed for surface detail at different scales. Sup-
porting different models and ways of combining them at intermediate scales com-
plicates a graphics system. However, it also yields great efficiencies and matches
our everyday perception. For example, from 100 meters, you might observe that a
fir tree is similar to a green cone. From ten meters, individual branches are visible.
From one meter, you can see separate needles. At one centimeter, small bumps
and details on the needles and branches emerge. With a light microscope you can
see individual cells, and with an electron microscope you can see molecule-scale
detail. For this chapter, we consider details to be large-scale if their impact on the
silhouette can be observed from about one meter, medium scale if they are smaller
than that but observable by the naked eye at some scale, and small-scale if they
are not observable by the naked eye.

Figure 14.10: The darkening of
this photograph near the edges
is called vignetting. (Credit:
Swanson Tennis Center at Gus-
tavus Adolphus College by Joe
Lencioni, shiftingpixel.com)

Figure 14.11: The rainbowlike
edges on the objects in this
photograph are caused by chro-
matic aberration in the cam-
era’s lens. Different frequencies
of light refract at different angles,
so the resultant colors shift in the
image plane. High-quality cam-
eras use multiple lenses to com-
pensate for this effect. (Credit:
Corepics VOF/Shutterstock)

14.4.5 Cameras

Lenses and sensors (the components of eyes and cameras) are complicated. This
is true whether they have biological or mechanical origins. From a photographer’s
perspective, the ideal lens would focus all light from a point that is “in focus”
onto a single point on the imager (the sensing surface of the sensor) regardless
of the frequency of light or the location on the imager. Real lenses have imper-
fect geometry that distorts the image slightly over the image plane and causes
darkening near the edges, an effect known as vignetting (see Figure 14.10). They
also necessarily focus different frequencies differently, creating an artifact called
chromatic aberration (see Figure 14.11; see also Chapter 26). Camera manufac-
turers compensate for these limitations by combining multiple lenses. Unfortu-
nately, these compound lenses absorb more light, create internal reflections, and
can diffuse the focus. We perceive the reflections as lens flare—a series of iris
shapes in line with the light source overlaid on the image, as seen in Figure 14.12.
We perceive slightly diffused focus as bloom, where very bright objects appear
defocused. Real film has a complex nonlinear response to light, and has grain that
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arises from the manufacturing process. Digital imagers are sensitive to thermal
noise and have small divisions between pixels.

Since the simple model of a lens as an ideal focusing device and a sensor as
an ideal photon measurement device yields higher image quality than a realistic
camera model, there is little reason to use a more realistic model. Because lens
flare, film grain, bloom, and vignetting are recognized as elements of realism from
films, those are sometimes modeled using a post-processing pass. There is no need
to model the true camera optics to produce these effects, since they are being
added for aesthetics and not realism. Note that this arises purely from camera
culture—except for bloom, none of these effects are observed by the naked eye.

14.5 Large-Scale Object Geometry

This section describes common models of object surfaces. Many rendering algo-
rithms interact only with those surfaces. Some interact with the interior of objects,
whose boundaries can still be represented by these methods. Section 14.7 briefly
describes some representations for objects with substantial internal detail.

Some objects are modeled as thin, two-sided surfaces. A butterfly’s wing and a
thin sheet of cloth might be modeled this way. These models have zero volume—
there is no “inside” to the model. More commonly, objects have volume, but the
details inside are irrelevant. For an opaque object with volume, the surface typ-
ically represents the side seen from the outside of the object. There is no need
to model the inner surface or interior details, because they are never seen (see
Chapter 36). To eliminate the inner side of the skin of an object, polygons have
an orientation. The front face of a polygon is the side indicated to face outward
and the back face is the side that faces inward. A process called backface culling
eliminates the inward-facing side of each polygon early in the rendering process.
Of course, this model is revealed as a single-sided, hollow skin should the viewer
ever enter the model and attempt to observe the inside, as you saw in Chapter 6.
This happens occasionally in games due to programming errors. Because there is
no detail inside such an object and the back faces of the outer skin are not visible,
in this case the entire model seems to disappear from view once the viewpoint
passes through its surface.

Figure 14.12: The streaks
from the sun and apparently
translucent-colored polygons
and circles along a line through
the sun in this photograph
are a lens flare created by the
intense light reflecting within the
multiple lenses of the camera
objective. Light from all parts of
the scene makes these reflections,
but most are so dim compared to
the sun that their impact on the
image is immeasurable. (Credit:
Spiber/Shutterstock)

Translucent objects naturally reveal their interior and back faces, so they
require special consideration. They are often modeled either as a translucent, two-
sided shell, or as two surfaces: an outside-to-inside interface and an inside-to-
outside interface. The latter model is necessary for simulating refraction, which is
sensitive to whether light rays are entering or leaving the object.

Surface and object geometry is useful for more than rendering. Intersections
of geometry are used for modeling and simulation. For example, we can model
an ice-cream cone with a bite taken out as a cone topped by a hemisphere . . . with
some smaller balls subtracted from the hemisphere. Simulation systems often use
collision proxy geometry that is substantially simpler than the geometry that is
rendered. A character modeled as a mesh of 1 million polygons might be simulated
as a collection of 20 ellipsoids. Detecting the intersection of a small number of
ellipsoids is more computationally efficient than detecting the intersection of a
large number of polygons, yet the resultant perceived inaccuracy of simulation
may be small.
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14.5.1 Meshes

14.5.1.1 Indexed Triangle Meshes
Indexed triangle meshes (see Chapter 8) are a pervasive surface representation in
graphics. The minimal representation is an array of vertices and a list of indices
expressing connectivity. There are three common base schemes for the index list.
These are called triangle list (or sometimes soup), triangle strip, and triangle
fan representations. Figures 14.13 through 14.15 describe each in the context of
counterclockwise triangle winding and 0-based indexing for a list describing n >
0 triangles.
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Figure 14.13: A triangle list, also
known as a triangle soup, con-
tains 3n indices. List elements
3t, 3t + 1, and 3t + 2 are the
ordered indices of triangle t.
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Figure 14.14: A triangle strip
contains n + 2 indices. The
ordered indices of triangle t are
given as follows. For even t, use
list elements t, t + 2, t + 1. For
odd t, use list elements t, t + 1,
t + 2.
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Figure 14.15: A triangle soup
pentagon on the left, and the
more efficient triangle fan model
on the right. A triangle fan con-
tains n + 2 indices. List elements
0, t + 1, t + 2 are the ordered
indices of triangle t (with indices
taken mod n + 2).

14.5.1.2 Alternative Mesh Structures
For each representation there is a corresponding nonindexed representation as a
list whose element j is vertex[index[j]] from the indexed representation. Such
nonindexed representations are occasionally useful for streaming large meshes
that would not fit in core memory through a system. Because they duplicate stor-
age of vertices (which are frequently much larger than indices), these representa-
tions are out of favor for moderate-sized models.

One can also construct quadrilateral or higher-order polygon meshes following
comparable schemes. However, triangles have several advantages because they are
the 2D simplex: Triangles are always planar, define an unambiguous barycentric
interpolation scheme, never self-intersect, and are irreducible to simpler polygons.
These properties also make them slightly easier to rasterize, ray trace, and sam-
ple than higher-order polygons. Of course, for data such as city architecture that
is naturally modeled by quadrilaterals, a triangle mesh representation increases
storage space without increasing model resolution.

14.5.1.3 Adjacency Information
Some algorithms require efficient computation of adjacency information between
faces, edges, and vertices on a mesh. For example, consider the problem of ren-
dering the contour of a convex mesh for a line-art program. Each edge is drawn
only if it is on the contour. An edge lies between two faces. It is on the contour
if exactly one face is oriented toward the viewer. We can make this determination
more quickly if we augment the minimal indexed mesh with additional informa-
tion describing faces, edges, and adjacency. Under that representation, we might
directly iterate over edges (instead of triangles) and expect constant-time access
to the two faces adjacent to each edge.

Adjacency information depends only on topology, so it may be precomputed
for an animated mesh so long as the mesh does not “tear apart” under animation.
Listing 14.4 gives a possible representation for a mesh with full adjacency infor-
mation. In the listing, all the integers in the Vertex, Edge, and Face classes are
indices into the arrays at the bottom of the class definition. Because faces are ori-
ented, the order of elements matters in their vertices index arrays. This is the
modern array-based equivalent of a classic mesh data structure called the winged
edge polyhedral representation [Bau72] (see Chapter 8).

There are several ways to encode the edge information within these data struc-
tures. One is to consider the directed half-edges that each exist in one face. A true
edge that is not on the boundary of the edge would then be a pair of half-edges. The
half-edge representation offers the advantage of retaining orientation information
when it is reached by following an index from a face. It has the disadvantage of
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storing redundant information for all the edges with two adjacent faces. A com-
mon trick obfuscates the code a bit by eliminating this storage overhead. The trick
is to store only one half-edge for each mesh edge, and to index from a face using
two’s complement when the half-edge is oriented opposite the direction that it
should appear in that face. The two’s complement of a non-negative index e (writ-
ten ˜e in C-like languages) is guaranteed to be a negative number, so indices of
oppositely directed edges are easy to identify. The two’s complement operator is
efficient on most architectures, so it incurs little overhead. Each edge then uses
the same trick to encode the indices of the adjacent faces, indicating whether that
half-edge or its oppositely directed mate actually appears in the face.

Listing 14.4: Sample mesh representation with full adjacency information.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

struct Mesh {
enum NO_FACE = MAX_INT;

struct Vertex {
Point3 location;
std::vector<int> edges;
std::vector<int> faces;

};

struct Edge {
int vertices[2];
/* May be NO_FACE if this edge is on a boundary. */
int faces[2];

};

struct Face {
int vertices[3];
int edges[3];

};

std::vector<int> index;
std::vector<Vertex> vertex;
std::vector<Edge> edge;
std::vector<Face> face;

};

14.5.1.4 Per-Vertex Properties
It is common to label the vertices of a mesh with additional information. Com-
mon rendering properties include shading normals, texture coordinates, and
tangent-space bases.

A polygonal approximation of a curved surface appears faceted. The percep-
tion of faceting can be greatly reduced by shading the surface as if it were curved,
that is, by shading the points indicated by the surface geometry, but altering the
orientation of their tangent plane during illumination computations, as you saw in
Chapter 6. It is common to model the orientation by specifying the desired surface
normal at each vertex and interpolating between those normals within the surface
of each polygon.

Texture coordinates are the additional points or vectors specified at each ver-
tex to create a mapping from the surface of the model to a texture space that defines
material properties, such as reflectance spectrum (“color”). Mapping from the sur-
face to a 2D square using 2D points is perhaps the most common, but mappings
to 1D spaces, 3D volumetric spaces, and the 2D surface of a 3D sphere are also
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common; Chapter 20 discusses this in detail. The last is sometimes called cube
mapping, sphere mapping, or environment mapping depending on the specific
parameterization and application.

A tangent space is just a plane that is tangent to a surface at a point. A mesh’s
tangent space is undefined at edges and vertices. However, when the mesh has
vertex normals there is an implied tangent space (the plane perpendicular to the
vertex normal) at each vertex. The interpolated normals across faces (and edges)
similarly imply tangent spaces at every point on the mesh. Many rendering algo-
rithms depend on the orientation of a surface within its tangent plane. For example,
a hair-rendering algorithm that models the hair as a solid “helmet” needs to know
the orientation of the hair (i.e., which way it was combed) at every point on the
surface. A tangent-space basis is one way to specify the orientation; it is simply
a pair of linearly independent (and usually orthogonal and unit-length) vectors in
the tangent plane. These can be interpolated across the surface of the mesh in the
same way that shading normals are; of course, they may cease to be orthogonal
and change length as they are interpolated, so it may be necessary to renormalize
or even change their direction after interpolation to achieve the goals of a partic-
ular algorithm. Finding such a pair of vectors at every point of a closed surface is
not always possible, as described in Chapter 25.

14.5.1.5 Cached and Precomputed Information on the Mesh
The preceding section described properties that extend the mesh representation
with additional per-vertex information. It is also common to precompute proper-
ties of the mesh and store them at vertices to speed later computation, such as
curvature information (and the adjacency information that we have already seen).
One can even evaluate arbitrary, expensive functions and then approximate their
value at points within the mesh (or even within the volume contained by the mesh)
by barycentric interpolation.

Gouraud shading is an example. We compute and store direct illumination
at vertices during the rendering of a frame, and interpolate these stored values
across the interior of each face. This was once common practice for all raster-
ization renderers. Today it is primarily used only on renderers for which the
triangles are small compared to pixels so that there is no loss of shading reso-
lution from the interpolation. The micropolygon renderers popular in the film
industry use this method, but they ensure that vertices are sufficiently dense in
screen space by subdividing large polygons during rendering until each is smaller
than a pixel [CCC87]. Per-pixel direct illumination is now considered sufficiently
inexpensive because processor performance has grown faster than screen resolu-
tions. However, it has not grown faster than scene complexity, so some algorithms
still compute global illumination terms such as ambient occlusion (an estimated
reduction in brightness due to nearby geometry) or diffuse interreflection at ver-
tices [Bun05].

The vertices of a mesh form a natural data structure for recording values that
describe a piecewise linear approximation of an arbitrary function as described in
Chapter 9. The drawback of this approach is that other constraints on the model-
ing process may lead to a tessellation that is not ideal for representing the arbi-
trary function. For example, many meshes are created by artists with the goal of
using the fewest triangles possible to reasonably approximate the silhouette of an
object. Large, flat areas of the mesh will therefore contain few triangles. If we
were to compute global illumination only at the vertices, we would find that the
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illumination computation became extremely blurry in these areas simply because
the model had too few vertices.

There are two common solutions to this problem, other than simply
increasing the tessellation everywhere. The first is to subdivide triangles of the
mesh during computation of the function that is to be stored at vertices [Hec90],
until the approximation error across each triangle is small enough. The second is
to define an invertible and approximately conformal mapping from the surface of
the mesh into texture space, and encode the function values in a texture map. The
latter is more efficient for functions with high variance where it is hard to predict
the locations where changes occur a priori. Today this approach is more popular
than the per-vertex computation. For example, many games rely on light maps,
which store precomputed global illumination for static scenes in textures. Com-
bined with real-time direct illumination, these provide a reasonable approximation
of true global illumination if few objects move within the scene. Traditional light
maps encoded only the magnitude, but not direction, of incident light at a sur-
face. This has since been extended to encode directionality in various bases [PRT,
AtiHL2]. Texture-space diffusion, as seen in d’Eon et al.’s subsurface scattering
work [dLE07], is an example of dynamic data encoded in texture space.

14.5.2 Implicit Surfaces

Some geometric primitives are conveniently described by simple equations and
correspond closely to shapes we encounter in the world around us. In 2D, these
include lines, line segments, arcs of ellipses (including full circles), rectangles,
trigonometric expressions such as sine waves, and low-order polynomial curves.
In 3D, these include spheres, cylinders, boxes, planes, trigonometric expressions,
quadrics, and other low-order polynomial surfaces.

Simple primitives can be represented via implicit equations or explicit para-
metric equations, as described in Chapter 7. We’ll recall some of those ideas
briefly here.

An implicit equation is a test function f : R3 → R that can applied to a
point. The function classifies points in space: For any point P, either f (P) > 0,
f (P) < 0, or f (P) = 0. Those with f (P) = 0 are said to constitute the implicit
surface defined by f ; by convention, those with f (P) < 0 are said to be inside the
surface, and the remainder are outside. Such a surface is an instance of a level set
(for level 0) and an isocontour (for value 0) of the function.

As an example, consider a surface defined by the plane through point Q with
normal n. A suitable test function is

f : R3 → R : P→ (P− Q) · n. (14.3)

For every point P in the plane, f (P) = 0. For points on the side containing Q + n,
f (P) > 0; for points on the other side, f (P) < 0.

An explicit equation or parametric equation defines a generator function for
points in the plane in terms of scalar parameters. We can use such a function to
synthesize points on the surface. The explicit form for a plane is

g : R× R→ R3 : (u, v)→ uh + vk + Q, (14.4)

where h and k are two vectors in the plane that are linearly independent. For any
particular pair of numbers u and v, the point g(u, v) lies on the plane. Chapter 7
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gives both implicit and parametric descriptions for spheres and ellipsoids, and
parametric descriptions of several other common shapes like cylinders, cones, and
toruses. These, and more general implicit surfaces, are discussed in Chapter 24.

14.5.2.1 Ray-Tracing Implicit Surfaces
Implicit surface models are useful for ray casting and other intersection-based
operations. For ray tracing, we take the parametric form of the ray with origin A
and direction v,

g(t) = A + tv, (14.5)

and solve for the point at which it intersects the plane by substituting into the
plane’s implicit form and finding the roots of the resultant expression. We want to
find a value t for which f (g(t)) = 0. That means

(g(t)− Q) · n = 0, i.e., (14.6)

(A + tv− Q) · n = 0, so (14.7)

t =
(Q− A) · n

v · n . (14.8)

We can follow the same process for any surface whose equation admits an
efficient closed-form solution after substituting the ray’s parametric form.

For a sphere of radius r about the point Q, we can use the implicit form f (P) =
‖Q − P‖2 − r2. Substituting the parametric form for the ray, and setting to zero,
we get

0 = ‖(A + vt)− Q‖2 − r2 (14.9)

r2 = ‖(A− Q) + vt‖2 (14.10)

r2 = ‖(A− Q‖2 + 2t(A− Q) · v+ ‖v‖2t2 (14.11)

0 = (‖(A− Q‖2 − r2) + 2t(A− Q) · v+ ‖v‖2t2. (14.12)

This is a quadratic equation in t, at2 + bt + c = 0, where a = ‖v‖2, b =
(A−Q) · v, and c = ‖(A−Q‖2 − r2. It can be solved with the quadratic formula
to find all intersections of the ray with the sphere.

Inline Exercise 14.1:
(a) Write out the solutions using the quadratic formula, and simplify.
(b) What does it mean if one of the roots of the quadratic equation is at a value
t < 0? What about t = 0?
(c) In general, if b2 − 4ac = 0 in a quadratic equation, there’s only a single
root. What does this correspond to geometrically in the ray-sphere intersection
problem?

More general quadratics can be used to determine intersections with ellipsoids
or hyperboloids, while higher-order polynomials arise in determining the intersec-
tion of a ray with a torus, for example, and for more general shapes, the equation
we must solve can be very complicated. Multiple roots of the equation that results
from substituting the parametric line form into the function defining the implicit
surface indicate multiple potential intersections. See Chapter 15 for further dis-
cussion of ray casting and interpreting its results.
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Figure 14.16: Blobby models, each defined by the isocontour of a sum of 3D Gaussian
density functions [Bli82a]. (Credit: Courtesy of James Blinn © 1982 ACM, Inc. Reprinted
by permission.)

What about implicit surfaces that do not admit efficient closed-form solutions?
If the implicit surface function is continuous and maps points inside the object to
negative values and points outside the object to positive values, then any root-
finding method such as Newton-Raphson [Pre95] will find zero points, that is, it
will find the surface. The term “implicit surface” usually refers to this kind of
model and intersection algorithm.

Implicit surfaces that are defined by the sum of some simple basis functions
with different origins are favored for modeling organic, “blobby” shapes (see Fig-
ure 14.16). This is called blobby modeling and metaball modeling [Bli82a].

14.5.3 Spline Patches and Subdivision Surfaces

We’ve seen that smooth shapes can be modeled by arbitrary expressions defin-
ing their surface curves through three dimensions and by the implicit surface
defined by a parametric sum of fixed functions. Spline curves and patches and
subdivision curves and surfaces are alternative representations that fall between
these extremes. A spline is simply a piecewise-polynomial curve, typically repre-
sented on each interval as a linear combination of four predefined basis functions,
where the coefficients are points. Thus, the curve can be represented by just storing
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the coefficients, which is very compact. A spline patch is a surface constructed
analogously: a linear combination of several basis functions (each a function of
two variables), where the coefficients are again points. This fixed mathematical
form allows compact storage. The fact that the basis functions are carefully con-
structed, low-degree polynomials makes computations like ray-path intersection,
sampling, and determining tangent and normal vectors efficient and fast. By glu-
ing together multiple patches, we can model arbitrarily complex surfaces. (Indeed,
spline patches are at the core of most CAD modeling packages.) There are many
kinds of splines, each determined by a choice of the so-called basis polynomi-
als. Graphics commonly uses third-order polynomial patches, which let us model
surfaces with continuously varying normal vectors and no sharp corners. More
general spline types, such as Nonuniform Rational B-Splines (NURBS), have his-
torically been very popular modeling primitives. Splines may be rendered either
by discretizing them to polygons by sampling, or by directly intersecting the spline
surface, often using a root-finding method such as Newton-Raphson.

Subdivision surfaces are smooth shapes defined by recursive subdivision
(using carefully designed rules) and smoothing of an initial mesh cage (see
Figure 14.17). Because many modeling tools and many algorithms operate on
meshes, subdivision surfaces are a practical method for adapting those tools
to curved surfaces. They are especially convenient for polygon-based rendering
because the mesh need only be subdivided down to the screen-space sampling
density at each location. They have been favored for implementation in graphics
hardware over other smooth surface representations because of this. For exam-
ple, so-called tessellation, hull, and geometry shaders each map meshes to meshes
inside the graphics hardware pipeline using subdivision schemes. As with all curve
and surface representations, a major challenge is mixing sharp creases and other
boundary conditions with smooth interiors. Representations that admit this effi-
ciently and conveniently are an active area of research. At the time of this writing,
that research has advanced sufficiently that the techniques are now being used in
real-time rendering [CC98, HDD+94, VPBM01, BS05, LS08, KMDZ09].

14.5.4 Heightfields

A heightfield is a surface defined by some function of the form z = f (x, y); it
necessarily has the property that there is a single “height” z at each (x, y) posi-
tion. This is a natural representation for large surfaces that are globally roughly
planar, but have significant local detail, such as terrain and ocean waves (see Fig-
ure 14.18). The single-height property of course means that these models cannot
represent overhangs, land bridges, caves, or breaking waves. By the Wise Mod-
eling principle, you should only use heightfields when you’re certain that these
things are not important to you. At a smaller scale, heightfields can be wrapped
around meshes or other surface representations to represent displacements from
the surface. For example, we can model a tile floor as a plane with a heightfield
representing the grout lines. Heightfields used in this manner are often called dis-
placement maps or bump maps [Bli78]. “Height” is of course relative to our
orientation—it simply denotes distance from the base plane or surface along its
normal, so we can use a heightmap to represent the wall of a log cabin simply by
rotating our reference frame.

The height function can be implemented by a continuous representation, such
as a sum of cosine waves, or by the interpolation of control points. The latter
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Figure 14.17: Top: A video-game character from Team Fortress 2 rendered in real time
using Approximate Catmull Clark subdivision surfaces. Bottom: The edges of the subdi-
vision cage (projected onto the limit surface) in black, with special crease edges high-
lighted in bright green. (Credit: top: © Valve, all rights reserved, bottom: Courtesy of
Denis Kovacs; © 2010 ACM, Inc. Reprinted by permission.)

representation is particularly good for simulation, modeling, and measured data.
The control points may be irregularly spaced so as to efficiently discretize the
desired shape (e.g., a Triangulated Irregular Network (TIN), or the ROAM algo-
rithm [DWS+97]), or they can be placed regularly to simplify the algorithms that
operate on them. Because of their inability to model overhangs, heightfields are
often used as a modeling primitive and then converted to generic meshes. Those
meshes may be further edited without the heightfield constraint.

14.5.5 Point Sets

Heightfields, splines, implicit surfaces, and other representations based on control
points all define ways to interpolate data from a fixed set of points to define a
surface. As we increase the point density, the choice of interpolation scheme has
less impact on the shape because the interpolation distances shrink. A natural
approach to modeling complex arbitrary shapes is therefore to store dense point
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Figure 14.18: Left: The water surface heightfield in CryEngine2. Right: Real-time render-
ing of the dynamic heightfield [Mit07]. (Credit: Courtesy of Tiago Sousa, ©Crytek)

sets and use the most efficient interpolation scheme available. This is a particularly
good approach for measured shapes, where the dense point sets naturally arise
from the measurement process.

Point-based modeling often stores points at densities so high that the expected
viewpoint and resolution will yield about one point per pixel, as shown in Fig-
ure 14.19. The interpolation thus need only cover gaps on the order of a pixel.
Splatting is an efficient interpolation scheme under these conditions: Each point
is rasterized as a small sphere (or disk facing the viewer) so that the space between
points is covered but the overall shape conforms tightly to the point set. This
is simply a form of convolution, and it is also equivalent to an implicit surface
defined by a radial function that rapidly falls to zero (and is therefore trivial to
evaluate). One can thus also directly ray-trace a point set, using the associated
implicit surface.

Because they are a natural fit for measured data but present some efficiency
challenges for animation, modeling, and storage, point representations are cur-
rently more popular in scientific and medical communities than entertainment and
engineering ones.

14.6 Distant Objects

Objects that have a small screen-space footprint or that are sufficiently distant that
parallax effects are negligible present an opportunity to improve rendering perfor-

(a) (b) (c)

Figure 14.19: (a) A point set, with attached surface properties. (b) The gaps between points
when rendered at this resolution. (c) The surface defined by splatting interpolation of the
original points [PZvBG00]. (Credit: courtesy of Hanspeter Pfister, An Wang Professor of
Computer Science, © 2000 ACM, Inc. Reprinted by permission.)
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mance. Under perspective projection, most of the viewable frustum is “far” from
the viewer, and small-scale detail is necessarily less visible there. By simplifying
the representation of distant or small objects, we can improve rendering perfor-
mance with minimal impact on image quality. In fact, a simplified representation
may even improve image quality because excluding small details prevents them
from aliasing, especially under animation (see Section 25.4 for a further discus-
sion of this).

14.6.1 Level of Detail

It is common to create geometric representations of a single object with varying
detail and select among them based on the screen-space footprint of the object.
This is called a level of detail (LOD) scheme [HG97, Lue01]. Discrete LOD
schemes contain distinct models. To conceal the transitions, they may blend ren-
dered images of the lower- and higher-detail models when switching levels, or
attempt to morph the geometry. Continuous LOD schemes parameterize the model
in such a way that these morphing transitions are continuous and inherent in the
structure of the model.

To minimize the loss of perceived detail as actual geometric detail is reduced,
structure that is removed from geometry is often approximated in texture maps.
For example, the highest-detail variation of a model may contain only geome-
try, whereas a mid-resolution variation approximates some of the geometry in a
normal or displacement map, and the lowest-resolution version alters the shading
algorithm to approximate the impact of the implicit subpixel geometry.

Heightfields are a special case that offers a simple LOD strategy. Because
the heightfield data is effectively a 2D elevation “image,” image filtering opera-
tions normally applied to rescaling (Chapter 19) can be applied to compute lower-
resolution versions of the heightfield.

14.6.2 Billboards and Impostors

While the location within the viewport of a large, distant, static object changes
with the camera’s orientation, the projection of that object is largely unchanged
under small translations or rotations. Thus, a complex three-dimensional shape
in the distance can be approximated by a flat, so-called billboard that bears a
picture of the object rendered from approximately the current viewpoint. Such
billboards are inexpensive to render because they are simply quadrilaterals with
images mapped over them. Billboards may be used as the lowest level of detail in
an LOD scheme, or as the only level of detail if it is known that the viewer will
never approach the object. In some cases, billboards are also used for objects that
are naturally flat, exhibit rotational symmetry, or for which orientation errors are
difficult to notice. For example, a cluster of many leaves on a tree may be mod-
eled as a single billboard, and likewise for a clump of many blades of grass. It is
common to automatically rotate billboards toward the viewer during rendering to
conceal their flat nature, although this is not appropriate in all cases. For example,
distant tree billboards should rotate around their vertical axis to face the viewer,
but should not rotate to face a viewer flying above the forest because doing so
would make it appear that the trees had fallen over.

To increase realism, billboards can be augmented with surface normals or dis-
placement maps [Sch97] that allow dynamic relighting.
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(a) (b) (c) (d)

Figure 14.20: Example of a billboard cloud: (a) original model (5138 polygons), (b) false-
color rendering using one color per billboard to show the faces that were grouped on each
billboard, (c) view of the (automatically generated) 32 textured billboards, and (d) the
billboards side-by-side. [DDSD03]. (Credit: Courtesy of Xavier Décoret, © 2003 ACM,
Inc. Reprinted by permission.)

Décoret et al. [DDSD03] proposed billboard clouds to automate for any
model a process often employed by artists for foliage. The billboard cloud rep-
resents a single object with a collection of billboards oriented to incrementally
minimize visual error in the rendered object (see Figure 14.20).

A limitation of individual billboards is that they cannot represent dynamic
objects or views of objects as the observer approaches and parallax becomes non-
negligible. To address parallax, one could precompute many billboards, as was
common in early 3D games such as Doom and Wing Commander, or develop
warping strategies [POC05]. For dynamic billboards of specific objects, one could
rig animation controls within the billboard itself [DHOO05, YD08]. However,
a general solution is to simply rerender the billboards at runtime whenever the
approximation error grows too large. These dynamic billboards are known as
imposters [MS95], and they have seen widespread application for a variety of
models, from terrain [CSKK99] to characters to clouds [HL01].

14.6.3 Skyboxes

It is often convenient to model parts of a scene as effectively “infinitely” distant.
These may be rendered using finite distance for projection, but those distances are
held constant regardless of the viewer’s translation. A frequent application is the
sky, including clouds. For a character on the ground, the distance to objects in
the sky is effectively constant and large, so there is no parallax or change in per-
spective with viewpoint movement. This is the ideal case for a billboard, except
that planar geometry is inappropriate for wrapping around the horizon. A skybox
or sky sphere is a geometric proxy for all distant objects. It wraps around the
scene and translates so that the viewer is always at the center. The geometry for
this proxy is arbitrary, so long as it surrounds the viewer. For example, it could be
an icosahedron, tetrahedron, . . . or teapot, and the shape will be indistinguishable
from a sphere once the interior is painted with an appropriately projected image of
the (virtual) distant scene geometry that it simulates. The choice of proxy geome-
try is therefore driven by the convenience and efficiency of generating that image
under the given projection. Cubes and spheres both lend themselves to natural
projections, and are therefore the most common models.

The term “skybox” is also used occasionally to refer to objects at finite dis-
tances such as building façades that provide a small amount of parallax but are in
areas of the scene that the viewer will never enter. This is common, for example,
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in video games, where the player character’s movement is often constrained by
natural obstacles but the designer wishes to efficiently represent a larger world
than the navigable portion of the scene.

14.7 Volumetric Models

Most of the descriptions of matter that we’ve surveyed are surface representations.
These are extremely efficient because they are mostly “empty”; they need not
explicitly represent the space inside objects.

Volumetric modeling methods represent solid shapes rather than surfaces.
Doing so enables richer simulation, both for dynamics and for illumination in
the presence of translucency.

14.7.1 Finite Element Models

Finite element models are general divisions of solid objects into polyhedral
chunks. These are very popular for detailed engineering simulation to model the
internal forces within objects, heat and pressure propagation, and fluid flow. They
are less popular for pure-rendering applications because they offer few advantages
in that context over surface meshes.

A regular finite element subdivision into tetrahedrons or cubes offers addi-
tional advantages for modeling and simulation applications. Regularizing shapes
allows constant-time random spatial access and stabilizes propagation. The
tetrahedral division is good for simulation because the tetrahedron is the three-
dimensional simplex—it is the simplest polyhedron, and is therefore a good prim-
itive to model effects like fracture. The cube division naturally lends itself to a
regular grid, making for straightforward representations, and is also easy to build
hierarchies from. This representation is known as a voxel model. It is very com-
mon for fluid flow simulation and medical or geoscientific imaging, where the
underlying source data are often captured on a regular grid.

14.7.2 Voxels

Voxels have gone in and out of favor for rendering, especially in entertainment.
Figure 14.21 shows a contemporary game, Minecraft, which models the world
with large voxels to intentionally inspire a building-block aesthetic. The game
takes advantage of the efficiency of local graphlike operations on voxels to model
all illumination and physical dynamics as cellular finite automata. Because the
voxel representation requires only storage of the type of material in each cell (the
position is implicit in the 3D array), the game is able to efficiently represent huge
worlds with a single byte per cubic meter of storage—and large homogeneous
regions are amenable to further compression. In comparison, modeling the same
world even as a triangle list of cubes would require 12 triangles × 3 vertices/tri-
angle × 3 floats/vertex × 4 bytes/float = 432 bytes per cubic meter, and would be
less amenable to compression.

Note that the scene in Figure 14.21 appears to have detail at finer resolution
than the 1m3-voxel grid. For example, fences and reeds are represented by thin
objects within a single grid cell. This is because that rendering system uses the
voxels for simulation, but for rendering it replaces each with a proxy object that
may be more detailed than a simple cube. This is an extreme form of geometry
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Figure 14.21: The game Minecraft models the entire world with 1 m3 voxels, enabling
efficient, real-time illumination, simulation, and rendering for fully dynamic Earth-scale
worlds.

instancing. Geometry instancing is often used in less rigid scene representations
to efficiently represent many similar elements. For example, a forest can be mod-
eled with only a handful of individual tree models and a large number of tree
locations and reference frames. One tree in the forest model then only requires
storage for a pointer to a tree model and a coordinate frame, rather than for a
unique tree geometry. Voxel scenes with relatively large-scale voxels can use a
similar scheme to present higher apparent resolution than the voxel grid without
the cost of modeling explicit fine-scale geometry for every voxel.

Figure 14.22 demonstrates a more refined use of voxels for efficient rendering
of a high-resolution, static scene. Ray tracing through voxel grids is extremely
efficient because the ray-surface intersections are trivial and the grid provides
good spatial locality in the memory system. A tree data structure allows efficient
encoding of large empty regions. Note that even when viewed up close, the voxels
do not appear blocky. This image was rendered with a technique by Laine and
Karras [LK10] that stores a surface plane along with shading information at each
voxel, allowing surface reconstruction at apparently higher resolution along planes
other than the grid itself. Several such techniques exist; one commonly used for
fluid simulation is marching cubes [LC87] (and marching tetrahedrons [CP98]),
which, given only density information stored in voxels, reconstructs some simple
geometry in each voxel to produce a relatively smooth mesh (see Section 24.6).

Figure 14.22: Voxel data cre-
ated by high-resolution surface
displacement, with local shad-
owing precomputed and stored
in the voxel grid. The resolution
is approximately 5 mm through-
out the entire building, including
outer walls that are not visi-
ble from the inside. The total
size of the data in GPU mem-
ory is 2.7 GB. Laine and Kar-
ras’s ray caster was able to cast
about 61 million rays per sec-
ond when rendering this scene;
in other words, to render 1M pix-
els at 60 fps by ray tracing in
2010 [LK10]. (Credit: Courtesy
of Samuli Laine and Tero Karras,
© 2010 ACM, Inc. Reprinted by
permission.)

14.7.3 Particle Systems

Liquid or gaseous objects such as smoke, clouds, fire, and water are often mod-
eled as particle systems [Ree83]. A particle system contains a set of individ-
ual particles, each of which can be efficiently simulated as a single point mass.
There may be a large number of particles—say, thousands or millions—that play
a role similar to individual molecules of gas or liquid. However, the simulation
typically contains orders of magnitude fewer particles than a real-world scene
would contain molecules. During rendering, the relatively low particle count is
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concealed by rendering a small billboard for each particle. This is similar to the
splatting operation in point-based rendering. One usually calls a dynamic object
with translucent billboards a particle system and a rigid object with opaque splats
a point set. Section 14.10 describes methods for simulating translucency for both
meshes and particles.

The billboard nature of particle systems can be revealed when the billboards
intersect other geometry in the scene. Soft particles [Lor07] are a technique
for concealing this intersection (see Figure 14.23). Soft particles become more
translucent as they approach other geometry. Proximity is determined by reading
a depth buffer during shading. The effect is particularly convincing for billboards
that have high density and little visible structure, such as smoke.

Before:

After:

Figure 14.23: Top: The flat, dis-
crete nature of this cloud parti-
cle system’s rendering billboards
is revealed where it intersects the
terrain mesh. Bottom: Adjusting
the pixel shader to use the “soft
particle” technique that fades out
the billboard’s contribution with
proximity to scene geometry con-
ceals this artifact. (Credit: Cour-
tesy of Tristan Lorach, NVIDIA)

14.7.4 Fog

Particles and voxels are discrete representations of amorphous volumetric shapes.
Homogeneous, translucent volumes are amenable to continuous analytic rep-
resentation. The classic application is atmospheric perspective, the relatively
small-scale scattering of light by the atmosphere that desaturates distant objects
in landscapes. A more extreme variation of the same principle is dense fog, which
may be homogeneous over all space or vary in density with elevation.

True atmospheric perspective necessarily involves exponential absorption with
distance, but it is often artistically desirable to present arbitrary control over the
absorption rate. Homogeneous fog is implemented either during shading by blend-
ing the computed shade of each pixel toward the fog color based on distance from
the viewer (e.g., in a pixel shader or employing the fixed-function glFog command
in OpenGL), or by a 2D image post-process that performs the equivalent blending
based on depth buffer values. An example of this blending to compute final color
c′ from distance d, original color c, fog color f , and fog density parameter κ is
(following the glFogf documentation)

c′ = c + ( f − c) · e−dκ. (14.13)

The same approach can be applied to the scattering/attenuation of light when
the camera is underwater. Much more sophisticated models of atmospheric scatter-
ing have been developed (e.g., [NMN87, Wat90, NN94, NDN96, DYN02, HP03]);
this common exponential approximation is only the beginning.

Localized fog volumes (see Figure 14.24) can follow the same attenuation
schemes as global ones, but the distance on which they are parameterized must
measure only the extent traveled through the fog along the view ray, not the total
distance from the observed surface to the viewer. This distance is computed by
ray intersection with the bounding volume of the fog. Doing so within the shading
algorithm for each pixel is reasonable provided that the bounding volume is geo-
metrically simple. Half-plane, rectangular slab, and sphere volumes are common.

14.8 Scene Graphs

It is rare for large graphics systems to treat a scene as a single object. Instead, the
scene is typically decomposed into a set of individual objects. This allows different
model representations for different parts of a scene. It also reduces the memory
size of objects that must be processed to both better accommodate computational
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Figure 14.24: Box and ellipsoid fog volumes rendered by intersecting the view ray with an
analytic volume inside a pixel shader. (Credit: Courtesy of Carsten Wenzel, © Crytek)

limitations and provide manageable data sizes for the comprehension of human
modelers and programmers. That is, this decomposition simply follows classic
computer science and software engineering abstraction principles.

The data structure for maintaining the collection of objects in a scene is called
a scene graph, where “graph” refers to pointers that express relationships between
objects; you’ve already encountered a basic scene graph in the modeling hierar-
chy of Chapter 6, and the discussions of its traversal in Chapters 10 and 11. There
are many scene-graph data structures. Deep trees are well suited to modeling and
user-interface elements, where lots of fine-grained abstractions and a low branch-
ing factor match human design instincts. Relatively broad and shallow trees are
often well suited to rendering on hardware with many parallel processing units
and efficient object-level culling. Physical simulation often requires full graphs to
express cyclic relationships in the simulation.

More-or-less aligned with the three goals of modeling and interaction, ren-
dering, and simulation, there are three broad strategies for dividing the scene into
elements. Classic scene graphs and shading trees divide a scene into semantic ele-
ments. For example, a character model might contain a “hair” node that is a child
of a “head” node to enable easy coloring or replacement of hair. One might also
attach a “skin color” property to a root node at the character’s torso that propa-
gates that color property throughout the model. Semantic nodes are very similar to
the cascading property schemes employed by text markup languages like HTML.
This is not surprising; markup effectively describes a scene graph for text layout
and rendering. Semantic scene graphics are nearly always directed acyclic graphs.
A child node typically inherits shading and simulation properties from its parent
in addition to a coordinate reference frame.

Physics scene graphs typically express constraint relationships (edges)
between objects (nodes). These constraints are often joints. For example, a char-
acter’s wrist is a constraint that defines the coordinate transformation between
the forearm and the hand. The constraints may be ephemeral; for example, a
bouncing ball temporarily is constrained to not penetrate the ground (and per-
haps experience limited lateral slip) on contact. Most dynamics systems include
both prerigged character and machine articulation graphs and context-dependent
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constraint graphs for forces and contacts. See Chapter 35 for a discussion of
dynamics and articulation data structures and algorithms.

Spatial data structures/scene graphs are the close analogue of general com-
puter science data structures such as lists, trees, and arrays. They divide the scene
into grids or trees that allow efficient spatial queries, such as “Which objects are
within 4 m of my avatar?” Child nodes are typically contained within the bounding
volumes of their parents. Spatial data structures are employed extensively in sim-
ulation and rendering. They are usually computed automatically. Efficient algo-
rithms for building these data structures per-frame have recently emerged and this
is an active area of research. Chapters 36 and 37 discuss modeling and interaction
data structures and algorithms.

14.9 Material Models

As we said earlier, we conventionally think of objects as defined by their sur-
faces, which are the boundaries between them and other objects or the surround-
ing medium. But the solid nature of objects also has an effect on their interaction
with light. Fortunately, we can limit our consideration to the interface between
two media through which light propagates differently. That there are two media
involved is essential. The appearance of a surface depends on both, although we
commonly observe most objects in air, so this is not always apparent. For the
moment, let us assume that objects are rendered in air so that we can define appear-
ance using a single material parameter. We will return to the two-material case in
Section 14.10.

The interaction of light and matter is quite simple. To a first approximation,
each photon that strikes the surface has one of three fates: It is absorbed and con-
verted into heat, it passes through the surface into the medium, or it reflects. The
probability of each of these outcomes and the direction that scattered photons take
after the interaction is governed by the materials involved and the microscopic
angle of the plane of the surface near the location hit. A few simple laws from
physics can describe the entire model.

However, we use high-level models that intentionally introduce more com-
plexity than is present in these simple laws. Doing so lets us work with large num-
bers of photons in the aggregate and large (or at least, macroscopic) patches of
surface. So, in exchange for complicating the material model, we can use simpler
geometric surface models and light-sampling strategies. A more complex material
model also allows aesthetic controls instead of physical ones, enabling artists to
achieve their visions using intuition instead of measurement.

It is common practice to distinguish at least the following five artistically and
perceptually significant phenomena.

1. Sharp specular (mirror) reflections, as seen on glass.

2. Glossy highlights and reflections, like the highlights on a waxed apple.

3. Shallow subsurface scattering, which produces matte Lambertian shading
that is independent of the viewer’s orientation, such as observed with “flat”
wall paint.

4. Deep subsurface scattering where light diffuses beneath the surface. This
is what makes skin and marble appear soft.

5. Transmission, where light passes through a mostly translucent material
such as water or fog, perhaps being slightly diffused along the way and
refracted when it enters this medium.
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Since these all just describe scattering (and lack of scattering, due to absorp-
tion), they are typically described by a scattering function. There are several vari-
ations, among them the bidirectional scattering distribution function (BSDF)
for surface scattering, the reflectance-only variant (BRDF) for purely opaque sur-
faces, the BTDF for purely transmissive surfaces, and the BSSDF for describing
both surface and shallow subsurface effects. BSDFs alone require fairly in-depth
discussion of a specific rendering algorithm and surface physics to describe prop-
erly. Fortunately, one can also get by with a fairly simple model and application
of it. A substantial portion of the pixels rendered in the past 30 years all used
variations on the same simplified model, and it will likely be with us for some
time.

In the following subsections we sketch the basic idea of a BSDF interface and
one of the simple phenomenologically based models in common use today for
opaque surfaces. We then return to some common approximations of transmission
using compositing instead of BSDFs.

14.9.1 Scattering Functions (BSDFs) n

P

vivo

Figure 14.25: The vector vi

points toward the light source
(represented by the star), so light
propagates in direction −vi. The
light scatters at P and leaves
in various directions vo. The
value fs(P,vi,vo) measures the
scattering.

Scattering can be described by a function (P,vi,vo) 
→ fs(P,vi,vo) that repre-
sents the probability density of light propagating in direction −vi scattering to
direction vo when it strikes the surface at point P (see Figure 14.25). In general, a
“brighter” or more reflective diffuse surface will have higher values of fs(). (The
precise definition of fs is given in Chapter 26.)

In writing fs(P,vi,vo), we are introducing notation that we’ll use throughout
the discussion of rendering in the remainder of the book. The function fs will
always represent scattering. P will often represent a point of some surface at
which we’re computing scattering, vi is the direction from P to the source of
light arriving at P (thus, the light travels in direction −vi), and vo will be the
direction in which light leaves P.

The use of fs is a mathematical convenience. In our programs, fs is typically
defined in terms of some “basic” scattering function f defined by how it scat-
ters light from a surface in the xz-plane whose outward normal vector is in the
positive-y direction. As an example, a surface that preferentially scatters light in
the normal direction could be modeled by

f (k,vi,vo) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if vi or vo points in the −y halfplane

k ·

⎛
⎜⎝vo ·

⎡
⎢⎣0

1

0

⎤
⎥⎦
⎞
⎟⎠

2

otherwise

(14.14)

= k ·max(vo ·�y, 0)2

where k is a number between 0 and 1 describing how reflective the surface is (for
this simple case, it reflects all wavelengths equally well). The function f is large
when vo is near the y-direction and small when it’s near the xz-plane. When we
want to use f to represent the scattering from a surface that’s not oriented with its
normal vector in the positive-y direction, we write fs so that it first transforms vi
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and vo into a new coordinate frame in which the surface normal at P is the second
basis vector, and then apply f to these transformed vectors. Similarly, we might
want to use f to represent a surface that’s “blotchy”—it’s more reflective in some
places than others. We can do so by varying the value k as we move across the
surface. The code for fs then has the structure shown in Listing 14.5.

Listing 14.5: Evaluating fs via a basic function f .

1
2
3
4
5
6

fs(P, wi, wo)
k = getReflectivity(P)
b1,b2,b3 = getBasis(P)
wiLocal = wi written in the b basis
woLocal = wo written in the b basis
return f(k, wiLocal, woLocal)

Most objects have varying appearance over their surface, like our blotchy
sphere does. That is to say, fs varies over the surface of objects, not only because
of the orientation of the surface, but because of varying surface properties. But
the variation usually happens in the form just described: Some tool like texture
mapping is used to determine the variation in the parameters that we want to pass
to the basic scattering function f .

It would be awkward to work with a program in which there was actually
a single BSDF for the entire scene that took a scene point as an argument and
chose parameters based on it. For modularity, we want to have different BSDFs
and attach them to surfaces freely. That is, “BSDF” should be a programmatic
interface (i.e., type), and specific BSDFs such as those for glass and wood can
be implementations of that interface. The spatial variation within a single logical
material still presents a problem. That variation is typically parameterized in the
surface’s own reference frame since the variation should transform with the object,
appearing “painted on” the surface rather than projected through space onto it.

Two natural choices present themselves. One choice is to represent the BSDF
for a single, small patch that is itself homogeneous. This pushes the problem of
finding the local parameter variation back into the part of the program that sampled
the surface location; for example, the ray-casting engine. In this case, we have
fs(wi, wo) as the BSDF evaluation function.

The other choice is to represent the BSDF for an entire material with
spatial variation and explicitly specify the point to be sampled in the mate-
rial’s own space; for example, using texture coordinates. In this case, we have
fs(u, v, wi, wo) as the BSDF evaluation function (although perhaps, since it’s
a different function, we should use a name other than fs for it).

Neither choice is obviously superior; which to use depends on the constraints
and design of the surface-sampling machinery. A similar choice can be made for
the space in which to express the direction vectors. Thus far, we’ve followed the
mathematical convention of assuming that vi and vo are in world space. However,
the BSDF model is usually derived in the surface’s tangent space. Expressing the
arguments in world space thus forces the BSDF to transform the arguments into
the tangent space. That transformation may be explicit, or it may be implicit by
developing all terms as dot products with the tangent and normal vectors. This
also forces our “BSDF” representation to be aware of the local orientation of the
surface—to be instantiated anew every time a point is sampled from the scene.
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In this chapter, we choose to represent a sample of a surface rather than a
BSDF. This means that a surface element encodes a position, reference frame,
and any spatially varying parameters of the BSDF, as well as the BSDF itself. We
favor this representation because it allows separating the ray-surface sampling and
scattering portions of a renderer. That separation has pedagogical benefits because
it allows us to consider the pieces of a renderer separately. It also has design
benefits because the pieces become modular and we can mix different surface and
scattering sampling methods. We do not consider the efficiency implications of
this decision here, but note that it is used in several rendering libraries, such as
PBRT (http://pbrt.org) and The G3D Innovation Engine (http://g3d.sf.net).

In practice, there are two different operations that fs must support. The first is
direct evaluation: Given two directions, we wish to evaluate the function. This is
used for direct illumination, where we have already chosen a light-transport path
and wish to know the magnitude of the transport along it. The second is sam-
pling. In this case, we are given either the incoming or the outgoing light direction
and wish to choose the other direction with probability density proportional to fs,
possibly weighted by projected area along one of the vectors.

For both direct evaluation and sampling, scattering such as by a mirror or
lens that does not diffuse light and reflects or transmits a perfect image must be
handled separately. The function fs “takes on infinite values” at the directions cor-
responding to reflection or transmission, which we call impulses. So we divide
most operations into separate methods for the finite and impulse aspects.

THE API PRINCIPLE: Design APIs from the perspective of the programmer
who will use them, not of the programmer who will implement them or the math-
ematical notation used in their derivation. For example, a single BSDF f (vi,vo)

mapped to a function API Color3 bsdf(Vector3 wi, Vector3 wo) is easy to
implement but hard to use in a real renderer.

Listing 14.6 gives an interface for evaluating the finite part of f . This method
abstracts the algorithm typically employed for direct illumination in a pixel shader
or ray tracer. It is relatively straightforward to implement.

Listing 14.6: An interface for a scattering function’s direct evaluation
(similar to G3D::Surfel).

1
2
3
4
5
6
7
8
9

10
11
12
13
14

class BSDF {
protected:

CFrame cframe; // coordinate frame in which BSDF is expressed

...

public:

class Impulse {
public:

Vector3 direction;
Color3 magnitude;

};

http://pbrt.org
http://g3d.sf.net
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15
16
17
18
19
20
21
22
23
24
25

typedef std::vector<Impulse> ImpulseArray;

virtual ∼BSDF() {}

/** Evaluates the finite portion of f(wi, wo) at a surface
whose normal is n. */

virtual Color3 evaluateFiniteScatteringDensity
(const Vector3& wi,
const Vector3& wo) const = 0;

...

Listing 14.7 is an interface for the remaining methods needed for algorithms
like photon mapping, recursive (Whitted) ray tracing, and path tracing. These are
the methods for which the implementation and underlying mathematics are some-
what more complicated. We will not discuss them further here, except to note
that the scattering methods are still straightforward to implement, given both the
finite scattering density and the impulses, if we are willing to use rather ineffi-
cient implementations. There is nothing sacred about the particular methods we’ve
included in this interface. In some implementations of path tracing, for instance,
we want to sample with respect to a distribution proportional to the BSDF, without
the extra weighting factor of vi · n, and we might include a method for that in our
interface.

Listing 14.7: An interface for a scattering function’s scattering
and impulse methods.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

class BSDF {
...

/** Given wi, returns all wo directions that yield impulses in
f(wi, wo). Overwrites the impulseArray. */

virtual void getOutgoingImpulses
(const Vector3& wi,
ImpulseArray& impulseArray) const = 0;

/** Given wi, samples wo from the normalized PDF of
wo -> g(wi, wo) * |wi . n|,
where the shape of g is ideally close to that of f. */

virtual Vector3 scatterOut
(const Vector3& wi,
Color3& weight) const = 0;

/** Given wi, returns the probability of scattering
(vs. absorption). By default, this is computed by sampling
since analytic forms do not exist for many scattering models. */

virtual Color3 probabilityOfScatteringOut(
const Vector3& wi) const;

/** Given wo, returns all impulses for wi. */
virtual void getIncomingImpulses
(const Vector3& wo,
ImpulseArray& impulseArray) const = 0;
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31
32
33
34
35
36
37
38
39
40

/** Given wo, samples wi from the normalized PDF of wi -> g(wi, wo) * |wi . n|. */
virtual Vector3 scatterIn
(const Vector3& wo,
Color3& weight) const = 0;

/** Given wo, returns the a priori probability of scattering (vs. absorption) */
virtual Color3 probabilityOfScatteringIn(const Vector3& wo) const = 0;

};

There are two sources for BSDF implementations. Measured BSDFs are con-
structed from thousands or millions of controlled measurements of a real surface.
Measurement is expensive (or tricky to perform oneself), but it provides great
physical realism. The data describing the BSDF is typically large but generally
smooth, and thus amenable to compression.

Analytic BSDFs describe the surface appearance in terms of physically or aes-
thetically meaningful parameters. They are usually expressed as sums and prod-
ucts of simple functions that are zero for most arguments and rise in a smooth lobe
over a narrow region of the parameter space. Those analytic BSDFs that model
the underlying physics can be used predictively. We now describe some simple
yet popular analytic BSDFs.

14.9.2 Lambertian

Lambert observed that most flat, rough surfaces reflect light energy proportional
to the cosine of the angle between their surface normal and the direction of the
incoming light. This is known as Lambert’s Law. It follows from geometry for
surfaces with a constant BSDF because the projected area of the surface is pro-
portional to the cosine of the incoming-light angle. A constant BSDF is named
Lambertian because it follows this law.

Although few surfaces exhibit truly Lambertian reflectance, most insulators
can be recognizably approximated by a Lambertian BSDF. The residual error is
then addressed by adding other terms, as described in the following subsection.

Examples of nearly Lambertian surfaces are a wall painted with flat (i.e.,
matte) paint, dry dirt, and skin and cloth observed from several meters away. The
primary error in approximating these as Lambertian is that they tend to appear
shinier than predicted by a constant BSDF when observed at a glancing angle.

In practice, the approximately Lambertian appearance usually arises because
the surface is somewhat permeable to light at a very shallow level and all direc-
tionality is lost by the time light emerges. Glossy highlights are caused by light
preferentially reflecting close to the mirror-reflection direction. When that does
not happen, the surface appears matte.

Listing 14.8 implements a Lambertian BSDF’s evaluate method. We specify a
single “Lambertian constant” kL for each frequency band, that is, a Color3. The
components of kL must each be in the range [0, 1]. They represent the reflectivity
of the surface to each “color” of light. Larger values are brighter, so (1, 0, 0)
appears bright red and (0.2, 0.4, 0.0) is a dark brown. Of course, few real surfaces
truly have perfect absorption or perfect reflectance along any color channel. Many
physically based rendering systems also tend to risk dividing by zero if any color
channel is at either limit, so it is a good idea to select constants on the open interval
(0, 1) in practice.
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Listing 14.8: The finite direct evaluation portion of a simple Lambertian BSDF
for surfaces such as walls covered in matte paint.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

class LambertianBSDF : public BSDF {
private:

// Each element on [0, 1]
Color3 k_L;

public:
virtual Color3 evaluateFiniteScatteringDensity
(const Vector3& wi,
const Vector3& wo) const {

if ((wi.dot(cframe.rotation.getColumn(1)) > 0) &&
(wo.dot(cframe.rotation.getColumn(1)) > 0)) {

return k_L / PI;
}
else {
return Color3::zero();

}
}

...
};

Note that there is no projected area factor in fs(P,vi,vo) = kL/π. That geo-
metric factor must be accounted for by the renderer, as shown in Listing 14.11. We
divide kL by π because the integral of the BSDF times the cosine of the angle of
incidence must be less than one over the entire hemisphere above a planar surface
to ensure energy conservation, and

∫
S2

+
(v · ẑ) dv = π.

Because Lambertian appearance arises from well-diffused light, Lambertian
reflectance is also called diffuse or perfectly diffuse reflection. We use the term
“diffuse” to describe all nonspecular behavior.

14.9.3 Normalized Blinn-Phong

Phong introduced the phenomenological shading model [Pho75] described in
Chapter 6. His model describes a surface that exhibits Lambertian reflection with
a glossy highlight of adjustable sharpness.

The original Phong model has been reformulated as a BSDF and then extended
by many practitioners. The currently preferred form remains phenomenologically
based but has some basic properties that are desirable in a scattering model; for
example, it conserves energy and obeys the projected area property. For a richer
explanation of scattering models see Chapter 27. We simply present the model
here in a form suitable for implementation.

This is the modern formalization, in terms of physical units, of the model
that was described in Chapter 6. The replacement of Cd and Cs with kL and kg is
appropriate for three reasons. First, “Lambertian” is a more specific name for the
shape of the “diffuse” distribution; anything that isn’t an impulse is “diffuse,” but
Phong prescribes a specific and geometrically well-founded Lambertian distribu-
tion for that term. Second, we’ve defined “specular” as a technical term for a mir-
ror impulse, following its English definition and physics terminology, reserving
“glossy” to denote reflection that’s somewhat or very concentrated in a particular
direction. Third, this formulation is different from the original in both parameters
and form. These k parameters are no longer potentially ambiguous RGB triples



ptg11539634

360 Standard Approximations and Representations

kg

Figure 14.26: Sphere rendered with a single light source, using a Phong BSDF with a
white kg and orange kL. kg increases to the right and s increases upward. (Credit: From
Creating Games: mechanics, content, and technology by McGuire, Morgan and Jenkins,
Odest Chadwicke © 2009. Reproduced with permission of Taylor & Francis Group LLC -
Books in the formats other book and textbook via Copyright Clearance Center)

(each 0 . . . 1), but constants representing the net probability over all directions of
that term contributing to scattering.

The specific variant in Listing 14.9 includes the adjusted highlight term intro-
duced by Blinn, the (implicit) projected area factor demanded by physics, and an
approximate normalization factor introduced by Sloan and Hoffman [AMHH08]
for energy conservation. Figure 14.26 shows the impact of varying the two glossy
parameters of glossy coefficient and smoothness.

Listing 14.9: Normalized Blinn-Phong BSDF without Fresnel coefficients,
based on the implementation from Real-Time Rendering [AMHH08].

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

class PhongBSDF {
private:

// For energy conservation, ensure that k_L + k_g < 1 on each color channel
Color3 k_L;
Color3 k_g;

// ”Smoothness” parameter; the exponent on the half-vector dot
// product.
float s;

public:

virtual Color3 evaluateFiniteScatteringDensity
(const Vector3& wi,
const Vector3& wo) const {

if ((wi.dot(cframe.rotation.getColumn(1)) <= 0) &&
(wo.dot(cframe.rotation.getColumn(1)) <= 0)) {

return Color3::zero();
}
const Vector3& w_h = (w_i + w_o).direction();
return k_L / PI + k_g * (8 + s) / (8 * PI) * pow(max(0.0, n.dot(w_h)), s);

}

...
};
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The Phong BSDF has three parameters. The Lambertian constant kL controls
the color and intensity of matte reflection. The analogous kg controls the color
and intensity of glossy reflection, which includes highlights produced by glossy
reflection of bright light sources. A perfectly smooth reflective surface has a mir-
rorlike appearance. Rougher surfaces diffuse the mirror image, which produces
the glossy appearance. The term including kg produces a teardrop-shaped lobe
near the mirror-reflection direction when fs is graphed, so kg is often referred to as
the magnitude of the glossy (or specular) lobe.

The smoothness parameter s describes how smooth the surface is, on an arbi-
trary scale. Low numbers, like s = 60, produce fairly broad highlights. This is a
good model for surfaces like leather, finished wood, and dull plastics. High num-
bers, like s = 2000, produce sharper reflections. This is a better model for car
paint, glazed ceramics, and metals.

The scale of s is not perceptually linear. For example, s = 120 does not pro-
duce highlights that have half the extent of s = 60 ones. It is therefore a good idea
to expose a perceptual “shininess” parameter σ ∈ [0, 1] to artists and map it to s
with a function such as s = 8192(1−σ).

Most insulators exhibit colorless highlights, so kg is typically chosen to either
be constant across color channels or have a hue opposite kL in order to sum to a
gray or white appearance. Metals tend to have nearly zero Lambertian reflectance
and a kg that matches the perceived color of the metal; examples include gold,
copper, silver, and brass.

The normalization factor (8 + s)/(8π) increases the intensity of highlights as
they grow sharper. This makes s and kG somewhat perceptually orthogonal and
makes the energy conservation constraint simply kL + kg ≤ 1. The “8”s appear
from rounding the constants in the true solution for the integral of the glossy term
over the hemisphere to the nearest integer.

14.10 Translucency and Blending

We say that an object or medium is translucent when we can “see through it,” such
as with glass, fog, or a window screen. For that to happen, some light from beyond
the object must be able to pass through it to reach our eyes.

The phenomenon of translucency occurs when multiple scene locations
directly contribute to the energy at a point in screen space. Under the ray optics
modeled in this chapter, light rays do not interact with one another. For exam-
ple, two flashlight beams pass through each other. Because they don’t interact, we
can consider the energy contribution from each light ray independently. We then
sum the contribution of all rays to a point. The property of light that describes
this behavior (at least macroscopically) is called superposition. This property is
what allows us to consider different wavelengths (colors) independently as well
as describe light scattering for individual rays yet render all the light in a scene.

As with any other scene point, the incoming energy at a point on the image
plane may arrive from multiple locations. The camera aperture blocks a majority
of incoming directions, and in the limiting case of a pinhole camera, it blocks
all but a single direction. In that case, a single ray exiting the virtual camera
describes the path (albeit backward) along which light must have arrived. Yet in
the presence of translucent surfaces, there may be multiple scene points along
that eye ray that contribute because those points need not fully obscure the light
coming from beyond them.
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Given our model of surfaces, all light that passes through a surface to reach the
camera is, by definition, indirect illumination. In other words, we can still render a
single surface at each screen-space point. We just allow some light to scatter from
behind the surface to in front of it. For a material like green glass, the scattering
may “color” the outgoing light by transmitting some frequencies more than others.

Transmission of many kinds can naturally be represented by the BSDF models
that we’ve already discussed. Yet those models are too computationally expensive
for current real-time rendering systems. Just as was the case for scattering and
surface models, it is common to intentionally introduce both approximations and
a more complicated model for transmission to gain both expressive control
and improved performance. The common approximation to translucency phenom-
ena is to render individual surfaces in back-to-front order and then compose them
by blending, a process in which the various colors are combined with weights.
The blending functions are arbitrary operators that we seek to employ to create
phenomena that resemble those arising from translucency. In general, this model
forgoes diffusion and refraction effects in order to operate in parallel at each pixel,
although it is certainly possible to include those effects via screen-space sampling
(e.g., [Wym05]) or simply using a ray-tracing algorithm. Most graphics APIs
include entry points for controlling the blending operation applied as each sur-
face is rendered. For example, in OpenGL these functions are glBlendFunc and
glBlendEquation. We give examples of applying these in specific contexts below.

There are multiple distinct causes for translucency. Distinguishing among
them is important for both artistic control and physical accuracy of rendering
(either of which may not be important in a particular application). Because all
reduce to some kind of blending, there is a risk of conflating them in implementa-
tion. The human visual system is sensitive to the presence of translucency but not
always to the cause of it, which means that this sort of error can go unnoticed for
some time. However, it often leads to unsatisfying results in the long run because
one loses independent control over different phenomena. Some symptoms of such
errors are overbright pixels where objects overlap, strangely absent or miscolored
shadows, and pixels with the wrong hue.

To help make clear how blending can correctly model various phenomena,
in this section we give specific examples of applying a blending control similar
to OpenGL’s glBlendFunc. The complete specification of OpenGL blending is
beyond what is required here, changes with API version, and is tailored to the
details of OpenGL and current GPU architecture. To separate the common concept
from these specifics, we define a specific blending function that uses only a subset
of the functionality.

If you are already familiar with OpenGL and “alpha,” then please read this
section with extra care, since it may look deceptively familiar. We seek to tease
apart distinct physical ideas that you may have previously seen combined by a
single implementation. The following text extends a synopsis originally prepared
by McGuire and Enderton [ME11].

14.10.1 Blending

Assume that a destination sample (e.g., one pixel of an accumulation-buffer
image; see Chapter 36) is to be updated by the contribution of some new source
sample. These samples may be chosen by rasterization, ray tracing, or any other
sampling method, and they correspond to a specific single location in screen space.
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Let both source and destination values be functions of frequency, represented
by the color channel c. For each color channel c, let the new destination value
d′

c be

d′
c = σc(s, d) · sc + δc(s, d) · dc, (14.15)

where δ and σ are functions that compute the contributions of the old destination
value d and the source value s. Let BlendFunc(senum, denum) select the imple-
mentation of the δ and σ functions. To enable optimization of common cases in
the underlying renderer, APIs generally limit the choice of σ and δ to a small set of
simple functions. Hence the arguments to BlendFunc are enumerated types rather
than the functions themselves. For generality, let senum and denum have the same
type.

A partial list of the blending function enumerants and the functions to which
they correspond (which we’ll extend a bit later) is:

ONE: bc(s, d) = 1
ZERO: bc(s, d) = 0
SRC_COLOR: bc(s, d) = sc

DST_COLOR: bc(s, d) = dc

ONE_MINUS_SRC_COLOR: bc(s, d) = 1− sc

ONE_MINUS_DST_COLOR: bc(s, d) = dc

To make the application of BlendFunc clear, we now examine two trivial cases
in a common scene. There exist alternative and more efficient methods for achiev-
ing these specific cases in OpenGL than what we describe here, specifically the
blending enable bit and write mask bits, but we describe the general solution to
motivate blending functionality.

Consider a static scene containing a wall covered in red latex paint, a pinhole
camera, and a thin, flat blue plastic star that is suspended between the wall and
the camera, occupying about half of the image in projection. Let these objects be
in a vacuum so that we need not consider the impact of a potentially participating
medium such as air. Now consider a sample location near the center of the star’s
projection.

Blue plastic is reflective, so light incident on the star at the corresponding point
within the scene is either absorbed or reflected. Assume that we have somehow
computed the incident light and the reflective scattering. Let s describe the radi-
ance reflected toward the screen-space sample location. If we are in the midst of
rendering, then the image that we are computing may already have some existing
value d at this location, either the value with which it was initialized (say, dc = 0
W/(sr m2)) or perhaps some “red” value if the wall was rendered into the image
first.

Any light transported from the background wall along the ray through our
sample and the camera’s pinhole must necessarily be blocked by the blue star. So
we don’t care what the preexisting value in d is. We simply want to overwrite it.
For this case, we select BlendFunc(ONE, ZERO), yielding the net result

d′
c =1.0 · sc + 0.0 · dc (14.16)

=sc. (14.17)

This is not very exciting, and it seems like a silly way of specifying that the new
value overwrites the existing one. It makes a little more sense in the context of
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a hardware implementation of the blending function. In that case, there is some
arithmetic unit tasked with updating the frame buffer with the new value. The
unit must always be semantically configured to perform some function, however
trivial.

Say that we’re rendering the scene by rasterization. Rasterization is just a way
of iterating over screen-space sample locations. We typically choose to iterate
over the samples arising from the projection of object boundaries (i.e., surfaces).
However, one can also choose to rasterize geometry that does not correspond to
an object boundary as a way of touching arbitrary samples. For example, deferred
shading typically rasterizes a bounding volume around a light source as a conser-
vative method for identifying scene locations that may receive significant direct
illumination from the source. If rasterizing some such volume that lies entirely
within the vacuum, how do we blend the resultant contribution? One method is
BlendFunc(ZERO, ONE), yielding the net result

d′
c =0.0 · sc + 1.0 · dc (14.18)

=dc, (14.19)

which allows the preexisting value in the image to remain. Here, the rasterized
surface is perfectly transparent, meaning that it is truly invisible to light. Why
bother rasterizing when we’ll just discard the source color? One answer is that
there are more attributes than just radiance stored at a pixel. One might want to
mark an area of the depth or stencil buffer without affecting the image itself. This
occurs, for example, when implementing stenciled shadow volumes by rasteriza-
tion. Another answer is that we may want to change the blending weights per-
sample to selectively discard some of them, as discussed in Section 14.10.2.

14.10.2 Partial Coverage (α)

Let us return to the scene containing a thin blue star floating in front of a red wall,
introduced in Section 14.10.1. One way to model the blue star is with a single
two-sided rectangle and a function defined on the rectangle (say, implemented
as a texture map) that is 1 at locations inside the star and 0 outside the star. This
function, whose value at a sample is often denoted α, describes how the star covers
the background.

The coverage in this case is associated with the sample of the source object that
is being rendered, so we should denote it αs. An implementation likely contains
a class for representing radiance samples at three visible frequencies (red, green,
and blue) and a coverage value as

1
2
3
4
5
6

class Color4 {
float r;
float g;
float b;
float a;

};

To leverage the concept of coverage as a way of masking transparent parts of
the rectangle, we introduce two new blending enumerants:

SRC_ALPHA: bc(s, d) = sα
ONE_MINUS_SRC_ALPHA: bc(s, d) = 1− sα
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The blending mode BlendFunc(SRC_ALPHA, ONE_MINUS_SRC_ALPHA) yields

d′
c =sα · sc + (1− sα) · dc, (14.20)

which is linear interpolation by sα. Our coverage value at each point is either 0
or 1, as befits the physical model of the star: At every point sample the rectan-
gle enclosing the star is either completely opaque and blocks all light from the
background, or completely transparent and allows the background to be seen.

Rendering under such a binary coverage scheme with a single sample per pixel
will generate aliasing, where the edges of the star appear as stair steps in the
image. If we increase the number of samples per pixel, we will obtain a better
estimate of the fraction of the star that covers an individual pixel. For example, in
Figure 14.27, the outlined pixel is about 50% covered by the star and 50% covered
by the background. However, the estimate would be poor if we used three samples
instead of four, and even the four samples from the diagram can produce an error
of ±12.5% coverage for pixels with less even coverage. Taking many samples per
pixel is of course an expensive way to evaluate partial coverage by analytically
defined shapes.

4 4 5 100% blue samples

2 4 5 50% blue

0 4 5 0% blue

Figure 14.27: An ideal blue vec-
tor star shape rasterized on a
low-resolution pixel grid. The
boxes of the grid are pixels.
The circles represent samples
at which we are computing
coverage.

We’ve seen this problem before, with texture maps encoding reflectance. The
MIP-mapping solution developed in Chapter 20 works for coverage as well as
reflectance. Imagine a prefiltered coverage map for the star rectangle in which
the outlined pixel in Figure 14.27 is a single texel (one pixel in a texture-map
image). Its coverage value is the integral of binary coverage over that texel, which
is sα = 0. 3. This integral is called partial coverage. Equation 14.20 holds for
partial coverage as well as binary coverage; in this case it is called the over oper-
ator because it represents the image of a partially covering s lying over the back-
ground d.

Order matters, however. The over operator assumes that we’re rendering sur-
faces in back to front order (the Painter’s Algorithm described in Section 36.4.1)
so that we always composite nearer objects over farther ones.

Note that sα encodes the fraction of coverage, but not the locations of that
coverage within the texel. One interpretation of sα is that it is the probability that a
sample chosen uniformly at random within the texel will hit the opaque part of the
rectangle instead of the transparent part. For the star, the probability remains at the
extremes of 0 and 1 except at texels along the edge. For other shapes, nearly every
texel encodes some kind of edge. Consider a screen door, for example. We might
paint a texture that has sα as 1 and 0 in alternating rows and columns at the highest
resolution. Such a texture has maximum spatial frequencies, so it could produce
significant aliasing. However, after a single MIP level, the texture contains entirely
fractional values.

An advantage of the probabilistic interpretation of partial coverage is that it
allows us to describe the result of successive applications of blending for different
surfaces without explicitly representing the high-frequency coverage mask in the
result image d′. For example, we can render the back wall as viewed through two
identical screen doors by computing the final destination color d′′

c for each channel
c ∈ r, g, b as

d′
c = sα · sc + (1− sα) · dc (14.21)

d′′
c = sα · sc + (1− sα) · d′

c (14.22)

= (1− sα)sα · sc + (1− sα)
2 · d′

c. (14.23)
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The pitfall of this interpretation is that it assumes statistical independence
between the subpixel coverage locations for each s-layer. If the two doors are per-
fectly aligned (assume a parallel projection to make this easy), then this assump-
tion does not hold because the second door provides no new occlusion of the
background. In this case, the second door is precisely behind the first and is invis-
ible to the camera. Therefore, we should have obtained the result d′′

c = d′
c, and not

the one from Equation 14.23.
Equation 14.23 contains the result we expect on average; that is, if the loca-

tions covered by the doors are statistically independent. This is generally what one
wants, but if there is some underlying reason that the coverage should be corre-
lated between surfaces, then Equation 14.23 will give incorrect results. For exam-
ple, when the sα value results from thin-line rasterization, many thin lines may
naturally align in screen space (say, the support cables on a suspension bridge)
and yield an incorrect result.

The classic paper by Porter and Duff [PD84] that canonicalized blending care-
fully analyzes all coverage cases and is specific about the statistical independence
issue. Yet it is very easy to implement incorrectly. For example, the OpenGL 3.0
and DirectX 10 APIs contain an alpha-to-coverage feature that converts sα back
to a binary visibility mask when placing multiple samples within a pixel. That
feature yields incorrect compositing results, as it is specified, because the mask
contains a fixed pattern based on the sα value. Thus, the subpixel locations cov-
ered by two surfaces with equal, fractional α are always perfectly correlated in
those APIs. This tends to give undesirable results for overlapping translucent sur-
faces. Enderton et al. [ESSL11] describe the problem and one solution: Choose
the coverage based on a hash of the depth value and screen-space position.

We’ve discussed the coverage of the surface, but what about the coverage of
d′
α, the result image? Consider a case where we are rendering an image of the

contribution of all surfaces between a depth of 1 m and 2 m from the camera.
We would then like to composite this over another image containing the result for
objects at 2 m and farther. In that case, some pixels in our close image may be
completely transparent, and others may have partial or complete coverage. If we
again assume statistical independence of subpixel locations covered by different
surfaces, we can composite coverage itself by

d′
α = sα + dα · (1− sα), (14.24)

thus creating a composite value d that itself acts like a surface with partial
coverage.

14.10.2.1 Premultiplied α
Note that in the preceding section, sc never appeared in isolation. Instead, it was
always modulated by sα. Our interpretation of this was that s is a surface with α
coverage of a screen-space area, and that the covered parts had color sc, or more
formally, emitted and scattered radiance sc toward the viewer. The net contribution
from s is thus scsα.

It is common practice to store colors with premultiplied alpha, in the form
(srsα, sgsα, sbsα, sα). This has several advantages. For example, it saves a few
multiplication operations during compositing and resolves the ambiguity in the
meaning of sc for a surface with sα = 0. The latter point becomes significant in
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the (underdetermined) image processing problem of matting, where an algorithm
tries to recover scsα, sα, and dc from the composite d′

c.

14.10.3 Transmission

Partial coverage was a model that allowed us to describe fine but macroscopic
structures like lace or a window screen using simple geometric shapes and a sta-
tistical measure of coverage. In that case, the covered parts of the surface were
completely opaque and the uncovered parts transmitted all light because they were
filled by the surrounding medium, such as air.

If we ignore refraction (the phenomenon of light bending when it enters a
new medium), we can extend partial coverage to microscopic structures. Con-
sider an extremely thin pane of colorless glass. An incident light ray will either
strike a glass molecule on the surface and reflect or be absorbed, or pass through
the empty space between molecules (this model is physically simplistic, but phe-
nomenologically viable). We can let α represent the coverage of space by glass
molecules and render the glass using the partial coverage model. This is in fact
done frequently, although adding a bit more sophistication to our model allows us
to remove the extremely thin and colorless models to better describe a range of
transmissive media.

Green glass appears green because it transmits green light. If you hold a piece
of green glass over a black background, then it appears mostly black because it
reflects little green light. If we continue with the microscopic partial coverage
model, then sg ≈ 0 for the glass. The green glass in fact reflects little light at any
frequency, so sr ≈ sg ≈ sb = 0. We can’t describe the appearance of green glass
over a white surface using a single coverage value α, because the coverage must
be large for red and blue light (so that they are blocked) and low for green light
(so that it transmits). We need to extend our coverage representation. Let sc be the
color of light reflected or emitted at the surface near frequency c, and 1− tc be the
microscopic coverage of frequency c by the surface, that is, t is the amount of light
transmitted. We retain the sα value for representing macroscopic partial coverage
by a transmissive medium. We can now express the composition of the surface
over the background by holding out the background by 1− t and then adding the
contribution due to s.

To implement this in code, we use the SRC_COLOR enumerant to selectively
block light from the background and then make a second pass to add the contribu-
tion from the surface:

1
2
3
4
5
6
7
8
9

10

// Selectively block light from the background
// where there is coverage
SetColor(t * s.a + (1 - s.a));
BlendFunc(ZERO, SRC_COLOR);
DrawSurface();

// Add in any contribution from the surface itself,
// held out by its own coverage.
SetColor(s);
BlendFunc(SRC_ALPHA, ONE);

Note that this example implements transmission by a thin surface that may
itself have only partial macroscopic coverage. In the case where that coverage is
complete and the surface itself scatters no light, the entire example reduces to
simply:
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1
2
3

SetColor(t);
BlendFunc(ZERO, SRC_COLOR);
DrawSurface();

We’ve presented this in a form similar to the OpenGL API for real-time raster-
ization rendering. The mathematics can be applied per-pixel in another rendering
framework, such as a ray tracer. Doing so is common practice, although we sug-
gest that if you’ve already written a ray tracer with well-structured ray-scattering
code, then it may be trivial to implement much more accurate transmission with a
BSDF than with blending. If you choose to employ the blending model, the code
might look something like:

1
2
3
4
5
6
7
8
9

10
11
12

Radiance3 shade(Vector3 dirToEye, Point3 P, Color3 t, Color4 s, ...) {
Radiance3 d;
if (bsdf has transparency) {
// Continue the ray out the back of the surface
d = rayTrace(Ray(P - dirToEye * epsilon, -dirToEye));

}

Radiance3 c = directIllumination(P, dirToEye, s.rgb, ...);

// Perform the blending of this surface’s color and the background
return c * s.alpha + d * (t * s.alpha + 1 - s.alpha);

}

Our blending model for transmission at this point supports frequency-varying
(colored) transmission and a distinct color scattered by or emitted at the surface.
Yet it still assumes an infinitely thin object so that transmission can be computed
once at the surface. For an object with nonzero thickness, light should continue
to be absorbed within the material so that thicker objects transmit less light than
thinner ones of the same material.

Consider the case of two thin objects held together, assuming sα = 1 macro-
scopic coverage and 1−trgb microscopic coverage, that is, transmission. We expect
the first object to transmit t of the light from the background: d′ = td; and the sec-
ond to transmit t of that, for a d′′ = t2d net contribution from the background,
as in our previous double-compositing example of macroscopic partial coverage.
Now consider the case of three such thin objects; the net light transmitted will be
t3d. Following this pattern, a thick object composed of n thin objects will transmit
tnd. The absorption of light is thus exponential in distance, as we suggested in
Equation 14.13.

We can still apply the simple compositing model if we precompute an effective
net transmission coefficient t for the thick object based on the distance x that light
will travel in the medium, that is, its cross section along the ray. Three common
methods for computing this thickness are tracing a ray (even within the context of
a rasterization algorithm), rendering multiple depth buffers so that the front and
back surfaces of the object are both known (e.g., [BCL+07]), or simply assuming
a constant thickness. It is common to express the rate of absorption by a constant k.
The net transmission by the thick object along the ray is thus t = e−kx. The thin-
blending model can then be applied with this constant. This exponential falloff
is a fairly accurate model and k can be computed from first principles; however,
given the rest of the rendering structure that we’ve assumed in this section, it is
more likely to be chosen aesthetically in practice.
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14.10.4 Emission

It is often desirable to render objects that appear to glow without actually
illuminating other surfaces. For example, car tail lights and the LEDs on
computer equipment likely contribute negligible illumination to the rest of
the scene but themselves need to appear bright in an image. These effects
may be simulated by rendering the scene normally and then additively blend-
ing the emissive component as if it were a new surface rendered using
BlendFunc(ONE, ONE).

Some particularly attractive effects are due to such emission by a medium that
is itself seemingly transparent. Examples include the light from a neon bulb, light-
ning, science fiction “force fields,” and fantasy magical effects. That the underly-
ing surface is invisible in these cases is irrelevant—the additive blending of the
emissive component is unchanged.

14.10.5 Bloom and Lens Flare

Lens flare and bloom are effects that occur within the optical path of a real camera.
One could model the real optical path, but to merely achieve the phenomena it is
much more effective to additively blend contributions due to additional geometry
over the rendered frame using BlendFunc(ONE, ONE). Bloom simulates the diffu-
sion of incident light within lenses and the saturation of the sensor. It is typically
simulated by blurring only the brightest locations on-screen and adding their con-
tribution back into the frame. Lens flare arises from multiple reflections between
lenses within the objective. It is typically simulated by rendering a sequence of
iris (e.g., hexagonal or disk) -shaped polygons along a 2D line through bright
locations, such as the sun, on-screen.

14.11 Luminaire Models

A computer graphics luminaire is a source of light. The luminaires we encounter
in daily life vary radically in the spectra of light that they emit, their surface areas,
and their intensities. For example, the sun is large and distant, a spotlight is bright
and small, and a traffic light is relatively dim and colored. The luminaires we
might encounter in a virtual world expand this variation further; for example, a
cave of phosphorescent fungus, a magic unicorn’s aura, or the navigation lights on
a starship.

Before we can present luminaire models, we must first discuss light. You
know that light is energy (in photons) that propagates along rays through space
and scatters at surfaces. There are many models of light in computer graphics,
but they all begin by representing the rate at which energy is passing through a
point in space. We give a brief synopsis here and defer extensive coverage until
Chapter 26. One can render images from the models in this chapter without under-
standing the motivation and physics behind light transport. However, we recom-
mend that after rendering your first images you read Chapter 26 to build a deeper
understanding.
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14.11.1 The Radiance Function

Consider a point X in space at which we wish to know the illumination. This is
frequently on some surface in the scene, but it need not be. The amount of light
incident at X from direction v is denoted L(X,v). This implicitly defines a func-
tion L of two variables, X and v, which is called the radiance function, also
known as the plenoptic function. To be clear, the argument v denotes the direc-
tion of propagation. If there’s a photon passing through the point P, traveling in
direction v, then L(P,v) �= 0, while it’s quite possible that L(P,−v) = 0. By
convention, we’ll restrict to the case where v is a unit vector. The units of L are
watts per square meter-steradian, W · m−2 · sr−1. Surface areas are measured in
units of square meters, and steradians are the spherical analog of angular mea-
sure, called solid angle. An angle can measure a 1D region on a 2D unit circle
in the plane, and you might express the rate of a quantity passing through that
1D region “per radian.” We measure the amount of energy passing through a 2D
region (a solid angle) on a unit sphere in 3-space “per steradian.”

It is useful to know that radiance is conserved along a ray through empty space.
Thus, if we know L(X,v), then we also know L(X + tv,v) for t > 0 so long as
there is no occluding object within distance t of X along that ray.

14.11.2 Direct and Indirect Light

We distinguish the light that arrives at a point directly from a luminaire from light
that arrived indirectly after reflecting off some surface in the scene. For example,
near an outdoor swimming pool, sunlight shines directly on the top of your head,
but it also reflects off the water to indirectly strike the bottom of your chin. If
there were no indirect light, then the bottom of your chin would appear completely
unilluminated. The indirect light arises from interaction between the luminaire and
the scene, so we consider it part of the light transport model and not the luminaire
model.

14.11.3 Practical and Artistic Considerations

Listing 14.10 gives a typical base class for a set of light-class implementations.
Its methods support the practical aspects of incorporating light sources into a ren-
derer, not the physical aspects of light emission.

Listing 14.10: A base class for all light sources, with trivial implementation
details omitted.

1
2
3
4
5
6
7
8
9

10
11
12
13

/** Base class for light sources */
class Light {
public:

const std::string name() const;

virtual CoordinateFrame cframe() const;

/** for turning lights on and off */
virtual bool enabled() const;

/** true for physically-correct lights */
virtual bool createsLambertianReflection() const;
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14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

/** true for physically-correct lights */
virtual bool createsGlossyReflection() const;

/** true for physically-correct lights */
virtual bool createsGlobalIllumination() const;

/** true for physically-correct lights */
virtual bool castsShadows() const;

//////////////////////////////////////////
// Direct illumination support

/** Effective area of this emitter. May be finite,
zero, or infinite. */

virtual float surfaceArea() = 0;

/** Select a point uniformly at random on the surface
of the emitter in homogeneous coordinates. */

virtual Vector4 randomPoint() const = 0;

/** Biradiance (solid-angle-weighted radiance) at P due
to point Q on this light, in W / mˆ2. Q must be a value
previously returned by randomPoint(). */

virtual Biradiance3 biradiance
(const Vector4& Q, const Point3& P) const = 0;

//////////////////////////////////////////
// Photon emission support

/** Total power; may be infinite */
virtual Power3 totalPower() const = 0;

/** Returns the position Q, direction of propagation w_o, and
normalized spectrum of an emitted photon chosen with
probability density proportional to the emission density
function for this light. */

virtual Color3 emitPhoton(Point3& Q, Vector3& w_o) const = 0;
};

We assign a reference frame (cframe) to each light source. For a light at a
finite location, this is the centroid of the emitter and a reference orientation. For
infinitely distant sources (i.e., directional sources), this is a reference frame and a
convenient location within the scene for displaying GUI affordances to manipulate
the source.

14.11.3.1 Nonphysical Tools
It is often useful to manipulate the interaction of lights and the scene in nonphys-
ical ways. These may depart from physics for artistic intent, but they may also
be used to compensate for flaws in the rendering model itself. That is, the right
model with the wrong data (or vice versa) can’t produce the correct image, so
sometimes we have to compensate for known limitations and approximations by
intentionally violating physics in order to make the net result appear more realis-
tic. The class shown in Figure 14.10 contains several of these tools, in the form
of light sources that don’t cast shadows, or don’t participate in the computation
of Lambertian reflection, for instance. Of course, the renderers that use this class
must honor such settings for them to have an effect.
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Luminaires that do not create glossy reflection (e.g., highlights) provide so-
called “fill” or “diffuse” light. These create perceptual cues of three-dimensional
shape and softness, approximating global illumination and subsurface scattering.
Glossy-only sources create explicit highlights but no other shading. These are
useful to model the perceptual cues from practical lights. Practical lights are the
light sources that appear to be in the scene, as opposed to the invisible ones that are
actually lighting most of it. The term comes from film and theatre production; as
an example, in a film set of a dining room, very little illumination actually comes
from the candles on a table and the scene is more likely to receive illumination
primarily from bright off-camera stage lights. Glossy-only sources are particularly
useful for creating the perception of windows without dealing with the net impact
of those windows on scene light levels. The “Lambertian” and “glossy” reflectance
properties properly belong to the surface material, not the light, so using these
properties assumes a specific material and shading model.

In the real world, the light from an emitter may experience an unbounded
number of scattering events before it is perceived. It is often artistically useful
to shine a light on a specific object without incurring the computational cost or
global implications of multiple scattering events. A direct, local, or nonglobal light
source only scatters light from the first surface it encounters toward the viewer.
Beware that the term “local” is also used in lighting models to refer to lights that
are at a finite distance from visible parts of the scene.

One may wish to selectively disable shadow casting by lights. This can save
the computational cost of computing visibility as well as eliminate shadows that
may be visually confusing, such as those cast outward from a carried torch.

14.11.3.2 Applying the Interface to Direct Illumination
The key methods for incorporating the Light class into a renderer are
randomPoint and radiance. The randomPoint method selects a point on the sur-
face of the emitter uniformly at random with respect to surface area. (The term
“selected uniformly at random” is defined precisely in Chapter 30; for now, treat
it as meaning “every point is equally likely to be chosen.”) Because the point may
be infinitely distant from other parts of the scene, we represent the return value
as a homogeneous vector. For lights that have varying intensity over their surface,
a better choice of interface might be to select the emitter point with probability
proportional to the amount of light emitted at that point. Even further elaborations
might involve choosing luminaire points in a way that’s random but guarantees
fairly even distribution of the points and avoids clustering. Stratified sampling,
discussed briefly in Chapter 32, is one such method.

The radiance method returns the incident radiance at a scene point due to a
point on the emitter (which was presumably discovered by calling randomPoint),
assuming that there is no occluding surface between them. We separate genera-
tion of the emitter point from estimating the radiance from it so that shadowing
algorithms can be applied. We must know the actual scene point and not just the
direction to it in order to compute the radial falloff from noncollimated sources.

Listing 14.11 shows how to apply these methods to compute the radiance scat-
tered toward the viewer due to direct illumination. In the listing, point P is the point
to be shaded, w_o is the unit vector in the direction from P to the eye, n is the unit
surface normal at P, and bsdf is a model of how the surface scatters light (see
Chapter 27 for a full discussion of physically based scattering).
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Listing 14.11: Direct illumination from an arbitrary set of lights.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

/** Computes the outgoing radiance at P in direction w_o */
Radiance3 shadeDirect
(const Vector3& w_o, const Point3& P,
const Vector3& n, const BSDF& bsdf,
const std::vector<Light*>& lightArray) {

Radiance3 L_o(0.0f);

for (int i = 0; i < lightArray.size(); ++i) {
const Light* light = lightArray[i];

int N = numSamplesPerLight;

// Don’t over-sample point lights
if (light->surfaceArea() == 0) N = 1;

for (int s = 0; s < N; ++s) {
const Vector4& Q = light->randomPoint()
const Vector3& w_i = (Q.xyz() * P - P * Q.w).direction();

if (visible(P, Q)) { // shadow test
const Biradiance3& M_i = light->biradiance(Q, P);
const Color3& f = bsdf.evaluateFiniteScatteringDensity(w_i, w_o, n);

L_o += n.dot(w_i) * f * M_i / N;
}

}
}

return L_o;
}

If this is your first encounter with code like that shown in Listing 14.11, sim-
ply examine it for now and then treat it as a black box. A fuller explanation of
the radiometry that leads to this implementation and motivates the abstractions
appears in Chapter 32. A brief explanation of the derivation of this implementa-
tion appears in the following section.

14.11.3.3 Relationship to the Rendering Equation
We now attempt to reconcile the “light” that’s used in the traditional graphics
pipeline (e.g., in Chapter 6) with the physically based rendering model that is
described in Chapter 31. The key idea is that if we measure light in units of bira-
diance,6 then classic graphics models can function as simplified versions of the
physics of light and the rendering equation.

This material appears in this chapter because it constitutes a conventional
approximation to the real physics of light, which we wanted to introduce before
the full theory. It of course also serves readers encountering this section after read-
ing Chapters 26 and 31, or with previous experience in graphics systems.

6. We are not aware of a preexisting name for solid-area weighted radiance measured
at the receiver, so we introduce the term “biradiance” here to express the idea that it
incorporates two points. This quantity is distinct from radiosity (which considers the
whole hemisphere), irradiance (which is measured at the emitter’s surface), radiant
emittance (likewise), and other quantities that commonly arise with the same units.
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For a scene with only point lights and Phong BSDFs in which we have,
numSamplesPerLight = 1, Listing 14.11 degenerates into the familiar OpenGL
fixed-function shading algorithm. The framework presented in this chapter pro-
vides some explanation of what the lighting parameters in OpenGL “mean.” That
puts us on a somewhat more solid footing when we attempt to render scenes
designed for classic computer graphics point sources within a physically based
renderer. It also leads us to the settings perhaps most likely to produce a realistic
image under rendering APIs similar to OpenGL.

For all scenes, Listing 14.11 implements direct illumination in the style
employed both for algorithms like path tracing and for explicit direct illumination
under rasterization. It is an estimator for the terms in the rendering equation due
to direct illumination (Figure 14.28 shows the key variables, for reference). The
perhaps unexpected radiant emittance units arise from a change of variables from
the form in which we often express the rendering equation. That is, we commonly
express the scattered direct illumination as

L(P,vo) =

∫
Ω+

L(P,−vi)fP(vi,vo)n · vidvi, (14.25)

where the domain of integration is the hemisphere Ω+ above the point P at which
we are computing the illumination.

vo

vi

P

Figure 14.28: Light reflected at P.

That would lead us to an implementation like:

1
2
3
4

repeat N times:
dw_i = 2 * PI / N;
L_i = ...;
L_o += L_i * bsdf.evaluate(...) * n.dot(w_i) * dw_i;

However, path tracing and other algorithms that employ explicit direct illumi-
nation sampling tend to sample over the area of light sources, rather than over the
directions about the shaded point.

We must change integration domains from Ω+ to the surfaces of the lights;
that entails making the appropriate change of variables. Consider a single light
with surface region ΔA and unit surface normal m at Q (see Figure 14.29).

Q

DA

m

P
1

r 
5

 uP
-Q

u

DV

Figure 14.29: The small, solid-
angle ΔΩ and a corresponding
small region ΔA on the lumi-
naire’s surface.

The distance from P to the surface region ΔA is approximately r = ‖Q− P‖,
while the distance from P to ΔΩ is exactly 1. (Recall that ΔΩ is a small region
on the unit sphere around P.) If the region ΔA near Q were not tilted (i.e., if
m and vi were opposites), then its area would be r2 times the area of ΔΩ. The
tilting principle of Section 7.10.6 says that the area is multiplied by a cosine factor.
So the area of ΔA is approximately r2|m · vi| times the area of ΔΩ, with the
approximation getting better and better as the region ΔΩ shrinks in size. Thus the
change of variable, as we go from dvi to dA (often denoted by some symbol like
dvi
dA ) is |m·vi|

‖Q−P‖2 . We can now rewrite Equation 14.25, substituting S(Q− P) for vi,

L(P,vo) =

∫
Ω+

L(P,−vi)fP(vi,vo)n · vi dvi (14.26)

=

∫
Q∈R

L(P,S(P− Q)) fP(S(Q− P),vo) n · S(Q− P)·

m · S(P− Q)

‖Q− P‖2
dA, (14.27)
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where we’ve used P−Q instead of Q−P in some places to avoid excess negative
signs or absolute values.

One way to estimate the integral of any function g over any region is to pick a
random point X in the region, evaluate g(X), and multiply by the area of the region.
(We discuss this in far more detail in Chapter 30.) If we repeat this process, then
each individual estimate will probably not be very good, but their average will get
better and better the more (independent) points we choose. Applying this to the
integral above, if we choose N points Qj ∈ R on the luminaire, we can estimate
the reflected light as

L(P,vo) =

∫
Q∈R

L(P,S(P− Q)) fP(S(Q− P),vo) n · S(Q− P)·

m · S(P− Q)

‖Q− P‖2
dQ (14.28)

≈
N∑

j=1

L(P,S(P− Qj))fP(S(Qj − P),vo) n · S(Qj − P)·

m · S(P− Qj)

‖Qj − P‖2

A
N

. (14.29)

Another interpretation of the factor A
N is that each sample Qi represents one Nth

of the area of the luminaire.
We can simplify the notation in this expression somewhat by letting vi,j be the

unit vector S(Qj − P) from P to the jth sample point Qj on the luminaire. We then
have

L(P,vo) ≈
N∑

j=1

L(P,vi,j)fP(vi,j,vo) n · vi,j
−m · vi,j

‖Qj − P‖2

A
N

. (14.30)

If we denote by M(P, Qj, m) the value

M(P, Qj, m) = AL(P,vi,j)
−m · vi,j

‖Qj − P‖2
, (14.31)

then the reflected radiance becomes

L(P,vo) ≈ 1
N

N∑
j=1

M(P, Qj) fP(vi,j,vo) n · vi,j (14.32)

=
1
N

N∑
j=1

M(P, Qj, m) fP(S(Qj − P),vo) n · S(Qj − P). (14.33)

The units of M are m2 times the units of radiance times the units of dv/dA,
which are steradians per meter squared; the net units are W/m2. We’ll call M the
biradiance, to indicate its dependence on two points, one on the luminaire and
one on the receiving surface. We caution that this is not a standard radiometric
term.

We’ll return to the interpretation of M in a moment, but the structure of this
equation leads us to pseudocode that follows the structure of Listing 14.11:
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1
2
3
4
5
6
7
8

repeat N times:
// Computed by the emitter
L_i = ...
M_i = L_i * max(-m.dot(w_i), 0.0f) * A / ||P - Q||ˆ2

// Computed by the integrator (i.e., renderer)
if there is an occluder on the line from P to Q then M_i = 0
L_o += M_i * bsdf.evaluate(...) * n.dot(w_i) / N

Thus, one interpretation of the deprecated fixed-function OpenGL Phong
shading and (to some degree) shading in WPF is that the light “intensities” corre-
spond to the function M, whose units are watts per square meter. This particular
quantity is not one that has a standard name in radiometry, however, and we will
not mention it again. It’s also worth noting that in most simple rendering using the
classical model, the 1/r2 falloff is not actually modeled, so the claim that what’s
used as an intensity is M is somewhat suspect. What’s true is that if you wish to use
the classical model to approximate physical reality, then you should use the 1/r2

falloff, and you should assign luminaires “intensity” values computed according
to the formula for M.

14.11.3.4 Applying the Interface to Photon Emission
Algorithms such as bidirectional ray tracing and photon mapping track the path of
virtual photons forward from the light source into the scene. These virtual photons
differ from the real photons that they model in two respects. The first distinction
is that their state includes a position, a direction of propagation, and the power
of the photon. Real photons transport energy, but rendering considers steady-state
light transport, so it tracks the rate of energy delivery. It is more accurate to say
that each virtual photon models a stream of photons, or that it models a segment of
a light-transport path. The second distinction from real photons is that trillions of
real photons contribute to a single real image, whereas renderers typically sample
only a few million virtual photons (although each represents a stream of photons,
so in truth many more real photons are implicitly modeled).

The first step of photon tracing is to emit photons from the sources in the scene.
Listing 14.12 shows how to use our light interface to sample numPhotons-emitted
virtual photons with a probability density function proportional to the power of
each light source.

Listing 14.12: Generating numPhotons photons from a set of lights; for
example, for photon mapping.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

void emitPhotons
(const int numPhotons,
const Array<Light*>& lightArray,
Array<Photon>& photonArray) {

const Power3& totalPower;
for (int i = 0; i < lightArray.size(); ++i)
totalPower += lightArray[i]->power();

for (int p = 0; p < numPhotons; ++p) {
// SelectLwith probability L.power.sum()/totalPower.sum()
const Light* light = chooseLight(lightArray, totalPower);

Point3 Q;
Vector3 w_o;
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16
17
18
19
20

const Color3& c = light->emitPhoton(Q, w_o);

photonArray.append(Photon(c*totalPower/numPhotons, Q,w_o));
}

}

14.11.4 Rectangular Area Light

We now model a planar rectangular patch that emits light from a single side,
as shown in Figure 14.30. This will be a so-called “Lambertian emitter,” which
means that if we restrict our field of view so that the emitter fills it entirely, then
we perceive the emitter’s brightness as the same regardless of its orientation or
distance. We describe the light source’s orientation by an orthonormal reference
frame in which m is the unit normal to the side that emits photons and u and v are
the axes along the edges. The edges have lengths given by extent and the source
is centered on point C.

The total power emitted by the light is Phi. This means that if we increase
extent, the illumination level in the scene will appear constant but the emitter’s
surface will appear to become darker since the same power is distributed over a
larger area.

m

u

C

extent (2-vector)v

Figure 14.30: Parameterization
of a square area light on the
ceiling.

The radiance (W/(m2 sr)) due to a point Q on a Lambertian emitter, emitted
in any direction v, is the total emitted power (W) divided by the area (m2) of the
emitter and the so-called “projected solid angle” (sr)

L(Q,v) =
Φ

A
∫
Ω+ [γ ·m] dγ

(14.34)

=
Φ

A π sr
. (14.35)

For a discussion of this and other radiometric terms, see Section 26.7.1.
We can now compute the biradiance at P due to Q. Let vi = S(Q− P). Light

leaving Q in direction −vi arrives at P traveling in direction −vi. The leaving
light has radiance Φ/(Aπ sr) by Equation 14.35. So

Mi(Q, P) = L(P,−vi)
A

||Q− P||2 (−m · vi)sr (14.36)

=
Φ

A π sr
A

||Q− P||2 (−m · vi)sr (14.37)

=
(−m · vi) Φ

||Q− P||2 π , (14.38)

assuming that P is on the emitting side of the light source and there is an unoc-
cluded line of sight to Q. Listing 14.13 gives an implementation of the key Light

methods for such a light source based on this derivation.

Listing 14.13: A model of a single-sided rectangular Lambertian emitter.

1
2
3
4

class RectangularAreaLight : public Light {
private:
// Orthonormal reference frame of the light
Vector3 u, v, m;
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5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Vector2 extent;

// Center of the source
Point3 C;

Power3 Phi;

public:

...

Vector4 randomPoint() const {
return Vector4(C +

u * (random(-0.5f, 0.5f) * extent.x) +
v * (random(-0.5f, 0.5f) * extent.y), 1.0f);

}

float area() const {
return extent.x * extent.y;

}

Power3 power() const {
return Phi;

}

Biradiance3 biradiance(Vector4 Q, Vector3 P) const {
assert(Q.w == 1);
const Vector3& w_i = (Q.xyz() - P).direction();

return Phi * max(-m.dot(w_i), 0.0f) /
(PI * (P - Q.xyz()).squaredLength());

}
};

14.11.5 Hemisphere Area Light

A large hemispherical light source that emits inward is a common model of the
sky or other distant parts of the environment. Listing 14.14 adapts the concepts
from the rectangular area light source to such a dome. Two natural extensions to
this model are to incorporate a coordinate frame so that the hemisphere can be
arbitrarily centered and oriented, and to modulate the power over the dome by an
image to better simulate complex environments and skies with high variability.

Listing 14.14: A model of an inward-facing hemispherical light dome,
centered at the origin and with rotational symmetry about the y-axis.

1
2
3
4
5
6
7
8
9

10
11
12
13

class HemisphereAreaLight : public Light {
private:
// Radius
float r;
Power3 Phi;

public:

...

Vector4 randomPoint() const {
returnVector4(hemiRandom(Vector3(0.0f,1.0f,0.0f))*r,1.0f);

}
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14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

float area() const {
return 2 * PI * r * r;

}

Power3 power() const {
return Phi;

}

Biradiance3 biradiance(Vector4 Q, Vector3 P) const {
assert(Q.w == 1 && Q.xyz().length() == r);

const Vector3& m = -Q.xyz().direction();
const Vector3& w_i = (Q.xyz() - P).direction();

return Phi * max(-m.dot(w_i), 0.0f) /
(PI * (P - Q.xyz()).squaredLength());

}
};

14.11.6 Omni-Light

An omnidirectional point light (omni-light or [ambiguously] point light) is a
luminaire that emits energy equally in all directions and is sufficiently small that
it has negligible bounding radius compared to the distance between the source and
nearby scene locations. A true point light would have to have a surface that was
infinitely bright to produce measurable emission from zero surface area, and so
could not exist. However, there are many luminaires whose volume is negligible
compared to the scale of the scenes in which they are encountered, such as the
bulb in a flashlight or the LED lights on the dashboard of a car. It is also common
to approximate a larger light source with an omni-light at its center, and some
surrounding proxy geometry that appears to the viewer to be the luminaire but
does not actually emit light in the lighting simulation. For example, a campfire
might be modeled by a flickering omni-light floating in the midst of the flames,
which were themselves rendered by a particle system.

An omni-light is typically modeled by its total power emission in all direc-
tions, Φ. This is a scalar measured in watts; it can be represented as a 3-tuple
to express power at the red-green-blue frequencies. Real-life experience provides
good estimates for the power of omni-lights in our scene, since lightbulbs are
labeled in watts of power consumed. As we said earlier, the emitted light from a
100 W bulb is about 4 W. A fluorescent bulb is about six times more efficient, so
a bulb labeled “equivalent to a 100 W incandescent bulb” also emits about 4 W of
visible light, but it consumes less electric power in doing so.

Let Q be the center of an omni-light. The radiance at P directly from the lumi-
naire must arrive from direction vi = S(Q− P). That is, vi points to the light,
from the surface. It is known as the light vector and is sometimes also denoted L̂
(although we avoid that notation because it is confusingly similar to the radiance
function notation L(·)).

The omni-light is an abstraction of a very small spherical source. We can esti-
mate the radiant emittance due to an omni-light by estimating the effect of ever-
smaller spherical sources. The only way that the size of a source enters our formula
is in the surface area term A in Equation 14.37. However, that term appears both
in numerator and denominator, so it cancels and the end result is independent of
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the area. The cosine term also varies from point to point for an area source but is
constant for the omni-light’s point source; one might say that this is another way
that size “matters.” Regardless, the conclusion is that we can use exactly the same
formula for the biradiance from area and point sources.

The biradiance at P due to the omni-light at Q (see Figure 14.31) is given by

Mi(Q, P) =
Φ

4π ||Q− P||2 sr
, (14.39)

if there is no scene point on the open line segment from Q to P; it is 0 if there is
an occlusion.

Q

Pv

Figure 14.31: Points and direc-
tions in point-light equations.

Note that we could say that the effective radiance is

L(P,−vi) =
Φ

4π sr ||Q− P||2 , (14.40)

that is, it is proportional to the total power of the luminaire and falls off with the
square of distance from the luminaire. In fact, if we were to insert that expression
into a renderer it would yield the desired image so long as ||Q − P|| was “suf-
ficiently large.” However, this is not actually a true radiance expression because
it is not conserved along a ray—it falls off with distance because our omni-light
in fact has the physically impossible zero surface area, which leads it to create a
physically impossible radiance field in space. Note that both the radiance and the
biradiance approach infinity as ||Q− P|| → 0. It is common practice to clamp the
maximum biradiance from an omni-light, since when that distance is small our
original assumption that the distance to the luminaire is much greater than the size
of the luminaire is violated and the resultant estimated light intensity is greater
than intended. A less efficient but more accurate correction would be to actually
model the luminaire as an object with nonzero surface area (such as a sphere)
when the distance is less than some threshold.

There is no illumination from the omni-light at locations that do not have
an unobstructed line of sight. These regions form the shadows in an image. The
boundary of the shadows from an omni-light will be “hard,” with a distinct curve
across a surface that distinguishes lit from shadowed. This is unlike the area
sources, which produce “soft” shadows with blurry silhouettes. A lighting algo-
rithm such as shadow mapping that evaluates light visibility at lower precision
than the radiance magnitude can appear to produce soft shadows from a point
light. This is in fact an artifact of reconstruction from an aliased set of samples.
Nonetheless, it may be visually pleasing in practice.

14.11.7 Directional Light

For an omnidirectional point light that is far from all locations in the scene, vi and
L(P,−vi) due to the light vary little across the scene. A directional light is an
omni-light with the further simplifying approximation that it is so far from the rest
of the scene that vi and L can be treated as constant throughout the scene. This
eliminates some of the precision and modeling challenges of placing a point light
very far away, while giving a reasonable model for a distant light source such as
the sun.

We could model the total power of the distant point light, but it is typically
enormous and “distant” is ambiguous, so it is easier to model the (constant) inci-
dent radiance at points in the scene by simply letting L(P,v) = L0 for vi directed
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exactly toward the light and 0 for all other directions. A useful constant to remem-
ber is that, for points on the surface of the Earth, L0 (in the visible spectrum) due to
the sun is roughly 1.5× 106 W/m2sr. The total power of light in the visible spec-
trum arriving from all points of the sun at a region of the Earth’s surface is about
150 W/m2. Both of these, of course, vary with time of day, season, and latitude.

14.11.8 Spot Light

A spot light models an omni-light shielded by “barn door” flaps or a conical shade.
Theatre lights, flashlights, car headlights, and actual spot lights are examples of
real-world sources for which this model is appropriate (see Figure 14.32). It is
common to choose to model the occluding portion as a perfectly absorptive sphere
with a round iris through which light emerges. It is assumed to be perfectly absorp-
tive so that we can neglect the complex reflections that occur on the silvered reflec-
tor of a headlight and flashlight. The iris is made round because that allows us to
test whether a ray passes through it using a simple threshold of a dot product. A
round iris produces a cone of light.

Figure 14.32: A theatre light
with square “barn doors”
(left), and a spot light with a
round iris, matching our model.
(Credit: top: Jim Barber/Shut-
terstock, bottom: Matusciac
Alexandru/Shutterstock)

Let Φ be the total power of the omni-light inside the blocker. It is convenient to
specify this rather than the total power actually emitted. Doing so allows a lighting
artist to adjust the spot-light cone independently of the observed brightness of
objects within the cone.

Let 0 ≤ θ ≤ π be the measure of the angle between the axis and side of
the emitted light cone. Note that θ = π is an iris fully opened so that there is no
blocker and θ = 0 is completely closed. Beware of conventions here. Some APIs
use radians, some use degrees. Also, some specify the full cone angle and some
the half-angle as we have done here.

The measure of the solid angle subtended by a cone with angle measure
0 ≤ θ ≤ π between the axis and side is

2π(1− cos θ). (14.41)

The fraction of the emitter that is visible through the barn doors is therefore

2π(1− cos θ)

4π
, (14.42)

so the externally observed power Φ′ of an omni-light of power Φ occluded by barn
doors is

Φ′ =
Φ

2
(1− cos θ), (14.43)

which is the Light::power value required for implementation in an importance-
sampling renderer.

Spot lights with θ ≤ π/4 are used extensively in rendering because they pro-
vide reasonable resolution for a planar projection of light space. That is, by placing
a camera at the light, facing along its axis and with field of view matching the cone
angle, one can render the light’s view of the scene with reasonably small distor-
tion at the edges. This technique is used in shadow maps, for example, which are
depth images from the light’s perspective, and reflective shadow maps, which are
color images from the light’s perspective. Six spot lights, cropped down to square
projections, can cover the six faces of a cube and represent shadowing from an
omni-directional light.
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Another application of light-space projection is a projective spot light. Real
theatre lights are often modified by placing a gobo or cookie slide immediately
outside the light source’s iris (see Figure 14.33). This colors or selectively blocks
emitted light, projecting an image or shape onto the scene. In computer graphics,
one can modulate the incident light at a point P in the scene by the value stored
in an image at the corresponding location in the light’s projection of P to achieve
this effect. This is used to create nonround and nonuniform spot-light apertures, to
simulate the complex patterns of real spot-light reflectors, and to simulate shadows
from off-screen objects, such as a spinning fan in a ventilation duct. Figure 14.33: A photograph of

spiral patterns created by real
gobos in spotlights (Credit:
R. Gino Santa Maria/Shutter-
stock.com).

14.11.9 A Unified Point-Light Model

This section describes a model for luminaires with extents that are small in com-
parison to the distance between them and the points to be shaded. Under this defi-
nition of small, each luminaire can be approximated as a single point. This unifies
several common light models. It was introduced and favored particularly for fixed-
function graphics processors but remains widespread due to its simplicity.

A fixed-function unit implements a specific algorithm directly in circuitry
or microcode. Such units are often controlled by parameters but cannot per-
form general-purpose computations the way that a programmable unit or general-
purpose processor can. That is, they are not computationally equivalent to Turing
machines. A processor typically contains a mixture of programmable and fixed-
function units. For example, few architectures allow the programmer to alter the
cache replacement strategy, but most allow arbitrary arithmetic expressions within
programs. Graphics architectures may embed entire rendering algorithms in fixed-
function logic. Fixed-function hardware naturally limits the programmer’s expres-
sion. However, it is extremely power-efficient and is less expensive to design and
produce than general-purpose computation units. Thus, hardware architects face a
design tradeoff based on current costs and goals.

At the time of this writing, fixed-function graphics units have gone in and out
of fashion several times. Fixed-function lighting logic is currently eschewed in
most devices, although at least one (the Nintendo 3DS [KO11]) released in 2011
embraces it.

We do not recommend the unified model presented in this section for new
implementations built on programmable shading or software-based rendering
APIs. The model is difficult to incorporate in a useful way into a physically based
rendering system, limits the flexibility of the lighting model, and is a weaker
abstraction than the models presented in subsequent chapters.

It remains important to be familiar with the model inspired by fixed-function
logic for several reasons. Both legacy devices and a handful of new devices still
use this model. The model may return to favor in the future. Many programmable
graphics pipelines are still based around the fixed-function lighting model because
they evolved from fixed-function implementations or must work with assets and
tools originally designed for those implementations.

The basic idea of the model is that we can represent spot, directional, and
omni-lights with a single, branchless lighting equation for a spot light with homo-
geneous parameters. The center of the spot light is (x, y, z, w), where w = 1
indicates a spot or omni-light and w = 0 indicates a directional light. If we param-
eterize the angle between the axis of the spot light and the edge of its cone, then
an angle of π radians gives an omnidirectional light. The only remaining issue is
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radial falloff. In the real world, the total power observed at distance r from a uni-
form spherical emitter whose radius is much smaller than r is proportional to 1/r2.
We can generalize this by computing a value M that involves an inverse quadratic:

M =
Φ

(a0r0 m2 + a1r1 m1 + a2r2 m0) 4π
. (14.44)

If we define a and r by

�a = (a0 m2, a1 m1, a2 m0), and (14.45)

�r = (r0, r1, r2), (14.46)

then we can rewrite the formula for M as

M =
Φ

�a ·�r 4π
. (14.47)

This strange expression lets us represent a point emitter that experiences non-
physical falloff to approximate a local area source or distant point source . . . or
simply to satisfy an artistic vision. In this context, a directional source can be
parameterized by the attenuation constant �a = (1, 0, 0). This source will produce
equal intensity at all points in the scene, and that intensity is comparable to what
a local source with power Φ one meter from a surface would produce.

The resulting interface (Listing 14.15) follows the spirit of the OpenGL fixed-
function lighting model, albeit with slightly varying units and border cases. We do
not recommend this model for physically based rendering.

Listing 14.15: A simple unified model for spot, directional,
and omni light sources.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

class PointLight : public Light {
private:

/** For local lights, this is the total power of the light source.
For directional lights, this is the power of an equivalent
local source 1ˆm from the surface.*/

Power3 Phi;

Vector3 axis;

/** Center of the light in homogeneous coordinates. */
Vector4 C;

Vector3 aVec;

float spotHalfAngle;

...
};

Listing 14.16: PointLight methods for direct illumination.

1
2
3
4

Vector4 PointLight::randomPoint() const {
return C;

}
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5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Biradiance3 biradiance
(const Vector4& Q, const Point3& P) const {
assert(C == Q);

// Distance to the light, or zero
const float r = ((Q.xyz() - P) * Q.w).length();

// Powers of r
const Vector3 rVec(1.0f, r, r * r);

// Direction to the light
const Vector3& w_i = (Q.xyz() - P * Q.w).direction();

const bool inSpot = (w_i.dot(axis) >= cos(spotHalfAngle));

// Apply radial and angular attenuation and mask by the spotlight cone.
return Phi * float(inSpot) / (rVec.dot(aVec) * 4 * PI);

}

Listing 14.17: PointLight methods for photon emission.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Power3 PointLight::totalPower() const {
// the power actually emitted depends on the solid angle of the cone; it goes to
// infinity for a directional source
return Phi * (1 - cos(spotHalfAngle)) / (2 * C.w);

}

Color3 PointLight::emitPhoton(Point3& P, Vector3& w_o) {
// It doesn’t make sense to emit photons from a directional light with unbounded
// extent because it would have infinite power and emit practically all photons
// outside the scene.
assert(C.w == 1.0);

// Rejection sample the spotlight cone
do {

w_o = randomDirection();
} while (spotAxis.dot(w_o) < cos(spotHalfAngle));

P = Q.xyz();

// only the ratios of r:g:b matter
const Color3& spectrum = Phi / Phi.sum();
return spectrum;

}

14.12 Discussion

Each of the approximations and representations presented in this chapter has its
place in graphics. Different constraints—on processor speed, bandwidth, data
availability, etc.—create contexts in which they made (or make) sense. And while
processors get faster, new constraints, like the limited power of mobile devices,
may revive some approximations for a time. You should therefore regard these
not only as currently or formerly useful tricks of the trade, but as things that are
potentially useful in the future as well, and which provide examples of how to
approximate things effectively within a limited resource budget.
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14.13 Exercises

Exercise 14.1: Give an example of an arithmetic expression in which the commu-
tativity does not hold for all operations; for example, in which evaluating left-to-
right instead of following the usual order of operations gives an incorrect result.

Exercise 14.2: We said that direct mapping of the range [0, 2b − 1] to [−1, 1]
precludes the exact representation of zero. Explain why. (You may find it easiest
to start with the case b = 1.)

Exercise 14.3: Write a function that converts a triangle strip to a triangle list
(a.k.a. triangle soup).

Exercise 14.4: Write a function that converts a triangle fan to a triangle strip.
You may need to introduce degenerate triangles along edges.

Exercise 14.5: Consider a program that represents the world using a 3D array
of opaque voxels; for simplicity, assume that they are either present or not present.
Most rendering APIs use meshes, not voxels, so this program will have to convert
the voxels to faces for rendering. Each filled voxel has six faces. But because the
voxels are opaque, most of the faces in the scene do not need to be rendered—they
are between adjacent filled voxels and can never be seen.

Give an algorithm for iterating through the scene and outputting only the faces
that can be observed.

Exercise 14.6: Draw a computer science tree data structure representing the
scene graph for an automobile, with the nodes labeled as to the parts that they
represent.

Exercise 14.7: Consider a green beer bottle on a white table, in a night club
lit with only red lights (assume each represents a narrow frequency range). What
are the observed colors of the bottle, the table in the bottle’s shadow, and the table
out of the bottle’s shadow?

Exercise 14.8: Implement disk and sphere Lambertian emitters in the style of
Listing 14.13.

Exercise 14.9: Implement an arbitrary mesh Lambertian emitter in the style
of Listing 14.13.
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Chapter 15

Ray Casting and
Rasterization

15.1 Introduction

Previous chapters considered modeling and interacting with 2D and 3D scenes
using an underlying renderer provided by WPF. Now we focus on writing our
own physically based 3D renderer.

Rendering is integration. To compute an image, we need to compute how much
light arrives at each pixel of the image sensor inside a virtual camera. Photons
transport the light energy, so we need to simulate the physics of the photons in
a scene. However, we can’t possibly simulate all of the photons, so we need to
sample a few of them and generalize from those to estimate the integrated arriving
light. Thus, one might also say that rendering is sampling. We’ll tie this integration
notion of sampling to the alternative probability notion of sampling presently.

In this chapter, we look at two strategies for sampling the amount of light
transported along a ray that arrives at the image plane. These strategies are called
ray casting and rasterization. We’ll build software renderers using each of them.
We’ll also build a third renderer using a hardware rasterization API. All three
renderers can be used to sample the light transported to a point from a specific
direction. A point and direction define a ray, so in graphics jargon, such sampling
is typically referred to as “sampling along a ray,” or simply “sampling a ray.”

There are many interesting rays along which to sample transport, and the meth-
ods in this chapter generalize to all of them. However, here we focus specifically
on sampling rays within a cone whose apex is at a point light source or a pin-
hole camera aperture. The techniques within these strategies can also be modified
and combined in interesting ways. Thus, the essential idea of this chapter is that
rather than facing a choice between distinct strategies, you stand to gain a set of
tools that you can modify and apply to any rendering problem. We emphasize two
aspects in the presentation: the principle of sampling as a mathematical tool and
the practical details that arise in implementing real renderers.

387
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Of course, we’ll take many chapters to resolve the theoretical and practical
issues raised here. Since graphics is an active field, some issues will not be thor-
oughly resolved even by the end of the book. In the spirit of servicing both prin-
ciples and practice, we present some ideas first with pseudocode and mathematics
and then second in actual compilable code. Although minimal, that code follows
reasonable software engineering practices, such as data abstraction, to stay true
to the feel of a real renderer. If you create your own programs from these pieces
(which you should) and add the minor elements that are left as exercises, then you
will have three working renderers at the end of the chapter. Those will serve as a
scalable code base for your implementation of other algorithms presented in this
book.

The three renderers we build will be simple enough to let you quickly under-
stand and implement them in one or two programming sessions each. By the end
of the chapter, we’ll clean them up and generalize the designs. This generality
will allow us to incorporate changes for representing complex scenes and the data
structures necessary for scaling performance to render those scenes.

We assume that throughout the subsequent rendering chapters you are imple-
menting each technique as an extension to one of the renderers that began in this
chapter. As you do, we recommend that you adopt two good software engineering
practices.

1. Make a copy of the renderer before changing it (this copy becomes the
reference renderer).

2. Compare the image result after a change to the preceding, reference result.

Techniques that enhance performance should generally not reduce image qual-
ity. Techniques that enhance simulation accuracy should produce noticeable and
measurable improvements. By comparing the “before” and “after” rendering per-
formance and image quality, you can verify that your changes were implemented
correctly.

Comparison begins right in this chapter. We’ll consider three rendering strate-
gies here, but all should generate identical results. We’ll also generalize each
strategy’s implementation once we’ve sketched it out. When debugging your
own implementations of these, consider how incorrectly mismatched results
between programs indicate potential underlying program errors. This is yet
another instance of the Visual Debugging principle.

15.2 High-Level Design Overview

We start with a high-level design in this section. We’ll then pause to address the
practical issues of our programming infrastructure before reducing that high-level
design to the specific sampling strategies.

15.2.1 Scattering

Light that enters the camera and is measured arrives from points on surfaces in the
scene that either scattered or emitted the light. Those points lie along the rays that
we choose to sample for our measurement. Specifically, the points casting light
into the camera are the intersections in the scene of rays, whose origins are points
on the image plane, that passed through the camera’s aperture.
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Camera
(or eye)

P

A light source

A triangle

y

z2z

x
n
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vi

Figure 15.1: A specific surface location P that is visible to the camera, incident light at
P from various directions {vi}, and the exitant direction vo toward the camera.

To keep things simple, we assume a pinhole camera with a virtual image plane
in front of the center of projection, and an instantaneous exposure. This means
that there will be no blur in the image due to defocus or motion. Of course, an
image with a truly zero-area aperture and zero-time exposure would capture zero
photons, so we take the common graphics approximation of estimating the result
of a small aperture and exposure from the limiting case, which is conveniently
possible in simulation, albeit not in reality.

We also assume that the virtual sensor pixels form a regular square grid and
estimate the value that an individual pixel would measure using a single sample at
the center of that pixel’s square footprint. Under these assumptions, our sampling
rays are the ones with origins at the center of projection (i.e., the pinhole) and
directions through each of the sensor-pixel centers.1

Finally, to keep things simple we chose a coordinate frame in which the center
of projection is at the origin and the camera is looking along the negative z-axis.
We’ll also refer to the center of projection as the eye. See Section 15.3.3 for a
formal description and Figure 15.1 for a diagram of this configuration.

The light that arrived at a specific sensor pixel from a scene point P came
from some direction. For example, the direction from the brightest light source
in the scene provided a lot of light. But not all light arrived from the brightest
source. There may have been other light sources in the scene that were dimmer.
There was also probably a lot of light that previously scattered at other points
and arrived at P indirectly. This tells us two things. First, we ultimately have to
consider all possible directions from which light may have arrived at P to generate
a correct image. Second, if we are willing to accept some sampling error, then we
can select a finite number of discrete directions to sample. Furthermore, we can

1. For the advanced reader, we acknowledge Alvy Ray Smith’s “a pixel is not a little
square”—that is, no sample is useful without its reconstruction filter—but contend that
Smith was so successful at clarifying this issue that today “sample” now is properly
used to describe the point-sample data to which Smith referred, and “pixel” now is
used to refer to a “little square area” of a display or sensor, whose value may be esti-
mated from samples. We’ll generally use “sensor pixel” or “display pixel” to mean the
physical entity and “pixel” for the rectangular area on the image plane.
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probably rank the importance of those directions, at least for lights, and choose a
subset that is likely to minimize sampling error.

Inline Exercise 15.1: We don’t expect you to have perfect answers to these,
but we want you to think about them now to help develop intuition for this
problem: What kind of errors could arise from sampling a finite number of
directions? What makes them errors? What might be good sampling strategies?
How do the notions of expected value and variance from statistics apply here?
What about statistical independence and bias?

Let’s start by considering all possible directions for incoming light in pseu-
docode and then return to the ranking of discrete directions when we later need to
implement directional sampling concretely.

To consider the points and directions that affect the image, our program has to
look something like Listing 15.1.

Listing 15.1: High-level rendering structure.

1
2
3
4
5

for each visible point P with direction vo from it to pixel center (x, y):
sum = 0
for each incident light direction vi at P:

sum += light scattered at P from vi to vo

pixel[x, y] = sum

15.2.2 Visible Points

Now we devise a strategy for representing points in the scene, finding those that
are visible and scattering the light incident on them to the camera.

For the scene representation, we’ll work within some of the common rendering
approximations described in Chapter 14. None of these are so fundamental as to
prevent us from later replacing them with more accurate models.

Assume that we only need to model surfaces that form the boundaries of
objects. “Object” is a subjective term; a surface is technically the interface
between volumes with homogeneous physical properties. Some of these objects
are what everyday language recognizes as such, like a block of wood or the water
in a pool. Others are not what we are accustomed to considering as objects, such
as air or a vacuum.

We’ll model these surfaces as triangle meshes. We ignore the surrounding
medium of air and assume that all the meshes are closed so that from the out-
side of an object one can never see the inside. This allows us to consider only
single-sided triangles. We choose the convention that the vertices of a triangular
face, seen from the outside of the object, are in counterclockwise order around the
face. To approximate the shading of a smooth surface using this triangle mesh,
we model the surface normal at a point on a triangle pointing in the direction of
the barycentric interpolation of prespecified normal vectors at its vertices. These
normals only affect shading, so silhouettes of objects will still appear polygonal.

Chapter 27 explores how surfaces scatter light in great detail. For simplicity,
we begin by assuming all surfaces scatter incoming light equally in all directions,
in a sense that we’ll make precise presently. This kind of scattering is called Lam-
bertian, as you saw in Chapter 6, so we’re rendering a Lambertian surface. The
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color of a surface is determined by the relative amount of light scattered at each
wavelength, which we represent with a familiar RGB triple.

This surface mesh representation describes all the potentially visible points
at the set of locations {P}. To render a given pixel, we must determine which
potentially visible points project to the center of that pixel. We then need to select
the scene point closest to the camera. That point is the actually visible point for
the pixel center. The radiance—a measure of light that’s defined precisely in Sec-
tion 26.7.2, and usually denoted with the letter L—arriving from that point and
passing through the pixel is proportional to the light incident on the point and the
point’s reflectivity.

To find the nearest potentially visible point, we first convert the outer loop of
Listing 15.1 (see the next section) into an iteration over both pixel centers (which
correspond to rays) and triangles (which correspond to surfaces). A common way
to accomplish this is to replace “for each visible point” with two nested
loops, one over the pixel centers and one over the triangles. Either can be on the
outside. Our choice of which is the new outermost loop has significant structural
implications for the rest of the renderer.

15.2.3 Ray Casting: Pixels First

Listing 15.2: Ray-casting pseudocode.

1
2
3
4
5
6
7
8
9

for each pixel position (x, y):
let R be the ray through (x, y) from the eye
for each triangle T:

let P be the intersection of R and T (if any)
sum = 0
for each direction:

sum += . . .
if P is closer than previous intersections at this pixel:

pixel[x, y] = sum

Consider the strategy where the outermost loop is over pixel centers, shown in
Listing 15.2. This strategy is called ray casting because it creates one ray per pixel
and casts it at every surface. It generalizes to an algorithm called ray tracing, in
which the innermost loop recursively casts rays at each direction, but let’s set that
aside for the moment.

Ray casting lets us process each pixel to completion independently. This sug-
gests parallel processing of pixels to increase performance. It also encourages us
to keep the entire scene in memory, since we don’t know which triangles we’ll
need at each pixel. The structure suggests an elegant way of eventually processing
the aforementioned indirect light: Cast more rays from the innermost loop.

15.2.4 Rasterization: Triangles First

Now consider the strategy where the outermost loop is over triangles shown
in Listing 15.3. This strategy is called rasterization, because the inner loop is
typically implemented by marching along the rows of the image, which are called
rasters. We could choose to march along columns as well. The choice of rows is
historical and has to do with how televisions were originally constructed. Cathode
ray tube (CRT) displays scanned an image from left to right, top to bottom, the
way that English text is read on a page. This is now a widespread convention:
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Unless there is an explicit reason to do otherwise, images are stored in row-major
order, where the element corresponding to 2D position (x, y) is stored at index
(x + y * width) in the array.

Listing 15.3: Rasterization pseudocode; O denotes the origin, or eyepoint.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

for each pixel position (x, y):
closest[x, y] = ∞

for each triangle T:
for each pixel position (x, y):

let R be the ray through (x, y) from the eye
let P be the intersection of R and T
if P exists:

sum = 0
for each direction:

sum += . . .
if the distance to P is less than closest[x, y]:

pixel[x, y] = sum
closest[x, y] = |P − O|

Rasterization allows us to process each triangle to completion independently.2

This has several implications. It means that we can render much larger scenes than
we can hold in memory, because we only need space for one triangle at a time.
It suggests triangles as the level of parallelism. The properties of a triangle can
be maintained in registers or cache to avoid memory traffic, and only one trian-
gle needs to be memory-resident at a time. Because we consider adjacent pixels
consecutively for a given triangle, we can approximate derivatives of arbitrary
expressions across the surface of a triangle by finite differences between pixels.
This is particularly useful when we later become more sophisticated about sam-
pling strategies because it allows us to adapt our sampling rate to the rate at which
an underlying function is changing in screen space.

Note that the conditional on line 12 in Listing 15.3 refers to the closest previ-
ous intersection at a pixel. Because that intersection was from a different triangle,
that value must be stored in a 2D array that is parallel to the image. This array
did not appear in our original pseudocode or the ray-casting design. Because we
now touch each pixel many times, we must maintain a data structure for each
pixel that helps us resolve visibility between visits. Only two distances are needed
for comparison: the distance to the current point and to the previously closest
point. We don’t care about points that have been previously considered but are
farther away than the closest, because they are hidden behind the closest point
and can’t affect the image. The closest array stores the distance to the previously
closest point at each pixel. It is called a depth buffer or a z-buffer. Because com-
puting the distance to a point is potentially expensive, depth buffers are often
implemented to encode some other value that has the same comparison proper-
ties as distance along a ray. Common choices are −zP, the z-coordinate of the
point P, and −1/zP. Recall that the camera is facing along the negative z-axis,
so these are related to distance from the z = 0 plane in which the camera sits.

2. If you’re worried that to process one triangle we have to loop through all the pixels in
the image, even though the triangle does not cover most of them, then your worries are
well founded. See Section 15.6.2 for a better strategy. We’re starting this way to keep
the code as nearly parallel to the ray-casting structure as possible.
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For now we’ll use the more intuitive choice of distance from P to the origin,
|P− O|.

The depth buffer has the same dimensions as the image, so it consumes a
potentially significant amount of memory. It must also be accessed atomically
under a parallel implementation, so it is a potentially slow synchronization point.
Chapter 36 describes alternative algorithms for resolving visibility under raster-
ization that avoid these drawbacks. However, depth buffers are by far the most
widely used method today. They are extremely efficient in practice and have pre-
dictable performance characteristics. They also offer advantages beyond the sam-
pling process. For example, the known depth at each pixel at the end of 3D ren-
dering yields a “2.5D” result that enables compositing of multiple render passes
and post-processing filters, such as artificial defocus blur.

This depth comparison turns out to be a fundamental idea, and it is now
supported by special fixed-function units in graphics hardware. A huge leap in
computer graphics performance occurred when this feature emerged in the early
1980s.

15.3 Implementation Platform

15.3.1 Selection Criteria

The kinds of choices discussed in this section are important. We want to intro-
duce them now, and we want them all in one place so that you can refer to them
later. Many of them will only seem natural to you after you’ve worked with graph-
ics for a while. So read this section now, set it aside, and then read it again in
a month.

In your studies of computer graphics you will likely learn many APIs and
software design patterns. For example, Chapters 2, 4, 6, and 16 teach the 2D and
3D WPF APIs and some infrastructure built around them.

Teaching that kind of content is expressly not a goal of this chapter. This chap-
ter is about creating algorithms for sampling light. The implementation serves
to make the algorithms concrete and provide a test bed for later exploration.
Although learning a specific platform is not a goal, learning the issues to con-
sider when evaluating a platform is a goal; in this section we describe those
issues.

We select one specific platform, a subset of the G3D Innovation Engine
[http://g3d.sf.net] Version 9, for the code examples. You may use this one, or
some variation chosen after considering the same issues weighed by your own
goals and computing environment. In many ways it is better if your platform—
language, compiler, support classes, hardware API—is not precisely the same as
the one described here. The platform we select includes only a minimalist set of
support classes. This keeps the presentation simple and generic, as suits a text-
book. But you’re developing software on today’s technology, not writing a text-
book that must serve independent of currently popular tools.

Since you’re about to invest a lot of work on this renderer, a richer set of sup-
port classes will make both implementation and debugging easier. You can com-
pile our code directly against the support classes in G3D. However, if you have to
rewrite it slightly for a different API or language, this will force you to actually
read every line and consider why it was written in a particular manner. Maybe your
chosen language has a different syntax than ours for passing a parameter by value

http://g3d.sf.net
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instead of reference, for example. In the process of redeclaring a parameter to
make this syntax change, you should think about why the parameter was passed
by value in the first place, and whether the computational overhead or software
abstraction of doing so is justified.

To avoid distracting details, for the low-level renderers we’ll write the image
to an array in memory and then stop. Beyond a trivial PPM-file writing routine, we
will not discuss the system-specific methods for saving that image to disk or dis-
playing it on-screen in this chapter. Those are generally straightforward, but ver-
bose to read and tedious to configure. The PPM routine is a proof of concept, but
it is for an inefficient format and requires you to use an external viewer to check
each result. G3D and many other platforms have image-display and image-writing
procedures that can present the images that you’ve rendered more conveniently.

For the API-based hardware rasterizer, we will use a lightly abstracted subset
of the OpenGL API that is representative of most other hardware APIs. We’ll
intentionally skip the system-specific details of initializing a hardware context
and exploiting features of a particular API or GPU. Those transient aspects can be
found in your favorite API or GPU vendor’s manuals.

Although we can largely ignore the surrounding platform, we must still choose
a programming language. It is wise to choose a language with reasonably high-
level abstractions like classes and operator overloading. These help the algorithm
shine through the source code notation.

It is also wise to choose a language that can be compiled to efficient native
code. That is because even though performance should not be the ultimate con-
sideration in graphics, it is a fairly important one. Even simple video game scenes
contain millions of polygons and are rendered for displays with millions of pix-
els. We’ll start with one triangle and one pixel to make debugging easier and then
quickly grow to hundreds of each in this chapter. The constant overhead of an
interpreted language or a managed memory system cannot affect the asymptotic
behavior of our program. However, it can be the difference between our renderer
producing an image in two seconds or two hours . . . and debugging a program that
takes two hours to run is very unpleasant.

Computer graphics code tends to combine high-level classes containing sig-
nificant state, such as those representing scenes and objects, with low-level classes
(a.k.a. “records”, “structs”) for storing points and colors that have little state and
often expose that which they do contain directly to the programmer. A real-time
renderer can easily process billions of those low-level classes per second. To sup-
port that, one typically requires a language with features for efficiently creating,
destroying, and storing such classes. Heap memory management for small classes
tends to be expensive and thwart cache efficiency, so stack allocation is typically
the preferred solution. Language features for passing by value and by constant
reference help the programmer to control cloning of both large and small class
instances.

Finally, hardware APIs tend to be specified at the machine level, in terms of
bytes and pointers (as abstracted by the C language). They also often require man-
ual control over memory allocation, deallocation, types, and mapping to operate
efficiently.

To satisfy the demands of high-level abstraction, reasonable performance for
hundreds to millions of primitives and pixels, and direct manipulation of memory,
we work within a subset of C++. Except for some minor syntactic variations, this
subset should be largely familiar to Java and Objective C++ programmers. It is
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a superset of C and can be compiled directly as native (nonmanaged) C#. For all
of these reasons, and because there is a significant tools and library ecosystem
built for it, C++ happens to be the dominant language for implementing renderers
today. Thus, our choice is consistent with showing you how renderers are really
implemented.

Note that many hardware APIs also have wrappers for higher-level languages,
provided by either the API vendor or third parties. Once you are familiar with
the basic functionality, we suggest that it may be more productive to use such a
wrapper for extensive software development on a hardware API.

15.3.2 Utility Classes

This chapter assumes the existence of obvious utility classes, such as those
sketched in Listing 15.4. For these, you can use equivalents of the WPF classes,
the Direct3D API versions, the built-in GLSL, Cg, and HLSL shading language
versions, or the ones in G3D, or you can simply write your own. Following com-
mon practice, the Vector3 and Color3 classes denote the axes over which a
quantity varies, but not its units. For example, Vector3 always denotes three spa-
tial axes but may represent a unitless direction vector at one code location and a
position in meters at another. We use a type alias to at least distinguish points from
vectors (which are differences of points).

Listing 15.4: Utility classes.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

#define INFINITY (numeric_limits<float>::infinity())

class Vector2 { public: float x, y; . . . };
class Vector3 { public: float x, y, z; . . . };
typedef Vector2 Point2;
typedef Vector3 Point3;
class Color3 { public: float r, g, b; . . . };
class Radiance3 Color3;
class Power3 Color3;

class Ray {
private:

Point3 m_origin;
Vector3 m_direction;

public:
Ray(const Point3& org, const Vector3& dir) :

m_origin(org), m_direction(dir) {}

const Point3& origin() const { return m_origin; }
const Vector3& direction() const { return m_direction; }
...

};

Observe that some classes, such as Vector3, expose their representation
through public member variables, while others, such as Ray, have a stronger
abstraction that protects the internal representation behind methods. The exposed
classes are the workhorses of computer graphics. Invoking methods to access their
fields would add significant syntactic distraction to the implementation of any
function. Since the byte layouts of these classes must be known and fixed to inter-
act directly with hardware APIs, they cannot be strong abstractions and it makes
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sense to allow direct access to their representation. The classes that protect their
representation are ones whose representation we may (and truthfully, will) later
want to change. For example, the internal representation of Triangle in this list-
ing is an array of vertices. If we found that we computed the edge vectors or face
normal frequently, then it might be more efficient to extend the representation to
explicitly store those values.

For images, we choose the underlying representation to be an array of
Radiance3, each array entry representing the radiance incident at the center of
one pixel in the image. We then wrap this array in a class to present it as a 2D
structure with appropriate utility methods in Listing 15.5.

Listing 15.5: An Image class.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

class Image {
private:

int m_width;
int m_height;
std::vector<Radiance3> m_data;

int PPMGammaEncode(float radiance, float displayConstant) const;

public:

Image(int width, int height) :
m_width(width), m_height(height), m_data(width * height) {}

int width() const { return m_width; }

int height() const { return m_height; }

void set(int x, int y, const Radiance3& value) {
m_data[x + y * m_width] = value;

}

const Radiance3& get(int x, int y) const {
return m_data[x + y * m_width];

}

void save(const std::string& filename, float displayConstant=15.0f) const;
};

Under C++ conventions and syntax, the & following a type in a declaration
indicates that the corresponding variable or return value will be passed by ref-
erence. The m_ prefix avoids confusion between member variables and methods
or parameters with similar names. The std::vector class is the dynamic array
from the standard library.

One could imagine a more feature-rich image class with bounds checking,
documentation, and utility functions. Extending the implementation with these is
a good exercise.

The set and get methods follow the historical row-major mapping from a
2D to a 1D array. Although we do not need it here, note that the reverse mapping
from a 1D index i to the 2D indices (x, y) is

x = i % width; y = i / width

where % is the C++ integer modulo operation.
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When width is a power of two, that is, width = 2k, it is possible to
perform both the forward and reverse mappings using bitwise operations, since

a mod 2k = a & (2k − 1) (15.1)

a/2k = a » k (15.2)

a · 2k = a « k, (15.3)

for fixed-point values. Here we use » as the operator to shift the bits of the left
operand to the right by the value of the right operand, and & as the bitwise
AND operator.

This is one reason that many graphics APIs historically required power-
of-two image dimensions (another is MIP mapping). One can always express
a number that is not a power of two as the sum of multiple powers of two.
In fact, that’s what binary encoding does! For example, 640 = 512 + 128, so
x + 640y = x + (y«9) + (y«7).

Inline Exercise 15.2: Implement forward and backward mappings from
integer (x, y) pixel locations to 1D array indices i, for a typical HD resolu-
tion of 1920 × 1080, using only bitwise operations, addition, and subtrac-
tion.

Familiarity with the bit-manipulation methods for mapping between 1D
and 2D arrays is important now so that you can understand other people’s code.
It will also help you to appreciate how hardware-accelerated rendering might
implement some low-level operations and why a rendering API might have
certain constraints. However, this kind of micro-optimization will not substan-
tially affect the performance of your renderer at this stage, so it is not yet worth
including.

Our Image class stores physically meaningful values. The natural measure-
ment of the light arriving along a ray is in terms of radiance, whose definition
and precise units are described in Chapter 26. The image typically represents the
light about to fall onto each pixel of a sensor or area of a piece of film. It doesn’t
represent the sensor response process.

Displays and image files tend to work with arbitrarily scaled 8-bit display
values that map nonlinearly to radiance. For example, if we set the display pixel
value to 64, the display pixel does not emit twice the radiance that it does when
we set the same pixel to 32. This means that we cannot display our image faithfully
by simply rescaling radiance to display values. In fact, the relationship involves
an exponent commonly called gamma, as described briefly below and at length in
Section 28.12.

Assume some multiplicative factor d that rescales the radiance values in an
image so that the largest value we wish to represent maps to 1.0 and the smallest
maps to 0.0. This fills the role of the camera’s shutter and aperture. The user will
select this value as part of the scene definition. Mapping it to a GUI slider is often
a good idea.

Historically, most images stored 8-bit values whose meanings were ill-
specified. Today it is more common to specify what they mean. An image that
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actually stores radiance values is informally said to store linear radiance, indi-
cating that the pixel value varies linearly with the radiance (see Chapter 17). Since
the radiance range of a typical outdoor scene with shadows might span six orders
of magnitude, the data would suffer from perceptible quantization artifacts were
it reduced to eight bits per channel. However, human perception of brightness is
roughly logarithmic. This means that distributing precision nonlinearly can reduce
the perceptual error of a small bit-depth approximation. Gamma encoding is
a common practice for distributing values according to a fractional power law,
where 1/γ is the power. This encoding curve roughly matches the logarithmic
response curve of the human visual system. Most computer displays accept input
already gamma-encoded along the sRGB standard curve, which is about γ = 2.2.
Many image file formats, such as PPM, also default to this gamma encoding. A
routine that maps a radiance value to an 8-bit display value with a gamma value
of 2.2 is:

1
2
3
4

int Image::PPMGammaEncode(float radiance, float d) const {
return int(pow(std::min(1.0f, std::max(0.0f, radiance * d)),

1.0f / 2.2f) * 255.0f);
}

Note that x1/2.2 ≈ √x. Because they are faster than arbitrary exponentiation on
most hardware, square root and square are often employed in real-time rendering
as efficient γ = 2.0 encoding and decoding methods.

The save routine is our bare-bones method for exporting data from the ren-
derer for viewing. It saves the image in human-readable PPM format [P+10] and
is implemented in Listing 15.6.

Listing 15.6: Saving an image to an ASCII RGB PPM file.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

void Image::save(const std::string& filename, float d) const {
FILE* file = fopen(filename.c_str(), "wt");
fprintf(file, "P3 %d %d 255\n", m_width, m_height);
for (int y = 0; y < m_height; ++y) {

fprintf(file, "\n# y = %d\n", y);
for (int x = 0; x < m_width; ++x) {

const Radiance3& c(get(x, y));
fprintf(file, "%d %d %d\n",

PPMGammaEncode(c.r, d),
PPMGammaEncode(c.g, d),
PPMGammaEncode(c.b, d));

}
}
fclose(file);

}

This is a useful snippet of code beyond its immediate purpose of saving an
image. The structure appears frequently in 2D graphics code. The outer loop iter-
ates over rows. It contains any kind of per-row computation (in this case, printing
the row number). The inner loop iterates over the columns of one row and per-
forms the per-pixel operations. Note that if we wished to amortize the cost of
computing y * m_width inside the get routine, we could compute that as a per-
row operation and merely accumulate the 1-pixel offsets in the inner loop. We do
not do so in this case because that would complicate the code without providing a
measurable performance increase, since writing a formatted text file would remain
slow compared to performing one multiplication per pixel.
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(a) (b)

Figure 15.2: A pattern for testing the Image class. The pattern is a checkerboard of 1-pixel
squares that alternate between 1/10 W/(m2 sr) in the blue channel and a vertical gradient
from 0 to 10. (a) Viewed with deviceGamma = 1.0 and displayConstant = 1.0, which
makes dim squares appear black and gives the appearance of a linear change in brightness.
(b) Displayed more correctly with deviceGamma = 2.0, where the linear radiance gradient
correctly appears as a nonlinear brightness ramp and the dim squares are correctly visible.
(The conversion to a printed image or your online image viewer may further affect the
image.)

The PPM format is slow for loading and saving, and consumes lots of space
when storing images. For those reasons, it is rarely used outside academia. How-
ever, it is convenient for data interchange between programs. It is also convenient
for debugging small images for three reasons. The first is that it is easy to read and
write. The second is that many image programs and libraries support it, including
Adobe Photoshop and xv. The third is that we can open it in a text editor to look
directly at the (gamma-corrected) pixel values.

After writing the image-saving code, we displayed the simple pattern shown
in Figure 15.2 as a debugging aid. If you implement your own image saving or
display mechanism, consider doing something similar. The test pattern alternates
dark blue pixels with ones that form a gradient. The reason for creating the single-
pixel checkerboard pattern is to verify that the image was neither stretched nor
cropped during display. If it was, then one or more thin horizontal or vertical
lines would appear. (If you are looking at this image on an electronic display, you
may see such patterns, indicating that your viewing software is indeed stretching
it.) The motivation for the gradient is to determine whether gamma correction
is being applied correctly. A linear radiance gradient should appear as a non-
linear brightness gradient, when displayed correctly. Specifically, it should pri-
marily look like the brighter shades. The pattern on the left is shown without
gamma correction. The gradient appears to have linear brightness, indicating that
it is not displayed correctly. The pattern on the right is shown with gamma cor-
rection. The gradient correctly appears to be heavily shifted toward the brighter
shaders.

Note that we made the darker squares blue, yet in the left pattern—without
gamma correction—they appear black. That is because gamma correction helps
make darker shades more visible, as in the right image. This hue shift is another
argument for being careful to always implement gamma correction, beyond the
tone shift. Of course, we don’t know the exact characteristics of the display
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(although one can typically determine its gamma exponent) or the exact viewing
conditions of the room, so precise color correction and tone mapping is beyond
our ability here. However, the simple act of applying gamma correction arguably
captures some of the most important aspects of that process and is computationally
inexpensive and robust.

Inline Exercise 15.3: Two images are shown below. Both have been gamma-
encoded with γ = 2.0 for printing and online display. The image on the left is
a gradient that has been rendered to give the impression of linear brightness.
It should appear as a linear color ramp. The image on the right was rendered
with linear radiance (it is the checkerboard on the right of Figure 15.2 without
the blue squares). It should appear as a nonlinear color ramp. The image was
rendered at 200× 200 pixels. What equation did we use to compute the value
(in [0, 1]) of the pixel at (x, y) for the gradient image on the left?

Linear brightness Linear radiance

15.3.3 Scene Representation

Listing 15.7 shows a Triangle class. It stores each triangle by explicitly storing
each vertex. Each vertex has an associated normal that is used exclusively for
shading; the normals do not describe the actual geometry. These are sometimes
called shading normals. When the vertex normals are identical to the normal
to the plane of the triangle, the triangle’s shading will appear consistent with its
actual geometry. When the normals diverge from this, the shading will mimic that
of a curved surface. Since the silhouette of the triangle will still be polygonal, this
effect is most convincing in a scene containing many small triangles.

Listing 15.7: Interface for a Triangle class.

1
2
3
4
5
6
7
8
9

10
11
12
13

class Triangle {
private:

Point3 m_vertex[3];
Vector3 m_normal[3];
BSDF m_bsdf;

public:

const Point3& vertex(int i) const { return m_vertex[i]; }
const Vector3& normal(int i) const { return m_normal[i]; }
const BSDF& bsdf() const { return m_bsdf; }
. . .

};

We also associate a BSDF class value with each triangle. This describes the
material properties of the surface modeled by the triangle. It is described in Sec-
tion 15.4.5. For now, think of this as the color of the triangle.
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The representation of the triangle is concealed by making the member vari-
ables private. Although the implementation shown contains methods that simply
return those member variables, you will later use this abstraction boundary to
create a more efficient implementation of the triangle. For example, many trian-
gles may share the same vertices and bidirectional scattering distribution func-
tions (BSDFs), so this representation is not very space-efficient. There are also
properties of the triangle, such as the edge lengths and geometric normal, that
we will find ourselves frequently recomputing and could benefit from storing
explicitly.

Inline Exercise 15.4: Compute the size in bytes of one Triangle. How big
is a 1M triangle mesh? Is that reasonable? How does this compare with the
size of a stored mesh file, say, in the binary 3DS format or the ASCII OBJ
format? What are other advantages, beyond space reduction, of sharing vertices
between triangles in a mesh?

Listing 15.8 shows our implementation of an omnidirectional point light
source. We represent the power it emits at three wavelengths (or in three wave-
length bands), and the center of the emitter. Note that emitters are infinitely small
in our representation, so they are not themselves visible. If we wish to see the
source appear in the final rendering we need to either add geometry around it or
explicitly render additional information into the image. We will do neither explic-
itly in this chapter, although you may find that these are necessary when debugging
your illumination code.

Listing 15.8: Interface for a uniform point luminaire—a light source.

1
2
3
4
5
6
7

class Light {
public:

Point3 position;

/** Over the entire sphere. */
Power3 power;

};

Listing 15.9 describes the scene as sets of triangles and lights. Our choice of
arrays for the implementation of these sets imposes an ordering on the scene. This
is convenient for ensuring a reproducible environment for debugging. However,
for now we are going to create that ordering in an arbitrary way, and that choice
may affect performance and even our image in some slight ways, such as resolving
ties between which surface is closest at an intersection. More sophisticated scene
data structures may include additional structure in the scene and impose a specific
ordering.

Listing 15.9: Interface for a scene represented as an unstructured list of
triangles and light sources.

1
2
3
4
5

class Scene {
public:

std::vector<Triangle> triangleArray;
std::vector<Light> lightArray;

};
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Listing 15.10 represents our camera. The camera has a pinhole aperture, an
instantaneous shutter, and artificial near and far planes of constant (negative)
z values. We assume that the camera is located at the origin and facing along
the −z-axis.

Listing 15.10: Interface for a pinhole camera at the origin.

1
2
3
4
5
6
7
8

class Camera {
public:

float zNear;
float zFar;
float fieldOfViewX;

Camera() : zNear(-0.1f), zFar(-100.0f), fieldOfViewX(PI / 2.0f) {}
};

We constrain the horizontal field of view of the camera to be fieldOfViewX.
This is the measure of the angle from the center of the leftmost pixel to the center
of the rightmost pixel along the horizon in the camera’s view in radians (it is
shown later in Figure 15.3). During rendering, we will compute the aspect ratio of
the target image and implicitly use that to determine the vertical field of view. We
could alternatively specify the vertical field of view and compute the horizontal
field of view from the aspect ratio.

15.3.4 A Test Scene

We’ll test our renderers on a scene that contains one triangle whose vertices are

Point3(0,1,-2), Point3(-1.9,-1,-2), and Point3(1.6,-0.5,-2),

and whose vertex normals are

Vector3( 0.0f, 0.6f, 1.0f).direction(),

Vector3(-0.4f,-0.4f, 1.0f).direction(), and

Vector3( 0.4f,-0.4f, 1.0f).direction().

We create one light source in the scene, located at Point3(1.0f,3.0f,1.0
f) and emitting power Power3(10, 10, 10). The camera is at the origin and is
facing along the −z-axis, with y increasing upward in screen space and x increas-
ing to the right. The image has size 800× 500 and is initialized to dark blue.

This choice of scene data was deliberate, because when debugging it is a good
idea to choose configurations that use nonsquare aspect ratios, nonprimary colors,
asymmetric objects, etc. to help find cases where you have accidentally swapped
axes or color channels. Having distinct values for the properties of each vertex
also makes it easier to track values through code. For example, on this trian-
gle, you can determine which vertex you are examining merely by looking at its
x-coordinate.

On the other hand, the camera is the standard one, which allows us to avoid
transforming rays and geometry. That leads to some efficiency and simplicity in
the implementation and helps with debugging because the input data maps exactly
to the data rendered, and in practice, most rendering algorithms operate in the
camera’s reference frame anyway.
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Inline Exercise 15.5: Mandatory; do not continue until you have done this:
Draw a schematic diagram of this scene from three viewpoints.

1. The orthographic view from infinity facing along the x-axis. Make z
increase to the right and y increase upward. Show the camera and its
field of view.

2. The orthographic view from infinity facing along the −y-axis. Make x
increase to the right and z increase downward. Show the camera and its
field of view. Draw the vertex normals.

3. The perspective view from the camera, facing along the −z-axis; the
camera should not appear in this image.

15.4 A Ray-Casting Renderer

We begin the ray-casting renderer by expanding and implementing our initial
pseudocode from Listing 15.2. It is repeated in Listing 15.11 with more detail.

Listing 15.11: Detailed pseudocode for a ray-casting renderer.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

for each pixel row y:
for each pixel column x:

let R = ray through screen space position (x + 0.5, y + 0.5)
closest = ∞
for each triangle T:

d = intersect(T, R)
if (d < closest)

closest = d
sum = 0
let P be the intersection point
for each direction vi:

sum += light scattered at P from vi to vo

image[x, y] = sum

The three loops iterate over every ray and triangle combination. The body of
the for-each-triangle loop verifies that the new intersection is closer than previous
observed ones, and then shades the intersection. We will abstract the operation of
ray intersection and sampling into a helper function called sampleRayTriangle.
Listing 15.12 gives the interface for this helper function.

Listing 15.12: Interface for a function that performs ray-triangle
intersection and shading.

1
2
3

bool sampleRayTriangle(const Scene& scene, int x, int y,
const Ray& R, const Triangle& T,
Radiance3& radiance, float& distance);

The specification for sampleRayTriangle is as follows. It tests a particular
ray against a triangle. If the intersection exists and is closer than all previously
observed intersections for this ray, it computes the radiance scattered toward the
viewer and returns true. The innermost loop therefore sets the value of pixel (x, y)
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to the radiance L_o passing through its center from the closest triangle. Radiance
from farther triangles is not interesting because it will (conceptually) be blocked
by the back of the closest triangle and never reach the image. The implementation
of sampleRayTriangle appears in Listing 15.15.

To render the entire image, we must invoke sampleRayTriangle once for
each pixel center and for each triangle. Listing 15.13 defines rayTrace, which
performs this iteration. It takes as arguments a box within which to cast rays (see
Section 15.4.4). We use L_o to denote the radiance from the triangle; the subscript
“o” is for “outgoing”.

Listing 15.13: Code to trace one ray for every pixel between (x0, y0) and
(x1-1, y1-1), inclusive.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/** Trace eye rays with origins in the box from [x0, y0] to (x1, y1).*/
void rayTrace(Image& image, const Scene& scene,
const Camera& camera, int x0, int x1, int y0, int y1) {

// For each pixel
for (int y = y0; y < y1; ++y) {
for (int x = y0; x < x1; ++x) {

// Ray through the pixel
const Ray& R = computeEyeRay(x + 0.5f, y + 0.5f, image.width(),

image.height(), camera);

// Distance to closest known intersection
float distance = INFINITY;
Radiance3 L_o;

// For each triangle
for (unsigned int t = 0; t < scene.triangleArray.size(); ++t){
const Triangle& T = scene.triangleArray[t];

if (sampleRayTriangle(scene, x, y, R, T, L_o, distance)) {
image.set(x, y, L_o);

}
}

}
}

}

To invoke rayTrace on the entire image, we will use the call:

rayTrace(image, scene, camera, 0, image.width(), 0, image.height());

15.4.1 Generating an Eye Ray

Assume the camera’s center of projection is at the origin, (0, 0, 0), and that, in
the camera’s frame of reference, the y-axis points upward, the x-axis points to the
right, and the z-axis points out of the screen. Thus, the camera is facing along its
own −z-axis, in a right-handed coordinate system. We can transform any scene to
this coordinate system using the transformations from Chapter 11.

We require a utility function, computeEyeRay, to find the ray through the
center of a pixel, which in screen space is given by (x + 0.5, y + 0.5) for integers
x and y. Listing 15.14 gives an implementation. The key geometry is depicted in
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Figure 15.3. The figure is a top view of the scene in which x increases to the right
and z increases downward. The near plane appears as a horizontal line, and the
start point is on that plane, along the line from the camera at the origin to the
center of a specific pixel.

Camera

z

x

Field of
view

(0,0,0)

width

Start z 5 zNear

Figure 15.3: The ray through a
pixel center in terms of the image
resolution and the camera’s hori-
zontal field of view.

To implement this function we needed to parameterize the camera by either the
image plane depth or the desired field of view. Field of view is a more intuitive way
to specify a camera, so we previously chose that parameterization when building
the scene representation.

Listing 15.14: Computing the ray through the center of pixel (x, y) on a
width × height image.

1
2
3
4
5
6
7
8
9

10
11
12
13

Ray computeEyeRay(float x, float y, int width, int height, const Camera& camera) {
const float aspect = float(height) / width;

// Compute the side of a square at z = -1 based on our
// horizontal left-edge-to-right-edge field of view
const float s = -2.0f * tan(camera.fieldOfViewX * 0.5f);

const Vector3& start =
Vector3( (x / width - 0.5f) * s,

-(y / height - 0.5f) * s * aspect, 1.0f) * camera.zNear;

return Ray(start, start.direction());
}

We choose to place the ray origin on the near (sometimes called hither) clip-
ping plane, at z = camera.zNear. We could start rays at the origin instead of the
near plane, but starting at the near plane will make it easier for results to line up
precisely with our rasterizer later.

The ray direction is the direction from the center of projection (which is
at the origin, (0, 0, 0)) to the ray start point, so we simply normalize start

point.

Inline Exercise 15.6: By the rules of Chapter 7, we should compute the ray
direction as (start - Vector3(0,0,0)).direction(). That makes the
camera position explicit, so we are less likely to introduce a bug if we later
change the camera. This arises simply from strongly typing the code to match
the underlying mathematical types. On the other hand, our code is going to be
full of lines like this, and consistently applying correct typing might lead to
more harm from obscuring the algorithm than benefit from occasionally find-
ing an error. It is a matter of personal taste and experience (we can somewhat
reconcile our typing with the math by claiming that P.direction() on a
point P returns the direction to the point, rather than “normalizing” the point).

Rewrite computeEyeRay using the distinct Point and Vector abstrac-
tions from Chapter 7 to get a feel for how this affects the presentation and
correctness. If this inspires you, it’s quite reasonable to restructure all the code
in this chapter that way, and doing so is a valuable exercise.

Note that the y-coordinate of the start is negated. This is because y is in 2D
screen space, with a “y = down” convention, and the ray is in a 3D coordinate
system with a “y = up” convention.
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To specify the vertical field of view instead of the horizontal one, replace
fieldOfViewX with fieldOfViewY and insert the line s /= aspect.

15.4.1.1 Camera Design Notes
The C++ language offers both functions and methods as procedural abstractions.
We have presented computeEyeRay as a function that takes a Camera parameter
to distinguish the “support code” Camera class from the ray-tracer-specific code
that you are adding. As you move forward through the book, consider refactoring
the support code to integrate auxiliary functions like this directly into the appro-
priate classes. (If you are using an existing 3D library as support code, it is likely
that the provided camera class already contains such a method. In that case, it is
worth implementing the method once as a function here so that you have the expe-
rience of walking through and debugging the routine. You can later discard your
version in favor of a canonical one once you’ve reaped the educational value.)

A software engineering tip: Although we have chosen to forgo small optimiza-
tions, it is still important to be careful to use references (e.g., Image&) to avoid
excess copying of arguments and intermediate results. There are two related rea-
sons for this, and neither is about the performance of this program.

The first reason is that we want to be in the habit of avoiding excessive copy-
ing. A Vector3 occupies 12 bytes of memory, but a full-screen Image is a few
megabytes. If we’re conscientious about never copying data unless we want copy
semantics, then we won’t later accidentally copy an Image or other large struc-
ture. Memory allocation and copy operations can be surprisingly slow and will
bloat the memory footprint of our program. The time cost of copying data isn’t
just a constant overhead factor on performance. Copying the image once per pixel,
in the inner loop, would change the ray caster’s asymptotic run time from O(n) in
the number of pixels to O(n2).

The second reason is that experienced programmers rely on a set of idioms
that are chosen to avoid bugs. Any deviation from those attracts attention, because
it is a potential bug. One such convention in C++ is to pass each value as a const
reference unless otherwise required, for the long-term performance reasons just
described. So code that doesn’t do so takes longer for an experienced programmer
to review because of the need to check that there isn’t an error or performance
implication whenever an idiom is not followed. If you are an experienced C++
programmer, then such idioms help you to read the code. If you are not, then either
ignore all the ampersands and treat this as pseudocode, or use it as an opportunity
to become a better C++ programmer.

15.4.1.2 Testing the Eye-Ray Computation
We need to test computeEyeRay before continuing. One way to do this is to write
a unit test that computes the eye rays for specific pixels and then compares them
to manually computed results. That is always a good testing strategy. In addition
to that, we can visualize the eye rays. Visualization is a good way to quickly see
the result of many computations. It allows us to more intuitively check results, and
to identify patterns of errors if they do not match what we expected.

In this section, we’ll visualize the directions of the rays. The same process can
be applied to the origins. The directions are the more common location for an error
and conveniently have a bounded range, which make them both more important
and easier to visualize.
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A natural scheme for visualizing a direction is to interpret the (x, y, z) fields as
(r, g, b) color triplets. The conversion of ray direction to pixel color is of course a
gross violation of units, but it is a really useful debugging technique and we aren’t
expecting anything principled here anyway.

Because each ordinate is on the interval [−1, 1], we rescale them to the range
[0, 1] by r = (x + 1)/2. Our image display routines also apply an exposure func-
tion, so we need to scale the resultant intensity down by a constant on the order of
the inverse of the exposure value. Temporarily inserting the following line:

image.set(x, y, Color3(R.direction() + Vector3(1, 1, 1)) / 5);

into rayTrace in place of the sampleRayTriangle call should yield an image
like that shown in Figure 15.4. (The factor of 1/5 scales the debugging values to a
reasonable range for our output, which was originally calibrated for radiance; we
found a usable constant for this particular example by trial and error.) We expect
the x-coordinate of the ray, which here is visualized as the color red, to increase
from a minimum on the left to a maximum on the right. Likewise, the (3D) y-
coordinate, which is visualized as green, should increase from a minimum at the
bottom of the image to a maximum at the top. If your result varies from this,
examine the pattern you observe and consider what kind of error could produce it.
We will revisit visualization as a debugging technique later in this chapter, when
testing the more complex intersection routine.

Figure 15.4: Visualization of eye-
ray directions.

15.4.2 Sampling Framework: Intersect and Shade

Listing 15.15 shows the code for sampling a triangle with a ray. This code doesn’t
perform any of the heavy lifting itself. It just computes the values needed for
intersect and shade.

Listing 15.15: Sampling the intersection and shading of one triangle
with one ray.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

bool sampleRayTriangle(const Scene& scene, int x, int y, const Ray& R,
const Triangle& T, Radiance3& radiance, float& distance) {

float weight[3];
const float d = intersect(R, T, weight);

if (d >= distance) {
return false;

}

// This intersection is closer than the previous one
distance = d;

// Intersection point
const Point3& P = R.origin() + R.direction() * d;

// Find the interpolated vertex normal at the intersection
const Vector3& n = (T.normal(0) * weight[0] +

T.normal(1) * weight[1] +
T.normal(2) * weight[2]).direction();

const Vector3& w_o = -R.direction();
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23
24
25
26
27
28
29
30
31
32

shade(scene, T, P, n, w_o, radiance);

// Debugging intersect: set to white on any intersection
//radiance = Radiance3(1, 1, 1);

// Debugging barycentric
//radiance = Radiance3(weight[0], weight[1], weight[2]) / 15;

return true;
}

The sampleRayTriangle routine returns false if there was no intersec-
tion closer than distance; otherwise, it updates distance and radiance and
returns true.

When invoking this routine, the caller passes the distance to the clos-
est currently known intersection, which is initially INFINITY (let INFINITY
= std::numeric_limits<T>::infinity() in C++, or simply 1.0/0.0).
We will design the intersect routine to return INFINITY when no inter-
section exists between R and T so that a missed intersection will never cause
sampleRayTriangle to return true.

Placing the (d >= distance) test before the shading code is an optimiza-
tion. We would still obtain correct results if we always computed the shading
before testing whether the new intersection is in fact the closest. This is an impor-
tant optimization because the shade routine may be arbitrarily expensive. In fact,
in a full-featured ray tracer, almost all computation time is spent inside shade,
which recursively samples additional rays. We won’t discuss further shading opti-
mizations in this chapter, but you should be aware of the importance of an early
termination when another surface is known to be closer.

Note that the order of the triangles in the calling routine (rayTrace) affects
the performance of the routine. If the triangles are in back-to-front order, then we
will shade each one, only to reject all but the closest. This is the worst case. If
the triangles are in front-to-back order, then we will shade the first and reject the
rest without further shading effort. We could ensure the best performance always
by separating sampleRayTriangle into two auxiliary routines: one to find the
closest intersection and one to shade that intersection. This is a common practice
in ray tracers. Keep this in mind, but do not make the change yet. Once we have
written the rasterizer renderer, we will consider the space and time implications of
such optimizations under both ray casting and rasterization, which gives insights
into many variations on each algorithm.

We’ll implement and test intersect first. To do so, comment out the call to
shade on line 23 and uncomment either of the debugging lines below it.

15.4.3 Ray-Triangle Intersection

We’ll find the intersection of the eye ray and a triangle in two steps, following the
method described in Section 7.9 and implemented in Listing 15.16. This method
first intersects the line containing the ray with the plane containing the triangle. It
then solves for the barycentric weights to determine if the intersection is within the
triangle. We need to ignore intersections with the back of the single-sided triangle
and intersections that occur along the part of the line that is not on the ray.

The same weights that we use to determine if the intersection is within the
triangle are later useful for interpolating per-vertex properties, such as shading
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Figure 15.5: Variables for computing the intersection of a ray and a triangle
(see Listing 15.16).

normals. We structure our implementation to return the weights to the caller. The
caller could use either those or the distance traveled along the ray to find the
intersection point. We return the distance traveled because we know that we will
later need that anyway to identify the closest intersection to the viewer in a scene
with many triangles. We return the barycentric weights for use in interpolation.

Figure 15.5 shows the geometry of the situation. Let R be the ray and T be
the triangle. Let �e1 be the edge vector from V0 to V1 and �e2 be the edge vector
from V0 to V2. Vector �q is orthogonal to both the ray and �e2. Note that if �q is also
orthogonal to�e1, then the ray is parallel to the triangle and there is no intersection.
If �q is in the negative hemisphere of �e1 (i.e., “points away”), then the ray travels
away from the triangle.

Vector�s is the displacement of the ray origin from V0, and vector�r is the cross
product of �s and �e1. These vectors are used to construct the barycentric weights,
as shown in Listing 15.16.

Variable a is the rate at which the ray is approaching the triangle, multiplied
by twice the area of the triangle. This is not obvious from the way it is computed
here, but it can be seen by applying a triple-product identity relation:

Let d = R.direction()

Let area = |�e2 ×�e1|/2

a = �e1 · q = �e1 · d ×�e2 = d ·�e2 ×�e1 = −(d · n) · 2 · area, (15.4)

since the direction of �e2 × �e1 is opposite the triangle’s geometric normal n. The
particular form of this expression chosen in the implementation is convenient
because the q vector is needed again later in the code for computing the barycen-
tric weights.

There are several cases where we need to compare a value against zero. The
two epsilon constants guard these comparisons against errors arising from lim-
ited numerical precision.

The comparison a <= epsilon detects two cases. If a is zero, then the ray is
parallel to the triangle and never intersects it. In this case, the code divided by zero
many times, so other variables may be infinity or not-a-number. That’s irrelevant,
since the first test expression will still make the entire test expression true. If a is
negative, then the ray is traveling away from the triangle and will never intersect
it. Recall that a is the rate at which the ray approaches the triangle, multiplied by
the area of the triangle. If epsilon is too large, then intersections with triangles
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Listing 15.16: Ray-triangle intersection (derived from [MT97])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

float intersect(const Ray& R, const Triangle& T, float weight[3]) {
const Vector3& e1 = T.vertex(1) - T.vertex(0);
const Vector3& e2 = T.vertex(2) - T.vertex(0);
const Vector3& q = R.direction().cross(e2);

const float a = e1.dot(q);

const Vector3& s = R.origin() - T.vertex(0);
const Vector3& r = s.cross(e1);

// Barycentric vertex weights
weight[1] = s.dot(q) / a;
weight[2] = R.direction().dot(r) / a;
weight[0] = 1.0f - (weight[1] + weight[2]);

const float dist = e2.dot(r) / a;

static const float epsilon = 1e-7f;
static const float epsilon2 = 1e-10;

if ((a <= epsilon) || (weight[0] < -epsilon2) ||
(weight[1] < -epsilon2) || (weight[2] < -epsilon2) ||
(dist <= 0.0f)) {
// The ray is nearly parallel to the triangle, or the
// intersection lies outside the triangle or behind
// the ray origin: "infinite" distance until intersection.
return INFINITY;

} else {
return dist;

}
}

will be missed at glancing angles, and this missed intersection behavior will be
more likely to occur at triangles with large areas than at those with small areas.
Note that if we changed the test to fabs(a)<= epsilon, then triangles would
have two sides. This is not necessary for correct models of real, opaque objects;
however, for rendering mathematical models or models with errors in them it can
be convenient. Later we will depend on optimizations that allow us to quickly cull
the (approximately half) of the scene representing back faces, so we choose to
render single-sided triangles here for consistency.

The epsilon2 constant allows a ray to intersect a triangle slightly outside the
bounds of the triangle. This ensures that triangles that share an edge completely
cover pixels along that edge despite numerical precision limits. If epsilon2 is
too small, then single-pixel holes will very occasionally appear on that edge. If it
is too large, then all triangles will visibly appear to be too large.

Depending on your processor architecture, it may be faster to perform an early
test and potential return rather than allowing not-a-number and infinity propaga-
tion in the ill-conditioned case where a ≈ 0. Many values can also be precom-
puted, for example, the edge lengths of the triangle, or at least be reused within
a single intersection, for example, 1.0f / a. There’s a cottage industry of opti-
mizing this intersection code for various architectures, compilers, and scene types
(e.g., [MT97] for scalar processors versus [WBB08] for vector processors). Let’s
forgo those low-level optimizations and stick to high-level algorithmic decisions.
In practice, most ray casters spend very little time in the ray intersection code
anyway. The fastest way to determine if a ray intersects a triangle is to never ask
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that question in the first place. That is, in Chapter 37, we will introduce data struc-
tures that quickly and conservatively eliminate whole sets of triangles that the ray
could not possibly intersect, without ever performing the ray-triangle intersection.
So optimizing this routine now would only complicate it without affecting our
long-term performance profile.

Our renderer only processes triangles. We could easily extend it to render
scenes containing any kind of primitive for which we can provide a ray intersec-
tion solution. Surfaces defined by low-order equations, like the plane, rectangle,
sphere, and cylinder, have explicit solutions. For others, such as bicubic patches,
we can use root-finding methods.

15.4.4 Debugging

We now verify that the intersection code code is correct. (The code we’ve given
you is correct, but if you invoked it with the wrong parameters, or introduced an
error when porting to a different language or support code base, then you need to
learn how to find that error.) This is a good opportunity for learning some addi-
tional graphics debugging tricks, all of which demonstrate the Visual Debugging
principle.

It would be impractical to manually examine every intersection result in a
debugger or printout. That is because the rayTrace function invokes intersect
thousands of times. So instead of examining individual results, we visualize the
barycentric coordinates by setting the radiance at a pixel to be proportional to the
barycentric coordinates following the Visual Debugging principle. Figure 15.6
shows the correct resultant image. If your program produces a comparable result,
then your program is probably nearly correct.

Figure 15.6: The single triangle
scene visualized with color equal
to barycentric weight for debug-
ging the intersection code.

What should you do if your result looks different? You can’t examine every
result, and if you place a breakpoint in intersect, then you will have to step
through hundreds of ray casts that miss the triangle before coming to the interest-
ing intersection tests.

This is why we structured rayTrace to trace within a caller-specified rectan-
gle, rather than the whole image. We can invoke the ray tracer on a single pixel
from main(), or better yet, create a debugging interface where clicking on a pixel
with the mouse invokes the single-pixel trace on the selected pixel. By setting
breakpoints or printing intermediate results under this setup, we can investigate
why an artifact appears at a specific pixel. For one pixel, the math is simple enough
that we can also compute the desired results by hand and compare them to those
produced by the program.

In general, even simple graphics programs tend to have large amounts of data.
This may be many triangles, many pixels, or many frames of animation. The
processing for these may also be running on many threads, or on a GPU. Tra-
ditional debugging methods can be hard to apply in the face of such numerous
data and massive parallelism. Furthermore, the graphics development environment
may preclude traditional techniques such as printing output or setting breakpoints.
For example, under a hardware rendering API, your program is executing on an
embedded processor that frequently has no access to the console and is inaccessi-
ble to your debugger.

Fortunately, three strategies tend to work well for graphics debugging.

1. Use assertions liberally. These cost you nothing in the optimized version of
the program, pass silently in the debug version when the program operates
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correctly, and break the program at the test location when an assertion is
violated. Thus, they help to identify failure cases without requiring that
you manually step through the correct cases.

2. Immediately reduce to the minimal test case. This is often a single-triangle
scene with a single light and a single pixel. The trick here is to find the
combination of light, triangle, and pixel that produces incorrect results.
Assertions and the GUI click-to-debug scheme work well for that.

3. Visualize intermediate results. We have just rendered an image of the
barycentric coordinates of eye-ray intersections with a triangle for a
400,000-pixel image. Were we to print out these values or step through
them in the debugger, we would have little chance of recognizing an incor-
rect value in that mass of data. If we see, for example, a black pixel, or a
white pixel, or notice that the red and green channels are swapped, then we
may be able to deduce the nature of the error that caused this, or at least
know which inputs cause the routine to fail.

15.4.5 Shading

We are now ready to implement shade. This routine computes the incident radi-
ance at the intersection point P and how much radiance scatters back along the eye
ray to the viewer.

Let’s consider only light transport paths directly from the source to the surface
to the camera. Under this restriction, there is no light arriving at the surface from
any directions except those to the lights. So we only need to consider a finite
number of vi values. Let’s also assume for the moment that there is always a line
of sight to the light. This means that there will (perhaps incorrectly) be no shadows
in the rendered image.

Listing 15.17 iterates over the light sources in the scene (note that we have
only one in our test scene). For each light, the loop body computes the distance
and direction to that light from the point being shaded. Assume that lights emit
uniformly in all directions and are at finite locations in the scene. Under these
assumptions, the incident radiance L_i at point P is proportional to the total power
of the source divided by the square of the distance between the source and P.
This is because at a given distance, the light’s power is distributed equally over
a sphere of that radius. Because we are ignoring shadowing, let the visible

function always return true for now. In the future it will return false if there is
no line of sight from the source to P, in which case the light should contribute no
incident radiance.

The outgoing radiance to the camera, L_o, is the sum of the fraction of incident
radiance that scatters in that direction. We abstract the scattering function into a
BSDF. We implement this function as a class so that it can maintain state across
multiple invocations and support an inheritance hierarchy. Later in this book, we
will also find that it is desirable to perform other operations beyond invoking this
function; for example, we might want to sample with respect to the probability
distribution it defines. Using a class representation will allow us to later introduce
additional methods for these operations.

The evaluateFiniteScatteringDensity method of that class evaluates
the scattering function for the given incoming and outgoing angles. We always
then take the product of this and the incoming radiance, modulated by the cosine
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Listing 15.17: The single-bounce shading code.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

void shade(const Scene& scene, const Triangle& T, const Point3& P,
const Vector3& n, const Vector3& w_o, Radiance3& L_o) {

L_o = Color3(0.0f, 0.0f, 0.0f);

// For each direction (to a light source)
for (unsigned int i = 0; i < scene.lightArray.size(); ++i) {

const Light& light = scene.lightArray[i];

const Vector3& offset = light.position - P;
const float distanceToLight = offset.length();
const Vector3& w_i = offset / distanceToLight;

if (visible(P, w_i, distanceToLight, scene)) {
const Radiance3& L_i = light.power / (4 * PI * square(distanceToLight));

// Scatter the light
L_o +=

L_i *
T.bsdf(n).evaluateFiniteScatteringDensity(w_i, w_o) *
max(0.0, dot(w_i, n));

}
}

}

of the angle between w_i and n to account for the projected area over which
incident radiance is distributed (by the Tilting principle).

15.4.6 Lambertian Scattering

The simplest implementation of the BSDF assumes a surface appears to
be the same brightness independent of the viewer’s orientation. That is,
evaluateFiniteScatteringDensity returns a constant. This is called Lam-
bertian reflectance, and it is a good model for matte surfaces such as paper and
flat wall paint. It is also trivial to implement. Listing 15.18 gives the implementa-
tion (see Section 14.9.1 for a little more detail and Chapter 29 for a lot more). It
has a single member, lambertian, that is the “color” of the surface. For energy
conservation, this value should have all fields on the range [0, 1].

Listing 15.18: Lambertian BSDF implementation, following Listing 14.6.

1
2
3
4
5
6
7
8
9

10
11
12

class BSDF {
public:

Color3 k_L;

/** Returns f = L_o / (L_i * w_i.dot(n)) assuming
incident and outgoing directions are both in the
positive hemisphere above the normal */
Color3 evaluateFiniteScatteringDensity

(const Vector3& w_i, const Vector3& w_o) const {
return k_L / PI;

}
};

Figure 15.7: A green Lambertian
triangle.

Figure 15.7 shows our triangle scene rendered with the Lambertian
BSDF using k_L=Color3(0.0f, 0.0f, 0.8f). Because our triangle’s vertex
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normals are deflected away from the plane defined by the vertices, the triangle
appears curved. Specifically, the bottom of the triangle is darker because the
w_i.dot(n) term in line 20 of Listing 15.17 falls off toward the bottom of the
triangle.

15.4.7 Glossy Scattering

The Lambertian surface appears dull because it has no highlight. A common
approach for producing a more interesting shiny surface is to model it with some-
thing like the Blinn-Phong scattering function. An implementation of this function
with the energy conservation factor from Sloan and Hoffmann [AMHH08, 257]
is given in Listing 15.19. See Chapter 27 for a discussion of the origin of this
function and alternatives to it. This is a variation on the shading function that we
saw back in Chapter 6 in WPF, only now we are implementing it instead of just
adjusting the parameters on a black box. The basic idea is simple: Extend the
Lambertian BSDF with a large radial peak when the normal lies close to halfway
between the incoming and outgoing directions. This peak is modeled by a cosine
raised to a power since that is easy to compute with dot products. It is scaled so
that the outgoing radiance never exceeds the incoming radiance and so that the
sharpness and total intensity of the peak are largely independent parameters.

Listing 15.19: Blinn-Phong BSDF scattering density.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

class BSDF {
public:

Color3 k_L;
Color3 k_G;
float s;
Vector3 n;
. . .

Color3 evaluateFiniteScatteringDensity(const Vector3& w_i,
const Vector3& w_o) const {
const Vector3& w_h = (w_i + w_o).direction();
return

(k_L + k_G * ((s + 8.0f) *
powf(std::max(0.0f, w_h.dot(n)), s) / 8.0f)) /

PI;

}
};

For this BSDF, choose lambertian + glossy < 1 at each color channel
to ensure energy conservation, and glossySharpness typically in the range
[0, 2000]. The glossySharpness is on a logarithmic scale, so it must be moved
in larger increments as it becomes larger to have the same perceptual impact.

Figure 15.8 shows the green triangle rendered with the normalized Blinn-
Phong BSDF. Here, k_L=Color3(0.0f, 0.0f, 0.8f), k_G=Color3(0.2f,
0.2f, 0.2f), and s=100.0f.

Figure 15.8: Triangle rendered
with a normalized Blinn-Phong
BSDF.

15.4.8 Shadows

The shade function in Listing 15.17 only adds the illumination contribution from
a light source if there is an unoccluded line of sight between that source and the
point P being shaded. Areas that are occluded are therefore darker. This absence
of light is the phenomenon that we recognize as a shadow.
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In our implementation, the line-of-sight visibility test is performed by the
visible function, which is supposed to return true if and only if there is an
unoccluded line of sight. While working on the shading routine we temporarily
implemented visible to always return true, which means that our images con-
tain no shadows. We now revisit the visible function in order to implement
shadows.

We already have a powerful tool for evaluating line of sight: the intersect
function. The light source is not visible from P if there is some intersection with
another triangle. So we can test visibility simply by iterating over the scene again,
this time using the shadow ray from P to the light instead of from the camera to
P. Of course, we could also test rays from the light to P.

Listing 15.20 shows the implementation of visible. The structure is very
similar to that of sampleRayTriangle. It has three major differences in the
details. First, instead of shading the intersection, if we find any intersection we
immediately return false for the visibility test. Second, instead of casting rays
an infinite distance, we terminate when they have passed the light source. That is
because we don’t care about triangles past the light—they could not possibly cast
shadows on P. Third and finally, we don’t really start our shadow ray cast at P.
Instead, we offset it slightly along the ray direction. This prevents the ray from
reintersecting the surface containing P as soon as it is cast.

Listing 15.20: Line-of-sight visibility test, to be applied
to shadow determination.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

bool visible(const Vector3& P, const Vector3& direction, float
distance, const Scene& scene){
static const float rayBumpEpsilon = 1e-4;
const Ray shadowRay(P + direction * rayBumpEpsilon, direction);

distance -= rayBumpEpsilon;

// Test each potential shadow caster to see if it lies between P and the light
float ignore[3];
for (unsigned int s = 0; s < scene.triangleArray.size(); ++s) {

if (intersect(shadowRay, scene.triangleArray[s], ignore) < distance) {
// This triangle is closer than the light
return false;

}
}

return true;
}

Our single-triangle scene is insufficient for testing shadows. We require one
object to cast shadows and another to receive them. A simple extension is to add
a quadrilateral “ground plane” onto which the green triangle will cast its shadow.
Listing 15.21 gives code to create this scene. Note that this code also adds another
triangle with the same vertices as the green one but the opposite winding order.
Because our triangles are single-sided, the green triangle would not cast a shadow.
We need to add the back of that surface, which will occlude the rays cast upward
toward the light from the ground. Figure 15.9: The green trian-

gle scene extended with a two-
triangle gray ground “plane.” A
back surface has also been added
to the green triangle.

Inline Exercise 15.7: Walk through the intersection code to verify the claim
that without the second “side,” the green triangle would cast no shadow.
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Figure 15.9 shows how the new scene should render before you implement
shadows. If you do not see the ground plane under your own implementation, the
most likely error is that you failed to loop over all triangles in one of the ray-
casting routines.

Listing 15.21: Scene-creation code for a two-sided triangle and a ground plane.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

void makeOneTriangleScene(Scene& s) { s.triangleArray.resize(1);

s.triangleArray[0] =
Triangle(Vector3(0,1,-2), Vector3(-1.9,-1,-2), Vector3(1.6,-0.5,-2),

Vector3(0,0.6f,1).direction(),
Vector3(-0.4f,-0.4f, 1.0f).direction(),
Vector3(0.4f,-0.4f, 1.0f).direction(),
BSDF(Color3::green() * 0.8f,Color3::white() * 0.2f, 100));

s.lightArray.resize(1);
s.lightArray[0].position = Point3(1, 3, 1);
s.lightArray[0].power = Color3::white() * 10.0f;

}

void makeTrianglePlusGroundScene(Scene& s) {
makeOneTriangleScene(s);

// Invert the winding of the triangle
s.triangleArray.push_back
(Triangle(Vector3(-1.9,-1,-2), Vector3(0,1,-2),

Vector3(1.6,-0.5,-2), Vector3(-0.4f,-0.4f, 1.0f).direction(),
Vector3(0,0.6f,1).direction(), Vector3(0.4f,-0.4f, 1.0f).direction(),
BSDF(Color3::green() * 0.8f,Color3::white() * 0.2f, 100)));

// Ground plane
const float groundY = -1.0f;
const Color3 groundColor = Color3::white() * 0.8f;
s.triangleArray.push_back
(Triangle(Vector3(-10, groundY, -10), Vector3(-10, groundY, -0.01f),

Vector3(10, groundY, -0.01f),
Vector3::unitY(), Vector3::unitY(), Vector3::unitY(), groundColor));

s.triangleArray.push_back
(Triangle(Vector3(-10, groundY, -10), Vector3(10, groundY, -0.01f),

Vector3(10, groundY, -10),
Vector3::unitY(), Vector3::unitY(), Vector3::unitY(), groundColor));

}

Figure 15.10: A four-triangle
scene, with ray-cast shadows
implemented via the visible
function. The green triangle is
two-sided.

Figure 15.10 shows the scene rendered with visible implemented correctly.
If the rayBumpEpsilon is too small, then shadow acne will appear on the
green triangle. This artifact is shown in Figure 15.11. An alternative to start-
ing the ray artificially far from P is to explicitly exclude the previous triangle
from the shadow ray intersection computation. We chose not to do that because,
while appropriate for unstructured triangles, it would be limiting to maintain that
custom ray intersection code as our scene became more complicated. For exam-
ple, we would like to later abstract the scene data structure from a simple array
of triangles. The abstract data structure might internally employ a hash table or
tree and have complex methods. Pushing the notion of excluding a surface into
such a data structure could complicate that data structure and compromise its
general-purpose use. Furthermore, although we are rendering only triangles now,
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we might wish to render other primitives in the future, such as spheres or implicit
surfaces. Such primitives can intersect a ray multiple times. If we assume that
the shadow ray never intersects the current surface, those objects would never
self-shadow.

Figure 15.11: The dark dots on
the green triangle are shadow
acne caused by self-shadowing.
This artifact occurs when the
shadow ray immediately inter-
sects the triangle that was being
shaded.

15.4.9 A More Complex Scene

Figure 15.12: A scene composed
of many triangles.

Now that we’ve built a renderer for one or two triangles, it is no more difficult to
render scenes containing many triangles. Figure 15.12 shows a shiny, gold-colored
teapot on a white ground plane. We parsed a file containing the vertices of the cor-
responding triangle mesh, appended those triangles to the Scene’s triangle array,
and then ran the existing renderer on it. This scene contains about 100 triangles,
so it renders about 100 times slower than the single-triangle scene. We can make
arbitrarily more complex geometry and shading functions for the renderer. We are
only limited by the quality of our models and our rendering performance, both of
which will be improved in subsequent chapters.

This scene looks impressive (at least, relative to the single triangle) for
two reasons. First, we see some real-world phenomena, such as shiny high-
lights, shadows, and nice gradients as light falls off. These occurred naturally
from following the geometric relationships between light and surfaces in our
implementation.

Second, the image resembles a recognizable object, specifically, a teapot.
Unlike the illumination phenomena, nothing in our code made this look like a
teapot. We simply loaded a triangle list from a data file that someone (originally,
Jim Blinn) happened to have manually constructed. This teapot triangle list is a
classic model in graphics. You can download the triangle mesh version used here
from http://graphics.cs.williams.edu/data among other sources. Creating
models like this is a separate problem from rendering, discussed in Chapter 22
and many others. Fortunately, there are many such models available, so we can
defer the modeling problem while we discuss rendering.

We can learn a lesson from this. A strength and weakness of computer graphics
as a technical field is that often the data contributes more to the quality of the final
image than the algorithm. The same algorithm rendered the teapot and the green
triangle, but the teapot looks more impressive because the data is better. Often a
truly poor approximation algorithm will produce stunning results when a master
artist creates the input—the commercial success of the film and game industries
has largely depended on this fact. Be aware of this when judging algorithms based
on rendered results, and take advantage of it by importing good artwork to demon-
strate your own algorithms.

15.5 Intermezzo

To render a scene, we needed to iterate over both triangles and pixels. In the pre-
vious section, we arbitrarily chose to arrange the pixel loop on the outside and the
triangle loop on the inside. That yielded the ray-casting algorithm. The ray-casting
algorithm has three nice properties: It somewhat mimics the underlying physics, it
separates the visibility routine from the shading routine, and it leverages the same
ray-triangle intersection routine for both eye rays and shadow rays.

http://graphics.cs.williams.edu/data
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Admittedly, the relationship between ray casting and physics at the level
demonstrated here is somewhat tenuous. Real photons propagate along rays from
the light source to a surface to an eye, and we traced that path backward. Real pho-
tons don’t all scatter into the camera. Most photons from the light source scatter
away from the camera, and much of the light that is scattered toward the camera
from a surface didn’t arrive at that surface directly from the light. Nonetheless,
an algorithm for sampling light along rays is a very good starting point for sam-
pling photons, and it matches our intuition about how light should propagate. You
can probably imagine improvements that would better model the true scattering
behavior of light. Much of the rest of this book is devoted to such models.

In the next section, we invert the nesting order of the loops to yield a ras-
terizer algorithm. We then explore the implications of that change. We already
have a working ray tracer to compare against. Thus, we can easily test the correct-
ness of our changes by comparing against the ray-traced image and intermediate
results. We also have a standard against which to measure the properties of the
new algorithm. As you read the following section and implement the program
that it describes, consider how the changes you are making affect code clarity,
modularity, and efficiency. Particularly consider efficiency in both a wall-clock
time and an asymptotic run time sense. Think about applications for which one of
rasterization and ray casting is a better fit than the other.

These issues are not restricted to our choice of the outer loop. All high-
performance renderers subdivide the scene and the image in sophisticated ways.
The implementer must choose how to make these subdivisions and for each must
again revisit whether to iterate first over pixels (i.e., ray directions) or triangles.
The same considerations arise at every level, but they are evaluated differently
based on the expected data sizes at that level and the machine architecture.

15.6 Rasterization

We now move on to implement the rasterizing renderer, and compare it to the
ray-casting renderer, observing places where each is more efficient and how
the restructuring of the code allows for these efficiencies. The relatively tiny
change turns out to have substantial impact on computation time, communication
demands, and cache coherence.

15.6.1 Swapping the Loops

Listing 15.22 shows an implementation of rasterize that corresponds closely to
rayTrace with the nesting order inverted. The immediate implication of inverting
the loop order is that we must store the distance to the closest known intersection
at each pixel in a large buffer (depthBuffer), rather than in a single float. This
is because we no longer process a single pixel to completion before moving to
another pixel, so we must store the intermediate processing state. Some imple-
mentations store the depth as a distance along the z-axis, or as the inverse of that
distance. We choose to store distance along an eye ray to more closely match the
ray-caster structure.

The same intermediate state problem arises for the ray R. We could create a
buffer of rays. In practice, the rays are fairly cheap to recompute and don’t justify
storage, and we will soon see alternative methods for eliminating the per-pixel ray
computation altogether.
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Listing 15.22: Rasterizer implemented by simply inverting the nesting order of
the loops from the ray tracer, but adding a DepthBuffer.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

void rasterize(Image& image, const Scene& scene, const Camera& camera){

const int w = image.width(), h = image.height();
DepthBuffer depthBuffer(w, h, INFINITY);

// For each triangle
for (unsigned int t = 0; t < scene.triangleArray.size(); ++t) {
const Triangle& T = scene.triangleArray[t];

// Very conservative bounds: the whole screen
const int x0 = 0;
const int x1 = w;

const int y0 = 0;
const int y1 = h;

// For each pixel
for (int y = y0; y < y1; ++y) {
for (int x = x0; x < x1; ++x) {
const Ray& R = computeEyeRay(x, y, w, h, camera);

Radiance3 L_o;
float distance = depthBuffer.get(x, y);
if (sampleRayTriangle(scene, x, y, R, T, L_o, distance)) {
image.set(x, y, L_o);
depthBuffer.set(x, y, distance);

}
}

}
}

}

The DepthBuffer class is similar to Image, but it stores a single float at
each pixel. Buffers over the image domain are common in computer graphics.
This is a good opportunity for code reuse through polymorphism. In C++, the
main polymorphic language feature is the template, which corresponds to tem-
plates in C# and generics in Java. One could design a templated Buffer class and
then instantiate it for Radiance3, float, or whatever per-pixel data was desired.
Since methods for saving to disk or gamma correction may not be appropriate
for all template parameters, those are best left to subclasses of a specific template
instance.

For the initial rasterizer implementation, this level of design is not required.
You may simply implement DepthBuffer by copying the Image class imple-
mentation, replacing Radiance3 with float, and deleting the display and save
methods. We leave the implementation as an exercise.

Inline Exercise 15.8: Implement DepthBuffer as described in the text.

After implementing Listing 15.22, we need to test the rasterizer. At this time,
we trust our ray tracer’s results. So we run the rasterizer and ray tracer on the
same scene, for which they should generate identical pixel values. As before, if
the results are not identical, then the differences may give clues about the nature of
the bug.
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15.6.2 Bounding-Box Optimization

So far, we implemented rasterization by simply inverting the order of the for-
each-triangle and for-each-pixel loops in a ray tracer. This performs many ray-
triangle intersection tests that will fail. This is referred to as poor sample test
efficiency.

We can significantly improve sample test efficiency, and therefore perfor-
mance, on small triangles by only considering pixels whose centers are near the
projection of the triangle. To do this we need a heuristic for efficiently bound-
ing each triangle’s projection. The bound must be conservative so that we never
miss an intersection. The initial implementation already used a very conservative
bound. It assumed that every triangle’s projection was “near” every pixel on the
screen. For large triangles, that may be true. For triangles whose true projection is
small in screen space, that bound is too conservative.

The best bound would be a triangle’s true projection, and many rasterizers
in fact use that. However, there are significant amounts of boilerplate and corner
cases in iterating over a triangular section of an image, so here we will instead
use a more conservative but still reasonable bound: the 2D axis-aligned bounding
box about the triangle’s projection. For a large nondegenerate triangle, this covers
about twice the number of pixels as the triangle itself.

Inline Exercise 15.9: Why is it true that a large-area triangle covers at most
about half of the samples of its bounding box? What happens for a small
triangle, say, with an area smaller than one pixel? What are the implications
for sample test efficiency if you know the size of triangles that you expect to
render?

The axis-aligned bounding box, however, is straightforward to compute and
will produce a significant speedup for many scenes. It is also the method favored
by many hardware rasterization designs because the performance is very pre-
dictable, and for very small triangles the cost of computing a more accurate bound
might dominate the ray-triangle intersection test.

The code in Listing 15.23 determines the bounding box of a triangle T. The
code projects each vertex from the camera’s 3D reference frame onto the plane
z = −1, and then maps those vertices into the screen space 2D reference frame.
This operation is handled entirely by the perspectiveProject helper function.
The code then computes the minimum and maximum screen-space positions of
the vertices and rounds them (by adding 0.5 and then casting the floating-point
values to integers) to integer pixel locations to use as the for-each-pixel bounds.

The interesting work is performed by perspectiveProject. This inverts
the process that computeEyeRay performed to find the eye-ray origin (before
advancing it to the near plane). A direct implementation following that deriva-
tion is given in Listing 15.24. Chapter 13 gives a derivation for this operation as a
matrix-vector product followed by a homogeneous division operation. That imple-
mentation is more appropriate when the perspective projection follows a series of
other transformations that are also expressed as matrices so that the cost of the
matrix-vector product can be amortized over all transformations. This version is
potentially more computationally efficient (assuming that the constant subexpres-
sions are precomputed) for the case where there are no other transformations; we
also give this version to remind you of the derivation of the perspective projection
matrix.
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Listing 15.23: Projecting vertices and computing the screen-space bounding box.

1
2
3
4
5

6
7
8
9

10
11
12
13
14

Vector2 low(image.width(), image.height());
Vector2 high(0, 0);

for (int v = 0; v < 3; ++v) {
const Vector2& X = perspectiveProject(T.vertex(v), image.width

(), image.height(), camera);
high = high.max(X);
low = low.min(X);

}

const int x0 = (int)(low.x + 0.5f);
const int x1 = (int)(high.x + 0.5f);

const int y0 = (int)(low.y + 0.5f);
const int y1 = (int)(high.y + 0.5f);

Listing 15.24: Perspective projection.

1
2

3
4
5
6
7
8
9

10
11
12
13
14
15

Vector2 perspectiveProject(const Vector3& P, int width, int height,
const Camera& camera) {

// Project onto z = -1
Vector2 Q(-P.x / P.z, -P.y / P.z);

const float aspect = float(height) / width;

// Compute the side of a square at z = -1 based on our
// horizontal left-edge-to-right-edge field of view
const float s = -2.0f * tan(camera.fieldOfViewX * 0.5f);

Q.x = width * (-Q.x / s + 0.5f);
Q.y = height * (Q.y / (s * aspect) + 0.5f);

return Q;
}

Integrate the listings from this section into your rasterizer and run it. The
results should exactly match the ray tracer and simpler rasterizer. Furthermore,
it should be measurably faster than the simple rasterizer (although both are likely
so fast for simple scenes that rendering seems instantaneous).

Simply verifying that the output matches is insufficient testing for this opti-
mization. We’re computing bounds, and we could easily have computed bounds
that were way too conservative but still happened to cover the triangles for the test
scene.

A good follow-up test and debugging tool is to plot the 2D locations to which
the 3D vertices projected. To do this, iterate over all triangles again, after the scene
has been rasterized. For each triangle, compute the projected vertices as before.
But this time, instead of computing the bounding box, directly render the projected
vertices by setting the corresponding pixels to white (of course, if there were bright
white objects in the scene, another color, such as red, would be a better choice!).
Our single-triangle test scene was chosen to be asymmetric. So this test should
reveal common errors such as inverting an axis, or a half-pixel shift between the
ray intersection and the projection routine.
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15.6.3 Clipping to the Near Plane

Note that we can’t apply perspectiveProject to points for which z ≥ 0 to
generate correct bounds in the invoking rasterizer. A common solution to this
problem is to introduce some “near” plane z = zn for zn < 0 and clip the triangle
to it. This is the same as the near plane (zNear in the code) that we used earlier to
compute the ray origin—since the rays began at the near plane, the ray tracer was
also clipping the visible scene to the plane.

Clipping may produce a triangle, a degenerate triangle that is a line or point at
the near plane, no intersection, or a quadrilateral. In the latter case we can divide
the quadrilateral along one diagonal so that the output of the clipping algorithm is
always either empty or one or two (possibly degenerate) triangles.

Clipping is an essential part of many rasterization algorithms. However, it can
be tricky to implement well and distracts from our first attempt to simply pro-
duce an image by rasterization. While there are rasterization algorithms that never
clip [Bli93, OG97], those are much more difficult to implement and optimize. For
now, we’ll ignore the problem and require that the entire scene is on the opposite
side of the near plane from the camera. See Chapter 36 for a discussion of clipping
algorithms.

15.6.4 Increasing Efficiency

15.6.4.1 2D Coverage Sampling
Having refactored our renderer so that the inner loop iterates over pixels instead of
triangles, we now have the opportunity to substantially amortize much of the work
of the ray-triangle intersection computation. Doing so will also build our insight
for the relationship between a 3D triangle and its projection, and hint at how it is
possible to gain the large constant performance factors that make the difference
between offline and interactive rendering.

The first step is to transform the 3D ray-triangle intersection test by projection
into a 2D point-in-triangle test. In rasterization literature, this is often referred to
as the visibility problem or visibility testing. If a pixel center does not lie in the
projection of a triangle, then the triangle is certainly “invisible” when we look
through the center of projection of that pixel. However, the triangle might also
be invisible for other reasons, such as a nearer triangle that occludes it, which is
not considered here. Another term that has increasing popularity is more accu-
rate: coverage testing, as in “Does the triangle cover the sample?” Coverage is a
necessary but not sufficient condition for visibility.

We perform the coverage test by finding the 2D barycentric coordinates of
every pixel center within the bounding box. If the 2D barycentric coordinates at
a pixel center show that the pixel center lies within the projected triangle, then
the 3D ray through the pixel center will also intersect the 3D triangle [Pin88].
We’ll soon see that computing the 2D barycentric coordinates of several adjacent
pixels can be done very efficiently compared to computing the corresponding 3D
ray-triangle intersections.

15.6.4.2 Perspective-Correct Interpolation
For shading we will require the 3D barycentric coordinates of every ray-triangle
intersection that we use, or some equivalent way of interpolating vertex attributes
such as surface normals, texture coordinates, and per-vertex colors. We cannot
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directly use the 2D barycentric coordinates from the coverage test for shading.
That is because the 3D barycentric coordinates of a point on the triangle and the
2D barycentric coordinates of the projection of that point within the projection
of the triangle are generally not equal. This can be seen in Figure 15.13. The
figure shows a square in 3D with vertices A, B, C, and D, viewed from an oblique
perspective so that its 2D projection is a trapezoid. The centroid of the 3D square is
point E, which lies at the intersection of the diagonals. Point E is halfway between
3D edges AB and CD, yet in the 2D projection it is clearly much closer to edge CD.
In terms of triangles, for triangle ABC, the 3D barycentric coordinates of E must
be wA = 1

2 , wB = 0, wC = 1
2 . The projection of E is clearly not halfway along the

2D line segment between the projections of A and C. (We saw this phenomenon
in Chapter 10 as well.)

A B

CD

E

Figure 15.13: E is the centroid
of square ABCD in 3D, but its
projection is not the centroid of
the projection of the square. This
can be seen from the fact that the
three dashed lines are not evenly
spaced in 2D.Fortunately, there is an efficient analog to 2D linear interpolation for pro-

jected 3D linear interpolation. This is interchangeably called hyperbolic interpo-
lation [Bli93], perspective-correct interpolation [OG97], and rational linear
interpolation [Hec90].

The perspective-correct interpolation method is simple. We can express it intu-
itively as, for each scalar vertex attribute u, linearly interpolate both u′ = u/z and
1/z in screen space. At each pixel, recover the 3D linearly interpolated attribute
value from these by u = u′/(1/z). See the following sidebar for a more formal
explanation of why this works.

Let u(x, y, z) be some scalar attribute (e.g., albedo, u texture coordinate)
that varies linearly over the polygon. Two equivalent definitions may be more
intuitive: (a) u is defined at vertices by specific values and varies by barycen-
tric interpolation between them; (b) u has the form of a 3D plane equation,
u(x, y, z) = ax + by + cz + d.

When the polygon is projected into screen space by the transformation
(x, y, z)→ (−x/z,−y/z,−1) for an image plane at z = −1, then the function
−u(x, y, z)/z varies linearly in screen space. Instead of linear interpolation
in screen space, we need to perform a kind of “hyperbolic interpolation” to
correctly evaluate u as follows.

Let P and Q be points on the 3D polygon, and let u(P) and u(Q) be some
function that varies linearly across the plane of the 3D polygon evaluated at
those points. Let P′ = −P/zP be the projection of P and Q′ = −Q/zQ be the
projection of Q. At point M on line PQ that projects to M′ = αP′+(1−α)Q′,
the value of u(M) satisfies

u(M)

−zM
= α

u(P)
−zP

+ (1− α)
u(Q)

−zQ
, (15.5)

while −1/zM satisfies

1
−zM

= α
1
−zP

+ (1− α)
1
−zQ

. (15.6)

Solving for u(M) yields

u(M) =
α u(P)

−zP
+ (1− α) u(Q)

−zQ

α 1
−zP

+ (1− α) 1
−zQ

. (15.7)
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Because for each screen raster (i.e., row of pixels) we hold P and Q constant
and vary α linearly, we can simplify the expression above to define a directly
parameterized function u′(α):

u′(α) =
α · zQ · u(P) + (1− α)zP · u(Q)

α · zQ + (1− α)zP
. (15.8)

This is often more casually, but memorably, phrased as “In screen space, the
perspective-correct interpolation of u is the quotient of the linear interpolation
of u/z by the linear interpolation of 1/z.”

We can apply the perspective-correct interpolation strategy to any number of
per-vertex attributes, including the vertex normals and texture coordinates. That
leaves us with input data for our shade function, which remains unchanged from
its implementation in the ray tracer.

15.6.4.3 2D Barycentric Weights
To implement the perspective-correct interpolation strategy, we need only find an
expression for the 2D barycentric weights at the center of each pixel. Consider
the barycentric weight corresponding to vertex A of a point Q within a triangle
ABC. Recall from Section 7.9 that this weight is the ratio of the distance from Q
to the line containing BC to the distance from A to the line containing BC, that is,
it is the relative distance across the triangle from the opposite edge. Listing 15.25
gives code for computing a barycentric weight in 2D.

Listing 15.25: Computing one barycentric weight in 2D.

1
2
3
4
5
6
7
8
9

10
11
12

/** Returns the distance from Q to the line containing B and A. */
float lineDistance2D(const Point2& A, const Point2& B, const Point2& Q) {

// Construct the line align:
const Vector2 n(A.y - B.y, B.x - A.x);
const float d = A.x * B.y - B.x * A.y;
return (n.dot(Q) + d) / n.length();

}

/** Returns the barycentric weight corresponding to vertex A of Q in triangle ABC */
float bary2D(const Point2& A, const Point2& B, const Point2& C, const Point2& Q) {

return lineDistance2D(B, C, Q) / lineDistance2D(B, C, A);
}

Inline Exercise 15.10: Under what condition could lineDistance2D return 0,
or n.length() be 0, leading to a division by zero? Change your rasterizer
to ensure that this condition never occurs. Why does this not affect the final
rendering? What situation does this correspond to in a ray caster? How did we
resolve that case when ray casting?

The rasterizer structure now requires a few changes from our previous version.
It will need the post-projection vertices of the triangle after computing the bound-
ing box in order to perform interpolation. We could either retain them from the
bounding-box computation or just compute them again when needed later. We’ll
recompute the values when needed because it trades a small amount of efficiency
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for a simpler interface to the bounding function, which makes the code easier to
write and debug. Listing 15.26 shows the bounding box-function. The rasterizer
must compute versions of the vertex attributes, which in our case are just the ver-
tex normals, that are scaled by the 1

z value (which we call w) for the corresponding
post-projective vertex. Both of those are per-triangle changes to the code. Finally,
the inner loop must compute visibility from the 2D barycentric coordinates instead
of from a ray cast. The actual shading computation remains unchanged from the
original ray tracer, which is good—we’re only looking at strategies for visibility,
not shading, so we’d like each to be as modular as possible. Listing 15.27 shows
the loop setup of the original rasterizer updated with the bounding-box and 2D
barycentric approach. Listing 15.28 shows how the inner loops change.

Listing 15.26: Bounding box for the projection of a triangle, invoked by
rasterize3 to establish the pixel iteration bounds.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

void computeBoundingBox(const Triangle& T, const Camera& camera,
const Image& image,
Point2 V[3], int& x0, int& y0, int& x1, int& y1) {

Vector2 high(image.width(), image.height());
Vector2 low(0, 0);

for (int v = 0; v < 3; ++v) {
const Point2& X = perspectiveProject(T.vertex(v), image.width(),

image.height(), camera);
V[v] = X;
high = high.max(X);
low = low.min(X);

}

x0 = (int)floor(low.x);
x1 = (int)ceil(high.x);

y0 = (int)floor(low.y);
y1 = (int)ceil(high.y);

}

Listing 15.27: Iteration setup for a barycentric (edge align) rasterizer.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

/** 2D barycentric evaluation w. perspective-correct attributes */
void rasterize3(Image& image, const Scene& scene,

const Camera& camera){
DepthBuffer depthBuffer(image.width(), image.height(), INFINITY);

// For each triangle
for (unsigned int t = 0; t < scene.triangleArray.size(); ++t) {
const Triangle& T = scene.triangleArray[t];

// Projected vertices
Vector2 V[3];
int x0, y0, x1, y1;
computeBoundingBox(T, camera, image, V, x0, y0, x1, y1);

// Vertex attributes, divided by -z
float vertexW[3];
Vector3 vertexNw[3];
Point3 vertexPw[3];
for (int v = 0; v < 3; ++v) {
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20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

const float w = -1.0f / T.vertex(v).z;
vertexW[v] = w;
vertexPw[v] = T.vertex(v) * w;
vertexNw[v] = T.normal(v) * w;

}

// For each pixel
for (int y = y0; y < y1; ++y) {
for (int x = x0; x < x1; ++x) {
// The pixel center
const Point2 Q(x + 0.5f, y + 0.5f);
. . .

}
}

}
}

Listing 15.28: Inner loop of a barycentric (edge align) rasterizer (see
Listing 15.27 for the loop setup).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

// For each pixel
for (int y = y0; y < y1; ++y) {
for (int x = x0; x < x1; ++x) {

// The pixel center
const Point2 Q(x + 0.5f, y + 0.5f);

// 2D Barycentric weights
const float weight2D[3] =
{bary2D(V[0], V[1], V[2], Q),
bary2D(V[1], V[2], V[0], Q),
bary2D(V[2], V[0], V[1], Q)};

if ((weight2D[0]>0) && (weight2D[1]>0) && (weight2D[2]>0)) {
// Interpolate depth
float w = 0.0f;
for (int v = 0; v < 3; ++v) {

w += weight2D[v] * vertexW[v];
}

// Interpolate projective attributes, e.g., P’, n’
Point3 Pw;
Vector3 nw;
for (int v = 0; v < 3; ++v) {
Pw += weight2D[v] * vertexPw[v];
nw += weight2D[v] * vertexNw[v];

}

// Recover interpolated 3D attributes; e.g., P’ -> P, n’ -> n
const Point3& P = Pw / w;
const Vector3& n = nw / w;

const float depth = P.length();
// We could also use depth = z-axis distance: depth = -P.z

// Depth test
if (depth < depthBuffer.get(x, y)) {
// Shade
Radiance3 L_o;
const Vector3& w_o = -P.direction();

// Make the surface normal have unit length
const Vector3& unitN = n.direction();
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43
44
45
46
47
48
49
50

shade(scene, T, P, unitN, w_o, L_o);

depthBuffer.set(x, y, depth);
image.set(x, y, L_o);

}
}

}
}

To just test coverage, we don’t need the magnitude of the barycentric weights.
We only need to know that they are all positive. That is, that the current sample
is on the positive side of every line bounding the triangle. To perform that test,
we could use the distance from a point to a line instead of the full bary2D result.
For this reason, this approach to rasterization is also referred to as testing the edge
aligns at each sample. Since we need the barycentric weights for interpolation
anyway, it makes sense to normalize the distances where they are computed. Our
first instinct is to delay that normalization at least until after we know that the
pixel is going to be shaded. However, even for performance, that is unnecessary—
if we’re going to optimize the inner loop, a much more significant optimization is
available to us.

In general, barycentric weights vary linearly along any line through a triangle.
The barycentric weight expressions are therefore linear in the loop variables x

and y. You can see this by expanding bary2D in terms of the variables inside
lineDistance2D, both from Listing 15.25. This becomes

bary2D(A, B, C, Vector2(x, y)) =
(n · (x, y)+ d)/|n|

(n · C+ d)/|n|
= r · x+ s · y+ t, (15.9)

where the constants r, s, and t depend only on the triangle, and so are invariant
across the triangle. We are particularly interested in properties invariant over hor-
izontal and vertical lines, since those are our iteration directions.

For instance, y is invariant over the innermost loop along a scanline. Because
the expressions inside the inner loop are constant in y (and all properties of T)
and linear in x, we can compute them incrementally by accumulating derivatives
with respect to x. That means that we can reduce all the computation inside the
innermost loop and before the branch to three additions. Following the same argu-
ment for y, we can also reduce the computation that moves between rows to three
additions. The only unavoidable operations are that for each sample that enters
the branch for shading, we must perform three multiplications per scalar attribute;
and we must perform a single division to compute z = −1/w, which is amortized
over all attributes.

15.6.4.4 Precision for Incremental Interpolation
We need to think carefully about precision when incrementally accumulating

derivatives rather than explicitly performing linear interpolation by the barycentric
coordinates. To ensure that rasterization produces complementary pixel coverage
for adjacent triangles with shared vertices (“watertight rasterization”), we must
ensure that both triangles accumulate the same barycentric values at the shared
edge as they iterate across their different bounding boxes. This means that we need
an exact representation of the barycentric derivative. To accomplish this, we must
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first round vertices to some imposed precision (say, one-quarter of a pixel width),
and must then choose a representation and maximum screen size that provide
exact storage.

The fundamental operation in the rasterizer is a 2D dot product to determine
the side of the line on which a point lies. So we care about the precision of a mul-
tiplication and an addition. If our screen resolution is w × h and we want k × k
subpixel positions for snapping or antialiasing, then we need �log2(k·max(w, h))�
bits to store each scalar value. At 1920×1080 (i.e., effectively 2048×2048) with
4 × 4 subpixel precision, that’s 14 bits. To store the product, we need twice as
many bits. In our example, that’s 28 bits. This is too large for the 23-bit man-
tissa portion of the IEEE 754 32-bit floating-point format, which means that we
cannot implement the rasterizer using the single-precision float data type. We
can use a 32-bit integer, representing a 24.4 fixed-point value. In fact, within that
integer’s space limitations we can increase screen resolution to 8192 × 8192 at
4 × 4 subpixel resolution. This is actually a fairly low-resolution subpixel grid,
however. In contrast, DirectX 11 mandates eight bits of subpixel precision in each
dimension. That is because under low subpixel precision, the aliasing pattern of a
diagonal edge moving slowly across the screen appears to jump in discrete steps
rather than evolve slowly with motion.

15.6.5 Rasterizing Shadows

Although we are now rasterizing primary visibility, our shade routine still deter-
mines the locations of shadows by casting rays. Shadowing from a local point
source is equivalent to “visibility” from the perspective of that source. So we can
apply rasterization to that visibility problem as well.

A shadow map [Wil78] is an auxiliary depth buffer rendered from a cam-
era placed at the light’s location. This contains the same distance information as
obtained by casting rays from the light to selected points in the scene. The shadow
map can be rendered in one pass over the scene geometry before the camera’s
view is rendered. Figure 15.14 shows a visualization of a shadow map, which is a
common debugging aid.

When a shadowing computation arises during rendering from the camera’s
view, the renderer uses the shadow map to resolve it. For a rendered point to be
unshadowed, it must be simultaneously visible to both the light and the camera.
Recall that we are assuming a pinhole camera and a point light source, so the

Figure 15.14: Left: A shadow map visualized with black = near the light and white = far
from the light. Right: The camera’s view of the scene with shadows.
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paths from the point to each are defined by line segments of known length and
orientation. Projecting the 3D point into the image space of the shadow map gives
a 2D point. At that 2D point (or, more precisely, at a nearby one determined by
rounding to the sampling grid for the shadow map) we previously stored the dis-
tance from the light to the first scene point, that is, the key information about the
line segment. If that stored distance is equal to the distance from the 3D point
to the 3D light source, then there must not have been any occluding surface and
our point is lit. If the distance is less, then the point is in shadow because the light
observes some other, shadow-casting, point first along the ray. This depth test must
of course be conservative and approximate; we know there will be aliasing from
both 2D discretization of the shadow map and its limited precision at each point.

Although we motivated shadow maps in the context of rasterization, they may
be generated by or used to compute shadowing with both rasterization and ray
casting renderers. There are often reasons to prefer to use the same visibility strat-
egy throughout an application (e.g., the presence of efficient rasterization hard-
ware), but there is no algorithmic constraint that we must do so.

When using a shadow map with triangle rasterization, we can amortize the
cost of perspective projection into the shadow map over the triangle by performing
most of the computational work at the vertices and then interpolating the results.
The result must be interpolated in a perspective-correct fashion, of course. The
key is that we want to be perspective-correct with respect to the matrix that maps
points in world space to the shadow map, not to the viewport.

Recall the perspective-correct interpolation that we used for positions and tex-
ture coordinates (see previous sidebar, which essentially relied on linearly inter-
polating quantities of the form �u/z and w = −1/z). If we multiply world-space
vertices by the matrix that transforms them into 2D shadow map coordinates but
do not perform the homogeneous division, then we have a value that varies linearly
in the homogeneous clip space of the virtual camera at the light that produces the
shadow map. In other words, we project each vertex into both the viewing cam-
era’s and the light camera’s homogeneous clip space. We next perform the homo-
geneous division for the visible camera only and interpolate the four-component
homogeneous vector representing the shadow map coordinate in a perspective-
correct fashion in screen space. We next perform the perspective division for the
shadow map coordinate at each pixel, paying only for the division and not the
matrix product at each pixel. This allows us to transform to the light’s projec-
tive view volume once per vertex and then interpolate those coordinates using the
infrastructure already built for interpolating other elements. The reuse of a gen-
eral interpolation mechanism and optimization of reducing transformations should
naturally suggest that this approach is a good one for a hardware implementation
of the graphics pipeline. Chapter 38 discusses how some of these ideas manifest
in a particular graphics processor.

15.6.6 Beyond the Bounding Box

A triangle touching O(n) pixels may have a bounding box containing O(n2)
pixels. For triangles with all short edges, especially those with an area of about
one pixel, rasterizing by iterating through all pixels in the bounding box is very
efficient. Furthermore, the rasterization workload is very predictable for meshes
of such triangles, since the number of tests to perform is immediately evident
from the box bounds, and rectangular iteration is generally easier than triangular
iteration.
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For triangles with some large edges, iterating over the bounding box is a poor
strategy because n2 � n for large n. In this case, other strategies can be more
efficient. We now describe some of these briefly. Although we will not explore
these strategies further, they make great projects for learning about hardware-
aware algorithms and primary visibility computation.

15.6.6.1 Hierarchical Rasterization
Since the bounding-box rasterizer is efficient for small triangles and is easy to
implement, a natural algorithmic approach is to recursively apply the bounding-
box algorithm at increasingly fine resolution. This strategy is called hierarchical
rasterization [Gre96].

Begin by dividing the entire image along a very coarse grid, such as into 16×
16 macro-pixels that cover the entire screen. Apply a conservative variation of the
bounding-box algorithm to these. Then subdivide the coarse grid and recursively
apply the rasterization algorithm within all of the macro cells that overlapped the
bounding box.

The algorithm could recur until the macro-pixels were actually a single pixel.
However, at some point, we are able to perform a large number of tests either with
Single Instruction Multiple Data (SIMD) operations or by using bitmasks packed
into integers, so it may not always be a good idea to choose a single pixel as the
base case. This is similar to the argument that you shouldn’t quicksort all the way
down to a length 1 array; for small problem sizes, the constant factors affect the
performance more than the asymptotic bound.

For a given precision, one can precompute all the possible ways that a line
passes through a tile of samples. These can be stored as bitmasks and indexed by
the line’s intercept points with the tile [FFR83, SW83]. For each line, using one
bit to encode whether the sample is in the positive half-plane of the line allows
an 8 × 8 pattern to fit in a single unsigned 64-bit integer. The bitwise AND of
the patterns for the three line aligns defining the triangle gives the coverage mask
for all 64 samples. One can use this trick to cull whole tiles efficiently, as well
as avoiding per-sample visibility tests. (Kautz et al. [KLA04] extended this to
a clever algorithm for rasterizing triangles onto hemispheres, which occurs fre-
quently when sampling indirect illumination.) Furthermore, one can process mul-
tiple tiles simultaneously on a parallel processor. This is similar to the way that
many GPUs rasterize today.

15.6.6.2 Chunking/Tiling Rasterization
A chunking rasterizer, a.k.a. a tiling rasterizer, subdivides the image into rectan-
gular tiles, as if performing the first iteration of hierarchical rasterization. Instead
of rasterizing a single triangle and performing recursive subdivision of the image,
it takes all triangles in the scene and bins them according to which tiles they touch.
A single triangle may appear in multiple bins.

The tiling rasterizer then uses some other method to rasterize within each tile.
One good choice is to make the tiles 8× 8 or some other size at which brute-force
SIMD rasterization by a lookup table is feasible.

Working with small areas of the screen is a way to combine some of the best
aspects of rasterization and ray casting. It maintains both triangle list and buffer
memory coherence. It also allows triangle-level sorting so that visibility can be
performed analytically instead of using a depth buffer. That allows both more
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efficient visibility algorithms and the opportunity to handle translucent surfaces in
more sophisticated ways.

15.6.6.3 Incremental Scanline Rasterization
For each row of pixels within the bounding box, there is some location that begins
the span of pixels covered by the triangle and some location that ends the span.
The bounding box contains the triangle vertically and triangles are convex, so
there is exactly one span per row (although if the span is small, it may not actually
cover the center of any pixels).

Figure 15.15: Dividing a triangle
horizontally at its middle vertex.

A scanline rasterizer divides the triangle into two triangles that meet at a hor-
izontal line through the vertex with the median vertical ordinate of the original
triangle (see Figure 15.15). One of these triangles may have zero area, since the
original triangle may contain a horizontal edge.

D1

D2

Figure 15.16: Each span’s start-
ing point shifts Δ1 from that of
the previous span, and its ending
point shifts Δ2.

The scanline rasterizer computes the rational slopes of the left and right edges
of the top triangle. It then iterates down these in parallel (see Figure 15.16).
Since these edges bound the beginning and end of the span across each scan-
line, no explicit per-pixel sample tests are needed: Every pixel center between the
left and right edges at a given scanline is covered by the triangle. The rasterizer
then iterates up the bottom triangle from the bottom vertex in the same fashion.
Alternatively, it can iterate down the edges of the bottom triangle toward
that vertex.

The process of iterating along an edge is performed by a variant of either the
Digital Difference Analyzer (DDA) or Bresenham line algorithm [Bre65], for
which there are efficient floating-point and fixed-point implementations.

Pineda [Pin88] discusses several methods for altering the iteration pattern to
maximize memory coherence. On current processor architectures this approach is
generally eschewed in favor of tiled rasterization because it is hard to schedule for
coherent parallel execution and frequently yields poor cache behavior.

15.6.6.4 Micropolygon Rasterization

Figure 15.17: A triangle subdi-
vided into four similar triangles.

Hierarchical rasterization recursively subdivided the image so that the triangle was
always small relative to the number of macro-pixels in the image. An alternative
is to maintain constant pixel size and instead subdivide the triangle. For example,
each triangle can be divided into four similar triangles (see Figure 15.17). This is
the rasterization strategy of the Reyes system [CCC87] used in one of the most
popular film renderers, RenderMan. The subdivision process continues until the
triangles cover about one pixel each. These triangles are called micropolygons.
In addition to triangles, the algorithm is often applied to bilinear patches, that is,
Bézier surfaces described by four control points (see Chapter 23).

Subdividing the geometry offers several advantages over subdividing the
image. It allows additional geometric processing, such as displacement mapping,
to be applied to the vertices after subdivision. This ensures that displacement is
performed at (or slightly higher than) image resolution, effectively producing per-
fect level of detail. Shading can be performed at vertices of the micropolygons and
interpolated to pixel centers. This means that the shading is “attached” to object-
space locations instead of screen-space locations. This can cause shading features,
such as highlights and edges, which move as the surface animates, to move more
smoothly and with less aliasing than they do when we use screen-space shading.
Finally, effects like motion blur and defocus can be applied by deforming the final
shaded geometry before rasterization. This allows computation of shading at a rate
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proportional to visible geometric complexity but independent of temporal and lens
sampling.

15.7 Rendering with a Rasterization API

Rasterization has been encapsulated in APIs. We’ve seen that although the basic
rasterization algorithm is very simple, the process of increasing its performance
can rapidly introduce complexity. Very-high-performance rasterizers can be very
complex. This complexity leads to a desire to separate out the parts of the raster-
izer that we might wish to change between applications while encapsulating the
parts that we would like to optimize once, abstract with an API, and then never
change again. Of course, it is rare that one truly is willing to never alter an algo-
rithm again, so this means that by building an API for part of the rasterizer we are
trading performance and ease of use in some cases for flexibility in others. Hard-
ware rasterizers are an extreme example of an optimized implementation, where
flexibility is severely compromised in exchange for very high performance.

There have been several popular rasterization APIs. Today, OpenGL and
DirectX are among the most popular hardware APIs for real-time applications.
RenderMan is a popular software rasterization API for offline rendering. The
space in between, of software rasterizers that run in real time on GPUs, is cur-
rently a popular research area with a few open source implementations available
[LHLW10, LK11, Pan11].

In contrast to the relative standardization and popularity enjoyed among raster-
izer APIs, several ray-casting systems have been built and several APIs have been
proposed, although they have yet to reach the current level of standardization and
acceptance of the rasterization APIs.

This section describes the OpenGL-DirectX abstraction in general terms. We
prefer generalities because the exact entry points for these APIs change on a fairly
regular basis. The details of the current versions can be found in their respective
manuals. While important for implementation, those details obscure the important
ideas.

15.7.1 The Graphics Pipeline

Consider the basic operations of any of our software rasterizer implementations:

1. (Vertex) Per-vertex transformation to screen space

2. (Rasterize) Per-triangle (clipping to the near plane and) iteration over pix-
els, with perspective-correct interpolation

3. (Pixel) Per-pixel shading

4. (Output Merge) Merging the output of shading with the current color and
depth buffers (e.g., alpha blending)

These are the major stages of a rasterization API, and they form a sequence
called the graphics pipeline, which was introduced in Chapter 1. Throughout the
rest of this chapter, we refer to software that invokes API entry points as host
code and software that is invoked as callbacks by the API as device code. In the
context of a hardware-accelerated implementation, such as OpenGL on a GPU,
this means that the C++ code running on the CPU is host code and the vertex and
pixel shaders executing on the GPU are device code.
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15.7.1.1 Rasterizing Stage
Most of the complexity that we would like such an API to abstract is in the raster-
izing stage. Under current algorithms, rasterization is most efficient when imple-
mented with only a few parameters, so this stage is usually implemented as a
fixed-function unit. In hardware this may literally mean a specific circuit that
can only compute rasterization. In software this may simply denote a module that
accepts no parameterization.

15.7.1.2 Vertex and Pixel Stages
The per-vertex and per-pixel operations are ones for which a programmer using
the API may need to perform a great deal of customization to produce the desired
image. For example, an engineering application may require an orthographic pro-
jection of each vertex instead of a perspective one. We’ve already changed our
per-pixel shading code three times, to support Lambertian, Blinn-Phong, and
Blinn-Phong plus shadowing, so clearly customization of that stage is important.
The performance impact of allowing nearly unlimited customization of vertex and
pixel operations is relatively small compared to the benefits of that customization
and the cost of rasterization and output merging. Most APIs enable customization
of vertex and pixel stages by accepting callback functions that are executed for
each vertex and each pixel. In this case, the stages are called programmable units.

A pipeline implementation with programmable units is sometimes called a
programmable pipeline. Beware that in this context, the pipeline order is in
fact fixed, and only the units within it are programmable. Truly programmable
pipelines in which the order of stages can be altered have been proposed [SFB+09]
but are not currently in common use.

For historical reasons, the callback functions are often called shaders or pro-
grams. Thus, a pixel shader or “pixel program” is a callback function that will be
executed at the per-pixel stage. For triangle rasterization, the pixel stage is often
referred to as the fragment stage. A fragment is the portion of a triangle that over-
laps the bounds of a pixel. It is a matter of viewpoint whether one is computing the
shade of the fragment and sampling that shade at the pixel, or directly computing
the shade at the pixel. The distinction only becomes important when computing
visibility independently from shading. Multi-sample anti-aliasing (MSAA) is an
example of this. Under that rasterization strategy, many visibility samples (with
corresponding depth buffer and radiance samples) are computed within each pixel,
but a single shade is applied to all the samples that pass the depth and visibility
test. In this case, one truly is shading a fragment and not a pixel.

15.7.1.3 Output Merging Stage
The output merging stage is one that we might like to customize as consumers
of the API. For example, one might imagine simulating translucent surfaces by
blending the current and previous radiance values in the frame buffer. However,
the output merger is also a stage that requires synchronization between poten-
tially parallel instances of the pixel shading units, since it writes to a shared frame
buffer. As a result, most APIs provide only limited customization at the output
merge stage. That allows lockless access to the underlying data structures, since
the implementation may explicitly schedule pixel shading to avoid contention at
the frame buffer. The limited customization options typically allow the program-
mer to choose the operator for the depth comparison. They also typically allow
a choice of compositing operator for color limited to linear blending, minimum,
and maximum operations on the color values.
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There are of course more operations for which one might wish to provide an
abstracted interface. These include per-object and per-mesh transformations, tes-
sellation of curved patches into triangles, and per-triangle operations like silhou-
ette detection or surface extrusion. Various APIs offer abstractions of these within
a programming model similar to vertex and pixel shaders.

Chapter 38 discusses how GPUs are designed to execute this pipeline effi-
ciently. Also refer to your API manual for a discussion of the additional stages
(e.g., tessellate, geometry) that may be available.

15.7.2 Interface

The interface to a software rasterization API can be very simple. Because a soft-
ware rasterizer uses the same memory space and execution model as the host pro-
gram, one can pass the scene as a pointer and the callbacks as function pointers or
classes with virtual methods. Rather than individual triangles, it is convenient to
pass whole meshes to a software rasterizer to decrease the per-triangle overhead.

For a hardware rasterization API, the host machine (i.e., CPU) and graphics
device (i.e., GPU) may have separate memory spaces and execution models. In
this case, shared memory and function pointers no longer suffice. Hardware ras-
terization APIs therefore must impose an explicit memory boundary and narrow
entry points for negotiating it. (This is also true of the fallback and reference soft-
ware implementations of those APIs, such as Mesa and DXRefRast.) Such an API
requires the following entry points, which are detailed in subsequent subsections.

1. Allocate device memory.

2. Copy data between host and device memory.

3. Free device memory.

4. Load (and compile) a shading program from source.

5. Configure the output merger and other fixed-function state.

6. Bind a shading program and set its arguments.

7. Launch a draw call, a set of device threads to render a triangle list.

15.7.2.1 Memory Principles
The memory management routines are conceptually straightforward. They

correspond to malloc, memcpy, and free, and they are typically applied to large
arrays, such as an array of vertex data. They are complicated by the details neces-
sary to achieve high performance for the case where data must be transferred per
rendered frame, rather than once per scene. This occurs when streaming geome-
try for a scene that is too large for the device memory; for example, in a world
large enough that the viewer can only ever observe a small fraction at a time. It
also occurs when a data stream from another device, such as a camera, is an input
to the rendering algorithm. Furthermore, hybrid software-hardware rendering and
physics algorithms perform some processing on each of the host and device and
must communicate each frame.

One complicating factor for memory transfer is that it is often desirable to
adjust the data layout and precision of arrays during the transfer. The data struc-
ture for 2D buffers such as images and depth buffers on the host often resembles
the “linear,” row-major ordering that we have used in this chapter. On a graph-
ics processor, 2D buffers are often wrapped along Hilbert or Z-shaped (Morton)
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curves, or at least grouped into small blocks that are themselves row-major (i.e.,
“block-linear”), to avoid the cache penalty of vertical iteration. The origin of a
buffer may differ, and often additional padding is required to ensure that rows
have specific memory alignments for wide vector operations and reduced pointer
size.

Another complicating factor for memory transfer is that one would often like
to overlap computation with memory operations to avoid stalling either the host or
device. Asynchronous transfers are typically accomplished by semantically map-
ping device memory into the host address space. Regular host memory operations
can then be performed as if both shared a memory space. In this case the program-
mer must manually synchronize both host and device programs to ensure that data
is never read by one while being written by the other. Mapped memory is typi-
cally uncached and often has alignment considerations, so the programmer must
furthermore be careful to control access patterns.

Note that memory transfers are intended for large data. For small values, such
as scalars, 4×4 matrices, and even short arrays, it would be burdensome to explic-
itly allocate, copy, and free the values. For a shading program with twenty or so
arguments, that would incur both runtime and software management overhead. So
small values are often passed through a different API associated with shaders.

15.7.2.2 Memory Practice
Listing 15.30 shows part of an implementation of a triangle mesh class. Making
rendering calls to transfer individual triangles from the host to the graphics device
would be inefficient. So, the API forces us to load a large array of the geometry
to the device once when the scene is created, and to encode that geometry as
efficiently as possible.

Few programmers write directly to hardware graphics APIs. Those APIs reflect
the fact that they are designed by committees and negotiated among vendors. They
provide the necessary functionality but do so through awkward interfaces that
obscure the underlying function of the calling code. Usage is error-prone because
the code operates directly on pointers and uses manually managed memory.

For example, in OpenGL, the code to allocate a device array and bind it to a
shader input looks something like Listing 15.29. Most programmers abstract these
direct host calls into a vendor-independent, easier-to-use interface.

Listing 15.29: Host code for transferring an array of vertices to the device
and binding it to a shader input.

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15

// Allocate memory:
GLuint vbo;
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, hostVertex.size() * 2 * sizeof(Vector3), NULL,GL_STATIC_DRAW);
GLvoid* deviceVertex = 0;
GLvoid* deviceNormal = hostVertex.size() * sizeof(Vector3);

// Copy memory:
glBufferSubData(GL_ARRAY_BUFFER, deviceVertex, hostVertex.size() *

sizeof(Point3), &hostVertex[0]);

// Bind the array to a shader input:
int vertexIndex = glGetAttribLocation(shader, "vertex");
glEnableVertexAttribArray(vertexIndex);
glVertexAttribPointer(vertexIndex, 3, GL_FLOAT, GL_FALSE, 0, deviceVertex);
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Most programmers wrap the underlying hardware API with their own layer
that is easier to use and provides type safety and memory management. This also
has the advantage of abstracting the renderer from the specific hardware API. Most
console, OS, and mobile device vendors intentionally use equivalent but incom-
patible hardware rendering APIs. Abstracting the specific hardware API into a
generic one makes it easier for a single code base to support multiple platforms,
albeit at the cost of one additional level of function invocation.

For Listing 15.30, we wrote to one such platform abstraction instead of
directly to a hardware API. In this code, the VertexBuffer class is a managed
memory array in device RAM and AttributeArray and IndexArray are subsets
of a VertexBuffer. The “vertex” in the name means that these classes store per-
vertex data. It does not mean that they store only vertex positions—for example,
the m_normal array is stored in an AttributeArray. This naming convention is
a bit confusing, but it is inherited from OpenGL and DirectX. You can either trans-
late this code to the hardware API of your choice, implement the VertexBuffer
and AttributeArray classes yourself, or use a higher-level API such as G3D
that provides these abstractions.

Listing 15.30: Host code for an indexed triangle mesh (equivalent to a set of
Triangle instances that share a BSDF).
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class Mesh {
private:

AttributeArray m_vertex;
AttributeArray m_normal;
IndexStream m_index;

shared_ptr<BSDF> m_bsdf;

public:

Mesh() {}

Mesh(const std::vector<Point3>& vertex,
const std::vector<Vector3>& normal,
const std::vector<int>& index, const shared_ptr<BSDF>& bsdf) : m_bsdf(bsdf) {

shared_ptr<VertexBuffer> dataBuffer =
VertexBuffer::create((vertex.size() + normal.size()) *
sizeof(Vector3) + sizeof(int) * index.size());

m_vertex = AttributeArray(&vertex[0], vertex.size(), dataBuffer);
m_normal = AttributeArray(&normal[0], normal.size(), dataBuffer);

m_index = IndexStream(&index[0], index.size(), dataBuffer);
}

. . .
};

/** The rendering API pushes us towards a mesh representation
because it would be inefficient to make per-triangle calls. */

class MeshScene {
public:

std::vector<Light> lightArray;
std::vector<Mesh> meshArray;

};
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Listing 15.31 shows how this code is used to model the triangle-and-ground-
plane scene. In it, the process of uploading the geometry to the graphics device is
entirely abstracted within the Mesh class.

Listing 15.31: Host code to create indexed triangle meshes for the
triangle-plus-ground scene.
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void makeTrianglePlusGroundScene(MeshScene& s) {
std::vector<Vector3> vertex, normal;
std::vector<int> index;

// Green triangle geometry
vertex.push_back(Point3(0,1,-2)); vertex.push_back(Point3(-1.9f,-1,-2));

vertex.push_back(Point3(1.6f,-0.5f,-2));
normal.push_back(Vector3(0,0.6f,1).direction()); normal.

push_back(Vector3(-0.4f,-0.4f, 1.0f).direction()); normal.
push_back(Vector3(0.4f,-0.4f, 1.0f).direction());

index.push_back(0); index.push_back(1); index.push_back(2);
index.push_back(0); index.push_back(2); index.push_back(1);
shared_ptr<BSDF> greenBSDF(new PhongBSDF(Color3::green() * 0.8f,

Color3::white() * 0.2f, 100));

s.meshArray.push_back(Mesh(vertex, normal, index, greenBSDF));
vertex.clear(); normal.clear(); index.clear();

/////////////////////////////////////////////////////////
// Ground plane geometry
const float groundY = -1.0f;
vertex.push_back(Point3(-10, groundY, -10)); vertex.push_back(Point3(-10,

groundY, -0.01f));
vertex.push_back(Point3(10, groundY, -0.01f)); vertex.push_back(Point3(10,

groundY, -10));

normal.push_back(Vector3::unitY()); normal.push_back(Vector3::unitY());
normal.push_back(Vector3::unitY()); normal.push_back(Vector3::unitY());

index.push_back(0); index.push_back(1); index.push_back(2);
index.push_back(0); index.push_back(2); index.push_back(3);

const Color3 groundColor = Color3::white() * 0.8f;
s.meshArray.push_back(Mesh(vertex, normal, index, groundColor));

//////////////////////////////////////////////////////////
// Light source
s.lightArray.resize(1);
s.lightArray[0].position = Vector3(1, 3, 1);
s.lightArray[0].power = Color3::white() * 31.0f;

}

15.7.2.3 Creating Shaders
The vertex shader must transform the input vertex in global coordinates to a homo-
geneous point on the image plane. Listing 15.32 implements this transformation.
We chose to use the OpenGL Shading Language (GLSL). GLSL is representative
of other contemporary shading languages like HLSL, Cg, and RenderMan. All
of these are similar to C++. However, there are some minor syntactic differences
between GLSL and C++ that we call out here to aid your reading of this example.
In GLSL,
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• Arguments that are constant over all triangles are passed as global (“uni-
form”) variables.

• Points, vectors, and colors are all stored in vec3 type.

• const has different semantics (compile-time constant).

• in, out, and inout are used in place of C++ reference syntax.

• length, dot, etc. are functions instead of methods on vector classes.

Listing 15.32: Vertex shader for projecting vertices. The output is in
homogeneous space before the division operation. This corresponds to the

perspectiveProject function from Listing 15.24.
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#version 130

// Triangle vertices
in vec3 vertex;
in vec3 normal;

// Camera and screen parameters
uniform float fieldOfViewX;
uniform float zNear;
uniform float zFar;
uniform float width;
uniform float height;

// Position to be interpolated
out vec3 Pinterp;

// Normal to be interpolated
out vec3 ninterp;

vec4 perspectiveProject(in vec3 P) {
// Compute the side of a square at z = -1 based on our
// horizontal left-edge-to-right-edge field of view .
float s = -2.0f * tan(fieldOfViewX * 0.5f);
float aspect = height / width;

// Project onto z = -1
vec4 Q;
Q.x = 2.0 * -Q.x / s;
Q.y = 2.0 * -Q.y / (s * aspect);
Q.z = 1.0;
Q.w = -P.z;

return Q;
}

void main() {
Pinterp = vertex;
ninterp = normal;

gl_Position = perspectiveProject(Pinterp);
}

None of these affect the expressiveness or performance of the basic language.
The specifics of shading-language syntax change frequently as new versions are
released, so don’t focus too much on the details. The point of this example is
how the overall form of our original program is preserved but adjusted to the
conventions of the hardware API.
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Under the OpenGL API, the outputs of a vertex shader are a set of attributes
and a vertex of the form (x, y, a,−z). That is, a homogeneous point for which the
perspective division has not yet been performed. The value a/− z will be used for
the depth test. We choose a = 1 so that the depth test is performed on−1/z, which
is a positive value for the negative z locations that will be visible to the camera.
We previously saw that any function that provides a consistent depth ordering can
be used for the depth test. We mentioned that distance along the eye ray, −z, and
−1/z are common choices. Typically one scales the a value such that −a/z is in
the range [0, 1] or [−1, 1], but for simplicity we’ll omit that here. See Chapter 13
for the derivation of that transformation.

Note that we did not scale the output vertex to the dimensions of the image,
negate the y-axis, or translate the origin to the upper left in screen space, as we
did for the software renderer. That is because by convention, OpenGL considers
the upper-left corner of the screen to be at (−1, 1) and the lower-right corner at
(1,−1).

We choose the 3D position of the vertex and its normal as our attributes. The
hardware rasterizer will automatically interpolate these across the surface of the
triangle in a perspective-correct manner. We need to treat the vertex as an attribute
because OpenGL does not expose the 3D coordinates of the point being shaded.

Listings 15.33 and 15.34 give the pixel shader code for the shade routine,
which corresponds to the shade function from Listing 15.17, and helper functions
that correspond to the visible and BSDF::evaluateFiniteScatteringDensity

routines from the ray tracer and software rasterizer. The output of the shader
is in homogeneous space before the division operation. This corresponds to the
perspectiveProject function from Listing 15.24. The interpolated attributes
enter the shader as global variables Pinterp and ninterp. We then perform
shading in exactly the same manner as for the software renderers.

Listing 15.33: Pixel shader for computing the radiance scattered toward the
camera from one triangle illuminated by one light.

1
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#version 130
// BSDF
uniform vec3 lambertian;
uniform vec3 glossy;
uniform float glossySharpness;

// Light
uniform vec3 lightPosition;
uniform vec3 lightPower;

// Pre-rendered depth map from the light’s position
uniform sampler2DShadow shadowMap;

// Point being shaded. OpenGL has automatically performed
// homogeneous division and perspective-correct interpolation for us.
in vec3 Pinterp;
in vec3 ninterp;

// Value we are computing
out vec3 radiance;

// Normalize the interpolated normal; OpenGL does not automatically
// renormalize for us.
vec3 n = normalize(ninterp);
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vec3 shade(const in vec3 P, const in vec3 n) {
vec3 radiance = vec3(0.0);

// Assume only one light
vec3 offset = lightPosition - P;
float distanceToLight = length(offset);
vec3 w_i = offset / distanceToLight;
vec3 w_o = -normalize(P);

if (visible(P, w_i, distanceToLight, shadowMap)) {
vec3 L_i = lightPower / (4 * PI * distanceToLight * distanceToLight);

// Scatter the light.
radiance +=

L_i *
evaluateFiniteScatteringDensity(w_i, w_o) *
max(0.0, dot(w_i, n));

}

return radiance;
}

void main() {
vec3 P = Pinterp;

radiance = shade(P, n);
}

Listing 15.34: Helper functions for the pixel shader.
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#define PI 3.1415927

bool visible(const in vec3 P, const in vec3 w_i, const in float distanceToLight,
sampler2DShadow shadowMap) {
return true;

}

/** Returns f(wi, wo). Same as BSDF::evaluateFiniteScatteringDensity
from the ray tracer. */

vec3 evaluateFiniteScatteringDensity(const in vec3 w_i, const in vec3 w_o) {
vec3 w_h = normalize(w_i + w_o);

return (k_L +
k_G * ((s + 8.0) * pow(max(0.0, dot(w_h, n)), s) / 8.0)) / PI;

}

However, there is one exception. The software renderers iterated over all the
lights in the scene for each point to be shaded. The pixel shader is hardcoded
to accept a single light source. That is because processing a variable number
of arguments is challenging at the hardware level. For performance, the inputs
to shaders are typically passed through registers, not heap memory. Register
allocation is generally a major factor in optimization. Therefore, most shading
compilers require the number of registers consumed to be known at compile
time, which precludes passing variable length arrays. Programmers have devel-
oped three forward-rendering design patterns for working within this limitation.
These use a single framebuffer and thus limit the total space required by the
algorithm. A fourth and currently popular deferred-rendering method requires
additional space.
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1. Multipass Rendering: Make one pass per light over all geometry, sum-
ming the individual results. This works because light combines by superposition.
However, one has to be careful to resolve visibility correctly on the first pass and
then never alter the depth buffer. This is the simplest and most elegant solution.
It is also the slowest because the overhead of launching a pixel shader may be
significant, so launching it multiple times to shade the same point is inefficient.

2. Übershader: Bound the total number of lights, write a shader for that max-
imum number, and set the unused lights to have zero power. This is one of the
most common solutions. If the overhead of launching the pixel shader is high and
there is significant work involved in reading the BSDF parameters, the added cost
of including a few unused lights may be low. This is a fairly straightforward mod-
ification to the base shader and is a good compromise between performance and
code clarity.

3. Code Generation: Generate a set of shading programs, one for each num-
ber of lights. These are typically produced by writing another program that auto-
matically generates the shader code. Load all of these shaders at runtime and bind
whichever one matches the number of lights affecting a particular object. This
achieves high performance if the shader only needs to be swapped a few times
per frame, and is potentially the fastest method. However, it requires significant
infrastructure for managing both the source code and the compiled versions of all
the shaders, and may actually be slower than the conservative solution if changing
shaders is an expensive operation.

If there are different BSDF terms for different surfaces, then we have to deal
with all the permutations of the number of lights and the BSDF variations. We
again choose between the above three options. This combinatorial explosion is one
of the primary drawbacks of current shading languages, and it arises directly from
the requirement that the shading compiler produce efficient code. It is not hard to
design more flexible languages and to write compilers for them. But our motiva-
tion for moving to a hardware API was largely to achieve increased performance,
so we are unlikely to accept a more general shading language if it significantly
degrades performance.

4. Deferred Lighting: A deferred approach that addresses these problems but
requires more memory is to separate the computation of which point will color
each pixel from illumination computation. An initial rendering pass renders many
parallel buffers that encode the shading coefficients, surface normal, and location
of each point (often, assuming an übershader). Subsequent passes then iterate over
the screen-space area conservatively affected by each light, computing and sum-
ming illumination. Two common structures for those lighting passes are multiple
lights applied to large screen-space tiles and ellipsoids for individual lights that
cover the volume within which their contribution is non-negligible.

For the single-light case, moving from our own software rasterizer to a hard-
ware API did not change our perspectiveProject and shade functions sub-
stantially.

However, our shade function was not particularly powerful. Although we did
not choose to do so, in our software rasterizer, we could have executed arbitrary
code inside the shade function. For example, we could have written to locations
other than the current pixel in the frame buffer, or cast rays for shadows or
reflections. Such operations are typically disallowed in a hardware API. That is
because they interfere with the implementation’s ability to efficiently schedule
parallel instances of the shading programs in the absence of explicit (inefficient)
memory locks.
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This leaves us with two choices when designing an algorithm with more signif-
icant processing, especially at the pixel level. The first choice is to build a hybrid
renderer that performs some of the processing on a more general processor, such
as the host, or perhaps on a general computation API (e.g., CUDA, Direct Com-
pute, OpenCL, OpenGL Compute). Hybrid renderers typically incur the cost of
additional memory operations and the associated synchronization complexity.

The second choice is to frame the algorithm purely in terms of rasterization
operations, and make multiple rasterization passes. For example, we can’t con-
veniently cast shadow rays in most hardware rendering APIs today. But we can
sample from a previously rendered shadow map.

Similar methods exist for implementing reflection, refraction, and indirect
illumination purely in terms of rasterization. These avoid much of the perfor-
mance overhead of hybrid rendering and leverage the high performance of hard-
ware rasterization. However, they may not be the most natural way of express-
ing an algorithm, and that may lead to a net inefficiency and certainly to addi-
tional software complexity. Recall that changing the order of iteration from ray
casting to rasterization increased the space demands of rendering by requiring
a depth buffer to store intermediate results. In general, converting an arbitrary
algorithm to a rasterization-based one often has this effect. The space demands
might grow larger than is practical in cases where those intermediate results are
themselves large.

Shading languages are almost always compiled into executable code at run-
time, inside the API. That is because even within products from one vendor the
underlying micro-architecture may vary significantly. This creates a tension within
the compiler between optimizing the target code and producing the executable
quickly. Most implementations err on the side of optimization, since shaders are
often loaded once per scene. Beware that if you synthesize or stream shaders
throughout the rendering process there may be substantial overhead.

Some languages (e.g., HLSL and CUDA) offer an initial compilation step to
an intermediate representation. This eliminates the runtime cost of parsing and
some trivial compilation operations while maintaining flexibility to optimize for
a specific device. It also allows software developers to distribute their graphics
applications without revealing the shading programs to the end-user in a human-
readable form on the file system. For closed systems with fixed specifications,
such as game consoles, it is possible to compile shading programs down to true
machine code. That is because on those systems the exact runtime device is known
at host-program compile time. However, doing so would reveal some details of the
proprietary micro-architecture, so even in this case vendors do not always choose
to have their APIs perform a complete compilation step.

15.7.2.4 Executing Draw Calls
To invoke the shaders we issue draw calls. These occur on the host side. One
typically clears the framebuffer, and then, for each mesh, performs the following
operations.

1. Set fixed function state.

2. Bind a shader.

3. Set shader arguments.

4. Issue the draw call.
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These are followed by a call to send the framebuffer to the display, which is
often called a buffer swap. An abstracted implementation of this process might
look like Listing 15.35. This is called from a main rendering loop, such as List-
ing 15.36.

Listing 15.35: Host code to set fixed-function state and shader arguments, and
to launch a draw call under an abstracted hardware API.
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void loopBody(RenderDevice* gpu) {
gpu->setColorClearValue(Color3::cyan() * 0.1f);
gpu->clear();

const Light& light = scene.lightArray[0];

for (unsigned int m = 0; m < scene.meshArray.size(); ++m) {
Args args;
const Mesh& mesh = scene.meshArray[m];
const shared_ptr<BSDF>& bsdf = mesh.bsdf();

args.setUniform("fieldOfViewX", camera.fieldOfViewX);
args.setUniform("zNear", camera.zNear);
args.setUniform("zFar", camera.zFar);

args.setUniform("lambertian", bsdf->lambertian);
args.setUniform("glossy", bsdf->glossy);
args.setUniform("glossySharpness", bsdf->glossySharpness);

args.setUniform("lightPosition", light.position);
args.setUniform("lightPower", light.power);

args.setUniform("shadowMap", shadowMap);

args.setUniform("width", gpu->width());
args.setUniform("height", gpu->height());

gpu->setShader(shader);

mesh.sendGeometry(gpu, args);
}
gpu->swapBuffers();

}

Listing 15.36: Host code to set up the main hardware rendering loop.

1
2
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OSWindow::Settings osWindowSettings;
RenderDevice* gpu = new RenderDevice();
gpu->init(osWindowSettings);

// Load the vertex and pixel programs
shader = Shader::fromFiles("project.vrt", "shade.pix");

shadowMap = Texture::createEmpty("Shadow map", 1024, 1024,
ImageFormat::DEPTH24(), Texture::DIM_2D_NPOT, Texture::Settings::shadow());

makeTrianglePlusGroundScene(scene);
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// The depth test will run directly on the interpolated value in
// Q.z/Q.w, which is going to be smallest at the far plane
gpu->setDepthTest(RenderDevice::DEPTH_GREATER);
gpu->setDepthClearValue(0.0);

while (! done) {
loopBody(gpu);
processUserInput();

}

. . .

15.8 Performance and Optimization

We’ll now consider several examples of optimization in hardware-based render-
ing. This is by no means an exhaustive list, but rather a set of model techniques
from which you can draw ideas to generate your own optimizations when you
need them.

15.8.1 Abstraction Considerations

Many performance optimizations will come at the price of significantly compli-
cating the implementation. Weigh the performance advantage of an optimization
against the additional cost of debugging and code maintenance. High-level algo-
rithmic optimizations may require significant thought and restructuring of code,
but they tend to yield the best tradeoff of performance for code complexity. For
example, simply dividing the screen in half and asynchronously rendering each
side on a separate processor nearly doubles performance at the cost of perhaps 50
additional lines of code that do not interact with the inner loop of the renderer.

In contrast, consider some low-level optimizations that we intentionally passed
over. These include reducing common subexpressions (e.g., mapping all of those
repeated divisions to multiplications by an inverse that is computed once) and lift-
ing constants outside loops. Performing those destroys the clarity of the algorithm,
but will probably gain only a 50% throughput improvement.

This is not to say that low-level optimizations are not worthwhile. But they are
primarily worthwhile when you have completed your high-level optimizations;
at that point you are more willing to complicate your code and its maintenance
because you are done adding features.

15.8.2 Architectural Considerations

The primary difference between the simple rasterizer and ray caster described
in this chapter is that the “for each pixel” and “for each triangle” loops have the
opposite nesting. This is a trivial change and the body of the inner loop is largely
similar in each case. But the trivial change has profound implications for memory
access patterns and how we can algorithmically optimize each.

Scene triangles are typically stored in the heap. They may be in a flat 1D
array, or arranged in a more sophisticated data structure. If they are in a simple
data structure such as an array, then we can ensure reasonable memory coherence
by iterating through them in the same order that they appear in memory. That pro-
duces efficient cache behavior. However, that iteration also requires substantial
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bandwidth because the entire scene will be processed for each pixel. If we use a
more sophisticated data structure, then we likely will reduce bandwidth but also
reduce memory coherence. Furthermore, adjacent pixels likely sample the same
triangle, but by the time we have iterated through to testing that triangle again it
is likely to have been flushed from the cache. A popular low-level optimization
for a ray tracer is to trace a bundle of rays called a ray packet through adjacent
pixels. These rays likely traverse the scene data structure in a similar way, which
increases memory coherence. On a SIMD processor a single thread can trace an
entire packet simultaneously. However, packet tracing suffers from computational
coherence problems. Sometimes different rays in the same packet progress to dif-
ferent parts of the scene data structure or branch different ways in the ray intersec-
tion test. In these cases, processing multiple rays simultaneously on a thread gives
no advantage because memory coherence is lost or both sides of the branch must
be taken. As a result, fast ray tracers are often designed to trace packets through
very sophisticated data structures. They are typically limited not by computation
but by memory performance problems arising from resultant cache inefficiency.

Because frame buffer storage per pixel is often much smaller than scene struc-
ture per triangle, the rasterizer has an inherent memory performance advantage
over the ray tracer. A rasterizer reads each triangle into memory and then pro-
cesses it to completion, iterating over many pixels. Those pixels must be adjacent
to each other in space. For a row-major image, if we iterate along rows, then
the pixels covered by the triangle are also adjacent in memory and we will have
excellent coherence and fairly low memory bandwidth in the inner loop. Further-
more, we can process multiple adjacent pixels, either horizontally or vertically,
simultaneously on a SIMD architecture. These will be highly memory and branch
coherent because we’re stepping along a single triangle. There are many variations
on ray casting and rasterization that improve their asymptotic behavior. However,
these algorithms have historically been applied to only millions of triangles and
pixels. At those sizes, constant factors like coherence still drive the performance
of the algorithms, and rasterization’s superior coherence properties have made it
preferred for high-performance rendering. The cost of this coherence is that after
even the few optimizations needed to get real-time performance from a raster-
izer, the code becomes so littered with bit-manipulation tricks and highly derived
terms that the elegance of a simple ray cast seems very attractive from a software
engineering perspective. This difference is only magnified when we make the ren-
dering algorithm more sophisticated. The conventional wisdom is that ray-tracing
algorithms are elegant and easy to extend but are hard to optimize, and rasteri-
zation algorithms are very efficient but are awkward and hard to augment with
new features. Of course, one can always make a ray tracer fast and ugly (which
packet tracing succeeds at admirably) and a rasterizer extensible but slow (e.g.,
Pixar’s RenderMan, which was used extensively in film rendering over the past
two decades).

15.8.3 Early-Depth-Test Example

One simple optimization that can significantly improve performance, yet only
minimally affects clarity, is an early depth test. Both the rasterizer and the ray-
tracer structures sometimes shaded a point, only to later find that some other point
was closer to the surface. As an optimization, we might first find the closest point
before doing any shading, then go back and shade the point that was closest. In ray
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tracing, each pixel is processed to completion before moving to the next, so this
involves running the entire visibility loop for one pixel, maintaining the shading
inputs for the closest-known intersection at each iteration, and then shading after
that loop terminates. In rasterization, pixels are processed many times, so we have
to make a complete first pass to determine visibility and then a second pass to do
shading. This is called an early-depth pass [HW96] if it primes depthBuffer
so that only the surface that shades will pass the inner test. The process is called
deferred shading if it also accumulates the shading parameters so that they do not
need to be recomputed. This style of rendering was first introduced by Whitted and
Weimer [WW82] to compute shading independent from visibility at a time when
primary visibility computation was considered expensive. Within a decade it was
considered a method to accelerate complex rendering toward real-time rendering
(and the “deferred” term was coined) [MEP92], and today its use is widespread
as a further optimization on hardware platforms that already achieve real time for
complex scenes.

For a scene that has high depth complexity (i.e., in which many triangles
project to the same point in the image) and an expensive shading routine, the
performance benefit of an early depth test is significant. The cost of rendering a
pixel without an early depth test is O(tv+ ts), where t is the number of triangles, v
is the time for a visibility test, and s is the time for shading. This is an upper bound.
When we are lucky and always encounter the closest triangle first, the performance
matches the lower bound of Ω(tv + s) since we only shade once. The early-depth
optimization ensures that we are always in this lower-bound case. We have seen
how rasterization can drive the cost of v very low—it can be reduced to a few
additions per pixel—at which point the challenge becomes reducing the number
of triangles tested at each pixel. Unfortunately, that is not as simple. Strategies
exist for obtaining expected O(v log t + s) rendering times for scenes with certain
properties, but they significantly increase code complexity.

15.8.4 When Early Optimization Is Good

The domain of graphics raises two time-based exceptions to the general rule of
thumb to avoid premature optimization. The more significant of these excep-
tions is that when low-level optimizations can accelerate a rendering algorithm
just enough to make it run at interactive rates, it might be worth making those
optimizations early in the development process. It is much easier to debug an
interactive rendering system than an offline one. Interaction allows you to quickly
experiment with new viewpoints and scene variations, effectively giving you a
true 3D perception of your data instead of a 2D slice. If that lets you debug faster,
then the optimization has increased your ability to work with the code despite the
added complexity. The other exception applies when the render time is just at the
threshold of your patience. Most programmers are willing to wait for 30 seconds
for an image to render, but they will likely leave the computer or switch tasks
if the render time is, say, more than two minutes. Every time you switch tasks
or leave the computer you’re amplifying the time cost of debugging, because on
your return you have to recall what you were doing before you left and get back
into the development flow. If you can reduce the render time to something you are
willing to wait for, then you have cut your debugging time and made the process
sufficiently more pleasant that your productivity will again rise despite increased
code complexity. We enshrine these ideas in a principle:



ptg11539634

15.9 Discussion 447

THE EARLY OPTIMIZATION PRINCIPLE: It’s worth optimizing early if it makes
the difference between an interactive program and one that takes several min-
utes to execute. Shortening the debugging cycle and supporting interactive test-
ing are worth the extra effort.

15.8.5 Improving the Asymptotic Bound

To scale to truly large scenes, no linear-time rendering algorithm suffices. We must
somehow eliminate whole parts of the scene without actually touching their data
even once. Data structures for this are a classic area of computer graphics that
continues to be a hot research topic. The basic idea behind most of these is the
same as behind using tree and bucket data structures for search and sort problems.
Visibility testing is primarily a search operation, where we are searching for the
closest ray intersection with the scene. If we precompute a treelike data structure
that orders the scene primitives in some way that allows conservatively culling a
constant fraction of the primitives at each layer, we will approach O(log n)-time
visibility testing for the entire scene, instead of O(n) in the number of primitives.
When the cost of traversing tree nodes is sufficiently low, this strategy scales well
for arbitrarily constructed scenes and allows an exponential increase in the num-
ber of primitives we can render in a fixed time. For scenes with specific kinds of
structure we may be able to do even better. For example, say that we could find an
indexing scheme or hash function that can divide our scene into O(n) buckets that
allow conservative culling with O(1) primitives per bucket. This would approach
O(d)-time visibility testing in the distance d to the first intersection. When that
distance is small (e.g., in twisty corridors), the runtime of this scheme for static
scenes becomes independent of the number of primitives and we can theoretically
render arbitrarily large scenes. See Chapter 37 for a detailed discussion of algo-
rithms based on these ideas.

15.9 Discussion

Our goal in this chapter was not to say, “You can build either a ray tracer or a
rasterizer,” but rather that rendering involves sampling of light sources, objects,
and rays, and that there are broad algorithmic strategies you can use for accu-
mulating samples and interpolating among them. This provides a stage for all
future rendering, where we try to select samples efficiently and with good statisti-
cal characteristics.

For sampling the scene along eye rays through pixel centers, we saw that
three tests—explicit 3D ray-triangle tests, 2D ray-triangle through incremental
barycentric tests, and 2D ray-triangle through incremental edge equation tests—
were mathematically equivalent. We also discussed how to implement them so
that the mathematical equivalence was preserved even in the context of bounded-
precision arithmetic. In each case we computed some value directly related to the
barycentric weights and then tested whether the weights corresponded to a point
on the interior of the triangle. It is essential that these are mathematically equiv-
alent tests. Were they not, we would not expect all methods to produce the same
image! Algorithmically, these approaches led to very different strategies. That is
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because they allowed amortization in different ways and provoked different mem-
ory access patterns.

Sampling is the core of physically based rendering. The kinds of design
choices you faced in this chapter echo throughout all aspects of rendering. In fact,
they are significant for all high-performance computing, spreading into fields as
diverse as biology, finance, and weather simulation. That is because many inter-
esting problems do not admit analytic solutions and must be solved by taking
discrete samples. One frequently wants to take many of those samples in paral-
lel to reduce computation latency. So considerations about how to sample over a
complex domain, which in our case was the set product of triangles and eye rays,
are fundamental to science well beyond image synthesis.

The ray tracer in this chapter is a stripped-down, no-frills ray tracer. But it
still works pretty well. Ten years ago you would have had to wait an hour for the
teapot to render. It will probably take at most a few seconds on your computer
today. This performance increase allows you to more freely experiment with the
algorithms in this chapter than people have been able to in the past. It also allows
you to exercise clearer software design and to quickly explore more sophisticated
algorithms, since you need not spend significant time on low-level optimization to
obtain reasonable rendering rates.

Despite the relatively high performance of modern machines, we still consid-
ered design choices and compromises related to the tension between abstraction
and performance. That is because there are few places where that tension is felt as
keenly in computer graphics as at the primary visibility level, and without at least
some care our renderers would still have been unacceptably slow. This is largely
because primary visibility is driven by large constants—scene complexity and the
number of pixels—and because primary visibility is effectively the tail end of the
graphics pipeline.

Someday, machines may be fast enough that we don’t have to make as many
compromises to achieve acceptable rendering rates as we do today. For example,
it would be desirable to operate at a purely algorithmic level without exposing
the internal memory layout of our Image class. Whether this day arrives soon
depends on both algorithmic and hardware advances. Previous hardware perfor-
mance increases have in part been due to faster clock speeds and increased dupli-
cation of parallel processing and memory units. But today’s semiconductor-based
processors are incapable of running at greater clock speeds because they have
hit the limits of voltage leakage and inductive capacitance. So future speedups
will not come from higher clock rates due to better manufacturing processes on
the same substrates. Furthermore, the individual wires within today’s processors
are close to one molecule in thickness, so we are near the limits of miniatur-
ization for circuits. Many graphics algorithms are today limited by communica-
tion between parallel processing units and between memory and processors. That
means that simply increasing the number of ALUs, lanes, or processing cores will
not increase performance. In fact, increased parallelism can even decrease per-
formance when runtime is dominated by communication. So we require radically
new algorithms or hardware architectures, or much more sophisticated compilers,
if we want today’s performance with better abstraction.

There are of course design considerations beyond sample statistics and raw
efficiency. For example, we saw that if you’re sampling really small triangles, then
micropolygons or tile rasterization seems like a good rendering strategy. However,
what if you’re sampling shapes that aren’t triangles and can’t easily be subdivided?
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Shapes as simple as a sphere fall into this category. In that case, ray casting seems
like a very good strategy because you can simply replace ray-triangle intersec-
tion with ray-sphere intersection. Any micro-optimization of a rasterizer must be
evaluated compared to the question, “What if we could render one nontriangu-
lar shape, instead of thousands of small triangles?” At some point, the constants
make working with more abstract models like spheres and spline surfaces more
preferable than working with many triangles.

When we consider sampling visibility in not just space, but also exposure
time and lens position, individual triangles become six-dimensional, nonpolyhe-
dral shapes. While algorithms for rasterizing these have recently been developed,
they are certainly more complicated than ray-sampling strategies. We’ve seen that
small changes, such as inverting the order of two nested loops, can yield signifi-
cant algorithmic implications. There are many such changes that one can make to
visibility sampling strategies, and many that have been made previously. It is prob-
ably best to begin a renderer by considering the desired balance of performance
and code manageability, the size of the triangles and target image, and the sam-
pling patterns desired. One can then begin with the simplest visibility algorithm
appropriate for those goals, and subsequently experiment with variations.

Many of these variations have already been tried and are discussed in the liter-
ature. Only a few of these are cited here. Appel presented the first significant 3D
visibility solution of ray casting in 1968. Nearly half a century later, new sampling
algorithms appear regularly in top publication venues and the industry is hard at
work designing new hardware for visibility sampling. This means that the best
strategies may still await discovery, so some of the variations you try should be of
your own design!

15.10 Exercises

Exercise 15.1: Generalize the Image and DepthBuffer implementations into
different instances of a single, templated buffer class.

Exercise 15.2: Use the equations from Section 7.8.2 to extend your ray tracer
to also intersect spheres. A sphere does not define a barycentric coordinate frame
or vertex normals. How will you compute the normal to the sphere?

Exercise 15.3: Expand the barycentric weight computation that is abstracted
in the bary2D function so that it appears explicitly within the per-pixel loop. Then
lift the computation of expressions that are constant along a row or column out-
side the corresponding loop. Your resultant code should contain a single division
operation within the inner loop.

Exercise 15.4: Characterize the asymptotic performance of each algorithm
described in Section 15.6. Under what circumstances would each algorithm be
preferred, according to this analysis?

Exercise 15.5: Consider the “1D rasterization” problem of coloring the pixel
centers (say, at integer locations) covered by a line segment lying on the real num-
ber line.

1. What is the longest a segment can be while covering no pixel centers?
Draw the number line and it should be obvious.

2. If we rasterize by snapping vertices at real locations to the nearest inte-
ger locations, how does that affect your answer to the previous question?
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(Hint: Nothing wider than 0.5 pixels can now hide between two pixel cen-
ters.)

3. If we rasterize in fixed point with 8-bit subpixel precision and snap vertices
to that grid before rasterization, how does that affect your answer? (Hint:
Pixel centers are now spaced every 256 units.)

Exercise 15.6: Say that we transform the final scene for our ray tracer by mov-
ing the teapot 10 cm and ground to the right by adding 10 cm to the x-ordinate
of each vertex. We could also accomplish this by leaving the teapot in the orig-
inal position and instead transforming the ray origins to the left by 10 cm. This
is the Coordinate-System/Basis principle. Now, consider the case where we wish
to render 1000 teapots with identical geometry but different positions and orien-
tations. Describe how to modify your ray tracer to represent this scene without
explicitly storing 1000 copies of the teapot geometry, and how to trace that scene
representation. (This idea is called instancing.)

Exercise 15.7: One way to model scenes is with constructive solid geometry
or CSG: building solid primitives like balls, filled cubes, etc., transformed and
combined by boolean operations. For instance, one might take two unit spheres,
one at the origin and one translated to (1. 7, 0, 0), and declare their intersection to
be a “lens” shape, or their union to be a representation of a hydrogen molecule.
If the shapes are defined by meshes representing their boundaries, finding a mesh
representation of the union, intersection, or difference (everything in shape A that’s
npt in shape B) can be complex and costly. For ray casting, things are simpler.
(a) Show that if a and b are the intervals where the ray R intersects objects A
and B, then acupb is where R intersects A ∩ B; show similar statements for the
intersection and difference.
(b) Suppose a CSG representation of a scene is described by a tree (where edges
are transformations, leaves are primitives, and nodes are CSG operations like
union, intersection, and difference); sketch a ray-intersect-CSG-tree algorithm.
Note: Despite the simplicity of the ideas suggested in this exercise, the speedups
offered by bounding-volume hierarchies described in Chapter 37 favor their use,
at least for complex scenes.
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Chapter 16

Survey of Real-Time
3D Graphics Platforms

16.1 Introduction

Now that you’ve seen the core ideas that let us use computer graphics to make
pictures, we’re going to describe to you the variety of approaches that have been
developed to encapsulate this knowledge. Such approaches have the benefit of
isolating the programmer from the details of the graphics hardware, which helps
with maintainability of programs. They also let application developers concentrate
on things specific to their application domain, rather than the way that images are
presented to the user. The variety of approaches available is due, in part, to the
pattern of hardware development, which is where we’ll begin our survey.

As impressive as the rate of improvement in commodity CPUs has been dur-
ing the past four decades, the evolution of graphics hardware has been even
more remarkable. Hardware-based graphics acceleration—removing the burden
of executing the 3D pipeline from the primary processor by offloading it onto
a peripheral—was first commercialized for vector displays in the late 1960s
and for raster displays in the 1980s. Rendering pipelines moved from soft-
ware to raster graphics hardware via the development of geometry- and pixel-
processing chips that were integrated into graphics workstations built by high-end
real-time 3D graphics vendors such as SGI and Evans & Sutherland, and mid-
level-performance raster graphics was provided by workstation vendors including
Apollo and Sun Microsystems. These devices were expensive, affordable only
to academic and corporate institutions. The maturation of this technology into a
true commodity, available on personal computers, took place in the mid-1990s
in the form of graphics cards featuring cheap but powerful GPUs (described in
Chapter 38).

Since each brand/model of GPU has its own native instruction set and inter-
face, a standard API providing hardware independence is essential. The two dom-
inant APIs providing this important abstraction layer are Microsoft’s proprietary

451
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Direct3D1 (on Windows platforms for desktop/laptop, smartphone, and gaming
hardware such as Xbox 360) and the open source cross-platform OpenGL.

The goal of these low-level platforms is to provide access to the graphics hard-
ware functions in a hardware-independent manner with minimal resource cost;
they are thin layers above the graphics hardware device drivers. A key character-
istic is that they do not retain the scene; instead, the application must respecify
the scene to the platform in order to perform any update of the display. These
immediate-mode (IM) platforms thus act as conduits to the graphics hardware,
translating a device-independent stream of graphics instructions and data into the
proprietary instruction set of the underlying GPU.

You as a developer have the choice of directly using a low-level IM API—
which places the application close to the hardware, allowing maximum control—
or using a retained-mode (RM) middleware platform (such as WPF) that offers
the convenient abstraction of a scene graph. RM platforms—described in greater
detail in Section 16.4.2—create opportunities for automated performance opti-
mization, and simplify many development tasks by making it easier to express
complex constructions. However, when you use an RM platform, you lose the
potential for peak performance and may experience delays in access to the latest
hardware features when waiting for the next release of the middleware. It is usu-
ally a good idea to work at the highest level practical for your application, and use
a limited amount of lower-level code for performance-critical features.

It is important to note that the architecture of graphics hardware is in flux,
as GPUs become more powerful and more general-purpose. The GPU is rapidly
morphing into what might be called a Highly Parallel Processing Unit, which has
already brought ray tracing onto commodity graphics hardware and into the realm
of real-time rendering. Keep in mind that our focus here is on platforms built using
current GPU polygon-rendering architectures.

16.1.1 Evolution from Fixed-Function to Programmable
Rendering Pipeline

Graphics hardware and IM APIs have been co-evolving for several decades, each
influencing the other. New features on the hardware side have, of course, required
API enhancements for access. Simultaneously, developer identification of bottle-
necks and limitations in the IM layer and the underlying hardware produces feed-
back that leads to innovations in graphics hardware. The co-evolution has, over
time, caused a major paradigm shift in the IM layer’s functionality, as exhibited
in Figure 16.1, whose focus is on the evolution of the two most pervasive IM
platforms on commodity hardware.

16.1.1.1 The Fixed-Function Era
Commodity graphics acceleration hardware in the early/mid-1990s implemented
fixed-function (FF) pipelines (similar to WPF’s) using industry-standard non-
global lighting and shading models (Phong or Blinn-Phong lighting, Gouraud or
Phong shading), and depth-buffer visible surface determination as described in

1. Direct3D is the 3D graphics portion of the umbrella suite of multimedia APIs that
is known as DirectX. Note that some 3D-related publications will use the two names
interchangeably, but the proper way to refer to the 3D functionality is to use the term
“Direct3D” or the abbreviation “D3D.”
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Fixed-function

OpenGL 1 OpenGL 1.4 OpenGL “Core” 3.2, 4.x, ...

RealityLab Direct3D 2 Direct3D 8 Direct3D 10

Hybrid
Programmable only

1992 1995 2001 2009

Figure 16.1: Evolution of two important commercial real-time 3D graphics platforms:
OpenGL and Direct3D.

Section 36.3. The modules in the pipeline were configurable via parameters, but
their algorithms were hardwired and could not be customized or replaced. Thus,
the IM platforms in that era were focused on providing access to the FF features,
and as new features were introduced in successive hardware releases, the IM APIs
expanded to provide access.

16.1.1.2 Extensibility via Shaders: The “Hybrid Pipeline” Era
As the CG community demanded ever-higher levels of control over the rendering
process and greater access to GPU capabilities, the popularity of shaders surged
in the early 2000s—almost a full two decades after their introduction in a sem-
inal 1984 paper by Rob Cook and pioneering implementation as part of Pixar’s
RenderMan software developed by Hanrahan et al. The term “shader” is mislead-
ing, as it would seem to restrict its utility to just surface-color determination—in
actuality, the technology encompasses many stages of the rendering pipeline and
the term thus refers to any programmable module that can be dynamically installed
into the 3D rendering pipeline.

For many years, shader programming had a steep learning curve due to its
assembly-language specification; however, in the 2003–2004 time frame, shader
programming became more accessible with the development of high-level lan-
guages (similar to C) like HLSL/Cg (from a Microsoft/NVIDIA collaboration)
and GLSL (introduced in OpenGL 2.0, designed by the OpenGL Architecture
Review Board).

The IM layer initially treated shader support as an add-on to the FF pipeline,
and for many years, fixed and programmable features co-existed, with applications
using the FF pipeline when appropriate and installing supplementary shaders as
needed. For example, an animation house working on a movie could use the hybrid
pipeline to facilitate real-time tests of scenes before moving on to expensive ray-
traced renderings; the availability of shaders could be used to allow the real-time
rendering to have at least some special effects such as a water-surface effect that
cannot be achieved with the FF pipeline.

16.1.1.3 The Programmable Pipeline
As would be expected, reliance on the FF pipeline has decreased as the expecta-
tions of movie audiences and video gamers regarding imaging quality have surged,
setting off a race among application programmers and GPU designers to provide
the next “cool effect.” As a result, in the middle of this century’s first decade,
both OpenGL and Direct3D began the process of deprecating the FF pipeline.
Starting with OpenGL 3.2, the fixed functions have been moved to OpenGL’s
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Compatibility Profile, no longer considered a mainstream part of the API. Simi-
larly, starting with Direct3D 10, the FF pipeline is no longer available. Thus, the
modern IM API is leaner, with far fewer graphics-related entry points, as described
in Section 16.3.

16.2 The Programmer’s Model: OpenGL
Compatibility (Fixed-Function) Profile

In this section, we illustrate the techniques involved in the use of a fixed-function
IM platform; to serve as the example platform, we have chosen OpenGL2 in light
of its OS- and language-independence.

OpenGL uses a client/server model in which the application acts as the client
(with the CPU being its processing resource and main-memory RAM being the
memory resource), and the graphics hardware is the server (with its resources
being the GPU and its associated high-performance RAM used for storing mesh
geometry, textures, etc.).

The API provides a very thin layer that translates API calls into instructions
pushed from client to server. In this section, we focus on the fixed-function API,
which is now part of OpenGL’s Compatibility Profile. Its fixed-function IM plat-
form operates as a state machine. For the most part, each API call either sets a
global state variable (e.g., the current color) or launches an operation that uses
the global state to determine how it should operate.

State variables are used to store all information that affects how a geometric
primitive is to be placed/viewed (e.g., modeling transformations, camera charac-
teristics) and how it should appear (e.g., materials). State variables also help you
control the behavior of the graphics pipeline by enabling or disabling certain ren-
dering features (e.g., fog).

As an example, consider this pseudocode illustrating state-machine-based
generation of three 2D primitives:

1
2
3
4
5
6
7

SetState (LineStyle, DASHED);
SetState (LineColor, RED);
DrawLine ( PtStart = (x1,y1), PtEnd = (x2,y2) ); // Dashed, red
SetState (LineColor, BLUE);
DrawLine ( PtStart = (x2,y2), PtEnd = (x3,y3) ); // Dashed, blue
SetState (LineStyle, SOLID);
DrawLine ( PtStart = (x3,y3), PtEnd = (x4,y4) ); // Solid, blue

This strategy contrasts with that of an object-oriented system such as
WPF, which binds the primitive and its attributes together as illustrated in this
pseudocode:

1
2
3
4
5
6
7
8

BundleDASHR =
AttributeBundle( LineStyle = DASHED, LineColor = RED );

BundleDASHB =
AttributeBundle( LineStyle = DASHED, LineColor = BLUE );

BundleSOLIDB =
AttributeBundle( LineStyle = SOLID, LineColor = BLUE );

DrawLine ( Appearance=BundleDASHR,
PtStart = (x1,y1), PtEnd = (x2,y2) );

2. At a high level, Direct3D’s programmer’s model is similar, although its API is not.
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9
10
11
12

DrawLine ( Appearance=BundleDASHB,
PtStart = (x2,y2), PtEnd = (x3,y3) );

DrawLine ( Appearance=BundleSOLIDB,
PtStart = (x3,y3), PtEnd = (x4,y4) );

The use of the state-machine strategy is natural for IM platforms, since the
goal is to represent the underlying graphics hardware as closely as possible. This
strategy has both pros and cons. The advantages include being more concise and
supporting control over subordinate modules. Consider a function that draws a
dashed triangle:

1
2
3
4
5
6
7

function DrawDashedTriangle (pt1,pt2,p3)
{

SetState( LineStyle, DASHED );
DrawLine( PtStart=pt1, PtStart=p2 );
DrawLine( PtStart=pt2, PtStart=p3 );
DrawLine( PtStart=pt3, PtStart=p1 );

}

What color will the generated triangle be? Since the function controls only
the line style, the color is unspecified and depends on the state when control is
passed to the function. This has advantages (the caller can control the subordi-
nate’s behavior, and the subordinate can produce a greater variety of effects by
allowing this control). However, it also has disadvantages: The effect of the func-
tion is not fully defined, and debugging unexpected output is difficult because the
programmer has to trace backward through the execution flow to the most recent
settings of the relevant attributes.

This uncertainty of behavior is actually bidirectional, since subordinate func-
tions are not isolated and can inadvertently produce side effects that damage the
caller’s behavior. Our function DrawDashedTriangle changes the line-style state
variable, and thus can have an impact on the caller’s behavior and on logic that
executes subsequently. The effect will persist until the next explicit setting of the
line style. To avoid side effects, each function that changes state should bear the
responsibility of restoring state before it returns, as illustrated here in pseudocode:

1
2
3
4
5
6
7

function DrawDashedTriangle (pt1,pt2,p3)
{

PushAttributeState();
SetState( LineStyle, DASHED );
...
PopAttributeState();

}

Clearly, unless constructed with such protocols to reduce/eliminate side
effects, an application built on a state-based platform can produce unintended
behaviors that can be difficult to diagnose, so programmer discipline is crucial.

16.2.1 OpenGL Program Structure

In a typical OpenGL application, the program’s main function will start by
initializing the pipeline, specifying the screen/window location of the viewport
(as in WPF, the rectangular area on the output device in which the scene will be
rendered), setting up camera and lighting characteristics, loading or calculating
meshes and textures, setting up event handlers, and finally passing control to



ptg11539634

456 Survey of Real-Time 3D Graphics Platforms

an event-polling loop—at which point the application’s role becomes limited to
responding to events.

OpenGL itself is window-system-independent and thus has no support for cre-
ating and managing windows or handling events. These types of activities, which
require highly OS-specific techniques, are typically made available to application
programmers via 3rd-party libraries. There are many such libraries, and for this
example we’ve chosen GLUT (OpenGL Utility Toolkit), which has been very pop-
ular in OpenGL development for decades. In addition, we use the popular GLU
(OpenGL Utility) library for its matrix utilities.

GLUT supports many event types, of which these are the most fundamental.

• Display: GLUT calls the registered Display-event handler when it is time
for the application to draw the initial image (i.e., when control has just
been transferred to GLUT’s event-polling loop) or whenever the viewport
needs to be refreshed (e.g., to perform “damage repair” as described in
Section 1.11).

• Mouse/keyboard/etc.: GLUT calls registered interaction handlers to let
the application know of the user’s attempts to interact with the application
through input devices such as the keyboard and mouse.

• Idle: To continuously draw new frames as fast as the graphics system can
handle them, an application registers an “idle” handler invoked when the
graphics pipeline is empty and awaiting new commands. This technique
is of value for other purposes as well, such as polling external entities or
performing time-consuming operations.

16.2.2 Initialization and the Main Loop

In Figure 16.2, we show the high-level call-graph structure of a typical OpenGL
application, with yellow boxes representing modules found in the application and
gray boxes representing functions provided by OpenGL and related utilities. Let’s
examine this call graph in detail here.

OpenGL library bindings are available for a large variety of languages, but in
this discussion we’ll use C/C++ as our example language. Our program’s main()
function uses GLUT to perform many of the initialization activities, starting with
an obligatory call to glutInit:

Set up
lighting

Set up
camera

OpenGL state-setting functions OpenGL drawing functions

glutMainLoop

Register
event

handlers

Idle
handler

Interaction
handler

Refresh/Redraw

Main

Figure 16.2: Structure of a simple OpenGL application.
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1
2
3

int main( int argc, char** argv )
{

glutInit( &argc, argv ); // Boilerplate initialization

Next we request color support and depth buffering (also known as Z-buffering,
used for hidden-surface removal as described in Chapter 36):

glutInitDisplayMode( GLUT_RGB | GLUT_DEPTH );

Then, we call a sequence of three GLUT functions to create the window that
will be assigned to our application. The first two function calls allow us to specify
the optimal initial size and position for the new window.

1
2
3
4
5
6

// Specify window position (from top corner)
glutInitWindowPosition( 50, 50 );
// Specify window size in pixels (width, height)
glutInitWindowSize( 640, 480 );
// Create window and specify its title
glutCreateWindow( "OpenGL Example" );

The result is a window whose client area (see Section 2.2) has the specified
position and size. The application is free to further divide the client area into
different regions; for example, to include user-interface controls. In the following
call to glViewport, we reserve the entire client area for use as the 3D viewport:

1
2
3

glViewport(
/* lower-left corner of the viewport */ 0, 0,
/* width, height of the viewport */ 640, 480 );

OpenGL provides a variety of rendering effects, and with the function calls
shown below, we specify that the front side of each triangle be filled using
Gouraud’s smooth shading. (Alternatively, we can make the pipeline act as a point
plotter or as a wireframe renderer, for example.)

1
2
3
4
5

// Specify Gouraud shading
glShadeModel( GL_SMOOTH );

// Specify solid (not wireframe) rendering
glPolygonMode( GL_FRONT, GL_FILL );

Initialization continues with calls to initialization routines that we will show
later:

1
2

setupCamera();
setupLighting();

The main function is near its end, and still nothing has been drawn. It is time
to register our application’s display handler to ensure GLUT will know how to
trigger the generation of the initial image:

1
2
3

glutDisplayFunc(
drawEntireScene // the name of our display-event handler

);



ptg11539634

458 Survey of Real-Time 3D Graphics Platforms

The final act in the main function is the transfer of control to GLUT:

1
2
3
4

// Start the main loop.
// Pass control to GLUT for the remainder of execution.
glutMainLoop(); // This function call does not return!

}

Once GLUT has control, it will invoke the registered display function to trig-
ger the generation of the program’s first rendered frame.

16.2.3 Lighting and Materials

OpenGL’s fixed-function lighting/materials model is somewhat different from that
of WPF as described in Chapter 6, but any effect achievable in one system can
effectively be emulated in the other quite readily. Because of this similarity, we
omit this portion of the code, but the web materials for this chapter include it.

16.2.4 Geometry Processing

A simplified view3 of the OpenGL fixed-function rendering pipeline is shown in
Figure 16.3; it might be useful to review Section 1.6.2 if some of the terms (e.g.,
“fragment”) are unfamiliar to you. In a fixed-function pipeline, the application’s
focus is on configuring and feeding data to the per-vertex stage, as is exhibited
by the locations of the two boxes representing application input and their varied
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Per-vertex
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Depth test

Blending Scissor test

Alpha test

Per-vertex

Per-fragment
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Vertex
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Material
state

Modeling
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transform

Projection
transform

Lighting
configuration

Frame buffer

Figure 16.3: Simplified view of the fundamental components of the OpenGL fixed-function
pipeline.

3. This simplified view omits pixel data and operations such as bitmaps, images, texture
setup, and direct framebuffer access.
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contents toward the front of the pipeline. The rest of the pipeline, including ras-
terization and the many per-fragment operations at the end of the pipeline, use
hardwired algorithms controlled via a number of configuration parameters.

As explained in Section 1.6, every 3D graphics system includes geome-
try processing that controls the conversion of geometric data (e.g., mesh ver-
tices) successively from the modeling coordinate system (“object coordinates”
in OpenGL nomenclature) to the world coordinate system, continuing on to the
camera coordinate system (depicted in Figure 1.15, known in OpenGL as the “eye
coordinate system” or “eye space”), and ultimately to some physical “device”
coordinate system.

Coordinate-system transformations are performed via matrix arithmetic, as
described in Chapters 7 and 11. Matrices are set up by the application using
an abstraction provided by the immediate-mode API; we describe the OpenGL
fixed-function abstraction below. Internally, the IM layer manipulates the matri-
ces to prepare them for transmission to the GPU. The GPU itself may perform
further manipulations to maximize the speed of computations and it must extend
the pipeline’s scope further to produce physical/screen-pixel coordinates. Our dis-
cussion here focuses solely on the IM-level abstraction.

Coordinate system
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Normalized device
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Projection
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Operation
Matrix
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Figure 16.4: OpenGL’s geometry pipeline: a sequence of coordinate systems through which
each 3D vertex of the original model progresses, via transformations, into its corresponding
2D display-device position.
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In fixed-function OpenGL, the geometry processing is performed by what is
called the transformation pipeline, which has the stages depicted in Figure 16.4.

The modeling stage brings the individual components’ coordinates from their
original “raw” local coordinate systems into a single unified world coordinate
system, and we examine how the modeling stage is used to implement hierarchi-
cal modeling in the online resources for Section 16.2.9. Then, the viewing stage
transforms the coordinates into eye space, after which the camera is positioned at
the origin and oriented in the canonical way described in Section 1.8.1.

Next, the projection stage works on normalizing the view volume’s shape
and dimensions to OpenGL’s version of the standard perspective view volume
described in Chapter 13, transforming the coordinates into 3D clip coordinates.
The transformation pipeline includes two more stages that eventually yield the
window coordinates that are sent to the rasterization module.

In OpenGL, the first three stages of the pipeline are controlled by the applica-
tion via specification of two matrices, MMODELVIEW and MPROJECTION .

The MODELVIEW matrix handles the first two stages; the application has the
responsibility of setting it (using utilities described in the next section) according
to this equation:

MMODELVIEW = Mview ·Mmodel

The order in which the two matrixes are combined ensures the modeling trans-
form is performed on the incoming vertex (V) before the viewing transform is
performed:

MMODELVIEW · V = Mview ·Mmodel · V
The application separately sets (again using utilities described later) the PRO-

JECTION matrix to define either a perspective or parallel view volume and its
corresponding projection.

There is a good reason why OpenGL’s designers combined modeling and
viewing, but kept projection separate. Typically, the camera view volume’s shape
(defined by MPROJECTION) is quite static, persistent for an entire scene or even for
the entire application’s lifetime. However, the camera’s location and orientation
(Mview) is typically as dynamic, if not more so, than the scene objects themselves.
By isolating the specification of camera shape/projection from the specification
of camera position/orientation, OpenGL’s design makes it natural to specify these
in different parts of the program structure/flow. Normally, setting the projection
matrix will be more of an “initialization” operation, whereas specifying the view-
ing matrix is a part of each new animation frame’s computation, typically done
just before scene construction commences.

16.2.5 Camera Setup

As described above, the camera specification is divided into two matrix specifica-
tions: viewing and projection.

To assist in specifying the latter, GLU provides the convenience function
gluPerspective to compute the matrix for the common perspective-projection
case of a symmetric frustum.

For example, to set the projection matrix (typically as part of an initialization
sequence) to match the perspective camera we had specified in Section 6.2 for our
pyramid scene, we perform this sequence:
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1
2
3
4
5
6
7
8
9

10
11
12

// Prepare to specify the PROJECTION matrix.
glMatrixMode( GL_PROJECTION );

// Reset the PROJ matrix to ignore any previous value.
glLoadIdentity();

// Generate a perspective-proj matrix,
// append the result to the PROJ matrix.
gluPerspective( 45, // y-axis field of view

(640.0/480.0), // ratio of FOV(x) to FOV(y)
0.02, // distance to near clip plane
1000 );// distance to far clip plane

Note that each OpenGL or GLU matrix-calculation function performs two
actions: (1) calculates the matrix that meets the specification given by the param-
eters, and (2) “appends” (via matrix multiplication) it to the current value of the
matrix that is currently being specified. This is why the call to glLoadIdentity is
important; without it, the calculated perspective matrix would be combined with,
instead of replacing, the current value of the projection matrix.

Now, let’s set up the viewing transformation, typically one of the first opera-
tions in the preparation for rendering each frame of the animation. We describe the
camera’s position and orientation using a GLU convenience function, providing
parameters equivalent to those used for WPF camera specification:

1
2
3
4
5
6
7
8
9

// Prepare to specify the MODELVIEW matrix.
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();

// Generate a viewing matrix and append result
// to the MODELVIEW matrix.
gluLookAt( 57,41,247, /* camera position in world coordinates */

0,0,0, /* the point at which camera is aimed */
0,1,0 ); /* the "up vector" */

16.2.6 Drawing Primitives

OpenGL provides several mesh-specification strategies, including the efficient
triangle-strip and triangle-fan techniques described in Chapter 14.

The application is responsible for representing curved surfaces via tessella-
tion into triangles; additionally, the application is expected to provide the vertex
normal for each vertex. Since complex models are typically either computed via
mathematics (in which case the normal is easily derived as part of that algorithm)
or imported by loading a model (which often includes precomputed normal val-
ues), this requirement is rarely inconvenient.

The application can choose from several strategies for transmitting the mesh
specification to the platform, including techniques for managing and using GPU
hardware RAM (e.g., vertex buffers or VBOs, described in Section 15.7.2). In this
example, for simplicity, we use the Compatibility Profile’s per-vertex function
calls which are inefficient (and no longer present in the Core API) but popular
in demos and “hello world” programs. To use this strategy as demonstrated in
the code below, set the current material, initiate mesh-specification mode, enu-
merate each vertex one at a time (interleaved with control of the current-vertex-
normal state variable), then end the specification mode. Let’s specify the same
solid-yellow pyramid that we constructed in Section 6.2:
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

// Specify the material before specifying primitives.
GLfloat yellow[] = {1.0f, 1.0f, 0.0f, 1.0f};
glMaterialfv( GL_FRONT, GL_AMBIENT, yellow );
glMaterialfv( GL_FRONT, GL_DIFFUSE, yellow );

glBegin( GL_TRIANGLES );

The platform is now in a mode in which each trio of calls to
glVertex3f adds one triangle to the mesh.

// Set the current normal vector for the next three vertices.
// Send normalized (unit-length) normal vectors.
glNormal3f( ... );

// Specify the first face’s three vertices.
// Specify vertices of the front side of the face
// in counter-clockwise order, thus explicitly
// identifying which side is front versus back.
glVertex3f( 0.f, 75.f, 0.f );
glVertex3f( -50.f, 0.f, 50.f );
glVertex3f( 50.f, 0.f, 50.f );

// Set the current normal vector for the next three vertices
glNormal3f( ... );

glVertex3f( 0.f, 75.f, 0.f ); // Specify three vertices
glVertex3f( 50.f, 0.f, 50.f );
glVertex3f( 50.f, 0.f, -50.f );

... and so on for the next two faces ...

glEnd(); // Exit the mesh-specification mode

The mesh is now queued for rendering.

16.2.7 Putting It All Together—Part 1: Static Frame

In contrast to WPF, which automatically updates the display to represent the cur-
rent status of the scene graph, immediate-mode packages place the burden of dis-
play refresh on the application. First let’s look at a static-image generator, and
then we’ll add dynamics.

Consider the case of a program that is to generate a single static image; in such
a case, the rendering activity is only needed

• As part of initialization, to generate the first rendering

• Whenever the window manager reports to GLUT that the image has been
damaged and needs repair (e.g., upon closing of a window that was partially
covering the OpenGL window)

In this situation, the display function typically looks like this:

1
2
3
4
5
6
7

void drawEntireScene()
{

Set up projection transform, as shown above.
Set up viewing transform, as shown above.
Draw the scene, via an ordered sequence of actions, such as:

Set the material state.
Specify primitive.
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8
9

10
11
12

...

// Final action: force display of the newly-generated image
glFlush();

}

16.2.8 Putting It All Together—Part 2: Dynamics

Let’s extend the scenario to include dynamics; let’s have our simple pyramid
model spin around the y-axis as though on an invisible turntable, the visualiza-
tion technique used in the lab software for Chapter 6 to demonstrate the effect of
directional lighting.

In an object-oriented system, each node in the hierarchical scene specification
supports attached transformation properties, so you would perform this animation
by attaching a rotation transformation to the pyramid primitive and tasking an
Animator element to dynamically modify the amount of rotation. This technique
is identical to the clock-rotation technique we used in Chapter 2.

In an immediate-mode platform, we perform modeling by direct manipulation
of the MODELVIEW matrix. We’ve already learned how to initialize the MOD-
ELVIEW matrix with the viewing transform. To achieve the spinning dynamics,
we must change our scene-generation function slightly, by appending a rotation
transformation to the MODELVIEW matrix just before drawing the scene.

We elaborate on this technique, and provide source-code examples, in the
online material for this chapter.

16.2.9 Hierarchical Modeling

Previously, we presented two examples of hierarchical modeling: a 2D clock in
Chapter 2, and a 3D camel in Section 6.6. In those examples, we learned how
to create a scene using a retained-mode platform such as WPF: The application
sets up the scene by creating a hierarchy of component nodes (attaching instance
transforms to specify initial placement), and animates the scene by adjusting the
values of the joint transformations attached to the nodes. This is an intuitive way
to work, since the scene graph’s structure exactly mirrors the physical structure of
the scene being modeled.

Now, reconsider the camel hierarchy shown in Figure 6.41. How can we con-
struct this model using an immediate-mode platform?

The challenges here are twofold.

• The IM platform has no facility for storing the model. The application is
wholly responsible for representing the model’s hierarchy, and for com-
puting and storing the values of all transforms that control position and
orientation.

• Section 10.11 describes the graph-traversal and matrix-stack techniques
necessary to compute the composite transformation matrix to properly
position and orient a particular leaf component in the hierarchy. A retained-
mode platform performs this calculation automatically, but this burden
rests on the application when using an IM platform.
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To satisfy the need for model representation,4 there are two approaches.

• Create a custom scene-graph module, duplicating functionality found in
a typical RM layer (see Section 16.4), in terms of both storage (such as
a hierarchical component graph, and a database of transform values) and
processing (traversal and generation of the IM instructions).

• Use the program’s call-graph hierarchy to represent the model’s structure,
by writing a distinct function for each type of node (grouping or primitive),
with the functions for higher-level nodes calling the functions for lower-
level ones.

In the online resources for this chapter, we examine the latter approach in
detail, including source code for a complete working example.

16.2.10 Pick Correlation

One of the advantages of an RM platform is its support for pick correlation, the
determination of the primitive that is the target of a user-initiated mouse click or
other equivalent device action. For example, WPF converts a given 2D viewport
pick point’s coordinates into a pick path that identifies the entire path from the
root of the scene graph down to the leaf primitive.

Of course, an IM platform cannot automate such functionality since it does
not retain the scene. Thus, an IM application often uses custom correlation logic,
running an algorithm such as ray casting (Chapter 15) while traversing through the
application’s scene data store. OpenGL offers an alternative technique that uses
the name stack to efficiently automate hierarchical pick correlation. This technique
is described in the online materials for this chapter.

16.3 The Programmer’s Model: OpenGL
Programmable Pipeline

At its core, real-time graphics is still done using lights, meshes, materials, trans-
formations for viewing and modeling, etc. The progression from fixed-function
to programmable has not changed its essence. But where these types of objects
reside in the application source code has shifted to programs written in shader
languages and installed in the GPU, as described in detail in Chapter 33.

16.3.1 Abstract View of a Programmable Pipeline

Let’s examine an abstract view of a programmable pipeline, shown in Figure 16.5
and explained in the next few paragraphs. To keep this model simple, we omit
texture data/operations, show only vertex and fragment shaders, and omit feed-
back loops. We use OpenGL terminology, but this is also applicable to Direct3D.

If this diagram seems to be a bit incomplete, you’re on the right track! Where
are the lights, materials, and camera? They are all present, but only “in spirit”:

4. Here, we are concerned with a model that has only the geometric data necessary to
generate the target image, but the focus of a typical real-world application is an “appli-
cation model” (see Section 16.4) that encapsulates many different data types, graphical
and nongraphical.
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Figure 16.5: Simplified view of the fundamental components of the OpenGL programmable
pipeline.

in the empty input-related yellow boxes and in the two shader boxes. Whereas
the fixed-function pipeline can be considered a configurable appliance, the pro-
grammable pipeline is a computer on which you install an application of your
own construction. Let’s first examine the pipeline’s semantics in the absence of a
particular application, and then we’ll look at how this pipeline might appear when
loaded with an actual program.

The application sends batches of vertices through this pipeline, each batch
representing a mesh for which certain characteristics (e.g., material or lighting)
are constant across its vertices. The vertex shader is a function that is called once
for each vertex in the batch, receiving as input the vertex and associated attributes
such as the vertex normal or the texture coordinate. The vertex shader also has
access to any number of per-batch “uniform” inputs providing information that is
constant for the entire batch (e.g., camera characteristics).

What the vertex shader does is up to the programmer. At the least, its out-
put must include the vertex transformed to clip coordinates (i.e., already passed
through modeling, viewing, and projection transformations), but it also may
include any amount of other output data values to “tag along” with this vertex
to the next stage of the pipeline. Typically, a calculated vertex color is one of the
outputs, but there is no limit to the number of outputs or their semantics. Each out-
put is typically marked as “smooth,” which tells the rasterizer stage in the pipeline
to interpolate that particular output’s values for the pixels that lie between the
vertices. (The alternative is “flat,” which disables this interpolation.)
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What lies between the vertex and fragment shaders is a mini-pipeline of sev-
eral modules,5 shown in Figure 16.5 as a single box. They work together to com-
plete the transformation pipeline to convert to window coordinates, to perform
clipping/culling against the view frustum, and to perform rasterization to produce
a sequence of output fragments.

The fragment shader (whose equivalent in Direct3D is called the “pixel
shader”) is called once for each fragment and receives the fragment’s location (in
window coordinates) and the already-interpolated varying outputs from the vertex
shader. In very simple cases, the fragment shader often does nothing but pass the
color unchanged through to the next stage, but the fragment shader is essential
for lighting algorithms for which simple linear interpolation between vertices is
insufficient, and is also instrumental in special effects such as blurring.

At the end of the pipeline lie the per-fragment operations, similar to those
found in the OpenGL FF pipeline.

16.3.2 The Nature of the Core API

The OpenGL Core API retains only a fraction of the entry points that were present
to support the FF pipeline. The techniques for specifying and transmitting tex-
tures and meshes have not changed significantly, and end-of-pipeline activities
like blending and double-buffering are similar. However, all other information and
operations now lie inside in the uniforms, attributes, and shader code. The leaner
OpenGL Core API is mostly concerned with activities of the following types:

• Buffer object management—control over all data stored on the GPU,
including allocation/deallocation and data transmission

• Drawing commands—sending meshes down the pipeline

• Shader-program management—downloading, compiling, activating, and
setting up uniforms and attributes

• Texturing management—installation and management of texture data
structures for use by vertex and fragment shaders

• Per-fragment operations—control over per-fragment operations at the end
of the pipeline, such as blending and dithering

• And framebuffer direct access—pixel-level read/write access

16.4 Architectures of Graphics Applications

We now discuss the general structure of a typical graphics application, some
approaches to speed up certain parts of this structure, and various kinds of soft-
ware designed to offload that work from the typical designer.

16.4.1 The Application Model

A typical 3D application includes an application model (AM)—a collection
of data, resident in a database or in data structures, whose application-domain

5. On some hardware platforms, this part of the pipeline is also programmable, through
use of a third type of shader, known as a “geometry shader.”
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semantics go beyond a mere rendered image, but for which an image is one pos-
sible view of the AM.

In our simple WPF-2D clock application, the AM contained only the current
time of day, but it could be extended to include alarm-related data (date, choice
of alarm sound, enabling of “snooze control,” etc.) or support for multiple time
zones. Note that the AM need not include any inherent geometry; for example,
there’s nothing geometric about the time of day, and the rotation-based analog
display of clock time is simply one way to display that data.

Most applications have a heterogeneous AM containing both nongeometric
and geometric data, and the latter can be further subdivided into abstract geo-
metric (not in a form ready for the IM layer) versus ready for rendering (in a
form ready for the IM layer, e.g., geometry in the form of a triangle mesh).

Consider the breakdown of the AM of a chess application.

• Nongeometric data would include

– Current board location of each piece (i.e., the square on which it
resides)

– Record of each move since the game started, to facilitate export of a
game “transcript”

– Chess strategy data used by the game to plan its moves
– Duration of the game in progress, the player whose turn it is, the amount

of time left for her move, etc.

• Abstract geometric data might include

– Mathematically defined shapes of the pieces (which must be converted
into meshes in order to be made ready for rendering)

– Motion paths, specified as cubic Bézier curves, to support animation of
the movement of pieces from square to square

• The ready-for-IM geometric data might include

– Geometry and materials for rendering the chessboard itself
– Camera definitions for several points of view (if the UI allows the user

to choose from several POVs, e.g., directly overhead, POV from seated
avatar, etc.)

– Modeling transforms for the pieces (e.g., if the user is able to control
the 3D positions and orientations of the pieces beyond their abstract
locations on specific squares)

Now consider the highly complex AM for a CAD/CAM representation of a
jet airliner, consisting of millions of components, each including geometric, spa-
tial layout, and connectivity/joint data; behavioral data used in aircraft-operation
simulation; part numbers, costs, and supplier IDs used in procurement; mainte-
nance/repair instructions or cautions; and much more. In addition, each compo-
nent “lives” in several organizational systems for the purpose of searching and
filtering; for example, a spatial organizational system might separate components
into regions (e.g., cockpit, main cabin), but a functional one might separate com-
ponents into distinct systems such as electrical or hydraulic.

These databases thus act as a confluence of many types of data, used and
manipulated by a large variety of different systems and applications, of which only
a fraction are “computer graphics” programs.
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For the purposes of this text, we are concerned only with the data that is either
intrinsically geometric, or can be represented geometrically for the purpose of
rendering.

16.4.2 The Application-Model-to-IM-Platform
Pipeline (AMIP)

We now consider how an IM-based application drives an IM platform, which in
turn drives the GPU. Every such graphics application must implement—in addi-
tion to its own special semantics/logic—a multistage process that we call the
“Application-Model-to-IM-Platform pipeline,” or AMIP. The AMIP is the front
part of the client (CPU) side of the complete rendering pipeline depicted concep-
tually as a sequence of stages, each executing a designated task, in Figure 16.6.

At its most basic, the AMIP is composed of a traversal of the AM to do the
following.

• Determine the scene to be rendered, including all geometry, materi-
als, lighting/special effects, and camera configuration. The application
traverses the application model to extract the data relevant to the scene,
transforming any nongeometric data into a geometric representation for
inclusion in the scene. This is analogous to the act of generating a view of
a database, an action requiring both selection (extraction based on query
criteria) and transformation (arbitrary computation on or reformatting of
extracted data fields).

• Calculate the sequence of API calls needed to drive the IM layer to pro-
duce the image of the scene.

IM layer

Graphics hardware driver

AMIPApplication

Figure 16.7: Software stack for
an application that describes the
scene directly to the immediate-
mode platform.

Application

RM middleware

IM layer

Graphics hardware driver

AMIP

Figure 16.8: Software stack for
an application that constructs
the scene using retained-mode
middleware.

Figure 16.6 depicts the complete rendering pipeline from a functional point
of view. Another way to describe a graphics application is from a software-
engineering point of view: enumerating the layered software stack of compo-
nents, with the custom application code at the top of the stack, the graphics
hardware driver at the bottom, and intermediate platforms/libraries in between.

The graphics-related stack for a typical 3D graphics application is made up
of at least three layers (see Figure 16.7), and may contain four layers (see Fig-
ure 16.8) if a retained-mode middleware platform is used to assist with AMIP
duties.

How the AMIP’s tasks are sequenced within the pipeline and divided between
layers of the software stack is volatile, as technologies evolve; moreover, AMIP
tasks that currently typically live on the CPU side are subject to movement to
the graphics hardware as GPU programmability becomes more exploited. We will

AMIP

CPU GPU

IM layer GPU pipeline

Image
Application

model

Figure 16.6: Abstract view of the typical application pipeline transforming the application
model into a scene delivered to the immediate-mode platform for rendering.
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address this “division of labor” later; first let’s focus on the kinds of tasks present
in the AMIP.

In all but the most trivial applications, it is necessary for the AMIP to work in
a highly optimized way in order to ensure scalability—that is, to ensure adequate
performance (especially for real-time animation) even as the size and complex-
ity of the scene grows. The term “Large-Model Visualization” (often abbreviated
LMV) is typically used to describe applications or platforms that handle scenes of
extremely high complexity such as a CAD model of a jetliner or cruise ship.

The primary goal of the AMIP’s optimization tasks is to reduce consumption
of resources such as the following:

• Bandwidth between the CPU and the GPU, by minimizing data transmis-
sion to the GPU

• GPU memory consumption, for example by reducing the size of geometry
data cached on the GPU

• And GPU processing cycles, by generating an efficient sequence of IM-
layer instructions to the GPU to render the scene

CPU-side resources are used to perform these optimization tasks, so there is a
tradeoff here: The benefit of the reduced consumption later in the pipeline (espe-
cially regarding the GPU) comes at the cost of extra work being done earlier in
the pipeline.

In general, the AMIP is composed of stages through which scene data flows.
These stages operate sequentially, or partially in parallel, performing optimization
duties in three categories:

1. Reducing scene complexity

2. Generating an efficient stream of instructions to the IM layer

3. And avoiding redundant computation activities through appropriate
caching

16.4.2.1 Reducing Scene Complexity
There are three categories of tasks that help reduce the amount of graphical data
sent to and processed by the underlying IM layer, which we now describe.

16.4.2.1(a) Extracting the Scene from the “Universe”
In large applications, the application model may contain or represent a “universe”
of graphical objects that are not necessarily all visible simultaneously. The AMIP
thus extracts the relevant subset of the universe, based on application data that
specifies the desired rendering goals. For example, in an airplane CAD appli-
cation, the universe is the entire airplane’s specification, and the subset to be
rendered might be determined by the user’s selection of the subsystems (such as
electrical, HVAC, or hydraulic) of current interest.

As another example, consider a multilevel game, in which each level is a com-
pletely different subworld—the application need only extract the current subworld
to determine the scene to be rendered.

16.4.2.1(b) Reducing the Scene to the Minimal Potentially
Visible Set of Primitives

The AMIP’s focus here is on high-level culling—elimination of entire primitives
or (better yet) large portions of the scene that need not be rendered. This is in
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contrast to hidden-surface removal activities performed by the GPU—such as
back-face culling as described in Section 36.6, or occlusion culling on a per-pixel
level through the depth buffer as described in Section 36.3.

Together, the high-level (CPU-side) and low-level (GPU-side) culling activi-
ties work together toward a common goal of reducing scene complexity and thus
GPU workload.

It is tempting to think of pre-GPU culling as unnecessary, that as GPUs
become more powerful and bandwidth increases, there is less justification for
throwing CPU resources at the problem of determining the potentially visible set.
However, the GPU-side visible surface determination has a cost that is linear in the
number of primitives. Thus, when one considers a Boeing 777 model—which has
more than 100,000 unique parts and several million fastener parts—it becomes
obvious that there continues to be a need for optimizing the sequence of com-
mands and data sent to the hardware rendering pipeline.

Below is an unordered list of modules of this category, many of which require
spatial data structures as discussed below in point 3(b):

View-Frustum Culling: As explained in Chapter 13, the camera’s location
and viewing parameters determine the geometry of the view frustum, and only
geometry lying inside the frustum is visible. This culling stage seeks to identify
and eliminate portions of the scene that lie wholly outside the frustum. Implemen-
tation is typically performed via arrangement of the scene’s contents in a Bound-
ing Volume Hierarchy (BVH), as described in Section 36.7; however, other data
structures (e.g., BSP trees discussed in Section 36.2.1) have been used for certain
situations (e.g., static scenes).

Sector-Based Culling: In many applications, the scene’s environment is
architectural, that is, located in the interior of a building, with walls segment-
ing space into “sectors” and windows/doors creating “portals” that connect adja-
cent sectors. A number of algorithms, described in Section 36.8 and sometimes
called portal culling techniques, are available to cull objects in these kinds of
environments.

Occlusion Culling: Consider a scene modeling midtown Manhattan, seen
from the point of view of a pedestrian at just one intersection. If the depth of
the view frustum covers many city blocks, each visible surface, especially those
close to the viewer, is occluding a very large number of objects. In these types of
environments, there can be great advantage in removing these occluded objects.

Contribution Culling/Detail Culling: A visible primitive, or an entire sub-
portion of the scene, may be too small and/or too far away to make an impact
on the rendering. This culling step is designed to detect and dismiss such content.
Some applications might choose to use this type of culling only when the viewer is
in motion, since the absence of small objects will very likely go unnoticed during
dynamics but may be detectable when the camera is at rest.

16.4.2.1(c) Reducing the Transmission/Rendering
Cost of Geometric Shapes

In this set of activities, complex geometric shapes specified via meshes either are
encoded to reduce the GPU-side rendering cost or the size of the data buffers
needed to transfer the specification to the GPU, or are simplified by reducing the
mesh’s complexity (e.g., reducing the number of triangles and vertices).

Reencoding is the act of converting the mesh’s specification to one that is
more quickly processed by the graphics hardware. For example, converting to
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triangle strips [EMX02] is common since many hardware pipelines are highly
optimized for that succinct encoding type.

Simplification is a form of compression similar to the image compression of
JPEG or audio compression of MP3. The compression is lossy in that the resultant
geometry is not as accurate as the original. But just as MP3 compression produces
music files that are “good enough” for many purposes, geometric simplification
also can be tuned to be satisfactory for specific applications.

For example, if an object or the viewpoint is in motion, it may be possible
to simplify the object without the viewer being aware. Or, if the object’s “impor-
tance” (measured in terms of how many pixels its projected image takes up on the
viewport) is lower than some threshold, a certain amount of simplification may be
possible without damage to the object’s legibility.

There are numerous types of geometric simplification, including the following.

• Continuous Level of Detail / Multiresolution Geometry / Geomorphing /
Selective Refinement/Progressive Meshes/Hierarchical Dynamic
Simplification

A number of algorithms, known by a variety of names, can be used for auto-
matic simplification of a mesh in a manner that fine-tunes the amount of
simplification based on the importance (as described above) of the object’s
image. These algorithms vary widely in their strategies and usage scenar-
ios, and they should be studied by any developer needing “just enough but
not too much” simplification.

As an example, a progressive mesh (described in detail in Sec-
tion 25.4.1) provides for storage of a mesh at many resolutions in a single
data structure. The structure can be thought of as a sequence: The coars-
est (least-expensive, lowest-quality) mesh is stored as the “core,” followed
by a sequence of “reconstruction records” describing how to incremen-
tally restore the higher-resolution information. The renderer of this mesh
sequence can choose to stop reconstruction at any point in the sequence;
the more the processor continues to execute the reconstruction records, the
closer the resultant mesh is to the original resolution.

Note that opportunities for implementation of some of these algorithms
lie both in the AMIP and directly on the graphics hardware.

• Discrete Level of Detail
When the application needs full control over the simplified geometry, this
technique can be used instead of fully automated mesh simplification. Key
objects are specified via multiple mesh definitions (e.g., high-, medium-,
and low-detail versions), and the application uses the one appropriate for
the object’s current importance (as described above).

• Simulating Complex Geometry
For certain applications (e.g., the bumpy surface of an orange, or rocky
terrain seen from afar), instead of representing the geometry in the actual
mesh and bearing the cost of lighting/shading calculation, an application
can use tricks to fool the eye into seeing complex geometry that is not actu-
ally part of the mesh. Texture mapping, as described in Section 1.6.1, is a
primitive technique that wraps the mesh with an image in order to provide
color and translucency variation. More sophisticated algorithms, described
in Chapter 20, include normal mapping, displacement mapping, bump
mapping, and procedural texturing. As an extreme case of cost reduction,
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consider the “billboard” technique described in Section 14.6.2, in which
far-away complexity is simulated via a texture-mapped planar polygon.

• Subdivision Surfaces / GPU Tessellation
In contrast to simplification techniques, this technique has the opposite
goal—it uses an iterative subdivision algorithm (see Section 14.5.3 and
Chapters 22 and 23) to add complexity to a coarse “base mesh” to provide
a smoother appearance. This is an optimization technique due to its use
of the GPU to perform the tessellation; the CPU side deals only with
the coarse base mesh, thus reducing use of CPU/GPU bandwidth. Since
the process is iterative, the GPU-based tessellation can adjust the amount
of smoothing work based on the primitive’s distance from the viewer, thus
providing a kind of variable level-of-detail control.

16.4.2.2 Generating an Efficient Sequence of IM-Layer Instructions
to Render the Simplified Scene

The graphics hardware pipeline is a complex combination of functional units,
and achieving maximum throughput requires expert knowledge of the pipeline’s
idiosyncrasies and potential bottlenecks. Certain types of operation sequences can
cause “pipeline stalls” that radically undermine performance. As the pipeline has
adapted to relieve these bottlenecks over the years, new bottlenecks have arisen,
presenting opportunities for further adaptation.

In particular, state changes (e.g., a change in the current-material state vari-
able, or a switch to a different vertex shader) disrupt pipeline throughput and
should be minimized by careful ordering of the primitive-drawing sequence. The
actual cost varies by API, hardware platform, driver software, and type of state
variable being modified. Nevertheless, as a rule, each state change should be fol-
lowed by the generation of as many primitives as possible; thus, as part of the
AMIP, logic should analyze the potentially visible set for the purpose of reorder-
ing the primitives so as to draw in a batch all primitives that require the same
state configuration. In a chess application, one might model all the black pieces as
obsidian and the white pieces as onyx. It then makes sense to render all the black
pieces before all the white ones, or vice versa.

The modification of specification order generally does not have an impact on
the final rendered image, but it should be noted that the use of translucent materials
presents an exception and does complicate this optimization task (and others, e.g.,
occlusion culling).

16.4.2.3 Using Caching to Avoid Redundant Computations
in Performance of Tasks in Categories 1 and 2

The CPU and memory resources necessary to perform the activities described
above for task categories 16.4.2.1(a–c) and 16.4.2.2 can be substantial. But many
of these activities, when executed to produce frame i, produce results that remain
useful for frame i+1, if the difference between the two frames meets certain
requirements. Thus, caching is of value in reducing the CPU cost of such activities.

Caches used for this purpose are called acceleration data structures and are
used in two distinct ways.

• Cache the result of computations.

– For example, consider 16.4.2.2. The generated IM-layer instruction
sequence associated with static portions of the scene can be cached and
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reused in successive frames; moreover, this cache can even be down-
loaded to the graphics hardware as a display list to eliminate its being
redundantly sent across the CPU/GPU boundary.

– As another example, consider 16.4.2.1(b). Simplified meshes computed
through algorithms such as those listed above should also be cached,
and, here again, there is the opportunity for either client-side (CPU) or
server-side (GPU) storage.

• Cache the data that is used in the performance of these computations.

– For example, consider 16.4.2.1(a). View-frustum culling is typically
performed by organizing the candidate primitives into a BVH (see
Chapter 37), cached and reused across frames; moreover, the longevity
of this cached data structure can be extended by ensuring that it is
selectively updated as needed when changes are made to the scene’s
geometry.

– As another example, consider 16.4.2.1(b). The decision-making logic
for the various types of conditional simplification is typically per-
formed through computation of the cost (a measurement of the geom-
etry’s complexity and thus of the cost associated with rendering it) and
value (a measurement of how much screen real estate its image will
take up) for each graphics object. The value:cost ratio is then used by
the algorithm that determines how much simplification of a particular
object is tolerable. The value/cost information can be cached, of course,
keeping in mind that the “value” parts of the cache will need to be inval-
idated as POV changes occur.

The software that maintains an acceleration data structure is often nontrivial
in design; we address this topic further in Section 16.4.3.

As you were reading the above list of common AMIP tasks, you may have
been creating a mental image of a well-defined sequential pipeline such as that
shown in Figure 16.9.

It’s important to note again that this is a highly conceptual view of the com-
plete AM-to-rendered-image graphics pipeline. Real-world implementations vary
from this abstract view in several ways.

Extract
scene
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Reduce
 scene to the
minimal PVS

Reduce the
cost of

geometry

CPU
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efficient IM-
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Drive GPU

GPU

GPU
optimization

GPU
rendering

Figure 16.9: Sample sequence of components in a typical AMIP.
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• The tasks are not necessarily sequential; the use of parallel computation
may be possible for some tasks.

• The order in which we show these tasks is conceptual and not necessarily
adhered to by actual software/hardware.

• Some types of tasks may be split across several software/hardware mod-
ules, and (for extremely high scalability) across multiple CPUs and GPUs.

• We’ve not discussed GPU internals here; consult Chapter 38 for a discus-
sion of modern graphics hardware.

With this in mind, let’s next turn our attention to the CPU-side software stack,
in particular the four-level stack, which includes a retained-mode middleware
layer designed to handle a large proportion of the AMIP’s duties.

16.4.3 Scene-Graph Middleware

You have now been introduced to two abstraction levels for 3D graphics specifica-
tion: immediate mode (IM) and the higher-level retained mode (RM). You already
know that two key responsibilities of the RM layer are to provide for storage of a
scene graph, and to provide functionality to traverse the scene graph to generate
the instructions to be sent to the IM layer to produce the image.

Additionally, in Section 16.2.9, we noted that an application built directly
atop the IM layer typically necessarily contains custom-built modules duplicat-
ing basic RM functionality, simply because scene storage (and converting such
into an image) is so commonly needed in graphics applications.

Let’s take a more complete look at the functionality of RM middleware. An
RM-based application extracts information from the application model, and uses
the RM API to construct the scene graph that resides in the middleware layer.
Some of the programmer conveniences gained by the middleware’s maintenance
of the scene description include

• Object-oriented representation of key 3D graphics concepts (primitives,
transforms, materials, textures, camera, lights), providing programmers
with an intuitive API for setting up scenes

• Support for hierarchical modeling

• Support for dynamics through incremental editing of the scene description

• Support for hierarchical pick correlation

These conveniences are found in virtually all RM middleware; however, in
addition to these features, RM middleware designed for optimal performance
optionally can perform any of the post-application-model AMIP optimization
tasks listed in Section 16.4.2, as shown in Figure 16.10. Many RM layers per-
form very little optimization, some are designed for optimal scalability and per-
formance, and some are simply conveniences offering no optimization at all. (For
specifics, visit the online materials for this chapter, which contain a curated list of
scene-graph platforms.)

16.4.3.1 Optimization via Acceleration Data Structures
To achieve performance gains, some RM implementations build acceleration data
structures (described in Section 16.4.2.3) to store information useful for optimiza-
tion. Designing the software logic that maintains these data structures—illustrated
in Figure 16.11 and covered throughout Chapters 36 and 37—is a nontrivial task,
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Figure 16.10: Sample distribution of AMIP responsibilities in an application using
retained-mode middleware.
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Figure 16.11: Abstract depiction of an RM layer providing two types of optimization dis-
cussed in Section 16.4.2 (view-frustum culling and IM-instruction reuse), showing the syn-
chronization logic that ensures the acceleration data structures (BVH and IM-instruction
cache, in this example) are updated when the scene graph is modified.

because the structures must be maintained as the scene graph is modified, requir-
ing sophisticated logic to avoid unnecessary invalidations (i.e., premature discard-
ing) of cached information, and to avoid the expense of wholesale regeneration of
the structures.

In addition to the CPU time allocated to maintaining these structures, there
is also a nontrivial CPU memory cost as well. At the end of this section, we’ll
visit the issue of the runtime cost of scene-graph middleware and discuss the cost/
benefit tradeoffs.
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16.4.3.2 Optimization of Static Scene Portions
An initially counterintuitive but then “obvious” maxim about scene graphs, prof-
fered by Henry Sowizral, the designer of Java3D (a pioneering RM platform in
terms of optimization support), is simply: Traversal of a scene graph is expensive
and should be avoided to the fullest possible extent.

In particular, during real-time animation sequences, it is untenable for the
scene graph to be retraversed for each individual frame of the animation. A scal-
able scene-graph platform thus minimizes traversal by performing tasks of the
type mentioned in Section 16.4.2.3:

• Identifying—either automatically or via application-provided “hints” such
as those in Java3D—graph nodes with static content

• Generating and caching acceleration structures for such “subgraphs”

• And not allowing dynamic components in the scene to affect these cached
acceleration structures (which would lead to a high frequency of unneces-
sary cache invalidations)

When using an RM layer, you can assist the middleware with this task by
isolating static from dynamic components in the scene graph. For example, if
the root node’s first child is a node X containing all static parts of the scene,
the subgraph rooted by X need be traversed only once, and that traversal will
prepare the acceleration data structures that provide for efficient generation of
that part of the scene. The remaining children of the root would be marked as
dynamic and not allowed to alter the acceleration structures for the static portion of
the scene.

In an application that allows the viewer to travel through a static scene the
entire scene graph can be handled in this way—that is, traversed exactly once to
set up the acceleration structures that will efficiently generate each frame of the
animation.

It is interesting to note that the generation and caching of the acceleration
structures often involves “flattening” the scene-graph hierarchy, to eliminate
traversal dependencies. Why? Well, remember Sowizral’s admonition: Avoid
traversal! The goal of the acceleration structures is to give the optimization
algorithms rapid access to ready-to-use data needed for their operation; to require
the optimization logic to traverse the scene-graph hierarchy in order to interpret
the acceleration data would be a serious slowdown.

16.4.3.3 Costs and Disadvantages of Retained-Mode Middleware
The benefits provided by an RM layer come at a cost. Development-related costs
include the learning curve associated with the package’s API, and the time needed
to gain the experience required to efficiently diagnose and repair bugs during
development. (Of course, there is also a financial cost for commercial middleware
products.)

Runtime costs include both CPU-side memory and processor usage, primarily
in these two categories.

1. The scene graph itself is stored on the CPU side and its memory require-
ments can be nontrivial for highly complex scenes. Moreover, if the AM is
predominantly geometric itself, the scene graph might be considered quite
redundant with the AM.
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2. The acceleration structures/caches used internally by the middleware’s
optimization modules use CPU-side memory and can be nontrivial in size
for highly complex scenes.

It is interesting to reexamine our camel-modeling application, and com-
pare our OpenGL function-based approach with a scene-graph approach such as
that presented in Chapter 6. Consider a desert scene with 100 camels moving as
a caravan. What are the CPU-side memory requirements for each of these
strategies?

In Section 6.6.4, we showed how reuse of the composite components at dif-
ferent levels of the hierarchy affected the number of nodes in the scene graph. We
saw that component reuse resulted in resource savings at the cost of loss of detail
in the animation control. Ultimately, if our target animation quality requires indi-
vidual control over every joint in the scene, reuse of composite components is not
possible and the cost of the scene-graph storage is at its highest. (Of course, the
mesh data associated with the atomic components can be shared without any loss
of control over joint animation.)

By contrast, it would at first glance appear that the function-based approach of
Section 16.2.9 is highly scalable. The cost of the representation of the hierarchy’s
design is indeed constant, since it lives in the compiled executable and is unrelated
to camel count. Indeed, if the goal was to render 100 camels in random locations
for a still-frame rendering, one could write a program calling the Camel() function
100 times with random nonretained instance and joint transforms. The CPU RAM
cost would be truly a constant, unrelated to camel count. However, if animation
of the caravan is required, at the very least the application model must include
per-camel location/orientation status. And if complete control over each joint is
required for high-quality animation, this AM-resident storage of camel informa-
tion (with location, orientation, and status at all joints) starts looking more and
more like a scene graph. The higher the requirement for control over the scene’s
details, the more the AM will start having many of the qualities of scene graph,
and the more time the development team will spend building what is essentially a
custom scene graph and custom AMIP.

A development team choosing between constructing a custom AMIP and
using a middleware platform to offload a lot of responsibility should take these
costs into account. As noted, some of the costs (e.g., acceleration data structures)
are unavoidable; however, a custom AMIP does offer the possibility of avoiding
duplication of AM data. The redundancy of a middleware-resident copy of AM
data, and its CPU-side cost in terms of both memory and processing cycles, is seen
by many as a fundamental problem with general-purpose, domain-independent
scene-graph middleware technology.

Yet, the conveniences of a hierarchical scene-graph and the automation of
AMIP optimization are highly beneficial, and thus a more efficient platform archi-
tecture (described in the next section), which merges the AM and scene-graph
data, has become popular in some specialized domains.

16.4.4 Graphics Application Platforms

In a few key application domains with large developer communities, the need for
the convenience and optimizations of a scene-description database, coupled with
the need for solutions to other problems common to that domain, have led to the
development of what we call graphics application platforms.
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The most prominent domain of this kind is game development. Consider the
list of tasks associated with producing a 3D interactive game:

• Highly optimized AMIP

• Statistics/history recording/“score keeping”

• Audio (background music, synchronized sound effects)

• Physics for realistic dynamics

• Networking (for multiplayer games, LAN-based or Internet-based)

• Artificial Intelligence (for character/object autonomous behavior)

• Input-device handling

To provide a feature-rich foundation for game development, a number of
game application platforms (often called game engines) have been made
available as commercial products or open source projects. Many have evolved as
a side effect of a team’s creation of a specific game product or series. Internal to
the runtime module of a game application platform is a set of databases that can
together be considered a “super scene graph” that stores the scene information
interleaved with the application model. For example, in an auto racing game, a
template representing an instantiable car might contain not only the expected geo-
metric information (e.g., a scene-graph template representing the car’s geometry
and appearance), but also its maneuverability characteristics (e.g., acceleration
limitations, handling characteristics in sharp turns, etc.). Moreover, an instance
of that template, representing an actual car involved in an ongoing race, would
carry additional game-related information (e.g., current velocity, current angular
momentum) in addition to the geometric current-location/orientation information
that would be present in a normal scene graph.

Game development involves much more than just implementing the executable
runtime, and thus mature game-development systems also often include utilities/
IDEs that assist in design-time activities. For example, the popular Unreal
game-development environment includes tools for the following:

• Three-dimensional model construction/editing, including facilities for
loading existing models from a variety of file formats

• Character skinning/rigging for designing humanoid/animal figures that
move realistically

• Art direction, including background painting, material design, and lighting
design

Of course, graphics application platforms are available in other disciplines as
well. For example, in the CAD/CAM domain, Autodesk’s AutoCAD system has
evolved from an application to a platform with a high amount of configurability, a
“super scene graph” database, and a rich API. Instead of trying a one-size-fits-all
approach, AutoCAD offers distinct environments with targeted AM semantics for
several subdisciplines, such as mechanical, architecture, factory-floor layout, etc.

16.5 3D on Other Platforms

The computational requirements of 3D applications have in the past kept them as
standalone applications running on desktop/laptop PCs or on specialized gaming
platforms such as Xbox 360, PlayStation, Wii, etc. However, progress in both
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hardware capacity and software development is poised to increase the viability
and use of “embedded” 3D.

16.5.1 3D on Mobile Devices

The typical high-end smartphone or tablet includes a hardware-accelerated, pro-
grammable pipeline that includes vertex and pixel shaders. To provide a consistent
hardware-independent API for these devices, a lightweight version of the OpenGL
API has been developed, named OpenGL ES (Embedded Systems). This API is
currently pervasive in the mobile space, with the notable exception of Windows-
based phones and tablets driven via DirectX 9 APIs.

The design of the ES variant primarily involved adjusting to the limitations of
mobile devices with regard to processing capability, memory availability, mem-
ory bandwidth, battery life, etc. For example, precision qualifiers were added to
the shading language to allow applications to choose lower numeric precision to
reduce use of the processor. Some features that place a large burden on the proces-
sor, such as pseudorandom noise computation, were eliminated. Additionally, the
ES variant promotes the strategy of downloading precompiled (binary) shaders,
since compilation of shader code is computationally expensive.

16.5.2 3D in Browsers

Efforts to define a text-file format for 3D scene specification, suitable for Internet
delivery of 3D content to web browsers (as well as for cross-application transfer
of scene/model specifications), date back to 1994’s first version of VRML (Vir-
tual Reality Modeling Language). Now extensively evolved and renamed X3D,
this ISO standard maintained by the Web3D Consortium provides XML declara-
tive specification of 3D scene graphs, supporting the fixed-function pipeline and
shader extensions. Special scripting and interaction/animation nodes provide some
dynamics, and navigation nodes provide for setting up walkthrough/flythrough
navigation, making it more than just a generator of static images. However, the
lack of native support for X3D in popular web browsers has slowed adoption, and
the format has not gained traction with website authors outside of academia.

The potential for widespread use of 3D content on websites is far higher with
WebGL, a JavaScript API native to most prominent browser brands, supporting
immediate-mode 3D rendering into the HTML5 canvas. Based on OpenGL ES, it
has no fixed-function pipeline and requires the use of shaders for all appearance
control. Thus, programmers wanting a fixed-function model and/or a retained-
mode scene graph will rely on middleware platforms, of which several are cur-
rently in development.

For information on this rapidly evolving topic, access the online materials for
this chapter.

16.6 Discussion

This chapter has provided a brief introduction to graphics platforms with differ-
ing design goals and levels of abstraction. No one model has been or is likely to
become dominant any more than one programming model or language has become
dominant. Developers will be able to choose how much control they want to have
over the underlying GPU hardware, much as they have the choice of whether to
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program in assembly language, C, or a higher-level procedural, object-oriented,
or functional language. Developers of 3D graphics will have the choice of pro-
gramming at a “low” level by writing shader programs to take advantage of all
the latest algorithms and tricks of the rapidly developing art and science of ren-
dering (both photorealistic physics and cartoon physics), typically in OpenGL in
its various forms or in Microsoft’s Direct3D. Alternatively, they can sacrifice that
kind of direct control of the GPU by programming at a higher level of abstrac-
tion, one that has a much less steep learning curve. At that higher level, they can
program in immediate mode and maintain their own data structures to drive the
GPU, or they can take advantage of retained mode, which offers convenient func-
tionality especially for displaying hierarchical models. The more the package aids
the developer, the greater the chance that some performance is sacrificed, just as
it is with the use of higher-level languages with many features. At the time of this
writing, shader programming clearly is the dominant programming model, but
this may well change. The one trend we can comfortably predict is that mobile
computing, taking advantage of both rapidly increasing device performance and
better cloud services, will make available on smartphones and tablets the amazing
real-time graphics provided today by high-end graphics cards.
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Chapter 17

Image Representation
and Manipulation

17.1 Introduction

Digital imagery appears in all forms of media today. Although most of these
images are digital photos or other types of 2D pictures that have been loaded
or scanned into a computer, an increasing number of them are generated in 3D
using sophisticated modeling and rendering software. Accompanying this trend is
a large number of image formats, most of which are interconvertible (albeit with
some loss of fidelity). Images in each format have limitations, especially in their
ability to represent wide ranges of intensity; as a result, new formats for high
dynamic range (HDR) images have also evolved. Because most images come
from digital cameras, it’s natural to think of each pixel as storing a red, a green,
and a blue value (an RGB format), and then using the values to drive the red,
green, and blue colors of a screen pixel when the image is displayed. But in prac-
tice, especially with digital images, each pixel is likely to contain considerably
more information. The pixel may also contain a depth value representing distance
from the virtual camera, an alpha value representing a kind of transparency, and
even values like an identifying constant that tells what object is visible in this
pixel.

In this chapter and the one that follows, we discuss how images are typically
stored, and some techniques for manipulating them, including compositing. Then
we examine the content of images more carefully, determining how much data
an image can hold and what this says about the operations we can perform on it
reliably. Finally, with this richer view of images, we discuss different forms of
image transformation and take a look at their benefits and limitations.

481
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17.2 What Is an Image?

We’ll start with a definition, which we’ll later refine somewhat: An image is a
rectangular array of values, called pixel values, all of which have the same type.
These pixel values may be real numbers representing levels of gray (a grayscale
image), or they may be triples of numbers representing mixtures of red, green, and
blue (an RGB image),1 or they may contain, at each pixel, other information in
addition to color or grayscale data; a rich example is so-called z-data, indicating
at each pixel the distance from the viewpoint from which the image was captured
or produced.

A rectangular array of numbers can be interpreted in many ways. For instance,
it’s possible to display a z-data or depth image in grayscale, in which case the
parts of the image that are near the viewer are displayed in lighter shades of gray
than the parts that are far away. A priori, the numbers in the array have no par-
ticular significance. But for practical matters, when we take a digital photograph
we’d like to know whether the pixels store red-green-blue triples or green-blue-red
triples, since any confusion could cause very peculiar pictures to be displayed or
printed. Thus, image data is typically stored in certain standard file formats, where
the meaning of the data associated to each pixel is standardized. Some formats,
notably TIFF (Tagged Image File Format), allow you to associate a description
to each datum. For instance, the description of a TIFF file might be “Each pixel has
five values associated to it: a red, green, and blue value represented by an integer
ranging from 0 to 255, a z-value represented by an IEEE floating-point number,
and an object identifier represented by a 16-bit unsigned integer.” With this in
mind, we begin our discussion of images with the mundane and practical issue of
how conventional file formats store and represent rectangular arrays of data.

How these rectangular arrays of values actually represent light intensities (or
other physical phenomena) and how well they do so is also important. Following
our discussion of image file formats, we move on to discuss the content of images.

17.2.1 The Information Stored in an Image

When we have a typical image file format, storing an n × k array of grayscale
values or RGB triples, it’s natural to think about operations like adding together
two images, pixel by pixel (or averaging them, pixel by pixel), to create effects
like a cross-fade. To do such things requires a notion of addition of images and of
multiplication by constants, which we take from the operations on each pixel (i.e.,
to add two images, we add corresponding pixel values). For grayscale images,
what we have, in effect, is a correspondence between the set of n× k images and
the elements of Rnk, given by enumerating the pixel values in some fixed order.
Thus, the set of all images forms a subset of an nk-dimensional space.

Inline Exercise 17.1: Each element of the standard basis for Rnk consists of
nk− 1 zeroes and a single one. What does the corresponding image look like?
Can you see how you could represent every image as a sum of scalar multiples
of such “basis images”?

1. The precise meanings of the red, green, and blue values may be quite vague; we’ll
discuss this thoroughly later.
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Contrast this description of an n × k image with the scene you witness as
you look through a window: At every point of the window, you perceive a color
with some amount of lightness. That is to say, we could summarize your percept
as a function from points of the window to real numbers representing lightness
(measured in some way) at the points. The set of all real-valued functions on a
rectangle constitutes an infinite-dimensional vector space. We choose, however,
to represent such images with n × k representative numbers, that is, an element
of a finite-dimensional vector space. There is necessarily some loss in the conver-
sion from the former to the latter. The exact nature of this loss depends on how
the finite image was created; we’ll see that the choices made during image for-
mation (whether via a camera or via a software renderer) can have far-reaching
impact.

17.3 Image File Formats

Images are stored in many formats; typically the storage format bears a close
resemblance to the display format. That is, an n × k image may be stored as nk
triples of RGB values, with each R value representing the red part of a pixel,
stored in a sequence of some fixed number of bits, and similarly for G and B.
But some formats have more complex representations. For example, we might,
considering the red values only, reading across a row of an image, store the value
of the first pixel, and the difference of the second from the first, and then the
difference of the third from the second etc. Because these differences will tend
to be smaller numbers, we might hope to store them with fewer bits. This would
give a losslessly compressed image: one in which the data occupies less space,
but from which the original RGB image can be reconstructed.

On the other hand, sometimes we can use lossy compression—a method of
compressing an image so that some of the original data is lost, but not enough to
matter for the intended use of the image. A simple lossy compression scheme
would be to store only a checkerboard pattern of alternate pixels and then, at
display time, interpolate missing pixel values from the known neighboring val-
ues. This generates a two-to-one savings in storage, but at a cost of substantial
image-quality loss in many cases. More sophisticated compression schemes use
the known statistics of natural images and known information about the human
visual system (e.g., we’re sensitive to sharp edges, but less sensitive to slowly
changing colors) to choose which data in the image to keep and omit. JPEG com-
pression, for instance, divides the image into small blocks and compresses the
data stored in each one; it’s easy to see the blocks if you zoom in on a displayed
JPEG image.

Some formats also store metadata (information about when the image was
produced, what device or program produced it, etc.) and, in some cases, informa-
tion about the contents, which is typically described in terms of channels. The
red values for all pixels constitute one channel, called a color channel; there are
corresponding blue and green channels. The colors stored in one color channel
may be represented by small integers with some number of bits, so we speak of an
“8-bit red channel” or a “6-bit blue channel.” The image metadata gives informa-
tion like the “bit depth” of each color channel. If the image also contains a depth
value at each pixel, we speak of a “depth channel”; the metadata describes such
noncolor channels as well.
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17.3.1 Choosing an Image Format

Most digital cameras produce JPEG images; because of this, JPEG has become a
de facto standard that is especially appropriate for natural images containing gray
values or RGB values. On the other hand, the format is lossy, which makes it dif-
ficult to use when comparing images because it is impossible to know whether the
images are really different from each other or whether minor underlying differ-
ences caused the JPEG compression algorithm to make different choices.

When image storage requirements were critical, and scanners and digital cam-
eras were rare, a common format was GIF (Graphics Interchange Format), in
which each pixel stored a number from 0 to 255, which was an index into a table
of 256 colors. To create a GIF image, one had to decide which 256 colors to
use, adjust each pixel to be one of these 256 colors, and then build the array of
indices into the table. In images with just a few colors (some corporate logos, dia-
grams produced with simple drawing and painting tools, icons like arrows, etc.),
the GIF format works beautifully; for natural images, it works rather poorly in
general. Because one is only allowed 256 colors, the GIF representation is usually
lossy.

As mentioned above, TIFF images store multiple channels, each with a
description of its contents. For image editing and compositing tools, in which mul-
tiple layers of images are blended or laid atop one another, a TIFF image provides
an ideal representation for intermediate (or final) results.

The PPM format, which you already encountered in Chapter 15, is very closely
related to the organization of image data. In the text-based version of the format,
one gives a “magic code” (namely P3), and then the width and height of the image
(a pair of ASCII representations of positive integers w and h), the maximum color
value (an integer no greater than 65,536), and then 3wh color values, representing
the red, green, and blue components of the image pixels, in left-to-right, top-to-
bottom order (so the first 3w numbers represent the colors in the top row of the
image). Each color value must be no greater than the specified maximum color
value, and is stored as an ASCII representation of the value. All values (including
the width and height) are separated by whitespace. There’s also a binary version
of the format (with magic code P5) in which the pixel data is stored in a binary
representation, and there are also variants for storing grayscale images in text and
binary formats.

One particular advantage of PPM is that the meaning of each pixel is, to a
large degree, specified by the format. To quote the description:

[Pixel values] are proportional to the intensity of the CIE Rec.
709 red, green, and blue in the pixel, adjusted by the CIE Rec.
709 gamma transfer function. (That transfer function specifies a
gamma number of 2.2 and has a linear section for small intensi-
ties). A value of Maxval for all three samples represents CIE D65
white and the most intense color in the color universe of which the
image is part (the color universe is all the colors in all images to
which this image might be compared) [Net09].

The CIE referred to in this description is the standards committee for color
descriptions, discussed in detail in Chapter 28.

In recent years, the Portable Network Graphics or PNG format has become
popular, in part because of patent issues with the GIF format. It is generally more
compact than the naive PPM format, but it is equally easy to use.
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For programs that manipulate images, the choice of image format is almost
always irrelevant: You almost certainly want to represent an image as an array of
double-precision floating-point numbers (or one such array per channel, or per-
haps a single three-index array where the third index selects the channel). The
reason to favor floating-point representations is that we often perform operations
in which adjacent pixel values are averaged; averaging integer or fixed-point val-
ues, especially when it’s done repeatedly, may result in unacceptable accumulated
roundoff errors.

There are two exceptions to the “use floating point” rule.

• If the data associated to each pixel is of a type for which averaging makes
no sense (e.g., an object identifier telling which object is visible at that
pixel—a so-called object ID channel), then it is better to store the value in
a form for which arithmetic operations are undefined (such as enumerated
types), as a preventive measure against silly programming errors.

• If the pixel data will be used in a search procedure, then a fixed-point
representation may make more sense. If, for example, one is going to
look through the image for all pixels whose neighborhoods “look like” the
neighborhood of a given pixel, integer equality tests may make more sense
than floating-point equality tests, which must almost always be imple-
mented as “near-equality” tests (i.e., “Is the difference less than some small
value ε?”).

17.4 Image Compositing
Figure 17.1: An actor, photogra-
phed in front of a green screen,
is to be composited into a scene.
(Jackson Lee/Splash News/
Corbis)

Movie directors often want to film a scene in which actors are in some type of
interesting situation (e.g., a remote country, a spaceship, an exploding building,
etc.). In many cases, it’s not practical to have the actors actually be in these situ-
ations (e.g., for insurance reasons it’s impossible to arrange for top-paid actors to
stand inside exploding buildings). Hollywood uses a technique called blue screen-
ing (see Figure 17.1) to address this. With this technique, the actors are recorded in
a featureless room in which the back wall is of some known color (originally blue,
now often green; we’ll use green in our description). From the resultant digital
images, any pixel that’s all green is determined to be part of the background; pix-
els that have no green are “actor” pixels and those that are a mix of green and some
other color are “part actor, part background” pixels. Then the interesting situation
(e.g., the exploding building) is also recorded. Finally, the image of the actors is
composited atop the images of the interesting situation: Every green pixel in the
actor image is replaced by the color of the situation-image pixel; every nongreen
pixel remains. And the partially green pixels are replaced by a combination of a
color extracted from the actor image and the situation image (see Figure 17.2).
The resultant composite appears to show the actor in front of the exploding
building.

Figure 17.2: The actor, compos-
ited atop an outdoor scene. The
detail shows how the horse’s tail
obscures part of the background,
while some background shows
through. (Jackson Lee/Splash
News/Corbis)

There are some limitations to this approach: The lighting on the actors does
not come from the lighting in the situation (or it must be carefully choreographed
to approximate it), and things like shadows present real difficulties. Furthermore,
at the part actor, part background pixels, we have to estimate the color that’s to be
associated to the actors, and the fraction of coverage. The result is a foreground
image and a mask, whose pixel values indicate what fraction of the pixel is cov-
ered by foreground content: A pixel containing an actor has mask value 1; a pixel
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showing the background has mask value 0, and a pixel at the edge (e.g., in the
actor’s hair) has some intermediate value.

In computer graphics, we often perform similar operations: We generate a
rendering of some scene, and we want to place other objects (which we also ren-
der) into the scene after the fact. Porter and Duff [PD84] gave the first published
description of the details of these operations, but they credit the ideas to prior
work at the New York Institute of Technology. Fortunately, in computer graphics,
as we render these foreground objects we can usually compute the mask value at
the same time, rather than having to estimate it; after all, we know the exact geom-
etry of our object and the virtual camera. The mask value in computer graphics
is typically denoted by the letter α so that pixels are represented by a 4-tuple
(R, G, B,α). Images with pixels of this form are referred to as RGBA images and
as RGBα images.

Porter and Duff [PD84] describe a wide collection of image composition oper-
ations; we’ll follow their development after first concentrating on the single oper-
ation described above: If U and V are images, the image “U over V” corresponds
to “actor over (i.e., in front of) situation.”

17.4.1 The Meaning of a Pixel During Image
Compositing

The value α represents the opacity of a single pixel of the image. If we regard the
image as being composed of tiny squares, then α = 0.75 for some square tells us
that the square is three-quarters covered by some object (i.e., 3/4 opaque) but 1/4
uncovered (i.e., 1/4 transparent). Thus, if our rendering is of an object consisting
of a single pure-red triangle whose interior covers three-quarters of some pixel,
the α-value for that pixel would be 0.75, while the R value would indicate the
intensity of the red light from the object, and G and B would be zero.

With a single number, α, we cannot indicate anything more than the opacity;
we cannot, for instance, indicate whether it is the left or the right half of the pixel
that is most covered, or whether it’s covered in a striped or polka-dot pattern. We
therefore make the assumption that the coverage is uniformly distributed across
the pixel: If you picked a point at random in the pixel, the probability that it is
opaque rather than transparent is α. We make the further assumption that there is
no correlation between these probabilities in the two images; that is, if αU = 0.5
and αV = 0.75, then the probability that a random point is opaque in both images
is 0.5 · 0.75 = 0.375, and the probability that it is transparent in both is 0.125.

The red, green, and blue values represent the intensity of light that would arise
from the pixel if it were fully opaque, that is, if α = 1.

17.4.2 Computing U over V

Because compositing is performed one pixel at a time, we can illustrate our com-
putation with a single pixel. Figure 17.3 shows an example in which αU = 0.4
and αV = 0.3. The fraction of the image covered by both is 0.4 · 0.3 = 0.12,
while the fraction covered by V but not U is 0.6 · 0.3 = 0.18.

To compute U over V , we must assign both an α-value and a color to the resul-
tant pixel. The coverage, α, will be 0.4 + 0.18, representing that all the opaque
parts of U persist in the composite, as do the parts of V not obscured by U. In
more generality, we have
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(a) (b) (c) (d)

Figure 17.3: (a) A pixel from an image U, 40% covered. Properly speaking, the covered
area should be shown scattered randomly about the pixel square. (b) A pixel from the
image V, 30% covered. (c) The two pixels, drawn in a single square; the overlap area is
12% of the pixel. (d) The compositing result for U over V: All of the opaque part of U shows
(covering 40% of the pixel), and the nonhidden opaque part of V shows (covering 18% of
the pixel).

α = αU + (1− αU)αV = αU + αV − αUαV . (17.1)

What about the color of the resultant pixel (i.e., the intensity of red, green, and
blue light)? Well, the light contributed by the U portion of the pixel (i.e., the frac-
tion αU containing opaque bits from U) is αU · (RU , GU , BU), where the subscript
indicates that these are the RGB values from the U pixel. The light contributed by
the V part of the pixel is (1− αU)αV · (RV , GV , BV). Thus, the total light is

αU · (RU , GU , BU) + (1− αU)αV · (RV , GV , BV), (17.2)

while the total opacity is α = αU + (1− αU)αV . If the pixel were totally opaque,
the resultant light would be brighter by a factor of α; to avoid this brightness
change, we must divide by α, so the RGB values for the pixel are

αU · (RU , GU , BU) + (1− αU)αV · (RV , GV , BV)

αU + (1− αU)αV
. (17.3)

These compositing equations tell us how to associate an opacity or coverage
value and a color to each pixel of the U over V composite.

17.4.3 Simplifying Compositing

Porter and Duff [PD84] observe that in these equations, the color of U always
appears multiplied by αU , and similarly for V . Thus, if instead of storing the val-
ues (R, G, B,α) at each pixel, we stored (αR,αG,αB,α), the computations would
simplify. Denoting these by (r, g, b,α) (so that r denotes Rα, for instance), the
compositing equations become

α = 1 · αU + (1− αU) · αV and

(r, g, b) = 1 · (rU , gU , bU) + (1− αU) · (rV , gV , bV),

where the fraction has disappeared because the new (r, g, b) values must include
the premultiplied α-value.

The form of these two equations is identical: The data for U are multiplied
by 1, and the data for V are multiplied by (1− αU). Calling these FU and FV , the
“over” compositing rule becomes

(r, g, b,α) = FU · (rU , gU , bU ,αU) + FV · (rV , gV , bV ,αV). (17.4)
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17.4.4 Other Compositing Operations

Porter and Duff define other compositing operations as well; almost all have the
same form as Equation 17.4, with the values FU and FV varying. One can think of
each point of the pixel as being in the opaque part of neither U nor V , the opaque
part of just U, of just V , or of both. For each, we can think of taking the color from
U, from V , or from neither, but to use the color of V on a point where only U is
opaque seems nonsensical, and similarly for the points that are transparent in both.
Writing a quadruple to describe the chosen color, we have choices like (0, U, V , U)
representing U over V and (0, U, V , 0) representing U xor V (i.e., show the part of
the image that’s in either U or V but not both). Figure 17.4, following Porter and
Duff, lists the possible operations, the associated quadruples, and the multipliers
FA and FB associated to each. The table in the figure omits symmetric operations
(i.e., we show U over V , but not V over U).

Finally, there are other compositing operations that do not follow the blending-
by-Fs rule. One of these is the darken operation, which makes the opaque part of
an image darker without changing the coverage:

darken(U, s) = (srU , sgU , sbU ,αU). (17.5)

Closely related is the dissolve operation, in which the pixel retains its color, but
the coverage is gradually reduced:

dissolve(U, s) = (srU , sgU , sbU , sαU). (17.6)

Operation Quadruple Diagram FU FV

Clear (0, 0, 0, 0) 0 0

U (0, U, 0, U) 1 0

U over V (0, U, V , U) 1 1− αU

U in V (0, 0, 0, U) αV 0

U out V (0, U, 0, 0) 1− αV 0

U atop V (0, 0, V , U) αV 1− αU

U xor V (0, U, V , 0) 1− αV 1− αU

Figure 17.4: Compositing operations, and the multipliers for each, to be used with colors
premultiplied by α (following Porter and Duff).
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Inline Exercise 17.2: Explain why, in the dissolve operation, we had to multi-
ply the “rgb” values by s, even though we were merely altering the opacity of
the pixel.

The dissolve operation can be used to create a transition from one image to
another:

blend(U, V , s) = dissolve(U, (1− s)) + dissolve(V , s), (17.7)

where component-by-component addition is indicated by the + sign, and the
parameter s varies from 0 (a pure-U result) to 1 (a pure-V result).

Inline Exercise 17.3: Explain why, if αU and αV are both between zero
and one, the resultant α-value will be as well so that the resultant pixel is
meaningful.

Image operations like these, and their generalizations, are the foundation of
image editing programs like Adobe Photoshop [Wik].

17.4.4.1 Problems with Premultiplied Alpha
Suppose you wrote a compositing program that converted ordinary RGBA images
into premultiplied-α images internally, performed compositing operations, and
then wrote out the images after conversion back to unpremultiplied-α images.
What would happen if someone used your program to operate on an RGBA image
in which the α-values were already premultiplied? In places where α = 0, it
would make very little difference; the same goes for α = 1. But in partially opaque
places, the opacity would be reduced. That would make background objects
show through to the foreground more clearly. In practice, this happens fairly
frequently; it’s a tribute to our visual system’s tolerance that it does not tend to
confound us.

17.4.5 Physical Units and Compositing

We’ve spoken about blending light “intensity” using α-values. This has really
been a proxy for the idea of blending radiance values (discussed in Chapter 26),
which are the values that represent the measurement of light in terms of energy.
If, instead, our pixels’ red values are simply numbers between 0 and 255 that
represent a range from “no red at all” to “as much red as we can represent,”
then combining them with linear operations is meaningless. Worse still, if they
do not correspond to radiance, but to some power of radiance (e.g., its square
root), then linear combinations definitely produce the wrong results. Nonetheless,
image composition using pixel values directly, whatever they might mean, was
done for many years; once again, it’s a testament to the visual system’s adaptivity
that we found the results so convincing. When people began to composite real-
world imagery and computer-generated imagery together, however, some prob-
lems became apparent; the industry standard is now to do compositing “in linear
space,” that is, representing color values by something that’s a scalar multiple of
a physically meaningful and linearly combinable unit [Rob].
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As indicated by the description of the PPM image format, pixel values in stan-
dard formats are often nonlinearly related to physical values; we’ll encounter this
again when we discuss gamma correction in Section 28.12.

17.5 Other Image Types

The rectangular array of values that represents an image can contain more than
just red, green, and blue values, as we’ve already seen with images that record
opacity (α) as well. What else can be stored in the pixels of an image? Almost
anything! A good example is depth. There are now cameras that can record a depth
image as well as a color image, where the depth value at each pixel represents the
distance from the camera to the item shown in the pixel. And during rendering,
we typically compute depth values in the course of determining other information
about a pixel (such as “What object is visible here?”), so we can get a depth image
at no additional cost.

With this additional information, we can consider compositing an actor into a
scene in which there are objects between the actor and the camera, and others that
are behind the actor. The compositing rule becomes “If the actor pixel is nearer
than the scene pixel, composite the actor pixel over the scene; if it’s farther away,
composite the scene pixel over the actor pixel.” But how should we associate a
depth value to the new pixel? It’s clear that blending depths is not the correct
answer. Indeed, for a blended pixel, there’s evidently no single correct answer;
blending of colors works properly because when we see light of multiple colors,
we perceive it as blended. But when we see multiple depths in an area, we don’t
perceive the area as having a depth that’s a blend of these depths. Probably the best
solution is to say that when you composite two images that have depths associated
to each other, the composite does not have depths, although using the minimum
of the two depths is also a fairly safe approach. An alternative is to say that if
you want to do multiple composites of depth images, you should do them all at
once so that the relative depths are all available during the composition process.
Duff [Duf85] addresses these and related questions.

Depths are just one instance of the notion of adding new channels to an image.
Image maps are often used in web browsers as interface elements: An image
is displayed, and a user click on some portion of the image invokes some par-
ticular action. For example, an international corporation might display a world
map; when you click on your country you are taken to a country-specific website.
In an image map, each pixel not only has RGB values, but also has an “action”
value (typically a small integer) associated to each pixel. When you click on pixel
(42, 17) the action value associated to that pixel is looked up in the image and is
used to dispatch an associated action.

Many surfaces created during rendering involve texture maps (see Chap-
ter 20), where every point of the surface has not only x-, y-, and z-coordinates,
but also additional texture coordinates, often called u and v. We can make an
image in which these u- and v-coordinates are also recorded for each pixel (with
some special value for places in the image where there’s no object, hence no
uv-coordinates).

There are also images that contain, at each pixel, an object identifier telling
which object is visible at this pixel; such object IDs are often meaningful only
in the context of the program that creates the image, but we often (especially in
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expressive rendering) generate images that serve as auxiliary data for creating a
final rendering. If we take an object ID image, for instance, and identify points
at which the object ID changes and color those black, while coloring other points
white, we get a picture of the boundaries between entities in the scene, a kind of
condensed representation of the relationships among entities in the image.

17.5.1 Nomenclature

The term “image” is reserved by some for arrays of color or grayscale values; they
prefer to call something that contains an object ID at every point a map instead,
in analogy with things like topographical maps, which contain, at each location,
information about the height or roughness of some terrain. Unfortunately, the term
“map” is already used in mathematics to mean a (usually continuous and one-to-
one) function between two spaces. To the degree that a graphics “map” associates
to each point of the plane some value (like an object ID or a transparency), the map
is a particular instance of the more general mathematical notion. Further confu-
sion arises when we examine texture mapping, in which we must associate to each
point of a surface a pair of texture coordinates, and then use these coordinates to
index into some image; the color from the image is used as the color for the sur-
face. Both the image itself and the assignment of texture coordinates to surface
points are part of the texture-mapping process. Is the image a texture map? (This
usage is common.) Is the assignment of coordinates actually “texture mapping”?
(This usage is less common, but it more closely matches the mathematical notion
of mapping.) You’ll see “map” and “image” used, in the literature, almost inter-
changeably in many places. Fortunately, the meaning is usually fairly clear from
context.

17.6 MIP Maps

As we’ll see when we discuss texture mapping in Chapter 20, it’s often important
to have multiple representations of the color image that’s used in texturing. Lance
Williams developed MIP maps (“MIP” stands for “multum in parvo,” Latin for
“many in small”) for this very reason. In a MIP map (see Figure 17.5) we store
not only an image, but also copies of the image shrunk by varying amounts along
the two axes.

The “shrinking” process used to reduce the number of columns by a factor of
two is very simple; pairs of adjacent columns are averaged, as shown in Listing
17.1. Analogous code is used to halve the number of rows. The process is repeated,
for both rows and columns, until we reach a 1× 1 image as shown in Figure 17.5.

Listing 17.1: One stage of column reduction for MIP mapping.

1
2
3
4
5

foreach row of image {
for(int c = 0; c < number of columns/2; c++){

output[row,c] = (input[row, 2*c] + input[row, 2*c+1])/2;
}

}

In Chapter 19 you’ll learn the techniques necessary to analyze the MIP-
mapping process and determine its limitations. But for now, let’s simply consider
the problem of how to MIP-map an image with more than color data. Suppose
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(a) (b)

Figure 17.5: (a) A MIP map, schematically. An n×k image is stored in the upper-left corner;
to its right is an n × k/2 version of the image, then an n × k/4 version, etc.; below it is an
n/2×k image, then an n/4×k image etc. The remaining quadrant is filled in with versions of
the image that are condensed both in row size and column size. The recursion stops when
the image is reduced to a single pixel. (b) A MIP map for a real image.

we have an image, I, storing R-, G-, B-, and α-values (the color values have not
been premultiplied by α). The recipe for MIP mapping tells us to average adjacent
pairs of colors, but is that the right thing to do when α-values are present as well?
Suppose, for instance, that we have a red pixel, with opacity 0, next to a blue pixel
of opacity 1. Surely the correct “combined” pixel is blue, with opacity .5. In fact,
considering the adjacent pixels as contributing to a single “wide pixel,” we can
suppose that we have a left subpixel with colors (RL, GL, BL) and opacity αL, and
a right subpixel with subscripts “R” on each item. The left subpixel’s opacity can
contribute at most 50% opacity to the wide pixel; the same goes for the right one.
Hence the opacity for the wide pixel should be

α =
1
2
(αL + αR). (17.8)

What about the color of the wide pixel, though? As the red and blue example
shows, opacity must be taken into account in the blending process. In fact, the
resultant color should be

1
2 (αL(RL, GL, BL) + αR(RR, GR, BR))

αL + αR
. (17.9)

Thus, we see that even for MIP mapping, it’s natural to use premultiplied α-values
for the colors. For further detail on the relationship between MIP mapping and
α-values, see McGuire and Stone [MS97].

MIP mapping of other image characteristics such as depth or object ID is more
problematic; there’s no clear correct answer.

17.7 Discussion and Further Reading

While our use of images in graphics is primarily in rendering, images themselves
have long been a subject of study in their own right, in the field known as image
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processing. With the advent of image-based rendering (the synthesis of new views
of a scene from one or more photographs or renderings of previous views), certain
problems arose, such as “What pixel values should I fill in for the parts of the
scene that weren’t visible in the previous view, but are in this one?” If it’s a matter
of just a pixel or two, filling in with colors from neighboring pixels is good enough
to fool the eye, but for larger regions, hole filling is a serious (although obviously
underdetermined) problem. Problems of hole filling, combining multiple blurred
images to create an unblurred image, compositing multiple images when no a pri-
ori masks are known, etc., are at the heart of the emerging field of computational
photography. Other aspects of computational photography are the development
of cameras with coded apertures (complex masks inside the lens assembly of a
camera), and of computational cameras, in which processing built into the camera
can adjust the image-acquisition process. Information on Laplace image fill that
we provide on this book’s website gives just a slight notion of the power of these
techniques.

There’s no clear dividing line between “images” and “rectangular arrays
of values.” Organizing graphics-related data in rectangular arrays is powerful
because once it’s in this form, any kind of per-cell operation can be applied. But
there are even more general things that fit into a broad definition of “image,” and
you should open your mind to further possibilities. For instance, we often store
samples, many per pixel area, which are then used to compute a pixel value. We’ll
see this when we discuss rendering, where we often shoot multiple rays near a
pixel center and average the results to get a pixel value. These multiple values are,
for practical reasons, often taken at fixed locations around the pixel center, making
it easy to compare them, but they need not be. It’s essential, of course, to record
the semantics of the samples, just as we earlier suggested recording the seman-
tics of the pixel values. Images containing these multiple values are generally not
meant for display—instead, they provide a spatial organization of information that
can be converted to a form useful for display or other reuse of the data.

Arrays of samples which are to be combined into values for display require
that the combination process must itself be made explicit. In rendering, the “mea-
surement equation,” discussed in Section 29.4.1, makes this explicit.

The notion of coverage, or alpha value, as developed by Porter and Duff,
has become nearly universal. At the same time, it has been extended somewhat.
Adobe’s PDF format [Ado08], for instance, defines for each object both an “opac-
ity” and a “shape” property for each point. A shape value of 0.0 means that the
point is outside the object, and 1.0 means it’s inside. A value like 0.5 is used to
indicate that the point is on the edge of a “soft-edged” object. The product of
the shape and opacity values, on the other hand, corresponds to the alpha value
we’ve described in this chapter. These two values can then be used to define quite
complex compositing operations.

17.8 Exercises

Exercise 17.1: The blend operation can be described by what happens to a point in
a pixel that’s in neither the opaque part of U nor the opaque part of V , in just U, in
just V , or in both. Give such a description. Is the U-and-V part of the composition
consistent with our assumptions about the distribution of the opaque parts of each
individual pixel?
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Exercise 17.2: Suppose you needed to store images that contained many large
regions of constant color. Think of a lossless way to compress such images for
more compact storage.

Exercise 17.3: Implement the checkerboard-selection lossy compression
scheme described in this chapter; try it on several images and describe the arti-
facts that you notice in the redisplayed images.

Exercise 17.4: Our description of MIP maps was informal. Suppose that M is
a MIP map of some image, I. It’s easy to label subparts of M: We let Ipq be the
subimage that is I, shrunk by 2p in rows and by 2q in columns. Thus, the upper-left
corner of M, which is a copy of the original image, is I00; the half-as-wide image
to its right is I01; the half-as-tall image below I00 is I10, etc. If you consider the
subimage of I consisting of all parts Ipq where p ≥ 1, it’s evidently a MIP map
for I10; a similar statement holds for the set of parts where q ≥ 1: It’s the MIP
map for I01. Use this idea to formulate a recursive definition of the MIP map of an
image I. You may assume that I has a width and height that are powers of two.

Exercise 17.5: MIP mapping is often performed as a preprocess on an image,
with the MIP map itself being used many times. The preprocessing cost is there-
fore relatively unimportant. Nonetheless, for large images, especially those so
large that they cannot fit in memory, it can be worth being efficient. Assume that
the source image I and the MIP map M are both too large to fit in memory, and that
they are stored in row-major order (i.e., that I[0, 0], I[0, 1], I[0, 2], . . . are adjacent
in memory), and that each time you access a new row it incurs a substantial cost,
while accessing elements in a single row is relatively inexpensive. How would you
generate a MIP map efficiently under these conditions?
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Chapter 18

Images and Signal
Processing

18.1 Introduction

This chapter introduces the mathematics needed to understand what happens when
we perform various operations on images like scaling, rotating, blurring, sharpen-
ing, etc., and how to avoid certain unpleasant artifacts when we do these opera-
tions. It’s a long chapter with lots of mathematics; we’ve done our best to keep it
to a minimum without telling any lies. We begin with a very concise summary of
the chapter, and gradually expand on the themes presented there.

The entire chapter can be regarded as an application of the Coordinate-
System/Basis principle: Always use a basis that is well suited to your work. In
this case, the objects we’re working with are not geometric shapes, as in Chap-
ter 2, but images, or more accurately, real-valued functions on a rectangle or a line
segment.

18.1.1 A Broad Overview

Even with the goal of minimal mathematics with no lies, it can be difficult to
see the forest for the trees, so in this section we present an informal description
of the keys ideas of this chapter. Much of what we say in this section is deliber-
ately wrong. Usually there’s a corresponding true statement, which unfortunately
has so many preconditions that it’s difficult to see the essential ideas. You should
therefore consider this as a high-level guide to the remainder of the chapter.

We’ll be looking at the light arriving at one row of an image sensor, because
almost all the interesting questions arise when we look at a single row. We’ll say
that the amount of light arriving at position x is S(x). If we’re ray tracing, we might
determine the value S(x) by tracing a ray starting at location x. If we’re using a
real-world camera, the value S(x) is provided by nature. In either case, S is a real-
valued function on an interval, and we’ll assume it’s continuous. So we’ll begin
by looking at continuous functions on an interval.

495
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We can build a continuous function on [0, 2π] by summing up several periodic
functions on that interval, as shown in Figure 18.1. Surprisingly, we can also (with
the help of some integrals) start with a continuous function f on an interval and
break it into a possibly infinite sum of periodic functions, in the reverse of the pro-
cess shown in Figure 18.1. This decomposition is analogous to breaking a vector
in R3 into three component vectors along the x-, y-, and z-axes. The coefficients of
the component periodic functions completely determine f ; the coefficients, listed
in order of frequency, are called the “Fourier transform” of the function f . So, if
f (x) = 2.1 cos(x)−3.5 cos(2x)−8 cos(3x), then its Fourier transform, denoted f̂ ,
is the function with f̂ (1) = 2.1, f̂ (2) = 3.5, and f̂ (3) = −8. (Actually, decompos-
ing the function f may involve both cosines and sines, but we’re going to ignore
this.)

−2

−1

0

1

2

Figure 18.1: Summing up peri-
odic functions (in color) of dif-
ferent frequencies leads to more
complicated functions, in this
case the black (thickest) one.

The same idea works for functions on the real line: We can take a function
f : R→ R and compute (with a lot of integration) a different function f̂ : R→ R
with the property that f̂ (ω) tells us “how much f looks like a cosine of frequency
ω,” just as the x-coordinate of a vector v in R3 tells us how much v “looks like”
the unit vector along the x-axis. And if you tell me f̂ , I can recover f from it. So
the f ⇐⇒ f̂ correspondence gives us two different ways to look at any function:
The first (“the value representation”) tells the value of a function at each point; the
second (“the frequency representation”) tells “how much it looks like a periodic
function of frequency ω” for any ω.

0 5 10 15

−5

0

5

Figure 18.2: The functions S (red)
and T (green) have the same val-
ues at each integer point (black
dots).

In the course of ray tracing, using one ray per pixel, traced from the pixel cen-
ter, we’re taking the function S, defined on R, and evaluating it at the pixel centers,
which we’ll assume are the integer points; that is, we’re looking at S(0), S(1), S(2),
etc. It’s quite possible for two different functions S and T to have the same integer
samples (see Figure 18.2). That’s reason for concern: The samples we’re collect-
ing don’t uniquely determine the arriving light! Even so, when we display those
samples on a (one-dimensional) LCD screen, we get a piecewise constant func-
tion (see Figure 18.3) that’s not very different from either S or T . And anyhow, our
eyes tend to smooth out the transitions between adjacent display pixels, making
the approximation even better.
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Figure 18.3: The light resulting
from displaying samples of either
the red or the green function on a
1D LCD screen, plotted in blue.

How serious a problem is the nonuniqueness of the preceding paragraph? Very.
It’s what makes sloping straight lines on a black-and-white display look jagged,
what makes wagon wheels appear to rotate backward in old movies, what makes
scaled-down images look bad, and a whole host of other problems. It’s got a name:
aliasing. We’ll now see where that name came from by looking at the samples of
some very simple functions: the periodic functions from which all other functions
can be created.

Let’s look at the interval [0, 2π], and consider ten equally spaced samples of
the function x 
→ sin(x) on this interval, shown in Figure 18.4. From these sam-
ples, it’s pretty easy to reconstruct the original sine function. We can come very
close to reconstructing it by just “connecting the dots,” for instance.

The same thing is true for the samples of x 
→ sin(2x) or (barely) x 
→ sin(3x).
But by the time we look at x 
→ sin(5x) (see Figure 18.5), something odd hap-
pens: The samples are all zeroes. By looking at only the samples, we can’t tell the
difference between sin(5x) and sin(0x). As Figure 18.6 shows, the same is true
for sin(1x) and sin(11x).

The means that if our arriving-light function S happened to be x 
→ sin(11x),
we might think, from looking at the recorded samples, that it was sin(x) instead:
The frequency-11 sine is masquerading as a frequency-1 sinusoid. It’s the fact
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that the sample values correspond to various different sinusoids that leads to the
name “aliasing.” In general, if we take 2N equispaced samples, then sines of fre-
quency k and k + 2N and k + 4N, etc., will all have identical samples. But if we
restrict our function S to contain only frequencies strictly between−N and N, then
the samples uniquely determine the function. The same idea works for functions
defined on R rather than on an interval: If f̂ (ω) = 0 for ω ≥ ω0, then f can be
reconstructed from its values at any infinite sequence of points with spacing π/ω0.

We can’t actually constrain the arriving-light function to not have high fre-
quencies, however. If we photograph a picket fence from far away, the bright
pickets against the dark grass can occur with arbitrarily high frequencies. The
shorthand description of this situation is that “If your scene has high frequencies
in it, then you’ll get aliasing when you render it.” The solution is to apply various
tricks to remove the high frequencies before we take the samples (or in the course
of sampling). Doing so in a way that’s computationally efficient and yet effective
requires the deeper understanding that the rest of this chapter will give you.
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Figure 18.4: Ten evenly spaced
samples of y = sin(x) on the
interval [0, 2π].
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Figure 18.5: The ten samples of
y = sin(5x) all turn out to be
zero!
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Figure 18.6: The functions x �→
sin(x) and x �→ sin(11x) have
identical values at our ten sample
points.

Here’s one example of a trick to remove high frequencies, just to give you a
taste. Consider the sin(x) versus sin(11x) example we looked at earlier. We sam-
pled these two functions at certain values of x. Let’s say one of them is x0. What
would happen if you took your input signal S and instead of computing S(x0), you
computed 1

3 (S(x0) + S(x0 + r1) + S(x0 − r2)), where r1 and r2 are small random
numbers, on the order of half the sample spacing of 2π/10? If the input signal
S were S(x) = sin(x), the three values you’d average would all be very close to
sin(x0); that is, the randomization would have little effect (see Figure 18.7). On
the other hand, if the original signal was S(x) = sin(11x), then the three values
you’d average would tend to be very different, and their average (see Figure 18.8)
would generally be closer to zero than S(x0). In short, this method tends to atten-
uate high-frequency parts of the input, while retaining low-frequency parts.

18.1.2 Important Terms, Assumptions, and Notation

The main ideas we’ll use in this chapter are convolution and the Fourier transform,
which you may have encountered in algorithms courses or in the study of various
engineering or mathematics problems.

Fortunately, both convolution and Fourier transforms can be well understood
in terms of familiar operations in graphics; we motivate the mathematics by show-
ing its connection to graphics. Convolution, for instance, takes place in digi-
tal cameras, scanners, and displays. The Fourier transform may be less familiar,
although the typical “graphical display” of an audio signal (see Figure 18.9), in
which the amounts of bass, midrange, and treble are shown changing over time,
shows, at each time, a kind of basic Fourier transform of a brief segment of the
audio signal.

For us, the essential property of the Fourier transform is that it turns convolu-
tion of functions, which is somewhat messy, into multiplication of other functions,
which is easy to understand and visualize.

The Fourier transformation (for functions on the real line) takes a function and
represents it in a new basis; thus, this chapter provides yet another instance of the
principle that expressing things in the right basis makes them easy to understand.

The same tools we use to understand images in this chapter will prove use-
ful not only in analyzing image operations, however: They also appear in the
study of the scattering of light by a surface, which can be interpreted as a kind
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of convolution operation [RH04], and in rendering, in which the frequency anal-
ysis of light being transported in a scene can yield insights into the nature of
computations necessary to accurately simulate that light transport [DHS+05].
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Figure 18.7: The original sample
sin(x0) in black, with two nearby
random samples, shown in red.
The average (green) of the three
heights is very nearly sin(x0).
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Figure 18.8: Random samples
(red) of x �→ sin(11x) near
x = x0 are quite different from
the sample at x0 (black), so their
average (green) is nearer to zero.

Before discussing convolution and other operations, we return to the topic of
Section 9.4.2: the principle that you must know the meaning of every number in
a graphics program. Before we discuss operations like convolution and Fourier
transforms on images, we have to know what the images mean. The difficulty,
which we discussed briefly in Chapter 17, is that in some cases we just don’t
know. Alvy Ray Smith made a point of this in a paper titled “A Pixel Is Not A
Little Square” [Smi95], in which he observes that the individual values in a pixel
array do not in general represent the average of something over a small square on
the image plane, and that algorithms that rely on this model of pixels are bound
to fail in some cases. (More simply, he points out that a pixel does not represent
a tiny square of constant value, even though the pixel may be displayed that way
on an LCD screen!) As an extreme example, an object ID image contains, at each
pixel, an identifier that tells which object is visible at that pixel. The pixel values
in this case are not even necessarily numerical!

Figure 18.9: The spectrum of an
audio signal displayed by several
intensity bars.
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Figure 18.10: A line drawn with
one “pixel” per column.

For this chapter only, to avoid messiness introduced by shifting by one-half
in the x- and y-directions, we’re going to use display screen coordinates in which
the display pixel indexed by (0, 0) has display coordinates that range from − 1

2 to
1
2 in both x and y, and the display pixel named (i, j) is a small square centered at
(i, j) rather than at (i + 1

2 , j + 1
2 ). This means that pixel (i, j) is at x-location i and

y-location j, and not in “row i and column j”; that is, we’re using geometric index-
ing rather than image indexing. Because this chapter contains no actual algorithms
that depend on display pixel coordinates, this should cause no problems for you.

For this chapter, we’re going to assume (initially) that images contain physical
measurements of light, measured in physical units. For a digital camera, this might
be something like the average radiance along a ray hitting a small rectangle on a
CCD sensor, or perhaps an integral of that radiance over the area of that rectangle,
or the total light energy that arrived at the rectangle while the shutter was open.
(Some digital cameras will let you get such information when you store a photo
in “raw” mode, and will even tell you when the sensor was oversaturated so that
the stored value is a false measurement.) For a rendered image, the value stored
at a pixel might be the radiance along a ray that passed through the single point at
the center of the image area corresponding to the pixel, or an average of radiances
of several rays through the pixel, etc. It might even be an average of samples
from a region around the pixel center, where the regions for adjacent pixel centers
overlap.

18.2 Historical Motivation

When graphics researchers first wanted to draw a line on a rectangular grid of
pixels, the most obvious thing to do was to write the line in the form y = mx + b,
and for each integer x-value, compute y = mx + b, which was usually not an
integer, round it off to an integer y′, and put a mark at location (x, y′). This only
works well if m is between −1 and 1; for greater slopes, it worked better to write
x = my + b, that is, to swap the roles of x and y, but that’s not germane to this
discussion. The kind of line produced with this method is shown in Figure 18.10,
where we’ve drawn the line using little squares as pixel marks.
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You can see that the line is fairly “jaggy”—it has jagged edges—but it’s hard
to imagine how to avoid this if your only choice is to draw a black or a white
square. Fortunately, display devices improved to display multiple gray levels. To
avoid the staircase-like appearance of the jaggy line, we can fill in gray squares at
the steps, or be even more sophisticated—we can set the gray-level for each square
to be proportional to the amount that square overlaps a unit-width line, as shown
in Figure 18.11. The resultant line, viewed close up like this, looks a bit odd. But
seen from an appropriate distance (as in Figure 18.12), it looks very good—far
better than the jaggy black-and-white line.
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Figure 18.11: Gray-levels pro-
portionally overlap with a unit-
width line indicated in red.

Figure 18.12: A grayscale ren-
dering of a line, unmagnified.

The “compute the overlap between the square and the thing you’re rendering”
approach seems a bit ad hoc, but it also seems to work well in practice. The same
idea, applied to text, produces fonts that are visually more appealing than the pure
black-and-white fonts that arise when we use the “this pixel is black if the pixel
center is within the character” approach (see Figures 18.13 and 18.14).

Figure 18.13: A black-and-white
rendering of a letter “A”.

Merely computing overlaps with pixel squares isn’t a cure-all, as you can see
by considering a sequence of images generated by a small moving object. Fig-
ure 18.15 shows a red triangle moving through three pixels of a “one-dimensional
image” in the course of five “frames.” In the first and second frames, it’s com-
pletely in the first square, tinting it pink; in the fourth and fifth, it’s completely
in the third. In frame three, it’s in the middle square. The result is that although
the object is moving with uniform speed through the pixels, it appears to “rush”
through the middle pixel, which is pink for only half as long as the pixels on
either side.

To compensate for the differing amounts of time spent in each square, and thus
the irregularity of the apparent motion, we can use a different strategy: Instead of
measuring the area of the overlap between the object and the square, we can com-
pute a weighted area overlap, counting area overlap near the square’s center as
more important than area overlap near the edge of the square. While this approach
does address the irregularity of the pure area-measuring approach, there remains
another problem: As a small, dark object moves from left to right, the total bright-
ness of the image varies. When the object is near the dividing line between two
squares, neither is darkened much at all; when it’s near the middle of a square,
that square is darkened substantially. The result is that the object appears to waver
in brightness during the animation.

A line of slope 3/5, drawn in black-and-white, will contain two pixels in one
row, one in the next row, two in the next, and then the pattern will repeat, in a
2, 1, 2, 2, 1, 2, . . . fashion. The irregular “jaggedness” of this line corresponds
precisely to the irregular time spent by the moving triangle in each square—the
jaggedness of the line and the jerkiness of the motion are different instances of
the same aliasing phenomenon.

The somewhat surprising solution is to use a weighting function that says that
an object contributes to the brightness of square i if it overlaps anywhere from
the center of square i − 1 to the center of square i + 1. Figure 18.16 shows this
in a side view. The object, shown as a small, black line segment, contributes both
the left pixel, whose weighting function is shown in blue, and the center pixel,
whose weighting function is shown in red, but not the right pixel, whose weighting
function is shown in green. The left-pixel contribution is small, because the black



ptg11539634

500 Images and Signal Processing

line is near the edge of the “tent,” while the center-pixel contribution is larger.
Notice that the sum of the weighting functions is the constant function 1, so no
matter where we place the object, its total contribution to image brightness will be
the same.

Figure 18.14: A grayscale ren-
dering of a letter “A” (from a dif-
ferent font).

Figure 18.15: A small object
moves left to right through a
sequence of three pixels.

y = f(x)

Figure 18.16: Weighted area
measurement. The central red
“tent-shaped” function is used as
a weight for contributions to the
center pixel.

We can express the weighted-area-overlap approach to determining pixel val-
ues mathematically. Let’s suppose that x 
→ f (x) is the function shown in Fig-
ure 18.16 whose value is 1 for any point x within our object, and 0 elsewhere. And
let’s suppose that the red tent-shaped function in Figure 18.16 is called x 
→ g(x).
Then the value we assign to the center pixel is given by∫ ∞

−∞
g(x) f (x) dx. (18.1)

The value assigned to the next pixel to the right, whose weighting function is
just g shifted right one unit, is∫ ∞

−∞
f (x)g(x− 1) dx. (18.2)

A similar expression holds for every pixel: The values we’re computing are
generated by multiplying f with a shifted version of g and then integrating. This
operation—point-by-point multiplication of one function by a shifted version of
another, followed by integration (or summation, in some cases)—appears over and
over again in both graphics and mathematics and is called convolution, although
we should warn you that the proper definition includes a negation so that we end
up summing things of the form f (x)h(i − x); this negation leads both to conve-
nient mathematical properties and to considerable confusion. Fortunately for us,
in almost all our applications the functions that we convolve against have the prop-
erty that h(x) = h(−x), so the negative sign has no impact.

In the next section, we’ll discuss various kinds of convolutions, their applica-
tions in graphics, and some of their mathematical properties.

The remainder of this chapter consists of applying ideas from signal process-
ing to computer graphics. In that context, functions on the real line (or an interval)
are often called signals (particularly when the parameter is denoted t so that we
can think of f (t) as a value that varies with time). Convolving with a function
like the “tent function” above, which is nonzero on just a small region, is called
applying a filter or filtering, although the term can be used for convolution with
any function.
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Figure 18.17: Sensor pixels in a
digital camera, and the sensitivity
function M for pixel (0, 0).

18.3 Convolution

As we said already, convolution appears over and over again in graphics and the
physical world. Nearly every act of “sensing” involves some sort of convolution,
for instance. For example, consider one row of sensor pixels in an idealized digital
camera. We’ll say that the light energy falling on the sensor at location (x, y) in
one second is described as function S(x, y), and that S is independent of time.
The camera shutter opens for one second, and each pixel accumulates arriving
energy over that period of time, after which an accumulated value is recorded
as the pixel’s value. But each pixel sensor—say, the one at pixel (0, 0)—has a
responsivity function, (x, y) 
→ M(x, y), that tells how much pixel response there is
for each bit of arriving light (see Figure 18.17). We’re being deliberately informal
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about units here because it’s the form of the computation we care about, not the
actual values.

To determine the sensor pixel’s response to the incoming light, we multiply
each bit of light S(x, y) by the responsivity M(x, y), and sum up over the entire
pixel:

value =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

S(x, y)M(x, y) dy dx. (18.3)

If we extend the definition of M to the whole plane of the sensor by defining M to
be 0 outside the unit square corresponding to pixel (0, 0), we can rewrite this as

value0,0 =

∫ ∞

−∞

∫ ∞

−∞
S(x, y)M(x, y) dy dx, (18.4)

which may appear more complicated, but actually will result in simpler formulas
elsewhere.

In a well-designed camera, the sensor responsivity should be the same for each
pixel. What does this mean mathematically? It means, for instance, that for sensor
pixel (2, 3), we’ll want to multiply S(x, y)M(x− 2, y− 3) and integrate, that is,

value2,3 =

∫ ∞

−∞

∫ ∞

−∞
S(x, y)M(x− 2, y− 3) dy dx, (18.5)

and in general, the formula for sensor pixel (i, j) will be

valuei,j =

∫ ∞

−∞

∫ ∞

−∞
S(x, y)M(x− i, y− j) dy dx. (18.6)

This expression has the form of a product of a function S with a shifted func-
tion M, integrated; the resultant value is a function of the shift amount, (i, j). That
is the essence of a convolution, and indeed, Equation 18.6 is almost the definition
of the convolution S � M of the two functions. Two small adjustments are needed.
First, since S and M are both functions on all of R2, their convolution is defined to
be a function on all of R2. The values we’ve described above are the restriction of
that function to the integer grid. Second, it’s very convenient to have a definition
of convolution that makes f � g = g � f . For this to work out properly, there needs
to be an extra negation; that is, we want Equation 18.6 to have the form

valuei,j =

∫ ∞

−∞

∫ ∞

−∞
S(x, y)M̄(i− x, j− y) dy dx. (18.7)

We can arrange this by defining M̄(x, y) = M(−x,−y). (For a typical sensor, the
response function is symmetric, so M̄ and M are the same.) This final form is just
a 2D analog of the 1D convolution. Simplifying to one dimension, we can now
define the convolution of two functions f , g : R→ R:

( f � g)(t) =
∫ ∞

−∞
f (x)g(t − x) dx. (18.8)
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Inline Exercise 18.1: (a) Pause briefly and examine that definition carefully.
It’s central to much of the remainder of this book.
(b) Perform the substitution s = t−x, ds = −dx in the integral of Equation 18.8
to confirm that ( f � g)(t) = (g � f )(t).

We can say that image capture by our digital camera consists of convolving the
incoming light with the “flipped” sensor response function M̄, and then restricting
to the integer lattice Z× Z.

In almost all cases that we study, one of the functions f or g will be an even
function, and hence the negation has no consequence at all. The two-dimensional
convolution is defined very similarly. If f , g : R2 → R are two functions on R2,
then

( f � g)(s, t) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)g(s− x, t − y) dx dy. (18.9)

Convolution is also defined for two periodic functions of period P, but with
the domain of integration replaced by any interval of length P.

Convolution can also be applied to discrete signals, that is, to a pair of func-
tions f , g : Z 
→ R; the definition is almost identical, except for the replacement
of the integral with a summation:

( f � g)(i) =
∞∑

j=−∞
f ( j)g(i− j), for i ∈ Z, (18.10)

with an analogous definition for functions of two variables. If f , g : Z × Z → R,
then

( f � g)(i, j) =
∞∑

k=−∞

∞∑
p=−∞

f (k, p)g(i− k, j− p), for i, j ∈ Z. (18.11)

As an application of this kind of convolution, imagine that you have an image
that is in very sharp focus, but you want to use it as a background for a composition
in which it should appear out of focus, while the foreground objects should be in
focus. One way to do this is to replace each pixel with an average of itself and its
eight neighbors. Figure 18.18 shows the results on a small example. On a larger
image, you might want to “blur” with a much larger block of ones, to achieve any
noticeable effect. If we call f (i, j) the value of the original image pixel at (i, j),
and let g(i, j) = 1 for −1 ≤ i, j ≤ 1, and 0 otherwise, then the blurred-image
pixel at (i, j) is exactly ( f � g)(i, j). Notice, too, that the function g that we used
in the blurring has the property that g(i, j) = g(−i,−j), that is, it’s symmetric
about the origin, hence the negative sign in the definition of convolution is of no
consequence.

=

1 1 1
1 1 1
1 1 1

Figure 18.18: A 32 × 32 image is
convolved with a 3×3 block of 1s
to blur the image.

The process we’ve just described is usually called filtering f with the filter
g, where the function that’s nonzero only on a small region is called the “filter.”
Because convolution is symmetric, the roles can be reversed, however, and we’ll
have occasion to convolve with “filters” that are nonzero arbitrarily far out on the
real line or the integers.
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Inline Exercise 18.2: Consider convolving a grayscale image f with a filter
g that’s defined by g(−1,−1) = g(−1, 0) = g(−1, 1) = −1, g(1,−1) =
g(1, 0) = g(1, 1) = 1, and g(i, j) = 0 otherwise.
(a) Draw a plot of g.
(b) Describe intuitively where f � g will be negative, positive, and zero. You
might want to start out with some simple examples for f , like an all-gray image,
or an image that’s white on its bottom half and black on the top, or white on
the left half and black on the right, etc. Then generalize.

We’ve defined convolution for two continuum functions (i.e., functions defined
on R) and for two discrete functions (i.e., defined on Z). There’s a third class
of convolution that comes up in graphics: the discrete-continuum convolution. A
familiar instance of this is display on a grayscale LCD monitor. Recall that for
this chapter, the display pixel (i, j) is a small box centered at (i, j). Figure 18.19
shows the result of displaying a 2 × 2 image f (shown as a stem plot) with a
“box” function b defined on R2 to produce a piecewise constant function on R2

representing emitted light intensity.
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z = b(x, y)

Figure 18.19: The values in a
2 × 2 grayscale image are con-
volved with a box function to get
a piecewise constant function on
a 2 × 2 square.

The emitted light at location (x, y) is given by

light(x, y) = f (i, j)box(x− i, y− j). (18.12)

This doesn’t quite look like a convolution, because there’s no summation. But we
can insert the summation without changing anything:

light(x, y) =
∑

ij

f (i, j)box(x− i, y− j). (18.13)

There’s no change because the box function is zero outside the unit box. In the
early days of graphics, when CRT displays were common, turning on a single
pixel didn’t produce a little square of light, it produced a bright spot of light whose
intensity faded off gradually with distance. That meant that turning on pixel (4, 7)
might cause a tiny bit of light to appear even at the area of the display we’d nor-
mally associate with coordinates (12, 23), for instance, or anywhere else. In that
case, the summation in the formula for the light at position (x, y) was essential.

The general definition for the convolution of a discrete function f : Z → R
and a continuum function g : R→ R is

( f � g)(x) =
∞∑

i=−∞
f (i)g(x− i) for x ∈ R. (18.14)

The result is a continuum function. We leave it to you to define continuous-discrete
convolution, and to extend both definitions to the plane.

18.4 Properties of Convolution

As mentioned in Section 18.2, convolution has several nice mathematical proper-
ties. First, for all forms of convolution (discrete, continuous, or mixed) it’s linear
in each factor, that is,

( f1 + cf2) � g = ( f1 � g) + c( f2 � g) for any c ∈ R, and (18.15)

f � (g1 + cg2) = ( f � g1) + c( f � g2). (18.16)
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Second, it’s commutative, which we’ll show for the continuous case, answer-
ing the inline problem above:

( f � g)(t) =
∫ ∞

−∞
f (x)g(t − x) dx. (18.17)

Substituting s = t − x, ds = −dx, and x = t − s, we get

( f � g)(t) =
∫ ∞

−∞
f (x)g(t − x) dx (18.18)

=

∫ −∞

s=∞
f (t − s)g(s) (−ds) (18.19)

=

∫ ∞

s=−∞
g(s) f (t − s) ds (18.20)

= (g � f )(t). (18.21)

The proofs for the discrete and mixed cases are very similar.
Third, convolution is associative. The proof, which we omit, involves multiple

substitutions.
Finally, continuous-continuous convolution has some special properties

involving derivatives, such as f ′ � g = f � g′ (under some fairly weak assump-
tions). It also generally increases smoothness: If f is continuous and g is piece-
wise continuous, then f � g is differentiable; similarly, if f is once differentiable,
then f � g is twice differentiable. In general, if f is p-times differentiable and g is
k-times differentiable, then f � g is (p + k + 1)-times differentiable (again under
some fairly weak assumptions).

Alas, for a fixed function f , the map g 
→ f � g is usually not invertible—you
can’t usually “unconvolve.” We’ll see why when we examine the Fourier trans-
form shortly.

18.5 Convolution-like Computations

Convolution appears in other places as well. Consider the multiplication of 1231
by 1111:

1231
x1111
-----
1231

1231
1231
1231
-------
1367641

In computing this product, we’re taking four shifted copies of the number 1231,
each multiplied by a different 1 from the second factor, summing them; this is
essentially a convolution operation.

Figure 18.20: The square
occluder casts a shadow with
both umbra and penumbra when
illuminated by a round light
source.

As another example, consider how a square occluder, held above a flat table,
casts a shadow when illuminated by a round light source (see Figure 18.20). The
brightness at a point P is determined by how much of the light source is visible
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from P. We can think of this by imagining the square is lit from each single point of
the light source, casting a hard shadow on the surface, a shadow whose appearance
is essentially a translated copy of the function f that’s one for points in the square
and zero elsewhere (see Figure 18.21). We sum up these infinitely many hard-
shadow pictures, with the result being a soft shadow cast by the lamp. This has
the form of a convolution (a sum of many displaced copies of the same function).
We can also consider the dual: Imagine each tiny bit of the rectangle individually
obstructing the lamp’s light from reaching the table. The occlusion due to each
tiny bit of rectangle is a disk of “reduced light”; when we sum up all these circular
reductions, some table points are in all of them (the umbra), some table points
are in just a few of the disks (the penumbra), and the remainder, the fully lit
points, are visible to every point of the lamp. These two ways of considering the
illumination arriving at the table—multiple displaced rectangles summed up, or
multiple displaced disks summed up—correspond to thinking of f � g as many
displaced copies of f , weighted by values of g, or as many displaced copies of g,
weighted by values of f .

Figure 18.21: The square shad-
ows cast by the occluder when
it’s illuminated from two differ-
ent points of the light source
(image lightened to better show
shadows).

18.6 Reconstruction

Reconstruction is the process of recovering a signal, or an approximation of it,
from its samples. If you examine Figure 18.4, for instance, you can see that by
connecting the red dots, we could produce a pretty good approximation of the
original blue curve. This is called piecewise linear reconstruction and it works
well for signals that don’t contain lots of high frequencies, as we’ll see shortly.

We discussed earlier how the conversion of the light arriving at every point of
a camera sensor into a discrete set of pixel values is modeled by a convolution,
and how, if we display the image on an LCD screen, setting each LCD pixel’s
brightness to the value stored in the image, we’re performing a discrete-continuous
convolution, the discrete factor being the image and the continuous factor being
a function that’s 1 at every point of a unit-width box centered on (0, 0) and 0
everywhere else. This second discrete-continuous convolution is another example
of reconstruction, sometimes called sample and hold reconstruction.

The “take a photo, then display it on a screen” sequence (i.e., the sample-and-
reconstruct sequence) is thus described by a sequence of convolutions. If taking
a photo and displaying were completely “faithful,” the displayed intensity at each
point would be exactly the same as the arriving intensity at the corresponding
point of the sensor. But since the displayed intensity is piecewise constant, the
only time this can happen is when the original lightfield is also piecewise constant
(if, for instance, we were photographing a chessboard so that each square of the
chessboard exactly matched one sensor pixel). In general, however, there’s no
hope that sense-then-redisplay will ever produce the exact same pattern of light
that arrived at the sensor. The best we can hope for is that the displayed lightfield
is a reasonable approximation of the original. Since displays have limited dynamic
range, however, there are practical limitations: You cannot display a photo of the
sun and expect the displayed result to burn your retina.

18.7 Function Classes

There are several kinds of functions we’ll need to discuss in the next few sections.
The first is the one used to mathematically model things like light arriving at
an image plane, which is a continuous function of position. We can treat such a
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function as defined only on the image rectangle, R, or as being defined on the
whole plane (which we’ll treat as R2). In either case, we require that the integral
of the square of f is finite,1 that is,∫

D
f (x)2 dx <∞, (18.22)

where D is the domain on which the function is defined. (Functions satisfying
this inequality are called square integrable; the interpretation, for many physi-
cally meaningful functions, is that they represent signals of finite total energy.)
The domain D might be the rectangle R, the whole plane R2, the real line R, or
some interval [a, b] when we’re discussing the one-dimensional situation. Func-
tions that are square integrable form a vector space called L2, where we often
write something like L2(R2) to indicate square-integrable functions on the plane.
We say “f is L2” as shorthand for “f is square integrable.” The set of L2 functions
on any particular domain is generally a vector space. It takes a little work to show
that L2 is closed under addition, that is if f and g are L2, then so is f + g; but we’ll
omit the proof, since it’s not particularly instructive.

A function x 
→ f (x) in L2(R) must “fall off” as x → ±∞, because if | f (x)|
is always greater than some constant M > 0, then

∫ K
−K f (x)2 dx >

∫ K
−K M2 dx =

2KM2, which goes to infinity as K →∞.
The next class of functions is the discrete analog of L2: the set of all functions

f : Z→ R such that ∑
i

f (i)2 <∞ (18.23)

is denoted �2; these are called square summable.
There are two ways in which �2 functions arise. The first is through sampling

of L2 functions. Sampling is formally defined in the next section, but for now note
that if f is a continuous L2 function on R, then the samples of f are just the val-
ues f (i) where i is an integer, so sampling in this case amounts to restricting the
domain from R to Z. The second way that �2 functions arise is as the Fourier trans-
form of functions in L2([a, b]) for an interval [a, b], which we’ll describe presently.

Finally, both �2 and L2 have inner products. For �2(Z) we define

〈a, b〉 =
∞∑

i=−∞
a(i)b(i), (18.24)

which is analogous to the definition in R3 of v · w =
∑3

i=1 viwi.
For L2(D), where D is either a finite interval or the real line, we define

〈 f , g〉 =
∫

D
f (x)g(x) dx. (18.25)

This inner product on L2 has all the properties you might expect: It’s linear in
each factor, and 〈 f , f 〉 = 0 if and only if f = 0, at least if we extend the notion of
f = 0 to mean that f is zero “almost everywhere,” in the sense that if we picked a

1. Later we’ll consider complex-valued functions rather than real-valued ones. When we
do so, we have to replace f (x) with | f (x)| in the integral.
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random number t in the domain of f , then with probability 1, f (t) = 0. (In general,
when we talk about L2, we say that two functions are equal if they’re equal almost
everywhere.)

These inner-product definitions in turn let us define a notion of “length,” by
defining ‖ f‖ =

√〈 f , f 〉, for f ∈ L2, and similarly for �2. See Exercise 18.1 for
further details.

18.8 Sampling

The term sampling is much used in graphics, with multiple meanings. Sometimes
it refers to choosing multiple random points Pi (i = 1, 2, . . . , n) in the domain
of a function f so that we can estimate the average value of f on that domain as
the average of the values f (Pi) (see Chapter 30). Sometimes (as in the previous
edition of this book) it’s used to mean “generating pixel values by some kind of
unweighted or weighted averaging of a function on a domain,” the discrete nature
of the pixel array being the motivation for the word “sampling.” In this chapter,
we’ll use it in one very specific way. If f is a continuous function on the real
line, then sampling f means “restricting the domain of f to the integers,” or, more
generally, to any infinite set of equally spaced points (e.g., the even integers, or all
points of the form 0.3 + n/2, for n ∈ Z).

0 2 4 6
−2

−1

0

1

2

Figure 18.22: A “biased” square
wave; at integer points the values
are −1.

For discontinuous functions, the definition is slightly subtler; for those who’d
rather ignore the details, it’s sufficient to say that if f is piecewise continuous, but
has a jump discontinuity at the point x, then the sample of f at x is the average of
the left and right limits of f at x. Thus, for a square wave (see Figures 18.22 and
18.23) that alternates between −1 and 1, the sample at any discontinuity is 0.
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2

Figure 18.23: The samples of the
biased square wave at integer
points are all 0.
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Figure 18.24: The function χt0,a

is nonzero only on the interval
[t0 − a, t0 + a].

The more general notion of sampling is motivated by the physical act of mea-
surement. If we think of the variable in the function t 
→ f (t) as time, then to
measure f we must average its values over some nonzero period of time. If f is
rapidly varying, then the shorter the period, the better the measurement. To define
the sample of f at a particular time t0, we therefore mimic this measurement pro-
cess. First, we consider points t0−a and t0 + a, and define a function χt0,a : R→ R
where χt0,a = 1 if t0 − a ≤ t ≤ t0 + a and 0 otherwise (see Figure 18.24). The
function χt0,a serves the role of the shutter in a camera: When we multiply f by
χt0,a, the values of f are “let through” only on the interval [t0 − a, t0 + a]. Next,
we let

U(a) =
1
2a

∫
R

f (t)χt0,a(t) dt. (18.26)

U(a) is the “measurement” of f in the interval [t0− a, t0 + a], in the sense that it’s
the average value of f on that interval. Problem 18.2 relates this to convolution.
Finally, we define the sample of f at t0 to be

lim
a→0

U(a), (18.27)

that is, the limiting result of measuring f over shorter and shorter intervals. For a
continuous function f , if a is small enough, then f (s) will be very close to f (t0) for
any s ∈ [t0 − a, t0 + a], and the limit of U(a) is just f (t0)—the sample, defined by
this measurement process, is exactly the value of f at t0 as we said above; the full
proof depends on the mean value theorem for integrals. But for a discontinuous
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function like the square wave we saw above, the measurement process averages
values to the left and right of t0, and the limit (in the case of a square wave) is
the average of the upper and lower values. In cases messier than these simple
ones, it can happen that the limit in Equation 18.27 can fail to exist, in which case
the sample of f is not defined. We’ll never encounter such functions in practice,
though.

18.9 Mathematical Considerations

Figure 18.25: A few “nice” func-
tions.

The somewhat complex definition of sampling suggests that the mathematical
details of L2 functions can be quite messy. That’s true, and making precise state-
ments about sampling, convolution, Fourier transforms, etc., is rather difficult.
Often the statement of the preconditions is so elaborate that it’s quite difficult to
understand what a theorem is really saying. Rather than ignoring the preconditions
or precision, which leads to statements that seem like nonsense except to the very
experienced, and rather than providing the exact statements of every result, we’ll
restrict our attention, to the degree possible, to “nice” functions (see Figure 18.25)
that are either continuous, or very nearly continuous, in the sense that they have a
discrete set of discontinuities, and on either side of a discontinuity they are contin-
uous and bounded (i.e., there’s no “asymptotic behavior” like that of the graph of
y = 1/x near x = 0). Figure 18.26 shows some functions that are not nice enough
to study in this informal fashion, but which also don’t arise in practice.

Figure 18.26: “Not-nice” func-
tions. The blue function is 0
except at points of the form p/2q,
where its value is 1/2q.

The restriction to “nice” functions is enough to make most of the subtleties
disappear. It’s also appropriate in the sense that we’re using these mathematical
tools to discuss physical things, like the light arriving at a sensor. At some level,
that light intensity is discontinuous—either another photon arrives or it doesn’t—
but at the level at which we’re hoping to model the world, it’s reasonable to treat
it as a continuous function of time and position.

We’re also typically studying the result of convolving the “arriving light” func-
tion with some other function like a box; the box is a nice enough function that
convolving with it always yields a continuous function, and sampling this contin-
uous function is easy—we just evaluate at the sample points. So the way we work
with light tends to mean that we’re working with functions that “behave nicely”
when we look closely at the mathematics.
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2

Figure 18.27: An even function is
one symmetric about the y-axis.

For the remainder of this chapter, we’ll be considering things in one dimen-
sion: Our “images” will consist of just a row of pixels; our sensor will be a line
segment rather than a rectangle, etc. We’ll sometimes illustrate the corresponding
ideas in two dimensions (i.e., on ordinary images), but we’ll write the mathemat-
ics in one dimension only. So we’ll be working with a function f defined on the
real line, and its samples defined on the integers. To make things simpler, we’ll
restrict our attention to the case where f is an even function (see Figure 18.27),
where f (x) = f (−x) for every x. Examples of even functions are the cosine, and
the squaring function. Restricting to even functions lets us mostly avoid using
complex numbers, while losing none of the essential ideas.

To review what we’ve done so far, we’ve defined convolution, and observed
that many operations like display of images, capturing images by sensing (i.e.,
photography or rendering), blurring or sharpening of images, etc., can be writ-
ten in terms of convolution, and that sampling at a point is defined by a limit of
integrals, while sampling at all points is a limit of convolutions.
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For the remainder of the chapter, we’re motivated by the question, “Suppose
we have incoming light arriving at a sensor, and we want to make an image that
best captures this arriving light for subsequent display or other uses; what should
we store in the image array?” To answer this question, we need to do two things.

• Choose a new basis in which to represent images.

• Understand how convolution “looks” in this new basis.

The Fourier transform is how we’ll transform images into the new basis. And
in the new basis, convolution of functions becomes multiplication of functions,
which is much easier to understand and reason about.

18.9.1 Frequency-Based Synthesis and Analysis
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Figure 18.28: An even function
on the interval H.

Consider the interval H = (− 1
2 , 1

2 ], which we’ll use throughout this chapter; the
letter “H” is mnemonic for “half.” By writing a sum like

f (x) = cos(2πx) +
1
3
cos(6πx), (18.28)

shown in Figure 18.28, we can produce an even function on that interval (i.e.,
one symmetric about the y-axis). In general, any sum of cosines of various integer
frequencies will be an even function, because each component cosine is even. By
changing how much of each frequency of cosine we mix in, we can get many
different functions.
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Figure 18.29: The problem.

We can, for instance, find a combination of cos(0x), cos(2πx), and cos(4πx)
that satisfies f (0) = 1, f (1/6) = 0, and f ( 1

2 ) = 0. These constraints are shown
in Figure 18.29; the shaded constraints on the left are there because the function
is even, so its values on the left half of the real line must match those on the right
half of the line.

We write

f (x) = a cos(0x) + b cos(2πx) + c cos(4πx), (18.29)

and then plugging in the constraints, we find that

1 = f (0) = a + b + c, (18.30)

0 = f (1/6) = a + b cos(π/3) + c cos(2π/3) (18.31)

= a + b/2− c/2, and (18.32)

0 = f

(
1
2

)
= a− b + c, (18.33)

from which we can determine that a = 0 and b = c = 1/2 (see Figure 18.30).
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Figure 18.30: The solution.

This is easy to generalize: If we’re given k constraints on the values of a func-
tion on the non-negative part of the interval I, then we can find a function written
as a linear combination of cos(0x), cos(2πx), . . . , cos(2π(k − 1)x) that satisfies
those constraints. The proof relies on elementary properties of the cosine and sine.

Thus, we can “synthesize” various even functions by summing up cosines of
many frequencies. We can even “direct” our synthesized function to have certain
values at certain points, as in the second example above. We can synthesize odd
functions by summing up sines of various frequencies as well, and by mixing
sines and cosines, we can even synthesize functions that are neither even nor odd.
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Whatever function we synthesize, however, will be periodic of period 1, because
each term in the sum is periodic with that period. Thus, if f is a sum of sines and
cosines of different integer frequencies, we’ll have f ( 1

2 ) = f (− 1
2 ).

We’re using the term “frequency” here quite specifically: We say that x 
→
cos(2πx) is a function of frequency 1. Some other texts say that x 
→ cos(x)
is a function of frequency 1. In the same way, some books prefer to define the
Fourier transform on the interval [−1, 1], or [0, 1], or [0, 2π]; depending on the
interval, this introduces a multiplicative constant in the definition of the inner
product. We’re following the convention of Dym and McKean [DM85] so that
the interested reader may refer there for proofs, but there is no universal stan-
dard. Fortunately for us, we’ll mostly be concerned with qualitative properties
of the Fourier transform, for which the interval of definition and multiplicative
constants are not important.
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Figure 18.31: A “square wave”
function.

More surprising, perhaps, is that any even continuous function f on the interval
H that satisfies f ( 1

2 ) = f (− 1
2 ) can be written as a sum of cosines of various integer

frequencies. Even discontinuous functions can be almost written as such a sum.
For instance, the square-wave function (see Figure 18.31) defined by

f (x) =

{
1 − 1

4 ≤ x ≤ 1
4

−1 otherwise
(18.34)

can be almost expressed by the infinite sum

f̄ (x) =
4
π

(
cos(2πx)− cos(6πx)

3
+

cos(10πx)
5

− . . .

)
(18.35)

=
∞∑

k=0

4
π(2k + 1)

(−1)k cos(2π(2k + 1)x). (18.36)

We say “almost expressed” because f̄ (± 1
4 ) = 0—the average of the values of f to

the left and right of ± 1
4 —rather than being equal to f (± 1

4 ) = 1.
The sequence in Equation 18.35 can be approximated by taking a finite num-

ber of terms; a few of those approximations are shown in Figure 18.32.
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Figure 18.32: The square wave
approximated by 2, 10, and 100
terms. The slight overshoot in the
approximations is called ringing.

As a more graphically oriented example, let’s take one row of pixels from a
symmetric image like that shown in Figure 18.33. We’ve actually taken half a row
and flipped it over to get a perfectly symmetric line of 3,144 pixels, shown in
Figure 18.34.

If we write this function as a sum of cosines, the sum will have 3,144 terms,
which is hard to read. It starts out as

f (x) = 129.28 cos(0x) + 5.67 cos(2πx)− 2.35 cos(4πx) + . . . . (18.37)

We can make an abstract picture of this summation by plotting the coefficients:
At 0 we plot 129.28, at 1 we plot 5.67, at 2 we plot −2.34, etc. The result is
shown in Figure 18.35, except that since the coefficient of cos(0x) is actually
141.8, we’ve adjusted the y-axis so that you can see the other details, thus hiding
the large coefficient for the cos(0x) term. (That coefficient is just the average of
all the pixel values.)
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Notice that as the frequencies get higher, the coefficients get smaller. In fact, in
natural images, this “falling off with higher frequencies” is commonplace. Notice
too that the function shown in Figure 18.34 has lots of variation at a very small
scale, while the one shown in Figure 18.28 has variation only at a very large scale.
If we made a plot for Figure 18.28 analogous to Figure 18.35, it would have only
two nonzero values (at frequencies 0 and 1). In general, details at small scales
mean there must be high frequencies in the image, just as we observed in Sec-
tion 18.11. Since x 
→ cos(2πkx) has “features” at a scale of 1

2k , in general any
sum that stops at the cos(2πkx) term will have no features smaller than 1

2k . This
kind of relationship between the pattern of coefficients and the appearance of the
pixel-value plot is a powerful reasoning tool. We’ll next formalize it using the
Fourier transform.

Figure 18.33: The Taj Mahal.
Original image by Jbarta, at
http://upload.wikimedia.org/wiki
pedia/commons/b/bd/Taj_Mahal,
_Agra,_India_edit3.jpg.
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Figure 18.34: The grayscale pixel
values for one horizontal line of
the image.
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Figure 18.35: The first few coef-
ficients for the sum representing
the row of Taj Mahal pixels. We
plot the coefficient of cos(2πkx)
at position k.

But first, it’s useful to understand how the frequency decomposition of an
image actually looks, so Figure 18.36 shows these to you, for a grayscale version
of the Taj Mahal image (again, symmetrized). The frequency-0 part of the image
is the average grayscale value; we’ve actually included this in both the middle-
and high-frequency images to prevent having to use values less than 0.

18.10 The Fourier Transform: Definitions

In the next two sections we’ll define several different Fourier transforms, all of
them closely related. We’ll only hint at the proofs of various claims, and instead
rely mostly on suggestive examples. As motivation for you as you read these sec-
tions, here are the three main features of the Fourier transform that we’ll use in
applications to computer graphics.

• The Fourier transform turns convolution into multiplication, and vice versa.
If we write F for the Fourier transform, this means that

F( f � g) = F( f )F(g) and (18.38)

F( fg) = F( f ) � F(g). (18.39)

• If we define a function g like the one shown in Figure 18.37, with peaks
that are equally spaced and very narrow, then the Fourier transform of g
looks rather like g itself, except that the closer the spacing of the peaks
in g, the wider the spacing of the peaks in the transform.

• Multiplying a function f by a function like g approximates “sampling f at
equispaced points.” Thus, functions like g can be used to study the effects
of sampling. Because of the convolution-multiplication duality, we’ll see
that the sampled function has a Fourier transform that’s a sum of translated
replicates of the original function’s transform.

18.11 The Fourier Transform of a Function
on an Interval

We hinted in Section 18.9.1 that if we had an even function in L2(H), then its
Fourier transform was the set of coefficients used to write the function as a sum of
cosines. In general, however, the Fourier transform is defined for any L2 function,

http://upload.wikimedia.org/wikipedia/commons/b/bd/Taj_Mahal,_Agra,_India_edit3.jpg
http://upload.wikimedia.org/wikipedia/commons/b/bd/Taj_Mahal,_Agra,_India_edit3.jpg
http://upload.wikimedia.org/wikipedia/commons/b/bd/Taj_Mahal,_Agra,_India_edit3.jpg
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not just even ones. The most basic definition is a little messy. For each integer
k ≥ 0, define

ak =

∫ 1
2

− 1
2

f (x) cos(kx) dx and (18.40)

bk =

∫ 1
2

− 1
2

f (x) sin(−kx) dx. (18.41)

Notice that b0 is always 0.
The sequences {ak} and {bk} are called the Fourier transform of f . If f is

continuous and f ( 1
2 ) = f (− 1

2 ), then it turns out that

f (x) =
∞∑

k=−∞
ak cos(kx) + bk sin(kx). (18.42)

The TajMahal image

Frequencies less than 15
(low frequency)

Frequencies 15 to 70
(middle frequency)

Frequencies greater than 70
(high frequency)

Figure 18.36: The low-, middle-,
and high-frequency components
of the Taj Mahal image.

−5 0 5
0

1

Figure 18.37: A function with
equally spaced peaks that fade off
as x → ±∞.

Surprisingly, the annoyance of having an unnecessary value (b0), the vague-
ness of “the Fourier transform consists of two sequences,” and the somewhat sur-
prising appearance of the negative sign in the definition of bk can all be resolved
by generalizing to complex numbers.

Instead of real-valued functions f : [− 1
2 , 1

2 ] → R, we’ll consider complex-
valued functions. And instead of considering the sine and cosine separately, we’ll
define

ek(x) = cos(2πkx) + i sin(2πkx) = e2πikx. (18.43)

Inline Exercise 18.3: Show that (ek(x)+e−k(x))/2 = cos(2πkx), and (ek(x)−
e−k(x))/(2i) = sin(2πkx), so that any function written as a sum of sines and
cosines can also be written as a sum of eks, and vice versa.

The only other change is that the definition of the inner product must be
slightly modified to

〈 f , g〉 =
∫

f (x)g(x) dx, (18.44)

where a + bi = a − bi is the complex conjugate. Making this change ensures
that the inner product of f with f is always a non-negative real number so that its
square root can be used to define the length ‖ f‖.

With this inner product, the set of functions {ek : k ∈ Z} is orthonormal,
that is,

〈ek, ej〉 =
{

0 j �= k

1 j = k
; (18.45)

the proof is an exercise in calculus and trigonometric identities.
We define

ck =

∫ 1
2

− 1
2

f (x)ek(x) dx = 〈 f , ek〉. (18.46)
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It then turns out that for a continuous L2 function f satisfying f ( 1
2 ) = f (− 1

2 ),

f (x) =
∑

k

ckek(x), (18.47)

that is, computing the inner product of f with each basis element ek lets us write
f as a linear combination of the ek’s. This is exactly analogous to the situation in
R3, where a vector is the sum of its projections onto the three coordinate axes. The
only difference here is that the sum is infinite, and so a proof is needed to establish
that it converges.

The Fourier transform of f is now defined to be the sequence {ck : k ∈
Z}. With this revised definition, we see that the Fourier transform of f is just
the list of coefficients of f when it’s written in a particular orthonormal basis.
Such “lists of coefficients” form a vector space under term-by-term addition and
scalar multiplication, and the Fourier transform is a linear transformation from L2

to this new vector space. Be sure you understand this: The Fourier transform is
just a change of representation. It’s a very important one, though, because of the
multiplication-convolution property.

The function f ∈ L2(H) is often referred to as being in the time domain, while
its Fourier transform is said to be in the frequency domain. Since one is a function
on an interval and the other is a function on the integers, the distinction between
the two is quite clear. But for functions in L2(R), the Fourier transform is also in
L2(R), and so being able to talk about the two domains is helpful. We’ll sometimes
use “value domain” or “value representation” for the original function, and “fre-
quency representation” for its Fourier transform, because f (x) tells us the value of
f at x, while ck tells us how much frequency-k content there is in f .

We mostly won’t care about the particular values ck in what follows, but we’ll
want to be able to take a big-picture look at these numbers and say things like
“For this function, it turns out that ck = 0 whenever |k| > 200,” or “The complex
numbers ck get smaller and smaller as k gets larger.” (Recall that the “size” of a
complex number z = a+bi is called its modulus, and is |z| = √a2 + b2.) Because
of this big-picture interest, rather than trying to plot ck for k ∈ Z, we instead plot
|ck|. The advantage is that |ck| is a real number rather than a complex one, so it’s
easier to plot. The plot of these absolute values is called the spectrum of f , and it
tells us a lot about f . (The word “spectrum” arises from a parallel with light being
split into all the colors of the spectrum.)

The Fourier transform takes a function in L2(H) and produces the sequence
of coefficients ck. It’s useful to think of this sequence as a function defined on the
integers, namely k 
→ ck. In fact, the sum∑

k

|ck|2 (18.48)

turns out to be the same as
∫ 1

2

− 1
2
| f (x)|2 dx, which is finite because f is an L2

function. This means that k 
→ ck is an �2 function, and thus the Fourier transform
takes L2(H) to �2(Z). From now on we’ll denote the Fourier transform with the
letter F, so

F : L2(H)→ �2(Z) : f 
→ F( f ). (18.49)

Notice that F( f ) is a function: F( f )(k) is defined to be ck, the kth Fourier coeffi-
cient for f . For simplicity, we’ll sometimes denote the Fourier transform of f by f̂ .

We’ll often use two properties of the Fourier transform.
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• First, if f is an even function, then each ck is a real number (i.e., its imagi-
nary part is 0). For even functions, we can therefore actually plot ck rather
than |ck|; that’s what we did in Figure 18.35, although we only plotted it
for k ≥ 0.

• Second, if f is real-valued (as are all the functions we care about, the real
value being something like “the intensity of light arriving at this point”),
then its Fourier transform is even, that is, ck = c−k for every k. That’s why
we showed the plot of ck for k ≥ 0 in Figure 18.35: The values for k < 0
would have added no information.

We have one example of the Fourier transform already: We wrote the square-
wave function s, as a sum of cosines in Equation 18.35. From that sum, we can
read off

ŝ(k) =

{
0 k even

(−1)n 4
πn k = 2n + 1

. (18.50)

The plot of ŝ is shown in Figure 18.38.
−10 0 10

−0.5

0

0.5

1

Figure 18.38: The Fourier trans-
form of the square wave.

18.11.1 Sampling and Band Limiting in an Interval

Now suppose that we have a function f on the interval H with F( f )(k) = 0 for all
|k| > k0. Such a function is said to be band-limited at k0. The function f can be
written as a sum of sinusoidal functions, all of frequency less than or equal to k0.
Since the “features” of a sinusoidal function of frequency k (the “bumps”) are of
size 1

2k , the features of f must be no smaller than 1
2k0

. We can say that the function

f is “smooth at the scale 1
2k0

.” In a technical sense, f is completely smooth, but

what we mean is that f has no bumpiness smaller than 1
2k0

.
Turning this notion around, suppose that the graph of f has a sharp corner, or a

discontinuity. Then f cannot be band-limited—it must be made up of sinusoids of
arbitrarily high frequencies! This is important: A function that’s discontinuous, or
nondifferentiable, cannot be band-limited. The converse is false, however—there
are plenty of smooth functions that contain arbitrarily high frequencies.

The set of all functions band-limited at k0 is a vector space—if we add two
band-limited functions, we get another band-limited function, etc. The dimen-
sion of this vector space is 2k0 + 1, with coordinates provided by the numbers
c0, c±1, . . . , c±k0 . (This is the dimension as a real vector space; each number cj has
a real and an imaginary part, contributing two dimensions, except for c0, which is
pure real.)

If we evaluate the function f at k0 + 1 equally spaced points in the interval
H = (− 1

2 , 1
2 ] we get k0 + 1 complex numbers, which we can treat as 2k0 + 2

real numbers. If we ignore any one of these, we’re left with 2k0 + 1 real numbers.
That is to say, we’ve defined a linear mapping from the band-limited functions to
R2k0+1. This mapping turns out to be bijective. (The proof involves lots of trigono-
metric identities and some complex arithmetic.) What that tells us is somewhat
remarkable:

If f is band-limited at k0, then any k0 + 1 equally spaced samples of
f determine f uniquely. Conversely, if you are given values for k0 + 1
equally spaced samples (except for either the real or complex part of one
value), then there’s a unique function f , band-limited at k0, that takes on
those values at those points.
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This is one form of the Shannon sampling theorem [Sha49] or simply sam-
pling theorem. We can apply this to real-valued functions, whose Fourier trans-
forms are even functions. This means that c−1 = c1, and c−2 = c2, etc. So, of
the 2k0 + 1 degrees of freedom, we have only k0 + 1 degrees of freedom for a
real-valued function. In this case, the sampling theorem says:

Suppose that f and g are real-valued functions on [− 1
2 , 1

2 ], and
x0, . . . , xk0 are k0 + 1 evenly spaced points in that interval, for example,

xj = −1
2
+

j
k0 + 1

, (18.51)

and yj = f (xj) for j = 0, . . . , k0, and y′j = g(xj).
If yj = y′j for all j, then f and g are equal, that is, a function band-

limited at k0 is completely determined by k0 + 1 equally spaced samples.
Furthermore, given any set of values {yj}k0

j=0, there is a unique function,
f , band-limited at k0, with f (xj) = yj for every j.

The sampling theorem was proved by Shannon in 1949, but Borel stated part
of it as early as 1897. Part of it was also suggested by Nyquist in 1928. Sev-
eral others appear to have developed all or part of it independently. Meijer-
ing [Mei02] gives some of the history.

Peeking ahead, this theorem is important because we generally build an image
by taking equispaced samples of some function f , and we hope that the image
really “captures” whatever information is in f . The sampling theorem says that
if f is band-limited at some frequency, and if we take an appropriate number of
samples for that frequency, then we can reconstruct f from the samples, that is,
the image is a faithful representation of the function f .

This should make you ask, “Well, what happens if I take k0 samples of a real-
valued function that’s not band-limited at k0? What band-limited function do those
correspond to?” We’ll address this soon.

Inline Exercise 18.4: On the interval H = (− 1
2 , 1

2 ], consider the three points
− 1

3 , 0, and 1
3 .

(a) What real-valued function, f1, band-limited at k0 = 1, has values 1, 0, and
0 at these points? What functions f2 and f3 correspond to value sets 0, 1, 0 and
0, 0, 1? (You may want to use a computer algebra system to solve these parts.)
(b) Now find a band-limited function whose values at the three points are
− 1

2 , 1,− 1
2 .

(c) What are the samples of x 
→ cos(4πx) at these three points? Does this
contradict the sampling theorem?

The sampling theorem can be read in reverse: If I’m taking samples with a
spacing h between them, what’s the highest frequency I can tolerate in my signal
if I want to be able to reconstruct it from the samples? The answer is that the
wavelength of the signal must be greater than twice h. The frequency, known as
the Nyquist frequency, is therefore π/h.

Inline Exercise 18.5: Suppose you prefer the convention that x 
→ sin(x) has
frequency 1. What’s the Nyquist frequency if the sample spacing is h?
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18.12 Generalizations to Larger Intervals
and All of R

If instead of functions on H = (− 1
2 , 1

2 ] we want to study functions on the interval
(−M/2, M/2] of length M, we can make analogous definitions. The definition of
the Fourier transform gets an extra factor of 1

M ; the limits of integration change to
±M/2, and instead of using the function ek, for k ∈ Z, we must use

e k
M
(t) = cos

(
2πk
M

t

)
+ i sin

(
2πk
M

t

)
. (18.52)

The Fourier transform now sends L2(−M/2, M/2) to �2( 1
M Z), that is, functions

on the set of all integer multiples of 1/M. Thus, as the interval we’re considering
gets wider and wider (i.e., as M increases), the spacing between the frequencies
involved in representing functions on that interval gets narrower and narrower.

It’s natural to “take a limit” and consider what happens when we let M →∞.
It turns out that in addition to the Fourier transform defined for L2(−M/2, M/2),
we can define a Fourier transform for L2(R).

For f ∈ L2(R), we define F( f ) : R→ R by the rule

F( f )(ω) =
∫ ∞

−∞
f (x)eω(x) dx, (18.53)

where

eω(x) = cos(2πωx) + i sin(2πωx). (18.54)

We can think of F( f )(ω) as telling “how much frequency ω stuff there is in
f ,” but this is a little misleading; it’s perhaps better to say that F( f )(ω) says “how
much f looks like a periodic function of frequency ω.”

Just as in the case of finite intervals, if F( f )(ω) = 0 for |ω| > ω0, we say that
f is band-limited at frequency ω0.

Before we leave the subject of Fourier transforms, there’s one last topic to
cover: If we consider a periodic function h of period one, then h is definitely not
in L2(R), because it doesn’t tend to zero at ±∞, so the integral of Equation 18.53
won’t generally converge. On the other hand, the corresponding integral over just
one period of the function is the one used in defining the Fourier transform on an
interval, Equation 18.46. Thus, we can use the interval formulation to talk about
Fourier transforms for periodic functions as well.

Roughly speaking, if we truncate a periodic function f of period one by setting
f (x) = 0 for |x| > M, the L2(R) transform of the resultant function tends to be
concentrated near integer points, and its value there tends to be proportional to M.
As M gets larger, the concentration grows greater, until in the limit, the L2(R)
transform is zero except at integer points, where it’s infinite. By dividing by M, at
each stage we can convert the infinite values to finite ones, and they look just like
the L2(H) transform of a single period of f .

18.13 Examples of Fourier Transforms

18.13.1 Basic Examples
We’ve already seen (in Figures 18.34 and 18.35) the Fourier transform of one row
of a natural image. The rapid falloff of F( f )(ω) as ω grows is typical; in general,
you can expect the Fourier transform to fall off like 1/ωa for some a > 1. For a
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synthetic image, which has sharp edges (e.g., a checkerboard), you might expect
a 1/ω falloff, as we saw in the case of a square wave. In general, we’ll plot signals
in blue and their transforms in magenta, although on a few occasions we’ll plot
several signals on one axis and their transforms on another axis, using the same
color for each signal and its transform. We’ll plot discrete signals—ones whose
domain is Z—using stemplots.

18.13.2 The Transform of a Box Is a Sinc

Let

b(x) =

{
1 −0. 5 ≤ x ≤ 0. 5

0 otherwise,
(18.55)

be a box function defined on the real line. Because it’s an even function and it’s
real-valued, its Fourier transform will be even and real-valued. We can evaluate
F(b)(ω) directly from the definition.

F(b)(ω) =
∫ ∞

−∞
b(x)eω(x) dx (18.56)

=

∫ 1
2

− 1
2

eω(x) dx because b(x) = 0 for |x| > 1
2

(18.57)

=

∫ 1
2

− 1
2

cos(2πωx) dx− i
∫ 1

2

− 1
2

sin(2πωx) dx (18.58)

=

∫ 1
2

− 1
2

cos(2πωx) dx because sin is odd (18.59)

=
sin(2πωx)

2πω

∣∣∣∣
1
2

− 1
2

(18.60)

=
sin(πω)

πω
. (18.61)

The calculation above works for all ω �= 0; for ω = 0, we have F(b)(0) = 1,
which you should verify by writing out the integral.

This computation is shown pictorially in Figure 18.39, which is adapted from
Bracewell [Bra99], an excellent reference for those interested in practical signal
processing.

Inline Exercise 18.6: Repeat the preceding computation to compute the
Fourier transform of a box of width a, that is, a function that’s one on the inter-
val [−a/2, a/2] and zero elsewhere. Hint: Substitute u = x/a in the integral to
avoid doing any further work at all.

This is the only Fourier transform of a function on the real line that we’ll
actually compute directly like this. The resultant function is so important that it
gets its own name:

sinc(x) =

{
sin(πx)

πx x �= 0

1 x = 0
. (18.62)
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Figure 18.39: To compute the Fourier transform of the box b, for each frequency ω, we
multiply sin(2πωx) by b and compute the area beneath the resultant function, with positive
area (above the tω-plane) shown in green and negative area in red. Top: The computation
for ω = 1.2. Bottom: Computations for several values of ω. For each one, we plot, at the
right, the total area computed. This gives a function of the frequency ω, shown as a smooth
magenta curve; the result is evidently ω �→ sinc(ω).

The function name is often pronounced “sink.” Despite being described by cases,
the function is smooth and infinitely differentiable; its Taylor series is just the
series for sin(πx) divided by πx:

sinc(x) = 1− (πx)2

3!
+

(πx)4

5!
− . . . . (18.63)

18.13.3 An Example on an Interval

Consider the function f (x) = cos(2πx) (see Figure 18.40) on the interval H.
Direct evaluation of the integral shows that F( f )(1) = 1

2 and F( f )(−1) = 1
2 , and

FT( f )(k) = 0 for all other k (see Figure 18.41). Thus, f (x) = 1
2 e1(x) + 1

2 e−1(x),
which is also obvious from the definition of ek(x).
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1

y 5 cos(2px)

Figure 18.40: x �→ cos(2πx).
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y 5 f (v)ˆ

Figure 18.41: The Fourier trans-
form for Figure 18.40, k �→
F( f )(k).
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18.14 An Approximation of Sampling

If we again take a single row of the Taj Mahal signal and think of it as a function
on the interval [− 1

2 , 1
2 ], we can multiply it by a function like the one shown in Fig-

ure 18.42, which removes most of the signal and retains only a small neighborhood
of many evenly spaced points (we actually used a sampling function with about
100 peaks). Figure 18.43 shows the result near the center of the row, using pixel
coordinates for the x-axis. As you can see, the resultant signal consists of many
small peaks. This spiky signal has a Fourier transform that looks somewhat like
the original Fourier transform, replicated over and over again (see Figures 18.44
and 18.45). This replication will be explained soon.

−0.5 0 0.5

0

1

Figure 18.42: A sampling
function.
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Figure 18.43: The Taj function
multiplied by the sampler.
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Figure 18.44: The transform of
the Taj Mahal data.
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Figure 18.45: The transform of
the “sampled” Taj Mahal data.

The replication in this example isn’t exact by any means. That’s partly because
we’ve used “wide” peaks to do the sampling, and partly because the Taj Mahal
data itself is made of samples rather than being a true function on the real line,
and we didn’t do interpolation to turn it into such a function. But if the Taj data
were a continuous function defined on the interval, and if our sampling peaks
were very narrow, the Fourier transform would consist of a sum of almost exact
replicates of the transform of the unsampled image.

You’ll also notice that the transform of the sampled image isn’t as large (on the
y-axis) as the original (look carefully at the labels on the y-axis). That’s because
in our “sampling” process we’ve removed a lot of the data and replaced it with
zeroes, hence every integral tends to get smaller.

18.15 Examples Involving Limits

We need two more examples, each of which involves not a single function but a
sequence of functions.

18.15.1 Narrow Boxes and the Delta Function

As you found when you computed the transform for a box of width a, as the box
grows narrower, the transform grows wider: It’s sinc-like, but instead of having
zeroes at integer points, it has zeroes at multiples of 1/a. You may also have
noticed that, just as with the sampled Taj Mahal data, it gets smaller in the vertical
direction: While the transform of the unit-width box reached height 1 (at ω = 0),
the transform of a box of width a reaches height a at ω = 0.

Let’s consider now

g(x, a) =
1
a

b

(
x
a

)
, (18.64)

which for any nonzero a is a box of width a and height 1/a so that the area under
the box is always 1. Figure 18.46 shows a few examples. For any a, the transform
of x 
→ g(x, a) is a sinc-like function with value 1 at ω = 0, but as a → 0, the
“width” of the sinc grows greater and greater. Figure 18.47 shows the results.

The sequence of functions x 
→ g(x, a), as a → 0, produces a sequence of
Fourier transforms that approaches the constant function ω 
→ 1. In many engi-
neering textbooks, the “limit” of this sequence is defined to be “the delta function
x 
→ δ(x),” and its Fourier transform is observed to be the constant function 1. This
literally makes no sense: The sequence of functions does not approach a limit at
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x = 0, and the supposed Fourier transform is not in L2, because the integral of
its square is not finite. Nonetheless, with some care one can work with the delta
function by constantly remembering that the ordinary rules don’t actually apply
to it, and it’s really a proxy for a limiting process.
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Figure 18.46: x �→ g(x, a) for
several values of a.
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Figure 18.47: The Fourier trans-
forms of the examples in Fig-
ure 18.46, matched by color.

The only way in which we’ll ever want to use the δ function, or the comb
function defined in the next section, is inside a mapping like

f 
→
∫

R
δ(x) f (x) dx, (18.65)

that is, to define a real-valued function on L2, which is a covector for L2. If we
replace δ(x) in Equation 18.65 with g(x, a), and take a limit as a 
→ 0, the resultant
sequence of covectors actually does converge, although this requires proof. Thus,
the δ function, at least inside an integral, makes some sense.

−5 0 5
0

1

−5 0 5
0

1

−5 0 5
0

1

Figure 18.48: Functions that
approach a comb.

18.15.2 The Comb Function and Its Transform

In much the same way we just analyzed a sequence of ever-narrower-and-taller
box functions, we can consider a sequence of L2(R) functions that approaches a
comb, a function with an “infinitely narrow box” at every integer. Figure 18.48
shows how we can do this: We place boxes of width a and height 1/a at each
integer point, but then multiply their heights by a “tapering” function of width
proportional to 1/a so that the total area under all the boxes is finite, hence the
functions are all in L2(R).

Figure 18.49 shows the transforms of these functions. Just as with the delta
function, the transforms seem to approach a limit, but in this case the limit is
again the comb function (i.e., the transform grows larger and larger at integer
points, while heading toward zero at all noninteger points).

We’ll use the symbol ψ for the comb; informally, we say that F(ψ) = ψ.
If we create a comb with spacing c instead of 1, its transform is a comb with

spacing 1/c, just as we saw with the box and the sinc.

18.16 The Inverse Fourier Transform

We’ve already said that if we take a function f in L2(H) (or a periodic function of
period one) and compute its Fourier transform ck = F( f )(k), then we can recover
f by writing ∑

k

ckek(t). (18.66)

For a nice function f , this sum equals f except at points of discontinuity of f , and
possibly the endpoints, if f ( 1

2 ) �= f (− 1
2 ). Thus, we’ve defined an inverse trans-

form that takes a sequence of coefficients and produces an L2 function on the
interval (or a periodic function of period one).

There’s a similar “inverse transform” defined for L2(R):

F−1(g)(x) = C
∫ ∞

−∞
g(ω)eω(x) dω, (18.67)
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with the same kind of property: If we transform a nice function f to get g, and then
inverse-transform g, we get back a function that’s equal to f almost everywhere.
This means that we can go back and forth between “value space” and “frequency
space” with impunity.

18.17 Properties of the Fourier Transform

We’ve already noted that the Fourier transform is linear. And in studying the trans-
form of the scaled box function, you should have observed that if

g(x) = f (ax) (18.68)

then

F(g)(ω) =
1
a
F( f )

(ω
a

)
(18.69)

F( f )(ω) = aF(g)(ωa). (18.70)

The proof follows directly from the definition after the substitution u = ax.
We’ll call this the scaling property of the Fourier transform: When you “scale

up” a function on the x-axis, its Fourier transform “scales down” on the ω-axis,
and vice versa, as shown schematically in Figure 18.50.

−5 0 5

0

1

−5 0 5

0

1

−5 0 5

0

1

Figure 18.49: The transforms of
the function in Figure 18.48.

Like most linear transformations, the Fourier transform is continuous; this
means that if a sequence of functions fn approaches a function g, then F( fn)
approaches F(g), assuming that both the f ’s and the g are all in L2.

The Fourier transform has two final properties that make it important to us.
The first is that it’s length-preserving, that is,

‖F( f )‖ = ‖ f‖ (18.71)

for every f ∈ L2(R). The proof is a messy tracing through definitions, with some
careful fiddling with limits in the middle.

The second property, whose proof is similar but messier, is the convolution-
multiplication theorem. It states that

F( f � g) = F( f )F(g), and (18.72)

F( fg) = F( f ) � F(g), (18.73)

for any f , g ∈ L2(R). The same formulas apply when the Fourier transform is
replaced by the inverse Fourier transform. The second formula also applies to
functions defined on the interval H, or periodic functions of period one, although
the convolution on the right is a convolution of sequences instead of a convolution
of functions on the real line.

The convolution-multiplication function explains why it’s generally difficult
to deconvolve. Suppose that ĝ is everywhere nonzero. Then convolving with g
turns into multiplication by ĝ in the frequency domain. If we let h = f � g,
then ĥ = f̂ ĝ. Now suppose we let u = 1/ĝ. Multiplying ĥ by u gives f̂ . If U
is the inverse Fourier transform of u, then convolving h with U will recover f , by
the convolution-multiplication theorem. There is one problem in this formulation,
however: If ĝ is an L2 function, then u = 1/ĝ is generally not an L2 function. But
it may be well approximated by an L2 function, so an approximate deconvolution
is possible. On the other hand, suppose that ĝ(ω0) = 0 for some ω0. Then it’s
impossible to even define u, let alone take its inverse transform. Roughly speak-
ing, filtering by g removes all frequency-ω0 content from f , and there’s nothing
we can do to recover that content later from the filtered result h.
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18.18 Applications

We’ve defined two kinds of Fourier transform, and have observed that they are lin-
ear, continuous, and length-preserving, and satisfy the multiplication-convolution
theorem. We can think of the Fourier transform as taking a “value representation”
of a function f (i.e., the usual representation, where f (x) is the value of f at the
location x) into a “frequency representation,” where F( f )(ω) tells us “how much
f looks like a sinusoid of frequency ω.”

We’ll now look at two applications of these ideas: band limiting and sampling.
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Figure 18.50: When we stretch
the graph of f on the x-axis,
the graph of F( f ) (in magenta)
compresses on the ω-axis and
stretches on the y-axis.

18.18.1 Band Limiting
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Figure 18.51: A band-limited
function and its Fourier
transform.

We’ve said that a function g is band-limited at ω0 if F(g)(ω) = 0 for ω > ω0,
that is “if g contains only frequencies up to ω0.” This is illustrated schematically
in Figures 18.51 and 18.52. For the remainder of this section, we’ll fix ω0 so that
“band-limited” means “band-limited at ω0.”

Now we’ll consider a similar computation on the interval H. Before we do
so, we need one further fact: Just as the Fourier transform of a box was a sinc
function, the inverse transform of a box is also a sinc function, as you can check
by writing out the integrals.

Now suppose that f is a function in L2(H). What band-limited function g is
closest to f ? We’ll answer this using the Fourier transform. Figure 18.53 shows the
idea. In the top row we see f and its transform. It’s mostly made up of frequencies
less than 30, so we’ve truncated the transform to show the interesting parts. If
we remove all the high frequencies (we’ve kept frequencies 17 and lower in this
example), we get the function in the lower right. Removing all those frequencies
amounts to multiplying by a box of width 34 (ranging from ω = −17 to ω =
+17), that is, the function

B(ω) = b(ω/34). (18.74)

Since multiplication by a box in the frequency domain is the same as convolution
by a sinc in the value domain, the inverse transform of the lower-right signal,
shown at the lower left, can also be obtained by convolving the original signal
with an appropriately scaled sinc, namely

S(x) = sinc(34x). (18.75)

Notice that the result is a far smoother signal, g.
The signal g appears quite similar to the original signal f . It is in fact the

band-limited signal that’s closest to f . That’s easy to see by looking on the right-
hand side of the figure. The Fourier transform is distance preserving, that is, the
distance between f and g is the distance between f̂ = F( f ) and ĝ = F(g). So to
find the band-limited function closest to f , we need only look for the transform
that is closest to f̂ , but is zero outside the band limit. The only freedom we have
in picking ĝ is to adjust it between frequencies −17 and +17; by making it match
f̂ there, we make the difference of f̂ and ĝ as small as possible.

Inline Exercise 18.7: Write out this argument with integrals.
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Figure 18.53: To get from f̂ to ĝ, we multiply by a box B(ω) = b( ω
34 ); in other words, we

remove all high frequencies. To get from f to g, we convolve with the inverse transform of B,
namely a sinc of width 1/34, that is, x �→ 34 sinc(34 x).

There’s nothing special about the number 17 in this example. We can “band-
limit” the function f ∈ L2(H) at any frequency ω0.
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Figure 18.52: A non-band-
limited function and its
transform.

We can summarize the preceding two pages: If f is a function in L2(H), then
to band-limit f at frequency ω0 we must convolve it with the function x 
→
S(x) = 2ω0 sinc(2ω0x), or, correspondingly, multiply its Fourier transform by
ω 
→ B(ω) = b( ω

2ω0
). The result is the band-limited function g that’s closest to f .

If you’re thinking to yourself, “Gosh, computing the convolution involves an
integral, and doing that at every single point sounds really expensive,” you’re right.
Fortunately, we’ll never need to actually do this in practice.

If you did want to approximate such a convolution, the practical method is
to take lots of samples of f , compute the “fast Fourier transform” (a discrete
version of the Fourier transform that runs in O(n log n) time on n samples) on
these samples, remove all the frequencies greater than ω0, and then transform
back again. That’s how we made this chapter’s figures.

18.18.2 Explaining Replication in the Spectrum

As a second application, let’s revisit what we saw in Figure 18.45: When we mul-
tiplied the Taj Mahal data by a “sampling” function, the Fourier transform began
to look periodic, as if it were made of multiple copies of the original transform,
overlaid and summed up.
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Figure 18.54: The Taj Mahal data (top left) is multiplied by a narrow comblike function
(left middle—note the different scale on the x-axis!), with closely spaced peaks, to produce
the “sampled” version at the bottom left. The Fourier transform of the original signal
(top right) is convolved with the transform of the comblike signal (middle right, comblike
with widely spaced peaks) to produce the transform of the sampled signal (bottom right),
showing overlapping replicates of the transform of the original signal.

Figure 18.54 shows the situation, which we now explain. Let’s say that the
original Taj Mahal data is described by a function x 
→ f (x). The “sampled”
version, which we’ll call h, was generated by multiplying f by a function g that
approximated a comb function, that is, that consisted of a bunch of narrow peaks
of area 1, with spacing about 1/200, to produce a signal h = fg. This means that
ĥ = f̂ � ĝ. But since g is an approximation of the comb function, its Fourier trans-
form is an approximation of the transformed comb function, which is just another
comb function. Since the spacing for g is about 1/200, the spacing for ĝ is about
200. So ĥ is just f̂ convolved with a comblike function with spacing of 200. That
convolution consists of multiple copies of f̂ , one at each comb tooth, summed up.
This explains the approximate periodicity of the Fourier transform ĥ.

18.19 Reconstruction and Band Limiting

We now further examine the relationship between a function, f ∈ L2(R), and its
samples at integer points, which define a function f̄ ∈ �2(Z). We need a new
definition: f is strictly band-limited at ω if f̂ (ω) = 0 for ω ≥ ω0. Note the shift
from “>” to “≥.” The main result of this section is as follows.
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• If F( f )(ω) = 0 for |ω| ≥ 1/2, then f can be recovered from f̄ , that is,
the map f 
→ f̄ is invertible once the domain is restricted to the functions
strictly band-limited at 1/2.

• For any function g ∈ �2, there are multiple functions whose samples are
given by g, so in general, it’s impossible to reconstruct an arbitrary L2

function from its samples.

The corresponding statements hold for a function f ∈ L2(H), sampled at a
collection of n evenly spaced points in the interval; in that case, if the function is
band-limited at any frequency below n/2, then it’s reconstructible from its sam-
ples. (Indeed, that’s the essence of the sampling theorem.)

We’ll actually show exactly how to reconstruct a band-limited function from
its samples, in that rather than just showing that the sampling process is invertible,
we’ll explicitly describe an inverse. We’ll also describe some approximations to
the inverse that are easily computable, that is, functions with the property that if
f is band-limited, then sampling f , followed by the approximate-reconstruction
operation, will yield a function very close to f .

We’ll start with the easy part: showing there are multiple functions with the
same samples. Recall that for a continuous function, “sampling at x” simply means
“evaluating the function at x.” So to show that there are two different functions
with the same samples at integer points, consider f1(x) = 0 and f2(x) = sin(πx).
At every integer point, these two have exactly the same value (namely 0). Thus,
if you’re given the samples of one of the two functions, you cannot possibly tell
which one it was. Of course, f2 isn’t in L2(R), because it doesn’t approach zero as
x→ ±∞, but this quibble is easily resolved:

Inline Exercise 18.8: Show that if f is any function in L2, then x 
→ f (x) f2(x)
is a function whose samples match those of f1, so the sampling operation is a
many-to-one map from L2(R)→ �2(Z).

Note, however, that the function f2 has frequency 1
2 , so it’s just above the

Nyquist limit: We expect it to produce aliasing.
For the corresponding situation on the interval H = (− 1

2 , 1
2 ], a similar example

suffices. If we consider the n equally spaced sample points xj = − 1
2 + j

n , j =
0, 1, . . . , n− 1, then the function g1(x) = 0 and the function g2(x) = sin(πn(x +
1
2 )) both take on the value 0 at every xj.

We say that the function g2 is an alias of the function g1, because from the
point of view of their samples, they appear to be the same. If we had a way to
construct a function on the whole interval from a set of samples, then the samples
of g1 and g2, being identical, would produce identical results.

Now let’s turn to the more difficult part: showing that if a function is appro-
priately band-limited, it can be reconstructed from its samples.

As we saw earlier, if we have a function f ∈ L2(R) and multiply it by a “comb-
like” function in L2, the Fourier transform of the result starts to look periodic,
consisting of multiple copies of the transform of f . As we take better and better
approximations of the comb, the Fourier transform becomes closer and closer to
the convolution of f̂ with a comb. The limit of the comb approximations doesn’t
exist, of course, but the collection of samples of f does exist, and is a function f̄
in �2. In the frequency domain, the Fourier transforms of the convolutions of f with
more and more comblike approximations of the comb get closer and closer to a
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periodic function. The limit is a periodic function, but that’s not in L2(R), because
it doesn’t go to zero as ω → ±∞. On the other hand, it turns out that this periodic

limit is the Fourier transform of f̄ . The proof of these claims is quite subtle;
Dym and McKean [DM85] provide the necessary details for those who have stud-
ied real analysis.

To summarize the preceding paragraph briefly, if we take an L2(R) function f
and sample it at integer points to get f̄ ∈ �2(Z), then

F( f̄ ) = F( f ) � ψ, (18.76)

where ψ is the comb function.
Suppose that f is strictly band-limited, that is, F( f )(ω) = 0 for |ω| ≥ 1

2 .
Then F( f̄ ) consists of disjoint replicates of F( f ). To recover the Fourier trans-
form of f from this, we need only multiply it by a box of width 1, which is the
function b. Multiplication by b in the frequency domain corresponds to convolu-
tion with F−1(b) in the value domain. The inverse Fourier transform of b is the
function x 
→ sinc(x). We conclude that to reconstruct a band-limited function
from its samples, it suffices to convolve the samples with sinc.

This is a pretty big result. It says, for instance, that if you have an image
created by sampling a band-limited function f , you can recover f from the image
by convolving with a sinc. In one dimension, that means that if the samples are
called fj, you can compute

f (x) =
∑

j

fj sinc( j− x). (18.77)

If x happens to be an integer—say, x = 3—then this sum becomes

f (3) =
∑

j

fj sinc( j− 3). (18.78)

The arguments to sinc in this sum are all integers, and sinc is 0 at every integer
point, except that sinc(0) = 1. So the sum simplifies to say

f (3) = f3 sinc(0) = f3. (18.79)

That’s good: It says that to reconstruct the value of f at an integer point, you just
need to look at the sample there. What if x is not an integer? Then the sinc is
nonzero at every argument, and the value of f at x involves a sum of infinitely
many terms. This is clearly not practical to implement.

We’ll soon discuss other approaches to reconstruction, but the central idea—
that we can reconstruct a function from its samples by convolving with sinc—
remains important. We’ll use it repeatedly in the next chapter when we discuss
shrinking and enlarging images. Typically we’ll apply this theoretical result mul-
tiple times to determine what computation we should be doing, and then, with the
ideal computation at hand, we’ll determine a good approximation.

We’ve now seen two applications of convolving with sinc. The first is that
for any function f ∈ L2(R), f � sinc is the band-limited function closest to f .
As you’ll recall, that’s because in the frequency domain, convolution with sinc
becomes “multiplication by a box,” which removes all high frequencies from f ,
while leaving the low frequencies untouched. That’s the Fourier transform of the
band-limited function closest to f , hence its inverse transform is the band-limited
function in the value domain closest to f . The second application is in reconstruc-
tion: To reconstruct a band-limited function from its samples, we convolve the
samples with a sinc.
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When we take a function and sample it as shown in Figure 18.55, it’s natural,
when viewing the samples, to mentally “connect the dots,” as in Figure 18.56.
We’ll now study how this compares with reconstruction with sinc.
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Figure 18.55: A function, sam-
pled at equispaced points.
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Figure 18.56: Reconstructing by
connecting the dots.

The first step is to recognize that “connecting the dots” gives the same results
as convolving with the “tent function” b1 of Figure 18.57. When we remember that
b1 = b � b, we can see that connect-the-dots reconstruction is really just “convolve
with b twice.”
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Figure 18.57: The tent function.

How does that look in the frequency domain? Ideally, we want to multiply by
the unit-width box b in the frequency domain to get rid of all too-high frequencies.
What we’re doing instead is multiplying by F(b) = sinc twice—in other words,
we’re multiplying by sinc2. How does this compare to multiplying by a box? Fig-
ure 18.58 shows the two functions, and you can see that they’re somewhat similar.
Because sinc2 is nonzero for frequencies greater than 1

2 , it does allow some high-
frequency components of f to masquerade as low-frequency components. But the
peak of ω 
→ sinc2(ω) outside ω ≤ 1

2 occurs at about ω ≈ 1.43, where the value
is about 0.047, that is, at most 5% of any too-high frequency manages to sur-
vive as an alias. Thus, sinc2 does a decent job of band limiting. But what about
its effects on frequencies that are low enough, that is, those that should be unat-
tenuated? As we approach ω = 1

2 from below, sinc2 falls off fairly rapidly. In
fact, sinc2( 1

2 ) ≈ 0.23, so signals near the Nyquist limit are attenuated to about
one-quarter of the ideal. But by half the Nyquist limit, the attenuation is only
about 20%. We should expect connect-the-dots reconstruction to work well in this
region, but badly at or a little above the Nyquist limit.
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Figure 18.58: Comparing sinc2

with a box.

Clearly if we were to convolve the tent function b1 with the box b once more
to get a new function b2, its Fourier transform would be sinc3, and it would better
approximate the ideal box. On the other hand, convolving with the function b2

would involve blending together not just two samples, but three.
In the value domain, we can regard the tent function as an approximation of the

sinc. The tent looks somewhat like the central hump of the sinc, and hence their
transforms are somewhat similar. Pursuing this idea, we could produce a piece-
wise quadratic or piecewise cubic function that better fit the first few lobes of the
sinc, and whose Fourier transform would therefore be more like a box. Such an
approximation is what’s used by image-manipulation programs like Adobe Pho-
toshop when the user selects “bicubic” interpolation.

When we display an image on an LCD monitor, we effectively take the sample
values and use them to control the intensity of a square display pixel. The analog in
one dimension is that we take each sample and expand it into a unit-width constant
function, that is, we convolve the sampled signal with the box function b. In the
frequency domain, that means we’re multiplying by sinc once, which is much less
effective at band-limiting the signal than multiplying by sinc2. The result is more
substantial aliasing than in the case of the tent reconstruction.

18.20 Aliasing Revisited

In Section 18.2, we discussed line rendering for a grayscale LCD monitor using
rounding, unweighted area sampling, and weighted area sampling. We’ll now
reexamine each approach using the value-frequency duality.

First, following the book’s first principle—Know Your Problem—let’s state
the problem clearly. Given a line y = mx + b with slope 0 < m < 1, there’s a
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function f that’s 1 for any point (x, y) whose distance to the line is less than 1
2 ,

and 0 otherwise. This function can be described as the “Am I in a unit-width stripe
defined by y = mx + b” function. This function has sharp transitions from black
to white (or 0 to 1), so its (two-dimensional) Fourier transform contains arbitrarily
high frequencies. In fact, any horizontal slice of this function (i.e., x 
→ f (x, y0))
looks like a bump of some width, and hence its 1D Fourier transform looks like
a sinc, which is nonzero for arbitrarily high frequencies. The function f is not in
L2(R2), but outside the image we’re going to render—say, a 100×100 image—we
can define f to be 0, and then it will be in L2. Our goal is to have the pattern of
light emitted by the display be as near to a band-limited approximation of f (or a
multiple of it, to deal with units) as possible.

The “rounding” approach turns out to be equivalent to sampling a slightly fat-
ter version of the function f : The pixel (x, y) is “illuminated” if its vertical distance
to y = mx + b is no more than 1

2 . The samples of this function constitute an �2

function on the integer grid. Its spectrum is the result of convolving the spectrum
of f with a two-dimensional comb, resulting in many high-frequency components
aliasing as low-frequency ones. Displaying these samples on the LCD monitor
amounts to convolving the image with a 2D box function, that is, multiplying by
a (2D) sinc in the frequency domain. So the rounding approach, in the frequency
domain, looks like convolution with a comb, followed by multiplication by a sinc.
The end result is nowhere near a band-limited approximation of the function f ,
and the result, as we saw, looks bad.

In the next approach to line rendering, there were three steps.

1. Convolve with a 2D box to compute area overlaps.

2. Sample at integer points.

3. Convolve with a 2D box to display.

In frequency space, we multiply F( f ) by a sinc, convolve with a 2D comb,
and then multiply by sinc again. As we already saw, multiplying f by sinc weakly
band-limits it—too-high frequencies are attenuated, although not perfectly.
Convolution with the comb introduces the high-frequency parts that passed the
weak band limiting as low-frequency aliases. And multiplying by sinc again
weakly band-limits the results. The effect of the extra sinc in the first step is notice-
able, and the grayscale line rendering is far nicer.

In weighted area sampling, the first step is replaced by convolution with a 2D
tent rather than a 2D box; in the frequency domain, we’re multiplying by sinc2,
which is a far more effective band limiter. The final results are correspondingly
better.

In the last two cases, we’ve only approximately band-limited during the sam-
pling process; in the first one, we never band-limited at all. And in all cases, the
display process produces an image that contains a great many high frequencies at
the edges between display pixels. But we have, at least in the last two cases, got
an approximation of the ideal solution.

Or have we? We’ve actually failed in three ways. First, the notion of “near-
ness” used in this chapter is the L2 distance, and we’ve already mentioned that
this doesn’t actually correspond very closely to a perceptual notion of similar-
ity of images, so it’s possible that we’ve optimized for the wrong thing. Second,
we’ve been concerned about high frequencies, but in practice, once the pixels
are small enough that the high-frequency components of the pattern of emitted
light are so high-frequency that we cannot detect them with our eyes, these high
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frequencies don’t matter. Of course, a high frequency that aliases to a low fre-
quency that we can detect does matter. But if some line-rendering approach leaves
in a few components that are just above the Nyquist limit, their aliases will be just
below the Nyquist limit, which may be well above the range of frequencies our
eyes can detect, and therefore may not matter at all.

The third failure is of a larger kind: We’ve taken the view that we must first
band-limit, then sample, then reconstruct, and we’ve looked at each step sepa-
rately, and accepted approximations in each one. To some degree, we’ve approxi-
mated the steps of the solution rather than the solution itself violating the Approx-
imate the Solution Principle. Here’s an alternative problem to consider: Among all
possible patterns of light that the display can produce, which one is L2 closest to
the function f ? If we know that we’re going to be displaying the result on a square-
pixel LCD screen, isn’t this a reasonable question to be asking? It turns out that the
solution to this “nearest displayable image” problem is produced by unweighted
area sampling. But actually using unweighted area sampling generates some inter-
esting artifacts of its own: Vertical and horizontal lines look sharper, indeed are
sharper, than diagonal ones, and lines in horizontal motion appear to speed up and
slow down as we saw in the case of the moving triangle at the start of the chapter.
Does this matter? That depends on our eyes’ ability to detect variations in speed of
motion for various speeds. You might want to write a program to experiment with
this and draw your own conclusions. The real lesson of this example is that it’s
worth thinking about sampling and reconstruction together rather than as separate
processes.

18.21 Discussion and Further Reading

If we want an image (i.e., a rectangular array of samples from some function f ) to
be faithfully reconstructible (i.e., we want to be able to recover f from the sam-
ples), then the process that generated the image must be lossless (i.e., an invertible
map of vector spaces). In general, this requires that we restrict the original func-
tion to some subset of L2, and the usual choice is “the band-limited functions.”

Unfortunately, in practice we’re often confronted with functions we’d like to
sample but which are not band-limited. The solution is to find a way to convert
such a function f into a nearby function f0 that is band-limited. The ideal way to
do so is to convolve f with a sinc, but that’s impractical in general. Convolving
with other, simpler, filters like the box can give a decent approximation.

In practice, this means that if you want to write a ray tracer, you shouldn’t just
sample one ray at the center of each pixel. Instead, you should shoot many rays
per pixel and average them. This is a low-budget approximation of box-filtering
the “incoming light” function. Alternatively, you could compute a weighted sum
of the ray values, approximating the convolution of the incoming light with some
filter like the sinc or the tent, or any other filter you like.

Although the sinc filter is the ideal “low-pass” filter, it has some problems
in practice. If you have a wide box function, for instance, and you filter it with
sinc, the result contains ringing—little wiggles on either side of the discontinuity.
That’s not “wrong” in any sense, but it presents a problem for display: Because
some of the resultant values are negative, you want to make those parts of your
display “even blacker than black,” which is impractical. This is yet another reason
to favor a tent filter, or some other everywhere-positive approximation of a sinc.
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The idea that “details below the scale of our eyes’ ability to detect them don’t
matter” can be used in an interesting way: The three colored strips in a typical
LCD display pixel can be individually adjusted in ways that give finer control
than adjusting all three together, even for a grayscale image. For instance, the
antialiased letter “A” shown in Figure 18.14 was originally rendered this way;
Figure 18.59 shows how it looked. This technology, used in font rendering, is
called TrueType [BBD+99]. Ideas like this can surely be used in other ways in
graphics as well.

Figure 18.59: Enlarged color
rendering of a black character on
a white background.

The Nyquist limit, from the discussion in this chapter, appears to be absolute:
You can’t sample signals with frequencies above the Nyquist limit and hope to
reconstruct them. But that’s not completely true. Suppose that the Nyquist fre-
quency for some sampling rate is ω0. Then a signal whose Fourier transform is
nonzero strictly between −ω0 and ω0 can be perfectly reconstructed from its sam-
ples. But it’s also the case that a signal whose Fourier transform is nonzero strictly
between 5ω0 and 7ω0 can be perfectly reconstructed from its samples, provided
we know at the time of reconstruction these limits on the transform. Indeed, if we
know the samples of a function f and we know an interval I of length 2ω0 with the
property that f ’s transform is nonzero only strictly within I, then we can recon-
struct f . Similarly, if we know that the transform of f is sparse—that is, nonzero
at relatively few points—we can use this sparsity to reconstruct f even if its trans-
form is not constrained to an interval of length ω0. This is part of the subject of
the relatively new field of compressive sensing [TD06].
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Figure 18.60: The Haar wavelets
for k = 0, 1, and 2. For k > 0
there are 2k−1 basis functions.
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Figure 18.61: A nice function on
the unit interval.

We started this chapter by saying that every L2 function on an interval can
be (nearly) written as a sum of sines and cosines. You might reasonably ask,
“Why sines and cosines? Why not boxes of varying width, or tentlike functions,
or some other collection of functions?” The first answer, which we’ll return to in
a moment, is that you can write an L2 function as a sum of things other than sines
and cosines, and it’s often worthwhile to do so. But the Fourier decomposition has
proven widely useful in engineering, mathematics, and physics. Why? One answer
is based on the principle that if you have a linear transformation from a space to
itself, it’s often easiest to understand that transformation when you change to a
basis made up of eigenvectors, for then the transformation is just a nonuniform
scaling transformation. Many of the laws of physics appear as second-order linear
differential equations, like F = ma, in which the unknown position x is described
by saying that its second derivative, a, must satisfy F = ma, where the mass m
and the force F are typically known, and x is required to satisfy some boundary
conditions as well. In the event that F and m are constant over time, this is a
second-order equation with constant coefficients. The solutions to such equations
can be generally written as sums of exponentials, where the exponent may be real
or complex. The complex case leads to sines and cosines. Thus, expressing things
as a sum of sines and cosines arises naturally because of the world’s defining equa-
tions being second-order linear equations. In fact, Fourier introduced the trans-
form in the process of describing how to solve the heat equation, which describes
how the heat in a solid evolves over time in response to initial and boundary
conditions.

Oppenheim and Schaefer [OS09] make a similar case for discrete signals,
saying that every linear shift-invariant system has, as its fundamental solutions,
combinations of sines and cosines. Shift-invariant in this context means that if
you regard the system as one that takes an input signal that’s a function of t and
produces an output signal that’s another function of t, then delaying the input
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(i.e., shifting from t 
→ s(t) to t 
→ s(t − h)) produces the exact same output, but
shifted by the same amount. In physical terms, it says that the system will behave
the same way tomorrow that it does today.
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Figure 18.62: An approximation
of the function that’s constant on
intervals of size 1
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Figure 18.63: The approxi-
mation written as a sum of
spatially localized functions of
various scales.

We return now to the first answer—that you can write functions as sums of
things other than sines and cosines. Two of the key features of the Fourier decom-
position are localization in frequency and orthogonality. The first means that we
can look at the Fourier transform of a signal and to the degree that the signal is
mostly made up of one frequency, the Fourier transform will be small except at that
frequency. The second means that the inner product of exp(inπx) and exp(ikπx)
is 0 unless k = n; this means that it’s easy to write a function f in the Fourier basis
by just computing the inner product of f with exp(inπx) for each n, and using the
resultant numbers as coefficients in the linear combination.

In his 1909 dissertation under Hilbert, Haar showed that every L2 function on
[0, 1] could be well approximated by a sum of functions that were constant on
intervals of size 2−k (for k = 0, 1, 2, . . .) and localized in space, that is, each func-
tion is nonzero only on two such intervals. These functions (and corresponding
ones for larger k) are called the Haar wavelets. Figure 18.60 shows a few of the
functions.

Figure 18.61 shows a function f on the unit interval, while Figure 18.62
shows an approximation of it that’s constant on intervals of length 1

8 . Figure 18.63
shows how that approximation can be written as a linear combination of the Haar
wavelets: The next-to-bottom row is the weighted sum of the k = 3 wavelets, each
portion drawn in a different color; the next up is the sum of the k = 2 wavelets,
etc. The top row is a constant function whose value is the average value of f on
the interval. The height of the vertical red bar in the bottom row is the sum of the
heights of the red bars in all rows above it.

If we take a limit and approximate the signal by such functions at finer and
finer scales, the coefficients of the resultant (infinite) linear combination is called
the Haar wavelet transform of the original function.

While Haar wavelets are conceptually very simple, and share some properties
of the Fourier basis, they lack some others. For instance, they are not infinitely
differentiable; indeed, they’re not even once-differentiable. In the mid-1990s, Haar
wavelets, and several other more complex forms of wavelets, with varying degrees
of smoothness, were widely adopted in computer graphics, with applications all
the way from line drawing [FS94] to rendering [GSCH93]. For those who wish
to learn more, we highly recommend Wavelets for Computer Graphics: A Primer,
by Stollnitz et al. [SDS95], as a gentle introduction to the subject, motivated by
examples from graphics.

By the way, there’s an analog to the Shannon theorem for Haar wavelets (or
generally for any other basis in which you choose to write a function): If you have
enough samples of a function that’s known to be a combination of a fixed number
of certain basis functions, you can reconstruct the function. For some classes the
locations of the samples may be restricted in various ways (e.g., for Haar wavelets,
they should not be of the form p/2q, where p and q are integers), but the general
idea still works.

The Fourier basis is a great way to represent one- and two-dimensional signals,
but in graphics we also tend to encounter functions on the sphere, or on S2 × S2,
like the BSDF. There’s an analogous basis for S2 called spherical harmonics,
which we touch on briefly in Chapter 31. A nice introduction to these is provided
by Sloan [Slo08].
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18.22 Exercises

Exercise 18.1: (a) We defined the length ‖ f‖ for a function in L2. How do you
know that the length of any function f ∈ L2 is finite?
(b) Show that ‖ f + g‖2 − ‖ f‖2 − ‖g‖2 = 2〈 f , g〉 for any f , g ∈ L2, and conclude
that the inner product of f and g is therefore always finite as well.

Exercise 18.2: (An exercise in definitions.) Define ga(t) = 1
2a for |t| < a and

0 otherwise.
(a) Show that for any function f : R → R, the value U(a) defined in Equation
18.26 is (f � ga)(t0).
(b) Show that the sample of f at t0 is lima→0(f � ga)(t0).
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Chapter 19

Enlarging and Shrinking
Images

19.1 Introduction

In Chapters 17 and 18 you learned how images are used to store regular arrays
of data, typically representing samples of some continuous function like “the
light energy falling on this region of a synthetic camera’s image plane.” You also
learned a lot of theoretical information about how you can understand such sam-
pled representations of functions by examining their Fourier transforms. In this
chapter, we apply this knowledge to the problems of adjusting image sizes (scaling
images up and down, as shown in Figure 19.1, which are synonyms for “enlarg-
ing” and “shrinking”), and performing various operations such as edge detection.

Scale up

Scale down

Figure 19.1: Terminology for
image scaling.

We assume that the values stored in an image array form a signal that is
real-valued, not discrete; nothing we say here applies to an object-ID image, for
example.

Just as we did in Chapter 18, in this chapter we study primarily grayscale
images. Scaling up or down a grayscale image entails all the main ideas without
the complications of three color channels. Furthermore, we continue to study the
effects of transformations on a single row of image pixels, because the extension to
two dimensions really has no important properties beyond those of one dimension,
but the notation is substantially more complex. We do, however, return to two
dimensions when providing code for scaling up and down, and when we analyze
the efficiency of computing convolutions.

In this chapter, we use the following ideas from Chapter 18.

• Sampling and convolution operations on a signal can be profitably viewed
in both the value and the frequency domains.

• The convolution-multiplication theorem. Convolution in the value domain
corresponds to multiplication in the frequency domain, and vice versa.

533
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• The transform of the unit-width box-function b is the unit-spacing sinc
function, sinc(v) = sin(πv)

πv , while the transform of sinc is the box b.

• The scaling property. If g(x) = f (ax), then

F(g)(v) =
1
a
F( f )

(v
a

)
and (19.1)

F( f )(v) = aF(g)(av). (19.2)

• Band limiting and reconstruction. If

– f is a function in L2(R), and
– F( f )(v) = 0 for |v| ≥ 1

2 , and
– yi is the sample of f at i for i ∈ Z

then f can be reconstructed from the yi’s by convolution with sinc, that is,

f (x) =
∞∑

i =−∞
yi sinc(x− i). (19.3)

Furthermore, if f is not band-limited at 1
2 , then sampling of f will produce

aliases, in the sense that there is a band-limited function g whose samples
are the same as those of f , and reconstruction using Equation 19.3 will
produce g rather than f .

• A sequence of L2 functions that approach a comb with unit tooth-spacing
have Fourier transforms that approach a comb with unit tooth-spacing.
Rather than talking about sequences that approach a comb, we’ll use the
symbol ψ as if there really were such a thing as a “comb function,” and
you’ll understand that in any such use, there’s an implicit argument about
limits being suppressed.

19.2 Enlarging an Image

In this and the next section, we’ll consider the problem of enlarging, or scaling up,
and shrinking, or scaling down, an image. You might think that such operations
would be straightforward, at least in some cases. If we have a 300×300 image, for
example, and want a 150×150 version, it seems as if simply throwing away alter-
nate rows and alternate columns would provide the desired result. Exercise 19.7
shows that this simple solution leads to very bad results, so we’ll need a different
approach. Fortunately, the different approach we describe will solve the problem
of scaling up and down not only by small integer factors, but by any factor at all.
The scaling-up operation, which we address in this section, is relatively easy. The
scaling-down operation, discussed in the next section, has additional subtleties.

We’ll work in one dimension as usual, so we’ll start with a 300-sample discrete
signal (which we’ll call the source) that we want to turn into a 400-sample dis-
crete signal (which we’ll call the target). We’ll assume that the 300-sample image
was generated by sampling a function S ∈ L2(R) at 300 consecutive integer
points.

We’ll also assume that the signal S : R → R was strictly band-limited at
v0 = 1

2 so that there was no aliasing when the samples were taken.
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y = S(x)
y = Ŝ(v)

y = T̂(v)

2
1

2
1–

2
1

2
1–

400
300 xy = T(x) = S 1 2

v

v

Figure 19.2: When the band-limited function S at left is stretched along the x-axis to
form T, the transform of S at right is compressed, resulting in a more tightly band-limited
transform.

To resample S at 400 points, we’re going to imagine three idealized but imprac-
tical steps, which we’ll later refine to a practical algorithm.

1. Reconstruct S from the 300 samples in the image.

2. Stretch S along the x-axis by a factor of 400
300 .

3. Resample S at the 400 sample points i = 0, . . . 399.

When we reconstruct S in step 1, it’s band-limited at v0 = 1
2 . When we take

400 samples, if we want to avoid aliasing the signal must again be band-limited
at 1

2 . Fortunately, when we stretch the signal S on the x-axis, the Fourier transform
compresses along the v-axis; the resultant signal is therefore still band-limited
at 1

2 . You can see, however, that when we want to shrink an image there will be
additional challenges. Figure 19.2 shows this schematically.

There is a difficulty with the idea of reconstructing a signal from its samples
at integer points. To do so, we need to know the value at every integer point, not
just 300 of them. For now, we’re going to hide this problem by treating the source
image outside the range 0 to 299 as being zero. We’ll return to this assumption in
Section 19.4.

By the way, for a function f on Z or R, the support of f is the set of all places
where it’s nonzero, that is,

support( f ) = {x : f (x) �= 0}. (19.4)

If this set is contained in some finite interval, we say f has finite support; on
the other hand, if the support is not contained in any finite interval, then f has
infinite support. Thus, the box function has finite support, while sinc has infinite
support. We’ve just chosen to treat our image samples as a function with finite
support. With this assumption, we can recover the original signal S as shown in
Listing 19.1. Note that rather than reconstructing the entire original signal, which
would require an infinite amount of work, we’ve merely given ourselves the ability
to evaluate this reconstructed signal at any particular point, thus converting the
abstract first step into something practical.



ptg11539634

536 Enlarging and Shrinking Images

Listing 19.1: Evaluating the original signal by convolving source image
samples with sinc.

1
2
3
4
5
6
7
8
9

// Reconstruct a value for the signal S from 300 samples in the
// image called "source".
double S(x, source) {

double y = 0.0;
for (int i = 0; i < 300; i++) {

y += source[i] * sinc(x - i);
}
return y;

}

Notice that the sum is finite because we’ve assumed that source[i] is 0 except
for i = 0, . . . , 299. In general, the sum would have to be infinite, or, in practice, a
sum over a very wide interval.

Now that we’ve reconstructed the original band-limited function, S, we need
to scale it up to produce a new function T . If we think of each sample of S as
representing the value of S at the middle of a unit interval, then the 300 samples
we have for S, at locations 0, . . . , 299, represent S on the interval [−0.5, 299.5].
We want to stretch this interval to [−0.5, 399.5].

To do so, we write

T(x) = S

(
300
400

(x + 0.5)− 0.5

)
. (19.5)

Once again, rather than building the signal T , we’ve merely provided a practical
way to evaluate it at any point where we need it.

Inline Exercise 19.1: Verify that T(−0.5)= S(−0.5) and T(399.5)=
S(299.5).

We must now sample T at integer locations. Since T is band-limited, it must
be continuous, so sampling at x amounts to evaluation at x.

Clearly the numbers 300 and 400 can be generally replaced by numbers N and
K where K > N, and every step of the process remains unchanged. The resultant
code is shown in Listing 19.2.

Listing 19.2: Scaling up a one-dimensional source image.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// Scale the N-pixel source image up to a K-pixel target image.
void scaleup(source, target, N, K)
{

assert(K >= N);
for (j = 0; j < K; j++) {

target[j] = S((N/K) * (j + 0.5) - 0.5 , source, N );
}

}

double S(x, source, N) {
double y = 0.0;
for (int i = 0; i < N; i++) {

y += source[i] * sinc(x - i);
}
return y;

}
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To scale up a source image in two dimensions, we simply scale each row first,
then scale each column (see Figure 19.3).

Inline Exercise 19.2: Convince yourself that scaling rows-then-columns
results in the same image as scaling columns-then-rows.

Scale up
rows

Scale up
columns

Figure 19.3: Scaling up rows
and then columns to enlarge
an image (Original image from
http://en.wikipedia.org/wiki/File:
Mona_Lisa,_by_Leonardo_da_
Vinci,_from_C2RMF_retouched
.jpg.)

19.3 Scaling Down an Image

We now turn to the more complicated problem of scaling down an image I, that is,
making it smaller. We’ll assume that the source image has N pixels and the target
image has only K < N pixels.

Once again we can reconstruct from integer samples by convolving with sinc
to get the original signal S. But in the next step, when we build

T(x) = S

(
K
N

x

)
, (19.6)

the resultant function is no longer band-limited at 1
2 ; instead, it’s band-limited at

N
2K > 1

2 . Before we could safely sample T , we would have to band-limit it to
frequency 1

2 by convolving with sinc.

y = F(I )(v)

F(S) = F(I)?b

y = b(v)

Reconstruct

Stretch

Filter

F(T)

F(T )?b

2
1–

2
1

Figure 19.4: Band-limiting S
after scaling.

Let’s look at the process in the frequency domain, as shown schematically in
Figure 19.4. In reconstructing S, we convolved with sinc, that is, we multiplied
by a width-one box in the frequency domain. When we squashed S to produce T ,
we stretched the Fourier transform of S correspondingly, and then needed to once
again multiply by a unit-width box.

y = F(I)(v)

Reconstruct
and band-limit

Stretch

K
Nb vy = 1 2

K
Nb vvAF(S)? 11 22

F(T )?b

2
1

2
1–

Figure 19.5: Band-limiting S
before scaling.

What if we instead multiplied by a box of width K/N before stretching, as
shown in Figure 19.5? Then when we stretch the result by N/K, we’ll already be
band-limited at v0 = 1

2 . So, in the frequency domain, the sequence of operations
is as follows.

1. Multiply by v 
→ b(v) to reconstruct.

2. Multiply by v 
→ b((N/K)v) to band-limit to K
2N .

3. Stretch by a factor of N/K; the result is band-limited at 1
2 .

4. Convolve with ψ as a result of sampling at integer points.

Notice that the first two steps can be combined: Multiplying by a wide box and
then a narrow box gives the same result as multiplying by just the narrow box! This
means that instead of reconstructing and then band-limiting, we can reconstruct
and band-limit in a single step, by using a wider sinc-like function in the recon-
struction process. Instead of x 
→ sinc(x), we need to use x 
→ K

N sinc(K
N x). After

that, all the remaining steps are the same. The program is shown in Listing 19.3.

Listing 19.3: Scaling down a one-dimensional source image.

1
2
3
4
5
6

void scaledown(source, target, N, K)
{

assert(K <= N);
for (j = 0; j < K; j++) {

target[j] = SL((N/K) * (j + 0.5) - 0.5, source, N, K);
}

http://en.wikipedia.org/wiki/File:Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg
http://en.wikipedia.org/wiki/File:Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg
http://en.wikipedia.org/wiki/File:Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg
http://en.wikipedia.org/wiki/File:Mona_Lisa,_by_Leonardo_da_Vinci,_from_C2RMF_retouched.jpg
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7
8
9

10
11
12
13
14
15
16

}

// computed a sample of S, reconstructed and bandlimited at K
2N .

double SL(x, source, N, K) {
double y = 0.0;
for (int i = 0; i < N; i++) {

y += source[i] * (K/N) * sinc((K/N) * (x - i));
}
return y;

}

19.4 Making the Algorithms Practical

0 1 2 3 4 5 6
0

1

Figure 19.6: Reconstructing 20
samples from seven samples,
all 1s.

These are almost practical algorithms for image scaling. They both, however, rely
on the assumption that we can use zeroes for the samples outside the source image;
the result is that near the edges of the reconstructed source function, there are
reduced values. For instance, suppose we start with a 7-pixel image, where every
pixel has the value 1, and we scale up to a 20-pixel image. Figure 19.6 shows the
seven pixels in a black stem plot, with the 20 pixels drawn in a connected green
path on top of them. For pixels near the edges, ringing gives values that are greater
than 1, and very near the edges the values are close to 0.

There are five solutions, shown schematically in Figure 19.7, none of them
perfect.

1. Extend by zeroes, which we’ve used so far.

2. Extend by reflection.

3. Extend by constants.

4. Limit the reconstruction filter to finite support, and use one of the
approaches above.

5. Adjust the filter near the edges to ignore missing values.

Original

Extend by zeroes

Extend by reflection

Extend by constants

Figure 19.7: Image-extension
options.

We already discussed the problem with option 1: If we try to reconstruct a
constant image, we get ringing artifacts at the edges as the band-limited function
tries to drop to zero as quickly as possible. The benefit, however, is clear: We can
limit our infinite summation to a finite one.

Option 2, in which we “hallucinate” some values for pixels outside the source
image, fails to produce an L2 function, for if we reflect the source image each time
we reach an edge, we create a tiling of the plane by copies of the source image;
the L2 norm of this is infinitely many times the L2 norm of the source image, that
is,∞.

Option 3 means that as you examine one row of the image and run off the
right-hand side of the image, you simply reuse the last pixel in the row as the
value of all subsequent pixels, and you do the corresponding thing for the left,
top, and bottom edges, and even the corners. This too leads to a signal that’s not
in L2.

Although options 2 and 3 lead to signals that are not in L2, one solution is
to say that reconstruction with the sinc is unrealistic: How can a sample at some
point that’s miles away affect the value at a point within the image? Indeed, since
the effect falls off as the inverse distance, that miles-away point will tend to have
very little impact on the reconstruction. We can replace the sinc filter with some
new filter g that looks like sinc but has finite support, and hope that its Fourier
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transform looks like the box function b. Unfortunately, it’s impossible for a func-
tion f ∈ L2(R) to have finite support and have f̂ also have finite support [DM85].
But we can find finitely supported filters whose transforms are nearly zero outside
a small interval, as we’ll discuss presently. If we agree to replace sinc by such a
filter, then the whole question of whether the extension of the source image is L2

disappears: We can simply extend the source image by an amount R that’s greater
than the support of the filter, and then fill in with zeroes beyond there. This is
option 4, listed above.

Finally, option 5 presents one last approach that’s somewhat unprincipled, but
works well in practice. When we compute the value for a pixel with a summation
of the form

target( j) =
∑

i

source(i)sinc( j− i), (19.7)

we’re computing a weighted sum of source pixels. In this particular case, the
weights come from the sinc function, but more generally we’re computing some-
thing of the form

target( j) =
∑

i

source(i)w( j− i), (19.8)

where w is a list of weights. If these weights don’t sum to one, then filtering a
constant image results in an image whose values are different from that constant.
An example, based on filtering in the horizontal direction with a truncated sinc,
is shown in Figure 19.8. The constant signal is shown in blue; it was sampled at
integer points and reconstructed with x 
→ 1.4sinc(1.4x), truncated for |x| > 3.5.
The resultant function was sampled far more finely and plotted in green, showing
substantial ripple.

Typically, for things like a truncated sinc, the sum W of the weights is very
close to one at each pixel. The sum may vary from one pixel to the next, however,
resulting in a ripple when we try to reconstruct a constant image, as the figure
shows. We can fix this problem somewhat by dividing by the sum of the weights
at each pixel, which removes the ripple. In effect, we’ve altered the filter so that
its Fourier transform is zero at all multiples of the sampling frequency. We’ve

93 93.2 93.4 93.6 93.8 94 94.2 94.4 94.6 94.8 95
0

1

Figure 19.8: Top: Filtering a constant 1D signal with a truncated sinc leads to ripple.
Bottom: A gray image, filtered and resampled with the same truncated sinc in the horizontal
direction, ends up striped.
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done so at the cost of modifying the filter, however, so its Fourier transform is no
longer what we expected. As long as the ripple is small, though, the alteration to
the function is small, and hence the alteration to the transform is small as well.

The useful characteristic of this unrippling operation is that it suggests a way
to deal with the missing data at the edges of images as well: We compute the sum

target( j) =
∑

i

source(i)w( j− i), (19.9)

but simply ignore all terms where source(i) is outside the image. We sum up
the weights as usual, but only for the terms we included, and then divide by this
sum. In the interior of the image, every pixel we need is available and we’re just
unrippling. At the edges, we end up estimating the pixel values near the edge
based only on the image pixels near the edge, and not on some hallucinated values
on the other side of the edge. This method works surprisingly well in practice.

19.5 Finite-Support Approximations

We’ve said that the ideal reconstruction filter is sinc, but that it’s often necessary to
compromise in practice and use a finite-support filter. We’ve already seen the box
and tent filters, and that the tent is the convolution b � b of the box with itself. We
can further convolve to get smoother and smoother filters as discussed extensively
in Chapter 22, which is about the construction of piecewise-smooth curves. The
convolution of the tent with itself (or b � b � b � b), known as the cubic B-spline
filter and plotted in Figure 19.9, is shown in Chapter 22 to be

b3(x) =

⎧⎪⎨
⎪⎩

1
6 (3|x|3 − 6|x|2 + 4), 0 ≤ |x| ≤ 1
1
6 (−(|x| − 1)3 + 3(|x| − 1)2 − 3(|x| − 1) + 1), 1 ≤ |x| ≤ 2

0, otherwise
(19.10)

There is a slight difference from the function in Chapter 22, however: This chap-
ter’s version of b3 has support [−2, 2], while in Chapter 22 the support is [0, 4].

−2 −1 0 1 2
0

y = b3 (t)

t

y

Figure 19.9: The cubic B-spline
filter.

Notice that b3(0) = 2
3 , while b3(±1) = 1

3 . This means that when we recon-
struct an image using b3, the reconstructed value at the image points is not the
original image value, but a blend between it and its two neighbors.

−2 −1 0 1 2

0

1
y = gCR(x)

x

y

Figure 19.10: The Catmull-Rom
spline filter.

An alternative is the Catmull-Rom spline (see Chapter 22 for details), γCR,
which is zero at every integer except γCR(0) = 1, as shown in Figure 19.10.
This means that reconstructing with this filter leaves the image points unchanged,
and merely interpolates values between them. On the other hand, the Catmull-
Rom spline takes on negative values, which means that interpolating with it may
produce negative results, which is a problem: We can’t have “blacker than black”
values. The formula for the Catmull-Rom spline is

γCR(x) =
1
2

⎧⎪⎨
⎪⎩
−3(1− |x|)3 + 4(1− |x|)2 + (1− |x|), −1 ≤ x ≤ 1

(2− |x|)3 − (2− |x|)2, 1 ≤ |x| ≤ 2

0, otherwise

(19.11)

−2 −1 0 1 2

0

1
y = fM(x)

x

y

Figure 19.11: The Mitchell-
Netravali filter.

A 2
3− 1

3 blend of the Catmull-Rom curve and the B-spline curve was recom-
mended by Mitchell and Netravali [MN88] as the best all-around cubic to use
for image reconstruction and resampling. That filter (shown in Figure 19.11) is
given by
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fM(x) =
1

18

⎧⎪⎨
⎪⎩
−21(1− |x|)3 + 27(1− |x|)2 + 9(1− |x|) + 1, −1 ≤ x ≤ 1

7(2− |x|)3 − 6(2− |x|)2, 1 ≤ |x| ≤ 2

0, otherwise
(19.12)

Table 19.1 shows several filters and their Fourier transforms.

19.5.1 Practical Band Limiting

The function sinc is band-limited at v0 = 1
2 . The cubic B-spline filter b3 is not,

and it passes frequencies much larger than 1
2 , albeit attenuated. As we showed

in Chapter 18, the consequence of this is aliasing. A signal at frequency 0.5 + a
appears as an alias at frequency 0.5 − a. In particular, integer-spaced samples of
a signal of frequency near 1 look like samples of a signal of frequency near 0.
Indeed, any near-integer frequency aliases to a low frequency.

If we use a filter like b3 to reconstruct a continuum signal from image data, the
resultant signal will contain aliases, because the support of b̂3 is not contained in
H = (− 1

2 , 1
2 ]. Fortunately, outside H the Fourier transform falls off fairly rapidly;

nonetheless, there is some aliasing.
We can address this with a compromise: We can stretch b3 along the x-axis so

that the Fourier transform compresses along the v-axis, pushing more of the sup-
port inside H and reducing aliasing. This has the unfortunate consequence that fre-
quencies that we’d like to preserve, near ± 1

2 , end up attenuated. The compromise
involved is one of trading off blurriness (i.e., a lack of frequencies near |v| = 1

2 )
against low-frequency aliasing (i.e., frequencies near |v| = 1). For frequencies
in between these extremes, aliasing still occurs. But if a frequency just above 1

2
aliases to one just below 1

2 , it’s often removed during image shrinking anyhow,
and in practice turns out to not be as noticeable as an alias at a frequency near 0.

19.6 Other Image Operations and Efficiency

In general, convolving an image with a discrete filter of small support can be an
interesting proposition. We already saw how convolving with a 3 × 3 array of
ones can blur an image (although to keep the mean intensity constant, you need to
divide by nine).

In general, we can store a discrete filter in a k× k array a, and the image in an
n× n array b; the result of the convolution will then be an (n + k)× (n + k) array
c; the code is given in Listing 19.4.

Listing 19.4: Convolving using the “extend by zeroes” rule.

1
2
3
4
5
6
7
8

void discreteConvolve (float a[k][k], float b[n][n], float c[n+k-1][n+k-1])
initialize c to all zeroes
for each pixel (i, j) of a

for each pixel (p, q) of b
row = i + p;
col = j + q;
if (row < n + k − 1) && (col < n + k − 1))

c[row][col] += a[i][j] * b[p][q];
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Table 19.1: Filters and their Fourier transforms.

Comments y = f(x) y = F( f)(v)

The unit box filter;
transform is sinc. −3−2−1 0 1 2 3

0

1

−3−2−1 0 1 2 3

0

1

The sinc filter with
spacing one;
transform is the
unit box. −3−2−1 0 1 2 3

0

1

−3−2−1 0 1 2 3

0

1

The Gaussian filter.
Transforms to a scaled
Gaussian. Shown is
g(
√
πx), which

transforms to itself. −3−2−1 0 1 2 3

0

1

−3−2−1 0 1 2 3

0

1

The cubic B-spline
filter. Fairly
band-limited, but
attenuates signals
except near v = 0. −3−2−1 0 1 2 3

0

1

−3−2−1 0 1 2 3

0

1

The Catmull-Rom
filter. Less
band-limited, but
better signal
preservation near
v = 0. −3−2−1 0 1 2 3

0

1

−3−2−1 0 1 2 3

0

1

Mitchell-Netravali. A
compromise between
the B-spline and the
Catmull-Rom filters. −3−2−1 0 1 2 3

0

1

−3−2−1 0 1 2 3

0

1
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A much nicer blur than the one we saw with the box filter comes from
convolving with a Gaussian filter, that is, samples of the function gσ(x) =

1√
2πσ

exp(− x2+y2

σ2 ), where σ is a constant that determines the amount of blurring:
If σ is small, then the convolution will be very blurry; if it’s large, there will be
almost no blurring. The value σ = 1 produces a bit less blurring than convolving
with a 3 × 3 array of ones. You can also blur preferentially in one direction or
another, using a filter defined by

f (x, y) =
1√
2πσ

exp

(
− [x y

]
S
[

x
y

])
, (19.13)

where S is any symmetric 2× 2 matrix. The axes of greatest and least blurring are
the eigenvectors of S corresponding to the least and greatest eigenvalues, respec-
tively. The amount of blur is inversely related to the magnitude of the eigenvalues.

If B is any blurring filter, and your image is I, then B � I is a blurred version of
I; roughly speaking, convolution with B must remove most high frequencies from
I, leaving the low-frequency ones. This means that if we compute I − rB � I for
some small r > 0, we’ll be removing the blurred version and should leave behind
a sharpened version. Unfortunately, this also darkens the image: If I initially con-
tains all ones, then all entries of I − rB � I will be 1 − r. We can compensate by
using

Sr = (1 + r)I − rB (19.14)

to sharpen the image. In the case where B is the 3× 3 box

1
9

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦ (19.15)

the result is

1
9

⎡
⎣−r −r −r
−r 9 + 8r −r
−r −r −r

⎤
⎦ . (19.16)

The results, using r = 0.6, are shown in Figure 19.12, where the blur and sharpen-
ing have been applied to a very low-resolution version of the Mona Lisa, magnified
so that you can see individual pixels.

Figure 19.12: Mona Lisa, blurred
and sharpened.

Inline Exercise 19.3: Verify this expression for the sharpening filter.

You can apply this idea to any blurring filter B to get an associated sharpening
filter.

If we convolve an image I with the 1 × 2 filter
[
1 −1

]
, it will turn any

constant region of I into all zeroes. But if there’s a vertical edge (i.e., a bright
pixel to the left of a dark pixel), the convolution will produce a large value. (If
the bright pixel is to the right of the dark one, it will produce a large negative
value.) Thus, this filter serves to detect (in the sense of producing nonzero output)
vertical edges. A similar approach will detect horizontal edges. And using a wider
filter, like

[
1 1 1 −1 −1 −1

]
, will detect edges at a larger scale, while
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producing relatively little output for small-scale edges. By computing both the
vertical and horizontal “edge-ness” for a pixel, you can even detect edges aligned
in other directions. In fact, if we define

H =
[−1 1

]
� I and (19.17)

V =

[−1
1

]
� I, (19.18)

then
[
H(i, j) V(i, j)

]
is one version of the image gradient at pixel (i, j)—the

direction, in index coordinates, in which you would move to get the largest
increase in image value.

The images H and V are slightly “biased,” in the sense that H takes a pixel to
the right and subtracts the current pixel to estimate the change in I as we move hor-
izontally, but we could equally well have taken the current pixel minus the pixel to
the left of it as an estimate. If we average these two computations, the current pixel
falls out of the computation and we get a new filter, namely 1

2

[−1 0 1
]
. This

version has the advantage that the value it computes at pixel (i, j) more “fairly”
represents the rate of change at (i, j), rather than a half-pixel away. Figure 19.13
shows the blurred low-resolution Mona Lisa, the result of

[−1 0 1
]
-based edge

detection along rows and along columns, and a representation of the gradient com-
puted from these. (We’ve trimmed the edges where the gradient computation pro-
duces meaningless results.)

0 10 20

0

20

40

Figure 19.13: Mona Lisa, row-
wise edge detection, column-wise
edge detection, and a vector rep-
resentation of the gradient.

For more complex operations like near-perfect reconstruction, or edge detec-
tion on a large scale, we need to use quite wide filters, and convolving an N × N
image with a K × K filter (for K < N) takes about K2 operations for each
of the N2 pixels, for a runtime of O(N2K2). If the K × K filter is separable—if
it can be computed by first filtering each row and then filtering the columns of
the result—then the runtime is much reduced. The row filtering, for instance,
takes about K operations per pixel, for a total of N2K operations; the same is
true for the columns, with the result that the entire process is O(N2K), saving a
factor of K.

19.7 Discussion and Further Reading

It’s clear that aliasing—the fact that samples of a high-frequency signal can look
just like those of a low-frequency signal—has an impact on what we see in graph-
ics. Aliasing in line rendering causes the high-frequency part of the line edge to
masquerade as large-scale “stair-steps” or jaggies in an image. Moiré patterns are
another example. But one might reasonably ask, “Why, when the eye is presented
with such samples, which could be from either a low- or a high-frequency signal,
does the visual system tend to interpret it as a low one?” One possible answer
is that the reconstruction filter used in the visual system is something like a tent
filter—we simply blend nearby intensities together. If so, the preferred reconstruc-
tion of low frequencies rather than high frequencies is a consequence of the rapid
falloff of the Fourier transform of the tent. Of course, this discussion presupposes
that the visual system is doing some sort of linear processing with the signals it
receives, which may not be the case. At any rate, it’s clear that without perfect
reconstruction, even signals near the Nyquist rate can be reconstructed badly, so
it may be best, when we produce an image, to be certain that it’s band-limited
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further than required by the pure theory. The precise tuning of filter choices
remains something of a dark art.

Digital signal processing, like the edge detection, blurring, and sharpening
mentioned in this chapter, is a rich field. Oppenheim and Schafer’s book [OS09]
is a standard introduction. Many of the obvious techniques don’t work very well in
practice. Our example of edge detection and gradient finding with the Mona Lisa
was carefully applied to a blurred version of the image, because the unblurred
version generated many edges and the gradients appeared random. Such tricks
form an essential part of the tool set of anyone who works with image data.

19.8 Exercises
Exercise 19.1: Suppose you’re building a ray tracer and you want to build a

100× 100 grid on the image plane. The image plane has uv-coordinates on it, and
the image rectangle ranges from− 1

2 to 1
2 in u and v. Where should you place your

samples? Consider the one-dimensional problem instead: We need 100 samples
between u = − 1

2 and u = 1
2 . One choice is ui = − 1

2 + (i/99), i = 0, . . . , 99.
These points range from u0 = − 1

2 to u99 = 1
2 . The other natural choice is to space

the points evenly so that they are separated by 1/100, that is, ui = − 1
2 +(i/100)+

(1/200).
(a) Suppose that instead of 100 points, you want N = 3 points. Plot the ui for each
method.
(b) Do the same for N = 2 and N = 1.
(c) Imagine that instead of 100 points ranging from − 1

2 to 1
2 , you wanted 200

points ranging from −1 to 1. You might expect the “middle” 100 points from this
wider problem to correspond to your 100 points for the narrower problem. Which
formula has that property?

Exercise 19.2: One favorite filter is the Gaussian, defined by g(x, y) =

Ce−π(x2+y2). It has three important properties. First, it is its own Fourier trans-
form. Second, it’s circularly symmetric: Its value on the circle of radius r around
the origin is constant. Third, it’s a product of two one-dimensional filters. Do the
algebra to show the second and third properties.

Exercise 19.3: The cubic spline filter B can be converted into a circu-
larly symmetric filter on the plane by saying B(x, y) = B(

√
x2 + y2). Unfor-

tunately, this circularly symmetric filter is not separable. The separable filter
C(x, y) = B(x)B(y) built from B is not circularly symmetric. How different are
they? Numerically estimate the integral of C(x, y)− B(x, y) over the plane.

Exercise 19.4: Apply the unrippling approach, with the missing-weights
modification, on the cubic B-spline filter, applied to scaling up a signal by a factor
of 10.
(a) Apply the technique to a ten-sample signal where every sample value is 1.
(b) Apply it to a ten-sample signal where sample i is cos(πki/20) for k = 1, 4,
and 9. Comment on the results.

Exercise 19.5: Here’s an alternative approach to reconstructing a band-limited
signal from its samples.
(a) Argue why the operation must be well defined (i.e., why there is exactly one
signal in L2(R), band-limited at v0 = 1

2 , with any particular set of values on the
integers).
(b) Argue that reconstruction must be linear, that is, if fi : R→ R is the reconstruc-
tion of the discrete signal si : Z→ R for i = 1, 2, then f1 + f2 is the reconstruction
of the discrete signal s1 + s2.
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(c) Argue that if for some k, s3(n) = s1(n + k) for every n ∈ Z, then the recon-
struction f3 of s3 is just f3(x) = f1(x+k). We say that reconstruction is translation
equivariant.
(d) Explain why the reconstruction of the signal s with s(0) = 1, and s(n) = 0 for
all other n, is just f (x) = sinc(x).
(e) From your answers to parts (a) through (d), conclude that reconstruction for
any discrete signal comes from convolution with sinc.

Exercise 19.6: Suppose we band-limit f (x) = sinc(x) to v0 = 1
4 . Describe

the resultant signal precisely.
Exercise 19.7: We suggested that one bad way to downsample a 300 × 300

image to a 150× 150 image was to simply take pixels from every second row and
every second column. Suppose the source image is a checkerboard: Pixel (i, j) is
white if i + j is even, and it’s black if it’s odd. At a distance, this image looks
uniformly gray.
(a) Show that if we choose pixels from rows and columns with odd indices, the
resultant subsampled image is all white.
(b) Show that if we use odd row indices, but even column indices, the resultant
subsampled image is all black.
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Chapter 20

Textures and Texture
Mapping

20.1 Introduction

As we said in Chapter 1, texture mapping can be used to add detail to the appear-
ance of an object. Texture mapping has little to do with either texture (in the sense
of the roughness or smoothness you feel when you touch something) or maps; the
term is an artifact of the early history of graphics.

Why is it called texture mapping? Informally speaking, a long time ago small
details of models, whether geometric or color-related, were represented in the
model of the object by “painting” them onto the model, as in a trompe l’oeil
painting. You could paint a tiny bright spot on a model to look like a highlight,
regardless of the lighting in the scene. These details were called texture, and
they were stored in an image array. The scene modeler also had to associate
each vertex of the model to a location in the image array, thus “mapping”
the model to the image (although the general goal was just the opposite—this
mapping was used to “apply” the image to the model, like a decal). Soon it
became clear that rather than mapping the albedo (i.e., the fraction of power
reflected) we could map other parameters of the lighting model, like the normal
vector. Varying the normal vector made the model appear rippled or bumpy; in
other words, the appearance of texture. But the word “texture” was already
used to mean something different, so this was called bump mapping. Later it
became clear that we could also store small variations in surface position in a
map, and while this should have been called bump mapping, since it actually
added bumps to a surface, that term was in use, so it was called displacement
mapping. Finally, when programmable GPUs were becoming common, their
texture memory was the only randomly addressable data structure available to
the programmer, and it was often used to store n-dimensional arrays, pointers,

547
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or other things (i.e., it was treated as ordinary memory). Thus, the particular
meaning of “texture” is rather time-dependent; when you read a paper on the
subject, you’ll need to know when it was written to know what the term means.

Figure 20.1: Texture image for
soda can (Courtesy of Kefei Lei).

A typical use of texture mapping is to make something that looks painted, like
a soft-drink can. First you make a 2D image I that looks like an unrolled version of
the vertical sides of the can (see Figure 20.1). Then you give the image coordinates
u and v that range from 0 to 1 in the horizontal and vertical directions. Then you
model a cylinder, perhaps as a mesh of a few hundred polygons based on vertex
locations like

Pij =

(
r cos

2πi
10

, h
j
5

, r sin
2πi
10

)
, (20.1)

where r is the can’s radius, h is its height, and i = 0, . . . , 10 and j = 0, . . . , 5 (see
Figure 20.2). A typical triangle might have vertices P11, P12, and P21.

Figure 20.2: A wireframe render-
ing of the vertical surface of the
soda can (Courtesy of Kefei Lei).

Now you also assign to each vertex so-called uv-coordinates: a u- and a v-value
at each vertex. In this example, the u-coordinate of vertex Pij would be i/10 and
the v-coordinate would be j/5. Notice that the vertices P0,0 and P10,0 are in identi-
cal locations (at the “seam” of the can), but they have different uv-“coordinates.”
Because coordinates should be unique to a point (at least in mathematics), it might
make more sense to call these uv-“values,” but the term “coordinates” is well
established. We will, however, refer henceforth to texture coordinates rather than
“uv-coordinates,” both because sometimes we use one or three rather than two
coordinates, and because the tying of concepts to particular letters of the alphabet
can be problematic, as in the case where a single mesh has two different sets of
texture coordinates assigned to it.

Figure 20.3: The sides of the
soda can texture-mapped with the
image (Courtesy of Kefei Lei).

When it comes time to render a triangle, it gets rasterized, that is, broken
into tiny fragments, each of which will contribute to one pixel of the final result.
The coordinates of these fragments are determined by interpolating the vertex
coordinates, but at the same time, the renderer (or graphics card) interpolates the
texture coordinates. Each fragment of a triangle gets different texture coordinates.
During the rendering step in which a color is computed for the fragment, often
based on the incoming light, the direction to the eye, the surface normal, etc., as
in the Phong model of Chapter 6, the material color is one of the items needed in
the computation. Texture mapping is the process of using the texture coordinate
for the fragment to look up the material color in the image I rather than just using
a fixed color. Figure 20.3 shows the effect.

We’ve omitted many details from this brief description, including a step in
which fragments are further reduced to samples, but it conveys the essential idea,
which has been generalized in a great many ways.

A value (e.g, the color) associated to a fragment of a triangle is almost always
the result of a computation, one that has many parameters such as the incom-
ing light, the surface normal, the vector from the surface to the eye, the surface
color (or other descriptions of surface scattering like the bidirectional reflectance
distribution function or BRDF), etc. Ordinarily, many of these parameters either
are constants or are computed by interpolating values from the triangle’s vertices.
If instead we barycentrically interpolate some texture coordinates from the tri-
angle vertices, these coordinates can be used as arguments to one or more func-
tions whose values are then used as the parameters. A typical function is “look
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up a value at location (u, v) in an image whose domain is parameterized by
0 ≤ u, v ≤ 1,” but there are many other possibilities.

Much of this chapter elaborates on this idea, discussing the parameters that can
be varied, the codomains for texture coordinates (i.e., the meaning of the values
that they take on), and mechanisms for defining mappings from a mesh to the
space of coordinates.

You’ll notice that this entire notion of “texture mapping” is really just a name
for indirection as applied in a specific context: We use an index (the texture coor-
dinates) to determine a value. This determination may be performed by a table
lookup (as in the case of the soft-drink can above, where the texture image serves
as the “table”) or by a more complex computation, in which case it’s often called
procedural texturing.

An example of the power of various mapping operations is given by this book’s
cover image, in which almost every object you see has had multiple maps applied
to it—color, texture, displacement, etc.—resulting in a visual richness that would
be almost impossible to achieve otherwise.

20.2 Variations of Texturing

We’ll illustrate several variations on the idea of texture mapping, working with
the Phong reflection model as an exemplar. The ideas we present are largely inde-
pendent of the reflection model, and they apply more generally. Because the unit
square 0 ≤ u, v ≤ 1 occurs so often in this chapter, we’ll give it a name, U, which
we’ll use in this chapter only.

Recall that in the Phong model of Chapter 6, the light scattered from a surface
is defined by various constants (the diffuse reflection coefficient kd, the specular
reflection coefficient ks, the diffuse and specular colors Cd and Cs, and the specular
exponent n), dot products of various unit vectors, including the direction vector to
the light source, the direction vector from the surface to the eye, the surface normal
vector, and finally, the arriving light. There is also, in some versions of the model,
an ambient term, modeled by ka and Ca, indicating an amount of light emitted by the
surface independent of the arriving light. Each of these things—the constants, the
vectors, and even the way you compute the dot product—is a candidate for mapping.

20.2.1 Environment Mapping

If our surface is mirrorlike (i.e., kd = ka = 0, and n is very large, or even infinite),
then the light scattered toward the eye, as determined by the Phong model, is
computed by reflecting the eye ray through the surface normal to get a ray that
may point toward a light source (in which case light is scattered) or not. If all
sources are point sources, this tends to result in no rendered reflection at all, since
the probability of a ray hitting any particular source is zero. If the sources are area
sources, we see them reflected in our object.

We can replace our model of light arriving at the surface point P from one
based on a few point or area sources to one based on a texture lookup: We can
treat the reflected eye vector as a point of the unit sphere, and use it to index into
a texture-mapped sphere to look up the arriving light. In practical terms, if we
write this eye vector in polar (world) coordinates, (θ,φ), for instance, we can use
u = θ

2π , v = φ
π + 1

2 to index into an environment map that contains, at location
(u, v), the light arriving from the corresponding direction.
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Notice that as the point P moves, the light arriving at the point P from direction
v doesn’t change. Thus, this environment map is useful for modeling the specular
reflection of an object’s surroundings, but it is not good for modeling reflections
of nearby objects, where the direction from P to some object will change substan-
tially as we vary P.

Where do we get an environment map in the first place? A fisheye-lens photo-
graph taken from the center of a scene can provide the necessary input, although
the mapping from pixels in the photograph to pixels in the environment map
requires careful resampling. In practice, it’s common to use multiple ordinary
photographs, and a rather different mapping strategy from the one we’ve sug-
gested here, but the key idea—doing a lighting “lookup” rather than iterating over
a small list of point or area lights—remains the same.

Debevec has written an interesting first-person history of reflection mapping
in general [Deb06], tracing its first use in graphics to a paper by Blinn and Newell
in 1976 [BN76], which is long before digital photographs were available! The
“environment map” in this case was a scene created in a drawing program.

Inline Exercise 20.1: We’ve carefully suggested using environment mapping
in a ray tracer for describing the lighting of a mirrorlike surface. What would
be entailed in using environment mapping on a glossy surface? A diffuse one?
Would it substantially increase the computation time over that of a simpler
model in which the light was specified by a few point and area lights?

20.2.2 Bump Mapping

In bump mapping, we fiddle with another of the ingredients in the Phong model:
the surface normal, n. A typical version of this uses texture coordinates on a model
to look up a value in a bump map image and uses the resultant values to alter the
normal vector a little.

The exact meaning assigned to the RGB values from this image depends on
the implementation, but a simple version uses just R and G to “tilt” the normal
vector as follows. We’ll assume that at each surface point P we have a pair of
unit vectors t1 and t2 that are tangent to the surface, are mutually perpendicular,
and vary continuously across the surface. In theory, it may be impossible to find
such a pair of vector fields (see Chapter 25), and in Section 20.3 we’ll discuss
this further, but in practice usually only the continuity assumption is violated, and
only at a few isolated points. For example, on the unit sphere, tangents to the lines
of constant latitude and constant longitude can play the role of t1 and t2, failing
the continuity requirement only at the north and south poles. If we arrange to not
perturb the normal vector at either pole, then the lack of continuity of t1 and t2 has
no effect.

With t1 and t2 in hand, we’ll show how to adjust the normal vector. The R and
G values from the bump map, typically bytes representing values −128, . . . , 127,
or unsigned bytes representing 0 to 255, are adjusted to range from −1 to 1 by
writing (in the first case)

r = max

(
R

127
,−1.0

)
(20.2)

and a corresponding expression for g. (The loss of −128 as a distinct value is
deliberate. If we’d divided by 128, we could not represent +1.0.)
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Inline Exercise 20.2: Write a formula to convert values from 0 to 255 into
values from −1 to 1.

We can now adjust the normal vector n, as shown in Figure 20.4, by computing

n′ = S(n + rt1 + gt2). (20.3)

At the extreme (when r = g = 1) this tilts the normal vector by about 54◦. If a
larger amount of tilt is needed, one can redefine r and g to range from −2 to 2, or
even more.

One advantage to this scheme, originally proposed by Blinn [BN76], is that
n+ rt1 + gt2 can never be zero, because its dot product with n is one. This means
that it can always be normalized.

n gr
n 5 n 1 rt1 1 gt2

t1

t2

Figure 20.4: The vector n̄ will be
normalized to produce the new
normal n′; the values r and g (for
“red” and “green”) vary across
the surface, and are looked up in
a texture map.

By the way, the particular form we’ve described for converting image-pixel
values into values between −1.0 and 1.0 is part of the OpenGL standard and is
called the signed normalized fixed-point 8-bit representation (see Chapter 14).
There are other standard representations as well, using more bits per pixel,
unsigned rather than signed values, etc. There’s nothing sacred about any of these.
They’ve proven to be convenient over the years, so they become standardized.

A more direct approach is to store in the texture image three floating-point
numbers (i.e., we treat the bits in the red channel as a float, and do the same for
green and blue), and use this triple of numbers as the coordinates of the (unnor-
malized) normal vector, from which we can compute n; this is one of the most
common approaches today.

It’s possible to specify a set of normal vectors that are not actually con-
sistent with each other, that is, they do not form the normal vector field for any
surface (see Exercise 20.2). When rendered, these can look peculiar. So a third
approach to bump mapping is to have the texture contain a height for each tex-
ture coordinate (u, v), indicating that we are to imagine that the surface is dis-
placed from its current position by that amount along the original normal vector.
The resultant surface (which is never actually created!) has tangent vectors in the
u- and v-directions (i.e., the direction of greatest increase of u, and correspond-
ingly of v), whose cross product we compute and use as the “normal” vector dur-
ing shading computations. This clearly requires substantially more computation,
but far less bandwidth, since we need only one value per location rather than two
or three.

20.2.3 Contour Drawing

u 5 0 u 5 0.5 u 5 1

Figure 20.5: A contour-drawing
1D texture.

This example differs from the previous ones, because each surface point will have
only one texture coordinate. A point P of a smooth surface is on a contour if the
ray from P to the eye E, r = E − P, is perpendicular to the surface normal n.
Thus, to render a surface by drawing its contours, all we must do is compute this
dot product, and when it’s near zero, make a black mark on the image, or leave
the image white otherwise. To do so we make a one-dimensional texture map like
the one shown in Figure 20.5. And as a texture coordinate, we compute

d = r · n (20.4)

u =
d + 1

2
. (20.5)
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As the dot product ranges from −1 to 0 to 1, u ranges from 0 to 1
2 to 1. At u = 1

2 ,
the dark color we find in the texture map creates a dark spot in the image. To be
clear: This “rendering” algorithm involves no lighting or reflection or anything
like that. It’s simply following the rule that we can draw the contours of an object
to make a reasonably effective picture of it. An actual implementation of a slightly
fancier version of this algorithm is given in Section 33.8.

20.3 Building Tangent Vectors from
a Parameterization

We’ll now describe how to find a frame (i.e., a basis) for the tangent space at each
point of a parameterized smooth surface, and then, working by analogy, describe
a similar construction for a mesh.

The sphere, which we’ll use as our smooth example, is often parameterized by

P(θ,φ) = (cos θ cosφ, sinφ, sin θ cosφ), (20.6)

where θ ranges from 0 to 2π, and φ ranges from −π
2 to π

2 .
If we hold θ constant in P(θ,φ) and vary φ, we get a line of longitude; simi-

larly, if we hold φ constant and vary θ, we get a line of latitude. If we compute the
tangent vectors to these two curves, we get

∂P
∂φ

(θ,φ) =
[− cos θ sinφ cosφ − sin θ sinφ

]T
and (20.7)

∂P
∂θ

(θ,φ) =
[− sin θ cosφ 0 cos θ cosφ

]T
. (20.8)

These vectors, drawn at the location P(θ,φ), are tangent to the sphere at that point,
and they happen to be perpendicular as well (see Figure 20.6). Except at the north
and south poles (where cos(φ) = 0), the vectors are nonzero, so the two of them
constitute a frame at almost every point. In general, it’s topologically impossible
to find a smoothly varying frame at every point of an arbitrary surface, so our
situation, with a frame at almost every point, is the best we can hope for.

Figure 20.6: The sphere, with
vertical lines of constant θ and
horizontal lines of constant φ
drawn in red and blue, respec-
tively, and tangent vectors to
those curves at a few points.

In general, if we have any surface parameterized by a function like P of two
variables—say, u and v—then ∂P

∂u (u, v) and ∂P
∂v (u, v) are a pair of vectors at the

point (u, v) that form a basis for the tangent plane there, except in two circum-
stances: One of the vectors may be zero, or the two vectors may be parallel. In
both situations, the parameterization is degenerate in some way, and for “nice”
surface parameterizations this should happen only at isolated points. To get an
even nicer framing, you can normalize the first vector and compute its cross prod-
uct with the normal vector to get the second; the result will be an orthonormal
frame at every place where the first vector is nonzero.

We can now proceed analogously on a mesh for which each vertex has xyz-
coordinates and uv-texture coordinates assigned. We’ll do so one face at a time.
The assignment of (u, v) coordinates to each vertex defines an affine (linear-plus-
translation) map from the xyz-plane of the triangular face to the uv-plane (or vice
versa). We’d like to know what the curve of constant u or constant v looks like,
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in analogy with the curves of constant θ and φ in the sphere example above, so
that we can compute the tangent vectors to these curves. Fortunately, for an affine
map a curve of constant v is just a line; all we need to do is find the direction of
this line.

Suppose the face has vertices P0, P1, and P2, with associated texture coordi-
nates (u0, v0), (u1, v1), and (u2, v2). We’ll study everything relative to P0, so we
define the edge vectors w1 = P1 − P0 and w2 = P2 − P0, and similarly define
Δui = ui − u0 (i = 1, 2), and similarly for v (see Figure 20.7).

Dv1 5 v1 2 v0

(u2, v2)

P2

(u1, v1)
w1

w2

(u0, v0)
P0

P1
Du1 5 u1 2 u0

Dv2 5 v2 2 v0

Du2 5 u2 2 u0

Figure 20.7: Names for comput-
ing a line of constant v on a sin-
gle face.

Since v varies linearly (or affinely, to be precise) along each edge vector, con-
sider the vector w = Δv2w1−Δv1w2. How much does v change along this vector?
It changes by Δv1 along w1, so along the first term, it changes by Δv2Δv1; a sim-
ilar argument shows that on the second term, it changes by Δv1Δv2. Hence on the
sum, w, v remains constant. We’ve found a vector on which v is constant! We can
do the same thing for u, so the frame for this triangle has, as its two vectors,

f1 = S(Δv2w1 −Δv1w2) and (20.9)

f2 = S(Δu2w1 −Δu1w2). (20.10)

Unfortunately, if we perform the same computation for an adjacent triangle,
we’ll get a different pair of vectors. We can, however, at each vertex of the mesh,
average the f1 vectors from all adjacent faces and normalize, and similarly for the
f2 vectors. We can then interpolate these averaged values over the interior of each
triangle. There’s always the possibility that either one of the average vectors at a
vertex will be zero, or that when we interpolate we’ll get a zero at some interior
point of a triangle. (Indeed, this will have to happen for most closed surfaces
except those that have the topology of a torus.) But this is just the piecewise-linear
version of the problems we already encountered for smooth maps. If we’re using
this framing to perform bump mapping, we’ll want to avoid assigning a nonzero
coefficient at any point at which one of the frame vectors is zero.

20.4 Codomains for Texture Maps

The texture values that we define at vertices, and which are interpolated across
faces of a triangular mesh, are represented as numbers. When we have two texture
coordinates u and v, we’re implicitly defining a mapping from our mesh to a unit
square in the uv-plane. The codomain of the texture-coordinate assignment in this
case is the unit square. There are two generalizations of this.

First, some systems allow texture coordinates to take on values outside the
range U = {(u, v)|0 ≤ u ≤ 1, 0 ≤ v ≤ 1}. Before the coordinates are actually
used, they are reduced mod 1, that is, u is converted to u−floor(u), and similarly
for v. The net effect can be viewed in one of two ways.

Figure 20.8: The texture image,
shown dark, can be replicated
across the whole plane (shaded
squares) so that texture coordi-
nates outside the unit square can
be used.

Figure 20.9: The sides of the
square are identified to form a
cylinder; the ends of the cylin-
der are then identified to make a
torus.

1. The uv-plane, rather than having a single image placed in the unit square,
is tiled with the image. Our texture coordinates define a map into this tiled
plane (see Figure 20.8).

2. The edges of the unit square defined by the lines u = 1 and u = 0 are
treated as identical; the square is effectively rolled up into a cylinder. Sim-
ilarly, the lines v = 1 and v = 0 are identified with each other, rolling up
the cylinder into a torus (see Figure 20.9). If you like, you can consider the
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point (u, v) as corresponding to the point that’s 2πu of the way around
the torus in one direction, and 2πv around it in the other direction, with
the texture stretched over the whole torus. The texture coordinates define
a mapping from your object to the surface of a torus.

For either interpretation to make sense, the texture-map values on the right-
hand side of the unit square must match up nicely with those on the left (and
similarly for the top and bottom), or else the texture will be discontinuous on the
u = 0 circle of the torus, and similarly for the v = 0 circle. Furthermore, any filter-
ing or image processing you do to the texture image must involve a “wraparound”
to blend values from the left with those from the right, and from top to bottom
as well.

The second generalization was already suggested by the second version of
bump mapping: The texture coordinates define a map of your object onto a surface
in some higher-dimensional space. In the case of bump mapping, each object point
is sent to a unit vector, that is, the codomain is the unit sphere within 3-space.

In general, the appropriate target for texture coordinates depends on their
intended use.

Here are a few more examples.

• You can use the actual coordinates of each point as texture coordinates
(perhaps scaling them to fit within a unit cube first). If you then generate a
cubical “image” that looks like marble or wood, and use the texture value as
the color at each point, you can make your object look as if it were carved
from marble or wood. In this case, your texture uses a lot of memory, but
only a small part of it is ever used to color the model. The codomain is
a cube in 3-space, but the image of the texture-coordinate map is just the
surface of your object, scaled to fit within this cube.

• A nonzero triple (u, v, w) of texture coordinates (typically a unit vector)
is converted to (u/t, v/t, w/t) where t = 2max(|u|, |v|, |w|); the result is
a triple with one coordinate equal to ± 1

2 , and the other two in the range
[− 1

2 , 1
2 ], that is, a point on the face of the unit cube. Each one of the six

faces of the cube (corresponding to u, v, or w being + 1
2 or − 1

2 ) is associ-
ated to its own texture map. This provides a texture on the unit sphere in
which the distortion between each texture-map “patch” and the sphere is
relatively small. This structure is called a cube map, and it is a standard
part of many graphics packages; it’s the currently preferred way to specify
spherical textures. Alternatives, like the latitude-longitude parameteriza-
tion of the sphere, are useful in situations where the high distortion near
the poles is unimportant (as in the case of a world map, where the area near
the poles is all white).

• In the event that the cube map needs to be regenerated often (e.g., if it’s an
environment map generated by rendering a changing scene from the point
of view of the object), rendering the scene in six different views may be
more work than you want to do. A natural alternative is to make two hemi-

spherical renderings, recording light arriving from direction
[
x y z

]T
at

position (u, v) =
(

x + 1
2 , z + 1

2

)
in one image for y ≥ 0 and another for

y ≤ 0. Each of these renderings uses only π/4 ≈ 79% of the area of
the unit square, but they’re very easy to compute and use. (An alternative
two-patch solution is the dual paraboloid of Exercise 20.4.)
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20.5 Assigning Texture Coordinates
How do we specify the mapping from an object to texture space? The great major-
ity of standard methods start by assigning texture coordinates at mesh vertices and
using linear interpolation to extend over the interior of each mesh face. We often
(but not always) want that mapping to have the following properties.

• Piecewise linear: As we said, this makes it possible to use interpolation
hardware to determine values at points other than mesh vertices.

• Invertible: If the mapping is invertible, we can go “backward” from texture
space to the surface, which can be helpful during operations like filtering.

• Easy to compute: Every point at which we compute lighting (or whatever
other computation uses mapping) will have to have the texture-coordinate
computation applied to it. The more efficient it is, the better.

• Area preserving: This means that the space in the texture map is used effi-
ciently. Even better, when we need to filter textures, etc., is to have the
map be area-and-angle preserving, that is, an isometry, but this is seldom
possible. A compromise is a conformal mapping, which is angle preserv-
ing, so that at each point, it locally looks like a uniform scaling opera-
tion [HAT+00].

The following are examples of some common mappings.

• Linear/planar/hyperplanar projection: In other words, you just use some
or all of the surface point’s world coordinates to define a point in texture
space. Peachey [Pea85] called these projection textures. The wooden ball
in Figure 20.10 was made this way: The texture shown at the right on the
yz-aligned plane was used to texture the ball by coloring the ball point
(x, y, z) with the image color at location (0, y, z).

Figure 20.10: A wooden ball
made with a projection texture
shown at right (Courtesy of Kefei
Lei).

• Cylindrical: For objects that have some central axis, we can surround the
object with a large cylinder and project from the axis through the object
to the cylinder; if the point (x, y) projects to a point (r, θ, z) in cylindrical
coordinates (r being a constant), we assign it texture coordinates (θ, z).
More precisely, we use coordinates u = θ

2π , v = clamp( z
zmax

,−1, 1), where
the clamp(x, a, b) returns x if a ≤ x ≤ b, a if x < a, and b if x > b.

• Spherical: We can often pick a central point within an object and project
to a sphere in much the same way we did for cylindrical mapping, and
then use suitably scaled polar coordinates on the sphere to act as texture
coordinates.

• Piecewise-linear or piecewise-bilinear on a plane from explicit per-vertex
texture coordinates (UV): This is the method we’ve said was most com-
mon, but it requires, as a starting point, an assignment of texture coordi-
nates to each vertex. There are at least four ways to do this.

– Have an artist explicitly assign coordinates to some or all vertices. If
the artist only assigns coordinates to some vertices, you need to algo-
rithmically determine interpolated coordinates at other vertices.

– Use an algorithmic approach to “unfold” your mesh onto a plane in
a distortion-minimizing way, typically involving cutting along some
(algorithmically determined) seams. This process is called texture
parameterization in the literature. Some aspects of texture parame-
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terization may also be used in the interpolation of coordinates in the
artist-assigned texture-coordinate methods above.

– Use an algorithmic approach to break your surface into patches, each
of which has little enough curvature that it can be mapped to the plane
with low distortion, and then define multiple texture maps, one per
patch. The cube-map approach to texturing a sphere is an example of
this approach. Filtering such texture structures requires either looking
past the edge of a patch into the adjacent patch, or using overlapping
patches, as mathematicians do when they define manifold structures.
The former approach uses textures efficiently, but involves algorithmic
complications; the latter wastes some texture space, but simplifies fil-
tering operations.

– Have an artist “paint” the texture directly onto the object, and develop a
coordinate mapping (or several patches as above) as the artist does so.
This approach is taken by Igarashi et al. in the Chameleon sys-
tem [IC01]. In a closely related approach, the painted texture is stored
in a three-dimensional data structure so that the point’s world-space
coordinates serve as the texture coordinates. These are used to index
into the spatial data structure and find the texture value that’s stored
there. Detailed textures are stored by using a hierarchical spatial data
structure like an octree: When the artist adds detail at a scale smaller
than the current octree cell, the cell is subdivided to better capture the
texture [DGPR02, BD02].

• Normal-vector projection onto a sphere: The texture coordinates assigned

to a point (x, y, z) with unit normal vector n =
[
nx ny nz

]T
are treated as

a function of nx, ny, and nz, either as the angular spherical polar coordinates
of the point (nx, ny, nz) (the radial coordinate is always 1), or by using a
cube-map texture indexed by n.

There are even generalizations in which the texture coordinates are not
assigned to a point of an object, but instead are a function of the point and some
other data. Environment mapping is one of these: In this case the texture coordi-
nates are derived from the reflected eye vector on a mirrorlike surface.

There are also generalizations in which the Noncommutativity principle is
applied: Certain operations, like filtering multiple samples to estimate average
radiance arriving at a sensor pixel, can be exchanged with other operations, like
the reflection computation used in environment mapping, without introducing too
much error. If you want to environment-map a nonmirror surface, you’ll want to
compute many scattered rays from the eye ray, look up arriving radiance for each
of them in the environment map, multiply appropriately by a BRDF value and
cosine, and average. You can instead start with a different environment map that
at each location stores the average of many nearby samples from the original envi-
ronment map (i.e., a blurred version of the original). You can then push one sam-
ple of this new map through the BRDF and cosine to get a radiance value: You’ve
swapped the averaging of samples with the convolution of light against the BRDF
and cosine. These operations do not, in fact, commute, so the answers you pro-
duce will generally be incorrect. But they are often, especially for almost-diffuse
surfaces, quite good enough for most purposes, and they speed up the rendering
substantially. Approaches like this are grouped under the general term reflection
mapping.
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As an extreme example, for a diffuse surface the only characteristic of the
arriving light that matters is irradiance—the cosine-weighted average radiance
over the visible hemisphere [RH01]. From an environment map, one can compute
the average for every possible direction, and use this irradiance map to rapidly
compute light reflected from a diffuse surface, assuming that the light arrives from
far enough away that the irradiance is a function of direction only. Figure 20.11
shows such an irradiance map, and Figure 20.12 shows a figure illuminated by it.

Figure 20.11: Top: A sphere map
of light arriving at one point
in Grace Cathedral (Photograph
used with permission. Copyright
2012 University of Southern Cal-
ifornia, Institute for Creative
Technologies.) Bottom: An irra-
diance map formed from that
sphere map (Courtesy of Ravi
Ramamoorthi and Pat Hanrahan,
© 2001 ACM, Inc. Reprinted by
permission.)

Figure 20.12: Several objects
illuminated by the irradiance
map, represented in a compact
approximation (Courtesy of Ravi
Ramamoorthi and Pat Hanrahan,
© 2001 ACM, Inc. Reprinted by
permission.)

Inline Exercise 20.3: Describe the appearance of a pure-white, totally diffuse
sphere, illuminated by the irradiance map of Figure 20.12, rendered with a
parallel projection in the same direction as the view shown for the irradiance
map. The answer is not that it looks exactly like the irradiance map!

20.6 Application Examples

Now that we’ve described the general idea of texture mapping (assigning texture
coordinates to object points, followed by evaluating functions on these coordi-
nates, often by interpolation of image values), let’s look at a range of applications.
Table 20.1 presents these, listing for each application the property that is being
mapped, the map being used, and the name of the resultant technique. We use the
name “UV” to indicate some kind of surface parameterization.

20.7 Sampling, Aliasing, Filtering,
and Reconstruction

When we render a scene in which there is texture mapping, no matter how simple
or complex the mapping scheme is, problems with sampling and aliasing can arise.

Table 20.1: Mapping applications.

Property Map Technique

kd, diffuse
reflectivity

UV Diffuse detail mapping, like the
upholstery pattern on a sofa

ks, glossy
reflectivity

UV Glossy detail, like the part of a
tarnished doorknob that’s polished
by constant use

Lin Reflection Environment mapping

Lout UV Light mapping. Texture mapping is
used to specify the emissivity
(typically diffuse) of an object like
a neon lamp.

Position or
normal vector

UV Bump mapping or displacement
mapping

Visibility of
a light source

Perspective
projection

Shadow mapping (see Chapter 15)

Artistic Lout Various dot
products

XToon shading in expressive
rendering (see Section 33.8)
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Figure 20.13: Aliasing arising from single-sample ray tracing of a checkerboard texture
(Courtesy of Kefei Lei).

Figure 20.13 shows a very simple example, a ray-traced scene in which there’s no
lighting, but there is a single infinite ground plane and an infinite sky plane. The
sky is blue; the ground has a checkerboard pattern. The color for a ray traced into
the scene is therefore either blue, black, or white.

Even though the checkerboard texture is absolutely perfect, in the sense that
it’s represented by a function, namely, “Is floor(x) + floor(y) odd?” rather than
interpolated from an image, it’s clear that the picture doesn’t look very good. The
moiré patterns at the horizon are distracting and unnatural.

The reason for these patterns is clear: On any single horizon-parallel line, the
texture looks like a square wave; the Fourier transform of the square wave contains
arbitrarily high frequencies. And the image-space frequency of this square wave
gets higher as we approach the horizon. Nonetheless, we’re taking samples at a
fixed spacing (one per output pixel, sampled at the pixel center). We’re sampling
a non-band-limited function, and the degree to which it’s not band-limited gets
worse as we get closer to the horizon. Naturally, aliases appear.

This doesn’t mean that texture mapping is a bad idea by any means. It only
tells us that we need to think about sampling before we use texture-mapped values.
We need to band-limit the signal before we take samples.

How much must we band-limit? At the very least, to the Nyquist rate for the
sampling, that is, a half-period per pixel spacing. On the ground plane itself, the
upper limit on frequency varies with distance: If one checkerboard square at dis-
tance 5 from the camera projects to a span of 20 pixels left to right, then at distance
50 it will project to just two pixels and at distance 100 it will project to a sin-
gle pixel, so a black-white cycle (two adjacent squares of the checkerboard) will
project to exactly two pixels, which means that at distance 100 even the funda-
mental frequency of the square wave is at the Nyquist limit. For distances beyond
100, the best we can do is to replace the square wave by its average value (i.e.,
display a uniformly gray plane). A similar analysis applies in the projection of the
checkerboard squares in the vertical direction. Evidently, the band-limit in each
direction needs to decrease linearly with distance. Fortunately, this notion is now
built into much hardware: It’s easy to specify, when you use a texture map, that
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the hardware should compute a MIP map for the texture image, and to select the
MIP level during texture mapping according to the size of the screen projection
of a small square. Nonetheless, we suggest that you play with texture band limits
yourself (see Exercise 20.3) to get a feel for what’s required.

In those situations where you need to implement texture mapping yourself (as
in a software ray tracer, where you don’t have the hardware support provided by
a graphics card), and you want to do image-based texture mapping, two problems
arise.

1. Sometimes you view an object from very close up, and even the texture
map doesn’t have enough detail: Two adjacent pixels in the texture map
end up corresponding to two pixels in the final image that are perhaps ten
pixels apart. You need to interpolate texture values in between. The usual
solution is bilinear (for surface textures) or trilinear (for solid textures)
interpolation.

2. Sometimes you view an object from a distance, and many texture pixels
map to one image pixel. In this case, as we said, MIP mapping is the most
widely used solution.

Note that the texture-sampling grid will rarely be aligned well with the screen-
sampling grid, so merely having the texture resolution match the screen resolution
(i.e., adjacent texture pixels project to points that are about one screen pixel apart)
will still result in blurring. In practice, you need at least twice the resolution in
each dimension for bilinearly interpolated texture values to look “sharp enough”
when the texture’s not exactly aligned with the final image pixel grid (or sampling
pattern, if you’re using something more complex than single-sample-at-the-pixel-
center ray tracing).

20.8 Texture Synthesis

We’ve suggested gathering textures from photographs (for the soda can) or from
data (mapping a world map onto a sphere) or from direct design (as in the 1D
texture used for contour rendering). If you want to create a texture that’s unlike
anything seen before, you may want to use texture synthesis, a process for gener-
ating textures either ab initio or in some clever way from existing data. You might
have a photo of part of a brick wall, and wish to make an entire brick building
without the kind of obvious replication that wrapping from bottom to top and right
to left might produce, or you might want to make a hilly area via a displacement
map in which the displacements tend to produce rolling hills at a certain scale, but
without repetition. We’ll now discuss a few approaches to these problems.

20.8.1 Fourier-like Synthesis

For the rolling-hills problem, one solution is a procedural texture, where you
assign a displacement in the form

d(x, y) =
n−1∑
i=0

ci cos(aix + biy + c), (20.11)

where the numbers ai, bi, and ci affect the orientation of the cosine waves, with
ci displacing the ith wave along its direction of propagation and with

√
a2

i + b2
i
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determining its frequency. If the points (ai, bi) are chosen at random from an annu-
lar region in the plane given by r2 ≤ a2

i +b2
i ≤ R2, then the resultant waves will all

have roughly similar periods, producing a result like that shown in Figure 20.14.
Geoff Gardner [Gar85] called this a “poor man’s Fourier series,” because of the
use of only n terms (many of his applications used something like n = 6 terms).

Figure 20.14: Displacement map
synthesized with six terms.

By the way, Gardner also showed that this function could be used for other
things; he used a three-dimensional version to represent the density of a cloud
at a point (x, y, z), and the 2D version with thresholding to determine placement
of vegetation in a scene: Anyplace where d was above some specified value, he
placed a tree or a bush, generating remarkably plausible distributions.

20.8.2 Perlin Noise

Perlin [Per85, Per02b] took a different approach, aiming to directly produce
“noise” whose Fourier transform was nonzero only within a modest band, or at
least whose values outside that band were small, and where the noise values them-
selves were constrained to [−1, 1]. The main idea can be illustrated where the
noise is a function of a single real parameter x. At each integer point we (a) want
the value at that point to be 0, and (b) want the function to have some gradient,
which for simplicity we choose to be 0, 1, or−1. If, at x = 4, we choose a gradient
of +1, then we can build the function

y4(x) = +1(x− 4), (20.12)

which has the value 0 at x = 4, and the derivative +1 there. After picking gradients
at each integer point, we get functions y1, y2, . . . . The idea is that on the interval
4 ≤ x ≤ 5, we can blend between y4(x) and y5(x) with a function that varies
from 0 to 1 as x goes from 4 to 5. The fractional part of x, that is, x− 4, is such a
function, which results in

y = y4(x) · (x− 4) + y5(x) · (1− (x− 4)). (20.13)

Unfortunately, the resultant graph has sharp corners at integer values. To resolve
this, we need a nicer interpolation. We will use the fractional part of x, xf =
x− floor(x), as the argument to our blending function, namely,

a(t) = 6t5 − 15t4 + 10t3, (20.14)

which varies from a(0) = 0 to a(1) = 1, and has a′(s) = 0 for s = 0, 1. The result
is a second-order smooth interpolation between the successive linear functions.
The result is shown in Figure 20.15.

In practice, to create a larger version of Figure 20.15, we would generate,
say, 20 random items from the set {−1, 0, 1} and use these as the gradient values
at locations x = 0, 1, . . . , 19. For values outside this range, we reduce mod 20.
That produces a repeating pattern, but it is much faster than invoking a random
number generator lots of times. Of course, one can choose any fixed number of
gradients—20 or 200 or 2,000—to avoid repetition in practice.

−1 0 1 2 3

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 20.15: One-dimensional
Perlin noise; the individual linear
functions are shown as short red
segments.

Note that because the control points had unit spacing, the resultant spline curve
had features that were spaced about a unit apart in general, and hence they had a
Fourier transform that was concentrated at frequency one. This idea can be gener-
alized to 2D and 3D. To generalize to three dimensions (2D is left as an exercise
for you), we must select (3D) gradients at each integer point. Perlin recommends
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picking them from the set 12 vectors from the center of a cube to its edge mid-
points, namely,

(1, 1, 0) (−1, 1, 0) (1,−1, 0) (−1,−1, 0) (20.15)

(1, 0, 1) (−1, 0, 1) (1, 0,−1) (−1, 0,−1) (20.16)

(0, 1, 1) ( 0,−1, 1) (0, 1,−1) ( 0,−1,−1), (20.17)

to avoid a kind of bias in which the gradient of the noise function ends up pref-
erentially aligned with the coordinate axes. By appending a redundant row to this
list, namely,

(1, 1, 0) (−1, 1, 0) (0,−1, 1) ( 0,−1,−1), (20.18)

we end up with 16 vectors, which makes it easy to use bitwise arithmetic to select
one of them.

Having assigned a gradient vector
[
u v w

]T
to the lattice point (i, j, k) we

define a linear function

gi,j,k(x, y, z) = u(x− i) + v(y− j) + w(z− k). (20.19)

To find the noise value at a point (x, y, z), we let i0, j0, and k0 be the floor of x, y,
and z, respectively, so that i0 ≤ x < i0 + 1, and similarly for y and z, and the eight
corners of the grid cube containing (x, y, z) have coordinates (i0, j0, k0), (i0, j0, k0+
1), (i0, j0+1, k0), . . . , (i0+1, j0+1, k0+1). For each corner (i, j, k), we evaluate the
linear function associated to that corner at the point (x, y, z) to get a value vi,j,k. We
blend these values trilinearly using a(xf), a(yf), and a(zf). A direct but inefficient
implementation is given in Listing 20.1 (the function a of Equation 20.14 must
also be defined). Perlin [Per02a] provides an optimized implementation.

The result (in 2D) is shown in Figures 20.16 and 20.17.
We can use 3D Perlin noise to create a radial displacement map on a sphere,

while also coloring points by their displacement, to get a result like that shown in
Figure 20.18.

Perlin [Per85] describes far more complex applications, allowing him to pro-
duce things like the marble texture in Figure 20.19.
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Figure 20.16: 2D Perlin noise on
a 6 × 6 region of the plane.

Figure 20.17: The same function,
displayed as a grayscale image
where−1 is black and+1 is white.

20.8.3 Reaction-Diffusion Textures

A third approach to texture synthesis is due to an idea by Turing [Tur52] about
the formation of patterns like leopard spots or snake scales in nature. He con-
jectured that such patterns could arise from evolving concentrations of chemicals
called morphogens. Typically, one starts with two morphogens, with concentra-
tions randomly distributed across a surface. They evolve through a combination
of two processes: diffusion, in which high concentrations of morphogens diffuse
to fill in areas of low concentration, and reaction, in which the two morphogens
combine chemically to either produce or consume one or both of the morphogens.
If the presence of A promotes the production of B, but the presence of B promotes
the consumption of A, for instance, interesting patterns can arise. The appearance
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Listing 20.1: An implementation of Perlin noise using
a 256× 256× 256 cube as a tile.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

grad[16][3] = (1, 1, 0), (−1, 1, 0), . . .

noise(x, y, z)
reduce x, y, z mod 256
i0 = floor(x); j0 = floor(y); k0 = floor(z);
xf = x - i0; yf = y - j0; zf = z - k0;
ax = a(xf) ; ay = a(yf) ; az = a(zf); // blending coeffs

for i = 0, 1; for j = 0, 1; for k = 0, 1
h[i][j][k] = hash(i0+i, j0 + j, k0 + k)
// a hash value between 0 and 15
g[i][j][k] = grad[h[i][j][k]]
v[i][j][k] = (x - (i0+i)) * g[i][j][k][0] +

(y - (j0+j)) * g[i][j][k][1] +
(z - (k0+k)) * g[i][j][k][2]

return blend3(v, ax, ay, az)

blend3(vals, ax, ay, az)
// linearly interpolate first in x, then y, then z.
x00 = interp(vals[0][0][0], vals[1][0][0], ax)
x01 = interp(vals[0][0][1], vals[1][0][1], ax)
x10 = interp(vals[0][1][0], vals[1][1][0], ax)
x11 = interp(vals[0][1][1], vals[1][1][1], ax)
xy0 = interp(x00, x10, ay)
xy1 = interp(x01, x11, ay)
xyz = interp(xy0, xy1, az)
return xyz

interp(v0, v1, a)
return (1-a) * v0 + a * v1

of these patterns is governed by many things: the particular differential equation
representing the change in morphogen A as a function of the concentrations of A
and B, the rate (and direction) of diffusion of the morphogens, and the initial dis-
tribution of concentrations. Turing’s idea was that the steady-state concentration
of one of the morphogens might control appearance so that, for example, a zebra’s
skin would grow white hair where the concentration of morphogen A was small,
but black hair where it was large.

Figure 20.18: A sphere radially
displacement-mapped with Perlin
noise.

Turing lacked the computational power to perform simulations, but
Turk [Tur91] and Kass and Witkin [WK91] took his ideas, extended them, and
made it practical to run simulations to predict the steady-state concentrations
resulting from some set of initial conditions, not only on the plane, but also
on more general surfaces. Figure 20.20 shows some examples of the reaction-
diffusion textures that they generated.

Figure 20.19: A marble vase
with texture based on a complex
combination of noise functions
(Courtesy of Ken Perlin, © 1985
ACM, Inc. Reprinted by permis-
sion).

20.9 Data-Driven Texture Synthesis

As a final topic, we’ll briefly discuss two methods for generating new texture
from old. The first of these is Ashikhmin’s texture synthesis algorithm [Ash01],
which is based on ideas in papers by Efros and Leung [EL99] and Wei and
Levoy [WL00], which in turn follow work of Popat and Picard [PP93]. The input
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for the algorithm is a texture image (e.g., a photograph of a brick wall) that’s
called the source, and a size, n × k, of an image to be created. The output is an
n×k image we’ll call the target; typically n×k is much larger than the size of the
input image. The idea is that the target should look like it comes from “the same
stuff as the source”; for example, like a photograph of a larger region of a brick
wall. Figure 20.21 shows the idea. We fill in the target image row by row, moving
left to right. At a typical point in the filling-in procedure, the blue-colored pixels
have had their values determined and the yellow area is still to be processed. We
select a small rectangle (2× 3 in the figure) containing mostly known pixels, and
one unknown (pink) pixel at the bottom right. (We’ll call this set of six pixels a
template.) The goal is to determine a value for this last pixel, and then advance
the template one step to the right.

Figure 20.20: Reaction-diffusion
textures. Top: Textures synthe-
sized by Kass and Witkin. (Cour-
tesy of Michael Kass, Pixar
and Andrew Witkin, © 1991
ACM, Inc. Reprinted by permis-
sion). Bottom: Texture synthe-
sized by Greg Turk. (Courtesy of
Greg Turk, © 1991 ACM, Inc.
Reprinted by permission.)

Target

Source

Figure 20.21: A partly synthe-
sized image, and a highlighted
region with one unknown pixel.

We take the five known pixels in the rectangle, and look in the source image
for similarly shaped clusters that match these five known pixels. We then pick one
with a good fit, and copy its sixth pixel into the appropriate spot in the target. We
then move the template one step to the right, and proceed.

This description glosses over several important points, such as “How do we
get started?” and “How do we move to a new row?” and “How do we find in
the source image good-matching patches for the known template pixels without
taking forever to do it?” One way to start is with random pixels from the source
image filling the target. As we start at the upper left, finding a “match” for the first
5-pixel patch will be very difficult—we’ll have to be happy with a not-very-good
result. But as we move forward, things gradually start to work better. To improve
matters, we may want to run the algorithm several times, working top to bottom,
bottom to top, left to right, right to left, etc., to clean up the edges.

As for finding good candidates as matching patches, one useful observation
is that if you move the template one step to the right, a good candidate for filling
in the next pixel is exactly one step to the right of the source pixel you just used
(i.e., the algorithm’s very likely to favor copying whole rows of pixels). This can
be generalized. For instance, right above the missing pixel is one that you filled in
one row earlier. If we look at the corresponding source pixel, the one immediately
below it is a good candidate for the missing pixel, too. In fact, the source loca-
tions of all five known template pixels similarly provide (with slight offsets) good
candidate locations in which to find a source for the missing sixth pixel. The algo-
rithm proceeds by picking a pixel from this candidate set. Occasionally (e.g., when
a source pixel is near the edge of the image) this may not work, in which case we
have to replace this candidate with another; there are many possible choices, and
the details are not important.

The results are quite impressive. Figure 20.22 shows an example in which a
few berries are used to synthesize many berries. The algorithm has another advan-
tage: It’s possible to start with the target image partly filled in! We can declare in
advance that we want certain pixels to have certain colors, and when the algorithm
reaches these pixels, it finds them already “filled in” and leaves them unchanged.
But their presence affects how well the subsequent patches fit with one another,
and hence the synthesis of subsequent pixels. Figure 20.23 shows an example.

The end result of the synthesis process is that long diagonal strips from the
source tend to be copied whole, in such a way that they match up with neighboring
strips. Figure 20.24 shows this structure.

In this situation, a small square of the target image around some pixel (i, j)
tends to match a small square in the source image around some pixel (i′, j′),
although along the edges between strips this isn’t an exact match. If we compute
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vij =
[
i′ − i j′ − j

]T
, then we see that v tends to be locally constant as a function

of i and j, precisely because of the approach that the algorithm takes, namely,
using nearby pixels’ v-vectors as candidates for the v-vector of the pixel being
synthesized.

This notion can be generalized: Given an image A and an image B, we can
extract, for each pixel (i, j) of A, a p×p square P centered there, and look at every
p× p patch in B to find one “closest” to P. We then find the center of this B-patch,

(i′, j′), and set vij =
[
i′ − i j′ − j

]T
. The resultant collection of vectors is called

a nearest-neighbor field (for patches of size p). Computing this field can be very
slow, but if the images A and B are similar, the field tends to have the same kind
of coherence exhibited by the results of the Ashikhmin algorithm: Neighboring
pixels tend to have similar vectors. Barnes et al. [BSFG09] use this observation
to develop an approach to computing the nearest-neighbor field (or a very close
approximation) for two images very quickly. Figure 20.22: A tiny source

image and a large image
synthesized from it (Courtesy of
Michael Ashikhmin, © 2001 ACM,
Inc. Reprinted by permission.)

Figure 20.23: A source image,
a hand-drawn “guide,” and the
resulting synthesized image after
five rounds of synthesis (Courtesy
of Michael Ashikhmin, © 2001
ACM, Inc. Reprinted by permis-
sion.)

While the resultant field might be used for texture synthesis if B is an example
texture and A is a large image that has some structural resemblance to the texture
in B, Barnes et al. actually describe a great many other computational photography
applications based on it, such as the “image shuffling” shown in Figure 20.25, in
which the user annotates a region (in this case, the person in the photo) and a
place to which to move the region. A combination of the nearest-neighbor field
computation and an expectation-maximization algorithm that seeks to fill in the
hole (and adjust pixels near the moved region) in a way that makes the patch
matching optimal produces the image in which the person appears to have moved
within the photo.

20.10 Discussion and Further Reading

We’ve only touched on texture mapping here. Table 20.1 gives some hint of how
powerful the method is, which should hardly be surprising, since at its essence,
it’s “indirection” or “function evaluation,” both of which are at the very heart of
computation.

With texture mapping, we’re (generally) altering parameters to a lighting com-
putation. But in Chapter 31, we’ll see that what we actually want to compute for
each sample in a rendering is an estimate of an integral, and the integrand has
the general form of a lighting model. As we move from sample to sample, this
integral varies. If the variation is not band-limited, we’ll get aliasing errors. But
texture mapping makes certain that the individual parameters within the integrand
are each band-limited, rather than the value of the integral. In other words, we’ve
band-limited and then integrated, rather than integrated and then band-limited.
Since these two operations do not generally commute, we’re producing poten-
tially incorrect results. The degree to which they’re incorrect has not yet been
thoroughly analyzed.

Although texture mapping is used in rendering, it’s also forced into service
in more general computations. Both GL and DX shaders use texture maps as
general-purpose RAM for storing arbitrary data structures. That is because the
first graphics systems didn’t support random access memory or anything beyond
primitive floating-point types. The practice of tricky uses of texture memory is los-
ing currency with new hardware that supports arbitrary read and write operations,
often using sophisticated abstractions. DirectCompute and CUDA shaders already
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just look like C programs with regard to memory access . . . but they still have the
useful API for texture fetches that implement mappings and filtering.

Texture synthesis is also a rich and active area of research, from ab initio meth-
ods like Cook and DeRose’s work on wavelet noise [CD05b], which generalizes
Perlin noise, to work on detail hallucination, in which highly zoomed textures
that would otherwise be blurry are enhanced with further detail that matches the
neighboring texel values [SZT10, WWZ+07].

Figure 20.24: The striplike
structure of a synthesized
image. Coherent pixel regions
are outlined in white. (Cour-
tesy of Michael Ashikhmin, ©
2001 ACM, Inc. Reprinted by
permission.)

Figure 20.25: The man in the
original image (a) is translated to
the left in image (b). (Courtesy of
Connelly Barnes)

20.11 Exercises

Exercise 20.1: In varying parameters to the Phong model, we’ve used tex-
ture mapping to adjust the incoming light, the outgoing light, and the diffuse and
glossy constants. But we haven’t used it to modify the dot product. If we replace
v ·w = vTw with vTMw, where M is some symmetric matrix with positive eigen-
values, then the results computed by the Phong model will change depending on
the orientation of the eigenvectors and the magnitudes of the eigenvalues. Apply
this idea to the unit sphere. Writing M = VDVT where V contains the eigenvec-
tors as columns, and D is a diagonal matrix with the eigenvalues on the diagonal,
experiment with what happens when V =

[
t1 t2 n

]
, where t1 and t2 are unit

vectors tangent to the latitude and longitude lines, n is the surface normal, and
D = Diag(s, t, 1), where 0 < s, t ≤ 1. You should be able to achieve the general
appearance of brushed metal if you use this altered inner product in the glossy part
of the Phong model.

Exercise 20.2: On the unit disk D in the plane, consider the vector field

n(x, z) = S(
[−z 1 x

]T
). Show that there’s no function y = f (x, z) on D

with the property that the normal vector to the graph of f at (x, f (x, z), z) is
exactly n(x, z), that is, that n is not the normal field of any surface above D.
Hint: Assume without loss of generality that f (1, 0) = 0. Now traverse the curve
γ(t) = (cos t, 0, sin t), 0 ≤ t ≤ 2π and see what you can say about the restriction
of f to this curve.

Exercise 20.3: (a) Write a program to render a picture like the one shown in
Figure 20.13. For the checkerboard itself, assuming 0 is black and 1 is white, make
the light squares about 0.85 and the dark squares about 0.15, and be sure you can
render a picture like the one shown.
(b) Figure out the size of the screen-space projection of a unit square at location
(x, 0, z) on the ground plane, either algebraically or by projecting the four corners
and computing numerically. From this, determine the vertical and horizontal band
limits as a function of x and z.
(c) The texture color at location (x, z) on the plane can be written as 0.5 +
0.35S(x)S(z), where S(x) = 1 if floor(x) is even, and−1 otherwise. With methods
like those of Chapter 18, you can compute the Fourier series for S; it’s

S(x) =
4
π

∞∑
j=0

1
2j + 1

sin(π(2j + 1)x). (20.20)

To band-limit this, you need only truncate the sum, and define

S̄(x,ω0) =
4
π

floor(
ω0−1

2 )∑
j=0

1
2j + 1

sin(π(2j + 1)x), (20.21)
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which removes all frequencies ω0 and above. Rerender your image using S̄ with an
appropriate band limit, based on z, and compare aliasing in the rerendered image.
(d) The aliasing may still seem excessive to you, and the Gibbs phenomenon arti-
facts may also be annoying. Experiment with other approximations to a band-
limited version of S, and with band limiting to a lower frequency than might seem
necessary, and evaluate the results.

(e) Truncating the series at the band limit (i.e., multiplying by a box in the
frequency domain) is not the only way to remove high frequencies. Try using the
Fejer kernel (i.e., multiplying by an appropriately dimensioned tent in the fre-
quency domain) to see if you can get more satisfying results.

Exercise 20.4: In two dimensions, imagine a parabolic mirror like the one
shown in red in Figure 20.26, with the equation of the form z = 1

2 (1 − y2). Rays
(in green) coming from a semicircle of directions are reflected to become rays (in
blue) parallel to the z-axis (and vice versa).

(a) Show that the yz-vector n =
[
y, 1
]T

is normal to the red curve at the point
(y, z) = (y, 1

2 (1− y2)).

(b) If light traveling in the direction
[
0 −1

]T
strikes the mirror at (y, z) and

reflects, in what direction r does it leave? Write out your answer in terms of y
and z.
(c) Show that at (±1, 0) the outgoing ray is in direction

[±1 0
]T

.

(d) Show that incoming rays in direction
[
0 −1

]T
whose y-coordinate is between

−1 and 1 become outgoing rays in all possible directions in the right half-plane.
(e) If you spin Figure 20.26 about the z-axis, the red curve generates a paraboloid.

Show that in this situation, incoming rays in the direction
[
0 −1

]T
with starting

points of the form (x, y, 1), where x2 + y2 ≤ 1, produce all possible outgoing rays
in the hemisphere of directions with z ≥ 0.
(f) If we take a second paraboloid defined by spinning z = 1

2 (−1 + y2), then

arrows in direction
[
0 1

]T
, arriving from points of the form (x, y,−1), where

x2 + y2 ≤ 1, reflect into outgoing rays in the opposite hemisphere of directions.
These two reflections establish a correspondence between (1) two unit disks par-
allel to the xy-plane, and (2) two hemispheres of directions. Write out the inverse
of this correspondence.
(g) Explain how you can represent a texture map on the sphere (e.g., an irradiance
map, or an environment map, etc.) by providing textures on two disks.

(h) Estimate the largest value of the change of area for this “dual paraboloid”
parameterization of the sphere to show that it uses texture memory quite effec-
tively, even though π/4 of each texture image (the disk within the unit square)
gets used for each half of the parameterization.

z

y

–2 0 2

–2

0

2

Figure 20.26: The red parabolic
mirror reflects light from a semi-
circle of directions onto a line
segment.
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Chapter 21

Interaction Techniques

21.1 Introduction

While human-computer interaction is a field in itself, certain interaction tech-
niques use a substantial amount of the mathematics of transformations, and there-
fore are more suitable for a book like ours than one that concentrates on the design
of the interaction and the human factors associated with that design. We illustrate
these ideas with a multitouch interface for 2D manipulation, and three 3D manip-
ulators: the arcball, trackball, and Unicam. In each case we discuss the mathemat-
ics, but also the design choices made in creating the interaction technique.

We begin with a discussion of some basic ideas in interaction that everyone
in graphics should know. Section 21.3 discusses an implementation of a simple
multitouch photo-sorting application. We then discuss 3D transformation inter-
faces, both for rotating objects and for adjusting the camera in a scene. We con-
clude with some guidelines and example interfaces that demonstrate particularly
useful ideas.

21.2 User Interfaces and Computer Graphics

Despite the advances in games and other technologies, the single biggest user
of computer graphics is still and will continue to be the graphical user interface
(GUI), by almost any measure except the number of pixels drawn, where games
(or video display) undoubtedly dominate. This GUI is increasingly a combination
of the WIMP (windows, icons, menus, pointers) GUI and post-WIMP develop-
ments like multitouch interfaces and 3D gestural interfaces.

There are two reasons for this. The first is the commoditization of hardware
due to Moore’s law and the superb engineering of interaction devices, displays,
and wireless technologies. The second reason is the economics of computing:
While it was once true that computers were expensive and users were not, the
opposite is now true—processors are so cheap that an entry-level computer costs
less than a week’s salary at minimum wage. In this economic environment, it

567



ptg11539634

568 Interaction Techniques

makes sense to save time where it’s expensive—the user!—rather than where it’s
cheap.

The discovery of an effective interface model—the WIMP GUI—to replace
the cryptic mechanisms of the past not only enlarged the market for computing,
but in doing so, enabled further progress by providing processor makers with large
economies of scale: The cost of developing a new machine could be amortized
over many more users.

The modern GUI had its origins in Sutherland’s Sketchpad system [Sut63], a
CAD system that used a light pen and many (physical) buttons for its input,
and an oscilloscope for output. It included direct-manipulation tools, selec-
tion by pointing, grouping, constraint-based interaction, and many other ideas
that are being constantly reinvented even now. In the 1970s, at Xerox PARC,
researchers developed the WIMP interface in a form that closely resembles
the modern version (albeit in black and white), for a machine called the Alto.
Much of this design was adopted in the design of the Apple Lisa (and later
the Macintosh). In the decades since its introduction, it’s come to dominate
interaction, and has only recently begun to be challenged by new multitouch
interaction and new interface devices like the Wii and Kinect.

While the framework provided by a GUI design like WIMP is a wonder-
ful stepping stone, developing a good user interface is still extremely difficult.
Although trial and error have their place in the exploration of possible designs,
effective designs need testing and refinement, and having a model of the entire
process of interaction, from the machine-dependent side (the pixel position of a
pointer, filtering of pointer tracks to remove noise, etc.) to the human (the user’s
mental state, or his or her goals and sense of progress toward those goals, as in
“I’m trying to move this paragraph, and I’ve succeeded in selecting it . . . ”) is
critical to both of these. The study of effective interaction is the field of human-
computer interaction (HCI) [PRS02]. HCI is intensely multidisciplinary, involv-
ing hardware and software engineering, computer and mathematical sciences,
design arts, ergonomics, and perhaps most important, human sciences (percep-
tion, cognition, and increasingly, social interaction), not to mention cultural and
accessibility issues. It is, first and foremost, a design discipline, one where results
are subject to experimentation and validation.

Such usability testing is surprisingly complex. Consider the problem of com-
paring two interface choices: one easy to learn but with limited expressive power,
the other with great expressive power but difficult to learn. A good example is the
choice of function keys versus a mouse for selecting menu items. Function keys
are easy to learn, while using a mouse effectively requires several days of training.
(If you doubt this, try using your mouse with your other hand for an hour. Even
knowing all about the mouse, you’ll soon find it’s annoying you more than helping
you.) Which is better? The function keys or the mouse? The answer is, naturally,
that it depends: If you’re going to be using the mouse for lots of other things as
well, the eventual benefit may be large enough to make it worth learning (and the
immediate benefit may be large enough to motivate you to do so). If doing this
particular task is a one-time-only event, then the simpler interface is almost cer-
tainly better. As a concrete example, Adobe’s Photoshop has an enormous user
interface that takes quite a long time to learn completely. As a novice user, it
sometimes seems that everything you do makes the picture worse! But when used
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with a pen and tablet (for which much of the design is optimized), the interface
supports such a wide array of operations relatively smoothly that it’s become the
dominant tool in its domain. By contrast, simpler image-editing programs like the
Microsoft Office Picture Manager are easy to learn and use instantly, but this is in
part because they support such a small range of operations. To be clear: A complex
interface may be a necessity for expressive power, but not every complex interface
is a good one. A common evolution pattern is accretion, in which new features
are added to a program over time, each one added in the place that seems most
convenient at that moment. The end result is a complex interface in which there’s
little logical organization at all, and the resultant program may be difficult to use,
even for experts who use it every day.

These examples, though simple, make it clear that the testing of a user inter-
face may depend on a larger context—not just the interaction process or device,
but the entire user experience, which bundles the GUI together with its interaction
and with the particular software functionality, and perhaps even with the context
of use (shopping mall versus automobile versus office).

Before we leave the topic of complexity versus learnability, there are two more
relevant aspects of GUIs. First, there’s a general principle that recognition is faster
than recall: It’s easier to recognize a “yield” sign in the United States than to say
whether its triangular shape points up or down, for instance. In the case of GUIs,
this means that using familiar names and icons can help a new user make sense
of a new interface almost instantly. For the same reason, placing menu items in
expected places is generally a good idea. Second, you should, if possible, design
a gentle slope interface [HKS+97], one in which it’s easy to do something right
away, but in which there’s a smooth transition from novice to power user. Menus
that display, next to each item, a keystroke that invokes that menu item are an
example. Things like tool trays, which are buttons that can either be clicked (to
invoke a standard operation) or be expanded into multiple buttons (to allow selec-
tion of closely related operations), provide easy access to richer functionality. (For
example, a drawing program might have a button that selects line-drawing mode.
When its tool tray is expanded, there might be options to draw solid, dotted, or
dashed lines.) Such gentle slope interfaces provide a pathway between ease of
initial use and ease of expert use.

As with software engineering, there are multiple design approaches that all
share a common trait of needing to be user-centered, that is, to know the client
and the domain. Two dominant ones are (a) a modified waterfall model1 for soft-
ware engineering, and (b) rapid prototyping, in which the evolving interface is
always functional, but is gradually adapted from minimal function (clicking a but-
ton generates a “button clicked” message) to sophisticated interaction sequences.
Some mixture of both of these processes is typical in the development of new
kinds of interaction.

Abstraction boundaries can help you develop an interface effectively. These
boundaries are the places where substitutions may make sense, whereas within a
particular layer, there may be dependencies that make substitution less feasible.
For instance, we may have a design in which a mouse is used to point at various

1. In the waterfall model, requirements determine design; the design determines the
implementation. After implementation, the system is verified, and then maintained.
Each step is completed before the next. In the modified waterfall, there is substantial
feedback at all levels.
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things; substituting a pen for the mouse’s pointing functionality is often reason-
able (although if clicking or double-clicking is part of the process, then the sub-
stitution may have to be more complex, with pen taps replacing button clicks).
Replacing the pen with a Wiimote, or with your hand in a Kinect system, is sim-
ilarly reasonable, although with each substitution, the details of the interaction
must necessarily change. What doesn’t change is the intent to identify or select
certain objects in the scene through some interaction, which makes the separation
of intent from implementation a natural boundary.

In interaction, there is communication between human and computer, typi-
cally in two languages: The user-to-computer direction involves various interac-
tion devices, and the computer-to-user direction is primarily through the display
to the eye, although there may also be audio or touch components. The mean-
ing and form of each of these languages constitute natural abstraction boundaries:
We must decide what things a user may communicate to the computer (meaning)
and how each thing is communicated (form), and vice versa. There is also a third
component: the relationship of interaction device to display, or the mathematics or
algorithm required to transform the input into something meaningful in the output.
But this is typically application-dependent and represents the computation rather
than the communication between human and machine.

The two languages in turn break down into finer levels.

• Conceptual design is the model of the user’s understanding of the appli-
cation (e.g., a 3D modeling application), typically consisting of objects
(shape, texture, control point), relationships among objects (textures are
applied to shapes, splines are governed by control points), and operations
on them (we can apply a texture to an object, or reshape a spline curve).

• Functional design is the specification of the interface to the operations
of the conceptual design. It includes a specification of what information
is needed for an operation, what errors may occur (and how they are to
be handled), and what the results are. The functional design is an abstrac-
tion of the operations, but not of the user interface. We would specify that
to apply a texture to a shape, we need the texture and the shape and the
texture coordinates on the shape, but would leave the question of how the
user communicates the texture or shape to a later stage. Conceptual and
functional design together constitute the “meaning” part of the interaction
language.

• Sequencing design describes the ordering of inputs and outputs, and the
rules by which inputs may be assembled to generate meaning. A click and
drag on a model may be meaningful (indicating screen-aligned translation
of the model), while a click and drag on the empty part of a menu bar may
be ignored as meaningless.

• Lexical design determines what constitutes the units of a sequence. For
input, these are things like a single click, a double-click, a drag operation,
etc. For output, they may be things like blinking, displaying a dialog box,
the choice of font or text color for text display, etc.

Not all interaction is purely sequential; in two-handed multitouch interfaces,
both hands may be doing things that, taken together over some period of time, have
some meaning, but the precise ordering is irrelevant; nonetheless, a generalized
notion of sequence design provides a good boundary even in these cases.
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Interactions like the two-handed multitouch example above are the simplest
cases of what are being called natural user interfaces (NUIs). These are inter-
faces that can involve multiple nondeterministically decoded channels of commu-
nication, leveraging our different senses (e.g., the ability to point with a finger
while giving instructions by voice). Not surprisingly, the decoding of multiple
streams of data into a coherent goal can be very challenging. One particular chal-
lenge is that in the WIMP interface, each interaction is purposeful and demarcated:
We start an action by pressing a start button, for instance, and the meaning is com-
pletely clear. But for a camera-based interface that watches a user’s face or hands
for indication of an action to take, there’s no clear delimiting of the action; the
system must infer the start and end.

21.2.1 Prescriptions

We conclude these generalities with a few ideas that are important for anyone
designing any kind of interface. There are no absolute prescriptions in interaction
design except, perhaps, “You should test your design on real users.” Designs must
often satisfy the needs of both beginners and power users, and until the design is
widely adopted, it’s not certain that it will ever have power users. Designs must
work within a budget: Interaction may be allocated only a tiny fraction of proces-
sor time, pixel fill rate, or other resources. As processor speed, fill rate, bandwidth,
and other factors change, the sweet spot for a design can shift substantially.

For every design, some degree of responsiveness and fluidity is essential.
When you click a button on a GUI, you need to know that the click was detected
by the program: The button should change its appearance, and perhaps you should
get audio feedback as well. It’s essential that these happen apparently instantly—
by the time there’s a lag of even 0.2 sec, the interface begins to feel clunky and
unreliable. The more “immediate” the GUI feels, the more critical prompt feed-
back becomes: When we feel separated from the computer, treating it as a device
or machine, some delay is tolerable. The more we perceive it as “real,” the more
we expect things to behave as they do in the real world, that is, with instant feed-
back. With modern controllers—you use your hand to select from a menu in many
Kinect-based games, for instance—the feeling of reality is substantially enhanced,
and real-time feedback is essential. In fact, the separation of an interaction loop
(something that receives and processes interrupts from interaction devices, with a
high processor priority) into its own high-priority thread of execution is critical to
maintaining a sense of hand-to-eye coordination, and a feeling of fluidity in the
interface.

The need for instant feedback and fluidity is context-dependent: A WIMP
desktop GUI may need smooth feedback, but a twitch game demands it—players
get annoyed when their on-time interactions register too late to be effective! In
a virtual reality environment, it becomes critical: Failure to update the interface
(which may be the entire scene!) can lead to cybersickness (nausea due to incon-
sistent apparent motion). Thus, sufficiently rapid feedback becomes almost as
severe a constraint as hard-real-time scheduling.

There are automobiles that seem “right” the moment you sit in them. You can
tell instantly where all the controls are. As you grab the steering wheel, you notice
that there are buttons nearly under your thumbs, in easy reach, but placed so that
you won’t trigger them accidentally. When you shift the transmission, the current
gear is displayed clearly but subtly. When a display element changes discretely,
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like the transmission indicator, it’s because there was a change of state; continua
like speed and coolant temperature are displayed with analog gauges. In the same
way, there are interfaces that seem “right.” There are some basic ideas that can
help your interfaces be among these good ones.

First, use affordances, the way that objects disclose the possible actions that
can be taken. We know to pick up a hammer by its handle because the handle is
designed to fit the human hand. We know that something is a button in an inter-
face because it looks like other buttons we’ve seen, either in the real world or in
other interfaces. When we see visual elements, such as the draggable corner or
side markers on a bounding rectangle in a drawing program, that seem to con-
trast with others (the bounding rectangle itself), we conjecture that they might
have meaning. Such affordances make interfaces easy to learn through discovery.
Objects that expose their manipulability in response to attention (or some proxy
for attention) help as well: The spreadsheet column whose sides highlight as the
cursor passes over them (with the cursor changing to a column-resizing icon) help
us understand that columns are resizable; the position of the cursor is a proxy for
the user’s attention.

Note that many of the aspects of expert use of interfaces ignore affordances.
There’s nothing that tells you, as you select some text, that pressing CTRL-C will
copy that text so that it can later be pasted. But it may well be worth it to you to
know this so that you need not use the ever-apparent menu to perform the very
frequent “copy” operation. Gestural interfaces, too, often lack affordances, except
for those familiar from interaction in the real world (e.g., “If I drag something, it
moves”).

target

start

D

W

Figure 21.1: In the Fitts’ Law
experiment, the user must move a
pointer (real or virtual) from the
red start point at left to the blue
strip at right as fast as possible.

Second, use Fitts’ Law to help your designs. Fitts’ Law, proposed by Paul
Fitts in 1954 [Fit54], describes how long it takes to move from rest to a point
within a target at some distance (see Figure 21.1). In the case where the motion is
one-dimensional (e.g., purely horizontal and the target is a vertical strip of width
W, at a distance D from the starting point), the average time taken to move from
the starting point to a target point in the strip obeys the rule

T = a + b log

(
1 +

D
W

)
. (21.1)

The b factor is an adjustment for units (the logarithm is unitless, but it needs to
be converted to seconds) and for the base of the logarithm; the a term represents
the minimum time for any task—it accounts for the time it takes to perceive and
understand the task, to convert this understanding into a nerve activation, etc.

For most applications in interface design, the details of the law are unimpor-
tant. But a few general principles can be derived from the law.

• Large targets are easier to hit than small ones, especially when the “large-
ness” is in the direction of necessary motion.

• Closer targets are easier to hit than remote ones of the same size.

Furthermore, careful measurement shows that the constant b is device- and
action-dependent: Moving a mouse pointer and moving a pen tip involve differ-
ent constants; dragging with the mouse is slower than simply moving and then
clicking.

As you think about a cursor-based interface design, with the cursor controlled
by a pen, for instance, you should ask yourself, “What things am I most likely
to do with the pen?” and “How can I make these things easy to accomplish?”
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The answer to the first question is application-dependent, but the answer to the
second is more generic. For instance, we can make the simple observation that
among all locations on the screen, the one most rapidly reachable by the cursor
is the cursor’s current location (see Figure 21.2). The next most reachable points
are the four corners of the screen, because of the convention that the pen cursor
never moves outside the screen: A motion to any point in the infinite quadrant
associated to a corner requires no real precision in either the horizontal or vertical
dimension. The four edge strips are similarly easy to reach, although they require
some control in either the horizontal or vertical dimension.

Figure 21.2: The quadrants
(green) associated to corners are
easy targets for cursor motion;
the strips (blue) associated to
screen edges are also good.

One consequence of the “point beneath the cursor is easy to reach” idea is that
pie menus (menus that appear beneath the cursor, in which a drag into one of
several sectors selects an option) are extremely easy to access (see Figure 21.3).
Adjusting the sector sizes makes selecting common operations even easier, and
muscle memory lets advanced users select from such menus without even looking
at them.

Figure 21.3: A pie menu. Dif-
ferent sector sizes make some
options easier to choose than
others.

A consequence of the “corners and edges of the screen are good targets” idea is
that placing menus for all programs at the top of the screen may make interaction
more efficient than locating them at the tops of individual windows. Of course, the
initial interaction with a previously inactive program may be slower: The program
must first be selected to activate it, and thus place its menu at the top of the screen.
By contrast, in the “menus in windows” model, the program selection and menu
selection may be combined into a single action.

By the way, generalizations of Fitts’ Law give us estimates of the difficulty
of reaching two-dimensional targets [GKB07], and of steering through a narrow
(possibly winding) channel to a goal [AZ97], a result that’s been discovered inde-
pendently in several disciplines [Ras60, Dru71]. Fitts’ Law also seems to extend
quite naturally to multitouch devices [FWSB07, MSY07]. These extensions, too,
can be used to guide your designs.

21.2.2 Interaction Event Handling

You’ve written programs in which clicking a button on the interface, or selecting
a menu item, caused something to happen. The 2D test-bed program described
in Chapter 4 contains examples of such interaction. The method used there is
overriding methods. There’s a Button class with a buttonPressed method that
does nothing. We create a new class in which buttonPressed is overridden to do
something useful for us. The system watches for events like a button press, and
when they occur it invokes the appropriate method.

There are alternative approaches. In some object-oriented programming
approaches, objects can respond to messages sent to them, rather than having
methods that can be invoked. When a button is created in such a system, it’s told
what message to send and where to send it, in response to a button press.

In some non-object-oriented systems, you pass a function pointer to a proce-
dure that creates a button. When the button is pressed, the function is called.

These are all just minor variations on a single theme. At a lower level, the
fact that the mouse button was pressed at all must be noticed and handled. There
are basically two approaches. In one, the button press generates an interrupt, and
an interrupt handler is invoked to determine the location of the cursor and then
dispatch the event to the appropriate button, for instance. In another, the button
press enqueues an event on an event queue, which an interaction loop is constantly
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polling—checking to see if there are new events to be processed. (The distinction
is similar to that between preemptive and cooperative multitasking.)

Your choice of programming language, hardware, and operating system may
influence which variety of system you end up using. But none of these substan-
tially restrict general interface functionality: It’s usually possible to get the same
results in all cases.

In all the examples that follow, we use click-and-drag functionality: Some
location(s) is/are selected, the location point is moved, and as a result something
else is changed. Finally, the selection is released. In the 3D manipulation exam-
ples, the location selection comes from a mouse click, the move comes from a
mouse drag, and the mouse-button release terminates the selection. In the photo-
manipulation example, the selection comes from a finger contact, the move comes
from contact motion, and the release comes when the finger is lifted from the
interaction surface. But in all cases, there are multiple states of the system:

• The pre-interaction state

• The “selected” state

• The “dragging” state

• And the post-interaction state

In practice, we reduce this to two states: noninteraction and dragging. The course
of a typical interaction can be described by a finite-state automaton (FSA) with
these two states and four arcs (see Figure 21.4).

buttonPress
draggingidle

mouseMove

buttonRelease

Figure 21.4: We are usually in
the idle state. A click transitions
to the dragging state; dragging
remains there; a button release
returns us to the idle state.

In general, FSAs provide a good structure for planning interaction sequences,
which are seldom as simple as these. Unfortunately, as post-WIMP interactions
evolve, the associated FSAs can become impossibly complex (imagine the FSA
that might describe all possible interactions with your robotic butler in the future!),
but for WIMP interactions, they can be a very useful tool.

21.3 Multitouch Interaction for
2D Manipulation

Multitouch interfaces are becoming increasingly common. We manipulate pic-
tures on our smartphones using a thumb and index finger to translate and scale the
pictures, for instance. Let’s consider the implementation of this 2D manipulator,
represented schematically in Figure 21.5.

Notice three things about the interaction.

1. The position of the touch points in the image remains approximately con-
stant. In the first case, the initial touch was a little above and to the left of
center; after the move, it remains in the same place.

2. In the move-and-scale interaction, the fingers widen more horizontally
than vertically, but we have to choose a single scale amount. One
alternative is to resize the image to accommodate the larger change.
Another alternative is to average the horizontal and vertical widening frac-
tions (i.e., a vertical stretch of 20% and a horizontal stretch of 30% would
result in a uniform scale of 25%). A third possibility, and the one we
choose, is to scale by the ratio of contact distances: If the distance between
the contacts doubles, we scale by a factor of two.
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Figure 21.5: A photo-manipulation interface. (Top) A touch (shown by the pink dot in the
shark photo) and drag (the large orange-brown arrow) moves a photo to a new location.
(Bottom) Two contacts are spread apart to move and enlarge the photo. (©Thomas W.
Doeppner, 2010.)

3. We’ve chosen to scale uniformly, even though nonuniform scaling of
photos makes sense. That’s because nonuniform scaling is so much less
common, and it’s so difficult to move your fingers in exactly propor-
tional amounts, that it makes more sense to restrict to uniform scaling for
convenience.

21.3.1 Defining the Problem

There are many possible ambiguous situations that still remain. What happens
when the user starts by grabbing the upper-right and lower-left corners, and rotates
these contacts to the upper left and lower right, respectively? According to rule 1
above, the picture should flip about its vertical axis to maintain contact-point cor-
relation, but that’s a nonuniform scale, which contradicts rule 2. We in fact choose
rule 3 rule as the dominant one, since opening and closing the fingers is much eas-
ier than rotating the hand, and so the inconsistency of contact points isn’t likely to
be a problem in general.

By how much should we translate the photo during a two-finger interaction?
We could translate the photo so that the first contact point remained underneath
its finger, but the other perhaps did not. We could translate by the average of the
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two contact-point translations. We could translate so as to preserve the lower-left
contact point, whether it’s the first or the second, on the grounds that for right-
handed people, this is likely to be the thumb contact. We’ll choose the second, but
there’s a good argument to be made for each of the others. The only way to decide
conclusively is through user testing.

Now we have a complete problem definition: We’ll translate the photo so that
the midpoint of the two contacts moves as specified, and we’ll scale it about that
midpoint by the ratio of the contact distance after to the contact distance before.

The mathematical portion of the solution is now straightforward: We first scale
the object about the initial midpoint, and then translate that midpoint to its new
location.

21.3.2 Building the Program

To place our photo manipulator in context, we’ll assume that there are several
photos in a scene, represented by a very simple scene graph: a “background,”
representing an infinite canvas on which the photos are placed, with a global
translate-and-scale transformation, and n photos, each with its own translate-and-
scale transformation (see Figure 21.6). We “see” the parts of the photos that, after
transformation, are visible in the unit square 0 ≤ x, y ≤ 1. When we manipulate a
particular photo (or the background), we will alter its transformation and none of
the others.

Figure 21.6: The background
canvas (yellow rectangle) has
its own scale-and-translate view
transformation (the top red
ellipse), and each photo (blue
square) has a scale-and-translate
as well.

We’ll assume that the manipulation is to be done in the form of callbacks, one
for each contact event, where a contact is the touch of a digit to the interaction sur-
face: We get informed when there’s a new contact, a contact drag, and a contact
release. When two contacts move at once (as in the move-and-resize action), we’ll
get a callback for each one (in no particular order). Each callback will identify the
contact with which it’s associated. And at the start of the photo-manipulator appli-
cation, the program will register with the operating system to receive callbacks for
all such interactions.

When, for instance, a touch and drag begins, the application’s new-contact
callback will be invoked; it handles this by creating an Interaction object to
handle the remainder of the interaction sequence. That interaction object registers
for subsequent callbacks, and after receiving each and processing it, marks it as
having been handled so that no other registrants like the application itself get
that callback. When the interaction is completed (by a contact-release event), the
interactor can unregister itself, and subsequent callbacks will once again go to the
application (see Figure 21.7).

21.3.3 The Interactor

The interactor, at initialization, must do the following.

1. Identify which photo is being manipulated (and if the contact is not within
a photo, record that the background is being manipulated).

2. Record the initial point of contact.

3. Record the initial transformation T0 for the photo or background.

4. Keep a reference to the transformation for the selected photo (or back-
ground) in the scene graph. (Because we do the same thing whether a
photo or the background is selected, we’ll refer to the selected photo from
now on.)
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PhotoApp

buttonPress
Create interactor

Interactor

mouseMove
mouseMove
mouseMove

Mouse events 
routed to 
Interactor

buttonRelease

...

Destroy interactor

Mouse events 
again handled 
by PhotoApp

Figure 21.7: Callbacks to the application result in the creation of an interactor, which
handles subsequent callbacks until done.

Let’s imagine, for the time being, that the interaction is a simple single-finger
click and drag, with no scaling involved. Then our strategy for implementing the
interaction during dragging is as follows.

1. At each drag, compute the offset d between the current contact and the
initial contact.

2. Let T be the transformation which is translation-by-d.

3. Replace the transformation for the selected photo with T ◦ T0 (i.e., first do
whatever transformations were done previously, and then translate by T).

Notice that rather than accumulate incremental motions, we use the offset from
the original point. Accumulating increments can also work, but numerical prob-
lems may make the sum of the increments different from the total motion for long
drag sequences, making the photo appear to “slip” around the contact point that’s
being dragged. We discuss this further in the case of virtual sphere rotation.

Note that in either case—accumulated incremental motions, or a single trans-
lation determined from the start point and current point—the translation is com-
posed with the existing transformations on the photo, and thus should be described
as a “relative” transformation rather than an absolute one.

At the end of the interaction, when the contact is broken, we need only destroy
the interactor.

The code outline, in an informal approximation of C#, is shown in
Listing 21.1.

Listing 21.1: Outline of interaction code for photo manipulation application.

1
2
3
4
5
6
7
8

Application:
main()

build scene graph for photos and display the scene register newContact, dragContact,
releaseContact callbacks

public newContactCallback(Scene s, Contact c)
Interaction ii = new Interactor(c)
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9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Interactor:
private Contact c1
private Transform2 initialXform
private Point2 startPoint
private FrameworkElement controlled
private PhotoDisplay photoDisplay

public Interactor(Contact c)
c1 = c
intialPoint = c1.getPoint()
controlled = the photo (or background) that’s at initialPoint
initialXform = controlled.getTransform()

register for all contact callbacks

public dragContactCallback(Contact c)
if c1 != c {signal an error}
Vector2 diff = c.getPoint() - initialPoint
Transform2 T = new Translation(diff)
s.setTransform(o, initialXform*T)
redisplay scene

public releaseContactCallback(Contact c)
if c1 != c {signal an error}
unregister this interactor for callbacks

We’re assuming here that we have point, vector, and transformation classes,
and that composition of transformations is represented by the overloaded * oper-
ator, in which S * T is the transformation that applies S and then T . Furthermore,
we assume that each object (photo or background) stores its own transformation,
rather than the transformations being stored in a scene-graph object.

All of these assumptions hold in WPF, and a WPF implementation of this
photo manipulator is available on this book’s website. Rather than using actual
multitouch contacts, which may not be available to all readers, the program sim-
ulates them by letting the user right-click to create or destroy a “contact” (shown
as a small marker) and then left-click and drag to move contacts.

WPF also provides pick correlation—a report of which object in a scene is
visible at the pixel where the user clicks, as needed at line 19 in Listing 21.1.

What changes must be made to allow for two-contact interaction? When the
second contact happens, we’ll treat the first contact’s click-and-drag sequence as
having terminated (i.e., we’ll start from the current photo’s current transformation,
and forget that we ever had an initial transformation or contact point).

For a two-contact interaction, we’ll (a) treat the midpoint of the two contacts
as pinned to the photo so that when the midpoint moves, the photo moves, and (b)
scale the photo relative to the distance between the fingers so that if the fingers
move together the photo is unscaled, and if they widen the photo enlarges, etc.
We’ll record the midpoint and vector difference of the contacts at the start, and
at each update we’ll build an appropriate scale-and-translate transformation. In
other words, we’ll do just what we did for the single-contact click and drag, but
now we’ll do it by remembering the initial positions of two contact points, and we
will include scaling.

Because the interaction sequence might look like “touch with one finger, drag
to the right, touch with the thumb as well, drag farther to the right and widen the
distance of the finger to the thumb,” we must also track the number of contact
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points. Whenever this number changes, we’ll restart our tracking. Listing 21.2
shows the differences, except for what happens when a contact moves.

Listing 21.2: Handling the varying number of contact points.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Interactor:
private Contact c1, c2;
private Transform2 initialXform
private Point2 startPoint
private FrameworkElement controlled
private PhotoDisplay photoDisplay
private Vector2 startVector

public Interactor(Scene s, Contact c)
c1 = c; c2 = null;
startPoint = c1.getPoint()
initializeInteraction()
...

// if there’s only one contact so far, add a second.
public void addContact(Contact c)

if (c2 == null)
c2 = newContact(e);
initializeInteraction();

private void initializeInteraction()
initialFform = controlled.GetTransform();
if (c2 == null)

startPoint = c1.getPosition();
else

startPoint = midpoint of two contacts
startVector = c2.getPosition() - c1.getPosition();

public removeContact(Contact c)
if only one contact, remove this interactor
otherwise remove one contact and reinitialize interaction

When a contact point moves, we have to adjust the transformation for the
relevant photo. Listing 21.3 gives the details.

Listing 21.3: Handling motion of contact points.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

public void contactMoved(Contact c, Point p)
if (c2 == null)

Vector v = p - startPoint;
TransformGroup tg = new TransformGroup();
tg.Children.Add(initialTransform);
tg.Children.Add(new TranslateTransform(v.X, v.Y));
controlled.SetTransform(tg);

else
// two-point motion.
// scale is ratio between current diff-vec and old diff-vec.
// perform scale around starting mid-point.
// translation = diff between current midpoint and old
Point pp = getMidpoint(); // in world coords.
Point qq = startPoint;
pp = photoDisplay.TranslatePoint(pp, (UIElement) controlled.Parent);
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16
17
18
19
20
21
22
23
24
25
26

qq = photoDisplay.TranslatePoint(qq, (UIElement) controlled.Parent);
Vector motion = pp - qq;

Vector contactDiff = c2.getPosition() - c1.getPosition();
double scaleFactor = contactDiff.Length / startVector.Length;
TransformGroup tg = new TransformGroup();
tg.Children.Add(initialTransform);
tg.Children.Add(new ScaleTransform(scaleFactor, scaleFactor, qq.X,qq.Y));
tg.Children.Add(new TranslateTransform(motion.X, motion.Y));

controlled.SetTransform(tg);

This code uses several WPF conventions that deserve explanation. First, a
TransformGroup is a sequence of transformations that are applied in order; thus,
in the if clause, we first perform the initial transformation to the photo, and then
translate it. Second, the line

pp = photoDisplay.TranslatePoint(pp,(UIElement) controlled.Parent)

transforms the point pp from the world coordinate system (that of the
PhotoDisplay) to the coordinate system of the parent of the current photo (the
background canvas). In the case where the background canvas is being manipu-
lated, it transforms the point to the coordinate system of background’s parent, that
is, the PhotoDisplay. Thus, the computed translation qq - pp is the one to apply
after the photo has been scaled, but before it is further transformed by the transfor-
mation associated to the background. It’s essential that the point pp start in world
coordinates for this to work properly. If it were, say, in the coordinate system of
the photo, we’d have to transform it to the photo’s parent.

21.4 Mouse-Based Object Manipulation in 3D

The same general approach—build an interactor that handles a click-and-drag
sequence by editing the transformation on a target object—works in 3D as well.
A closely related idea is that the relationship of object to view is symmetric: In
a view of a scene with only a single object, we can move the object to the right,
or the camera to the left, and get the same change in the eventual image. Thus, a
slightly modified version of the interaction we use for object manipulation can be
used for camera manipulation.

21.4.1 The Trackball Interface

In the trackball model, we imagine that an object is suspended in a transparent
solid ball with center C that can be rotated by the user; a click and drag on the
ball’s surface, from a starting point A to an endpoint B, defines a rotation: The ball
is rotated in the plane of A, B, and C, with C as the center of rotation, so as to
move A to B. (This is also called the virtual sphere model.)

Inline Exercise 21.1: In terms of A, B, and C, describe the axis of the rotation,
and the angle.
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Inline Exercise 21.2: Under what conditions on A, B, and C is the rotation ill-
defined? Can you think of a situation in a typical interaction where this might
be a problem, or will such a problem never arise?

Inline Exercise 21.3: We’ve specified the rotation quite carefully. If A and
B are two distinct but nonantipodal points of a sphere, describe the set S of rota-
tions of the sphere that take A to B. Is S a finite set? The space SO(3) of sphere
rotations is three-dimensional. Is S a zero-, one-, two-, or three-dimensional
subset of it?

In this interaction sequence, a right-click on the object (our demonstration
example has only a single object) makes a transparent sphere appear surrounding
the object; a first left-click on the sphere initializes a rotation action; and a drag to
a new point defines a rotation, which is applied to the object so that it appears to
be dragged within the transparent sphere. The mouse release makes the currently
applied rotation permanent. By the way, undragging (i.e., returning to the starting
click point) resets the transformation to its initial value.

In the implementation, we need to do three things.

1. Create the transparent sphere and respond to click, drag, and release events
there.

2. Handle a click event by recording the current transformation on the object,
and storing the initially clicked point. It’s best to store this in the frame of
reference of the object at the time of clicking.

3. Handle drag events by transforming the current mouse position into the
frame of the object at initial-click time, and then computing the rotation
that takes the initial click to the current mouse position. This rotation is
applied to the object, followed by its pre-drag transformation.

There is one tricky problem: What happens when the drag leaves the sphere?
For this, we project back onto the sphere: We find the sphere point closest to the
eye-through-cursor ray, and pretend that the cursor is there.

With this in mind, let’s look at the code. We start by creating a scene (see
Figure 21.8) containing a single manipulable object, a cube. If pick correlation
shows a right-click on the cube, we create an interactor to handle the subsequent
interactions:

Figure 21.8: A floor and two
walls, and a cube that can be
rotated.

1
2
3
4
5
6
7
8
9

10
11
12

public partial class Window1 : Window
private RotateTransform3D m_cubeRotation = new RotateTransform3D();
private ModelVisual3D m_cube1;
private Interactor interactor = null;
public Window1()

// initialize, and build a ground and two walls
m_cube1 = a cube model
m_cube1.Transform = new TranslateTransform3D(4, .5, 1);
mainViewport.Children.Add(m_cube1);

this.MouseRightButtonDown +=
new MouseButtonEventHandler(Window1_MouseRightButtonDown);
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

add handlers that forward left-button events to the interactor, if it’s not null.

void Window1_MouseRightButtonDown(object sender, MouseEvent e)
// Check to see if the user clicked on cube1.
// If so, create a sphere around it.
ModelVisual3D hit = GetHitTestResult(e.GetPosition(mainViewport));
if (hit == m_cube1)

if (interactor == null)
interactor = new Interactor(m_cube1, mainViewport, this);

else
endInteraction();

// if there’s already an interactor, delegate to it.
else if (interactor != null)

interactor.Cleanup();
interactor = null;

The interactor, just as in the photo-manipulation example, keeps track of the
manipulated object (controlled) and the transformation for that object at the start
of the manipulation. We also note the viewport from which the object is seen
(which allows us to transform mouse clicks into rays from the eye). Initializing the
interaction consists of recording the initial transformation on the controlled object,
and creating a transparent sphere, centered at the object center. The corresponding
cleanup procedure removes the sphere.

1
2
3
4
5
6
7
8
9

private void initializeInteraction()
initialTransform = controlled.Transform;
find bounds for selected object,
locate center and place a sphere there
viewport3D.Children.Add(sphere);

public void Cleanup()
viewport3D.Children.Remove(sphere);
initialTransform = null;

When the user left-clicks on the sphere, we record the current transformation
associated to the controlled object and the location of the click. Just as in the
photo-manipulation program, we record this position in the coordinate system of
the parent of the controlled object. We also record that we are in the midst of a
drag operation, and when the left button is released, we reset the drag status.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

public void mouseLeftButtonDown(System.Windows.Input.MouseButtonEventArgs e)
ModelVisual3D hit = GetHitTestResult(e.GetPosition(viewport3D));
if (hit != sphere)

return
else if (!inDrag)

startPoint = spherePointFromMousePosition(e.GetPosition(viewport3D));
initialTransform = controlled.Transform;
inDrag = true;

public void mouseLeftButtonUp(System.Windows.Input.MouseButtonEventArgs e)
inDrag = false;

private Point3D spherePointFromMousePosition(Point mousePoint)
form a ray from the eye through the mousePoint
if it hits the sphere

return the hit point.
else // ray misses sphere

return closest point to ray on the sphere
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Finally, just as before, the meat of the work is done when the mouse moves:
We find the new location of the mouse (in the coordinate system of the controlled
object’s parent), build a rotation in that coordinate system, and append this rotation
to the controlled object’s initial transformation.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

public void mouseMove(System.Windows.Input.MouseEventArgs e)
if (inDrag)

Point3D currPoint = spherePointFromMousePosition(e.GetPosition(viewport3D));
Point3D origin = new Point3D(0, 0, 0);
GeneralTransform3D tt = initialTransform.Inverse;
Vector3D vec1 = tt.Transform(startPoint) - tt.Transform(origin);
Vector3D vec2 = tt.Transform(currPoint) - tt.Transform(origin);
vec1.Normalize();
vec2.Normalize();
double angle = Math.Acos(Vector3D.DotProduct(vec1, vec2));
Vector3D axis = Vector3D.CrossProduct(vec1, vec2);
RotateTransform3D rotateTransform = new RotateTransform3D();
rotateTransform.Rotation = new AxisAngleRotation3D(axis, 180 * angle/Math.PI);

Transform3DGroup tg = new Transform3DGroup();
tg.Children.Add(rotateTransform);
tg.Children.Add(initialTransform);
controlled.Transform = tg;

Before leaving the trackball interface, let’s examine some of the design choices
and variants. First, initiating a rotation requires clicking on the object. That in turn
requires moving the pointer so that it appears over the object. Fitts’ Law tells us
that this may be a somewhat costly operation if the object is far from the current
pointer location. On the other hand, shifting our attention to the object happens at
the same time, so we can perhaps regard some of the cost as amortized. Having
selected the object with the first click, we then rotate it with a drag, which is
ideal from a Fitts’ Law perspective: The drag starts at the most easily accessible
location, the current pointer position. How large a drag is required? That depends
on the radius of the virtual sphere: A rotation of 90◦ will require a cursor motion
equivalent to the sphere’s projected radius. This suggests that a small radius is
ideal. On the other hand, precisely placing the cursor within that small radius can
be difficult; a larger sphere gives the user more precise control of the rotation.
Depending on which is more important for the context, speed or precision, the
designer should adjust the standard interaction-sphere size.

On the mathematical level, we’ve chosen to work with an integral form of the
interface: The initial point is clicked, and the rotation of that point to the current
point is recomputed for each bit of dragging. As an alternative, we could have used
a differential version, in which the motion from the previous cursor point to the
current one is used to generate a tiny rotation, and these tiny rotations are accu-
mulated by multiplying them into the transform of the object. Unless the cursor
moves along a great circle arc during the drag, the differential and integral forms
give different results. In the differential version, making small circles about the
initial click point generates a spin about that point; making circles in the opposite
direction generates the opposite spin. Users sometimes find this useful. On the
other hand, in the integral form, a drag that ends at the initial point always brings
the object back to its starting orientation, which users may also find useful.

In the differential form, we “accumulate” many small rotations by multiply-
ing them together in the form R1R2R3 . . .Rk, where k can be quite large. While
each Ri may be a rotation matrix within the bounds of numerical precision, their
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product may end up differing from a rotation by a large amount because of round-
off errors; the result can (and should!) surprise the user. A solution to this is to
accumulate the rotations and then, after perhaps ten are accumulated, reorthogo-
nalize the matrix with the Gram-Schmidt process.

Even with this reprojection onto the set of rotation matrices, the differential
form has another drawback. The exact same cursor click-and-drag sequence, exe-
cuted on two identical scenes, may produce different results. That’s because the
mouse motion is sampled by the operating system, and depending on other loads
on the machine, the samples may not occur at exactly the same moments. Thus, the
two sequences of points used to produce the two sequences of rotations may dif-
fer slightly, and the final results will generally differ as well. This is not usually a
problem unless the load is rather high so that sampling occurs at a rate that fails to
accurately represent the cursor path. For example, if the cursor is moved in a small
circle over the course of a half-second, but only two position samples are taken
during that time, the results will be very different than if ten samples are taken.

In general, it’s a bad idea to try to numerically integrate differentials, or
even very small differences, for the reasons given above. There are two excep-
tions. First, such an integral may be the only practical way to compute a value.
In studying light transport, for example, computing the light arriving at the eye
amounts to evaluating an integral, one for which the only known methods are
numerical (see Chapter 31). The second is where the summed quantity is known
to be an integer; in this case, roundoff errors, if they’re known to be small, can be
removed by rounding. (For instance, if you sum four terms and get 3.000013, you
can safely assume that the value is 3.)

21.4.2 The Arcball Interface

The arcball interface [Sho92] is exactly like that of the trackball, except that the
sphere rotates twice as far as the drag would suggest. That is to say, if you drag
from A to B, and they’re 30◦ apart on the sphere centered at C, the object will
rotate 60◦ in the plane of A, B, and C.

This has several practical implications. First, even though we can only see
and click on the front half of the sphere, we can perform every possible rotation:
Dragging the nearest point to the contour rotates it all the way to the farthest point,
for instance. Second, dragging from P to Q, then Q to R, then R to P (where all
three are points on the sphere) results in no rotation at all.

In evaluating the arcball, much of what we said about the virtual sphere still
holds. If the interaction sphere is textured with some recognizable pattern, such
as a world map, then there is some surprise for the user who clicks and drags
London: During the drag, London slides out from under the cursor. With a trans-
parent sphere, this effect is largely invisible, however, and the interaction feels
quite natural. (If we were to implement a translation-by-dragging interface and
translated by twice the drag vector, it would almost certainly be disconcerting to
the user, however.)

21.5 Mouse-Based Camera Manipulation:
Unicam

We now move on to the topic of manipulating the view of a scene. It’s easy to
imagine that this is just the same as manipulating an object; after all, the camera
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transformation is part of the scene graph in exactly the same way that the transfor-
mations on objects are. In more basic terms, if we want to see the left-hand side
of a box, we can either rotate the box to the right or move our eyes to the left. It’s
not very difficult to adapt the trackball or arcball interface to act on the scene as a
whole rather than on a particular object, and thus achieve this effect. For a square
viewport, we simply draw a manipulator sphere that touches all four sides of the
viewpoint, thus giving maximal precision in control of the camera. Unfortunately,
when we do so we find it’s not very satisfactory: The camera keeps tilting away
from “upright,” and while being able to make a single object tilt is convenient,
having a tilted camera is so rarely what’s wanted that it’s a constant annoyance.
This is a situation where context (the traditional human experience of having the
vertical almost always be “up” in our view of the world) should influence design.

Furthermore, camera control involves more than just the orientation of the
camera: You may wish to look somewhere else (at some other object), or get closer
to the object you’re looking at. For the first of these (panning), there’s a fairly
natural interaction: You can click on the object you want to look at and drag it to
the center of the screen. If it’s off-screen, multiple panning steps may be needed.
Of course, you need to do something to indicate that you’re panning rather than
rotating; that is, you need a notion of “mode.” For the second (dollying), there’s
no obvious interaction, even once you’ve established you’re in dollying mode.

Unicam [ZF99] is a camera-manipulation mechanism that allows for control-
ling the three rotational degrees of freedom and the three translational degrees of
freedom in a virtual camera with a single integrated system. Other features com-
mon to virtual cameras (clipping, plane distances, view angle, and film-plane rota-
tions for view-camera effects) are so rarely adjusted that they are not included, just
as we omitted image rotation in our photo-manipulation application. The imple-
mentation is so very similar to that of the other manipulators we’ve described that
we’ll simply describe how the interface feels to the user. Unicam can actually be
used for both perspective and orthographic cameras, but we’ll only describe the
more common perspective camera case here.

Because Unicam is designed for applications in which camera control is a fre-
quent operation (e.g., solid modeling), a single mouse button is entirely allocated
to it: All camera operations are performed by click and drag with this one mouse
button. This reduces the transition time and effort when the user wants to switch
between camera operations and other application operations controlled by other
mouse buttons.

With Unicam, the viewing window is divided into two regions (see Fig-
ure 21.9): an inner rectangle in which interactions determine camera translations
and a border where they determine rotations.

Figure 21.9: In the blue inner
rectangle, mouse motions induce
camera translations. In the pink
border region, mouse motions
determine rotations.

Unicam maintains a notion of a hit point, a place that represents the location
of the user’s focus of attention. Typically, this is the scene point under the cursor
(i.e., the first point hit by tracing a ray from the eye through the cursor point on
the film plane into the scene). In the event that this ray hits nothing in the scene,
the hit point is the projection of the previous hit point onto this ray.

21.5.1 Translation

A click and drag in the translation area is initially classified as “horizontal” or
“vertical” by examining the first few pixels of motion. (The authors suggest about
1% of the screen width as a reasonable distance to use in determining primary
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direction, and say that this categorization must be done in the first 0.1 sec to avoid
disturbing the user.) An initially horizontal motion introduces a camera translation
in a direction parallel to the film plane in such a way that the hit point remains
beneath the cursor. Thus, a click and drag to the right causes the camera to move
to the left in the scene so that the hit point moves the appropriate distance to the
right in the resultant image.

Inline Exercise 21.4: How would a user move the scene up and down rather
than left and right?

An initially vertical cursor motion indicates a different mode of interac-
tion. Left-right motion continues to act as before, performing film-plane-parallel
motion to the left or right, but vertical motion translates the camera along the
ray from the camera to the hit point. The authors make an interesting choice for
how cursor motion is converted to translation toward the object: The conversion is
linear, with a motion from the bottom to the top of the interaction window corre-
sponding to the distance from the camera to the hit point. This makes it impossi-
ble to “overshoot” the hit point, but makes it easy to approach the hit point with a
kind of logarithmic interaction: Multiple half-screen vertical cursor motions each
divide the distance to the hit point by two.

The assignment of vertical cursor motion to dollying is an apparently arbitrary
choice; the authors could have chosen to use horizontal motion. But they report
that users find the vertical motion far more natural, perhaps because we are famil-
iar with scenes like that shown in Figure 21.10, in which the horizontal layout
of the terrain makes the correspondence between vertical position and distance
obvious. (Try to think of a situation in which there’s a similarly strong relation-
ship between horizontal position and distance; is it a commonplace or familiar
situation?)

Figure 21.10: Vertical position,
in this scene, corresponds to dis-
tance from the viewer.21.5.2 Rotation

While there are three rotational degrees of freedom, such rotations must have a
center of rotation. (A rotation about one center can be converted, by a translation,
into a rotation about any other center, but we need a particular center to start from.)
The camera location itself is one possible center of rotation, and it corresponds
well to our physical structure, in which you can bend your neck to look up or
down, and can rotate it to look left and right. But when your attention is focused
on some object, “orbiting” around the object feels more natural than turning your
head and then stepping to the side to bring the object back into view. In Unicam,
a click and release on a scene object places a small blue sphere (the focus dot)
at the hit point, and subsequent rotations are all interpreted as rotations about this
focus dot.

Alternatively, the user can click in the border area to invoke rotation about
the view center, a point on the ray from the camera through the center of the
view. The distance along that view ray is determined by the current hit point:
The perpendicular projection of the hit point onto the view ray is the view
center.

In the case of a focus dot, a subsequent click and drag anywhere on the view
begins a rotation; in the case of a view-centered rotation, the initial click in the
border area initiates the rotation, and subsequent drags determine the amount
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of rotation. In each case, rather than using virtual-sphere or arcball rotations,
the x- and y-coordinates of this mouse displacement from its initial click deter-
mine, respectively, rotation about the world “up” vector (usually y) and about the
camera’s “right” vector (i.e., the vector pointing to the right in the film plane).
Full-screen-width horizontal motion corresponds to 360◦ rotation about the up
vector; full-screen-height motion corresponds to 180◦ rotation about the right
vector, although this rotation is clamped to prevent ever arriving at a straight-up
or straight-down view. The rotations are implemented sequentially: first a rotation
about the up vector, then about the right vector.

21.5.3 Additional Operations

The focus dot also serves as a focus for further interactions: Clicking and releasing
on the focus dot moves the camera to an oblique view of the underlying object,
seen from slightly above the object. A click and drag up and to the right saves the
current view into a draggable icon that can later be clicked to restore the view.
Dragging down and to the right temporarily scales the focus sphere by enlarging
its radius to the drag distance; upon release, the camera dollies inward until this
enlarged sphere fills the view, at which point the focus sphere returns to its normal
size. This allows the user to easily specify a region of interest. A drag in any other
direction aborts the gesture.

21.5.4 Evaluation

Unicam presents the user with very easy access to the most common camera oper-
ations. By having many of the gestures start at the current cursor location, it takes
greatest advantage of Fitts’ Law. By associating actions with a direct-manipulation
“feel” (translation by dragging feels as if you are dragging the world with the cur-
sor, and dollying by vertical motion feels like you’re moving along a train track
toward its vanishing point), the designers make the operations easy to use and
remember.

On the other hand, there are no affordances in the system. There’s nothing that
tells you that the view’s border area can be used for rotation, or that its center
can be used for translation. For an often-used feature like camera control, this is
probably appropriate. Through constant use, the user will rapidly memorize its
features. For controls that are used less often, some visual representation would
be appropriate.

21.6 Choosing the Best Interface

We’ve seen two object-rotation interfaces and a camera-control interface. Many
games provide camera controls that simply let you look left or right (by fixed
increments) or up and down (by fixed increments), often controlled by keyboard
keys. Architecture walkthrough programs let the user move through a building, by
typically constraining the eye height to something near 1.8 m, and prevent motion
that passes through walls, etc. Which interface is best? The answer is that among
well-designed interfaces (e.g., ones that pay attention to matters of affordance and
Fitts’ Law), the best choice almost always depends on context. In an architec-
ture walkthrough application, the camera-control interface should restrict the eye
height and prevent passing through walls; in a CAD/CAM system for designing
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an aircraft, being able to view places that are inaccessible to humans (e.g., the
cable-routing channels in the airframe) is essential, and eye height and collision-
prevention elements in an interface would be annoying.

21.7 Some Interface Examples

In this section, we briefly describe some of our favorite interaction work. The
results range from items you’ll want in your toolbox of ideas to ones that are
single-application interfaces where the interface is enabled by new underlying
graphics technology. Other good ideas, like pie menus, tool trays, and Unicam,
have already been described elsewhere in this chapter, and there are so many good
ideas that we cannot possibly be exhaustive here. This is an idiosyncratic list of
ideas we’ve found important, useful, or inspiring.

21.7.1 First-Person-Shooter Controls

These FPS controls provide keyboard control of view and camera motion in many
video games. They make a nice addition to any other camera control mechanism
you have in your program: They’re easy to learn and widely applicable. In one
form, they use the arrow keys: The up and down keys move the viewer forward and
backward; the left and right keys typically “strafe” to the left and right, although
they can also be used to turn the view to the left or right. If you want to have
nearby keys perform related functions (Fitts’ Law applies to the keyboard as well
as the mouse), the arrow keys are less convenient. Instead, it’s typical to use W
and S for forward and backward motion, Q and E to rotate the view to the left or
right, and A and S for strafing (which, in nonshooting games, can be remapped
to “peeking” to the left or right—the view is shifted somewhat to the left or right
for the duration of the keypress, and it returns to a forward view when the key is
released).

21.7.2 3ds Max Transformation Widget

Δt

Figure 21.11: The basic modeling
widget from 3ds Max (Courtesy
of Azam Khan, ©2008 ACM, Inc.
Reprinted by permission.)

The ViewCube [KMF+08] is a 3D view manipulation widget (see Figure 21.11). It
was developed by Autodesk and has been deployed in all of its 3D modeling prod-
ucts, which include AutoCAD, 3ds Max, Maya, and Mudbox. This makes it one of
the most significant 3D user-interface elements in use today. The ViewCube was
designed to address a long-standing problem in 3D modeling that has only grown
as the popularity and importance of CAD and digital content creation have brought
more designers in from 2D tools: user disorientation. The often-ambiguous third-
person view of an untextured and often unfinished scene can easily leave the user
without a sense of orientation or broader context for content creation applications.
This is less problematic in applications like games, where a polished surrounding
environment and strong lighting cues provide intuitive orientation cues.

The ViewCube always sits in the upper-right corner of the screen. It both pro-
vides intuitive orientation feedback and acts as a camera control widget. The ori-
entation feedback is in the form of a subtle drop shadow indicating vertical orien-
tation and explicitly labeled faces. The researchers who developed the ViewCube
experimented with several alternatives to the text labels, such as embedding a
small 3D view of the current object within the cube, but they found that the text
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was most effective. The 8 corners, 12 edges, and 6 faces of the cube each cor-
respond to specific views. A user can click on zones near any of those with a
mouse to warp to the predefined viewpoints relative to the center of the cube,
or click and drag to rotate the cube to an arbitrary orientation (in the style of the
arcball [Sho92]). The outlines of the cube are stroked as solid paths when the cube
is at one of the 26 canonical views and dashed for intermediate views. In addition,
small arrows (not shown in Figure 21.11) point to the four peripheral faces (which
may not be visible) and support 90◦ roll rotations in the plane of the current view.

21.7.3 Photoshop’s Free-Transform Mode

When you are in free-transform mode in Photoshop and you select an image, its
bounding box is shown with small square “handles” at the corners and edges. As
the cursor moves over these handles, it changes to a double-headed arrow, disclos-
ing that you can click and drag the handles. Corner drags reshape the bounding
box (and its content) in both x and y; a shift-key modifier makes the changes in
width and height be proportional. A control-key modifier lets the corner (or edge)
be moved to any position, so the image is no longer rectangular. Edge drags move
the selected edge; a shift modifier makes the opposite edge adjust as well so that
a shift edge drag on the top scales the image around its horizontal centerline; a
control-shift modifier lets the user shear the image (i.e., move the edge center
along the line containing the edge).

Figure 21.12: Rotating an image
in free-transform mode.

When the cursor is slightly outside the bounding box, it becomes a curved
double-headed arrow, indicating that you can rotate the box and its contents (see
Figure 21.12). Finally, if you click on a corner and press appropriate modifier
keys, you can apply a perspective transform to “keystone” the bounding box in
either the horizontal or vertical direction, giving the appearance of perspective
(see Figure 21.13).

Figure 21.13: The image has
been keystoned by dragging
a corner along the left side;
the bounding box remains un-
changed, however.

21.7.4 Chateau

Chateau [IH01] is a system for rapidly creating highly symmetric forms. User
input is processed to search for symmetries. For instance, if the user recently cre-
ated a cylinder of length 5 and radius 1, and begins the gestures to create a new
cylinder, indicating a length of approximately 5, the system offers up a completed
cylinder in a thumbnail view, which the user can click to confirm that it’s what’s
wanted. If there are multiple possible completions, the most likely (according to
some heuristics) are offered. Once the second cylinder is placed somewhere, the
system may propose a third cylinder, offset from the second in the same way the
second is offset from the first, thus making it easy to create a row of columns, for
instance.

While the particulars of this program are not especially relevant, the notion of a
suggestive interface, in which candidate completions of actions are offered, lever-
ages the “recognition is faster than recall” idea: The user can recognize the correct
completion rapidly. Similar ideas are used in keyboard input for Asian character
sets, where each character is represented by a quadruple of ASCII characters,
but once the user types one or two ASCII characters, several “likely” choices are
offered as completions, with likelihood being determined by things like recent use
in the document, or even surrounding vocabulary or sentence structure.
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The auto-completion used in text-messaging systems on mobile devices is
similar, offering multiple completions. In the T9 input system, using the conven-
tional “2 = ABC, 3 = DEF, 4 = GHI . . . ” mapping, a user types “432” and the sys-
tem recognizes that the most likely word containing one of GHI, followed by one
of DEF, followed by one of ABC, is “head” and offers it as a completion. The user
can continue to type numbers (“54”) to select a longer word like “healing.” And
in a radically different approach to text entry, the Dasher system [WBM00] (see
Figure 21.14) displays text in boxes that approach a user-controlled point. When
the point is moved to the right, the boxes move to the left, at a speed proportional
to the displacement. As the point is moved up or down, the user can arrange for the
point to pass through a particular box. Doing so produces the “keystrokes” shown
in the box (typically a single letter). Using the statistics of the input language, the
system places likely boxes near the middle, and unlikely ones at the top and bot-
tom. In some cases, sequences of two or more characters may be very likely, and
boxes containing those sequences end up “in line” so that it’s easy to pass through
all of them. (For instance, if the user starts by selecting a “T,” the easiest two boxes
to draw through are “h” followed by “e.”) By training the system (thereby altering
its notion of likelihood) or introducing a custom vocabulary, a user can make it
even more effective. This is a suggestive interface that can reasonably be used by
the severely disabled.

Figure 21.14: The user has cho-
sen the characters R-a-p, shown
in the upper left. The user will
move the cursor upward so that
the box labeled “t” passes over
it, completing the word “Rapt.”

21.7.5 Teddy

Teddy [IMT99] is a system for the informal creation of smooth or mostly smooth
3D shapes. The user makes gestures that are interpreted as 3D modeling com-
mands. For instance, at the start, if the user draws a simple closed curve, it is
interpreted as the silhouette of a smooth shape; an “inflation” algorithm converts
the silhouette into 3D. A stroke drawn across a shape cuts off part of the shape, as
if it had been sliced with a sword. If the user draws a closed curve on the surface,
then rotates the object so that this is near the silhouette, and draws a curve start-
ing and ending on the first one, the system creates an “extrusion” from the base
shape using the first curve as the cross section, and the second to determine the
shape of the extrusion. This allows the rapid creation of interesting shapes (see
Figure 21.15).

(a) Snake (a) Snail

Figure 21.15: Examples of infla-
tion of a 2D stroke by Teddy
(Courtesy of Takeo Igarashi,
©1999 ACM, Inc. Reprinted by
permission.)

The system is made possible by various mesh-construction and editing opera-
tions, but it is more notable for the coherence and simplicity of its interface design.
By providing just a few simple operations, and making intuitive gestures to repre-
sent them, Teddy hits a sweet spot in shape creation. Not long after it was intro-
duced, it was used as an avatar-creation interface in a video game, with thousands
of users.

21.7.6 Grabcut and Selection by Strokes

Another example of a technology-enabled interface is Grabcut [RKB04], a system
for automatically dividing an image into foreground and background portions,
given a user’s input—a closed curve that mostly surrounds foreground and not
too much background. The system then creates a statistical model of each set
(foreground and background) of pixels, based on the kinds of colors that appear in
each one. From this model, one can ask, for a given pixel color, “How likely is it
that this pixel was drawn from the foreground distribution? From the background
distribution?” Doing this for every pixel in the image, one can find large areas that
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are “likely to be background” and large areas that are “likely to be foreground,”
and some pixels that are ambiguous. The system then tries to find a partition of
the image into foreground and background regions with two goals.

1. Pixels that are more likely to be foreground than background are generally
labeled as foreground, and similarly for background.

2. Adjacent pixels tend to have the same labels.

These goals allow the system to assign a score to a partition, which in turn means
that finding the best partition is an optimization problem. The optimization can
be framed as an instance of the min-cut problem, for which approximation algo-
rithms have recently been developed [BJ01]. The system finds an optimal parti-
tion, rebuilds the foreground and background models based on the new partition,
and repeats the operation until the result stabilizes. (The algorithm also handles
subpixel partitioning through local estimates of mixtures of foreground and back-
ground, but those details are not important here.)

The end result is that the user need only express rather general intent (“separate
stuff like this from stuff like that”) to accomplish a rather difficult task. (Actually
drawing outlines around foreground elements in programs like Photoshop with
more basic tools, or even “smart scissoring” tools, is remarkably time-consuming.)

The Grabcut approach has been improved upon with a “scribbling” interface,
in which the user scribbles over some typical background regions, then changes
modes and scribbles over some typical foreground regions. The scribbled-on pix-
els are used to create the foreground and background statistical models. In situa-
tions where making a close outline of the foreground may be difficult (e.g., a gray
octopus on a coral bed), it may still be easy to mark a large group of representative
pixels (e.g., by scribbling on the octopus body rather than its arms).

Grabcut has its own advantages, however: If the foreground object is one per-
son in a crowd, the enclosing curve in Grabcut can help prevent other people with
similar skin tones from being included in the foreground, as they might be with
the scribbling interface. Camera

Camera

Camera path

Camera path

Object
(sphere)

Object
(cube)

Figure 21.16: The hovercam
moves the camera in a way that
maintains constant distance from
an object of interest. (Courtesy
of Azam Khan, ©2005 ACM, Inc.
Reprinted by permission.)

21.8 Discussion and Further Reading

While the techniques we’ve discussed in this chapter provide nice illustrations of
the use of linear algebra and geometry in the manipulation of objects and views,
they are merely a starting point. There are other camera-manipulation approaches
(such as allowing the user to control pitch, yaw, and roll about the camera itself),
which, while easy to understand, can easily lead to disorientation; in a sparsely
populated world—a geometric modeling system in which you’re crafting one
object, for instance—it’s easy to rotate the camera to “look at nothing,” and then
have trouble refinding the object of interest. Similarly, it can be easy to zoom or
dolly so far out that the object of interest is subpixel in size, or so far in that the
entire view is covered by a single tiny part of the object, rather like standing with
your nose against the outside of a building. Fitzmaurice et al. [FMM+08] describe
a suite of tools intended to assist with “safe” navigation in a 3D CAD environ-
ment, navigation in which natural camera motions avoid the look-at-nothing and
excessive-zoom problems and a host of others as well. Khan et al. [KKS+05]
describe the HoverCam, a camera manipulator that maintains a constant distance
from an object of interest (see Figure 21.16).
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Glueck et al. [GCA+09] demonstrate how to improve the output side of inter-
action to make it easier for the user to understand the placement of objects in a 3D
modeling system (see Figure 21.17) by showing their relationship to a ground
plane (with a multiscale grid to assist in understanding size). This, in turn, is
related to work of Herndon et al. [HZR+92], in which shadows of an object are
projected on three walls, and the user can drag the shadow on any wall to induce
a corresponding motion of the object (see Figure 21.18).

Figure 21.17: Position pegs give
cues about the vertical position
of objects. Transparent peg bases
indicate objects below the plane.
Pink pegs, like the one clos-
est to the central grid-crossing,
represent assemblies rather than
individual objects. (Courtesy of
Michael Glueck and Azam Khan
©2009 ACM, Inc. Reprinted by
permission.)

All of these techniques show off possibilities for improved navigation and
manipulation in a particular context (3D CAD and modeling); for navigation in
a 3D environment (e.g., in video games) rather different approaches make sense.
In CAD, for instance, you may want to be able to pass through surfaces to reach
hidden surfaces on which you will then perform further operations, while in video
games, it’s typical to prevent players from passing through walls, for instance, and
the control is often primarily 2D (forward-back and turn-left-or-right), with height
above the floor determined by typical human dimensions. While generally under-
stood camera and motion and object controls may evolve (just as some standard
controls have evolved in 2D), we anticipate that application- or domain-specific
controls will continue to be developed.

Figure 21.18: Dragging any one
of the three “shadows” of the air-
plane makes the airplane itself
move. (Courtesy of the Brown
Graphics Group, ©1992 ACM,
Inc. Reprinted by permission.)

The form of interaction is also dependent on the device you’re using: A
user in a virtual reality system typically adjusts the view by moving his/her
head and body, although there are many alternatives, like the World-in-Miniature
approach [PBBW95], in which the VR user can hold in one hand a miniature ver-
sion of the world, and move a miniature camera with the other, thus establishing
a new point of view for the full-size world.

In some contexts, camera control can be inferred from other aspects of the
application. He et al. [HCS96] describe a “virtual cinematography” tool that uses
various film idioms to automatically choose views of scenes containing multiple
interacting people. For instance, in a film, when two people begin talking to each
other, we typically see them both in profile; as the conversation proceeds, we typ-
ically see jump cuts between reciprocal over-the-shoulder views. Idioms like this
can be used to automatically place the virtual camera in a scene with interacting
people, or to assist in virtual storytelling, etc.

In general, the success of these methods can be characterized by context inte-
gration and expression of intent and the integration of expert knowledge into inter-
faces. For camera control, for instance, the viewer typically doesn’t really want to
dolly the camera. Instead, she wants to get a closer look at something; dollying
the camera is a means to an end. The Unicam system provides a gesture to say,
“Give me an oblique view of this object from slightly above it,” for instance, and
generates the camera transition to that view automatically. Similarly, the virtual
cinematography system incorporates expert knowledge into the design of view
transitions so that the user need not consider anything except “which person to
look at.” In general, there’s a cognitive advantage to interfaces that let a user
express intent rather than the action needed to achieve that intent.

Surprisingly often, the technology of interaction is closely tied to the rest of
graphics. Pick correlation, for instance, is most easily implemented with a ray-
scene intersection test, the very same thing we optimized for making efficient
ray-casting renderers. Keeping a virtual camera from passing through walls by
surrounding it with a sphere that’s constrained to lie in empty space uses the
underlying technology of collision detection and response to ensure that the sphere
doesn’t pass through any scene geometry.
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If you are interested in making interfaces for video games, the best source we
know is Swink’s Game Feel [Swi08]. It discusses the problem of how to make
an interface that “feels good,” both analyzing successes and failures, and giving
prescriptive guidelines for design.

For inspiration about user interfaces and how humans approach them, read
Norman’s The Design of Everyday Things, which takes Gibson’s notion of affor-
dances [Gib77] and applies it in the context of human-machine interaction.

For 3D spatial interaction techniques that go beyond those described in this
chapter, Bowman et al. [BKLP04] give good coverage. Olsen [Ols09] discusses
interactive system design that’s not restricted to games, and is firmly hands-on,
with good algorithmic and mathematical details. The classic text for those who
want some grounding in user-interface design without making a career of it is by
Schneiderman et al. [SPCJ09].

21.9 Exercises

Exercise 21.1: A variant of the trackball interaction works like this: The initial
click is at some point P of the image plane; the mouse is currently at some point Q.
The center of the object is at C, which is assumed to not be on the image plane.
The vector (Q − C)×(P − C) serves as an axis for the rotation, with the amount
of rotation made proportional to ‖Q− P‖. It’s nice if the proportionality constant
is chosen so that for small drags, at least those that start on the line between the
eyepoint and C, the rotation resembles the rotation provided by the virtual sphere
interaction. The advantage is that there’s no special-case handling needed if the
drag goes off the transparent sphere. Implement it to see if there are any obvious
disadvantages. Can you easily spin the object around the eye-to-object axis?

Exercise 21.2: The arcball has the property that a sequence of drags from
A1 to A2 to A3 to . . . An has the same net effect as a drag from A1 to An. We
could therefore treat each mouse-drag step as its own operation and update the
controlled object’s transformation at each instant, with no need to remember the
initialTransform. Can you think of any disadvantages of this approach?

Exercise 21.3: Think about your favorite map-viewing software. Imagine that
you have a route between your home and that of a friend who lives 500 miles
away. You want to follow that route. Near your home, the route may involve sev-
eral small streets, but soon you’ll get on a major highway and remain there for
some time, eventually doing some small-scale navigation again at the end as you
approach your friend’s home.
(a) Design an interface that lets you follow the route conveniently from end to end.
(b) Suppose that you’ve located your home on the map, and have marked it, and
now you want to locate your friend’s home and mark that so that the route-finding
software can find a good route. You could enter your friend’s address, but navigat-
ing visually could be faster, especially on a mobile device. You’ll probably want
to zoom out, find your friend’s city, focus on it, zoom in, etc. Can you design a
cursor-based interface to achieve this without separate steps (i.e., zoom out, then
translate, then zoom in)? Hint: Consider adapting the scale of the view depending
on the magnitude of the current motion.

Exercise 21.4: Adapt the photo manipulator so that if the two contacts are
moved sufficiently, the photo is rotated clockwise or counterclockwise by 90◦

about the midpoint of the contacts. You might, for instance, check whether the
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vector difference between the contacts is rotated more than 60◦ from the initial
vector difference, and treat this as a cue to rotate. Having made this rotation, when
should you rotate back to the original position? Why does a 60◦ threshold make
more sense for starting a manipulation than a 45◦ one?

Exercise 21.5: Implement the translation and rotation parts of Unicam, but
replace the dollying adjustment with one where each unit of vertical cursor move-
ment multiplies your distance to the object by some constant ρ < 1. You’ll have to
decide how close you should come to the object if the user drags from the bottom
to the top of the view. Compare this “logarithmic” version to the linear version of
Unicam, and discuss which is preferable, and why.

Exercise 21.6: Enhance the photo-manipulation application so that the user
can place two fingers on the photo, and when she moves her fingers, the photo
translates and (nonuniformly) scales to maintain the contacts at the same point of
the photo. Contrast this to the uniform scaling operation we described.

Exercise 21.7: Consider a basic drawing program, in which the user may draw
points, lines, rectangles, ellipses, etc. How would you design the interaction with
elements for a multitouch environment? In conventional drawing programs, one
can resize a rectangle by dragging any corner, but with a modifier key (like CTRL)
held down, the resizing is restricted to preserve the rectangle’s aspect ratio. Do you
think such control-limiting operations are more or less important in a multitouch
context? Explain.

Exercise 21.8: The photo-sorting application has a front-to-back order on the
photos: The last one loaded from the photo directory is on top. Describe some
approaches to adding the ability to reorder the photos front to back in a seam-
less way.

Exercise 21.9: We implemented the virtual trackball by comparing the current
position to the initial position and computing a rotation based on that difference.
We could instead have implemented an incremental version, in which each cursor
motion is interpreted as representing a separate tiny rotation from the prior cursor
position to the current one, and these tiny rotations are accumulated. Implement
this, and click on the frontmost point of the interaction sphere, then drag a small
circle around that frontmost point, and finish by returning to the frontmost point.
Does the cube return to its initial position? Do you personally prefer the differen-
tial or the integral version of this interaction?

Exercise 21.10: Write down, in as much detail as possible, the conceptual,
functional, sequencing, and lexical design for the virtual sphere interaction.

Exercise 21.11: Write a first-person game controller. The game-play area con-
sists of a large room populated by cylindrical poles of various radii, and you’re
playing “tag” with several other players, each of whom has a controller like yours,
and an avatar that’s a colored sphere. One player is “it,” and tries to tag another
player. Tagging a player happens when the avatar spheres touch. (They cannot
interpenetrate, or pass through walls or poles.) When the player who is “it” tags
another player, that player becomes “it” and the former “it” becomes untaggable
for two seconds. Your challenge is to make an effective controller using whatever
device you have: a keyboard, a mouse, a touchpad, etc. You should justify your
design decisions. The game setting is loosely sketched here so that you are not
too constrained: You can create the game in a small room with fat poles to make
navigation difficult (because the avatar spheres barely fit between them), or in a
room with no poles at all. Construct a world, and then design your controller and
discuss how your controller design is influenced by the game-play world.
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Chapter 22

Splines and Subdivision
Curves

22.1 Introduction

In this chapter and the next, we turn very briefly to the topics of splines and sub-
division, which are closely related. Both are used in geometric modeling (repre-
senting geometric shapes of the sort that we want to animate and render). Splines
are also used in image processing, animation, data fitting, and a host of other
applications. The web materials for these chapters provide a far more thorough
treatment of splines. In this chapter, we provide only the briefest outline of some
of the most common splines and subdivision curves; in the next, we will discuss
surfaces.

22.2 Basic Polynomial Curves

We begin with two widely used ways to specify a curve. You can think of these
as analogous to two ways to specify a line segment: You could specify the end-
points, P and Q, or one endpoint, P, and a vector v to the other endpoint (which is
therefore Q = P+v). Each form of specification has its uses, and both specify the
same geometric entity. Both are instances of the Coordinate-System/Basis princi-
ple: By choosing the correct basis in which to work (in this case a basis for the
vector space of cubic curves in the plane or space), we make our work simpler.

22.3 Fitting a Curve Segment between Two
Curves: The Hermite Curve

Imagine that you’re animating a car that’s driving up the y-axis with velocity[
0 3

]T
, and arrives at the point (0, 4) at time t = 0. You need to animate its

595
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motion as it turns and slows down so that at time t = 1 it’s at position (2, 5), with

velocity
[
2 0

]T
, as shown in Figure 22.1.

You need a way to “glue together” the two parts of the car’s path to get a
smooth motion. What can you do? (We’re just looking for a smooth way to connect
the “traveling along the y-axis” part of the path to the “traveling along the line
y = 5” part, that is, the translational part of the car’s motion. We can then, at each
instant, rotate the car to align it with the tangent to our interpolating path.

0 2 4
0

2

4

6
t = 1

t = 0

Figure 22.1: Animating a car’s
motion. Given the initial and final
points and velocity, we want to
find a path like the magenta
curve.

First, we generalize the problem: Given positions P and Q, and velocity vec-
tors v and w, find a function γ : [0, 1] → R2 such that γ(0) = P, γ(1) = Q,
γ′(0) = v, and γ′(1) = w. The solution is given by

γ(t) = (2t3 − 3t2 + 1)P + (−2t3 + 3t2)Q + (t3 − 2t2 + t)v + (t3 − t2)w
(22.1)

= (1− t)2(2t + 1)P + t2(−2t + 3)Q + t(t − 1)2v + t2(t − 1)w. (22.2)

To check that γ(0) = P, we need only evaluate the four polynomials at t = 0;
their values are 1, 0, 0, and 0.

Inline Exercise 22.1: Convince yourself that in fact the curve defined by γ
satisfies γ(1) = Q, γ′(0) = v, and γ′(1) = w.

The resultant curve is called the Hermite (pronounced “airMEET”) curve for
the data P, Q, v, and w. The four polynomials in Equation 22.1 are called the
Hermite functions, or Hermite basis functions.

Everything in this example works equally well if P, Q, v, and w are in R3, or
in R: It’s a dimension-independent construction. That’ll be true for all our subse-
quent curve types, too, and we won’t mention it again.

The four cubic polynomials in Equation 22.1 tell us how the inputs are com-
bined to make the curve γ. In particular, the factors of t and (1− t) in the polyno-
mials for v and w tell us that these inputs have no influence on the locations of the
endpoints γ(0) and γ(1), while the factor of t2 in the polynomial for Q shows that
Q has no influence either on the location of γ(0) or on the tangent vector γ′(0)
(see Exercise 22.1 at the end of this chapter). The other polynomials can be read
similarly. The graphs of these four polynomials, shown in Figure 22.2, reveal the
same information.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
Coefficient of P

Coefficient
of v

Coefficient
of w

Coefficient of Q

Figure 22.2: The four Hermite
polynomials.

This is, as we said, an illustration of the Basis principle. In the Hermite basis,
if we want to alter the starting point, we need only adjust the coefficient of the
first polynomial; doing so will not alter the starting velocity, the ending point, or
the ending velocity. If we had instead expressed the curve as a linear combination
of the functions t 
→ t3, t 
→ t2, t 
→ t, and t 
→ 1, then adjusting our solution
in response to a change of starting point would have altered all the coefficients.
The so-called “power basis” consisting of powers of t is the wrong choice for this
problem; the Hermite basis is the right one.

We’ll generally use lowercase Greek letters (often γ) to name parametric
curves, and we’ll generally use t as a parameter. Sometimes, however, we’ll need
to relate two different curves, and in that case we will use s as well.

If the original problem had not been so nicely posed—if the original contact
with the hill was at t = a, with velocity v, and the straight-line motion began at
time t = b, with velocity w—we could still use an Hermite curve to solve it. We
let c = b− a, and find the Hermite curve ζ for P, Q, cv, and cw. The gluing curve
γ that we’re seeking is then given by
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γ(t) = ζ

(
t − a
b− a

)
. (22.3)

Inline Exercise 22.2: Verify that in Equation 22.3, γ(a) = P, γ(b) =
Q, γ′(a) = v, and γ′(b) = w.

This kind of substitution works in great generality: If we find a function of t
on [0, 1] with nice properties, we can transform it to a function of s on [a, b] with
the substitution s = a + t(b− a), or t = s−a

b−a .
The Hermite basis functions are all cubic polynomials. We can, by a small

change in notation, write the polynomial a0 + a1t + a2t2 + a3t3 using matrix
multiplication:

a0 + a1t + a2t2 + a3t3 =
[
a0 a1 a2 a3

]
⎡
⎢⎢⎣

1
t

t2

t3

⎤
⎥⎥⎦ . (22.4)

Letting t(t) denote a vector containing powers of t, or t(t) =
[
1 t t2 t3

]T
,

we can write

γ(t) = [P;Q; v;w] ·

⎡
⎢⎢⎣

1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1

⎤
⎥⎥⎦ · t(t). (22.5)

The first factor is a matrix, called the geometry matrix for the curve, and is
denoted G. Its columns are the coordinates of P, Q, v, and w, respectively (we’ll
use the semicolon notation for this in the future as well). The middle matrix, called
the basis matrix and denoted M, contains the coefficients of the polynomials for
the Hermite curve, from lowest to highest degree. In effect, it represents the
change from the basis for cubic polynomials consisting of the four Hermite poly-
nomials to the {1, t, t2, t3} basis.

Inline Exercise 22.3: (a) Multiply out, by hand, the second and third factors in
the expression for γ(t); you should get a column vector of four polynomials.
Confirm that these are the Hermite polynomials.

(b) Suppose that we had defined t to be the vector
[
t3 t2 t 1

]T
instead; how

would the second matrix in the expression for γ(t) have to change to make the
formula correct in this case?

Inline Exercise 22.4: Suppose that ζ(t) = (1− t)P + tQ. Write ζ in a matrix

form like that of Equation 22.5. Your vector t(t) will be just
[
1 t

]T
.

Thus, in brief, the Hermite curve can be written

γ(t) = GMT(t). (22.6)

All our subsequent curve formulations will have the form of Equation 22.6,
namely, a geometry matrix G (which usually contains four points rather than two
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points and two vectors), a basis matrix M that lists the coefficients of some poly-
nomials, and the vector T(t). The differences in various curve types are (a) the
contents of the geometry matrix, and (b) the polynomials specified by the basis
matrix.

22.3.1 Bézier Curves

0 2 4
0

1

2

3

4

5

P4 P3

P2

P1

Figure 22.3: A Bézier curve starts
at P1, heading toward P2, and
ends at P4, coming from the
direction of P3.

Our second curve type is the Bézier curve. (Bézier is pronounced “BAY-zee-ay.”)
It’s built from four points P1, . . . , P4. The curve starts at P1, finishes at P4, and has
initial velocity 3(P2−P1) and final velocity 3(P4−P3), as shown in Figure 22.3.

The Bézier curve is given by

γ(t) = [P1;P2;P3;P4]

⎡
⎢⎢⎣

1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

⎤
⎥⎥⎦T(t) (22.7)

so that this time the geometry matrix contains the four points, and the basis matrix
contains different coefficients.

It may seem that the Bézier specification is less natural than the Hermite form.
The role of the points P2 and P3 is a little vague compared to that of the initial and
final tangents. The advantage of the Bézier form is that all the specified items are
points, so when we want to transform a Bézier curve we can simply transform the
points. With an Hermite curve, we have to be careful about the distinction between
transforming points and vectors, which you’ll recall from Chapter 12.

Inline Exercise 22.5: Suppose that P2 and P3 are evenly spaced between P1

and P4.
(a) Show that this means that G can be written

G = [P1;P4]

[
1 2

3
1
3 0

0 1
3

2
3 1

]
.

(b) Use the result of part (a) to show that in this case, γ(t) simplifies to just
(1 − t)P1 + tP4, that is, a constant-speed, straight line from P1 to P4. This
property is one reason why the factor of 3 is included in the definition of the
Bézier curve.

Exercise 22.2 shows that there’s really very little difference between the two
curve types.

22.4 Gluing Together Curves and the
Catmull-Rom Spline

0 2 4 6
0

2

4

6

P3

P0
P1

P2

P4

Figure 22.4: A sequence of points
and vectors; we want a curve that
passes through the points with the
given vectors as velocities.

Suppose that we have a sequence of points P0, P2, . . . , Pn and associated vectors
v0, v2, . . . , vn as shown in Figure 22.4, and we want to find a curve γ : [1, n]→ R2

that passes through these points with the given vectors as velocities. We can cer-
tainly use the Hermite formulation to find a curve γ0 : [0, 1] → R2 that starts at
P0, ends at P1, and has initial and final tangents v0 and v1. We can also use it to
find a curve γ1 : [0, 1] → R2 that starts at P1, ends at P2, and has v1 and v2 as its
initial and final tangents, and similarly can find curves γ3, . . . γn−1. We can then
define
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γ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ0(t) 0 ≤ t ≤ 1

γ1(t − 1) 1 ≤ t ≤ 2

γ2(t − 2) 2 ≤ t ≤ 3

. . .

γn−1(t − (n− 1)) n− 1 ≤ t ≤ n.

(22.8)

0 2 4 6
0

2

4

6

Figure 22.5: A collection of seg-
ments forming a curve that solve
the problem.

The resultant assembly of curves γ (Figure 22.5) is a continuous differentiable
curve that passes through each point with the specified tangent. The individual
pieces, t 
→ γi(t− i), are referred to as segments; the whole assembly is a spline,
and the points and vectors are what we’ll call control data: They are the inputs
that control the shape of the curve. In the most common case, we have just a
sequence of points as our control data, and we call the points control points.

The Catmull-Rom spline is an example of a curve defined by a sequence
of control points. It’s the solution to the problem, “Given a sequence of points
P0, . . . , Pn, find a smooth curve that passes through point i at time t = i, with the
property that if the points are equispaced, the resultant curve is just a straight-line
interpolation between the first and last points.”

The idea is simple: If we can just pick a tangent at each Pi, we can use Hermite
curves as before. Thus, at each control point Pi, we need to pick a tangent. The
Catmull-Rom idea is to use the previous and next control points as guides, that is,
to pick the tangent vector at Pi to be in the direction Pi+1−Pi−1 from the previous
to the next control point. To satisfy the equispacing condition, we need to scale
down this vector somewhat. We use the tangent vector vi = 1

3 (Pi+1 − Pi−1),
(i = 1, . . . , n− 1).

At the endpoint P0, this formula doesn’t work, because we don’t have a point
P−1. So, for P0, we use v0 = 2

3 (P1−P0), which is what we’d get with the general
formula if there were a control point P−1 placed symmetric to P1 about P0, as
shown in Figure 22.6.

P2

P1

P21

P0

Figure 22.6: If we place a ficti-
tious control point P−1 symmet-
ric to P1 about P0, then we can
define v0 = 1

3 (P1 − P−1). Notice
that the tangent at P1 is parallel
to the line from P0 to P2.

Similarly, for Pn we use vn = 2
3 (Pn−Pn−1). The result, after a lot of algebraic

shuffling that’s described in the web material for this chapter, can be written in
the form

γ(t) =
n∑

i=0

PibCR(t − i), (22.9)

where bCR is the Catmull-Rom curve shown in Figure 22.7 and defined by

bCR(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...

0 t < −2

p4(t + 2) −2 ≤ t ≤ −1

p3(t + 1) −1 ≤ t ≤ 0

p2(t) 0 ≤ t ≤ 1

p1(t − 1) 1 ≤ t ≤ 2

0 2 < t
...

. (22.10)

where
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Figure 22.7: The four Catmull-Rom basis functions, plotted on a single coordinate system,
and then shifted and assembled to form the function bCR defined on the interval [−2, 2].
Because bCR is continuous and is C1 smooth, so is the Catmull-Rom spline. Because
bCR(0) = 1, while bCR(i) = 0 for all other integers i, the Catmull-Rom spline is inter-
polating.

p1(t) =
1
2
(−t3 + 2t2 − t)

p2(t) =
1
2
(3t3 − 5t2 + 2)

p3(t) =
1
2
(−3t3 + 4t2 + t), and

p4(t) =
1
2
(t3 − t2).

Figure 22.8: The Catmull-Rom
spline for three control points lies
almost entirely outside the yel-
low triangular convex hull of the
three points.

The form of the Catmull-Rom curve given in Equation 22.9 is convenient
for studying the properties of Catmull-Rom splines. Note that, although the sum
appears to have n terms, for any particular value of t there are, at most, four
nonzero terms. This means that it’s easy to write code to rapidly determine points
on a Catmull-Rom spline. The function bCR goes below 0 at some times. This
means that the sum in Equation 22.9 is not a convex combination of the control
points: The interpolating curve for control points Po, . . . , Pn may go outside the
convex hull of these points. Figure 22.8 shows a simple example. It’s a sad fact
that if you want a smooth interpolating curve (i.e., one that passes through the
control points rather than near them), this failure to stay within the convex hull is
unavoidable.

Note that the function bCR is infinitely differentiable at most points (because
it’s polynomial), but at the joint points (x = −2,−1, 0, 1, 2) it’s only once
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differentiable. This is fine in some simple modeling applications, but you would
not want to use a Catmull-Rom spline curve as a path for a dollied camera, for
example: The resultant camera motion would seem very jerky to the viewer.

22.4.1 Generalization of Catmull-Rom Splines

We can generalize and say, “Given P0, . . . , Pn and a sequence of parameter values
t0 < . . . < tn, find a curve γ such that γ(ti) = Pi for i = 0, . . . n.” These parameter
values ti are called knots, and the sequence of knots is denoted by the letter T =
t0, t1, . . . , tn. Figure 22.9 shows a spline with knots at t = 0, 1, 3, 4.3, 3.8, 5.5 and
control points drawn as red circles; the large blue dots are the fictitious control
points. The 50 green dots are equispaced from 1 to 5.5 to show the velocity of the
curve.

1.5 2.5 3.5 4.5 5.5
0.5

1.5

2.5

3.5

Figure 22.9: A generalized
Catmull-Rom spline.

The basic Catmull-Rom spline has its knots at t = 0, 1, 2, . . .; the constant
inter-knot spacing leads to the name uniform for this kind of spline. In this sec-
tion, we’re describing the generalization to a nonuniform Catmull-Rom spline.

To solve the general problem of finding the nonuniform Catmull-Rom spline
for a given sequence of knots and control points, we once again add a fictitious
pre-start point P−1 = P0 − (P1 − P0), but we also add a pre-start knot, t−1 =
t0 − (t1 − t0), and corresponding post-end point and knot. The ith segment of the
curve is controlled by points Pi−1, Pi, Pi+1, Pi+2 and is defined for t ∈ [ti, ti+1],
but it is influenced by ti−1 and ti+2 as well. The four blending functions for this
ith segment, t 
→ pi,1(T , t), t 
→ pi,2(T , t), t 
→ pi,3(T , t), and t 
→ pi,4(T , t), which
are used to blend Pi−1, Pi, Pi+1, and Pi+2, are given by

pi,1(t) =
−(t − ti)(t − ti+1)

2

(ti+1 − ti−1)(ti − ti+1)2
(22.11)

pi,2(t) =
(t − ti+1)

2(ti − ti+1 + 2(ti − t))
(ti − ti+1)3

− (t − ti+1)(ti − t)2)

(ti+2 − ti)(ti − ti+1)2
(22.12)

pi,3(t) =
(t − ti)2(ti+1 − ti + 2(ti+1 − t))

(ti+1 − ti)3
+

(t − ti)(ti+1 − t)2)

(ti+1 − ti−1)(ti+1 − ti)2
(22.13)

and

pi,4(t) =
(t − ti+1)(t − ti)2

(ti+2 − ti)(ti+1 − ti)2
. (22.14)

For the special case ti = i, these agree with the Catmull-Rom basis functions given
in the previous section.

To make this concrete, suppose we specify a nonuniform Catmull-Rom spline
in the plane with the data

i ti Pi

0 1 (1, 3)
1 1.2 (2, 3)
2 1.7 (3, 4)
3 2.5 (3, 6)

and we wish to evaluate the spline curve at many t-values so as to make a polyline
that closely approximates it.
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First, we add the two fictitious control points to the table:

i ti Pi

−1 0.8 (0, 3)
0 1 (1, 3)
1 1.2 (2, 3)
2 1.7 (3, 4)
3 2.5 (3, 6)
4 3.3 (3, 8)

Now, to evaluate the curve at a particular t-value like t = 2.6, for example,
we determine that t3 ≤ 2.6 ≤ t4. This means that we’re in the ith segment, where
i = 3. We’ll therefore need to evaluate p(3, 1)(t), . . . , p(3, 4)(t).

p(3, 1)(t) =
−(t − t3)(t − t4)2

(t4 − t2)(t3 − t4)2
, so (22.15)

p(3, 1)(2.6) =
−0.1 · 0.82

1.6 · (0.8)2
. (22.16)

In evaluating the other three polynomials, the expressions t− ti and ti+1− t appear
repeatedly. To write efficient code, you’d want to evaluate these just once and
reuse them often.

22.4.2 Applications of Catmull-Rom Splines

Suppose that you’re doing an animation in which you have a moving object,
and you want it at position Pi at time ti for i= . . .; the Catmull-Rom spline is
a natural choice. Now suppose you’ve got an object that’s controlled by some
parameter such as a pinwheel whose rotation is specified in degrees at several
key times—say, R(0)= 45, R(1)= 360, and R(3)= 720—and you want to pro-
vide values for R at intermediate times. Again, the Catmull-Rom spline is a natu-
ral choice. Note, however, that if the rotations were specified by R(0)=R(1)= 0
and R(3)= 90, then the Catmull-Rom interpolant, at t= 0.5, would be negative:
The pinwheel would start to spin backward before rushing to spin forward. While
this might give the feeling of anticipation of motion in a cartoon-like animation,
it would be inappropriate for an animation that was supposed to be physically
realistic.

22.5 Cubic B-splines

Cubic B-splines (there are also linear, quadratic, quartic, etc., B-splines, but cubics
are widely used) are similar to Catmull-Rom splines. The key differences are that
the cubic B-spline (a) is C2 smooth, that is, both its first and second derivatives are
continuous functions, and (b) is noninterpolating, that is, it passes near the control
points, but not through them in general.

Cubic B-splines come in two flavors: uniform and nonuniform. We’ll start
with the uniform B-spline. The formula for the cubic B-spline with control points
P0, . . . , Pn is
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γ(t) =
n∑

i=0

Pib3(t − i), where (22.17)

b3(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
6 t3 0 ≤ t ≤ 1
1
6 (−3(t − 1)3 + 3(t − 1)2 + 3(t − 1) + 1) 1 ≤ t ≤ 2
1
6 (3(t − 2)3 − 6(t − 2)2 + 4) 2 ≤ t ≤ 3
1
6 (−(t − 3)3 + 3(t − 3)2 − 3(t − 3) + 1) 3 ≤ t ≤ 4

0 otherwise.

(22.18)

The domain of the curve γ is 0 ≤ t ≤ n − 2. Because of the structure of the
function b3, it turns out that for j ≤ t ≤ j+ 1, the point γ(t) lies in the convex hull
of the four points Pj, . . . , Pj+3. This convex hull property is useful in computing
the intersection of a ray with a B-spline: If the ray misses the convex hull of
four sequential control points, it also must miss the corresponding segment of the
B-spline curve. If the ray hits the convex hull, then further computation is needed.
The web material for this chapter gives details.

Just like the Bézier and Hermite curves, a segment of a B-spline can be
expressed in a matrix form, which can make evaluation more efficient. Recall
that the form for the Bézier and Hermite curves was

γ(t) = GMT(t), (22.19)

where T(t) is the vector
[
1 t t2 t3

]T
of powers of t. Because a B-spline curve

is made of many segments, defined for 0 ≤ t ≤ 1, 1 ≤ t ≤ 2, etc., we’ll end
up using T(t − j) for the jth segment, that is, a vector of powers of the fractional
part of t.

For the jth segment, defined for j ≤ t ≤ j+1, and influenced by control points
Pj, . . .Pj+3, we define a geometry matrix

GB =
[
Pj;Pj+1;Pj+2;Pj+3

]
(22.20)

which is 2 × 4 for curves in the plane, or 3 × 4 for curves in space, and contains
the coordinates of the control points as columns of the matrix. We multiply this
by the B-spline basis matrix, MBs:

1
6

⎡
⎢⎢⎣

0 0 0 1
1 3 3 −3
4 0 −6 3
1 −3 3 −1

⎤
⎥⎥⎦ . (22.21)

The uniform B-spline curve is then

γ(t) = GBMBst(t − j), (22.22)

where j = �t� so that t − j is the fractional part of t.
Although B-splines don’t pass through their control points, their extra degree

of continuity makes them attractive in many applications. The tradeoff between
controllability (does the curve interpolate its control points?) and continuity (how
smooth is it?) is one that must be managed on a case-by-case basis in applications.
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22.5.1 Other B-splines

While B-splines (and other cubic or piecewise-cubic curve formulations) are very
popular, they do have limitations. One is that with a finite set of control points, you
cannot make a B-spline curve traverse a unit circle. Since circles are important in
manufacturing and many other applications, this is a severe limitation.

The solution is to include an extra coordinate, w, in your B-spline. You then

take (x(t), y(t), w(t)) and treat it as defining
(

x(t)
w(t) , y(t)

w(t)

)
; the resultant curve is

called a rational B-spline, and it happens that with a rational B-spline, you can
traverse a circle and other conic sections.

The uniform spacing of B-splines is a convenience . . . unless you have data that
happens to have nonuniform spacing (e.g., you know the position of an object in an
animation at times t = 0, 1, 2, and 10). For this situation, there’s a generalization
of the B-spline called the nonuniform B-spline, and the rational version of this—
the nonuniform rational B-spline or NURB—is one of the tools of choice in
many CAD systems. One advantage of nonuniform B-splines is that by repeating
knots (i.e., by having both t3 and t4 have the same value), you can reduce the
continuity of the curve at t3, allowing a user to put sharp corners into an otherwise
smooth piecewise cubic curve, for instance. The web materials describe the uses
of repeated control points and repeated knots in shaping NURBS curves.

22.6 Subdivision Curves

Figure 22.10: A polygon (black)
subdivided three times (colors) to
approach a smooth limit curve.

As you saw in Chapter 4, repeated subdivision of a polygonal curve can lead to a
smooth curve. There’s one particular subdivision rule with some great properties.
The new polygon is derived from the old one by doing the following:

• Using the midpoint of the edge from vi to vi+1 as the vertex we’ll call
ei (for “edge”)

• Replacing vi with wi = 1
2 vi +

1
4 ei +

1
4 ei+1 (which is only defined for

0 < i < n)

• Creating the new polygon e1, w1, e2, w2, . . . , en−1

Figure 22.11: The large-scale
shape of a face is drawn at the top
as a black rectangle; after two
levels of subdivision (shown as a
red oval at the bottom), three con-
trol points (in black) are moved
to the right to make a nose, and
further subdivision generates a
smooth curve (blue).

Figure 22.10 shows an example of several levels of subdivision, where the
rule has been extended to i = 0 and i = n using indices modulo n. The limit
curve (with this subdivision scheme) turns out to be smooth. Figure 22.11 shows
an advantage of subdivision as a modeling approach: You can draw the gen-
eral shape of a curve with a first polygon, subdivide a couple of times, and
then move a single control point to introduce a finer-scale feature, and continue
subdividing.

Even though subdivision is easy to perform, it’s nice to know a parametric
form for the limit curve. Figure 22.12 shows that if we take the polyline with ver-
tices . . . , (−2, 0), (−1, 0), (0, 1), (1, 0), (2, 0), . . . and subdivide it, the successive
curves rapidly approach the B-spline curve b3 of Equation 22.18, which we’ve
drawn as a solid red curve at the bottom. With a good deal of linear algebra, you
can show that this apparent limit is in fact exact: Subdivision is just another way
of describing cubic B-spline curves.

What makes subdivision important (aside from its simplicity) is that it gener-
alizes very nicely to surfaces, which we’ll discuss in the next chapter.
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22.7 Discussion and Further Reading

The web material for this chapter includes a much-expanded version of the mate-
rial you’ve just read, and includes topics such as spline paths that are “circular”
(i.e., that start and end at the same point, with the same tangent vector, so you
can use them for describing repeated motions). It also contains pointers to other
literature on the subject.

(0, 1)

(2, 0)

(1, 0)

(22, 0)

(21, 0)

Figure 22.12: The control poly-
gon at the top, when subdivided,
approaches the graph of b3 (in
red), the cubic B-spline function.
The subdivision levels are drawn
vertically offset for clarity.

One of the early reasons for developing splines was to approximate other
functions with comparatively simple ones. This idea leads naturally to the use
of splines for compression: If you have a sequence of many data points that lie
on a fairly smooth curve, you can probably approximate that curve with a spline
curve defined by just a few control points, thus generating a lossy compression of
the data. This is really just a generalization of the idea of approximating data by
fitting lines to them, but it’s quite powerful.

22.8 Exercises

Exercise 22.1: The four Hermite polynomials of Equation 22.1 control the shape
of the Hermite curve.
(a) Compute the derivative of each polynomial.
(b) Evaluate the derivatives at t = 0 and t = 1.
(c) Explain why only v and w affect the direction of the Hermite curve at the start
and end, while P and Q have no effect on these directions.

Exercise 22.2: An Hermite curve specification has a geometry matrix GH =[
P, Q, v, w

]
containing the two endpoints and their associated tangents. A Bézier

curve specification contains four points GB =
[
P1 P2 P3 P4

]
. They each,

too, have associated basis matrices, which we’ll call MH and MB, respectively.
(a) Show that if we pick

P1 = P P2 = P +
1
3

v P3 = Q− 1
3

w P4 = Q, (22.23)

then the Hermite curve defined by P, Q, v, and w is identical to the Bézier curve
defined by P1, . . . , P4.
(b) Show that in this situation, in matrix form, we have

GB = GHS (22.24)

= GH

⎡
⎢⎢⎣

1 1 0 0
0 0 1 0
0 1

3 0 0
0 0 − 1

3 1

⎤
⎥⎥⎦ . (22.25)

(c) Using the fact that GBMB = GHMH , and part (b), show how to determine MH

from MB. (The equality of the two products holds because if At(t) = Ct(t)
for every t for two 4×4 matrices A and C, then A = C; that’s because the vectors
t(0), t(1), t(2), and t(3) are linearly independent.)

Exercise 22.3: In the development of the Catmull-Rom spline, we talked about
placing a fictitious control point P−1 that’s symmetric to P1 about P0.
(a) Show that the point P−1 is given by P0 − (P1 − P0), and simplify.
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(b) Show that if we apply the rule v0 = 1
3 (P1 − P−1), then the formula from

part (a) lets us simplify this to v0 = 2
3 (P1 − P0).

Exercise 22.4: In the Catmull-Rom spline, we placed a fictitious control point
at each end, placing it so that the last three control points at each end were sym-
metrical. What would happen if we set P−1 = P0 and Pn+1 = Pn instead? The
resultant spline will still interpolate all the original control points, but thinking
of the spline as describing the position of a moving point at time t, we’ll see its
motion change at the ends. How will it change?

Exercise 22.5: Show that the Catmull-Rom spline is in general not C2. On
each segment, the second derivative is a linear function (as it is for any cubic
spline). Show that this function need not be continuous between segments.
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Chapter 23

Splines and Subdivision
Surfaces

23.1 Introduction

Both spline curves and subdivision curves can be generalized, creating spline and
subdivision surfaces. In this chapter, we show how to make a Bézier patch: a
small piece of surface, parameterized by [0, 1] × [0, 1], for which u 
→ S(u, v0) is
a Bézier curve for each value of v0 and v 
→ S(u0, v) is a Bézier curve for each
value of u0 (i.e., “it’s Bézier in both directions”). Just as Bézier curves can be
joined together into longer curves, Bézier patches can be assembled together into
a “quilted” surface, although making the patches meet up smoothly at the edges
and corners is more complex than in the curve case. The quilt, in this situation,
generally has the form of a grid: squares meeting four at a corner. The web mate-
rial for this chapter describes the creation of spline surfaces in more detail.

If we want to make a shape where adjacent patches meet three at a corner or
five at a corner, the conditions for continuity are much messier and the resultant
shape is not as controllable. One popular solution in this case is to shift to sub-
division surfaces, which start from an arbitrary polyhedron and, through repeated
subdivision, converge to a surface that’s generally very smooth. In the subdivision
scheme we present in this chapter we can start from any polygonal mesh, but
after subdivision all faces of the mesh become quadrilateral, and after repeated
subdivision most vertices meet exactly four faces. Faces whose vertices all have
valence four can be shown to be the same as cubic spline surfaces, which meet
their neighbors with C2 smoothness. At the “exceptional” vertices, where three
or five or six or more faces meet, the surface is generally C1 smooth, but it may
have curvature discontinuities. The web material for this chapter describes various
further subdivision schemes and their implementation.

607
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23.2 Bézier Patches

Just as a Bézier curve was defined by a sequence of four points P1, P2, P3, and P4,
we’ll describe a Bézier patch by a mesh of 16 points, Pij, where i and j range from
1 to 4. Writing

bi(t) =

(
3
i

)
(1− t)it3−i (23.1)

for the ith Bézier basis function, the Bézier curve based on P11, P12, P13, and
P14 is

γ(t) =
∑

P1i bi(t). (23.2)

There’s nothing special about the “1” in this formula—a Bézier curve can be con-
structed based on any row of points in the mesh. The same goes for the columns.
If we combine the two, we can build a parameterized surface:

S(u, v) =
4∑

i, j=1

bi(u)Pij bj(v). (23.3)

The function S is defined for 0 ≤ u, v ≤ 1. If we hold v fixed—say, at v = 0—we
get

S(u, 0) =
4∑

i, j=1

bi(u)Pij bj(0). (23.4)

Since bj(0) = 0 for j = 2, 3, 4, and b1(0) = 1, this simplifies to

S(u, 0) =
4∑

i=1

bi(u)Pi0, (23.5)

so S(u, 0) traverses a Bézier curve as u varies from 0 to 1, with control points
Pi1, i = 1, 2, 3, 4. Similarly, S(u, 1) traverses a Bézier curve with control points
Pi4, and S(0, v) and S(1, v) traverse Bézier curves with control points along the
other two edges of the mesh.

In fact, for any fixed value of v—say, v0—S(u, v0) traverses a Bézier curve:
The surface defined by S is made up of a family of Bézier curves, one for each
value of v0, as Figure 23.1 shows. But the same is true in the other direction: As
we hold u fixed and vary v, we also get a Bézier curve.

Steven A. Coons did some of the early work on applications of spline patches
to computer-aided geometric design. He particularly studied ways to repre-
sent surfaces by multiple patches “glued together” along their boundaries in
ways that were fairly easy to control. In 1967, he wrote a book on geometric
design [Coo67] that profoundly influenced the development of the field.

The highest honor in computer graphics, the Steven Anson Coons Award
for Outstanding Creative Contributions to Computer Graphics, is named for
him.
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Figure 23.1: (Top) A Bézier patch drawn with the collection of curves t �→ S(s, t) for several
values of s between 0 and 1. (Middle) The same patch, drawn with the curves s �→ S(s, t)
for several values of t. (Bottom) The same surface, drawn colored by height. In the top two
drawings, the control mesh Qij(0 ≤ i, j ≤ 3) is shown.

The shape of the surface patch we’ve just described is controlled by the loca-
tions of the control points Pij. The surface passes through the four corner points
P11, P14, P44, and P41. The points on the interior of each edge, like P21 and P31,
control the shapes of the edges of the patch. For instance, the tangent plane to the
patch at P11 contains both the vector P21 − P11 and the vector P12 − P11, so the
cross product of these two vectors is the surface normal at P11. The four interior
control points determine the shape of the center region of the patch without influ-
encing the patch boundary. They do, however, affect the direction in which the
patch meets its boundary. If you plan to work with patches like this, you should
write a small interactive application in which you can manipulate each control
point to see its effect on the surface shape.

The surface we’ve just described is called a bicubic tensor product patch,
because it’s made by using products of basis functions, each of which is a cubic.
If, in the expression bi(u)Pijbj(v) of Equation 23.3, we replaced bi(u) with ci(u),
where ci is the ith basis function for the Hermite curve, or the ith Catmull-Rom
basis, or the ith cubic B-spline basis, we’d get different kinds of tensor product
patches: The effects of the control points on the eventual shape would depend on
the kinds of basis functions used. You could make a patch that used Bézier curves
in one direction and Hermite in the other, for instance.

Just as we glued together curve segments to get longer curves, we can do
similar things to get larger surfaces. We can try to place two surface patches next
to each other so that they match up along a single edge. In the case of the Bézier-
based patches described above, the rightmost column of control points for one
patch must match the leftmost column of control points for the other, for instance.
This will guarantee that the surfaces join up (their joining edges consist of a single
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Bézier curve), but not that they join up smoothly. For a smooth join, without a
crease along the joining curve, further conditions on the adjacent two columns of
control points are needed.

Arranging a gridlike “quilt” of patches requires that a substantial collection of
constraints be met; the web material for this chapter describes some of these. But
when we try to make rectangular patches glue together in a pattern that has them
meet three at a vertex, as in Figure 23.2, the constraints become overwhelming.
There are several solutions: We can deal with the overwhelming constraints and
continue to use rectangular patches, or we can shift to something like triangular
patches, where gluing together is a little easier, or we can, as we did with curves,
move to subdivision as a way to create shapes. We’ll now briefly discuss this third
approach.

Figure 23.2: A spherical blob
made from six “rectangular”
patches that meet three at a
vertex.23.3 Catmull-Clark Subdivision Surfaces

Subdivision surfaces don’t start with individual patches to be joined: They start
from a polygonal mesh, which is repeatedly modified to approach a usually
smooth limit surface. This simplifies matters a good deal.

In the Catmull-Clark subdivision scheme [CC98, HKD93], we start with a
mesh, typically in R3 (although the process works in any dimension). The ver-
tices of each face need not actually be coplanar, although it’s easiest to visualize
the subdivision process if they’re nearly coplanar, so we’ll start with an example
where this is true (see Figure 23.3). The faces of the initial mesh may be triangles,
quads, pentagons, etc., but after one level of subdivision all faces will be quads,
so we’ve drawn an example where they are all quads.

e2e3

e4

e5

e1v

...

Figure 23.3: A mesh where one
vertex v has n adjacent vertices
e1, e2, . . . en, at the ends of the
edges, leaving v.

Just as with subdivision curves, we’ll describe subdivision surfaces in terms of
a neighborhood of a vertex v, that is, a set of vertices near v in the graph structure
of the mesh.

The first step of subdivision is to compute the centroid f′i (the average of the
vertices of the ith face). (We’ll follow the convention that primes denote points
of the subdivided mesh, and unprimed symbols denote points of the mesh before
subdivision.)

We next compute the edge points e′i by the formula

e′i =
v + ei + f′i−1 + f′i+1

4
. (23.6)

All subscripts are taken modulo n.
Finally, we compute a new location for the vertex v:

v′ =
n− 2

n
v +

1
n2

∑
i

ei +
1
n2

∑
i

f′i . (23.7)

These new locations are connected as shown in Figure 23.4.

e2e3

e4

e5

e1

f '1

f1

f2

e'1v

Figure 23.4: The new vertex
is connected to each new edge
point; the new edge points are
connected to the face points for
adjacent faces.

After subdivision, there are approximately four times as many faces as before
subdivision. After just a few levels of subdivision, we’ll have a great many
faces.
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Inline Exercise 23.1: Convince yourself that after one level of subdivision any
mesh becomes a quad mesh, and that each newly introduced edge vertex e′i has
degree four. Then show that in further subdivision, each newly introduced face
vertex also has degree four.

The special case n = 4 (which is the most common, as shown by the preceding
exercise) is worth examining.

In this case, Equation 23.7 becomes

v′ =
1
2

v +
1
4

∑
i ei

4
+

1
4

∑
f′i

4
, (23.8)

which says that v′ is a weighted average of v, the average of the adjacent edge
points, and the average of the adjacent face points, just as for curve subdivision
the new vertex location was an average of the old vertex location and the average
of the adjacent edge points.

f '1

e'1
v

Figure 23.5: For a quad mesh,
the face vertices from the previ-
ous level of subdivision are oppo-
site v in each quad.

This situation (after the first level of subdivision) is shown in Figure 23.5.
In this case, we can rewrite the subdivision formula for v′ in terms of v, {ei},

and {fi} instead of using {f′i}; all we need to do is substitute

f′i =
v + ei + ei+1 + fi

4
(23.9)

to get

v′ =
1
2

v +
1
4

∑
i ei

4
+

1
4

∑
f′i

4
(23.10)

=
1
2

v +
1
4

∑
i ei

4
+

1
4

∑
(v + ei + ei+1 + fi)/4

4
(23.11)

=
1
2

v +
1
4

∑
i ei

4
+

1
4

[
v
4
+

∑
i ei

8
+

∑
i fi

16

]
(23.12)

=
9
16

v +
3
32

∑
i

ei +
1
64

∑
fi. (23.13)

Corresponding formulas for e′i and f′i in terms of the pre-subdivision vertices are

e′i =
1
16

[6v + 6ei + ei−1 + ei+1 + fi−1 + fi] and (23.14)

f′i =
1
4
[v + ei + ei+1 + fi] . (23.15)

If we list the coordinates of the central vertex v, then the edge vertices
e1, e2, e3, e4, and then the face vertices f1, . . . , f4 in a 9 × 3 matrix, V, we can
summarize by saying that
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V′ =
1
16

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 3
2

3
2

3
2

3
2

1
4

1
4

1
4

1
4

6 6 1 0 1 1 0 0 1
6 1 6 1 0 1 1 0 0
6 0 1 6 1 0 1 1 0
6 1 0 1 6 0 0 1 1
4 4 4 0 0 4 0 0 0
4 0 4 4 0 0 4 0 0
4 0 0 4 4 0 0 4 0
4 4 0 0 4 0 0 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V. (23.16)

More generally, for a vertex of degree n, there are 2n+ 1 rows in V and the subdi-
vision matrix is a (2n+1)× (2n+1) matrix. Letting Vn denote the neighborhood
coordinates for a vertex of degree n, we can write

V′
n = SnVn, (23.17)

where the matrix Sn is of the appropriate size. Everything about Catmull-Clark
subdivision can be determined by studying the matrix S. Halstead et al. [HKD93]
carry this out in some detail.

As an example of what one can derive, if we look at some vertex v in a mesh,
during repeated subdivision v will approach some point v∞. (This can be proved
by looking at powers of S; the web materials for this chapter do so explicitly.) The
limit point point v∞ for v under repeated subdivision is

v∞ =
n2v′ + 4

∑
j e′j +

∑
j f′1

n(n + 5)
, (23.18)

where the primes indicate one level of subdivision. (This is determined by looking
at eigenvectors of S.) Notice that v need not be a vertex of the original mesh. If,
after three levels of subdivision, we insert a new face point, we can call this point
v, find its neighboring face and edge points, and apply the limit formula above.

We can now make three observations.
First, the formula for computing the limit point does exactly the same compu-

tation with the x-, y-, and z-coordinates. In fact, it works in any dimension at all,
and we can think about subdivision surfaces one coordinate at a time.

Second, if the initial mesh consists of the integer lattice in the xy-plane (i.e.,
all integer points are vertices, and the unit-length vertical and horizontal segments
joining them are the edges), then a single subdivision operation produces the half-
integer lattice, two subdivisions produce the quarter-integer lattice etc.

Figure 23.6: (Top) The initial
mesh consists of the integer lat-
tice with one point raised. (Mid-
dle) The first and second levels of
subdivision. (Bottom) The cubic
B-spline basis function whose
control points are the vertices
of the original control mesh, for
comparison.

Third, if we alter the integer lattice by replacing (0, 0, 0) with (0, 0, 1), the
limit surface shown in Figure 23.6 is very simple. In fact, just as for subdivision
curves, it turns out that this limit surface is actually identical to the cubic B-spline
basis function. In particular, if (x, y, z) is on the limit surface, then B(x, y) = z,
where B is the basis function.

This means that, at least in areas where the mesh has standard lattice con-
nectivity, the limit subdivision surface is the same as the B-spline surface defined
by those control points. Since code for computing and rendering such surfaces is
widely available, this is very convenient. In any neighborhood of an exceptional
vertex (i.e., one whose degree is different from four), the limit surface is not sim-
ilar to a B-spline, and we have to compute the surface by repeated subdivision.
Stam [Sta98] discusses the limit shape both at and away from exceptional points.
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Analysis like that for the limit points also shows how to compute the nor-
mal vector at the limit point [HKD93], at least for vertices in sufficiently general
position. (There are configurations for which the limit surface does not have a
well-defined normal, just as there are B-spline curves that have geometric cusps,
despite being parametrically smooth.)

Since both the limiting position and the surface normal are expressible as lin-
ear combinations of a few neighboring vertices, one can solve problems like “Find
me initial vertex positions for this mesh with the property that the limit surface
passes through these points and has these normal vectors at them.” This is the
central problem addressed by Halstead et al.

While the limit surface for subdivision is generally smooth, at exceptional
vertices it may not be curvature-continuous (i.e., the curvature at the limit of an
exceptional vertex may be undefined, or it may not be continuous in a neigh-
borhood of that vertex). One might try to address the surface to be curvature-
continuous through a kind of “surgery”: Remove a small disk around the offending
point and replace it with a smooth surface. But guaranteeing continuity at the seam
is problematic. As an alternative, one can blend between the limit surface and a
smooth replacement, using a blending function that’s a sufficiently smooth func-
tion of the distance from the exceptional point and that varies from 0 at the seam to
1 at the center, with all derivatives being 0 both at the seam and at the center. Such
an ad hoc approach requires choosing a radius for the disk and choosing a smooth
shape to blend with, but it can be made to work quite well in practice [Lev06]. A
different approach, based on improving the appearance of the exceptional point
rather than its geometry, is to use the “approximate Catmull-Clark subdivision
surfaces,” or ACC surfaces, developed by Loop and Schaeffer [LS08]. Starting
from the mesh to be subdivided, they develop, for every quad, a bicubic patch
(u, v) 
→ S(u, v) that represents the geometry of the limit surface, and two asso-
ciated patches tu(u, v) and tv(u, v) where the value of tu(u, v) approximates the
tangent vector to S in the u direction at (u, v), that is, ∂S(u,v)

∂u , and similarly for tv.
These approximate tangent-vector functions can be used to compute an approx-
imate normal that varies smoothly over the surface, that is, that gives the limit
surface the appearance of smoothness when this approximate normal vector is
used in rendering it.

23.4 Modeling with Subdivision Surfaces

We’ve indicated, in our discussion of Catmull-Clark surfaces, how subdivision
surfaces can be fitted to point and normal data. But when you have a shape in
mind and want to create a model, point and normal data is not available. One
approach is to make a physical model of your shape, scan it, and then fit a surface
to it; this approach is used by many production studios. But as an alternative, one
can model directly with subdivision surfaces.

A typical modeling session starts with a coarse mesh that the user adapts to
have the general shape of the object of interest. The user then subdivides this mesh
and adjusts the locations of some of the resultant vertices. Often the subdivision
process puts the new mesh just about where the user expects, and new vertices
need adjustment only to add detail. After another level of subdivision, the user
adds more detail, etc. At some point, the surface shape is satisfactory and the limit
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surface is computed (or perhaps a few more stages of subdivision are performed
to generate an effectively smooth mesh).

Adjusting vertex positions after a level of subdivision is acceptable because
the resultant mesh is an acceptable input to the subdivision algorithm. Indeed, one
can go further: One can actually edit the topology of a mesh, adding a hole at
some level, etc. The data that needs to be recorded for such a modeling session
consists of the original vertex positions, plus any edits made at each level. In the
event that several vertices at level three, say, were all moved in the same direction,
there may be a level-two edit that would have achieved the same effect, or most
of it. Rewriting the representation to include this level-two edit, and then smaller
level-three edits, may make the representation more compact.

This editing approach has the advantage that the user can “browse” through
different levels, adjusting the shape at higher levels and then returning to lower
levels. One problem that arises is that details added at a lower level may not make
sense after a high-level edit. In a face model, for instance, a nose might be drawn
out in the x-direction. If at a higher level, the face is rotated by 90◦ in the xy-plane,
the low-level edit will make a nose that’s dragged to the side of the face rather than
in front of it. It therefore is useful to express low-level edits in a coordinate sys-
tem that’s tied to the result of higher-level subdivision so that the nose is described
as being drawn out along the normal to the face, rather than “in the x-direction.”
Such multiscale editing is described by Cohen et al. [MCCH99], and the conden-
sation of multiscale editing representations, together with other multiscale editing
techniques, is described by Zorin et al. [ZSS97].

23.5 Discussion and Further Reading

As with the preceding chapter, the web material for this chapter contains a much-
expanded version of the material presented here, together with pointers to the
literature. Spline and subdivision surfaces are at the heart of most of today’s CAD
packages, and CAD long ago became its own area, largely separate from computer
graphics. Introductory CAD texts will help you grasp the main ideas (and some of
the sometimes-complex indexing schemes!). Loop’s Master’s thesis [Loo87] is a
gentle introduction. Despite the separation of graphics and CAD, there continues
to be cross-fertilization.
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Chapter 24

Implicit Representations
of Shape

24.1 Introduction

We introduced implicit functions in Chapters 7 and 14 as a means for defining
shapes. Implicitly defined shapes, like the circle defined by x2 + y2 = 1, or the
sphere defined by x2+y2+z2 = 1, or far more general shapes defined by equations
of the form F(P) = c for some complicated function F, serve several roles in
graphics. First, for a wide class of functions, computing ray-surface intersections
with such shapes is fairly easy. Second, it’s sometimes convenient to represent
surfaces like “the boundary between water and air” in a simulation implicitly,
because it’s very easy to change the topology of an implicitly defined surface (by
changing either F or c), while it’s generally difficult to do so for parametrically
defined surfaces. Third, in many applications we find ourselves with data defined
on a grid of points (the temperature at each point in a nuclear reactor, for instance,
or the material density at each point in a CAT scan of a brain) and we wish to
visualize this data; often, seeing the level surface (the set of points where the
function has a particular value) for a function that’s consistent with the observed
data can help us understand the data. In this chapter, we introduce implicit curves
and surfaces and discuss how they are used to model shapes, how they can be used
in ray tracing and animation, and how they can be converted to polyhedral meshes.

The main advantages of implicit representations are the general smoothness
of the shapes defined this way, the simplicity of creating quite general shapes,
the ease of defining shapes whose topology changes over time, and the ability to
exactly compute surface normals and other geometric properties (many of which
are difficult to estimate for polyhedral surfaces). The disadvantages are that con-
verting an implicit representation to a polygon mesh suitable for most renderers
can be very expensive, and that the ability of implicits to represent multiple topolo-
gies can also make it difficult to control the topology of an implicitly defined
shape.

615
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Figure 24.1: Two implicit curves in the plane. (a) The circle is defined by x2 + y2 = 1, or
by x2 + y2 −1 = 0. (b) The lemniscate of Bernoulli is defined by (x2 + y2)2 = 2c(x2 − y2);
changing c adjusts the angle at which the lines cross at the center of the figure eight.

24.2 Implicit Curves

In Chapter 7 we discussed two ways to describe a line in the plane: either para-
metrically (writing P + td, for values t ∈ R) or implicitly (in a form like
Ax + By + C = 0, with A and B not both zero; or in vector form, (X − P) · n = 0,
where n is a nonzero vector in the plane and P is a point of the line—the set of
points X satisfying this equation forms a line containing P and perpendicular to n).
In addition, we observed that it was particularly easy to find the intersection of a
parametric line with an implicit line. Similarly, in 3-space we could define a plane
implicitly, and ray-plane intersections were easiest when the ray was parametric
and the plane implicit.

We further generalized to talk about implicitly defined curves in the plane
that were more general than lines, like the circle, defined by x2 + y2 = 1, or
more general curves (see Figure 24.1). More generally, if we have any function
z = F(x, y) defined on the plane,1 such as the height of the terrain at each location
(x, y) in some hilly area, then the sets of points defined by F(x, y) = c are called
contour lines and are an example of a level set of a function (in the sense that
they are the points at the same level on the graph of F). Level sets are sometimes
also called isocurves of F. Mathematics books often discuss level sets by only
considering the case c = 0; that’s because the level set where F(x, y) = c is the
level set where G(x, y) = 0 if we define the function G by

G(x, y) = F(x, y)− c. (24.1)

Thus, you’ll sometimes encounter the term zero set rather than “level set.”
Because the points of the curve are defined indirectly—we simply have the

function F which tells us whether a point is on the curve or not—we also say that
the curve is an implicit curve. If the formula for F is sufficiently complicated, it
may not even be clear whether the set defined by F(x, y) = c is empty or not.

1. We are following the mathematics convention that the xy-plane is horizontal and that
the z-direction is vertical, because the xy-plane is of primary interest to us for the time
being; were we to follow the graphics convention, we’d have to describe a circle by an
equation like x2 + z2 = 1 instead of x2 + y2 = 1; the familiarity of the xy-formulation
seems worth the inconsistency in the choice of axes.
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In the cases we’ve discussed so far—the line, circle, and lemniscate—the first
two implicit curves are very smooth, but the third has a self-crossing. The distinc-
tion among them is the nature of the functions defining them. In general, if C is
the level set F(x, y) = c, then C consists of disjoint simple closed curves if at
every point P of C, the gradient ∇F(P) is nonzero.

In the case of the line, the function FL(x, y) = Ax + By + C has gradient

∇FL(x, y) =

[
A
B

]
, which is nonzero everywhere. For the circle, the function

FC(x, y) = x2 + y2 has gradient

[
2x
2y

]
, which is zero only at (x, y) = (0, 0), which

is not a point of the circle. But for the lemniscate,2 where

FB(x, y) = (x2 + y2)2 − 2c(x2 − y2), (24.2)

we have

∇FB(x, y) =

[
4x(x2 + y2)− 4cx
4y(x2 + y2) + 2cy

]
, (24.3)

which, at (x, y) = (0, 0), is the zero vector. At places where the gradient is zero,
an implicit curve can have singularities (self-intersections, sharp corners, tangen-
cies). This is not, however, an if-and-only-if condition. For instance, the circle can
also be defined by the equation

F(x, y) = ((x2 + y2)− 1)2 = 0, (24.4)

which has gradient zero at every point of the circle. In short, a nonzero gradient
ensures that the curve is nice, but the curve’s niceness tells us nothing about the
gradient.

The preceding example also shows that the function that defines an implicit
curve is by no means unique: Many functions can define the same curve. That’s
another drawback of implicits.

How common are zeroes in the gradient? A back-of-the-envelope argument
says they’re fairly common. If we set the first term of the gradient to zero, we’ve
got one equation in two variables (which defines a curve in the plane); if we set
the second to zero as well (defining a second curve in the plane), we’ve got two
equations in two variables. If they were linear equations, we’d generally have a
solution; because they may be nonlinear, we can merely say that we might well
expect to find isolated solutions to the two equations (i.e., points where the two
curves intersect). If we chose a level c at random, we would not expect F(x, y) = c
to hit any of these gradient zeroes, but if we were to vary c, we might well expect
that for certain values of c, the level set for c contains a gradient zero. This can
be thought of in terms of a physical analogy, as shown in Figure 24.2: If we take
our function to be the height of the terrain above or below sea level, then when
the sea level is c, the level set for c is the shoreline. As the tide rises, c changes,
and the shape of the shoreline changes. For example, two adjacent islands may
be separated by water at high tide (so that the level set consists of two closed
curves—the shorelines of each island); as the tide drops, the islands may become
joined by an isthmus so that at low tide, the shoreline is one long curve. For some

2. The subscript “B” is for Bernoulli.
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Figure 24.2: A topographical map and side view of two islands. At high tide (two almost-
circular red curves) the islands are separated and the shoreline has two parts; at low
tide (large blue curve) the islands are joined by an isthmus, and the shoreline is a single
curve. At mid-tide (green figure-eight curve), the shoreline has a singular point, where the
gradient of the height function is zero. In both figures, the faint gray arrows are scaled
versions of the gradient of the implicit function.

value of c, the level set changes from two curves to one curve; at the point where
the curves join, the gradient is zero.

The gradient of an implicit curve, when nonzero, has another important func-
tion: It always points in the direction of the normal vector to the curve. (This, and
the claim that when the gradient is nonzero the curve is smooth, are consequences
of the implicit function theorem [Spi65].) We can see this in the case of the unit

circle: At the point (x, y), the gradient is

[
2x
2y

]
, which is indeed parallel to the

normal, which is

[
x
y

]
.

We can also see the kinds of problems that arise when the gradient is zero by
looking at the function F(x, y) = 1 + x3 − y2, shown in Figure 24.3 and the level

21
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Figure 24.3: The graph of F(x, y)= 1+ x3 − y2 and its associated level curves for
c= . 95, 1, and 1. 05. The level curve for c = 1 has a cusp at the origin, where the gradient
is zero. This example shows that the topology of the level set need not change at a place
where the gradient is zero.
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(a,b,c)

n (a,b,c) 5

a
b
c

=F (a,b,c) 52
a
b
c

F(x,y,z) 5 x2 1 y2 1 z2 5 1 

F(x,y,z) 5 x2 1 y2 21 5 0 

(a) (b)

Figure 24.4: (a) The sphere is defined as the zero set of the implicit function F(x, y, z) =
x2 + y2 + z2 − 1; at a typical point P = (x, y, z) of the sphere, the gradient is parallel to
the ray from the origin to P, hence parallel to the normal vector to the sphere at P. (b) The
cylinder can be defined implicitly by x2 + y2 = 1.

set defined by F(x, y) = 1: At the point (x, y) = (0, 0), the level set has a sharp
cusp, even though nearby level sets are completely smooth.

24.3 Implicit Surfaces

The notions of the preceding section all generalize to three dimensions quite sim-
ply: If we have a function w = F(x, y, z) defined on 3-space (e.g., the temperature
at each point in a room), we can find the set of points

{(x, y, z) : F(x, y, z) = c} (24.5)

at which F takes on the value c; in general, this is a smooth surface in 3-space. As
a concrete example, if F is the function defined by

F(x, y, z) = x2 + y2 + z2, (24.6)

then the level set for c = 1 is the unit sphere in 3-space, as shown in
Figure 24.4. (In three dimensions, level sets are sometimes called isosurfaces or
level surfaces.)

Just as in the two-dimensional case, if P = (x, y, z) is a point of some level
surface, then the gradient ∇F(x, y, z) is parallel to the normal vector to the sur-
face at P. And if the gradient is nonzero everywhere, then the surface is actually
smooth. On the other hand, if the gradient is zero at some point of a level surface,
there may be a self-intersection there, or a corner of the surface, or a sharp point.

Again, as in the curve case, a randomly chosen level surface of a smooth func-
tion F is unlikely to contain any gradient zeroes, but if we continuously vary the
level (or the function F), we should expect to encounter some gradient zeroes.

Finally, the intersection of a ray defined by a point P and a direction d with an
implicit surface defined by F = c can be computed by solving F(P+ td) = c (see
Figure 24.5).
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F 5 0

F(P 1 td) 5 0
P 1 td

dP

Figure 24.5: The intersection of a ray (defined by a point P and a direction d) and an
implicit surface defined by F(x, y, z) = c must occur at a point Q = P+ td (for some value
of t) which satisfies F(Q) = 0. So to find the intersection, we can solve F(P + td) = c for
the unknown t; the intersection point is then P + td.

For instance, if F(x, y, z) = x2 + y2 + z2, and we consider the intersection of
the ray with P = (−2, 0, 0) and d = (1, 1/3, 0) with the level set F = 1 (the unit
sphere), we must solve

F(P + td) = 1, (24.7)

that is,

F(−2 + t, t/3, 0) = 1. (24.8)

Applying the formula for F, this gives

(−2 + t)2 + (t/3)2 + 02 = 1, (24.9)

which is a quadratic in t, namely,

10t2 − 36t + 27 = 0, (24.10)

whose solutions are

t =
36±√362 − 4 · 10 · 27

2 · 10
≈ 1.065, 2.535; (24.11)

these correspond to the points

Q1 ≈ (−0.935, 0.355, 0) and Q2 ≈ (0.535, 0.850, 0) (24.12)

on the sphere.

Inline Exercise 24.1: The intersections we just computed depended on the
coordinates (Px, Py, Pz) of P and the coordinates (dx, dy, dz) of d. Express the
intersection points in terms of these coordinates rather than their particular
values, and determine under what conditions an intersection exists.

With these generalities on implicit curves and surfaces in mind, we can
now move on to discuss the ways in which implicit functions are most often
represented.
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24.4 Representing Implicit Functions

While the examples in the preceding section were given in terms of explicit poly-
nomial formulas, such an approach becomes impractical when we want to use
implicit surfaces for modeling particular shapes: What polynomial in three vari-
ables, for instance, has a level set that has the shape of a dolphin? It’s clear that
searching for the appropriate degree and coefficients is an intractable task.

Instead, an implicit function is often represented by samples, the values of the
function on a fixed grid of points such as the integer points of the plane or 3-space.
(Such a representation arose naturally from the gathering of regularly spaced data
in scientific experiments or surveying). Of course, knowing a function’s values at
integer points does not tell us the values at noninteger points. Indeed, between any
pair of integer points, a function can take on any values at all. It’s conventional to
assume that the samples are so closely spaced that between samples, the function
“doesn’t do anything funny” so that, for instance, one might assume that between
samples, the function takes on values that are determined by simple combinations
of the values at the sample points (the same way we took values at points of a
polygon mesh in Chapter 9 and extended them to define a function on the entire
mesh). If we consider the plane, for instance, as a polygon mesh (with each poly-
gon being a square), with values known at the vertices, we could interpolate over
the interiors of squares. The methods of Chapter 9 don’t help us, because they
assumed that the mesh was made of triangles.

24.4.1 Interpolation Schemes

There are several approaches to extending a function defined on the integer grid
in the plane to a function defined on the whole plane.

24.4.1.1 Conversion to Triangles
A first approach is to convert the mesh of squares into a mesh of triangles, as
shown in Figure 24.6(a), by adding a diagonal to each square. Because there
are two choices for the diagonal (and there’s no particular a priori reason for

(a) (b)

Figure 24.6: (a) The mesh of squares defined by the integer points of the plane can be
converted to a mesh of triangles by drawing a diagonal in each square. (b) It can also be
done in a more symmetric way by adding a vertex at the center of each square (shown as a
small dot) and breaking the square into four triangles.
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Figure 24.7: (a) If we know the values vA, vB, vC, and vD of a function at the points A =
(0, 0), B = (1, 0), C = (0, 1), and D = (1, 1), we can compute a value at the point (x, y)
inside the unit square by first interpolating values linearly at the points P and Q of AB and
CD, respectively, and then interpolating between these; alternatively, we could interpolate
the values at the points R and S of the edges AC and BD, and then interpolate between those.
In either case, the resultant value is (1 − x)(1 − y)vA + x(1 − y)vB + (1 − x)yvC + xyvD.
(b) The graph of the resultant function when vA = 1, vB = 3, vC = 2, and vD = 0. Notice
that constant-x and constant-y cross sections of the graph are linear.

the choices to be the same for every square), this approach seems unsatisfactory,
although for finely sampled data it’s often quite adequate. Alternatively, as Fig-
ure 24.7(b) shows, we can break each square into four triangles by adding a point
at the center. We typically assign this center point a value that’s the average of the
four corner values; we can then interpolate using the method of Chapter 9.

24.4.1.2 Bilinear Interpolation
A different approach is to insist that the interpolation, along each edge of the
square, should be linear. With this in mind, we can take a square in our grid, as
shown in Figure 24.7, and determine the value at the point (x, y) in the square by
linear interpolation along a pair of parallel edges to get the values vP = (1−x)vA+
xvB at P and vQ = (1 − x)vC + xvD at Q, and then interpolate linearly between
these to get (1 − y)vP + yvQ as the value at the interior point (x, y) of the unit
square. (For any other square, we must use the fractional parts of the coordinates
of x and y in place of x and y).

Writing this out in terms of the four corner values, we get

v = (1− x)(1− y)vA + x(1− y)vB + (1− x)yvC + xyvD (24.13)

as the value at the point (x, y) of the unit square. Because the blending functions
are all bilinear in x and y, this is called bilinear interpolation.
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24.4.2 Splines

Bilinear interpolation can be seen as a blending of values at the four corners by
certain polynomials, suggesting that any interpolating spline would also work,
and indeed this is true: If we take any function h that’s 0 everywhere except in the
range −1 ≤ x, y ≤ 1, where it’s nonnegative, and is 1 at (0, 0), we can define a
function

F(x, y) =
∑

i, j

v(i, j) h(x− i, y− j) (24.14)

that takes on the known values v(i, j) at each integer point (i, j). If, in addition, the
function h has the property that F is everywhere 1 when all the v(i, j) values are
1, then in general the value F(x, y) will lie between the minimum and maximum
values known at the four corner points. Examples of such functions are

• The box function on the unit square − 1
2 < x, y < 1

2

• The bilinear basis function

If we weaken the requirement that h(0, 0) = 1, other functions like the bicubic
B-spline basis function can also be used.

Even more general functions can be chosen to play the role of h, but the key
idea is simple: h represents how the effect of the value at each vertex fades as we
move away from that vertex. In doing so, h encodes something of our belief about
the implicit function that we’re representing by samples.

24.4.3 Mathematical Models and Sampled
Implicit Representations

As the previous sections show, given samples of a function on the integer grid,
there’s no single answer to the question, “What function do these samples come
from?” And without an answer to that question, there’s no hope of answering,
“What implicit curve (or surface) do these samples define?” In the case of data
gathered in an experiment, there may be little knowledge on which to base our
choice of function, but it’s clear that if the variation of the function over a grid cell
is so large that the values at the corners of the grid cell fail to represent this vari-
ation faithfully, any interpolation and level-set finding is bound to give a wrong
answer. It’s therefore common to assume that the function being sampled is band-
limited (i.e., its Fourier transform contains no frequencies higher than some spec-
ified frequency ω), and that the samples are spaced close enough to ensure that
we can accurately reconstruct any such function from its samples. Indeed, if the
samples are spaced twice as close as needed for reconstruction, then simple linear
interpolation serves to approximate the function quite well, as we saw in Chap-
ter 18. Unfortunately, approximating the true function F0 by a function F whose
value at each point is very near the value of F0 does not ensure that a level set of
F resembles the corresponding level set of F0. To understand this, consider a very
gradually sloping beach. A very small change in tide level can create a drastic shift
in the shoreline; alternatively, a beach shaped only slightly differently can have a
drastically different-looking shoreline. Thus, the level sets of F and F0 need not
be very similar at all.
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This apparent contradiction—the defining functions are similar, but the
implicit curves or surfaces are different—can be resolved, in part, by scaling: If
we insist that we consider only functions F and level sets F = c with the property
that the gradient, at each point of the level set, has magnitude at least 1, then an
alteration of F by some small enough amount δ results in a motion of the level sur-
face that’s O(δ). For acquired data, guaranteeing this property of the gradient may
be infeasible. For cases where we are building implicit functions ourselves, it may
be feasible. But if our interest in implicits is in their ability to represent chang-
ing topologies as the level value changes, then at the topology-changing level, we
must have a point where the gradient is zero (so the assumption that the magnitude
is greater than one is violated). In short, although it’s possible to make guarantees
of correctness for certain classes of implicit functions, in practice the hypotheses
may be unenforceable or impractical.

24.5 Other Representations of Implicit
Functions

Implicit surfaces are sometimes referred to as “blobbies,” because it’s so easy,
with functions like F(x, y, z) = x2 + y2 + z2, to create small blobs. Indeed, radially
symmetric functions, translated to various points and summed, allow one to create
multiple blobs. If z = f (r) is a rapidly decreasing function of r with f (0) = 1,
then we can define

F(P) =
∑

i

f (‖P− Pi‖), (24.15)

which will be a function with maxima at or near the points Pi (assuming that
they’re far enough apart), and the level set at level c = 0. 9, for instance, will
consist of approximately spherical blobs around the Pi. If two of the points Pi are
very close, then their associated blobs will merge into a single larger blob, and
this idea is the basis for modeling shapes with implicit functions: By choosing the
points Pi carefully, we can build up a shape as a sum of blobs. This approach to
modeling has been very thoroughly investigated [BW90, WGG99]; Bloomenthal’s
book [BW97b] provides a great many details. One approach, in which blobs blend
in a very predictable way, was developed by Wyvill et al. [WMW86]. Critical to
its success is finding a function f with the property that when blobs merge, the
volume of the resultant blob is approximately the sum of the individual volumes.

If we consider an implicit function F as not defining a surface where F = 0,
but rather a volume (the points P where F(P) ≥ 0), then there are further opera-
tions we can consider. For instance, if F and G both define shapes, then max(F, G)
defines the union of the shapes (the max is positive only if one of the two functions
is positive), while min(F, G) defines the intersection. Unfortunately, the function
max(F, G) is not necessarily smooth, even if F and G are. Since smoothness is
often important in guaranteeing the quality of results for implicit surfaces, these
functions are sometimes replaced by smooth approximations; with these smooth
approximations, we get approximations of the union and intersection of shapes.
By starting from simple shapes, defined by individual functions, and combining
them with operations like translation, rotation, smooth-max, smooth-min, etc., we
can create implicit representations of quite complex shapes (Figure 24.8 shows an
example). Wyvill [BEG98] describes this blob tree approach in detail.
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Figure 24.8: A complex shape created from simple implicit surfaces combined in a “blob
tree,” which defines a complex implicit function in terms of unary and binary operations on
simpler implicits (Courtesy of Erwin de Groot and Brian Wyvill.)

Another approach to describing implicit functions, based on so-called “radial
basis functions,” is described in the web materials for this chapter.

24.6 Conversion to Polyhedral Meshes

An implicit function represented by samples on a grid can be converted to a
polyhedral mesh; we’ll discuss marching cubes, the most widely known method
of doing so. Other implicit-function representations can be converted indirectly,
first by sampling on a grid and then by applying marching cubes, but there
are cases where it’s possible to quickly find a point on each component of
an implicit surface, and from this seed point construct the surface component
directly [WMW86]. A rough estimate suggests that in an n × n × n grid, one
expects O(n2) polygons in an implicit surface mesh, but since marching cubes
examine every cube of the grid, it takes Ω(n3) time; thus, in cases where the struc-
ture of the implicit function gives a priori information, it can be very useful in
reducing the isosurface-extraction time.

We’ll first examine the iso-set extraction problem in two dimensions; most
of the complexity of the problem is present there, but the pictures are easier to
understand than those in three dimensions.

Our starting point is a grid of values; the desired output is a set of polylines
representing the zero-set of the function associated to the values. We’ll refer to
this set of polylines as the output “mesh,” in preparation for the three-dimensional
example, even though it consists of only vertices and edges. Constructing the mesh
can be divided into two tasks: determining the topology of the mesh (how many
vertices and edges, and which are connected to which) and the geometry of the
mesh (determined by the actual locations of the vertices). Figure 24.9 shows this
process.

To simplify matters, we’ll assume that no vertex has value 0; we’ll return to
this simplification after developing the remainder of the algorithm.

We’ll also assume that if the topology of the isocurve within some grid square
is indeterminate, then any answer consistent with the data is satisfactory. (We’ll
also return to this simplification later.)
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Figure 24.9: Starting from a grid of values, we first determine the topology of the isocurve
for an associated function. Vertices are indicated by small circles at midpoints of edges.
We then adjust the locations of the vertices to better match the input values (i.e., the small
circles move to the place where a linear function on the edge would have a zero crossing).
Thus, the process of isocurve extraction is divided into topological and geometric tasks.
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Figure 24.10: Patterns of signs on a grid square. (a) All plusses (or minuses). (b) One plus
(or one minus). (c) Two diagonally opposite plusses. (d) Two adjacent plusses. All other
cases are rotations or reflections of these. In each case, we’ve marked a dot at the center
of each edge through which the isosurface passes, and shown possible patterns of edges by
which these can be connected.

Finally, we’ll assume that the function defined by values at the four vertices
has no maxima or minima in the interior of each square, and interpolates the values
linearly on each edge of the grid.

With these assumptions, we can classify each grid point as a “+” or “−” point,
depending on whether the value there is positive or negative. If the ends of an edge
have opposite signs, then the function must pass through zero somewhere on the
edge, so we will place a vertex on that edge. Up to symmetries, there are only a few
possibilities, shown in Figure 24.10. For each possibility, we’ve shown a way to
draw in the isocurve within the grid square in a way that’s consistent with the edge
crossings on the boundary. In case (c), there are multiple ways to connect the edge
crossings. We’ve shown two that result in isocurves with no self-intersections.

Choosing one way to fill in each possible configuration of edge crossings, we
produce a topologically valid isocurve configuration.

Having done so, we can move each isocurve vertex from an edge midpoint to
the correct location on the edge (i.e., where a linear function on the edge would
have a zero crossing).

This isosurface construction approach has some rather nice properties.

• We can give each isocurve vertex a name consisting of the x- and y-
coordinates of the endpoints of the segment it lies on, with the leftmost or
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lower vertex coming first, so a vertex on the segment from (1, 2) to (1, 3)
would have a name (1, 2, 1, 3).

• We can process the grid of squares one at a time. For each square, we do
the following.

– Find the isocurve vertex associated to it.
– If the vertex is new (we can use a hash table with the name as an index

to check this in O(1) time), we assign a new index to the vertex name,
and add this index to our vertex table; if it’s old, we do nothing with it.

– For each new vertex, we use the values at the ends of the associated
edge to determine its exact location, and record this in the vertex table.

– Examine the pattern of plusses and minuses to figure out what edges
must be added (we can do this with a lookup table in which the four
plusses and minuses serve as a 4-bit binary index); then we add these
edges to the edge table.

• The resultant set of isocurves has the property that every vertex (except
those on the very boundary of the grid) is shared by exactly two edges;
hence the resultant isocurves are all simple closed curves or polylines.

The square-at-a-time property will extend to 3D as well; because that 3D
algorithm is called “marching cubes,” this 2D algorithm can be called marching
squares. In practice, it may make sense to process a whole row of squares at once
to favor cache coherency.

Let us now return to the assumptions made at the start of our discussion of
marching squares.

We assumed that no grid vertex had the value 0. If a vertex has value 0, but
none of its neighbors do, we can adjust the value slightly (to, say, .001 times the
next smallest vertex value adjacent to it). We then proceed with the rest of the
algorithm, but at the very end, we adjust the positions of isocurve vertices that
lie on edges leaving this grid vertex so that they are all this single vertex. This
means that up to four different isocurve vertices may be at the same location so
that the isocurve no longer necessarily consists of disjoint simple closed curves
and polylines. Often, however, just two vertices get moved to sit at the grid vertex,
and the edge between them ends up with zero length (see Figure 24.11), while the
closed-curves-and-arcs property continues to hold. If four vertices all collapse to
a single grid vertex, the property no longer holds.
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Figure 24.11: One grid vertex has value 0; we adjust the value slightly and compute the
isocurve (which passes near the grid vertex), and then, at the end, we move the two nearby
vertices to the grid vertex so that the edge between them shrinks to nothing.
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If two or more adjacent vertices have value 0, more complex problems arise.
For instance, if all four vertices of a grid square have value 0, then all edges
of the square should be included in the isocurve, as perhaps should the whole
square itself, which would make the isocurve no longer be a curve! We address
these cases in the same way as the previous case: We adjust all 0 values slightly,
compute the isocurve, and then adjust vertices at the end. But if a vertex lies on a
grid edge where both ends have value 0, rather than moving the vertex to one end
or the other, we place it at the middle of the edge. The result of this is an isocurve
that’s topologically correct in any grid cell with no 0 values at its corners, and is
topologically consistent even in cells where there are zeroes. This is an instance
of our second assumption—that in indeterminate cases, any consistent answer is
acceptable—except that we do not always include the entire grid edge between
two zeroes.

The difficulties of handling zeroes in the data are intrinsic to the original prob-
lem: In places where the graph of a function is nearly horizontal, level curves are
unstable, in the sense that a small change in the input (the data values) results in a
large change in the resultant level curve.

24.6.1 Marching Cubes

The marching cubes algorithm for finding an isosurface of a function specified at
grid vertices in 3-space is exactly analogous, although there are some subtleties.
Once again, it’s easiest to assume that all input values are nonzero; if there’s a
zero in the input, perturb it by a small random amount, compute the isosurface,
and then move the isosurface vertices back to the proper locations as we did in the
marching squares algorithm.

Again, the output associated to a particular cube in the grid is determined by
the pattern of plusses and minuses at its vertices. Since there are eight vertices,
each with a plus or minus sign, we can encode the pattern of plusses and minuses
with an 8-bit binary number; this can be used to index into a table of presolved
examples, containing the vertex and triangle table for the mesh structure of the
output; the actual locations of the vertices in the vertex table are once again deter-
mined by interpolation along edges of the grid.

Figure 24.12 shows two of these cases: The first generates a single triangle
as output, and the second generates a rectangle, which would generally be repre-
sented by two triangles.
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Figure 24.12: Two examples of
patterns of plusses and minuses,
and the associated bits of iso-
surface.
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Figure 24.13: Two adjacent
cubes in the marching cubes
algorithm share a single face.
The same four vertices appear
on the four edges of this face, but
the edges that join together pairs
of isosurface vertices in each
cube are not consistent with one
another; the surface that results
will have a boundary rather than
being a closed surface.

In the marching squares algorithm, a grid edge contained either no isocurve
vertex or one isocurve vertex. In the latter case, each of the two adjacent grid
squares had an edge that ended at that vertex, so each vertex met two edges, and
the edges therefore fell into long chains (which either were closed curves, or ter-
minated at the boundary of the grid). In the marching cubes algorithm, adjacent
cubes meet along a face, as shown in Figure 24.13; these faces share isosurface
vertices, but the way that the isosurface vertices are connected by edges within
each copy of the face might not be consistent. If this happens, the resultant model
of the isosurface will have edges in the interior of the grid, which is inappropriate.
It’s critical therefore that the 256 models used for the 256 possible cases in the
marching cubes algorithm be pairwise consistent so that the resultant isosurface
mesh either is closed or has boundary edges only on the boundary of the input grid.

As in the marching squares algorithm, the marching cubes algorithm is
very well suited for a one-plane-of-data-at-a-time approach, in which the output
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associated to a plane of grid cubes is computed all at once, and then the next plane
of grid cubes is loaded into memory.

24.7 Conversion from Polyhedral Meshes
to Implicits

Implicit representations have some important advantages over polyhedral models,
as we’ve mentioned. It’s not only possible to convert from implicit representations
to polyhedral ones, but it’s also possible to do the opposite: Given a nice enough
polyhedral mesh, we can find a function F whose level set resembles the mesh.
One class of meshes that is “nice enough” are ones with the property that the
complement of the mesh—the set of all points in 3-space not on the mesh—can
be divided into two sets with the property that each mesh face is on the boundary
of both sets. If the mesh is a pair of cubes, for instance, one of the sets would
be the interiors of both cubes, and the other would be the region exterior to both.
Every face of the cube has the interior on one side and the exterior on the other.
By contrast, a Möbius band is not “nice enough,” because its complement consists
of a single connected set.

When a mesh has this “two set” property we can declare one set to be “posi-
tive” and the other set “negative,” and then define a function F on 3-space by the
rule that F(P) is the minimum straight-line distance from P to the mesh, multi-
plied by−1 if P is in the “negative” region. This is an implicit function (known as
the signed distance transform of the mesh) whose zero-set is the mesh. Unfor-
tunately, if we represent this function by grid samples, the level-zero isosurface
will not be exactly the original mesh in general, but it will be very similar to it,
provided the grid samples are closely enough spaced.

In general, however, interconverting between implicit and polyhedral models
tends to be lossy, and should probably be avoided.

24.8 Texturing Implicit Models

Because implicitly defined models are generally not equipped with texture coordi-
nates, it’s common to use volume textures to texture them. Such volume textures
can be procedurally defined, by a rule like

color = (0.3, 0.2, 0) + (0.2, 0.2, 0) sin(x2 + y2), (24.16)

which varies between dark brown and light brown cylindrical rings; an implicit
object textured with such a function gets a (very simple) wood-like appearance.
(Textures like this one, which can be expressed as a function of two coordinates,
are sometimes called projection textures, because one can imagine the texture
being projected from a 2D image out into space [Pea85].) More often, however,
textures for implicitly defined objects are defined explicitly via a volumetric rep-
resentation such as a voxel grid with colors at each voxel.

To avoid the cost of creating and storing all the voxels, while only a few are
used for texturing, one can also use a hierarchical data structure like an oct tree
in which most cells are empty, but ones near the implicit surface are filled in.
This is also a natural structure to use in a painting interface, in which an artist
directly paints texture (color, normals, displacement) onto a surface: In broad
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constant areas, unrefined structure represents the texture compactly; in areas with
finer detail, we can refine the oct tree so that it can hold this detail. This idea
has been developed in some detail by DeBry et al. [DGPR02] and Benson and
Davis [BD02].

24.8.1 Modeling Transformations and Textures

Just as we typically describe a polyhedral model in some modeling space, and
then apply various transformations to it so as to put it in a particular location and
orientation in world space, we typically define implicit models in some modeling
space as well, and transform them into world space. For example, we define a
sphere by the equation F(x, y, z) = x2 + y2 + z2 − 1 = 0; to translate this sphere
to the point (1, 3, 4) we replace F by

G(x, y, z) = F(x− 1, y− 3, z− 4). (24.17)

Setting G(x, y, z) = 0 then gives a unit sphere centered at (1, 3, 4). We can consider
G as being constructed from F by the rule

G(P) = F(T(P)), (24.18)

where T is the transformation “translate by (−1,−3,−4),” that is, exactly the
inverse of the transformation we wanted to apply to the sphere.

Inline Exercise 24.2: The implicit formula for an ellipsoid of radii (1/2, 1, 1)
in x, y, and z is x2/4 + y2 + z2 − 1 = 0.
(a) Letting F(x, y, z) = x2 +y2 + z2−1, is the implicit equation of our ellipsoid
F(x/2, y, z) = 0 or F(2x, y, z) = 0?
(b) What simple scaling transformation takes points of the unit sphere to points
of our ellipsoid?
(c) How are parts (a) and (b) related?

In general, if S is a surface defined implicitly by the function F (i.e., if
F(s) = 0 if and only if s ∈ S), the surface T(S) = {T(s) : s ∈ S}, where T is
an invertible linear transformation, is implicitly defined by the function

G = F ◦ T−1. (24.19)

In fact, the transformation T need not be linear—it need only have an inverse. This
means that transformations like

T(x, y, z) = (x cos z + y sin z,−y sin z + x cos z, z), (24.20)

which rotates each z = c slice of 3-space by a different amount so that the strip
[−1, 1] × 0 × R gets twisted into a helical shape, can be used to apply a helical
deformation to any implicitly defined object.

A shape that’s been modeled implicitly and then transformed can be textured
in world space (the texture at a point P with F(T−1(P)) = 0 is determined by
the coordinates of P itself) or in modeling space (the texture is determined by the
coordinates of T−1(P)).
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24.9 Ray Tracing Implicit Surfaces

When we wanted to compute the intersection of a ray (parameterized in the usual
form t 
→ P + td) with an implicitly defined sphere, we ended up solving a
quadratic equation in t which arose by writing out F(P+ td) = 0, where F was the
implicit function defining the sphere. But if the implicit object is more general, it’s
possible that the equation F(P + td) = 0 might have an enormously complicated
form, and there may be no simple formula for finding its roots. In this case, we
must fall back on numerical techniques for root finding [Pre95].

As we mentioned in Section 24.8.1, if S is an implicit surface defined by a
function F, and T is a linear transformation, then the surface T(S) is defined by
F ◦ T−1. As hinted at in Exercises 7.17 and 11.13, the problem of intersecting a
ray t 
→ P + td with T(S) can be recast as the problem of intersecting a different
ray with S. Since T(S) is defined by F ◦ T−1, a point of our ray is on T(S) exactly
when

F(T−1(P + td)) = 0. (24.21)

That’s the same equation we get when asking when a point of the ray t 
→
T−1(P) + tT−1(d) is on the surface S. Finding a ray-surface intersection in the
untransformed version of the implicit surface may be straightforward (as we’ve
seen with the plane and the sphere in earlier chapters). This means that if you’re
willing to model a scene by applying transformations to several implicitly defined
shapes like spheres or cylinders, you can ray-trace the scene by taking each
ray, and for each object, apply the inverse of the object’s modeling transforma-
tion to the ray’s basepoint and direction vector. You then intersect this “back-
transformed” ray with the pretransformed object to find an intersection point Q
and a normal vector n to the object. Applying the modeling transformation to Q
and its normal transformation to n gives the intersection point and normal in world
space.

For scenes of modest complexity, this works well. For highly complex scenes,
it’s a better idea to use a bounding-box hierarchy to first determine which trans-
formed implicit shapes the ray has a chance of intersecting, and then do the inter-
section test only on those that pass this test.

24.10 Implicit Shapes in Animation

Implicit curves or surfaces can also be used in animation; within physically
based animation, they play a major role under the name level set methods [OS88].
In such methods, there’s some initial object of interest that is defined either by an
implicit equality (F0(x, y, z) = 0) for surfaces or by an inequality (F0(x, y, z) ≥ 0)
for solids.3 Various forces act on the surface or solid attempting to deform it in
some way; these, in turn, are treated as attempts to deform the defining function
F0. One ends up with a differential equation of the form

∂Ft(x, y, z)
∂t

= −∇Ft(x, y, z) · v(x, y, z), (24.22)

3. These methods can also be applied in two dimensions to implicit curves.



ptg11539634

632 Implicit Representations of Shape

Figure 24.14: Water animated by the level-set method. Notice how droplets form and merge.
(Courtesy of Stephen Marschner, ©2002 ACM, Inc. Reprinted by permission.)

where the vector field (x, y, z) 
→ v(x, y, z) describes how the level set of the func-
tion Ft should move at the point (x, y, z). (The field v can be time-varying as well.)
Solving this differential equation for Ft as a function of t gives the evolving shape
of the object as the forces act on it.

Typically the forces act on the implicit surface itself, and therefore they may be
known only at points where Ft = 0. On the other hand, the values of the function
F at points far from those where F = 0 are unimportant, and so it’s possible to
keep track of Ft only near locations where Ft = 0. One way to do this is to extend
Ft to nearby points by signed distance [LKHW03]; another way is to keep track
of the values of Ft only in a narrow band around the set Ft = 0, and extend the
field v to that band [AS95]. In either case, the function Ft is usually represented
by voxel samples.

The advantage of the level-set approach to animation is that changing topology
(like droplets of water merging into a single larger drop) is easy to generate. The
method has been used to produce many of the most realistic fluid animations to
date [EMF02] (see Figure 24.14).

24.11 Discussion and Further Reading

There’s a duality between implicit and parametric models that we mentioned in
Chapter 7, making them suited for different applications, and with the peculiar
characteristic that finding the intersection between two models is easier when one
is parametric and the other is implicit.

Implicit representations of shape as an artistic tool have fallen out of
favor somewhat in recent years, but they have grown in popularity as shape
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representations for simulation. This may be related to GPUs, where polygonal
representations are strongly supported, or it may be related to the fact that having
an artist build a function on all of space to get a surface that occupies just a tiny
part of it is somewhat awkward. This awkwardness is partly avoidable by using
the signed distance from the shape (positive outside, negative inside). To be useful
in an implicit definition, this signed distance function need only be represented
close to the zero-set: Its values far away cannot matter. The same is true for the
volumetric texture functions described earlier in the chapter. Perhaps methods like
this will rejuvenate the use of implicitly defined models.

One charm of implicit surfaces is that their geometry (i.e., tangent planes,
curvature, etc.) is completely determined by the defining implicit function, and
can be computed analytically. The web material for this chapter describes the
computation of curve and surface curvature, for instance.

24.12 Exercises

Exercise 24.1: Explain why the formula of Equation 24.14 gives a function with
the property that for any point (x, y) where x and y are both nonintegers, the value
F(x, y) lies between the minimum and maximum values of v at the corners of the
square containing (x, y) if h has the property that when all the v(i, j) are 1, the
function F is everywhere 1.

Exercise 24.2: In the marching squares algorithm, we chose one of two pos-
sible ways to connect vertices in the case where the signs at the corner of a grid
square alternated; the choice we made was independent of the values at the four
corners.
(a) Explain why, if we drew a diagonal from the northeast to the southwest corner
of each grid square, and treated the resultant collection of triangles as a mesh with
values at vertices, the piecewise-linear interpolation of those values has a graph
whose level-zero slice is consistent with our choice.
(b) Explain why, if we’d chosen the alternate diagonal for each grid square, it
would be equivalent to making the other choice.
(c) Devise an algorithm in which we add a new vertex to the center of each grid
square, with edges from this vertex to the four corners, and we assign a value to
the new vertex that’s the average of the four corner values. Use this new mesh (and
these new values) to generate an isocurve for the piecewise linearly interpolated
function. (Your new isocurve will have vertices both on the original grid edges
and on the new edges you added from each center vertex to the corners.
(d) Explain how this revised approach can lead to either of the two possible ways
of connecting the edge vertices in the +−+− case.
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Chapter 25

Meshes

25.1 Introduction

Back in Chapter 8, we introduced meshes as a way to represent shapes in com-
puter graphics. We now return to examine meshes in more detail, because they
dominate present-day graphics. The vertex-and-face-tables model we introduced
in Chapter 8 is widely used to represent triangle meshes, which are almost uni-
versally used in hardware rendering, because triangles are automatically convex
and planar and there’s only one possible way to linearly interpolate values at the
three vertices of a triangle. Quad meshes, in which each face has four vertices, are
also interesting in various situations. Indexing a regular planar quad mesh is very
simple compared to indexing a regular planar triangle mesh, for instance. On the
other hand, quads are not necessarily planar, they may be nonconvex, and if we
have values at the four vertices of a quad, linear interpolation over the interior of
the quad is likely to be undefined. So almost everything that’s simple for triangles
is more difficult for quads.

During geometric modeling, arbitrary polygon meshes, in which a face can
have any number of vertices, can be a real convenience. In 2D modeling, for
instance, the countries in a geography-based board game might be described by
polygons with hundreds of vertices. Expressing these as triangulated polygons
would introduce meaningless artifacts into the country descriptions. It would also
amplify the space required to store the map. In general, such unconstrained meshes
present all the problems of quad meshes, and more, but they have their place
in situations where artistic intent or natural semantic structure in a model is
important.

As we mentioned in Chapter 14, triangle strips and fans are sometimes used
as a way to reduce mesh storage or transmission costs. In a triangle mesh, instead
of having a list of vertex-index triples to represent faces, we have a sequence of
triples like (1, 4, 18, 9, 11, . . .), which represents the triangles with vertices 1, 4,
and 18, the one with vertices 4, 18, and 9, the one with vertices 18, 9, and 11, etc.,
as shown in Figure 25.1.

1
18

4 9

11

6

2

5

Figure 25.1: A triangle strip
is represented by a stream of
vertex indices; every group of
three adjacent indices describes
another triangle in the strip. The
communication attributable to a
typical triangle is therefore just
a single vertex index, rather than
three vertex indices.

635
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At the abstract level—the mesh being represented—there’s no important dif-
ference between the full representation and the stripped or fanned representation.
The choice of whether to use strips or fans depends on whether transmission of
geometry (typically from a CPU to a GPU) is the primary bottleneck, or whether
something else, like fill rate (the speed of converting triangles into pixel values),
dominates.

In modeling, as opposed to rendering, today’s dominant technologies are
splines (particularly NURBS) and quad-based subdivision surfaces; both of these
are closely related to meshes. And in many application areas, including scientific
visualization and medical imaging, nonmesh data structures like voxels or point-
based representations dominate.

These preferred representations change depending on what kinds of data are
at hand and on system properties such as memory size, memory bandwidth,
bandwidth to the GPU, etc. Even now, voxel representations are being seriously
considered by game developers, while work in scientific visualization has moved
heavily toward meshes to make better use of GPUs. As with every other engineer-
ing choice described in this book, meshes will never be the universally right or
wrong answer; they are just one more representation for your toolbox.

210
0

10

210
0

10
21

0

1

Figure 25.2: Polygonal meshes
used to represent a cube, a teapot,
and a smooth, wavy surface.

When we introduced meshes in Chapter 8, we did so as a means of repre-
senting geometry, like that shown in Figure 25.2. But there are other applications
as well. Sometimes the vertex coordinates for a mesh are not physical locations,
but instead are colors, or normal vectors, or even points in a configuration space
(i.e., each vertex might describe a “pose” of a jointed figure; edges would then
correspond to interpolations between poses, etc.).

The vertex-and-face-tables model of Chapter 8 appears to discount edges,
which have no explicit representation. Nonetheless, faces are not all that mat-
ters. Edges are important in nonphotorealistic rendering, and in visibility-
determination algorithms. Vertices are important in defining functions on meshes,
as we discussed in Chapter 9. And most of all, connectivity is critical in many
applications. The lack of explicit representation of connectivity or edges should
not be taken as a mark of their unimportance.

Inline Exercise 25.1: The vertex-and-face-table representation could be
enhanced with an edge-table representation; each row of the edge table would
contain indices of two vertices that were to be joined by an edge. In this exer-
cise, we’ll examine the consequences of introducing an edge table.
(a) Assuming that the edges in a mesh are exactly those that are part of the
boundary of a face, describe an algorithm for deleting a face from a mesh.
(b) Suppose that edges are to be treated as directed, that is, the edge (3, 11) is
different from the edge (11, 3), and that the same is true for faces. The bound-
ary of the face (3, 5, 8) consists of the three directed edges (3, 5), (5, 8), and
(8, 3). Assuming that we agree that the shapes we represent are all to be polyg-
onal surfaces, discuss face deletion again. Make a Möbius strip from five trian-
gles, and check whether your deletion algorithm works for the deletion of each
triangle.
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25.2 Mesh Topology

The topology of meshes—what’s connected to what—is of primary importance
in many mesh algorithms, which often proceed by some kind of adjacency search
like depth-first or breadth-first search. In this section we’ll discuss the intrinsic
topology of meshes (i.e., those aspects that can be determined by looking only
at the face table), and we’ll briefly touch on the topic of embedding topology
for meshes that are embedded in 3-space (i.e., for which there’s a vertex table
specifying positions of vertices, and for which the resultant mesh has no self-
intersections, which we’ll define precisely).

To specify the topology of a triangle mesh, we typically choose a collection
of vertices (usually represented by vertex indices, so we speak of vertex 7, or
vertex 2), a collection of edges, with each edge being a pair of vertex indices,
and a collection of faces, with each face being a triple of vertex indices. We’ll
put additional constraints on these in a moment. Because a vertex consists of one
index, an edge consists of two indices, and a face consists of three indices, it’s
useful to have a term that encompasses all three. We say that a k-simplex is a set
of k + 1 vertices. Thus, a vertex is a 0-simplex, an edge is a 1-simplex, and a face
is a 2-simplex. (These ideas can be generalized to describe tetrahedral meshes, in
which 3-simplices are allowed, and to even higher-dimensional meshes.)

For nontriangle meshes, a face may consist of a sequence of more than three
vertices. All the algorithms presented here become substantially more complex
when nontriangular faces are allowed in the mesh, so we’ll generally consider
only triangle meshes.

The degree of a vertex is the number of edges that contain the vertex. The term
valence is also used, by analogy with atoms in a molecule. The vertex is said to be
adjacent to the edges containing it, and vice versa. We generalize to say that the
degree of an edge is the number of faces that contain the edge. (The edge is said
to be adjacent to the faces, and vice versa.) We’ll restrict our attention to meshes
in which each edge has degree one, in which case it’s called a boundary edge, or
degree two, in which case it’s called an interior edge (see Figure 25.3). An edge
that’s adjacent to no faces at all is called a dangling edge and is not allowed in
our meshes.

Figure 25.3: A small mesh with
interior edges drawn in green and
boundary edges drawn in blue.
The red edge, which is not adja-
cent to any faces, is a “dangling”
edge and is not allowed in our
meshes.

25.2.1 Triangulated Surfaces and Surfaces
with Boundary

To make our algorithms clean and provably correct, we will restrict the class of
triangle meshes that we allow. We’ve already restricted our attention to meshes
where each edge has one or two adjacent faces, but we will need some additional
restrictions.

1. Each face may occur no more than once, that is, no two faces of the mesh
can share more than two vertices.

2. The degree of each vertex is at least three.
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3. If V is a vertex, then the vertices that share an edge with V can be ordered
U1, U2, . . . , Un so that {V , U1, U2}, {V , U2, U3},. . ., {V , Un−1, Un} are all
triangles of the mesh, and

(a) {V , Un, U1} is a mesh triangle (in which case V is said to be an interior
vertex), or

(b) {V , Un, U1} is not a mesh triangle (in which case V is said to be a
boundary vertex),

and there are no other triangles containing the vertex V (see Figure 25.4).

U1

U2

U3

U4

U3

U4

V

U1

U2

V

Figure 25.4: The red vertex
marked with a dot in the top mesh
is an interior vertex; the one in
the bottom mesh is a boundary
vertex.

In the event that such a mesh has no boundary vertices, it’s called a closed
surface; if it has boundary vertices, it’s called a surface with boundary.

Inline Exercise 25.2: Figure 25.5 shows three surfaces, each of which fails the
requirements for being a surface or surface with boundary. Explain the three
failures.

We have not yet said anything about orientation or orientability so that, for
instance, the Möbius band is a perfectly admissible surface with boundary.

Figure 25.5: Each of these fails to
be a surface mesh in some way.

Inline Exercise 25.3: Show that the mesh with faces (1, 2, 3), (2, 3, 4),
(3, 4, 5), (4, 5, 1), (5, 1, 2) and vertices 1, 2, 3, 4, and 5 is a surface with bound-
ary (i.e., satisfies all the conditions above). Determine the set of boundary
edges.

The boundary of a simplex is gotten by deleting each vertex of the simplex
in turn, so the boundary of {2, 3, 5} consists of the three sets {2, 3}, {2, 5}, and
{3, 5}. Similarly, the boundary of the 1-simplex {2, 4} consists of the two sets {2}
and {4}. The boundary of the 0-simplex {8} consists of the empty set.

25.2.2 Computing and Storing Adjacency

The basic mesh-storage structure is the face table, but adding and removing faces
from an array is slow. Storing faces in a linked list rather than a table represented
as a matrix allows low-overhead addition and deletion of faces, but operations like
detecting adjacency can be expensive. The winged-edge data structure described
in Chapter 8 makes adjacency computations very quick, but addition and deletion
are relatively heavyweight operations.

Most adjacency-determining operations can be done, in a precomputation step,
with hash tables. For instance, here’s how to determine all boundary edges: First,
for any face like {5, 2, 3}, there are three edges, each of which we’ll represent
with an ordered pair. But the first edge could be represented by the pair (2, 5) or
(5, 2). We’ll make the choice of representing the vertices in an edge in increasing
order, so the edges are (2, 5), (3, 5), and (2, 3). With this convention, finding the
boundary edges is easy: We start with an empty hash table of edges. For each face
of the mesh we compute the three edges, and for each such edge we either insert it
in the table if it’s not there already or delete it from the table if it is there already.
When we’ve processed all the faces, the edges that remain in the table are those
that appeared only once; in other words, they are the boundary edges.
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Inline Exercise 25.4: The boundary-finding algorithm above assumed that the
mesh was a closed surface or a surface with boundary, that is, it satisfied all
the conditions for being a surface. Think about how you could use a similar
algorithm to determine that the mesh did indeed satisfy all these conditions.
Condition 3, which characterizes interior and boundary vertices, is a bit tricky,
and you can skip that one if you like.

Our definition of a surface was quite general, but in practice most of the sur-
faces we meet in graphics are orientable, or even oriented. To define an oriented
surface we need the notion of an oriented simplex: An oriented simplex is not
just a set, but an ordered set. A 0-simplex is still just a vertex. A 1-simplex is
an ordered pair (i, j) of distinct vertex indices. And a 2-simplex is an ordered
triple (i, j, k) of distinct vertex indices, with the convention that (i, j, k), ( j, k, i),
and (k, i, j) are all considered “the same.” (Alternatively, one can make the con-
vention that the lowest-numbered vertex is always listed first; the order of the
remaining two vertices determines the orientation of the face.)

The (oriented) boundary of an oriented face is built by deleting one vertex
at a time, and reading the others in cyclic order, so the oriented boundary of the
oriented face (2, 5, 3) consists of the oriented edges (2, 5), (5, 3), and (3, 2).

We’ve defined the oriented boundary only for faces. Oddly enough, to define it
for edges requires more machinery, as does defining it for tetrahedra and other
simplices in higher-dimensional meshes.

For a mesh to be oriented requires that the faces be oriented simplices, and
that if vertices i and j of edge e are contained in two distinct faces f1 and f2, then
they must appear in the order (i, j) in one of them and ( j, i) in the other.

An oriented face is often drawn symbolically with a small arrow indicating the
orientation, that is, the cyclic order of the vertices. Figure 25.6 shows an example
of two adjacent faces—the edge (3, 7) appears in the first; the edge (7, 3) in the
second.

2

4

3

7

Figure 25.6: Two oriented adja-
cent faces, (2, 3, 7) and (7, 3, 4).
The oriented edge (3, 7) is in the
boundary of the first face, while
(7, 3) is in the boundary of the
second.

If we are given the face table for a connected unoriented mesh, we can try to
create an oriented mesh from it: We take the first triangle, say, {2, 6, 5}, and assign
it an order, say, (2, 5, 6). We then seek out an adjacent face, say, (9, 2, 5), and
since it shares the vertices 2 and 5 with the first face, we have to place them in the
opposite order, that is, we assign the order (9, 5, 2). We continue in this fashion,
assigning an order to each face adjacent to those already assigned, following either
a depth-first or breadth-first strategy. If we encounter a face that’s already been
oriented, we check to verify that the orientation is consistent with the current face
(i.e., it’s the orientation we’d have assigned if it weren’t already done!). If it’s
consistent, we ignore the face and continue; if it’s inconsistent, we terminate the
algorithm and report that the mesh is not orientable.
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Inline Exercise 25.5: (a) Describe how to determine whether a mesh is con-
nected (i.e., whether the graph consisting of all vertices and edges of the mesh
is a connected graph).
(b) Apply the orientation algorithm to the five-vertex mesh of Inline Exercise
25.4 to show it’s not orientable.
(c) Once we orient one face of an orientable connected mesh, all others have
their orientations determined by the algorithm just described, so there are only
two possible orientations of any connected orientable mesh. Suppose that some
mesh M is not connected, and instead has n > 1 components. How many dif-
ferent orientations can it have?

The algorithm above can be slightly modified to compute the oriented mesh
boundary: In the course of processing each face, if one of its edges is not part of a
second face, we record that (oriented) edge as part of the oriented boundary.

Although we’ve described orientable meshes and an algorithm for determin-
ing an orientation (i.e., a consistent orientation for each face), in practice we usu-
ally encounter oriented meshes, or ones for which a particular orientation has
already been chosen. When these meshes represent closed surfaces in 3-space,
like a sphere or torus, the orientation of a face (i, j, k) is usually chosen so that if
v1 is the vector from vertex i to vertex j, and v2 is the vector from vertex j to vertex
k, then v1×v2 points “outward,” that is, toward the unbounded portion of space.

Q
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n

S

J

P

Figure 25.7: The point P is on the
same side of the plane J as C,
and therefore may be in the trian-
gle ABC. If it passes correspond-
ing tests for planes containing the
edges BC and CA, we know it’s in
the triangle.

Current work in collision detection primarily uses oriented meshes, and often
stores triangles as lists of edges (or along with lists of their edges). The reason
has to do with speeding up certain tests that occur often, namely, point-in-triangle
tests. If you have a point P in the plane of a triangle ABC in space, and you want to
test whether it’s actually within the triangle, you can do three “Is this point on the
right side of this plane?” tests to answer the question. Here’s how: Let’s suppose
that the plane of ABC is S. Consider any plane J that contains the edge AB and is
not parallel to S (see Figure 25.7). The plane J can be characterized by a point Q
on the plane and a normal vector n; the equation for J is then

(X − Q) · n = 0. (25.1)

To determine whether P is on “the right side” of J, we can substitute C for X in
Equation 25.1; the result will be nonzero. If it’s negative, we’ll replace n by −n,
so we can assume that it’s positive:

(C − Q) · n > 0. (25.2)

Now that we’ve arranged for n to point in the proper direction, the test for P being
on the right side of J becomes

(P− Q) · n > 0. (25.3)

If we compute Q and n once, we can associate them to the edge AB and reuse
them for every point-in-triangle test.
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Inline Exercise 25.6: The point-versus-plane test involves a point subtraction,
a dot product, and a comparison. Assuming that all points are stored as triples
of coordinates, we can consider the special point Z = (0, 0, 0) and rewrite the
test as ((P−Z)− (Q−Z)) ·n > 0, or (P−Z) ·n > (Q−Z) ·n. Assuming that
this computation appears in the innermost loop of your program so that you’re
willing to ignore the point-versus-vector distinction, and assuming further that
you’re willing to do more precomputation, how few operations can you use to
do this computation for each new test point P? (Answer: three multiplies, two
adds, one compare. Your job is to verify this.)

One final data structure for meshes—and one that is particularly useful for
meshes that will remain mostly topologically static, that is, for which addition and
removal of faces is very rare—is an enhancement of the triangle mesh in which
row i of the face table stores the indices of the three vertices for triangle i, but also
stores the indices of the three triangles that are adjacent to triangle i. (If triangle i
has one or two edges on the boundary of the mesh, then the corresponding index
is set to invalid.) This structure speeds up coherent searching of the mesh data
structure, especially for processes like contour finding. (If edge e is a contour edge
as seen from some viewpoint, then the edges that meet e are very good candidates
to also be contour edges.)

Figure 25.8: The star of a simplex
consists of all simplices contain-
ing it.

There are analogous structures for quad meshes. The difference between tri-
angles and quads may seem small, but it’s nontrivial. If you can replace a pair of
adjacent triangles with a quad, you’ve turned five edges into four, and that may
mean a 20% speedup in your program.

25.2.3 More Mesh Terminology

V

Figure 25.9: The 1-ring of V is
drawn in large red dots; the 2-
ring in smaller green dots.

The star of a vertex consists of the vertex itself and the set of edges and faces
that contain that vertex (i.e., like a “neighborhood” of the vertex). The star of an
edge consists of the edge itself and any faces that contain the edge. Figure 25.8
shows the star of a red vertex in red tones and the star of a green edge in green
tones. The link of a vertex is the boundary of the star. Suppose V is a vertex in
a closed mesh. Each vertex in the link of V is separated from V by a single edge.
These vertices are therefore called the 1-ring of V; those separated by a distance
of two edges are called the 2-ring (see Figure 25.9). The vertices of the 1-ring
of an interior vertex can always be organized into a cycle; that follows from the
definition of a surface mesh. For the 2-ring, bad things can happen. For instance,
in a tetrahedron, the 2-ring of any vertex is empty; in an octahedron, the 2-ring of
any vertex is a single vertex. Figure 25.10 shows a mesh in which the 1-ring of a
vertex is nice, but the 2-ring forms a figure-eight shape.

Figure 25.10: The star of the top
vertex is drawn in brown; the
1-ring, which forms an octagon
in the middle level, in red. The
2-ring, at the bottom drawn in
bright green, is connected into a
figure-eight shape.

When we compute the boundary of a mesh, the boundary edges form chains;
each such chain is called a boundary component, and the number of boundary
components is often denoted by the letter b.

If a mesh surface M has v vertices, e edges, and f faces, the number χ =
v−e+ f is called the Euler characteristic of M, and it measures the “complexity”
of the surface: A spherical topology has characteristic 2; a torus has characteristic
0; a two-holed torus has characteristic −2; and in general, an n-holed torus has
characteristic χ = 2 − 2n. If the n-holed torus also has b boundary components,
then the formula becomes χ = 2− 2n− b.
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25.2.4 Embedding and Topology

When we assign locations to the vertices of a surface mesh (and to the rest of
the mesh by linear interpolation), we want the resultant shape to resemble a sur-
face that has an interior and an exterior, and no self-intersections. To distinguish
between the abstract surface mesh (a list of vertices numbered 1, . . . , n, and a list
of “faces,” or triples of vertex indices) and the geometric object associated to it,
we’ll use lowercase letters like i and j to indicate vertex indices, and Pi and Pj

to indicate the geometric locations of vertices i and j. We’ll also use C(Pi, Pj) to
denote all convex combinations of Pi and Pj, that is, the (geometric) edge between
them, and C(Pi, Pj, Pk) to denote all convex combinations of the vertex locations
Pi, Pj, and Pk, that is, the (geometric) triangle with those points as vertices.

With this terminology, we’ll define an embedding of a surface mesh as an
assignment of distinct locations to the vertices, extended to edges and faces by
linear interpolation and satisfying one property: The triangles T1 = C(Pi, Pj, Pk)

and T2 = C(Pp, Pq, Pr) intersect in R3 only if the vertex sets {i, j, k} and {p, q, r}
intersect in the abstract mesh. If the intersection is a single vertex index s, then
T1 ∩ T2 must be Ps; if the intersection has two vertices s and t, then T1 ∩ T2 =
C(Ps, Pt); and if the intersection is all three vertex indices, then T1 must be iden-
tical to T2. (Note that we’re assuming that i, j, and k are distinct and p, q, and r are
distinct; otherwise, either T1 or T2 would not be a triangle.)

Figure 25.11 shows examples of nonembedded meshes. In the first example,
two triangles intersect in their interiors. In the second, two triangles intersect at a
point that is a vertex of one triangle, but is mid-edge on the other triangle. In the
third, the intersection (shown in aqua) of two shaded triangles is only part of an
edge of the left one (a situation known as a T-junction).

Figure 25.11: (Top) A mesh with
bad self-intersections. (Middle) A
mesh in which a vertex of the pink
face at the right lies in the middle
of an edge of the green face at the
top right. (Bottom) The red vertex
marked with a dot is a T-junction.

When we have both a face table and a vertex table, we can test whether the
resultant geometric mesh is embedded or not, but the operation is expensive and
prone to numerical errors. First, the entries of the vertex table (i.e., the vertex loca-
tions) must all be distinct. Second, for every pair of faces the geometric intersec-
tion of the faces must be empty unless the abstract faces share an edge or a vertex,
in which case the geometric intersection should match the abstract intersection.
Good modeling software is designed to ensure that only embedded meshes get
produced so that such tests are not necessary.

If a mesh is closed, that is, its boundary is empty, and if it’s embedded, then
(1) the mesh must be orientable, and (2) the embedded mesh divides 3-space into
two parts: a bounded piece called the interior and an unbounded piece called the
exterior. The first statement is proved by Banchoff [Ban74]; the second, which
may seem obvious, is really quite subtle, and is a consequence of the Alexander
Duality Theorem [GH81], which is far beyond the scope of this book. To deter-
mine whether a point P that’s not on the mesh itself is in the interior or exterior,
we can create a ray r that starts at P and travels in some direction d, missing all
vertices and edges of the mesh. If the ray r intersects k faces of the mesh, then P
is inside if k is odd and outside if k is even. The direction d can be produced by
picking a direction at random; with probability one the ray r will miss all vertices
and edges of the mesh.

A closed embedded mesh is, from a geometric and algorithmic point of view,
an ideal object. It’s suitable for use in ray tracing, in rendering with backface
culling, for shadow-volume computations, etc. Furthermore, if a closed mesh is
embedded and we move the vertex locations by a small enough amount, the
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resultant mesh is still embedded. “Small enough” in this case means “less than
ε/2, where ε is the smallest distance from any vertex to any other vertex, or to the
edge between any two other vertices, or to the plane containing any other three
vertices, or from any edge to any nonintersecting edge of the mesh.

A closed, embedded surface mesh is sometimes called a watertight model,
although it’s possible to have a model that’s intuitively “watertight” without sat-
isfying the definitions for closed-ness, surface-ness, and embedding. As a simple
example, a cube that has an additional square dividing it into two half-cubes is
“watertight,” in the sense that water placed in either of the two “rooms” can’t
escape, but it fails the tests of “surface-ness” and embedding. At a more practical
level, it can be convenient to create a video-game model of, say, a robot charac-
ter in which the torso is a polygonal cylinder (with endcaps) and the upper arm
is an open-ended triangular prism that goes through the torso (see Figure 25.12).
Clearly no water can leak from the torso into the upper arm, and this structure
makes it easy to adjust the arm position over some range without worrying about
things matching up perfectly.

Figure 25.12: A see-through view
of the torso and arm of a simple
robot character.

On the other hand, while modeling and animating the character with this
approach is easy, rendering it, or creating shadows from it, may be quite difficult.
The same goes for models containing T-junctions.

25.3 Mesh Geometry

From now on, we’ll assume we’re working with embedded oriented sur-
face meshes, although not necessarily closed meshes—there may be boundary
components.

Figure 25.13: In this simple
model of Earth, a small disk
around the North Pole projects
injectively onto a disk in the hori-
zontal tangent plane to the North
Pole.

We’ve suggested that surface meshes are the discrete analog of smooth sur-
faces, but there are subtleties. On a smooth surface, for instance, at each point P
there’s a tangent plane that approximates the surface near P: In a small enough
region around P, projection from the surface to the tangent plane is injective, that
is, no two points in the neighborhood project to the same place on the tangent
plane. Figure 25.13 shows this for the sphere. By contrast, there are quite simple
meshes for which there is no such plane. Figure 25.14 shows an example of a
vertex with the property that no plane passing through it will serve as a “tangent
plane”; projection in any direction is never injective.

Figure 25.14: Projection from the
mesh onto any plane passing
through the central red vertex will
not be injective. The large green
vertices are closer to the eye; the
small aqua ones are farther away.

The situation shown in Figure 25.14 may seem pathological, but it can arise
quite easily during the gluing together of points obtained from a surface by scan-
ning. A vertex like the one in the figure is said to be “not locally flat”; a locally
flat vertex P is one for which there’s a vector n such that projection from the star
of P onto the plane through P with normal n is injective. Generally speaking, ver-
tices that are not locally flat tend to break algorithms; it’s a good idea to check that
the vertex normal n assigned to each vertex P of a mesh demonstrates the local
flatness property at P.

The local flatness example demonstrates a general phenomenon: Things that
you know about smooth surfaces don’t directly apply to meshes. For instance, the
slices perpendicular to some generic direction d of a smooth surface tend to be
nice, smooth curves, except at isolated “critical” points, where there may be self-
intersections that look like the letter X, as shown in Figure 25.15. By contrast, the
slices of a surface mesh are polygonal curves, and at critical points they can look
very complicated indeed [Ban65].
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As another example, the contours of a smooth surface, that is, the points
where the view ray lies in the tangent plane, generally form a set of smooth,
closed curves on the surface, curves that don’t intersect one another. For instance,
the contour of a sphere is always a circle on the sphere’s surface. For some sur-
faces, from some points of view, the contours may have intersections or sharp
corners, but from a randomly picked direction they will be smooth. By contrast,
the contours of a closed triangulated mesh consist of edges that lie between front-
facing and back-facing polygons. These contours are therefore polygonal rather
than smooth curves. But as Figure 25.14 shows, the polygonal curves may inter-
sect, and may do so generically (i.e., there’s a nonzero probability that for a ran-
domly chosen direction such problems occur). Figure 25.15: The slices of a

torus are smooth (blue) except at
the min, max, and the two “crit-
ical” levels where the slices are
figure-eights (red).

To the degree that we treat triangulated meshes as surfaces in their own right,
rather than as approximations of smooth surfaces, these oddities are hardly sur-
prising. In a mesh, almost all points are flat: The curvature, no matter how you
measure it, is zero. On the other hand, the curvature along edges or at vertices
is, by the usual measures, infinite. It’s as if the curvature that was spread out
over a smooth surface got “condensed” into tiny packets of high curvature. All
the techniques of differential geometry, which depend on taking derivatives of a
parameterization of the surface, must be rethought in this context. The resultant
discrete differential geometry is an active area of research [Ban65, BS08].

25.3.1 Mesh Meaning

In Figure 25.2, the cube has sharp edges and is intended to be a sharp-edged shape.
By contrast, the wavy surface does have a bend at each edge, but the bend is very
small, and the intent is that it should be seen as a smooth shape. When you work
with a mesh in a graphics program, you don’t generally know which one of these
is intended. Expressed differently, you know the data for the mesh, but you don’t
know what it means. Just as RGB image formats that fail to say what R, G, and B
mean can have many interpretations (see Chapter 17), meshes that don’t include
a description of their meaning are ambiguous, and any single interpretation you
choose in writing a program will be wrong in some cases. This is an example of
the Meaning principle: The numbers (and other data) used to represent meshes
don’t have enough meaning to be unambiguous, and this failure of meaning leads
to failed algorithms.

For the bulk of this chapter, we’ll assume that meshes are being used to
approximate smooth surfaces, thus assigning a meaning to each mesh. In Chap-
ter 6, we saw how this assumption can lead to problems. The pyramid looked odd
until we remade it from several different meshes. But this remaking entailed its
own problems: To make the pyramid taller now requires that we move not a single
vertex, but several copies of that vertex. The important topological structure was
broken in order to provide a correct rendering structure. For instance, although
the original pyramid might have been a watertight mesh, the new pyramid is not.
That’s partly a consequence of the design of graphics interfaces. For instance, both
OpenGL and DirectX require that all the properties of a vertex, such as its normal
vector and texture coordinates, be tied to the vertex position in an indexed triangle
strip. If you want to make a shape like a cube, where a single vertex must have
multiple normal vectors, you’re compelled to create multiple vertices at the same
location, leading to nonwatertight models. And all current hardware APIs spec-
ify properties either at the per-mesh level or at the per-vertex level, so concepts
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like face color have to be implemented by a similar vertex-duplicating strategy in
which all three vertices of a face are assigned the same color, requiring multiple
co-located vertices and nonwatertightness of the meshes.

As you think about applying any particular algorithm to your own meshes,
be sure that your assumptions about the mesh and those made by the algorithm
designer actually match, or expect bad results.

25.4 Level of Detail

A model of an office building might contain millions of polygons, both for interior
detail and for things like windows, frames, exterior trim, etc. If that building is to
appear in the far distance in some scene, it may suffice to remodel it as a single
rectangular box. Indeed, if you do not remodel it that way, then rendering just
a few city blocks will rapidly consume your entire budget for polygons, while
perhaps only determining the final appearance of a small fraction of the pixels
in your image. This is a clear misallocation of resources. If you’re using basic
z-buffering to determine visibility, and your building occupies, say, 100 pixels of
the image, then (since each pixel’s color is determined by the frontmost polygon
drawn in it) all but 100 of your 1 million polygons will have been drawn to no
avail.

It’s possible to improve this situation substantially with visibility hierarchies
so that, for instance, none of the polygons interior to your building get drawn. But
for a building with substantial exterior detail, this is merely a palliative measure.
What’s really needed is a different model of the building, used when the model is
in the distance. If you make an animation, the high-detail model is used when the
building is nearby and the low-detail model is swapped into its place as the build-
ing recedes into the distance. Naturally, it’s important that the swapping process
be relatively undetectable, or the illusion of the animation will be broken. The
substitution of a simpler model for the completely detailed model can be done
in stages; in other words, it makes sense to build a model that includes multiple
levels of detail, each one used where appropriate.

The inclusion of levels of detail represents a substantial architectural shift.
Normally we imagine a renderer asking each object for a polygonal representation
of itself, and then producing an image from these polygons. In a system using
level of detail, the renderer must ask the object for a polygonal representation
and provide some information about the level of detail. This information might
be something like the distance from the camera to the object’s center, or a request
for the object to provide a representation with no more than 10,000 polygons, or
a request to provide one of three or four standard levels of detail.

Inline Exercise 25.7: I can render a building from nearby with a wide-angle
lens; the building fills most of the image. I can render it from very far away
with a narrow-angle lens, and again it fills most of the image. What does this
suggest to you about using the distance to the object as a level-of-detail cue?
What might improve it?

A useful approach for determining level of detail is to have a coarse repre-
sentation of the model, such as a bounding box; the rendering software can then
quickly determine the screen area of the bounding box, and it can use this to help
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the object select the appropriate level of detail. In expressive rendering (see Chap-
ter 34), we sometimes elide detail on an object for reasons other than screen size
(e.g., we might draw the details on only one or two faces in a crowd, because they
are the important ones); in such a case, the level-of-detail negotiation between ren-
derer and object may include hints other than the purely geometric ones discussed
here.

While we’ve described level of detail here as a solution to a resource-allocation
problem, it is more than that: Once we have decided to produce a final image using
a single-sample z-buffer technique (or any other approach that uses a small, fixed
number of samples per pixel), we’ve implicitly settled on a “scale” for which
we can hope to produce correct results. Assuming, for the sake of argument,
one sample per pixel, any geometric feature—a step, a windowsill, a doorknob—
whose projected size is less than two pixels will produce aliasing instead of being
accurately reconstructed. Because of this, we’d like to remove all such features,
in a sense “prefiltering before sampling.” Thus, using a level-of-detail approach
is a matter of correctness as well as efficiency. We summarize these ideas in a
principle:

LEVEL OF DETAIL PRINCIPLE: Level of detail is important for both effi-
ciency and correctness.

That being said, the “correctness” provided by level-of-detail simplifications
is not always all that one might wish. Consider the front of a building shown in
Figure 25.16. The natural “simplification” of this wall is to replace it with a single
planar wall.

N
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Figure 25.16: The front wall of a
building, seen from above. Notice
the narrow embossed portion of
the wall in the center. The sides of
this embossment will reflect light
from the east or west, while the
rest of the wall will not.

But now consider the light-reflection properties of these two versions of the
building’s front. If we assume that the front of the building is made of a somewhat
glossy material, then in the unsimplified wall, some light from the east will reflect
back toward the east, and some light from the west will reflect back to the west,
while lots of light from the south will reflect back toward the south. The bidirec-
tional reflectance distribution function (BRDF) of the wall as a whole, for three
incoming light directions, is shown in Figure 25.17. The BRDF for the simpli-
fied wall is rather different, since it’s everywhere zero for light from the east, for
instance.

vi

vi
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Figure 25.17: The BRDF of the
wall, drawn for light coming from
the east, south, and west.

We could, as we simplified the wall, still represent the geometry by encoding
it in a normal map. But as we decrease the level of detail on the building further,
the normal map itself will have to be simplified as well, to avoid representing too-
high frequency changes. At that point, we can amalgamate the different reflection
characteristics of the surface at different points into a single BRDF that resembles
the “various facets in the wall look a lot like the microfacets” concept used in the
Torrance-Sparrow and Torrance-Cook models, in the sense that they are geometric
features that are too small (in screen coordinates) for us to detect, and hence we
aggregate their effects into a BRDF.

We saw this sort of thing before, back in Chapter 18: If we’re taking samples
from a function in hopes of saying something about it, then our sampling rate
should exceed the Nyquist rate for the signal, or we’ll suffer aliasing. In this case,
the “function” could be either “the x (or y or z)-coordinate of the points on the
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surface,” or “the BRDF of the surface” (considered as a function of position on
the surface), or “the color of the surface,” etc.

In fact, many of the techniques we’ve encountered—BRDFs, normal maps,
displacement maps—provide representations of geometry at different scales. The
BRDF (at least in the Torrance-Sparrow-Cook formulation) is a representation
of how the microfacet slope distribution affects the reflection of light from the
surface. We could model all those microfacets, but the space and time overhead
would be prohibitive. More important, the result of sampling such a representation
(e.g., ray-tracing it) would contain horrible aliases: A typical ray hits one partic-
ular microfacet and reflects specularly, rather than dispersing as we’d expect for
a diffuse reflection. Displacement maps and normal maps represent surface varia-
tion even for surfaces that are, at a gross scale, represented by just a few polygons.
Because of their formulation as maps (i.e., functions on the plane), they can be
filtered to reduce aliasing artifacts, using MIP mapping, for example.

Fortunately, these techniques also constitute a hierarchy of sorts: As you sim-
plify one representation, you can push information into another. A crinkled piece
of aluminum foil, for instance, can be modeled as a complex mesh with a very sim-
ple (specular) BRDF, if it’s seen close-up. As it recedes into the distance, we can
replace the complicated geometry with a simpler planar polygon, but we can rep-
resent the “crinkliness” by a normal map and/or displacement map. As it recedes
farther into the distance, and variations in the normal map happen at the subpixel
scale, we can use a single normal vector, but change the BRDF to be more glossy
than specular, aggregating the many individual specular reflections into a diffuse
BRDF. Many of these ideas were present (at least in a nascent form) in Whitted’s
1986 paper on procedural modeling [AGW86].

The correspondence with the sampling/filtering ideas is more than mere
analogy: In rendering, we’re trying to estimate various integrals, typically with
stochastic methods that use just a few samples; from these samples, we implicitly
reconstruct a function in the course of computing its integral. If the function is
ill-represented by the samples, aliasing occurs. In one-sample-per-pixel ray trac-
ing, for instance, any model variation that occurs at a level that’s smaller than two
pixels on the screen must either (a) be filtered out, or (b) appear as aliases.

In some sense, these observations give an abstract recipe for how you ought
to do graphics: You decide which radiance samples you’ll need in order to repre-
sent the image properly, and then you examine the light field itself to determine
whether taking those samples will generate aliases. If so, you determine what
variation needs to be removed from the light field; since the light field itself is
determined by the rendering equation, you can then ask, “What simplification of
the illumination or geometry of this scene would remove those problems from the
light field?” and you remake the model accordingly. When you set about rendering
this model, you get the best possible picture.

This “recipe” is an idealized one for several reasons. First, it’s not obvious
how to simplify geometry and illumination to remove “only the bad stuff” from
the light field; indeed, this may be impossible. Second, determining the “bad stuff”
in the light field may require that you solve the rendering equation with the full
model as a first step, which returns you to the original question. A compromise
position is that if we filter the light sources to not have any high-frequency vari-
ations, and we smooth out the geometry so that it doesn’t have any sharp corners
(which lead to high-frequency variations in reflected light), then the “product” of
light and geometry represented by the rendering equation will end up without too
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much high-frequency information in it. While this loose statement may be cor-
rect, it’s not the case that the smoothed lighting of smoothed objects produces the
same result as taking full-detail lighting of the full-detail model and smoothing the
results. The “smoothing” operation (filtering out high frequencies) does not com-
mute with the “product” operation in the rendering equation (another instance of
the Noncommutativity principle). Then again, it’s the best we’ve got at present,
and it’s an approach that forms the basis for many techniques.

Before leaving this high-level discussion, we have two more observations. The
first is that, in thinking about graphics, we tend to think about the kinds of mod-
els being used to represent the world, and it’s easy to confuse the “nature of the
world” with the “nature of models representing it.” As three points on the con-
tinuum of model classes, consider (a) tessellation-independent models, like the
implicit surfaces used in making a simple ray tracer, (b) collections of triangles
and/or “primitives” like cubes, spheres, cones, spline patches, etc., combined with
unions, intersections, etc., to describe shapes, and (c) “object-based” graphics,
in which the world is populated by objects, each one modeled in its own way
and each one supporting various operations like “Where does this ray intersect
you?” and “Give me a simplified representation of yourself.” If objects are them-
selves represented as meshes (as they often are), it’s very natural to ask, “What’s
a simplified representation of this object?” to do level-of-detail computations at a
per-object level. The problem with this approach is that the result of simplification
depends on our description of the world, not the world itself. For instance, if we
have a sphere that’s represented by an icosahedral mesh, it’s natural to simplify
it by replacing that mesh with an octahedron or tetrahedron. But if we happen
to have created that same shape with 20 objects, each of them a single triangle,
then there’s no possible simplification: Each triangle is as simple as can be. To
give another example, if we have two irregularly shaped objects partly overlap-
ping each other (see Figure 25.18), and we simplify each of them to remove fine
detail, the gap between them can remain as a small detail, and hence a source of
aliasing when we sample the scene. This happens in practice when we model a
city as many buildings: Even when all the buildings are simplified to cuboids, the
spaces between them may be rectangular gaps that are so small, in screen space,
that they produce aliases.

Figure 25.18: Two irregularly
shaped objects overlap; when we
simplify each one, getting rid of
small details, the space between
the objects remains as a small
detail, unrecognized by our sim-
plification process.

One approach to level of detail is therefore to consider the simplification of
a whole scene at a time. Perbet and Cani [PC01] took this approach in modeling
prairies: Grass near the camera was modeled as individual blades; slightly more
distant grass was represented by flexible vertical panels on which the blades of
grass were “painted.” And very distant grass was represented by textures applied
to large horizontal planar polygons. The intermediate representation—a textured
polygon that faces the viewer—is one instance of a billboard. Numerous permuta-
tions of this billboard idea have been used over the years, from representing trees
by an intersecting pair of billboards (which looks decent, except when viewed
from above), to increasingly complex combinations such as the representation of
clouds by multiple semi-transparent billboards [DDSD03], to the representation of
crowd characters by billboard assemblies with time-varying textures [KDC+08].

One very natural approach to level of detail is to represent the world (or
an object) as a union of spheres. Simplification is natural: One replaces sev-
eral small spheres with a larger sphere that encloses (partially or completely) the
small ones. Such representations are easy to translate and rotate, and spheres are
simple enough that they’re amenable to lots of algorithmic tricks that make the
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construction of sphere trees [Hub95] relatively easy. This line of work goes back
to Badler [BOT79].

One final class of objects deserves mention in the context of level of detail:
parametric curves and surfaces. In these cases, the coordinate functions t 
→
(x(t), y(t), z(t)) or (u, v) 
→ (x(u, v), y(u, v), z(u, v)) are real-valued functions, typ-
ically defined on an interval or rectangle. As such, they’re amenable to Fourier
analysis (representation as sums of sines and cosines), and hence to filtering. In
specific cases (like B-splines), there are other approaches to simplification, such
as replacing a B-spline by its control-point polygon. And in other cases, bases
other than the Fourier basis may be appropriate: Finkelstein et al. [CK96] rep-
resented level of detail in a B-spline wavelet basis, which allows for both sim-
plification (by eliminating detail beyond a certain scale) and multiscale editing
(see Figure 25.19); there are similar approaches for wavelet representations of
surfaces [ZSS97] to allow multiscale editing and simplification.

Figure 25.19: A curve, rep-
resented in a wavelet basis,
consists of large- and small-scale
features. The small-scale
features—the “character” of the
curve—can be edited without
affecting the large-scale shape,
and vice versa. (Courtesy of
Adam Finkelstein and David
H. Salesin, ©1994 ACM, Inc.
Reprinted by permission.)

25.4.1 Progressive Meshes

From these generalities, we’ll now move on to a specific algorithm for mesh
simplification, Hoppe’s progressive meshes. The goal of progressive meshes is
to start from a mesh Mn of n nodes, and simplify it to a mesh of n − 1 nodes by
collapsing one edge (thus merging two adjacent nodes), as shown in Figure 25.20.
The resultant mesh is denoted Mn−1. Successive collapses of edges lead to a
sequence of meshes with fewer and fewer nodes, ending at M1, which consists of
a single node. This provides a “continuous” level-of-detail representation for the
mesh. Furthermore, the change from Mn to Mn−1 can be interpolated, in the sense
that if we define Mn

t to be a mesh with the topology of Mn, but with geometry
modified so that the position ut of u is ut = (1 − t)u + tw, and similarly for v,
then Mn

1 consists of exactly the same set of points as Mn−1; to convert one to the
other requires deleting two area-zero triangles, and renaming some vertices and
edges. This interpolation (see Figure 25.21) is called a geomorph (for “geometry
morph”).

vu

w

Figure 25.20: The edge from u to
v has been collapsed to a single
new vertex, which is labeled w.
The two triangles that meet this
edge have disappeared, and the
four non-uv edges have collapsed
into two edges. The set of trian-
gles shown is called the neighbor-
hood of the edge.

To complete the description of the algorithm, we need to know

1. How to choose a location for the new vertex w

2. How to choose, at each stage, which edge to collapse

For item 2 in the preceding list, Hoppe associates a cost (described below) to
each possible edge collapse, and chooses the one with least cost (i.e., he pursues
a greedy algorithm).

For item 1 in the list, Hoppe considers three possible locations for w: u, v, and
1
2 (u+ v). Each choice results in a different edge-collapse cost, and he chooses the
one with the least cost.

25.4.1.1 Edge-Collapse Costs
To describe the cost of an edge collapse, we first need to describe how to measure
how well a given mesh M fits a set of data X = {xi ∈ R3 : i = 1, 2, . . . , N}. We’ll
use a bunch of points from the original mesh Mn as the set X, but for now, you
can imagine that Mn is a nice enough mesh that we can just use its collection of
vertices as X. For the rest of this discussion, we’ll treat the set X as fixed, and not
mention it explicitly.
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The goodness-of-fit is described by an energy, a function that measures how
efficiently the mesh M approximates Mn as a sum of several terms,

E(M) = Edist(M) + Espring(M) + Escalar(M) + Edisc(M), (25.4)

where, for now, we’ll combine the last two terms into one,

E(M) = Edist(M) + Espring(M) + Eextra(M), (25.5)

which we can ignore for the time being. The “distance” term in the energy is the
sum of the squared distances from each xi to M: For each xi, we find the closest
point of M (which is itself a minimization problem), square it, and sum up the
results. The “spring” term corresponds to placing a spring along each edge of the
mesh M; the rest length of the spring is zero, so the total energy is

Espring(M) =
∑

(vi ,vj) an

edge of M

κ‖vi − vj‖, (25.6)

where κ is a spring constant that we’ll describe in a moment. The idea is to adjust
the vertex locations for the mesh M to minimize this energy, thus finding a mesh
that fits the data (X) well, while not having excessively long edges. Figure 25.22
shows why the spring-energy term is needed.

w

vu

Figure 25.21: An edge-collapse
can be made gradually, by inter-
polating from the original posi-
tions of u and v part of the way
toward the final position w.

Figure 25.22: The value of
“spring” energy: If we try to fit
the six data points on a circle
(marked with small dots) using
a triangle with short edges, the
green triangle (top) is a reason-
ably good solution. If we remove
the short-edge constraint, the red
triangle (bottom) is a “perfect”
fit, even though it violates our
expectations.

The cost of an edge collapse from a mesh M to a mesh M′ is determined by
computing

ΔE = E(M′)− E(M), (25.7)

which will generally be positive (it’s harder to fit the data with fewer vertices!).
Of course, this cost depends on knowing the vertex locations for M′. Since the
change from M to M′ is a single edge collapse, the new knowledge amounts to
just the location of the vertex corresponding to the collapsed edge, since all other
vertices remain unchanged. As we said, Hoppe restricts the possible new vertex
locations for the edge between v1 and v2 to three choices: v1, v2, and their average.
To compute the distance plus spring cost, he uses an iterative approach, which we
sketch in Listing 25.1.

Listing 25.1: Finding the optimal placement of a vertex for a collapsed edge.

1
2
3
4
5
6
7
8
9

10
11
12

Input: a mesh M and an edge vsvt of M to collapse
Output: the optimal position for v′s, the position of
vertex s after the collapse

E ← ∞
repeat until change in energy is small:

Compute, for each xi ∈ X, the closest location bi on the
mesh M

Find the optimal location for location v′s by solving a
sparse least-squares problem, using the computed locations
{bi : i = 1, . . .K} to compute Edist

Compute the energy E′ of the resulting mesh

The only difficulty is that the location bi is on the mesh M, and it must be
transferred to the mesh M′; since the two meshes are mostly identical, this is
generally easy. But if bi lies in a triangle containing vs or vt, we compute its
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barycentric coordinates in that triangle and use these to place it in the mesh M′,
treating the vertex v′

s as the location for both vs and vt in M′.
We can now outline almost the entire progressive meshes algorithm (see

Listing 25.2).

Listing 25.2: The core of Hoppe’s progressive meshes algorithm.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Input: a mesh M = Mn with n vertices, and a set of points X distributed on M.
Output: A sequence of meshes Mn, Mn−1, . . . , M0, where Mk has k vertices, approximating the

original mesh M.

E ← ∞
for each edge e of M:
compute the cost of optimal collapse of edge
insert (edge, cost) into a priority queue, Q

for k = n downto 1:
extract the lowest-cost edge e from Q
collapse e in Mk to get Mk−1

for each edge e′ that meets e:
compute a new optimal collapse of e′ and its cost
update the priority of e′ in Q to the new cost

One final detail remains: the spring constant, κ. Hoppe defines the ratio r of
the number of points in the neighborhood of the edge to the number of faces in
the neighborhood, and then sets κ = 10−2 if r < 4, κ = 10−4 if 4 ≤ r < 8, and
κ = 10−8 if r ≥ 8.

The algorithm, as described so far, shows how to simplify a mesh while con-
sidering its geometric structure. But meshes often have other attributes, specified
on a per-vertex level, such as color, material, etc. Some of these attributes, like
color, lie in continuous spaces, where it makes sense to measure differences and to
compute averages. Others, like material, can be considered to be more discrete—
you’re either on the metal part of the engagement ring or on the diamond; there’s
no halfway point between these materials. The first group consists of the scalar
attributes and the second group consists of the discrete attributes.

To assign a scalar attribute to a vertex that results from an edge collapse, we
try to pick a value with the property that for each point xi ∈ X on the original
surface, with corresponding point bi on the simplified mesh, the scalar value s(xi)
and the corresponding value s(bi) (which may have to be interpolated from values
at nearby vertices) are as close as possible. More explicitly, we choose a scalar
value at the new vertex to minimize

Escalar(V) =
∑

i

‖s(xi)− s(bi)‖2. (25.8)

Even scalar attributes can require special handling: Consider a cube in which
each face is given a different color. At each vertex, there are three color attributes,
one for each face corner at the vertex, instead of just one; a complete implemen-
tation of the algorithm must address this “distinguished-corner” situation as well.

For discrete attributes like material, Hoppe characterizes an edge as sharp if
it’s a boundary edge, its two adjacent edges have different discrete attributes, or its
adjacent corners have different scalar attributes, in the sense of the preceding para-
graph. The set of sharp edges on the mesh form “discontinuity” curves between
regions of constant discrete attributes (or between faces that meet with distin-
guished corners). Hoppe then either disallows or penalizes the collapse of any
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edge that would modify the topology of the discontinuity curves, depending on
the application. This penalty cost, if included, is the final term Edisc in the energy
formulation. This treatment of attributes is an instance of the Meaning principle:
the difference of discrete attributes in adjacent triangles gives a meaning to the
edge between them that guides the computation.

25.4.2 Other Mesh Simplification Approaches

While Hoppe’s approach to mesh simplification makes sense if you are starting
from a mesh, there are situations where radically different approaches make sense.
For instance, if you have a spline surface that you’ve triangulated at some resolu-
tion, and you want a simpler triangulation, it makes sense to go back to the spline-
tessellation procedure and invoke it with different parameters. Part of the evolving
landscape of GPU architectures is the development of tessellation shaders, or
small pieces of code, run on the GPU, that take some description of a shape and
produce from it a tessellation—a division into polygons—of the shape, with the
tessellation typically being governed by one or two parameters that determine the
density of triangles produced.

25.5 Mesh Applications 1: Marching Cubes,
Mesh Repair, and Mesh Improvement

We will now illustrate some typical uses of meshes. The first is the marching cubes
algorithm, used to extract level-set surfaces from volumetric data. The next is an
approach to mesh repair—filling in holes and cracks, etc.—based on a variant of
marching cubes. The third is an algorithm for mesh “improvement,” in which the
interior structure of a mesh, primarily the shapes of the triangles, is improved
while keeping the overall mesh geometry unchanged.

25.5.1 Marching Cubes Variants

So far we’ve discussed triangle meshes, reasoning that they’re a dominant model-
ing technology. But what if you have a model presented in some other form, like
an implicit model? One standard form of implicit model is the uniformly sampled
grid of densities; imaging modalities like nuclear magnetic resonance often pro-
duce such data, where the number associated to each grid cell is proportional to
the amount of some material within that cell. An isosurface of this data can rep-
resent the boundary between tissue and air, or between soft tissue and bone, etc.
Extracting representations of such isosurfaces is one step in rendering them: We
can take the resultant polygonal mesh and hand it to a polygon-rendering pipeline.
The marching cubes algorithm presented in Section 24.6 does exactly this.

Marching cubes can be generalized in many ways. We’ll discuss two of these
in the 2D case, the 3D case being exactly analogous. If we have data values at
the vertices of a square grid, linear interpolation allows us to estimate the loca-
tion of zeroes along each edge. The “marching squares” algorithm fills in these
estimated locations of zeroes on a cell’s boundary with line segments in the inte-
rior of the cell; these line segments, taken together, constitute an estimate of the
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zero-level set for the function whose values we know at the grid points, as shown
in Figure 25.23.

In doing so, however, we are ignoring additional data: At each estimated zero
point, we can also make an estimate of the gradient of the function (see Fig-
ure 25.24) (or perhaps get the gradient directly as part of gathering the original
data) and use these in estimating the shape of the level set.

6

4

24

23

Figure 25.23: Knowing function
values at grid points, we can esti-
mate zero-crossings (black dots)
by linear interpolation, and then
connect the dots, in each cell, to
estimate the level curve at level
zero.

6

4

24

23

Figure 25.24: We can estimate
gradients at the zero-crossings
as well. Fitting a surface to the
point-and-direction data gives a
different estimate of the level-set.

This can be called an “Hermite” version (see Chapter 22) of marching squares.
The extended marching cubes algorithm [KBSS01] uses this Hermite data to
determine how the interior of a square appears: If the normals for the data in a
square are similar, the algorithm defaults to standard marching squares. But if
the point-normal pairs for a square (say (X1, n1) and (X2, n2)) are inconsistent (if
n1 and n2 are not nearly parallel enough), then the square is treated differently:
A new vertex, X, is placed in the square in such a way that it minimizes a
quadratic error function,

X = arg min
∑

i

((X − Xi) · ni)
2, (25.9)

as shown in Figure 25.25; in other words, X seeks to lie on the lines determined
both by (X1, n1) and (X2, n2). (In 2D, this is trivial; in 3D, where there may be
more contributing point-normal pairs, the minimization can be more complicated.)
The newly inserted point is connected (with a pair of edges in 2D, or with a trian-
gle fan based at X in 3D) to the zero-set on the boundary of the grid cell.

6

4

X

24

23

Figure 25.25: The normals at the
two zero-crossings determine two
lines, which intersect at a new
point X.

There are two small problems.

1. If the normal vectors are sufficiently antiparallel, it’s possible that the min-
imizer X lies outside the square, and X must be adjusted to lie within it.

2. In the 3D case, if there are “extra points” X1 and X2 in two adjacent cells,
we perform an edge flip on the contour edge that lies in the grid face
between the two cells so that this edge now goes from X1 to X2.

Inline Exercise 25.8: Argue that the “bad minimizer” problem above is
the result of aliasing. What sampling is going on? Where are the too-high
frequencies?

In estimating (at least in special cases) a surface point in the interior of a cell,
the extended marching cubes algorithm suggests a different approach: If we had a
surface point in adjacent cells, we could join these with edges (and faces, in 3D),
using the points on grid edges as guides. Such an approach is called dual con-
touring. Ju et al. [JLSW02] developed a scheme for dual contouring of Hermite
data, which involves two steps.

1. For each cell with differently signed vertices (i.e., not all positive or all
negative), generate a mesh vertex within the cell by minimizing a quadratic
error function.

2. For each edge with differently signed vertices, generate an edge (for 2D)
or a quad (for 3D) connecting the minimizing vertices in the adjacent cells.

This algorithm has the pleasant characteristic that all cells are treated
identically—there’s no threshold on when “normal vectors are close enough”—
but there are subtleties: Again, the minimizing point for a quadratic error function
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may lie outside the cell, and furthermore, in areas where the surface is nearly pla-
nar the Hermite data for a cell may create a quadratic error function that is nearly
degenerate (i.e., one whose zero-set is a whole line or plane) so that finding a
minimizer is numerically unstable. Their work addresses this by careful numeri-
cal analysis, although their solution requires an ad hoc constant.

25.5.2 Mesh Repair

A mesh can be “broken” in all sorts of ways. Consider something as simple as a
(hollow) triangle ABC in the plane. If we consider the edges as oriented as AB,
BC, and CA, then the oriented boundary of the triangle, where the endpoint of
each edge is counted as a +1 and the starting point as a −1, is empty. But if the
edges are oriented as AB, BC, and AC, then the oriented boundary is 2C − 2A;
if we were computing the boundary as a way to check whether the triangle was
watertight, we’d find that it wasn’t. And if we used the oriented edges to compute
normal vectors, the misoriented edge AC would cause problems with inside/out-
side determination. In a mesh whose representation contains an edge table, an
algorithm closely related to the one for consistently orienting faces can be used to
repair the edge table.

Often meshes created with rendering speed in mind have characteristics that
generate problems, like T-junctions or nonwatertightness. Sometimes those cre-
ated with the best intentions, like the Utah teapot, have problems. (The original
teapot had no bottom!) So, while nice models are best to work with, we often
encounter polygon soup—a collection of polygons that nearly form a nice sur-
facelike mesh—and we want to be able to make the most of what we’ve got. One
example of this is in scanning, where a scanner may produce a great many points
on a surface, and may even organize those points into triangles, but the triangles
gathered from different views of the model may be inconsistent because of prob-
lems with registration of the views, or changing occlusion, etc. Such triangle soups
need to be cleaned up to form consistent models for use in the rest of the graphics
pipeline.

Ju [Ju04] has used his dual contouring for Hermite data to address this last
problem. The ideas in the approach are simple, and the results are particularly
attractive, so we sketch the method briefly here. The input is a collection of poly-
gons; the output is a surface mesh that’s consistent, in some way, with the input
polygons. Figure 25.26 shows the process (in 2D) in the case where the input mesh
is already a closed polygon; in this case, the original mesh is reconstructed almost
exactly, although it has been translated by an amount smaller than the grid cell.

(b)(a)

(d)(c)

Figure 25.26: (Following [Ju04],
Figure 3.) Ju’s model-repair
method. (a) A model, embedded
in a fine grid. (b) The grid edges
that intersect the model, stored in
an oct tree. Each cell touches an
even number of such edges. (c)
Signs at grid points (indicated by
light or dark shading) generated
from the set of intersection edges.
(d) The model reconstructed by
contouring the sign data.

The steps in the process are as follows.

1. The polygon soup is embedded in a uniformly spaced grid, and grid edges
that intersect any polygon are marked as intersection edges. The cells con-
taining such edges are stored in an oct tree. The choice of a fixed grid size
implicitly represents a choice about aliasing: An empty polygon soup, and
soup consisting of a single tetrahedron that fits entirely within one grid
cell, will produce the same (empty) output. Thus, these two “signals” end
up as aliases of each other.

2. The intersection edges are used to generate signs at the grid points in such
a way that each intersection edge exhibits a sign change. This may be
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impossible for certain inputs, as shown in Figure 25.27. These problems
arise because of “boundary” in the input data.

Ju shows a method for “filling in” boundaries like this to create a
set of intersection edges that can be given consistent signs. The filling-
in approach generates fairly smooth completions of curves (2D) or
surfaces (3D).

Figure 25.27: The U-shaped
polygon soup generates several
edges, but there’s no way to con-
sistently assign signs to the grid
cells so that each intersection
edge exhibits a sign change. Cells
with good labelings—most of the
ones meeting the polyline—are
in green. The problem arises at
cells (in orange at the ends of the
polyline) with an odd number of
intersection edges.

3. From the sign data (which can be extended to the entire grid), we can use
marching cubes, or extended marching cubes or dual contouring, if we
have normal data, to extract a consistent closed surface.

The method is not perfect. It can produce models in which the solids bounded
by the output mesh have small holes (like those in Swiss cheese) or handles, and
in areas where there are many bits of boundary in the original mesh the filling-in
of the boundary may cause visually unattractive results. Nonetheless, the guar-
anteed topological consistency, and the high speed of the algorithm (due largely
to the use of oct trees), make it an excellent starting point for any mesh-repair
process.

25.5.3 Differential or Laplacian Coordinates

Just as derivatives are a central component of smooth signal processing and dif-
ferences are critical in discrete signal processing, it’s natural to seek something
similar in the case of mesh signal processing. If we have a signal s defined on
the vertices of a mesh, the differences s(w) − s(v), where v and w are adjacent
vertices, provide the analog to the differences s(t + 1)− s(t), t ∈ Z, for a discrete
signal.

Second derivatives also arise in an important way: In Fourier analysis of a
signal on an interval, we write signals as sums of sines and cosines, which

are eigenfunctions of the second-derivative operator on the space of all signals.
But considering second derivatives in a more concrete way, if we have a discrete
signal

s : Z→ R : t 
→ s(t), (25.10)

and we tell you s(0) and s′(0), and s′′(t) for every t (using the “derivative” notion
for what are really differences: s′(t) denotes s(t + 1) − s(t), and s′′(t) denotes
s(t+1)−2s(t)+ s(t−1)), then you can reconstruct s(t) for every t: You use s′(0)
to reconstruct s(1), and use s′′(1), together with your knowledge of s(0) and s(1),
to reconstruct s(2), and then continue onward.

Inline Exercise 25.9: Carry out the computation just described. Start with
s(0) = 4, s′(0) = 1, and s′′(1) = −1, s′′(2) = 0, s′′(3) = −1, and figure
out s(1), s(2), s(3), and s(4).

Recording the value s(0) and derivative s′(0), together with all the second-
derivative values, thus provides an alternative representation of the signal. This
representation has the advantage that if we want to add a constant to the signal,
we can do so by only changing s(0) and leaving the rest of the data untouched.
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Inline Exercise 25.10: Carry out the same computation as in the preceding
exercise, but this time start with s(0) = 2; confirm that all other values shift
by −2.

Similarly, we can add a linear variation to the signal (a steady increase or
decrease in value) by changing just s′(0). Thus, the second-derivative information
captures the aspects of the signal that are unaffected by translation or shearing of
the signal.

The analog, for meshes, is provided by the mesh Laplacians. Suppose that
we have a mesh, and at each vertex we have a real number, which we’ll denote
s(v) in analogy with the one-dimensional discrete-signal case. There’s no longer
a notion of the previous or next signal value, but there is still a notion of adjacent
values. Letting N(v) denote the 1-ring consisting of vertices adjacent to v, and
|N(v)| denote the size of this set, we define the Laplacian of s at v to be

L(s)(v) = C
∑

w∈N(v)

(s(v)− s(w)), (25.11)

where the constant C is unimportant for now. We can bring the constant s(v) out-
side the sum, to get

L(s)(v) = C|N(v)|s(v)−
∑

w∈N(v)

s(w) = C′(s(v)− 1
|N(v)|

∑
w∈N(v)

s(w)), (25.12)

where we’ve absorbed the number |N(v)| of neighbors of v into the constant C to
make C′. In this form, we see the Laplacian expresses the difference between the
signal value at the vertex v and the average of the signal values at the neighbors
of v.

To be clear: The Laplacian is a function from “signals on the mesh” to “signals
on the mesh.” Thus, if s is a signal, so is L(s), and L(s)(v) denotes the value of
that signal at a particular vertex.

In analogy with the 1D situation, if you knew the value of s at some vertex
v0 and at all but one of its neighbors, and you knew the Laplacian of s at every
vertex, then you could compute the value of s at the last neighbor. And that might
give you enough information to compute the value of s at another vertex, etc.

There’s a difference from the discrete-signal situation, however: The Lapla-
cian values are not all independent.

Inline Exercise 25.11: Draw a tetrahedron, and write the numbers 1, 3, 0, and
5 at the four vertices, thus defining a “signal” s on the tetrahedron. Compute
the Laplacian L(s)(v) at each of these vertices, using C = 1 as the constant.
What do you notice about the sum of these values?

Thus, although the Laplacian of a signal once again represents the part that’s
independent of the addition of a constant at every vertex, and some other kind
of alteration similar to shearing in the 1D discrete-signal case, it’s no longer the
case that an arbitrary set of values at vertices {h(v) : v ∈ V} can be treated as
the Laplacian of some signal and “integrated” to recover the original signal. The
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usual solution is to ask for a signal s with the property that L(s)(v) − h(v) is as
small as possible, typically by minimizing a sum of squares

E(s) =
∑
v∈V

(L(s)(v)− h(v))2. (25.13)

Since the Laplacian is invariant under the addition of a constant to the signal, this
minimization must typically be performed with one or more additional constraints,
such as the value s(vi) at some small number k of selected vertices v1, . . . , vk.

While we tend to have many functions defined on meshes—it’s common, for
example, to evaluate some lighting model at each vertex of a mesh, and interpo-
late over edges and triangles—the function to which the Laplacian is most often
applied is the one that returns, for each vertex, the coordinates of its location. For
instance, we can regard the x-coordinate of each vertex as providing a signal value
at that vertex. The same goes for the y- and z-coordinates. If we regard x : V → R3

as the vector-valued function that takes each vertex to its xyz-coordinates, then it’s
common to compute

δ(v) = L(x)(v) for v ∈ V . (25.14)

These vectors, one per vertex, are sometimes called the Laplacian coordinates
or differential coordinates for the mesh.

“Laplacian coordinates” is really a misnomer; a coordinate system should have
the property that no two distinct points have the same coordinates (although in
some cases, like polar “coordinates,” we allow a single point to be given multi-
ple coordinates). But it’s easy to see that for a regular triangulation of a plane,
the Laplacian coordinates at every vertex are zero, so any two planar parts of
this mesh end up with the same “coordinates.” Perhaps “coordinate Laplacian” or
“coordinate differentials” would be a better term, but “Laplacian coordinates” and
“differential coordinates” are well established already.

Laplacian coordinates have a few obvious properties. First, they are invariant
with respect to translation, that is, if M′ is a translated version of the mesh M,
then the Laplacian coordinates at corresponding vertices are identical. Second,
they are equivariant with respect to linear transformations, that is, if M′ is the
mesh resulting from applying a linear transformation T to each vertex of M (e.g.,
rotating M 30◦ in the xy-plane), then the Laplacian coordinates at a vertex v′ in M′

can be computed from those at the corresponding vertex v by applying T . These
facts, taken together, can be summarized by saying that Laplacian coordinates
are equivariant with respect to affine transformations of meshes, as long as we
remember that the action of an affine transformation on a vector ends up ignoring
translations.

In summary: Laplacian coordinates on a mesh provide an affine-
transformation-equivariant description of the geometry of the mesh. A mesh can
be reconstructed from its Laplacian coordinates together with a small number of
known mesh locations. And any vector-valued function of the vertices of a mesh
can play the role of Laplacian coordinates if we reconstruct by solving a least-
squares problem rather than seeking an exact solution.

25.5.4 An Application of Laplacian Coordinates

Nealen et al. [NISA06] describe an approach in which a mesh is “optimized” by
adjusting vertex positions, but retaining the mesh connectivity. The technique is
simple, and its good and bad features are self-evident.
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The idea is to adjust the vertex locations to satisfy two goals: The first is that
each vertex be as close to its original position as possible (with some vertices
weighted more than others); the second is that the mesh Laplacian at a vertex, after
adjustment, be as similar as possible to the nontangential part of the preadjustment
mesh Laplacian. Since the mesh Laplacian represents the difference between a
vertex and the average of its neighbors, this makes each vertex “want” to be the
average of the neighbors, except for perhaps being displaced from the plane of the
neighbors. (This description assumes that the neighbors actually lie more or less
in a single plane, of course.)

Clearly the two goals—that vertices move toward their neighbor averages and
that vertices not move at all—are in tension with each other. By adjusting the
relative weights, we can arrange for greater shape preservation or greater mesh
uniformity. Nealen et al. suggest some strategies for choosing weights that are
widely effective.

In contrast to the usual vertex-and-face-table representation, we start with a
mesh represented as a graph G = (V, E), with vertex set V and edge set E. We
consider V as an n × 3 array whose ith row contains the x-, y-, and z-coordinates
of the ith vertex, which we also store in a 3 × 1 column vector vi so that V =
[v1, . . . , vn]

T.
We’ll compute the Laplacian coordinates, at vertex i by the rule

δi =
∑

(i, j)∈E

wij(vj − vi) (25.15)

=

⎡
⎣ ∑
(i, j)∈E

wijvj

⎤
⎦− vi (25.16)

where for each i the weights wij sum to one, and may be chosen to be uniform,
that is,

wu
ij = 1/|{j : (i, j) ∈ E}|, (25.17)

so that each edge arriving at vi gets equal weight, or by the cotangent rule, in
which we set

wij = cotα+ cotβ (25.18)

where α and β are the internal angles of the vertices on either side of vj in the ring
around vi (see Figure 25.28).1 We can then define

wc
ij =

wij∑
(i,k)∈E wik

(25.19)

so that the sum
∑

j wc
ij is 1.

If vi and its neighbors all lie in a plane, then the uniform Laplacian points from
vi toward the average of the neighbor vertices, while the cotangent Laplacian is
the zero vector. The two resultant Laplacians will be decorated with superscripts,
as in δu

i , to indicate their nature.

vivj

b

a

Figure 25.28: The vertex vi is
surrounded by a ring of vertices,
one of which is vj; the angles
on either side of vj are called α
and β. The cotangents of these
angles are used in defining the
weight of vj in the cotangent
Laplacian vector at vi.

Our goal is to find new vertex positions v′i (i = 1, . . . , n) that are both
(a) near the old positions, and (b) arranged so that their Laplacians are similar,

1. The rationale for the cotangent rule is presented in the web material for this chapter.
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in some way, to the old Laplacians. The first condition can be expressed by
writing

WpV′ = WpV, (25.20)

where Wp is a diagonal matrix of weights, which gives us control over which
position constraints are most important to us. Clearly this system can be solved by
letting V′ = V, but we’ll be adding further constraints in a moment.

Inline Exercise 25.12: Since there are n vertex positions vi, each in 3-space,
the matrix V is n×3. What size is each of the other matrices in Equation 25.20?

The second condition, on the Laplacian, can be written in the form

WLLV′ = WLF, (25.21)

where again we’ve included a diagonal weighting matrix WL, and where L is the
matrix of some Laplacian coordinate transform (i.e., the first row of LV is the
Laplacian at vertex v1, etc.). The matrix F is a target for the Laplacians. Taken
together, in block matrix form, we’ll be solving[

cWLL
Wp

]
V′ =

[
cWLF
WpV

]
. (25.22)

Nealen et al. observe that if we set L = Lu and F contains the cotangent
Laplacian coordinates of all vertices, the resultant mesh preserves the details of
the original but the shapes of individual triangles are improved. If we set W to
the identity, all vertices are allowed to move equally and the triangle shapes are
slightly improved. If, on the other hand, we set the weight for a vertex to be pro-
portional to the mean curvature at that vertex, then vertices at highly curved points
will remain fixed, while others move. The problem with this is that often there are
a few vertices with very high curvatures, and so if we map curvatures to weights
linearly, only a few vertices get at all constrained. Nealen et al. suggest an alter-
native: They compute

C(κ), (25.23)

the fraction of all vertices whose curvatures are no more than κ, and assign to each
vertex of curvature κ a weight proportional to C(κ). The weights are stored in a
matrix WL. The constant of proportionality is a tuning parameter.

The result is a system that manages to improve triangle shape while maintain-
ing the mesh features at high-curvature points.

On the other hand, if we set L = Lu and F = 0, then we actually smooth the
mesh, removing some amount of noise from the shape. Nealen et al. discuss other
variants of this approach.

Inline Exercise 25.13: We have not discussed how to set the positional
weights, Wp. Can you think of any points in a typical object (e.g., a video-
game character) for which large weights might be appropriate?

In both the triangle shape optimization and mesh smoothing methods, we need
to solve the system of equations in Equation 25.22. This consists of a 2n×n matrix
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multiplied by an unknown n× 3 matrix to get a 2n× 3 matrix. We can solve this
problem for one column of unknowns at a time. That is we can solve

AX = B (25.24)

by solving

AXi = Bi (25.25)

where Xi indicates the ith column of X, for i = 1, 2, 3. To solve, we can compute
an LU decomposition of A [Pre95]. Fortunately, this single decomposition can
then be used to find each column of X.

25.6 Mesh Applications 2: Deformation
Transfer and Triangle-Order Optimization

We conclude this chapter with two more advanced applications related to meshes.
The first is deformation transfer, in which two meshes of objects with some
relationship (e.g., two quadrupeds) are matched at a few key points, after which
any deformation of the first mesh can be automatically transferred to the other.
The second is an approach for restructuring a mesh’s face table so that during
rendering the mesh will tend to use a GPU most efficiently.

25.6.1 Deformation Transfer

Suppose that using a motion-capture system, we have captured the varying posi-
tion of a human actor over time; in other words, we have a mesh M (the source
mesh) with a fixed connectivity (i.e., a fixed set of triangles, represented as vertex-
index triples), and a sequence Vi, (i = 0, 1, . . .) of positions for the vertices of the
mesh (i.e., V0 is the set of vertex positions at time 0, perhaps representing the actor
standing upright at rest, V1 is the set of vertex positions at time 1, etc.). We’d like
to transfer this motion sequence to a different mesh (the target)—a video-game
character, for instance—but one that may not have a realistic human form. Or per-
haps we have a recorded sequence of positions for a horse, but we want to apply
them to a camel, which was unavailable for motion capture. We can consider the
difference between V0 and Vk as a deformation of the known model; our desire
is then to transfer this deformation to the target mesh M′, with a possibly different
set of triangles and vertex locations W0, to get a new set of vertex locations Wk.
We’ll follow the approach of Sumner and Popović [SP04] (see Figure 25.29).

Because we are considering only deformations, we need only look at k = 1
and apply the same technique to each subsequent value of k. So we can relabel
things a bit for simplicity: We’ll use Vi to indicate the initial position of vertex i in
the source mesh (i.e., its position in V0), and V̄i to indicate its deformed position
(i.e., its position in V1). For notational simplicity, it’s helpful if everything we
consider is a vector rather than a point. We therefore pick an “origin” OM for M,
and express each vertex as an offset from this origin:

vi = Vi − OM . (25.26)

We do the same for V̄ , that is,

v̄i = V̄i − OM , (25.27)
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Reference

Figure 25.29: We start with a source and a target mesh, shown at left, a triangle-by-triangle
correspondence between them (in this case, the correspondence is the fairly obvious one),
and a deformation of the source mesh, shown at the top right. The deformation transfer
algorithm provides a transformation of the target mesh that’s analogous to the deformation
of the source mesh. (Courtesy of Robert Sumner and Jovan Popović.)

and similarly for M′, although we’ll choose the origin OM′ independently. (It’s a
good idea to use something like the center of mass of M as the origin for M, and
similarly for M′, to avoid roundoff errors in later numerical computations.)

We’ll similarly use wi and w̄i for the (vector) position of the ith target vertex
before and after deformation. We’ll assume that we’re given vi, v̄i, and wi for all
i, and we wish to find w̄i for all i.

To make the connection between the deformations of the source mesh M and
the target mesh M′, we need a correspondence, C, between them. This is pro-
vided, in the Sumner-Popović formulation, by a collection of pairs C = {(si, ti) ∈
Z × Z : i = 1, 2, . . . , c} between triangles. A pair (si, ti) indicates that the target
triangle with index ti should deform similarly to the source triangle with index si.
The set C is a relation on triangle indices: It may specify that triangle 7 in M′

is to deform similarly to both triangles 2 and 96 in M (in which case the pairs
(2, 7) and (96, 7) would both be in C), or that triangles 11 and 12 in M′ should
both deform like triangle 4 in M, in which case C would contain both (4, 11) and
(4, 12). It’s not required that every triangle index of M appear as the first element
of some pair in C, nor that every index of M′ appear as the second element of a
pair. Nonetheless, it may be easiest to imagine C as being nearly a one-to-one cor-
respondence, in which a triangle on the horse’s head corresponds to a triangle on
the camel’s head and a triangle on the horse’s left front foot corresponds to a trian-
gle on the camel’s left front foot, etc. The problem of building or describing such
a correspondence in the first place is a separate one; it’s possible to try to algo-
rithmically guess correspondences between parts, etc., but it’s probably easiest to
have a user indicate correspondences between a few dozen key points, and then
use some kind of breadth-first-search-followed-by-relaxation approach to “grow”
the correspondence outward from these key points.

We’ll now set about describing deformation transfer as an optimization prob-
lem. Before we write the optimization, however, we need one more enhancement
of the meshes.

Suppose we have a triangle with vertices v1, v2, and v3, which are to be sent
to another triangle with vertices v̄1, v̄2, and v̄3. It’s natural to think of the transfor-
mation from one to the other in terms of the affine transformations we use all the



ptg11539634

662 Meshes

time in graphics: some sort of translation, and an associated linear transformation.
The problem is that the two triangles each lie in a plane, and there are infinitely
many affine transformations taking one triangle (and its plane) to the other (and
its plane): The off-plane part of the transformation is completely unconstrained.

Inline Exercise 25.14: Examine a 2D analog: Find an affine transformation T
from R2 to R2 that takes the line segment from (0, 0) to (1, 0) on the x-axis
into the line segment from (0, 1) to (0, 2) on the y-axis. Now compose your
transformation with the transformation S : R2 → R2 : (x, y) 
→ (x + 3y, y),
that is, form R = T ◦ S, and show that R transforms the segments exactly the
same way that T did.

We therefore add a new vertex v4 that’s offset one unit along the normal to the
triangle defined by v1, v2, and v3,

v4 = v1 +
(v2 − v1)×(v3 − v1)√‖(v2 − v1)×(v3 − v1)‖

, (25.28)

and a corresponding new vertex to M′. Now there’s a unique affine transformation
taking v1, . . . , v4 to v̄1, . . . , v̄4. Writing the transformation as a combination of a
translation with a linear map, we see that the linear map Q must send the vectors
Vi − V1 to v̄i − v̄1 for i = 2, 3, 4. Writing

V =
[
v2 − v1 v3 − v1 v4 − v1

]
and (25.29)

V̄ =
[
v̄2 − v̄1 v̄3 − v̄1 v̄4 − v̄1

]
, (25.30)

we have S = V̄V−1; we can thus compute the translation d as

d = v̄1 − S(v1 − O), (25.31)

where O is the origin of 3-space.
Notice that we have added one new vertex to the original and deformed meshes

for each triangle. So our starting point becomes

• An original mesh M, with an enlarged vertex set that we’ll still denote with
the same symbols, {vi}, and with each “triangle” associated to four vertices

• A deformed mesh M̄, with a corresponding enlarged vertex set

• A second mesh, M′, with an enlarged vertex set {wi}
• A correspondence C between triangles of M and M′

• For each triangle t of M, an affine transformation v 
→ Stv + dt that trans-
forms the four vertices of t to the four vertices of t in M̄

It’s convenient to think of the triangle t in M as represented by its index in M’s
triangle table so that St and dt are indexed by integers.

Our goal is to find a collection of transformations of the target mesh M′ that
are “as much like” those of M as possible; writing the target transformation for a
target triangle s in the form

w 
→ Tsw + d′
s, (25.32)

our goal is to have Ts and St be as similar as possible whenever (t, s) ∈ C. Notice
that we’ve ignored the translations of the source mesh here, and concentrated on
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the intrinsic deformation and translation of each triangle. Because we’ve ignored
the source translations, our solution will not be unique: We can add any constant
translation to all the d′

s vectors and get an equally good solution. By explicitly
setting the displacement d′

s for one triangle s in the target, we remove this
ambiguity.

There is a further problem: If the vertex wi is shared by two triangles s1 and
s2, it’s possible that

Ts1 wi + d′
s1
�= Ts2 wi + d′

s2
. (25.33)

In that case, the vertex will be sent to two different places by the two different
transformations, and thus will not define a transformation on the mesh, M′, but
rather on the set of triangles in the mesh. Letting N(wi) denote the set of all trian-
gles that contain the vertex wi, we therefore seek transformations satisfying

Ts1 wi + d′
s1
= Ts2 wi + d′

s2
for all s1, s2 ∈ N(wi). (25.34)

We express this goal numerically as the problem of minimizing∑
(s, t)∈C

‖Ss − Tt‖2, (25.35)

subject to

Ts1 wi + d′
s1
= Ts2 wi + d′

s2
for all s1, s2 ∈ N(wi), (25.36)

where ‖A‖2 denotes the sum of the squares of the entries in the matrix A. (The
square root of this quantity is called the Frobenius norm of the matrix A.) This
is a quadratic optimization problem, which can be solved by standard numeri-
cal techniques. (As an aside, we caution you against writing your own quadratic
optimizer, unless you are an expert in numerical analysis. Instead, find one you
like, and get to be an expert in using it.) One problem with this formulation is the
number of constraints: There’s a constraint for every pair of triangles that meet at
a vertex. Even if every vertex had degree three, this would still be a number of
constraints that’s equal to the number of vertices, which is very large in general.
The problem begs for reformulation.

Sumner and Popović perform a natural transformation: Instead of treating the
transformations Ti as unknowns, with constraints on where they send the mesh
vertices, they treat the eventual vertex locations w̄i as unknowns, and write the
transformations Ti in terms of these.

Recall that each source deformation transformation S was given by an expres-
sion of the form S = V̄V−1. If we knew the final positions w̄i of the target vertices,
then the target deformations would similarly be given by expressions of the form
T = W̄W−1. The entries of the matrix T are evidently linear functions of the
unknown positions w̄i. The minimization problem becomes

min
w̄1,...,w̄n

|M|∑
j=1

‖Ssj − Ttj‖2, (25.37)

where the Ssj are all known, and in the expression for T,

T = W̄W−1, (25.38)
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the factor W−1 is known as well. Only W̄ is unknown. Thus, the summation above
is a huge quadratic in the unknown positions. If we place all of these unknown
positions into a 3n × 1 vector x, then the minimization can be rewritten in the
form

min
w̄1,...,w̄n

‖c− Ax‖2, (25.39)

where A is a large, sparse matrix. In fact, if we place the x-coordinates of all the
unknowns in the first n entries of x, and then the y-components in the next n, and
then the z-components in the third n entries, the matrix A ends up block-diagonal,
consisting of three n× n blocks.

To minimize such a quadratic expression, we set the gradient to zero and solve;
the result is the system of linear equations

ATAx = ATc. (25.40)

The matrix A depends only on the known data, so it needs to be computed
only once, as does Q = ATA. And solving a problem of the form

Qx = ATc (25.41)

can be done with the LU decomposition of Q (which we need only compute once)
and back-substitution. The LU decomposition can be found blockwise for the
three blocks, further simplifying the computation.

The trickiest part of implementing this algorithm concerns bookkeeping:
Transforming from an optimization in the form of Equation 25.35 to an optimiza-
tion in the form of Equation 25.37 involves careful index manipulation. If you
actually want to implement this idea, we strongly suggest that you first do so in
two dimensions, and that you work with an example mesh consisting of no more
than about five vertices and seven edges (which play the role of triangles in the
two-dimensional formulation). It will also help to formulate the computations in
a language like Matlab or Octave, in which matrix formulations are built into the
language. Once you have made that work, transferring to some other language is
much easier, especially since you can use the matrix-formulated implementation
as a reference during debugging.

25.6.2 Triangle Reordering for Hardware Efficiency

As you know, the graphics pipeline, as implemented in the GPU, has several
stages. Any one of these can be a bottleneck. For some models, transforming
vertices dominates, and modern GPUs tend to cache such transformed vertices
because of this. When it comes to generating triangles to be drawn, we get bet-
ter cache use if those that share vertices are processed at nearly the same time.
Triangle strips are one way to produce this kind of mesh locality. For other mod-
els, there may be enormous complexity that is mostly hidden (e.g., a model of
an office building may contain millions of triangles, of which only a few hun-
dred are visible from any particular office space). In these cases, if we can draw
the visible triangles first, then a z-test will tell us that the fragments generated by
other triangles are not visible, and thus that the lighting and shading computations
for those fragments need not be performed. Of course, backface culling also will
help reduce the rendering load by about 50% on average. By clever clustering of
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triangles, it’s possible to address the cache-miss problem quite effectively. The
obvious solution to the “overdraw” problem, however, is view-dependent: If we
can sort the triangles front to back, we can minimize overdraw. But such a sort
order will likely break up the clusters that addressed the vertex-cache problem.
Nonetheless, this front-to-back approach provides the core of the algorithm. We
can find a front-to-back order for the triangles by creating a graph whose nodes
are triangles and where there’s a directed edge from t1 to t2 if t1 obscures (partly or
completely) t2. Performing a topological sort on this graph gives a drawing order,
assuming that the graph is acyclic. We’ll return to the problem of cycles presently.

Nehab et al. [NBS06] have developed a solution that incorporates the best of
both approaches, in the presence of backface culling: They create clusters that are
large enough that only a small amount of cache-missing is introduced (compared
to the optimal), but which also substantially reduce overdraw when the clusters
are drawn in a particular order. Their approach relies on three key ideas.

1. If two polygons’ normal vectors have a dot product of −1, then their sort
order will have no impact on overdraw, because whenever one is front-
facing, the other will be back-facing, and hence culled. For dot products
greater than −1, the chance of overdraw increases with increasing dot
product.

Figure 25.30: The sort order
of the blue and red polygons
is immaterial because of back-
face culling; the blue polygon
obscures the green from some
viewpoints, but the green never
obscures the blue.

2. If their normal vectors have a positive dot product, it’s possible that one
obscures the other from many viewpoints, but the other never obscures the
first. In this case, any sort order where the obscuring polygon comes before
the obscured reduces overdraw.

3. The preceding observations are still true even for planar clusters of poly-
gons, and even if the clusters are nearly planar rather than planar.

Figure 25.30 shows these situations. Notice that if the mesh is convex, then
any sort order will minimize overdraw, because for a convex mesh, there’s never
any overdraw at all. Even for the nonconvex wave-shaped rooftop mesh of Fig-
ure 25.31, it’s still possible to draw the polygons in an order that creates no over-
draw. With these examples in mind, the algorithm has two broad steps: First, we
create nearly planar connected clusters of triangles using a k-means-like clustering
algorithm [HA79]; then we determine a sort order for the clusters by creating a
graph whose nodes are the clusters and in which there’s a directed edge from c1 to
c2 if c1 obscures c2 more than c2 obscures c1 (averaged over all possible points of
view). The edges are given weights depending on how much more c2 obscures c1

than c1 obscures c2. We then attempt a topological sort on this graph, using edge
weights to break any cycles that arise.

31 22 3 1

Figure 25.31: Draw-
ing the rooftop regions of
the building in increasing numer-
ical order, and using backface
culling, will prevent overdraw no
matter what the viewpoint.

25.6.2.1 Clustering
The user must provide a number, k, of clusters to compute; k provides a tradeoff
between vertex-cache efficiency and overdraw efficiency. (The authors report that
between 10 and 100 clusters suffice for models on the order of 100,000 triangles.)
We then select k random triangles and grow clusters from them. In general, a
k-means algorithm has two steps that are alternated: adding items to a cluster
based on a “distance” to some representative for the cluster, and updating the
representative. For clustering points in a plane, the representative is typically the
centroid of the cluster, the distance is Euclidean, and at each iteration, each item
is added to the cluster whose center, from the last iteration, is nearest.
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In the version of k-means used in this algorithm, the clusters begin with k
randomly chosen “seed” triangles. Each cluster is represented by a centroid and
a cluster normal; initially these are the centroid and face normal for the start-
ing triangle. The clusters are “grown” by a breadth-first search (based on triangle
adjacency) from the seed triangles, which are assigned a distance of zero from
the cluster center. A triangle f adjacent to a triangle g of cluster C is assigned a
distance equal to that of g plus 1−nf ·nC +ε, where nf and nC are the face normal
and average cluster normal, respectively, and ε is a small constant that ensures that
triangles topologically close to the seed are preferred over those that are far away.
Once distances from each face to all cluster centroids have been thus computed,
each face is assigned to the cluster of the nearest centroid. In the second step,
the cluster centroid and the average cluster normal nC are recomputed, and the
iteration is restarted. Because of the dot-product term in the incremental distance
function, triangles closely aligned with the cluster normal tend to fall into the clus-
ter, while those tilted away do not; this results in cluster boundaries tending to be
aligned with sharp creases in the mesh. Note that a triangle may be adjacent to a
cluster C along two of its edges (or all three); in this case, we add the incremental
distance to the lowest of the already-computed distances of the neighbors.

25.6.2.2 Sorting
Once we have computed the clusters, we compute a value I(c1, c2) that says how
much cluster c1 obscures cluster c2, from enough viewpoints that our computation
is a good estimate of the average occlusion, and we use this to build a graph whose
nodes are labeled by the clusters. The value I is computed in pixels: It’s meant to
represent the number of possible overdraws that result from drawing c2 before c1,
on average. If I(c1, c2) > I(c2, c1), we should draw c1 before c2, so we place a
directed edge from c1 to c2 in the graph, with edge weight I(c1, c2) − I(c2, c1),
which is always positive.

If the resultant graph admits a topological sort (which ignores the weights),
we’ll use it. If not, we want a sort order that minimizes the weights of all “viola-
tions” (i.e., cases where c2 comes before c1 in the sort order, even though there’s
an edge from c1 to c2). Unfortunately, this problem is NP-complete [Kar72], but a
simple greedy heuristic works well. It’s based on an algorithm for topological sort
in which we choose as a starting node any vertex with only outgoing edges, and
as an ending node any vertex with only incoming edges; we then remove these
vertices and their associated edges from the graph and find a topological sort for
the remainder.

In an unsortable graph, the approach above fails when every node is part of
some cycle (i.e., has both incoming and outgoing edges). In this situation, we
remove the node at which the weight sum for incoming edges is most different
from the weight sum for outgoing edges, placing it on the “winning” side of the
ordering (i.e., making it the next cluster to be drawn), and then continue with the
normal topological sort.

Finally, within each cluster, we sort the triangles in a way to optimize mesh
locality (i.e., to avoid vertex-cache misses), using some triangle-stripping algo-
rithm like that of Hoppe [Hop99].

The results are impressive, generating up to 40% savings on overdraw for a
model with 150,000 triangles. Of course, it’s possible to construct exotic meshes
for which almost no planar patch clusters exist; the algorithm will perform badly
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on these. But for the kinds of meshes encountered in everyday games, for instance,
the algorithm works well.

Sander et al. [SNB07] have improved on this algorithm, and we anticipate
further research in this area, in which geometry and efficient computations are
combined.

25.7 Discussion and Further Reading

The geometric study of meshes is a growing field, known as discrete differ-
ential geometry. Because of its close relationship to smooth differential geom-
etry, you should start by becoming familiar with that material. A particularly
gentle introduction is O’Neill’s book [O’N06]; Millman and Parker’s
book [MP77] is a good follow-up. For discrete differential geometry, there are
tutorials available [MDSB03], and at least one textbook [BS08].

The situation in what we’ve called “mesh flattening” (and what has come to be
known as “parameterization of meshes”) is not as hopeless as our remarks might
suggest. There does not seem to be any single ideal approach to parameterization
yet, but there’s been substantial progress beyond the simplest approaches [SPR06,
CPS11, SSP08].

The structure of a mesh and the structure of the underlying graph are closely
related. The graph Laplacian has been used to address problems like graph parti-
tioning and clustering; analogs have been used in mesh partitioning.

Ray-mesh intersection testing, since it’s in the critical path for ray tracing,
has been much studied. And because of its relevance to animation, so has col-
lision detection for meshes. Many ideas can be shared between the two topics.
Haines and Moller [AMHH08] give a complete overview, with details on many
algorithms.

Mesh optimization has been widely studied, along with the relationship of
mesh “smoothing” operations to digital filter design [Tau95] and to mean curva-
ture flow [DMSB99, HPP05]. Methods that allow small connectivity alterations
were popularized in graphics by Witkin and Welch [WW94], and can frequently
be useful in adjusting meshes where some vertex degrees are so large or small that
it’s impossible to have all adjacent triangles approximately equilateral.

Despite all the research on meshes, they may, in fact, turn out to not be the ulti-
mate shape representation model for graphics. For rendering, the discontinuity of
reflection (you can adjust an incoming ray an arbitrarily small amount and get an
arbitrarily large change in the reflected ray) is a serious problem, especially when
one is trying to prove claims about convergence. The way that surfaces “condense”
geometric information (like curvature) to low-dimensional subsets (vertices and
edges) is reminiscent of the abstraction of the point light source, which condenses
the light emitted from a small area into light emitted from a single point. Such an
abstraction is convenient for some simple forms of rendering, but in fact makes
others considerably more difficult. It’s possible that mesh representations of sur-
faces will someday be regarded only as limiting cases for some other preferred
kind of representation in which geometry generically has at least C2 continuity.

Nonetheless, meshes are an active area of research. Pick up any SIGGRAPH
proceedings from 2000 to 2012 and you’ll find at least a dozen papers that concen-
trate on meshes in some form, and we anticipate that this trend will continue for
some time. Read such papers once with an open mind, to get ideas, and again with
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a menagerie of wild meshes, like the non-locally-flat example of Figure 25.14, and
the highly wrinkled example of Figure 34.11, and a mesh built from an array of
pieces shaped like Figure 25.32, where no two adjacent normal vectors are similar,
and see whether the claims hold up. Another good test case is two large spheres
that have been joined by removing a small triangle from each and either gluing the
edges together directly, or splicing in a small triangular-prism-shaped “corridor”
between them. (The boundary of the 2-ring of a vertex of that prism may well not
be connected, for instance!) 012345
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Figure 25.32: An eight-triangle
building block.

25.8 Exercises

Exercise 25.1: Our algorithm for computing the boundary of a triangle mesh
involved iterating through all the faces, and it runs in O( f ) time. Describe a con-
nected triangle mesh with O( f ) boundary edges, thus showing that the O( f ) run-
time is as good as possible.

Exercise 25.2: If we have a one-dimensional path mesh (i.e., each vertex has
one or two edges meeting it), we can place it in the plane by assigning random
locations to the vertices. In general, the result will not be an embedding: Edges
will tend to cross one another. In 3-space, however, there’s plenty of room, and
with high probability the use of randomly assigned locations will result in an
embedded path mesh. In this exercise, you’ll show that for any surface mesh,
there’s an embedding in some Euclidean space. The idea is simple: For an n-vertex
mesh, we’ll place the mesh in Rn by placing vertex 1 at location (1, 0, . . .), vertex
2 at location (0, 1, . . .), etc. We then place edges and faces in the obvious way,
using linear interpolation.
(a) Explain why the embeddings of triangles (i, j, k) and (i′, j′, k′) do not intersect
unless the sets S1 = {i, j, k} and S2 = {i′, j′, k′} have nonempty intersection.
(b) Show that if S1 ∩ S2 contains a single index p, then the associated embedded
triangles intersect only at vertex p.
(c) Show that if S1∩S2 = {p, q}, then the associated embedded triangles intersect
in the embedded edge associated to {p, q}.

Exercise 25.3: Consider the mesh shown in Figure 25.32. By replicating it to
the left and right, and then replicating the resultant strip in the front and back
directions, we get a mesh in which no more than two adjacent triangles have
remotely similar normal vectors. Show that such a mesh is likely to be a worst-
case challenge to the polygon ordering algorithm of Nehab et al., as described in
Section 25.6.2.

Exercise 25.4: (a) We sketched an algorithm for computing the boundary of
a surface mesh by hashing edges. Adapt this to detect all contours of a mesh,
where a contour edge is one where the normals to the two adjacent faces have dot
products, with a view vector v, of opposite signs, and the contour is the set of all
contour edges.
(b) Contour edges can be generally formed into loops, although as we said, two
loops may share one or more vertices. Design an O(E) algorithm for assembling
the E contour edges into loops. Hint: Use hashing again.

Exercise 25.5: The paper by Nealen et al. [NISA06] suggests using the mean
curvature to compute weights. Make an argument for using the absolute value of
the mean curvature instead. Can you think of any argument against this, or any
rationale for why it might be an unimportant improvement, even if it works?
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Chapter 26

Light

26.1 Introduction

We now turn to a more formal discussion of light, expanding considerably on the
simple ideas from Section 1.13.1. We start with the physical properties of light,
one of which is that it has many characteristics of waves, including a frequency.
Our eyes perceive lights of different frequencies as having different colors, but
since color is a perceptual phenomenon rather than a physical one, we treat it
separately in Chapter 28.

The second part of this chapter is about the measurement of light and the
various physical units we use to describe light. Since almost all of these can be
described as integrals of one basic quantity (radiance), we also briefly discuss a
few special integrals that arise often in rendering. Finally, although it is not strictly
a property of light, we introduce the measurement of the reflection of light by
surfaces, and compute the light reflected from a surface in two simple situations.

26.2 The Physics of Light

We live in a world in which electromagnetic radiation is everywhere. We’re con-
stantly bathed in both heat and light arriving from the sun, radio and television
signals are present almost everywhere on Earth, etc. Light refers to a particu-
lar kind of electromagnetic radiation (of a frequency that can be detected by the
human eye, or nearly so). Because of this relationship to the human eye, light has,
over the years, been described not only in physical terms (like energy) but also in
perceptual terms, things having to do with the way that the human visual system
processes and perceives light. The most obvious of these is color, which we dis-
cuss in the next chapter in detail. We begin with the characteristics of the radiation
at microscopic and macroscopic scales, and then move on to a discussion of how
light is measured. The study of the measurement of radiation in general is called
radiometry, and radiometric ideas are relatively easy to grasp, as is radiometry
applied to light (i.e., electromagnetic radiation of the kind that the human eye can

669
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detect). There’s a second way of measuring light, called photometry, which is
closely related to the human visual system; photometric measures of light tend to
be summary measures, in that they measure things that can be computed from
radiometric quantities by computing weighted sums. We’ll touch on these mea-
surement topics later in this chapter and the next.

At a macroscopic level, light can be regarded as a kind of energy that flows
uninterrupted through empty space along straight lines, but is absorbed into and/or
reflected from surfaces that it meets. At a microscopic level, light turns out to
be quantized—it comes in individual and indivisible packets called photons. At
the same time, light is wavelike—it is a kind of electromagnetic radiation and is
characterized in part by a frequency, f . The energy E of a photon and the frequency
f are related by

E = hf =
hc
λ

,

where λ is the wavelength of the light in meters, c ≈ 2.996× 108 m s−1 is the
speed of light, which is constant in a vacuum, and h ≈ 6.626 × 10−34 kg m2 s−1

is Planck’s constant.
In graphics, we generally are interested in the macroscopic phenomena,

and therefore we ignore the indivisibility of photons. But there are phenom-
ena where the microscopic characteristics of light are important, particularly the
wavelike characteristics. Since light is an electromagnetic phenomenon, it’s actu-
ally described by both electric and magnetic characteristics; the magnetic charac-
teristics are determined by the electrical ones, so we’ll mostly ignore them. The
electrical wavelike characteristics produce the phenomenon called polarization.
Effects of the wavelike characteristics, including refraction and polarization, are
actually important in some phenomena that we see in day-to-day life, such as the
colors reflected by gemstones, the appearance of rainbows, the rainbow patterns
seen on diffraction gratings, the colors seen in a thin layer of oil or gasoline on
water (see Figure 26.1), the scattering of light by colloidal suspensions like milk,
and the scattering of light through multilayered surfaces like human skin. Figure 26.1: A thin layer of gas

on wet pavement reflects a rain-
bow of colors due to diffraction.

We begin with the microscopic view because of its importance in explaining
certain color phenomena, for instance, and because we feel that those working
with light on a day-to-day basis should know something about its physical prop-
erties. But this material can safely be skipped by those who are only interested
in high-level phenomena and are willing to take for granted certain claims about
radiation that we’ll make when discussing color.

We then continue with the macroscopic view, which can be easily understood
by analogy with everyday phenomena.

26.3 The Microscopic View

In this section we’ll give a high-level overview of the nature and production of
light; those interested in further details should begin with a good understanding of
electricity and magnetism (we particularly recommend Purcell’s book [Pur11]).

Let’s start with a simple model of an atom consisting of a central nucleus sur-
rounded by electrons, which we depict in Figure 26.2 as circling about the nucleus
in orbit. Electrons in orbits farther from the nucleus have more energy than those
close to the nucleus (just as it takes more energy to launch a high-orbit satellite
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E1

E2 E2 2 E1

Figure 26.2: An atom has a nucleus around which electrons orbit in various orbital levels.
Each orbital is associated with an energy level. An electron can “fall” from an orbital of
higher energy, E2, to an orbital of lower energy, E1; when it does, a photon with energy
E2 − E1 is emitted. The reverse can also happen: A photon with energy E2 − E1 can be
absorbed by the atom, lifting the electron from the orbital of energy E1 to that of energy E2.

around the Earth than a similarly sized low-orbit satellite). An electron can drop
from a high-energy orbit to a lower-energy one; typically when this happens, a
photon is emitted; its energy is the difference between the two energy levels. An
atom can also absorb a photon of energy E by having some electron move into a
new orbit whose energy is exactly E higher than that of its current orbit. Some-
times there is no pair of orbits whose difference is exactly E; in this case, the pho-
ton cannot be absorbed by the atom. Electrons can also change levels through other
mechanisms, one of which is vibration, in which some of the energy of an electron
in a substance is converted to or from vibration of the atoms of the substance.

A typical phenomenon is that a photon is absorbed by an atom, raising the
electron to a new energy level; the electron, some brief time later, then falls back
down to the lower energy and a new photon is emitted. Sometimes the path to the
lower energy level goes through an intermediate level: First some electron energy
is converted to vibration, and then a photon-emitting energy jump takes place. The
outgoing photon has a lower energy than did the incoming one; this phenomenon
is called fluorescence. The most familiar examples are minerals which, when
illuminated by ultraviolet light (sometimes called black light), emit visible light.
There is a closely related phenomenon called phosphorescence, in which the tran-
sition from the intermediate state to the low-energy state is relatively unlikely, and
therefore can take place over a long period of time. A phosphorescent material,
illuminated by light, can continue to glow for some time after the illumination is
removed. There’s one other form of interaction between a photon and an atom:
Sometimes the photon kicks an electron to a higher energy state, from which it
returns to the original state almost immediately; the result is that the photon con-
tinues on its original way, slightly delayed. The likelihood of such virtual tran-
sitions depends on the nature of the material, but the delay they induce has an
important macroscopic effect: The speed of light through materials is slower than
that in a vacuum, with the slowness being determined by how often such virtual
transitions occur.
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The simple model of discrete energy levels really applies only to an isolated
atom. When multiple atoms are in proximity (as in solids), each individual energy
level available to electrons gets “spread out” into a band of energies. Still, elec-
trons can generally absorb or release energies only when the amount absorbed or
released represents the difference of two energies in the bands.

In some materials—like metals—certain electrons are not attached to partic-
ular nuclei, but can instead move about the material, helping to make the mate-
rial conductive. These electrons have a great many possible energy states, and
therefore can absorb photons of many different wavelengths and then promptly
emit them again. This generally makes conductive materials like metals reflective,
while most transparent materials are insulators.

In other materials—like some forms of carbon—there are also unattached
electrons, but they cannot move quite as freely. Such an electron can interact with
atoms of the material, causing those atoms to move and vibrate while the elec-
tron loses energy. This motion of atoms is called heat. Thus, materials like soot
tend to absorb photons, and rather than reemitting the photons, they convert them
into heat. This is why soot looks black, and why dark clothes heat up on a sunny
day. Note that light of all frequencies is convertible to heat. In particular, infrared
light (light of wavelengths slightly longer than those we can see) is a kind of elec-
tromagnetic radiation, just like the light we see; it happens to be more readily
convertible to heat than is visible light, but it’s still light.

In the exact reverse process, if we heat up soot, the atoms vibrate; this vibra-
tion in turn may “kick around” a loose electron, causing it to have excess energy,
which it may lose by emitting a photon. Because of the many possible energy
states for the loose electron, the emitted light can have many possible energies
(wavelengths). Thus, materials that are good at absorbing energy and converting
it to heat are also good at emitting energies of many different amounts when they
are heated.

As materials are heated, they all become increasingly better at emitting elec-
tromagnetic radiation. Indeed, all bodies at all temperatures above absolute zero
actually emit some radiation, but at the low temperatures we encounter in ordinary
life, it’s not very much. We mostly see things because they are reflecting light
rather than because they are emitting it themselves. The exceptions are things like
the filaments in incandescent lightbulbs, hot metal being forged by a blacksmith,
or the sun.

We can measure the energy radiated by an object heated to temperature T (see
Figure 26.3). For each narrow range of wavelengths, we can measure the energy
radiated in that range; plotting this function I(λ, T) against frequency λ gives a
graph like that shown in Figure 26.4. At very low temperatures, such measure-
ments are easily confounded with reflected energy. But if we imagine an ideal
black body—one that can absorb and emit electrons as well as possible—in a
room in which the only energy is in the form of heat, we get a plot like the one
shown in the figure.

The dependence of I on T can be measured; the total power radiated depends
on the fourth power of T:

power = σT4, where σ = 5.67× 10−8 W m−2 K−4;

this is known as the Stefan-Boltzmann law. (The K in this expression denotes
“degrees Kelvin.”)
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Diffraction grating

Narrow slit lets just
one wavelength pass

Heat source

Figure 26.3: An object is heated to some temperature, and a narrow beam of the radiation
it produces is focused on a diffraction grating, splitting it into energies of different wave-
lengths. By moving a plate with a slit in front of this diffracted energy, we can measure the
energy radiated in a narrow range of wavelengths, [λ,λ+ dλ].
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Figure 26.4: The radiation near wavelength λ from a black body heated to some tem-
perature T, plotted as a function of λ, shown for several values of T. The shaded region
indicates the wavelengths of visible light.

Inline Exercise 26.1: On a warm day the temperature is about 300◦K.
(a) What does the Stefan-Boltzmann law predict as the amount of energy radi-
ated from your body? (You should assume that your surface area is about one
square meter, and that you radiate as a black body.)
(b) When sitting at home on such a day, why do you not get very cold from
this loss of heat?
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The other notable feature in the graph is that the location of the peak radiation
intensity moves to the left as the temperature increases. At about 900◦K, there is
enough radiation in the visible portion of the spectrum for the eye to detect it. As
a first peek at color, we mention one thing: Radiation with a wavelength between
about 400 nanometers and 700 nanometers is visible to the human eye; radiation
at the 700-nanometer end of the spectrum looks red, and the appearance transi-
tions through yellow, green, and cyan as the wavelength shortens (i.e., the energy
increases); and radiation near the 400-nanometer end of the visible spectrum
looks blue. Since at 900◦K the radiated energy at the low-frequency (i.e., long-
wavelength) end of the visible spectrum is larger than that at the high-frequency
end, we see such an object glowing a dull red. As we heat it further, it becomes a
great deal brighter because of the exponent of 4 in the Stefan-Boltzmann law. But
higher frequencies begin to mix in, and we see a combination of red and green
(i.e., an orange and then a yellow color) and eventually a combination of red,
green, and blue, which we perceive as white. By the time an object is glowing
white, it’s emitting energy at an amazing rate; at 5000◦K, it’s radiating at about 35
megawatts per square meter. Clearly this radiation dominates whatever light the
surface might reflect from the ordinary illumination in a room, for instance.

By the way, lamps used in filmmaking and photography are often described
using temperatures; that’s shorthand for saying, “The spectrum of light emitted by
this lamp is quite similar to that of black-body radiation of that temperature.” This
can be useful in adjusting a scene to appear illuminated by ordinary incandescent
lamps or by sunlight.

Max Planck developed an expression for the shape of the curve in the graph
above, later supported by theoretical analysis based on quantum theory; he
observed that

I(λ, T) ∝ 1
λ5

1

e
hc
λkT − 1

;

where h is Planck’s constant and k is Boltzmann’s constant (about
1.38× 10−23 J K−1). The precise values are not important to us, but the shape of
the curve is. Because ex = 1+x+ . . . , the denominator of the second factor is, for
large λ, roughly proportional to 1/λ, so I(λ, T) is proportional to λ−4; for small λ,
the exponential dominates and the curve heads to zero. Note that I(λ, T)Δλ is the
amount of energy at wavelengths between λ and λ+Δλ, for small values of Δλ;
to find the total energy in some range of wavelengths, you have to integrate with
respect to λ over that range. The corresponding expression, in terms of frequency,
which is the more common descriptor used for light in physics, is

R( f , T) =
f 3

ehf/kT − 1
,

in which frequency appears to the third power, while wavelength appeared to the
fifth power; this is because integration with respect to f involves a change of vari-
ables from λ to f , namely, λ = c/f , dλ = −c/f 2df .

26.4 The Wave Nature of Light

As mentioned earlier, light is a kind of electromagnetic radiation. (Indeed, “light”
is a general term for this, with “visible light” being the radiation that the human
eye can detect. We’ll generally follow common usage and mean “visible light”



ptg11539634

26.4 The Wave Nature of Light 675

1026 nm

Gamma rays

The electromagnetic spectrum

X-rays

Ultraviolet

Visible light

Near infrared

Far infrared

Violet

Indigo

Blue

Green

Yellow

Orange

Red

Microwave

Radio

nm = nanometer, Å = angstrom, �m = micrometer, mm = millimeter,
cm = centimeter, m = meter, km = kilometer, Mm = Megemeter 

1025 nm

1024 nm

1023 nm

103 nm

10 �m

100 �m

1000 �m

10 mm

10 cm

100 cm 1 m

1 cm

1 mm

1 �m

1 å

10 m

100 m

1000 m 1 km

10 km

100 km

1 Mm

10 Mm

100 Mm

1022 nm

1021 nm

1 nm

10 nm

10 nm

100 nm

Figure 26.5: The electromagnetic spectrum includes many different phenomena; visible
light occupies only a small portion of the spectrum.

when we speak of “light.”) Other kinds include X-rays, microwaves, etc. (see Fig-
ure 26.5). The wave nature of light is best used when trying to understand how
light propagates; in fact, a good rule of thumb is that “[e]verything propagates
like a wave and exchanges energy like a particle” [TM07]. To understand the
propagation of light, we must discuss kinds of waves.

Large and regular waves on the surface of the ocean are linear waves—each
peak and trough consists of a long line that moves in a direction perpendicular to
the axis of the line (see Figure 26.6). The wavelength is the perpendicular distance
between adjacent peaks (or adjacent troughs). The wave velocity is the velocity
with which the peak moves. This is not the velocity of any individual particle
of water, which is easy to see by watching, for instance, a log floating on the
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Figure 26.6: Ocean waves arriving at Panama City. The waves come in long lines, which
have been slightly bent by the irregularities of the ocean floor as they approach the shore.
(Courtesy of Nick Kocharhook.)

surface: As waves pass, the log rises and falls, and may also move somewhat back
and forth in the direction of the wave, but long after the peak of the wave has
moved on, the log remains more or less where it started.

Inline Exercise 26.2: (a) A thin human hair has a diameter of 50μm ≈
1

500 inch. Red light has a wavelength of about 700 nm. How many red wave-
lengths is one hair diameter?
(b) Diffraction is an effect that typically occurs when a wave phenomenon
interacts with an object whose scale is about the same order of magnitude as
the wavelength of the wave. Do you expect to see diffractive effects in the
interaction of human hair and visible light?

A basic electromagnetic wave moving through space is a planar wave. Just
as an ocean wave has a height at each point of the ocean surface, a light wave has
an electric field at each point of space. And just as the heights of the ocean wave
are the same all along a ridge line or a trough line, the electric field is the same
all along a plane (at least within some large enough radius that this is a decent
approximation). This means that we can describe the plane wave by describing its
values along a single line perpendicular to that plane. For instance, if the wave is
constant along planes perpendicular to the x-axis, then we can know, at each time
t, its value at a point (x, y, z) by knowing its value at (x, 0, 0):

E(x, y, z, t) = E(x, 0, 0, t).

The velocity with which the peaks of the wave move along the x-axis is c, the
speed of light, and the wave shape is sinusoidal. This means that the expression
for, say, the y-component of the wave must have the form

Ey(x, 0, 0, t) = Ay sin
(

2π
x
λ
− 2πft +Δy

)
(26.1)

= Ay sin
(

2π
x
λ
− 2π

c
λ

t +Δy

)
, (26.2)
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where Δy is a “phase” that depends on our choice of the origin of our coordinate
system. Similarly, the z-component must have the form

Ez(x, 0, 0, t) = Az sin
(

2π
x
λ
− 2π

c
λ

t +Δz

)
. (26.3)

Inline Exercise 26.3: Suppose we change units so that the speed of light, c, is
1.0; assume that λ = 1 as well, and Δz = 0. Plot Ez as a function of x when
t = 0; do so again when t = 0.25, 0.5, 0.75, and 1.0.

Physical experiment confirms that the x-component of the electric field for a

wave traveling on the x-axis is always zero. Thus, the vector a =
[
Ax Ay Az

]T
that characterizes the plane wave must always lie in the yz-plane; Ay and Az can
take on any values, but Ax is always zero.

26.4.1 Diffraction

The first important phenomenon associated with the wave nature of light is
diffraction. Just as waves passing through a gap in a breakwater fan out into a
semicircular pattern, light waves passing through a small slit also fan out. Assum-
ing the slit is aligned with the y-axis and the plane waves are moving in the x-
direction, the electric field (after the light passes through the slit) will be aligned
with the y-direction, that is, Az will be 0.

If we place an imaging plane at some distance from the slit (see Figure 26.7),
a pattern of stripes indicating the wave nature of the light appears.

For the most part, this kind of diffraction effect is not evident in day-to-day
life, but a closely related phenomenon, in which light of different wavelengths
is reflected in different directions by some medium (things like the “eye” of a
peacock feather, or a prism), is quite commonplace.

26.4.2 Polarization

In studying the electric field associated to light moving in the x-direction, we have
a plane wave described by

Ex(x, 0, 0, t) = 0 (26.4)

Ey(x, 0, 0, t) = Ay sin
(

2π
x
λ
− 2π

c
λ

t +Δy

)
(26.5)

Ez(x, 0, 0, t) = Az sin
(

2π
x
λ
− 2π

c
λ

t +Δz

)
. (26.6)

The phase constants Δy and Δz depend on where we choose the origin in x or
t; if we replace x by x + a, then both Δy and Δz will change, but the difference
between them will remain the same. This difference can be any value at all (mod
2π); in typical light emitted from an incandescent lamp, for instance, all possible
differences between 0 and 2π are equally likely.

The simplest case is a plane wave where Ay = Az and Δy − Δz = π/2 or
3π/2. Such a wave is called circularly polarized. If we consider the electric field
of Equation 26.6 at time t = 0 and assume that we’ve adjusted the x-axis so that
Δy = 0 and Δz = π/2, the field has the form
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Figure 26.7: Light passing through a narrow slit spreads out to illuminate a surface behind
the slit. Light from each side of the slit has different distances d1 and d2 to the back plane.
When these distances are a half-wavelength apart, the light waves cancel; when they’re a
multiple of a full-wave apart, they reinforce each other. This results in a set of bands of
light and dark on the imaging plane with spacing approximately λD/w.

Ex(x, 0, 0, t) = 0 (26.7)

Ey(x, 0, 0, t) = Ay sin
(

2π
x
λ

)
(26.8)

Ez(x, 0, 0, t) = Ay cos
(

2π
x
λ

)
. (26.9)

Notice that for every value of x, the vector E is a point on the circle of radius Ay in
the yz-plane. Figure 26.8 shows this. We’ve plotted in blue the electric field along
the x-axis at a fixed time t. The projection of this field to the xy-plane, shown in
red, is sinusoidal. The projection to the xz-plane, in green, is also sinusoidal, with
the same amplitude, because Ay = Az. The projection operation, for one vector,
drawn in black, is shown by two magenta dashed lines. The projection of all these
vectors to the yz-plane, shown in black, forms a circle in that plane.

x

y

z

Figure 26.8: Circular polariza-
tion.

Inline Exercise 26.4: What happens to the preceding analysis when Δy = 0
and Δz = −π

2 ? These two similar, but different, situations are called clockwise
and counterclockwise polarization.

x

y

z

Figure 26.9: Linear polarization.

At the other extreme, consider the case where Δy = Δz = 0. In this
case, the electric field vector at every point of the x-axis is a scalar multiple of[
0 Ay Az

]T
, that is, the electric field vectors all lie in one line. Figure 26.9

shows this: The projections of these vectors to the yz-plane all lie in one line,
determined by the numbers Ay and Az. Such a field is said to be linearly polar-

ized, with the direction
[
0 Ay Az

]T
being the axis of polarization.
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Inline Exercise 26.5: What happens when Δy = 0 and Δz = π?

Finally (see Figure 26.10), there are cases where Δy − Δz is not a multiple
of π

2 , or where Ay and Az differ. In this case, the projection of the field vectors to
the yz-plane forms an ellipse, and the light is said to be elliptically polarized. It
turns out that an elliptically polarized field can always be expressed as the sum
of a circularly polarized one and a linearly polarized one, with the axis of linear
polarization being along the major axis of the ellipse (see Exercise 26.11).

x

y

z

Figure 26.10: Elliptical polariza-
tion

There are materials called polarizers that are transparent to waves of one
polarization but opaque to those of the opposite polarization.

Light traveling in some direction d and reflected from a shiny surface with
normal vector n, when reflected, ends up preferentially linearly polarized with the
polarization direction being d× n. Such reflected light, when observed through a
polarizer that favors light of some other polarization, will be attenuated. This is
the principle by which polarized sunglasses filter reflected sunlight. The precise
nature of reflected polarized light depends on the reflecting material, as we’ll see
in Section 26.5.

26.4.3 Bending of Light at an Interface

In a related phenomenon, light passing from one medium to another changes
speed. The speed of light in a vacuum is the highest possible speed; in other mate-
rials it may be substantially slower, due to the virtual transitions mentioned earlier.
As a result, when light passes from a vacuum to some material it slows down. This
does not affect the frequency of the light, that is, the number of peaks of electro-
magnetic radiation arriving at a fixed point in a fixed amount of time. You can
convince yourself of this by observing a person who jumps into a swimming pool:
The color of his or her clothing does not appear to change whether you’re seeing
it through water and air or just air. The speed change does affect the wavelength,
however, which is determined by

λ = s/f ,

where s is the speed of light in whatever medium it’s traveling through and f is the
frequency.

The index of refraction or refractive index of a medium is the ratio of the
speed of light in a vacuum to the speed of light in that medium. It’s denoted by
the letter n. Typical indices of refraction are 1 for a vacuum, 1.0003 for air, 1.33
for water, and 2.42 for diamond.

The difference of refractive index in different media causes a macroscopic
phenomenon: Light rays bend when they go from one medium to another. The
conventional name for the precise description of the bending is Snell’s law,
although the phenomenon of a consistent law of refraction was known to Ibn Sahl
of Baghdad as early as 984 CE [Ras90].

�1

�2

Figure 26.11: Bending of a light
ray passing from one medium to
another.

The bending follows a particularly simple form (see Figure 26.11): If θ1 and
θ2 denote the angles between the ray and the surface normal on the two sides of
the interface, and n1 and n2 denote the two indices of refraction, then

n2

n1
=

sin θ1

sin θ2
.
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This tells us that if we know n1, n2, and θ1, we can determine θ2. The index of
refraction, n, determines a great deal about how light interacts with a medium.
For instance, when light arrives at the interface between air and glass at some
angle, the refractive index determines not only the amount of bending, but also
how much of the light is transmitted through the glass and how much is reflected,
as we’ll see in Section 26.5. Those interested in physically realistic renderings of
glass and other transparent materials must take this fact into account.

Using only the assumption that the electromagnetic field has a sinusoidal form
with the same frequency in each medium, and is continuous, we can prove Snell’s
law. Fortunately, the mathematics of this explanation apply to any kind of wave,
not just plane waves in three dimensions, so we can illustrate the idea with linear
waves in a plane. Consider the situation shown in Figure 26.12: a shallow tray
whose left side is twice as deep as its right side; this makes waves on the left half
travel about twice as fast as those on the right half. If we create sinusoidal waves
of frequency f on the left side, moving right, when they enter the right side they
“bunch up.” Because of the slower speed on the right, the same number of waves
per second reach the right-hand side of the tray as reached the midline.
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Figure 26.12: Waves traveling to
the right bunch up as they slow
down.

When we create waves traveling in an off-axis direction (see Figure 26.13) in
the left half of the tank, they arrive at the dividing line between the two sides and
continue on as waves in the shallower right-hand side of the tank. The peaks of
the waves on the two sides of the tank must match up at the dividing line if the
wave height is to be a continuous function; for this to happen, the directions of
propagation must differ.
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Figure 26.13: Off-axis waves
change direction “at an inter-
face.”Inline Exercise 26.6: (a) Suppose that the wavelength of the waves in the left

half of the tank is λ, and the direction of propagation in the left side is at angle
θL �= 0 to the left-right axis of the tank. Show that along the midline of the
tank, the distance between peaks is λ/ sin(θL).
(b) For a corresponding statement to be true on the right side of the tank,
where the wavelength is about λ/2, the distance between peaks will be
(λ/2)/ sin(θR). Setting these equal, show that sin(θL)/ sin(θR) = 2, which
is exactly the ratio of the velocities in the two sides of the tank.

A similar phenomenon happens with plane waves that meet at a planar inter-
face between media, from which Snell’s law follows as a consequence.

The index of refraction of a medium is not really a constant: It depends on
the wavelength of the light. Cauchy developed an empirical approximation for the
dependence, showing it was of the form

n(λ) ≈ A +
B
λ2

,

where the values of A and B are material-dependent. The exact values are not
important, except that B �= 0. This means that light of different wavelengths,
arriving at an interface between different media, gets bent by different amounts:
The different wavelengths are separated from one another. One instance of this
is the rainbows cast by prisms when they are struck by sunlight. Another is that
lenses, which are supposed to focus light at a single point, actually focus light of
different wavelengths at different points: When red light is in focus, blue light will
be blurry, etc. This chromatic aberration is a significant problem in lens design,
and many lens coatings are designed to minimize it.
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26.5 Fresnel’s Law and Polarization

Consider Figure 26.14, which shows light arriving at the interface between two
media, the upper (y > 0) having refractive index n1 and the lower (y < 0) having
index n2. For now, we’ll assume that the media are insulators rather than con-
ductors. The light’s direction of propagation lies in the xy-plane, the plane of the
diagram. The arriving light makes angle θi (“i” is for “incoming”) with the y-axis;
the reflected light makes angle θr = θi, and the transmitted light makes angle θt

with the negative y-axis. Since the electric field associated to the incoming light
must be perpendicular to the direction of propagation, we’ll consider two special
cases. In the first, the electric field, at each point of the incoming ray, points along
the z-direction (i.e., parallel to the interface between the media, pointing either
into or out of the page). A light source with this property is said to have “parallel”
polarization with respect to the surface, or be p-polarized.

�i �r

�t

y

Index n1

Index n2

Figure 26.14: A light ray reflects
and transmits through an inter-
face between media.

When such a wave reaches the surface the electric field interacts with the
electrons near the interface, moving them back and forth in the z-direction; these
motions in turn generate a new electromagnetic field that’s a sum of two parallel-
polarized waves, the first corresponding to the transmitted light and the second to
the reflected light. The transmitted light travels in a direction described by Snell’s
law, and the reflected light travels according to the familiar “angle of incidence
equals angle of reflection” rule: θr = θi. The fraction Rp of light reflected depends
on the angle θi according to the rule

rp =
n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt
(26.10)

Rp = r2
p. (26.11)

the fraction transmitted Tp is just 1 − Rp. (These fractions denote the fraction of
the incoming power that leaves in each direction. The amplitude of the reflected
wave is just rp times the amplitude of the arriving wave.) These formulas can be
derived, like Snell’s law, by insisting on continuity at the interface [Cra68].

The phase of the reflected light may match that of the arriving light, lag behind
it, or lead it, or be 180° out of phase with it.

The other special case is when the electric field is perpendicular to the z-axis,
that is, it lies entirely in the xy-plane, perpendicular to the direction of propagation.
Such a wave is said to be s-polarized. In this case, the reflection coefficient Rs is
given by

rs =
n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt
(26.12)

Rs = r2
s (26.13)

Once again, the transmission coefficient Ts is 1 − Rs. These rules for the
reflection and transmission coefficients for s- and p-polarized waves are called
the Fresnel equations, after Augustin-Jean Fresnel (1788–1827).

Because every wave can be written as a sum of an s-polarized and a p-polarized
wave, these two special cases in fact tell the whole story. For instance, incoming
light that is linearly polarized as the sum of a wave that is equal parts s-polarized
and p-polarized will reflect and again be linearly polarized. But the ratio of s- to
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p-polarized components will no longer be one to one; instead it will be Rs/Rp.
Because in general Rs > Rp, the reflected light will be more s-polarized than
the incoming light. In fact, no matter what the mix of s- and p-polarized light
in the arriving light, the outgoing light will be more s-polarized than was the
incoming light. The same argument applies to circularly polarized light; the only
difference is one of phase, which does not enter the Fresnel equations. Incoming
circularly polarized light will generally reflect into elliptically polarized light, with
the s-component dominating.

Inline Exercise 26.7: (a) For n1 = 1 and n2 = 1.5 (corresponding approxi-
mately to air and glass), plot Rp against θi, and observe that at about 56◦, Rp

is 0; what does this tell you about the polarization of the reflected light when
light arrives at this angle?
(b) For any pair of materials, there’s a corresponding angle; it’s called Brew-
ster’s angle. Briefly explain why Brewster’s angle depends only on the ratio
of the indices of refraction of the materials.

Inline Exercise 26.8: Consider light traveling from a piece of glass to the
air (so n1 = 1.5 and n2 = 1.0). Plot Rs and Rp against θi for 0 ≤ θi <
sin−1(n2/n1) ≈ sin−1(.66). At the upper end of this range, the critical angle,
both Rs and Rp are 1; all light is reflected back into the glass and none escapes
to the air. This is called total internal reflection.

Figure 26.15 demonstrates Fresnel’s law. The first photo shows several coins
and a washer in a tray as seen from above on a calm, overcast day. The sec-
ond shows the same items, seen from about 45◦. So much of the incident light is
reflecting that it’s much more difficult to see the items in the tray.

Figure 26.15: Fresnel’s law in
action: The coins are easily
visible from overhead, but are
obscured by sky reflections when
seen at a diagonal.

The analysis above applies to insulators. For conductors, the transmitted light
is almost immediately absorbed, and the rate at which it’s absorbed has an effect
on the reflected light. One analysis revises the index of refraction to be a com-
plex constant, whose real and imaginary parts correspond to the usual index of
refraction and the amount of absorption in the material, known as the coefficient
of extinction and denoted κ. An alternative approach simply treats the refractive
index and coefficient of extinction as separate quantities. In this latter form, a good
approximation to the Fresnel reflectance for conductors (in air) is given by

Rs =
(n2

2 + κ2) cos2 θi − 2n2 cos θi + 1
(n2

2 + κ2) cos2 θi + 2n2 cos θi + 1
and (26.14)

Rp =
(n2

2 + κ2)− 2n2 cos θi + cos2 θi

(n2
2 + κ2) + 2n2 cos θi + cos2 θi

, (26.15)

where n2 is the index of refraction of the metal and κ is its coefficient of extinction.
Snell’s and Fresnel’s laws are quite general, but there are materials whose

behavior is more interesting than that described by these equations. Calcite, for
instance, exhibits birefringence, in which there are two directions of refraction
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rather than one; so does topaz. (That’s because the speed of light is different in
different directions through these materials!)

26.5.1 Radiance Computations and an “Unpolarized”
Form of Fresnel’s Equations

While Fresnel’s laws describe transmitted and reflected power, in graphics we’re
mostly concerned with radiance, which we’ll define in the next few sections.
Because radiance involves an angle measure in its definition, and the angle
between two light beams refracted by Snell’s law is different before and after
refraction, the ratio between outgoing and incoming radiance involves an extra
factor of

sin2 θi

sin2 θt
=

n2
2

n2
1

. (26.16)

The derivation of this factor is given in the web materials for this chapter.
Although we’ve observed that light, after reflection, tends to be increasingly

polarized, it’s common in graphics to treat light as unpolarized, that is, to assume
that the polarization of incident light is, on average, zero. With that assump-
tion, the Fresnel equations can be simplified to a single factor, called the Fresnel
reflectance, which is

RF =
1
2
(Rs + Rp). (26.17)

The energy reflected is RF times the incident energy. And the energy transmitted
is (1−RF) times the incident energy. This means that the reflected and transmitted
radiance values can be computed as

L(P,vr) = RFL(P,−vi) and (26.18)

L(P,vt) = (1− RF)
n2

2

n2
1

L(P,−vi). (26.19)

Note that RF here depends implicitly on θi, n1, and n2 which, together with Snell’s
law, lets us compute θt.

26.6 Modeling Light as a Continuous Flow

Imagine standing at a crossroads, looking north. You count the cars that come to
the crossroads from the north, and observe that 60 cars arrive in the course of
an hour. You report that the arrival rate for cars is 60 per hour, and this lets you
guess that in 10 minutes, about 10 cars will arrive; in 5 minutes 5 cars will arrive,
etc. Of course, at an actual crossroads, cars arrive irregularly, so your “5 cars in 5
minutes” claim is probably not exactly correct. Nonetheless, if you counted cars
for each hour over the course of the day, you could make a graph like the one
shown in Figure 26.16, where we’ve connected the dots with straight lines, but
could have used a smooth curve. Later you could say something like “the arrival
rate at 9:30 was about 65 cars per hour.”
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Figure 26.16: The number of cars
arriving from the north at an
intersection, at each hour.

In making such a statement, you are treating the arrival rate as something that
makes sense at a particular instant; you are treating this problem as if it were
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continuous rather than discrete so that the tools of calculus (e.g., instantaneous
rates) actually apply to it, while in fact only finite-time rate measurements (“19
cars arrived between 9:20 and 9:43”) make sense.

We’ll do the same thing with light. As we observe the light arriving at a small
piece of surface, we can think of ourselves as counting “arriving photons over
some period of time.” But instead we treat the light as if it were infinitely divisible,
and talk about instantaneous rates of light arrival. In fact, rather than counting
photons, we’ll count the arriving energy, because photons of different wavelengths
have different energies, but the idea remains the same.

This assumption that there is an instantaneous rate of energy arrival at a surface
lets us use calculus to talk about light energy. We’ll repeat this “limiting trick”
twice more, once to establish a rate of arrival per area as we consider smaller and
smaller areas, and again to consider the rate of energy arriving from a particular
set of directions, divided by the size of that set of directions, as the size of the
set goes to zero. Having described this quantity (which we’ll call radiance), we’ll
see that all practical measurements we can make can be expressed as integrals
of radiance over various areas, time periods, and sets of directions. The abstract
entity, radiance, turns out to be easy to work with using calculus, and all the things
we can measure are integrals of radiance.

In this discussion so far, we’ve moved from a discrete version of counting to
one in which the light-energy arrival rate is continuous. We’ll now do the same
thing in two more ways, with respect to angle and area.

26.6.1 A Brief Introduction to Probability Densities

Before we do so, let’s look at a related concept from probability theory, the
notion of probability density. Consider a random number generator that ran-
domly generates real numbers between 0 and 5. We observe 1,000 of these ran-
domly generated real numbers, and look at how many lie between 0 and 0.5,
between 0.5 and 1.0, etc. The resultant histogram (see Figure 26.17) looks fairly
smooth; looking at it we might conjecture that the random number generator
is uniform, in the sense that every number is equally likely to be generated.
But if we choose smaller bins to count—say, between 0 and 0.001, between
0.0001 and 0.0002, etc.—the uniformity is no longer so obvious. Indeed, the
probability of generating any particular random number must be zero. Thus,
when we are discussing probabilities where the domain is some interval in the
reals (rather than a discrete set, like the set of faces on a pair of dice), we
talk not of the probabilities of generating particular numbers, but of generat-
ing numbers within an interval [a, b]. If the generator really is generating num-
bers uniformly, then the probability of generating a number in the interval [a, b]
is proportional to b − a. More generally, we posit the existence of a function
p : [0, 5] → R called the probability density function or pdf with the property
that

Pr{a random number in the interval [a, b] is generated} =
∫ b

a
p(x) dx.

For the uniform distribution on the interval [0, 5], p is the constant function
with value 1/5. For other distributions, p is not constant. But because its integral
represents a probability, p must be everywhere nonnegative, and its integral over
[0, 5] must be 1. 0.
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Figure 26.17: (a) A histogram of 1000 random numbers between 0 and 5, in bins of width
1/2; the distribution appears to be uniform. (b) A portion of a finer histogram, with bins of
size 0. 01; at this scale, it’s not clear that the distribution is uniform.

An alternative formulation for describing a distribution is the cumulative dis-
tribution function or cdf, defined by

F(u) = Pr{x ≤ u}. (26.20)

If F is continuous and differentiable, then the two formulations are related by
noting that p = F′. The big advantage of the cdf formulation is that probability
masses can be incorporated easily, that is, single points in the real line at which
a nonzero amount of probability is concentrated. At a point b where there is a
probability mass, there’s also a discontinuity in the cdf, with the “jump” being
exactly the probability mass at b. The student who wishes to work carefully
with the “impulses” that arise in the geometric optics description of mirror
reflection and refraction, and which correspond exactly to the notion of proba-
bility masses, will do well to study the cdf approach to defining distributions.

Inline Exercise 26.9: Verify that the function p(x) =

{
2 0 ≤ x ≤ 1

0 1 < x ≤ 2
is a

probability distribution on [0, 2]. Notice that p(0.5) = 2, but this does not
mean that the chance of picking 0.5 as a sample from this distribution is 2. We
see from this example that while probabilities may not exceed 1.0, probability
densities may.
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26.6.2 Further Light Modeling

Now we return to the crossroads. Just as cars arrive from the north at a certain rate,
other cars arrive from the south, the east, and the west. To adequately describe all
the arriving cars requires you to keep multiple tallies, one for each arrival direc-
tion. If the crossroads were a more complex intersection, with five, or six, or ten
roads leading into it, you’d need more and more tallies. If cars could arrive in any
direction, then in the analogy with the probability densities we just discussed the
probability of a car arriving from any particular direction would be zero. Instead,
we’d have to talk about a density, where the probability of a car arriving from a
range of directions was gotten by integrating the density over that range of direc-
tions.

Analogously, light energy can arrive at a point from any direction. The amount
arriving from a range of directions depends in part on how large the range is: If you
narrow the range of directions, you observe less incoming light energy. Indeed, if
you narrow your range of directions to a single direction, no energy at all will
arrive from that direction. We speak, therefore, of a density, where the amount of
energy arriving in some range of directions is gotten by integrating this density
over that range of directions.

Just as the energy from a single direction is zero, the energy arriving at any sin-
gle point is also zero. To get something meaningful, we must consider the energy
arriving over some small region. Once again, this is done with a density: We posit
a function whose integral, over a small region,1 gives the amount of energy arriv-
ing there.

All of this will be made more explicit in Section 26.7; for now the key idea is
that our model of light moving around in a scene will be based on a density func-
tion whose arguments range over several continua: time, position, and direction.

26.6.3 Angles and Solid Angles

To define a “range of directions” for light arriving at a surface in 3-space, we need
to define a notion of “solid angle” in R3 in analogy with the notion of angle in R2.

P
A

Figure 26.18: An angle at the
point P.

An angle in R2 is usually defined by a pair of rays at a point P (see
Figure 26.18). If we look at a unit circle C around P, there’s an arc A contained
between the rays. The length of the arc A is the measure of the angle.

We can revise this definition slightly, and say that the arc A is the angle.
Clearly, if you know the arc A and the point P, you can find the two rays, and
vice versa, so the distinction is a small one. But we can then generalize, and say
that an angle at P is any subset2 of the unit circle C at P. The measure of the angle
is the total length of all the pieces of the subset. In practice, there are typically
a finite number of pieces—usually just one—so this isn’t a large generalization.
Finally, it’s often convenient to not talk about points of the circle C, but about
points on the unit circle, or unit vectors. For any point X in C, we can form the
unit vector v = X − P. Given v and P, it’s easy to recover X = P + v. So our
revised notion of an “angle at P” is this: An angle at P is either a subset of the unit
circle C with center P, or a subset of the set S1 of all unit vectors.

1. We’ll generally use the term “region” to indicate a portion of a surface, and the term
“area” to indicate the size of that region (i.e., something whose units are m2), although
we’ll occasionally use terms like “pixel area” to indicate a region.

2. Any measurable subset [Roy88]. See Chapter 30.
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The notions of “clockwise” and “counterclockwise” angles, and “the angle
from ray1 to ray2” (which might be much larger than π) and of angles that “wrap
around multiple times” can all be defined with careful adjustments of the definition
above; in our study of light, though, we’ll have no need for these ideas, so we’ll
simply use the definition of angle and measure above.

P

C

T

Figure 26.19: The angle sub-
tended by T at P.

One common use of angles is the notion of the angle subtended by some
shape, T , at a point P (see Figure 26.19). The shape T is projected onto the unit
circle C around P, and the measure of the resultant angle is called the angle sub-
tended by T at P. In equations, the angle subtended by T at P is

{S(X − P) : X ∈ T}. (26.21)

We can now describe solid angles in R3 by analogy. A solid angle at a point
P ∈ R3 is a (measurable) subset Ω of the unit sphere about P, or, equivalently, a
measurable subset of S2, the collection of all unit vectors in 3-space. The measure
of the solid angle of Ω is the area of the set Ω (see Figure 26.20).

V

Figure 26.20: The solid angle Ω
is a set on the surface of the unit
sphere. The measure of the solid
angle is the area of this set.

When we want to treat points in a solid angle as unit vectors, we’ll use bold
Greek letters, almost always using the letter v. We’ll often write “Let v ∈ Ω . . .”,
and thereafter treat v as a unit vector, writing expressions like v · n to compute
the length of the projection of a vector n onto v. In fact, this use of a solid angle
as a collection of direction vectors is almost the only one we’ll see.

The notion of subtended angle can also be extended to three dimensions: If T
is a shape in R3 and P a point of R3 with P /∈ T , the solid angle subtended by
T at P is the area of the radial projection of T onto the unit sphere at P, in exact
analogy with the two-dimensional case. More precisely, the solid angle subtended
by T at P is

{S(Q− P) : Q ∈ T},

in exact analogy with the 2D case.
This definition lets us speak of “solid angles” on other spheres (e.g., like the

Earth) by defining their measure to be the measure of the solid angle they subtend
at the center of the sphere. It’s easy to show that if U is a subset of a sphere of
radius r about P, and the area of U is A, then the solid angle represented by U
(i.e., the solid angle subtended by U at P) is A/r2. When we speak of measuring
a solid angle on some arbitrary sphere (like the Earth, or a spherical lightbulb), it
is implicit that we mean “the solid angle subtended at the center of the sphere by
this region.”

Inline Exercise 26.10: Estimate the solid angle measure of your country as a
solid angle on the (roughly) spherical earth. Use 13,000 km (or 8000 mi) as the
diameter of the Earth.

Notation: It’s conventional to use Ω to denote both a solid angle and the mea-
sure of that solid angle (just as we use θ to denote an angle and its measure in the
plane). Just as we often use x as a variable of integration in calculus, it’s common
to use the letter Ω to denote a solid angle, and v to denote a member of Ω, so that
v is a unit vector.
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Units: Just as angles are measured in radians, solid angles are measured in
steradians, abbreviated “sr.” The entire unit sphere has a solid angle measure of
4π steradians.

26.6.4 Computations with Solid Angles

Let’s now measure a few simple solid angles (see Figure 26.21). Following the
standard from graphics rather than mathematics, we will treat the y-axis as point-
ing up, the x-axis as pointing to the right, and the z-axis as pointing toward us.
Thus, the longitude is atan2(y, z) and the latitude is arcsin(y). (The colatitude,
which is often denoted φ in spherical polar coordinates, is arccos(y). The other
polar coordinate, θ, is what we’ve called the longitude.)

• If Ω is all of S2, then the measure of Ω is 4π (the area of a unit sphere).

• Any hemisphere has measure 2π.

• The “stripe” between y = y0 and y = y1 has area 2π‖y1−y0‖. This follows
from the theorem below, as do the next two examples.

• The latitude-longitude rectangle between latitudes λ0 and λ1 and longi-
tudes θ0 and θ1 has solid angle ‖θ1−θ0‖ ·‖ sinλ1− sinλ0‖ (where latitude
goes from −π/2 at the South Pole to π/2 at the North Pole). (When the
longitudes are on opposite sides of the international dateline, this rectangle
is a very long stripe wrapping around the nondateline part of the globe.)

• A “disk” consisting of all points whose spherical distance from a point P
is less than r (where r < π) has solid angle measure 2π(1− cos(r)).

• If a regular solid of n sides (cube (n = 6), tetrahedron (n = 4), octahedron
(n = 8), dodecahedron (n = 12), icosahedron (n = 20)) is inscribed
in the unit sphere, the projection of one of its faces onto the sphere (see
Figure 26.21 (f)) has solid angle measure 4π

n , because the total projected
area is 4π, and by symmetry, each face has the same projected area.

All of the results above are consequences of the sphere-to-cylinder projec-
tion theorem: If C is a cylinder of radius 1 and height 2, circumscribed about the
sphere S of radius 1, then the horizontal radial projection map,

p : C→ S : (x, y, z) 
→
(

x√
x2 + z2

, y,
z√

x2 + z2

)
, (26.22)

is area-preserving. (The proof is a simple calculus computation—see Exer-
cise 26.1). Figure 26.22 shows this: The area of a country on the surface of the
globe is the same as the area on the plate carrée projection shown (although many
other characteristics of shape are grossly distorted, as shown for Greenland [in
green]).

As an example of another use of this theorem, let’s let Ω denote the north-
ern hemisphere y ≥ 0 of the unit sphere, and integrate the function y over this
hemisphere.

That is to say, we seek to evaluate

B =

∫
(x,y,z)∈Ω

y dA. (26.23)
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Figure 26.21: Various solid angles on the unit sphere.

Consider the upper half-cylinder H = {(x, y, z) : x2 + z2 = 1, 0 ≤ y ≤ 1},
which projects to Ω under the axial projection map p. We can perform a change
of variables in the integral, and express B as

B =

∫
(x′,y′,z′)∈H

y |Jp(x′, y′, z′)| dA′, (26.24)

where (x, y, z) = p(x′, y′, z′), and dA′ is area on H, and |Jp| is the Jacobian for
the change of variables (i.e., it represents how areas at (x′, y′, z′) are stretched
or contracted to become areas at (x, y, z)). The theorem that p is area-preserving
means that |Jp| = 1, so the integral becomes

B =

∫
(x′,y′,z′)∈H

y dA′. (26.25)

Since in the formula for p, y does not change, we have y = y′, so this becomes

B =

∫
(x′,y′,z′)∈H

y′ dA′. (26.26)

By circular symmetry, this is just 2π times the integral of y′ from 0 to 1. That
integral is 1/2, so B = 1

2 · 2π = π.

Figure 26.22: Horizontal radial
projection from the sphere to
the surrounding cylinder is area-
preserving.

If instead we wanted to know the average of y over the upper hemisphere, we’d
need to divide its integral (π) by the area of the hemisphere (2π). The average is
thus 1

2 . This value comes up often, although it’s usually in a slightly generalized
form: We have a hemisphere defined by v · n ≥ 0, and we want to know the
average value of v · n over this hemisphere. (Our instance is the special case

where n =
[
0 1 0

]T
.) We’ll state this as a principle:
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THE AVERAGE HEIGHT PRINCIPLE: The average height of a point on the
upper hemisphere of the unit sphere is 1

2 . Thus, for any unit vector n, the integral

∫
{v∈S2:v·n≥0}

v · n dv = π. (26.27)

Inline Exercise 26.11: In various computations, one has both a solid angle Ω
in the sphere S around a point P, and a surface M containing P, which can be
locally thought of as a plane K through P (namely, the tangent plane to M at
P). The projected solid angle Ω′ is the area of the projection of Ω onto the
plane K (see Figure 26.23).
(a) What is the largest possible projected solid angle for any solid angle Ω in a
hemisphere bounded on one side by the plane K?
(b) For the case where P is the origin and K is the xz-plane, compute the pro-
jected solid angle of the “positive x quadrant” (the points of S with x, y ≥ 0).
(c) Do the same for the region consisting of all points with latitude greater than
30◦ north (i.e., approximately the northern extra-tropical zone).
(d) Show that the solid angles of the two regions are the same.
(e) Explain why the projected solid angles are different.
(f) Compute the projected solid angle of the region θ0 ≤ θ ≤ θ1, φ0 ≤ φ ≤ φ1,
where φ0 and φ1 are both between 0 and π/2, that is, the projected solid angle
of a small latitude-longitude patch in the upper hemisphere. Hint: You should
be able to answer every part of this question without computing any integrals;
the sphere-to-cylinder projection theorem will help.

26.6.5 An Important Change of Variables

A

K

p
V9

V

Figure 26.23: For a solid angle
Ω in the unit sphere around a
point p of a surface M, the pro-
jected solid angle lies in a plane
K tangent to M at p. The pro-
jected solid angle Ω′ will always
have a smaller area than the orig-
inal solid angle.

Often in the next several chapters we’ll have occasion to integrate some function
over the solid angle Ω subtended by some rectangle R, of width w and height h,
at a point P, as shown in Figure 26.24. Usually this function involves a factor of
vi ·n, where n is the surface normal at P and vi ∈ Ω is the variable of integration,
in which case the integral looks like

A =

∫
vi∈Ω

g(vi) vi · n dvi, (26.28)

P

�

V

n n9

R

Q

Figure 26.24: Notation for the
change of variables.

In some cases involving transparency, the vi ·n factor will be negative and will
require absolute value signs.

Expressing Ω in terms of latitude and longitude, or even in terms of xyz-
coordinates, may be extremely messy. It’s often convenient to perform a change
of variables instead, and integrate over the rectangle R. We’ll carry this out for the
particular case where P is the origin so that the mapping from a point (x, y, z) on
R to a point on the unit sphere has a particularly nice form:

N(x, y, z) =
1√

x2 + y2 + z2
(x, y, z). (26.29)

(We’ve chosen the letter N here for “normalize.”)
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The change of variables formula says that to compute

A =

∫
vi∈Ω

g(vi) vi · n dv (26.30)

we can instead compute

A =

∫
Q∈R

g(N(Q)) N(Q) · n |JN(Q)| dQ, (26.31)

where JN is the Jacobian for the change of variables N.
Let’s suppose that the rectangle R is specified by a corner, C, and two perpen-

dicular unit vectors u and v, chosen so their cross product n′ points back toward
P. The points of R are then of the form

Q = C + su + tv,

where 0 ≤ s ≤ w and 0 ≤ t ≤ h. So the integral we need to compute is

A =

∫ w

s=0

∫ h

t=0
g(N(C + su + tv)) N(Q) · n |JN(C + su + tv)| dt ds. (26.32)

Computing the Jacobian of N at the point Q = C + su + tv is somewhat
involved, but the end result is simple:

|JN(Q) =
|v · n′|

r2
, (26.33)

where r is the distance from P to Q and v is the unit vector pointing from P
to Q.

The intuitive explanation for this is that if the plane of the rectangle R hap-
pened to be perpendicular to v, then a tiny rectangle on R, when projected down
to the unit sphere around P, would be scaled down by a factor of r in both width
and height, and that accounts for the r2 in the denominator. If the plane of R is
tilted relative to v, then we can first project the tiny rectangle onto a plane that’s
not tilted (projecting along v). This, by the Tilting principle, introduces a cosine
factor, which is v · n′.

Applying this result to the point Q(s, t) = C+ su+ tv, the integral A becomes

A =

∫ w

s=0

∫ h

t=0
g(N(Q(s, t))) N(Q(s, t)) · n |(Q(s, t)− P) · n′|

‖Q(s, t)− P‖3
dt ds (26.34)

=

∫ w

s=0

∫ h

t=0
g(N(Q(s, t)))

|(Q(s, t)− P) · n|
‖Q(s, t)− P‖

|(Q(s, t)− P) · n′|
‖Q(s, t)− P‖3

dt ds

(26.35)

=

∫ w

s=0

∫ h

t=0
g(N(Q(s, t)))

|(Q(s, t)− P) · n| |(Q(s, t)− P) · n′|
‖Q(s, t)− P‖4

dt ds.

(26.36)

If we define v(s, t) = Q(s,t)−P
‖Q(s,t)−P‖ , this simplifies to

A =

∫ w

s=0

∫ h

t=0
g(v(s, t))

|v(s, t) · n| |v(s, t) · n′|
‖Q(s, t)− P‖2

dt ds. (26.37)
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To make this concrete, Listing 26.1 shows how you might actually estimate
this integral numerically, given the function g that takes a unit vector as an
argument.

Listing 26.1: Integrating a cosine-weighted function over the solid angle
subtended by a light source.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

// Given rectangle information C (corner), u, v (unit edge vectors),
// w, h (width and height) and n′ (unit normal), a point P on
// a plane whose normal is n, and a function g(. ) of a single
// unit-vector argument, estimate the
// integral of g(v)v · n over the set Ω of
// directions from P to points on the rectangle.

sum = 0;
for i = 0 to N-1

s = i/(N-1)
Δs = 1/(N-1);
for j = 0 to N-1

t = j/(N-1)
Δt = 1/(N-1)
Q = C + s * u + t * v
v = S(Q − P)
r = ‖Q − P‖

sum +=
g(v) |v · n| |v · n′|

r2 Δs Δt

return sum

To summarize, when we change from an integral over solid angles to an inte-
gral over some planar surface with normal n′, we introduce an extra factor in the
integrand, of the form |v·n′|

r2 , where v is the unit vector from P to a point Q on the
surface and r is the distance from P to Q. Often the integrand will already have
the form g(v)|v · n|, so the integrand for the area integral will be

g(v)
|v · n| |v · n′|

r2
. (26.38)

26.7 Measuring Light

With the notion of solid angle in hand, we can now precisely describe how light
energy is flowing in a scene. We’ll consider a function L, called the spectral
radiance. It’s a function of time, position, direction, and wavelength that cap-
tures the infinitesimal characteristics of light transport in the sense that when it’s
integrated over a time interval, and over some part of a surface perpendicular to
the direction of transport, and over some solid angle of directions, and over some
range of wavelengths, the result is the total light energy that arrives at that surface,
arriving from the specified directions, within the range of wavelengths, and during
the time interval. We previously discussed summing up energies for all different
wavelengths, and we’ll do that presently, but for now, we want to consider the
per-wavelength function—yet another density!

The integral of spectral radiance over a small surface, and a small range of
directions, and a small period of time, and a small range of wavelengths, is the
sort of thing that can be measured by a physical device, while the infinitesimal
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version is the thing that’s easy to work with mathematically, just as it’s possible to
measure the distance a car travels over some small time interval, but we work with
instantaneous velocity when we’re studying the mathematics of motion. What are
the units of L? Taking as a model “piece of surface” a rectangle in the xy-plane, and
assuming that the light flow is in a set of directions Ω all of which are essentially
perpendicular to the xy-plane, we know that

energy ≈
∫ t1

t0

∫ x1

x0

∫ y1

y0

∫
v∈Ω

∫ λ1

λ0

L(t, (x, y, 0),−v,λ) dλ dv dy dx dt. (26.39)

Note that in the integrand above, L has four arguments: t, the point (x, y, 0),
−v, and λ. The v is negated because v points out of the surface, but we want to
sum up the light coming in to the surface.

Using MKS units for the surface and time, but nanometers for wavelength
(which follows long-standing convention), we find that L must have the units of
joules per second per square meter per nanometer per steradian. One joule per sec-
ond is one watt, so we can also say “watts per square-meter nanometer steradian.”

What happens if the direction v along which light arrives is not parallel to the
surface normal? Then the amount of light energy arriving at the surface, per unit
area, is smaller than if it were parallel, by the Tilting principle.

Thus, the more general and exact formula for the energy arriving at that small
region of the xy-plane from directions in the solid angle Ω, in the given time inter-
val and wavelength interval, is

energy =

∫ t1

t0

∫ x1

x0

∫ y1

y0

∫
v∈Ω

∫ λ1

λ0

L(t, (x, y, 0),−v,λ) v · e3 dλ dv dy dx dt.

(26.40)

For a region R of an arbitrary plane, with normal vector n, the energy arriving
at R in the interval t0 ≤ t ≤ t1, at wavelengths λ0 ≤ λ ≤ λ1, in directions opposite
those in a solid angle Ω, is

energy =

∫ t1

t0

∫ λ1

λ0

∫
P∈R

∫
v∈Ω

L(t, P,−v,λ) |v · n| dv dP dλ dt, (26.41)

where
∫

P∈R . . . dP is an area integral over the area R.
When we are concerned with overall light energy, rather than caring about

how much is transported at each different wavelength, we can integrate L over all
wavelengths λ, giving us a new function depending on time, position, and direc-
tion, with units of watts per square-meter steradian. This new function is called the
radiance. This relationship between spectral radiance and radiance is quite gen-
eral: For any photometric quantity, the spectral version has the wavelength λ as a
parameter, while the version without the adjective “spectral” has been integrated
over all possible wavelengths.

The function L, defined for all times and points and all directions (and possibly
for all wavelengths) describes fully the way light flows around the scene. We’ll call
L(t, P,v) or L(t, P,v,λ) the “radiance” or “spectral radiance” at time t, location
P, etc. But the function L, considered as a whole, is sometimes also called the
plenoptic function, particularly in computer vision.
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26.7.1 Radiometric Terms

The spectral radiance L characterizes the light energy flowing, at each instant, at
each point in the world, in each possible direction. Formally its domain is

R× R3 × S2 × R+,

where S2 denotes the unit sphere in 3-space (the set of all possible directions in
which light can flow) and R+ is used for the set of all possible wavelengths. In
practice, R+ may be replaced by the range of wavelengths that are visible. The
codomain of L is R.

Starting from L, we can describe, via integration, all of the terms convention-
ally used in radiometry, the science of the measurement of radiant energy. An
alternative approach is to start from energy or power, and define all the terms by
differentiation. We discuss this approach briefly in Section 26.9.

26.7.2 Radiance

Spectral radiance is the quantity described by L; radiance is the quantity∫ ∞

0
L(t, P,v,λ) dλ, (26.42)

which is defined for (t, P,v) ∈ R×R3×S2. In engineering, the letter L is usually
used for this quantity, with Lλ being reserved for spectral radiance; in graphics,
however, the spectral radiance is often denoted by L. Because for us the symbol λ
actually is one of the arguments to the function, it’s a bad choice for a subscript.
We’ll therefore carry out the remainder of this discussion in the spectral case
(keeping λ as an argument), and discuss the nonspectral case at the end. Until
then, when we speak of radiance we’ll be speaking of spectral radiance; when we
speak of irradiance we’ll mean spectral irradiance, etc.

The most interesting thing about radiance, from a computer graphics point
of view, is that in a steady-state situation, that is, one in which L is independent
of t, radiance is constant along rays in empty space (assuming, for the moment,
that there are no point light sources; see Exercise 26.3). In mathematical terms,
this means that the function L cannot be just any function. We also know, from
physical considerations, that L can never be negative.

Figure 26.25: A radiance mea-
surement tool.

Why is L constant along rays in empty space? Try an experiment (see
Figure 26.25): Look through a narrow cardboard tube at a tiny region of a well-lit
latex-painted wall. You’ll see a small disk of light at the end of the tube, outlined
in red in the figure. Now move twice as far away from the wall, and look again at
the same region. Again, you’ll see a small disk of light (outlined by the larger blue
circle), and it will appear equally bright (assuming that the wall is about equally
well lit over the region where you’re looking). There’s an easy explanation for
this: When at first you were at distance r from the wall, light leaving the wall
spread out to illuminate a hemisphere of radius r; when you move to distance 2r,
it’s illuminating a hemisphere of radius 2r, whose area is four times as great. But
as you look through your tube, you see four times as large a region of the wall.
Hence the total energy coming down the tube toward your eye is constant. In each
case, the light energy passing through the eye end of the tube is approximately the
integral of the radiance over the region of the tube end. Because we’re assuming
the wall is uniformly lit, this is just the (approximately constant) radiance times
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the area of the tube end times the solid angle subtended at the eye by the far end
of the tube. The fact that things look the same means that the radiance has not
changed as you moved along the ray from the wall to your initial eyepoint.

To the degree that the pixel area on the sensor in a digital camera can be
regarded as infinitesimal (or that the variation of radiance with position on the
sensor can be assumed small) and the solid angle of rays that hit that pixel can
be considered infinitesimal (or the variation with direction assumed small), the
response of the sensor (assuming it responds to total arriving energy) is propor-
tional to radiance. In fact, high-quality cameras used for computer-vision exper-
iments produce images whose individual entries are radiance values. To be more
precise, the values they produce are often integrals, with respect to wavelength,
of spectral radiance multiplied by a response function that characterizes how the
sensor responds to radiance of each wavelength.

26.7.3 Two Radiance Computations

R

P

S9

V

S r

n

rrrr

Figure 26.26: A radiating sphere
inside a large receiving sphere.
We’ll compute arriving power
density at P.

For a Lambertian emitter, the radiance in all outgoing directions is the same.
Let’s suppose that we have a Lambertian emitting sphere S of radius r, emitting
total power Φ. We’ll now compute the radiance along each ray leaving the sphere.
The idea (see Figure 26.26) is to surround the emitter with a concentric sphere S′

of radius R >> r. All power emitted from S must arrive at S′, and the arriving
power density (in W m−2) on S′ is independent of position. If we call this density
D, then

4πR2D = Φ. (26.43)

We’ll compute the power density at the point P in terms of the unknown con-
stant emitted radiance L, which will allow us to solve for L in terms of Φ. The
power density at P is

D =

∫
S2

+(P)
L |v · n(P)| dv (26.44)

=

∫
Ω

L |v · n(P)| dv (26.45)

= L
∫
Ω

|v · n(P)| dv. (26.46)

The transition between Equations 26.44 and 26.45 is justified by noting that for v
outside Ω, the radiance at P in direction −v is zero, so the integral over the whole
hemisphere can be reduced to an integral over just Ω.

R P

V

r

n

Figure 26.27: Computing the
measure of the solid angle Ω.

For sufficiently large values of R, v · n(P) is very close to 1, so in the limit as
R approaches infinity, we get

D = L
∫
Ω

1 dv = L m(Ω). (26.47)

The sphere of radius R around P (drawn in light gray in Figure 26.27) has
total area 4πR2, and subtends a solid angle of 4π at P; of this 4πR2 area, an area
of approximately πr2 is occupied by the radiating sphere (i.e., as seen from P, the
radiating sphere occludes a disk of area πr2 in the entire 4πR2). The solid angle
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subtended by the small sphere is therefore

m(Ω) = 4π
πr2

4πR2
(26.48)

=
πr2

R2
. (26.49)

Substituting this in Equations 26.47 and 26.43, we get

4πR2L
πr2

R2
= Φ, so (26.50)

L =
Φ

4π(πr2)
. (26.51)

We’ve made two approximations in this computation: that the dot product is
always 1, and that the area occluded by the emitting sphere is πr2. If you instead
evaluate the integral exactly, you’ll see that the two approximations exactly cancel
each other.

R

P
Q

H r
�

Figure 26.28: A Lambertian emit-
ting disk that radiates on one side
only.

We’ll now consider a similar example and analysis. This time we have a
small disk-shaped emitter of radius r, that emits light only on one side (see
Figure 26.28).

We enclose it in a hemisphere H of radius R, and first compute the power
density at the North Pole P just as before; once again the power density is

DP = Lm(Ω) = L
πr2

R2
. (26.52)

At a point like Q that’s off-axis by the angle φ, the Tilting principle applies, and the
power density arriving at Q is only cosφ times that arriving at P. Thus, the total
power arriving at all points of the hemisphere (which must be the total emitted
power Φ) is

Φ =

∫
H
(cosφ)L

πr2

R2
(26.53)

= L
πr2

R2

∫
H
cosφ (26.54)

by pulling the constant out of the integral. Further simplifying,

Φ = L
πr2

R2
R2
∫

S2
+

cosφ (26.55)

= Lπr2
∫

S2
+

cosφ (26.56)

because the area of H is R2 times that of S2
+. Finally, by the Average height prin-

ciple, we get

Φ = Lπr2π (26.57)

so that

L =
Φ

π(πr2)
. (26.58)
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This generalizes to arbitrary emitter shapes; in general, a one-sided planar
Lambertian emitter of power Φ and area A emits light of radiance

L =
Φ

πA
. (26.59)

26.7.4 Irradiance

Irradiance is the density (with respect to area, time, and wavelength) of the light
energy arriving at a surface from all directions. (It’s often described as the mea-
sure of the light hitting a surface “independent of direction,” but if the light energy
varies with direction, then the meaning of that phrase isn’t entirely clear.) Irradi-
ance is a useful notion when the surface is known to respond to incoming light in
a way that’s direction-independent, where “respond to” might mean “absorb” or
“reflect.” In cases where the response is direction-dependent, irradiance is gener-
ally irrelevant: Knowing only the total light energy hitting a surface will tell you
nothing certain about the reflected energy.

Irradiance is usually defined only for a point P on a surface in the scene (or
on a surface of some sensor like that of a virtual camera), and typically for a point
where only reflective scattering takes place, that is, where there’s no transmission
through the surface, so we need only consider light arriving from one side of the
surface. Equation 26.42 says that the energy arriving at a region R from directions
opposite those in a solid angle Ω is

energy =

∫ t1

t0

∫ λ1

λ0

∫
P∈R

∫
v∈Ω

L(t, P,−v,λ) |v · n| dv dP dλ dt. (26.60)

The solid angle that interests us is S2
+(P) = {v : v · n(P) ≥ 0}, the set of all

outgoing directions at P. So the irradiance at a point P where the surface normal is
n is the innermost integral, using S2

+(P) as Ω. Within that integral, the dot product
is always positive, so we can drop the absolute value signs,

E(t, P,λ) =
∫
vi∈S2

+(P)
L(t, P,−vi,λ) vi · n dvi, (26.61)

where we’ve substituted vi for v (see Figure 26.29).
This definition introduces some notational conventions we’ll follow for the

next several chapters. First, P typically denotes a point on some surface in the

n

P

�

Figure 26.29: Notation for irradiance definition.
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scene, while n(P) denotes the unit surface normal at P. The set of all “outward”
vectors at P is S2

+(P), that is,

S2
+(P) = {v : v · n(P) ≥ 0}. (26.62)

We’ll sometimes generalize this and write

S2
+(n) = {v : v · n ≥ 0} (26.63)

for the “positive hemisphere with respect to some vector n.”
Second, vi is a vector pointing in this outward hemisphere toward some source

of light, so the radiance reaching P from this source is L(t, P,−vi,λ). The nega-
tive sign is important: vi points toward the light source, but light flows from the
source toward P, hence in direction−vi. The “i” in vi is a mnemonic for “incom-
ing” rather than an index, which is why it is typeset in roman rather than italic.
We’ll also often use vo, a direction in which light leaves from P (often toward the
observer’s eye).

The units of spectral irradiance are J m−1 s−1 nm−1 or W m−2 nm−1; the
steradians have been integrated out.

Looking at the formula for irradiance, it becomes clear that the surface at
which the light is arriving is not really important—only the surface point and
normal vector are. Thus, we can regard irradiance instead as a function on all of
R3, but with an additional argument to indicate the normal direction:

E(t, P, n,λ) =
∫
{v :vi·n≥0}

L(t, P,−vi,λ) vi · n dvi. (26.64)

With this revised formulation, the domain of E is R × R3 × S2 × R+; its
interpretation is that E(t, P, n,λ) is the density of energy that would arrive at a
surface perpendicular to n at the point P from all directions in the half-space
determined by n, and having wavelength λ.

It’s often useful to speak of the irradiance due to a single source. To define
this, we imagine painting everything in the scene completely black except the
single source. We then use the resultant radiance field L̄ in place of L in Equa-
tion 26.64.

In the event that we are measuring the irradiance due to a single area light
source of constant radiance, L0, that is, the radiance leaving every point of the
light source in any direction is the number L0, and the solid angle subtended by
the light source lies at approximately a single latitude (if, for example, it’s approx-
imately disk-shaped and quite small), and it’s completely visible from the point
P, then the integral can be well approximated by assuming that the dot product
vi · n is constant; since all other terms in the integral are constant as well, we can
evaluate this approximation directly.

P

d

r
Q

n
m

Figure 26.30: The rule of five.
Inline Exercise 26.12: Show that if, in Figure 26.30, the distance from a disk-
shaped uniform light source of radius r, center Q, normal vector m, and radi-
ance L0 to the point P is more than 5r, and the source is completely visible
from P, then the irradiance at P from the light is well approximated by

πr2L0
(Q− P) · n (P− Q) ·m

‖Q− P‖4
. (26.65)

This is sometimes called the rule of five.
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The notion of irradiance appears in many research papers about rendering, and
it’s often given the letter E. Except for brief mention in our discussion of radiosity
in Chapter 31, we’ll have no further use for irradiance, and we will use the letter
E primarily to denote the eyepoint (or camera) in a rendering algorithm.

26.7.5 Radiant Exitance

The corresponding measure of light leaving a surface in all possible directions is
called spectral radiant exitance; the only difference is the direction of the vector
vo appearing in L:

Exitance = M(t, P,λ) =
∫
vo∈S2

+(P)
L(t, p,vo,λ)vo · n dvo. (26.66)

Once again, we’re defining this for reflective-only surfaces. And we can again
extend this to be defined at any point in space: As long as we provide an additional
argument indicating a surface normal, and by integrating over all wavelengths, we
get the radiant exitance.

26.7.6 Radiant Power or Radiant Flux

The radiant power or radiant flux Φ arriving at a surface M (whether it’s an
actual surface in the scene or some virtual surface like “the surface of a sphere of
radius 1 m surrounding this light source”) is computed by integrating yet again.
Since power is measured in joules per second, we must integrate over a region to
remove the m2 from the units:

Power = Φ =

∫
P∈M

∫
vi∈S2

+(P)
L(t, P,−vi,λ)vi · n dv dP. (26.67)

The units of (spectral) power are J s−1 nm−1; those of power (arrived at by
integrating out wavelength) are J/ sec, that is, W.

The meaning of “power” is only well defined when the surface M over which
we are integrating is specified (along with the time and the wavelength).

For an imaginary surface in space, like the sphere surrounding the light source
above, the power arriving at one side of the surface and the power leaving the
opposite side are the same; for an actual surface in the scene, the power arriving
at one side of a surface may be large, but for opaque surfaces, no power leaves the
other side, although usually a lot is reflected.

To define radiant flux for a surface that both reflects and transmits, we need to
extend the domain of integration to all of S2, and place absolute values on the dot
product:

Power = Φ =

∫
P∈M

∫
vi∈S2)

L(t, P,−vi,λ) |vi · n| dv dP. (26.68)

What is the domain of the “Power” function? Certainly time and wavelength
are still arguments, but what about the surface at which the power is arriving? One
possible answer is that M, the thing over which the integral is computed, can be
any measurable subset of any surface in 3-space. (There’s no standard name for
the set of all such subsets). Most books simply ignore the question, and speak
of the “radiant flux Φ,” whose domain is ignored. We’ll return to this briefly in
Section 26.9.
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26.8 Other Measurements

All radiometric quantities can be expressed as integrals of L: For the spectral radi-
ant intensity, which we mentioned briefly above, with units of watts per stera-
dian, you integrate out area and wavelength. For the nonspectral version, you also
integrate out wavelength. Radiosity is a name sometimes used in graphics for a
nonspectral radiant exitance; its units are watts per square meter (one integrates
out wavelength and directions).

Terms like these (and like “irradiance” and “radiant exitance”) are useful when
we try to describe the flow of light energy in a scene with an approximation in
which we aggregate light in various ways. For example, if our scene consists
entirely of diffuse reflectors (e.g., items painted with a coat of latex paint), then it
makes sense to do computations that ignore the direction in which light is radiated,
and simply compute the total light energy radiated from a surface. In the same
way, we often aggregate light into three wavelength groups, which we call “red,”
“green,” and “blue,” so that instead of computing the light transport individually
for every possible wavelength λ, we simply compute it for three aggregates. This
results in approximations of the correct results, but in many cases the approxima-
tions can be very good. Indeed, it’s often worth writing the light energy leaving a
surface as a sum of terms, each of which can be studied by a suitable algorithm; in
some of these algorithms summary representations of the light may be appropri-
ate, whereas in others the highly detailed representation provided by the radiance
field L is more appropriate.

There are also other quantities that describe aggregate properties of light in
terms that are relevant to human perception; these lie in the domain of photometry
and are discussed in Section 28.4.1.

Finally, there is a term that can cause considerable difficulty: intensity. Inten-
sity occurs frequently in early graphics papers, but its meaning is rarely given
precisely. It’s probably best to read these papers with a modern eye and regard
“intensity” as a proxy for “radiance,” although there may be a cosine factor or
two missing in any particular discussion. When we use the word “intensity,” it’s
strictly informal, as in the sentence “When we increase the intensity of the lamp,
the scene brightens.”

26.9 The Derivative Approach

An alternative approach to defining radiometric terms is to take the radiant flux Φ
as a starting point, and to derive all other quantities from it through a kind of “dif-
ferentiation.” For instance, we can look at a point P of some surface, and a region
R on the surface with P ∈ R, and consider the light arriving at R from all possible
directions, and the resultant power arriving at R, which we call ΔΦ. By dividing
this power ΔΦ by the area of R, ΔA, we get a power-per-area measurement,

ΔΦ

ΔA
. (26.69)

If we imagine repeating this process for various regions R, each with a smaller and
smaller area, but still containing the point P, we get a sequence of power-per-area
measurements. The argument is then that these measurements have a limit, as the
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area of the region R goes to zero, and we call this limit

E(t, P,λ) =
dΦ
dA

, (26.70)

the irradiance at P.
Before proceeding further with this approach, we ask that you carefully review

the definition of the derivative. Typically when we write df/dx, we require that f
be a function of a variable x, and that 1

h ( f (x + h) − f (x)) have a limit as h → 0;
this limit is called the derivative. In the formulation above, there’s no “variable”
A, and Φ is certainly not a function of A. We can repair this problem by saying,
“Let f (r) be the power arriving at a disk of radius r about P in the surface; the
area of that disk is πr2, and we can define g(r) = f (r)/(πr2), which represents
the power arriving at the disk, per area. We then define dΦ/dA(P) to be g′(0).”
But one then must ask, “Would the result have been the same if I’d used a family
of shrinking squares rather than disks? What about other shapes? And is g obvi-
ously differentiable?” And for each new concept defined by a “derivative” like this
one, one has to reconsider the corresponding questions. The integral formulation
we have pursued makes one single assumption—the existence of an integrable
spectral radiance function L—and everything else follows from that.

Having made this critique of the “derivative” formulation, we should also men-
tion its advantages. One of these is that when you write

E =
dΦ
dA

(26.71)

you know that if you want to compute the power, Φ, you’ll need to compute an
integral,

Φ =

∫
E dA (26.72)

=

∫
dΦ
dA

dA, (26.73)

with the obvious notion that “the dAs cancel.” In our experience, the presence
of various cosines makes this sort of computation fraught with peril. Our stu-
dents routinely draw false conclusions by being insufficiently precise about what
they mean in such derivations. On the other hand, once you have some expe-
rience with this notation, and have gotten past the usual mistakes, it’s a great
convenience.

To continue with the standard derivative description, the radiant exitance is
also defined as a derivative of power with respect to area,

M =
dΦ
dA

, (26.74)

where this time Φ means the power leaving the surface rather than arriving
there.

The radiant intensity (a term we haven’t previously defined, and will not men-
tion again) is the derivative of flux with respect to solid angle,

I =
dΦ
dv

, (26.75)
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and radiance is the “radiant flux per unit solid angle per unit projected
area” [Jen01],

L =
d2Φ

cos(θ) dA dv
, (26.76)

where θ is the angle between v and the surface normal. This description of L is
then inverted to write

Φ =

∫
A

∫
Ω

L(P,v) |v · n| dv dP. (26.77)

The experienced reader knows how to read this: “The total power arriving at
a region A with surface normal n, along rays in the solid angle Ω, is given by
Equation 26.77.”

26.10 Reflectance

How can we model reflectance? We’d like to somehow capture the idea that light
striking a bit of surface from some distant point may scatter in many different
directions, and that light from many different directions may therefore contribute
to the light leaving in some particular direction. The great insight is to realize that
the process is additive: If we can measure how light from each single direction is
scattered, we’ll know how light from a whole collection of directions is scattered
as well.

A gonioreflectometer is a device used to measure reflectance; in the most
basic design, it consists of a tiny spotlight mounted so that it can move about
on a spherical shell, and a tiny sensor that can also move about on the shell (see
Figure 26.31). (More modern designs, like the one shown in Figure 26.32, rely
on moving the sample stage in more directions, rather than both the source and
detector.)

Transmittance detector

Sample area

Light source

Source driver hoop

Reflectance
detector

Rotating annuli

Figure 26.31: The basic idea
of a gonioreflectometer (redrawn
from [War92]).

Light
source

Source arm pivots
around sample

(Motor 3)

Motor 2
axis

Motor 2
axis

Sample
holder
Sample
holder

Polarizer

Folding
mirror

Focusing
lens

Spectro-
radiometer

Motor 1
axis

Figure 26.32: A modern goniore-
flectometry system. (Courtesy of
Steve Westin, “Automated three-
axis gonioreflectometer for com-
puter graphics applications” by
Westin, Foo, Li, and Torrance,
from Advanced Characterization
Techniques for Optics, Semicon-
ductors, and Nanotechnologies
II, Proc. SPIE 5878, August
2005).

The spotlight illuminates a sample placed at the center of the sphere, and the
sensor detects the amount of light bouncing off the sample. (The region around the
sample, and the inside of the sphere, are coated with a light-absorbing material like
lampblack.) When the light source is shining on the sample at a grazing angle, the
recorded reflection values are quite small (partly because so much of the illumi-
nation hits the black paint around the sample rather than the sample itself). One
can imagine raising the intensity of the spotlight so that the total energy falling on
the sample is constant, independent of the spotlight location; to do so, we’d have
to multiply the basic intensity by 1

cosφ , where φ is the colatitude of the spotlight.
Because this would require some difficult engineering, we instead simply multiply
the sensor reading by that value.

So, what does the gonioreflectometer measure? Assuming for the moment that
the radius of the sphere is so large, and the spotlight, sensor, and sample are so
small, that areas and solid angles can be treated as infinitesimal, it measures

fr(P,vi,vo,λ) =
L(t, P,vo,λ)

L(t, P,−vi,λ) cos(φ) m(Ω)
, (26.78)

where

• Ω is the solid angle subtended by the light source at the sample, and we’ve
written m(Ω) to indicate its measure
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• vi and vo are respectively the directions from the sample to the source and
to the sensor

You can purchase a radiance meter; the light meter used by photographers is
a crude version. The computation done to get readings from the gonioreflec-
tomer, is this: first measure the radiance, L1, arriving from the light source.
Measure the area, A, of the light source, and its distance, r, from the sample.
The solid angle it subtends is then A/r2. Now for each (v,v′) pair, place the
light source so that light arrives in direction −v′, and the radiance sensor so
that it detects the radiance from the sample in direction v. Call this radiance
value L2. Then the “reading” from the gonioreflectometer is L2

L1(
A
r2 )

v′ · n). In

practice, it’s best to measure L0
2, the radiance from the sample when the illu-

minator is off, and L1
2, the radiance with the illuminator on, and then compute

L2 = L1
2 − L0

2; this prevents the too-high readings for grazing angles that can
arise when stray light enters the device, or when there’s some offset in the cal-
ibration of the radiance meter, so that even total darkness registers as having
some positive radiance.

We call fr the (spectral) bidirectional reflectance distribution function, or
BRDF. Note that fr has units of sr−1. Because the gonioreflectometer light source
is constant (i.e., the radiance leaving it is constant), the value defining fr is inde-
pendent of time. One can extend the definition of fr to directions vi and vo “on
the wrong side” of the surface by defining it to be zero there. The domain of fr is
then

M× S2 × S2 × R+, (26.79)

where M is the collection of all surfaces in the world. Note that in the definition of
fr(P,vi,vo,λ), the vector vi is a unit vector pointing toward the incoming light,
so the incoming light is traveling in direction −vi.

With this definition of fr, the correct form for relating the outgoing radiance Lr

from a surface to the incoming radiance Li is

Lr(t, P,vo,λ) =
∫
vi∈S2

+(P)
Li(t, P,−vi,λ) fr(P,vi,vo,λ) vi · n(P) dvi (26.80)

because the cosine of the colatitude of the incoming direction is just the nega-
tive dot product of that direction vector and the outward surface normal. This
is the reflectance equation, the central part of a more general rendering equa-
tion [Kaj86, ICG86, NN85], to which we’ll return in Chapter 29.

Because of the cosine factor, some books describe reflectance as the ratio
of outgoing radiance to incoming irradiance. We’ve instead defined it directly in
terms of Li for clarity.

The BRDF generally has an important symmetry called Helmholtz reci-
procity:

fr(P,vi,vo,λ) = fr(P,vo,vi,λ). (26.81)
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Figure 26.33: Subsurface scattering. To describe the scattering of light that arrives in direc-
tion −vi at a point P of a surface that’s not a pure reflector, but rather allows multiple
subsurface bounces before the light is emitted, requires a description of the emitted light at
every nearby point Q in every outgoing direction vo.

This tells us, for example, that we need not place the light source and sensor at
every possible pair of positions when we measure the BRDF with a gonioreflec-
tometer; we can skip half of the positions.

But the Helmholtz reciprocity law also tells us that not just any function can
be the BRDF of a material. In fact, there are further restrictions. For instance,
if a certain amount of power arrives at a surface and is reflected, the amount of
power leaving the surface must be no more than the amount that arrived, because
of energy conservation. This places restrictions on various integrals of the BRDF.

Helmholtz reciprocity holds for a great many materials; indeed, there have
been several purported proofs of it. Those proofs are thrown into doubt by the
existence of materials that have been measured and shown to not satisfy the “law.”
Veach [Vea97] discusses the hypotheses necessary for reciprocity to hold.

26.10.1 Related Terms

A thin sheet of colored vinyl may both reflect light and transmit it; in such a case,
one can build a gonioreflectometer to measure the transmitted light instead of the
reflected light; the portion of the function fr that we’d defined as zero for purely
reflective surfaces becomes nonzero in this case, and the “reflectance” portion
of the function is set to zero. The resultant function is called the bidirectional
transmittance distribution function, or BTDF.

The sum of these two is called the bidirectional scattering distribution func-
tion, or BSDF, which we’ll denote fs.

When a ray of light meets a surface at a point P, we’ve been assuming that it
is reflected (or transmitted) and again leaves from the point P. In many interest-
ing materials, including human skin, hair, many forms of wood, and tree leaves,
light actually enters the material, reflects multiple times under the surface, and is
reemitted from some point near P (see Figure 26.33). This scattering is character-
ized by a bidirectional surface scattering reflectance distribution function, or
BSSRDF, which has, as arguments, the point P, the direction of the arriving light
vi, the point Q from which the light exits, and the direction vo in which it exits.
Fortunately, for many surfaces the simpler BSDF suffices. Rendering materials
using the BSSRDF, however, can produce some spectacular results [JMLH01]
(see Figure 26.34).
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Figure 26.34: Subsurface scattering lets light pass through the marble and skin in these
images. (Courtesy of Stephen Marschner, ©2001 ACM, Inc. Reprinted by permission.)

26.10.2 Mirrors, Glass, Reciprocity, and the BRDF

Imagine trying to measure the BRDF for a perfect mirror using a gonioreflectome-
ter. The sensor computes the incoming radiance by measuring the arriving power
and dividing by the sensor area, which implicitly makes the assumption that the
radiance along all rays from the sample to the sensor is approximately constant.
But if the source is so tiny that its reflected rays all lie well within the sensor area,
this assumption is invalid: For much of the sensor, no light is arriving at all. So a
gonioreflectometer for measuring the BRDF of a mirror must have a sensor whose
size is adjustable so that the whole sensor area is saturated with light. Of course,
because mirror reflection is so “concentrated” (the rays of light don’t spread out
at all after reflection), it makes sense to try to measure the BRDF with a very
tiny light source, perhaps a source with an adjustable iris. As we shut down the
iris on the source, we’ll have to make the sensor area smaller to compensate. The
one thing we know is that the radiance of a ray from the source to the sample is
the same as the radiance from the sample to the sensor, because the material is a
perfect mirror. Now consider our definition for the BRDF:

fr(P,vi,vo,λ) =
L(t, P,vo,λ)

L(t, P,−vi,λ) cos(φ) m(Ω)
. (26.82)

Suppose we first perform the measurement with a source at φ = 0 whose solid
angle, measured from the sample, is 0.01 sr. The two radiances in the formula are
the same, so they cancel, and the BRDF measurement is 100 sr−1.

Now suppose that we close down the iris on the light source so that it subtends
a solid angle of 0.005 sr. We’ll have to shrink the sensor as well to get a valid radi-
ance measurement, but when we do so we’ll again find that the received radiance
is the same as the emitted radiance. The BRDF measurement will be 200 sr−1.
As we continue closing the iris, the measurements will increase without bound.
The conclusion is that for a perfect mirror, the BRDF is infinite. To be more pre-
cise: If the reflection of vi is vo, and the surface being measured is a mirror, then
fr(P,vi,vo,λ) is infinite.

It doesn’t actually make sense to say that a function takes on the value “infin-
ity,” but there is a mathematical theory of a different class of objects, called dis-
tributions, which can take on infinite values. The name “bidirectional reflectance
distribution function” reflects this. One difficulty with this notion of infinite val-
ues arises when we consider an imperfect mirror, one that reflects only half the
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arriving light, and absorbs the rest. If we carry out the preceding analysis for such
a mirror, we find that its BRDF also takes on an infinite value for mirror reflection,
but we have the sense that it’s a “different infinity” that’s only half as big. We’ll
circumvent these problems by splitting any BRDF into two parts: a “diffuse” part
and an “impulse” part, where the latter is a representation of things like mirror
reflection and Snell’s law refraction.

If we ignore, for a moment, the problem of the infinite values, we can still
look at the formula for fr and consider the cosine that appears there. What happens
when we swap the roles of vi and vo for the perfect mirror? Since the incoming
and outgoing radiances are equal, the only possible change is in the cosine. But for
a mirror reflection, the incoming and outgoing angles are equal; this means that to
the degree that fr makes any sense at all, it seems to satisfy Helmholtz reciprocity.

On the other hand, when it comes to measuring fs for a material like glass, the
transmissive part of the computation involves two different angles, determined by
Snell’s law. It’s evident that in this case, even if we can make sense of the infinite
value of fs, it will not satisfy the reciprocity law.

26.10.3 Writing L in Different Ways

The function L is defined on R × R3 × S2 × R+. Thus, it makes sense to write
expressions like L(t, P,v,λ), where v ∈ S2 and P ∈ R3; it makes equally good
sense to write L(t, x, y, z,v,λ), where x, y, and z are real numbers. In a com-
puter program, of course, assuming that “point in 3-space” is a class of objects,
we’d have to use an overloaded function, with arguments of type real * point3

* spherepoint * real or real * real * real * real * spherepoint *

real, but the distinction between the two would be so tiny that it wouldn’t matter.
But the spherepoint class is trickier. One can choose to characterize each

point on the unit sphere by its (θ,φ) coordinates, but those two numbers are not
the same thing as the point on the sphere. One could also represent the point by its
(x, y, z) coordinates, although in a practical sense it’s very hard to find computer-
based real numbers satisfying x2 +y2 + z2 = 1 exactly. In engineering and physics
it’s common to gloss over these difficulties, and, for a function U defined on S2,
write things like

U(θ,φ) = U(x, y, z), (26.83)

where

x = cos θ sinφ, (26.84)

y = cosφ, and (26.85)

z = sin θ sinφ”. (26.86)

Unfortunately, this sort of overloading, although it can be used in computer pro-
grams sometimes, makes little sense in mathematics. The symbol U can mean
only one thing.

For this reason, we’ll carefully reserve the symbol L to denote the function
whose domain is R × R3 × S2 × R+; when we need one of the closely related
functions (e.g., defined in terms of polar angles in Chapter 27), we’ll give it a
new name to distinguish it from the original. Later when we discuss rendering
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algorithms, we’ll be making a steady-state assumption (that L(t, . . .) is indepen-
dent of the parameter t), and the wavelength parameter λ will never enter into any
formulas in any significant way, so we’ll write L(P,v) instead of L(t, P,v,λ).

26.11 Discussion and Further Reading

We’ve described how light energy is measured, and given some details of the
microscopic characteristics of light and their relationship to the characteris-
tics of the matter with which light interacts, but proper treatment of these
belongs in the realm of physics. A superb first reference is Crawford’s book on
waves [Cra68]. One should also understand some electromagnetic theory [Pur11].
Anyone who studies graphics will also benefit from even a partial reading of New-
ton’s Opticks [New18]. It teaches not only the ideas of optics, but how a brilliant
observer and experimenter works. For the application of these ideas in practical
algorithms, see the book by Pharr and Humphreys [PH10].

We’ve discussed the radiometric terms used in measuring light, but there are
also photometric terms, which attempt to capture the human perception of light.
In particular, light of different wavelengths can be perceived as equally bright, and
so by summing up the radiance at many different wavelengths, each multiplied by
a factor ȳ(λ) representing the perceived brightness of a certain amount of light
energy at wavelength λ, you can get a single number (called luminance) that
represents total brightness. The function ȳ is called the luminous efficiency; it
also is used in the CIE color system, which we discuss in Chapter 28. Luminance
is measured in lumens. Such a single number for brightness of a light makes sense
in contexts where most light is broad-spectrum, and most reflectors reflect light
across much of the spectrum. But because light energy and reflectivity are spectral
quantities, it’s possible to have a light of high luminance (e.g., a bright red laser)
and a surface with high reflectivity (where this reflectivity is an average over all
wavelengths of the spectral reflectivity), and yet have the reflected light be low
luminance, if the surface, for example, happens to absorb rather than reflect light
at the wavelength of the laser. Because of this, such photometric terms see little use
in graphics, but they are of considerable importance in illumination engineering.

26.12 Exercises

Exercise 26.1: We claimed in the chapter that the horizontal projection P to the
unit sphere from the vertical cylinder enclosing it was an area-preserving map.
Compute the derivative of this map at a point (x, y, 0) of the cylinder, and verify
that it is area-preserving. Why is it sufficient to carry out this computation at a
point where z = 0?

Exercise 26.2: We computed the solid angle subtended by a spherical cap of
radius r < π on the unit sphere as 2π(1− cos(r)).
(a) What is the solid angle subtended by a spherical cap of radius r on a sphere of
radius R?
(b) What is the actual area of a spherical cap of radius r on a sphere of radius R?
You should be able to do this problem almost by inspection, without any integrals
at all.

Exercise 26.3: We computed the radiance emitted from each point of a spher-
ical uniform source of radius r and total power Φ in each outward direction v
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as Φ
4π(πr2)

. Now consider some distant point P, lying on a surface that faces the
center C of the spherical source, and that the distance from C to P is R >> r. We
can compute the irradiance at P by computing the solid angle subtended by the
spherical source, and the radiance arriving at P along each direction of that solid
angle, etc.
(a) Do this computation to determine the irradiance at P.
(b) Now suppose that the total power H remains constant, while the radius r of the
source shrinks. What is the limit of the expression you found in part (a) as r → 0?

Exercise 26.4: It would be nice to imagine a “beam” of light arriving at a
point P of a surface in direction vi, and being reflected out in many directions; we
could then look at how much light goes in each direction and talk about the “scat-
tering” from the surface. The problem is that light arriving at a single point cannot
carry any energy, and light arriving in a single direction cannot carry any energy.
Instead, we can imagine light arriving in directions η with |η−vi| ≤ ε (i.e., direc-
tions very nearly parallel to vi), and arriving at points Q with ‖Q − P‖ < r, for
some small r, with constant radiance �. In this problem, we’ll examine the irradi-
ance due to this “beam.” If the BRDF is continuous as a function of position and
incoming direction, then the outgoing radiance in direction vo will vary smoothly
as a function of r and ε.
(a) What’s the solid angle of the incoming rays as a function of ε? What’s a sim-
plified expression for small ε?
(b) How should we adjust the radiance � along incoming rays, as we reduce r
and ε toward zero, to make certain that the incoming power is constant? When
we adjust the incoming radiance in this way, and take a limit, we can speak of a
beam of light in direction vi having a certain irradiance; the resultant radiance in
direction vo can then be measured (theoretically). The ratio

Lo

�(r, ε)|n · vi|πε2πr2

has a limit as ε and r go to zero because of the form of �, and the limit is exactly
the BRDF; this is the justification for defining the BRDF as “the ratio of the out-
going radiance in direction vo to the incoming radiance of a beam in direction
vi.” Therefore, the integral of the BRDF, over all outgoing directions, multiplied
by ‖vo ·n‖, tells how much of the power arriving in the beam gets reflected in any
direction at all, and is therefore called the directional hemispherical reflectance.

Exercise 26.5: Latex wall paint is designed to be Lambertian, that is, it’s
designed so that when illuminated by light from any direction, it has the same
apparent brightness regardless of the direction from which it’s viewed (i.e., the
radiance along every outgoing ray is the same). Furthermore, the outgoing radi-
ance should be independent of the incoming direction of the illumination, so long
as the power arriving at a fixed region of the painted surface is constant. Good latex
paint very nearly achieves this goal, although at grazing angles the reflectance
varies from the ideal. If it were such an ideal reflector, what would its BRDF look
like?

Exercise 26.6: A planar surface S sits in a room that’s bathed in light so that
the radiance along every ray arriving at S is the same constant, 10 watts per stera-
dian per square meter. What’s the irradiance at a point P of the surface?

Exercise 26.7: Two incandescent bulbs emit the same total power in the vis-
ible spectrum; one has a filament at 4000 K, the other at 6500 K. Because of the
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Stefan-Boltzmann law, the second filament must be much smaller than the first.
Which one emits more power in the invisible portion of the spectrum?

Exercise 26.8: A student is given data captured from a digital camera; the
scene viewed by the camera is a spherical frosted incandescent lamp that emits
1.2 W of power in the visible range. The lamp has a radius of 0.0175 m. The
camera shutter speed has been adjusted so that the sensor is neither saturated
nor starved; indeed, the values in the image are near the center of the camera’s
pixel-value range, and can be assumed to be proportional to radiance. The value
observed for pixels that lie in the lamp is 4000 (on a scale from 0 to 8191). The
student wants to know the constant of proportionality between the radiance of
arriving light and the sensor value. The student says, “The lamp is supposed to
emit uniformly because of its frosting, so except for really tangential angles, we
can figure that the radiance of all outgoing rays is constant. The area of the lamp
is 4πr2 ≈ 0.000 962 m2; the hemisphere over which the light is radiated has solid
angle measure approximately 6.28 sr, so the radiance, by division, is the power
divided by the angle and the area, giving L ≈ 1.2 W/(0.000 962 m2 ∗ 6.28 sr) ≈
0.006 W/m2sr. So to get the radiance L from the sensor value, we multiply by
0.006
4000 = 1. 5×10−6.” Critique the student’s approach, and give the correct answer.

Exercise 26.9: We said that “A ‘disk’ consisting of all points on the unit sphere
whose spherical distance from a point P is less than r (where r < π) has solid
angle measure 2π(1− cos(r)).” But you’d expect, for small r, that the solid angle
would contain an r2 factor, because the formula for the area of a disk in the plane
contains an r2 factor. Reconcile the two by recalling the Taylor series for cos(r) at
r = 0.

Exercise 26.10: Consider a disk of radius s in the plane, centered at the origin,
and the point P = (0, 0,−h) that’s distance h below the disk. Assume that the disk
is a Lambertian emitter, emitting radiance L in every direction from every point,
and is the only surface in the scene.
(a) Write out an integral for the irradiance at P.
(b) Evaluate the integral. Switching to polar coordinates on the plane will help.
(c) Show that if h < s/10, then the irradiance at P is essentially the same as it
would be if the disk covered the entire plane (i.e., if s were very large). Thus, for
small values of h, the irradiance is nearly constant.
(d) Show that for h > 4s, the irradiance is within 1% of πL(s/h)2.

Exercise 26.11: Show that any plane wave E traveling along the x-axis as in
Equation 26.6 can be expressed as the sum of two plane waves, E| and E◦, the
first being linearly polarized and the second being circularly polarized. Hints: The

axis of the linearly polarized wave will be
[
0 Ay Az

]T
; the magnitude of the

circularly polarized wave will be
√

A2
y + A2

z .

Exercise 26.12: Suppose that in Figure 26.11, we draw a circle of radius r
about the refraction point. On the line tangent to the top of this circle, we place
equispaced points, and from each point draw a ray toward the refraction point.
These rays refract with different angles into the lower material. Each refracted ray
meets a horizontal line tangent to the bottom of the circle.
(a) Draw a figure depicting this situation.
(b) Show that the points of intersection on the bottom line are also equispaced.
(c) What is the ratio of the bottom-line spacing to the top-line spacing?

Exercise 26.13: Use Planck’s formula for blackbody radiation R( f , T) in
terms of frequency to approximate the location of the power peak in R( f , T) as a
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function of T (i.e., for fixed T , find the f that maximizes power). Show that this
is roughly linear in T . (This is known as Wien’s displacement law.) To do so, fix
T , and define a variable u = f/T , and write R( f , T) as a function S(u) = T3u3

D(u) ,

where D(u) = e(h/k)u − 1, which depends only on the single variable u. Under
what condition on u is S(u) a maximum? (You may assume that e(h/k)u >> 1.)

For T near 10,000◦K (roughly the temperature of the surface of the sun),
the peak is at about frequency 5× 1014 Hz, which is just about in the middle of
the range of visible light (roughly 4× 1014 Hz to 7× 1014 Hz); this means that
the human visual system is most sensitive to the energy that’s most common (sun-
light).
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Chapter 27

Materials and Scattering

27.1 Introduction

This chapter is about the way we model the interaction of light with objects. The
first several sections are about the physics and mathematical representation of
these interactions. At the end, we briefly discuss a software interface that’s well
suited to the rendering we’ll do later.

The first step in our discussion is to limit consideration, for much of the chap-
ter, to light-object interactions that occur at surfaces; late in the chapter we briefly
discuss the volumetric interaction that occurs in things like fog and colored water,
etc. All these interactions, when considered locally (e.g., “Where does the light
arriving at this bit of surface end up going?”), are called scattering. Mirror reflec-
tion, for instance, is one very special kind of scattering; Lambertian reflection is
another.

Scattering is a messy process. For many materials of interest, the physical fea-
tures of the material are at a scale of just a few wavelengths of light, so diffraction
effects matter. The interaction of light with materials is dependent on the chem-
istry of the materials—the degree to which the material is a conductor or insulator,
and the distribution of electron-energy levels in the material, as we saw in Chap-
ter 26—which is highly variable. And even for the simplest of rough materials,
light interacts with the rough material in varied and complex ways. The result is
that scattering code is messy. If you peek inside almost any renderer, the represen-
tation of scattering is either oversimplified or very messy.

27.2 Object-Level Scattering

Operational definitions, like Le Corbusier’s “A house is a machine for living,”
have an intrinsic appeal: They get to the heart of a subject from the speaker’s
point of view. From the point of view of a renderer, an object is a machine for
converting an incoming light field into an outgoing one, through some kind of
interaction that’s of no particular relevance to the renderer. The machine has a
few useful properties, determined by the laws of physics: If we sum two incoming

711
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light fields, the outgoing light fields also sum. This linearity places very serious
restrictions on the kinds of transformations that can take place. It also means that
we can study the “response” of the object to incoming radiance along single rays,
and then integrate over a field of such rays to get the outgoing radiance field for
an arbitrary incoming field.

While intrinsically appealing, such a representation isn’t really practical in
general: Writing down the response to all possible incoming light fields (even
single-ray responses!) requires too much memory. But it’s worth holding on to the
idea that any representation we make must somehow encompass the “transformer-
of-light-fields” ideal just presented.

Some objects, such as fog, have no explicit geometry. But in the case where
an object does have some geometry, it’s useful to “factor” the way it interacts with
light into geometry and material where by “material” we mean to suggest the
characteristics of the object that are independent of position. Thus, “aluminum” is
a material, and an aluminum sphere scatters light in the same way from its north
pole as from its south pole. This splitting into geometry and material represents
an enormous simplification and compression: We need to know how one tiny bit
of material scatters light, and then we reuse this knowledge at other points. Of
course, for this to work well, the object must be made of a homogeneous mate-
rial. If the material varies from point to point (e.g., as with a sedimentary rock),
a compromise solution is often workable: We describe a parameterized class of
materials, and associate (through texture mapping) some parameters to each point
of the surface so that at one surface point the material is red sandstone and at
another it’s ochre sandstone, for instance.

Such factoring can be taken further. We sometimes factor the bidirectional
scattering distribution function (BSDF) into two parts: a “surface color” at each
point, and an underlying BSDF. To compute scattered light, we use the underly-
ing BSDF to compute how much light is scattered, and then compute the spec-
tral distribution of the outgoing light as a product of the spectral distribution of
the incoming light times this basic reflectance times the “surface color,” which is
really a per-wavelength reflectivity, typically represented by just three values (usu-
ally called “red,” “green,” and “blue”). You already saw an example of a BRDF-
like reflection model in Chapter 6—where we described a “lighting model” for
surfaces that involved diffuse and specular RGB colors, and how they got mul-
tiplied by incoming light to compute the color with which a surface should be
rendered—and in a more physically correct form in Chapter 14.

27.3 Surface Scattering

As we mentioned in the previous chapters, the single-point description of scatter-
ing is typically represented by a BRDF. For materials where the light-object inter-
action involves transmission, or takes place throughout the material rather than at
its surface (e.g., many cheeses), richer descriptions like the bidirectional scattering
distribution function (BSDF) or bidirectional surface scattering reflectance distri-
bution function (BSSRDF) are needed. For volumetric materials, like fog, even
more complex descriptions are needed. We’ll concentrate on the surface-material
examples, but we will touch on the others as well. The questions to consider, as
we do so, are the following.

• What BRDF (or BSDF, or BSSRDF, etc.) is the one to use to model some
material?
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• What mathematical or computational representation should we use for this
model?

Henceforth, we’ll generally refer to the model of scattering as the BSDF,
except (a) when we’re talking about reflection-only scattering, where terms like
“the Blinn-Phong BRDF” are common, and (b) briefly in our discussion of reci-
procity, and when we talk about subsurface scattering. In most equations, wher-
ever it makes sense we’ll use fs rather than fr.

27.3.1 Impulses

One of the most challenging problems in the numerical representation of the scat-
tering of light by surfaces is the difference between specular reflections—the
mirrorlike reflections that we see in extremely shiny surfaces—and diffuse scat-
tering, in which an incoming beam of light spreads out into light going in almost
every direction, as happens when it meets a surface made of flat latex paint. Most
of a light beam hitting a mirror scatters in one primary direction, but some small
amount scatters in other directions as well. By just about any measure of light
quantity, the scattering in the primary direction is a huge multiple of the scattering
in other directions. (A multiplier of 1010 is well within reason.) And the falloff
in light quantity, as one moves away from the primary direction, is exceptionally
rapid as well. It therefore makes some sense to separate out the specular reflection
and treat it as a pointwise phenomenon, and regard the rest of the scattering as
a smooth function of outgoing direction. The same applies to the kind of inter-
material transmission described by Snell’s law: Incoming light in one direction
essentially exits in some other direction. We’ll call both of these impulses in the
scattering, and treat them separately from the diffuse effects.

27.3.2 Types of Scattering Models

We’ll discuss the following types of scattering models.

• Empirical/phenomenological models: These are models crafted to sim-
ulate some observed scattering phenomenon. The Phong model of Sec-
tion 6.5.3 is an example. With little physical motivation, it’s designed to
allow a user to vary between nearly Lambertian and highly glossy appear-
ances for a surface.

• Measured/captured models: These are models in which the BSDF is care-
fully measured and stored; when we need the BSDF for a particular pair of
directions (vi,vo), we look for them (or directions near them) in a large
table of stored data, perhaps interpolating from nearby samples when nec-
essary.

• Physically based models: These are models based on some degree of
understanding of the physical interaction of light with materials. They
occupy the bulk of this chapter.

27.3.3 Physical Constraints on Scattering

We cannot, for a passive material, have more light scattered from the surface
than arrives there. (An “active” object, like a photosensor that triggers a strobe
light whenever it detects light, can obviously emit more light than it receives.)
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The condition that no more energy leave the surface than arrives there is called
energy conservation (with the assumption that unscattered energy is “conserved”
by appearing as heat). Not every scattering model is energy-conservative. Phong’s
original model had no physical units attached, so it was impossible to tell whether
it was conservative or not! In general, conservation can be expressed as a con-
straint on the integral of the BSDF; we’ll see this worked out in detail for Lam-
bertian scattering.

The other commonly used constraint on scattering is reciprocity: If
(vi,vo) 
→ fr(vi,vo) is the BRDF for some material, then fr(vi,vo) = fr(vo,vi).
Veach [Vea97] generalizes this to include transmission: For light arriving from
direction vi in a medium of refractive index ni, and scattering in direction vo in a
medium of index no,

fs(vi,vo)

n2
o

=
fs(vo,vi)

n2
i

. (27.1)

Note that when this is applied to reflection, the two refractive indices are identical,
and the equation simplifies to the usual symmetry law.

It’s well known in graphics that the BRDF is symmetric, that is, fs(vi,vo) =
fs(vo,vi), and this equality is usually attributed to Helmholtz. Veach describes
a proof of symmetry, and explains why Helmholtz’s remarks, which involve
mirror reflectors and lenses, are insufficient to imply reciprocity and why sev-
eral other purported proofs have flaws in them. Despite this, the reciprocity
property is still widely known as “Helmholtz reciprocity.”

Despite Veach’s proof of reciprocity, there are materials such as pearlescent
paints for which reciprocity apparently does not hold [CPMV+09]. Such mate-
rials do not contradict the proof, which assumes that the materials involved in
the scattering are homogeneous.

So is the BRDF symmetric or not? For a very wide range of measured
materials, the answer appears to be “It is, for almost all practical purposes.”
Snyder [SWL98] explains this in some detail.

?)

P

n

�o

�i

S2
1

S2
2

Figure 27.1: We’ll consider a sur-
face (shown shaded) with normal
vector n; S2

+ consists of all vec-
tors pointing away from the sur-
face, while S2

– consists of vectors
pointing into the surface. Light
arrives from a source that’s in
direction vi ∈ S2

+, and scatters
in directions vo, which may be in
either S2

– or S2
+.

27.4 Kinds of Scattering

Looking at the differences among solid materials, one of the first things that
attracts our attention is the range of shininess, from the matte appearance of chalk
to the very shiny appearance of a polished metal surface. Another is that some
surfaces are transparent while others are reflective. As we already saw in Chap-
ter 26, these differences are in part due to fundamental physical processes and
structures: Conductive materials, with lots of free electrons, tend to be reflective;
those whose electron orbital energy levels lack “gaps” corresponding to the ener-
gies of quanta of visible light tend to be transparent, etc. But at a higher level, it’s
useful to have a language for describing kinds of scattering: reflective, transmis-
sive, mirror, impulse, glossy, diffuse, Lambertian, retroreflective, refractive. To
give these meaning, we’ll consider a flat surface (see Figure 27.1) with outward
normal vector n (i.e., n points from the material toward empty space), and the
hemispheres S2

+(n) and S2
–(n), where S2

+(n) is the set of all unit vectors v with
v · n ≥ 0, and S2

–(n) is the set of all those for which the dot product is non-
positive. Since we’ll mostly be considering a single surface with a fixed normal
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n =
[
0 1 0

]T
, we’ll simply write S2

+ or S2
–. Indeed, our diagrams will always

show a flat surface facing up, and we’ll sometimes refer to the “upper” and “lower”
hemispheres. We’ll consider light arriving from some direction vi ∈ S2

+ (i.e., trav-
eling in direction−vi), and consider the scattered light from the surface, using vo

to denote a generic direction of scattered light. We’ll use fs(vi,vo) to denote the
BSDF for light arriving in direction vi and leaving in direction vo. (In the case of
transmission, we’ll denote the transmitted light direction vt.)

While the formulation given here—an object that lies in the y ≤ 0 half-
space, scattering light upward—is nice and simple, it’s an approximation of
a larger truth, which we’ll return to in Section 29.4, namely, that we have a
surface that’s a boundary between two materials. For a glass marble, there’s an
outward-pointing normal vector that points into the surrounding air, but for the
mass of surrounding air, the outward normal points into the glass! We tend to
think of air as “nothing” in graphics, but in a situation like a glass filled with
wine, the boundary between the glass and the wine serves to delimit both the
glass and the wine. Surface scattering is really a property of a pair of media
rather than a single medium.

Before we describe the kinds of scattering, we caution that some terms are
used very informally. For example, “diffuse” can be used to mean “anything
except mirror reflection” or “very similar to Lambertian.”

Here is a collection of terms used for scattering, with figures showing some of
them.

• Reflective (Figure 27.2): The scattered light is all in the upper hemisphere,
that is, vo · n ≥ 0. More precisely, fs(vi,vo) = 0 for vo /∈ S2

+.

• Transmissive (Figure 27.3): The scattered light is all in the lower hemi-
sphere, that is, vo · n ≤ 0. More precisely, fs(vi,vo) = 0 for vo /∈ S2

–.

Figure 27.2: A teapot with
generic reflective scattering
(image sequence by Kefei Lei).

Figure 27.3: The teapot with pri-
marily transmissive scattering.

Figure 27.4: The teapot with mir-
ror scattering.

• Mirror (Figure 27.4; “specular” is a synonym): The scattered light is all
in a single direction, the mirror-reflection direction vr = 2(vi · n)n − vi.
The “function” fs has an infinity: fs(vi,vo) = ∞. More precisely, trying
to measure the reflectance in the usual way fails, because the outgoing
radiance is independent of the solid angle subtended by the light source;
this means that our usual BSDF approach is inappropriate for handling
mirror-reflected light.1 Practically speaking, this means that in the pro-
grams you write, you need to handle mirror reflection as a special case.

• Impulse: The scattered light is all in a single direction, but this direc-
tion is not necessarily the direction of mirror reflection. For example,
we may want to model a camera lens as purely transmissive, with all

1. In truth, this is a case where the notion of “distribution” applies: What we tend
to write as integrals involving the BSDF typically have the form

∫
fsLg, where L is

some representation of radiance and g represents other terms like change of variables
Jacobians, etc.; such integrals transform the radiance field L into either a number or
another function, and they do so linearly. Thus, “integrating against the BSDF” is just
a way to write a linear function from one function space to another. A few such linear
maps cannot be written this way, just like the “delta functions” of Chapter 18, but in the
quest for consistent notation, researchers in graphics pretend that they can and claim
the BSDF “is infinite” at certain points of its domain.
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light transmitted according to Snell’s law. Once again, such impulse cases
require special handling in our programs.

• Glossy (Figure 27.5): The scattered light is concentrated around some par-
ticular direction vs ∈ S2

+, which is typically at or near the mirror-reflection
direction. As noted earlier, the word “specular” is sometimes used to mean
“glossy,” typically when the concentration of scattered light is very tight.
The reflection from an enameled coffee mug has a substantial glossy com-
ponent: You can see things reflected in the mug’s surface, although they
appear slightly blurred. A waxed linoleum floor has a somewhat glossy
appearance: You may be able to see objects reflected in it, but usually you
can only see the gross outlines, and all detail in the reflection has been
blurred away. The concentration of the scattered light is much less than
that scattered from the enameled mug. The Phong model of Chapter 6 is a
glossy-scattering model.

• Diffuse: The scattered light is spread out in all possible directions, that
is, f (vi,vo) is nonzero for all vo ∈ S2

+, or, more weakly, f (vi,vo) > 0
for a large fraction of all directions. Many of the materials we encounter in
everyday life exhibit diffuse scattering: paper, wood, brick, most cloth, etc.

Figure 27.5: Glossy scattering.

Figure 27.6: Lambertian scatter-
ing, the most diffuse possible.

• Lambertian (Figure 27.6): This is a special case of diffuse reflection in
which the outgoing radiance in direction vo is independent of vo. No mat-
ter what position you view it from, a diffuse surface looks equally bright.
This means that the BRDF, as a function of its second argument, is con-
stant: fr(vi,vo) = fr(vi,v′

o) for any two vectors vo,v′
o ∈ S2

+.

• Retroreflective: A surface is retroreflective if fs(vi,vo) is relatively large
for some vector vo that’s close to vi. Often the surface is specular, and the
specular peak direction is very near vi. Retroreflective paint is used on road
signs to make them more visible to drivers (whose headlights illuminate the
signs), and retroreflective fabrics are often sewn into clothing for athletes
to make them particularly visible to cars at night.

• Refractive: This is a special case of transmission analogous to mirror
reflection: The transmitted light all lies in the direction vt ∈ S2

– determined
by Snell’s law.

fs(�i, �o)

n
�o

�i

Figure 27.7: Plotting the BSDF.
The arriving light comes from
the left along direction −vi; a
typical outgoing direction vo is
shown. The polar plot intersects
the radial direction of vo at a dis-
tance fs(vi,vo).

For each of the classes of scattering described above, we can translate the
description into a characterization of the BSDF, with some of the characterizations
more precise than others. Because the BSDF is a function of two arguments, the
direction vi of the arriving light and the direction vo of the scattered light, it’s
difficult to give a complete depiction. Instead, we pick a representative direction
vi, and we plot the BSDF as a function of vo, that is, we draw a representation
of the function vo 
→ fs(vi,vo). We further simplify by limiting ourselves to the
case where vi, n, and vo are all in the same plane; with this restriction we can
draw a radial graph in the plane as shown in Figure 27.7.

The dependence of the BSDF-curve shape on vi tends to be relatively simple
in many cases, so this single plot can give a good sense of the overall function.

One important thing to understand is that the BSDF curve is not the pattern of
emitted radiation. You might imagine that if you sent a stream of photons toward
the material traveling in direction −vi, the resultant outgoing photons (e.g., in the
vi − n plane) would have an angular distribution given by the BSDF curve in that
plane (i.e., where the BSDF curve is twice as large, the probability density of a
photon emerging in that direction is twice as large). That’s not correct, however, as
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we can see by considering a perfect Lambertian reflector, for which fs(vi,vo) =
1/π for all vi,vo ∈ S2

+. (We’ll soon see why 1/π is the right constant.)
Suppose for a moment that for a photon arriving from a source in direction vi,

the probability density of scattering in direction vo were the same in all directions
vo. To estimate the radiance at a point Q1 on the unit hemisphere around some
surface point P (see Figure 27.8), we’d take a solid angle Ω1 at Q1 and measure
the density of the light energy arriving in that solid angle. For the radiance to
be constant, as we know it is for a Lambertian surface, we’d have to get the same
value when we estimated it at Q2 with a solid angle Ω2 of the same measure.
But the amount of reflecting surface subtended by the two solid angles varies
like the inverse of the “outgoing cosine,” leading to an extra 1/(vo · n) factor
in the outgoing radiance. The probability density of an incoming photon being
scattered in direction vo from a Lambertian surface must therefore be proportional
to fs(vi,vo)(vo · n).

P

V2

V1

Q2

Q1
�i

Figure 27.8: Computing the radi-
ance at points near a hypothet-
ical surface from which photons
scatter equally in all directions.

Figure 27.9 shows several overlapping classes of scattering that we’ve dis-
cussed, with the BSDF drawn in black and the scattering probability density drawn
in blue.

27.5 Empirical and Phenomenological
Models for Scattering

We now introduce a few basic scattering models that will serve several functions.
The mirror and Lambertian models are the basis for several microfacet-based
models that we’ll discuss when we examine physically based models. And the
Blinn-Phong model, although not strictly physically based, is very widely used in
practice.

27.5.1 Mirror “Scattering”

An ideal mirror-reflecting plane (for which all light is reflected rather than
absorbed), shown in Figure 27.10, reflects light from a source in such a way that
the emitted light distribution is exactly the same as would be produced by an iden-
tical source at some position behind the mirror’s location (assuming the mirror was
removed). Because the outgoing radiance along each ray in these two situations
is the same, the mirror-reflection process evidently results in no change in the net
light energy in the scene.

Perfect mirrors are rare. More commonplace is that a mirrored surface in fact
absorbs some amount of light, and reflects the remainder. The outgoing radiance
along the mirror direction vr = vi − 2(n ·vi)n is therefore a constant multiple of
the incoming radiance:

L(P,vo) = ρL(P,−vi), (27.2)

where the reflectivity ρ is a number between 0 and 1. All that’s needed to specify
the mirror reflectance from a surface is the normal vector n and the reflectance
constant ρ, which is unitless. This constant may, however, have some spectral
dependence (i.e., light at different wavelengths may be reflected differently).

The spectral dependence of reflectance depends on the underlying material.
In broad terms, for insulators like plastic, the mirror-reflected light has the same
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(a) (b)

(c) (d)

(e) (f)

Ref lective

�i
�r

Transmissive

Lambertian Retroreflective

Mirror and Refractive Glossy

�i �r

�i
�r

�i �r �i �r

�i
�r

Figure 27.9: BSDF (black outer curves) and probability density plots (blue inner curves) for
several classes of reflections; for impulse scattering, like mirror reflection, we’ve indicated
the impulse direction with a green arrow as in the two right-pointing arrows in (c). For
the others, the peaks in probability density and BSDF are offset from one another because
of the cosine weighting. (a) A generic reflective material. (b) A purely transmissive mate-
rial, which is physically unrealistic. (c) A material with mirror and refractive impulses;
this is the kind of scattering we expect at an air-to-water interface. (d) Glossy scattering.
(e) Lambertian scattering. (f) Retroreflective scattering.

spectral distribution as the incoming light, while for conductors, certain frequen-
cies of light are preferentially reflected. This is why a polished piece of plastic has
white highlights, while a polished piece of gold has gold-colored highlights. We’ll
return to this in Section 27.8.3.

Figure 27.10: A mirrored plane,
reflecting a light source above
the plane (black solid line), pro-
duces the same outgoing radi-
ance field (pink) as a “virtual”
source below the plane placed
at the proper location behind the
mirror would produce (dashed
green) in the absence of the mir-
ror.

The simplest summary representation of the spectral dependence of the
reflected light is to just give RGB values, representing the overall reflectance of
the material in response to long-, middle-, and short-wave incoming radiation.
Thus, the summary computational model becomes

L(P,vo,λ) =

{
ρ(λ)L(P,−vi,λ) if vo = vi − 2(vi · n)n and vi · n > 0,

0 otherwise,

(27.3)

where λ represents the wavelength of the light as usual.
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This simple model of mirror reflection ignores the Fresnel equations that arise
from the polarization of light. There is no physical surface that actually reflects
like a perfect mirror (or one with constant reflectivity 0 < ρ < 1) for all angles
of incoming and outgoing light. We’ll return to a more sophisticated version of
mirror scattering when we discuss physically based models.

27.5.2 Lambertian Reflectors

A Lambertian surface has the property that when it’s illuminated, the outgo-
ing radiance in every (reflected) direction is the same (there’s no transmission).
Furthermore, this outgoing radiance varies linearly with irradiance: Whether we
reduce the incoming illumination or make it arrive at a grazing angle, the outgo-
ing radiance varies in the same way. Thus, the BRDF is constant; we usually write
L(P,vo) = ρ/π, where ρ is a constant indicating what fraction of the arriving
light energy is scattered.

Let’s now check for which values of ρ this reflector will be energy-conserving.
Imagine (as shown in Figure 27.11) that light arrives at a small, rectangular region,
R, of material with area A, from a source like the sun: All incoming rays are in
some small, solid angle Ω, and the radiance along each ray in a direction from Ω
is the same constant �. Then the total rate of energy arrival at the surface region R
is the integral over R and Ω of the arriving radiance, multiplied by the dot product
of the incoming direction and surface normal:

Power = Energy arrival rate (27.4)

=

∫
P∈R

∫
vi∈Ω

L(P,−vi)(vi · n) dvi dP (27.5)

=

∫
P∈R

∫
vi∈Ω

�(vi · n) dvi dP (27.6)

= �A
∫
vi∈Ω

(vi · n) dvi (27.7)

≈ �A
∫
vi∈Ω

cos(θ) dvi (27.8)

= �Am(Ω) cos(θ), (27.9)

where m(Ω) denotes the measure of the solid angle Ω, and θ is the angle between
a typical vector v ∈ Ω and the (constant) surface normal n. As Ω gets small, the
approximation of the dot product by a single central dot product gets increasingly
accurate.

V

R

Figure 27.11: Light arrives at a
small, rectangular sample R from
directions v ∈ Ω, a small solid
angle; the radiance of the incom-
ing light is independent of posi-
tion and angle.

Inline Exercise 27.1: Use the reflectance equation to show that the radiance of
a ray emitted from the region R is well approximated by �(ρ/π) cos(θ)m(Ω).

To compute the rate at which light energy is emitted, let us surround the sam-
ple by a very large, black, completely absorptive hemisphere, and determine the
rate of energy arrival at that sphere. Just as in Chapter 26, we’ll make the sphere
so large that the ray from the point Q to any point on the emitter R always has
essentially the same direction, independent of the emitter point.

The density d(Q) of light energy (per second) arriving at a point Q of the
hemisphere is the integral, over all directions, of the radiance arriving at Q. Since
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the only source of incoming light is the region R, this simplifies to an integral
over directions v that point from Q to some location in R; we’ll denote this set of
directions ΩQ. The density is then

d(Q) =

∫
v∈ΩQ

L(Q,−v)(v · n(Q)) dv. (27.10)

We know the radiance arriving at Q from the inline exercise above. Furthermore,
since the disk R appears very small as viewed from Q, the vectors v all point in
approximately the same direction (namely, S(P − Q), where P is the center of
the region R, and hence the center of the sphere as well). This means that we can
approximate d(Q) well by

d(Q) = m(ΩQ)�(ρ/π) cos(θ)m(Ω)(v · n(Q)). (27.11)

The last dot product is approximately 1, because v points almost exactly toward
the center of the large sphere on which Q lies. We can rewrite the measure of ΩQ

as (A/r2) cos(θ′), where θ′ is the angle between n and Q−P, that is, the outgoing
angle, to get

d(Q) =
A
r2
�(ρ/π) cos(θ)m(Ω) cos(θ′). (27.12)

Everything in this expression is constant (as a function of Q) except the final
cosine. When we integrate this power density over the entire hemisphere, to get
the total power arriving at the hemisphere, the result is

Arriving power =
A
r2
�(ρ/π) cos(θ)m(Ω)

∫
S2

+(r)
cos(θ′) (27.13)

=
A
r2
�(ρ/π) cos(θ)m(Ω)πr2 (27.14)

= A�ρ cos(θ)m(Ω), (27.15)

which is exactly ρ times the power that arrived at our Lambertian surface. So the
scattering conserves power only if ρ ≤ 1.

The computational model for a Lambertian surface consists of a normal vector
and a per-wavelength (or per-primary) reflectance value.

The number ρ is called the Lambertian reflectance value; it also happens to be
the cosine-weighted integral of the Lambertian BRDF over the upper hemisphere,
and it represents the fraction of arriving power that’s reflected by the surface.
While such a notion might be useful for other kinds of scattering as well, for
a general BRDF fr the ratio of leaving power to arriving power depends on the
distribution of arriving power, so reflectance becomes a function of both the BRDF
and the light field. We’ll have no use for this more general notion.

By the way, one explanation of Lambertian reflectance is that it arises in part
from lots of subsurface scattering; in fact, a standard material used as a cali-
bration tool for optics (it has 99% reflectivity over the visible spectrum, with a
very nearly exactly Lambertian BRDF, when measured at a scale of a millime-
ter or so) is Spectralon. These reflectance properties are due to its physical
structure: It’s a porous thermoplastic that generates many subsurface reflec-
tions in the first few tenths of a millimeter. Thus, what appears macroscopically
to be a Lambertian “surface” reflector is really a complex subsurface reflector.



ptg11539634

27.5 Empirical and Phenomenological Models for Scattering 721

As a final observation about Lambertian surfaces, we note that the argument
above describing the difference between the BRDF and the probability of photon
scattering tells us that if a photon arrives at an ideal, perfectly reflecting (ρ = 1)
Lambertian surface traveling in direction −vi, it leaves in some other direction
vo, which can be thought of as being drawn from some probability distribution
with probability density function p. The distribution p is given by

p(vo) =
1
π
(vo · n). (27.16)

Here are a few common statements about Lambertian reflection, with com-
mentary.

Lambertian reflection scatters light
equally in all directions.

Too vague to be meaningful.

The Lambertian BRDF is constant. True. fr(vi,vo) is a constant function
of both vo and vi.

A photon arriving at a Lambertian sur-
face from anywhere is equally likely
to scatter in any direction.

False. The probability of scattering in
direction vo is proportional to vo · n.

A photon leaving a Lambertian sur-
face in direction vo is equally likely to
have come from a source in any direc-
tion vi.

Half true. If the surface is bathed in
a uniform light field with equal radi-
ance in every direction arriving at the
surface, then this statement is true. If
the surface is illuminated only by a
narrow beam from a laser, then the
incoming light has to have come from
that small range of directions.

27.5.3 The Phong and Blinn-Phong Models

You’ve already seen two forms of the Phong model: the first in Chapter 6, where
light was measured in some ill-defined units of “intensity,” with values rang-
ing from 0 to 1, and the second in Section 14.9.3, where actual physical units
were used, and the constants had been adjusted so that the model was energy-
conservative provided that the sum of the specular and diffuse constants was no
greater than 1. In addition, the latter form eliminated the so-called “ambient” term,
which was an ad hoc construct that was included to simulate the effects of multi-
bounce light transport in a scene.

The general form of the simplified Blinn-Phong BRDF from Chapter 14 is
given by

fs(vi,vo) =
kL

π
+ kG

8 + s
8π

zs, where (27.17)

z = max(0, h · n) and (27.18)

h =
vi + vo

2
. (27.19)

In Equation 27.17, h is called the half-vector and kL and kG are the Lambertian
and glossy reflectances, respectively, and may range from 0 to 1. The model is
energy-conservative if kL + kG ≤ 1.
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Blinn’s actual model was derived from physical considerations motivated by
the microfacet models we’ll discuss shortly, and also included a factor for the
Fresnel equations, but we’ll omit those details for now.

27.5.3.1 Historical Notes
The original Phong model described the reflected light in terms of “intensity,”
which was not carefully defined, and included a third term, for reflection of “ambi-
ent light,” that is, all the light in the scene that underwent multiple reflections until
it was widely diffused. Thus, you’ll sometimes encounter reflection models that
use an ambient, a diffuse, and a specular reflection constant, as you saw in Chap-
ter 6.

Phong’s original model also had just one constant for the specular term (which
we call the glossy term); this meant that reflectance was independent of wave-
length, and a white directional light tended to produce a white highlight, no mat-
ter what the material. This wavelength independence is characteristic of many
insulators, but does not hold for conductors in general (e.g., look at the reflection
of a white light in a gold ring). The specular reflectance was therefore given a
wavelength dependence (typically by specifying red, green, and blue reflectance
values). The diffuse reflectance was similarly extended to include RGB variation
(e.g., a red shirt reflects lots of red light, and little blue or green light). And finally,
the intensity of light was known to fall off quadratically as a function of distance
from the light source (although this notion was problematic for “directional light
sources” that were assumed to be “at infinity”!). Thus, for many years the “stan-
dard” lighting model looked like

I = kaIa + f (d)I [kd(−vi · n) + ks, (n · h)ns ] , (27.20)

where the terms labeled I are all “intensities,” the k factors are the constants asso-
ciated with ambient, diffuse, and specular reflection (we’ve folded the ambient,
diffuse, and specular “color” into these for simplicity), h is the average of the
vector to the light and the vector to the eye, ns is the specular exponent, d is the
distance from the light to the point P, and

f (d) = min

(
1,

1
a + bd + cd2

)
(27.21)

was a “quadratic falloff” term, although in practice c was often set to zero, and
there’s no reasonable explanation for the “min” in the expression except that
“things got dark too fast otherwise.” When there were multiple light sources, the
bracketed term in Equation 27.20 was repeated once per source.

From a modern viewpoint, this entire model, especially the “ambient term,”
was a terrible thing: Instead of solving the underlying problem (light transport),
you apply a “hack” in a completely different area (scattering at a point). But from
the point of view of the engineering of the day, it was a reasonable choice: Doing
accurate light-transport computations was clearly beyond the capacity of the com-
puters of the day, while evaluating the more straightforward solution provided
by Phong’s model was relatively simple and drastically improved the empirical
results. But you should not be fooled into thinking that the model has any physi-
cal basis.

There’s also a terminology challenge: The computation of the amount of
light reflected from a surface was sometimes called “lighting” or “illumination,”
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although the standard interpretation of these words as descriptions of the light
arriving at the surface was also common. The “lighting model” was typically eval-
uated at the vertices of a triangular mesh and then interpolated in some way to give
values at points in the interior of the triangle. This latter interpolation process was
known as shading, and you’ll sometimes read of Gouraud shading (barycentric
interpolation of values at the vertices) or Phong shading, in which, rather than
interpolating the values, the component parts were interpolated so that the normal
vector was reestimated for each internal point of each triangle, and then the inner
product with the incoming light vector was computed, etc. In each case, the desire
was to reduce the artifacts arising from computing the scattering only at the tri-
angle vertices. One of the problems, for instance, with Gouraud shading was that
the different rates of intensity variation in two triangles that shared an edge led to
an enhanced perception of that edge through Mach banding (see Sections 1.7 and
5.3.2) rather than causing the edges to disappear. Thus, although the quality of
the approximation to the ideal was good when measured in physical terms (“How
different is the intensity from the true one?”), in perceptual terms (“How different
does this surface appear from the true surface?”) it was not.

Nowadays we refer to shading and lighting differently: The description of the
outgoing light in response to the incoming light is called a reflection model or
scattering model, and the program fragment that computes this is called a shader.
Because of the highly parallel nature of most graphics processing, the scattering
model is usually evaluated at every pixel, often multiple times, and the “shading”
process (i.e., interpolation across triangles) is no longer necessary; furthermore,
so many triangles are subpixel in size that this interpolation would never be used
anyhow. So the modern use of the word “shader” is unlikely to lead to confusion.

27.5.4 The Lafortune Model

The Phong model expressed the specular component of the BRDF as a cosine
power (specifically, as a power of the cosine of the angle between the out-
going direction and the mirror-reflection direction). Letting R(v, n) denote the
mirror-reflection direction of v at a surface with normal n—in the case where
n =

[
0 0 1

]T
, R(v, n) is just

[−ωx −ωy ωz
]T

—the glossy part of the
Phong BRDF is simply

fr(P,vi,vo) = C(vo · R(vi, n))e, (27.22)

where C is a normalization constant. This BRDF is evidently reciprocal in the

case where n =
[
0 0 1

]T
: Swapping vo and vi merely negates the x- and

y-coordinates of each vector, thus leaving the dot product unchanged.

Inline Exercise 27.2: Why does the reciprocality in the case where n =[
0 0 1

]T
prove that the formulation is reciprocal in all cases?

Lafortune et al. noticed that measured BRDFs tended to have lobes that
were not necessarily centered about the mirror direction, and that sometimes
they appeared to have multiple lobes. By taking a sum of Phong-like terms, but
with varying substitutes for the mirror direction, they generalized to produce a
much richer model, based on a collection of lobes centered at k different vectors
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{vk : k = 1, . . . , n},

fs(P,vi,vo) =
ρd

π
+

n∑
k=1

(vo · vk)
ek , (27.23)

where ρd is the diffuse reflectivity. For this to be reciprocal requires that the
vectors vk be expressed as term-by-term multiples of vi so that v1, for instance, is

v1 = (ωi,xa1,x,ωi,ya1,y,ωi,za1,z). (27.24)

Alternatively, one can express this by building a diagonal matrix A1, and then
saying that vk = A1vi. Then the Lafortune model ends up being

fs(P,vi,vo) = =
ρd

π
+

n∑
k=1

(vT
o Akvi)

ek , (27.25)

where the fact that the matrices Ak are all diagonal guarantees that the BRDF is
reciprocal.

Inline Exercise 27.3: Quickly verify the preceding claim. Now suppose that
A1, instead of being diagonal, represents rotation through 90◦ about the z-axis.
Show that the resultant BRDF is not reciprocal. Conclude that the Lafortune
BRDF is reciprocal if and only if all the matrices Ak are symmetric.

In practice, since the Lafortune model only uses diagonal matrices, it makes
much more sense to just store the three diagonal entries than the whole matrix,
and to treat the matrix-vector multiplication as a term-by-term multiplication.

The Lafortune model is very general. In fact, it’s possible to approximate
almost any conservative, reciprocal function on S2 × S2 by using a large enough
value of n. But to get a good fit may require a very large n indeed.

To add spectral dependence to the BRDF representation, we need to let the
diagonal matrices Ak (or their three diagonal entries) be functions of wavelength;
this is typically done with RGB values.

The Lafortune model is a hybrid. It’s based on a phenomenological model
(Phong), but it is motivated by a rather different kind of phenomenon: the appear-
ance of measured BRDFs! In some sense, the Lafortune model can be seen not as
a model of light scattering, but as a model of a class of functions, with the property
that observed BRDFs tend to be representable with relatively few coefficients, and
hence be amenable to rapid evaluation.

27.5.5 Sampling

We’ve described the BRDF for the mirror and Lambertian and Blinn-Phong mod-
els in a form where, given vi and vo, you could easily compute fs(vi,vo). But in
ray tracing/path tracing and photon mapping, which we’ll describe in more detail
in Chapters 31 and 32, there are two other computations we need to perform.

For photon mapping, we’re given vi and we need to randomly select a vector
vo with probability density proportional to fs(vi,vo)(vo ·n). (Probability densities
are described in detail in Chapter 30; for now it’s sufficient to think, “We want to
pick a vector vo more often if fs(vi,vo)(vo · n) is large, and less often if it’s
small.”)
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For mirror reflection, this is easy: We always return vr, the mirror-reflected
version of vi. For Lambertian scattering, we need to pick a direction on the hemi-
sphere, favoring the North Pole, and fading off in probability as we approach the
equator. Fortunately, using the Average Height principle, it’s not too difficult to do
this. Section 30.3.8 gives the details.

For Blinn-Phong scattering, things are not so simple. Although it’s possible to
sample directly from the BRDF by doing some careful computations, that’s only
because of the nice power-of-a-cosine form; by the time other factors, like the
Fresnel term, get included such direct sampling is no longer possible. Far better is
to use an approach like that of Lawrence [Law04], which approximates the BRDF
with terms that are amenable to efficient sampling.

For ray tracing/path tracing, we have a similar problem, except that we’re
given vo and want to select vi with density proportional to fs(vi,vo). And for
direct computation of the reflectance integral, we may want to sample in propor-
tion to fs(vi,vo)(vi · n).

The same arguments apply in these cases, except that in the Lambertian case
for the ray tracing/path tracing computation, instead of using the cosine-weighted
BRDF, we just need to sample in proportion to the BRDF, which is constant. In
other words, we just need to pick points uniformly on the hemisphere, which is
easy with the cylinder-sphere projection theorem.

27.6 Measured Models

Phenomenological models tend to approximate well those things that we, as
humans, recognize as “phenomena.” But it’s possible that other aspects of scat-
tering, when combined with light transport, produce other “phenomena” as well,
and if we suppress those aspects, these secondary phenomena will never be simu-
lated. The only way to know is to have a ground-truth representation of the scat-
tering, and compare results of simulations that use this ground truth to those that
use either phenomenological or physically based approximations to it, and see
whether the results differ significantly.

One such ground-truth representation is provided by the full BRDF measure-
ments made by Matusik et al. [MPBM03] of about one hundred isotropic materi-
als. For an isotropic material, the BRDF, represented in polar coordinates, depends
only on the difference between the longitude coordinates of vi and vo, so the data
can be tabulated in a three-index table (two latitudes, one longitude difference).
Tabulated at approximately one sample per degree, these tables have many entries
(90 × 90 × 180), each of which is an RGB triple. (The sampling near glossy
highlights is deliberately somewhat denser so that very shiny materials can be
accurately represented.)

Others have measured various anisotropic materials [War92], texture charac-
teristics of surfaces [DvGNK99], and more complex data like subsurface scatter-
ing distribution [JMLH01], and have developed image-based approaches to mea-
suring BRDFs without the high cost of a gonioreflectomer [MLW+99].

One value of these measurements is that they can be used to compare the
expressive power of various BRDF models: if optimally adjusting all the param-
eters of the Blinn-Phong model, for instance, only allowed you to get within
5% of the measured values, and that only for, say, 90% of all possible (vi,vo)
pairs, you might conclude that the Blinn-Phong model was not sufficiently rich to
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represent real materials decently. Matusik in fact took this approach in compar-
ing two BRDF models, the first due to Ward [War92] and the second to Lafor-
tune [LFTG97]; he found that the Lafortune model was better able to fit the data
in many cases, but even so, there were cases for which the average error was as
large as 20%, where the difference was measured as a difference of logarithms, to
discount somewhat the overwhelming effect of glossy peaks in the BRDF.

One drawback to using measured BRDFs in rendering is the cost of perform-
ing effective sampling. While Matusik describes techniques for this, they require
a large amount of extra precomputed data and are still slow compared to those few
models for which explicit sampling techniques are known.

There are some limits to using measured BRDFs. We can only render images
of scenes for which we know the BRDFs of all materials, and measuring the BRDF
of a material is nontrivial; gathering observations at grazing angles is particu-
larly challenging. And we can only gather the BRDF of a material that already
exists. We can’t create new BRDFs by adjusting parameters, as we can do with
the various physically based models described below. Finally, there’s the problem
that the gathered data may well contain errors, errors that can make the observed
BRDF turn out to be physically unrealistic. Matusik handles this in part by pro-
jecting every measured BRDF onto the reciprocal-BRDF subspace, by replacing
fs(vi,vo) with the average of fs(vi,vo) and fs(vo,vi), thus ensuring reciprocity,
and by discarding certain outlying measurements.

27.7 Physical Models for Specular
and Diffuse Reflection

We now turn to physically based models of reflective scattering. There is a choice
to be made in attempting to explain scattering phenomena: Should we use phys-
ical optics, based on the wave theory of light, in conjunction with a geometric
model, to determine the scattering, or geometric optics, in which the reflection of
light by surfaces is determined entirely by a billiard-ball-bounce model, in which
the arriving light reflects from the surface in the mirror direction? At first glance,
the geometric optics approach seems destined for failure; after all, not every sur-
face is mirrorlike. This can, however, be addressed by examining the interaction of
light with a rough surface, in which the reflection is mirrorlike, but the geometry
is extremely complex, consisting of many tiny reflecting facets oriented in many
possible directions. Since the roughness can be described probabilistically, this
approach is actually feasible. In contrast, the physical optics approach presents
enormous computational challenges, in the sense that to apply it, we must apply
Maxwell’s equations to relatively complex situations, where any hope of an easily
expressed formula is lost; our best hope is for rapid numerical solutions of the
equations. We’ll return to this after examining the geometric optics approaches.

Geometric optics is really only appropriate when the small reflecting parts of
the surface are large compared to the wavelength of the incident light. Since the
incident light that interests us is in the visible range, we can say that the wave-
length is about 0.5 to 1.0 microns; this means that the microfacets must be at the
very least 1 micron in size. When you recall that a human hair is on the order of
15 microns in diameter, and that it’s easy to feel a single hair on a flat surface, you
realize that the geometric optics assumption for ordinary materials is just barely
reasonable: 15 micron sandpaper feels about like newsprint; 2 micron sandpaper
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is used to smooth out automotive finishes and to polish sharp knives. Thus, mate-
rials whose roughness is between that of a highly polished metal and a piece of
newsprint are likely to contain scratches that are on the scale of a few wavelengths
of light. Despite this, the geometric optics approach seems to make good predic-
tions in practice at this scale. We’ll describe the main ideas of the geometric optics
approach in the next several sections.

We do so with a caution, however: Given the scale disagreements (facets
must be large compared to the wavelength of light, but in practice are quite close
to it), these models are at best weak approximations of the underlying phenom-
ena. Recent careful measurement work has shown the weakness of the approxi-
mations [Lei10].

27.8 Physically Based Scattering Models

The underlying physics of reflection from a flat surface depend on the electrical
properties of the atomic structure of the material, some of which we described in
Chapter 26. In particular, metals, which tend to make the best mirror reflectors,
have many free electrons that float about the surface, creating an almost perfectly
planar sheet of constant electrical potential with which the electromagnetic light-
wave interacts. The Fresnel equations determine the degree of reflection for light
of varying polarizations; in graphics, we typically assume unpolarized light, and
thus average the perpendicular and parallel terms of the Fresnel equations. We’ll
review these equations, and describe how they’re applied in practice, since they
are part of all the physically based scattering models.

As we said, the assumption, in the physical computations that support these
reflectance models, is that the reflecting surface is large compared to the wave-
length of the arriving light, or else diffraction will start to dominate. The mirror-
plane model can also be used to compute the reflection from a mirror surface that’s
nonplanar, provided that its curvature is not too great; to compute the reflection
at a point Q, we use the normal vector n(Q) to compute the mirror direction just
as before. If the curvature is too large (i.e., if the normal vector changes too fast),
then again the “sheet of constant potential” model fails, and diffraction starts to
dominate. A radius of curvature (in any surface direction) that’s near or lower than
the wavelength indicates a place where the mirror model is no longer appropriate.
It’s worth noting that in polygonal models, the curvature at every point of every
edge is infinite. This is typically ignored in ray tracers, where a ray hits either one
facet or the other, and proximity of the ray to an edge is ignored. If the ray actually
hits an edge precisely, it may be ignored or treated as lying on one of the two adja-
cent surfaces. The results look correct enough that they have not generally been a
point of concern.

27.8.1 The Fresnel Equations, Revisited

In Chapter 26, we saw that at a surface between dielectric materials such as water
and air, or glass and air, the amount of light reflected and transmitted depended
strongly on the angle of the arriving light. Under the assumption that the arriving
light was unpolarized, the fraction of light energy reflected is a function of the
refractive indices of the two materials and the incident angle θi = cos−1(vi · n),
and the angle of the transmitted ray is θt. The Fresnel reflectance RF is the average
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of the parallel- and perpendicular-polarized terms, Rs and Rp, which are given by

rp =
n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt
(27.26)

Rp = r2
p (27.27)

rs =
n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt
(27.28)

Rs = r2
s . (27.29)

Recall that θi and θt are related by Snell’s law:

sin(θt) =
n1

n2
sin θi. (27.30)

For an air-water interface, we have n1, the refractive index of air, is approxi-
mately 1.0, while that of water is approximately 1.33. The plot of RF as a function
of θi is shown in Figure 27.12.
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Figure 27.12: The Fresnel
reflectance FR as a function of θi,
for an air-to-water interface

As you’ll observe, the function is nearly constant until we approach grazing,
at which point it rises rapidly. If you plot FR for some other ratios of refractive
indices (see Exercise 27.5), you’ll see that this characterization is quite general:
nearly constant for small angles, a sudden rise near grazing angles.

For metallic surfaces, the formula for RF is somewhat more complex, but it
exhibits the same general characteristics.

Schlick [SCH94] observed that for metallic surfaces RF could be well approx-
imated by a simple expression, and others have observed that the approximation
works reasonably well even for nonmetallic materials. The approximation is

RF(θi) = RF(0) + (1− RF(0))(1− cos θi)
5, (27.31)

where RF(0) is the reflection at normal incidence (θi = 0) and θi = cos−1(vi · n)
is the angle of incidence. When the cosine is 1, we get RF(0); when the cosine is
0, we get 1.0.

Inline Exercise 27.4: There’s usually no reason to compute θ explicitly, since
many formulas involve the cosine or sine of θ rather than θ itself. Rewrite
Schlick’s approximation in terms of vi and n rather than θ.

For insulators, RF(0) tends to be small, so there’s large variation in RF with
angle θi, leading to a pronounced Fresnel effect. For conductors, RF(0) tends to
be large (typically greater than 0.5), so the Fresnel effect is less pronounced.

Note that the index of refraction and the coefficient of extinction depend on
wavelength (although they have not been tabulated for many materials, which is
a problem); this means that the Fresnel reflectance is also a function of wave-
length. For many metals, this dependence is considerable. For gold, for instance,
the extinction coefficient drops substantially above about 500 nm, while the index
of refraction rises steadily above about 500 nm, which together give gold its char-
acteristic yellow appearance. For insulators, the refractive index is nearly constant
with respect to frequency, causing highlights on insulators to be the color of the
incoming light.
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Actually using the Schlick approximation requires that you know RF(0). But
the original Fresnel equations (for dielectrics) give you this value:

RF(0) =

(
n− 1
n + 1

)2

, where (27.32)

n =
n2

n1
. (27.33)

Inline Exercise 27.5: Verify this formula.

In graphics, most objects sit in air, so n1 = 1, and the formula is slightly
simpler: You just replace n with n2.

Inline Exercise 27.6: Show that in the case of conductors, the correct form is

RF(0) =
κ2 + (n− 1)2

κ2 + (n− 1)2
, (27.34)

using the approximation of the Fresnel reflectance for conductors.

We sometimes want to render things like an underwater view of the surface of
a swimming pool. In this case, the light rays are traveling in a medium of large
refractive index, and the “other” side is air, which has lower refractive index. Of
course, Fresnel’s equations still hold, as does the Schlick approximation, but to
make it work you must use θt, the angle of the transmitted ray (the one in the air,
not the water) as the argument. The result is that the Fresnel reflectance approaches
1.0 as θi approaches the critical angle, which is generally much less than 90◦. (For
angles greater than the critical angle, RF remains at 1.0.)

Inline Exercise 27.7: If you have looked up at the pool’s surface while swim-
ming, explain the appearance of the surface from below, and the difference
in its appearance from above, by considering the Fresnel reflectance and the
critical angle for total internal reflection.

27.8.2 The Torrance-Sparrow Model

The Phong model predicts that a surface illuminated in direction vi will reflect
light in all directions, with a peak in the mirror-reflection direction vr. In actual
observations of nonmirror materials, that’s not the peak direction. Torrance and
Sparrow provided a model to explain this off-mirror peak: They imagined that the
surface was made up of microfacets, each of which was a tiny mirror reflector,
but with random orientations. The microfacets were assumed to pair up to form
“V” shapes, with identical slopes of each side of the “V” so that an edge-on slice
of the material appeared as a collection of grooves of varying depth, all with their
tops at the same height, as in Figure 27.13.

Figure 27.13: The symmetric
grooves all have their tops at
the same height. Light arriving
at an angle (downward-pointing
black arrows) can be reflected in
the mirror direction (the dashed
green arrow), or reflect back
toward the source or in other
directions (red).

Note that we are implicitly assuming that the BRDF we’re estimating is for a
measurement area that’s substantially larger than the scale of a single microfacet,
or the analysis, which is based on average microfacets, is no longer reasonable.
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For the same reason, when we use a measured BRDF in rendering it’s important
that an imager pixel correspond to a surface region whose area is as large or larger
than the area used in gathering the BRDF in the first place.

Inline Exercise 27.8: The wavelength of visible light is between one-half
and one micron; it’s convenient to treat it as about one micron for back-of-
the-envelope estimation. To prevent diffraction effects from being significant,
microfacets should be at least a couple of wavelengths (say, five) in their min-
imum dimension. In a surface that’s fairly flat (most microfacets have slope
less than 45◦), we can imagine each microfacet is a small disk or square, so its
projected length, in any direction, is at least .71 ≈ cos(45◦) times its minimum
dimension.
(a) Approximately how many such microfacets can fit into a 1 mm-diameter
disk?
(b) If you had that many small mirrorlike facets in such a disk and illuminated
them with a laser pointer whose beam covered just that disk, what would the
pattern of reflected light look like? Get a laser pointer, a piece of polished
metal, and a piece of white paper to “catch” the outgoing light and see whether
the reflected light follows the predicted pattern.

For illumination arriving along the normal direction (vi = n), the scattered
light goes in many directions: If the grooves are all shallow, most of it reflects
back in the normal direction; if they’re deep, there’s much more scattering in
off-normal directions. But for illumination arriving in an off-normal direction,
multiple phenomena combine to generate the scattering pattern.

• Each peak “shadows” the next valley to some degree, so the amount of light
reflected from a microfacet is no longer proportional to its area.

• The reflected light may hit yet another microfacet, and be further reflected,
and thus not continue in the reflected direction; this is called masking.

Figure 27.14: Incoming light
misses the bottom part of the
right-hand side of the V groove,
which is shadowed (right-
pointing red dashed ray); some
of the light reflected from that
right-hand side is masked by
the left-hand side (left-pointing
green dashed ray). (Courtesy
of Ephraim Sparrow, “Theory
for Off-Specular Reflection from
Roughened Surfaces” by K.
Torrance and E.M. Sparrow. It
was printed in Journal of the
Optical Society of America, Vol.
57, No 9, 1105–1114, September
1967. Redrawn.)

• For certain illumination directions, we can get both masking and shadow-
ing, as shown in Figure 27.14.

The detailed analysis of the effects of masking and shadowing, for various
distributions of microfacet orientations, is quite complex [TS67], but the analysis
predicts three important phenomena: The first is backscattering, in which some
incoming light from off-normal directions is reflected back toward the source;
the second is the off-specular peak—the peak value of the BRDF occurs not at the
mirror-reflection direction, but at a more-grazing (i.e., less normal) direction. The
third is that the value of the BRDF at grazing angles remains finite, which is in
accord with experimental observation, but not with prior microfacet models that
didn’t account for masking and shadowing.

By the way, it’s worth experimenting with a piece of ordinary office paper to
see how very specular are the near-grazing-angle reflections from a supposedly
matte surface. If in front of your face you hold a piece of paper by its bottom edge
so that the top falls down, forming a “hill” that you can look across, and then you
look at some fairly bright scene (the view out an office window on a sunny day
works well), you can see quite distinct features reflected in the paper at or near the
silhouette edge.



ptg11539634

27.8 Physically Based Scattering Models 731

The Torrance-Sparrow model, like the Phong model, combines a diffuse term
with the glossy term, and takes into account the Fresnel equations in adjusting the
reflectivity as a function of incoming-light angle. The distribution of microfacet
slopes is assumed to be exponential: The probability density at slope α is propor-
tional to exp(−c2α2), where the constant c is a parameter of the model.

The parameters for the model are the index of refraction (which is wavelength-
dependent), the slope-distribution constant c, and the diffuse and glossy constants
kd and kg, although they use the ratio g= kg/kd as well, using a complex-number
version of the index of refraction to represent both the ordinary index of refraction
and the absorption. Torrance and Sparrow report that c = 0.05 works well, and
approximately agrees with experimental observations of c = 0.035 and c = 0.046
for ground glass surfaces. They plot the predicted results for aluminum and mag-
nesium oxide, and show good agreement with the observed data.

27.8.3 The Cook-Torrance Model

Cook and Torrance [CT82] developed an extension of the Torrance-Sparrow
model that explicitly took into account the different nature of diffuse reflection
(usually involving subsurface scattering, or multiple scattering from a sufficiently
rough surface) and specular reflection, especially from metals, which is an almost
entirely surface-based phenomenon. Since specular reflection from microfacets
is again used to model glossy reflection, anything said about specular reflection
here also applies to glossy reflection. The specular-diffuse difference means that
the diffusely reflected and specularly reflected lights from a single surface may
have quite different spectral distributions; plastics, for instance, tend to specularly
reflect light with approximately the same spectral distribution as the illuminant,
while metals (think of copper and gold) tend to have substantial spectral variation
in reflectivity, so the reflected light “takes on the color of the material.”

As with the Phong model, there are three parts: an ambient, a diffuse, and a
specular term. The ambient term is considered to be an average of the diffuse and
specular effects due to light coming from many different directions in the scene,
which is assumed to be uniform. Because of this, the color of the ambient term
is a combination of the diffuse and specular colors (where we are using the term
“color” as a shorthand for “spectral distribution”). The diffuse term is assumed
Lambertian. The complete model, ignoring the ambient term, has the form

f (vi,vo,λ) = sRs(vi,vo,λ) + dRd(λ), where (27.35)

Rs(vi,vo,λ) =
F(vi,λ)

π

DG
π(n · vi)(n · vo)

, (27.36)

where s and d are the amounts of specular and diffuse reflectivity, respectively, Rs

and Rd are the (spectral) BRDFs for specular and diffuse reflection, respectively,
F is the Fresnel term, D is the microfacet slope distribution, and G is a geomet-
ric attenuation factor that accounts for masking and shadowing of facets; we’ve
omitted the arguments for both D and G for now. The entire expression is evalu-
ated at a point P of a surface with normal vector n(P), for which we’ll write n for
simplicity.

It’s easiest to express the geometric term in terms of the half-vector

h = S(vo + vi). (27.37)
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Using h, the geometric attenuation is

G(vi,vo) = min

{
1, 2

(n · h)(n · v)
(v · h) , 2

(n · h)(n · vi)

(v · h)
}

. (27.38)

The slope distribution function D describes the fraction of facets that are ori-
ented in each direction; letting α = cos−1(n ·vi), we can write D as a function of
α, thus implicitly assuming that it’s symmetric around the surface normal, that is,
that the microfacet distribution is isotropic. Cook and Torrance use the Beckmann
distribution function

D(α) =
1

m2 cos4 α
e−[

tanα
m ]

2

, (27.39)

which has the single parameter m.

Inline Exercise 27.9: Convince yourself that if m is very small, then most
facets are nearly perpendicular to the normal vector n, while if m is large, the
surface is very rough with sharply angled facets.

They also note that a surface may be rough at several different scales; thus,
the function D could be a weighted sum of multiple terms like the one in Equa-
tion 27.39.

Finally, they model the spectral distribution of the reflected light. For diffuse
reflectance, they use measured reflectance spectra, which are typically measured
with illumination at normal incidence; they note (as in our discussion of Fresnel
reflectance above) that the diffuse reflectance spectra for most materials do not
vary substantially for incidence angles up to 70◦ off normal, and even then vary
relatively little. They therefore use the normal-incidence reflectance spectrum as
the diffuse reflectance spectrum at all angles.

Inline Exercise 27.10: There are man-made materials that are designed to have
reflectance spectra that vary with viewing angle; one example is a diffraction
grating. Try to think of a diffuse material with this property. Hint: textiles.

For the specular term, they model the angle dependence of the reflectance
spectrum as coming entirely from the Fresnel term, as above. The results repre-
sented a huge step forward in computer graphics: Because the color of the spec-
ular highlights could now be different from that of either the underlying surface’s
diffuse color or the color of the incident light, it became possible to plausibly
simulate a much wider variety of materials (see Figure 27.15).

27.8.4 The Oren-Nayar Model

Closely related to the microfacet models for specular reflection is the Oren-Nayar
model [ON94] for reflection from rough surfaces such as unglazed clay pots, ten-
nis balls, or the moon’s surface. Oren and Nayar observed that these diffuse reflec-
tors did not actually follow Lambert’s law very well at all; in particular, the areas
near the silhouette tended to be much lighter than Lambertian reflectance would
predict. This is particularly obvious with the moon, whose brightness appears
almost uniform across the surface (except for surface-texture features). They sug-
gest that this brightness near the silhouettes can be explained by noting that the
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Figure 27.15: A single vase, illuminated by two lights, made of 12 different materials whose
reflectance properties were determined with the Cook-Torrance model. (Courtesy of Robert
Cook, ©1981 ACM, Inc. Reprinted by permission.)

surface roughness means that even when we are looking near a silhouette, some
parts of the surface are facing back toward us, and thus reflect more light than
might be expected (see Figure 27.16). In particular, they apply essentially the
Torrance-Sparrow-Cook idea of microfacets, but in a situation where they assume
that each microfacet acts like a Lambertian reflector rather than a mirror.

Figure 27.16: (Top) Near the
edge of a smooth diffuse sur-
face, very little light would be
scattered back toward the viewer
because the off-normal incidence
of the light makes the irradiance
small. (Bottom) If a small piece of
surface near the silhouette is ori-
ented more perpendicular to the
incident light direction, this sur-
face piece will scatter much more
light in all directions, includ-
ing the direction back toward the
viewer.

Furthermore, they consider not only single-bounce interactions of illumination
with microfacets, but multiple inter-reflections, observing that for a quite rough
surface, illuminated at a nearly grazing angle and viewed from the opposite side
from the illumination, each lighted facet is invisible to the viewer, but the facets
that are not directly lit may nonetheless be visible. If you look east toward a moun-
tain range at dawn, you cannot see the sunlight on the east sides of each mountain,
but the west side of some mountains will be illuminated by light reflected from
the east side of more westerly mountains (see Figure 27.17).

Figure 27.17: The west sides of
mountains illuminated by the ris-
ing sun will be in shadow, but
may be lit by light reflected from
the east sides.

The expression for the radiance (assuming a Gaussian distribution of facet
slopes) from a facet is a rather messy integral. Oren and Nayar evaluated this inte-
gral for many different directions of arriving light, viewer direction, and Gaussian
shape parameters, and developed a much simplified form that’s suitable for more
rapid computation of approximately correct values. The result is given in terms
of θi, the angle between vi and n, θo, the angle between vo and n, and φ, the
difference in azimuth between the incoming and outgoing light. If light arrives
from the west and leaves to the east, then φ = 0; if it leaves to the northeast, then
φ = 45◦; if it leaves to the southeast, then φ = −45◦, etc. The model has two
parameters: the slope-distribution constant σ, where the probability of a facet at
angle θ is proportional to exp(− θ2

2σ2 ), and the albedo, ρ, of the surface (which may
be a function of wavelength).

The full-generality result is seldom used; instead, the simplified version, which
accounts for only single scattering, is

Lr(θi, θo,φ;σ) =
ρ

π
E0 cos(θi)(A + Bmax(0, cosφ) sinα tanβ), where

(27.40)
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A = 1.0− 0.5
σ2

σ2 + 0.33
, (27.41)

B = 0.45
σ2

σ2 + 0.09
, (27.42)

and α = max(θi, θo) and β = min(θi, θo).

27.8.5 Wave Theory Models

Until now, all of our models have used geometric optics, ignoring the effects of the
wave nature of light (such as interference and diffraction), except for the Fresnel
term. One reason for this is that working directly with Maxwell’s equations proves
to be extremely difficult and computationally expensive. On the other hand, it does
predict some effects that geometric optics models miss. The work of He [He93]
makes the most compelling case for this, but the underlying physics is beyond the
scope of this book; we refer the interested reader to the paper itself.

How important are wave effects? They certainly can matter, but as Pharr and
Humphreys [PH10], p. 454, note:

Nayar, Ikeuchi, and Kanade [NKK91] have shown that some
reflection models based on physical (wave) optics have substan-
tially similar characteristics to those based on geometric optics.
The geometric optics approximations don’t seem to cause too
much error in practice, except on very smooth surfaces. This is
a helpful result, giving experimental basis to the general belief
that wave optics models aren’t usually worth their computational
expense for computer graphics applications.

27.9 Representation Choices

A BSDF can be represented in various ways—as a table of values to be interpo-
lated, as we saw for measured models, or as a sum of “lobes,” as in the Lafortune
model, or even in a kind of “Fourier decomposition,” using spherical harmonics,
which are the analog, on the 2-sphere, of the powers of sine and cosine on the
circle. It’s also possible to represent BSDFs using sums of Gaussians, in wavelet
bases, or many other possible forms. Each choice has its advantages and disad-
vantages, and graphics has not yet arrived at a definitive ideal model.

27.10 Criteria for Evaluation

We’ve discussed BSDFs and how to represent them with a general bias toward
finding models that match measured data well, which certainly seems like a good
thing. But we haven’t discussed the precise criteria for “matching well.” One obvi-
ous choice is the L2 error: If f is an approximation to fs, we can integrate ( f − fs)2

over all of S2×S2 to determine the goodness of fit. In the sense that the difference
between f and fs corresponds to the difference in what we see when we look at a
directly illuminated piece of the material, this seems to make intuitive sense. But
our perception is nonlinear as a function of radiance. A small error in the approx-
imated reflectance at a (vi,vo) pair where fs is small is far more perceptually
important than the same difference at a place where fs is large, but they’re counted
equally in measuring the goodness of fit. This argument suggests that we should
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perhaps integrate something like log[( f − fs)2] over the domain, and use that as
a measure of error. But that only makes sense if the BSDF is sending light to the
eye. What if it’s reflecting light onto another surface that will in turn reflect it to
the eye? Then maybe the original L2 difference is the better measure of goodness.
After all, at some distance from the surface (especially if it’s at all curved), the
fine details of the BSDF are “blurred out” so that the reflected light distribution is
fairly uniform, as we’ll see in Section 31.20.

Some of the simplest models, like the Phong model, don’t fit observed data
very well, but they have good empirical characteristics (a large lobe in about the
right direction for specular reflection, intuitive parameters). Others, like the Lafor-
tune model, provide better L2 fit, and have the additional benefit of being amenable
to sampling in certain common ways (see Section 27.14). Still others, like the
spherical harmonic representation, allow for efficient nonprobabilistic evaluation
of the reflectance integral. In deciding which to use, you need to consider your
eventual purpose.

27.11 Variations across Surfaces

The BSDF of a surface is typically not constant as a function of position. The
BSDF for a piece of paper might be nearly constant, but when it has print on it
the printed parts will have much smaller total reflectance. Objects like wood have
structural texture like grain at a scale of about 1 millimeter, and further cellular
texture at a scale perhaps 100 times smaller. The BSDFs for the different kinds of
wood fiber are quite different. Some of the richness of wood comes from strong
subsurface scattering by linear structures like wood fibers; if the orientation of
these fibers varies, as it does in burls, for instance, this can introduce another kind
of variation in the reflectance of the material.

Let’s examine two approaches to modeling a wall painted with latex paint,
such as you might find in any office. Typically such a surface has some texture,
in the nongraphics sense: There are bumps on the order of 0.1 mm, separated by a
typical distance of 2 mm. The paint surface, even on the bumps, is reasonably flat
at a scale of 10 wavelengths of light, so it’s reasonable to use a BSDF representa-
tion. We’ll assume that the latex paint has a perfect Lambertian BSDF, but we’ll
need to record, in a texture map, the variation of the albedo from point to point,
and the variation of the normal vector. That entails a total of three dimensions of
high-resolution texture map (one for albedo, two for the normal vector variation),
or perhaps a procedural texture.

Alternatively, we could imagine treating the wall as truly flat, and measuring
the BSDF at each point of the wall. On the sides of the bumps, we’d find that
the BSDF was different from what it is at the bottoms of valleys, etc.; if we rep-
resent each BSDF as a sum of spherical harmonics, say, 50 harmonics, then to
represent the entire wall we’d need 50 dimensions of texture map to record each
harmonic coefficient. (We’re assuming a white paint, to avoid the worry of spectral
dependence.)

Clearly the first model is preferable in this case. But if we instead consider
something like a granite wall surface, where the material is made up of an aggre-
gate of other materials, each with a different reflectance property, a spatially vary-
ing BSDF might be a completely reasonable approach: Perhaps a suitably factored
model would be a good solution; perhaps the variation of the BSDF will occur
mostly in one or two factors so that the others can be treated as constants, saving
a great deal of space.



ptg11539634

736 Materials and Scattering

Inline Exercise 27.11: One of the implicit assumptions in the definition of
the BRDF is that it is measured and used at a scale larger than the scale of
the largest variation in the underlying material. Thus, it makes some sense
to measure the BRDF of granite for use in aerial sensing applications, where
a single pixel sensor may record light reflected from many square meters of
granite surface, but it does not make sense to use that same BRDF in trying
to predict the appearance of a microscopic picture of granite. Suppose that we
have modeled some object with local variation in appearance—a piece of paper
with printing on it, or a flat metal tray with fingerprints around the rim—and
we wish to make a picture of it from a distance so that the entire object will
occupy just a few pixels on the imaging sensor. It’s natural to use MIP mapping
for this.
(a) Argue why it is reasonable to average the spatially varying BRDF over a
region of the surface to estimate a BRDF for the larger surface region, at least
in the case of the paper and the flat metal tray.
(b) Argue that even in the case of a flat surface, it’s not generally reasonable
to average the model parameters (such as the Phong exponent, or the Cook-
Torrance specular color, or the index of refraction), and then use these averaged
values to estimate the BRDF of the larger surface region.
(c) Suppose that your surface has a fairly constant BRDF (like the curved tile
on a Spanish tile roof), but the underlying surface has substantial curvature at
a smaller scale than one imager pixel (i.e., a Spanish tile rooftop that projects
to just a few imager pixels). How would you compute a BRDF for the larger
surface?

27.12 Suitability for Human Use

One benefit to using an explicit physically or empirically based model in rep-
resenting a BSDF is that such models often have a few parameters that may
be amenable to intuitive understanding. For example, the Phong exponent can
be described as representing “shininess,” and the diffuse and specular reflectiv-
ity as representing the “lightness” of the surface. Of course, the parameters may
not match our intuition completely; the Phong exponent, for instance, affects the
appearance of a surface a great deal when it’s changed from 1 to 2, but hardly
at all when it’s changed from 51 to 52. (Offering the user an adjustment for the
logarithm of the Phong exponent proves to be far more intuitive: 0 corresponds to
diffuse, and 6 to “very shiny.”) Similarly, the index of refraction of a material and
its dielectric properties are not intuitively understood by most people, but we can
offer an intuitive control that ranges from “metallic” to “plastic” by combining
parameters in the Cook-Torrance model [Str88].

One more reason for using models with intuitive parameters is that we some-
times want to measure a material, and then create a new material that’s quite simi-
lar, but not exactly the same. Fitting a model to the measured data, and then giving
the designer intuitive controls to adjust, is far more likely to produce good results
than giving the designer the opportunity to edit the measured data directly.
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27.13 More Complex Scattering

We’ve discussed models for scattering from surfaces, which is a fairly good
approximation for metals, for instance, but is increasingly inadequate as the mate-
rials we encounter become less surfacelike. In this section, we’ll briefly discuss
volumetric materials, which are sometimes called participating media, and sub-
surface scattering, which helps determine the appearance of materials like human
skin.

27.13.1 Participating Media

We’ll now give a very brief description of how light interacts with participating
media like colored water, or fog.

When you sit in a dark room on a sunny day, with sunlight streaming through
a window, shafts of sunlight typically fill the room. These appear because the
sunlight hits tiny particles in the air of the room (usually dust), and is scattered
by these particles to the eye. Even though the particles are scarce and small, the
intensity of the sunlight is such that the net reflected light may be substantial com-
pared to that reflected by the dark walls of the room. The result is that we “see
the beam of light.” The same kind of “volumetric scattering” explains the appear-
ance of the rings of Saturn, and the dark regions at the bottom of cumulus clouds.
Because we usually consider the air in a room as a medium through which light
passes untouched, until it’s scattered by a surface, our ordinary model no longer
applies. Now the medium (air with dust particles) participates in the scattering
process, and so the term participating media is often used in connection with
such situations.

The exact modeling of participating media requires the precise measurement
of several physical properties [Rus08]; even with these necessary constants, the
associated computations are quite complex. In broad strokes, however, for sparsely
distributed scatterers uniformly distributed in a medium (e.g., dust in the air of a
room), the light passing through the medium is exponentially attenuated, that is,
its radiance, after passing through a distance d in the medium, is multiplied by
exp(−σd) for some small constant σ > 0. This attenuation is explained by think-
ing of the probability of a bit of light making it through the whole medium with-
out encountering a particle. Suppose that the probability of making it through one
millimeter of the medium is 0.95. Then the probability of light making it through
the first millimeter will be 0.95, while the probability of making it through two
millimeters will be 0.952, etc., leading to an exponential decay. For a nonuniform
participating medium, the decay rate σ becomes a function of location, and the
amount of light exiting the medium ends up being the amount entering, multiplied
by a constant that’s an integral of a function of σ along a ray.

What we’ve just described is absorption, and it can be used to describe the
interaction of light with materials like soot which absorb light and convert it to
heat, but hardly emit or reflect it. Figure 27.18 schematically shows absorption
at the orange particle just to the right of center. Absorption generally depends on
wavelength, so this analysis really only applies to light of a single wavelength.

A

R

�

Figure 27.18: The ray R starts
at A in direction v and passes
through a participating medium.

Three other phenomena arise for general participating media. The first of these
is emission, shown by the red particle in the bottom left of the figure: Just as in
the analysis of light’s interaction with surfaces, we can encounter media that glow
(think of the liquid in glow sticks, or the heated soot in flame). The second is
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outscattering: Light hitting the medium may be scattered in various directions,
causing things like the aforementioned shafts of light you see on a sunny day in a
dusty room. This outscattering may not be uniform. Typically it’s assumed that the
outscattering is constant as a function of course-deviation: If the light is traveling
in direction v, the probability of scattering to a new direction v′ is assumed to be
a function of v ·v′ only. The third phenomenon is inscattering (shown at the green
particle, just to the left of center in the diagram): Light scattered from other parts
of the medium may arrive at some point and scatter so as to add the light we’re
already observing. (Outscattered and inscattered light are therefore analogous to
surface radiance and field radiance.)

These four effects can be combined to characterize how the radiance L(P,v)
at some point P in some direction v is related to the radiance at P+εv in direction
v; dividing the difference by ε and taking a limit as ε → 0 gives an equation that
L must satisfy, analogous to the rendering equation. Pharr and Humphreys [PH10]
and Rushmeier [Rus08] give a great deal more detail on this subject.

The absorption constant σ has units of inverse meters. If light travels a distance
of 1/σ through the absorbing medium, it’s attenuated by a factor of e. Perhaps
more intuitive is that if the light travels 2.303/σ, it’s attenuated by a factor of 10.
Even so, σ is not an intuitively easy-to-understand item. An artist is more likely
to find 2.303/σ, the distance it takes to decrease by a factor of 10, to be a natural
control for absorption.

The coefficient of extinction, κ, mentioned in Chapter 26 and sometimes used
as the imaginary part of a complex index of refraction, is closely related to the
absorption constant σ: It represents the exponential decay of the electromagnetic
wave as it enters a homogeneous material. If we compute the absorption constant
for the material at a particular wavelength λ, the two are related by

κ =
λσ

4π
. (27.43)

Thus, the explicit dependence of absorption on wavelength is naturally incorpo-
rated by using κ. Of course, neither the idea of a complex index of refraction
nor the coefficient of extinction is likely to be readily understood by a user; once
again, the inverse of κ is likely to be more natural as a user control for material
design. And for a material like smoke or fog, the absorption phenomenon is not
really being governed by index-of-refraction effects, but by larger-scale phenom-
ena, such as light entering and leaving the individual droplets of water in the fog.

27.13.2 Subsurface Scattering

In addition to mirrorlike reflections (and more diffuse reflections arising from mul-
tiple microfacets) and volumetric scattering, there’s a third kind of scattering that
is very common: subsurface scattering.

Q P

�i
�o

Figure 27.19: The arguments to
the BSSRDF. The light enters the
material at P from the source
pointed to by vi, travels along
the red path, bouncing inside the
material, and exits at Q in direc-
tion vo.

In human skin, for instance, light meeting the skin at some point P may leave
the skin at another point Q. To see this, sit in a dark room facing a mirror and
place a small flashlight firmly against your cheek. You will see the skin around the
flashlight glowing red because of subsurface conduction of the light. This cannot
be modeled by a surface-based BSDF. Instead, we use a bidirectional subsurface
scattering distribution function (BSSRDF), which has the form fss(P, Q,vi,vo),
which represents the light leaving in direction vo from the point Q in response to
light arriving from direction vi at point P (see Figure 27.19). It’s convenient to
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simplify things by assuming that the material is homogeneous and anisotropic so
that fss depends only on the distance from P to Q rather than on their absolute posi-
tions in the material; this substantially reduces the memory required to represent
the scattering. But for many materials (like the palm of your hand), the geometric
structure of the subsurface material is neither isotropic nor homogeneous. Things
like veins, arteries, capillaries, muscle, cartilage, and fat all affect the scattering of
light differently.

How does the use of subsurface models influence the rendering equation?
Recall that the basic model had the form

L(P,vo) = . . .+

∫
vi

L(P,vi)fs(P,vi,vo) . . . , (27.44)

that is, the emitted radiance was basically the value of an integral over all incoming
directions at P. But with subsurface scattering, light arriving at some other point
Q might eventually be emitted at P, and the form becomes

L(P,vo) = . . .+

∫
Q

∫
vi

L(P,vi)fss(P, Q,vi,vo) . . . . (27.45)

Computing subsurface scattering adds another integral. In practice, for most
materials the new integral (over all points Q of the material) can be replaced by
one over a bounded area (like a disk) around P: Light entering at your finger-
tip is unlikely to exit at your nose in any substantial amount. If the material is
homogeneous and anisotropic, and the arriving radiance is nearly constant over
the surface, the scattered radiance can be precomputed and stored in a lookup
table, and the new computation is not much worse than that for the simpler ren-
dering equation.

What are the practical effects of modeling subsurface scattering? First, it’s
possible for light to diffuse across shadow boundaries so that a “hard shadow”
on skin, for instance, ends up slightly softened. Second, it allows color bleeding
within objects: A cup of tea with milk has its color affected, near the edge of the
tea’s surface, by the color of the cup itself.

How does one model the subsurface scattering? In much the same way as we
model surface scattering: either with acquired data, or by phenomenological or
physical models. One can acquire data by modifying a gonioreflectometer to allow
the sensor to be adjusted so that it measures light received from some location Q
that’s not the center, P, of the sample stage—either by translating the entire sensor
assembly in the plane of the sample stage, or by making a small, two-axis rota-
tion of the sensor about its center. One could equally well translate or rotate the
illumination source, of course, and/or rotate or translate the sample stage. Alterna-
tively, one can illuminate the sample stage and then replace the usual sensor with
a camera. This allows the measurement of light from many material points and
directions at once. This approach is described by Jensen et al. [JMLH01] in some
detail.

As for physical modeling of the subsurface scattering, it involves physics and
mathematics well beyond the scope of this book. Jensen et al. describe some fea-
sible approximations, and give a general overview and pointers to the physics
literature.
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27.14 Software Interface to Material Models

For our applications of material modeling to rendering, we’ll restrict our discus-
sion to a particular class of models: those composed of a finite part and an impulse
part, which we’ll now characterize.

The “impulse” part of scattering describes phenomena like transmission
through boundaries between media, and mirror reflection: Radiance arriving from
one single direction generates radiance leaving in a single other direction (or, in
the case of simultaneous transmission and reflection, two other directions). These
are the phenomena for which the measurement of the BSDF is impossible, as we
described in Section 26.10.2. “Impulsive” scattering from vi to vo is described
by a single factor by which incoming radiance is multiplied to produce outgoing
radiance. We’ll assume that for a given direction vi toward a light source, there
are finitely many (usually two!) directions vo for which (vi,vo) is an impulse-
scattering pair. For each such pair, we’ll have a constant m, the magnitude of
the impulse, which is the factor by which incoming radiance is multiplied to get
outgoing radiance. Similarly, we’ll assume that if we know vo, there are only
finitely many directions vi such that (vi,vo) is an impulse-scattering pair. To
simplify things, for the remainder of this section we’ll say that there are exactly
two impulse directions ι1 and ι2, with magnitudes m1 and m2.

When we want to ray-trace, it’s essential to recover these impulse directions
and the associated material properties; we’ll need

ImpulseArray getImpulsesIn(surfel, vo)

where surfel is a SurfaceElement data structure that stores the geometric normal
at a point of some surface, the location of that point, the index of refraction of the
material on the side pointed to by the normal and on the other side as well, and the
shading normal (a vector used in shading computations, often interpolated from
geometric normals at nearby points). The array of returned “impulses” contains a
list of pairs (v,vo, m) where all the vo values equal the input argument, and m is
the magnitude of the impulse. It’s also useful to have the dual form

ImpulseArray getImpulsesOut(surfel, vi)

which returns an array of (vi,v) pairs, together with their impulse magnitudes.
In fancier versions of ray tracing that can handle area lights and glossy sur-

faces, it’s also important to be able to evaluate the finite part of the BSDF for any
two inputs, that is, we need

float getBSDFFinite(vi, vo)

It’s also useful to be able to “sample from the BSDF,” that is, to ask, given
an output direction vo, for an input direction vi where the probability density of
selecting vi is proportional to fs(vi,vo). For a Lambertian surface, such a proce-
dure would return a direction vi in the upper hemisphere uniformly at random.

Sampling from the BSDF doesn’t make literal sense if the BSDF contains
impulses, for in that case, certain BSDF values are infinite. Suppose, for instance,
that we have a material and a direction-to-light vi in which 40% of the light is
mirror-reflected in a direction ι1, while 60% is Lambertian-scattered. In this case,
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fs(vi, ι1) = ∞, making sampling “proportional to” the BSDF impossible. But
what we’d like, in this case, is for the sampling procedure to return ι1 40% of
the time, and to return a vector vi uniformly at random on the hemisphere the
remaining 60% of the time. To further extend the example, if the magnitude of the
impulse remained at 0.4, but the material absorbed 30% of the light hitting it and
scattered the remaining 20% in a Lambertian fashion, we’d expect the procedure
to return ι1 40% of the time, NONE 30% of the time, and a uniformly distributed
random vector vi the remaining 20% of the time. For this, we need a procedure
like

Vector3 getSampleIn(vo)

although such a procedure may, in the case of highly peaked BSDFs, prove to be
very slow unless the material model has been designed in advance to make such
sampling efficient.

Sometimes it suffices to get a sample where the probability density of a par-
ticular direction vi isn’t exactly proportional to the BSDF fs(vi,vo), but whose
probability distribution p is somewhat similarly shaped to the BSDF; in this case,
we need to know not only the sample direction, but also a “factor” given by

f 0
s (vi,vo)

p(vi)
, (27.46)

although such an adjustment isn’t needed for the impulse terms, because they can
be sampled from exactly. In this case, we need a procedure with a signature like

Vector3 getWeakSampleIn(vo, float &factor)

in which the adjustment factor is set when the sampled vector is returned.
Corresponding procedures for sampling outgoing directions in proportion to

the BSDF, or for sampling either incoming or outgoing directions in proportion
to a cosine-weighted BSDF, are also useful. Indeed, the cosine-weighted versions
are the ones we’ll primarily use in writing a path tracer and photon mapper in
Chapter 32.

27.15 Discussion and Further Reading

Correctly modeling scattering is central to making renderings look realistic: For
directly illuminated surfaces, our eyes essentially observe the BSDF, so making it
right is important. Pharr and Humphreys [PH10] discuss the modeling of BSDFs,
and a software interface to them, in extensive detail.

There’s a huge literature on scattering models, and it’s worth reading at least
one or two of the early papers—perhaps the Torrance-Sparrow or Cook-Torrance
or Blinn-Phong papers—to get an idea of all the complexities.

Lawrence [Law06] addresses the very practical question of how to make com-
putational models for scattering that are (a) expressive enough to match measured
data and (b) simple enough to admit relatively easy sampling strategies.

We began this chapter by discussing how objects transform light fields, and
promptly shifted to talking about surfaces made of materials; this factorization
is great for reducing the complexity of light transport (e.g., it lets us use the
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reflectance equation). But further factorization in the form of texture mapping,
with parameters that can range from color to, say, the roughness parameter in some
scattering model, allows further simplification. Appearance modeling is the craft
of making compact representations for lots of materials. Given the messiness of
scattering described in this chapter’s introduction, it should be no surprise that no
general theory of appearance modeling has yet emerged, despite some substantial
successes [GTR+06] [DRS08].

Figure 27.20: A teddy bear ren-
dered by Kajiya and Kay’s texel-
rendering algorithm. (Courtesy
of Jim Kajiya. ©1989 ACM, Inc.
Reprinted by permission.)

We briefly discussed volumetric scattering, with an implicit assumption that
the distribution of particles in the scattering medium was uniform random. In
cases where the distribution has some structure (e.g., the rings of Saturn), more
sophisticated methods are called for. These were pioneered by Blinn [Bli82b],
and advanced by Kajiya and von Herzen [KVH84], Miller [Mil88], and Kajiya
and Kay [KK89], who introduced the notion of texels—three-dimensional arrays
of parameters approximating the visual properties of microsurfaces like hair or
fur—as a way to represent scattering of light from structured volumes of scat-
terers (see Figure 27.20). The complexities of that work demonstrate once again
the point we made at the start of this chapter: Scattering tends to be messy and
complex.

Is scattering too complex? If, in the course of rendering, we need to compute
the light leaving some object but not going directly to the eye, it’s possible in
many cases to use a simplified proxy for scattering: We can’t really tell whether
light has been scattered from a furry teddy bear, or from a brown paper sack of
about the same shape. There are exceptions, of course. Light scattered from a
crystal chandelier produces highlights all around a room; replacing the crystals
with diffusely scattering reflectors would not be the same at all. Even so, much of
the effect of scattering—the complex appearance of the teddy bear, for instance—
disappears after one bounce. It would be nice to avoid all the extra work in these
cases.

In our discussion of the Torrance-Sparrow and Cook-Torrance models, scat-
tering involves light inter-reflecting among multiple surfaces, resulting in shad-
owed and masked parts. This is exactly the same behavior we’ll see in studying
global illumination algorithms, in which the geometry of a scene causes multiply
reflected light to reach some places and not others. For real-time “solutions” (i.e.,
some games as of 2013), it turns out that we can approximate the effect of these
complex global-illumination algorithms and replace them with the idea of ambi-
ent occlusion [Lan02], in which we make things darker when their surroundings
are locally more convex, by setting an ambient term that’s proportional to how
much of the far field you can see locally. This creates higher-frequency intensity
gradients than you get with a 1/r2 falloff in light intensity, makes corners dark,
and highlights concavities and convexities to give the viewer a clue about material
smoothness at a relatively large scale, since shadows are an important proxim-
ity cue.

Finally, it’s worth standing back and looking at the microfacet models in a
larger context. When we want to render a scene faithfully, we have to take into
account how light from the luminaires scatters from each surface onto each other
surface, and the resultant complex distribution of light energy reaching the eye or
camera. The interconnectedness of all objects in the scene (or at least all mutually
visible objects) leads to algorithmic complexity. Now look at microfacet models:
They’re doing the same thing! Light arriving at the surface reaches only part of
one microfacet because another shadows it, and light scattered from that micro-
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facet hits yet another microfacet, etc. Because we’re assuming that the surfaces
on which these microfacets reside are globally flat (at least relative to the scale of
individual microfacets), we can assume that each microfacet interacts with only
a few neighbors, thus reducing the complexity of the rendering problem. When
we get to limiting cases like light arriving at a glancing angle, when many facets
might shadow a single one, this simplifying assumption can break down.

27.16 Exercises

Exercise 27.1: In Gouraud shading, we have color values at the three vertices of a
triangle, and we interpolate those values across the interior of the triangle. Since
this is typically done on a raster screen, one approach is to work from top to bot-
tom, linearly interpolating values along each edge, and then within a single row
of pixels linearly interpolating between the two ends. In a typical triangle, there
will be a top vertex, a bottom vertex, and a middle vertex. As we pass the middle
vertex, we’ll need to start traversing a different edge. Alternatively, we could do
interpolation from the top to the middle row, and from the bottom to the middle
row.
(a) Show that if we compute the intersection of an edge with a row center exactly
(rather than rounding to the nearest pixel center), the result is exactly the barycen-
tric interpolation of the vertex values.
(b) Show that as we move from one row to the next, working down from the top
vertex to the middle vertex, the starting value for each pixel row differs from the
starting value for the previous row by the same amount.
(c) Use the idea of part (b) to develop a low-operation-count implementation of
Gouraud shading in the 2D tested, using “pixels” that are each small, colored rect-
angles to visualize your results.
(d) Suppose we were to apply the same idea to shade a convex quadrilateral: We
work from top to bottom, computing interpolated values along the two edge points
in each row, and then linearly interpolate along the row. If we rotate the quadri-
lateral (keeping the assigned color values at each vertex), does the interpolated
shading appear to rotate as well?

Exercise 27.2: It’s very common to photograph either the moon or a light-
house being reflected in fairly calm (but not completely flat) water. The usual
depiction shows the bright reflection appearing as a wedge that grows wider as it
approaches the viewer, with the wedge point either near the lighthouse or (in the
case of the moon) near the horizon. Find such a photograph, describe the notable
features of the reflection (such as the shape of the wedge), and explain them in
terms of the physical models you’ve seen in this chapter.

Exercise 27.3: A bookshelf holds three books, one with a white binding and
two with black bindings. The shelf itself is made of polished wood. Looking down
at the shelf, you can see the reflection of the spines of the books. Near the bottom
of the spines, the division between the white and black reflections appears quite
sharp. But if you look at the reflections of a region near the top of the spines,
the division is quite blurry. Explain why. Is it a Fresnel effect, because of the
difference in viewing angle? Why or why not? How could you test this idea?
Hint: Actually set up the experiment!

Exercise 27.4: In the Phong model, as typically expressed, there’s a diffuse
color, expressed as an RGB triple, and a diffuse reflectance.
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(a) Make a conjecture about why these are not combined into a single RGB triple,
since they are, after all, multiplied together in the model.
(b) The diffuse and specular colors in the Cook-Torrance model are specified by
RGB triples (or more generally, by spectral distributions). Why do you suppose
the specular exponent does not get expressed as an RGB triple?
(c) Suppose that the entire model was divided up by wavelength so that the spec-
ular exponent could vary from color to color. Suppose the red exponent was 3,
while the blue and green exponents were 5, and that both the diffuse and specular
colors were pure white. What would be the appearance of the specular highlight
from a white point light?

Exercise 27.5: Plot FR, the Fresnel reflectance, as a function of θi, for an
interface where r = n1/n2 is 1, 1.5, 2, and 3. To do so you’ll need to compute θt

using Snell’s law.
Exercise 27.6: Compare the Schlick approximation of the reflectance with

the Fresnel expression for the reflectance for aluminum and magnesium oxide at
500 nm. Magnesium oxide is nonmetallic, so the Schlick approximation should
not necessarily be expected to work. Use 1.0 as the index of refraction of air, 1.44
for aluminum, and 1.74 for magnesium oxide.

Exercise 27.7: The Fresnel term used in graphics assumes that the arriving
light is unpolarized; on the other hand, the different reflection constants for paral-
lel and perpendicular polarization mean that the light leaving the surface is actu-
ally polarized. Yet we generally assume, when it reaches the next surface, that it’s
unpolarized. Try to imagine a physical situation in which this inconsistency would
manifest itself in a visible artifact.



ptg11539634

Chapter 28

Color

Strictly speaking, the rays are not
colored.

Optics, Isaac Newton

28.1 Introduction

Most people are able to sense color—it’s the sensation that arises when our eyes
are presented with different spectral mixes of light. Light with a wavelength of
near 400 nanometers makes most people experience the sensation “blue,” while
light with a wavelength near 700 nm causes the sensation “red.” We describe color
as a sensation because that’s what it is. It’s tempting to say that the light arriving
at our eyes is colored, and we’re just detecting that property, but this misses many
essential characteristics of the perceptual process; perhaps the most significant
one is this: Two very different mixes of light of different frequencies can generate
the same perception of color (i.e., we may say “Those two lights are the same
color green”). Thus, our notion of color, which we use to distinguish among lights
of different wavelengths, is insufficient to distinguish among mixtures of lights
at different wavelengths. It’s therefore worth distinguishing between the physical
phenomenon (“This light consists of a certain mixture of wavelengths”) and the
perceptual one (“This light looks lime green to me”). Furthermore, our observation
of the same spectral mix may cause different perceptions at different times or
different intensities.

As you read this chapter, you should keep the following high-level facts in
mind.

• Color is a perceptual phenomenon; spectral distributions are physical
phenomena.

• Everything you learned about red, green, and blue in elementary school
was a simplification.

745
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• The eye is approximately logarithmic: Each time you double the light
energy (without altering the spectral distribution) arriving at your eye, the
brightness that you perceive will increase by the same amount (i.e., the
brightness difference between one unit of energy and four units of energy
is the same as the brightness difference between 16 units and 64 units).

Most of what a majority of people “know” about color is false, or at the very
least, it is true only under very restrictive conditions of which they are unaware.
Try to read this chapter with an open mind, forgetting what you’ve learned about
color in the past.

28.1.1 Implications of Color

Before we discuss the physical and perceptual phenomena involved in color, let’s
consider some implications of color: Because objects have different colors, and
because you can tell the difference, you can use color in a user interface to encode
certain things. For instance, you might choose to make all the icons in a text editor
having to do with high-lighting be based on a yellow background, reflecting the
idea that many highlighter markers are yellow. Similarly, you might choose to
make all the high-priority items (or all the items with significant consequences,
like “Close this document without saving changes”) be drawn in red, to attract the
user’s attention.

But a significant number of people are colorblind (or, more accurately, color-
perception deficient)—they perceive different wavelength mixes in a different way
from the rest of us, and two lights that appear red and green to most people appear
to be the same color to a red-green colorblind person. About 8% to 10% of men
are red-green colorblind; there’s also yellow-blue colorblindness (quite rare), and
even total colorblindness, but this is very rare. Colorblindness is very rare (less
than 1%) in women.

From a computer graphics point of view, the critical consequence of color-
blindness comes in interface design: If you rely solely on color-coding to indicate
things, about 5% of your users will miss the idea you’re trying to indicate.

The effects of individual colors are important, but even more significant is the
challenge of selecting groups of colors that “work well together.” Such selections
are in the domain of art and design rather than science. As you design a color
palette for a user interface, consider the following.

• Someone else may have already developed a good set of colors; try starting
from interfaces that you like and working with their colors.

• Use a paint program to see how each of your colors looks when placed atop
or near each of your other colors, or in groups of three.

• Consider how your colors will look on various devices; certain colors that
look good on an LCD screen may look bad when printed. If this matters in
your application, you’ll want to design with this in mind from the start.

28.2 Spectral Distribution of Light

We begin our discussion of color with the physical aspects. As we described
in Chapter 26, light is a form of electromagnetic radiation; visible light has
wavelengths between 400 and 700 nanometers. An ordinary fluorescent lamp
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(see Figure 28.1) produces light at many wavelengths; the combination of these
makes us perceive “white.” By contrast, a laser pointer uses a light-emitting diode
(LED) to create light of a single wavelength, usually around 650 nm, which we
perceive as “red.”
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Figure 28.1: The spectral power
distribution of a fluorescent lamp.
The power emitted at each wave-
length varies fairly smoothly
across the spectrum, with a
few high peaks. Figure provided
courtesy of Osram Sylvania, Inc.

The spectral power distribution or SPD is a function describing the power
in a light beam at each wavelength. It can take on virtually any shape (as long as
it’s everywhere non-negative). Filters are available that allow only certain wave-
lengths, or wavelength regions, to pass through the filters; clever combinations
of these allow one to create almost any possible spectral power distribution.
We can add two such functions to get a third, or multiply such a function by a

positive constant to get a new one. Thus, the set of all spectral power distri-
bution functions forms a convex cone in the vector space of all functions on the
interval [400 nm, 700 nm]. The possibility of creating almost any function means
that this cone is infinite-dimensional; in particular, the spectral power distributions

Ps(λ) =

{
1 if s ≤ λ ≤ s + 1
0 otherwise,

(28.1)

where s ranges over integers between 400 and 699, are all linearly independent,
so the space is at least 299-dimensional. By making the “spikes” in the function
narrower and the spacing closer, it’s easy to see that the number of linearly inde-
pendent functions is arbitrarily large.

By contrast, as we’ll see in later sections, the set of color percepts, or color
sensations, is three-dimensional; to the degree that the mapping from spectral
power distributions to percepts is linear, it must be many-to-one. Indeed, for any
given percept, there must be an infinite-dimensional family of SPDs that give rise
to that percept.

Certain SPDs are both important and easy to understand: These are the
monospectral distributions, in which nearly all the power is at or very near to
a single wavelength (see Figure 28.2).
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Figure 28.2: The spectral power
distributions of several LEDs.
The light is concentrated at or
near a single wavelength for each
kind of LED; an ideal monospec-
tral source would have all energy
at a single wavelength.

One reason that these are interesting is that all other SPDs can be written
as (infinite) linear combinations of them, so they play the role of a basis for the
set of SPDs.

A pure monospectral light cannot (in our model of light) carry any energy,
because the energy is described in part by an integral over wavelength. So when
we speak of “monospectral” lights, you should think of a light whose spectrum is
entirely in the interval from 650 nm to 650.01 nm, for example.
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Figure 28.3: A contrived spectral
power distribution with 500 nm
as its dominant wavelength.

Describing an SPD requires either tabulating its (infinitely many) values, or
somehow presenting summary information. In practice, real SPDs are tabulated
at finitely many values using a spectroradiometer, but even these tabulated values
may need to be summarized. In colorimetry, the terms dominant wavelength,
excitation purity, and luminance are used to present such summaries; these vary
in utility depending on the shape of the SPD. For the highly contrived SPD of Fig-
ure 28.3, the dominant wavelength is 500 nm. The excitation purity is defined in
terms of the relative amounts of the dominant wavelength and the broad-spectrum
light: If e1 is zero and e2 is large, then the excitation purity is 100%; if e1 = e2,
the excitation purity is zero. So excitation purity measures the degree to which
the light is monospectral. (For more complex spectra, the precise definition of the
“dominant wavelength” is subtler; it’s not always the one with the highest value,
which might be ill-defined if multiple peaks had the same height. These subtleties
need not concern us.)
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One last note about spectral power distributions: Ordinary incandescent lights
(especially those with a clear glass bulb) have spectral power distributions that
are quite similar to the blackbody radiation described in Chapter 26, because
they produce light by heating a piece of metal (tungsten, typically) to a very
high temperature—such as 2500◦C—by pushing electric current through it; the
resultant emission begins to approximate the blackbody curve, even though the
tungsten itself is not matte black. (The sun, by contrast, has a surface tempera-
ture of around 6000◦C.) One important characteristic of this radiation is that the
SPD is quite smooth, rather than being very “spiky.” This makes simple summary
descriptors like “dominant wavelength” and “excitation purity” work quite well
for such smooth SPDs.

28.3 The Phenomenon of Color Perception
and the Physiology of the Eye

People with unimpaired vision perceive light; they describe their sensations of it
in various terms like “brightness” and “hue” and with a great many individual
words (“saffron,” “teal,” “indigo,” “aqua,” . . . ) that capture individual sensations
of color.

Our perception of color is also influenced by a gestalt view of the world: We
use different words to describe the color of things that emit light and to describe
those that reflect light. People will describe an object as “brown,” but they will
almost never speak of a “brown light.”

This same gestalt view allows us to understand the “colors of objects.” One
might say that a yellow book, in a completely dark closet, is black, but people are
more inclined to say that it’s yellow but not lit right now. Certainly in a dimly lit
room, the light leaving the yellow book’s surface is different from that leaving the
surface in a well-lit room, and yet we describe the book as “yellow” in both cases.
Our ability to detect something about color in a way that’s partly independent of
illumination is termed color constancy.

Of course, one can imagine an experiment in which one looks through a peep-
hole and sees something behind it. The something might be a glowing yellow
bulb, or it might be a yellow piece of paper reflecting the light from an incan-
descent bulb. When the object is seen from a distance, and without other objects
nearby for comparison, one cannot tell the difference between the two. So the
distinction between “emitters” and “reflectors” is not one that’s captured by the
physics of the light entering the eye, but by the overall context in which the light
is seen.

By the way, to experiment with color, it turns out that “color matching” is
different from “color naming”: Saying the name of a color is more complex than
matching a color with another during an experiment.

It’s commonplace to say that “intensity” is independent of “hue”: One can
have a bright blue light or a dim blue light, and the same goes for red and yel-
low and orange and green. In the same way, the degree of “saturation” of a
color—Is it really red, or is it pinkish, or a grayish-red?—appears independent
of both intensity and hue. But it’s difficult to think of a fourth property of color
that’s independent of these three. This suggests that perhaps color is defined by
three independent characteristics, which we’ll later see is true. Just which three
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characteristics is a matter of choice (just as choosing the coordinate axes to use
on a plane is a matter of choice; any pair of perpendicular lines can work!). So
some people choose to describe colors in terms of hue, saturation, and “value,”
while others prefer to describe mixes of red, green, and blue. We’ll say much
more about these in Section 28.13.

Careful physiological experiments have revealed much of the structure of the
eye; Deering [Dee05] presents a good summary of the results of this work in the
context of understanding what the retina can detect, which provides a guide to
what is worth rendering in the first place. The key thing, from the point of view
of understanding color, is the presence of two kinds of receptors: rods and cones.
Rods are sensitive to visible light of all wavelengths, while the three types of
cones are sensitive to different wavelengths of light: The first has its peak response
at 580 nm, the second at 545 nm, and the third at 440 nm (see Figure 28.4).
Detailed observations of the response curves for the receptors (including rods) are
described by Bowmaker and Dartnall [BD80]. These are often described as “red,”
“green,” and “blue” receptors, even though the red and green peaks occur at wave-
lengths commonly described as yellow, with the red peak being an orangy yellow
and the green peak being a greener yellow. (To be more precise, a monospectral
light of 580 nm wavelength causes, in most viewers, the percept “orangy yellow.”)
A better set of names is “long wavelength,” “medium wavelength,” and “short
wavelength” receptors, and the names L, M, and S are often used for these. We’ll
generally use “red,” “green,” and “blue,” however, to avoid the need to convert
from wavelength to color.

One can read this graph by saying, for instance, that a certain amount e of light
at 560 nm will cause a response in a red receptor, but that one would need twice as
much light at wavelength 530 nm to generate the same response in that red recep-
tor. (Of course, these lights provoke very different responses in the green and blue
receptors, too.) Furthermore, the effects of different lights on the red receptor are
additive: Sending in both e light at 560 nm and 2e light at 530 nm will generate
the same red-receptor response as sending 2e at 560 nm. If we use f (λ) to indicate
the red receptor’s response at wavelength λ and use I(λ) to indicate the incom-
ing light’s intensity at wavelength λ, then the total response from the receptor
will be
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Figure 28.4: The approximate spectral response functions of the three types of cones in
the human retina; the labels R, G, and B are misleading, because the peaks of the R and G
curves both correspond to monospectral lights that most people describe as in the “yellow”
range.
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Figure 28.5: Light, described by its spectral power distribution, enters the eye; the three
types of cones each respond and their individual responses are conducted by the optic
nerves to the brain, resulting in a perception of color. These correspond to three distinct
areas of study: physics, physiology, and perceptual psychology.

∫ 700 nm

400 nm
I(λ) f (λ) dλ. (28.2)

In short, the total response is a linear function of the incoming light I, with the
linear operation being “integrate against the response curve.”

With this in mind, we can consider a system diagram (see Figure 28.5) tracing
how a physical phenomenon (the spectral power distribution of light) becomes
a perceptual phenomenon (the experience of color). Notice that this diagram is
slightly simplified, in that it treats the incoming light without considering how
the pattern of light is organized (i.e., what the person is actually seeing). This
omission makes it impossible for this model to account for phenomena like spatial
comparison of colors or color constancy, but the simplification—we can imagine
that all the light arriving comes from a single, large, glowing surface surrounding
the viewer—makes it easy to discuss the basic phenomena of color.

28.4 The Perception of Color

Given the three types of cones, it’s not surprising that color perception appears
to be three-dimensional. We begin with the examination of the aspect that’s least
related to color, which is brightness—the impression we have of how bright a
light is, independent of its hue. By the way, the brightness we are referring to
is not a quantity that has physical units; it’s a generic and informal term used to
characterize the human sensation of the amount of light arriving at the eye from
somewhere (a lamp, a reflecting surface, etc.).

28.4.1 The Perception of Brightness

To determine relative brightness of light at different wavelengths, imagine an
experiment in which you are shown two lights: a 555 nm reference monospec-
tral light source, and a second monospectral light source whose wavelength λ will
be varied over the range 400 nm to 700 nm. We fix a particular wavelength λ, and
you are given a knob with which you can control a multiplier for the reference light
source; you adjust it until it has the same brightness as the one at wavelength λ.
We record the setting g(λ) and reset λ to a new value and repeat. When we are
done, we have a tabulation of how effective light at frequency λ is at seeming
bright, compared to light at the reference wavelength 555 nm. For each value
of λ, the number g(λ) tells how much less effective light at wavelength λ is in
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Figure 28.6: The luminous efficiency at each wavelength tells how much less bright light of
that wavelength appears than light at the standard wavelength of 555 nm.

provoking a response than light at wavelength 555 nm. Scaling so that the largest
value of g(λ) is 100%, we can plot the resultant function λ 
→ e(λ) (see Fig-
ure 28.6); the resultant graph shows the luminous efficiency function for the
human eye. (“Efficiency” here refers to how efficient energy at a particular wave-
length is in provoking the sensation of brightness.)

The luminous efficiency graph actually varies from person to person, and
varies based on the person’s age as well; in view of this, a standard luminous
efficiency curve was derived by averaging many observations.

This standardized tabulation can be used to define the luminance of a
light source: We multiply the intensity at each of the tabulated wavelengths by
the luminous efficiency value for that wavelength, and compute the sum, thus
approximating the value ∫

I(λ)e(λ)dλ, (28.3)

where I(λ) is the spectral intensity at wavelength λ. The resultant value has units
of candelas, which is the SI unit for the measurement of luminous intensity.
One candela is the luminous intensity, in a given direction, of a source that emits
monochromatic radiation at a frequency of 540 × 1012 Hz (i.e., 555 nm wave-
length),1 and whose radiant intensity in that direction is 1/683 watt per steradian.
The international standards committee chose the peculiar numbers in this def-
inition to make it closely match earlier measures that were based on the light
from a single standard candle, or the light from a certain near-blackbody source
(a square centimeter of melting platinum). Naturally, light at other wavelengths,
of equal radiant intensity, produces fewer candelas of visible light than does light
at 555 nm.

To give a sense of common illumination in terms of candelas, my LCD screen
emits about 250 candelas per square meter (one candela per square meter is called
a nit; it’s the photometric term corresponding to radiance in radiometry), while
the light from the screen at a movie theatre is about 40 candelas per square meter.

1. The definition is given in terms of frequency rather than wavelength because the speed
of light varies in different media; in graphics, where we work primarily with light in
air, this consideration is irrelevant.
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A studio broadcast monitor has a reference brightness of 100 candelas per square
meter.

It’s tempting to say that since the human eye’s sensitivity to light is captured
by the candela, we could (if we wanted to do just grayscale graphics) represent
all light in terms of the candela. As mentioned in Chapter 1 and Chapter 26, this
would be a grave error. In doing so, we’d need to assign a reflectivity to each sur-
face; assuming diffuse surfaces, this would be a single number indicating what
fraction of incoming light becomes outgoing light. Suppose we have a surface
whose reflectivity is 50%. Then incoming light of a particular luminous inten-
sity would become outgoing light of half that intensity. The problem is that real
surfaces, with real light, may reflect different wavelengths differently. A surface
might, for instance, reflect the lower half of the spectrum perfectly, but absorb all
light in the upper half. If it’s illuminated by two sources, one that’s in the lower
half and one that’s in the upper half, with equal luminous intensity, the reflected
light in the first case will have the same luminous intensity, while in the second
case it will have none at all. In other words, there are cases where this “summary
number” captures information about human perception, but masks information
about the underlying physics that brought the light to the eye. One could argue,
therefore, that luminous intensity of light should only be examined for light that
arrives at some person’s eye.

Counter to this position is the fact that much of the light we encounter every
day (like that from incandescent lamps) is a mixture of many wavelengths, and
most surfaces reflect some light of every wavelength, so in practice we can use
a summary number like luminous intensity, and a summary reflectivity, and the
reflected light’s luminous intensity will turn out to be the incoming intensity mul-
tiplied by the reflectivity. This summary-number approach only causes problems
in cases where the spectral distribution of energy (or of reflectivity) is peculiar.
But with the advent of LED-based interior lighting, such peculiar distributions are
becoming increasingly commonplace; many of today’s “white LED flashlights”
are actually based on multiple LEDs of different frequencies, and have highly
peaked spectral distributions, for instance. This discussion is another example of
the Noncommutativity principle.

We’ve said that because photometric quantities represent weighted averages,
and the weighted-averaging process does not commute with various other oper-
ations (like multiplication), these photometric quantities will be of little use to
us except when applied to the light arriving at the human eye. To clarify the
statement about weighted averages, consider the following example. We take
two lists of numbers,

L = (1, 3, 1, 5, 6) and (28.4)

R = (.33, .33, .33, 0, 0), (28.5)

and consider the weighted sum of each under the weights

w = (0.2, 0.2, 0.3, 0.3, 0.0). (28.6)

The results are 2.6 and .233, respectively.
Now consider the term-by-term product of L and R; it is

(0.33, 1, 0.33, 0, 0), (28.7)
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and its weighted sum, using w, is 0.33. Notice that 0.33 is not 2.6 × .233 =
.6058; in other words, computing the weighted sums and then multiplying is
different from multiplying and then computing a weighted sum. Now imagine
that L represents the light energy at five chosen frequencies, and R represents
the reflectivity of a surface at those five frequencies. Then the term-by-term
product represents the frequency distribution of the reflected light. But if we
computed the weighted sum of each thing (i.e., the thing corresponding to
the photometric measurements), then the product of the aggregate incoming
light and the aggregate reflectivity is not the aggregate outgoing light. (There’s
an argument to be made that we should not multiply the reflectances by the
weights, but we should weight them evenly; even with this approach, commu-
tativity fails.)

You may encounter other photometric terms; each of them can be thought of
as a radiometric quantity, recorded per wavelength and then integrated against the
luminous efficiency curve. Table 28.1 shows this correspondence.

Table 28.1: Comparison of radiometric and photometric terms.

Concept
Radiometric
Units

Photometric
Units

Photometric
Name (abbr.)

Spectral radiance W m−2 sr−1 nm−1 lm m−2 sr−1 Nit

. . . integrated over
an area

W sr−1 nm−1 lm sr−1 Candela (cd)

. . . integrated over a
solid angle

W m−2 nm−1 lm/m2 Lux (lx)

. . . integrated over an
area and a solid angle

W nm−1 lm Lumen (lm)

Note that radiance is also an integrated form of spectral radiance, but it’s
simply an integral over wavelength, without the weighting factor provided by
the luminous efficiency curve. Because of this, you cannot compute photomet-
ric quantities from nonspectral radiometric quantities. If someone asks, “I’ve got
a source that’s 18 W m−2 sr−1, how many nits is that?” there is no correct answer!

28.4.1.1 Scotopic and Photopic Vision
The rods (the other kind of receptor in the eye) are also sensitive to light, but in a
different way than the cones. The cones are the dominant receptors in high-light
situations (e.g., daytime), while the rods dominate in low-light situations (e.g.,
outdoors at night). The first of these is called photopic vision, and the second sco-
topic vision. The scotopic response curve is different from the photopic response
curve (see Figure 28.7), having a peak at a lower wavelength and dropping to
zero by about 650 nm. This means that the rods cannot detect the sort of light
we perceive as “red.” Because both kinds of receptors perform some adaptation
to average light levels, this makes red a good color for instruments that will be
used in low-light situations: The red light from the instruments does not affect the
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Figure 28.7: The luminous efficiency in photopic vision has a peak at 555 nm; the peak for
scotopic vision is closer to 520 nm.

average-light-level adjustment for the rods, which are the primary receptors in use
for seeing things in the dark.

28.4.1.2 Brightness
Our discussion so far has addressed the issue of how light of different wavelengths
is perceived. There’s a separate issue: how light of different intensities (but con-
stant spectral distribution) is perceived. In other words, if we have a diffuser—a
piece of frosted glass, for example—and it can be lit from behind by 100 identical
lamps, and we turn on one, or ten, or all 100 so that the diffuser appears to be
a variable light source, how will our eyes and brains characterize the change in
brightness? Given the wide range of intensities that we encounter in daily life, it’s
hardly surprising that the response can be modeled as logarithmic: The change
from one lamp to ten is perceived as being the same “brightness increase” as the
change from ten lamps to 100. (Here we are using brightness in a purely percep-
tual sense, not as something physical to be measured, but as a description of a
sensation.) That is to say, this model says that the perceptual strength associated
to seeing a light of luminous intensity I is

S = k log(I). (28.8)

In support of the idea of a logarithmic model of our sensitivity to luminance,
we can display two lights of the same luminous intensity and then adjust one until
it becomes just noticeably different from the other. By doing this over and over
at different starting sensitivities, we find that the just noticeable difference (or
JND) is about 1% (i.e., 1.01I is noticeably different from I) for a wide range
of intensities. In very dark and very bright environments, the number increases
substantially, but for a range that includes the intensity ranges of virtually all of
today’s displays, it is about 1%. So if we adjusted the intensity repeatedly by 1%,
we might expect to say that the brightness had increased by several “steps,” and
that k steps of increase would be achieved by multiplying by (1.01)k. (This rea-
soning makes the assumption that each JND seems to the viewer to be of the same
“size,” however.) This implies that the response is proportional to the logarithm of
the intensity.
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An alternative model (Stevens’ law) says that the response should be modeled
by a power law:

S = cIb, (28.9)

where b is a number slightly less than 1. The shapes of the graphs of log and
y = xb are somewhat similar—both concave down, both slowly growing—so it’s
no surprise that both can be used to fit the data decently. Each model has its detrac-
tors, but from our point of view, the important feature is that either one can be used
to generate a good fit to the data, particularly when the range of brightnesses being
considered is relatively small. In fact, as we’ll discuss later, the eye adapts to the
prevailing light in an environment, and intensities that differ from this by modest
amounts can be compared to one another. But our sensation of lights that are very
bright or very dim compared to the average is quite different (“too dark to see” or
“too bright to look at”).

The Commission Internationale de l’Éclairage (CIE), a group responsible for
defining terms related to lighting and color, chose to use a modified version of
Stevens’ law to characterize perceptual responses to light, and it’s this model that
we’ll use in further discussing the perception of brightness. To be explicit, the CIE
defines lightness as

L∗ =

{
116(Y/Yn)

1
3 − 16 Y

Yn
< 0.008856

903.3Y Y
Yn
≥ 0.008856

, (28.10)

where Y (called luminance) denotes a CIE-defined quantity that’s proportional
(for any fixed spectrum) to the energy of the light, and Yn denotes the Y value for
a particular light that you choose to be the “reference white.”

You can see that L∗ is defined by a 1/3 power law that’s been shifted down-
ward a little (the −16 does this), and which has had a short linear segment added
to deal with very low light values. In practice, this linear segment applies only
to intensities that are a factor of more than 100 smaller than that of the reference
white; in a typical computer graphics image, these are effectively black, so the
linear segment is mostly irrelevant.

In practice, this logarithmic or power-law nature of things is somewhat con-
founded by “adaptation” of the rods and cones. The luminance we encounter in
ordinary experience ranges over a factor of 109 between a moonless overcast night
and a snowy region on a sunny day. Both rods and cones react to arriving light with
chemical changes, which in turn generate an electrical change that is communi-
cated to the brain. Plotting the output of the various sensors against the log of the
luminance, we get a graph like the one shown in Figure 28.8; the rods react to
varying luminance by changing their output . . . up to a point. After that point, any
further increase in luminance doesn’t affect the rods’ output, and they are said to
be saturated. The cones, on the other hand, begin to change their output substan-
tially at about that point, so differences in brightness are detected by the photopic
system. The placement of the cones’ curve on the axes, though, is not fixed: Upon
exposure to light of a certain level, like D on the chart, the cones, which were near
the limit of their output, will gradually adapt and shift their response curve so that
it’s centered at D, thus responding to light changes at or near D. This ability to
adapt is limited—at some point, all light begins to seem “very bright.” The func-
tion of the “reference white” in the CIE definition is to characterize the interval of
intensities over which we want to characterize lightness.
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Figure 28.8: The percent output of rods and cones. The rods’ output flattens out at modest
luminance levels, and no change in output occurs even in very bright scenes; the cones’
response also flattens out, but the absolute position of the curve may vary along the log
luminance axis substantially as the cones adapt to the light present.

28.5 Color Description

Among lights of constant brightness, there is considerable variation in spectral
power distribution: Those with greater power in the long wavelengths tend to
have one appearance; those with greater power in the short wavelengths have
another. We associate these appearances with the notions of “red” and “blue.”
Indeed, there’s a whole vocabulary associated with describing color. Because it’s
natural to think of color as an intrinsic property of surfaces or lights, and only
after a recognition of the mechanism of color perception is it clear that color is
in fact a perceptual phenomenon, most discussions of color talk about the colors
of objects, especially paints. We’ll begin by introducing the terms used, and then
consider their meanings in light of our system view. Such terms as “hue,” “light-
ness,” “brightness,” “tints,” “shades,” “tones,” and “grays” are all used to describe
our perception of things. Lightness is used to describe surfaces, while brightness
usually describes light sources. Hue is used to characterize the quality that we
describe with words like “red,” “blue,” “purple,” “aqua,” and so on, that is, the
quality that makes something appear to not be a blend of black and white. Blends
of black and white are called grays; blends of white and pure colors are called
tints, while blends of black and pure colors are called shades. Colors that are
blends of black, white, and some pure color are called tones (see Figure 28.9).
(Properly speaking, we should say “The percepts arising from various combina-
tions of stimuli that produce the percepts ‘black’ and ‘white’ are called ‘grays’,”
but such language rapidly becomes fairly cumbersome.)

Grays

White

Black

Tints

ShadesTones

“Pure”
color

Figure 28.9: Tints, tones, and
shades, as commonly used to
describe colors.

What constitutes a “pure color,” though? Among all lights of a given lumi-
nance (monospectral or otherwise), we can form combinations by blending 50%
of one light with 50% of another, or blending with a 70:30 ratio, etc. Doing
so takes lights whose colors we’ve experienced and produces new ones, whose
colors may be new to us or may be ones we’ve experienced before. As we exper-
iment with more and more spectral power distributions, we find that certain dis-
tributions have colors that are “at the edge,” in the sense that they never appear as
the color of any combination of other spectra. Such colors can be called “pure.”
Indeed, experiment shows that such a designation of pure spectra leads to labeling
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precisely to the monospectral sources as “pure.” Our understanding of the cones
can tell us why.

The sensitivities of the three cones to various wavelengths of light mean that
a monospectral light arriving at the eye generates a signal to the brain consisting
of the outputs of the three kinds of sensors, which can be read off the response
chart. In Figure 28.11 you can see how light of 440 nm generates lots of blue-
cone (i.e., short-wavelength) response, less green (i.e., medium-wavelength), and
even less red (i.e., long-wavelength). Similarly, at 570 nm, both red and green
cones produce large responses, while the blue cones generate almost none. One
can make a three-dimensional coordinate system labeled with S, M, and L, and
plot the curve defined by such responses (see Figure 28.10).

0 100 200 300 400 5000

100

200

300

400

500
0

20

575

550

600

525

M

625

500

650

475

675

450

425

700
400

S

L

0

200

400

0 100 200 300 400 500

0

20

550

L

575

525

600

500

625

M

475

650

450
425

675

400
700

S

Figure 28.10: The response
curve for monospectral visible
light. Note that the short-
wavelength-response axis has
a different scale. We show the
curve from two different views.

Light that is a mix of these monospectral lights will (approximately, and within
certain bounds) provoke a response that is a linear combination (with positive
coefficients) of the responses to the monospectral lights, that is, the set of all
responses will form a generalized cone in this space of possible cone responses
(see Figure 28.12). The responses to monospectral lights are the points on the
boundary of this cone, as predicted, in the sense that each of them cannot be pro-
duced as a combination of other responses. There’s one exception: The start and
end of the monospectral response curve are points representing pure red and pure
violet. Combinations of these form a line; the collection of rays from the origin
through this line is a planar region constituting a part of the cone’s boundary.
Points on this part of the boundary are representable as combinations of other
response points; they are the “purples,” and are not “pure” colors. (Note that the
geometry of this response cone—the mostly convex shape of its cross section, in
particular—is a consequence of the shapes of the response curves for the three
types of cones in the eye. In the exercises in this chapter, you’ll study what the
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Figure 28.11: The response of the three cone types to a monospectral light can be read
from the plot of their sensitivities. Light at 450 nm, for instance, generates about equal
short- and medium-wavelength responses (shown in blue and green and labeled “S” and
“M”), but a slightly smaller long-wavelength response (shown in red and labeled “L”).
Light at 640 nm generates a large red response, a small green response, and almost no
blue response.
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Figure 28.12: The set of all possible responses from combinations of monospectral lights
(i.e., all possible spectral power distributions) forms a generalized cone in the space of
response triples. The cone’s intersection with the S+M +L = 1000 plane (tan) is the area
bounded by the aqua curve.

shape of this curve might be if the sensors’ response curves were different, and
where the monospectral curve would lie in those cases.)

28.6 Conventional Color Wisdom

Knowing how spectral information is converted to perceive color (at least in the
absence of gestalt influences) allows us to understand something about the con-
ventional wisdom surrounding color. We’ll discuss a few common claims here.

28.6.1 Primary Colors
We often hear that “red, green, and blue are primary colors” (usually without a
definition of “primary”), which we take to mean that they are colors that cannot
be made from others, while all other colors can be made from them. Anyone who
has tried to make orange from red, green, and blue paint knows this is false. But
you can create a wide range of colors (or, to be pedantic, of paints which, when
illuminated by sunlight or similar spectra, produce a wide range of color percepts)
from red, green, and blue—far wider than you can produce from pink, yellow, and
orange, for instance.

If we consider the aqua curve in Figure 28.12, but we adjust each monospectral
light using the luminous efficiency curve so that they all have the same perceptual
brightness, we get a curve in the plane of constant brightness that looks some-
thing like Figure 28.13 and on which we can identify points corresponding to the
percepts “red,” “green,” and “blue.” The responses associated to other spectral
power distributions of the same brightness fill in this horseshoe shape, resulting in
other percepts of “less saturated” colors, including white near the center.

The triangle generated by the colors red, green, and blue occupies much of
this horseshoe shape, partially justifying calling them “primary,” although this
corresponds to the addition of lights (i.e., we can say that red, green, and blue are
primary light colors).
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Figure 28.13: The set of responses associated to monospectral lights of equal brightnesses.
These form a curve in a plane of constant brightness. Three points, corresponding to per-
cepts of “red,” “green,” and “blue,” are marked on the curve.

For paints, there’s something else going on: Red paint absorbs most light
with short wavelengths and reflects most light with longer wavelengths; when
illuminated with white light, it appears red. Similar statements apply to green and
blue paint. When we mix red and green paint, the red paint absorbs much of the
green light, and the green paint absorbs much of the red light, and what’s reflected
is a spectral mix of red and green, but not much of either—we see brown.

This, by the way, is the formal explanation of the claim that “lights mix addi-
tively, while paints mix subtractively.”

But the statement that red, green, and blue are primary is only part true. Indeed,
choosing any three points on the curve above covers some portion of all possible
perceptual responses and misses others. To really do the job, you’d need infinitely
many “primaries” consisting of all the monospectral lights.

28.6.2 Purple Isn’t a Real Color

People are sometimes told that “purple isn’t a real color,” because it doesn’t appear
in the rainbow. (Purple, as we mentioned, is how we describe the color sensation
produced by a mix of red and blue-to-violet light, i.e., near the straight edge of
the horseshoe shape.) It’s true that it’s not a color sensation corresponding to a
monospectral source, but it certainly is a color sensation.

28.6.3 Objects Have Colors; You Can Tell
by Looking at Them in White Light

The claim that objects have colors that are revealed by exposing them to white
light can perhaps be better stated by saying that objects illuminated by sunlight
reflect light with a spectral distribution that provokes a color response in our
brains. But there are many kinds of “white light,” and every actor knows that the
white lights on stage and the white light of the sun are very different, and require
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different cosmetics. Furthermore, for objects with highly peaked reflectance
spectra, the existence of peaks or valleys in the illuminant spectrum can have dras-
tic effects on the reflected light. It’s perhaps better to say the following: “Objects
have reflectance spectra, and the human brain is surprisingly good at predicting,
for natural objects with not-too-peaked reflectance spectra, which are common,
how an object seen under unusual illumination (shade, ‘colored’ light) will look
under illumination by sunlight. This fairly consistent prediction could be called
the ‘color’ of the object.”

28.6.4 Blue and Green Make Cyan

Various claims about how colors mix are commonplace. In the case of paint color
mixes, they’re often misleading. For instance, painting with a blue watercolor, let-
ting it dry, and then painting a red stripe over the blue leads to one thing; doing
this in the opposite order leads to another. Mixing the colors before painting
leads to a third. So any claims about mixing of colors must include the mixing
process to be testable. In the case of colors atop others (see Figure 28.14), one
can think of light as being reflected from the top color, from the bottom color after
passing through the top, or from the underlying surface after passing through both.
If we assume that each time light passes through a color-layer, some fraction of
the energy at certain wavelengths is absorbed, this last kind of light passes twice
through each paint layer, while the first kind never passes through any paint layer.
The Kubelka-Munk coloring model [Kub54] carries out this analysis in detail.

This mixing problem is further compounded by the difference in the way lights
mix and pigments mix; the distinction here is purely physical. If I shine a red and a
green light onto a uniformly reflective piece of white paper, the reflected light will
appear yellow. By contrast, if I have a red paint or dye and apply it to a white piece
of paper, it absorbs colors outside the long-wavelength part of the spectrum so that
only light we perceive as “red” gets reflected. If I mix this with a green paint or
dye that absorbs all light except that in the green-percept part of the spectrum,
the two together will absorb almost all light. If the paints or dyes were ideal,
the result would be black paint; in practice, as noted earlier, we often get a muddy
brown, indicating that very little light is reflected. These two phenomena are given
the misleading names additive color and subtractive color, respectively; in fact,
it’s spectra that are being added or filtered, and the color perception mechanism
remains unchanged, as we said in Section 28.6.1.

Figure 28.14: One color painted atop another. Light can be reflected from the top, from the
bottom after passing through the top, or from the substrate on which the bottom is painted.
Assuming some attenuation for each time the light passes through a paint layer, we get a
model of the reflected light.
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28.6.5 Color Is RGB

As computer displays have become commonplace and dialog boxes for choosing
colors with RGB sliders have proliferated, one sometimes hears that color is just
a mix of red, green, and blue. As we’ve seen already, there are many colors that
cannot be made either by mixing red, green, and blue dyes/inks/paints or by mix-
ing red, green, and blue lights. It is true that such mixes can generate a great many
colors, but not all.

28.7 Color Perception Strengths
and Weaknesses

The physiological description of sensor responses to light is still a step away from
the perception of color; that happens in the brain. When those perceptions do
occur, we confidently say that we saw something red, or blue, or yellow. But
numerous optical illusions show that we may be overconfident. We can summarize
a few key things. We’re good at

• Detecting differences between adjacent colors

• Maintaining our sense of the “color of an object” in the presence of chang-
ing illumination (see Figure 28.15)

We’re not very good at telling whether two widely separated colors are the
same, or remembering a color from one day to the next. Then again, given the
changing lighting circumstances we constantly encounter, this is probably an
advantage rather than a limitation.

28.8 Standard Description of Colors

With the goal of having a common language for describing color, there’s been a
great deal of work in providing standards. The Pantone™ color-matching system
is a naming system in which a wide variety of color chips are given standard
numbers so that a printer can say, for instance, “I need Pantone 170C here.” The
numbers refer to calibrated mixes of certain standardized inks.

Figure 28.15: The squares labeled A and B have identical gray values, but we perceive
them as very different shades of gray; indeed, we’re inclined to call one a “white square”
and the other a “black square.” One may regard this as a failure of the visual system to
“recognize the same color,” but it’s more appropriate to regard it as the success of the visual
system in detecting color constancy in the presence of varying illumination: We perceive
all the black squares to be black even though the actual gray values in the image vary
substantially. (Courtesy of Edward H. Adelson.)
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There’s also the widely used Munsell color-order system [Fi76], in which a
wide range of colors are organized in a three-dimensional system of hue, value
(i.e., lightness), and chroma (i.e., saturation or “color purity”), and in which adja-
cent colors have equal perceived “distance” in color space (as judged by a wide
collection of observers).

28.8.1 The CIE Description of Color

We have observed that monospectral lights provoke a wide range of sensor
responses, plotted on the horseshoe-shaped curve. We’ve also seen that choosing
three monospectral lights in the red, green, and blue areas of the spectrum (we’ll
call these primaries for the remainder of this section) allows us to produce, by
combining them, many familiar color sensations, but not by any means all. As we
said earlier, when we consider a color like orange, we find that no combination of
our red, green, and blue primary lights gets us light that we perceive as orange. We
can, through subterfuge, still express the orange light as a sum of the red, green,
and blue primaries, however. What we really want is to say that “orange looks like
about a half-and-half mix of red and green, and then move away from blue.” In
equations, we’d write something like

orange = .45red + .45green− 0.1blue. (28.11)

Of course, we can’t take away blue light that isn’t there, but we can add blue light
to the orange. If we find that

1.0orange + 0.1blue = .45red + .45green, (28.12)

in the sense that the color mixes on the left and right produce the same sensor
responses, then we’ll express that numerically with Equation 28.11. In this way,
we can find what mixes of our primaries are needed to match any monospectral
light L, and plot the result as a function of the wavelength of L; the result has
the shape shown in Figure 28.16. These three “color matching functions,” r̄, ḡ,
and b̄, tell us how much of our red, green, and blue primaries need to be mixed
to generate each monospectral light. For example, to make light that looked like
500 nm monospectral light, we’d have to combine about equal parts of blue and
green, and subtract quite a lot of red (i.e., we’d use r̄(500), ḡ(500), and b̄(500) as
the mixing coefficients). To make something resembling 650 nm light, we’d use
lots of red, a little green, and no blue.

What about a 50-50 mix of 500 nm and 650 nm light? We’d use a 50-50 mix of
the two color matches above. Because such a mix has all coefficients positive, it’s
actually possible to make it with our red, green, and blue standard monospectral
lights. In general, if we have a light with a spectral power distribution P, we can
find the “mixing coefficients” by applying the idea above to each wavelength, that
is, we compute

cr =

∫ 700

400
P(λ)r̄(λ) dλ, (28.13)

cg =

∫ 700

400
P(λ)ḡ(λ) dλ, and (28.14)

cb =

∫ 700

400
P(λ)b̄(λ) dλ, (28.15)
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Figure 28.16: The color-matching functions, which indicate, for each wavelength, how
much of a standard red, green, and blue light must be mixed to produce the same sen-
sor responses as a monospectral light of wavelength λ. At least one mixing coefficient is
negative for many monospectral lights, indicating the impossibility of making those colors
as mixes of red, green, and blue.

and use these as the amounts of our red, green, and blue primaries. (Of course, if
any of the three computed coefficients is negative, we cannot reproduce the color
with our sources.)

Unfortunately, the set of all convex combinations of our three primaries
doesn’t include all possible colors; geometrically, the triangle whose vertices cor-
respond to our primaries is a proper subset of the horseshoe-shaped set of sensor
responses.

In 1931, the CIE defined three standard primaries, which it called X, Y , and
Z, with the property that the triangle with these three as vertices actually includes
all possible sensor responses. To do so, the CIE had to create primaries that had
negative regions in their spectra, that is, they did not correspond to physically
realizable light sources. Nonetheless, these primaries have certain advantages.

• The Y primary was defined so that its color-matching function was exactly
the luminous efficiency curve; this means that for any spectral light source,
T , written as a combination

T = cxX + cyY + czZ, (28.16)

the number cy will be the perceived intensity of the light. This was signifi-
cant in developing black-and-white televisions: The signal had to transmit
in some form the Y-component of the lights that the camera was seeing.2

Later, when color signals began to be broadcast, the cx and cz data were
sent in a different band; color televisions could decode these, and black-
and-white televisions could ignore them.

• The color-matching functions for X, Y, and Z are everywhere non-negative
(see Figure 28.17), so all colors are expressed as non-negative linear com-
binations of the primaries.

2. The value cy itself is not what’s transmitted; more on this later.
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Figure 28.17: The color-matching functions x̄, ȳ, and z̄ for the 1931 CIE primaries.

• Because the red, green, and blue primaries can be identified as points in
XYZ-space (i.e., as a linear combination of X, Y, and Z), any combination
of them can be so expressed as well; thus, there’s a direct conversion from
XYZ to RGB coefficients (and vice versa).

In analogy with the color-matching functions for red, green, and blue, a light
whose spectral power distribution is P can be expressed as

XX + YY + ZZ, (28.17)

where

X = k
∫

P(λ)x̄(λ) dλ, (28.18)

Y = k
∫

P(λ)ȳ(λ) dλ, and (28.19)

Z = k
∫

P(λ)z̄(λ) dλ. (28.20)

(More precisely: The light with power distribution XX + YY + ZZ and the
light with power distribution P will evoke the same color response.)

In practice, such integrations are computed numerically, using the values of
the matching functions tabulated at 1 nm intervals that are found in texts such
as [WS82, BS81]. The constant k is 680 lm W−1. But we also sometimes compute
the “colors” for the reflectance spectrum of some reflecting object. In this case,
one must choose a standard light source as a reference for “white” and illuminate
the surface. The values are usually scaled so that a completely reflective surface
has a Y-value of 100; thus,

k =
100∫

W(λ)ȳ(λ) dλ
, (28.21)
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where W is the spectral power distribution of the standard white light we’re
using.

Suppose that the light C produces the same sensor responses as

XX + YY + ZZ. (28.22)

In that case, we write

C = XX + YY + ZZ. (28.23)

The CIE defines numbers that are independent of the overall brightness by
dividing through by X +Y +Z; doubling the incoming light doubles each of X, Y ,
and Z, but also doubles their sum, so the quotients

x =
X

X + Y + Z
, (28.24)

y =
Y

X + Y + Z
, and (28.25)

z =
Z

X + Y + Z
(28.26)

remain unchanged. Note that the sum x + y + z is always 1, so if we know x and
y, we can compute z. Thus, the collection of intensity-independent colors can be
plotted on just the xy-plane; the result is the CIE chromaticity diagram shown
in Figure 28.18. Notice that X and Y were chosen so that the diagram is tangent
to the x- and y-axes.

Near the center of the “horseshoe” is illuminant C, which is a standard
reference “white,” based on daylight. Unfortunately, it doesn’t correspond to
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Figure 28.18: The CIE chromaticity diagram. The boundary consists of chromaticities cor-
responding to monospectral lights of the given wavelengths, shown in nanometers. The dot
in the center is a standard “white” light called “illuminant C.”
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x = y = z = 1/3, although it is close. (Other reference whites are described
in Section 28.11.)

Note that if we know x and y, we can compute z = 1 − (x + y), but this does
not allow us to recover X, Y , and Z; for that we need at least one more piece of
information (all xyz-triples lie on a planar subspace of XYZ-space). Typically we
recover XYZ from x, y, and Y (the luminance value). The formulas are

X =
x
y

Y , (28.27)

Y = Y , and (28.28)

Z =
1− (x + y)

y
Y . (28.29)

28.8.2 Applications of the Chromaticity Diagram

The chromaticity diagram has several applications.
First, we can use the diagram to define complementary colors: Colors are

complementary if they can be combined to form illuminant C (e.g., D and F in
Figure 28.19). If one requires a half-and-half mix in the definition, then some
colors, like B, have no complement.
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Figure 28.19: Colors on the chro-
maticity diagram. D and E are
complementary.

Second, the diagram lets us make precise our notion of excitation purity:
A color like the one indicated by point A in Figure 28.18 can be represented
by combining illuminant C with the pure-spectral color B. The closer A is to
B, the more spectrally pure it is. So we can define the excitation purity to be
the ratio of the length AC to the length BC. We extend this definition to C by
saying that its excitation purity is zero. For some colors, like F, the ray from C
through F meets the boundary of the horseshoe at a nonspectral point; such col-
ors are called nonspectral; but the ratio CF to CG still makes sense, and we
can define excitation purity this way. The dominant wavelength, however, is more
problematic; the standard is to say that the dominant wavelength is a “comple-
mentary” one at B, which would be denoted 555 nm c, where the “c” indicates
complementarity.

A third use of the chromaticity diagram is the indication of gamuts: Any light-
producing device (like an LCD monitor) can produce a range of colors that can be
indicated on the chromaticity diagram. Colors outside this gamut cannot be pro-
duced by the device. (Similarly, printing devices have gamuts, once one defines a
standard illuminant under which the printed page will be viewed.) A device that
can produce two colors can also produce (by adjusting the amounts of each) chro-
maticity values that are convex combinations of the two. In Figure 28.20, lights
whose chromaticity values are I and J can be combined to form chromaticity
values on the line segment between them; adding a third color K gives a gamut
consisting of a whole triangle. Clearly there’s no triangle with vertices in the
horseshoe that contains the entire horseshoe; thus, no three-color display, no mat-
ter how perfectly calibrated, can produce all color percepts.

x
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.9

0.1

0.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

500

510

520

540

560

580

600

700

480

490

400

I

KJ

Figure 28.20: Mixing of colors in
the chromaticity diagram. Colors
on the line IJ can be created by
mixing the colors I and J; all col-
ors in the triangle IJK can be
created by mixing the colors I, J,
and K.

Note that printer gamuts are typically far smaller than those of displays; in
high-end printers, this can be partially remedied by the use of spot color—
additional inks placed in the printer to expand the gamut so as to include a partic-
ular color. But in general, getting faithful print versions of images from a display
is impossible. The problem of gamut matching (i.e., finding reasonable mappings
from the gamut of one device to that of another) remains a serious challenge.
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28.9 Perceptual Color Spaces

The CIE color system is remarkably useful; it’s so standard that colorimeters mea-
sure X, Y , and Z values of light, for instance. In the CIE system, each color
has XYZ-coordinates; it’s tempting to measure the “distance” between two col-
ors C1 = X1X + Y1Y + Z1Z and C2 = X2X + Y2Y + Z2Z by computing the
Euclidean distance between the triples (X1, Y1, Z1) and (X2, Y2, Z2). Unfortunately,
this does not correspond to the perceived color distance: If C1 and C2 have the
same Euclidean distance as C3 and C4, the perceived distance between them may
be very different.

Fortunately, one can transform the XYZ-coordinates, nonlinearly, to get new
coordinates in which the Euclidean distance does correspond to perceptual dis-
tance. The 1960 CIE Luv color coordinates were developed to meet this need,
but they were superseded by the 1976 CIE L∗u∗v∗uniform color space. Letting
Xw, Yw, and Zw denote the XYZ-coordinates of the color to be used as white, the
L∗u∗v∗coordinates of a color with XYZ-coordinates (X, Y , Z) are defined by the
formula for L∗ given in Equation 28.10, and

u′ =
4X

X + 15Y + 3Z
, (28.30)

v′ =
9Y

X + 15Y + 3Z
, (28.31)

u′w =
4Xw

Xw + 15Yw + 3Zw
, (28.32)

v′w =
9Yw

Xw + 15Yw + 3Zw
, (28.33)

u∗ = 13L∗(u′ − u′w), and (28.34)

v∗ = 13L∗(v′ − v′w). (28.35)

The CIE has also defined L∗a∗b∗ color coordinates (sometimes called “Lab”
color) by

a∗ = 500
[
(X/Xw)

1
3 − (Y/Yw)

1
3

]
and (28.36)

b∗ = 500
[
(Y/Xw)

1
3 − (Z/Zw)

1
3

]
, (28.37)

where Xw, Yw, and Zw denote the XYZ-coordinates of the white point. Both
L∗u∗v∗and L∗a∗b∗can be used to measure “distance” in color space, and both
see frequent use in computer graphics, although L∗a∗b∗seems to be more widely
used in the description of displayed colors.

28.9.1 Variations and Miscellany

The CIE diagram we’ve shown is based on the 1931 tabulation of colors, in which
samples subtended a 2◦ field of view on the retina. There’s also a 1964 tabulation
for a 10◦ field of view, emphasizing larger areas of constant color. For much of
computer graphics, the narrower field of view is more relevant.

The mapping from the space of all spectra (which is infinite-dimensional) to
the space of response triples (which is three-dimensional) is more or less linear
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Figure 28.21: Two metameric light spectra (top) are each multiplied (wavelength by
wavelength) by the reflectance spectrum (middle). The resultant spectra are no longer
metameric. (Next to the spectrum for each light are its corresponding RGB response
values.)

(at least for not-too-bright lights, where saturation comes into play, and not-too-
dim lights, where photopic/scotopic differences enter); this means that it’s nec-
essarily many-to-one. Different spectra that generate the same response values
are called metamers; metameric lights are interesting because, upon reflection by
a surface, they can become nonmetamers (see Figure 28.21). In practice, most
reflectance functions are nonspiky enough that metameric effects like this are
not significant, although with LED lamps, which tend to have spikier spectra, the
problem may be more serious.

The colors in the x+y+ z= 1 plane of the CIE XYZ space are not all possible
colors. As the sum x + y + z varies, other colors appear (such as maroon). Fur-
thermore, colors like brown, which are generally used to describe reflective color
rather than emissive color, tend not to appear at all.

The colors purple and violet are often considered to be synonymous, but violet
is the name for a pure spectral color (at about 380 nm, just on the edge of percep-
tibility), while as we said, purple is the name for points on or near the straight
bottom edge of the CIE horseshoe.

28.10 Intermezzo

Let’s pause and note the important points so far. First, color is a three-dimensional
perceptual phenomenon evoked by the arrival of different spectral power distribu-
tions at the eye. Any color percept can be generated by a combination of the CIE
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primaries X, Y, and Z; if a color C is generated by XX + YY + ZZ, we can think
of X, Y , and Z as “coordinates” for that color in the space of all possible colors.

There are other coordinate systems on the space of colors, such as the CIE
L∗u∗v∗and L∗a∗b∗, in which L∗captures the notion of intensity, while the other
coordinates encode chromaticity. In these systems, distances between color triples
correspond to perceptual distances much more closely than do distances between
(X, Y , Z)-coordinate triples. But the coordinates in these systems are not linear
functions of the X, Y , Z-coordinates (which are in turn linear functions of radio-
metric quantities), so they are not suitable for computations with a physical basis.

In both of the “perceptual” coordinate systems, there’s a free parameter,
namely, the color chosen as “white.” Without the knowledge of the white point,
you cannot convert an L∗u∗v∗ coordinate triple into an XYZ triple, for instance.

We now move on from the description of color to the question of how to rep-
resent color in an image file, a television signal, etc. Considering that there’s only
a half-century of experience in this regard, a surprisingly large number of repre-
sentation methods have arisen.

28.11 White

As we mentioned earlier, many spectral power distributions appear white, so pick-
ing a particular white point can be a challenge. And an SPD that looks white at
one intensity may look yellow at another intensity, because of the adaptation of the
eye. Furthermore, the surroundings may have a substantial impact on the appear-
ance of a color; if we watch a slide show in a dark room, showing a scene illumi-
nated by incandescent lamps, we rapidly accommodate so that the white point of
the slides appears white. But if that same slide show is shown in a well-lit room
with white walls, the “white” within the slides may appear yellow, for instance.

The CIE has defined several standard “whites”; the simplest (from the point
of view of computation) is illuminant E, which has a constant SPD across the
range of visible light. Illuminant C, now deprecated but still widely used, attempts
to approximate the white of sunlight. More common in modern usage are the D
series of illuminants, which are tabulated by the CIE in 5 nm increments. Many
of the most useful are, at a gross level, quite similar to blackbody distributions,
and the names indicate this: D65 is similar to 6500 K black body radiation, D50 is
similar to 5000 K radiation, etc. The photography industry uses the D55 standard;
either this or D65 is a good choice for much of computer graphics.

28.12 Encoding of Intensity, Exponents,
and Gamma Correction

As mentioned above, the CIE standard for defining L∗ uses a 1
3 -power law; the idea

is that L∗ is a reasonable measure of perceived brightness of light (at least within
a modest range of luminances around the luminance of some reference white).
Suppose that you wanted to store or transmit information about light without using
too many bits. If you were engaged in physical measurements, you’d just want to
choose some numeric representation of intensity. But if you were planning to use
the information about light in some way that involved a human looking at it (e.g.,
if you were a television engineer trying to decide what information to encode in
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the first black-and-white television signal!), you might argue that if a human can
distinguish, say, 100 levels of intensity, then we should use 100 different numbers
to represent these. It would be silly to use 200 different numbers, because we’d
have different numbers representing different, but indistinguishable, intensities. If
we were representing values in binary, we’d be wasting a bit by going from 100
values to 200 values. Similarly, if we encoded only 50 different intensity levels,
we’d get nonsmooth intensity gradients in our display.

If you simply take all possible intensity values and divide them equally (i.e.,
you quantize the intensity signal), you’d find that to capture perceptual differ-
ences that were significant at the low-intensity levels you’d need to use very small
buckets. But those same buckets would be redundant at high-intensity levels. In
fact, you would be far better off encoding the number L∗, because each quantized
range of L∗ values would correspond to the same amount of perceptual varia-
tion. By choosing the bucket size correctly, you could most efficiently encode the
brightness.

To recover the intensity at the receiving end of the channel, you would invert
the formula for L∗ (roughly, you’d take the third power of L∗, and multiply by
the constant Yn) and arrange for your television screen to emit the corresponding
intensity.

As it happens, the cathode ray tubes (CRTs) that were used in early televisions
have an interesting characteristic: The intensity emitted is proportional to the 5

2
power of an applied voltage. Since 5

2 is fairly close to three, this meant that you
could take the L∗ value and use it as a voltage to determine the color of each pixel,
approximately.

To be clear: The visual system’s response to intensity is nonlinear and looks
approximately like I1/3; the CRT’s output intensity in response to applied voltage
is also nonlinear and looks like I = kV5/2. Combining these two results in a nearly
linear overall effect (a 5

6 power law).
In fact, video engineers defined a “signal representative of luminance” (which

has later, in some video literature, been incorrectly called “luminance”); this signal
approximately encodes the 0.42 power of luminance. Why use 0.42 instead of
0.33? One answer is that if you used 0.4 instead, then the 5

2 power law of the CRT
would cancel it exactly: This allows you to simplify the electronics in a consumer
television, and at the cost of only a minor inefficiency in the encoding of the
signal. The use of 0.42 instead of 0.4 has been explained by the observation that
the viewing circumstances for television (much less bright than outdoors) are not
the same as the circumstances under which the signal was captured (often bright
lights or outdoors in daylight); the slight adjustment is meant to help compensate
for this.

You can experience the distinction between high-light and low-light percep-
tion of intensity by considering a garden at midday on a slightly overcast day (so
that the lighting is reasonably diffuse), and the same garden just after sunset on
that day. Only the light levels change. Because our perception of “lightness” is
supposed to be approximately logarithmic, the difference in lightness between the
leaves of a plant and its flower should be the same at midday and at twilight. In
practice, they are not, appearing to be lower-contrast at twilight, and we must do
some adjusting to compensate. Figure 28.22: Surrounding con-

text can vary our perception of
tones. (Figure concept from
Poynton [Poyb].)

To experience this effect directly, we can use the area surrounding some gray
values as a proxy for the ambient illumination. Figure 28.22 show three gray
squares surrounded by white and black borders. The gray squares in each column
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are identical, but the contrasts in the left column appear less than the contrasts in
the right column.

The signal representative of luminance (the 0.42 power of luminance) seems
as if it should be a part of a video signal; in fact, a video signal starts out as three
values, r, g, and b representing the amounts of red, green, and blue light in a way
that’s linear in the intensity (if you double the intensity, then each of r, g, and b will
double). The luma is then a weighted sum of r0.42, g0.42, and b0.42. The difference
between these values and the values determined by computing luminance directly
and raising that to the 0.42 power is generally insignificant (another application
of the Noncommutativity principle) and luma is used as the Y ′ component of the
Y ′IQ color model described below. The prime on Y ′ indicates that this coordinate
does not vary linearly as a function of the light intensity. Ordinary video cameras
compute R, G, and B values that, for a given aperture and white balance, are
proportional to incoming intensities in the appropriate wavelength ranges, and
raise these to the 0.45 power; the values they produce should therefore be called
R′, G′, and B′, following the naming convention. To recover the original R, G,
and B values, these must be raised to the 2.2 power. And to transform to other
color spaces, we typically must first recover R, G, and B, and then perform the
conversion, since most color transformations are described in terms of things like
R, G, and B that vary linearly with energy.

The exponent 2.2 that is used to convert video R′G′B′ values back to RGB is
often called gamma, and the process of raising values to some power around 2.2
is known as gamma correction. The number 2.2 is by no means universal; other
gamma values have been used in various image formats over the years, and many
image display programs allow the user to “adjust gamma” to modify the exponent
used in the display process.

28.13 Describing Color

In computer graphics, we often need to describe color mathematically. Because
the physical interaction of light and surfaces occurs in ways determined by their
spectra rather than their colors, we don’t use the L∗u∗v∗description of light when
we want to model this physical interaction. And because the values we compute
while rendering are typically spectral radiance values (possibly for some fairly
broadband spectra, i.e., the radiance for the bottom, middle, and top thirds of
the visible spectrum), which then must be converted to values that govern three
display brightnesses, it’s best to separate the physical models used in rendering
from our description of colors that appear on our displays or printers.

So we’ll now present several color models used to describe the colors that
our devices can produce. Typically these color models are bounded, in the sense
that they can only describe colors up to a certain intensity (or generally only
a subset of the colors up to some intensity value). This matches the physical
characteristics of many devices: An LCD monitor cannot produce more than a
certain brightness; the light reflected from a printed page cannot exceed the light
arriving at the page, etc.

The choice of a color model may be motivated by simplicity (as in the RGB
model), ease of use (the HSV and HLS models), or particular engineering con-
cerns (like the Y ′IQ model used for the broadcast of color television signals or
the CMY model for printing). And with the widespread interchange of imagery
among different devices, there are color models whose design is based on lossless
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exchange of imagery, in which not only are color coefficients included in one’s
data, but so are descriptions of the model used to represent the data. The Inter-
national Color Consortium notion of profiles is one of these [Con12], used to
describe a device’s color space, and thus support reproduction of similar colors
across different devices and media; a far simpler (but less rich) approach is sRGB,
a single standardized RGB color space discussed below.

In this section, we’ll discuss several color models, their goals, and methods
for interconversion.

We’ll mostly follow the convention that says that quantities that vary linearly
with the intensity of the light that they represent are denoted by unprimed letters,
while those that vary nonlinearly are denoted with primes. Since primes get used
for other reasons, and because of historical precedent, we won’t be absolutely
rigid in this.

You should understand, however, that conversion among models may not, in
general, make sense, because of the context in which the model is described.
CMY (a system used to describe ink amounts in printing) is based on the ideas
of inks being applied to a certain white paper and illuminated by a certain light;
the reflected light cannot be brighter than that illuminant. Converting a color used
in an ultrabright display to CMY therefore cannot be done: No CMY value repre-
sents that bright a color. There is a fine art in mapping the gamut of one device to
that of another; appropriate mappings may depend on intended uses. The message
to take away from this is that when you produce images in computer graphics, you
should attempt to store them losslessly, with important information (What white
point is being used? What primaries?) recorded in the image file so that they can
later be converted to other formats. In general, conversion from format A to format
B and back again may end up corrupting an image.

28.13.1 The RGB Color Model

Most displays, whether LCDs, CRTs, or DLPs, describe each pixel in terms of
three numbers called r, g, and b, which in turn correspond to the degree to which
three lights contribute to the appearance of that pixel. In an LCD, the three lights
are in fact three filters, each filtering a backlight and allowing differing amounts
of red, green, and blue light through; the three filters are vertically aligned as
stripes to form a square “pixel.” In the case of a CRT, the three are phosphors that
glow when struck by an electron beam; they’re typically arranged in a pattern in
which each pixel consists of three colored dots in a closely spaced triangle. The
precise spectra of the red, green, and blue lights being blended are not necessarily
specified in RGB image data, so the numbers r, g, and b have only a vague display-
specific meaning. Still, the general shape of the set of displayable colors within
the CIE XYZ-space can be seen in Figure 28.23.

y

x

z

All colors

Displayable
colors

Figure 28.23: The color gamut
for a typical display within the
CIE XYZ color space. Note that
white can be displayed very
brightly, while red, green, and
blue have much less intensity.
Note, too, that many colors are
not within the display gamut at
all, particularly bright and dim
ones.

The good news is that with the development of video standards and HDTV
standards, a particular set of three colors has come to be fairly standard; these are
used in the sRGB standard, described below. But for older graphics images, it’s
a mistake to assume that the RGB values have any particular meaning; it may be
best to experiment with adjusting the meaning (in the sense of XYZ-coordinates)
of R, G, and B until the image looks best, and then transform the result into sRGB
for future use.

The RGB color cube is usually drawn not as it embeds in the CIE XYZ space,
but instead with red, green, and blue as the coordinate axes, as in Figure 28.24.
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Yellow(1, 1, 0)

White(1, 1, 1)

Green(0, 1, 0)

Cyan(0, 1, 1)

Red(1, 0, 0)

Magenta(1, 0, 1)

Blue(0, 0, 1)

Black(0, 0, 0)

Figure 28.24: The RGB cube. Grays lie along the main diagonal.

In this form, grays lie along the main diagonal; moving away from this diagonal
gives increasingly saturated colors. Viewed this way, we are taking a part of the
space of colors and transforming it so that it looks like a rectilinear cube (which is
a skewed parallelepiped in XYZ-coordinates). For this reason, people sometimes
refer to an RGB color space, rather than RGB coordinates on colors.

To return to the general (prestandards) case: The color gamut associated with
the RGB color cube depends on the primary colors producible by the display (the
LCD’s color stripes or the CRT’s phosphors). So an RGB triple like (0.5, 0.7, 0.1)
may represent rather different greenish-yellows on different devices.

Fortunately, we have a universal description—CIE XYZ values—to which we
can convert. Unfortunately, the conversion requires knowing something about the
primary colors of our device. These can be measured with a colorimeter by making
all pixels red, observing the color in XYZ space, that is, (Xr, Yr, Zr); then making
all pixels green, observing the XYZ color (Xg, Yg, Zg), and then doing the same
for blue to get (Xb, Yb, Zb). If we then display

rR + gG + bB, (28.38)

the resultant XYZ color coefficient triple will be

r(Xr, Yr, Zr) + g(Xg, Yg, Zg) + b(Xb, Yb, Zb) =

⎡
⎣Xr Xg Xb

Yr Yg Yb

Zr Zg Zb

⎤
⎦
⎡
⎣r

g
b

⎤
⎦ . (28.39)

In other words, the result will be the coefficients of X, Y, and Z in the CIE XYZ
description of the color. If we have two displays with corresponding matrices M1

and M2, we can convert the colors of each display to XYZ space with the respec-
tive matrices. Starting with the color

rR + gG + bB (28.40)

on display 1, we get to the XYZ color

M1

⎡
⎣r

g
b

⎤
⎦ , (28.41)

which in turn corresponds to the color triple



ptg11539634

774 Color

M−1
2 (M1

⎡
⎣r

g
b

⎤
⎦) = (M−1

2 M1)

⎡
⎣r

g
b

⎤
⎦ (28.42)

for display 2, so the matrix M−1
2 M1 will take RGB color descriptions for display

1 to those for display 2.
It will often happen that some RGB color triple for display 1, after multipli-

cation by the transition matrix, will produce a color triple for display 2 some of
whose entries are greater than one, or less than zero. This indicates that there’s a
color in display 1’s gamut that is outside the gamut of display 2. What can we do
in such a case? There are several solutions, ranging from the simple to the com-
plex. We can simply ignore the transition matrix, replacing it with the identity; this
fails to match colors, but avoids the gamut-overshoot issue entirely (indeed, this is
mostly what’s done in practice with images transferred over the Internet). We can
clamp the resultant color values between 0 and 1; this produces unpleasant arti-
facts in the darkest and brightest areas of the image, but it’s simple. Or we can take
a more sophisticated approach like the ones described by Hall [Hal12], or those
described in the ICC profile model’s rendering intents [Con12], which include a
strategy that maps the white point of the source image to the white point of the
medium on which it is to be displayed, and then warps other colors accordingly, a
strategy that attempts to map the most saturated colors to the most saturated col-
ors, and then warps others to be consistent with this, and a strategy that attempts to
capture the perceptual relations among colors in an image as faithfully as possible.
(Of course, this depends on our knowing the white point for the medium.)

The sRGB standard proposed certain “standard” colors for R, G, and B, based
on the observation that many displays were closely matched to these standards;
their relationships to CIE XYZ coordinates are given by a linear mapping:⎡

⎣R
G
B

⎤
⎦ =

⎡
⎣ 3.2410 −1.5374 −0.4986
−0.9692 .18760 0.0416

0.0556 −0.2040 1.0570

⎤
⎦
⎡
⎣X

Y
Z

⎤
⎦ . (28.43)

Of course, for two displays that both have RGB primaries described by this
relation, the transition matrix will be the identity.

28.14 CMY and CMYK Color

Cyan-Magenta-Yellow (CMY) color descriptions are used for printers, where the
inks are materials that reflect some portion of incoming light, absorbing other
portions. Cyan ink absorbs red light, but reflects blue and green (i.e., its reflectance
of long-wavelength visible light is low, but of short- and medium-wavelength light
is high); magenta absorbs green, and yellow absorbs blue. Once again, the exact
details of which wavelengths are absorbed must be based on measurement.

Colors are described as a mix of cyan, magenta, and yellow. When two inks
are mixed, the light that’s reflected is that which is not absorbed by either ink. So
a mix of cyan and magenta absorbs both red and green, resulting in something that
reflects blue light. Thus, for CMY colors, we write

U = cC + mM + yY (28.44)

and then denote the color by the number triple (c, m, y). In this form, the CMY
color (0, 0, 0) is white, and (1, 1, 1) is black.
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Lacking exact measurement of inks, the usual conversion from RGB to CMY
is that the RGB color (r, g, b) is the same as the CMY color (1− r, 1− g, 1− b).
Because of the interactions between inks, the arrangements of dots in dot-based
printing, and many other factors, this should be regarded as a gross approximation.
Indeed, in computer graphics there’s almost no situation in which you should rep-
resent an image by CMY colors. Most modern printers have software that accepts
RGB colors and converts them, as well as possible for the particular printer tech-
nology, to amounts of ink to be used at each point.

In practice, the color (1, 1, 1) is not really very black; the mix of cyan,
magenta, and yellow inks doesn’t really manage to absorb all light. So printers
often have a fourth ink, which is black (denoted K). This is used to replace parts
of the darker mixes of C, M, and Y.

28.15 The YIQ Color Model

The YIQ color model (which we should call Y ′IQ to follow the convention about
nonlinear coordinates) is used in U.S. commercial television broadcast. It’s a nice
example of a color model designed with engineering constraints in mind; these
constraints were (a) the need to broadcast a signal that could be used to drive both
black-and-white and color television receivers, and (b) the desire to use bandwidth
most efficiently.

To satisfy the first goal, the YIQ color model’s Y value is, as described above,
the luma, which is

Y ′ = 0.299r0.42 + 0.587g0.42 + 0.114b0.42, (28.45)

and is therefore distinct from the IE XYZ model’s Y value. (We’ve used a prime
both to emphasize this distinction and to indicate that it does not vary linearly as a
function of R, G, and B.) The I and Q values then remain to encode chrominance
information. They are essentially rotated and scaled versions of the u∗ and v∗

values. We omit the details, because with the rapid growth in the use of component
video, the YIQ standard is less and less relevant. Perhaps the most significant
aspect of it is that the Y ′ of Y ′IQ is not the same as the Y coordinate in XYZ-
coordinates, but instead is roughly similar to the 0.42 power of Y .

The allocation of bandwidth to the transmission of the three channels (which
corresponds to the number of bits of precision with which each is communicated)
is carefully chosen: 4 MHz is assigned to Y , 1.5 MHz to I, and 0.6 MHz to Q; this
corresponds to our strong sensitivity to luminance and to sharp discontinuities
in luminance (the result of using too few bits of precision), and to the relative
sensitivities of the visual system to color variation along the I and the Q axes.

28.16 Video Standards

Modern component video is encoded in various ways that are similar to Y ′IQ, in
the sense that one component carries intensity information while two others carry
chromaticity information. Following Poynton [Poya], let’s examine one encoding
a decoding process, starting from the unambiguous XYZ description of a color (see
Figure 28.25).

The entire process is described by the HDTV standard [Uni90], informally
known as Rec. 709. The transformation from XYZ to RGB (as specified in
Rec. 709, so we append the subscript 709) is (to three decimal places)
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Figure 28.25: Converting from XYZ values to Y ′CBCR values. XYZ is converted to RGB by
multiplication by a matrix M1; the RGB values are then nonlinearly encoded by a 0.45
power function; the resultant values are then transformed by another matrix, M2, and
shifted slightly, to form Y ′, CB, and CR, where Y ′ approximately represents intensity and
the other two encode chrominance information. Finally, the resultant values are digitized
by a step called the subsampling filter. Conversion to analog component video is similar,
except that the subsampling filter is replaced by band-limiting.

⎡
⎣R709

G709

B709

⎤
⎦ = M1

⎡
⎣X

Y
Z

⎤
⎦ =

⎡
⎣ 3.24 −1.54 −0.5
−0.97 1.88 0.04

0.06 −0.20 1.06

⎤
⎦
⎡
⎣X

Y
Z

⎤
⎦ . (28.46)

The conversion to R′, G′, B′ is very simple:⎡
⎢⎣R′

709

G′
709

B′
709

⎤
⎥⎦ =

⎡
⎢⎣R0.45

709

G0.45
709

B0.45
709

⎤
⎥⎦ . (28.47)

A second matrix operation converts the primed values into a luminance value and
two chrominance values, while adding an offset to make the chrominance values
lie in the range of 8-bit positive integers.⎡
⎣ Y ′

CB

CR

⎤
⎦= vM2

⎡
⎣R′

709
G′

709
B′

709

⎤
⎦=
⎡
⎣ 16

128
128

⎤
⎦+
⎡
⎣ 65.481 128.553 24.9965
−37.797 −74.203 112

112 −93.786.20 −18.214

⎤
⎦
⎡
⎣R′

709
G′

709
B′

709

⎤
⎦

(28.48)

As R′, G′, and B′ range from 0 to 1, the value Y ′ ranges from 16 to 255, while
CB and CR go from 128− 112 = 14 to 128 + 112 = 240.

If you happen to have R′, G′, and B′ ranging from 0 to 255 (as you might in
some computer representations of images), you’ll need to first scale them appro-
priately (dividing by 255) before converting using Equation 28.48.

There is another standard for video—studio video—that requires a different
transformation (albeit similar in form). Before converting to or from video, you
must know which video format is in use.

28.17 HSV and HLS

The RGB cube is not ideal as a color-selection tool. For one thing, with its limited
range (0 to 1 in R, G, and B) it’s best suited to selecting reflectances in three wave-
length bands, that is, it’s well suited to “material colors” but not “colored lights,”
where the intensity can be arbitrarily large. Even for selecting reflectance colors,
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RGB is not very convenient; the individual controls don’t match our sense of the
“independent” characteristics of a color like “how light it is” or “how saturated it
is” or “what hue it is.” As you adjust from red toward orange by slightly increas-
ing the green component, your color also gets brighter, when all you really wanted
was to change the hue.

Two alternative interfaces are widely available for color selection: the hue-
saturation-value (HSV) interface, and the hue-lightness-saturation (HLS) inter-
face. In each, hue is varied independently of the other qualities of color (such as
how light it seems). These are useful tools, and they are somewhat more intuitive
for users of paint programs than RGB mixes, but they’re the wrong tool to use
when you need to specify a colored light for rendering, or even need to specify
a color for printing, since the conversion from HSV to RGB produces only an
RGB specification; without a precise definition of RGB (sRGB might be a good
choice), such a specification is ambiguous. The web material for this chapter con-
tains a discussion of the conversion among RGB, HSV, and HLS.

28.17.1 Color Choice

No single color specification system is best for all users; even among systems
designed for usability like HSV and HLS, preferences vary. Many programs
wisely allow the user to pick colors with a dialog that can be toggled among sev-
eral different modes, allowing direct RGB specifications with sliders or typed-in
text values (typically 0 to 255), HSV selection via sliders, click-to-pick selection
from a disklike display of colors (often adjustable with a third slider to adjust from
dark to light), etc.; users quickly find which method best suits them in various cir-
cumstances.

28.17.2 Color Palettes

Our discussion of color has concentrated almost entirely on the description and
selection of single colors. But when multiple colors are displayed together, inter-
actions between them can be important. A number of peculiar optical illusions
are based on “tricking” our color-perception system. For example, it’s well known
that the color surrounding a particular region can influence our perception of the
color of that region (see Figure 28.26).

Figure 28.26: The simultaneous
contrast effect. The two gray
squares at the top appear to be
different colors, but are in fact
identical. The gray stripe on the
bottom is a single color across its
whole length.

When one chooses colors for a user interface, for instance, it’s important to
choose them so that they are harmonious, and so that effects like the simultaneous
contrast artifacts of Figure 28.26 don’t mask important design decisions. If, for
instance, we’re creating a drawing program, and all interface elements relating to
drawing are in one color and all elements relating to text are in another, there will
be a problem if some elements of each kind are displayed on different backgrounds
that makes them appear to be unrelated.

Meier et al. [MSK04] have studied this problem extensively, and have devel-
oped interfaces for selecting color palettes rather than individual colors.

28.18 Interpolating Color

We often need to interpolate between colors in graphics, in situations ranging from
simple design (“I’d like a color gradient from aqua to magenta on this background
rectangle”) to rendering (“I know the colors of this triangle at the three vertices,
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but I need to interpolate colors along the edges and at the interior points”). Unfor-
tunately, this isn’t easy. For colors that are very similar (e.g., when their difference
is just a little more than the just-noticeable difference), almost any interpolation
scheme will work, including interpolating the RGB coefficients (or whatever other
tuples you might be using to represent the colors). But for distant colors (e.g., a
saturated green and a medium-brown), there are many possibilities, and no one of
them is right for all circumstances.

You can even show that certain reasonable assumptions about color inter-
polation cannot be met by any interpolation scheme on any three-dimensional
color space.

If, for instance, one insists

• That the color C(α, C1, C2), interpreted as “α of the way between colors
C1 and C2,” be a continuous function of α, C1, and C2, and should be C1

when α = 0 and C2 when α = 1

• That two colors of equal saturation and brightness should be interpolated
by intermediate colors of equal saturation

• And that the color interpolated as “α of the way from C1 to C1” should
always be C1

then one has a contradiction. If we restrict our attention to colors of saturation
1 and brightness 1, we have a circle, which we’ll denote S1, and which we’ll
parameterize by hue, ranging from 0 to 1 (so a hue of 0 and a hue of 1 both denote
totally saturated red, for example). Restricting the function C to just this circle
gives a function from [0, 1]× S1 × S1 to S1; the properties above translate to

• C : [0, 1]× S1 × S1 → S1 is continuous

• C(0, x, y) = x for all x, y ∈ S1

• C(1, x, y) = y for all x, y ∈ S1

• C(α, x, x) = x for all x ∈ S1

Now consider the functions

p0 : [0, 1]→ S1 : t 
→ C(0, 0, t), and

p1 : [0, 1]→ S1 : t 
→ C(1, t, t).

The second property tells us that p0 is a constant, that is, its winding number
around the circle is zero. The final property tells us that p1 wraps once around
the circle. But these two loops can be joined together by a family of intermediate
curves,

ps : [0, 1]→ S1 : t 
→ C(s, st, t), s ∈ [0, 1]

each of which starts and ends at the same place. This is impossible, for t 
→ ps(t)
is a continuous function of both s and t, and hence the winding number of ps is a
continuous function of s. But a continuous integer-valued function is constant, so
the winding number cannot change from 0 to 1 as we vary s.

This is not to say that color interpolation is impossible or wrong; it merely
indicates that many seemingly natural constraints cannot be met. It’s therefore
often best to carefully consider the application domain, and ask what’s actually
needed: Do you really need to be able to interpolate between colors of opposite
hue without passing through white? Will the colors you’re interpolating between
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ever be far apart, or will they generally be close together? Indeed, an interesting
experiment to perform when you want to write a color-interpolating program is to
create some sample inputs for your program, and try to approximate the outputs
that you’d like to get. If you can’t approximate the output, you’re unlikely to be
able to write a program that does so.

28.19 Using Color in Computer Graphics

We use color for aesthetics, to establish tone or mood; for realism, to identify asso-
ciated groups of entities; and for coding of types of interaction. With care, color
use is effective in many of these roles. Careless use of color, however, can be disas-
trous; in one experiment, the introduction of meaningless color to a monochrome
interface reduced user performance by about two-thirds [KW79]. Color should be
employed conservatively; decorative uses should be subordinate to functional uses
so that color cannot be misinterpreted as having functional meaning. The use of
color, like any other aspect of a user interface, must be tested with real users to
identify and resolve problems. One conservative approach is to design first for a
monochrome display, which ensures that the color use is purely redundant (and
guarantees usability by color-deficient users).

There are many books about the use of color for aesthetics, including [Bir61];
we state here just a few of the simpler rules to produce color harmony. The
most fundamental rule is to select colors according to some method, typically
by traversing a smooth path in some color model, or by restricting colors to a
plane in some color space. This might mean using colors of constant saturation
or value, for instance. Furthermore, it’s wise to choose colors at equal percep-
tual spacing, which is not the same as equal coordinate distance in whatever color
model we’re using: Conversion to CIE L∗u∗v∗coordinates, or some other system
in which perceptual distances are accurate, is essential.

A random selection of hues and saturations is usually quite garish; grouping
colors so that those of similar hue or similar saturation are nearby is more attrac-
tive (but the distinction between colors may be less obvious).

If a chart or table contains just a few colors, the complement of one of them
makes a good choice for the background; a neutral gray is a good background
for photographic or similar imagery. If adjoining colors are not harmonious, a
thin black border between them will often help resolve the contrast. In general, a
parsimonious approach to choosing a color palette is wise (except in the case of
realistic images, of course).

Color can be used to code data (indeed, this is a standard tool in scientific
visualization applications), but several cautions are in order. First, color codes can
carry unintended meanings. If we display the earnings of company A in red and
those of company B in green, we may suggest to the viewer that company A is
in financial trouble because of our learned association of “red” with “in debt” in
financial situations. Bright, saturated colors stand out more than dim, pastel colors;
this may give unintended emphasis. And two unrelated elements of an interface
that have similar colors may be perceived as related, even if the color was intended
as purely ornamental.

A number of color-usage rules are based on physiological rather than aesthetic
considerations. For example, because the eye is more sensitive to spatial variation
in intensity than it is to variation in chromaticity, lines, text, and other fine detail
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should vary from the background not just in chromaticity, but in brightness (per-
ceived intensity) as well—especially for colors containing blue, since relatively
few cones are sensitive to blue. Thus, the edge between two equal-brightness col-
ored areas that differ only in the amount of blue will be perceived as fuzzy.

Blue and black differ very little in brightness, so this is a particularly bad
combination. Similarly, yellow on white is hard to distinguish.

The eye cannot distinguish the colors of very small objects, so color coding
should not be applied to small objects. Judging the color of objects subtending less
than 20 to 40 minutes of arc is error-prone [BCfPRD61, Hae76]; at a typical view-
ing distance of 24 inches, objects 0.1 inch (i.e., many pixels) tall subtend about
this angle. The color of a single pixel on a modern monitor is almost impossible
to discern.

The color of a region can affect our perception of its size. Cleveland and
McGill discovered that a red square is perceived as larger than a green square
of equal size [CM83]. This could well cause the viewer to attach more importance
to a red object than to a green one of similar size.

If you stare at a large area of saturated color and then look away, afterimages
appear. This effect is disconcerting and distracting, so the use of large areas of
saturated colors is unwise.

For a number of reasons, red objects appear closer than do blue ones; there-
fore, simultaneously using blue to represent foreground objects and red to repre-
sent background ones is unwise. The opposite coding is fine (although the use of
saturated red text on a saturated blue background is particularly annoying to many
people).

With all these perils and pitfalls of color usage, is it surprising that one of our
first rules was that you should apply color conservatively?

28.20 Discussion and Further Reading

The workings of the human eye and the human visual system, and they way in
which they combine to provide the perception of color, cover many fields; the
application of color for aesthetic or persuasive or communicative goals occupies
others. For more information on the human eye, presented in a manner particularly
suited to computer graphics researchers, see Glassner’s book [Gla94]; other use-
ful references are [BS81, Boy79, Gre97, Hun05, Jud75, WS82] and [Poya]. For
more background on artistic and aesthetic issues in the use of color for graphics,
see [Fro84, Mar82, Mei88, Mur85, MSK04]. For more information on calibration
and cross-calibration of displays, see [Cow83, SCB88, Con12, Int03].

28.21 Exercises

Exercise 28.1: You want to interpolate between two similar colors. They’re repre-
sented in RGB space. You’ve heard that YIQ space is more naturally related to the
human eye, so you convert to YIQ, interpolate there, and convert back. Explain
why you get exactly the same result as if you’d interpolated in RGB. For which
other color-description systems in this chapter will this turn out to be true, and
why?

Exercise 28.2: The chapter claims that if you interpolate colors using what-
ever color triples they’re represented by, and if the colors are nearby, then it
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won’t matter what color system you’re using, in the sense that the results will
be very similar. Verify this in the case of RGB and L∗u∗v∗versions of the colors
(r, g, b) = (0.7, 0.4, 0.3) and (r, g, b) = (0.7+ ε, 0.4− 2ε, 0.3− ε), by finding the
50-50 mix of the two colors in both RGB and L∗u∗v∗and comparing. Do this for
ε = 0.01, 0.05, and 0.25.

Exercise 28.3: Consider points with Y = 1 and chromaticity values that range
over the entire CIE diagram. Compute the L∗u∗v∗coordinates of these points, and
plot them on axes labeled L∗, u∗, and v∗.

Exercise 28.4: For 400 < λ < 700, consider two monospectral lights, with
Y = 1, one with wavelength λ and one with wavelength λ+ 1; they are separated
by 1 nm in “wavelength space.” Plot their distance in XYZ-space as a function of
λ; plot their distance in L∗u∗v∗-space as a function of λ. At what wavelength is
this latter difference largest? Smallest? Note: You’ll need to find a table of the
xy-coordinates of the monospectral points on the CIE horseshoe.

Exercise 28.5: No three-color display can faithfully reproduce all color per-
cepts. Suppose you wanted to design a three-primary display with the largest pos-
sible gamut (measured in terms of area on the chromaticity diagram).
(a) Argue why all three primaries should be on the boundary of the horseshoe.
(b) Find the xy-coordinates of the horseshoe boundary and then search for the
optimal location for the three primaries.
(c) Approximately what percentage of the area can you cover with three primaries?
With four? With five?

Exercise 28.6: Derive Equation 28.29 from Equation 28.26.
Exercise 28.7: (a) Suppose that the sensitivities of the receptors in the eye

were not shaped like Gaussian bumps, but were instead triangular, the graph of the
red receptor being an equilateral triangle with base between 600 nm, and 700 nm,
the green having its base between 500 nm and 600 nm, and the blue having its
base between 400 nm and 500 nm (all three equilateral triangles having the same
heights). What would the CIE diagram look like? How many primaries would be
needed for perfect color reproduction?
(b) Suppose instead that the domains overlapped so that red was defined on
[500, 600], green on [450, 550], and blue on [400, 500]. What would the chro-
maticity diagram look like? How many primaries would be needed to faithfully
reproduce every color percept?

Exercise 28.8: We said that if you’re asked to convert a source that’s
18 W m−2 sr−1 to nits, it’s impossible. Suppose you were told in addition that
it was a blackbody source at a particular temperature. Describe how you could
compute the corresponding number of nits in this case (given a tabulation of the
luminous efficiency function).

Exercise 28.9: Write formulas to convert L∗a∗b∗ coordinates for a color back
to the XYZ triple for the color. You may assume that Xw, Yw, and Zw are known.

Exercise 28.10: We claimed above that a colorimeter could be used to measure
the XYZ values for each of the red, green, and blue primaries of a display. Suppose,
though, that the colorimeter only produces the CIE xy-values, but you can also
measure the luminances Yr, Yg, and Yb of the full-brightness red, green, and blue
primaries. Express the XYZ coefficients of a color with RGB coefficients r, g, and
b in terms of the observed xy-values and the full-brightness luminosities.

Exercise 28.11: (Peripheral color perception.) Stand with one arm pointing
outward, and fixate on a point in front of you. Have a friend place a playing card in
your outstretched hand so that the card faces toward your head. Move your hand
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to gradually bring the card into your field of vision. (Continue fixating straight
ahead.) Try to tell whether the card is red or black. Move it so that it’s 45◦ off-
axis, and try again. Move it to about 30◦ and try again. Continue until you are
certain of the color, and then confirm that you’re correct. (Thanks to Pascal Barla
for suggesting this exercise.)
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Chapter 29

Light Transport

29.1 Introduction

In this chapter we develop the rendering equation, which characterizes the light
transport in a scene. We do this first for a scene in which there is no transmissive
scattering, only reflection, and then generalize to handle transmission as well.
In all but the simplest cases, the rendering equation is impossible to solve
exactly. Approximation methods are therefore essential tools. The dominant
approximation method involves estimating certain integrals by so-called Monte
Carlo integration, that is, randomized integration algorithms, which we discuss
in the next chapter. To assist with understanding the convergence properties of
such algorithms, we can consider various kinds of light transport, some of which
are amenable to study with one technique, some with another. For instance,
a sequence of mirror reflections that conveys light from a point source to the
eye must be treated rather differently from a sequence of diffuse reflections
of illumination from an area light source. In fact, the phenomena produced by
various kinds of light-transport paths can also be quite different at a perceptual
level; we discuss this briefly, as well.

29.2 Light Transport

With the notion of the radiance field in hand, and that of the bidirectional
reflectance distribution function (BRDF), we can now discuss light transport in
general. We begin with the case of a scene consisting of empty space and purely
reflective objects (i.e., there is nothing that’s partly transparent, and light reflects
from the surfaces of objects—there’s no subsurface scattering to consider). The
scattering of light from an object is therefore described by the BRDF, which we’ll
denote fr (the “r” standing for “reflection”). This special case conveys the main
ideas but avoids some complexities. Having developed this first situation, we’ll
generalize to other kinds of scattering, but with very few important changes.

We’ll continue with the assumptions of Chapter 26, that the scattering of light
by a material comes in two parts: mirror and Snell-transmissive scattering, which

783
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we’ll call impulses, and everything else. Impulse scattering is characterized by
the idea that radiance along some incoming ray is transformed to radiance along a
small number (one or two, typically) of outgoing rays. Such scattering cannot be
represented by an integral like the one in the reflectance equation unless we admit
the possibility of “delta functions” in the scattering function fs. Nonetheless, we’ll
continue to write the transformation from incoming to scattered light in the form
of the scattering equation (i.e., as an integral), and will consider, in Section 29.6,
the consequences of impulses in fs after developing the main ideas.

Similarly, although the emitted light in a scene typically comes from physical
objects like lamps or the sun, which have nonzero size, it’s convenient (and tra-
ditional) to allow point lights in a scene as well. These amount to impulses in Le,
and must also be handled specially. These, too, will be discussed in Section 29.6.

We’ll be discussing light, the flow of photons in a scene, extensively. But
we also want to talk about light sources, which are informally called lights in
expressions like “point light” and “area light.” To keep these two notions distinct,
we’ll use the term luminaire to mean a light source throughout this chapter.

To discuss light transport, we need to use quite a lot of notation, which we’ll
reuse in subsequent chapters. We summarize these symbols in Table 29.1, even
though some are given full definitions only later in the chapter.

Table 29.1: Symbols used in light transport and rendering.

Symbol Meaning
E The eye point.

P A surface point in the scene, often the first one encountered by a
ray from the eye, but sometimes used generically.

Q, Qj A point on the surface of a luminaire or some other source of light
arriving at P, such as an illuminated reflective surface.

M The set of all surfaces in the scene.

nP, nQ The unit normal vector at P, which we’ve denoted n(P) previ-
ously, or the same thing for Q; using nP slightly reduces the com-
plexity of equations.

vi A ray pointing from P toward some source of light.

vo A ray pointing from P in the direction in which reflected light
from vi exits, typically toward E.

v A generic name for a unit vector, typically based at P.

L(P,v) The radiance at a surface point P in direction v.

Le(P,v) The light emitted at point P in direction v; zero except when P is
a point of a luminaire.

Lref(P,v) The light reflected at P in direction v.

Lr(P,v) The light reflected or transmitted (refracted) at P in direction v.
L = Le + Lr.

fs The bidirectional scattering distribution function.

fr The bidirectional reflectance distribution function.

f∞s The “impulse” part of fs, corresponding to transmission or mirror
reflection.

f 0
s The finite part of fs, corresponding to nonmirror reflection.
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For mathematical convenience, we’re going to consider a scene that is finite,
in the sense that it’s contained within some sufficiently large sphere around the
origin; the interior of this sphere we’ll assume to be coated with a nonreflective
material so that all light hitting it is absorbed. In a real scene, once light “leaves”
the scene, we ignore it. But for this chapter, it’s very useful to have a ray-casting
function that takes a point P and direction d and returns the first surface point Q
along the ray starting at P and going in direction d. If the scene isn’t surrounded by
the large sphere, then a ray headed “out of the scene” doesn’t hit anything, and the
ray-casting function’s value is not defined. So the large black sphere is completely
for mathematical convenience, and it has no impact on the actual transport of light.

To keep the notation simple, we’re going to further assume that we’re studying
a steady-state situation, one in which there is no time dependence: The luminaires
have all been illuminated for long enough to allow light to scatter throughout the
scene and reach a steady state. Furthermore, we’re going to ignore the wavelength
dependence, and study just radiance rather than spectral radiance.

Thus, our starting point is a collection of surfaces whose union is the set M
of all surface points in the scene (including the large enclosing black sphere).
For each point P ∈ M, we also know fr(P,vi,vo), the bidirectional reflectance
distribution function at P, which describes how much light arriving at P traveling
in direction −vi becomes light leaving in direction vo (see Chapter 26 for the
formal definition). The symbols vi and vo will be reserved, for this section, to be
unit vectors that point in the same half-plane as the normal vector nP at P, that is,
vi · nP ≥ 0 and vo · nP ≥ 0.

In addition to the scene geometry and reflectance, we assume that we’re given
the illumination in the scene, described by the emitted radiance at every point of
every luminaire, in every direction; in other words, we’re given a function

Le : M× S2 → R : (P,v) 
→ Le(P,v), (29.1)

where Le(P,v) denotes the emitted radiance leaving the point P in direction v,
the radiance you’d measure if every other luminaire and surface in the scene were
removed, so that no light at all arrived at the point P, and hence none was reflected.

For a typical point P of a typical area luminaire, Le(P,v) is zero if v · nP < 0;
in other words, light radiates only toward the “outward” side of the luminaire.
For luminaires like typical white incandescent lightbulbs, the radiance in all
such outward directions is the same, or Le(P,v) = C for v · nP > 0. Because
of the analogy with the light reflected from a Lambertian surface, we’ll refer
to such a luminaire as Lambertian.

P2

P1

Q1 = R(P1, v1)

v2

v1

Figure 29.1: R(P1,v1) = Q1, but
R(P2,v2) = P2.

As we said above, we’ll also assume we have a ray-casting function (see
Figure 29.1),

R : M× S2 →M, (29.2)

where R(P,v) is the first point hit by a ray starting at P in direction v. If v · nP ≤
0, then R(P,v) = P, that is, a ray into a shape hits the shape immediately. If
v · nP > 0, then R(P,v) is the point we see by looking in direction v from P.
More precisely, R(P,v) is the farthest point Q on the ray from P in direction v
with the property that all points of the ray strictly between P and Q are in empty
space.
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The algorithmic representation of the ray-casting function and the associated
visibility function—see Exercise 29.1—is the subject of Chapters 36 and 37, but
you’ve already seen basic examples in Chapter 15.

With our assumptions clearly characterized, we can now analyze the light
transport in our scene.

29.2.1 The Rendering Equation, First Version

Consider once again the reflectance equation, Equation 26.80, rewritten without
time or wavelength dependence:

Lref(P,vo) =

∫
vi∈S2

+(p)
L(P,−vi)fr(P,vi,vo)(vi · nP) dvi. (29.3)

This expresses the radiance reflected at point P in outward direction vo in
terms of the light arriving at P in other directions.

If P happens to be a point of a luminaire, light may also leave P in direction
vo because it is emitted at P rather than because it is reflected from there; that is,

L(P,vo) = Le(P,vo) + Lref(P,vo) (29.4)

= Le(P,vo) +

∫
vi∈S2

+(p)
L(P,−vi)fr(P,vi,vo)(vi · nP) dvi. (29.5)

This is a basic version (e.g., it handles only reflection) of the rendering equa-
tion, which characterizes the function L, given the functions Le and fr. It was first
described in computer graphics by Kajiya [Kaj86] and Immel et al. [ICG86], in
slightly differing forms. It is completely analogous to similar equations developed
in subjects like radiative transfer. While we’ll concentrate on Kajiya’s descrip-
tion and derivation in subsequent chapters, the form presented by Immel et al. is
particularly well suited to the “sampling” needed in Monte Carlo rendering.

You’ll notice that the unknown radiance function L appears on both sides of
the equation, once under an integral, just as the unknown function h appears on
both sides of the differential equation

h′(x) = 2h(x− 1), (29.6)

once within a derivative. Equation 29.4 is called an integral equation, and solving
such an equation is generally more difficult than solving a differential equation.
The next chapter discusses various approaches to finding approximate solutions.

Equation 29.4 expresses the radiance function L, considering both the radiance
leaving the point P and the radiance arriving there. Arvo [Arv95] calls the first
of these the surface radiance and the second the field radiance. The rendering
equation tells us how to compute surface radiance from field radiance, because
it’s restricted to the case where vo · nP > 0. But to evaluate the right-hand side,
we must know how to compute the field radiance as well.

The idea that “closes the loop” in this equation is that any light arriving at a
point P, traveling in direction −vi, must have departed from some other point
Q ∈ M traveling in direction −vi. The point Q must be the point visible from P
in direction vi. These observations allow us to write the transport equation:

L(P,−vi) = L(R(P,vi),−vi), (29.7)

for any vi with vi · nP > 0.
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Substituting Equation 29.7 into Equation 29.4, we get the form of the render-
ing equation that’s most useful in practice:

L(P,vo) = Le(P,vo) + Lref(P,vo) (29.8)

= Le(P,vo) +

∫
vi∈S2

+(p)
L(R(P,vi),−vi)fr(P,vi,vo)(vi · nP) dvi.

(29.9)

This equation expresses the surface radiance function defined on all surfaces in
the scene, in terms of the known luminaires (Le), and an integral of the known
BRDFs of all surface points (fr), the ray-casting function R, and the surface radi-
ance itself.

29.3 A Peek Ahead

The rendering equation is very nice and self-contained, but how do you do any-
thing with it? Let’s take a quick look ahead at code from Chapter 32 to see. The
large-scale structure of a basic path tracer is:

1
2
3
4

foreach pixel (i, j)
C = location of pixel on image plane
r = ray from eye to C
image[i, j] = pathTrace(r, true)

Listing 29.1 shows the central pathTrace procedure for such a path tracer.
Given a ray (i.e., a point U and a direction v) this procedure traces a ray into the
scene and hits at some point P, and then estimates either L(P,−v) or Lref(P,−v),
depending on the boolean isEyeRay. The point P is represented by the variable
surfel (for “surface element”) in the program.

Listing 29.1: The core procedure in a path tracer.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Radiance3 App::pathTrace(const Ray& ray, bool isEyeRay) {
Radiance3 radiance = Radiance3::zero();
SurfaceElement surfel;

float dist = inf();
if (m_world->intersect(ray, dist, surfel)) {

if (isEyeRay)
radiance += surfel.material.emit;

radiance+= estimateDirectLightFromPointLights(surfel, ray);
radiance+= estimateDirectLightFromAreaLights(surfel, ray);
radiance+= estimateIndirectLight(surfel, ray, isEyeRay);

}
return radiance;

}

As you can see, the outgoing radiance at P is the sum of the emitted light
(surfel.material.emit) and the light reflected at P, estimated in the last three
procedures. The first estimates the light arriving directly from point sources that’s
reflected at P; the second the light directly from area luminaires that’s reflected
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at P; and the third all other light. Thus, the term L(P,−vi) in the rendering equa-
tion has been split into a sum of three terms.

The first of these terms is computed (see Listing 29.2) by converting the inte-
gral over all possible incoming directions into a sum over the point luminaire
sources. This change of domain in the integral means we have to alter the inte-
grand as well, using the change of variable from Section 26.6.5.

Listing 29.2: Reflecting illumination from point lights.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Radiance3 App::estimateDirectLightFromPointLights(surfel, ray){
Radiance3 radiance(0.0f);
for (int L = 0; L < m_world->lightArray.size(); ++L) {

const GLight& light = m_world->lightArray[L];
// Shadow rays
boolean visible = m_world->lineOfSight(surfel.geometric.location +

surfel.geometric.normal * 0.0001f,
light.position.xyz())

if (visible){
Vector3 w_i = light.position.xyz() - surfel.shading.location;
const float distance2 = w_i.squaredLength();
w_i /= sqrt(distance2);
// Attenuated radiance
const Irradiance3& E_i = light.color / (4.0f * pif() * distance2);

radiance += (surfel.evaluateBRDF(w_i, -ray.direction()) *
E_i * max(0.0f, w_i.dot(surfel.shading.normal)));

}
}
return radiance;

}

As you can see, the procedure loops through all the point luminaire sources,
and for each one, it checks whether the source is visible from P, using
m_world->lineOfSight(), the implementation of the visibility function for the
world we’re rendering. The reflected radiance is computed as a product of the
BRDF, the dot product vi · nP, and a term Ei, which is the incoming radiance
adjusted by the change-of-variable factor mentioned above.

The second term is similar, involving estimates of how area luminaires are
reflected. The third term is the most interesting, however. Before we look at
it, we need one more bit of mathematics (which we’ll develop extensively in
Chapter 30).

The idea is this: The integral of any function h over any domain D is the
product of the average value of h on that domain with the size of the domain.
When the domain is the interval [a, b], the size is b− a; when the domain is a unit
hemisphere, the size is 2π, etc. The “average value” can be estimated by evaluating
h at n points of the domain and averaging. As n gets large, the estimate gets better
and better. But even n = 1 works! That is to say, we can estimate the integral of
h over the domain D by evaluating h(x) for a randomly chosen point x ∈ D and
multiplying by the size of D. The estimate won’t generally be very good, but if we
repeat the estimation procedure multiple times, the average will be quite a good
estimate.

We’ll apply this to the situation where h is the integrand in the reflectance
equation, and D is the upper hemisphere. Let’s look at the code (see Listing 29.3).
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Listing 29.3: Estimating the indirect light scattered back along a ray.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Radiance3 App::estimateIndirectLight(surfel, ray, bool isEyeRay){
Radiance3 radiance(0.0f);
// Use recursion to estimate light running back along ray from surfel that arrives from
// INDIRECT sources, by making a single-sample estimate of the arriving light.

Vector3 w_o = -ray.direction();
Vector3 w_i;
Color3 coeff;

if (surfel.scatter(w_o, w_i, coeff)) {

newRay = Ray(surfel.geometric.location, w_i).bumpedRay(
0.0001f * sign(surfel.geometric.normal.dot(w_i));

// the final "false" makes sure that we do not include direct light.
radiance = coeff * pathTrace(newRay, surfel.geometric.normal), false);

}
return radiance;

}

Without worrying too much about the details, what’s happening here is that
we’re picking a random direction w_i, using scatter, on the outgoing hemisphere.
We’re then using PathTrace to estimate the radiance arriving at P from that direc-
tion, that is, we’re estimating L(P,−vi). The coefficient by which we multiply this
radiance includes the area of the hemisphere and an adjustment for the fact that
we did not pick our direction uniformly from all possible directions, but instead
biased our choice based on the BRDF, for reasons you’ll learn about in Chapter 30.

To summarize: The recursive nature of the rendering equation is exactly
reflected in the recursive nature of the program. You might reasonably ask whether
the recursion will ever terminate, since there seems to be no stopping condition.
The answer is yes, because of the design of the scatter procedure: If a surface’s
hemispherical reflectance is 0. 7, then 30% of the time scatter will return false

and the recursion will terminate. The other 70% of the time the coefficient coeff
is adjusted to take into account the probability of nonscattering.

29.4 The Rendering Equation for General
Scattering

In formulating the rendering equation, we assumed that our scene contained only
reflective materials rather than ones that could transmit light, or participating
media like fog that can scatter light as it passes through them.

Figure 29.2: Rendering with a
participating medium (dusty air).
(Courtesy of Holly Rushmeier,
©1987 ACM, Inc. Reprinted by
permission.)

We’ll now generalize to handle transmissive materials as well. This will
require almost no new concepts, but we’ll need to slightly revise the way we rep-
resent the radiance in a scene. A further revision is needed to handle participating
media, which we will not discuss here. Instead, we’ll consider just one special
case, in which light is attenuated by absorption as it passes through a medium but
is never scattered in any new direction. More general models of scattering, dis-
cussed briefly in Chapter 27, can be used to generate quite striking renderings like
that shown in Figure 29.2 from 1987, one of the earliest high-quality synthetic
images of participating media.
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The critical problem, when we want to include transparency into the rendering
equation, is that a pair (P,v) ∈ M × S2 is no longer associated to a unique
radiance value.

Because we are only doing surface rendering rather than volume rendering
(i.e., we’re ignoring participating media), we only care about L(P,v) for points
P that are on some surface. That surface must have a surface normal n at P. We
can therefore define L(P,v, n) by the rule that if v and n have a positive dot
product, then L(P,v, n) represents the radiance leaving the surface in direction
v; if their dot product is negative, then it represents the radiance arriving at the
surface in direction v. By using either the unit outward surface normal or its
opposite as n, we can handle both reflection and transmission. In practice, this
turns into an additional if statement at every ray-surface interaction: A surface
element has two sides (one with a normal pointing each way), and we treat the
vector v differently depending on whether it points in the same or the opposite

half-space as the normal vector to the “side.” In mathematical terms, we can
say that L is defined on the orientation double cover [Lee09] of the set of all scene
surfaces.

The three-argument version of L is awkward to write. As an alternative, we can
replace L altogether with two new functions: (P,v) 
→ Lin(P,v) and (P,v) 
→
Lout(P,v), which represent light arriving at P traveling in direction v and light
leaving P in direction v, respectively; these are Arvo’s field and surface radiance
functions. The reflectance equation then becomes a scattering equation:

Lr, out(P,vo) =

∫
vi∈S2(p)

Lin(P,−vi)fs(P,vi,vo)|vi · nP| dvi, (29.10)

where five things have changed.

• The integral is now over all directions of incoming light.

• The result is now Lr rather than Lref (recall that Lr denotes light either
reflected or transmitted).

• The BRDF fr has been replaced with the BSDF fs.

• The dot product now has an absolute value.

• The annotations “in” and “out” have been added to the radiance and scat-
tered radiance.

The transport equation now links incoming and outgoing light. We write the
equation in two forms, one suitable for use in ray tracing, the other for use in
photon mapping. The distinction is simply one of tracing rays in the direction of
photon propagation or in the opposite direction. The version used in raytracing is
this:

Lin(P,−vi) = Lout(R(P,vi),−vi) (29.11)

while the one that’s useful in photon mapping is this:

Lout(Q,vo) = Lin(R(Q,vo),vo) (29.12)

Dividing the radiance field into two parts has further advantages. When we
write the radiance field this way, it naturally extends to all points P rather than
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limiting us to those points that lie on surfaces—we define radiance at (P,v) for a
nonsurface point P by letting Q = R(P,−v), and setting

L(P,v) = Lout(Q,v), (29.13)

which results in radiance that’s constant along rays in empty space. In Equa-
tion 29.13, we defined L(P,v) rather than Lin or Lout because at points of empty
space, these two functions agree; they only differ at points of M.

The rendering equation now becomes

Lout(P,vo) = Le(P,vo) +

∫
vi∈S2(p)

Lin(P,−vi)fs(P,vi,vo)|vi · nP| dvi.

(29.14)

The changes we’ve made to incorporate transmission seem fussy and likely to
lead to code with multiple cases. In practice, however, they have almost no effect.
That’s partly because of the restricted model of scattering we use in representing
materials in Chapter 32: Scattering at a surface point consists of a small num-
ber of impulses and an otherwise diffuse or glossy reflectance-scattering pattern.
(Recall that an impulse is a phenomenon that is similar to mirror reflection or
Snell-Fresnel refraction, where radiance arriving along one ray scatters out along
just one or two other rays.) In particular, in the general rendering equation, the
part of the integral representing transmission degenerates to something far sim-
pler: We look at the radiance arriving along one particular ray, multiply it by a
constant representing how much light is transmitted, and add the result to the out-
going radiance.

29.4.1 The Measurement Equation

Typically a renderer takes a scene description as input, and produces an image—a
rectangular array of values—as output. These values might just be RGB triples in
some fixed range, or they might be RGB radiance values representing radiance in
W m−2 sr−1, or something else. In general, a particular pixel value represents the
result of a measurement process. For a typical digital camera, the red measure-
ment, for one pixel, represents the total charge accumulated in one cell of a CCD
device. For a synthetic camera, it might represent the integral of irradiance in the
red portion of the spectrum over the rectangular corresponding to one pixel on the
image plane. Or it might represent a weighted integral of this irradiance over a
disk slightly larger than the rectangle usually associated to a pixel so that radi-
ance along a single ray contributes to the value of more than one pixel in the final
image. We express this idea by associating to each pixel ij a sensor response Mij,
which converts radiance along any ray into a numerical value that can be summed
over all rays to get the sensor value. That is to say, we posit that the measurement
mij associated to pixel ij is computed as

mij =

∫
U×S2

Mij(P,v)Lin(P,−v)|v · nP| dP dv, (29.15)

where U is the image plane. This is a purely formal description of the measure-
ment process. The critical thing is that Mij is zero except for points in a small area
and directions in a small solid angle. For a camera with a small pinhole aperture,
for instance, Mij(P,v) is nonzero only if both of the following are true.
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• The ray t 
→ P + tv passes through the pinhole.

• P is within the part of the image plane associated to pixel ij.

In this case, the radiance Lin(P,−v) arriving at P is multiplied by the sensor
response associated to this ray.

For a real physical sensor, the sensor response is called flux responsivity and
has units of W−1. Since the radiance is in W m−2 sr−1, and we integrate out square
meters and steradians, this makes the measurement mij unitless.

For a typical sensor, Mij has a form that’s independent of the pixel ij. For
example, it might have the constant value 1 on a small rectangle representing the
pixel, and zero elsewhere. While the region on which it takes the value 1 changes
with ij, the form of the function doesn’t change.

When we consider the space of all paths along which light might travel in a
scene, from the point of view of rendering, some are more important than others.
In particular, the paths that end up entering the virtual camera matter more to us
than do those that end up absorbed in some distant and invisible part of the scene.
Thus, the function Mij can help us decide which paths might be worth examining.
Because of this, it’s been called the importance function [Vea96].

29.5 Scattering, Revisited

In the introduction, we talked (broadly) about two types of scattering. The first is
mirrorlike: Radiance arriving from some direction vi leaves in a single direction
vo, perhaps after attenuation by some factor 0 ≤ c ≤ 1. The two main examples
of mirrorlike reflectance are (a) mirrors, and (b) Snell’s-law refraction. The second
type of scattering is diffuselike scattering, in which radiance arriving in some
direction is scattered over a whole solid angle of directions (perhaps uniformly
with respect to angle—the Lambertian case—or perhaps nonuniformly). In this
second kind of scattering, the outgoing radiance in a direction vo due to radiance
along a single ray in direction −vi is infinitesimal: To get a nonzero outgoing
radiance, we must sum radiance scattered from a whole solid angle of incoming
directions; the integral in the rendering equation expresses exactly this. For the
integral formulation to apply to the first part requires the fiction of “infinite values”
for fs akin to delta functions.

We can treat the process of converting incoming radiance to outgoing radi-
ance as an operation K that takes the incoming radiance and scattering functions
as input and produces the outgoing radiance Lout = K(Lin, fs). What we’ve said
in the previous paragraph is that fs should be written as a sum f 0

s + f∞s , the first
being the “finite part” and the second being the “impulse part”; the rule for com-
bining the field radiance with the finite part to get the surface radiance can then be
legitimately expressed as an integral:

K(Lin, f 0
s )(P,vo) =

∫
S2

f 0
s (P,vi,vo)L

in(P,−vi) |vi · n| dvi. (29.16)

In the opaque (i.e., reflection-only) case, the integral would be over a hemisphere,
and we’d write fr instead of fs.

The rule for combining the incoming radiance with the impulse part has the
form

K(Lin, f∞s )(P,vo) =
∑

vi∈H(vo)

f∞s (vi,vo)L
in(P,−vi), (29.17)
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where H(vo) is the (finite) set of directions vi that undergo mirrorlike scattering
at P to direction vo, and f∞s (vi,vo) denotes the constant by which incoming radi-
ance is scaled to produce outgoing radiance, which we’ve previously called the
magnitude of the impulse.

There’s a slight subtlety here. The form given in Equation 29.17 is only
valid if Lin is continuous at (P,−vi). Otherwise, the value must be determined by
a limit. As far as we know, this detail is generally ignored in graphics, perhaps
because almost all physical processes involve convolution, and convolution tends
to produce continuous functions. That is to say, perhaps our pure mathematically
modeled Lin has a discontinuity, but if we were in the real world, things like vol-
umetric scattering would tend to make it actually continuous. Any picture whose
appearance depended on the discontinuity of Lin would be nonphysical anyhow!

29.6 A Worked Example

Consider the situation in Figure 29.3. The surface is 50% Lambertian and 30%
a mirror reflector (so 20% of arriving light is absorbed). We’ll compute the light
reflected from the point P = (0, 0, 0) under two different lighting conditions.

30% mirror
nP

P

50% Lambertian

Figure 29.3: Scattering exam-
ple: a 50% matte reflector that’s
also 30% mirror-reflective, but
not transmissive.

1. The surface is bathed in light from all points of the postive-x hemisphere
(see Figure 29.4). The radiance Lin(P,−vi) is 6 W m−2 sr−1 for all vi

with vi ·
[
1 0 0

]T ≥ 0.

P

nP

Figure 29.4: Light arrives from
everywhere in the right half-
space.

2. The surface is illuminated by a uniformly radiating sphere (see Fig-
ure 29.5) of radius r < 1 at position Q = (1, 1, 0); the total power of
the luminaire is 10 W.

We’ll examine the behavior of the second case as r→ 0 as well.
In each case, we’ll compute the reflected radiance in the direction vo =

S(
[−1 1 0

]T
).

Q 5 (1, 1, 0)

P

nP

Figure 29.5: The point P is illu-
minated by a tiny, uniformly emit-
ting, spherical lamp at loca-
tion Q.

We start with situation 1. Let’s begin by computing the diffusely reflected
light. This is

Lref, 0(P,vo) =

∫
S2

+(P)
f 0
s (P,vo,vi)L(P,−vi)(vi · nP) dvi. (29.18)

Rewriting vi in polar coordinates, (x, y, z) = (cos θ sinφ, cosφ, sin θ sinφ), the
radiance field L(P,−vi) is zero unless x > 0, that is, cos θ > 0, so we can restrict
to −π

2 ≤ θ ≤ π
2 . Similarly, since we’re only considering reflectance, we can

restrict to 0 ≤ φ ≤ π
2 . Thus, our integral becomes

Lref, 0(P,vo) =

∫ π/2

−π/2

∫ π/2

0
f 0
s (P,vo,vi)L(P,−vi)(vi · nP) sinφ dφ dθ,

(29.19)

where the factor of sinφ comes from the change to polar coordinates. Within this
restricted domain, the value of L is the constant 6, so the integral becomes

Lref, 0(P,vo) =

∫ π/2

−π/2

∫ π/2

0
f 0
s (P,vo,vi)6 cosφ sinφ dφ dθ, (29.20)
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where we’ve replaced the dot product with cosφ. Finally, the finite part of the
BSDF is the constant 0.5

π sr−1, so the reflected radiance becomes

Lref, 0(P,vo) =

∫ π/2

−π/2

∫ π/2

0

0. 5
π

6 cosφ sinφ dφ dθ (29.21)

=
3
π

∫ π/2

−π/2

∫ π/2

0
cosφ sinφ dφ dθ (29.22)

= π
3
π

∫ π/2

0
cosφ sinφ dφ (29.23)

=
3
2

, so that (29.24)

Lref(P,vo) =
3
2
+ I W m−2 sr−1, (29.25)

where I is the impulsively reflected (i.e., mirror-reflected) radiance. Since the
surface is 30% mirror-reflective, the incoming radiance of 6 W m−2 sr−1 is
multiplied by the magnitude 0. 3 to get the outgoing mirror-reflected radiance,
1.8 W m−2 sr−1. Thus, the total reflected radiance is 3

2 + 1. 8 W m−2 sr−1 =
3. 3 W m−2 sr−1.

As a result, we’ve converted the handling of an impulse in the scattering func-
tion from an integral to a simple multiplication by a constant, the impulse magni-
tude.

Now, as we look at the second situation, with illumination provided by a 10 W
radiating small sphere, we’ll see how each term (the diffuse and the impulse)
behaves when there’s an “impulse” in the incoming light field (i.e., a point light),
by seeing what happens as the radius of the sphere approaches zero.

As we showed in Section 26.7.3, a uniformly radiating sphere of radius r and
total power Φ produces radiance Φ

4π(πr2)
along every outgoing ray, and subtends

a solid angle approximately πr2

R2 at a point at distance R, with the approximation
growing better and better as R increases or r decreases.

The integral to compute the Lambertian-reflected light from this small spheri-
cal source is essentially the same as the one above, except that instead of integrat-

ing over all directions vi =
[
x y z

]T
with x ≥ 0, we now must integrate over

just the small solid angle Ω subtended at P by the small spherical source. So

Lr(P,vo) =

∫
Ω

f 0
s (P,vo,vi)L(P,−vi)(vi · n(P)) dvi + I, (29.26)

where I as before represents the impulse-reflected radiance and f 0
s again is the

constant function 0. 5/π sr−1. Furthermore, for vi in the solid angle subtended by
the luminaire, vi ·n(P) is well approximated by u ·n(P), where u is the unit vector

from P to the center Q of the radiating sphere, that is,
√

2
2

[
1 1 0

]T
. Since the

normal n(P) points in the y-direction, this dot product is just
√

2/2. Hence,

Lr(P,vo) ≈
√

2
2

0. 5
4π

∫
Ω

L(P,−vi) dvi + I. (29.27)

The radiance along each ray is the constant Φ
4π(πr2)

, so this becomes
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Lr(P,vo) ≈
√

2
4π

Φ

4π(πr2)

∫
Ω

dvi + I (29.28)

=

√
2

4π
Φ

4π(πr2)

πr2

R2
+ I (29.29)

=

√
2

4π
Φ

4πR2
+ I. (29.30)

Since R =
√

2 and Φ = 10, we get that the reflected radiance is 5
√

2
16π2 +

I W m−2 sr−1. Notice that this approximation of Equation 29.28 is independent
of r so that even as the spherical luminaire shrinks to a point, the reflected radiance
remains the same.

The constancy of the reflected radiance depends on two things: the
assumption that the dot product vi ·n(P) can be approximated by u ·n(P), and the
fact that the finite portion of the scattering function is constant. The first of these
is justified because we’re letting r approach zero. The second is not true for a gen-
eral BSDF. But if f 0

s is continuous, as it is in all the BSDFs that we consider, then
the mean value theorem for integrals tells us that the integral we wish to compute
is equal to

m(Ω) · f 0
s (P,vo,v∗

i )L(P,−v∗
i )(v

∗
i · n(P)) (29.31)

for some v∗
i in Ω. As the area of Ω goes to zero, this vector vi∗ must approach u,

so the integral approaches

π(r/R)2f 0
s (P,vo, u)L(P,−u)(u · n(P)). (29.32)

To summarize the preceding argument, a point luminaire of power Φ, in direc-
tion vi from P, at distance R, produces reflected radiance (from the nonimpulse
portion of scattering) in direction vo in the amount

Φ

4πR2
f 0
s (P,vi,vo)vi · nP, for vi · nP > 0 and vo · nP > 0. (29.33)

Finally, let’s consider the impulse reflection of the very small spherical source.
The radiance leaving each point of the luminaire is again Φ

4π(πr2)
. Because vi

points to a point of the luminaire, the radiance arriving in direction−vi is Φ
4π(πr2)

;
to get the outgoing radiance in the mirror-reflected direction vo, we multiply by
the impulse value 0.3 so that the outgoing radiance due to mirror reflection of the
very small spherical source is 0.3 Φ

4π(πr2)
. Notice that this depends on the value of

r! As the size of the luminaire decreases, the radiance emitted must increase to
keep the total power the same, with the result that the mirror-reflected radiance
also increases without bound. If we try to take a limit, we end up with an answer
that includes∞, which is unsatisfactory.

There are several possible ways to address this problem.

1. Assert that no eye ray that we trace will ever “just happen” to hit a point
luminaire, so this is a probability-zero event, and we can ignore the infinity
that would arise if this event happened.

2. Say that for the sake of reflecting from diffuse surfaces, point lights are
points, but for the sake of specular reflections, they have a nonzero radius
r, which must be chosen by the user. Note that this makes the world in
which we’re trying to simulate light transport internally contradictory.
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3. Say that point lights are in fact small spheres of a known radius, r, but that
we’ll restrict our scene to be sure that the distance from a point luminaire
to any surface is much greater than r so that the diffusely reflected light
can be very well approximated by treating the sources as point sources,
but mirror-reflected light must be computed using r.

4. Observe that when we include both point lights and mirror reflections,
both of which are approximations of physical phenomena made for con-
venience, the mathematics becomes intractable, and hence we’ll abandon
one or both.

Each of these approaches has its merits, although we prefer approach 3 to
approach 2 (even though they both may result in identical programs). In Chap-
ter 32, we choose the first option: We simply ignore mirror-reflected point lights.

29.7 Solving the Rendering Equation

It’s natural to ask, having derived the rendering equation, how to solve it. That
is to say, if we know the scene geometry and materials and illumination, how
can we compute L(P,v) for any point P and any vector v, or for every P and
every v? We’ve already given you a taste of the answer in discussing a path tracer.
But the general topic is the subject of the next three chapters. Because integration
is central to the rendering equation, the first discusses probability and Monte Carlo
integration. The second describes the ideas behind several techniques for solving
the rendering equation. The third gives an implementation of two renderers. One
of the shocking things is how very short the two programs are, given the length of
this chapter and the next three. That brevity is partly due to the use of libraries for
things like visibility testing, basic linear algebra, and material representation. But
as you’ll see, it’s also due to the simplicity of basic Monte Carlo integration.

29.8 The Classification of Light-Transport
Paths

In the course of the Monte Carlo integration used to estimate solutions to the ren-
dering equation, we’ll break up the integrals of the rendering equation into differ-
ent parts—sometimes by breaking up the domain of integration into the categories
of “directions in which we see luminaires” and “other directions,” and sometimes
by breaking up the integrand into a sum of a finite part and an impulse part, usu-
ally as a means of distinguishing between things like point luminaire and area
luminaires, or between mirror reflections and diffuse reflections.

Because of this distinction in treatment, it’s useful to be able to discuss the
path that light took in getting from the luminaire to the receiver (a light path), or
its reverse, the path we traced from the eye to eventually reach the light source (an
eye path). Heckbert [Hec90] used a notation that’s now universally accepted:1 L
denotes a luminaire, E the “eye,” S a specular reflection, and D a diffuse reflection.
Thus, LDE represents light that left the source, scattered from a diffuse surface,

1. Hanrahan [JAF+01] attributes this notation to Shirley, who claims [Shi10] that he’s
uncertain who first used it.
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and reached the eye. Conventional regular-expression notation is useful here, with
+ used to indicate “one or more,” ∗ for “zero or more,” ? for “zero or one,” paren-
theses for grouping, and | for “or,” so that L(D|S)E denotes a one-bounce path
from a source to the eye that involves either a diffuse or specular reflection, while
LD+E is a path involving one or more diffuse bounces.

Inline Exercise 29.1: (a) Write the notation for light that undergoes one
or more diffuse bounces, and then a final specular bounce before reaching
the eye.
(b) A very basic ray tracer might consider rays from the eye that undergo only
repeated specular bounces, followed by zero or one diffuse bounce, before
reaching the light. Write the notation for the path traveled by the light, from
luminaire to eye.

Note that the notation describes a sequence of scattering events, not just the
path. In the case of the half-mirror surface we just discussed, light could travel
from a luminaire to the surface, be mirror-reflected, and reach the eye; it could
also travel from the source, be diffusely scattered, and reach the eye. The light
energy in the two cases travels along the same path, but the first is described by
LSE while the second is described by LDE.

There are extensions that are fairly common. Veach uses D to mean Lam-
bertian, G for any kind of glossy reflection, S for perfectly specular, and T for
transmission, for instance [Vea97].

We can use this notation to characterize certain rendering algorithms in terms
of the eye paths that they consider, following Hanrahan [JAF+01]:

• Appel’s ray-casting algorithm: E(D|G)L

• Recursive ray tracing (Whitted): E[S∗](D|G)L

• Path tracing (Kajiya): E[(D|G|S)+)D|G)]L

• Radiosity: ED∗L

Recursive ray tracing considers only light that’s diffusely or glossily reflected,
and then mirror-reflected to the eye. Radiosity only handles diffuse reflections.
And Appel’s ray-casting algorithm considers only direct lighting.

29.8.1 Perceptually Significant Phenomena
and Light Transport

We conclude this largely mathematical chapter with a discussion of things we
notice when we look at the world, for these phenomena—the things we take the
trouble to name—are the things we must render effectively if we want to make
compelling images. They thus serve as a guide to developing rendering algorithms.

Figure 29.6: A hard shadow.

Figure 29.7: A soft shadow.

Figure 29.8: Diffraction under
point lighting.

The first phenomenon is the shadow. Figure 29.6 shows a hard shadow, created
by a luminaire (the sun) that subtends a very small solid angle. The light from the
sun is obstructed by the sharp edge of an object. Figure 29.7 shows a soft shadow.
Soft shadows can be caused by many things: If the shadowing object is not sharply
defined (e.g., a furry animal), the shadow may have no distinct edge, even if it’s
cast by a point luminaire. If the shadow is cast by a very small object, diffraction
effects may dominate and effectively soften the shadow. But most often, soft shad-
owing is caused by nonpoint luminaires: A point on the receiving surface may be
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invisible from every point on the light source, in which case it’s in the umbra, or
it may be visible from just some of the points of the luminaire, in which case it’s
in the penumbra, or it may be visible to all points of the source, in which case
it’s not shadowed at all. To be more precise: A point P is in the penumbra if the
set of points of the luminaire, L, visible from P when the occluder is removed, is
different from the visible set when the occluder is present. Thus, if L is a typical
incandescent lightbulb, we don’t require that every point of the bulb be visible
from P (which never happens), but only that every point that could be visible
from P actually is visible.

The next important phenomenon is boundaries such as the contours dis-
cussed in Chapter 5. Boundaries between objects, between materials in a single
object, etc., are all significant. (Indeed, shadow edges are yet another example of
boundaries.)

Figure 29.9: Diffraction under
more diffuse lighting.

Figure 29.10: Brushed metal gen-
erates stretched-out highlights.

Figure 29.11: The bright line
along the edge of the bookshelf
results from the glossy reflection
of sunlight.

Figure 29.12: Caustics cast by a
glass of water in sunlight.

Many surface properties are revealed through reflection of light. Under point
illumination, diffractive objects like the surface of the CD in Figure 29.8 clearly
reveal their reflectance structure; under area luminaires, the reflection is less
focused but still shows the characteristic rainbow pattern (see Figure 29.9). Less
extreme than diffraction are the stretched-out highlights that appear on brushed-
metal surfaces (see Figure 29.10); the alignment of the brush marks generates
these in much the same way that ripples on a pond generate an extruded reflection
of moonlight.

And of course, for more common scattering functions, phenomena like
edge highlights, generated by very glossy materials with high curvature (see
Figure 29.11), are commonplace.

Polarization phenomena are less obvious in general, although anyone who has
worn polarized sunglasses knows that mirror-reflected light tends to be somewhat
polarized, and therefore can be attenuated by the polarizing lens in the sunglasses.

Caustics (see Figure 29.12) are bright areas that arise from the focusing of
illumination by curved surfaces, through either reflection or refraction. Typically
they are produced by point sources or small area sources like the sun. Figure 29.13
shows how caustics weaken or disappear under more diffuse illumination.

Assuming for the moment that most caustics arise from sunlight, that is,
from light arriving on essentially parallel rays, caustics will, in general, appear
close to the curved surfaces that cause them. Figure 29.12 suggests the reason: You
can see several rays meeting at a bright spot, but beyond that spot, the rays diverge.
Since caustics depend on convergence, once you are sufficiently distant from a
surface (roughly, the maximum radius of curvature of the surface) the caustics can
no longer appear. By studying the focal points of a surface (places at which nearby
normal rays meet), you can determine how likely a surface is to cast a caustic on
some distant object under random parallel illumination.

There’s a dual phenomenon to caustics: Eye rays meeting a curved surface
may converge on a single point, or a small range of points. A magnifying glass is
designed to take advantage of this phenomenon, for instance, but it also appears
in less intentional settings. For instance, the reflections of the blue windows in
Figure 29.14 appear somewhat wavy and distorted because of the curvature of the
windows in which they’re reflected.

Transmission of light through transparent media also generates refractive phe-
nomena, like the offset in the top and bottom parts of the red pen in Figure 29.15.
Because spatial continuity (things that are straight should appear straight, things
in a regular pattern should appear regular, etc.) is easily noticed, its interruption
by refraction is perceptually significant.
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If you are reading this indoors, then most of the light that you are seeing has
been reflected multiple times. You can verify this by standing in an empty room
with painted walls, illuminated by a single bulb. If you place a black occluder
next to the bulb, some portion of the room will be “in shadow,” but nonetheless
remains remarkably bright. The importance of this multiply reflected light is not
well measured by computing energies, because of the logarithmic sensitivity of
the eye: Even comparatively dark areas are easy for us to see; these darker areas
are ones where indirect illumination has taken multiple attenuating bounces. Even
though little energy from them is reaching the eye, we can easily detect variations
on surfaces, such as the pattern on a carpet in a dark corner of a room.

Figure 29.13: Under diffuse light,
the caustics disappear.

Figure 29.14: Distorted reflec-
tions.

Figure 29.15: Refraction of light
by water can break up spatial
continuity.

These variations in dark regions can, however, be lost in the presence of other
light. Figure 29.16 shows how the view through a car window can be masked by
reflected light from papers on the dashboard.

Figure 29.16: The reflections
from the dashboard obscure the
view through the window.

Keep these examples in mind as you read about rendering algorithms, and ask
yourself which of them each algorithm is capable of replicating.

29.9 Discussion

The key ideas in this chapter are the reflection equation and the transport equa-
tion, which combine to form the rendering equation, and the measurement equa-
tion, which is added as a final step in the process of image formation. Equally
important is the notion of dividing various phenomena into “impulse” and “finite”
pieces. This division applies to the BSDF, where impulses include mirror reflec-
tion and Snell’s-law refraction, and to luminaires, where point lights act as a kind
of impulse in the illumination. Such impulses require that we regard integrals with
a skeptical eye, because integrals of finite pieces can be reliably estimated with
Monte Carlo methods, as we’ll see in the next few chapters, while those involving
impulses must be treated separately.

The physical formulation of light transport is central to rendering, but it’s also
worth understanding the phenomena, that is, the human-perceived aspects, of light
transport. The tiny “rainbows” cast by a chandelier on the walls of a well-lit room
are insignificant in the total illumination by physical measures, but to a person
sitting in the room, they are important characteristics that attract attention. Under-
standing these phenomena helps us understand which aspects of physical light
transport may have greater impacts on the perceived correctness of an image.

29.10 Exercise

Exercise 29.1: Show that if you have the ray-casting function R, then you can
build a visibility function V : M ×M → 0, 1, where V(P, Q) is 1 if all points
of the line segment from P to Q that are strictly between the ends are in empty
space, and is 0 otherwise. Informally, V(P. Q) is 1 when Q is visible from P (and
vice versa). Note that according to our definition, V(P, P) is always 1. You may
assume that you have a mechanism for perfect equality testing of points.
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Chapter 30

Probability and Monte
Carlo Integration

30.1 Introduction

In preparation for studying rendering techniques, we now discuss Monte Carlo
integration. We start with a rapid review of ideas from discrete probability theory,
and then generalize to continua like the real line or the unit sphere. We apply these
notions to describe how to generate random samples from various sets. We then
introduce Monte Carlo integration, treating all the basic ideas through the integra-
tion of a function on an interval [a, b], where the ideas are easiest to understand.
We then show how these ideas apply to integration on a hemisphere or sphere, and
hence how they are used to find reflected radiance via the reflectance equation, for
instance.

30.2 Numerical Integration

a 5 t0 b 5 tn

y 5 f (x)

x

y

t1 tn21

t0 1 t1
21 t0 1 t1

2 2, f (           )

Figure 30.1: Integration using
equal partitioning.

We’ll start with a high-level overview of the use of randomization in numer-
ical integration. Sometimes we need to integrate functions where computing
antiderivatives is impossible or impractical. For instance, the integrand in the
reflectance equation might not be described by an algebraic equation at all. In
these cases, numerical methods often are the only workable solution. Numerical
methods fall into two categories: deterministic and randomized. Here’s a quick
comparison of the two.

A typical deterministic method (see Figure 30.1) for integrating a function f
over an interval [a, b] is to take n + 1 equally spaced points in the interval [a, b],
t0 = a, t1 = a + b−a

n , . . . , tn = b, evaluate f at the midpoint ti+ti+1

2 of each of the
intervals these points define, sum up the results, and multiply by b−a

n , the width
of each interval. For sufficiently continuous functions f , as n increases this will
converge to the correct value. Similar methods for surface integrals, which divide

801
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the surface into small rectangles, also work. Press et al. [Pre95] describe these and
more sophisticated deterministic methods.

A probabilistic or Monte Carlo method for computing, or more precisely,
for estimating the integral of f over the interval [a, b], is this: Let X1, . . . , Xn be
randomly chosen points in the interval [a, b]. Then Y = (b − a) 1

n

∑n
i=1 f (Xi) is

a random value whose average (over many different choices of X1, . . . , Xn) is the
integral

∫
[a,b] f . To implement this we use a random number generator to generate n

points xi in the interval [a, b], evaluate f at each, average the results, and multiply
by b − a. This gives an estimate of the integral, as shown in Figure 30.2. Of
course, each time we compute such an estimate we’ll get a different value. The
variance in these values depends on the shape of the function f . If we generate the
random points xi nonuniformly, we must slightly alter the formula. But in using
a nonuniform distribution of points we gain an enormous advantage: By making
our nonuniform distribution favor points xi where f (x) is large, we can drastically
reduce the variance of our estimate. This nonuniform sampling approach is called
importance sampling. Figure 30.3 shows an example.

y

20-sample estimate = 1.4598
Exact value = p

2 ¯ 1.571

x

Figure 30.2: Estimating∫ 1
−1

√
1 − x2 dx with 20 samples

approximates the correct result,
which is π

2 ≈ 1. 571.

y

20-sample estimate = 1.6121
Exact value = p

2 ¯ 1.571

x

y

20-sample estimate = 1.6121
Exact value = p

2 ¯ 1.571

x

Figure 30.3: Estimating the same
integral, again with 20 samples,
but preferentially selecting sam-
ples near x = 0, and using appro-
priate weighting, gives a better
approximation.

We can integrate a function f over a surface region R by an analogous method.
We choose points uniformly randomly on R, average the values of f at these points,
and multiply by the area of the region. Or we can generate points nonuniformly,
and compute a weighted average, again multiplied by the region’s area, generaliz-
ing importance sampling. Our main application of numerical integration is when
R is either the sphere or the outward-facing hemisphere at some surface point P
where we’re trying to compute the scattered light (i.e., trying to evaluate the inte-
gral in the reflectance equation). We’ll return to this application at the end of the
chapter.

Randomized integration techniques form part of the working tools of anyone
studying rendering, and much of the rest of graphics. Press et al. [Pre95] is a solid
first reference for ideas beyond those discussed in this chapter.

30.3 Random Variables and Randomized
Algorithms

Because the major shift in rendering methods over the past several decades was
from deterministic to randomized, we’ll be discussing randomized approaches to
solving the rendering equation. To do so means using random variables, expecta-
tion, and variance, all of which we assume you have encountered in some form
in the past. To establish notation, and prepare for the continuum and mixed-
probability cases, we review discrete probability here. The approach we take may
seem a little unusual. That’s because our goal is not to analyze some probabilistic
phenomenon that already exists (e.g., the chance of rainfall in Boston tomorrow,
given that it’s already been raining for two days), but rather to construct proba-
bilistic situations in which something computable, like expected value, turns out
to have the same value as some integral (like the reflectance integral) that we
care about. That leads to emphasis on some things that are largely downplayed in
introductory probability courses.

We often find that for our students, the connection between formal probabil-
ity theory and programs that implement probabilistic ideas is unclear, and so we
discuss this connection as well.

Those familiar with these concepts can skip forward to Section 30.3.8.
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30.3.1 Discrete Probability and Its Relationship
to Programs

A discrete probability space is a nonempty finite1 set S together with a real-
valued function p : S→ R with two properties.

1. For every s ∈ S, we have p(s) ≥ 0, and

2.
∑

s∈S p(s) = 1.

The first property is called non-negativity, and the second is called normality. The
function p is called the probability mass function, and p(s) is the probability
mass for s (or, informally, the probability of s). The intuition is that S represents a
set of outcomes of some experiment, and p(s) is the probability of outcome s. For
example, S might be the set of four strings hh, ht, th, tt, representing the heads-or-
tails status of tossing a coin twice (see Figure 30.4). If the coin is fair, we associate
probability 1

4 to each outcome.

hh

th

ht

tt

1/4

1/4 1/4

1/4

Figure 30.4: A four-element
probability space, with uniform
probabilities, shown as fractions
in red.

Inline Exercise 30.1: Explain why, in a discrete probability space (S, p), we
have 0 ≤ p(s) ≤ 1 for every s ∈ S. The first inequality follows from the first
defining property of p. What about the second?

hh

th

ht

tt

1/4

1/4 1/4

1/4

Figure 30.5: An event (“At least
one ‘tails’ ”) with probability 3

4 .

An event is a subset of a probability space. The probability of an event
(see Figure 30.5) is the sum of the probability masses of the elements of the event,
that is,

Pr{E} =
∑
s∈E

p(s). (30.1)

Inline Exercise 30.2: Prove that if E1 and E2 are events in the finite probability
space S, and E1 ∩ E2 = ∅, then Pr{E1 ∪ E2} = Pr{E1} + Pr{E2}. This
generalizes, by induction, to show that for any finite set of mutually disjoint
events, Pr{⋃n

i Ei} =
∑n

i=1 Pr{Ei}. One of the axioms of probability theory is
that this relation holds even for an infinite, but countable, collection of disjoint
events when we’re working with continua, like [0, 1] or R, rather than a discrete
probability space.

A random variable is a function, usually denoted by a capital letter, from a
probability space to the real numbers:

X : S→ R. (30.2)

The terminology is both suggestive and misleading. The function X is not a vari-
able; it’s a real-valued function. It’s not random, either: X(s) is a single real num-
ber for any outcome s ∈ S. On the other hand, X serves as a model for something
random. To give a concrete example, consider the four-element probability space
described earlier. There’s a random variable X defined on that space by the notion
“How many heads came up?” or, more formally, “How many hs does the string
contain?” To be explicit, we can define the random variable X by

X(hh) = 2 X(ht) = 1 X(th) = 1 X(tt) = 0. (30.3)

1. Countably infinite sets such as the integers are often included in the study of discrete
probability, but we’ll have no need for them, and restrict ourselves to the finite case.
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This function takes on real values (either 0, 1, or 2), and it’s defined on the set S;
hence, it’s a random variable. As in this example, we’ll use the letter X to denote
nearly every random variable in this chapter.

A random variable can be used to define events. For example, the set of out-
comes s for which X(s) = 1, that is,

E = {s ∈ S : X(s) = 1} and (30.4)

= {ht, th}, (30.5)

is an event with probability 1
2 . We write this Pr{X = 1} = 1

2 , that is, we use the
predicate X = 1 as a shorthand for the event defined by that predicate.

Let’s look at a piece of code for simulating the experiment represented by the
formalities above:

1
2
3
4
5
6
7

headcount = 0
if (randb()): // first coin flip

headcount++
if (randb()): // second coin flip

headcount++

return headcount

Here we’re assuming the existence of a randb() procedure that returns a boolean,
which is true half the time.

How is this simulation related to the formal probability theory? After all, when
we run the program the returned value will be either 0, 1, or 2, not some mix of
these. (If we run it a second time, we may get a different value, of course.)

The relationship between the program and the abstraction is this:
Imagine the set S of all possible executions of the program, declaring two

executions to be the same if the values returned by randb are pairwise identical.
This means that there are four possible program executions, in which the two
randb() invocations return TT , TF, FT , and FF. Our belief and experience is that
these four executions are equally likely, that is, each occurs just about one-quarter
of the time when we run the program many times.

The analogy is now clear: The set of possible program executions, with associ-
ated probabilities, is a probability space; the variables in the program that depend
on randb invocations are random variables. This is a quite clever piece of mathe-
matical modeling of computation. You should be certain that you understand it.

There’s nice formalism in which a procedure that invokes randb-like func-
tions is replaced by one with an extra argument, which is a long string of bits; these
bits are used instead of randb calls. This revised procedure is deterministic; it
becomes randomized only when we invoke it with a sequence of random bits. In
this formalism, the probability space is the set of all possible bit strings that are
provided as the extra argument.

30.3.2 Expected Value

The expectation or expected value or mean of a random variable X on a finite
probability space S is defined as

E[X] =
∑
s∈S

p(s)X(s). (30.6)
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In the case of our “counting heads in a coin-flip” experiment, the expectation is

E[X] = p(hh)X(hh) + p(ht)X(ht) + p(th)X(th) + p(tt)X(tt), (30.7)

=
1
4
· 2 +

1
4
· 1 +

1
4
· 1 +

1
4
· 0, (30.8)

= 1. (30.9)

If we in fact run the coin-flipping program many times, we’ll sometimes see a
heads count of 0; sometimes 1; and sometimes 2. The average number of heads,
over many executions of the program, will be about 1.

We can rewrite the expectation in Equation 30.7 by asking, for each possible
value taken on by X (i.e., 0, 1, and 2), what fraction of the items in S correspond
to that value. For the value 1, we have X(ht) = 1 and X(th) = 1, so two of the
four items in S, in other words, half, correspond to the value 1. We then sum these
fractions times the associated values, and thus compute

E[X] =
∑

r=0,1,2

r · Pr{X = r}, (30.10)

= 0 · 1
4
+ 1 · 1

2
+ 2 · 1

4
= 1. (30.11)

This latter form is used in many applications of probability, because it depends
only on the values of X and the associated probabilities, and the probability space
S does not appear directly. In our applications, however, this form will not appear
again.

Nonetheless, the function r 
→ Pr{X = r}, and its generalization in the con-
tinuum case, is of substantial interest to us. Note that it’s defined on the codomain
of X, not the domain. And for each codomain value r, it tells us (if we’re thinking
of X informally as “producing a random output”) the probability that X will pro-
duce the output r. This function is called the probability mass function (or pmf)
for the random variable X, and is denoted pX .

One reason the pmf is interesting is that it can be generalized to apply to a
function Y : S → T , sending our probability space to any finite set T , not just the
real numbers. For such a function, we define

pY(t) = Pr{Y = t} for t ∈ T . (30.12)

This function, pY , is a probability mass function on T so that (T , pY) becomes a
probability space.

Inline Exercise 30.3: (a) How do we know that pY is a probability mass func-
tion, that is, it satisfies the two requirements of non-negativity and normality?
(b) If E ⊂ T is an event, show that Equation 30.12 implies that the probability
of the event E in the space (T , pY) is given by PrT{E} = PrS{Y−1(E)}. (Here
Y−1(E) denotes the set of all points s ∈ S such that Y(s) ∈ E.)

We’ve now used the term “probability mass function” in two different ways:
When we spoke of a probability space (S, p), we called p the probability mass
function. But we’ve also described the pmf for a random variable X : S → R,
or even for a function Y : S → T into an arbitrary set. We’ll now show that
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these uses are consistent. Consider the identity function I : S → S : s 
→ s. By
Equation 30.12, we have

pI(t) = Pr{I = t} for t ∈ S. (30.13)

For a fixed element t ∈ S, what is the event I = t? It’s the event

{s ∈ S : I(s) = t} = {s ∈ S : s = t} = {t}. (30.14)

The probability of this event is just the sum of the probability masses for all out-
comes in the event, that is, p(t). Thus, the probability mass function for the identity
map is the same thing as the probability mass function p for the probability space
itself.

Functions like Y that send a probability space to some set T rather than R are
sometimes still called random variables. In the case we’re most interested in, Y
will send the unit square to the unit sphere or upper hemisphere, and we’ll use
the terminology “random point.” We’ll use the letter Y to denote random-point
functions, just as we use X for all the random variables in the chapter.

We conclude with one last bit of terminology. The function pY , whether Y is a
random variable or a map from S to some arbitrary set T , is called the distribution
of Y; we say that Y is distributed according to pY . This suggestive terminology
is useful when we’re thinking of things like student scores on a test, where it’s
common to say, “The scores were distributed around a mean of 82.” In this case,
the underlying probability space S is the set of students, with a uniform probability
distribution on S, and the test score is a random variable from students to R. You’ll
often see the notation X ∼ f to mean “X is a random variable with distribution f ,”
that is, with pX = f .

30.3.3 Properties of Expected Value, and Related Terms

The expected value of a random variable X is a constant; it’s often denoted X̄.
Note that X̄ can also be regarded as a constant function on S, and hence be treated
as a random variable as well.

Expectation has two properties that we’ll use frequently: E[X + Y] = E[X] +
E[Y], and E[cX] = cE[x] for any real number c. In short, expectation is linear.

Expectation and variance (the latter which we’ll encounter in a moment) are
higher-order functions: Their arguments are not numbers or points, but actual
functions—in particular, random variables.

When we write E[X + Y], we mean the expectation of the sum of the two
random variables X and Y , that is, the function s 
→ X(s) + Y(s). This means
that when we write X+X, we mean the function s 
→ X(s)+X(s). If X happens
to correspond to a piece of code that looks like return randb(...), then you
cannot implement X + X by X() + X(): The two invocations of the random
number generator may produce different values!

In general, when you look at a program with randb in it, your analysis of the
program will involve a probability space with 2k elements, where k is the number
of times randb is invoked; each element will have equal probability mass. The
same will be true when we look at rand: Any two numbers between 0 and 1 will
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be equally likely to be the output of any invocation of rand. We call randb a
uniform random variable, because all of its outputs are equally likely.

Note that if randb is invoked a variable number of times in the program, then
some elements of the program’s probability space will have greater probability
than others.

Inline Exercise 30.4: Suppose we modify our coin-flipping program to only
flip twice if the first coin came up heads, as in Listing 30.1. Describe a probabil-
ity space for this code, and compute the expected value of the random variable
headcount.

Listing 30.1: A program in which randb is invoked either once or twice.

1
2
3
4
5
6

headcount = 0
if (randb()): // first coin flip

headcount++
if (randb()): // second coin flip

headcount++
return headcount

The values taken on by a random variable X may be clustered around the mean
X̄, or widely dispersed. This dispersion is measured by the variance, the mean-
square average of X(s)− X̄. Formally, the variance is

Var[X] = E[(X − X̄)2], (30.15)

which can be simplified (see Exercise 30.9) to E[X2]− E[X]2.
The units of variance are the units of X, squared; the square root of the variance

(known as the standard deviation) has the same units as X, and sometimes makes
better intuitive sense. As a useful rule of thumb, three-fourths of the values of X
lie within two standard deviations of X̄.

Variance is not linear, but has the property that Var[cX + d] = c2Var[X] for
any real numbers c and d.

The random variables X and Y are called independent if

Pr{X = x and Y = y} = Pr{X = x} · Pr{Y = y} (30.16)

for every x and y in R. For instance, in the experiment where we flip an unbiased
coin twice, if X is the number of heads that show up on the first coin flip (either 0
or 1), and Y is the number of heads that show up on the second, then our experi-
ence tells us that X and Y are independent, that is, the probability of two heads in a
row is 1

4 . On the other hand, the variables X and X are distinctly not independent.
We’ll generally assume that any two values produced by calls to randb or rand
or other such functions correspond to independent random variables.

The important properties for independent random variables are

• E[XY] = E[X]E[Y]

• Var[X + Y] = Var[X] + Var[Y]

Returning to the coin-flip experiment and the associated program, we imple-
mented the two random variables via calls to a single random-number-generating
routine, randb. We call these random variables samples from the distribution
in which heads and tails have equal probability. The idea is that randb can be
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thought of as producing a long list of random zeroes and ones, each equally likely,
and we’ve simply grabbed a couple of these.

Together, these two samples are therefore independent, and, because they
came from the same distribution, identically distributed. Such random variables
occur often, and we refer to them as independent identically distributed or iid
random variables or samples.

30.3.4 Continuum Probability

The entire discrete-probability framework can be extended by analogy to count-
ably infinite sets, which requires some care because we have to talk about sums
of infinite series, and worry about convergence. That particular case isn’t of much
interest in graphics, but the study of probability on uncountably infinite domains
like the unit interval, or the unit sphere, comes up repeatedly. We’ll refer to such a
domain, on which you know how to compute integrals, as a continuum, and speak
of continuum probability as contrasted with the discrete probability discussed
earlier. Some books use the term continuous probability for this situation, but
since we’ll want to be able to discuss continuous and discontinuous functions, we
prefer “continuum.” In the continuum case, we’ll analyze programs that contain
rand (which returns random real numbers between 0 and 1, with every number
being just as likely as every other number) rather than randb. There are three
difficulties.

1. The procedure rand doesn’t really produce real numbers in [0, 1]; it pro-
duces floating-point representations of a tiny subset of them.

2. Certain aspects of the analysis involve mathematical subtleties like
measurability.

3. Our probability space will now be infinite, and we’ll need to talk about
probability density rather than probability mass.

We’ll mostly ignore difficulties 1 and 2, on the grounds that they have little impact
in the practical applications we make. Difficulty 3, however, matters quite a lot.

Let’s look at another sample program as motivation. To make the code as
readable as possible, we’ll avoid the use of rand and instead write uniform(a, b)

to indicate a procedure that produces a random real number between a and b,
with each output being equally probable. This is typically implemented with a +

(b-a)*rand().

1
2
3

u = uniform(0,1); // a random real between 0 and 1
w =

√
u

return w

On the next several pages, we’ll describe the sample space associated with this
program, the notion of probability density, and the definitions of random variable
and expected value, and will eventually compute the expected value of w.

First, for this continuum situation, a probability space is a pair (S, p) consist-
ing of a set S, such as the real line, the unit interval, the unit square, the upper
hemisphere, the whole sphere, etc., on which integration is defined, and a prob-
ability density function, or just density p : S → R (see Figure 30.6), with two
properties:

• Non-negativity: For all s ∈ S, p(s) ≥ 0

S p

Figure 30.6: The continuum S has
a density function p assigning a
density to each point of S.• Normality:

∫
S p = 1
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The second property means that when p is integrated over all of S, the result
is 1, whether S is something one-dimensional like the interval [a, b], in which
case the normality condition would be written

∫ b
a p(s) ds = 1, or something two-

dimensional, like the unit square, in which case we’d write∫ 1

0

∫ 1

0
p(x, y) dy dx = 1. (30.17)

For the most part our probability spaces will be things like the interval or
the sphere, which have the property that when we integrate the constant function
1 over them, the result is some finite value, which we’ll call the size of S, and
denote size(S). In these cases, the associated density will usually be the constant
function with value 1/size(S), called a uniform density. Note that there is no
uniform density for the real line, however.

In the discrete case, the normality condition involved a sum; in the continuum
case, it involves an integral. You might be tempted to think of the probability
density as just like the probability mass in the discrete case, but they’re quite
different, as the next inline exercise shows. The proper interpretation is that the
density represents probability per unit size. Thus, in cases where we have units,
probability and probability density differ by the units of size (i.e., length, area, or
volume).

Inline Exercise 30.5: Let S = [0, 1] and p(x) = 2x. Show that (S, p) is a
probability space by checking the two conditions on p. Observe that p(1) = 2,
so a probability density may have values greater than 1, even though probability
masses are never greater than 1.

To return to our program, the set of all possible executions of the program is
infinite:2 In fact, there’s one execution for every real number between 0 and 1. So
we can say that our probability space is S = [0, 1], the unit interval. And since we
regard each possible value of uniform(0,1) as equally likely, we associate to S
the uniform density defined by p(x) = 1 for all x ∈ [0, 1].

Just as in the discrete case, a random variable is a function X from S to R,
and an event is a subset of S, but we’ll mostly restrict our attention to events of
the form a ≤ X ≤ b, where X is some random variable.

To be honest, not every subset of S is an event; only the “measurable”
ones. But it’s essentially impossible to write down a non-measurable set, and
certainly not possible to encounter one while performing computations on an
ordinary computer, so we’ll ignore this subtlety. If you like, you may consider
events to be restricted to things like intervals or rectangles, or other similarly
nice sets over which you know how to integrate.

The probability of an event E in a probability space (S, p) is the integral of
p over E, just as in the discrete space the probability of an event is the sum of the
probability masses of the points in the event.

2. We’re pretending that our random number generator returns real numbers, rather than
floating-point representations of them.
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The expected value of a random variable X on a probability space (S, p) is
defined to be

E[X] :=
∫

s∈S
X(s)p(s) ds. (30.18)

As in the discrete case, expectation is linear.

Inline Exercise 30.6: (a) In the special case where S is a space with a uniform
density, show that the expectation of the random variable X is just E[X] =

1
size(S)

∫
s∈S X(s) ds.

(b) What is the expectation of a random variable Z on the interval [a, b] with
uniform density?

We’ll now apply the notion of expectation to the example code. The variable u

in the program corresponds to a random variable U on the interval [0, 1]. Similarly,
the variable w in the program corresponds to a random variable W =

√
U. The

expected value of W is, according to the definition,

E[W] =

∫ 1

0
W(r)p(r) dr, (30.19)

=

∫ 1

0

√
r dr =

2
3

. (30.20)

This should match your intuition: The variable U is uniformly distributed on
[0, 1], so its expected value is 1

2 . But for any number 0 < u < 1, we have u <
√

u,
so the average square root of any number should be bigger than the average num-
ber, that is, we anticipate that the expected value of W will be somewhat larger
than 1

2 .

30.3.5 Probability Density Functions

In analogy with the probability mass function for a random variable on a discrete
space described in Section 30.3.2, we’ll now formulate the corresponding notion
for a random variable on a continuum.

It often happens that for a random variable X, and the special class of events of
the form a ≤ X ≤ b (i.e., the set {s : a ≤ X(s) ≤ b}), there’s a function pX , called
the probability density function (pdf) or density or distribution for X, with the
property that

Pr{a ≤ X ≤ b} =
∫ b

a
pX(r) dr. (30.21)

For the time being, we’ll consider only random variables that have a pdf.

S

p pY

TY
s

p(s) 5 pY (Y(s))

Y(s)

Figure 30.7: The density pY is
defined so that starting from
a point s ∈ S, you get the
same result no matter which way
you traverse the arrows, that is,
p(s) = pY(Y(s)).

The intuition for pX , for a random variable X, is that for small values of Δ,
the number pX(a)Δ is approximately the probability that X lies in an interval of
size Δ, centered at a, or [a−Δ/2, a +Δ/2], with the approximation being better
and better as Δ→ 0.

Inline Exercise 30.7: Explain why, if X is a random variable on the probability
space S, with pdf pX ,

∫∞
−∞ pX(r) dr = 1.
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Just as in the discrete case, if S is a continuum probability space with associ-
ated density p and

Y : S→ T , (30.22)

we can use Y to define a probability density on T (see Figure 30.7). We’ll restrict
our attention to the special case where Y is an invertible function, although we’ll
apply the results to cases where Y is “almost invertible,” like the latitude-longitude
parameterization of the sphere, where the noninvertibility is restricted to a set
whose “size” is zero. In the case of the spherical parameterization, if we ignore all
points of the international dateline, the parameterization is 1-1, and the dateline
itself has size zero (where “size,” for a surface, means “area”).

Our definition closely follows the discrete case:

pY(t) = p(Y−1(t)). (30.23)

Returning to the example program, the variable U has as its pdf the function

pU :[0, 1]→ R : r 
→ 1. (30.24)

This evidently integrates to 1 on the whole interval.

For any particular number, like r = 0.3, the probability that U = r is∫ r
r pU(r) dr =

∫ r
r 1 dr = 0. Intuitively, if we’re picking a random number

between 0 and 1, the probability of picking any particular number ends up
being zero. Despite this, we do pick some number. This is a situation where the
probability of a union of disjoint events (the events being “pick 0.134,” “pick
π/13,” and infinitely many other similar events) is not the sum of the individ-
ual probabilities. Thus, when we shift from finite sets to infinite ones, some of
our intuition about probability turns out to be mistaken.

The pdf for W is not so obvious. Evidently, values near 0 occur less often as
outputs of W than do those near 1, but what’s the exact pattern? The answer is
obviously not that it’s the square root of the pdf for U. We seek a function pW

with the property that

Pr{a ≤ W ≤ b} =
∫ b

a
pW(r) dr. (30.25)

In the left-hand side of this equation is the event that a ≤ W ≤ b; let’s rewrite
this:

{a ≤ W ≤ b} = {s ∈ [0, 1] : a ≤ W(s) ≤ b}; (30.26)

= {s ∈ [0, 1] : a ≤ √s ≤ b}; (30.27)

= {s ∈ [0, 1] : a2 ≤ s ≤ b2}. (30.28)

The probability of that last event is b2 − a2. (Why?) So we need to find a function
pW with the property that for any a, b ∈ [0, 1],∫ b

a
pW(r) dr = b2 − a2. (30.29)

A little calculus shows that pW(r) = 2r (see Exercise 30.4).
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The notion of a random variable can be generalized to that of a random point.
If S is a probability space, and Y : S → T is a mapping to another space rather
than the reals, then we call Y a “random point” rather than a random variable. The
notion of a probability density applies here as well, but rather than just looking at
an interval [a, b] ⊂ R, we must now consider any set U ⊂ T; we’ll say that pY is
a pdf for the random variable Y if, for every (measurable) subset U ⊂ T , we have

Pr{Y ∈ U} =
∫

u∈U
pY(u) du. (30.30)

In fact, it’s usually fairly easy to compute pY if we know the mapping Y by an
argument completely analogous to the one used to find pW .

S

Y21(U)

Y21(t)

Y T

t
U

Figure 30.8: The probability of
U ⊂ T is just the size of
Y−1(U) ⊂ S divided by the size
of S.

In the special case where S has a uniform probability density (see Figure 30.8),
the probability of Y ∈ U is just the probability of the set Y−1(U) ⊂ S, which is
the size of Y−1(U) divided by the size of S.

If we assume that pY is continuous, then we can compute pY directly. Consider
the case of a very small neighborhood U of some point t ∈ T; then the right-hand
side is given by

∫
u∈U

pY(u) du ≈ size(U)pY(t). (30.31)

On the other hand, the left-hand side is given by a ratio of sizes as described above,
so

size(Y−1(U))

size(S)
= size(U)pY(t), and therefore (30.32)

pY(t) ≈ size(Y−1(U))

size(U)

1
size(S)

. (30.33)

The first factor in this expression is just an approximation of the change of area
for Y−1, which is given by the Jacobian of Y−1 at t. So in the limit, as U shrinks
to a smaller and smaller neighborhood of Y(t), we get

pY(t) = | (Y−1)′(t) | 1
size(S)

. (30.34)

As in the discrete case, we can use pY as a probability density for the space T ,
or we can simply use it as the pdf for the random point Y .

And once again, if ι : S → S : s 
→ s is the identity map, then pι = p, so
the two notions of density—the probability density used in defining a continuum
probability space, and the probability density of a random variable on that space—
are in fact consistent.

Finally, we will again use the notation X ∼ f to mean “X is a random variable
distributed according to f ” which in the continuum case means that pX = f . There
is one standard distribution that we’ll use repeatedly, U(a, b), which is the uniform
distribution on [a, b], or the constant function 1

b−a . You’ll often see this in forms
like “Suppose X, Y ∼ U(0,π) are two uniform random variables . . . ”
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30.3.6 Application to the Sphere

Let’s apply the ideas of the previous section to the longitude-colatitude parame-
terization of S2, namely,

Y : [0, 1]× [0, 1]→ S2 : (u, v) 
→ (cos(2πu) sin(πv), cos(πv), sin(2πu) sin(πv)).
(30.35)

We’ll start with the uniform probability density p on [0, 1]× [0, 1], or p(u, v) = 1
for all u, v. For notational convenience, we’ll write (x, y, z) = Y(u, v).

We have the intuitive sense that if we pick points uniformly randomly in the
unit square and use f to convert them to points on the unit sphere, they’ll be
clustered near the poles. (If you doubt this, you should write a little program to
verify it.) This means that the induced probability density on T will not be uni-
form.

The preceding section shows that

pY(x, y, z) =
1

| Y ′(u, v) | p(u, v) (30.36)

=
1

| Y ′(u, v) | . (30.37)

u

Area = A

Area =
A ? 2π2 sin (π  )

(u, )

(x, y, z)

Figure 30.9: A small area A
in the domain of the spherical
parameterization gets multiplied
by 2π2 sin(πv).

But the change-of-area factor (see Figure 30.9) for Y (which is slightly messy
to compute) turns out to be

| Y ′(u, v) | = 2π2 | sin(πv) | (30.38)

= 2π2
√

1− cos(πv)2 (30.39)

= 2π2
√

1− y2. (30.40)

And hence,

pY(x, y, z) =
1

2π2
√

1− y2
. (30.41)

Thus, the probability of sampling a point in a small disk of area A centered on the
sphere point (x, y, z) is approximately A/(2π2

√
1− y2).

30.3.7 A Simple Example

If we start with the uniformly distributed random variable U on [0, 1]× [0, 1] and
want a uniformly distributed variable V on, say, [0, 2π] × [0, 1], it seems obvious
to define V(a, b) = U( a

2π , b). The density for U is the function

pU : [0, 1]× [0, 1]→ R : (x, y) 
→ 1. (30.42)

That makes the density for V be the function

pV : [0, 2π]× [0, 1] 
→ R : (x, y) 
→ 1
2π

. (30.43)

(Quick proof: V is evidently uniformly distributed, and hence its pdf is a constant.
The integral of that constant over the domain must be 1, so the constant is 1

2π .)
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In code, we might see this:

1
2
3
4
5

x = uniform(0, 1);
y = uniform(0, 1); // U = (x, y)
x′ = 2 * π * x;
y′ = y; // V= (x’, y’)
return (x′, y′)

There’s no mention of the pdf in the code, but it matters nonetheless when we
want to analyze the code.

30.3.8 Application to Scattering

The ability to easily draw samples from a distribution (i.e., to produce many inde-
pendent random variables all having the same specified pdf) will be critical in
rendering. In estimating the reflectance integral, we sometimes want to pick a ran-
dom direction v in the positive hemisphere with probability density proportional
to the bidirectional reflectance distribution function (BRDF), with the first argu-
ment held constant at the incoming direction, that is, the function v 
→ fr(vi,v).
(Notice that this function is not in general a probability density on the hemisphere:
Its integral is not 1.) Unfortunately, sampling in proportion to a general function
on the hemisphere is not often easy.

We now examine two examples where such direct sampling is possible.
Example 1: The Lambertian BRDF. We need to choose a direction on the

hemisphere uniformly at random (i.e., the probability that the direction lies in any
solid angle Ω ⊂ S2

+ is proportional to the measure of Ω.) In fact, since the total
area of the hemisphere is 2π, we need the probability that the direction lies in a
solid angle Ω to be exactly m(Ω)

2π .
Fortunately, as we saw in Section 26.6.4, the map

g : (x, y, z) 
→ (x
√

1− y2, y, z
√

1− y2) (30.44)

from the unit cylinder around the y-axis to the unit sphere is area-preserving
(although it’s not length- or angle-preserving). By restricting our attention to the
half-cylinder

H = {(x, y, z) : x2 + z2 = 1, 0 ≤ y ≤ 1}, (30.45)

we get an area-preserving map from H to S2
+. And the map

f : [0, 1]× [0, 1]→ H : (u, v) 
→ (cos(2πu), v, sin(2πu)) (30.46)

multiplies areas by exactly 2π, as you can check by computing its Jacobian. So
the composition Y = g ◦ f of the two gives us a map from the unit square to
S2
+ that multiplies areas by 2π. The density for Y is therefore the constant function

1
2π on S2

+.
In the program shown in Listing 30.2, the returned point is a random point on

the hemisphere with density 1
2π .

Listing 30.2: Producing a uniformly distributed random sample on a hemisphere.

1
2
3
4
5

Point3 randhemi()
u = uniform(0, 1)
v = uniform(0, 1)
r = sqrt(1 - y*y)
return Point3(r cos(2πu), y, r sin(2πu));
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Example 2: Cosine-weighted sampling on a hemisphere. Now suppose that
we want to sample from a hemisphere, but we want the probability of picking a

point in the neighborhood of v to be proportional to v ·n, where n =
[
0 1 0

]T
is the unit normal to the xz-plane that bounds the hemisphere. If we write v =[
x y z

]
, then v · n is simply y.

The function (x, y, z) 
→ y is not a probability density on the hemisphere y ≥ 0,
because its integral is π rather than 1.0. Thus, (x, y, z) 
→ y

π is a pdf. We’d now like
to sample from this pdf (i.e., we’d like to create a random-point Y whose distribu-
tion is this pdf). Because of the area-preserving property of the radial projection
map, we can instead choose a random point on the half-cylinder, with density y

π ,
and then project to the hemisphere.

Because the density is independent of the angular coordinate on the cylinder,
all we need to do is to generate values of y ∈ [0, 1] whose density is proportional
to y. The computation following Equation 30.26 shows that if U is uniformly
distributed on [0, 1], then W =

√
U is linearly distributed, that is, the probability

density for W at t ∈ [0, 1] is 2t.
Listing 30.3 shows the resultant code.

Listing 30.3: Producing a cosine-distributed random sample on a hemisphere.

1
2
3
4
5
6

point3 = randhemi()
θ = uniform(0, 2 * M_PI)
s = uniform(0, 1)
y = sqrt(s)
r = sqrt(1 - y2)
return Point3(r cos(θ), y, r sin(θ))

So certain distributions, like the uniform and the cosine-weighted ones, are
easy to sample from. More general distributions are often not. When we design
reflectance models (i.e., families of BRDFs that can be fit to observed data), one
of the criteria, naturally, is goodness of fit: “Is our family rich enough to contain
functions that match the observed data decently?” Another criterion is, “Once we
fit our data, will we be able to sample from the resultant distributions effectively?”
The two criteria are somewhat related, as described by Lawrence et al. [LRR04],
who propose a factored BRDF model from which it’s easy to do effective impor-
tance sampling.

30.4 Continuum Probability, Continued

We’re now going to talk about ways to estimate the expected value of a continuum
random variable, and using these to evaluate integrals. This is important because
in rendering, we’re going to want to evaluate the reflectance integral,

Lref(P,vo) =

∫
vi∈S2

+

L(P,−vi) fs(P,vi,vo) vi · n dvi, (30.47)

for various values of P and vo. Knowing how to build a random variable whose
expected value is exactly this integral will be a big help in this evaluation.

We saw that code that generated a random number uniformly distributed on
[0, 1] and took its square root produced a value between 0 and 1 whose expected
value was 2

3 . This also happens to be the average value of f (x) =
√

x on that
interval. This wasn’t just a coincidence, as the following theorem shows.
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Theorem: If f : [a, b] → R is a real-valued function, and X ∼ U(a, b) is
a uniform random variable on the interval [a, b], then (b − a) f (X) is a random
variable whose expected value is

E[(b− a)f (x)] =
∫ b

a
f (x) dx. (30.48)

This is a big result! It says that we can use a randomized algorithm to compute
the value of an integral, at least if we run the code often enough and average the
results. The remainder of this chapter amplifies and improves this result.

The proof of the theorem is simple. The pdf for X is pX(x) = 1
b−a , so the

expected value for (b− a) f (X) is

E[(b− a) f (X)] =
∫ b

a
(b− a) f (x)pX(x) dx; (30.49)

=

∫ b

a
(b− a) f (x)

1
b− a

dx; (30.50)

=

∫ b

a
f (x) dx. (30.51)

Listing 30.4 shows the corresponding program.

Listing 30.4: Estimating the integral of the real-valued function f on an interval.

1
2
3
4
5

integrate1(double *f (double), double a, double b):
// estimate the integral of f on [a, b]
x = uniform(a, b) // a random real number in [a, b]
y = (*f)(x) * (b - a)
return y

The value y returned by the program is a random variable that’s an estimate of
the integral of f . The average quality of this estimate is measured by the variance
of y, which depends on the function f . If f is constant, for example, the estimate is
always exactly correct; if f has enormous variations (e.g., f (x) = 10000 sin( 2πx

b−a )),
then the estimate is highly likely to be very bad. While it’s true that if we run
the program many times and average the results, we’ll get something close to the
correct value of the integral, any individual run of the program is likely to produce
a value that’s very far from the correct value.

Inline Exercise 30.8: Implement the small program above in your favorite
language, and apply it to estimate the average value of a few functions—say,
f (x) = 4, f (x) = x2, and f (x) = sin(πx) on the interval [0, 2π].

In general, when we think of a random variable as providing an estimate of
some value, low variance is good and high variance is bad.

Let’s now improve our estimation of the integral by taking two iid samples
(see Listing 30.5).
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Listing 30.5: Estimating the integral of the real-valued function f on an
interval, version 2.

1
2
3
4
5
6

def integrate2(double *f (double), double a, double b):
// estimate the integral of f on [a, b]
x1 = uniform(a, b) // random real number in [a, b]
x2 = uniform(a, b) // second random real number in [a, b]
y = 0.5 * ((*f)(x1) + (*f)(x2)); // average the results
return y * (b - a) // multiply by length of interval

It seems intuitively obvious that the expected value here is still the integral
of f on [a, b]. Let’s verify that. In mathematical terms, we have two random vari-
ables, X1 and X2, each with a uniform distribution on [a, b]. We then compute
Y = 1

2 ( f (X1) + f (X2)). What is E[(b − a)Y]? Using the linearity of expectation,
we see that

E[(b− a)Y] = E[(b− a)
1
2
( f (X1) + f (X2))] (30.52)

=
1
2

E[(b− a)( f (X1) + f (X2))] (30.53)

=
1
2
(E[(b− a) f (X1)] + E[(b− a)f (X2)]) (30.54)

=
1
2
(2E[(b− a) f (X1)]) (30.55)

The last equality follows because X1 and X2 have the same distribution. Thus it
follows that

E[(b− a)Y] = E[(b− a) f (X1)] (30.56)

=

∫ b

a
f (x) dx. (30.57)

What about the variance?

Var[Y] = Var[
1
2
( f (X1) + f (X2))] (30.58)

=
1
4

Var[ f (X1) + f (X2)] (30.59)

=
1
4
(Var[ f (X1)] + Var[ f (X2)]) (30.60)

=
1
4
(2Var[ f (X1)]) (30.61)

=
1
2

Var[ f (X1)]. (30.62)

When we averaged two samples, the expectation remained the same, but the
variance went down by a factor of two. (The standard deviation went down by a
factor of

√
2). If we define Yn by

Yn =
1
n

n∑
i=1

f (Xi), (30.63)
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where the Xis are all uniformly distributed on [a, b], and are all independent, then
the expected value of (b−a)Yn, for n = 1, 2, . . . , is

∫ b
a f (x) dx, while the variance

of Yn is 1
n Var[Y1].

This sequence of random variables has the property that as n goes to infin-
ity, the variance goes to zero. That (together with the fact that E[(b − a)Yn] =∫ b

a f (x) dx for every n) makes it a useful tool in estimating the integral: We know
that if we take enough samples, we’ll get closer and closer to the correct value.

To bring these notions back to graphics, when we recursively ray-trace, we
find a ray-surface intersection, and then, if the surface is glossy, recursively trace a
few more rays from that intersection point (using the BRDF to guide our random
choice of recursive rays). At the next pixel in the image, we may hit a nearby
point on the glossy surface, and trace a different few recursive rays, again chosen
randomly. We are using those few recursive ray samples to estimate the total light
arriving at the glossy surface (i.e., to estimate an integral). Even if the light arriving
at the two nearby points of the surface is nearly identical, our estimates of it may
not be identical. This leads to the appearance of noise in the image. The fact that
choosing more samples leads to reduced variance in the estimator means that if
we increase the number of recursive rays sufficiently, the noise they cause in the
image will be insignificant.

In general, we’ve got some quantity C (like the integral of f , above), that we’d
like to evaluate, and some randomized algorithm that produces an estimate of C.
(Or, on the mathematical side, we have a random variable whose expectation is
[or is near] the desired value.) We call such a random variable an estimator for the
quantity. The estimator is unbiased if its expected value is actually C. Generally,
unbiased estimators are to be preferred over biased ones, in the absence of other
factors.

Estimators, being random variables, also have variance. Small variance is
generally preferred over large variance. Unfortunately, there tend to be tradeoffs:
Bias and variance are at odds with each other.

When we have a sequence of estimators like Y1, Y2, . . . above, we can ask not
whether Yk is biased, but whether the bias in Yk decreases to zero as k gets large, as
does the variance. If both of these happen, then the sequence of estimators is called
consistent. Clearly, consistency is a desirable property in an estimator: It suggests
that as you do more work, you can be confident that the results you’re getting are
better and better, rather than getting closer and closer to a wrong answer!

These are informal descriptions of estimators, bias, and consistency; making
these notions really precise requires mathematics beyond the scope of this book.
See, for example, Feller [Fel68].

30.5 Importance Sampling and Integration

Let’s return for one more look at the problem of computing the integral of a func-
tion f on the interval [a, b], again as a proxy for computing the integral in the
reflectance equation. In our previous efforts, we used uniformly distributed ran-
dom variables to sample from the interval [a, b]. Now let’s see what happens when
we use a random variable with some different distribution g. Since g will favor
picking numbers in some parts of [a, b] over others, we can’t use the samples to
directly estimate the integral as before. Instead, we have to compensate for the
effect of g: We do the same computation as before, but include a division by g.
The result is the importance-sampled single-sample estimate theorem.
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Theorem: If f : [a, b] → R is an integrable real-valued function, and X is a
random variable on the interval [a, b], with distribution g, then f (X)

g(X) is a random

variable whose expected value is
∫ b

a f (x) dx.
The proof is almost exactly the same as before:

E
[

f (X)
g(X)

]
=

∫ b

a

f (x)
g(x)

g(x) dx; (30.64)

=

∫ b

a
f (x) dx. (30.65)

Inline Exercise 30.9: Suppose that X is uniformly distributed on [a, b]. What’s
the pdf g for the variable X? What does this importance-sampled single-sample
estimate say about integrating f using X to produce a sample? Is it consistent
with the single-sample estimate theorem? What happened to the extra factor of
(b− a)?

Just as before, if we use n samples instead of one, the variance of the estimate
decreases as 1

n .
The value of this nonuniform-sampling technique is that if you make the

density function g be exactly proportional to f , then something quite interesting
happens: Each sample of the random variable f (X)

g(X) is the same (i.e., the random

variable f (X)
g(X) is a constant). This means that the variance of the estimator is zero!

Unfortunately, to make g exactly proportional to f (i.e., g = Cf for some C)
and to make it a probability distribution, we need

1 =

∫ b

a
g(x)dx (30.66)

=

∫ b

a
Cf (x)dx (30.67)

= C
∫ b

a
f (x)dx (30.68)

In other words, the constant C is just the inverse of the integral we’re hoping to
compute. To get the ideal benefit of this approach, we’d need to know the answer
to the problem we’re trying to solve!

All is not lost, however. Suppose that the function g is larger where f gets
larger, and smaller where f gets smaller, etc., albeit not in exact proportion. Then
the variance of the weighted-sampling estimator is lower than that of the uniform-
sampling approach. The use of such a function g is known as importance sam-
pling, and g is sometimes called an importance function.

In practice in graphics, for a scene containing only reflection, we’re usually
trying to estimate the integral that appears in the middle of the rendering equation,∫

vi∈S2
+(P)

L(R(P,vi),−vi)fr(P,vi,vo)vi · n(P) dvi, (30.69)

for a fixed vo and P. We know the reflectance function fr (it’s a property of the
material at P), but we usually don’t have much idea a priori about how the factor
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L varies as a function of vi. But in the absence of other information, the product
Lfr is likely to be larger when fr is large and smaller when fr is small. We can
therefore hope to reduce variance in our estimate by choosing samples in a way
that’s proportional to fr, or better still, proportional to vi 
→ fr(P, vi, vo) vi ·n(P),
which we call the cosine weighted BRDF. This may not be possible, but it may be
possible to choose them in a way that’s at least related to fr or the cosine weighted
BRDF. This can help reduce variance substantially. In fact, it’s easy to see where
this kind of importance sampling will help most.

• If the surface is mostly lit by a few point lights, then the variation in L will
usually dominate the variation in fr in determining where the integrand is
large or small.

• If the surface is mostly lit by diffusely reflected light coming from all dif-
ferent places, but is itself highly specular, then the shape of fr dominates
in determining the size of the integrand, and importance sampling with
respect to the cosine weighted BRDF is likely to reduce variance a lot.

Unfortunately, when we build a rendering system, we don’t necessarily know
what kind of scenes we’ll be rendering. It would be nice to be able to combine
the two strategies (use the cosine weighted BRDF as the importance function, or
use some approximation of the arriving light field as the importance function) in a
way that varies according to the particular situation. A technique called multiple
importance sampling (see Section 31.18.4) allows us to do just that.

30.6 Mixed Probabilities

We’ve discussed discrete and continuum probabilities, but there’s a third kind,
which we’ll call mixed probabilities, that comes up in rendering. They arise
exactly from the impulses in bidirectional scattering distribution functions
(BSDFs), or the impulses caused by point lights. These are probabilities that are
defined on a continuum, like the interval [0, 1], but are not defined strictly by a
density. Consider the following program, for example:

1
2
3
4

if uniform(0, 1) > 0.6 :
return 0.3

else :
return uniform(0, 1)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2
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0.6

0.7

Figure 30.10: A mixed probabil-
ity. The red stem (vertical line)
indicates a probability mass. The
blue graph (horizontal line) indi-
cates a density.

Sixty percent of the time this program returns the value 0.3; the other 40% of the
time it returns a value uniformly distributed on [0, 1]. The return value is a random
variable that has a probability mass of 0.6 at 0.3, and a pdf given by d(x) = 0.4
at all other points. We’d like to be able to say that the pdf is given by

d(x) =

{
0.4 x �= 0.3

0.6 · ∞ x = 0.3
, (30.70)

as shown schematically in Figure 30.10, but this makes no sense, literally. In the
language of Chapter 18, we could instead say that the pdf was the sum of the
constant function 0.4 and the delta function 0.6 · δ(x − 0.3). Or we can just say
that it’s a random variable that has a probability mass at the point 0.3. In any
case, a random variable with mixed probability is one for which there is a finite
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set of points in the domain at which the pdf is undefined, but for which there
are associated positive probability masses rather than densities. The sum of the
masses and the integral of the density over the remainder of the space must be 1.0.

The only critical feature of a random variable with a mixed probability is that
when we want to integrate it via importance sampling, it’s important that we sam-
ple the locations of the probability masses with a nonzero probability. Since there
are only finitely many probability masses, a good solution is the following.

1. Let x1, . . . , xn be the locations of the probability masses.

2. Let M =
∑

i mi ≤ 1 be the sum of the probability masses.

3. Let u = uniform(0, 1); if u ≤ M, return xi with probability mi/M.

4. Otherwise, return some value x using uniform or other sampling methods
applicable to nonmixed probabilities.

In the example above, our approach would return x = 0.3 60% of the time, and
return other values in the unit interval uniformly at random 40% of the time.

It’s not actually essential that the probability of picking xi be proportional
to mi/M, but it’s an easy choice that makes the remaining computations in
importance-weighted integration, for instance, much easier. We’ll see this applied
in Chapter 32.

30.7 Discussion and Further Reading

The key result of this chapter is the importance-sampled single-sample estimate
theorem, with which we can estimate the integral of a function f over a region R
by f (X)

g(X) , where X is a random variable on the region R with distribution g. It lies at
the heart of both ray-tracing and path-tracing algorithms. But also important are
the notions of consistency and bias.

The use of Monte Carlo methods for integration is described, fairly densely,
in Spanier and Gelbard’s classic book [SG69], where it’s applied to the study of
neutron transport rather than photon transport.

30.8 Exercises

The first four exercises are designed to reinforce your understanding of Monte
Carlo integration both without and with importance sampling.

0 1 2 3

y

A

B

C
x

Figure 30.11: The function we’ll
integrate.

Exercise 30.1: A friend picks three positive numbers A, B, and C and then
draws the function graph shown in Figure 30.11. You don’t know the values A, B,
and C. You get to ask your friend one question of the form “What is the value of
f (s)?” for some particular s. Given these constraints, you are to estimate the inte-
gral of f over [0, 3]. Your approach is to flip a three-sided coin that lands on side
i = 1, 2, or 3. You ask your friend, “What’s f (i− 1

2 )?” You multiply his answer by
three and use this as an estimate of the integral. The value produced is evidently a
random variable, X.
(a) What’s the expected value μ = E[X]?
(b) What’s the variance of X? Express your answer in terms of A, B, C, and μ.
(c) Under what conditions on A, B, and C is the variance zero? Under what condi-
tions is it large compared to μ?
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Exercise 30.2: Continuing the preceding problem, suppose that instead of
having a three-sided coin, you have a slightly broken random number generator,
xrand, which returns a random number between 0 and 3. Seventy percent of the
time it’s in [0, 1], uniformly distributed; 20% of the time it’s in [1, 2], uniformly
distributed; and 10% of the time it’s in [2, 3], uniformly distributed. You’re given
a single sample t generated by xrand, and you ask your friend to tell you y = f (t).
(a) Show how to use the value y to estimate the integral as before. Hint: Use impor-
tance sampling.
(b) Compute the variance of your estimate.
(c) When, qualitatively, would you expect the variance to be larger than that of the
preceding problem’s estimator? When would you expect it to be lower?
(d) Write a short program to confirm that the expected value and variance really
are what you predicted.

Exercise 30.3: Now imagine that instead of a function with three values, you
had a function that took on infinitely many, such as h(x) = 1 + ( x

2 )
2.

(a) Compute the integral of h over [1, 3] using calculus.
(b) Estimate the integral of h over [1, 3] by writing a small program that picks a
random number x uniformly in the interval, evaluates h there, and multiplies by
3− 1. Run the program 100 times and average the results, and compare with your
answer to part (a).

Exercise 30.4: In Equation 30.29, we showed that the pdf pW for the random
variable W satisfied

∫ b
a pW(r) dr = b2 − a2 for every a and b in the interval [0, 1].

(a) Write f (b) =
∫ b

a pW(r) dr, and compute f ′(b) in terms of pW using the Funda-
mental Theorem of Calculus.
(b) Since f (b) = b2 − a2 as well, compute f ′(b) in a different way.
(c) Conclude that pW(r) = 2r for any r ∈ [0, 1].

Exercise 30.5: Importance sampling. (a) Compute the integral of f (x) = x2

on the interval [0, 1] using calculus.
(b) Use stochastic integration (with uniformly distributed samples) to estimate the
integral, using n = 10, 100, 1,000, and 10,000 samples.
(c) Plot the error as a function of the number of samples. Repeat three times.
(d) Do the same computation, but for f (x) = cos2(x)e−20x.
(e) Use nonuniformly distributed samples to estimate the integral again, where the
probability density of generating the sample x is proportional to s(x) = e−20x.
To do this, you’ll need to determine the constant of proportionality; fortunately,
that’s easy because s is easy to integrate on the interval [0, 1]. You’ll also need
to generate samples with density proportional to s; the simplest approach is to
generate a uniform sample, u ∈ [0, 1], and compute x = − ln(u)/20. If x is larger
than 1, ignore it and repeat the process.
(f) Does this produce better estimates of the integral? Try to give an intuitive
explanation of your conclusion.

Exercise 30.6: Consistency and bias. Consider a random variable X ∼
U(0, 1). We saw in the chapter that we can estimate its mean by averaging n sam-
ples; this estimator will be unbiased. But consider the estimator

Yn =
1
n

(
1 +

n∑
i=1

Xn

)
, (30.71)

where the Xi are iid ∼ U(0, 1).
(a) Show that each Yn is a biased estimator of the mean X̄.
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(b) Show that the sequence Y1, Y2, . . . is a consistent estimator of the mean.
(c) Construct a sequence Zn of unbiased estimators that are not consistent. (Hint:
Consistency requires two things.)

Exercise 30.7: Rejection sampling. In many cases where sampling from a
distribution directly is difficult, rejection sampling is a last-resort solution that’s
guaranteed to work, albeit very slowly in some cases. Figure 30.12 shows the
idea: Drawing a box around the graph of a density function d, we select points
uniformly randomly in the box. The x-values of these points are treated as samples,
except that (x, y) is rejected (i.e., not used) if y > d(x). In areas where d(x) is
large, a sample (x, y) is likely to be accepted; where d(x) is small, it’s likely to be
rejected. When a sample’s rejected, we continue to generate new samples until we
find an acceptable one.
(a) Write a program that uses rejection sampling to generate 10,000 samples from
the distribution d(x) = x on the interval [0, 2] and plot your results in the form of
a histogram.
(b) What fraction of your attempts at generating samples were rejected?
(c) Repeat with the distribution d(x) = 20

1−exp(−20) exp(−20x) to see how badly
rejection sampling can work.
(d) Use the idea of rejection sampling (pick samples from a too-large space, and
then select only the good ones) to generate points uniformly in the unit disk, and
plot your results.
(e) Use the same idea to sample from the unit ball in 3-space, and the unit ball in
10-space. How well (in terms of rejection) does the last of these work?
(f) Points in the unit ball in any dimension are uniformly distributed in direction
(with the exception of the origin). Use this to take your points-in-a-ball sampler
and make a points-on-a-sphere sampler, being sure to reject the special case of the
origin. Experimentally compare its efficiency to that of the hemisphere sampler
we described. (Depending on your computer’s architecture, the comparison could
go either way.)
(g) When you want to rejection-sample the function x 
→ 1+x on the interval [0, 1],
you draw a box [0, 1]× [a, b] for some values a and b. What are the constraints on
possible values for a and b? What happens if you make b quite large?

Accepted

Rejected

y

x

(x2, y2)

(x1, y1)

y = d(x)

Figure 30.12: We draw a box
around the graph of our probabil-
ity density function d, and choose
a point (x, y) uniformly randomly
in the box. If (x, y) lies under the
graph, we return x; if not, we try
again.

Exercise 30.8: Suppose that X is a random variable on [0, 1] with density
e : [0, 1] → R, and that f : [a, b] → [0, 1] is a bijective increasing differen-
tiable function.
(a) Show that t 
→ e( f (t)) f ′(t) is a probability density on [a, b].
(b) Suppose that Y is a random variable distributed according to t 
→ e( f (t)) f ′(t).
Suppose that t0 ∈ [a, b] and x0 = f (t0). How are Pr{t0 − ε ≤ Y ≤ t0 + ε} and
Pr{x0 − ε ≤ X ≤ x0 + ε} related, for small values of ε? This whole problem is
merely an exercise in chasing definitions—there should be no difficult mathemat-
ics involved.

Exercise 30.9: Use the linearity of expectation repeatedly to show that
Var[X] = E[X2]− E[X]2.

Exercise 30.10: Densities. Suppose that ([0, 1], p) is a probability space, that
is, p is a probability density. We observed that p may take on values larger than 1.
In this problem, you’ll show that this cannot happen too often. Show that if p(x) ≥
M on the interval a ≤ x ≤ b ⊂ [0, 1], then b − a < 1

M . Hint: Write out the
probability of the event [a, b] as an integral, and then use the assumption about p
to give a lower-bound estimate of this integral.
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Chapter 31

Computing Solutions to
the Rendering Equation:
Theoretical Approaches

31.1 Introduction

In this chapter we discuss the theory of solving the rendering equation, concentrat-
ing on the mathematics of various approaches and on what kinds of approxima-
tions are involved in these approaches, deferring the implementation details to the
next chapter. Fortunately, much of the mathematics can be understood by analogy
with far simpler problems. When we render, we’re trying to compute values of
L, the radiance field, or expressions involving combinations (typically integrals)
of many values of L. Thus, the unknown is the whole function L. That’s in sharp
contrast to the equations like

3x2 + x = 13 (31.1)

that we see in algebra class, where the unknown, x, is a single number. Nonethe-
less, such simple equations provide a useful model for the approximations made
in the more complicated task of finding L; we discuss these first, and then go on
to apply these ideas to rendering.

31.2 Approximate Solutions of Equations

There’s no hope of solving the rendering equation exactly for any scene with even
a moderate degree of complexity. Instead, we are forced to approximate solu-
tions. There are four common forms of approximation that are routinely used in
graphics:

• Approximating the equation

• Restricting the domain

825
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• Using statistical estimators

• And bisection/Newton’s method

Because the last of these is not used much in rendering, it’ll get brief treatment.
The statistical approach, however, which now dominates rendering, will occupy
much of the rest of the chapter.

We’ll discuss these in the context of a much simpler problem: Find a positive
real number x for which

50x2.1 = 13. (31.2)

The numerical solution of this equation is x = 0.5265 . . . , but let’s pretend that
we don’t know that, and we’re restricted to computations easily done by hand, like
addition, subtraction, multiplication, division, and finding integer powers of a real
number.

31.3 Method 1: Approximating the Equation

Instead of solving 50x2.1 = 13, which would involve the extraction of a 2.1th root,
we could solve a “nearby” equation like

50x2 = 12.5, (31.3)

which simplifies to x2 = 1
4 , and get the answer x = 0.5. Since multiplication and

exponentiation are both continuous, it should be no surprise that the solution to
this slightly “perturbed” equation is quite close to the solution of the original (see
Figure 31.1). Solving the perturbed equation is easy.

0 0.2 0.4 0.6 0.8 1
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20
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50

Figure 31.1: The graph of y =
50x2 (blue) is very close to that of
y = 50x2.1 (just below it, in red);
the x-coordinate of the intersec-
tion of the blue graph with the
line y = 12.5 is very near that
of the red graph with the line
y = 13.

You might well complain that the word “nearby” was left undefined in the
preceding paragraph. As a different example, consider solving

10−6x = 0.1 (31.4)

for x. The solution is x = 105. But if we alter the equation just a little, making
the right-hand side 0 instead of 0.1, the solution becomes x = 0: A small per-
turbation in the equation led to a huge perturbation in the solution. Determining
the sensitivity of the solution to perturbations in the equation is (for more compli-
cated equations like the rendering equation) often extremely difficult; in practice,
it’s done by saying things like, “It seems pretty obvious that the moonlight com-
ing through my closed bedroom curtains wouldn’t look very different if the moon
were oval rather than round.” In other words, it’s done by using domain exper-
tise to decide which kinds of approximations are likely to produce only minor
perturbations in the results.

An example of this in rendering is the approximation of reflection from an
arbitrary surface by the Lambert reflection model, or the approximation of the “Is
that light source visible from this point?” function, by the function that always
says “yes.” The first leads to solutions where nothing looks shiny, and the second
leads to solutions where there are no shadows; each is often a better approximation
than an all-black image, and a poor approximation is frequently better than no
solution at all.
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31.4 Method 2: Restricting the Domain

Instead of trying to find a positive real number x satisfying

50x2.1 = 13, (31.5)

we can ask, “Is there a positive integer satisfying (or nearly satisfying) it?” (See
Figure 31.2.) Such a domain restriction can simplify things enormously. In the
case of this equation, we see that the left-hand side is an increasing function of
x, and that when x = 1, its value is already 50. So any integer solution must lie
between zero and one. We need only try these two possible solutions to see which
one works (or, if none works, which is “best”). We quickly find that x = 0 gives
50x2.1 = 0, which is too small, and x = 1 gives 50, which is too large.

0 0.5 1 1.5 2 2.5 3 3.5 4
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400
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Figure 31.2: The graph of
y = 50x2.1, restricted to
x = 0, 1, 2, 3, 4, shown as a stem
plot with small red circles, atop
the graph on the whole real line
(shown in gray).We then have two choices: We can report the “best” solution in the restricted

domain (x = 0), or we can perhaps say, “The ideal solution lies somewhere
between 0 and 1, much closer to 0 than to 1; linear interpolation gives x = 0.26 as
a best-guess answer.” (See Figure 31.3.)

Our use of linear interpolation incorrectly assumes that the values of the left-
hand side F(x) = 50x2.1 vary almost linearly as a function of x between x = 0 and
x = 1, which is why the estimated answer isn’t very close to the true one. More
generally, if the domain of some variable is D, and we restrict to a subset D′ ⊂ D,
then estimating a solution in D from approximate solutions in D′ requires that D′

is “large enough” that any point d of D lies near enough to points of D′ that F(d)
can be well inferred from values of F at nearby points of D′.

We’ll see an example of domain restriction in rendering when we discuss
radiosity. Note that methods 1 and 2 both violate the Approximate the Solution
principle: they approximate the problem rather than the solution.
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Figure 31.3: Because the value
at x = 0 is too small, and
at x = 1 it’s too large, we
estimate the solution x by inter-
secting the connect-the-dots plot
(orange) with the line y = 13 to
get x = 0.26.

31.5 Method 3: Using Statistical Estimators

A third approach is to “estimate” the solution statistically, that is, find a way to
produce a sequence of values x1, x2, . . . such that each xi is a possible solution,
and such that the average an of x1, x2, . . . , xn gets closer and closer to a solution as
n gets large.

In this case, we’re trying to solve

50x2.1 = 13, (31.6)

whose solution is

x =

(
13
50

) 1
2.1

. (31.7)

This can be easily evaluated on a computer, but we’re assuming we lack the
ability to compute anything more complicated than an integer power of a real
number. (When we look at the rendering equation, the corresponding statement
will be, “Suppose we lack the ability to compute anything except an integral num-
ber of bounces of a ray of light,” which is very reasonable: It’s hard to imagine
what it might mean to compute 2.1 bounces of a light ray!) We can still find a
solution using the binomial theorem, which says that
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(1 + t)α =

∞∑
k=0

(
α

k

)
tk, (31.8)

where (
α

k

)
=

α · (α− 1) · . . . · (α− k + 1)
k!

(31.9)

is defined for any real number α and for k = 0, 1, . . . . We’ll be applying this to
the case α = 1

2.1 and t = − 37
50 , so that 1− t = 13

50 , so that evaluating Equation 31.8
will give us the value of the solution in Equation 31.7.

To do so requires summing an infinite series, however. The great insight is
the realization that the sum of an infinite series can be estimated by looking at
individual elements of the series.

31.5.1 Summing a Series by Sampling and Estimation

We now lay the foundations for all the Monte Carlo approaches to rendering,
starting with a few simple applications of probability theory.

31.5.1.1 Finite Series
Suppose that we have a finite series

A = a1 + a2 + a3 + . . .+ a20, (31.10)

and we want to estimate the sum, A. We can do the following: Pick a random inte-
ger i between 1 and 20 (with probability 1/20 of picking each possible number),
and let X = 20ai. Then X is a random variable. Its expected value is the weighted
average of its values, with weights being the probabilities, that is,

E[X] = (1/20)(20a1) + (1/20)(20a2) + . . .+ (1/20)(20a20) (31.11)

= a1 + a2 + . . .+ a20 (31.12)

= A. (31.13)

We’ve got a random variable whose expected value is the sum we’re seeking!
By actually taking samples of this random variable and averaging them, we can
approximate the sum.

Inline Exercise 31.1: Suppose that all 20 numbers a1, a2, . . . are equal. What’s
the variance of the random variable X? How many samples of X do you need
to take to get a good estimate of A in this case?

In general, the variance of X is related to how much the terms in the sequence
vary: If all the terms are identical, then X has no variance, for instance. It’s also
related to the way we chose the terms, which happens to have been uniform, but
we’ll use nonuniform samples in other examples later. When we apply these ideas
to rendering, we will end up sampling among various paths along which light can
travel; the value being computed will be the light transport along the path. Since
some paths carry a lot of light (e.g., a direct path from a light source to your eye)
and some carry very little, a large variance is present; to make estimates accurate
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will require lots of samples, or some other approach to reducing variance. For a
basic ray tracer, this means you may need to trace many rays per pixel to get a
good estimate of the radiance arriving at a single image pixel.

31.5.1.2 Infinite Series
It’s tempting to generalize to infinite series A = a1 + a2 + . . . in the obvious
way: Pick a non-negative integer i, and let X = ai; make all choices of i equally
probable, and then the expected value of X should be A. There are two problems
with this, however. First, there’s the missing factor of 20. In the finite example,
we multiplied each ai by 20 because the probability of picking it was 1/20. This
means that in the infinite case, we’d need to multiply each ai by infinity, because
the probability of picking it is infinitesimal. This doesn’t make any sense at all.
Second, the idea of picking a positive integer uniformly at random sounds good,
but it’s mathematically not possible. We need a slightly different approach, moti-
vated by Equation 31.11, in which each term of the series is multiplied by the
probability of picking that term (1/20) and by the inverse of that probability (20).
All we need to do is abandon the idea of a uniform distribution.

To sum the series

A = a1 + a2 + . . . , (31.14)

we can pick a non-negative integer j with probability 1/2j so that the probability
of picking j = 1 is 1/2 and the probability of picking j = 10 is 1/210 = 1/1024.
(This particular choice of probabilities was made because it’s easy to work with,
and it’s obvious that the probabilities sum to 1, but any other collection of positive
numbers that sum to 1 would work equally well.)

We then let

X = 2jaj. (31.15)

Just as before, the expected value of X is

E[X] =
∞∑

j=1

1
2j
(2jaj) (31.16)

=
∞∑

j=1

aj (31.17)

= A. (31.18)

And just as before, the variance in the estimate is related to the terms of the
series. If aj happens to be 2−j, then the variance is zero and the estimator is great.
If aj = 1/j2, then the variance is considerably larger, and we’ll need to average
lots of samples to get a low-variance estimate of the result.

As we said, the particular choice we made in picking j—the choice to select j
with probability 2−j—was simple, but we could have used some other probability
distribution on the positive integers; depending on which distribution we choose,
the estimator may have lower or higher variance.

When it comes to applying this approach to rendering, the choice of j will
become the choice of “how many bounces the light takes.” If we have a scene in
which the albedo of every surface is about 50%, then we expect only about half
as much light to travel along paths of length k + 1 as did along paths of length k.
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In this case, assigning half the probability to each successive path length makes
some sense. In general, picking the right sampling distribution is at the heart of
making such Monte Carlo approaches work well.

31.5.1.3 Solving 50x2.1 = 13 Stochastically
Applying these methods to our particular equation, we know that

x =

(
13
50

) 1
2.1

, (31.19)

and that in general we can transform the right-hand side of the equation using the
binomial theorem

(1 + t)α =

∞∑
k=0

(
α

k

)
tk. (31.20)

Doing so, with t = 13
50 − 1 = − 37

50 and α = 1
2.1 , we get

x =

(
13
50

) 1
2.1

(31.21)

=

(
α

0

)
+

(
α

1

)(−37
50

)1

+

(
α

2

)(−37
50

)2

+ . . . (31.22)

= 1 +
α

1

(−37
50

)1

+
α(α− 1)

2!

(−37
50

)2

+ . . . . (31.23)

Now, to estimate a solution, we pick a positive integer j with probability 2−j,
and evaluate the jth term. As we wrote this chapter, we flipped coins and counted
the number of flips until heads, generating the sequence 3, 3, 1; our three estimates
of x are thus the third, third, and first terms of the series, multiplied by 8, 8, and 2,
respectively:

x1 = 8
α(α− 1)

2!

(−37
50

)2

≈ −0.5464, (31.24)

x2 = x1 = −0.5464 . . . (31.25)

x3 = 2. (31.26)

Recall that the correct solution to the problem is 0.5265. The average of our
three samples is x= .3024, which admittedly is not a very good estimate of the
solution. When we used 10,000 terms, the estimate was 0.5217, which is consid-
erably closer (see Figure 31.4).
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Figure 31.4: A histogram of
500 estimates of the root of
50x2.1 = 13; their average is
quite near 0.5625.

You may be concerned that we’ve assumed we can write a power series for
x, but that when we get to the rendering equation, such a rewrite may not be so
easy. Fortunately, in the case of the rendering equation, the rewrite as an infinite
series is actually quite easy, although estimating the sum of the resultant series
still involves the same randomized approaches.

31.6 Method 4: Bisection

Our final approach to solving the equation is to find a value of x for which 50x2.1 is
less than 13 (such as x = 0) and one for which it’s greater than 13 (such as x = 1).
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Since f (x) = 50x2.1 is a continuous function of x, it must take on the value 13
somewhere between x = 0 and x = 1. We can evaluate f ( 1

2 ) and find that it’s less
than 13; we now know that the solution’s between 1

2 and 1. Repeatedly evaluat-
ing f at the midpoint of an interval that we know contains the answer, and then
discarding half the interval on the basis of the result, rapidly converges on a very
small interval that must contain the solution.

This can be seen as a kind of binary search on the real line. There are also
“higher order” methods, like Newton’s method, in which we start at some pro-
posed solution x0 and say, “If f were linear, then we could write it as y =

f (x0) + f ′(x0)(x − x0).” But that function is zero at x1 = x0 − f (x0)
f ′(x0)

. So let’s
evaluate f at x1 and see whether it’s any smaller there, and iterate. If x0 happens
to be near a root of f , this tends to converge to a root quite fast. If it’s not (or if
f ′(x0) = 0), then it doesn’t work so well.

Despite the appeal of these approaches, there’s no easy analog in the case of
functional equations (ones where the answer is a function rather than a number)
like the rendering equation. There’s no simple way to generalize the notion of one
number being between two others to the more general category of functions.

Nonetheless, bisection gets used a lot in graphics, and these four approaches to
solving equations serve as archetypes for solving equations throughout the field.

31.7 Other Approaches

There are other approaches to equations that cannot be easily illustrated with our
50x2.1 = 13 example. For instance, you might say, “I can solve systems of two
linear equations in two unknowns . . . but only if the coefficients are integers rather
than arbitrary real numbers.” In doing so, you’re not really solving the general
problem (“two linear equations in two unknowns”), but it may be that the sub-
class of problems you can solve is interesting enough to merit attention. In graph-
ics, for instance, early rendering algorithms could only work with a few point
lights rather than arbitrary illumination; some later algorithms could only work on
scenes where all surfaces were Lambertian reflectors, etc.

As a second example, you may arrive at a method of solution that’s too com-
plex, and choose to approximate the method of solution rather than the original
equation. For instance, the Monte Carlo approach used to sum an infinite series
above might seem overly complicated, and you might choose to just sum the first
four terms. This sounds laughable, but in practice it can often work quite well.
Most basic ray tracers, for instance, trace secondary rays only to a predetermined
depth, which amounts to truncating a series solution after a fixed number of terms.

31.8 The Rendering Equation, Revisited

Recall that a radiance field is a function on the set M of all surface points in our
scene, and that it takes a point, P ∈ M, and a direction, v, and returns a real
number indicating the radiance along a ray leaving P in direction v. Our model of
the radiance field is a function L : M× S2 → R.

There is a subtlety here that we discussed in Section 29.4: There are some “sur-
face points” that are part of two surfaces. For instance, if we have a solid glass
sphere (see Figure 31.5), the point at the north pole of the sphere is really best
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thought of as two points: one on the “outside” and the other on the “inside.” Light
traveling northward at the outer point is either reflected or transmitted, while light
traveling northward at the inner point is arriving there and is about to be trans-
mitted or reflected by the glass-air interface. As we suggested, we can enhance
the notion of the light field to take three arguments—a point, a direction, and a
normal vector that defines the “outside” for this point—but in the remainder of
this chapter, we’re going to instead discuss only reflection (except at a few care-
fully indicated points), since (a) the two-points-in-one-place idea complicates the
notation, which is complex enough already, and (b) the actual changes in the pro-
grams that we’ll see in Chapter 32 to account for transmission are relatively minor
and straightforward. As for the matter of keeping two separate copies of the north
pole, in practice, as we’ll discuss in Chapter 32, we’ll only keep a single copy of
the geometry, and there will be no explicit representation of the light field; on the
other hand, the meaning of an arriving light ray, and how it is treated, will depend
on the dot product of its direction with the unit normal n, resulting in several
if-else clauses in our programs.

Figure 31.5: Light from above the
sphere both reflects and refracts,
as does light in the inside of the
sphere.

We’ll continue to write fs for the scattering function, however, but you’ll need
to remember that in the case of transmission, some v ·n terms may need absolute-
value signs on them.

Notation: In some papers, Lin is L(P,v) and Lout is L(P,−v). Jensen uses Lr

for reflected radiance, Li for incoming radiance, and Lt for transmitted radi-
ance. RTR does the same thing. RTR uses Li and Lo, with the direction chang-
ing based on the subscript. Shirley uses ki and ko for our wi and wo; Arvo calls
Li and Lo “field” and “surface” radiance. By the way, what we call the radiance
field is also called the “plenoptic function” and the “light field.”

The rendering equation characterizes the radiance field (P,v)→ L(P,v) in a
scene by saying that the radiance at some surface point, in some direction, is a sum
of (a) the radiance emitted at that point in that direction, and (b) all the incoming
light at that point that is scattered in that direction. This equation has the form

L = E + T(L). (31.27)

Recall the meaning of the terms:

• E is the emitted radiance field, with E(P,v) = 0 unless P is a point of
some luminaire, and v is a direction in which that luminaire emits light
from P.

• T(L) is the scattered radiance field due to L; T(L)(P,vo) is the light scat-
tered from the point P in the direction vo when the radiance field for the
whole scene is L.1

To be specific, T is defined by

T(L)(P,vo) =

∫
vi∈S2

+(P)
L(P,−vi) fs(P,vi,vo)(vi · n(P)) dvi. (31.28)

1. We use the letter T rather than S (for “scattering”) because S will be used later in
describing various light paths.
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The critical feature of this expression, for our current discussion, is that L appears
in the integral.

Note that if we solve Equation 31.27 for the unknown L, we don’t yet have
a picture! We have a function, L, which can be evaluated at a bunch of places to
build a picture. In particular, we might evaluate L(P,v) for each pixel-center P
and the corresponding vector v from the pinhole of a pinhole camera through P
(assuming a physical camera, in which the film plane is behind the pinhole).

Inline Exercise 31.2: What are the domain and codomain of T? In other words,
what sort of object does T operate on, and what sort of result does it produce?
The answer to the latter question is not “It produces real numbers.”

The function T is a higher-order function: It takes in functions and
produces new functions. You’ve seen other such higher-order functions, like
the derivative, in calculus class, and perhaps have encountered programming
languages like ML, Lisp, and Scheme, in which such higher-order functions are
commonplace.

Let’s consider this integral from the computer science point of view. We
have a well-defined problem we want to solve (“find L”), and we can examine
how difficult a problem this is. First, for even fairly trivial scenes, it’s provable
that there’s no simple closed-form solution. Second, observe that the domain of
L is not discrete, like most of the things we see in computer science, but instead
is a rather large continuum—there are three spatial coordinates and two direction
coordinates in the arguments to L, so it’s a function of five real variables. (Note:
In graphics, it’s common to call this a “five-dimensional function,” but it’s more
accurate to say that it’s a function whose domain is five-dimensional.) In computer
science terminology, we’d call a classic problem like a traveling salesman problem
or 3-SAT “difficult,” because the only known way to solve such a problem is no
simpler, in big-O terms, than enumerating all potential solutions. By comparison,
because of the continuous domain, the rendering equation is even harder, because
it’s infeasible even to enumerate all potential solutions. Your next thought may be
to develop a nondeterministic approach to approximate the solution. That’s a good
intuition, and it’s what most rendering algorithms do. But unlike many of the non-
deterministic algorithms you’ve studied, while we can characterize the runtime
of these randomized graphics algorithms, that in itself isn’t meaningful, because
the errors in the approximation are unbounded in the general case: Because the
domain is continuous, and we can only work with finitely many samples, it’s
always possible to construct a scene in which all the light is carried by a few
sparse paths that our samples miss.

One strategy for generating approximate solutions is to discretize the
domain in some way so that we can bound the error. That’s also a good idea,
because we might then be able to enumerate some sizable portion of the solution
space. I can’t look at light transport for every point on a curved surface, but I
can look at it for every vertex of a triangle-mesh approximation of that surface.
Graphics isn’t unique in this. The moment you take computer science out of pure
theory and start applying it to physics, you’ll find that problems are often of more
than exponential complexity, and you often need to find good approximations that
work well on the general case, even if you can’t bound the error in all cases.
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Recall from Chapter 29 the division of light in a scene into two categories (see
Figure 31.6): At a point of a surface, light may be arriving from various points in
the distance, a condition called field radiance. This light hits the surface and is
scattered; the resultant outgoing radiance is called surface radiance.

Figure 31.6: Top: The surface
radiance consists of all the light
leaving a point of a surface. Bot-
tom: The field radiance consists
of all the incoming light.

It’s also helpful to divide radiance even further: The surface radiance at a point
P can be divided into the emitted radiance there (nonzero only at luminaires) and
the reflected radiance. These correspond to the two terms on the right-hand side of
the rendering equation. Dually, the field radiance at P can be divided into direct
lighting, Ld(P,v) at P (i.e., radiance emitted by luminaires and traveling through
empty space to P), and indirect lighting, Li(P,v) at P (i.e., radiance from a point
Q to a point P along the ray P−Q, but that was not emitted at Q). We’ll return to
these terms in the next chapter.

Inline Exercise 31.3: Suppose that P and Q are mutually visible. How are
the emitted and reflected radiance at Q, in the direction P − Q, related to the
direct and indirect light at P, in the direction P−Q? Express these in terms of
Ld, Li, Lr, and Le, being careful about signs. Use v = S(P− Q) in expressing
your answer.

Writing the rendering equation in the form of Equation 31.27 makes it clear
that the scattering operator transforms one radiance field (L) into another (T(L)).
Not only does it do so, but it does so linearly: If we compute T(L1 + L2), we get
T(L1) + T(L2), and T(rL) = rT(L) for any real number r, as you can see from
Equation 31.28. This linearity doesn’t arise from some cleverness in the formu-
lation of the rendering equation. It’s a physically observable property, commonly
called the principle of superposition in physics, and it’s extremely fortunate, for
those hoping to solve the rendering equation, that it holds. Later, in Chapter 35,
we’ll see this principle of superposition applying to forces and velocities and other
things that arise in physically based animations, and once again it will simplify our
work considerably.

We can rewrite the rendering equation in the form

L− T(L) = Le (31.29)

or even

(I − T)L = Le, (31.30)

where I denotes the identity operator: It transforms L into L, and we’ve used TL
to denote the application of the operator T to the radiance field L.

Much of the remainder of this chapter describes approaches to solving this
equation. Remember as we examine such approaches that Le, the light emitted
by each light source, is given as an input, as is the bidirectional reflectance dis-
tribution function (BRDF) at each surface point, so that the operator T can be
computed. The unknown is the radiance field, L.

The similarity of this formulation to the way eigenvalue problems are
described in linear algebra is no coincidence. We’ll use many of the same tech-
niques that you saw in studying eigenvalues as we look at solving the rendering
equation.
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31.8.1 A Note on Notation

We summarize in Table 31.1 the notation we’ll use repeatedly throughout this
chapter. Figure 31.7 gives the geometric situation to which items in this table
refer.

Notice that the subscript “i” in vi is set in Roman font rather than italics;
that’s to indicate that it’s a “naming-style” subscript (like VIN to denote input
voltage) rather than an “indexing-style” subscript (like bi, denoting the ith term
in a sequence).

n(P)

S2

P

vo

}
vi

1(Q)

Q

Figure 31.7: Some standard nota-
tion. The vector vi points toward
the light source (indicated by a
star).

When we aggregate over λ, it’s important to decide once and for all whether
this aggregate denotes a sum (perhaps an integral from λ = 400 nm to 750 nm),
or an average; you can do either one in your code, but you must do it consistently.

Table 31.1: Notation used in this chapter.

Symbol Meaning

M The set of all surfaces in the scene.
P, Q, R Points of M.
n The function that takes a surface point P and returns the normal

at P. When the point P is easily understood, we sometimes write
n instead of n(P).

v A generic unit vector in some direction, also thought of as a
point in S2 (the endpoint of v when it’s based at 0).

vi A vector from some point P toward incoming light, so the light
is propagating in direction −vi. In general, vi · n(P) > 0.

vo A direction in which reflected light travels from a point P; in
general, vo · n(P) > 0.

S2
+(P) The set of all directions v with v·n(P) > 0, that is, the outgoing

directions at a point P ∈M. Defined only for points on surfaces
in the scene.

S2
+ Shorthand for S2

+(P) in the case where the point P is
self-evident.

L(P,v) The radiance in a scene at point P in direction v.
Le(P,v) The emitted radiance from a point P on some luminaire in direc-

tion v. Le(P,v) is zero at any point not on a luminaire.

Ld(P,v) The light arriving at P along direction v that was emitted from
an emitter toward P along an unobstructed ray between them.
This is called the direct light.

Li(P,v) The light arriving at P along direction v that is not a direct light.
This is called the indirect light.

Lr(P,v) The light leaving P in direction v as a result of scattering rather
than emission.

fs(P,λ,vi,vo) The scattering function (BSDF) at the point P, at wavelength λ.
fs(P,vi,vo) The nonspectral scattering function (BSDF) at the point P

(i.e., an aggregate over λ).
fs(vi,vo) The nonspectral scattering function (BSDF) at a point that’s

clear from context.
ρ The reflectance of a Lambertian material.
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Occasionally we will have several incoming vectors at a point P, and we’ll
need to index them with names like v1,v2, . . . . When we want to refer to a generic
vector in this list, we’ll use vj, avoiding the subscript i to prevent confusion with
the previous use. You will have to infer, from context, that these vectors are all
being used to describe incoming light directions, that is, serving in the role of vi.

As we discussed in Chapter 26, many terms, and associated units, are used
to describe light. In an attempt to avoid problems, we’ll use just a few: power
(in watts), flux (in watts per square meter), radiance (in watts per square meter
steradian), and occasionally spectral radiance (in watts per square meter steradian
nanometer).

31.9 What Do We Need to Compute?

Much of the work in rendering falls into a few categories:

• Developing data structures to make the ray-casting operation fast, which
we discuss in Chapter 36

• Choosing representations for the function fs that are general enough to
capture the sorts of reflectivity exhibited by a wide class of surfaces, yet
simple enough to allow clever optimizations in rendering, which we’ve
already seen in Chapter 27

• Determining methods to approximate the solution of the rendering equation

It is this last topic that concerns us in this chapter.
The rendering equation characterizes the function L that describes the radiance

in a scene. Do we really need to know everything about L? Presumably radiance
that’s scattered off into outer space (or toward some completely absorbing surface)
is of no concern to us—it cannot possibly affect the picture we’re making. In fact,
if we’re trying to make a picture seen from a pinhole camera whose pinhole is
at some point C, the only values we really care about computing are of the form
L(C,v). To compute these we may need to compute other values L(P,η) in order
to better estimate the values we care about.

Suppose, however, that we want to simulate an actual camera, with a lens and
with a sensor array like the CCD array in many digital cameras. To compute the
sensor response at a pixel P, we need to consider all rays that convey light to P—
rays from any point of the lens to any point of the sensor cell corresponding to P
(see Figure 31.8).

Figure 31.8: Light along any ray
from the lens to the sensor cell
contributes to the measured value
at that cell.

As we said in Chapter 29, light arriving along different rays may have different
effects: Light arriving orthogonal to the film plane may provoke a greater response
than light arriving at an angle, and light arriving near the center of a cell may
matter more than light arriving near an edge—it all depends on the structure of
the sensor. The measurement equation, Equation 29.15, says that

mij =

∫
U×S2

Mij(P,−v)Lin(P,−v)|v · nP| dP dv, (31.31)

where Mij is a sensor-response function that tells us the response of pixel (i, j) to
radiance along the ray through P in direction −v.

One perfectly reasonable idealization is that the pixel area is a tiny square, and
that Mij is 1.0 for any ray through the lens that meets this square, and 0 otherwise.
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Even with this idealization, however, the pixel value that we’re hoping to compute
is an integral over the pixel area and the set of directions through the lens. Even if
we assume a lens so tiny that the latter integral can be accurately estimated by a
single ray (the pinhole approximation), there’s still an area integral to estimate.

One very bad way to estimate this integral is with a single sample, taken at
the center of the pixel region (i.e., the simplest ray-tracing model, where we shoot
a ray through the pixel center). What makes this approach particularly bad are
aliasing artifacts: If we’re making a picture of a picket fence, and the spacing of
the pickets is slightly different from the spacing of the pixels, the result will be
large blocks of constant color, which the eye detects as bad approximations of
what should be in each pixel (see Figure 31.9).

Figure 31.9: Pixel-center sam-
ples of a picket-fence scene lead
to large blocks of black-and-
white pixels.

If we instead take a random point in each pixel, then this aliasing is substan-
tially reduced (see Figure 31.10). Instead, we see salt-and-pepper noise in the
image.

Figure 31.10: Random ray selec-
tion within each pixel reduces
aliasing artifacts, but replaces
them with noise.

Because our visual system does not tend to see “edges” in such noise, but is
very likely to see incorrect edges in the aliased image, the tradeoff of aliases for
noise is a definite improvement (see Figure 31.11).

This notion of taking many (randomized) samples over some domain of inte-
gration and averaging them applies in far more generality. We can integrate over
wavelength bands (rather than doing the simpler RGB computations that are so
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Figure 31.11: (a) A close-up view of a portion of a sawtooth-shaped geometry (note that
each sawtooth occupies a little more than one unit on the x-axis) and the locations of
pixel samples (small circles). (b) The resultant image. Even though there are 102 teeth in
this 104-pixel-wide image, aliasing causes us to see just two. (c) When we take “jittered
samples” (each sample is moved up to a half pixel both vertically and horizontally), the
resultant image is noisy, but exhibits no aliasing.
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common, which amount to a fixed-sample strategy). We can integrate over the
lens area to get depth-of-field effects and chromatic aberration. For a scene that’s
moving, we can simulate the effect of a shutter that’s open for some period of
time by integrating over a fixed “time window.” All of these ideas were described
in a classic paper by Cook et al. [CPC84], which called the process distributed
ray tracing. Because of possible confusion with notions of distributed processing,
we prefer the term distribution ray tracing which Cook now uses to describe
the algorithm [Coo10]. We’ll discuss the particular sampling strategies used in
distribution ray tracing in Chapter 32.

In short: To render a realistic image in the general case, we need to average, in
some way, many values, each of which is L(P,v) for some point P of the image
plane and some direction v ∈ S2.

31.10 The Discretization Approach: Radiosity

We’ll now briefly discuss radiosity—an approach that produces renderings for
certain scenes very effectively—and then return to the more general scenes that
require sampling methods and discuss how to effectively estimate the value
L(P,v) in the algorithms that work on those scenes.

The radiosity method for rendering differs from the methods we’ve seen in
Chapter 15; in those methods, we started with the imaging rectangle and said,
“We need to compute the light that arrives here, so let’s cast rays into the scene
and see where they hit, and compute the light arriving at the hit point by various
methods.” Whether we did this one pixel at a time or one light at a time or one
polygon at a time was a matter of implementation efficiency. The key thing is that
we said, “Start from the imaging rectangle, and use that to determine which parts
of the light transport to compute.” A radically different approach is to simulate
the physics directly: Start with light emitted from light sources, see where it ends
up, and for the part that ends up falling on the imaging rectangle, record it. This
approach was taken by Appel [App68], who cast light rays into the scene and
then, at the image plane location of the intersection point (if it was visible), drew
a small mark (a “+” sign). In areas of high illumination there were many marks; in
areas of low illumination, almost none. By taking a black-and-white photograph
of the result (which was drawn with a pen on plotter paper) and then examining
the negative for the photograph, he produced a rendering of the incident light.

Radiosity takes a similar approach, concentrating first on the light in the scene,
and only later on the image produced. Because the surfaces in the scene are
assumed Lambertian, the transformation from a representation of the surface radi-
ance at all points of the scene to a final rendering is relatively easy.

The radiosity approach has two important characteristics.

• It’s a solution to a subproblem, in the sense that it only applies to Lam-
bertian reflectors, and is generally applied to scenes with only Lambertian
emitters.

• It’s a “discretization” approach: The problem of computing L(P,vo) for
every P ∈M and vo ∈ S2

+(P) is reduced to computing a finite set of values.
The scene is partitioned into small patches, and we compute a radiosity
value for each of these finitely many patches.
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The division into patches means that radiosity is a finite element method, in
which a function is represented as a sum of finitely many simpler functions, each
typically nonzero on just a small region. (The word “finite” here is in contrast to
“infinitesimal”: Rather than finding radiance at every single point of the surface,
each point being “infinitesimal,” we compute a related value on “finite” patches.)

Radiosity was the first method to produce images exhibiting color bleeding (in
which a red wall meeting a white ceiling could cause the ceiling to be pink near
the edge where they meet), and not requiring an “ambient term” in its description
of reflection—a term included in scattering models (see Chapter 27) to account
for all the light in a scene that wasn’t “direct illumination,” which had presented
problems for years previously. Figure 31.12 shows an example.

Figure 31.12: A radiosity render-
ing of a simple scene. Note the
color-bleeding effects. (Courtesy
of Greg Coombe, “Radiosity on
graphics hardware” by Coombe,
Harris and Lastra, Proceedings
of Graphics Interface 2004.)

The first step in radiosity is to partition all surfaces in the scene into small
(typically rectangular) patches. The patches should be small enough that the illu-
mination arriving at a patch is roughly constant over the patch so that the light
leaving the patch will be too, and hence can be represented by a single value.
This “meshing” step has a large impact on the final results, which we’ll discuss
presently. For now, let’s just assume the scene surfaces are partitioned into many
small patches. We’ll use the letters j and k to index the patches, and use Aj to indi-
cate the area of patch j, Bj to denote a value proportional to the radiance leaving
any point of patch j, in any outgoing direction2 vo, and nj to indicate the normal
vector at any point of patch j.

Each patch j is assumed to be a Lambertian reflector, so its BRDF is a constant
function,

fs(P,vi,vo) = ρj/π, (31.32)

where ρj is the reflectivity and P is any point of the patch. Furthermore, each
luminaire is assumed to be a “Lambertian” emitter of constant radiance, that is,
Le(P,vo) is a constant for P in patch j and vo an outgoing vector at P.

This simple form for scattering and the assumption about constant emission
together mean that the rendering equation can be substantially simplified.

For the moment, let’s make four more assumptions. The first is that the scene is
made up of closed 2-manifolds, and no 2-manifold meets the interior of any other
(e.g., two cubes may meet along an edge or face, but they may not interpenetrate).
This also means that we don’t allow two-sided surfaces (i.e., a single polygon that
reflects from both sides)—these must be modeled as thin, solid panels instead.

For the other three, we let P and P′ be points of patch i and Q and Q′ be
points of patch j, and ni and nj be the patch normal vectors. Then we assume the
following.

• The distance between P and Q is well approximated by the distance from
the center Cj of patch j to the center Ck of patch k.

• nj · (P − Q) ≈ nj(P′ − Q′), that is, any two lines between the patches are
almost parallel.

• If nj · nk < 0, then every point of patch j is visible from patch k, and vice
versa. So, if two patches face each other, then they are completely mutually
visible.

2. By “outgoing direction,” we mean that vo · nj > 0; the radiance is independent of
direction because the surfaces are assumed Lambertian.
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We need one more definition: We let Ωjk denote the solid angle of directions
from patch j to patch k (see Figure 31.13), assuming that they are mutually visible;
if they’re not, then Ωjk is defined to be the empty set.

Ck

Cj

j

k

Vjk

Figure 31.13: Patch k is visible
from patch j; when it’s projected
onto the hemisphere around Cj,
we get a solid angle called Ωjk.

Now let’s use these assumptions to simplify the rendering equation. Let’s start
with a point P in some patch j. The rendering equation says that for a direction vo

with vo · nj > 0, that is, an outgoing direction from patch j,

L(P,vo) = Le(P,vo) +

∫
vi∈S2

+(nj)

fr(P,vi,vo)L(P,−vi)(vi · nj) dvi. (31.33)

We now introduce some factors of π to simplify the equation a bit. We let
Bj = L(P,vo)/π. Since L(P,vo) is assumed independent of the outgoing direc-
tion vo, the number Bj does not have vo as a parameter. Similarly, we define
Ej = Le(P,vo)/π. And substituting fr(P,vi,vo) = ρj/π, we get

πBj = πEj +
ρj

π

∫
vi∈S2

+(nj)

L(P,−vi)(vi · nj) dvi. (31.34)

The inner integral, over all directions in the positive hemisphere, can be broken
into a sum over directions in each Ωjk, since light arriving at patch j must arrive
from some patch k. The equation thus becomes

πBj = πEj +
ρj

π

∑
k

∫
vi∈Ωjk

L(P,−vi)(vi · nj) dvi. (31.35)

The radiance in the integral is radiance leaving patch k, and is therefore just
πBk. Substituting, and rearranging the constant factors of π a little, we get

πBj = πEj +
ρj

π

∑
k

∫
vi∈Ωjk

πBk(vi · nj) dvi (31.36)

= πEj +
ρj

π
π
∑

k

(∫
vi∈Ωjk

(vi · nj) dvi

)
Bk (31.37)

= πEj + ρjπ
∑

k

(
1
π

∫
vi∈Ωjk

(vi · nj) dvi

)
Bk. (31.38)

Dividing through by π, we get

Bj = Ej + ρj

∑
k

(
1
π

∫
vi∈Ωjk

(vi · nj) dvi

)
Bk. (31.39)

The coefficient of Bk inside the summation is called the form factor fjk for
patches j and k. So the equation becomes

Bj = Ej + ρj

∑
k

fjkBk, (31.40)

which is called the radiosity equation. Before we try to solve it, let’s look at the
form factor more carefully. For patches j and k, it is

fjk =
1
π

∫
vi∈Ωjk

(vi · nj) dvi. (31.41)
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Using the second assumption (that all rays from patch k to patch j are essentially
the same) we see that the vector vi can be replaced by ujk = S(Ck − Cj), the unit
vector pointing from the center of patch j to the center of patch k. Since ujk · nj is
a constant, it can be factored out of the integral.

The form factor can then be written:

1
π

∫
Ωjk

vi · nj dvi =
1
π

∫
Ωjk

ujk · nj dvi; (31.42)

=
1
π

(∫
Ωjk

1 dvi

)
ujk · nj. (31.43)

The remaining integral is just the measure of the solid angle Ωjk, which is the area
Ak of patch k, divided by the square of the distance between the patches (i.e., by
‖Cj−Ck‖2), using the third assumption and scaled down by the cosine of the angle
between nk and ujk (by the Tilting principle). Thus, the form factor becomes

fjk =
1
π

Ak

‖Cj − Ck‖2
|ujk · nj| · |ujk · nk|. (31.44)

Inline Exercise 31.4: (a) The form of Equation 31.44 makes it evident that
fjk/Ak = fkj/Aj. Explain why, if j and k are mutually visible, exactly one of the
two dot products is negative.
(b) Suppose that patch k is enormous and occupies essentially all of the
hemisphere of visible directions from patch j. What will the value of fjk be,
approximately?

If we compute all the numbers fjk and assemble them into a matrix, which
we multiply by a diagonal matrix D(ρ) whose jth diagonal entry is ρj, and we
assemble the radiosity values Bj and emission values Ej into vectors b and e, then
the radiosity equation, under the assumptions listed above, becomes

b = e + D(ρ)Fb. (31.45)

This can be simplified (just like the integral form of the rendering equation) to

(I− D(ρ)F)b = e, (31.46)

which is just a simple system of linear equations (albeit possibly with many
unknowns).

Standard techniques from linear algebra can be used to solve this equation
(see Exercise 31.2). The existence of a solution depends on the matrix D(ρ)F
being “small” compared to the identity, that is, having all eigenvalues less than
one. This is a consequence of our assumption that all the reflectivities were less
than one (and your computation of the largest possible form factor). Note that
we do not suggest solving the equation by inverting the matrix; in general that’s
O(n3), while approximation techniques like Gauss-Seidel work extremely well
(and much faster) in practice.
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Computing fjk is a once-per-scene operation. Once the matrix F is known, we
can vary the lighting conditions (the vector e) and then recompute the emitted
radiance at each patch center (the vector b) quite quickly.

Once we know the vector b, how do we create a final image, given a cam-
era specification? We can create a scene consisting of rectangular patches, where
patch j has value Bj, and then rasterize the scene from the point of view of the cam-
era. Instead of computing the lighting at each pixel, we use the value stored for
the surface shown at that pixel: if that pixel shows patch j, we store the value πBj

at that pixel. The resultant radiance image is a radiosity rendering of the scene.
This, however, is rarely done as described; such a radiosity rendering looks

very “blocky,” while we know from experience that totally Lambertian envi-
ronments tend to have very smoothly varying radiance. Instead of rendering
the computed radiance values directly, we usually interpolate them between
patch centers, using some technique like bilinear interpolation, or even some
higher-order interpolation. This is closely analogous to the approach discussed
in Section 31.4, in which we solved an equation on the integers and then inter-
polated to guess a solution on the whole real line. In this case, we’ve found a
piecewise-constant function (represented by the vector b) that satisfies our dis-
cretized approximation of the rendering equation, but we’re displaying a different
function, one that’s not piecewise constant.

What we’ve done is to take the space V of all possible surface radiance
fields, and consider only a subset W of it, consisting of those that are piecewise
constant on our patches. We’ve approximated the equation and found a solution
to this in W; we’ve then transformed this solution (by linear interpolation) into a
different subspace D consisting of all piecewise-linear radiance fields. If D and W
are “similar enough,” then this is somewhat justified (see Figure 31.14).

Interpolate

W

V
D

Figure 31.14: Schematically, the
space V of all surface-radiance
fields contains a subspace W
of piecewise constant fields, and
another subspace D of piecewise
linear fields. There’s a map from
W to D defined by linear interpo-
lation.

One way to address this apparent contradiction is to not assume that the radi-
ance is piecewise constant, and instead assume it’s piecewise linear, or piecewise
quadratic, and do the corresponding computations. Cohen and Wallace [CWH93]
describe this in detail.

The computation of form factors is the messiest part of the radiosity algo-
rithm. One approach is to render the entire scene, with a rasterizing renderer, five
times, projecting onto the five faces of a hemicube, (the top half of a cube as
shown in Figure 31.15). Rather than storing a radiance value at each pixel, you
store the index k of the face visible at that pixel. You can precompute the pro-
jected solid angle for each “pixel” of a hemicube face once and for all; to compute
the projected solid angle subtended by face k, you simply sum these pixel con-
tributions over all pixels storing index k. For this to be effective, the hemicube
images must have high enough resolution that a typical patch projects to hun-
dreds of hemicube “pixels”; as scene complexity grows (or as we reduce the patch
size to make the “constant radiance on each patch” assumption more correct), this
requires hemicube images with increasingly higher resolution.

k

j

CjCj

Figure 31.15: We project the
scene onto a hemicube around
P; since patch k is visible from
P through the pixel shown, the
hemicube image at that pixel
stores the value k.

In solving the radiosity equation, Equation 31.46, some approximation tech-
niques do not use every entry of F; it therefore makes sense to compute entries of
F on the fly sometimes, perhaps caching them as you do so. Various approaches
to this are described in great detail by Cohen and Wallace [CWH93].

Before we leave the topic of radiosity, we should mention four more things.
First, in our development, we assumed that patches were completely mutually

visible; the hemicube approach to computing form factors removes this require-
ment. On the other hand, the hemicube approach does assume that the solid angle
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subtended by patch k from the center of patch j is a good representation of the
solid angle subtended at any other point of patch j. That’s fine when j and k are
distant, but when they’re nearby (e.g., one is a piece of floor and another is a piece
of wall, and they share an edge) the assumption is no longer valid. The form-
factor computation must then be written out as an integral over all points of the
two patches, and even for simple geometries it has, in general, no simple expres-
sion. Schroeder [SH93] expresses this form factor in terms of (fairly) standard
functions, but the expression is too complex for practical use.

Second, meshing has a large impact on the quality of a radiosity solution; in
particular, if there are shadow edges in the scene, the final quality is far better if
the mesh edges are aligned with those shadow edges, or if the patches near those
edges are very small (so that they can effectively represent the rapid transition
in brightness near the edge). Lischinski et al. [LTG92] describe approaches to
precomputing meshes that are well adapted to representing the rapid transitions
that will appear during a radiosity computation.

A different approach to the meshing problem is to examine, for each patch, the
assumption of constant irradiance across the patch. We do this by evaluating the
irradiance at the corners of the patch and comparing them. If the difference is great
enough, we split the patch into two smaller patches and repeat, thus engaging in
progressive refinement. This approach is not guaranteed to work: It’s possible
that, for some patch, the irradiance varies wildly across the patch but happens
to be the same at all corners; in this case, we should subdivide, but we will not.
One thing that’s fortunate about this approach is that when we subdivide, there’s
relatively little work to do: We need to compute the form factors for the newly
generated subpatches and remove the form factors for the patch that was split. We
also need to take the current surface-radiance estimate for the split patch and use
it to assign new values to the subpatches; it suffices to simply copy the old value
to the subpatches, although cleverer approaches may speed convergence.

Third, although radiosity, as we have described it, treats only pure-Lambertian
surfaces and emitters, one can generalize it in many directions: Instead of assum-
ing that outgoing radiance is independent of direction, one can build meshes in
both position and direction (i.e., subdivide the outgoing sphere at point Ci into
small patches, on each of which the radiance is assumed constant); this allows
for more general reflectance functions, but it increases the size of the computa-
tion enormously. Alternatively, one can represent the hemispherical variation of
the emitted light in some other basis, such as spherical harmonics; an expan-
sion in spherical harmonics is the higher-dimensional analogue of writing a peri-
odic function using a Fourier series. Ramamoorthi et al. [RH01] have used this
approach in studying light transport. In each case, specular reflections are diffi-
cult to handle: We either need very tiny patches on the sphere’s surface, or we
need very high-degree spherical harmonics, both of which lead to an enormous
increase in computation. One approach to this problem is to separate out “the
specular part” of light transport into a separate pass. Hybrid radiosity/ray-tracing
approaches [WCG87] attempt to combine the two methods, but this approach to
rendering has largely given way to stochastic approaches in recent years.

Fourth, we’ve been a little unfair to radiosity. The simplification of the render-
ing equation under the assumption that all emittance and reflectance is Lambertian
is the true “radiosity equation.” It’s quite separate from the division of the scene
into patches, and the resultant matrix equation. Nonetheless, the two are often dis-
cussed together, and the matrix form is often called the radiosity equation. Cohen
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and Wallace’s first chapter discusses radiosity in full generality, and treats the dis-
cretization approach we’ve described as just one of many ways to approximate
solutions to the equation.

31.11 Separation of Transport Paths

The distinction between diffuse and specular reflections is so great that it gener-
ally makes sense to handle them separately in your program. For instance, if a
surface reflects half its light in the mirror direction, absorbs 10%, and scatters the
remaining 40% via Lambert’s law, your code for computing an outgoing scattering
direction from an incoming direction will look something like that in Listing 31.1.
This is the algorithmic version of the discussion in Section 29.6, and it involves
the ideas of mixed probabilities discussed in Chapter 30.

Listing 31.1: Scattering from a partially mirrorlike surface.

1
2
3
4
5
6
7
8
9

10
11
12

Input: an incoming direction wi, and the surface normal n
Output: an outgoing direction wo, or false if the light is absorbed

function scatter(...):
r = uniform(0, 1)

if (r > 0.5): // this is mirror scattering
wo = -wi + 2 * dot(wi, n) * n;

else if (r > 0.1): // diffuse scattering
wo = sample from cosine-weighted upper hemisphere

else: // absorbed
return false;

31.12 Series Solution of the Rendering
Equation

The rendering equation, written in the form

(I − T)L = Le, (31.47)

is an equation of the form

Mx = b (31.48)

that’s familiar from linear algebra, except that in place of a vector x of three or
four elements, we have an unknown function, L; instead of a target vector b, we
have a target function, the emitted radiance field Le; and instead of the linear trans-
formation being defined by multiplication by a matrix M, it’s defined by applying
some linear operator. Roughly speaking, the difference is between the finite-
dimensional problems familiar from linear algebra, and the infinite-dimensional
problems that arise when working with spaces of real-valued functions. (Indeed,
the radiosity approximation amounts to a finite-dimensional approximation of the
infinite-dimensional problem, so the radiosity equation ends up being an actual
matrix equation.)
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For the moment, let’s pretend that the problem we care about really is finite
dimensional: that L is a vector of n elements, for some large n, and so is Le, while
I − T is an n× n matrix. The solution to the equation is then

L = (I − T)−1(Le). (31.49)

In general, computing the inverse of an n× n matrix is quite expensive and prone
to numerical error, particularly for large n. But there’s a useful trick. We observe
that

(I − T)(I + T + T2 + . . .+ Tk) = I − Tk+1. (31.50)

Inline Exercise 31.5: Verify Equation 31.50 by multiplying everything out.
Remember that matrix multiplication isn’t generally commutative. Why is it
OK to swap the order of multiplications in this case?

Suppose that as k gets large, Tk+1 gets very small (i.e., all entries of Tk+1

approach zero). Then the sum of all powers of T ends up being the inverse of
(I − T), that is, in this special case we can in fact write

(I − T)−1 = I + T + T2 + . . . . (31.51)

Multiplying both sides by Le, we get

L = (I − T)−1Le; (31.52)

= ILe + TLe + T2Le + . . . . (31.53)

In words, this says that the light in the scene consists of that emitted from the
luminaires (ILe), plus the light emitted from luminaires and scattered once (TLe),
plus that emitted from luminaires and scattered twice (T2Le), etc.

Our fanciful reasoning, in which we assumed everything was finite-
dimensional, has led us to a very plausible conclusion. In fact, the reasoning is
valid even for transformations on infinite-dimensional spaces. The only restric-
tion is that T2 must be interpreted as “apply the operator T twice” rather than
“square the matrix T .”

We did have to assume that Tk → 0 as k gets large, however. When T is a
matrix, this simply means that all entries of Tk go toward zero as k gets large. For
a linear operator on an infinite dimensional space, the corresponding statement
is that TkH goes to zero as k gets large, where H is an arbitrary element of the
domain of T . (In our case, this means that for any initial emission values, if we
trace the light through enough bounces, it gets dimmer and dimmer.)

We’ll assume, from now on, that the scattering operator T has the property
that Tk → 0 as k → ∞ so that the series solution of the rendering equation will
produce valid results.

Of course, the series solution has infinitely many terms to sum up, each of
them expensive to compute, so it’s not, as written, a practical method for rendering
a scene. On the other hand, as we’ve already seen with radiosity, there are practical
approximations to be made based on this series solution.
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When do high powers of a linear operator approach the zero operator? We
can answer this by looking at eigenvalues: If all eigenvalues are strictly less
than one, then TkLe → 0 as k goes to∞. In rendering, this more or less corre-
sponds to there being no perfect reflectors in a scene; indeed, one can imagine
a scene consisting of two enormous planar mirrors that face each other, and a
point light source between them. Equal amounts of light moving left and right
constitute an eigenvector of the light-scattering operator T: After reflection, we
once again have equal amounts of light moving left and right. So in this situ-
ation, T has an eigenvalue of 1, and iterative computation is not guaranteed to
converge. Indeed, if the light source puts out some light, a moment later that
light will be reflected by the mirrors and will be added to new light sent out
by the source, etc., so that the transported light goes to infinity. The unrealis-
tic assumption of perfect mirrors leads to the unrealistic prediction of infinite
light transport (and the nonconvergence of the iterative method for solving the
equation).

In practice, most surfaces we encounter have relatively low reflectance, and
an iterative computation not only converges, it converges fairly quickly. Unfor-
tunately, the convergence isn’t necessarily the kind we want: Our estimate of
the radiance field L, after a few iterations, may be very close to the true radiance
field L0, but the scene’s appearance to a human observer might be very differ-
ent. For instance, if the scene consists of a room lit by a tiny pinhole, behind
which there’s a light source, the true light in the room is very small . . . and
therefore very similar to no light in the room; similar, that is, when we com-
pare using the standard mathematical measure of similarity. When we compare
using a perceptual metric, the difference is clear: A tiny bit of light when you
awaken at night lets you avoid stubbing your toe, while no light at all does not!

31.13 Alternative Formulations of Light
Transport

We’ve described light transport in term of the radiance field, L, which is defined on
R3×S2 or M×S2, where M is the set of all surface points in a scene. (Since radi-
ance is constant along rays in empty space, knowing L at points of M determines
its values on all of R3.) And we’ve used the scattering operator, which transforms
an incoming radiance field to an outgoing one in writing the rendering equation.
But there are alternative formulations.

Arvo [Arv95] describes light transport in terms of two separate operators. The
first operator, G, takes the surface radiance on M and converts it to the field radi-
ance, essentially by ray casting: Surface radiance leaving a point P in a direction
v becomes field radiance at the point Q where the ray first hits M. The second
operator, K, takes field radiance at a point P and combines it with the BRDF at
P to produce surface radiance (i.e., it describes single-bounce scattering locally).
Thus, the transport operator T can be expressed as T = K ◦ G.

Kajiya [Kaj86] takes a different approach in which light directly transported
from any point P ∈ M to any point Q ∈ M is represented by a value I(P, Q); if
P and Q are not mutually visible, then I(P, Q) is zero. Kajiya calls the quantity I
the unoccluded two-point transport intensity. (The letters I, ρ, ε, M, and g used
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in this and the following section will not be used again; we are merely explaining
the correspondence between his notation and ours.) Kajiya’s version of the BRDF
is not expressed in terms of a point and two directions, but rather in terms of three
points; he writes ρ(P, Q, R) for the amount of light from R to Q that’s scattered
toward the point P. His “emitted light” function also has points as parameters
rather than point-direction parameters: ε(P, Q) is the amount of light emitted from
Q in the direction of P. Kajiya’s quantities exclude various cosines that appear
in our formulation of the rendering equation, including them instead as part of
the integration (his integrals are over the set M of all surfaces in the scene, while
ours are usually over hemispheres around a point; the change-of-variables for-
mula introduces the necessary cosines, as described in Section 26.6.4). Kajiya’s
formulation of the rendering equation is therefore

I(P, Q) = g(P, Q)

[
ε(P, Q) +

∫
R∈M

ρ(P, Q, R)I(Q, R)dR

]
, (31.54)

where g(P, Q) is a “geometry” term that in part determines the mutual visibility of
P and Q: It’s zero if P is occluded from Q. Expressing this in terms of operators,
he writes

I = gε+ gMI, (31.55)

where M is the operator that combines I with ρ in the integral. The series solution
then becomes

I = gε+ gMgε+ gMgMgε+ g(Mg)3ε+ . . . (31.56)

This formulation has the advantage that the computation of visibility is
explicit: Every occurrence of g represents a visibility (or ray-casting) operation.

31.14 Approximations of the Series Solution

As we mentioned, summing an infinite series to solve the rendering equation is not
really practical. But several approximate approaches have worked well in practice.
We follow Kajiya’s discussion closely.

The earliest widely used approximate solution consisted (roughly) of the
following:

• Limiting the emission function to point lights

• Computing only one-bounce scattering (i.e., paths of the form LDE)

That is to say, the approximation to Equation 31.56 used was

I = gε+ gMε0, (31.57)

where ε0 denotes the use of only point lights. (The first term has ε, because it was
possible to render directly visible area lights.) Note that the second term should
have been gMgε0, that is, it should have accounted for whether the illumination
could be seen by the surface (i.e., was the surface illuminated?). But such visibility
computations were too expensive for the hardware, with the result that these early
pictures lacked shadows.
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Note that since ε0 consisted of a finite collection of point lights, the integral
that defines M became a simple sum.

As an approach to solving the rendering equation, this involves many of the
methods described in Section 31.2: The restriction to a few point lights amounts to
solving a subproblem. The truncation of the series amounts to approximating the
solution method rather than the equation. The transport operator, M, used in the
early days was also restricted: All surfaces were Lambertian, although this was
soon extended to include specular reflections as well.

Improving the algorithm to use gε0 instead of ε0 (i.e., including shadows) was a
subject of considerable research effort, with two main approaches: exact visibility
computations, and inexact ones. Exact visibility computations are discussed in
Chapter 36.

A typical inexact approach consists of rendering a scene from the point of
view of the light source to produce a shadow map: Each pixel of the shadow map
stores the distance to the surface point closest to the light along a ray from the
light to the surface. Later, when we want to check whether a point P is illuminated
by the light, we project P onto the shadow map from the light source, and check
whether it is farther from the light source than the distance value stored in the map.
If so, it’s occluded by the nearer surface and hence not illuminated. This approach
has many drawbacks, the main one being that a single sample at the center of a
shadow map pixel is used to determine the shadow status of all points that project
to that pixel; when the view direction and lighting direction are approximately
opposite, and the surface normal is nearly perpendicular to both, this can lead to
bad aliasing artifacts (see Figure 31.16).

Figure 31.16: Aliasing produced
by a low-resolution shadow map.
The aliasing on the shadows is
the problem; the stripes on the
cubes themselves arise from a
different problem. (Courtesy of
Fabien Sanglard.)

By the way, the approaches used in the early days of graphics were not, at the
time, seen as approximate solutions to the rendering equation. They were practi-
cal “hacks,” sometimes in the form of applications of specific observations (e.g.,
Lambert’s law for reflection from a diffuse surface) to more general situations
than appropriate, and sometimes were approximations to the phenomena that were
observed, without any particular reference to the underlying physics. When you
read older papers, you’ll seldom see units like watts or meters; you’ll also on rare
occasions notice an extra cosine or a missing one. Be prepared to read carefully
and think hard, and trust your own understanding.

31.15 Approximating Scattering:
Spherical Harmonics

We’ve discussed patch-based radiosity, in which the field radiance is approximated
by a piecewise constant function; one can also think of this as an attempt to write
the field radiance in a particular basis for a subspace of all possible field-radiance
functions, in this case the basis consisting of functions that are identically one on
some patch j, and zero everywhere else. Linear combinations of these functions
are the piecewise constant functions used in radiosity.

A similar approach is to represent the surface radiance at a point (which is a
function on the hemisphere of incoming directions) in some basis for the space
of functions on the sphere. Assuming we limit ourselves to continuous func-
tions, such a basis is provided by spherical harmonics, h1, h2, . . . , which are
the analog, for S2, of the Fourier basis functions sin(2πnx) (n = 1, 2, . . .) and
cos(2πnx) (n = 0, 1, 2, . . .) on the unit circle. The first few spherical harmonics,
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in xyz-coordinates, are proportional to 1, x, y, z, xy, yz, zx, and x2− y2, with
the constant of proportionality chosen so that each integrates to one on the
sphere. In spherical polar coordinates, they can be written 1, cos θ, sin θ, sinφ,
sin 2θ, sin θ sinφ, cos θ cosφ, and cos 2θ. Like the Fourier basis functions on the
circle, they are pairwise orthogonal: The integral of the product of any two distinct
harmonics over the sphere is zero. Figure 31.17 shows the first few harmonics,
plotted radially. The plot of h1, which is the constant function 1, yields the unit
sphere.

Figure 31.17: The first few spher-
ical harmonics. For each point
on the unit sphere (1, θ,φ) in
spherical polar coordinates, we
plot a point (r, θ,φ), where r =
|hj(θ,φ)|. The absolute value
avoids problems where negative
values get hidden, but is slightly
misleading.

To be clear: If you have a continuous function f : S2 → R, you can write f as
a sum3 of spherical harmonics:

f (P) =
∞∑

j=1

cjhj(P). (31.58)

The coefficients cj depend on f , of course, just as when we wrote a function on the
unit circle as a sum of sines and cosines, the coefficients of the sines and cosines
depended on the function. In fact, they’re determined the same way: by computing
integrals.

The cosine-weighted BRDF at a fixed point P is a function of two directions
vi and vo, that is, the expression

f̄ (vi,vo) = fs(P,vi,vo)vi · n(P) (31.59)

defines a map f̄ : S2 × S2 → R. So the preceding statement about representing
functions on S2 via harmonics does not directly apply. But we can approximate the
cosine-weighted BRDF f̄ at P with spherical harmonics in a two-step process. To
simplify notation, we’ll omit the argument P for the remainder of this discussion.

First, we fix vi and consider the function vo 
→ f̄ (vi,vo); this function on
S2—let’s call it Fvi —can be expressed in spherical harmonics:

Fvi(vo) =

∞∑
j=1

cjhj(vo). (31.60)

If we chose a different vi, we could repeat the process; this would get us a different
collection of coefficients {cj}. We thus see that the coefficients cj depend on vi;
we can think of these as functions of vi and write

f̄ (vi,vo) =
∑

j

cj(vi)hj(vo). (31.61)

Now each function vi 
→ cj(vi) is itself a function on the sphere, and can be
written as a sum of spherical harmonics. We write

cj(vi) =
∑

k

wjkhk(vi). (31.62)

Substituting this expression into Equation 31.61, we get

f̄ (vi,vo) =
∑

j

cj(vi)hj(vo); (31.63)

=
∑

j

∑
k

wjkhk(vi)hj(vo). (31.64)

3. Limiting to a finite sum gives an approximation to the function; if f is discontinu-
ous, then the sum converges to f only in regions of continuity.
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The advantage of this form of the expression is that when we evaluate the integral
at the center of the rendering equation, namely,∫

vi∈S2
+(P)

L(P,−vi) fs(P,vi,vo)vi · n(P)dvi, (31.65)

both L and fs are expressed in the spherical harmonic basis. This will soon let us
evaluate the integral very efficiently. Note, however, that in expressing the BRDF
as a sum of harmonics, we were assuming that the BRDF was continuous; this
either rules out any impulses (like mirror reflection), or requires that we replace
all equalities above by approximate equalities.

Unfortunately, while L may be expressed with respect to the global coordinate
system, fs is usually expressed in a coordinate system whose x- and z-directions
lie in the surface, and whose y-direction is the normal vector. Transforming L’s
spherical-harmonic expansion into this local coordinate system requires some
computation; it’s fairly straightforward for low-degree harmonics, but it gets pro-
gressively more expensive for higher degrees. If we write the field radiance L at
point P in spherical harmonics in this local coordinate system (absorbing a minus
sign as we do so),

L(P,−vi) =
∑

umhm(vi), (31.66)

then the central integral takes the form

S(vo) =

∫
vi∈S2

+(P)

∑
m

umhm(vi)
∑

jk

wjkhj(vi)hk(vo)dvi; (31.67)

=
∑

k

hk(vo)

∫
vi∈S2

+(P)

∑
m

umhm(vi)
∑

j

wjkhj(vi)dvi; (31.68)

=
∑

k

hk(vo)
∑
j,m

wjkum

∫
vi∈S2

+(P)
hm(vi)hj(vi)dvi. (31.69)

The integral in this expression is 0 if j and m differ, and 1 if they’re the same. So
the entire expression simplifies to express the surface radiance in direction vo as

S(vo) =
∑

k

hk(vo)
∑

j

wjkuj. (31.70)

The inner sum can be seen as a matrix product between the row vector u of the
coefficients of the field radiance and the matrix of coefficients for the cosine-
weighted BRDF. The product vector provides the coefficients for the surface radi-
ance in terms of spherical harmonics in the local coordinate system.

At the cost of expressing the BRDF and field radiance in terms of spherical
harmonics, we’ve converted the central integral into a matrix multiplication. This
is another instance of the Basis principle: Things are often simpler if you choose
a good basis. In particular, if you’re likely to be integrating products, a basis like
the spherical harmonics, in which the basis functions are pairwise orthogonal, is
especially useful.

If the field radiance can be assumed to be independent of position (e.g., if most
light comes from a partly overcast sky), then the major cost in this approach is
transforming the spherical harmonic expression for field radiance in global coor-
dinates to local coordinates. If not, there’s the further problem of converting sur-
face radiance at one point, expressed in terms of spherical harmonics there, into
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field radiance at other points, expressed in terms of spherical harmonics at those
points.

This approach, which we’ve only sketched here, has been developed thor-
oughly by Ramamoorthi [RH01]. There are several important challenges.

• There is a conversion of harmonic decompositions in different coordinate
systems, which we’ve already described.

• We replaced the work of integration with the work of matrix multiplication;
that’s only a good idea if the matrix size is not too large. Unfortunately,
the more “spiky” a function is, the more terms you need in its spherical-
harmonic series to approximate it well (just as we need high-frequency
sines and cosines to approximate rapidly changing functions in one dimen-
sion). Since many BRDFs are indeed spiky (mirror reflectance is a particu-
larly difficult case), a good approximation may require a great many terms,
making the matrix multiplication expensive, especially if the matrix is not
sparse.

• We’ve ignored a critical property of irradiance at surfaces: It’s nonzero
only on the upper hemisphere. That makes the equator generally a line of
discontinuity, and fitting spherical harmonics to discontinuities is difficult:
A good fit requires more terms.

Ramamoorthi makes a strong argument for much of field radiance being well
represented by just the first few spherical harmonics. Sloan [Slo08] has written a
useful summary of properties of spherical harmonics, and with Kautz and Sny-
der [KSS02] has shown how to use them very efficiently in rendering scenes with
either fixed view and moving lights, or vice versa.

31.16 Introduction to Monte Carlo Approaches

We now move on to Monte Carlo techniques for solving the rendering equation.
The basic idea is to estimate the integral in the rendering equation (or some other
integral) by probabilistic methods, which we discussed in Chapter 29. Broadly
speaking, we collect samples of the integrand and average them, multiplying the
size of the domain of integration.

We begin with a broad and informal view of the various techniques we’ll be
examining.

Classic ray tracing, which you already saw in Chapter 15, consists of repeat-
edly casting a ray from the eye and determining the color of the point where it first
intersects a surface in the scene. This color is the sum of the illumination from
each visible light source (we use ray casting to check visibility), plus illumina-
tion from elsewhere in the scene, which we only compute if the intersection point
has some specular component, in which case we recursively trace the reflected or
refracted ray.

In Chapter 15, we only computed the direct illumination, but modifying a ray
tracer to include the recursive part is fairly straightforward. Listing 31.2 gives the
pseudocode for point light sources.

The use of “color” here is a shorthand for “spectral radiance distribution,” but
the main idea is that there’s some quantity we can compute by evaluating direct
illumination at the intersection point, and a remaining quantity that we compute
by a recursion. We must generally cast rays from the eye through every pixel in
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Listing 31.2: Recursive ray tracing.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

foreach pixel (x, y):
R = ray from eyepoint E through pixel
image[x, y] = raytrace(R)

raytrace(R):
P = raycast(R) // first scene intersection
return lightFrom(P, R) // light leaving P in direction opposite R

lightFrom(P, R):
color = emitted light from P in direction opposite R.
foreach light source S:
if S is visible from P:

contribution = light from S scattered at
P in direction opposite R

color += contribution
if scattering at P is specular:

Rnew = reflected or refracted ray at P
color += raytrace(Rnew)

return color

the image we’re computing, and we often use multiple samples per pixel, with
some kind of averaging. But the broad idea remains: Cast rays from the eye; com-
pute direct illumination; add in recursive rays. Ray tracing computes the contribu-
tions of paths of the form LD?S∗E.

The essential features of a ray tracer (and all the subsequent algorithms) are
a ray-casting function (something that lets us shoot a ray into a scene and find
the first surface it encounters), and a BRDF or bidirectional scattering distribution
function (BSDF), which takes a surface point P and two rays vi and vo and returns
fs(P,vi,vo). (In the pseudocode, that BRDF is hidden in the “light from S scat-
tered at P in direction opposite R,” which has to be computed by multiplying the
radiance from the light by a cosine and the BRDF to get the scattered radiance.) A
slightly more sophisticated ray tracer removes the “if scattering is specular” con-
dition, and if the scattering is nonspecular, the scattered radiance is estimated by
casting multiple recursive rays in many directions, weighting the returned results
by the BSDF according to the reflectance equation. It’s this form of ray tracing
that we’ll refer to henceforth.

Later, in addition to the BRDF or BSDF, we’ll also want a function that takes a
surface point P and a ray vi and returns a random ray vo with probability density
approximately proportional to the BRDF or BSDF, or cosine-weighted versions
of these.

Figure 31.18: Each blue vertical
line represents all of M, the set
of points of the scene; a green
path from the eye (at left) meets
M at some point, and then recur-
sively, multiple rays are traced;
these meet the second copy of M,
etc. Each branching at such an
intersection is a scattering event.
The red rays from the upper
right to the ray-surface inter-
sections represent light arriv-
ing from light sources, which in
this schematic representation are
placed infinitely far away so that
all direct illuminations can be
drawn parallel.

Following Kajiya, we can draw a highly schematic representation of ray trac-
ing (see Figure 31.18). Rays are traced from the eye to the scene; at an intersec-
tion, we compute direct lighting and accumulate it as part of the radiance from
the light to the eye along the leftmost segment of the path. We also cast recursive
rays. In basic ray tracing, we only do so in the specular-bounce direction (if the
surface is partly specular); in more sophisticated approaches, we may do so in
many directions. When a recursive ray meets a different surface point, the direct
lighting there is propagated back to the first intersection, and thence to the eye.
This propagation involves two scattering operations. Further depths involve fur-
ther scattering. In the end, we have a branching tree representing the gathering of
light into a single pixel of the final image. The branching factor of the tree depends
on the number of recursively cast rays at each scattering event.
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In path tracing, rays are again cast from the eye, and direct illumination is
again computed, but a single recursive ray is also cast, not necessarily in the spec-
ular direction: The direction for the recursive ray is determined by some proba-
bility distribution on possible directions. The result is to effectively compute the
contributions of all paths of the form L(S|D)* E. Because of the probabilistic
nature of the algorithm, we get noise in the resultant image. To reduce the noise,
a great many rays must be cast. The schematic representation (see Figure 31.19)
of path tracing is similar to that for ray tracing, except that the branching factor
for each tree is one. There are, however, many more trees associated to each pixel
(although we only draw one).

Figure 31.19: In path tracing,
each path from the eye either
terminates with some probabil-
ity or traces a single recur-
sive ray. In the version of the
algorithm schematically depicted
here, direct-light contributions to
light transport along the path are
computed at every scattering or
absorption point, and then trans-
ported back along the path.

In bidirectional path tracing, one path is traced from the eye and another
path is traced from a light source. By splicing together these paths (say, the third
point on the light path gets joined to the second point on the eye path), we create
paths that may carry light all the way from the source to the eye. If the splice
segment meets an occluder, we get no light transport at all, however. Each spliced
path gives information about light going to the eye (or camera), and we take the
information from multiple paths and splicings to estimate the color of each pixel.
Bidirectional path tracing drastically improves the handling of caustics (bright
regions arising from paths of the form LS+DE, i.e., light focused in various ways
on a diffuse surface). When caustics are seen only in reflection (e.g., with paths of
the form LS+DSE), or when they arise not directly from a light source, but from
its reflection in a small diffuse object (LDS+DE), they are once again difficult to
compute, however.

The schematic representation of bidirectional path tracing (see Figure 31.20)
consists of two trees, one starting from a light and one starting from the eye, with
splices between all pairs of interior nodes. Again, we have to understand that there
are many paths for each image pixel and many paths emanating from each light
source, so a more accurate schematic would consist of two forests with many
possible splices.

Figure 31.20: In bidirectional
path tracing, we compute many
eye paths (green) and many light
paths (red), and then consider
all possible “splices” (orange)
between the two sets.

In photon mapping, the forest of paths starting at lights is treated differently:
Rather than joining an eye path, the nodes of this forest—each node represents
light that arrives at some point of the scene—are used to estimate the light arriving
at any point. The light conducted by an eye path can then be evaluated by summing
up the light arriving at each of its nodes, that arriving light being estimated from
the forest of light paths. One very simple way to estimate the incident light at a
point is to look for the nearest point for which the incident light is known and use
that. This “nearest neighbor interpolation” is not quite what the photon mapping
algorithm uses, but it’s related. The schematic representation (see Figure 31.21)
contains a cloud of estimated incident light into which eye paths reach.

Figure 31.21: In photon map-
ping, the forest of light paths
is used to estimate the incident
light at every surface point by a
kind of local interpolation. Eye
paths then get incoming radiance
values from this estimate, which
we draw as a cloud around the
leaves of the light-path trees.

One last algorithm we’ll discuss—Metropolis light transport—doesn’t directly
fit into this schematization. It does involve bidirectional path tracing, but the paths
are chosen and used in a rather different way.

As described informally above, we’ll be recursively tracing lots of rays, form-
ing paths in a scene. In Monte Carlo methods, these paths are generated through
a randomized process, usually by sampling from some distribution related to the
BRDF.

The two main forms of sampling we tend to do are very similar.

• In ray tracing, we take a ray from the eye to a point P on some surface, and
ask, “Which rays arriving at P contribute light that will reach the eye?” For
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a mirror surface, the answer is “the mirror direction”; for a diffuse surface,
it’s “light coming from any direction could produce light in the eye-ray
direction.” For others, the answer lies somewhere in between. We need,
given the direction vo, to be able to draw samples from S2

+ in a way that’s
proportional to vi 
→ fs(vi,vo) (perhaps multiplied by a cosine factor).

• In methods like photon mapping, where we “push” light out from sources
rather than “gathering it toward the eye,” we instead need to address the
problem: “Given that some light arrived at this surface point P from direc-
tion vi, it will be scattered in many directions. Randomly provide me an
outgoing direction vo where the probability of selecting vo is proportional
to fs(vi,vo).”

Clearly these two problems are closely related.
The collecting of samples is done with a sampling strategy. What we’ve out-

lined above—“Give me a sample that’s proportional to something”—comes up
both in the Metropolis algorithm and in importance sampling. Other sampling
strategies can be used in other approaches to integration. Sometimes it’s important
to be certain that you’ve got samples over a whole domain, rather than acciden-
tally having them all cluster in one area; in such cases, stratified sampling, Poisson
disk sampling, and other strategies can generate good results without introducing
harmful artifacts.

Regardless of the sampling approach that we use, the values we compute are
always random variables, and their properties, as estimators of the corresponding
integrals, are how we can measure the performance of the various algorithms.

Before we proceed, here’s a brief review of what we learned about Monte
Carlo integration (following Kellerman and Szirmay-Kalos [KSKAC02]).

To compute the integral of a function f over some domain H, we represent it
as an expected value of a random variable:∫

H
f (x) dx =

∫
H

f (x)
p(x)

p(x) dx (31.71)

= E
[

f (x)
p(x)

]
, (31.72)

where p is a probability density on the domain H. To estimate the expected value,
we draw N mutually uncorrelated samples according to p and average them, result-
ing in ∫

H
f (x) dx = E

[
f (x)
p(x)

]
(31.73)

≈ 1
N

N∑
i=1

f (Xi)

p(Xi)
, (31.74)

where the standard deviation of this approximation is σ√
N

, σ2 being the variance
of the random variable f (X)/p(X). By choosing p to be large where f is large
and small where f is small, we reduce this variance. This is called importance
sampling, with p being the importance function. (If the samples are correlated,
the variance reduction is not nearly as rapid; we’ll return to this later.)

With this in mind, let’s begin with a general approach to approximating the
series solution to the rendering equation.
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31.17 Tracing Paths

In solving L = Le + TL for the unknown L, we found that the solution could be
written

L = Le + TLe + T2Le + . . . (31.75)

where Le represented the emitted radiance from luminaires, T represented the
transport operator, and L was the total radiance in the scene.

Let’s look at ray tracing in this framework: We take a single ray that enters
the eye and find the surface point it hits; we then compute direct lighting at that
point, and recursively trace more rays, which hit more surface points, where we
again compute direct lighting, etc. We are, at the level of computation, building
a branching structure: If we trace, on average, n recursive rays at each scattering,
then after k steps of scattering, we are tracing nk rays. If the average reflectance is
ρ < 1, then the direct lighting at the start of each such ray sequence suffers about
ρk attenuation by the time it contributes to the light reaching the eye. For large n,
this attenuation is substantial, which means that we’re doing lots of work (O(nk))
to gather up illumination that amounts to a tiny (ρk) fraction of the final result.

Kajiya observed that in many scenes most of the light reaching the eye under-
goes at most a few scattering events, and proposed a modified approach, called
path tracing, shown schematically in Figure 31.19 as described earlier.

In path tracing, the indirect illumination at a point P is estimated not with n
samples, but with a single sample! In this approach, the work done grows linearly
with k, the depth of recursive ray tracing. Of course, it’s possible that the single
sample misses something important; to resolve this, one can repeatedly trace the
same ray from the eye: Each time it arrives at the first scattering event, the recur-
sive sampler will probably choose a different recursive ray. (Indeed, in practice
it makes more sense to gather many samples over the area associated to a single
pixel in the image [CPC84], so the recursive rays will almost certainly be differ-
ent.) With the drastically reduced number of recursively traced rays compared to
direct ray tracing, we can afford to instead spend this time tracing multiple rays
from the eye for each pixel. On average, only a small fraction of the computation
time spent on paths of length 1 (directional lighting) is spent on paths of length 2,
etc.; this means that only a small amount of effort is expended in estimating the
relatively small contribution of indirect illumination.

So far we’ve said nothing about how the path lengths are chosen. In the usual
ray-tracing model—pick some recursive depth k and apply recursive ray tracing
through k bounces—we will never get contributions from any paths of length
more than k, and we will always underestimate the radiance. Hence ray tracing
is biased and inconsistent: Even if we trace many rays per pixel, the more-than-k-
bounces radiance will never get counted. Path tracing removes the restriction on
path length, and thus the corresponding source of bias and inconsistency.

There are two algorithmic drawbacks to path tracing, however. First, the algo-
rithm trades increased accuracy of the mean against increased variance. Having an
estimator that can get you the right answer is a great thing, but if you have a small
computational budget, then producing an image that’s wrong, but more aestheti-
cally pleasing, may be preferable to producing one that is, on average, correct, but
looks very noisy. Second, to reduce bias and move toward a consistent estimator of
the final image, the algorithm suffers an unbounded worst-case runtime, although
in practice this is rarely a significant problem. The linear-versus-exponential
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arguments we made earlier don’t tell the whole story. The key idea that Kajiya
(and Cook et al.) put forth is that while the time to trace any given ray is about
the same, the amount of information that you get from some rays is greater than
for others, and you’d like to favor those. If you measure the difference from the
true mean of a pixel in a path-traced image that used r rays (total, not just primary
rays) and an image produced using r rays in the exponential fan-out pattern, you’ll
find that the path-traced image is usually closer to the true mean, that is, the bias is
smaller. Kajiya actually leverages the variable importance of rays in several ways;
here we’ll just focus on the strategy of sending one (terminal) direct illumination
ray and one (recursive) indirect illumination ray at each surface.

31.18 Path Tracing and Markov Chains

We indicated earlier that computing the series solution

L = (1 + T + T2 + . . .)Le (31.76)

= Le +

∞∑
k=1

TkLe (31.77)

to the rendering equation

L(P,vo) = Le(P,vo) +

∫
S2

L(P,−vi) fs(P,vi,vo)|vi · n| dvi, (31.78)

where Le is the emitted radiance, L is the radiance, and T is the transport operator,
was closely related to computing

x = b +

∞∑
k=1

Mkb, (31.79)

as the solution to the equation

x = b + Mx, (31.80)

where b and x are n-vectors and M is an n × n matrix. The analogy is that T is
a linear operator on the space of all possible radiance functions, while multipli-
cation by M is a linear operation on the vector space Rn; in the case where we
approximated the space of possible radiance functions by those that are piecewise
constant on a fixed mesh, and where the transport operation involved only Lam-
bertian reflection (the radiosity approximation), the analogy was exact: Instead of
solving an integral equation, we had to solve a finite-dimensional matrix equation.

We’ll consider the case where M is a 2 × 2 matrix, chosen so that its eigen-
values are both less than one in magnitude, which makes the series converge,
and so that its entries are all non-negative, because they’re meant to correspond,
roughly, to values of the BSDF in the rendering equation, and these values are
never negative.

In the next several pages we’ll estimate the value of x1, the first entry of the
solution. We can, of course, solve Equation 31.80 directly, given any particular
2×2 matrix M, but you should imagine that M could have a thousand or a trillion
rows rather than just two; it’s in that case that the methods described here work
best.
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We’re going to describe two approaches to finding x1: one nonrecursive and
the other recursive. The first is somewhat more complex, and you can skip it if
you’d like. The reasons for including it are as follows.

• It provides the justification for the second method.

• The particular formulation is one that you will see often in modern render-
ing research papers.

31.18.1 The Markov Chain Approach

If we attempt to find the value of x1 using Equation 31.79, we’ll need to sum up
infinitely many terms. The first few are

b1, (31.81)

m11b1 + m12b2, and (31.82)

(m11m11 + m12m21)b1 + (m11m12 + m12m22)b2. (31.83)

The last term, expanded out, is

m11m11b1 + m12m21b1 + m11m12b2 + m12m22b2. (31.84)

From Section 31.5.1, we have a method for estimating such an infinite sum:
Select a random term ai in the series (according to some probability distribution p
on the positive integers); then ai/p(i) is an estimator for the sum. In this applica-
tion, we’ll treat each individual summand in Equations 31.81–31.83 as a term, so
the first term is b1, the second is m11b1, and so on.

If you look at the sequence of subscripts in any term—say, m12m21b1—you’ll
notice the following.

• The subscripts start at 1, because we’re computing the first entry of the
answer, x1.

• Each subsequent subscript is repeated twice (in this case, two more twos,
then two more ones). This repetition is a consequence of the definition of
matrix multiplication.

• Every such sequence occurs.

Thus, to pick a term at random, we need only to pick a “random” finite
sequence of subscripts starting at 1. We’ll do so by a slightly indirect method.

Figure 31.22 shows a probabilistic finite-state automaton (FSA). The edge
from node i to node j is labeled with a probability pij, which you can read as the
probability that if we’re at node i at some moment, we’ll next move to node j. (In a
probabilistic FSA of this sort, the path you take through the FSA is not determined
by an input string, but instead by random choices at each node.)

By starting at node 0 and making random transitions to other states, using the
probabilities pij that label the edges of the graph, we’ll eventually arrive at state 3,
where we’ll stop. The sequence we generate will start at 0 and end at 3. In between
will be a sequence of 1s and 2s that we’ll use as our index sequence.

An FSA like this is a visual representation of a Markov chain—a sequence of
states with transition probabilities, with the constraint that the probability of being
at some state i at step k + 1 depends only on where you were at step k, and not on
any history of your prior steps. Such a Markov chain can be completely described
by the matrix P of transition probabilities pij, which has the Markov property:
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Figure 31.22: A probabilistic FSA with four states, 0, 1, 2, and 3; 0 is the start state; 3 is an
absorbing state, and for the remaining states, we have all possible transitions, labeled with
probabilities. A graph like this describes a Markov chain. The transition matrix is shown
as well.

Every row sums to 1 (because when you’re in state i, you have to transition to
some state j).

Inline Exercise 31.6: If P is an n × n matrix with the Markov property just

described, show that the column vector
[
1 . . . 1

]T
is a right eigenvector

of P. What’s its eigenvalue?

A typical path from state 0 to state 3 in the FSA looks like 01223; the numbers
between the first and last states constitute a subscript sequence that corresponds
to a term in our summation. In this example, the term is

m12m22b2. (31.85)

Furthermore, such a path has a probability of arising from a random walk in
the FSA: We write the product of the probabilities for the edges we traveled. In
our example, this is

p01p12p22p23. (31.86)

We can now describe a general algorithm for computing the sum in Equa-
tion 31.79 (see Listing 31.3).

Listing 31.3: Estimating matrix entries with a Markov chain.

1
2
3
4
5
6
7
8
9

10

Input: A 2 × 2 matrix M and a vector b, both with
indices 1 and 2, and the number N of samples to use.

Output: an estimate of the solution x to x = Mx + b.

P = 4 × 4 array of transition probabilities, with indices
0, . . . , 3, as in Figure 31.22.

S1 = S2 = 0 // sums of samples for the two entries of x.
repeat N times:

s = a path in the FSA from state 0 to state 3, so s(0) = 0.
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11
12
13
14
15
16

k = length(s) - 2.
p = probability for s // product of edge probabilities
T = term associated to subscript sequence s(1), s(2), . . . , s(k)
Ss(1) += T/p; // increment the entry of S named by s(1)

return (S1/N, S2/N)

Under very weak hypotheses on the matrix P, this algorithm provides a con-
sistent estimator of x. That is to say, as N →∞, the values of S1/N and S2/N will
converge to the values of x1 and x2. How fast will they converge? That depends on
the matrix P: For some choices of P, the estimator will have low variance, even for
small N; for others, it will have large variance. You, as the user of this estimator,
get to choose P.

The following exercises give you a chance to think about “designing” P effec-
tively. While they may seem far removed from rendering, the ideas you get from
these exercises will help you understand the approaches taken in path tracing,
which we’ll discuss next.

Inline Exercise 31.7: (a) Suppose you know that m12 = 0, and you’re choosing
the matrix P in hopes of getting rapid convergence (i.e., low variance in the
estimator) of the answer. Is there a reason for picking p12 = 0? Is there a

reason for picking p12 �= 0? Experiment with M =

[
1
2 0
0 1

4

]
.

(b) The transitions represented by p01 and p02 tell us how often (i.e., what
fraction of the time) we’re getting a new estimate of x1 and how often we’re
getting a new estimate of x2. What are reasonable values for these, and why?
How would you choose them if you wanted to only estimate x1?

Inline Exercise 31.8: Write a program to compute the vector x as in Inline
Exercise 31.7, and experiment with different transition matrices P to see how
they affect convergence. Hint: Experiment with the case where M is a diago-
nal matrix to see whether you can notice any patterns, and be sure to use only
matrices M whose entries are non-negative and whose eigenvalues have magni-
tudes less than one. (For complex eigenvalues a+ bi, this means a2 + b2 < 1.)

We advise that you spend the time doing the inline exercise above, prefer-
ably in some language like Matlab or Octave, where such programs are easy to
write. Merely debugging your program will give you insight into the method we’ve
described.

The “weak conditions” mentioned above are these: First, if mij > 0, then
pij > 0. Second, if bi �= 0, then pi3 > 0. Together these ensure that any nonzero
term in our infinite sum ends up being selected with nonzero probability. The dual
of these conditions is also relevant: If bi = 0, then pi3 should be set to zero as well
so that we never end up working with a term whose last factor is zero. Similarly,
if mij = 0, we save ourselves some work by picking pij = 0.

The corresponding ideas, when we apply what we’ve learned to study light
transport, are that (1) we must never ignore any light source (the condition on bi

and pi3) and (2) we never want to select a ray direction for which the BSDF is
zero, if we can avoid it (the condition on pij being zero).
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31.18.1.1 An Alternative Markov Chain Estimator
When we generated the sequence 01223, we used it to compute a single term of
the series, and the associated probability. But there’s a slightly different approach,
due to Wasow, in which we can use a k-term sequence to generate k different
estimates for the sum all at once. It’s described in detail, and a rigorous proof
of its correctness is given, in Spanier and Gelbard [SG69]. Here we’ll give an
informal derivation of the method.

The idea is this: When we had generated the partial sequence 012, there were
several possibilities. We could have generated a 3 next, ending the sequence, or
we could have gone on to generate another 1 or 2. If you imagine walking through
the FSA thousands of times, some fraction of those times your initial sequence
will be 012. If there are 100 such initial sequences, then about 30 of them will be
0123, because p23 = 0.3 in our particular FSA. About 20 of them will have the
form 0121 . . . , and about 50 will have the form 0122 . . . . Under the basic scheme,
the 30 terminating sequences (0123) would each have associated probability 0.5 ·
0.2 ·0.3 = (0.5 ·0.20) ·0.3, where we’ve put parentheses around everything except
the last factor. The associated term in the sum we’re estimating is m12b2, and for
each of those 30 sequences, our estimate of the sum is

m12b2

(0.5 · 0.2) · 0.3
. (31.87)

So, among all sequences starting with 012, 30% contribute m12b2
(0.5·0.2)·0.3 as their

estimate of the sum. Suppose that instead we made 100% of the sequences con-
tribute the smaller value m12b2

(0.5·0.2) (the division by 0.3 has been removed) as part of
their estimate of the sum. The expected value would be the same, because we’d be
averaging either 30 copies of the larger value or 100 copies of the smaller value!
Of course, we apply the same logic to every single initial sequence, and we arrive
at a new version of the algorithm. Before we do so, however, let’s look at the value

m12b2
(0.5·0.2) above. It arises as

m12b2

(0.5 · 0.2)
=

1
p01

m12

p12
b2. (31.88)

More generally, in a longer index sequence, we’ll have a first factor of the form
1

p0i
for i = 1 or 2, followed by several terms of the form mij

pij
, and finally a bk. The

revised algorithm now looks like the code in Listing 31.4.

Listing 31.4: Estimating matrix entries with a Markov chain
and the Wasow estimator.

1
2
3
4
5
6
7
8

Input: A 2 × 2 matrix M and a vector b, both with
indices 1 and 2, and the number N of samples to use.

Output: an estimate of the solution x to x = Mx + b.

P = 4 × 4 array of transition probabilities, with indices
0, . . . , 3, as in Figure 31.22.

S1 = S2 = 0 // sums of samples for the two entries of x.
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9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

repeat N times:
s = a path in the FSA from state 0 to state 3, so s(0) = 0.
(i, value) = estimate(s)
Si += value;

return (S1/N, S2/N)

// from an index sequence s(0) = 0, s(1) = ..., s(k+1) = 3,
// compute one sample of xs(1); return sample and s(1).
define estimate(s):

u = s(1); // which entry of x we’re estimating
T = 1

p1u
// accumulated probability

value = T · bu

for i = 1 to k − 1:
j = si

k = si+1
T *= mjk/pjk
value += T · bk

return (u, value)

Pause briefly to look at the big picture of this approach to computing (1+M+
M2 + . . .)b.

• Depending on the entries p0i, we may dedicate more or less of our time to
computing one entry of x than another.

• Depending on the entries pi3, the average length of a path may be short or
long. If it’s short, but the powers of the matrix M don’t decrease very fast,
then it may take lots of samples to get good estimates of x.

• There’s a whole infinity of algorithms encoded in this single algorithm, in
the sense that the transition probabilities pij can be chosen at will, provided
the rows of P sum to one, that pij �= 0 whenever mij �= 0, and that pi3 �= 0
whenever bi �= 0.

31.18.2 The Recursive Approach

We’ll now build up a recursive approach to estimating the solution to

x = b + Mx (31.89)

in several steps, all based on the ideas in Chapter 30.
As a warm-up, suppose that you wanted to estimate the sum of two numbers

A and B using a Monte Carlo method. You could write

1
2
3
4
5
6
7

define estimate():
u = uniform(0, 1) // random number in [0, 1] with

// uniform distribution
if (u < 0.5):
return A / 0.5

else:
return B / 0.5

This is just an importance-sampled estimate of the sum, with importance values
0.5 and 0.5.
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Inline Exercise 31.9: (a) Show that the expected value of the output of this
small program is exactly A + B.
(b) Modify the program by writing if (u < 0.3)..., and adjusting the two
0.5s as needed to get a different estimator for the same value.
(c) Suppose that A = 8 and B = 12. What fraction p would you use to replace
0.5 in line 4 to ensure that the estimates produced by multiple runs of the
program had the smallest possible variance?
(d) What if A = 0 and B = 12?

Now let’s suppose that B is in fact a sum of n terms: B = B1 + . . .Bn. We can
modify the program to handle this:

1
2
3
4
5
6
7

define estimate():
u = uniform(0, 1)
if (u < 0.5):

return A/0.5
else:

i = randint(1, n) // random integer from 1 to n.
return Bi / (0.5 * (1/n))

We’re just using a uniform single-sample estimate of B now as well as the earlier
random choice to estimate A + B.

Let’s apply these ideas to estimating the solution x to (I−M)x = b, which is

x = b + Mb + M2b + . . . (31.90)

= b + M(b + Mb + . . .). (31.91)

To keep things simple in what follows, and in analogy with the light-transport
application we’ll soon examine, we’ll assume that all entries of M are non-
negative, the row-sum ri =

∑
j mij is less than 1 for all i, and the eigenvalues

of M have magnitude less than 1, so that the series solution converges. We’ll also
assume that M is an n× n matrix rather than just a 2× 2 matrix.

Let’s use the ideas of the short programs above to estimate x1, the first entry
of x in Equation 31.90. According to the equation, the value x1 is the sum of two
numbers, b1 and (Mx)1. That makes it easy to find x1 using our sum-of-numbers
estimator, but only if we already know x! But Mx1 is a sum: m11x1 + . . .+m1nxn.
We can estimate this by selecting among these terms at random, as usual. In each
term, we know the mij factor, and we need to estimate the xj factor. So we can
estimate x1 only if we can estimate xj for any j. This begs for recursion. And as is
typical in recursion, the recursion gets easier if we broaden the problem. So we’ll
write a procedure, estimate(i), that estimates the ith entry of x, and to find x1

we’ll invoke it for i = 1.

1
2
3
4
5
6
7

define estimate(i):
u = uniform(0, 1)
if (u > 0.5):

return bi / 0.5
else:

k = randint(1, n)
return mik· estimate(k) / (0.5 * (1/n))

The book’s website has actual code that implements this approach, and com-
pares it with the answer obtained by actually solving the system of equations.
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You’ll find, if you run it, that it works surprisingly well, at least when the eigen-
values are small, so that the series solution converges quickly.

For those who read the section on Markov chains, this program corresponds
(when n = 2) to the Markov chain solution with all edges in the graph labeled with
probability 0.5: When we’re in some state, half the time we terminate and half the
time we make a recursive call, putting another factor of 0.5 in the denominator.
Because the Markov chain version of the algorithm is guaranteed to produce a
consistent estimator, this recursive version must do so as well. For the rest of this
section, you can imagine how the recursive forms we write correspond to various
Markov chain forms.

Note that although this code is recursive, you can’t prove its correctness
the same way you would prove that merge sort is correct, using induction: The
recursive invocation of estimate is not “simpler” than the calling invocation, and
there’s no base case. The structure of the code is recursive, but the analysis of
it relies on the graph theory and Markov chains. In fact, the program’s not cor-
rect, at least not in the way that merge sort is correct. There’s an execution path
(one where the random number u always turns out less than 0.5) in which the
program executes forever, for instance! Nonetheless, with probability one the pro-
gram produces an unbiased estimate of xi, which is all we can hope for with a
Monte Carlo algorithm. (Recall from Chapter 30 that “probability one” does not
mean certainty: There may be cases that fail, but they are as unlikely as picking,
say, e/π when asked to choose a random number in the unit interval.)

Let’s now improve the algorithm in two ways. First, the values returned by
estimate(1) tend to vary a lot: Half of them are 2b1 and the other half arise from
a recursive call. We can get the same average result if we simply return b1 in all
of them:

1
2
3
4
5
6
7

define estimate(i):
result = b1
u = uniform(0, 1)
if (u < 0.5):

k = randint(1, n)
result += mik· estimate(k) / (0.5 * (1/n))

return result

Now if mij is small for all j, then the recursive part of the code is likely to
produce small results, because of the factor of mik. It would be nice, in this case,
to bias our program toward skipping the recursive part.

Recall that we assumed that ri =
∑

j mij was less than one. That means we can
change our code to

1
2
3
4
5
6
7

define estimate(i):
result = b1
u = uniform(0, 1)
if (u < ri):

k = randint(1, n)
result += mik· estimate(k) / (ri * (1/n))

return result

That’s the final version we’ll write for this particular problem. The use of
ri corresponds, in the Markov chain model, to choosing greater or lesser values
for pi3; the choice of k as a random integer between 1 and n could be improved
a bit: We might, for instance, want to choose k with a probability proportional
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to mik. That would reduce variance, but it might also take longer. When we apply
this technique to solving the rendering equation, we actually will do some clever
things in that recursive part of the estimator. It just happens that in the matrix
model of the computation, there’s no good analog for these subtleties.

Inline Exercise 31.10: Make certain you really understand every piece of the
code in this section. Ask yourself things like, “Why is that 1/n in the denomi-
nator?” and “Why do we multiply by mik rather than mki?” Only proceed to the
next section when you are confident of your understanding.

31.18.3 Building a Path Tracer

We’ll now describe how to build a path tracer in analogy with the recursive version
of the linear equation solver, transforming a simple path tracer into one that’s
increasingly tuned to use its sampling efficiently. The wrapper of the path tracer
is quite simple:

1
2
3
4
5
6

for each pixel (x,y) on the image plane:
v = ray from the eyepoint E to (x, y)
result = 0
repeat N times:

result += estimate of L(E,−v)
pixel[x][y] = result/N;

There are variations on the wrapper. We could estimate the radiance through
various points associated with pixel (x, y), and then weight the results by the mea-
surement equation to get a pixel value. We could, for a dynamic scene, estimate
the radiance at (x, y) for various different times and average them, generating
motion-blur effects, etc. But all of these have at their core the problem of estimat-
ing L(E,−v); we’ll concentrate on this from now on, writing a procedure called
estimateL to perform this task.

The first version of the estimation code is completely analogous with the
matrix equation solver: Because L is a sum of Le and an integral, we’ll use a
Monte Carlo estimator to average the two terms. We’ll use the generic point C as
the one where we’re estimating the radiance, but you should think of C as being
the eyepoint E, at least until the recursive call.

Figure 31.23 shows the relevant terms. The red arrow at the bottom is Le(P,v)
(which for this scene happens to be zero, because the surface containing P is not
an emitter).

vi

v
C

Q

P

Figure 31.23: Names for some
points and paths in our path
tracer.

1
2
3
4
5
6
7
8
9

10
11
12

// Single-sample estimate of radiance through a point C
// in direction v.
define estimateL(C, v):

P = raycast(C, −v) // find the surface this light came from
u = uniform(0, 1)
if (u < 0.5):

return Le(P,v)/0. 5
else:
vi = randsphere() // unit vector chosen uniformly
integrand = estimateL(P, −vi) · fs(P,vi,v)|vi · nP|
density = 1

4π
return integrand / (0.5 * density)
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The choice of vi uniformly on the sphere is analogous to choosing an index
k = 1 . . . n, except for one thing: When we chose k, it was possible that mik = 0,
that is, the particular path we were following in the Markov chain would con-
tribute nothing to the sum. But when we choose vi, we’re going to estimate the
arriving radiance at P in direction −vi with a ray cast. We’ll then know that P is
visible from whatever point happens to be sending light in that direction toward P.
This was one of the great insights of the original path tracing paper: that using ray
casting amounted to a kind of importance sampling for a certain integral over all
surfaces in the scene. (Kajiya performed surface integrals rather than hemispheri-
cal or spherical ones.)

Inline Exercise 31.11: If the surface at P is purely reflective rather than
transmissive, then half of our recursive samples will be wasted. Assume that
transmissive(P) returns true only if the BSDF at P has some transmissive
component. Rewrite the pseudocode above to only sample in the positive hemi-
sphere if the scattering at P is nontransmissive.

Once again, we can replace the occasional inclusion of Le with an always
inclusion. The code is then

1
2
3
4
5
6
7
8
9

10

define estimateL(C, v):
P = raycast(C, −v)
u = uniform(0, 1)
resultSum = Le(P,v)
if (u < 0.5):
vi = randsphere()
integrand = estimate(P, −vi) * fs(P,vi,v)|vi · nP|
density = 1

4π
resultSum += integrand / (0.5 * density)

return resultSum

Now if we suppose that our BSDF can not only be evaluated on a pair of
direction vectors, but also can tell us the scattering fraction (i.e., if the surface
is illuminated by a uniform light bath, the fraction of the arriving power that is
scattered), we can adjust the frequency with which we cast recursive rays:

1
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7
8
9

10
11
12
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define estimateL(C, v):
P = raycast(C, −v)
u = uniform(0, 1)
resultSum = Le(P,v)
ρ = scatterFraction(P)
if (u < ρ):
vi = randsphere()
Q = raycast(P, vi)
integrand = estimate(Q, −vi) * fs(P,vi,v) |vi · n|
density = 1

4π

resultSum += integrand / (ρ * density)
return resultSum

vi

v

Q

C
P

Ld

Li

Le

Li,s

Ld,s

R

Figure 31.24: The light arriving
at P can be broken into direct and
indirect light.

The second insight we’ll take from Kajiya’s original paper is that we can write
the arriving radiance from Q as a sum of two parts: radiance emitted at Q (which
we call direct light Ld at P), and radiance arriving from Q having been scattered
after arriving at Q from some other point, which we call indirect light Li. Fig-
ure 31.24 shows these. There’s no direct light from Q to P in the figure, since Q
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is not an emitter, but there is direct light from R to P, shown in cyan. Notice that
this division of light arriving at P from Q into different parts is a mathematical
convenience. There’s no way, when a photon arrives at P from Q, to tell whether
it was directly emitted or was scattered. But dividing the arriving light in this way
allows us to structure our program to get better results.

The figure also shows the results of scattering these at P, which we’ll call Ld,s

and Li,s. The scattered radiance Lr is just Ld,s + Li,s. Thus,

Li,s(P,v) =
∫

Lr(Q,vi) fs(Q,v,vi)|vi · nQ| dvi, and (31.92)

Ld,s(P,v) =
∫

Le(Q,vi) fs(Q,v,vi)|vi · nQ| dvi, (31.93)

where Q = raycast(P,v).
With these definitions, we restructure the code slightly (see Listing 31.5).

Listing 31.5: Kajiya-style path tracer, part 1.

1
2
3
4
5
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7
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9

10
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14
15
16
17
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20
21

define estimateL(C, v):
P = raycast(C, −v)
resultSum = Le(P,v) + estimateLr(P, v)
return resultSum

define estimateLr(P, v):
return estimateLds(P, v) + estimateLis(P, v)

define estimateLis(P, v): // single sample estimate
u = uniform(0, 1)
ρ = scatterFraction(P)
if (u < ρ):
vi = randsphere()
Q = raycast(P, vi)
integrand = estimateLr (Q, −vi) * fs(P,vi,v) |vi · n|
density = 1

4π

return integrand / (ρ * density)
return 0

define estimateLds(...

Notice that in estimating the scattered indirect light, we didn’t scatter all the
radiance arriving at P from Q, but only Lr. The Le portion of the radiance is the
direct light, which we’re deliberately not including.

To estimate Ld,s (the scattering of the direct light), we are trying to evaluate
the integral

Ld,s(P,v) =
∫

Le(Q,−vi) fs(P,v,vi) |vi · nP| dvi, (31.94)

where Q denotes the result of a ray cast from P in direction vi.
We’re going to shift from a spherical integral to a surface integral (which

involves the usual change of variable factor), and integrate over all light sources.
(You should now think of Q as being a point on the light source in Figure 31.24.)
To keep things simple, we’ll assume that we have only area light sources (no
point lights!), and that there are K of them, with areas A1, . . . , AK , and total area
A = A1 + A2 + . . .+ AK .



ptg11539634

31.18 Path Tracing and Markov Chains 867

The integral we want to compute is

Ld,s(P,v) =
∫

Q∈lights
Le(Q,−vPQ) fs(P,v,vPQ)V(P, Q)

|vPQ · nP||vPQ · nQ|
‖Q− P‖2

dQ,

(31.95)

where vPQ = S(Q− P) is the unit vector pointing from P to Q, and V(P, Q) is
the visibility function, which is 1 if P and Q are mutually visible and 0 otherwise.
(The extra dot product, and the squared length in the denominator, come from the
change of variables.) Notice that in the integrand, we have Le and not L: We only
want to estimate scattering of direct light.

We can estimate this integral by picking a point Q uniformly at random with
respect to area (i.e., with probability Ai/A it’ll be a point of light i, and within light
i, it’ll be uniformly randomly distributed), and using Q to perform a single-sample
estimate of the integral:

Ld,s(P,v) ≈ A · Le(Q,−vPQ) fs(P,v,vPQ) V(P, Q)
|vPQ · nP||vPQ · nQ|

‖Q− P‖2
.

(31.96)

This makes the code for estimateLds fairly straightforward (see Listing 31.6).

Listing 31.6: Kajiya-style path tracer, part 2.

1
2
3
4
5
6
7
8

define estimateLds(P, v):
Q = random point on an area light
if Q not visible from P:

return 0
else:

vPQ = S(Q − P)

geom =
|vPQ·nP||vPQ·nQ|

‖Q−P‖2

return A · Le(Q,−vPQ) fs(P,v,vPQ) · geom

Everything we’ve done here depends on the BSDF being “nice,” that is, having
no impulses. In the next chapter, we’ll adjust the code somewhat to address that.

To summarize, path tracing works by estimating the integrand using a Markov
chain Monte Carlo approach, including the reuse of initial segments of the chain
for efficiency. It avoids the plethora of recursive rays generated by conventional
ray tracing; the time saved is allocated to collecting multiple samples for each
pixel. While path tracing is, in the abstract, an excellent algorithm, it does require
that you choose an acceptance probability (we’ve used the scattering fraction)
and a sampling strategy for outgoing rays; if these are chosen badly, the variance
will be high, requiring lots of samples to reduce noise in the final image. Fur-
thermore, the sampling strategy must be general enough to find all paths in your
scene that actually transport important amounts of light. If you allow purely spec-
ular surfaces and point lights, then paths of the form LS+DE are problematic as
mentioned above: The path starting from the eye must choose a direction, after
the first bounce, that happens to be reflected one or more times to reach the point
light. The probability of choosing this direction is unfortunately zero. If you allow
nearly point lights and nearly specular reflections, you can still get the same effect:
The probability of sampling a good path can be made arbitrarily small. To address
this limitation, we have to consider other ways of sampling from the space of all
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possible light paths, or else take a great many samples to get a good estimate (i.e.,
a low-noise image).

What’s the difference between a path tracer and a conventional ray tracer?
Well, the path-tracing result tends to be noisy, as we mentioned earlier: We’re
making Monte Carlo estimates of the radiance at each point, and there’s vari-
ance in these estimates. A basic ray tracer that only computes recursive rays when
there’s a mirror reflection uses a very low-variance estimate of the diffusely scat-
tered indirect light: It estimates it as zero! That makes the basic ray-traced image
darker than it should be, but uncluttered with noise. On the other hand, by taking
more samples in the path tracer, we can reduce the noise a lot. For a small ray-
casting budget (i.e., you can only afford to cast a certain number of rays in your
scene), the simple ray-tracer result is wrong but nice looking; the path-traced result
is generally “right on average,” but noisy. As the ray-casting budget increases, the
ray-traced result does not really improve (except for deeper levels of reflection),
while the path-traced result gets less and less noise, and correctly includes dif-
fusely scattered indirect light.

Finally, we’ve treated “measurement” as part of the wrapper for a path tracer,
but we could instead include it in the thing being computed, so rather than esti-
mating L, we could estimate L multiplied by the measurement function M. When
we do so, the thing we’re integrating, expanded out recursively, is a product of
some number of scattering functions and cosines, an Le at the end, and M at the
beginning. (If we’re integrating with respect to area rather than solid angle, there
will also be some change-of-variables factors.) There’s a symmetry in this formu-
lation: We could swap the roles of M and Le, and imagine rendering a scene in
which the eye was emitting light according to M, and it was being measured at the
light sources using Le as the measurement function. The integral we’d write down
for estimating light transport in this “swapped” scene would be exactly the same
as in the original. This provides some theoretical justification for the “trace rays
from the eye” approach rather than tracing photons from the lights, the way nature
does it: The integrals we’re estimating are the same.

31.18.4 Multiple Importance Sampling

When we consider alternative ways to sample from the space of light paths, we
may find one sampling strategy that is effective for one class of paths and another
that works well for a different class. It’s difficult to know in advance which will be
useful in any particular scene. Veach developed multiple importance sampling
as a way to use many different sampling strategies in evaluating a single inte-
gral, by weighting samples from the different strategies differently. He describes
a motivating example: a single glossy surface reflecting an area light source (e.g.,
think of a slightly rippled ocean reflecting moonlight). In this case, there are only
two interesting kinds of paths: LE and LDE; if the lights are outside the visible part
of the scene, then there are only LDE paths. There are no paths of length greater
than two in the scene. This makes the analysis particularly easy. We’ll look at only
the LDE paths.

Suppose that we try to estimate the light arriving at some pixel, P. One
approach to sampling paths is that we trace a ray through P, meeting the glossy
surface at a point x. Then we sample from the BRDF at x and trace a second ray
that may hit the area light source, in which case the sample contributes some radi-
ance, or that may miss the light altogether, in which case the sample contributes
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Figure 31.25: The image on the left was made by sampling the BRDF of the rough surface;
the nearer slabs are rougher than the distant ones. Four light sources of varying sizes
produce different glossy reflections. The image on the right used sampling on the light
sources. The upper right in the first picture is preferable to that in the second; the lower
left in the second picture is preferable to that in the first. No one sampling strategy is best.
(Note that the scene is also lit by a weak light above the camera, and that the slabs all have
a small diffuse component, letting us see their general shapes.) (Courtesy of Eric Veach.)

zero. An alternative approach is to trace the ray through P to x, but then sample
a point x′ uniformly at random on the light source, and connect x to x′. Now the
path certainly carries some radiance.

The second approach initially seems far better than the first approach, since
the paths will always conduct some light. But what if the surface is very rough?
Then the BRDF in the xx′ direction may be nearly zero, and so the contribution is
again very small. Figure 31.25 shows the results in practice.

Clearly we want to use one sampling strategy in estimating the integral in
some cases, the other in other cases, and a mix of the two in still other cases. This
is where multiple importance sampling comes in. Before we discuss that, there’s
one point worth noting: If you have two estimators, one with large variance and
one with small variance, and you average them, you’re in trouble: It’s really hard
to get rid of the variance except by taking lots of samples. Informally speaking,
the central idea of multiple importance sampling is that it provides a way to work
with a kind of average of two estimators without letting the larger variance of one
of them creep into the later computations.

To describe multiple importance sampling, we return to the abstract setting:
We’re trying to integrate a function f on some domain D, and we have two
different sampling methods that produce samples X1, j, j = 1, 2, . . . and X2, j,
j = 1, 2, . . . with density functions p1 and p2, respectively.

To estimate the integral using samples from the two different distributions, we
need only produce two weighting functions, w1 and w2, from D to R, with two
properties:

• w1(x) + w2(x) = 1 for any x with f (x) �= 0.

• w1(x) = 0 whenever p1(x) = 0, and similarly for w2 and p2.

It generally makes sense for both weighting functions to be non-negative, in which
case both vary between zero and one.



ptg11539634

870 Computing Solutions to the Rendering Equation: Theoretical Approaches

As a trivial example, at least in the case where each pi is nonzero everywhere
on the domain, we could pick w1(x) = 0.25 for every x, and w2(x) = 0.75 for
every x. But more interesting cases arise when the weights are allowed to vary as
a function of the samples. We’ll return to this in a moment.

Once we have chosen weighting functions, we take n1 samples of X1,j from
the first distribution, and n2 samples from the second, and combine them in the
multisample estimator given by

F =
1
n1

n1∑
j=1

w1(X1, j)
f (X1, j)

p(X1, j)
+

1
n2

n2∑
j=1

w2(X2, j)
f (X2, j)

p(X2, j)
. (31.97)

Veach shows that the multisample estimator F is in fact unbiased, and that with
suitably chosen weights, it has good variance properties. (An exactly analogous
formula works for three, four, or more samplers.)

What are good weight choices? The naive constant-weight approach is one;
another is closely related: If we partition the domain D into two subsets D1 and
D2 with D1 ∪ D2 = D and D1 ∩ D2 = ∅, we can define wi(x) = 1 when x ∈ Di,
and 0 otherwise. This effectively says, “Use one kind of sampling on each part of
the domain.” One application of this is when we partition the space of paths into,
for instance, those with zero, one, two, . . . specular bounces, and use a different
sampler for each. Another is when we’re sampling from a Phong-style BRDF and
have to choose between a specular, a glossy, and a diffuse reflection.

31.18.5 Bidirectional Path Tracing

Path tracing makes its choice about extending paths based on the current point
(i.e., selectRay is a function of only xk). But the actual lighting in a scene
may matter as well: If a bright light shines on a dark surface, considerable light
may still be reflected. And lots of dim rays reflected even from a low-reflectance
surface may converge to form caustics which are perceptually significant. In
recognition of this, Lafortune and Willems [Laf96] and Veach [VG94] indepen-
dently proposed bidirectional path tracing, in which paths are traced both from
light sources and from the eye. At a naive level, this sounds implausible: There’s
essentially no chance that two such paths will ever land on the same point so that
light is carried all the way from the luminaire to the eye! But a simple trick (see
Figure 31.26) addresses this difficulty: We join the two paths with a segment! In
fact, we can join any point on the first path to any point on the second path with
such a segment, and compute the total transport along the resultant path.

Figure 31.26: A path is traced
from the light and the eye; each
point of the first path is con-
nected to each point of the second
to create paths from the lumi-
naire to the eye. These connect-
ing segments may, however, meet
occluders (shown as black seg-
ments), creating no net transport.

While the light-path and eye-path segments are all generated by tracing rays,
and hence are guaranteed to transport light, the joining segments may meet occlud-
ers that make them transport no light at all. This potential occlusion can waste a
great deal of path-tracing time and increase the variance of the pixel estimates.
When the joining segment is not occluded, the computation of the contribution of
the resultant path to the total transport is also very complex.

In practice, however, bidirectional path tracing tends to produce quite good
results, good enough that they can (with enough samples) be used as a reference
standard for evaluating other rendering methods.

To use the traced paths as samples for estimating the integral in the rendering
equation, we need to know not only the transport along the path, but also the prob-
ability of having generated the path. Computing this probability requires careful
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analysis of the program used to generate the paths: How likely are we to have gen-
erated the two spliced-together subpaths? How likely are we to have spliced the
paths together along this particular edge? These probabilities depend on the sam-
pling approach. For instance, to generate a path, we might do one of the following.

• Repeatedly cast a ray in a uniform random direction (i.e., the probability
that the direction lies in some solid angle is proportional to the measure of
that solid angle) in the outgoing hemisphere from the current path point.

• Repeatedly cast a ray uniformly with respect to the projected solid angle.

• Repeatedly choose a point (toward which we’ll cast a ray) at random with
respect to the area on the union of all surfaces in the scene.

Each of these will sample some paths more often than others; switching from one
to another is similar to changing variables in an ordinary integration problem:
An extra factor is introduced in the integrand. And while the geometry term for
the “choosing surface points” version has a 1

r2 factor, which leads to very large
values when two chosen points are close to each other (see Figure 31.27), in the
“choosing directions” version this change of variables exactly cancels out the bad
factor in the geometry term, except for the factor associated with the edge joining
the light path to the eye path.

Figure 31.27: If this light path
is chosen by selecting points
uniformly on surfaces, it will con-
tribute a large value to the inte-
gral because of the short segment
in the corner and the 1

r2 term in
the integrand.

Veach describes how multiple importance sampling can be used to ameliorate
this problem.

31.18.6 Metropolis Light Transport

In 1997, Veach and Guibas [VG97] described the Metropolis light transport, or
MLT, algorithm. This was yet another Markov chain Monte Carlo approach, but
the Markov chain no longer formed a random walk in the set M of all surface
points in the scene, as it did in the path-tracing algorithms; instead, the algorithm
takes a random walk in the space of all paths in the scene. That is to say, the algo-
rithm may first examine a path of length 1, then a path of length 20, then a path
of length 3, etc. Explicitly describing this space of paths, and how to randomly
sample from it, is difficult. There’s also the unfortunate fact that the Metropolis-
Hastings algorithm, on which MLT is based, only provides a result that’s guar-
anteed to be proportional to the result you’re seeking. Fortunately in MLT, we’re
seeking a whole array of results (the output pixel values), and the constant of pro-
portionality is the same for all of them. In other words, we get an image that’s
some constant multiple of the desired image. But once again, there’s bad news:
The constant of proportionality may be zero, that is, we may get an all-black
image. Finally, while MLT’s result is guaranteed to be unbiased, it may take a
great many paths to ensure that the variance is low (just as with other Monte Carlo
methods); the rapidity of variance reduction depends, in part, on how cleverly
one chooses a mutation strategy, which determines how new paths are gener-
ated from the current one. (This is closely analogous to what we saw in comput-
ing sums of matrix powers: Picking the transition probabilities pij dramatically
affected the rate of convergence.) Thus, once you develop an MLT renderer, you
can improve upon it by adding more and better mutation strategies; such mutation
strategies are ways to express your knowledge of the structure of light transport.
That is to say, you might argue that if lots of light is being carried along this path,
then if you only move the eye ray a tiny bit, which moves the first interior point
of the path, but you leave everything else the same, maybe the new path will also
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carry lots of light. The nature of the algorithm makes it easy to express this kind
of high-level understanding.

Furthermore, there are some mutation strategies that are relatively easy to
implement, but which end up more frequently sampling a “bright” area of the
path space that’s previously been rarely sampled. Such strategies represent a big
improvement in the algorithm.

The details of the algorithm are, unfortunately, rather complex, and involve
substantial mathematics. The reader interested in reproducing the results should
read Veach’s dissertation [Vea97]; indeed, anyone really interested in rendering
should do so.

31.19 Photon Mapping

Recall that we described photon mapping as being like bidirectional path tracing,
except that rather than connecting an eye path to a light path, we took the final
point, P, of the eye path and used the collection of all the light paths to estimate
the light arriving at P. The problem, of course, is that in any finite set of light paths,
there aren’t likely to be any that end exactly at P. Instead, we have to estimate the
arriving light by looking at the arriving light at nearby points and interpolating
somehow.

Doing so entails representing all the arriving light in such a way that searching
for “nearby” points is easy. In photon mapping, this incoming light is stored in a
photon map, a relatively compact structure that’s not directly related to the scene
geometry. Information in the map is stored at points; we’ll describe exactly the
data stored at each point presently.

Thus, photon mapping has two phases: the construction of the photon map (via
photon tracing), and the estimation of the outgoing radiance (at many different
points) using the photon map.

The process of estimating the radiance leaving a surface from the knowledge
of the radiance arriving at several nearby points involves scattering the arriving
light (via the BSDF). One advantage of storing the arriving light (or at least a
sample of the arriving light) is that it compactly represents a great many outgoing
light rays (via the BSDF). A sample of the arriving light is stored in a record that’s
unfortunately called a photon, despite being quite distinct from the elementary
particle of the same name. A photon-mapping photon (which is the only kind we’ll
discuss in the remainder of this section) consists of a location in space, a direction
vector vi that points toward the light source or the last bounce the light took before
arriving at this point (i.e., vi points opposite the direction of propagation), and an
incident power. It’s helpful to assign units: The coordinates of the location should
be specified in meters; the direction vector is unitless, but has length 1; and the
power is specified in watts. We’ll denote these by P, vi, and Φi, respectively. A
photon-mapping photon therefore represents an aggregate flow of many physical
photons per second.

The scene represented by the photon map consists of surfaces and luminaires
(which may themselves be surfaces). For each light L we let ΦL be the emissive
power of the light. For example, a 40 W incandescent lamp has an emissive power
of about 10 W in the visible spectrum, so for such a bulb, ΦL = 10 W. And we
denote the total power of all light sources by

Φ =
∑

L

ΦL. (31.98)



ptg11539634

31.19 Photon Mapping 873

Surfaces in the scene have a BSDF fs(P,vi,vo) at each point P of the surface.
Because the BSDF may vary with wavelength, we include a fourth parameter:
fs(P,λ,vi,vo), with the understanding that λ may represent an actual wavelength,
or it may (as in most implementations) represent a band of wavelengths, where the
bands are typically denoted by the symbols R, G, and B. The same applies to ΦL

and Φ: Each depends on wavelength. For all three, the omission of the wavelength
parameter indicates summation. For instance,

fs(P,vi,vo) :=
∑
λ

fs(P,λ,vi,vo). (31.99)

Photon mapping has, in addition to the scene description, two main parame-
ters: N, the total number of photons to be “shot” from the light sources, and K,
the number of photons to be used in estimating the outgoing radiance at any point.
The value N is used only in the construction of the photon map; the value K only
in the radiance estimation. A third parameter, maxBounce, limits the number of
bounces that a photon can take during the photon-tracing phase of the algorithm.

The photon map itself is a k-d tree storing photons, using the position of the
photon as the key. Listing 31.7 shows how the photon map is constructed.

Listing 31.7: Constructing a photon map via photon tracing.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Input: N, the number of photons to emit,
maxBounce, how many times a photon may be reflected
a scene consisting of surfaces and lights.

Output: a k-d tree containing many photons.

define buildPhotonMap(scene, N, maxBounce):
map = new empty photon map
repeat N times:

ph = emitPhoton(scene, N)
insertPhoton(ph, scene, map, maxBounce)

return map

define emitPhoton(scene, N):
from all luminaires in the scene, pick L with probability

p =
∑

λ ΦL(λ)/
∑

λ Φ(λ).

ph = a photon whose initial position P is chosen uniformly
randomly from the surface of L, whose direction vi

is chosen proportional to the cosine-weighted radiance at P in
direction vi, and with power Φi = ΦL/(Np).

define insertPhoton(ph = (P, vi, Φi), scene, map, maxBounce)
repeat at most maxBounce times:

ray trace from ph.P in direction ph.vi to find point Q.
ph.P = Q
store ph in map
foreach wavelength band λ:

pλ =
∫

fs(Q,λ,vi,vo)vo · n dvo, probability of scattering.
p̄ = average of pλ over all wavelength bands λ.
if uniform(0, 1) > p̄

// photon is absorbed
exit loop

else
vo = sample of outgoing direction in proportion to fs(Q,vi, ·)
ph.vi = −vo

foreach wavelength band λ:
ph.Φi(λ) *= pλ/p̄
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Most of this is a straightforward simulation of the process of light bouncing
around in a scene. If, for a moment, we ignore wavelength dependence, then the
absorption step can be explained, just as we saw in path tracing, as follows: When
a photon hits a surface that scatters 30% of the arriving light, we could produce a
scattered photon with its power multiplied by a factor of 0.3, or we could produce
a scattered photon will full power, but only 30% of the time, an approach called
Russian roulette. Over the long term, as many photons arrive at this point and get
scattered, the total outgoing power is the same, but there’s an important difference
between the two strategies: In the second, at least for a scene that is not dependent
on wavelength, the power of a photon never changes. This means that all samples
stored in the photon map have the same power. This makes the radiance-estimation
step work better in general, although the statistical reasons for that are beyond
the scope of this book. The code, in saying “reflect a full-strength photon with a
probability determined by the scattering probability,” is applying Russian roulette.

Because the scattering is wavelength-dependent, the final update to Φi(λ)
scales the power in each band in proportion to that band’s scattering probability.
Notice that if the surface is white (i.e., reflectance is the same across all bands),
then Φ(λ) is unchanged. By contrast, if we’re using RGB and the surface is pure
red, then the average scattering probability is 1/3; the red component of the pho-
ton power is multiplied by 1

1/3 = 3, while the green and blue components are set
to zero.

Inline Exercise 31.12: What happens to the power of a photon if the surface
is a uniform 30% gray, so it reflects 30% of the light at each wavelength?

The actual implementation of light emission and of scattering (particularly for
reflectance models that have a diffuse, a glossy, and a specular part, for instance)
requires some care; we discuss these further in Chapter 32.

The second part of photon mapping is radiance estimation at points visible
from the eye, determined, for instance, by tracing rays from the eye E into the
scene. Before performing any radiance estimation, however, we balance the k-d
tree. Then for each visible point P, with normal n, we let vo = S(E − P), and
compute the radiance.

1. Set L = 0 W/m2sr. L represents the radiance scattered toward the eye.

2. Find the K photons nearest to P in the photon map, by searching for a
radius r within which there are K photons.

3. For each photon ph = (Q,vi,Φi), update L using

L← L + fs(P,vi,vo)Φiκ(Q− P), (31.100)

where κ(Q − P) = 1
πr2 is called the estimator kernel. This assign-

ment is wavelength-dependent (i.e., if we use three different wavelength
bands, Equation 31.100 represents three assignments, one for each of R,
G, and B).

It’s easy to see that this computation is an approximation of the integral∫
fs(P,vi,vo)vi · n dvi over the positive hemisphere at P: The arriving radiance

at nearby points is used as a proxy for the arriving radiance at P in the integral. Of
course, light arriving at some point Q that’s near P from direction vi may have
originated at a fairly nearby light source. If so, then the arriving direction at Q will
be different from that at P (see Figure 31.28).
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Furthermore, it’s possible that some light is visible from point P but shadowed
at point Q, in which case the use of the incoming light at Q in estimating the
incoming light at P is inappropriate. It is for this reason that photon mapping
is biased: Without infinitely many photons, some points in dark areas will get
their radiance estimates in part from photons in lighter areas, biasing them toward
brighter estimates.

v9

v

Q

P
R

h

h

Figure 31.28: Light from the sun
arrives at P from some direction
η; sunlight will also arrive at Q
from almost exactly that direc-
tion. But if light from a nearby
point R arrives at P in direction
v, that same source will provide
light at Q from directionv′ which
may not be close to v.

On the other hand, at least at points of diffuse surfaces, photon mapping is
consistent: As the number of photons, N, goes to infinity, the K samples used to
estimate the light arriving at P are closer and closer to P, causing the incoming
directions to be increasingly better approximations of the incoming direction at P,
and the radiances to be increasingly better approximations of the radiances at P.

Inline Exercise 31.13: The preceding analysis of consistency assumed that K
was held constant while N goes to infinity. Is the analysis still valid if K is set
to a constant multiple of N, say, K = 10−5N? Why or why not?

Estimating arriving radiance from nearby samples works best when the arriv-
ing radiance varies smoothly as a function of both position and angle. When there
are point lights and sharp edges in the scene, we get hard shadows, which makes
the arriving radiance discontinuous. On the other hand, this nonsmoothness in
arriving radiance is primarily a consequence of direct lighting, that is, light paths
of the form LDE. We can therefore divide the domain of the integral in the render-
ing equation into two parts: those paths of the form LDE, and all other paths. We
can estimate the integral as a sum of the integrals over each part. The first part is
relatively easy: Single-bounce ray tracing suffices to estimate the direct lighting at
every point of the scene. What about the second part? We can estimate that using
photon mapping! But to do so, we need to eliminate any estimate of transport of
the form LDE from the photon map. We do so by slightly modifying the construc-
tion of the photon map: For each of the N photons, we record in the photon map
only the second and subsequent bounces.

Photon mapping has other limitations. Because points that are nearby in space
may not be nearby in surface normal (see Figure 31.29), using all nearby photons
can give erroneous estimates. Several heuristics have been applied to mitigate this
problem [Jen01, ML09].

Figure 31.29: Estimating arriv-
ing radiance with nearby photons
works badly at corners and near
thin walls.

When we use the constant kernel κ(v) = 1/(πr2), we have the problem that as
the point at which we’re estimating radiance moves, we typically lose one photon
at one side of the moving disk and gain another somewhere on the other side; if
these two photons have different power vectors (power in each wavelength band),
then the radiance estimate can have discontinuities, which appear as noticeable
artifacts in the final results. Alternative kernels can mitigate this somewhat, as
Jensen describes.

What we’ve described is the basic form of photon mapping presented in
Jensen’s book, but there are many implicit parameters in the description. For
instance, the k-d tree used for storing photons can be replaced by other data struc-
tures like spatial hashing [MM02], the kernel used for density estimation can be
varied, and even the density estimation technique itself can be altered.

31.19.0.1 Final Gathering
One particularly effective enhancement is use of a “final gathering” step during
density estimation. When we examine a point P in the scene, we can estimate the
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field radiance at P either by looking at its nearest neighbors, as we’ve described, or
by shooting lots of rays from P to hit other points, Qi(i = 1, 2, . . .), and then using
nearest-neighbor techniques to estimate the field radiance at each Qi, and the light
reflected back toward P from each Qi. The collection of these gathered lights is
also a valid estimate of the field radiance at P, but is much less likely to exhibit the
discontinuities described above, as any discontinuity is typically averaged with a
great many other continuous functions.

31.19.1 Image-Space Photon Mapping

McGuire and Luebke [ML09] have rethought photon mapping for a special case—
point lights and pinhole cameras—by recognizing that in this case, some of
the most expensive operations could be substantially optimized. One of these
operations—the transfer of information from photons in the photon map to pixels
in the image—is highly memory-incoherent in the original photon-mapping algo-
rithm: One must seek through the k-d tree to find nearby photons, and depend-
ing on the memory layout of that tree, this may involve parts of memory distant
from other parts. On the other hand, if every photon, once computed, could make
its contribution to all the relevant pixels (which are naturally close together in
memory), there would be a large improvement. The resultant algorithm is called
image-space photon mapping. This approach harkens back to Appel’s notion of
drawing tiny “+” signs on a plotter: These marks were spatially localized, and
hence easy to draw with a plotter. It’s also closely related to progressive photon
mapping [HOJ08], another approach that works primarily in image space.

The key insight is that when we ray-cast into the scene to gather light from
photons, adjacent pixels are likely to gather light from the same photons; we could
instead project the photons onto the film plane and add light to all the pixels within
a small neighborhood. There are quite a few subtleties (How large a neighbor-
hood? What about occlusion?), but the algorithm, implemented as a CPU/GPU
hybrid, is much faster than ordinary photon mapping. While the algorithm only
works with point lights and pinhole cameras, the added speed may be sufficient to
justify this limitation in some applications such as video games.

31.20 Discussion and Further Reading

Many of the ideas in this chapter have been implemented in the open-source
Mitsuba renderer [Jak12]. Seeing such an implementation may help you make
these ideas concrete (indeed, we strongly recommend that you look at that ren-
derer), but we also recommend that you first follow the development of the next
chapter, in which some of the practical little secrets of rendering, which clutter up
many renderers, are revealed. This will make looking at Mitsuba far easier.

While much of this chapter has been about simulation of light transport, there
are a few large-scale observations about light in scenes that have crept into the
discussion in disguise. We now revisit these in greater detail.

For instance, in classifying light paths using the Heckbert notation, we effec-
tively partition the space of paths into subspaces, each of which we consider dif-
ferently. We know, for instance, that much of the light in a scene is direct light,
carried along LDE paths, and that in a scene with point lights and hard-edged
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objects, this direct light contains many of the discontinuities in the light field (cor-
responding to silhouettes, contours, and hard shadows).

The partitioning by Heckbert classes is useful, but rather coarse: Paths with
multiple specular bounces may have high “throughput,” but this only matters if
they start at light sources. There may someday be other ways of classifying paths
that allows us to delimit the “bright parts” of path space more efficiently.

As we consider computing the reflectance integral at some point, it’s
reasonable to ask, “How much do the variations in the field radiance matter?”
If the surface is Lambertian, the answer is, “Generally not too much.” If it’s shiny,
then variations in field radiance matter a lot. But having computed the reflectance
integral to produce surface radiance, which may have considerable variation with
respect to outgoing direction, we can ask, “When this arrives at another surface,
how will that variation appear?” If we look at such a surface up close, moving our
eyes a few centimeters may yield substantial variation in the appearance of the
surface. But if we look at the same surface from a kilometer away, we’ll have to
move our eyes dozens of meters to see the same variation. This dispersal of high-
frequency content in the light field (and other related phenomena) is discussed by
Durand et al. in a thought-provoking paper [DHS+05] that ties together the fre-
quency content of the radiance field, both in spatial and angular components, with
ideas about appropriate rates for sampling in various rendering algorithms.

We’ve treated rendering as a problem of simulating sensor response to a radi-
ance field, with the implicit goal of getting the “right” sensor value at each pixel.
This may not always be the right goal. If the image is for human consumption,
it’s worth considering the end-to-end nature of the process, from model all the
way to percept. Humans are notorious, for instance, for their inability to detect
absolute levels of almost any sensation, but they are generally quite sensitive to
variation. We can’t tell how bright something is, but we can reliably say that it’s a
little brighter than another thing that’s near it, for instance. This means that if you
had a choice between a perfect image, corrupted by noise so that a typical pixel’s
value was shifted by, say, 5%, and the same perfect image, with every pixel’s value
multiplied by 1.1, you’d probably prefer the second, even though the first is closer
to the perfect image in an L2 sense.

Indeed, the human eye, while sensitive to absolute brightness, is much more
sensitive to contrast. It might make sense, in the future, to try to render not the
image itself, but rather its gradients, perhaps along with precise image values at a
few points. The “final step” in such a rendering scheme would be to integrate the
gradients to get an intensity field, subject to the constraints presented by the known
values; such a constrained optimization might better capture the human notion
of correctness of the image. We are not proposing this as a research direction,
but rather to get you thinking about the big picture, and what aspects of that big
picture current methods fail to address.

We’ve concentrated on the operator-theoretic solution of the rendering equa-
tion, but we’ve by no means exhausted these approaches. The solution says that
(I − T)−1e = (I + T + T2 + . . .)e, where e describes the luminaires in the scene.
If we slightly rewrite the right-hand side, we can discover other approaches based
on this solution:

(I − T)−1e = (I + T + T2 + . . .)e, (31.101)

= e + (T + T2 + . . .)e, and (31.102)

= e + (I + T + . . .)Te. (31.103)
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This says that aside from light reaching the eye directly from luminaires (the first
e term), we can instead apply the transport operator once to the luminaires (Te)
to get a new set of luminaires which we can then render using the series solution
(I+T+. . .). This is the key idea in an approach called virtual point lights [Kel97]:
The initial transport of the luminaires is performed by something very similar to
photon tracing, except that instead of recording the field radiance at the intersec-
tion point, we record the resultant surface radiance after scattering. This surface
radiance becomes one of the virtual point lights (or, in image-space photon map-
ping, the bounce map).

If, following Arvo, we further decompose T into the product KG, where G
transports surface radiance at each point to field radiance at another, and K scatters
field radiance at a point into surface radiance there, then we can consider breaking
a term off the series solution in a slightly different way:

(I − T)−1e = (I + T + T2 + . . .)e, (31.104)

= e + (T + T2 + . . .)Te, (31.105)

= e + (I + T + . . .)KGe, and (31.106)

= e + ((I + T + . . .)K)(Ge). (31.107)

In this form, we transport the radiance from the luminaires to become field radi-
ance at the other surfaces in the scene (Ge). Subsequent processing involves trac-
ing rays from the eye to various depths, and then scattering (the K term) the field
radiance we find at intersection points. This can be regarded as a primitive form
of photon mapping, in which the photon map contains only one-bounce photons.

Doubtless other factorizations of the series solution can lead to further algo-
rithms as well.

This chapter has merely given a broad view of some topics in rendering, focus-
ing attention on Monte Carlo methods because of our belief that these are likely to
remain dominant for some time. To paraphrase Michael Spivak [Spi79b], we’ve
introduced you to much of the foundational material, and “beyond all this lies a
vast porridge of literature, and [we are] not glutton[s] enough to pick out all the
raisins.”

If you want to know more about the physical and mathematical basis of ren-
dering, and especially Monte Carlo methods, we recommend Veach’s disserta-
tion [Vea97] as an education in itself. For those for whom the assumptions that
lie at the foundation of rendering are important, Arvo’s dissertation [Arv95]
is an excellent starting point, particularly for the operator-theoretic point of
view. Both, however, involve considerable mathematics. The SIGGRAPH course
notes [JAF+01] give a slightly less demanding transition.

On the other hand, if efficient approximations to the ideal interest you, then
Real Time Rendering [AMHH08] is an excellent reference.

For modern implementations of Monte Carlo methods, Phyiscally Based Ren-
dering by Pharr and Humphreys [PH10] is detailed and comprehensive.

Most important, the best place to start is with current research in the field.
Research in rendering is featured at almost every graphics conference. The Euro-
graphics Symposium on Rendering deserves special mention, however, as its long-
term focus on rendering has made it a particularly fertile ground for new ideas. We
suggest that you grab a paper, start reading and chasing references, and be both
open-minded and skeptical at all times.
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It’s also interesting to ask yourself, “What remains to be done?” Do current
images lack realism because the modeling of materials is inadequate? Because cer-
tain classes of light paths are not being sampled? Because we aren’t using enough
spectral bands? Because important information is contained in high-bounce-count
paths, even though very little light energy is there? Probably all of these matter to
some degree. At the same time, we make some assumptions (the “ray optics”
assumption, for one) that limit the phenomena we can hope to capture faith-
fully. Do these matter? How important is diffraction? How important are wave
optics phenomena in general? Questions like these will be the foundation of future
research in rendering.

31.21 Exercises

Exercise 31.1: Suppose that tracing a ray in your scene takes time A on average,
while evaluating the BRDF on a pair of vectors takes time B. (a) In tracing N rays
from the eye using path tracing, using a fixed attenuation rate r (so that a path is
extended at each point with probability (1− r)), estimate the time taken in terms
of A and B (assume all other operations are free).
(b) Consider tracing N/2 rays from the eye and N/2 rays from the single light
source in a scene using bidirectional path tracing; do the same computation.

Exercise 31.2: The radiosity equation

(I− F)b = e (31.108)

has the form Mb = e, where M = I − F. In practice, the largest eigenvalue or
singular value of M is considerably less than 1.0; this means that powers of M
tend to grow rapidly smaller. That can be used to solve the equation relatively
quickly.
(a) Show that (I−F)−1 = I+F+F2 + . . . by multiplying the right-hand side by
I−F and canceling. This sort of cancellation is valid only if the right-hand side is
an absolutely convergent series; fortunately, if the eigenvalues or singular values
are small, it is, justifying this step.
(b) Show that

b = e + Fe + F2e + . . . . (31.109)

(c) Letting b0 = e and b1 = e + Fb0, and generally letting bk = e + Fbk−1, show
that bk is the sum of the first k + 1 terms of the right-hand side of the equation for
b, and that thus bk → b as k→∞. Thus, an algorithm for computing the radiosity
vector b is to start with b = e, and then multiply by F and add e repeatedly until
b has converged sufficiently.
(d) If we think of the ith entry of b as the radiosity at patch i, then multiplying
by F distributes this radiosity among all other patches. Rather than computing Fb
in its entirety, which can involve lots of multiplication, we can push the “unshot”
radiosity from a single patch through the matrix. Various algorithms exploit this
idea, seeking, for example, to push through the matrix the largest unshot radiosity.
Implement one of these for a 2D radiosity model, and see how its runtime and
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convergence compare with the naive algorithm that multiplies b by all of F at
each step.

Exercise 31.3: Final gathering in photon mapping involves sampling from the
hemisphere at a point P where we’re trying to estimate field radiance. As we move
from point to point, our varying choice of samples will introduce noise into the
estimates. Argue both for and against a strategy in which we choose, once and for
all, a fixed collection of directions to use in the final gathering step.



ptg11539634

Chapter 32

Rendering in Practice

32.1 Introduction

In this chapter we show implementations of two renderers—a path tracer and a
photon mapper—with some of the optimizations that make them worth using.
Both approaches are currently in wide use, are fairly easy to understand, and form
complete solutions to the rendering problem in the sense that they can be shown
(under reasonable conditions) to provide consistent estimates of the values we
seek (i.e., “properly” rendered images).

We’re not recommending these as ideal renderers. Rather, we treat them as
case studies. They are rich enough to exhibit of the complexities and features of a
modern renderer; they provide the foundation necessary for you to read research
papers on rendering.

We assume that you’ve implemented the basic ray tracer described in Chap-
ter 15. Much of this chapter also depends heavily on Chapters 30 and 31.

In the course of implementing these renderers, we describe ways to struc-
ture the representation of geometry in a scene, of scattering, and of samples that
contribute to a pixel. These are not always in a form immediately recognizable
from the mathematical formulation of the previous chapters, as you’ll know from
Chapter 14.

In Section 32.8, we discuss the debugging of rendering programs, showing
some example failures and their causes, and suggesting how you can learn to iden-
tify the kind of bug from the kind of visual artifacts you see.

32.2 Representations

As you build a ray-casting-based renderer, your choices of representations will
have large-scale impacts. Is the scattering model you’ve chosen rich enough to rep-
resent the phenomena you wish to simulate? Is it easy to sample from a probability
distribution proportional to v 
→ fs(vi,v)|v · n| for some fixed vector vi? Is your
scattering energy-conservative? Does your scene representation make ray-scene

881
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intersection fast and robust? Does your representation of luminaires make it easy
to select points on a luminaire uniformly with respect to area?

Inline Exercise 32.1: For each of the questions above, describe how a basic
ray tracer’s output or running time might be affected by the answer being “Yes”
or “No.”

Beyond these choices, there are the practical matters of modeling. For
instance, the scattering properties of a surface are usually defined or measured
relative to the surface normal (and perhaps relative to a tangent basis as well),
while we’ve treated the scattering model (or at least the bidirectional scattering
distribution function or BSDF) as a function of a point in space and two direction
vectors. In practice, of course, we trace a ray to find a point of some surface, and
then find the BSDF at that point as a surface property, with its parameters being
determined both by surface position and by various texture maps. We’ll begin by
discussing this particular simplification.

32.3 Surface Representations and
Representing BSDFs Locally

Consider a patch of surface so small that it may locally be considered flat, and
a local coordinate frame at a point P, with unit normal vector n and unit tangent
vectors u and v such that u, v, n is an orthonormal basis of 3-space, as shown in
Figure 32.1. This decomposition of a surface into a tangent space and a normal
space depends on local flatness; it’s problematic at edges and corners (like those
of a cube), where it’s not obvious which directions should be called “tangent”
or “normal.” This is a real problem for which graphics has yet to determine a
definitive answer.

n

c

a

b

u

v

v

Figure 32.1: A local basis at a
point P, consisting of mutually
perpendicular unit vectors. The
vector v is shown being decom-
posed into a linear combination
of these via dot products.

For any vector v at P, we can easily represent v = au+ bv+ cn, by comput-
ing dot products: a = v · u, etc.

Inline Exercise 32.2: If v, n, u, and v are expressed in world coordinates, and

M is a 3 × 3 matrix whose rows are u, v, and n, then show that Mv =

⎡
⎣a

b
c

⎤
⎦.

Knowing this lets us convert from world coordinates to local tangent-plus-
normal coordinates.

Consider now the BSDF fs(P,vi,vo), which is a function of a surface point
and two (unit) vectors at that point. If we write vi = au + bv + cn and vo =
a′u + b′v + c′n, we can define a new function,

f̄s(P, a, b, c, a′, b′, c′) = fs(P,vi,vo). (32.1)

We can go further, however. Since vi and vo are unit vectors, we can express them
in polar coordinates using φ for longitude and θ for latitude, corresponding to the
standard use of θ for the angle between v and n. This gives θ = cos−1(b) and
φ = atan2(c, a), and we can write
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f̂ r(P, θi, θo,φi,φo) = fs(P,vi,vo). (32.2)

The function f̂ r is what a gonioreflectometer actually measures. Notice that fs and
f̂ r are merely different representations of the same thing, like the rectangular- or
polar-coordinate representations of a curve. (We discussed such shifts of represen-
tation in Chapter 14)

The function f̂s has a form in which certain common properties of BSDFs
can be easily expressed. For instance, the Lambertian bidirectional reflectance
distribution function (BRDF) is completely independent of θo, φi, and φo. Because
of this, the particular choice of u and v is irrelevant for the Lambertian BRDF: The
dot products of vi and vo with u and v are only used in computing φi and φo.

The Phong and Blinn-Phong BRDFs both depend on θi and θo, but their depen-
dence on φi and φo is rather special: They depend only on the difference of φi−φo

(indeed, on this difference taken mod 2π).

Inline Exercise 32.3: (a) Explain the claim that the Blinn-Phong BRDF
depends only on the difference of φi and φo.
(b) Show that in fact it depends only on the magnitude of the difference: The
sign is irrelevant.

This dependence on the difference in angles again means that the BSDF
expressed in (θ,φ) terms, f̂s, is independent of the choice of u and v: If we rotated
these in the tangent plane by some amount α, then both φi and φo would change by
α (and possibly by an additional 2π), and their difference (mod 2π) would remain
invariant. BSDFs with this property are said to be isotropic, and they can be rep-
resented by functions of the three variables θi, θo, and φ = (φi−φo) mod 2π. The
great majority of materials currently used in graphics are represented by BSDFs
(indeed, BRDFs) that fall into this category; the exceptions (anisotropic mate-
rials) are things like brushed aluminum, in which the brushing direction intro-
duces an anisotropy. Materials that are represented using subsurface scattering
often have interior structure that makes them anisotropic as well, so the simplified
representation is often inapplicable to those.

The preceding discussion has been in terms of the angles θi,φi, θo, and φo to
emphasize that the BSDF is a function on a four-dimensional domain. In practice,
however, it is the sines and cosines of these angles that most often enter into the
computations, at least for analytically expressed BSDFs. (For tabulated BSDFs,
we can tabulate based not on θi and θo, but on their cosines, so the same argument
applies to those.) In practice, a BSDF implementation will typically take a point,
P, and the two vectors vi and vo, and promptly express these vectors in terms of
u, v, and n.

How does all this look in an implementation? Part of G3D’s implementation
of a generalized Blinn-Phong model is shown in Listing 32.1.

There are several design choices here. The first is that a SurfaceElement is
used to represent the intersection of a ray with a surface in the scene. Among
other things, it has data members material and shading. The material stores
things like the Phong exponent, the reflectivities in the red, green, and blue spec-
tral regions, etc. The shading stores the intersection point, the texture coordinates
there, and the surface normal there. (It may help, when reading expressions like
p.shading.normal, to treat “shading” as an adjective. Thus, p.shading.normal
is the shading normal, while p.geometric.normal is the geometric normal.)
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Listing 32.1: Part of an implementation of Blinn-Phong reflectance.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Color3 SurfaceElement::evaluateBSDFfinite(w_i, w_o) {
n = shading.normal;
cos_i = abs(w_i.dot(n));

Color3 S(Color3::zero());
Color3 F(Color3::zero());
if ((material.glossyExponent != 0) && (material.glossyReflect.nonZero())) {

// Glossy

// Half-vector
const Vector3& w_h = (w_i + w_o).direction();
const float cos_h = max(0.0f, w_h.dot(n));

// Schlick Fresnel approximation:
F = computeF(material.glossyReflect, cos_i);
if (material.glossyExponent == finf())

S = Color3::zero()
} else {

S = F * (powf(cos_h, material.glossyExponent) * ...
}

}
...

The surface normal is used immediately to compute cos θi, an example of express-
ing one of the two input vectors in the local frame of reference. The half-vector
(direction() returns a unit vector) is computed from vi and vo, which are called
w_i and w_o in the code. The Schlick approximation of the Fresnel term is com-
puted and used to determine the glossy reflection. The remainder of the elided
code computes the diffuse reflection. Missing from this code are the evaluations
of the mirror-reflection term and of transmittance based on Snell’s law, each of
which corresponds to an impulse in the scattering model. The splitting off of these
impulse terms makes the computation of the reflected light much simpler. Recall
that what we’ve been expressing as an integral, namely,

∫
vo∈S2

+(P)
L(P,−vi) fs(vi,vo)vi · n dvo, (32.3)

is really shorthand for a linear operator being applied to L, one that is defined in
part by a convolution integrand like the one above, and in part by impulse terms
like mirror reflectance, where for a particular value of vi, the integrand is nonzero
only for a specific direction vo; the value of the “integral” is some constant (the
impulse coefficient) times L(P,−vi).

Trying to approximate terms like mirror reflectance by Monte Carlo integra-
tion is hopeless: We’ll never pick the ideal outgoing direction at random. Fortu-
nately, these terms are easy to evaluate directly, so no approximation is needed.
The SurfaceElement class therefore provides a method (see Listing 32.2) that
returns all the impulses needed to evaluate the reflected radiance (in this case,
the mirror-reflection impulse and the transmission impulse, although if we were
rendering a birefringent material, there would be two transmissive impulses, so
returning an array of impulses is natural).

G3D is designed around triangle meshes. The SurfaceElement class therefore
contains some mesh-related items as well (see Listing 32.3).
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Listing 32.2: A method that returns the impulse parts of a scattering model.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

void getBSDFImpulses (Vector3& w_i, Array<Impulse>& impulseArray) {
const Vector3& n = shading.normal;

Color3 F(0,0,0);

if (material.glossyReflect.nonZero()) {
// Cosine of the angle of incidence, for computing
//Fresnel term
const float cos_i = max(0.001f, w_i.dot(n));
F = computeF(material.glossyReflect, cos_i);

if (material.glossyExponent == inf()) {
// Mirror
Impulse& imp = impulseArray.next();
imp.w = w_i.reflectAbout(n);
imp.magnitude = F;
...

Listing 32.3: Further members of the SurfaceElement class.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

class SurfaceElement {
public:

...
struct Interpolated {

/** The interpolated vertex normal. */
Vector3 normal;
Vector3 tangent;
Vector3 tangent2;
Point2 texCoord;

} interpolated;

/** Information about the true surface geometry. */
struct Geometric {

/** For a triangle, this is the face normal. This is useful
for ray bumping */
Vector3 normal;

/** Actual location on the surface (it may be changed by
displacement or bump mapping later. */

Vector3 location;
} geometric;
...

The vectors tangent and tangent2 correspond to u and v above; when the
surface is modeled, these must be specified at every vertex. Using the derivative
of texture coordinates is one way to generate these; if we have texture coordinates
(ui, vi) at vertex i, we can find a linear approximation for u across the interior of
the triangle, and from this determine a direction u in which u grows fastest. We can
then define v as n×u to get an orthonormal basis. Note, however, that this is a per-
triangle computation, and the computation of u is not guaranteed to be consistent
across triangles. Indeed, because of the mapmaker’s dilemma (you can’t flatten the
globe onto a single piece of paper preserving angles and distances), the consistent
assignment of texture coordinates across a whole surface is generally impossible.
It’s important that any anisotropic BRDF be used only in areas where u and v are
defined consistently.
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The vector geometric.normal is the triangle-face normal rather than the sur-
face normal that it approximates. Depending on how the surface was originally
modeled, these may be identical, or the surface normal may be some weighted
combination of face normals, or it may be determined by some other method
entirely. The triangle-face normal is useful in ray-tracing algorithms because if
P is a point that’s supposed to lie on a triangle T (see Figure 32.2), it may be that
a ray traced from P into the scene first hits the scene at a point of T , because a
roundoff or representation error places P slightly to one side of T . By slightly dis-
placing (bumping) P along the normal to T , that is, by replacing P with P+εn for
some small ε, we can avoid such false intersections. (Perhaps “nudging” would be
a better term, to avoid conflict with the notion of bump-mapping, but “bumping” is
the term used by G3D.) How large should ε be? A good rule of thumb is “no more
than 1% of the size of the smallest object you expect to see in the scene.” This
implicitly establishes a condition on your models: No significant object or feature
should be less than 100 times the largest gap between two adjacent floating-point
numbers of the size you will be using. For instance, if everything in your scene will
have coordinates between −100 and 100, and you will use IEEE 32-bit floating-
point numbers, then since the largest gap between two floating-point numbers near
100 is about 4 × 10−6, you should not expect to model any feature smaller than
4× 10−4 units.

Inline Exercise 32.4: If we’re tracing a ray P + td, we could “bump” P along
the ray, that is, bump it slightly in the direction d. Argue that this is a bad idea
by considering rays that are almost tangent to the surface.

False
intersection

P+�n

n
P

Figure 32.2: Bumping P out to
P′ = P + εn prevents rays start-
ing at P from intersecting T.

Ray bumping is a design choice. It compensates for certain problems with
fixed-accuracy representations of geometry. But as a design choice, it also has
important representational consequences. For instance, any property of scene
illumination that depends on features smaller than the bump size will poten-
tially be misrepresented in our computations. This limits the things that our
computational model can possibly produce with any accuracy. As an exam-
ple, imagine looking at the sun through the gap between two nearly tangent,
shiny cylinders (see Figure 32.3). A typical ray of sunlight will bounce many
times as it passes between the cylinders. If the intercylinder distance is smaller
than the bump size we use in our path tracer, the light can easily be absorbed
rather than reflected. Is this a problem? If the bump size is small compared to a
wavelength of light, it’s not. Why not? Because for a gap of that scale, diffrac-
tive effects dominate, so our ray optics model was already inaccurate. Once
again this is an instance of the Wise Modeling principle that when we simulate
something, we need to be aware of the limits of our physical, mathematical,
and computational models.

Figure 32.3: A ray from the sun
shines through the gap between
two nearly tangent, shiny
cylinders.

32.3.1 Mirrors and Point Lights

If we allow point lights in the scene, then when we trace rays “from the eye,”
we’ll hit the point light with probability zero, so that it’ll almost never happen
in practice. Similarly, if we allow perfect mirrors, we cannot write the scattering
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operator as an integral to be approximated by naive sampling—we’ll essentially
never sample the direction of the mirror-reflected ray. When we combine the two,
things are even worse.

Consider a scene consisting of a smooth mirrored ball illuminated by a point
light. If we ray-trace from the eye through the pixel centers, we’ll almost certainly
miss the point light; if we ray-trace from the light, we’ll miss the pixel centers.
But if we suppose that the point light is in the scene as a proxy for a spherical light
of some small radius r, then we know that we should see a highlight on the
mirrored ball.

Losing that highlight is perceptually significant, even though the highlight
might appear at only a single pixel of the image. We have three choices: We can
abandon the convenient fiction of a point light, we can adjust the BRDF to com-
pensate for the abstraction, or we can choose some other method for estimating the
radiance arriving at the eye from that location. In an ideal world, with infinite ren-
dering resources, we’d choose to use tiny point lights and cast a great many rays.
Within the context of ray tracing, we can clamp the maximum shininess (i.e., the
specular exponent) when we are combining a BRDF with a direct luminaire in
the reflection operator. This ensures that with sufficiently fine sampling, the point
light will produce a highlight. Of course, it also slightly blurs the reflection of
every other object in the scene. The difference in appearance between a specu-
lar exponent of 10,000 and ∞ tends to be unnoticeable in general, so this is an
acceptable compromise. On the other hand, if the specular exponent is 10,000, a
very fine sampling around the highlight direction is required, or else we’ll get high
variance in our image. This leads us to the third alternative. It may make sense to
separate out the impulse reflection of point lights (or even small lights) into a sep-
arate computation to avoid these sampling demands, but we will not pursue this
approach here.

32.4 Representation of Light

In our theoretical discussion, we treated light as being defined by the radiance
field (P,v) 
→ L(P,v): At any point P, in any direction v, L(P,v) represented the
radiance along the ray through P in direction v, measured with respect to a surface
at P perpendicular to v. When P is in empty space, this is a good abstraction.
When P is a point exactly on a surface, there are two problems.

1. The precise relationship between geometric modeling and physics has
been left undefined. We haven’t said whether a solid is open (i.e., does
not contain its boundary points, like an open interval) or closed; equiv-
alently, we haven’t said whether a ray leaving from a surface point of a
closed surface intersects that surface or not.

Transparent surface

v

L(P,v)?

L(P,v)?

P

Figure 32.4: Is L(P,v) the radi-
ance along the solid red or the
solid green arrow?

2. When P is a point on the surface of a transparent solid, like a glass sphere,
and v points into the solid (see Figure 32.4), there are two possible mean-
ings for L(P,v): the light arriving at P from distant sources, or the light
traveling from P into the interior of the surface. Because of Snell’s law,
material opacity, and internal reflection, these two are almost never the
same.

We addressed the second problem in Chapter 26, by defining an incoming and out-
going radiance for each pair (P,v), where P was a surface point and v was a unit
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vector, by comparing v with the normal n(P) to the surfaces; we also mentioned
that Arvo’s division of the radiance field into field radiance and surface radiance
accomplishes the same thing.

For the first problem, we will say that a point on the boundary of a solid is
actually part of that solid, so a point P on the surface of a glass ball is actually part
of the ball (and for a varnished piece of wood, a point on the boundary is treated
as being in both the varnish and the wood). This means that a ray leaving P in
the direction nP first intersects the ball at P. (As a practical matter, avoiding the
intersection at t = 0 requires a comparison of a real number against zero, which is
prone to floating-point errors, so including the first hit point is easier than avoiding
it.) Thus, with this model of surface points, the notion of “bumping” is not merely
a convenience for avoiding roundoff error problems, it’s a necessity.

32.4.1 Representation of Luminaires

32.4.1.1 Area Lights
Our simple scene model supports a very basic kind of area light: We represent
area light sources with a polygon mesh (often a single polygon) and an emitted
power Φ. At each point P of a polygon, light is emitted in every direction v with
v · nP > 0; the radiance along all such rays, in all directions, is constant over the
entire luminaire.

The radiance along each ray can be computed by dividing the luminaire’s
power among the individual polygons by area; we thus reduce the problem to
computing the radiance due to a single polygon of area A and power Φ. That radi-
ance is Φ

πA , as we saw in Section 26.7.3.
We will need to sample points uniformly at random (with respect to area) on

a single area light. To do so, we compute the areas of all triangles, and form the
cumulative sums A1, A1 + A2, . . . , A1 + . . . + Ak = A, where k is the number of
triangles. To sample at random, we pick a uniform random value u between 0 and
A; we find the triangle i such that A1 + . . . + Ai ≤ u, and then generate a point
uniformly at random on that triangle (see Exercise 32.6).

We’ll also want to ask, for a given point P of the surface and direction v with
v · nP > 0, what is the radiance L(P,v)? For our uniformly radiating luminaires,
this is a constant function, but for more general sources, it may vary with position
or direction.

32.4.1.2 Point Lights
Point-light sources are specified by a location1 P and a power Φ. Light radiates
uniformly from a point source in all directions. As we saw in Chapter 31, it doesn’t
make sense to talk about the radiance from a point source, but it does make sense
to compute the reflected radiance from a point source that’s reflected from a point
Q of a diffuse surface. The result is

L(Q,vo) = fs(Q,vi,vo) max(vi · nQ, 0)
Φ

4π‖Q− P‖2
. (32.4)

1. We only allow finite locations; extending the renderer to correctly handle directional
lights is left as a difficult exercise.
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If a point light hits a mirror surface or transmits through a translucent surface,
we can then compute the result of its scattering from the next diffuse surface, etc.
This eventually becomes a serious bookkeeping problem, and since point lights
are merely a convenient fiction, we ignore it: We compute only diffuse scattering
of point lights. Although addressing this properly in a ray-tracing-based renderer
is difficult, we’ll see later that in the case of photon mapping, it’s quite simple.

One useful compromise for point-light sources is to say that for the purpose of
emission directly toward the eye, the point source is actually a glowing sphere of
some small radius, r, while when it’s used in the calculation of direct illumination,
it’s treated as a point. This compromise, however, has the drawback that it requires
the design of the class for representing lights to know something about the kinds
of rays that will be interacting with it (i.e., an eye ray will be intersection-tested
against a small sphere, while a secondary ray will never meet the light source at
all), which violates encapsulation.

32.5 A Basic Path Tracer

Figure 32.5: Ray tracing.

Recall the basic idea of ray tracing and path tracing: For each pixel of the image,
we shoot several rays from the eye through the pixel area. A typical ray (the red
one in Figure 32.5) hits the scene somewhere, and we compute the direct light
arriving there (the nearly vertical blue ray), and how it scatters back along the
ray toward the eye (gray). We then trace one or more recursive rays (such as the
yellow ray that hits the wall), and compute the radiance flowing back along them,
and how it scatters back toward the eye, etc. Having computed the radiance back
toward the eye along each of the rays through our pixel, we take some sort of
weighted average and call that the pixel value.

Because of the usual description of ray tracing (“Start from the eye, and follow
a ray out into the scene until it hits a surface at some point P, and . . . ”), we’ll use
the convention that the rays we discuss are always the result of tracing from the
eye, that is, the first ray points away from the eye, the second ray points away from
the first intersection toward a light or another intersection, etc. (see Figure 32.6).

Algorithmic
direction

Physical
direction

Figure 32.6: The algorithm works
from the eye toward the light
source (red); photons travel in
the opposite direction (blue).

On the other hand, the radiance we want to compute is the radiance that flows
along the ray in the other direction. If the eye ray r starts at the eye, E, and goes
in direction v, meeting the scene at a point P, then we want to compute L(P,−v),
that is, we want to compute the radiance in the opposite of r’s direction. We’ll
have various procedures like Radiance3 estimateTotalRadiance(Ray r,

...); such functions always return the radiance flowing in the direction opposite
that of r.

32.5.1 Preliminaries

We begin with a very simple path tracer, in which the image plane is divided
into rectangular areas, each of which corresponds to a pixel. If a ray toward the
eye passes through the (i, j)th rectangle, we treat the radiance as a sample of the
radiance arriving at that rectangle. Despite the simplicity of the path tracer, we’ll
use a lot of symbols, which we list in Table 32.1; we’ll define each one as we
encounter it.
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Table 32.1: Symbols used in the path tracer.

Symbol Meaning

E The eyepoint.

P A surface point in the scene, often the first one encountered
by a ray from the eye, but sometimes used generically.

Q, Qj A point on the surface of a luminaire or some other source of
light arriving at P, such as an illuminated reflective surface.

nP, nQ The unit normal vector at P, which we’ve denoted n(P) pre-
viously, or the same thing for Q.

vi A unit vector pointing from P toward some source of light.

vo A unit vector pointing from P in the direction in which
reflected light from vi exits, typically toward E.

v A generic name for a unit vector, typically based at P.

L(P,v) The radiance at a surface point P in direction v. Note that in
this chapter we only define L for surface points.

Le(P,v) The light emitted at point P in direction v; zero except when
P is a point of a luminaire.

Le
j (P,v) The light emitted by the jth luminaire.

Lr(P,v) The light reflected or transmitted (refracted) at P in direction
v. L = Le + Lr.

Lref(P,v) The light reflected at P in direction v.

Ltrans(P,v) The light transmitted at P in direction v. Lr = Lref + Ltrans.

fs The bidirectional scattering distribution function.

f∞s The “impulse” part of fs, corresponding to transmission or
mirror reflection.

f 0
s The finite part of fs, corresponding to nonmirror reflection.

Let’s suppose that there are k luminaires in the scene, each producing an emit-
ted radiance field (Q,v) 
→ Le

j (Q,v), (j = 1, . . . , k) which for any point-vector
pair (Q,v) with Q on a surface and v · nQ > 0 is zero, except for points on the
jth luminaire, and directions v in which the light emits radiance. Most often this
radiance field will be Lambertian, that is, Le

j (Q,v) will be a constant for Q on the
luminaire and any v with v · nQ > 0; it’s zero otherwise. But for now, we’ll just
assume that it’s a general light field.

Furthermore, let’s assume that all surfaces are opaque—the only scattering
that takes place is reflection. The change to include transmission will be relatively
minor.

P = E – tv

v

t
E

Figure 32.7: The eye E looks into
the scene and sees P at distance t.

The rendering equation tells us that if P is the first point at which the ray
t 
→ E − tv hits the geometry in the scene (see Figure 32.7), then

L(E,v) = L(P,v) (32.5)

= Le(P,v)︸ ︷︷ ︸
emitted

+

∫
vi∈S2

+(nP)

fs(P,vi,v)L(P,−vi)vi · nP dvi︸ ︷︷ ︸
scattered

. (32.6)
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We can rewrite the second term as a sum by splitting the L in the integrand
into two parts. As in Chapter 31, we let Lr = L − Le denote the reflected light
(later, it will be reflected and refracted light) in the scene. At most surface points,
Lr = L, because most points are not emitters. At emitters, however, Le is nonzero,
so Lr and L differ. Thus,

scattered =

∫
vi∈S2

+(nP)

fs(P,vi,v)L
e(P,−vi)vi · nP dvi︸ ︷︷ ︸

scattered direct

(32.7)

+

∫
vi∈S2

+(nP)

fs(P,vi,v)L
r(P,−vi)vi · nP dvi︸ ︷︷ ︸

scattered indirect

. (32.8)

Inline Exercise 32.5: Explain why, for a point Q on some luminaire and some
direction v, Lr(Q,v) might be nonzero.

The first integral, representing scattered direct light, can be further expanded.
We write Le =

∑k
j=1 Le

j as a sum of the illuminations due to the k individual
luminaires, so that

scattered direct =
k∑

j=1

Dj(P,v), where (32.9)

Dj(P,v) =
∫
vi∈S2

+(nP)

fs(P,vi,v)L
e
j (P,−vi)vi · nP dvi. (32.10)

Thus, Dj(P,v) represents the light reflected from P in direction v due to direct
light from source j.

Rather than computing Dj by integrating over all directions vi in S2
+(nP), we

can simplify by integrating over only those directions where there’s a possibil-
ity that Le(P,−vi) will be nonzero, that is, directions pointing toward the jth
luminaire. We do so by switching to an area integral over the region Rj consti-
tuting the jth luminaire; the change of variables introduces the Jacobian we saw in
Section 26.6.5:

Dj =

∫
vi∈S2

+(nP)

fs(P,vi,v)L
e
j (P,−vi)vi · nP dvi (32.11)

=

∫
Q∈Rj

fs(P,vi,v)Ej(Q,−vi)V(P, Q)
(vi · nP)(vi · nQ)

‖Q− P‖2
dQ, (32.12)

where vi = S(Q− P) is the unit vector from P toward Q, and we have introduced
the visibility term V(P, Q) in case the point Q is not visible from P. (Note that this
transformation converts our version of the rendering equation into the form written
by Kajiya [Kaj86].) The preceding argument only works for area luminaires. In
the case of a point luminaire, this integral must be computed by a limit as in
Chapter 31.

For an area luminaire, we estimate the integral with a single-sample Monte
Carlo estimate:
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Dj =

∫
Q∈Rj

fs(P,vi,v)Ej(Q,−vi)V(P, Q)
(vi · nP)(vi · nQ)

‖Q− P‖2
dQ (32.13)

≈ Area(Rj) fs(P,vi,v)Ej(Qj, E,−vi)V(P, Qj)
(vi · nP)(vi · n(Qj))

‖Qj − P‖2
, (32.14)

where Qj is a single point chosen uniformly with respect to area on the region Rj

that constitutes the jth source.
The second integral, representing the scattering of indirect light, can also be

split into two parts, by decomposing the function vi 
→ fs(P,vi,v) in the inte-
grand into a sum,

fs(P,vi,v) = f∞s (P,vi,v) + f 0
s (P,vi,v), (32.15)

where f∞s represents the impulses like mirror reflection (and later, Snell’s law
transmission), and f 0

s is the nonimpulse part of the scattering distribution (i.e., fs is
a real-valued function rather than a distribution). Each impulse can be represented
by (1) a direction (the direction vi such that −vi either reflects or transmits to v
at P), and (2) an impulse magnitude 0 ≤ k ≤ 1, by which the incoming radiance
in direction −vi is multiplied to get the outgoing radiance in direction v. We’ll
index these by the letter m (where m = 1 is reflection and m = 2 is transmission).
Thus, we can write

refl. indir. light =
∫
vi∈S2

+(nP)

fs(P,vi,v)L
r(P,−vi)vi · nP dvi, (32.16)

=

[∑
m

kmLr(P,−vm)

]
+ (32.17)

∫
vi∈S2

+(nP)

f 0
s (P,vi,v)L

r(P,−vi)vi · nP dvi︸ ︷︷ ︸
diffusely reflected indirect light

. (32.18)

Finally, we can again estimate that last integral—the diffusely reflected indi-
rect light—by a single-sample Monte Carlo estimate: We pick a direction vi

according to some probability density on the hemisphere (or the whole sphere,
when we’re considering refraction as well as reflection), and estimate the integral
with

diff. refl. indir. light =
1

density(vi)
f 0
s (P,vi,v)L

r(P,−vi)vi · nP. (32.19)

Note that while the BRDF doesn’t literally make sense for an impulse-
like mirror reflection, the computation we perform to compute mirror-reflected
radiance has a form remarkably similar to that of Equation 32.19. We wrote it
(Equation 32.17) in the form

k1L(P,−v1), (32.20)

where v1 was the reflection of vi (v2 was the transmitted direction). The coeffi-
cient k1 plays the same role as the coefficient

1
density(vi)

f 0
s (P,vi,v)|vi · nP| (32.21)
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of the radiance in the current case. In each case, we simply need our representation
of the BRDF to be able to return the appropriate coefficient.

32.5.2 Path-Tracer Code

The central code in the path tracer is shown in Listing 32.4.

Listing 32.4: The core procedure in a path tracer.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Radiance3 App::pathTrace(const Ray& ray, bool isEyeRay) {
// Compute the radiance BACK along the given ray.
// In the event that the ray is an eye-ray, include light emitted
// by the first surface encountered. For subsequent rays, such
// light has already been counted in the computation of direct
// lighting at prior hits.

Radiance3 L_o(0.0f);

SurfaceElement surfel;
float dist = inf();
if (m_world->intersect(ray, dist, surfel)) {

// this point could be an emitter...
if (isEyeRay && m_emit)

L_o += surfel.material.emit;

// Shade this point (direct illumination)
if ( (!isEyeRay) || m_direct) {

L_o += estimateDirectLightFromPointLights(surfel, ray);
L_o += estimateDirectLightFromAreaLights(surfel, ray);

}
if (!(isEyeRay) || m_indirect) {

L_o += estimateIndirectLight(surfel, ray, isEyeRay);
}

}

return L_o;
}

The broad strokes of this procedure match the path-tracing algorithm fairly
closely. Not shown is the outer loop that, for each pixel in the image, creates a ray
from the eye through that pixel and then calls the pathTrace procedure (perhaps
doing so multiple times per pixel and taking a [possibly weighted] average of the
results).

The computation consists of five parts: finding where the ray meets the scene
(and storing the intersection in a SurfaceElement called surfel), and then
summing up emitted radiance, radiance due to direct lighting from area lights,
radiance due to direct lighting from point lights, and a recursive term, all evaluated
at the intersection point. The inclusion of each term is governed by a flag (m_emit,
m_direct, m_indirect) that lets us experiment with the program easily when
we’re debugging. If we turn off direct and indirect light, it’s really easy to tell
whether the lamps themselves look correct, for instance.

Let’s look at the four terms individually. The emissive term simply takes the
emitted radiance at the surface point, called surfel.geometric.position in the
code, but which we’ll call P in this description, and adds it to the computed radi-
ance. This assumes that the surface is a Lambertian emitter so that the outgoing
radiance in every direction from P is the same. If instead of having a constant
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outgoing radiance, the emitted radiance depended on direction, we might have
written:

1
2
3

if (includeEmissive) {
L_o += surfel.material.emittedRadianceFunction(-ray.direction);

}

where the emitted radiance function describes the emission pattern. Notice that we
compute the emission in the opposite of the ray direction; the ray goes from the
eye toward the surface, but we want to know the radiance from the surface toward
the eye.

We add to this emitted radiance the reflection of direct light (i.e., light that
goes from a luminaire directly to P, and that scatters back along our ray), and the
reflection of indirect light (i.e., all light leaving the intersection point that’s neither
emitted light nor scattered direct light).

To compute the direct lighting from point lights (see Listing 32.5), we deter-
mine a unit vector w_i from the surface to the luminaire, and check visibility; if the
luminaire is visible from the surface, we use w_i in computing the reflected light.
This follows a convention we’ll use consistently: The variable w_i corresponds to
the mathematical entity vi; the letter “i” indicates “incoming”; the ray vi points
from the surface toward the source of the light, and vo points in the direction
along which it’s scattered. This means that the variable w_i will be the first argu-
ment to surfel,evaluateBSDF(...), and often a variable w_o will be the second
argument. This convention matters: While the finite part of the BRDF is typi-
cally symmetric in its two arguments, both the mirror-reflectance and transmissive
portions of scattering are often represented by nonsymmetric functions.

Listing 32.5: Reflecting illumination from point lights.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Radiance3 App::estimateDirectLightFromPointLights(
const SurfaceElement& surfel, const Ray& ray){

Radiance3 L_o(0.0f);

if (m_pointLights) {
for (int L = 0; L < m_world->lightArray.size(); ++L) {

const GLight& light = m_world->lightArray[L];
// Shadow rays
if (m_world->lineOfSight(

surfel.geometric.location + surfel.geometric.normal * 0.0001f,
light.position.xyz())) {

Vector3 w_i = light.position.xyz() - surfel.shading.location;
const float distance2 = w_i.squaredLength();
w_i /= sqrt(distance2);

// Attenuated radiance
const Irradiance3& E_i = light.color / (4.0f * pif() * distance2);

L_o += (surfel.evaluateBSDF(w_i, -ray.direction()) * E_i *
max(0.0f, w_i.dot(surfel.shading.normal)));

debugAssert(radiance.isFinite());
}

}
}
return L_o;

}
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There are three slightly subtle points highlighted in the code. The first is that
we don’t ask whether the luminaire is visible from the surface point; as we dis-
cussed earlier, we have to ask whether it’s visible from a slightly displaced surface
point, which we compute by adding a small multiple of the surface normal to the
surface-point location. The second is that we make sure that the direction from
P to the luminaire and the surface normal at P point in the same hemisphere;
otherwise, the surface can’t be lit by the luminaire. This test might seem redun-
dant, but it’s not, for two reasons (see Figure 32.8). One is that the surface point
might be at the very edge of a surface, and therefore be visible to a luminaire
that’s below the plane of the surface. The other is that the normal vector we use
in this “checking for illumination” step is the shading normal rather than the geo-
metric normal. Since we actually compute the dot product with the shading nor-
mal, this can result in smoothly varying shading over a not-very-finely tessellated
surface.

PT

n

light

Shading normal

Figure 32.8: P is visible to the
light, but not lit by it.

This is another general pattern: During computations of visibility, we’ll use
the geometric data associated with the surface element. But during computations
of light scattering, we’ll use surfel.shading.location. In general, our repre-
sentation of the surface point has both geometric and shading data: The geometric
data is that of the raw underlying mesh, while the shading data is what’s used in
scattering computations. For instance, if the surface is displacement-mapped, the
shading location may differ slightly from the geometric location. Similarly, while
the geometric normal vector is constant across each triangular face, the shading
normal may be barycentrically interpolated from the three vertex normals at the
triangular face’s vertices.

The third subtlety is the computation of the radiance. As we discussed in
Chapter 31, if we treat the point luminaire as a limiting case of a small, uniformly
emitting spherical luminaire, the outgoing radiance resulting from reflecting this
light is a product of a BRDF term, a cosine, and a radiance that varies with the
distance from the luminaire; we called that E_i in the program. (We’ve also, as
promised, ignored specular scattering of point lights.)

When we turn our attention to area luminaires (see Listing 32.6), much of the
code is identical. Once again, we have a flag, m_areaLights, to determine whether
to include the contribution of area lights. To estimate the radiance from the area
luminaire, we sample one random point on the source, that is, we form a single-
sample estimate of the illumination. Of course, this has high variance compared
to sampling many points on the luminaire, but in a path tracer we typically trace
many primary rays per pixel so that the variance is reduced in the final image.
When testing visibility, we again slightly displace the point on the source as well
as the point on the surface. Other than that, the only subtlety is in the estimation
of the outgoing radiance. Since our light’s samplePoint samples uniformly with
respect to area, we have to do a change of variables, and include not only the
cosine at the surface point but also the corresponding cosine at the luminaire point,
and the reciprocal square of the distance between them. By line 23, we’ve used
these ideas to estimate the radiance from the area light scattered at P, except for
impulse scattering, because evaluateBSDF returns only the finite portion of the
BSDF.

At line 26 we take a different approach for impulse scattering: We compute the
impulse direction, and trace along it to see whether we encounter an emitter, and
if so, multiply the emitted radiance by the impulse magnitude to get the scattered
radiance.



ptg11539634

896 Rendering in Practice

Listing 32.6: Reflecting illumination from area lights.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Radiance3 App::estimateDirectLightFromAreaLights(const SurfaceElement& surfel,
const Ray& ray){
Radiance3 L_o(0.0f);
// Estimate radiance back along ray due to
// direct illumination from AreaLights
if (m_areaLights) {

for (int L = 0; L < m_world->lightArray2.size(); ++L) {
AreaLight::Ref light = m_world->lightArray2[L];
SurfaceElement lightsurfel = light->samplePoint(rnd);
Point3 Q = lightsurfel.geometric.location;

if (m_world->lineOfSight(surfel.geometric.location +
surfel.geometric.normal * 0.0001f,
Q + 0.0001f * lightsurfel.geometric.normal)) {

Vector3 w_i = Q - surfel.geometric.location;
const float distance2 = w_i.squaredLength();
w_i /= sqrt(distance2);

L_o += (surfel.evaluateBSDF(w_i, -ray.direction()) *
(light->power()/pif()) * max(0.0f, w_i.dot(surfel.shading.normal))

* max(0.0f, -w_i.dot(lightsurfel.geometric.normal)/distance2));
debugAssert(L_o.isFinite());

}
}
if (m_direct_s) {

// now add in impulse-reflected light, too.
SmallArray<SurfaceElement::Impulse, 3> impulseArray;
surfel.getBSDFImpulses(-ray.direction(), impulseArray);
for (int i = 0; i < impulseArray.size(); ++i) {

const SurfaceElement::Impulse& impulse = impulseArray[i];
Ray secondaryRay = Ray::fromOriginAndDirection(

surfel.geometric.location, impulse.w).bumpedRay(0.0001f);
SurfaceElement surfel2;
float dist = inf();
if (m_world->intersect(secondaryRay, dist, surfel2)) {

// this point could be an emitter...
if (m_emit) {

radiance += surfel2.material.emit * impulse.magnitude;
}

}
}

}
}
return L_o;

}

In each case—the impulse and the finite-part reflection of area lights, and the
finite-part reflection of point lights—we picked some direction vi and multi-
plied some measure of light arriving at P in direction−vi by some factor based
on the BSDF: either the impulse magnitude or the finite part of the BSDF. It’s
possible to restructure the code so that the measure of light in each case cor-
responds to the biradiance described in Chapter 14, which helps explain how
the first ray tracers, which didn’t really use physical units, actually managed to
produce good-looking pictures.

At this point we’ve computed the emissive term of the rendering equation, and
the reflected term, at least for light arriving at P directly from luminaires. We now
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must consider light arriving at P from all other sources, that is, light from some
point Q that arrives at P having been reflected at Q rather than emitted. Such light
is reflected at P to contribute to the outgoing radiance from P back toward the eye.
Once again, we estimate this incoming indirect radiance with a single sample. To
do so, we use our path-tracing code recursively. We build a ray starting at (or very
near) P, going in some random direction v into the scene; we use our path tracer
to tell us the indirect radiance back along this ray, and reflect this, via the BRDF,
into radiance transported from P toward the eye. Of course, in this case, we must
not include in the computed radiance the light emitted directly toward P—we’ve
already accounted for that. We therefore set includeEmissive to false at line 24.
Listing 32.7 show this.

Listing 32.7: Estimating the indirect light scattered back along a ray.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Radiance3 App::estimateIndirectLight(
const SurfaceElement& surfel, const Ray& ray, bool isEyeRay){

Radiance3 L_o(0.0f);
// Use recursion to estimate light running back along ray
// from surfel, but ONLY light that arrives from
// INDIRECT sources, by making a single-sample estimate
// of the arriving light.

Vector3 w_o = -ray.direction();
Vector3 w_i;
Color3 coeff;
float eta_o(0.0f);
Color3 extinction_o(0.0f);
float ignore(0.0f);

if (!(isEyeRay) || m_indirect) {
if (surfel.scatter(w_i, w_o, coeff, eta_o, extinction_o, rnd, ignore)) {

float eta_i = surfel.material.etaReflect;
float refractiveScale = (eta_i / eta_o) * (eta_i / eta_o);

L_o += refractiveScale * coeff *
pathTrace(Ray(surfel.geometric.location, w_o).bumpedRay(0.0001f *

sign(surfel.geometric.normal.dot( w_o)),
surfel.geometric.normal), false);

}
}
return L_o;

}

The great bulk of the work is done in surfel.scatter(), which takes a ray
r arriving at a point and either absorbs it or determines an outgoing direction r′

for it, and a coefficient by which the radiance arriving along r′ (i.e., the radiance
L(P,−r′)) should be multiplied to generate a single-sample estimate of the scat-
tered radiance at P in direction −r.

Before examining the scatter() code, let’s review that description more
closely. First, scatter() can be used either in ray/path tracing or in photon trac-
ing. The second use is perhaps more intuitive: We have a bit of light energy arriv-
ing at a surface, and it is either absorbed or scattered in one or more directions.
The scatter() procedure is used to simulate this process. If the absorption at the
surface is, say, 0.3, then 30% of the time scatter() will return false. The other
70% of the time it will return true and set the value of vo. Given the direction vi

toward the source of the light, the probability of picking a particular direction vo
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(at least for surfaces with no mirror terms or transmissive terms) for the scat-
tered light is roughly proportional to fs(vi,vo). In an ideal world, it would be
exactly proportional. In ours, it’s generally not, but the returned coefficient con-
tains a fs(vi,vo)/p(vo) factor, where p(vo) is the probability of sampling vo,
which compensates appropriately.

What happens if there is a mirror reflection? Let’s say that 30% of the time the
incoming light is absorbed, 50% of the time it’s mirror-reflected, and the remain-
ing 20% of the time it’s scattered according to a Lambertian scattering model.
In this situation, scatter() will return false 30% of the time. Fifty percent of
the time it will return true and set vo to be the mirror-reflection direction, and
the remaining 20% of the time vo will be distributed on the hemisphere with a
cosine-weighted distribution (i.e., with high probability of being emitted in the
normal direction and low probability of being emitted in a tangent direction).

Let’s see this in practice, and look at the start of G3D’s scatter method in
Listing 32.8.

Listing 32.8: The start of the scatter method.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

bool SurfaceElement::scatter
(const Vector3& w_i,
Vector3& w_o,
Color3& weight_o, // coeff by which to multiply sample in path-tracing
float& eta_o,
Color3& extinction_o,
Random& random,
float& density) const {

const Vector3& n = shading.normal;

// Choose a random number on [0, 1], then reduce it by each kind of
// scattering’s probability until it becomes negative (i.e., scatters).
float r = random.uniform();

if (material.lambertianReflect.nonZero()) {
float p_LambertianAvg = material.lambertianReflect.average();
r -= p_LambertianAvg;

if (r < 0.0f) {
// Lambertian scatter
weight_o = material.lambertianReflect / p_LambertianAvg;
w_o = Vector3::cosHemiRandom(n, random);
density = ...
eta_o = material.etaReflect;
extinction_o = material.extinctionReflect;
debugAssert(power_o.r >= 0.0f);

return true;
}

}
...

As you can see, the material has a lambertianReflect member, which indi-
cates reflectance in each of three color bands;2 the average of these gives a

2. We’ll call these “red,” “green,” and “blue” in keeping with convention, but with no
important change in the implementation, we could record five or seven or 20 spectral
samples.
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probability p of a Lambertian scattering of the incoming light. If the random value
r is less than p, we produce a Lambertian-scattered ray; if not, we subtract that
probability from r and move on to the next kind of scattering.

Inline Exercise 32.6: Convince yourself that this approach has a probability p
of producing a Lambertian-scattered ray.

The actual scattering is fairly straightforward: The cosHemiRandom method
produces a vector with a cosine-weighted distribution in the hemisphere whose
pole is at n. The method also returns the index of refraction (both real and imagi-
nary parts) of the material on the n side of the intersection point, and a coefficient,
(called weight_o here) that is precisely the number we’ll need to use when we do
Monte Carlo estimation of the reflected radiance. (The returned value density is
not the probability density, but a rather different value included for the benefit of
other algorithms, and we ignore it.)

The remainder of the scattering code is similar. Recall that the reflection
model we’re using is a weighted sum of a Lambertian, a glossy component, and a

Listing 32.9: Further scattering code.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Color3 F(0, 0, 0);
bool Finit = false;

if (material.glossyReflect.nonZero()) {

// Cosine of the angle of incidence, for computing Fresnel term
const float cos_i = max(0.001f, w_i.dot(n));
F = computeF(material.glossyReflect, cos_i);
Finit = true;

const Color3& p_specular = F;
const float p_specularAvg = p_specular.average();

r -= p_specularAvg;
if (r < 0.0f) { // Glossy (non-mirror) case

if (material.glossyExponent != finf()) {
float intensity = (glossyScatter(w_i, material.glossyExponent,

random, w_o) / p_specularAvg);
if (intensity <= 0.0f) {

// Absorb
return false;

}
weight_o = p_specular * intensity;
density = ...

} else {
// Mirror

w_o = w_i.reflectAbout(n);
weight_o = p_specular * (1.0f / p_specularAvg);
density = ...

}

eta_o = material.etaReflect;
extinction_o = material.extinctionReflect;
return true;

}
}
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transmissive component, where the weights sum to one or less. If they sum to less
than one, there’s some absorption. The weights are specified for R, G, and B, and
the sum must be no more than one in each component.

The glossy portion of the model has an exponent that can be any positive num-
ber or infinity. If it’s infinity, then we have a mirror reflection; otherwise, we have
a Blinn-Phong-like reflection, which is scaled by a Fresnel term, F. Listing 32.9
shows this code.

Finally, we compute the transmissive scattering due to refraction, with the
code shown in Listing 32.10. The only subtle point is that the Fresnel coefficient
for the transmitted light is one minus the coefficient for the reflected light.

Listing 32.10: Scattering due to transmission.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35

...
if (material.transmit.nonZero()) {

// Fresnel transmissive coefficient
Color3 F_t;

if (Finit) {
F_t = (Color3::one() - F);

} else {
// Cosine of the angle of incidence, for computing F
const float cos_i = max(0.001f, w_i.dot(n));

// Schlick approximation.
F_t.r = F_t.g = F_t.b = 1.0f - pow5(1.0f - cos_i);

}

const Color3& T0 = material.transmit;

const Color3& p_transmit = F_t * T0;
const float p_transmitAvg = p_transmit.average();

r -= p_transmitAvg;
if (r < 0.0f) {

weight_o = p_transmit * (1.0f / p_transmitAvg);
w_o = (-w_i).refractionDirection(n, material.etaTransmit,

material.etaReflect);
density = p_transmitAvg;
eta_o = material.etaTransmit;
extinction_o = material.extinctionTransmit;

// w_o is zero on total internal refraction
return ! w_o.isZero();

}
}

// Absorbed
return false;

}

The code in Listing 32.10 is messy. It’s full of branches, and there are several
approximations and apparently ad hoc tricks, like the Schlick approximation of
the Fresnel coefficient, and the setting of the cosine of the incident angle to be at
least 0.001, embedded in it. This is typical of scattering code. Scattering is a messy
process, and we must expect the code to reflect this, but the messiness also arises
from the challenges of floating-point arithmetic on machines of finite precision.
Perhaps a more positive view is that the code will be called many times with



ptg11539634

32.5 A Basic Path Tracer 901

many different parameter values, and it’s important that it be robust regardless of
this wide range of inputs.

There is an alternative, however. If we actually know microgeometry perfectly,
and we know the index of refraction for every material, we can compute scat-
tering relatively simply—there’s a reflection term and a transmission term, and
what’s neither reflected nor transmitted is absorbed. As long as the microgeome-
try is of a scale somewhat larger than the wavelength of light that we’re scattering,
this provides a complete model. Unfortunately, at present it’s an impractical one,
for several reasons. First, representing microgeometry at the scale of microfacets
requires either an enormous amount of data or, if it’s generated procedurally, an
enormous amount of computation. Second, if we accurately represent microge-
ometry, then every surface becomes mirrorlike at a small enough scale. To get the
appearance of diffuse reflection at a point P requires that thousands of rays hit the
surface near P, each scattering in its own direction. Ray-tracing a piece of chalk
suddenly requires a thousand rays per pixel instead of just one! Third, the exact
index of refraction for many materials is unknown or hard to measure, especially
the coefficient of extinction.

Our representation of scattering by summary statistics like the diffuse coeffi-
cient is a way to take this intractable model and make it workable, with only slight
losses in fidelity, based on the observation that the precise microgeometry almost
never matters in the final rendering; if we render 20 pieces of chalk with the same
macrogeometry, they’ll all look essentially identical.

There’s a third alternative between these two: You can store measured BRDF
data. Storing such data, at a reasonably fine level of detail, can be expensive.
(If your material has a glossy highlight that resembles the one produced by a
Phong exponent of 1000, then the BRDF drops from its peak value to half that
value in about 7◦, suggesting that you might need to sample at least every 2◦

to faithfully capture it, requiring about 17,000 samples.) Drawing a direction v
with probability proportional to v 
→ fs(vi,v) is far more problematic, but it is
feasible. You might think that you could have the best of both worlds by choos-
ing an explicit parametric representation (e.g., spherical harmonics, or perhaps
some generalized Phong-like model) and finding the best fit to the measured
data. This is a fairly common practice in the film industry today, and it works
well for some materials like metals, but it can produce huge errors for diffuse
surfaces when you use common analytic models that fail to model subsurface
effects accurately [NDM05]. Nonetheless, it’s currently an active area of research,
one with considerable promise for simplifying the computation of the scattering
integral.

32.5.3 Results and Discussion

Figure 32.9 shows four simple scenes we’ll use in evaluating renderers, both
drawn and ray-traced. The first, with its diffuse floor and back wall, and brightly
colored semidiffuse sphere, provides a nice, simple test of bounding volume hier-
archy, visibility, and rendering with reflection but not transmission. Since most of
the scattering in the scene is diffuse, it only provides limited testing of scattering
from multiple surfaces: We can’t visually check multiple interobject reflections
the way we could in a scene with 12 mirrored spheres, for instance.

In the second scene, we’ve added a transparent sphere whose refractive
index is somewhat greater than that of air, to let us verify that transmissive
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Point light
Area light

Area light
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Reflection
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Figure 32.9: Four simple scenes, with their rendered versions shown to the right. The scene
at the top is ray-traced (and hence the light comes from the point source; the area source
is ignored); the three remaining scenes are path-traced to show the effects of the area
luminaires.



ptg11539634

32.5 A Basic Path Tracer 903

scattering is working properly. (By the way, you can add a perfectly transmis-
sive and completely nonreflective sphere with refractive index 1.0 to a scene, and
it should make no difference to the scene’s appearance. Of course, if your ren-
derer bounds the number of ray-surface interactions, it may have an effect on the
rendering nonetheless.) The transparent sphere reflects some light from the other
sphere, reflects some light onto it, and generates a diffuse pattern of light on the
floor. None of these effects (color bleeding between diffuse surfaces, the caustic,
or reflected light on the solid sphere) would be visible in a ray-traced version of
the scene.

The third scene is the Cornell box, a standard test scene with diffuse surfaces,
and an area light, in which color bleeding and multiple inter-reflections are evident
in an accurate rendering, but are missing from the ray tracing.

The final scene consists of a large area light tilted toward the viewer, and a
large mirror below it, also tilted toward the viewer, with a diffuse rectangle behind
it to form a border for the mirror. The viewer sees not only the light, but also its
reflection in the perfect mirror. Together these give the appearance of a single long
continuous rectangle.

Figure 32.10 shows a path-traced version of the first scene. There are some
obvious differences between this and the ray-traced scene. First, the area light,
which we ignored in the ray tracing, has been included in the path tracing. Sec-
ond, there’s noise in the path-traced image—everything looks somewhat speckled.
We’ll return to this presently. Third, the shadows are softer. Light is reflecting from
the floor onto the sphere, lighting the lower half somewhat, which in turn helps
light the shadowed part of the floor. Fourth, there is color bleeding: The pinkish
color on the floor and back wall is from light that’s reflected from the sphere.

The softened shadows and color bleeding are what you should expect when
you consider how path tracing works. The noise, however, seems like a serious
drawback. On the other hand, the ray-traced version exhibits aliasing, especially
on the shadow edges. That’s because in the ray tracer, the rays from the eye
through two nearby pixels end up reflecting from (or refracting through) the sphere
in almost parallel directions. In the path tracer, there’s a coin toss: About 80% of

Figure 32.10: A path-traced scene.
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the time a ray hitting the sphere, for instance, is reflected in a specific direction,
and just as in ray tracing, nearby rays are refracted to nearby rays. But there’s
also a 20% chance of absorption. If we trace, say, ten primary rays per pixel, it’s
reasonable to expect seven, eight, nine, or ten of these rays to be reflected (i.e.,
from zero to four of them to be absorbed). That’ll lead to adjacent pixels having
quite different radiance sums. To reduce this variance between adjacent pixels, we
need to send quite a lot of primary rays (perhaps hundreds or thousands per pixel).
You can even use the notion of confidence intervals from statistics to determine a
number of samples so large that the fraction of absorbed rays is very nearly the
absorption probability so that interpixel variation is small enough to be beneath
the threshold of observation. In fact, Figure 32.10 was rendered with 100 primary
rays per pixel, and despite this, the reflection of the floor in the red sphere appears
slightly speckled. Figure 32.11 shows the speckle more dramatically.

Figure 32.11: Path tracing with
ten rays per pixel.

32.6 Photon Mapping

Let’s now move on to a basic implementation of photon mapping. Recall that the
main idea in photon mapping is to estimate the indirect light scattered from dif-
fuse surfaces by shooting photons3 from the luminaires into the scene, recording
where they arrive (and from what direction), and then reflecting them onward to
be further recorded in subsequent bounces, eventually attenuated by absorption or
by having the recursion depth-limited. When it comes time to estimate scattering
at a point P of a diffuse surface, we search for nearby photons and use them as
estimates of the arriving light at P, which we then push through the reflectance
process to estimate the light leaving P.

Not surprisingly, much of the technology used in the path-tracing code can
be reused for photon mapping. In our implementation, we have built a photon-
map data structure based on a hash grid (see Chapter 37); as we mentioned in
our discussion of photon mapping, any spatial data structure that supports rapid
insertion and rapid neighborhood queries can be used instead.

We’ve defined two rather similar classes, EPhoton and IPhoton, to represent
photons as they are emitted and when they arrive; the “I” in IPhoton stands for
“incoming.” An EPhoton has a position from which it was emitted, and a direction
of propagation, which are stored together in a propagation ray, and a power, rep-
resenting the photon’s power in each of three spectral bands. An IPhoton, by con-
trast, has a position at which it arrived, a direction to the photon source from that
position, and a power. Making distinct classes helps us keep separate the two dis-
tinct ways in which the term “photon” is used. In our implementation, an EPhoton

is emitted, and its travels through the scene result in one or more IPhotons being
stored in the photon map.

The basic structure of the code is to first build the photon map, and then
render the scene using it. Listing 32.11 shows the building of the photon map:
We construct an array ephotons of photons to be emitted, and then emit each into
the scene to generate an array iphotons of incoming photons, and store these in
the map m_photonMap.

3. Recall that a “photon” in photon mapping represents a bit of power emitted by the
light, typically representing many physical photons.
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Listing 32.11: The large-scale structure of the photon-mapping code.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

main(){
set up image and display, and load scene
buildPhotonMap();
call photonRender for each pixel
display the resulting image

}

void App::buildPhotonMap(){
G3D::Array<EPhoton> ephotons;
LightList lightList(&(m_world->lightArray), &(m_world->lightArray2), rnd);
for (int i = 0; i < m_nPhotons; i++) {

ephotons.append(lightList.emitPhoton(m_nPhotons));
}

Array<IPhoton> ips;
for (int i = 0; i < ephotons.size(); i++) {

EPhoton ep = ephotons[i];
photonTrace(ep, ips);
m_photonMap.insert(ips);

}
}

The LightList represents a collection of all point lights and area lights in the
scene, and can produce emitted photons from these, with the number of photons
emitted from each source being proportional to the power of that source. List-
ings 32.12 and 32.13 show a little bit of how this is done: We sum the power (in
the R, G, and B bands) for each light to get a total power emitted. The probability
that a photon is emitted by the ith light is then the ratio of its average power (over
all bands) to the average of the total power over all bands. These probabilities are
stored in an array, with one entry per luminaire.

Listing 32.12: Initialization of the LightList class.

1
2
3
4
5
6
7
8
9

10

void LightList::initialize(void)
{

// Compute total power in all spectral bands.
foreach point or area light

m_totalPower += light.power() //totalPower is RGB vector

// Compute probability of emission from each light
foreach point or area light

m_probability.append(light.power().average() / m_totalPower.average());
}

With these probabilities computed, the only subtlety remaining is selecting
a random point on the surface of an area light (see Listing 32.13). If the area
light has some known geometric shape (cube, sphere, . . . ), we can use the obvi-
ous methods to sample from it (see Exercise 32.12). On the other hand, if it’s
represented by a triangle mesh, we can first pick a triangle at random, with the
probability of picking a triangle T proportional to the area of T , and then pick a
point in that triangle uniformly at random. Exercise 32.6 shows that generating
samples uniformly on a triangle may not be as simple as you think.
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Inline Exercise 32.7: The areaLightEmit code uses cosHemiRandom to gener-
ate a photon in direction (x, y, z) with probability cos(θ), where θ is the angle
between (x, y, z) and the surface normal. Why?

Listing 32.13: Photon emission in the LightList class.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

// emit a EPhoton; argument is total number of photons to emit
EPhoton LightList::emitPhoton(int nEmitted)
{

u = uniform random variable between 0 and 1
find the light i with p0 + . . .+ pi−1 ≤ u < p0 + . . .+ pi.
if (i < m_nPointLights)

return pointLightEmit((*m_pointLightArray)[i], nEmitted, m_probability[i]);
else

return areaLightEmit((*m_areaLightArray)[i - m_nPointLights], nEmitted,
m_probability[i]);

}

EPhoton LightList::pointLightEmit(GLight light, int nEmitted, float prob){
// uniformly randomly select a point (x,y,z) on the unit sphere
Vector3 direction(x, y, z);
Power3 power = light.power() / (nEmitted * prob);
Vector3 location = location of the light
return EPhoton(location, direction, power);

}

EPhoton LightList::areaLightEmit(AreaLight::Ref light, int nEmitted, float prob){
SurfaceElement surfel = light->samplePoint(m_rnd);
Power3 power = light->power() / (nEmitted * prob);
// select a direction with cosine-weighted distribution around
// surface normal. m_rnd is a random number generator.
Vector3 direction = Vector3::cosHemiRandom(surfel.geometric.normal, m_rnd);

return EPhoton(surfel.geometric.location, direction, power);
}

What remains is the photon tracing itself (see Listing 32.14). We use a G3D
helper class, the Array<IPhoton>, to accumulate incident photons. This class has a
fastClear method that simply sets the number of stored values to zero rather than
actually deallocating the array; this saves substantial allocation/deallocation over-
head. The photonTraceHelper procedure keeps track of the number of bounces
that the photon has undergone so far so that the bounce process can be terminated
when this reaches the user-specified maximum. Note that in contrast to Jensen’s
original algorithm, we store a photon at every bounce, whether it’s diffuse or spec-
ular. For estimating radiance at surface points with purely impulsive scattering
models (e.g., mirrors), these photons will never be used, however, so there’s no
impact on the results.

Once again, there are no real surprises in the program. The scatter method
does all the work. We’ve hidden one detail here: The scatter method should be
different from the one used in path tracing. If we’re only studying reflection, and
only using symmetric BRDFs (i.e., all materials satisfy Helmholtz reciprocity),
then the two scattering methods are the same. But in the case of asymmetric scat-
tering (such as Fresnel-weighted transmission), it’s possible that the probability
that a photon arriving at P in direction vi scatters in direction vo is completely
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Listing 32.14: Tracing photons, which is rather similar to tracing rays or paths.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

void App::photonTrace(const EPhoton& ep, Array<IPhoton>& ips) {
ips.fastClear();
photonTraceHelper(ep, ips, 0);

}

/**
Recursively trace an EPhoton through the scene, accumulating
IPhotons at each diffuse bounce

*/
void App::photonTraceHelper(const EPhoton& ep, Array<IPhoton>& ips, int bounces) {

// Trace an EPhoton (assumed to be bumped if necessary)
// through the scene. At each intersection,
// * store an IPhoton in "ips"
// * scatter or die.
// * if scatter, "bump" the outgoing ray to get an EPhoton
// to use in recursive trace.

if (bounces > m_maxBounces) {
return;

}

SurfaceElement surfel;
float dist = inf();
Ray ray(ep.position(), ep.direction());

if (m_world->intersect(ray, dist, surfel)) {
if (bounces > 0) { // don’t store direct light!

ips.append(IPhoton(surfel.geometric.location, -ray.direction(), ep.power()));
}
// Recursive rays
Vector3 w_i = -ray.direction();
Vector3 w_o;
Color3 coeff;
float eta_o(0.0f);
Color3 extinction_o(0.0f);
float ignore(0.0f);

if (surfel.scatter(w_i, w_o, coeff, eta_o, extinction_o, rnd, ignore)) {
// managed to bounce, so push it onwards
Ray r(surfel.geometric.location, w_o);
r = r.bumpedRay(0.0001f * sign(surfel.geometric.normal.dot( w_o)),

surfel.geometric.normal);
EPhoton ep2(r, ep.power() * coeff);
photonTraceHelper(ep2, ips, bounces+1);

}
}

}

different from the probability that one arriving in direction vo scatters in direction
vi. Our surface really needs to provide two different scattering methods, one for
each situation. In our code, we’ve used the same method for both. That’s wrong,
but it’s also very common practice, in part because the effects of making the code
right are (a) generally small, and (b) generally not something we’re perceptually
sensitive to. You might want to spend a little while trying to imagine a scene in
which the distinction between the two scattering rules matters.

One difference between photon propagation and radiance propagation is that at
the interface between media with different refractive indices, the radiance changes
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(because a solid angle on one side becomes a different solid angle on the other),
while for photons, which represent power transport through the scene, there is no
such change. Thus, there’s no ηi/ηo factor in the photon-tracing code.

Having built the photon map, we must render a picture based on it. Our first
version will closely resemble the path-tracing code, in the sense that we’ll break
up the computation into direct and indirect light, and handle diffuse and impulse
scattering individually. We’ll use a ray-tracing approach (i.e., recursively trace
rays until some fixed depth); making the corresponding path-tracing approach is
left as an exercise for the reader. The photon map is used only to estimate the
diffusely reflected indirect light arriving at a point.

Computing the light arriving at pixel (x, y) of the image, using a ray-tracing
and photon-mapping hybrid, is the job of the photonRender procedure, shown in
Listing 32.15, along with some of the methods it calls.

Listing 32.15: Generating an image sample for pixel (x, y) from the photon map.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

void App::photonRender(int x, int y) {
Radiance3 L_o(0.0f);
for (int i = 0; i < m_primaryRaysPerPixel; i++) {

const Ray r = defaultCamera.worldRay(x + rnd.uniform(),
y + rnd.uniform(), m_currentImage->rect2DBounds());

L_o += estimateTotalRadiance(r, 0);
}
m_currentImage->set(x, y, L_o / m_primaryRaysPerPixel);

}

Radiance3 App::estimateTotalRadiance(const Ray& r, int depth) {
Radiance3 L_o(0.0f);
if (m_emit) L_o += estimateEmittedLight(r);

L_o += estimateTotalScatteredRadiance(r, depth);
return L_o;

}

Radiance3 App::estimateEmittedLight(Ray r){
...declarations...
if (m_world->intersect(r, dist, surfel))

L_o += surfel.material.emit;
return L_o;

}

To generate a measurement at pixel (x, y) we shoot m_primaryRaysPerPixel
into the scene, and estimate the radiance returning along each ray. It’s possible
that a ray hits a light source; if so, the source’s radiance (EmittedLight) must be
counted in the total radiance returning along the ray, along with any light reflected
from the luminaire.

We’ve ignored the case where the ray hits a point luminaire (point sources have
no geometry in our scene descriptions, so such an intersection is never reported).
There are two reasons for this. The first is that the intersection of the ray and the
point light is an event with (mathematical) probability zero, so in an ideal pro-
gram with perfect precision, it should never occur. This is a frequently used but
somewhat specious argument: First, the discrete nature of floating-point numbers
makes probability-zero events occur with very small, but nonzero, frequency. Sec-
ond, models like point-lighting are usually taken as a kind of “limit” of nonzero-
probability things (like small, disk-shaped lights); if the limit is to make any sense,
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the effect of the limiting case should be the limit of the effects in the nonlimiting
cases. If the disk-shaped lights are given values that increase with the inverse
square of the radius, then these nonlimiting cases may produce nonzero effects,
which should show up in the limiting case as well.

The other, far more practical, reason for not letting rays hit point lights is that
point lights are an abstract approximation to reality, used for convenience, and if
you want them to be visible in your scene you can model them as small spherical
lights. In our test cases, there are no point lights visible from the eye, so the issue
is moot.

In general, not only might light be emitted by the place where the
ray meets the scene, but also it may be scattered from there as well. The
estimateTotalScatteredRadiance procedure handles this (see Listing 32.16)
by summing up the direct light, impulse-scattered indirect light, and diffusely
reflected direct light.

Listing 32.16: Estimating the total radiance scattered back toward
the course of the ray r.

1
2
3
4
5
6
7
8
9

10

Radiance3 App::estimateTotalScatteredRadiance(const Ray& r, int depth){
...
if (m_world->intersect(r, dist, surfel)) {

L_o += estimateReflectedDirectLight(r, surfel, depth);
if (m_IImp || depth > 0) L_o +=

estimateImpulseScatteredIndirectLight(r, surfel, depth + 1);
if (m_IDiff || depth > 0) L_o += estimateDiffuselyReflectedIndirectLight(r, surfel);

}
return L_o;

}

In each case, there’s a Boolean control for whether to include this aspect of the
light. We’ve chosen to apply this control only to the first reflection (i.e., if m_IImp
is false, then impulse-scattered indirect light is ignored only when it goes directly
to the eye).

Listing 32.17: Impulse-scattered indirect light.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Radiance3 App::estimateImpulseScatteredIndirectLight(const Ray& ray,
const SurfaceElement& surfel, int depth){

Radiance3 L_o(0.0f);

if (depth > m_maxBounces) {
return L_o;

}

SmallArray<SurfaceElement::Impulse, 3> impulseArray;

surfel.getBSDFImpulses(-ray.direction(), impulseArray);
foreach impulse

const SurfaceElement::Impulse& impulse = impulseArray[i];

Ray r(surfel.geometric.location, impulse.w);
r = r.bumpedRay(0.0001f * sign(surfel.geometric.normal.dot( r.direction())),

surfel.geometric.normal);
L_o += impulse.magnitude * estimateTotalScatteredRadiance(r, depth + 1);

return L_o;
}
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The direct-lighting computation is essentially identical to that in the path
tracer, except that we estimate the direct light from each area light with several
(m_diffuseDirectSamples) samples rather than relying on multiple primary rays
to ensure adequate sampling. (The alternative is quite viable, however.) The simi-
larity is so great that we omit the code. This leaves only the impulse-scattered and
diffusely reflected indirect light to consider. The first is easy, and it closely resem-
bles the corresponding path-tracing code: We simply compute the total arriving
radiance for each impulse recursively, and sum (see Listing 32.17).

This leaves only the computation of diffusely reflected indirect light, which is
where the photon map finally comes into play (see Listing 32.18). Central to this
code is the photon map’s kernel, the function that says how much weight to give
each nearby photon’s contribution.

Listing 32.18: The photon map used to compute diffusely reflected indirect light.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Radiance3 App::estimateDiffuselyReflectedIndirectLight(const Ray& r,
const SurfaceElement& surfel){

Radiance3 L_o(0.0f);
Array<IPhoton> photonArray;
// find nearby photons
m_photonMap.getIntersectingMembers(

Sphere(surfel.geometric.location, m_photonMap.gatherRadius()), photonArray);

foreach photon p in the array
const float cos_theta_i =
L_o += p.power() * m_photonMap.kernel(p.position(), surfel.shading.location) *

surfel.evaluateBSDF(p.directionToSource(), -r.direction(), finf());
return L_o;

}

We sum up the contributions of all sufficiently nearby photons, weighting them
by our kernel and pushing each one through the BSDF to determine the light it
contributes traveling toward the source of the ray r.

Note that what is being multiplied by the BRDF term is an area-weighted
radiance, which is what we called biradiance in Chapter 14.

32.6.1 Results and Discussion

Naturally, as we discussed in Chapter 31, there’s an interaction between the gather
radius, the number of photons stored in the photon map, and the quality of the
estimated radiance. When we’re estimating the reflected indirect radiance at P,
if we use a cylinder kernel (a photon is counted if it’s within some distance of
P, and ignored otherwise) and there are no photons within the gather radius of
P, the radiance estimate for that ray will be zero. This can happen if the gather
radius is too small or if there are too few photons. How many photons are enough?
Well, we’d generally like nearby pixel rays hitting the same surface to get similar
radiance estimates. But one ray might be within the radius of 20 photons, while the
nearby ray might be within the radius of 21 photons. Even if all the photons share
the same incoming power, the second ray will get a radiance that’s 5% greater.
To reduce the noise in areas of constant radiance, it appears that we might need
hundreds of photons within the gather radius of P.

There are several ways to improve the results without needing that many pho-
tons. One is to alter the photon map’s kernel—the weighting function, centered
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Figure 32.12: The Cornell box rendered with 100, 10,000, and 1,000,000 photons.

at P, that determines how much each photon’s contribution should matter in the
radiance estimate. If we change from the cylinder kernel to a conelike function
(photons near the gather radius have their contributions reduced to near zero),
then each arrival or departure of a photon within the gather radius (as we vary P)
has a gradual impact. This is the approach used in our renderer.

A very different approach is described by Jensen: Rather than gathering pho-
tons within a fixed radius, we enlarge the radius enough to get a certain number of
photons, and then use the area of the resultant disk in the conversion from power
(stored at incoming photons) to outgoing radiance.

The ray-trace-with-photon-mapping renderer we’ve written has several param-
eters (the number of samples to use to estimate lighting from area lights, the radius
of the kernel, the number of photons to shoot into the scene), each of which has
an effect on the final result. Figure 32.12 shows that with only 100 photons, the
Cornell box scene looks blotchy, because most points in the scene are not within
the kernel radius of any photons at all. With one million photons, each point is
near thousands of photons, and the estimate of diffusely reflected indirect light is
very smooth. (We’ve used a large number of samples for area lights to reduce that
source of variation in the image.)

With a larger kernel radius, the low-photon-count image would look smoother,
but then distant photons would affect the appearance of the scene at any point.
Clearly there’s a tradeoff between photon count N and kernel radius r. In Jensen’s
original photon-mapping algorithm, the radiance estimate was provided by using
a fixed number, k, of photons, enlarging the radius as necessary to find that many
photons. This has the advantage of scale invariance—if you double the scene size,
you needn’t change anything—but it still leaves the problem of choosing N and k.

The number of samples used in estimating direct lighting from area lights also
has an impact on noise in the image. Figure 32.13 shows this, again using the
Cornell box. With only one sample per light, the image is very noisy; with 100,
the noise is lower than that of the photon-mapped estimate of reflected indirect
radiance in Figure 32.12.

Inline Exercise 32.8: In the one-sample-per-source image, how is the noisi-
ness correlated with the brightness, and why? In which areas of the image is
the human visual system most sensitive to the noise?

It’s typical in renderers like this one to use many primary rays per pixel. If
we use 100 primary rays, then we need not use very many rays (per primary
ray) to estimate direct lighting from area sources. We still, however, as Inline
Exercise 32.8 shows, must address the noise in some way, particularly if there
are dark areas in the scene. Fortunately in the case of the Cornell box, indirectly



ptg11539634

912 Rendering in Practice

Figure 32.13: One-sample-per-pixel rendering of the emitted direct light from area lights
only, using 1, 10, and 100 samples to estimate the light from the area source.

Figure 32.14: The three other test scenes, rendered with 100 primary rays per pixel, ten
thousand (top row) and one million (bottom row) shot photons, and one sample per source
for area lights.

reflected light dominates the direct light near the top, and so the noise there ends
up less perceptually significant when we include indirect light.

Looking at the other test scenes (see Figure 32.14), we see that photon map-
ping with one million photons handles the first scene very well. The third scene,
with the transparent sphere, exhibits a caustic highlight beneath the sphere. In the
fourth scene, the emitting luminaire is (as a reflector) completely Lambertian and
black. The mirror is pure specular, and the panel beneath the mirror is dark and
Lambertian. Even with one million photons shot, only a few photons end up in the
scene, and they’re used only in estimating the brightness of the panel beneath the
mirror, which is overwhelmingly determined by direct lighting, so the computa-
tion of the photon map was almost pointless.

In all versions of photon mapping, we’re converting from samples of the arriv-
ing power near P to an estimate of that power at P. This is extremely closely
related to the problem of density estimation in statistics. The most basic form
of density estimate is nearest neighbor, in which the value at P is taken to be
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the value at the sample nearest to P. For a continuous density, this converges to
the correct value as the number of samples gets large, but the convergence is not
exactly the kind we’d like: For any fixed set of samples, the nearest-neighbor esti-
mate of density is piecewise-constant. (On a plane, the regions of constancy are
the Voronoi cells associated to the samples.) This leads to a great many discon-
tinuities. On the other hand, as the number of samples increases, the values in
adjacent cells get closer and closer, so while the set of discontinuities grows, the
magnitude of the discontinuities decreases [WHSG97].

There are many other forms of density estimation aside from nearest-neighbor
interpolation. Weighted averaging by some filter kernel is one; Jensen’s method of
gathering a fixed number of samples and then dividing by a value that depends on
those samples is another. Whole books have been written on density estimation,
and the statistics and mathematics quickly become increasingly complex as the
sophistication of the methods increases.

32.6.2 Further Photon Mapping

The hybrid ray-tracing-photon-mapper approach described above is very basic.
Just as we factored out direct lighting, computing it with ray-tracing rather than
the photon map, it’s possible to build special photon maps that contain only
photons that have passed through particular sequences of scattering, such as
caustics and shadows (carefully omitting these photons from the generic pho-
ton map so that they’re not double-counted). Such specialized maps can be used
to more accurately generate such phenomena, at the cost of ever-growing code
complexity.

There is one technique, however, that applies not just to photon mapping,
but to many algorithms: a final gather step, in which the incoming radiance at
the eye-ray/scene-intersection point is estimated by tracing several rays from that
intersection and using some estimation technique at the secondary intersections to
determine the radiance along those rays; these secondary estimates are then com-
bined to form an estimate along the eye ray. For instance, if the eye ray meets the
world at P, we trace 20 rays from P that meet the world at locations Q1, . . . , Q20.
At each Qi, we can use our photon map to estimate the radiance leaving Qi in
the direction toward P, and then combine these 20 samples of arriving radiance at
P to get the radiance exiting from P toward the eye. By carefully selecting the
directions along which to sample, we can produce an estimate of the outgoing
radiance at P that has far fewer artifacts than would arise from the direct photon-
map estimate. For instance, if the photon map is using a disk-shaped reconstruc-
tion filter, and not very many photons, there will be many sharp discontinuities
in the reconstructed radiance estimates used at the points Qi. But when these are
averaged by the reflectance equation at P to produce the outgoing radiance there,
the result is far fewer artifacts in the final rendering.

The alteration in the code is quite minor, as shown in Listing 32.19: The
code for estimating the diffusely reflected indirect light at the point P gets a new
argument—useGather—that is set to true for primary rays but false for all sub-
sequent ones. When it’s false, we use the photon map as above. But when it’s true,
we essentially perform one-level ray tracing, with a large number of secondary
rays, using photonRender to estimate the incoming radiance along these.
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Listing 32.19: Using final gathering to improve the estimate of indirect
radiance arriving at a point.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Radiance3 App::estimateDiffuselyReflectedIndirectLight(..., boolean useGather)
// estimate arriving radiance at "surfel" with final gather.
Radiance3 L(0.0f);

if (!useGather)
... use the previous photon-mapping code ...

else {
for (int i = 0; i < m_gatherRaysPerSample; i++) {

// draw a cosine-weighted sample direction from the surface point
Vector3 w_i = -r.direction();
Vector3 w_o = Vector3::cosHemiRandom(surfel.geometric.normal, rnd);
Ray gatherRay = Ray(surfel.geometric.location, w_o).bumpedRay(...)

Color3 coeff;
L += π * surfel.evaluateBSDF(w_i, w_o, finf()) *

estimateTotalScatteredRadiance(gatherRay, depth+1, false);
}

}
return L / m_gatherRaysPerSample;

}

The improvement in results is dramatic, at least if we’re willing to use a large
number of rays in our final gathering. If we’re typically averaging contributions
from 20 nearby photons in the nongather version of the code, we should be using
at least 20 gather rays to estimate the radiance in the gather version. Figure 32.15
shows the effect of the final gather.

32.7 Generalizations

Because photon mapping provides a consistent estimate of reflected indirect radi-
ance, we can take any rendering algorithm that needs such an estimate (ray tracing,
path tracing) and replace its estimator with a photon-mapping implementation.
A similar argument allows one to replace direct evaluation by a final-gather step.
Similarly, it’s possible to break up the rendering integral into various pieces (as we
did for impulse-scattered indirect light, diffusely scattered direct light, etc.), and

Figure 32.15: Final gathering with 30 samples in our first three test scenes. The photon
maps were generated with 10,000 shot photons, resulting in 1,100 photons (first scene) to
7,900 photons (second scene). The last image is the Cornell box, rendered with the same
parameters but no final gather. The improvement is substantial.
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estimate each part separately. In some cases, direct evaluation rather than estima-
tion is possible (e.g., mirror reflection of direct light from area lights); removing
this component of the integrand makes the remaining scattered light a smoother
function of the outgoing direction and/or the scattering location, and thus allows
better stochastic estimation with fewer samples.

Certain classes of illumination and reflection are amenable to particular
approaches. For instance, it’s very difficult to use Monte Carlo methods based on
ray tracing from the eye to render a scene that’s lit by tiny luminaires: The chance
that a ray (primary or scattered) will hit the light is so small that the variance in
the radiance estimate ends up large. On the other hand, if we trace rays from the
luminaire to build up a photon map, it becomes easy to estimate the diffusely scat-
tered radiance from small sources, or even scattering along light paths of the form
LS+DE. A dual situation is the rendering of area lights that are multiply scattered
by highly specular surfaces. It’s very difficult to pick a point of such a light, and
a direction for emission, with the property that the resultant light path eventually
reaches the eye. Such a situation is far more amenable to ray tracing. To handle
both cases, you find you want to trace both from the eye and from luminaires,
and you’re in the realm of bidirectional path tracing [LW93, Vea97]. Whether you
choose to glue paths together or use a density-estimation strategy like photon map-
ping depends on the classes of paths you encounter. In fact, it’s natural to begin
thinking that for each possible path type, you might want to choose different ways
of working with those paths, and then combine the results at the end. Choosing
a reasonable way to combine the multiple sampling approaches (or, thinking in
the opposite direction, a reasonable way to break up the integrand or domain of
integration) leads quite naturally to methods similar to those used for Metropolis
light transport.

Broadly speaking, there’s a whole collection of possible approaches that you
can take in building a rendering algorithm, and you can put the pieces together in
many different ways. Considerations of classes of phenomena that are important
to you (caustics, shadows) may make one method preferable over another. Con-
siderations of efficiency, either in the big-O running time of a procedure, or in
coherence of memory access or careful use of bandwidth, may also be an influ-
ence. Don’t be constrained by what others have done: Evaluate the specific ren-
dering problem you need to solve, and then combine techniques as necessary to
optimize.

32.8 Rendering and Debugging

In Chapter 5 we discussed how very sensitive the human visual system can be to
certain kinds of artifacts in images. Renderers give you the opportunity to put that
sensitivity to work. Not only do they provide millions of parallel executions of
the same bit of code (typically one or more executions per image pixel), but it’s
easy to construct scenes that have a natural coherence to them so that any anomaly
stands out.

Let’s look at several examples to see how you can debug a renderer. Suppose
you’re writing a path tracer, and you find that increasing the number of primary
rays causes the image to get dimmer, but does not improve the aliasing artifacts
around shadows. The dimming of the image suggests that you’re dividing by the
number of primary rays, as you should, but that you’re failing to accumulate radi-
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ance in proportion to the number of primary rays. Probably the part of your code
shown in Listing 32.20 has L = estimateTotalRadiance(...) rather than L +=

estimateTotalRadiance(...). That accounts for the presence of the aliasing arti-
facts: You’re still working with only one sample per pixel!

Listing 32.20: Averaging several primary rays.

1
2
3
4
5

for (int i = 0; i < m_primaryRaysPerPixel; i++) {
const Ray r = defaultCamera.worldRay(x + rnd.uniform(), y + rnd.uniform(),..)
L += estimateTotalRadiance(r, 0);

}
m_currentImage->set(x, y, L / m_primaryRaysPerPixel);

Suppose, on the other hand, that increasing the number of primary samples
causes the image to grow brighter. Then perhaps you’re accumulating radiance,
but failing to divide by the number of primary rays.

Now suppose that your objects mostly look good, but one sphere seems to
be missing its left third—you can see right through where that part of the sphere
should be. What could be wrong? Well, that’s a failure to correctly compute the
intersection of a ray with the world, so it’s got to be a problem with the bounding
volume hierarchy (BVH) if you’re using one. The fact that it looks as if the sphere
was chopped off by a plane suggests that some bounding-plane test is failing. Per-
haps switching to a different BVH will get you the correct results, and thus help
you diagnose the problem in the BVH code. By the way, if some plane has just
a single line of pixels that you can see through (or perhaps a line where you see
through just a few of the pixels), it suggests a failure of a floating-point compari-
son: Perhaps one side of a dividing plane is using a less-than test while the other is
using a greater-than test, and the few pixels where the test reveals equality aren’t
handled by either side of the plane (see Figure 32.16).

Figure 32.16: Floating-point
comparison failure in BVH.

Most Monte Carlo rendering approaches produce high-variance results when
you have relatively few samples per pixel. But if you render a Cornell box, for
instance, then a typical secondary ray will hit one of the sides of the box, all of
which are of comparable brightness. Sure, a ray could go into one of the dark
corners, and some rays will come out of the front of the box into empty space. But
in general, if there are a few secondary rays per pixel, the resultant appearance
should be fairly smooth. If you find yourself confronting a “speckled” rendering
like the one shown in Figure 32.17 (produced with one primary ray per pixel)
you’re probably confronting a visibility problem. For contrast, Figure 32.18 shows
the same rendering with the visibility problem fixed; there’s still lots of noise from
the stochastic nature of the path tracer, but no really dark pixels.

Figure 32.17: Speckles in a ren-
dering.

Figure 32.18: Noise in a render-
ing.

The path for diagnosis is relatively simple. If you eliminate all but direct light-
ing and still have speckles, then some rays from the hit point to the area-light point
must be failing their visibility test. There are two possibilities. The first is that per-
haps the points generated on the area light are actually not visible. If you’ve made
a small square hole in the ceiling and placed a large square light slightly above
it, then many random light points won’t be visible from the interior. This is just a
modeling mistake. On the other hand, perhaps the light-sampling code has a bug,
and the light points being generated do not actually lie on the light itself. The other
possibility is that the hit point and light point really are not visible from each other
because of a failure to bump one or both. Figure 32.17 was generated by removing
the bumpedRay calls in the path tracer, for instance. The failure of an unbumped
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ray to see some other point is typically the result of some floating-point compu-
tation going wrong: A number you expected to be slightly greater than zero was
in fact slightly less. The dependence of this error on the point locations is likely
to be tied to the floating-point representation, and to generate random results like
speckle. But sometimes there’s a strong enough dependence on a single parameter
that there’s regularity in the results. Figure 32.19 shows how the floor of the Cor-
nell box is irregularly illuminated (a triangle in the back-right corner is too dark)
when we fail to bump just the light-point position.

Figure 32.19: A diagonal stripe
on the floor from failed visibility
testing.

Suppose that your photon mapper shows nice, smooth gradations of reflected
light in the Cornell box, but there’s no color bleeding: The left side of the floor
isn’t slightly red and the right side isn’t slightly blue. Think for a moment about
what might be wrong, and then read on.

One thing to ask is, “Are the photons correct?” You can plot each photon as
a point in your scene to verify that they’re well scattered, and you can even plot
each one as a small arrow whose base is at the photon location, and which points
toward the source of the light. If all the photons point toward the area light, there’s
a problem: You’re not getting any scattered photons in your photon map. (You’re
also storing first-hit photons, which may be intentional, but if you’re computing
direct illumination in a separate step, as we did, it’s a mistake: You’ll end up
double-counting the direct illumination!) Interpolating values from the photons
you have will tend to give smoothly varying light, however. But you won’t get
color bleeding. Let’s assume, though, that the photons are well scattered, only
store indirect light, and seem to get their indirect light from many different places.

A photon on the floor near the red wall probably got there by having light hit
the red wall and reflect to the floor. The problem has to be in the reflection process,
that is, the multiplication by the BRDF and a cosine. Since the magnitude looks
right, the absorption/reflection part of the code must be right. But the spectral
distribution of the outgoing photon’s power is evidently wrong. What color should
that photon be? Fairly red! By drawing your photons as small disks colored by the
color of the arriving light, you can rapidly tell whether they’re correct or not.
When you discover that all your photons are white, you’ve found the problem:
During multiple bounces, the photon power wasn’t being multiplied by the color
of the surface from which it was reflecting.

As another example, suppose that you’ve decided to improve your photon
mapper with a final-gather step. You wisely keep the no-gather part of the pro-
gram, and include a checkbox in the user interface to determine whether gather-
ing is used or not. When you switch from no-gather to gather, the picture looks
almost the same, but a bit dimmer. If you turn off direct light, it’s evidently a lot
dimmer. In fact, by inspecting and comparing individual pixels, you find that the
pixel values are all dropping by a factor of about three. Once again, think briefly
about where the error must be, and then read on.

When you encounter a number near 3 in a renderer, surprisingly often it’s
really π. (Similarly, a factor of 10 is often π2 ≈ 9.87.) In this case, when this
problem arose for one author it was because he used cosine-weighted samples
for his gathering, multiplied each by the appropriate fs(vi,vo) factor, but not
the cosine (vi · n), because the cosine was included in the sampling weights,
and then averaged the results. The difficulty was the failure to divide by π (the
result of doing a cosine-weighted sampling of the constant function 1 on the upper
hemisphere).

Suppose that in path-tracing our second model—the one with the glass
sphere—we’d seen the reflection of the adjacent solid sphere and of the area light
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on the surface of the glass sphere, but that there was no sign of any transmitted
light. There are many possible problems. Maybe the surface element’s method for
returning all BSDF impulses is failing to return the transmissive ray. Maybe every
transmitted ray is somehow suffering total internal reflection. Maybe the number
of bounces is being truncated at two, and since light would have to bounce off the
back wall, then through two air-glass interfaces, and to the eye, we’re never seeing
it. How should you debug?

First, it’s very useful to be able to trace a single ray, using the pixel coordinates
as arguments, as in pathTrace(int x, int y). You can identify a single pixel
in which the sphere is visible, add code to path-trace that one pixel, and use a
debugger to stop in that code at the first intersection. You check the number of
impulses returned, and find that there are two. One has a positive z-component
(it’s a reflection back somewhat toward the eye), and the other has a negative
z-component (it’s transmission into the sphere). (Here you can see the advantage
of having a view that looks along the z-axis, at least in your test program.)

Second, continuing your debugging, following that second impulse, you find
that it does, in fact, intersect the green glass sphere a second time. Multiple scat-
tering seems to be working fine. But the second intersection is surprisingly near
the first one—all three coordinates are almost the same. If you chose, as your (x, y)
pixel, one that shows a point near the center of the sphere’s image in the picture,
then you’d expect the first and second intersections to be on the front and then the
back of the sphere, nearly a diameter apart. What’s wrong?

Once again, the problem has to do with bumping. It’s true that the transmitted
ray needs to be bumped in the direction of the surface normal, but it needs its
starting point to be bumped into the sphere rather than out of it. To determine
which way a ray should be bumped, we need to know which side of the surface it’s
on. That gets tested with a dot product between the ray direction and the surface
normal. If your scattering code says

1
2

Ray r(surfel.geometric.location, impulse.w);
r = r.bumpedRay(0.0001f, surfel.geometric.normal);

then every recursive ray will be bumped toward the exterior of the sphere. Instead,
you need to write:

1
2
3
4

Ray r(surfel.geometric.location, impulse.w);
r = r.bumpedRay(0.0001f *

sign(surfel.geometric.normal.dot(r.direction())),
surfel.geometric.normal);

In general, debugging by following rays is quite difficult. It helps to have
scenes in which things are simple. A scene with one plane, at z = −20, and one
sphere, of radius 10, centered at the origin, is easy to work with: Whenever you
have a ray-scene intersection, it’s obvious which surface you’re on, and if your
intersection point doesn’t have z = −20, it’s easy to mentally add up x2 + y2 + z2

to see whether it’s approximately 10. It’s even better to have scenes so simple that
you know the exact answer you expect to get at any point. That’s why, for instance,
our fourth scene consists of an area light that’s completely absorptive, and a mirror
(we added the frame to the mirror to make the scene a little easier to understand
visually, but removed it during debugging). An eye ray is going to hit the light (for
which the computed radiance back along the ray will be the emitted radiance of
the light) or miss the scene completely, or hit the mirror, from which it will reflect
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in a simple fashion 100% of the time: Because the mirror has (0, 1, 1) as its nor-
mal, an incoming ray in direction (x, y, z) becomes an outgoing ray in direction
(x,−z,−y). It’s easy to mentally work through any such interaction. And if we
choose a pixel at the center of the scene, then all x-coordinates will be very near 0
and can be neglected.

Doubtless you’ll develop your own approaches to debugging, but because ren-
dering code is often closely tied to particular phenomena, an approach in which
it’s easy to turn on or off certain parts of computed radiance, and to reason about
what remains, makes for much easier debugging.

32.9 Discussion and Further Reading

As we promised at the start of this chapter, we’ve described basic implementa-
tions of a path tracer and a photon-map/ray-tracing hybrid, showing some design
choices and pitfalls along the way. Each renderer produces an array containing
radiance values, the value at pixel (x, y) being an average of the radiance values
for eye rays passing through a square centered at (x, y), whose side length is one
interpixel spacing. This models a perfect-square radiance sensor, which is a fair
approximation of the CCD cells of a typical digital camera. The approximation is
only “fair” because at low radiance values, noise in the CCD system may dom-
inate, and for larger radiance values, the response of the sensor is nonlinear: It
saturates at some point. And even between these limits, the sensor response isn’t
really linear.

What we do with these radiance images depends on our goals. If we want to
build an environment map, then a radiance image is a fine thing to work with. If
we want to display the image on a conventional monitor using a standard image-
display program, we need to convert each radiance value to the sort of value
recorded by an ordinary camera in response to this amount of radiance. As we
discussed in Chapter 28, these values are typically not proportional to radiance. If
the radiance values cover a very wide range, an ordinary camera might truncate the
lowest and highest values. Because we have the raw values, we may be able to do
something more sophisticated, tricking the visual system into perceiving a wider
range of brightness than is actually displayed. This is the area of study called tone
mapping [RPG99, RSSF02, FLW02, MM06], which is an active area of current
research.

Rather than simply storing the average radiance for each location, we could
instead accumulate the samples themselves for later processing, allowing us to
simulate the responses of several different kinds of sensors, for instance, or more
generally, using them as data for a density-estimation problem, the “density”
in this case being the pixel values. Our simple approach of averaging samples
amounts to convolution with a box filter, but other filtering approaches yield bet-
ter results for different applications [MN88]. Not surprisingly, if we know what
filter we’ll be using, we can collect samples in a way that lets us best estimate the
convolved value (i.e., we can do importance sampling based on the convolution
filter). In general, sampling and reconstruction should be designed hand in hand
whenever possible.

The notion of taking multiple samples to estimate the sensor response at
a pixel was first extensively developed in Cook’s paper on distribution ray
tracing [CPC84]. We’ve applied it here in its minimal form—uniform sampling
over a square representing the pixel—but for animation, for instance, we also
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need to integrate over time. The camera shutter is open for some brief period (or
its electronic sensor is reset to black and allowed to accumulate light energy for
some period), and during that time, the arriving light at a pixel sensor may vary.
We can simulate the sensor’s response by integrating over time, that is, by picking
rays through random image-plane points as before, but also with associated ran-
dom time values in the interval for which the shutter is open. The time associated
to a ray is used to determine the geometry of the world into which it is shot: A ray
at one moment may hit some object, but a geometrically identical ray a moment
later may miss the object, because it has moved.

Naturally, it’s very inefficient to regenerate an entire model for each ray.
Instead, it makes more sense to treat the model as four-dimensional, and work
with four-dimensional bounding volume hierarchies. The sample rays we shoot
are then somewhat axis-aligned (their t-coordinate is constant), allowing the pos-
sibility of some optimization in the BVH structure.

Taking multiple samples in space and time helps generate motion blur; other
phenomena can also be generated by considering larger sampling domains. For
instance, we can change from a pinhole camera to a lens camera by tracing rays
from each pixel to many points of a lens, and then combining these samples. With
a good lens-and-aperture model, we can simulate effects like focus, chromatic
aberration, and lens flare. All that’s required is lots and lots of samples and a
strategy for combining them.

When we sample rays passing through the points of a pixel square with a
uniform distribution, we get to estimate the pixel-sensor response with a Monte
Carlo integration. We showed in Chapter 31 that the variance of the estimate falls
off like 1/N, where N is the number of samples, assuming that the samples are
independent and identically distributed. One of the reasons for the inverse-linear
falloff is that when we draw many samples independently, they will tend to fall
into clusters, that is, it’s increasingly likely that some pair of samples are quite
close to each other, or even groups of three or four or more. It’s natural to think that
if we chose our samples so that no two were too close, we’d get “better coverage”
and therefore a better estimate of the integral. This conjecture is correct.

A simple implementation, the most basic form of stratified sampling, divides
the pixel square into a k × k grid of smaller squares, where k ≈ √N, and then
chooses one sample uniformly at random from each smaller square. With this
strategy, the variance falls off like 1/N2, which is an enormous improvement.

Inline Exercise 32.9: Suppose that you have 25 samples to use at one pixel.
You can
(a) distribute them in a 5× 5 grid,
(b) distribute them uniformly and independently, or
(c) use the stratified sampling strategy just described, dividing the pixel square
into small squares and choosing one sample per small square. We’ve said that
choice (c) is better than choice (b), but even with choice (c), we can get pairs
of samples (in adjacent small squares) that are very close to each other. Does
this mean that choice (a) is better?

Regardless of what approach you take to generating samples, it’s worth think-
ing about the result you’ll get when the function you’re integrating has a sharp
edge, such as the light reflected by adjacent squares of a chessboard—one (white)
square reflects well, the adjacent (black) square does not. If the edge between
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adjacent squares crosses the pixel grid diagonally, and we use a single ray through
each pixel center to estimate the reflected light, we get aliasing, as we saw in
Chapter 18. Using distribution ray tracing (or, equivalently, using Monte Carlo
integration) tends to replace this aliasing with noise, which is less visually dis-
tracting. So one way to choose a sampling strategy is to ask, “What kinds of noise
do we prefer, if we have to have noise at all?”

Yellot [Yel83] suggests that the frequency spectrum of the generated samples
can be used to predict the kinds of noise we’ll see. If there’s lots of energy at some
frequency f , and the signal we’re sampling also has energy at or near f , we’ll
tend to see lots of aliasing rather than noise. And if there’s lots of low-frequency
energy in the spectrum, the aliases produced will tend to be low-frequency, which
are more noticeable than high-frequency ones. In graphics, a sampling pattern is
said to be a blue noise distribution if it lacks low-frequency energy and lacks any
energy spikes. (The term is generally used for something more specific, namely,
one in which the spectral power in each octave increases by a fixed amount so
that the power density is proportional to the frequency.) Yellot gives evidence
that the pattern of retinal cells in the eye follows a blue-noise distribution. And
the good antialiasing properties certainly suggest that such distributions are good
candidates for sampling, as Cook noted. Mitchell [Mit87] notes that the stratified
sampling Cook proposes has the blue-noise property, at least weakly, but that other
processes can generate much better blue noise. For instance, the Poisson disk pro-
cess (initialize a kept list to be empty; repeatedly pick a point uniformly at random;
reject it if it’s too near any other points you’ve kept, otherwise keep it) generates
very nice blue noise. It’s unfortunately somewhat slow. Mitchell presents a faster
algorithm, and Fattal [Fat11] has developed a very fast alternative that represents
the current state of the art.

In our rendering code, we’ve divided light into “diffusely scattered” and
“impulse scattered,” on the grounds that the spikes in the BSDF for a mirror or
an air-glass interface have values that are so much larger than those nearby that
they are qualitatively different. But this fails to address the important phenomenon
of very glossy reflection (like the reflection from a well-waxed floor). The glossier
your materials are, the more difficult efficient sampling becomes. When we want
to compute scattered rays from a surface element, we can always sample outgo-
ing directions vo with a uniform or cosine-weighted distribution, and then assign
a weight to the sample that’s proportional to the scattering value fs(vi,vo), but
such samples will be ineffective for estimating the integral when vo 
→ fs(vi,vo)
is highly spiked (assuming the incoming radiance is fairly uniform). At the very
least, it’s best if your BSDF model provides a sampling function that can gen-
erate samples in proportion to vo 
→ fs(vi,vo), although to accurately estimate
the reflectance integral, you must also pay attention to the distribution of arriv-
ing radiance, which itself is dependent on the emitted radiance and the visibility
function. The only algorithm we know that is designed to simultaneously consider
all three—the variation in the BSDF, the emitted radiance, and the visibility—is
Metropolis light transport, but it comes with its own challenges, such as start-up
bias and the difficulty of designing effective mutations and correctly computing
their probabilities.

To return to the matter of path-tracer/ray-tracer-style rendering, the goal to
keep in mind is variance reduction: If you can accurately estimate some part of
an integral by a direct technique, you may be able to substantially reduce the
variance of the overall estimate. Of course, it’s important to reduce variance while
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keeping the mean estimate correct (or at least consistent, i.e., approaching the
correct answer as the number of samples is increased). After the most obvious
optimizations, however, this leads to diminishing returns. If you use your “domain
knowledge” to say “most rendering happens in scenes where the lighting doesn’t
vary very fast,” you’ll soon find yourself needing to render a picture of the night
sky, where essentially all lighting changes are discontinuities rather than gradual
gradients.

One of the most promising recent developments in Monte Carlo rendering is
to use the gathered samples in a different way. Rather than computing an average
of samples, or a weighted average, we can treat the samples we’ve gathered as
providing information about the function that they’re sampling. Let’s begin with
a very simple example: Suppose we tell you we have a function on the interval
[0, 1] and that it’s of the form f (x) = ax+ b for some values a and b (but you
don’t know a and b). It’s easy to show that the average value of f on the unit inter-
val is (a/2) + b. Now let’s suppose we ask you to estimate that average using a
Monte Carlo integral. You might take ten or 20 samples, average them together,
and declare that to be an estimate of the average value of f ; this is exactly analo-
gous to what we’ve been doing in all our rendering so far. But suppose that you
looked more carefully at your samples, and for each one, you know both x and
f (x). For instance, maybe the first sample is (0.1, 7) and the second is (0.3, 8).
From these two samples alone, you can determine that a = 5 and b = 6.5, so the
average value is 9. From just two samples, we’ve generated a perfect estimate of
the average. Of course, we were only able to do so because we knew something
about the x-to-f (x) relationship.

This idea has been applied to rendering by Sen and Darabi [SD11]. They posit
that the sample values for a particular pixel bear some functional relation to the
random values used in generating the samples. For instance, the sample value
might be a simple function of the displacement from the center of the pixel or
of the time value of the sample in a motion-blur rendering in which we have to
integrate over a small time interval. Because we use random numbers to select
the ray (or the time), we get random variations in the resultant samples. Sen and
Darabi estimate the relationship of the sample values to the random values used
to generate the samples. Their estimate of the relationship is not as simple as the
ax + b example above; indeed, they estimate statistical properties of the relation-
ship rather than any exact parameters. From this, they distinguish variation due
to position (which they regard as the underlying thing we’re trying to estimate)
from the variation due to other injected randomness, and then use this to better
guess the pixel values, in a process they call random parametric filtering (RPF).
Figure 32.20 shows an example of the results.

In this chapter, we’ve developed two renderers, but they are by no means state
of the art. The book by Pharr and Humphreys [PH10] (which is nearly as large as
this book) discusses physically based rendering in great detail, and is a fine choice
for those who want to study rendering more deeply. The SIGGRAPH proceedings,
other issues of the ACM Transactions on Graphics, and the proceedings of the
Eurographics Symposium on Rendering give the student the opportunity to see
how the ideas in this chapter originally developed, and which avenues of research
proved to be dead ends and which have stood the test of time.
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Figure 32.20: The eight samples per pixel that were used to generate the Monte Carlo ren-
dering on top are filtered with RPF to produce the improved rendering on the bottom, which
is virtually indistinguishable from a Monte Carlo rendering generated with 8,192 samples
per pixel. (Courtesy of Pradeep Sen and Soheil Darabi, ©2012 ACM, Inc. Reprinted by
permission.)

32.10 Exercises

Exercise 32.1: Up through Listing 32.10, we addressed the effects of the refrac-
tive index in two places in our program: in approximating the Fresnel term,
and in computing the change in radiance at an interface between surfaces of
different refractive indices. We did not, however, use the coefficient of extinc-
tion at all: Every material we considered transmits light perfectly, which means
that all absorption takes place only at the boundaries between materials. Modify
the path tracer to account for the coefficient of extinction of a material.

Exercise 32.2: (a) Let A = (0, 0), B = (1, 0), and C = (1, 1), and let T
be the triangle ABC. Suppose that the texture coordinates for A are (uA, vA) =
(0.2, 0.6), for B they’re (0.3, 0.3), and for C they’re (0.5, 0.1). Assume that texture
coordinates are interpolated linearly across the triangle. Find the unit vector u such
that the u-coordinate increases fastest in direction u.
(b) Generalize to arbitrary point and texture coordinates at the three vertices.

Exercise 32.3: (a) We used photon mapping to estimate the diffuse scattering
of indirect light. Jensen suggests not even storing photons except on diffuse sur-
faces. And we also omit direct lighting from the photon mapping calculation—that
gets handled in a separate step. But what would happen if you used photon map-
ping for specular reflections and direct lighting as well? What would you expect?
Would a final gather be of any use?
(b) If you’ve written a photon-mapping renderer, try modifying it to handle each
of these individually. Were your predictions correct?

Exercise 32.4: Our path tracer and photon mapper both assume that all light
sources are “on the outside”—we don’t allow for a glowing lamp embedded in a
glass sphere. Where in the code is the assumption embedded?
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Exercise 32.5: (a) We merged the photon map with a ray tracer. Can you think
of how to merge it with a path tracer instead?
(b) The photon mapper stops pushing around photons after some maximum depth;
that introduces a bias. How? For a photon map that allows only n bounces, con-
struct a scene where the resultant radiance estimate is drastically wrong, no matter
how many photons you send into the scene.
(c) Can you take the idea from the path tracer—“just continue tracing until things
stop”—and use it in the propagation of photons? Will it solve the problem with
the scene you constructed in part (b)?

Exercise 32.6: (a) Given a random number generator that produces values
uniformly in the interval [0, 1], describe how to generate uniform random points
in the unit square.
(b) If you generate the point (x, y) with x < y, you can replace it with (y, x), and
otherwise leave it unchanged. Show that this generates points uniformly in the
triangle with vertices (0, 0), (1, 0), (1, 1).
(c) Let u = 1 − x, v = 1 − y, and w = 1 − (u + v). Show that applying this
transformation to the results of part (b) generates points uniformly at random in
barycentric coordinates on the triangle u + v + w = 1, 0 ≤ u, v, w,≤ 1.
(d) Show that for any triangle PQR, the points uP + vQ + wR are distributed
uniformly at random in the triangle, when uvw are generated according to part (c).

Exercise 32.7: (a) Write a WPF program that uses the method in Exercise 32.6
to generate points in a triangle. The user should be able to drag the three triangle
vertices, and press buttons to generate either a single point or 100 points, each of
which should be displayed as a colored dot within the triangle. Another button
should clear the points.
(b) Extend your program to handle meshes. Generate a 2D mesh (perhaps the
Delaunay triangulation for a random set of points), and then improve your pro-
gram to pick a point (or 100 points) in the mesh uniformly at random. Do so
by precomputing the triangle areas, summing them, and then assigning each
triangle a probability given by its area divided by the total area. Put the trian-
gles in some order, and compute probability sums s[0] = p[0], s[1] = p[0] + p[1],
s[2] = p[0] + p[1] + p[2], etc. Given a uniform random variable u, you can now
identify the largest index i with u ≤ s[i]. To generate a random mesh point, you
can pick a uniform random number u, identify the last triangle i with u ≤ s[i], and
then generate a random point in that triangle (see Exercise 32.6).
(c) Briefly discuss how to make the triangle-selection process faster than O(n),
where n is the number of triangles in the mesh.
(d) Suppose that in ordering the triangles, we place the largest ones first. Then
in a search of the list, we’re likely to examine relatively few triangles to find the
“right” one. Would you, in working with a typical graphics model, expect this to
have a large impact on the sampling time? Why or why not?

Exercise 32.8: We’ve argued that an eye ray hitting a point source is a
probability-zero event, so we can ignore point sources. But since a point source
is generally used to represent a limit of ever-tinier spherical sources, and for any
such spherical source there’s a nonzero probability of an eye ray hitting it, the
“can ignore” argument depends on what happens in these approximating cases.
The radiance emitted by such a small approximating sphere is proportional to the
inverse square of its radius (to maintain constant power); the probability of an eye
ray hitting it is proportional to its squared radius; hence, the expected contribution
to the pixel (once it’s small enough for its image to be completely contained in
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the pixel square on the film plane) is constant. We’re therefore treating the limit
of a constant as zero. Adjust all the renderers in this chapter to make an extra pass
to “correctly” render the effect of point lights by tracing a ray from each point
light to the eye, and adding the appropriate radiance to the appropriate pixel if the
point light’s actually visible. In doing this, you’re basically doing a special case
of bidirectional path tracing.

Exercise 32.9: In the ray-trace-with-photon-mapping renderer, we estimate
the direct light arriving from an area light with several samples. If the area light’s
far away, this is probably overkill; if it’s nearby, it’s probably inadequate. For
Lambertian reflectance of a uniformly emitting planar, one-sided area light, only
the cosine term varies with the light-sample position. Suppose (see Figure 32.21)
that the area light is completely contained in a sphere of radius s about some
point Q, we’re reflecting it at a point P of some Lambertian surface, the “bright
side” is completely visible from P, and the length of the vector r = Q − P from
P to Q is d. Under what conditions on d and s can we approximate the reflected
radiance due to the luminaire directly multiplying the projected area (orthogonal
to r) of the source, the cosine of the angle θ between r and nP and the Lamber-
tian reflectance, and 1/‖r‖2 and be certain the result is correct within 1%? The
several assumptions—that the source be planar, uniform, completely visible, etc.,
and that the reflecting surface be Lambertian—are not really as restrictive as they
might sound. In particular, the same idea works for convex nonplanar sources,
although the computation of the projected area may be nearly as complex as using
multiple samples to estimate the reflected radiance.

(b) Suppose that the reflecting surface has a BRDF (for a fixed outgoing direc-
tion) whose variation, as a function of the incoming light direction θ, is nicely
bounded, that is, |f (θ) − f (θ′)| < K|θ − θ′|. Can you do an analogous analysis?
See also Exercise 26.12 in Chapter 26.

Transparent surfaceP

d

r

Luminaire

Figure 32.21: The rule of five,
revisited.

Exercise 32.10: When we sampled points on an area light, we sampled uni-
formly with respect to area. We can instead presample a light source, using
stratified sampling to generate a collection of samples that we can reuse. The
stratified sampling helps ensure that the estimate of the average effect of the point
light is accurate, although the estimates for adjacent pixels are likely to be highly
correlated, which may be a problem in some cases. Essentially we’re replacing an
area light with a collection of “micro-light” point lights. If there are too few, the
shadows cast by each may generate a noticeable artifact.
(a) Build a ray tracer that replaces each area light with multiple point lights in this
way. Do you see any artifacts? How is the running time affected as you increase
the number of samples on the luminaire?
(b) Instead of using all the micro-lights to illuminate each surface point, we can
pick one at random, essentially doing a single-sample estimate of the radiance
transfer from the light to the surface point. Doing this once per primary ray can
generate nice soft shadows. If we’re shooting 25 primary rays (using stratified
sampling), and the area light is represented with 25 micro-lights, we’d like to use
each micro-light once. How should you pair up the primary rays and the micro-
lights? Do you foresee any problems?
(c) Implement your approach and critique the results.

Exercise 32.11: (a) Use the Poisson disk process to generate blue-noise sam-
ples on a line: Generate samples in the interval [0, 1] in which all are at least
r = .001 apart, until there is no more room to fit a new sample.
(b) Discretize the interval into 10,000 bins, and record a 1 in each bin that contains
a sample, and a 0 otherwise.
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(c) Compute the fast Fourier transform of the resultant array. Does it appear to be
a blue-noise distribution?
(d) Try this process again with various values for r. Below what frequency (in
terms of r) is there relatively little energy?
(e) Now generate a similar occupancy array using stratified sampling, and com-
pare the frequency spectra of the two processes. Describe any differences you find.
(f) Generalize to 2D.
(g) Implement Mitchell’s [Mit87] point diffusion algorithm for generating blue
noise, and compare its results to the others.

Exercise 32.12: For a rectangular area light, write code to sample a point from
the light uniformly with respect to area. Do the same for a spherical source. For
the sphere, recall that the projection (x, y, z) 
→ (x/r, y, z/r), where r =

√
x2 + z2

is an area-preserving map from the unit-radius cylinder about the y-axis, extending
from y = −1 to y = 1, onto the unit sphere.
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Chapter 33

Shaders

33.1 Introduction

This chapter is about shaders, pieces of code written in a shading language,
a specialized language that’s designed to make shader writing easy. Shaders
describe how to process data in the graphics pipeline. Shading languages are
evolving so fast (as is the programmability of the pipeline itself) that this chapter
will be out of date before its last sentence is written, let alone before you read it.
Despite this rapid evolution, there are some things that are invariant across sev-
eral generations of shading languages, and that we anticipate will remain in future
versions for at least a decade. There’s some reason to believe this. The evolution
of the graphics libraries that link a program on a CPU to one or more programs
on the GPU has been from the specific (in early years) to the general, to the point
where much of GL 4 resembles an operating system rather than a graphics library:
It’s concerned with linking together executable pieces of programs on the CPU
and GPU, passing data between processes, starting and stopping threads of execu-
tion, etc. There’s no obvious further generalization that can happen, at least in the
near term. Perhaps in five years you’ll write shaders directly in C# rather than in
a specialized shading language, and those shaders will run on 500-core machines.
But in many ways they’ll continue to look the same: The first thing we usually do
with vertex data is to transform it to world-space coordinates using multiplication
by some matrix. That will look the same, no matter what the language.

We’ll therefore describe a few shaders, using GL 4 as our reference system,
and trusting that you, the reader, will be able to interpret the ideas of this chapter
into whatever shading language you’re using.

33.2 The Graphics Pipeline in Several Forms

Figures 33.1 and 33.2 show the various steps involved in either a rasterizing ren-
derer or a ray tracer, as described in Chapter 15.

927
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Simulate
(includes AI & Physics)

Pose

User input

Texture Cull

Dynamic 3D geometry

Static 3D geometry

Reduced 3D geometry

2D geometry

2D pixels

2D radiance

Displayable 2D image

Camera Transformations
& Projection

Rasterize

Shade
Performed

in hardware

Combine

Post-process

Figure 33.1: The steps involved in a basic rasterizing renderer.

There are many operations—transforming objects from object space to world
space to camera space, shading, placing pixel values in a buffer for later use (either
in environment mapping, for instance, or in compositing with some other precom-
puted imagery)—that occur in both pipelines.

As software engineers, we know that when there’s commonality, there’s an
opportunity for abstraction and the development of an interface to the common
portions of the code. The particular form of the interface can vary: Some designs
employ virtual methods, others use callbacks, etc. In some cases the thing being
abstracted is complex enough that the way in which it’s used is itself complex.
In these cases, it makes sense to create a language in which the use pattern is
described via small programs. We’ve seen an example of this with WPF in ear-
lier chapters: XAML provides a language for describing objects, their geometric
properties, their relationships, and how data is passed among them, for instance.
A C# program usually combines with XAML code to constitute an entire graphics
project.

In the case of the graphics pipelines shown in the preceding figures, there’s a
common structure: The geometric and material descriptions of objects in a scene
undergo similar transformations, for instance, in a similar order in both pipelines.
But the details of what goes on at certain stages vary. Shaders are small programs
that specify how the duties of certain portions of the pipeline are to be carried out.

The sidebar in this chapter describes informally how we got from individ-
ual renderers written in research laboratories to the software design of packages
like GL 4.



ptg11539634

33.3 Historical Development 929

Simulate
(includes AI & Physics)

Pose

Texture Forward trace

Dynamic 3D geometry

Static 3D geometry

Reduced 3D geometry

2D Radiance image
Recursive tracing

Surface intersection

Displayable 2D image

Cull

Backward trace

For each pixel

Shade

Post-process

CSG

Transform

Figure 33.2: The steps involved in a basic ray tracer.

33.3 Historical Development

Immediate-mode packages like GL in its early forms provided ways to represent,
in the sequence of instructions issued to the package (typically by function calls),
something about the structure of the objects to be drawn. If an object was modeled
with a hierarchy of transformations, then the sequence of GL calls would reflect
this, pushing and popping matrix transformations from a stack that represented a
current transformation to be applied to all subsequent vertices. These transformed
vertices, together with vertex-index triples representing triangles, formed the core
of what was to be rendered. The rendering process followed a fairly straightfor-
ward path, which can be coarsely summarized by saying that a collection of tri-
angles with per-vertex and per-triangle attributes were described to the system,
often with various transformations applied to the vertices. The resultant trian-
gles were then transformed to the standard perspective view volume, and clipped
against the near clipping plane. They were then transformed to the standard par-
allel view volume, and clipped against the remaining clipping planes. The resul-
tant triangles were then rasterized, the rasterized pixels were shaded (i.e., some
computation was done to determine their color, a computation that often involved
texture lookup), and the triangles were placed into a Z-buffer, with only the front-
most remaining in the final image. Sometimes the resultant image was combined
with some preexisting image via a compositing operation so that multiple objects
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could be rendered in separate passes and then a single image could be produced
at the end.

As graphics developed, the particular choices of transformations to be applied
to triangles, or how values computed at vertices were to be interpolated across
triangles, or even how high-level descriptions of objects were to be converted to
triangle lists, all varied. But there were a few things that were shared by essentially
all programs: vector math, clipping, rasterization, and some amount of per-pixel
compositing and blending. The development of GPUs has reflected this—GPUs
have become more and more like general-purpose processors, except that (a) vec-
tor and matrix operations are well supported, and (b) clipping and rasterization
units remain a part of the design. The modern interface to the GPU now consists
of one or more small programs that are applied to geometric data (these are called
vertex shaders), followed by clipping and rasterization, and one or more small
programs that are applied to the “fragments” produced by rasterization, which are
called pixel shaders or fragment shaders. A more appropriate name for what’s
currently done—computing shading values for one or more samples associated
to a pixel—might be sample shaders. The programmer writes these shaders in a
separate language, and then tells the GPU in which order to use them, and how to
link them together (i.e., how to pass data from one to the other). Typically some
packages (like GL 4) provide facilities for describing the linking process, compil-
ing and loading the shaders onto the GPU, and then passing data, in the form of
triangle lists, texture maps, etc., to the GPU.

Why are these programs called shaders? In the GL version of the Lambertian
lighting model, similar to the one presented in Chapter 6, the color of a point is
computed (using GL notation) by

C = kdCdL(� · n), (33.1)

where � is the unit direction vector to the light source, kd is a representation of
the reflectance of the material, Cd is the color of the material (i.e., a red-green-
blue triple saying how much light the surface reflects in each of these wavelength
bands), L is the color of the light (again an RGB triple, which is multiplied term
by term with Cd), and n is the surface normal. In Phong lighting, another term,
involving the view vector as well, and ks, a specular constant, Cs, a specular color,
and ns, the specular exponent, are added.1 Increasingly complex combinations of
data like this, including texture data to describe surface color or surface-normal
direction, etc., got added, and the formulas for computing the color at a point got
to look more and more like general programs. Cook [Coo84] introduced the idea
that the user could write a small program as part of the modeling process, and the
rendering program could compile this program into something that executed the
proper operations. Cook called this programmable shading, although perhaps pro-
grammable lighting would be a better term for the process we’ve just described.
In that era, the computation entailed by lighting models was often so great that it
made sense to do much of the computation on a per-vertex basis, and then inter-
polate values across triangles; the interpolation process was called shading, and it
varied from the interpolation of the colors to the interpolation of values to be used
in computing colors. Since papers describing lighting models often also described

1. In the terminology we’ve used from Chapter 14 onward, these would be the “glossy”
constant, color, and exponent.
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such shading approaches, the two ideas became conflated, and the term “shader”
was used for the new notion.

Modern shaders are really graphics programs rather than being restricted to
computing colors of points. There are geometry shaders, which can alter the list
of triangles to be processed in subsequent stages, and tessellation shaders, which
take high-level descriptions of surfaces and produce triangle lists from them; an
example is a subdivision surface shader, which might take as input the vertices
and mesh structure of a subdivision surface’s control mesh, and produce as output
a collection of tiny triangles that form a good approximation of the limit surface.
There are also vertex shaders that serve only to transform the vertex locations,
and generally have nothing to do with eventual color.

While the typical graphics program might have a geometry shader, a tessella-
tion shader, a vertex shader, and a fragment shader, there is also the ability to turn
off any portion of the pipeline and say, “Just compute this far and then stop.” Thus,
a program might run its geometry and tessellation shader, and then return data to
the CPU, which could modify it in some way before returning it to the GPU to be
processed by the rasterization and clipping unit and then a fragment shader.

We’ll describe some basic vertex and fragment shaders to give you a feel for
how shaders are related to the ideas you’ve seen throughout this book.

What follows is a rough and informal description of the history of raster
graphics, from a high level.

• At the start of graphics, no one had any idea how to do anything, so we
found a way to create rasterized lines, for instance, and to draw surfaces
with flat shading.

• The next year, we thought of a new way to rasterize, and thought about
curves rather than just lines, and someone came up with a new lighting
model.

• Pretty soon, we realized that there was a higher-level problem—
rasterization of primitives—to be solved, and that lighting models
would evolve every year, and that we needed an architecture in which
that sort of thing was possible. On the other hand, there were parts
of almost every graphics program—clipping, for instance—that would
probably remain fairly constant, and appear in the same place in the
program; this was the start of the “pipeline” idea.

• Making a general-purpose language for describing lighting was too
expensive when most lighting was going to use the Phong model. So
we split into two camps: fixed function and programmable. The pro-
grammable camp’s rendering was slow, but very general-purpose. The
fixed-function camp rendered things fast, but was constrained in what
sorts of rendering it could do. The only reason for the split was the dif-
ference in how people wanted to control what went on in the computer:
Some, who loved interactivity, said, “You can adjust the constants, and
I’ll burn the algorithm into silicon”; the others said, “Interactivity isn’t
so important to me . . . but I really want expressiveness. I can always get
more computers, but I want a programming language to describe my
output.” The first gang went on to develop the fixed-function approach,
and from an industry point of view, they were clustered around Silicon
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Graphics, Inc., and a few other makers of graphics workstations. The
second group formed the core of the special effects and computer-based
animation industry, centered around firms like Lucasfilm and Pixar.

• The good news for the reader is that both approaches won: The success
of the fixed-function approach led to the development of commodity
graphics cards. In less than 20 years, the cost of graphics performance
dropped by a factor of more than a thousand. Meanwhile, the pro-
grammable shading approach showed the world just how much could
be done with graphics that wasn’t constrained by interactivity consider-
ations. Finally, Moore’s Law meant that processor speeds were improv-
ing enormously, and one year’s noninteractive program was next year’s
interactive program. The result has been that the movie industry now
uses GPUs, that is, stock graphics hardware, while the game industry
now routinely uses programmable shading.

• The convergence was gradual, however. As the environment changed,
year by year, the tradeoffs between the two approaches could be eval-
uated in the context of current hardware, model size, etc.; the fixed-
function approach gradually lost out to programmability, and all the
ideas from Cook’s programmable shaders paper gradually entered the
hardware.

• As a final stage (so far!), it became clear that graphics now looked like
“linking together bits of program in more and more complex pipelines,”
which sounds more like an operating systems problem than a graphics
problem. The design of GL4 reflects this: It’s a system for defining bits
of program and linking them together into complete assemblies; the
graphics-specific parts of the design are only a small part, and many of
the graphics-specific ideas of early versions of GL are now deprecated.

33.4 A Simple Graphics Program with Shaders

As we said earlier, the job of a modern graphics system is rather like an operating
system. Three separate entities need to communicate:

• A program running on the CPU (the host program)

• The graphics pipeline: some implementation of the processing of data from
the host program including things like geometric transformations, clipping
and rasterization, compositing, etc.

• The shader programs that run on the GPU

Part of the graphics pipeline may be implemented on the CPU as a library; some
parts may be implemented on the GPU. Part of the function of the graphics system
is to isolate the developer of the host program from these details (which may vary
from computer to computer, and from graphics card to graphics card). Of course,
the developer of the host program is typically also the person who develops the
shader programs. That developer must ask the question, “How do I connect a
variable in my C#/C++/Java/Python program with a corresponding variable in
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the vertex shader?” for instance. That’s the role of GL (or DirectX, or any other
graphics API).

The details of the linking process that associates host-program variables with
shader variables are messy and complicated, and the design of GL is extremely
general. Almost every developer will want to work with a shader wrapper—
a program that once and for all chooses a particular way to use GL to hook
a host program to shaders, and provides features like automatic recompilation
of shaders, etc. Graphics card manufacturers typically provide shader-wrapper
programs to allow the easy development of programs that fit the most common
paradigms. Only those who need the finest level of control (or those developing
shader-wrapper programs) should actually work with most of the tools GL pro-
vides for linking host programs to shader programs.

We’ll use such a shader wrapper—G3D—in writing our example shaders in
this chapter. G3D is an open source graphics system developed by one of the
authors [McG12], and provides a convenient interface to GL. But the shaders in
this chapter can in fact be used with other shader wrappers as well, with essentially
no changes.

Let’s look at a first example: a shader that provides Gouraud shading, com-
puted once per vertex, and linearly interpolated across triangles. The host program
in this case loads a model in which each vertex has an associated normal vector,
and provides a linear transformation from model coordinates to world coordinates,
and a camera specification. Listing 33.1 shows the declaration of an App class

Listing 33.1: The class definition and initialization of a simple program
that uses a shader.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

class App : public GApp {
private:

GLight light;
IFSModel::Ref model;

/** Material properties and shader */
ShaderRef myShader;
float diffuse;
Color3 diffuseColor;

void configureShaderArgs();

public:
App();
virtual void onInit();
virtual void onGraphics(RenderDevice* rd,

Array<SurfaceRef>& posed3D);
};

App::App() : diffuse(0.6f), diffuseColor(Color3::blue()),
light(GLight::directional(Vector3(2, 1, 1), Radiance3(0.8f), false)) {}

void App::onInit() {
myShader = Shader::fromFiles("gouraud.vrt", "gouraud.pix");
model = IFSModel::fromFile("icosa.ifs");

defaultCamera.setPosition(Point3(1.0f, 1.0f, 1.5f));
defaultCamera.lookAt(Vector3::zero());

... further initializations ...
}
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derived from a generic graphics application (GApp) class: The App contains a ref-
erence to an indexed-face-set model and a single directional light (specified by its
direction and radiance), values for the diffuse color of the surface and the diffuse
reflection coefficient, and a reference to a shader object.

When the run() method on a GApp is invoked, it first invokes GInit, and
then repeatedly invokes onGraphics(), whose job is to describe what should be
rendered.

As you can see, the initialization of the application instance is fairly straight-
forward: In lines 20 and 21, we assign a diffuse reflectance and color to be used
for a surface, and create a representation of a directional light (a direction and
radiance value).

During initialization, G3D’s Shader class is used to read the vertex and pixel
shaders (as text) from their text files (line 25), and we load a model of an icosahe-
dron from a file (line 26), and set the camera’s position and view (lines 28 and 29).

At each frame, the onGraphics method is called (see Listing 33.2). The
setProjectionAndCameraMatrix method (line 2) invokes several GL operations
to establish values for predefined variables like gl_ModelViewProjectionMatrix.
The next two lines clear the image on the GPU to a constant color.

Listing 33.2: The graphics-drawing procedure and main.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

void App::onGraphics(RenderDevice* rd, Array<SurfaceRef>& posed3D){
rd->setProjectionAndCameraMatrix(defaultCamera);
rd->setColorClearValue(Color3(0.1f, 0.2f, 0.4f));
rd->clear(true, true, true);
rd->pushState(); {

Surface::Ref surface = model->pose(G3D::CoordinateFrame());

// Enable the shader
configureShaderArgs(light);
rd->setShader(myShader);

// Send model geometry to the graphics card
rd->setObjectToWorldMatrix(surface->coordinateFrame());
surface->sendGeometry(rd);

} rd->popState();
}

void App::configureShaderArgs() {
myShader->args.set("wsLight",light.position.xyz().direction());
myShader->args.set("lightColor", light.color);
myShader->args.set("wsEyePosition",

defaultCamera.coordinateFrame().translation);

myShader->args.set("diffuseColor", diffuseColor);
myShader->args.set("diffuse", diffuse);

}

G3D_START_AT_MAIN();

int main(int argc, char** argv) {
return App().run();

}
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Between the pushState and popState calls, the program says which shader
should be used for rendering this part of the scene (line 10) and which variable
values are to be passed to the shader (line 9), establishes the model-to-world trans-
formation for this model (line 13), and then (line 14) sends the geometry of the
model to the graphics pipeline.

In the case of this simple shader, we send (lines 19–25) the world-space coor-
dinates of the light, the color of the light, the position of the eye, the diffuse
color we’re using for our icosahedron, and the diffuse reflectivity constant. The
args.set procedure establishes the link between the host program’s value for,
say, the directional light’s world-space direction vector and the shader program’s
value for the variable called wsLight.

Finally, following the call to onGraphics, the shader wrapper tells the
pipeline to process the vertices of the mesh one at a time with the vertex shader,
assemble these into triangles which are then rasterized and clipped, and then pro-
cess the rasterized fragments with the fragment shader. Let’s look at the GLSL
vertex shader code (Listing 33.3) to see what it does.

Listing 33.3: The vertex shader for the Gouraud shading program.

1
2
3
4
5
6
7
8
9

10
11
12

/** How well-lit is this vertex? */
varying float gouraudFactor;

/** Unit world space direction to the (infinite, directional) light source */
uniform vec3 wsLight;

void main(void) {
vec3 wsNormal;
wsNormal = normalize(g3d_ObjectToWorldNormalMatrix * gl_Normal);
gouraudFactor = dot(wsNormal, wsLight);
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

As you can infer from the code, certain variables are predefined in GLSL, as
are some useful functions, like normalize and dot. Table 33.1 lists a few of these.

Built-in data types include the C-like float and int, and others that help us
perform vector operations like vec3 and mat33. GLSL also provides tools for
accessing any portion of a vec3 or vec4 through a construction called slicing:
If v is a vec3, we can use v.x to access its first entry, and v.yz to access its second
and third entries, for instance. Since a vec3 is also used to represent colors (and a
vec4 is used to store colors with alpha), we can also write myColor.rga to access
the red, green, and alpha portions of a color, for instance. Mixing xyzw-slicing and
rgba-slicing is allowed, but seldom makes sense.

As described in Chapter 16, each kind of shader is responsible for establishing
values used by later shaders. For instance, a vertex shader like the one used here
gets gl_Vertex, the 3D world-space location of the vertex, as input; each time
the shader is called, gl_Vertex has a new value, the world-space coordinates for
another vertex, in the input. The vertex shader is responsible for assigning a value
to gl_Position, which is meant to represent the position of the vertex in camera
coordinates, or, expressed alternatively, the position of the vertex after the camera
transformation has been applied to move the view frustum to the standard per-
spective view volume. In the case of our shader, this is accomplished by line 11,
which multiplies the vertex coordinates by the appropriate matrix.



ptg11539634

936 Shaders

Table 33.1: Predefined items in GLSL.

Name Type Meaning

gl_Vertex vec4 The homogeneous position of the current
vertex

gl_Normal vec4 The normal at the current vertex

gl_FragColor vec4 The RGBA color of the current fragment

gl_ModelViewProjectionMatrix mat44 The transformation from modeling coordi-
nates to normalized device coordinates

gl_Position vec4 The homogeneous normalized device coordi-
nates of the current fragment, before perspec-
tive divide, i.e., gl_Position.w may not be
1.0.2

pow(x, y) Raises x to the y power; if x is a vector, do so
termwise

max(x, y) Returns the larger of x and y

dot(x, y) Dot product of vectors; x and y must be of the
same size (i.e., vec2 or vec3 or vec4)

A vertex shader may also get other input data, in one of two forms. First, there
may be other per-vertex information, like the normal vector, or texture coordi-
nates. Second, there may be information that’s specified per object. In our case,
the diffuse reflectivity is one such item (we don’t use it in the vertex shader), and
the world-space position of the light is another. That world-space light position is
declared uniform vec3 wsLight; the keyword uniform tells GL that the value is
set once per object. The declaration of the variable before main indicates that it
needs to be linked to the rest of the program. In this case, it’s linked to the host
program by a call in ConfigureShaderArgs.

Finally, a vertex shader may set values to be used by other shaders. These
values are computed once per vertex; during the rasterization and clipping phase,
they’re interpolated to get values at each fragment. The default is perspective inter-
polation (i.e., barycentric interpolation in camera coordinates), but image-space
barycentric interpolation is also an option. The resultant values vary from point to
point on the triangle, and so they are declared varying.

Our shader computes one of these, gouraudFactor (line 2), which is the dot
product of the unit surface normal and the incoming light direction to the world-
space light source.

Having computed this dot product (line 10) and the location of each vertex,
we move on to the fragment shader (see Listing 33.4).

2. In OpenGL these are called “Clip coordinates,” while normalized device coordinates
are those after the perspective divide.
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Listing 33.4: The fragment shader for the Gouraud shading program.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

/** Diffuse/ambient surface color */
uniform vec3 diffuseColor;

/** Intensity of the diffuse term. */
uniform float diffuse;

/** Color of the light source */
uniform vec3 lightColor;

/** dot product of surf normal with light */
varying float gouraudFactor;

void main() {
gl_FragColor.rgb = diffuse * diffuseColor *

(max(gouraudFactor, 0.0) * lightColor);
}

Once again, three uniform variables, whose values were established in the host
program, get used in the fragment shader: the diffuse reflectivity, the color of the
surface, and the color of the light.

We also, in the fragment shader, have access to the gouraudFactor that was
computed in the vertex shader. At any fragment, the value for this variable is the
result of interpolating the values at the three vertices of the triangle. In the shader,
we do a very simple operation: We multiply the diffuse reflectivity by the diffuse
color to get a vec3, and multiply the gouraudFactor (if it’s positive) by the light
color, giving another vec3. We then take the term-by-term product of these two
(using the * operator) and assign it to the gl_FragColor.rgb. If the light is pure
red and the surface is pure blue, then the product will be all zeroes. But in general,
we are taking the product of the amount of red light and how well the surface
reflects red light (and how well it reflects in this direction at all), and similarly for
green and blue, to get a color for the fragment.

Every fragment shader is responsible for setting the value of gl_FragColor,
which is used by the remainder of the graphics pipeline.

Figure 33.3: An icosahedron ren-
dered by our first shader.

That’s it! This simple host program and two simple shaders implement
Gouraud shading. The results are shown in Figure 33.3. In the version of the pro-
gram available on the book’s website, we’ve added one GUI that allows you to
pick a diffuse color and set the reflectivity interactively, and another that allows
you to rotate the icosahedron to any position you like, but the essential ideas are
unchanged.

33.5 A Phong Shader

In generalizing this to implement the Phong model, there are no real surprises.
We have to declare a few more variables in the host program, such as the specu-
lar exponent shine, the specular reflection coefficient specular, and the specular
color specularColor, and we also include ambient light as ambientLightColor,
but we’re confident that you can do this without seeing the code.

Recall that the basic Phong model of Chapter 6 tells us to compute the pixel
color using

color = kdOdIa + kdOdId(n · �) + ksOs(r · n)ns Id, (33.2)
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where kd and ks are the diffuse and specular reflection coefficients, Ia is the ambi-
ent light color, Id is the diffuse light color (i.e., the color of our directional light),
Od is the diffuse color of the object, � is a unit vector in the direction from the
surface point toward the light source, r is the (unit) reflection of the eye vector
(the vector from the surface to the eye) through the surface normal, and ns is the
specular exponent, or shininess: A small value gives a spread-out highlight; a large
value like ns = 500 gives a very concentrated highlight. The formula is only valid
if r · n > 0; if it’s negative, the last term gets eliminated.

In the vertex shader (see Listing 33.5), we compute the normal vector at each
vertex, and the ray from the surface point to the eye (at each vertex). We don’t
normalize either one yet.

Listing 33.5: The vertex shader for the Phong shading program.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/** Camera origin in world space */
uniform vec3 wsEyePosition;

/** Non-unit vector to the eye from the vertex */
varying vec3 wsInterpolatedEye;

/** Surface normal in world space */
varying vec3 wsInterpolatedNormal;

void main(void) {
wsInterpolatedNormal = g3d_ObjectToWorldNormalMatrix *

gl_Normal;
wsInterpolatedEye = wsEyePosition -

g3d_ObjectToWorldMatrix * gl_Vertex).xyz;

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

In the pixel shader, we take the interpolated values of the normal and eye-ray
vectors and use them to evaluate the Phong lighting equation. Even if the normal
vector at each vertex is a unit vector, the result of interpolating these will generally
not be a unit vector. That’s why we didn’t bother normalizing them in the vertex
shader: We’ll need to do a normalization at each pixel anyhow. After normalizing
these, we compute the reflected eye vector r, and use it in the Phong equation to
evaluate the pixel color. Note the use of max (line 32) to eliminate the case where
the reflected eye vector is not in the same half-space as the ray to the light source.
(See Listing 33.6.)

Listing 33.6: The fragment shader for the Phong shading program.

1
2
3
4
5
6
7
8
9

10
11
12

/** Diffuse/ambient surface color */
uniform vec3 diffuseColor;
/** Specular surface color, for glossy and mirror refl’n. */
uniform vec3 specularColor;
/** Intensity of the diffuse term. */
uniform float diffuse;
/** Intensity of the specular term. */
uniform float specular;
/** Phong exponent; 100 = sharp highlight, 1 = broad highlight */
uniform float shine;
/** Unit world space dir’n to (infinite, directional) light */
uniform vec3 wsLight;
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

/** Color of the light source */
uniform vec3 lightColor;
/** Color of ambient light */
uniform vec3 ambientLightColor;
varying vec3 wsInterpolatedNormal;
varying vec3 wsInterpolatedEye;

void main() {
// Unit normal in world space
vec3 wsNormal = normalize(wsInterpolatedNormal);

// Unit vector from the pixel to the eye in world space
vec3 wsEye = normalize(wsInterpolatedEye);

// Unit vector giving the dir’n of perfect reflection into eye
vec3 wsReflect = 2.0 * dot(wsEye, wsNormal) * wsNormal - wsEye;

gl_FragColor.rgb = diffuse * diffuseColor *
(ambientLightColor +

(max(dot(wsNormal, wsLight), 0.0) * lightColor)) +
specular * specularColor *
pow(max(dot(wsReflect, wsLight), 0.0), shine) * lightColor;

}

33.6 Environment Mapping

To implement environment mapping (see Section 20.2.1), we can use the same
vertex shader as before to compute the interpolated eye vector and normal vector.
Rather than computing the diffuse or specular lighting, we can use the reflected
vector to index into an environment map, which is specified by a set of six texture
maps (see Figure 33.4). The host program must load these six maps and make
them available to the shader; to do so, we declare a new member variable in the
App class and then, during initialization of the application, invoke

environmentMap = Texture::fromFile("uffizi*,png", ...)

to load the cube map with one of G3D’s built-in procedures. Within the
configureShaderArgs procedure, we must add

myShader->args.set("environmentMap", environmentMap);

to link the host-program variable to a shader variable.

Figure 33.4: An environment map
of the Uffizi, specified by six tex-
ture maps, one each for the top,
bottom, and four vertical sides
of a cube, displayed here in a
cross-layout. (Courtesy of Paul
Debevec. Photographs used with
permission. ©2012 University of
Southern California, Institute for
Creative Technologies.)

The fragment shader (see Listing 33.7) is very simple: A fragment is colored
by using its normal vector as an index into the cube map, via a GLSL built-in.
The color that’s returned is multiplied by the specular color for the model (which
we set to a very pale gold) so that the reflections take on the color of the surface,
simulating a metallic surface, rather than retaining their own color, as would occur
with a plastic surface.

The result (see Figure 33.5) shows a shiny teapot reflecting the plaza of the
Uffizi gallery using the environment map we showed earlier.

Anytime a shader uses a texture, the texture is automatically MIP-mapped for
you by GL (unless you explicitly request that it not be). The semantics of GL are
such that the derivative of any quantity with respect to pixel coordinates can be
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computed at any point where the quantity is defined. So at each point where the
teapot appears in the image, the rates of change of the coordinates of the normal
vector with respect to the pixel coordinates are computed and used to select a
MIP-mapping level that’s appropriate.

Figure 33.5: A shiny teapot re-
flects its surroundings, the plaza
of the Uffizi gallery.

Listing 33.7: The fragment shader for the Phong shading program.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/** Unit world space direction to the (infinite, directional)
light source */

uniform vec3 wsLight;

/** Environment cube map used for reflections */
uniform samplerCube environmentMap;

/** Color for specular reflections */
uniform vec3 specularColor;

varying vec3 wsInterpolatedNormal;
varying vec3 wsInterpolatedEye;

void main() {
// Unit normal in world space
vec3 wsNormal = normalize(wsInterpolatedNormal);

// Unit vector from the pixel to the eye in world space
vec3 wsEye = normalize(wsInterpolatedEye);

// Unit vector giving direction of reflection into the eye
vec3 wsReflect = 2.0 * dot(wsEye, wsNormal)

* wsNormal - wsEye;

gl_FragColor.rgb =
specularColor * textureCube(environmentMap,

wsReflect).rgb;
}

33.7 Two Versions of Toon Shading

We now turn to a rather different style, the toon shading of Chapter 34. In toon
shading, we compute the dot product of the normal and the light direction (as we
would for any Lambertian surface), but then choose a color value by thresholding
the result so that the resultant picture is drawn with just two or three colors, much
as a cartoon might be. There are, of course, many possible variations: We could
do thresholded shading using the Phong model, or any other; we could use two
or five thresholds; we could have varying light intensity rather than the simple
“single bright light” model we’re using here.

The first (and not very wise) approach we’ll take is to compute the inten-
sity (the dot product of the normal and light vectors) at each vertex in the vertex
shader (Listing 33.8), and let GL interpolate this value across each triangle and
then threshold the resulting intensities (Listing 33.9).

Listing 33.8: The vertex shader for the first toon-shading program.

1
2
3
4

/* Camera origin in world space */
uniform vec3 wsEyePosition;
/* Non-unit vector to eye from vertex */
varying vec3 wsInterpolatedEye;
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5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/* Non-unit surface normal in world space */
varying vec3 wsInterpolatedNormal;
/* Unit world space dir’n to directional light source */
uniform vec3 wsLight;
/* the "intensity" that we’ll threshold */
varying float intensity;

void main(void) {
wsInterpolatedNormal =

normalize(g3d_ObjectToWorldNormalMatrix * gl_Normal);
wsInterpolatedEye =

wsEyePosition - (g3d_ObjectToWorldMatrix * gl_Vertex).xyz;

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
intensity = dot(wsInterpolatedNormal, wsLight);

}

Listing 33.9: The pixel shader for the first toon-shading program.

1
2
3
4
5
6
7
8
9

10
11

... same declarations ...
void main() {

if (intensity > 0.95)
gl_FragColor.rgb = diffuseColor;

else if (intensity > 0.5)
gl_FragColor.rgb = diffuseColor * 0.6;

else if (intensity > 0.25)
gl_FragColor.rgb = diffuseColor * 0.4;

else
gl_FragColor.rgb = diffuseColor * 0.2;

}

The results, shown in Figure 33.6, are unsatisfactory: When the intensity is
linearly interpolated across a triangle and then thresholded, the result is a straight-
line boundary between the two color regions. When this is done for every polygon,
the result is that each color region has a visibly polygonal boundary.

Figure 33.6: Toon shading using
a vertex shader; notice the sharp
corners of the highlight area.

We can improve this substantially by using the interpolated surface normal
and interpolated light vector in the fragment shader to compute an intensity value
that varies smoothly across the polygon, and which, when thresholded, produces a
smooth boundary between color regions. In our case, with a directional light, only
the interpolation of the surface normal has an effect, but the program would also
work for more general lights.

Inline Exercise 33.1: This program gives yet another instance of the principle
that not every pair of operations commutes, and swapping the order for sim-
plicity or efficiency only works acceptably in some cases. Explain which two
operations are not commuting in this example.

Figure 33.7: Toon shading using
a fragment shader. Notice the
smooth boundary between the
shades of red.

The revised program can use exactly the same vertex shader, except that we
no longer need to declare or compute intensity. The revised fragment shader is
shown in Listing 33.10, and the results are shown in Figure 33.7.

Notice that in the fragment shader, we took the normal vector that was
computed at each vertex, and then interpolated to the current fragment, and
normalized it.
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Listing 33.10: The fragment shader for the improved toon-shading program.

1
2
3
4
5
6
7
8
9

10
11
12
13

uniform vec3 diffuseColor; /* Surface color */
uniform vec3 wsLight; /* Unit world sp. dir’n to light */
varying vec3 wsInterpolatedNormal; /* Surface normal. */

void main() {
float intensity = dot(normalize(wsInterpolatedNormal),wsLight);
if (intensity > 0.95)

gl_FragColor.rgb = diffuseColor;
else if (intensity > 0.4)

gl_FragColor.rgb = diffuseColor * 0.6;
else

gl_FragColor.rgb = diffuseColor * 0.2;
}

Inline Exercise 33.2: Suppose we had omitted the normalization in the frag-
ment shader in Listing 33.10. How would the resultant image have differed?
How would it have differed from our first-draft toon shader? If you don’t know,
implement both and compare.

33.8 Basic XToon Shading

Finally, we provide an implementation of a tiny portion of XToon shading: a
shader where a 2D texture map (see Figure 33.8) is used to govern appearance, but
in a somewhat unusual way. We index into the vertical coordinate using distance
from the eye so that more-distant points are bluer, resulting in a weak approxima-
tion of atmospheric perspective, which is based on the observation that in out-
door scenes, more-distant objects (e.g., mountains) tend to look bluer, and hence
we can provide a distance cue by mimicking this. We index into the horizontal
coordinate using the dot product of the view vector with the normal vector. When-
ever this dot product is zero (i.e., on a contour), we index into mid texture (i.e.,
the black area), resulting in black contour lines being drawn. In our texture, we’ve
made the black line larger at the bottom than the top, resulting in wider contours
at distant points than at nearby ones; endless other stylistic variations are possible.

Figure 33.8: The 2D texture map
for XToon shading. We use dis-
tance as an index into the vertical
direction, and v·n as the horizon-
tal index.

The shader code is once again very simple. In the vertex shader, we compute
the distance to the eye at each vertex; see Listing 33.11.

The results are shown in Figure 33.9. The teapot’s contours are drawn with
gray-to-black lines, thicker in the distance; the handle of the teapot is slightly
bluer than the spout.

Figure 33.9: XToon-shaded tea-
pot, using the texture map from
the previous figure.

Listing 33.11: The vertex and fragment shaders for the XToon shading program.

1
2
3
4
5
6
7
8

... Vertex Shader ...
uniform vec3 wsEyePosition;
varying vec3 wsInterpolatedEye;
varying vec3 wsInterpolatedNormal;

varying float dist;

void main(void) {
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9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

wsInterpolatedNormal =
normalize(g3d_ObjectToWorldNormalMatrix * gl_Normal);

wsInterpolatedEye = wsEyePosition -
(g3d_ObjectToWorldMatrix * gl_Vertex).xyz;

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
dist = sqrt(dot(wsInterpolatedEye, wsInterpolatedEye));

}

... Fragment Shader ...
varying vec3 wsInterpolatedNormal;
varying vec3 wsInterpolatedEye;
varying float dist;

void main() {
vec3 wsNormal = normalize(wsInterpolatedNormal);
vec3 wsEye = normalize(wsInterpolatedEye);
vec2 selector; // index into texture map
selector.x = (1.0 + dot(wsNormal, wsEye))/2.0; // in [0 1]
selector.y = dist/2; // scaled to account for size of teapot
gl_FragColor.rgb = texture2D(xtoonMap, selector).rgb;

}

33.9 Discussion and Further Reading

As we discussed in this chapter and what we should include as examples, one of
us said, “I worry that what you guys call shaders are what I call graphics!” His
point was a good one: Phong shading involves the same computation whether you
do it on the CPU or on the GPU. The choice of where to implement a particular
aspect of your graphics program is a matter of engineering: What works best for
your particular situation? Since GPUs are becoming increasingly parallelized, and
branching tends to damage throughput, a rough guideline is that branch-intensive
code should run on the CPU and straight-line code on the GPU. But with tricks
like hiding an if statement by adding arithmetic, as in using

x = (u == 1) * y + (u != 1) * z

as a replacement for

if (u == 1) then x = y else x = z

you can see that there’s no hard-and-fast rule. The factors that may weigh in the
decision are software development costs, bandwidth to/from the GPU, and the
amount of data that must be passed between various shaders on the GPU.

New books of shader tricks are being published all the time. Many of the
tricks described in these books are ways to get around the limitations of current
GPU hardware or software architecture, and they tend to be out of date almost
as soon as the books are published. Others have longer-term value, demonstrating
how the work in some algorithm is best partitioned among various shader stages.

33.10 Exercises

For all these exercises, you’ll need a GL wrapper like G3D, or else a shader devel-
opment tool like RenderMonkey [AMD12], to experiment with.

Exercise 33.1: Write a vertex shader that alters the x-coordinate of every point
on an object as a sinusoidal function of its y-coordinate.
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Exercise 33.2: Write a vertex shader that alters the x-coordinate of each sur-
face point as a sinusoidal function of y and time (which you’ll need to pass to the
shader from the host program, which will get the time from the system clock).
You’ll write something like
gl_Position.x += sin(k1 * gl_Position.y - k2 * t);

which will produce waves of wavelength 2π
k1

, moving with velocity 2π
k2

.
Exercise 33.3: Write a vertex shader that draws each triangle in a different

(flat) color, specified by the host program. This can be very useful for debugging.
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Chapter 34

Expressive Rendering

34.1 Introduction
In the early days of computer graphics, researchers sought to make any picture
that resembled our eyes’ view of a real object; photographs were considered
completely realistic, and hence the goal of photorealism emerged. With further
thought, one realizes that each photograph is just one possible condensation of
the light field arriving at the camera lens; different lens and shutter and exposure
settings, film or sensor types, etc., all change the captured image. Nonetheless, the
term “photorealism” survives. When researchers began to think about other forms
of imagery, they used the term “nonphotorealistic rendering” or NPR to describe
it. Stanislaw Ulam said that talking about nonlinear science is like talking about
nonelephant animals; we correspondingly prefer the term expressive rendering,
which captures the notion of intent in creating such a rendering: The picture is
meant to communicate something more than the raw facts of the incoming light.

Most traditional “rendering” (as in “an artist’s rendering of a scene”) has not
aimed for strict photorealism. Given the wealth of experience gathered by artists
and illustrators about effective ways to portray things, we can learn much by exam-
ining their work. In doing so, we must consider the artists’ intent: while some
have aimed for photorealism, others have tried to convey an impression that some
scene made upon them, while still others have aimed for condensed communica-
tion (think of illustrators of auto-repair manuals) or highly abstract representations
(see Figure 34.1). The intent of the work influences the choices made: The stylistic
choices made by Toulouse-Lautrec, conveying the mood of a Parisian nightclub,
are very different from those made by Leonardo depicting the musculature of the
human arm.

We characterize expressive rendering as work that is concerned with style,
intent, message, and abstraction, none of which can be easily defined precisely.
Scene modeling can also create a style or support an artistic intent (think of set
design in theatre or scene design in films), and careful composition can con-
vey intent or exhibit abstraction even in photographs. So there’s no clear line
of demarcation between “expressive rendering” and “photorealism.” Nonetheless,
there are things that seem to fall naturally into one or the other category, and this

945
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Figure 34.1: Various styles of art and illustration (top to bottom): photorealism (Harmen
Steenwyck, Still Life with Fruit and Dead Fowl, 1630), impressionism (Monet, Impression,
Sunrise, 1872), and technical illustration.

chapter discusses several techniques that fit the “expressive” mold. Broadly, work
that focuses on abstraction and intent falls in the category of “illustration,” while
“fine art” may include work that emphasizes style, message, or media as well.
Thus, much work in scientific visualization involves abstraction and intent; an
illustration tries to convey the flow of blood, not the color of the cells nor the flow
of any one particular cell. Herman and Duke [HD01] make a strong case for such
use of expressive rendering in visualization applications.

There is naturally a certain overlap between photorealistic solutions to the
rendering equation and artistic technique. Illustration books, for instance, teach
students about various kinds of shadows (see Figure 34.2), each of which corre-
sponds to some part of the solution to the rendering equation. Direct shadows,
for instance, correspond to the first visibility term in the series expansion solution
of the rendering equation, while curvature shadows correspond to the first bidi-
rectional reflectance distribution function (BRDF) term (and subsequent ones, to a
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Direct Reflected

Curvature

Figure 34.2: Three kinds of shadows (left to right): direct shadow, reflected shadow, and
curvature shadow.

lesser degree). But aside from this, a choice is made in everything a human does in
creating a picture. The choices all influence what the picture communicates to the
viewer. Sometimes the choices are about style—the characteristics of the work
that make it personal, or the work of that particular person, or something that
conveys a certain tone or mood in a work—but mostly they’re about abstraction,
a mechanism for representing the essence of an object with no unnecessary detail.

When pictures fall into this second category, they indirectly tell us something
about what matters to our visual systems: Just as when we are telling a story
we try to give pertinent details and leave out the irrelevant, in making a picture
there’s good reason to omit the things that have less impact, or might have large
impact but are not what’s important. Thus, various simplified picture-making tech-
niques reveal to us something about perception: People often communicate shape
by drawing outlines or contours, suggesting that these are important cues about
shape. They sometimes draw stick figures, suggesting that poses may be well
communicated by relatively simple information about bone positions. To indi-
cate relative positions (is he standing on the ground, or in mid-jump above it?),
they sometimes use shadows, although the precise shape of the shadow seems less
important than its presence, as we saw in Chapter 5.

Perceptual relevance is only one influence in expressive rendering. The most
important is abstraction, the removal of irrelevant information and the consequent
emphasis of what is important (to the creator of the image). There are three kinds
of abstraction to consider in expressive rendering [BTT07].

• Simplification: The removal of redundant detail, such as drawing only a
few bricks in a brick wall, or the largest wrinkles in a wrinkled shirt that’s
far from the viewer.

• Factorization: Separating the generic from the specific. In drawing a picture
of a short-tailed Manx cat, you can either draw a particular cat or you
can draw a generic cat—one that’s recognizable as a Manx, but not as a
particular one. In this case, you have factored out the identity of the cat
from its type.

• Schematization: Representing something with a carefully chosen substitute
that may bear little relation to the original, as in the schematic representa-
tion of a transistor in an electrical circuit (Figure 34.3) or a stick-figure
drawing of a human.

Figure 34.3: The schematic
representation of a transistor
encodes function and the fact
that there are three conductors,
but little else.

As Scott McCloud [McC94] observes, “By stripping down an image to its
essential ‘meaning,’ an artist can amplify that meaning in a way that realistic art
can’t. . . . The more cartoony a face is, for instance, the more people it could be
said to describe.”

Research in expressive rendering is relatively new. Many early papers con-
centrated on emulating traditional media—pen-and-ink, watercolor, stained glass,
mosaic tiles, etc. Some of the pictures produced were rather surprising, when
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considered as computer graphics, but disappointing when considered as art: They
managed to capture only the surface veneer of the art. Nonetheless, there was
considerable value in this work, not only as a foundation for later work where
intent and abstraction were incorporated, but in immediate applications as well.
For instance, rendering with a rough pencil-sketch appearance conveys implicitly
the idea that the rendering (or the thing being rendered) is incomplete, or that
details are not important. A user-interface mockup drawn in a pencil-sketch style
for initial testing can help get users to say, “I really need a brightness knob,” rather
than “I don’t like the glossy highlights on the knobs,” for instance.

34.1.1 Examples of Expressive Rendering

Before discussing style and abstraction further, we’ll examine some early exam-
ples of expressive rendering (see Figure 34.4). These use various kinds of input,
from imagery to purely geometric models to human-annotated models.

The first example comes from the work of Saito and Takahashi [ST90], who
recognized that in the course of rendering an image, one could also record at each
pixel a depth value for the object visible at the pixel, or the texture coordinates on
the object at that point, or any other property. Using image-processing methods to
detect discontinuities in depth allowed them to extract contours of shapes; simi-
larly, searching for derivative discontinuities allowed them to detect edges (like the
edges of a cube). By rendering these contour and edge pixels in highlight colors
over the original, they created renderings that they characterized as “comprehen-
sible,” indicating their belief that the additional lines helped the visual system to
better understand the thing being seen. The second example—a pen-and-ink ren-
dering made from a more complex model—shows the application of indication,
a technique in which something recurrent (like the pattern of shingles on a roof,
or bricks in a wall) is suggested to the eye by just drawing a small portion of it.
The third shows both the visible and the hidden contours of a polyhedral model;
these have been extracted at real-time rates and assembled into long arcs, and then
these arcs have been rendered with a “style” giving a richer appearance than a
simple pen stroke. The fourth shows an example of stylistic imitation: The render-
ing starts from geometric models that have been enhanced with finely randomly
sampled points; attached to each point is a brushstroke (one of several scanned
images of actual oil-paint strokes) and a color (determined by a reference image,
a lighted and shaded rendering of the original scene). Rendering consists of draw-
ing (i.e., compositing into the final image) the strokes in a back-to-front order.
There are many details remaining (the orientation of strokes, the creation of refer-
ence images, etc.), but the essential result is to give the appearance of a painting.
If the strokes are similar to Monet’s, and the reference image’s coloring is similar
to Monet’s, and the chosen scene is similar to something that Monet might have
painted, the final result will resemble a Monet painting.

34.1.2 Organization of This Chapter

Because expressive rendering is comparatively new, the overarching principles
and structures for the area have not yet become apparent. The remainder of this
chapter therefore consists of some general material that applies to enough different
techniques that it deserves discussion, and a tour of some specific techniques that
we think illustrate various important points, followed by some brief conjectures
about future directions and related work.
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(a) (b)

(c) (d)

Figure 34.4: Four examples of expressive rendering. (a) Saito and Takahashi’s depth-image
approach is used to enhance contours and ridges with dark and light lines, respectively.
(b) In Winkenbach and Salesin’s [WS94] pen-and ink rendering, indication (the omis-
sion of repeated detail) is used to simplify the rendering of the roof and the brick walls.
(c) In the work by Markosian et al. [MKG+97], contour curves are rapidly extracted and
then assembled into longer strokes that can be stylized. (d) In Meier’s painterly render-
ing work [Mei96], a back-to-front rendering of brush strokes, each attached to a point of
some object in the scene, gives excellent temporal coherence as the viewpoint is altered.
((a) Courtesy of Takafumi Saito and Tokiichiro Takahashi, ©1990 ACM, Inc. Reprinted by
permission. (b) Courtesy of David Salesin and Georges Winkenbach. ©1994 ACM, Inc.
Reprinted by permission. (c) Courtesy of the Brown Graphics Group, ©1997 ACM, Inc.
Reprinted by permission. (d) Courtesy of Barbara Meier, ©1996 ACM, Inc. Reprinted by
permission.)

34.2 The Challenges of Expressive Rendering

While expressive rendering involves style, message, intent, and abstraction, the
first of these is particularly ill-defined, which presents a serious problem. It’s used
to describe medium (“pen-and-ink style”), technique (“a stippled style”), mark-
making action (“loose and sketchy style”), mark grouping or structure (“a textured
style” or “a patterned style”), and broader notions like mood (“a film-noir style”)
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or even personality (“a lighthearted style”). Unfortunately, all of these things are
loosely related. It’s hard to imagine making an image that used, say, mosaic tiles,
conveying a film-noir mood, but with a lighthearted style. A clear definition and
characterization of style at all these levels remains elusive, but for problems like
transferring style from one rendering to another, it’s an essential ingredient.

At a more operational level, much expressive rendering work has concentrated
on renderings of single objects, or scenes in which objects have similar sizes.
Abstraction tends to operate on a scale of no more than an order of magnitude.
Few expressive rendering systems have a broad enough range of application to
be able to make an effective rendering of, say, Dorothy, from The Wizard of Oz,
on the yellow brick road, surrounded by hilly fields, with the Emerald City in the
distant background drawn with a few indicative strokes. Thus, scale remains an
important challenge in expressive rendering.

Figure 34.5: Mostly spatially
coherent wiggles on the edges of
a torus.

Coherence is a general term for the relatedness of nearby items, whether
in a single image (spatial coherence) or in a sequence of images (temporal
coherence). Spatial coherence in expressive rendering arises in multiple contexts.
For instance, if we decide to render object outlines using a wiggly line, we need
to displace adjacent points of the outline by about the same amount, as in Fig-
ure 34.5. (If we displaced them by random amounts, the result would not be a
line!) But as you can see in the figure, if we simply start making a wiggle at some
point of an outline, when we return to that point the displacements may not match,
and the failure to match manages to particularly attract the viewer’s attention.

Temporal coherence is closely related. When we animate an expressive ren-
dering, the strokes or other marks (e.g., tiles in a mosaic) vary over time. If the
marks change rapidly from one frame to the next, the eye can be easily distracted.
Proof of this can be seen by watching static on a broadcast (rather than cable)
television. The average “frame” is a neutral gray, but as you watch, your eyes
will detect patterns, notice things crawling or running across the screen, etc. If the
marks in a rendering are something like stippling (a pattern of dots used to convey
darkness or lightness) or a texture composed of short strokes, then even if the stip-
ples or strokes have some temporal coherence (i.e., each stipple changes position
slowly over time, or else disappears or appears, or each short stroke’s endpoints
move slowly over time), their motion can become a stronger perceptual cue than
the marks themselves. For longer strokes, like long, thin pen-and-ink lines, the
motion percept tends to be aligned perpendicular to the stroke; if the stroke cor-
responds to a contour, then such motion is consistent with contour motion, while
motion along the stroke, as might appear when a small stroke that’s part of a large
contour shrinks before disappearing, is inconsistent with contour motion.

34.3 Marks and Strokes

Much expressive rendering is done with primitives that can be called marks or
strokes. In stippling, for instance, each mark is a pen dot; in oil painting, each
motion of the brush across the canvas is a stroke. In pen-and-ink rendering, a
mixture of marks and strokes often serves to create texture, boundaries, etc. Not
every form of expressive rendering uses marks and strokes (see Section 34.7),
but many do. Why? First, many expressive rendering approaches mimic artistic
techniques, and the use of strokes probably originated when some primitive human
first picked up a stick and drew a shape in the dirt. So the simplest reason for marks
and strokes is the ease with which we can create them. More important, though,
is their power at triggering a response in the visual system. When we draw a
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stick figure, or just a circle on a page, our minds can rapidly interpret this as the
representation of a 3D shape—a human form, or a sphere. In fact, the tendency
to see shape is almost overwhelming. Although when we look at a drawing we
see pencil strokes on a piece of paper, when asked about it we always describe
the thing depicted rather than saying, “I see a piece of paper with pencil strokes
on it.” This interpretation of strokes as representing shapes appears to be closely
tied to our perceptual processes, in which edge detection is a first step. The strokes
seem to manage to convey “edge-ness” directly, although each stroke, in principle,
ought to convey two edges, one on either side of the stroke, as light transitions to
dark and again as dark transitions to light.

Marks and strokes in expressive rendering systems are created by several
approaches.

First there’s the scanning/photography approach: An individual paint stroke
on a canvas of contrasting color is photographed, and using the contrasting color,
an α-value for each pixel near the boundary of the stroke is estimated. This is done
for many example strokes, and then when it comes time to place strokes on the
virtual canvas, the scanned strokes are recolored as needed and composited onto
the canvas. The same approach has been used with charcoal and pencil marks,
and can clearly be used with mosaic tiles, pastels, etc., as well. This approach
may seem to be the simplest, but the actual scanning and processing of oil-paint
strokes, for instance, turns out to be quite difficult.

Figure 34.6: A small offset from
the central red curve results in the
smooth green outer curve; at the
focal distance in the other direc-
tion, where nearby normals meet,
we get a degeneracy—the sharp
ends of the blue inner curve.

Second, there’s imitation of artistic technique, such as the pen-and-ink strokes
used by Salisbury et al. [SWHS97], in which the core system determined the need
for a curved stroke following some general path, and then the stroke-generating
system created a spline path that approximated the general path, but had small per-
turbations in the normal direction to emulate the wiggliness of hand-drawn lines
(the degree of wiggle was user-controllable), and which tapered to a point at each
end, with the length of the taper also being user-controllable. Similar approaches
were used by Northrup et al. [NM00] for a watercolor-like rendering. The idea of
expanding or varying a stroke in the normal direction is a good one, but problems
arise at focal points, where nearby normal lines cross (see Figure 34.6). These
problems can be mostly addressed by adjusting the notion of “normal lines” to
allow some bending and compression; Hsu et al. took this approach in their work
on skeletal strokes [HLW93].

Figure 34.7: A watercolor
produced with Curtis’s system.
(Courtesy of Cassidy Curtis.
©1997 ACM, Inc. Reprinted by
permission.)

Finally, there’s the physical simulation of media and tools. Physical simu-
lation, of course, depends on a model of the thing being simulated, and such
models may range from very accurate to somewhat informal. Curtis [CAS+97]
used fluid simulation to model the flow of water and pigment in watercolors (see
Figure 34.7); Strassmann [Str86] used a minimal physical model of a brush (a
linear array of bristles of slightly varying lengths, each of which responds to both
paper texture and pressure applied by the user), paper, and ink to allow a user to
create sumi-e paintings like the one shown in Figure 34.8; Baxter and Lin [BL04]
extended this model to handle far greater complexity, including interbristle coher-
ence and physically based deformation of the brush and bristles.

Figure 34.8: A sumi-e paint-
ing created with Strassmann’s
system. (Courtesy of Steve
Strassmann. ©1986 ACM, Inc.
Reprinted by permission.)

34.4 Perception and Salient Features

As we discussed in Chapter 5, the human visual system is sensitive to certain
characteristics of arriving light, and not so sensitive to others. Those to which it’s
most sensitive are good candidates for inclusion in an expressive rendering.
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Candidates for important features are silhouettes, contours on geometric mod-
els, apparent contours, suggestive contours, and places where the light field can
be condensed to one line. All of these fit under the general category of edges, as
the term is used in computer vision, that is, places where the brightness changes
rapidly. Such edges can exist at multiple scales, in that something that presents a
gradual change in brightness, seen up close, may represent a rapid transition when
seen from farther away. There’s some evidence [Eld99] that edges, considered at
all scales, completely characterize an image. This idea, in reverse, is at the heart of
recent work on gradient-based expressive rendering techniques, which we discuss
in Section 34.7.

An alternative to reasoning about where lines should be drawn is to observe
where they actually are drawn. Cole et al. [CGL+12] have performed a carefully
constructed experiment to see where artists draw lines in single-object illustra-
tions, given several views of the object to look at during the drawing process. They
find that occluding contours and places with large image gradients are strongly
favored, but these do not by any means account for all the lines that are drawn.

There are larger-scale issues in expressive rendering as well. In drawing a pic-
ture of two people standing on a bridge in Paris, we’re likely to concentrate on
the bridge and the people, sketch the general shapes of the buildings in the back-
ground, and perhaps include some added detail on the Eiffel Tower. These choices
represent the features in the scene that are salient to us, but there’s no way to algo-
rithmically determine saliency from the image data without an understanding of
the full scene; in larger-scale imagery, expressive rendering at present must rely on
additional user input to determine the saliency of even details that may be strongly
significant in terms of perception.

34.5 Geometric Curve Extraction

Because geometric characteristics of objects, like their boundaries, arise in expres-
sive rendering, and because these have also often been studied in geometry, there’s
a well-defined vocabulary in place; unfortunately, usages differ between mathe-
matics and graphics. We’ll adhere to the mathematical conventions.

First, when an object sits in front of a background, the silhouette is the bound-
ary between the object’s image and the background (see Figure 34.9). For a
smooth object like a sphere, if S is a silhouette point, then the tangent plane at
S contains the ray from the eye to S; points where the tangent contains the view
direction are called contour points; the set of all contour points is called the
contour. Thus, for a smooth object, every silhouette point is a contour point, or,
equivalently, the silhouette is a subset of the contour. But there may be many other
contour points as well, as seen in Figure 34.9 (bottom) where the contour extends
into the interior of the surface.

Silhouette

P

Crease

Cusp

Figure 34.9: (Top) The silhouette
separates foreground from back-
ground. (Top middle) P is on a
contour if the ray from the eye
to P is tangent to the surface
at P. (Lower middle) A crease
is a point at which nearby tan-
gent planes converge to two dif-
ferent limits; the definition can be
weakened to give a notion of a
crease at a certain scale. (Bot-
tom) A cusp is a point Q of a con-
tour curve C at which the tangent
line to C is the same as the line
from the eye to Q.

The condition for a point P of a smooth surface to be a contour point, as viewed
from an eyepoint C, is that

n(P) · (P− C) = 0, (34.1)

that is, that the surface normal be orthogonal to the view vector.
Unfortunately, contour points have been called silhouettes in several graphics

papers, blurring the distinction between the two notions. Note that a contour point
S may be visible or not: All that’s required is that the ray from the eye to S be
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contained in the tangent plane at S. There are two other conventions: In the first,
what we have called the contour is sometimes called the contour generator,
and the term “contour” is reserved for what we would call the visible contour;
in the second, the thing we call the contour is called the fold set, although the
definition for the fold set is somewhat more general, extending to polyhedra as
well as smooth surfaces [Ban74].

In the case of nonsmooth objects like polygonal meshes, notions like “tan-
gent plane” and “normal vector” must be adjusted. One approach is to create a
smoothly varying normal vector field on the surface, one that agrees with the facet
normal at facet centers, for instance, but smoothly blends between them, away
from the centers. This approach works decently, although with this approach it’s
easy to have a silhouette point (on the boundary between object and background)
that is not a contour (view ray perpendicular to normal vector), which can lead
to problems. Another approach is to say that at each edge between two facets
there is a whole set of normal vectors, filling in between the normal vectors of
the two facets. A simple version of this is shown in Figure 34.10: Looking end-on
at an edge e, we treat the two adjacent facet normals n1 and n2 as points of the
unit sphere; we then find a great-circle arc between them, and say that all vec-
tors along this great-circle arc are normals to the edge e. The only time there’s an
ambiguity about which great-circle arc to pick is when the adjacent normals are
opposites; in this case the polyhedral surface is degenerate (the interiors of adja-
cent facets intersect), and the approach fails for such surfaces (just as we cannot,
in the smooth-surface case, handle normal vectors at nonsmooth points).

n1 n2

ne

(a)

(b)

Figure 34.10: (a) The collection
of normals at an edge e of a mesh
interpolates between the normals
n1 and n2 of the adjacent facets.
(b) Drawing n1 and n2 at the ori-
gin, so their tips are on the unit
sphere, we use great-circle inter-
polation to create the set of nor-
mals for the edge e.

This approach can be extended to define a set of normals at a vertex as well:
The normal arcs for each edge adjacent to the vertex link together into a chain
(on the unit sphere); we declare the normal at the vertex to be the interior of this
loop. Once again, there are degenerate cases: Since any simple closed curve on the
sphere is the boundary of two different regions, we must make a choice between
these. If the polyhedral surface is nearly flat at the vertex, then all adjacent normals
are near each other, and we can simply choose the region whose area is smaller.
The degeneracy arises when the two areas are equal. In practice, in meshes derived
from reasonably uniform and fine sampling of smooth surfaces, such vertices do
not often arise.

Polygonal meshes are, generally speaking, a bad starting point for things like
contour extraction, because almost every edge of a mesh represents a sharp change
in the normal vector. In some cases, this results from the polygonalization of a
smooth object. In others, the sharp edge is modeling a sharp edge on the original
object (e.g., a cube). Without further information, it’s impossible to tell which kind
of edge is intended. Various researchers have experimented with various thresh-
olds, but you need only consider a finely faceted diamond to realize that there’s no
obvious threshold that can work for all objects. It’s probably best, as a practical
matter, to allow the modeler of an object to mark certain edges as crease edges,
that is, those across which the normal is supposed to change rapidly, and then treat
all others as smooth edges, or those across which the normal is to be interpolated
smoothly. This is an instance of the principle stated in the introduction, that you
should understand the phenomena and goal of your effort, and only then choose a
rich-enough abstraction and representation to capture the important phenomena.
The “polygonal model” representation of shape was chosen before the advent of
expressive rendering, and it lacks sufficient richness. It’s also an instance of the
Meaning principle: The “numbers” in the polygonal model don’t have sufficient
meaning attached to them.
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With that in mind, Listing 34.1 is a simple algorithm for rendering the visible
contours and crease edges of a smooth polygonal shape that represents a surface
with no self-intersections so that each edge is either shared by two faces or on the
boundary.

Listing 34.1: Drawing the visible contours, boundary, and crease edges of a
polygonal shape from the point Eye.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Initialize z-buffer and projection matrix
Clear z-buffer to maximum depth
Clear color buffer to all white
Render all faces in white

edgeFaceTable = new empty hastable with edges as keys and faces as values
outputEdges = new empty list of edges

foreach face f in model:
foreach edge e of f:
if e is a crease edge:
outputEdges.insert(e)

else if e is not in edgeFaceTable:
edgeFaceTable.insert(e, f)

else:
eyevec = e.firstVertex - Eye
f1 = edgeFaceTable.get(e) // get other face adjacent to e
if dot(f1, eyevec) * dot(f, eyevec) < 0:
outputEdges.insert(e)
edgeFaceTable.remove(e)

foreach edge in edgeFaceTable.keys():
outputEdges.insert(edge)

Render all edges in outputEdges in black

The key ideas in this algorithm are that boundary edges are those that appear
in only one polygon, and hence they are left in the table after all pairs have been
processed, and that a pair of faces that are adjacent at some edge make a contour
edge if one face normal points toward the eye and the other points away. Thus,
the list of output edges consists of all contour, crease, and boundary edges. The
rendering of the surface in white as an initialization prevents hidden output edges
from being seen (i.e., it generates occlusions). In practice, we often draw each
contour edge slightly displaced toward the eye so that it is not hidden by the faces
it belongs to. This slight displacement can unfortunately let a very slightly hid-
den contour be revealed, but in practice the algorithm tends to work quite well.
Chapter 33 gives a rather different approach to generating a contour rendering
that does not suffer from this problem, but that does not handle boundary edges or
crease edges.

Figure 34.11: A triangulated
cylinder in which every edge is a
contour edge when viewed from
directly overhead.

Note that the preceding algorithm generates a list of edges to be drawn, but it
does not try to draw a stroke along the contour; it merely renders each edge as a
line segment. If you want to draw a long smooth curve (perhaps using the vertices
of the edges as control points for a spline curve, or even making a slightly wiggly
curve to convey a hand-drawn “feel”) you need to assemble the edges into chains
in which each edge is adjacent to its predecessor and successor in the list. For a
smooth closed surface, such chains exist, and for a generic view, the chains form
closed curves on the surface (i.e., cycles). (The crease edges may form noncyclic
chains, however.) Unfortunately, for a polygonal approximation of a smooth sur-
face, there’s no such simple description of the contours. As Figure 34.11 shows,
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it’s possible for almost every edge to be a contour from some points of view, in
which case forming chains by the obvious greedy algorithm (“search for another
edge that shares this vertex, and add it to my cycle”) can fail badly, generating
contour cycles that intersect transversely, for instance.

You may object that this example is contrived, but even a randomly triangu-
lated cylinder, when viewed end-on, can have a great many contour edges (see
Figure 34.12). Fortunately, all of these project to the same circle in the final
image, but attempting to make coherent strokes on the contours remains prob-
lematic [NM00].

Figure 34.12: The contours of
a lozenge shape, viewed end-
on, appear to form a circle, but
from a different view they are
quite complex. (Courtesy of Lee
Markosian, ©2000 ACM, Inc.
Reprinted by permission.)

Figure 34.13: A shape whose
contours are rendered via the
Zorin-Hertzmann algorithm, with
interior shading guided by cur-
vature. (Courtesy of Denis Zorin,
©2000 ACM, Inc. Reprinted by
permission.)

The problem of multiple contours, and contours that are not smooth, as well
as other artifacts of polygonal contour extraction, are largely addressed by the
work of Zorin and Hertzmann [HZ00], who observe that “no matter how fine the
triangulation is, the topology of the silhouette of a polygonal approximation to
the surface is likely to be significantly different from that of the smooth surface
itself.” They have the insight that the function

g(P) = n(P) · (P− C) (34.2)

can be computed at each mesh vertex and interpolated across faces, and then the
zero set of this interpolated approximation of g can be extracted and called the
contour. By slightly adjusting the value of g at any vertex where it happens to be
zero, they ensure that the contour curves so formed consist of disjoint polygonal
cycles, which are ideal for stroke-based rendering. Figure 34.13 shows an example
of such a contour rendering with “hatching” used to further convey the shape.

We now move on to suggestive contours, ridges, and apparent ridges. To dis-
cuss these features, we must discuss curvature. Recall from calculus that the
curvature of the graph of y = f (x) at the point (x, y) is given by

κ =
f ′′(x)

(1 + f ′(x)2)3/2
. (34.3)

In the case of a parametric curve t 
→ (x(t), y(t)), the formula is

κ =
x′(t)y′′(t)− y′(t)x′′(y)
(x′(t)2 + y′(t)2)3/2

. (34.4)

For a polygonal curve, which is often what we have in practice, there are
simple approximations to these formulas, although you may be better off fitting
the polygonal curve with a spline and then computing the spline’s curvature.

Inline Exercise 34.1: Confirm that if we take the graph y = f (x) and make
it into a parametric curve using X(t) = t and Y(t) = f (t), the two curvature
formulas agree.

For a surface, curvature is slightly more complex. If you think of a point P
on a cylinder of radius r, there are many possible directions in which to measure
curvature (see Figure 34.14): In the direction parallel to the axis, the curvature
is zero, while perpendicular to it, the curvature is 1/r. To measure each of these,
we intersect the cylinder with a plane through P containing the normal vector n
and direction u in which we want to measure the curvature. The intersection is a
curve in this plane, whose curvature at P we can measure using Equation 34.3 or
Equation 34.4.
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For the cylinder, the two curvatures we’ve described are in fact the maximum
and minimum possible over all surface directions u at P. Because of this, they
are called the principal curvatures, typically denoted κ1 and κ2, with the associ-
ated directions being called the principal directions. (One approach to expressive
rendering for surfaces involves drawing strokes aligned with one or two principal
directions [Int97].) The two principal directions are orthogonal; this turns out to
be true at every point of every surface (except when the principal curvatures are
the same, in which case the principal directions are undefined; such points are
called umbilic). Furthermore, the principal directions u1 and u2 and their asso-
ciated curvatures κ1 and κ2 completely determine the curvatures in every other
direction; if

u = cos(θ)u1 + sin(θ)u2, (34.5)

then the curvature in the direction u (or directional curvature in direction u) is

cos2(θ)κ1 + sin2(θ)κ2. (34.6)

Note that this formula does not depend on the orientation of u1 or u2: If we
negate u2 (giving an equally valid “principal direction”), for instance, the sign
of θ changes, which alters the sign of sin(θ), but leaves sin2(θ) unchanged.

u

(a) (b)

Figure 34.14: (a) The two prin-
cipal curvatures on a cylinder:
Along the axis of the cylinder, the
curvature is zero; in the perpen-
dicular direction, the curvature
is 1/r, where r is the cylinder
radius. (b) To measure the cur-
vature in some direction u at P,
we intersect the surface with the
plane through P containing u and
n, the normal to the surface. The
result is a curve (gray) in a plane,
whose curvature we can measure.

34.5.1 Ridges and Valleys

The principal direction u1(P) corresponding to the maximum directional curva-
ture at each point P is used to define the notion of a ridge or valley: The principal
directions can be joined together into a curve called a line of curvature1 (see
Figure 34.15). As we traverse a line of curvature, the principal curvature κ1

Figure 34.15: The curves in this diagram have tangents that are in the direction of
either greatest or least curvature. The “bends” near the center occur because the sur-
face is defined by two adjacent spline patches. (Courtesy of Nikola Guid and Borut
Źalik. Reprinted from Computers & Graphics, volume 19, issue 4, Nikola Guid, Črtomir
Oblonšek, Borut Žalik, “Surface Interrogation Methods,” pages 557–574, ©1995, with per-
mission from Elsevier.)

1. More explicitly: We can find a curve t �→ γ(t) on the surface with the property that
γ′(t) = u1(γ(t)) for every t, and γ(0) = P; this is the line of curvature through P.
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Figure 34.16: As we traverse the line of curvature γ, the directional curvature of the surface
S in the direction of γ varies from point to point. We’ve marked a local maximum and
minimum; these are ridge and valley points, respectively. Shown in red (valley) and blue
(ridge) lines are the rest of the ridge and valley points of the surface.

changes from point to point. Local minima and maxima of the principal curva-
ture along a line of curvature are called ridges and valleys, respectively (see Fig-
ure 34.16). These curves have been used to help communicate shape, but they
suffer from two problems. The first is that, in practice, algorithms for computing
ridges and valleys tend to be “noisy,” that is, they tend to produce lots of short
segments, which are distracting rather than informative. The second is that ridges
and valleys often occur in pairs, so we end up with two lines where an artist would
draw only one (see Figure 34.18 for an example).

34.5.2 Suggestive Contours

Instead of using the principal curvature directions on a surface to define curves
along which to find local maxima and minima, as we did for ridges and valleys,
we can use a different vector field, one that depends on our view of the surface
rather than being intrinsic to the surface itself, independent of view, as are ridges
and valleys. This is the approach taken by DeCarlo et al. [DFRS03]. We’ll follow
their development.

We let v(P) = E − P denote the view vector at each point of the surface.
Notice that this vector points from P toward the eye E. And we let w(P) denote
the projection of v(P) onto the tangent plane at P; omitting the argument P, w is
defined by

w = v− (v · n)v, (34.7)

where n = n(P) is the unit normal to the surface at the point P. The curvature in
the direction w is called the radial curvature κr. Note that the radial curvature
depends both on the point P and on the location of the eye: It’s not an intrinsic
property of the surface.
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Figure 34.17: Contours of two shapes (left) together with suggestive contours (right).
(Courtesy of Doug DeCarlo. ©2003 ACM, Inc. Reprinted by permission.)

Suggestive contours are the places where the radial curvature is zero, with
the additional constraint that the derivative of κr, in the w direction, must be pos-
itive (i.e., if we move from P to P + εw(P), and then project the resultant point
back to the surface and call it Q, then κr(Q) must be positive for small enough
values of ε). DeCarlo et al. use the term “suggestive contour generator” for these
points, restricting “suggestive contours” to what we would call “visible sugges-
tive contours.” Suggestive contours can be characterized in two other ways. First,
they are local minima of n · v in the w direction; if we consider ordinary contours
as places where n · v is zero, then suggestive contours are the points where n · v
got closest to zero before increasing again. This is closely related to the second
characterization: If we move the eyepoint E, the contours appear to slide along
the surface (think of the edge of night moving along the Earth as it rotates). But
sometimes, in the course of such a motion, a new piece of contour appears; points
of that new contour lie on the suggestive contour for the original eyepoint. As
DeCarlo et al. describe it, suggestive contours are “those points that are contours
in ‘nearby’ viewpoints, but do not have ‘corresponding’ contours in any closer
views.” In short, they might be characterized as places that are almost contours,
or, if you prefer, as places that, if the surface were lit by a light source near the
eyepoint, would be at the boundary between dark and light. As such, they are
natural places to put lines to help indicate shape (see Figure 34.17).

34.5.3 Apparent Ridges

In the examples discussed so far, there are a range of characteristics: Contours are
view-dependent, while ridges and valleys are view-independent (except that we
only draw the visible ones, of course). Suggestive contours are view-dependent as
well, while capturing some of the “where do we expect to see lines?” character: If
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Figure 34.18: Shaded view, contours, suggestive contours, ridges and valleys, and apparent
ridges for a single model. Courtesy of Tilke Judd and Frédo Durand, ©2007 ACM, Inc.
Reprinted by permission.)

the surface is wiggly enough somewhere, then that point’s likely to be on a sugges-
tive contour. There is another kind of line—apparent ridges [JDA07]—that is also
view-dependent (see Figure 34.18). In this case, however, the view dependence
has an interesting character: It takes into account the projection of the surface to a
particular view plane, and performs measurements in that view plane rather than
on the surface itself. Since the projection of the object to the view plane captures
what we can see, measurements made in this plane correspond to operations that
our eyes could possibly perform. Thus, a slight curvature near a contour is drawn,
while the same amount of curvature in a frontal region of an object is not.

34.5.4 Beyond Geometry

Figure 34.19: Abstracted shad-
ing with highlights. (Courtesy
of Seungyong Lee, ©2007 ACM,
Inc. Reprinted by permission.)

While geometric characteristics are important for determining which lines to draw,
other characteristics may matter as well, such as texture: The lines between stripes
on a plaid shirt should be drawn along with the contours of the shirt. This is essen-
tially a reversion to the computer-vision notion of edges, discontinuities in bright-
ness at some scale. This idea was implemented as an expressive rendering scheme
by Lee et al. [LMLH07]. They first rendered a scene with traditional shading,
and then used this preliminary rendering as a source for the final rendering. They
searched in the preliminary rendering for brightness discontinuities, which were
then rendered as lines in the final rendering, typically representing contours or tex-
ture changes like the stripes on a shirt. They also searched for thin, dark regions,
which were rendered as dark lines, and thin, light regions, which were rendered as
highlight lines (see Figure 34.19). The large-scale shading in the final rendering
was done with two-tone shading [LMHB00], created by thresholding the prelim-
inary image on brightness.

34.6 Abstraction

The representation of a shape by lines is a kind of abstraction. Of the three kinds of
abstraction we mentioned (simplification, factorization, and schematization) this
form of shape representation falls into the first or second category, involving the
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elimination of detail, which in some cases may move the object depicted from the
specific toward the general.

But even when we represent a shape by its contours or other lines, we may
have far more detail than we want. A rough lump of granite has a great many
contour edges, but we may want to draw just the outline, ignoring all the tiny inte-
rior contours provided by individual protrusions from the surface. Thus, there’s a
relation between scale and abstraction. One rule of thumb is that objects of equal
importance in a scene should be represented with a number of strokes that is pro-
portional to their projected size (or perhaps the square root of the projected size,
since a circle of area A has an outline whose length is 2

√
πA). Regardless, it’s evi-

dent that there’s a need to not only determine lines that represent a shape, but also
to determine a line-based representation with a given budget for lines—to remove
or simplify lines to give a less dense representation.

Two approaches immediately come to mind. The first is to simplify the object
itself (e.g., if it’s a subdivision surface, move up one level of subdivision to get a
less-accurate but simpler representation) and then extract lines. The second is to
extract the lines and then simplify them.

Inline Exercise 34.2: Think of shapes for which each method would give
results that don’t match your intuition. Which method was harder to “break”?

The second approach was carried out by Barla et al. [BTS05]. Their algorithm
takes, as input, a set of lines (in the sense of line drawing, i.e., curves) in some
vector representation, and produces a new set of lines using two criteria that are
intended to create perceptually similar sets of lines.

1. New lines can be created only where input lines appear.

2. New lines must respect the shape and orientation of input lines.

The idea is then to form “clusters” of input lines that are perceptually similar at
a specified scale and replace these with fewer lines, thus simplifying the drawing.

Figure 34.20: The thick pink lines
at right are good simplifications
of the thin black input lines;
those at left are bad. (Courtesy
of Pascal Barla. From “Render-
ing Techniques 2005” by Bala,
Kavita. Copyright 2005. Repro-
duced with permission of Taylor
& Francis Group LLC - BOOKS
in the format Textbook via Copy-
right Clearance Center.)

The second criterion is formulated to allow merging two nearly parallel curves
into a single curve that’s approximately their average, but not into a single curve
with a hairpin bend at one end, for example. Figure 34.20 shows this. The hairpin
bend in the pink line in the drawing on the left is a bad simplification of the
input black lines, while the two pink lines in the drawing on the right are a better
simplification.

The algorithm proceeds by first finding clusters of lines that are similar at the
chosen scale, and then replacing each cluster with a single line. The replacement
strategy may be as simple as selecting a single representative from the cluster, or
as complex as creating some kind of “average” line from the lines in the cluster.
Figure 34.21 shows the results using the second approach. Figure 34.21: A total of 357

input lines are simplified to
87 output lines. (Courtesy of
Pascal Barla. From “Render-
ing Techniques 2005” by Bala,
Kavita. Copyright 2005. Repro-
duced with permission of Taylor
& Francis Group LLC - BOOKS
in the format Textbook via Copy-
right Clearance Center.)

At a higher level, it makes sense to take a whole scene and abstract out those
parts that are not important to the author or viewer. Determining what might be
important is impossible without either an understanding of the full scene or knowl-
edge of the intent (i.e., a priori markup of some kind). The latter approach can
be used as part of an authoring tool to guide the scale of simplification in algo-
rithms like that of Barla et al. DeCarlo and Santella [DS02] have taken the for-
mer approach, using a human viewer to implicitly provide scene understanding.
Their system takes an image as input and transforms it to a line drawing with
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large regions of constant color and bold edges between regions, representing an
abstraction of the scene according to the parts-and-structures kind of hierarchy
present in many computer-vision algorithms. To effect this transformation, they
use an eye-tracked human viewer. Broadly speaking, the eye tracking allows them
to determine which elements of the image are most attention-grabbing, and thus
deserve greater detail. Figure 34.22 shows a sample input and result.

Figure 34.22: (Top to bottom)
The input photograph, the eye-
tracker fixation record, and the
resultant image for DeCarlo and
Santella’s abstraction and sim-
plification algorithm. (Courtesy
of Doug DeCarlo and Anthony
Santella, ©2002 ACM, Inc.
Reprinted by permission.)

It’s also possible to consider a stroke-based rendering of a scene over time, and
try to simplify its strokes in a way that’s coherent in the time dimension; to do so
effectively requires a strong understanding of the perception of motion (for strokes
that vary in position or size) and change (for strokes that appear or disappear).

34.7 Discussion and Further Reading

The two abstraction techniques presented in this chapter fall into the simplification
and factorization categories. Is it possible to also do schematization? Can we learn
schematic representations from large image and drawing databases, for instance?
This remains to be seen.

Much of what’s been done in expressive rendering until now has emulated
traditional media and tools. But the computer presents us with the potential to
create new media and new tools, and thinking about these may be more productive
than trying to imitate old media. Two examples of this are the diffusion curves
of Orzan et al. [OBW+08] and the gradient-domain painting of McCann and
Pollard [MP08]. Each relies on the idea that with the support of computation, it’s
reasonable for a user’s stroke to have a global effect on an image.

In the case of gradient-domain painting, the user edits the gradient of an image
using a familiar digital painting tool interface. A typical stroke like a vertical line
down the middle of a gray background will create a high gradient at the stroke
so that the gray to the left of the stroke becomes darker and the gray to the right
becomes lighter, and the stroke itself ends up being an edge between regions of
differing values. (This is an “edge” in the sense of computer vision, by the way.)
By adjusting the stroke width and the amount of gradient applied, the user can
get varying effects. The user can also grab a part of an existing image’s gradient
and use that as a brush, allowing for further interesting effects. To be clear: The
image the user is editing is not precisely the gradient of the final result; rather,
an integration process is applied to the gradient to produce a final image with the
property that its true gradient is as near to the user-sketched gradient as possible.
Figure 34.23 shows an example of photo editing using gradient-domain painting
with a brush whose gradient is taken from elsewhere in the image.

In diffusion curves, the user again has a familiar digital painting interface, but
in this case each stroke draws boundary conditions for a diffusion equation: In the
basic form, on one side of the stroke the image is constrained to have a certain
color; on the other side it has a different color. The areas in between the strokes
have colors determined from the stroke values by diffusion (i.e., each interior pixel
is the average of its four closest neighbors). Again, a single stroke can drastically
affect the whole image’s appearance. But if we think instead about perceptually
significant changes, we see the effects are quite local: In the nonstroke areas, the
values change very smoothly so that there are no perceptually significant edges.
Thus, the medium of diffusion curves allows the artist to work directly with per-
ceptually significant strokes. Figure 34.24 shows an example of the results.
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Figure 34.23: Photo editing with gradient-domain painting. The roof tiles and drain pipe
have been altered, and the left wall eliminated, all in just a few strokes. (Photo courtesy of
Christopher Tobias, ©2009; Courtesy of Nancy Pollard and James McCann, ©2008 ACM,
Inc. Reprinted by permission.)

In both of these media, animation is quite natural. As strokes interpolate
between specified positions at key frames, the global solutions for which they pre-
scribe boundary conditions also change smoothly. Temporal coherence is almost
automatic. The exception is in handling the appearance and disappearance of
strokes, which still must be addressed. Nonetheless, the global effect of each
stroke means that animation in one portion of an image can generate changes else-
where, which may distract the viewer. By the way, temporal coherence in stylized
strokes—things like wiggly lines in pen-and-ink renderings—remains a serious
challenge as of 2013.

Figure 34.24: A figure drawn
with just a few diffusion curves.
(©L. Boissieux, INRIA) (Cour-
tesy of Joelle Thollot.)

Video games are now often using deliberately nonphotorealistic techniques
to establish mood or style, but maintaining a consistent feel throughout a game
requires high-level art direction as well as an expressive rendering tool. There’s a
need for tools to assist in such art direction, and for authoring tools for scenes to
be nonphotorealistically rendered so that modelers can indicate objects’ relative
importance (and how these change over time) as cues to simplification algorithms.

Tools like gradient-domain painting and diffusion curves let artists work
with what might be called “perceptual primitives,” but at the cost of global
modifications of images, which may be inconvenient. It would be nice to find
semilocal versions of these tools, ones whose range of influence can be conve-
niently bounded.
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Chapter 35

Motion

35.1 Introduction

When you see a sequence of related images in rapid succession, they blend
together and create the perception that objects in the images are moving. This
need not involve a computer: Cartoons drawn in a flip-book and analog film pro-
jection (see Figure 35.1) both create the illusion of motion this way. The individual
images are called frames and the entire sequence is called an animation. Beware
that both of these terms have additional meanings in computer graphics; for exam-
ple, a coordinate transform is a “reference frame” and an “animation” can refer to
either the rendered images or the input data describing one object’s motion.

A
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e

Figure 35.1: An animation is a
sequence of frames.

This chapter presents some fundamental methods for describing the motion of
objects in a 3D world over time. These mainly involve either interpolating between
key positions (see Figure 35.2) or simulating dynamics according to the laws of
physics (see Figure 35.3). Note that the laws of physics as in a virtual world need
not be those of the real world.

Most character animation that you have observed was driven by key positions,
with those positions created either by an artist or via motion capture of an actor
(see Figure 35.4). Those processes are not particularly demanding from a com-
putational perspective, but producing the animations is expensive and relatively
slow because of the time and skill that they require from the artists in the process.
In contrast, dynamics is computationally challenging but requires comparatively
little input from an artist. This is a classic example of leveraging a computer to
multiply a human’s efforts dramatically. It is natural that as animation algorithms
have become more sophisticated and computer hardware has become both more
efficient and less expensive, the broad trend has been to increase the amount of
animation produced by dynamics.

The artistry and algorithms of animations are subjects that have filled many
texts, and thus even a survey would strain the bounds of a single chapter. This
chapter focuses on the rendering and computational aspects of physically based
animation. In particular, it emphasizes concepts in the interpolation and rendering
sections and mathematical detail in the dynamics section. Dynamics is primarily

963
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Figure 35.2: A series of key poses extracted from dense motion capture data [SYLH10]
that have been visualized by rendering a virtual actor in those poses. (Courtesy of Moshe
Mahler and Jessica K. Hodgins.)

Figure 35.3: Hundreds of complex shapes fall into a pile in this rigid-body simulation of
Newtonian mechanics [WTF06]. This kind of simulation is leveraged extensively to present
“what if?” scenarios for both entertainment and engineering applications. The primary
challenges are efficiency and numerical stability. (Courtesy of Ron Fedkiw and Rachel
Weinstein Petterson, ©2005 ACM, Inc. Reprinted by permission.)

concerned with numerical integration of estimated derivatives; thinking deeply
about the underlying calculus should help you navigate the notorious difficulty
of achieving stability and accuracy in such a system. The techniques used are
related to several other numerical problems beyond physical simulation. Notably,
the integration methods that arise in dynamics serve as another example of the
techniques applied to the integration of probability density and radiance functions
in light transport.

There are many other ways to produce animations that are not discussed in
this chapter. Two popular ones are filtering live-action video (e.g., as shown in
Figure 35.5) and computing per-pixel finite automata simulation (e.g., Conway’s
Game of Life [Gar70], Minecraft, and various “falling sand” games). Although
beyond the scope of this book, both filtering and finite automata make rewarding
graphics projects that we recommend to the reader.
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Figure 35.4: Motion capture systems, such as the InsightVCS system pictured, record the
three-dimensional motion of a real actor and then apply those motions to avatars in the
virtual scene. (Courtesy of OptiTrack.)

Figure 35.5: Video tooning creates an animation from live-action footage [WXSC04]. This
kind of algorithm is an important open-research topic and a great project, but it is not
discussed further in this chapter. (Courtesy of Jue Wang and Michael Cohen. Drawn and
performed by Lean Joesch-Cohen. ©2004 ACM, Inc. Reprinted by permission.)

Finally, artists are essential! Even the best animation algorithms are ineffective
without expressive input data, and the worst animation algorithms can succeed if
controlled by a master animator. Those input data are created by artists employing
animation tools that are themselves complex software. To build such tools one
must appreciate the artists’ goals and approach to animation. These tools shape
the format of the data that then feed the runtime systems.
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35.2 Motivating Examples

We begin with ad hoc methods for creating motion in some simple scenes. These
illuminate the important issues of animation and suggest methods for generalizing
to more formal methods.

35.2.1 A Walking Character (Key Poses)

Consider the case of creating an animation of a person walking. Let the person be
modeled as a 3D mesh represented by a vertex array and an indexed triangle list
as described in Chapter 14. Assume that an artist has already created several vari-
ations on this mesh that have identical index lists but potentially different vertex
positions. These mesh variations represent different poses of the character during
its walk. Each one is called a key pose or key frame. The terminology dates back
to hand-animated cartoons, when a master animator would draw the key frames of
animation and assistant animators performed the “tweening” process of comput-
ing the in-between frames. In 3D animation today, an animator is the artist who
poses the mesh and an algorithm interpolates between them. Note that in many
cases the animator is not the same person who initially created the mesh because
those tasks require different skill sets. Later in the chapter we will address some
of the methods that might be employed to create the poses efficiently. For now
we’ll assume that we have the data.

Although a real person might never strike exactly the same key pose twice,
walking is a repetitive motion. We can make a common simplification and assume
that there is a walk cycle that can be represented by repeating a finite number of
discrete poses. For simplicity, assume that the key poses correspond to uniformly
spaced times at 1/4 second intervals, like the ones shown in Figure 35.6.

To play the animation we simply alter the mesh vertices according to the input
data. Most displays refresh 60–85 times per second (Hz). Because the input is at
4 Hz, if we increment to the next key pose for every frame of animation, then the
character will appear to be walking far too fast. For generality, let p = 1/4 s be

the period between key poses. Let x(t) =
[
x(t), y(t), z(t)

]T
be the position of one

vertex at time t. The input specifies this position only at t = k/p for integer values

t

x(t) 

x(1/4) 

x(2/4) 

x(3/4) 

Figure 35.6: Sample-and-hold interpolation of position over time of a point on a charac-
ter’s hand.
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of k; let those values be denoted x∗(t). Assume that the same processing will
happen to all vertices; we’ll return to ways of accomplishing that in a moment.

If we choose a sample-and-hold strategy for the intermediate frames:

Let t0 = �t/p�p (35.1)

x(t) = x∗(t0), (35.2)

then the animation will play back at the correct rate. The expression for t0 in
Equation 35.1 is a common idiom. It rounds t down to the nearest integer multiple
of p.

Inline Exercise 35.1: Closely related to sample-and-hold is nearest-neighbor,
where we round t to the nearest integer multiple of p.
(a) Write an expression for the nearest-neighbor strategy.
(b) Explain why sample-and-hold, given values at integer multiples of p, is
the same as nearest-neighbor applied to the same values, each shifted by
p/2. Because of this close relation, the terms are often informally treated as
synonyms.

As shown in Figure 35.6, the result of sample-and-hold interpolation will not
be smooth. At 60 Hz playback, we’ll see a single pose hold for 15 frames and then
the character will instantaneously jump to the next key pose. We can improve this
by linearly interpolating between frames:

Let t0 = �t/p�p; t1 = t0 + p; α = (t − t0)/p and (35.3)

x(t) = (1− α)x∗(t0) + αx∗(t1). (35.4)

The linear interpolation avoids the jumps between poses so that positions
appear to change smoothly, as shown in Figure 35.7.

This discussion was for a single vertex. There are several methods for extend-
ing the derivation to multiple vertices; here are three. A straightforward extension
is to apply equivalent processing to each element of an array of vertices. That is,
to let xi(t) be the position of the vertex with index i and then let

xi(t) =
[
xi(t) yi(t) zi(t)

]T
. (35.5)

t

x(2/4) 

x(3/4) 

x(1/4) 

x(t) 

Figure 35.7: Linear interpolation of position over time of a point on a character’s hand.
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This array representation for the motion equations matches both the indexed
trimesh representation and many real-time rendering APIs, so it is a natural way
to approach mesh animation.

One alternative is to leave the interpolation equation (Equation 35.4) unmod-
ified and instead redefine the input and output. For example, we could define a
function X(t) describing the state of the system as a very long column comprising
the positions of all vertices, instead of a 3-vector-valued function defining a single
position:

X(t) =
[
x0(t) y0(t) z0(t) . . . xn−1(t) yn−1(t) zn−1(t)

]T
. (35.6)

Note that nothing in our derivation depends on how components are arranged
within the vector. Therefore, any two state vectors obeying the same convention
can be linearly combined and the components will correspond along the appropri-
ate axes. This representation works well when extending the linear interpolation
to splines and, as shown later in this chapter in numerical integration schemes.
The chosen interpolation algorithm will simply treat its input and output as a sin-
gle very high-dimensional point, even though we consider it to be a concatenated
series of mesh vertices.

Another alternative is to redefine the position function as a matrix,

X(t) =

⎡
⎢⎢⎣

x0(t) x1(t) . . . xn−1

y0(t) y1(t) . . . yn−1

z0(t) z1(t) . . . zn−1

1 1 . . . 1

⎤
⎥⎥⎦ . (35.7)

This representation works well with the matrix representation of coordinate trans-
formations because we can compute transformations of the form M · X(t), where
M is a 4× 4 matrix.

Each of these representations could be implemented with exactly the same
layout in memory. The difference in choice of representation affects the theoretical
tools we can bring to bear on animation problems and the practical interface to the
software implementation of our algorithms. In practice, representations analogous
to each of these have specific applications in animation for different tasks.

In closing, consider the state of our evolving interpolation algorithm. Although
the vertex motion is continuous under linear interpolation, there are several
remaining problems with this simple key pose interpolation strategy.

• The vertex motion has has C0 continuity. This means that although posi-
tions change continuously, the magnitude of acceleration of the vertices is
zero at times between poses, and infinite at the time of the key poses. Using
a spline with C1 or higher continuity can improve this (see Figure 35.8).

• The animation does not preserve volume. Consider key poses of a char-
acter and the character rotated 180◦ about an axis. Linear, or even spline,
interpolation will cause the character to flatten to a line and then expand
into the new pose, rather than turning.

• The walk cycle doesn’t adapt to the underlying surface on which the char-
acter is walking. If the character walks up a hill or stairs, then the feet will
either float or penetrate the ground.

• Animations are smooth within themselves, but the transitions between dif-
ferent animations will still be abrupt.
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t

x(2/4) 

x(3/4) 

x(1/4) 

x(t) 

Figure 35.8: Piecewise-cubic interpolation of position over time of a point on a character’s
hand using a spline.

• We can’t control different parts of the character independently. For exam-
ple, we might want to make the arms swing while the legs walk.

• The animation scheme doesn’t provide for interaction or high-level control.
There is no notion of an arm or a leg, just a flat array of vertices.

• We still require a strategy for creating animation data, either by hand or as
measurements of real-world examples.

• We’ve only considered animation that is tied to a specific mesh. Creat-
ing animation proves to be time-consuming by current practices, so it is
desirable to transfer animation of one mesh to a new mesh representing a
different character—doing so means abstracting the animation away from
the vertices to higher-level primitives like limbs. (The mesh deformation
transfer described in Section 25.6.1 is one technique for this.)

Inline Exercise 35.2: Create a simple animation data format and playback pro-
gram to explore these ideas. Instead of a 3D character, limit yourself to a 2D
stick figure. Use only four frames of animation for the walk cycle, and manu-
ally enter the key pose vertex positions in a text file. Making even four frames
of animation will probably be challenging. Why? What kind of tool could you
build to simplify the process? What aspects of the linear interpolation are dis-
satisfying during playback?

35.2.2 Firing a Cannon (Simulation)

Let’s render an animation of a sailing ship firing a cannon as shown in Figure 35.9.
The cannonball will be rendered as a black sphere, so we can ignore its orienta-
tion and focus only on the motion of its center of mass/local coordinate frame
origin—the root motion. Neglecting the effects of drag due to wind and the slight
variance in gravitational acceleration, the cannonball experiences only constant
acceleration due to gravity after it is fired. A physics textbook gives an equation
for the motion of an object under constant acceleration as
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Figure 35.9: One frame (bottom) and a superimposed detail of a sequence of frames (top)
of animation depicting the flight of a cannonball as computed by procedural physics.

x(t) = x0 + v0t +
1
2

a0t2, (35.8)

where x(t) is the 3D position, t is time, x0 = x(0) is the initial position of the
object, v0 is the initial velocity of the object, and a0 is the constant acceleration
factor. In m-kg-s SI units, position is measured in meters, time in seconds, velocity
in meters per second, and acceleration in meters per second squared. The same
textbook gives the acceleration from the Earth’s gravitational field as 9.81 m/s2

(downward). We’ll see where these equations and constants came from later in
this chapter; for now, let’s just trust the physics textbook. An 18th-century ship’s
cannon with an 11 kg ball has a 520 m/s muzzle velocity. Assuming that y is up
and we are firing along the x-axis at an elevation of π/4 from the horizontal, the
initial conditions are

v0 = (520 cos(π/4), 520 sin(π/4), 0) m/s; (35.9)

a0 = (0,−9.81, 0) m/s2 (35.10)

To actually render an animation, we must produce many individual images
separated by small steps in t (see Figure 35.9). When these are quickly viewed
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consecutively, the viewer will no longer perceive the individual images and instead
will see the cannonball moving smoothly through the air. The code to actu-
ally render a T-second animation of N individual frames looks something like
Listing 35.1.

Listing 35.1: Immediate-mode rendering for a cannonball’s flight.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

float speed = 520.0f;
float angle = 0.7854f;

Vector3 x0 = ball.position();
Vector3 v0(cos(angle) * speed, sin(angle) * speed, 0.0f);
Vector3 a0(0, -9.8f, 0);

for (int i = 0; i < N; ++i) {
float t = T * i / (N - 1.0f);
ball.setPosition(x0 + v0 * t + 0.5 * a0 * t * t);

clearScreen();
render();
swapBuffers();

}

The swapBuffers call is important. If we simply cleared the screen and drew
the scene repeatedly the viewer would see a flickering as the image was built
up with each frame. So we instead maintain two framebuffers: a static front
buffer that displays the current frame to the viewer and a back buffer on which
we are drawing the next frame. The swapBuffers call tells the rendering API
that we are done rendering the next frame so that it can swap the contents of
the buffers and show the frame to the viewer. This is called double-buffered
rendering.

This was a simple example of procedural motion based on real-world dynam-
ics. The steps here produce a satisfying animation but raise questions that
we’ll need to address in a more general framework for procedural motion and
dynamics.

• Our equations don’t take into account skipping the cannonball off the sur-
face of the water, sinking it into the water, or crashing it into the targeted
ship. How can we detect and respond to collisions and changing circum-
stances?

• We can solve for the flight time T based on the intersection of the parabolic
arc and the other ship (or the water plane). But how should we choose the
number of frames N to render in that time?

• What about objects that don’t have constant acceleration from a single
force such as gravity? For example, how do we move the ship itself through
the water?

• For a featureless ball, we could ignore orientation. What are the equations
of motion for an arbitrary tumbling object?

• Imagine procedural motion for an object not moving ballistically (e.g., a
person dancing [PG96]). Deriving the equations of motion from first prin-
ciples of physics would be really hard, and it would also be hard to ask an
animator to specify the motion with explicit equations. What can we do?
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Figure 35.10: Selecting the key poses to navigate a character through these corridors is a
problem at the interface between computer graphics and artificial intelligence (based on
figure from [AVF04], which discusses AI-based methods for motion planning.).

35.2.3 Navigating Corridors (Motion Planning)

Consider the motion of a hovering robotic drone patrolling the interior of a build-
ing (Figure 35.10). We chose a hovering robot to avoid issues of rotating wheels
or limbs, and a deforming mesh. The entire motion of the robot can be expressed
as a change of the reference frame in which its rigid mesh is defined. This ref-
erence frame is called the root frame of the robot and the motion is called root
frame animation. (This is a case where context determines the meaning of over-
loaded technical terminology for motion. The word “frame” in the previous sen-
tence refers to a coordinate transformation, not an image; and “animation” refers
to the true 3D motion, not a sequence of images.)

If we assume that the robot is a uniform sphere in order to ignore the problem of
representing its rotational frame, the robot’s animation is simply a formula for the
translation of its root frame, x(t) = . . . . We could approach this problem as either
key pose interpolation or a simulation. A hybrid strategy is often best for problems
like this: Given an ideal path based on key poses, simulate the actual motion of
the robot close to that path based on forces like gravity, the hover mechanism, and
drag. This captures both the high-level motion and the character of real physics.

What is the source of the key poses? For a character’s walk cycle, we were
able to assume that an animator used some tool to create the key poses. To accu-
rately model an autonomous robot, or to create an interactive application, we can’t
rely on an artist. The robot must choose its own key poses dynamically based on a
goal, such as navigating to a specific room. This is an Artificial Intelligence (AI)
problem. Real-world robots and video games with nonplayer characters solve it,
generally using some form of path finding algorithm. Path finding has been long
studied in computer science, primarily in the context of abstract graphs. For a 3D
virtual world we must solve not only the graph problem but also the local prob-
lems that arise from actual room geometry and multiple interacting characters.
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A common approach is to apply a traditional AI path finding algorithm like A∗ to
create a root motion spline, and then use another greedy algorithm to look ahead
a small time interval and avoid small-scale collisions.

So far, we have considered only translational root motion for navigation. The
problem of synthesizing dynamic character motion becomes even more challeng-
ing when we must solve for the motion of limbs, coordinate multiple characters, or
handle deformation. This general problem is called motion planning, and it is an
active area of research in not only computer graphics but also AI and robotics.
Most solutions draw on the principles and algorithms described in this chap-
ter. However, they also tend to leverage search and machine learning strategies
that require more AI background to describe. Having motivated it, we now leave
the motion planning aside. The remainder of this chapter overviews basic prim-
itives up to motion in the absence of AI, with emphasis on the motion of rigid
primitives.

35.2.4 Notation

Variables in animation algorithms are qualified in many ways. Reference frames
have three translational dimensions and three rotational dimensions, all quantities
are functions of time, and most quantities are actually arrays to accommodate
multiple objects or vertices. The algorithms we use also typically involve first and
second time derivatives, and often consider the instantaneous value before and
after an event such as a collision.

Animation-specific notations address these qualifications, but they differ from
the notations predominant in rendering that are used elsewhere in this book. The
following notation, which is common in the animation literature, applies only
within this chapter (see Table 35.1).

Table 35.1: Formatting conventions for this chapter.

Symbol Interpretation

f (t) Value of a scalar function f of time at time t

x(t) Vector value of a function x at time t

ẋ(t) dx(t)
dt

ẍ(t) d2x(t)
dt2

xi Element i of an ordered set of homogeneous elements

x[1] First element of a vector

xi Element i of an array of vectors

ẋ− Quantity immediately before an event (here, a single-
sided derivative)

ẋ+ Quantity immediately after an event

X(t) Ideal state function for the entire system

Yi ≈ X(iΔt + t0) Actual state of the system at frame i resulting from a
numerical integration scheme

Vectors are in boldface (e.g., x), to leave space for other hat decorations. A dot
over the x denotes that ẋ is the first derivative of x with respect to time. This is
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a common notation in physics. In animation, time appears in all equations and is
always denoted by t (except when we need temporary variables for integration),
so all derivatives are with respect to t (e.g., ẋ(t) = dx

dt (t)). Multiple dots indicate
higher-order derivatives (e.g., ẍ(t) = d2x

dt2 (t)).
There are two hazards in this dot notation. The first is that “ẋ” is such a com-

pact form that it is easy to drop the “(t)” and treat the value of a velocity expression
as a variable instead of as the evaluation of a function. When taking derivatives
of complex expressions such as momentum that are based on velocity, forget-
ting that velocity is a function of time can lead to errors if you forget to apply
the chain rule. For example, let’s look at a function of two arguments defined by
p(m, v) = 1

2 mv2 (which happens to be the momentum equation). We can com-
pute the partial derivatives, ∂p

∂m (m, v) = 1
2 v2; ∂p

∂v (m, v) = mv. What you might see
in an animation paper is a description of this function where the author writes,
“p(m, ẋ) = 1

2 mẋ2.” And you’ll even see things like “∂p
∂ẋ (m, ẋ) = mẋ.” Here, ẋ is

being treated as a variable, just like v, and it is almost reasonable to do so thus
far. It is also common to see “ d

dt p(m, ẋ) = mẋẍ.” This is a little strange because t
isn’t even one of the arguments of function p, and ẋ has changed from its role as
a variable whose symbol happens to have a dot hat to representing a function of
time whose time derivative is denoted ẍ. Thus, for clarity, in this chapter when we
want such a function, we write either p(m, t) = 1

2 mẋ(t)2, or more verbosely,

p∗(m, v) =
1
2

mv2, (35.11)

p(m, t) = p∗(m, ẋ(t)) =
1
2

mẋ(t)2, and (35.12)

∂p(m, t)
∂t

= mẋ(t)ẍ(t). (35.13)

The second notational hazard is that the implementation of a dynamics sys-
tem often uses higher-order functions. That is, it contains functions that take
other functions as their arguments. In programming, the argument functions are
called first-class functions or function pointers. There is a real distinction between
the vector-valued function x (i.e., Vector3 position(float time) ...) and the
vector value of that function at time t, x(t) (i.e., Vector3 currentPosition;).
Passing the wrong one as an argument will lead to programming errors. We there-
fore always keep the derivatives in function notation for this chapter. However, be
warned that in the animation literature it is commonplace to move between the
variable and function notation.

Here’s one critical example of this notation. When discussing numerical inte-
gration schemes that dominate the dynamics portion of this chapter, we distin-
guish three fundamental representations. The position of an object (which may
represent only position, or may be extended with other information) is x(t), which
is a vector-valued function. The elements of the vector may be, for example, x-,
y-, and z-coordinates, or those coordinates and rotational (and other pose) infor-
mation. Since there may be many objects in a system, or many points on a single
object, we consider a set of functions. When evaluated at t, their values are denoted
x1(t), x2(t), etc. The state function of the entire system, which comprises the entire
set of position functions and their derivatives, is written X(t) when evaluated at
time t. The state function is defined for continuous t.

When we approximate the state function with a numerical integrator that takes
discrete steps, we refer to the values of the state function at given step indices.
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This is Yi ≈ X(iΔt+ t0). Note that Yi for a given i is not a function—it is a value,
which is typically represented as an array of (3D) vectors in a program. One could
alternatively think of a function on a discrete time domain whose value at step i is
Y[i]. However, we do not use that notation for two reasons. First, we reserve the
bracket notation for referencing the elements of a vector value. Second, a typical
implementation only contains one Y value at a time. It would be misleading to
think of it as a discrete function or array of values because only a single one is
present in memory at a time. A good mental model for Yi is the ith element of
a sequence that the program is iterating through, which is what that notation is
intended to suggest.

35.2.4.1 Notation in the Big Picture
For what it is worth, the first, and perhaps one of the most significant, challenges
in learning the mathematics of animation is simply grappling with the notation.
We’ve tried to choose a relatively simple and consistent notation for this chapter,
but we acknowledge that it is still a ridiculously large new language to learn for
something as seemingly simple as expressing Newton’s laws.

The notation is complex because it bears the burden of expressing the many
shades of “position” and values derived from it in a formal computational system.
The gist of those shades and derivations embodies the fundamental rules, and
thus the power, of animation. The gist is what is important because in a virtual
world, the specifics of the laws of physics are arbitrary and mutable. On the com-
putational side, there are a large number of ways to integrate and interpolate val-
ues. There is no single best solution (although there are some solutions that are
always inferior).

As a concrete example, understanding the inputs and outputs of an integrator is
actually more important than understanding the integration algorithm itself. There
are many integration algorithms, but they all fit into the same integration systems
that dictate the data flow. So the notation really is telling you something important.
It therefore is worth taking the time to ensure that you understand the distinction
between each x and x in an equation.

35.3 Considerations for Rendering

We now consider several ways in which animation and rendering are interrelated,
ranging from display techniques like double and triple buffering to make anima-
tion appear smoother, all the way to approaches for generating motion blur to help
smooth the appearance of moving objects.

35.3.1 Double Buffering

When a display can refresh faster than the processor can render a frame, draw-
ing directly to the display buffer would reveal the incomplete scene. Because
this is generally undesirable, double-buffered rendering draws to an off-screen
back buffer while the front buffer containing the previous frame is displayed
to the viewer. When the back buffer is complete, the buffers are “swapped,”
either by copying the contents of the back to the front or by moving the
display’s pointer between the buffers. The cannonball code in Listing 35.1 showed
an example of how an explicit call to swap buffers can manage double-buffered
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rendering. Double-buffered rendering of course doubles the size of the frame-
buffer in memory.

Analog vector scope (oscilloscope) displays have no buffer—a beam driven
by analog deflection traces true lines on the display surface. So double-buffered
rendering is impossible for such displays and they inherently reveal the scene as
it is rendered. Vector scopes are rarely used today, although some special-purpose
laser-projector displays operate on the same principle and have the same draw-
backs.

For displays driven by a digital framebuffer, the swap operation must be han-
dled carefully. A CRT traces through the rasters with a single beam. Pixels in
the framebuffer that are written to will not be updated until the beam sweeps
back across the corresponding display pixel. LCD, plasma, and other modern flat-
screen technologies are capable of updating all pixels simultaneously, although
to save cost, a specific display may not contain independent control signals for
each pixel. Regardless, the display is typically fed by a serial signal obtained by
scanning across the framebuffer in much the same way as a CRT. The result is that
for most modern displays the buffers must be swapped between scanning passes.
Otherwise, the top and bottom of the screen will show different frames, leading
to an artifact called screen tearing. The raster at which the screen is divided will
scroll upward or downward depending on the ratio of refresh rate to animation
rate.

The solution to tearing is vertical synchronization, which simply means wait-
ing for the refresh to swap buffers. The drawback of this is that it may stall the
rendering processor for up to the display refresh period. Two common solutions
are disabling vertical synchronization (which entails simply accepting the resul-
tant tearing artifacts) and triple buffering. Under triple buffering, three frame-
buffers are maintained as a circular queue. This allows the renderer to advance to
the next frame at a time independent of the display refresh. Of course, the ren-
derer must still be updating at about the same rate as the display or the queue will
fill or become empty, stalling either the display or the renderer. The queue may
be implemented in a straightforward manner as an array of framebuffers that are
each used in sequence, or as two double-buffer pairs that share a front buffer. The
drawbacks of triple-buffered rendering are further increased framebuffer storage
cost and an additional frame of latency between user input and display.

35.3.2 Motion Perception

Motion perception is an amazing property of the human visual system that enables
all computer graphics animation. Current biological models of the visual system
indicate that there is no equivalent of a refresh rate or uniform shutter in the eye or
brain. Yet we perceive the objects in sequential frames shown at appropriate rates
as moving smoothly, rather than warping between discrete locations or as separate
objects that appear and disappear.

Motion phenomena are believed to occur mostly within the brain. However,
the retina does exhibit a tendency to maintain positive afterimages for a few mil-
liseconds and this may interact with the brain’s processing of motion. These are
distinct from the negative afterimages that occur when staring at a strong stimulus
for a long period of time.

One effect of positive afterimages is that the human visual system is only
strongly sensitive to flickering due to shuttering or image changes up to about
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25 Hz, and is completely insensitive to flickering at frequencies higher than 80 Hz.
This is partly why the 50 Hz (Europe) or 60 Hz (U.S.) flickering of a fluorescent
light is just barely perceptible, and is why most computer displays refresh at 60 to
85 Hz.

The Beta phenomenon [Wer61], sometimes casually referred to by the over-
loaded term “persistence of vision,” is the phenomenon that allows the brain to
perceive object movement. At around 10 Hz, the threshold of motion perception
is crossed and overlapping objects in sequential frames may appear to be a single
object that is in motion. This is only the minimum rate for motion perception. If
the 2D shapes are not suitably overlapped they will still appear as separate objects.
This means that fast-moving objects in screen space require higher frame rates for
adequate presentation.

The combination of fast-moving objects and the limitations of afterimages to
conceal flickering cause a phenomenon called strobing. Here, motion perception
breaks down even at frame rates higher than 30 Hz. A classic example of strobing
is a filmed or rendered roller-coaster ride from a first-person perspective. Because
points on the coaster track can traverse a significant portion of the screen, even
at high frame rates the individual frames may appear as actual separate flashing
images and not blend into perceived motion of an object. This can be a disturbing
artifact that causes nausea or headache if prolonged. Above 80 Hz, afterimages
appear to completely conceal the strobing effect and the motion becomes apparent,
although the actual images may be blurred by the visual system.

The human perception of motion and flickering creates a natural range for
viable animation rates, from about 10 Hz to about 80 Hz. Table 35.2 shows that
various solutions are currently in use throughout that viable range.

Table 35.2: Common image display rates.

Frequency Phenomenon or Technology

10 Hz Approximate threshold of human motion perception

24 Hz U.S. film

25 Hz Approximate point where afterimages begin to conceal
flickering

25 Hz PAL film (Europe)

25 Hz PAL television and video (progressive rate)

29.92 Hz NTSC television and video (progressive rate)

50 Hz PAL television and video (interleaved rate)

59.94 Hz NTSC television and video (interleaved rate)

60 Hz U.S. power duty cycle; fluorescent light flicker rate

65 Hz Typical LCD monitor refresh rate

72 Hz U.S. film projector refresh (24 Hz with each frame shown
three times)

80 Hz Approximate limit of human flickering perception; strobing
ceases

85 Hz Typical CRT monitor refresh rate

120 Hz Stereo-vision LCD monitor refresh (both views)
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We note that for dynamics, the rendering rate may be independent of the simu-
lation rate. Simulating at low rates and then interpolating between simulation steps
when rendering amortizes the cost of a simulation step. Simulating at high rates
and then subsampling simulation steps when rendering can increase accuracy and
stability. We return to these issues later in this chapter.

Most LCD monitors refresh at around 60–65 Hz, although some displays
refresh at 120 or 240 Hz for shuttered stereo viewing of 60 Hz or 120 Hz images.

Note that there are two standards for film: 24 Hz in the United States and
Japan and 25 Hz for the PAL/SECAM standard used in Europe and the rest of
Asia. Interestingly, projected films are typically not adapted to the display’s frame
rate when moving between PAL and NTSC standards. Thus, 25 Hz European films
are screened in the United States at 24 Hz. The audio makes the corresponding 4%
speed change to remain in synchrony. The net result is that European films appear
slow and low-pitched while American films appear fast and high-pitched, when
viewed in the opposite projection mode.

35.3.3 Interlacing

Many television broadcast and storage formats are interlaced. In an interlaced
format, each frame contains the full horizontal resolution of the final image but
only half the vertical resolution. These half-resolution frames are called fields.
Even and odd fields are offset by one pixel (or historically, one scan line). To
display a complete image, two sequential fields must be combined by interlacing
their rasters (rows of pixels).

Because each image merges pixels from different time slices, no single image
is consistent. However, fast motion can be represented at comparatively low band-
width. The artifacts of interlacing were historically hidden by the decay time of
CRT phosphors, which took longer to change intensity than the frame period.
Some contemporary displays can change images rapidly and thus reveal the inter-
lacing pattern. This can be observed when pausing playback on an LCD mon-
itor, although some displays attempt to interpolate between adjacent frames to
reconstruct a progressive signal from an interlaced one.

At the time of this writing, most broadcast television and archived television
shows remain in interlaced formats. With the advent of high-definition digital dis-
plays, new content is increasingly moving to progressive formats. Progressive is
what you would expect: Each frame contains a complete image.

The progressive rate for PAL/SECAM television is 25 Hz and the interlaced
rate is 50 Hz. This means that normal European television broadcasts send one
field every 1/50 s such that every 1/25 s a complete image has been transmitted.

Console games displayed on televisions may elect to render in either progres-
sive or interlaced formats. The advantage of an interlaced format is that there are
half as many pixels to render per frame, yet the viewer rarely perceives a 50%
reduction in quality.

35.3.3.1 Telecine
The PAL/SECAM formats allow European films to be broadcast unmodified on
European television because they both are driven at 25 Hz. To interlace such a
film, simply drop half the rasters each frame.

In the United States, the process is not as simple. NTSC television requires
approximately 30 Hz, but U.S. films are at 24 Hz. These only align once every six
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Original
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(Even)
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Figure 35.11: Schematic of how interlacing is exploited to adapt 24 Hz film frames for
60 Hz interlaced broadcast to NTSC televisions under the 3:2 pulldown algorithm. In the
center columns, the odd and even source film frames have been repeated three and two
times, respectively. (Created by Eric Lee.)

frames, and interpolating the remaining frames from adjacent ones would signifi-
cantly blur the images. The telecine or pulldown employed in practice is a clever
alternative that exploits interlacing.

The commonly employed algorithm is called 3:2 pulldown. We begin with a
simplified example to understand the intuition behind it. Instead of resampling
from 24 Hz progressive to 30 Hz progressive, consider the problem of resampling
from 24 Hz progressive to 60 Hz interlaced. We can approach this by replicating
each source frame “2.5” times, that is, by repeating frame i twice, blending frames
i and i + 1, and then proceeding to process frame i + 1. This blends only one out
of every three frames, which is substantially better than blending five out of every
six frames. The output will be progressive, so to create an interlaced format, drop
half the rasters from every frame.

What the actual 3:2 pulldown algorithm does is perform the blending by
choosing the source rasters more selectively. This avoids blending pixels from
separate frames and directly produces interlaced output. This is similar to stochas-
tic blending methods like dithering: The blending is spatial and is integrated by
the eye. Figure 35.11 shows the process. Given four original film frames A, B, C,
and D sampled at 24 Hz (left column), the algorithm will produce 4 · 2.5 = 10
interlaced frames at ≈60 Hz (center columns), that correspond to five progres-
sive frames at ≈30 Hz (right column). Note that the interlaced frames are broad-
cast in alternating raster order, so the top frame of the left-center column will be
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broadcast first, followed by the top frame of the right-center column, followed by
the second-to-top row of the left-center column, etc.

The interlaced frames are chosen by repeating even frames from the original
film twice and odd frames from the film three times; that is, odd to even appear in
the ratio 3:2. Notice how in the center columns the even source frames A and C
appear twice and the odd source frames B and D appear three times.

35.3.4 Temporal Aliasing and Motion Blur

Rendering a frame from a single instant in time is convenient because all geometry
can be considered static for the duration of the frame. Each pixel value in an image
represents an integral over a small amount of the image plane in space and a small
amount of time called the shutter time or exposure time. Film cameras contained
a physical shutter that flipped or irised open for the exposure time. Digital cameras
typically have an electronic shutter. For a static scene, the measured energy will
be proportional to the exposure time. A virtual camera with zero exposure can be
thought of as computing the limit of the image as the exposure time approaches
zero.

There are reasons to favor both long and short exposure times in real cameras.
In a real camera, short exposure times lead to noise. For moderately short expo-
sure times (say, 1/100 s) under indoor lighting, background noise on the sensor
may become significant compared to the measured signal. For extremely short
exposure times (say, 1/10,000 s), there also may not be enough photons inci-
dent on each pixel to smooth out the result. Nature itself uses discrete sampling
because photons are quantized. In computer graphics we typically consider the
“steady state” of a system under large numbers of photons, but this model breaks
down for very short measurement intervals. A long exposure avoids these noise
problems but leads to blur. For a dynamic scene or camera, the incident radiance
function is not constant on the image plane during the exposure time. The resultant
image integrates the varying radiance values, which manifest as objects blurring
proportional to their image space velocity. Small camera rotations due to a shaky
hand-held camera result in an entirely blurry image, which is undesirable. Like-
wise, if the screen space velocity of the subject is nonzero, the subject will appear
blurry. This motion blur can be a desirable effect, however. It conveys speed. A
very short exposure of a moving car is identical to that of a still car, so the observer
cannot judge the car’s velocity. For a long exposure, the blur of the car indicates
its velocity. If the car is the subject of the image, the photographer might choose
to rotate the camera to limit the car to zero screen-space velocity. This blurs the
background but keeps the car sharp, thus maintaining both a sharp subject and the
velocity cue.

For rendering, our photons are virtual and there is no background noise, so a
short exposure does not produce the same problems as with a real camera. How-
ever, just as taking only one spatial sample per pixel results in aliasing, so does
taking only one temporal sample. The top row of Figure 35.12 shows two images
of a very thin row of bars, as on a cage. If we take only one spatial sample per
pixel, say, at the pixel center, then for some subpixel camera offsets the bars are
visible and for others they are invisible. Note that as the spatial sampling den-
sity increases, the bars can be resolved at any position. The bottom row shows
the result of the equivalent experiment performed for temporal samples. A fast-
moving car is driving past the camera in the scene depicted. For a single temporal
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1 spatial sample 4 samples 1,024 samples Actual Scene 

1 temporal sample 4 samples 1,024 samples Actual Scene 

Figure 35.12: Top row: a fence made of black posts on a white background imaged with
increasing spatial resolution. Bottom row: a moving sphere imaged with increasing tempo-
ral resolution. Increasing the number of samples better captures the underlying scene, in
space or time. Here a regular sampling pattern is used for each.

sample, the car may be either present or absent. Increasing the temporal sampling
rate increases the ability to resolve the car. For a high temporal sampling rate the
image approaches that which would be captured by a real camera, where the car
is blurred across the entire frame.

One method for ameliorating temporal aliasing is to use a high-refresh rate
display and render once per refresh. Although not common today, there are pro-
duction 240 Hz displays. Simply rendering at 240 Hz provides four times the
temporal sampling rate of the common 60 Hz rendering rate. This does not solve
the temporal aliasing problem. It merely reduces its impact. A sufficiently fast car,
for example, will still flash into the center of the screen and disappear.

A more common alternative to a high refresh rate solves the flashing problem
and does not require a special display. One can explicitly integrate many tempo-
ral samples, producing rendered motion blur. Distribution1 ray tracing [CPC84]
pioneered this approach, which has since been extended to rasterization. Here,
software is performing the integration that was performed by the eye under a high-
refresh display.

Integration over temporal samples does not necessarily give the same percep-
tion as observing a high refresh display or the real world, however. The reason is
that the eye is not a camera. In the absence of temporal integration, the observer’s
eye can track the motion of an object in the scene at a high rate. For example,
the eye can rotate to keep an object moving across the display’s field of view at
the same location in the eye’s field of view. The resultant perception is that the
moving object is sharp and the background is blurred. If the same scene is shown
at a low frame rate that has been integrated over multiple temporal samples, the
moving object will be blurred and the background will be sharp. This might lead
one to the conclusion that motion blur cannot be rendered effectively without eye

1. Cook et al. originally called their technique “distributed” ray tracing because it
distributes samples across the sampling domain, including time. Today it is com-
monly called “distribution” ray tracing to distinguish it from processing distributed
across multiple computers. It is also called “stochastic” ray tracing since it is often
implemented using stochastic sampling, although technically, the decision to distribute
samples (especially eye-ray samples) is separate from the choice of sampling pattern.
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Figure 35.13: Undersampling in time with regular (a.k.a. uniform, statistically dependent)
samples within each pixel (left) produces ghosting. Undersampling with stochastic (a.k.a.
independent, random) samples produces noise (right) [AMMH07]. (Courtesy of Jacob
Munkberg and Tomas Akenine-Möller)

tracking. However, all live-action film faces exactly this problem and rarely do
viewers experience disorientation at the fact that the images have been preinte-
grated over time for their eyes. If the director does a good job of directing the
viewer’s attention, the camera will be tracking the object of primary interest in
the same way that the eye would. Presumably, a poorly directed film fails at this
and creates some disorientation, although we are not aware of a specific scien-
tific study of this effect. Similar problems arise with defocus due to limited depth
of field and with stereoscopic 3D. For interactive 3D rendering all three effects
present a larger challenge because it is hard to control or predict attention in an
interactive world. Yet in recent years, games in particular have begun to exper-
iment with these effects and achieve some success even in the absence of eye
tracking.

Antialiasing, motion blur, and defocus are all cases of integrating over a larger
sampling area than a single point to produce synthetic images that more closely
resemble those captured by a real camera. Many rendering algorithms combine
these into a “5D” renderer, where the five dimensions of integration are subpixel
x, y, time, and lens u, v. Cook et al.’s original distribution and stochastic ray trac-
ing schemes [CPC84, Coo86] can be extended to statistically dependent temporal
samples per pixel by simply rendering multiple frames and then averaging the
results. Because all samples in each frame are at the same time, for large motions
this produces discrete “ghosts” for fast-moving objects instead of noisy ghosts, as
shown in Figure 35.13. Neither of these is ideal—the image has been undersam-
pled in time and each is a form of aliasing. The advantage of averaging multiple
single-time frames is that any renderer, including a rasterization renderer, can be
trivially extended to simulate motion blur in this method.

The Reyes micropolygon rendering algorithm [CCC87] that has been heav-
ily used for film rendering is a kind of stochastic rasterizer. It takes multiple
temporal samples during rasterization to produce effects like motion blur, avoiding
the problem of dependent time samples. Akenine-Möller et al. [AMMH07]
introduced explicit temporal stochastic rasterization for triangles, and Fatahalian
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et al. [FLB+09] combined that idea with micropolygons for full 5D micropolygon
rasterization. Fatahalian et al. framed rasterization as a five-dimensional point-in-
polyhedron problem and solved it in a data-parallel fashion for efficient execution
on dedicated graphics hardware.

Because integration over multiple samples is expensive, a variety of tricks
that generate phenomena similar to motion blur have been proposed. These have
historically been favored by the game industry because they are fast, if sometimes
poor-quality, approximations. See Sung et al. [SPW02] for a good survey of these.
The major methods employed are adding translucent geometry that stretches an
object along its screen-space velocity vector, artificially increasing the MIP level
chosen from textures to blur within an object, and screen-space blurring based on
per-pixel velocity as a post-process [Vla08].

Renderers paradoxically spend more time producing blurry phenomena such
as motion blur than they do in imaging sharp objects. This is because blurring
requires either multiple samples or additional post-processing. Since it is harder
for viewers to notice artifacts in blurry areas of an image, it would be ideal to
somehow extrapolate the blurry result from fewer samples. This is currently an
active area of research [RS09, SSD+09, ETH+09].

35.3.5 Exploiting Temporal Coherence

An animation contains multiple frames, so rendering animation is necessarily
more computationally intense than rendering a single image. However, the cost
of rendering an animation is not necessarily proportional to its length. Sequen-
tial frames often depict similar geometry and lighting viewed through similar
cameras. This property is referred to as frame coherence or temporal coher-
ence. It may hold for the underlying scene state, the rendered image, both, or
neither.

One advantage of frame coherence is that one can often reuse intermediate
results from rendering one frame for the subsequent frame. Thus, the first frame
of animation is likely as expensive to render as a single image, but subsequent
frames may be comparatively inexpensive to render.

For example, it is common practice in modern rasterization renderers to
only recompute the shadow map associated with a luminaire only when both
the volume illuminated by that luminaire intersects the view frustum and some-
thing within that volume moved since the previous computation. Historically, 2D
renderers were not fast enough to update the entire screen when drawing user
interfaces. They exploited frame coherence to provide a responsive interface. Such
systems maintained a persistent image of the screen and a list of 2D bound-
ing boxes for areas that required updating within that image. These bounding
boxes were called dirty rectangles. Although modern graphics processors are
fast enough to render the entire screen every frame, the notion of dirty rectangles
and its generalization to dirty bit flags remains a core one for incremental updates
to computer graphics data structures.

The process of storing intermediate results for later reuse is generally called
memoization; it is also a main component of the dynamic programming tech-
nique. If we allow only a fixed-size buffer for storing previous results and have a
replacement strategy when that buffer is full, the process is called caching. Reuse
necessarily requires some small overhead to see if the desired result has already
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been computed. When the desired result is not available (or is out of date, as in the
dirty rectangle case) the algorithm has already invested the time for checking the
data structure and must now pay the additional time cost of computing the desired
result and storing it. Storing results of course increases the space cost of an algo-
rithm. Thus, reuse strategies can actually increase the total cost of rendering when
an animation fails to exhibit frame coherence.

When reuse produces a net time savings, it is reducing the amortized cost of
rendering each frame. The worst-case time may still be very high. This is problem-
atic in interactive applications, where inconsistent frame intervals can break the
sense of immersion and generally hampers continuous interaction. One solution is
to simply terminate rendering a frame early when this occurs. For example, the set
of materials (i.e., textures) used in a scene typically changes very little between
frames, so the cost of loading them is amortized over many frames. Occasionally,
the material set radically changes. This happens, for example, when the camera
crests a hill and a valley is revealed. One can design a renderer that simply renders
parts of the scene for which materials are not yet available with some default or
low-resolution material. This will later cause a visual pop (violating coherence of
the final image) when these materials are replaced with the correct ones, but it
maintains the frame rate. The worst case is often the first frame of animation, for
which there is no previous frame with which to exhibit coherence.

35.3.6 The Problem of the First Frame

The first frame of animation is typically the most expensive. It may cost orders of
magnitude more time to render than subsequent frames because the system needs
to load all of the geometry and material data, which may be on disk or across a
network connection. Shaders have not yet been dynamically compiled by the GPU
driver, and all of the hardware caches are empty. Most significantly, the initial
“steady state” lighting and physics solution for a scene is often very expensive to
compute compared to later incremental updates.

Today’s video games render most frames at 1/30 s or 1/60 s intervals. Yet the
first frame might take about one minute to render. This time is often concealed
by loading data on a separate thread in the background while displaying a loading
screen, prerendered cinematic, or menus. Some applications continuously stream
data from disk.

If we consider the cost of precomputed lighting, some games take hours to
render the first frame. This is because computing the global illumination solu-
tion is very expensive. The result is stored on disk and global illumination is
then approximated for subsequent frames by the simple strategy of assuming
it did not change significantly. Although games increasingly use some form
of dynamic global illumination approximation, this kind of precomputation for
priming the memoization structure is a common technique throughout computer
graphics.

Offline rendering for film is typically limited by exactly these “first frame”
problems. Render farms for films typically assign individual frames to different
computers, which breaks coherence on each computer. Unlike interactive appli-
cations, at render time films have prescripted motion, so the “working set” for a
frame contains only elements that directly affect that frame. This means that even
within a single shot, the working set may exhibit much less coherence than for
an interactive application. Because of this system architecture and pipeline, a film
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renderer is in effect always rendering the first frame, and most film rendering is
limited by the cost of fetching assets across a network and computing intermediate
results that likely vary little from those computed on adjacent nodes.

35.3.7 The Burden of Temporal Coherence

When rendering an animation where the frames should exhibit temporal coher-
ence, an algorithm has the burden of maintaining that coherence. This burden is
unique to animation and arises from human perception.

The human visual system is very sensitive to change. This applies not only to
spatial changes such as edges, but also to temporal changes as flicker or motion.
Artifacts that contribute little perceptual error to a single image can create large
perceptual error in an animation if they create a perception of false motion.
Four examples are “popping” at level-of-detail changes for geometry and texture,
“swimming jaggies” at polygon edges, dynamic or screen-door high-frequency
noise, and distracting motion of brushstrokes in nonphotorealistic rendering,

Popping occurs when a surface transitions between detail levels. Because
immediately before and immediately after a level-of-detail change either level
would produce a reasonable image, the still frames can look good individually but
may break temporal coherence when viewed sequentially. For geometry, blend-
ing between the detail levels by screen-space compositing, subdivision surface
methods (see Chapter 23), or vertex animation can help to conceal the transition.
Blending the final image ensures that the final result is actually coherent, whereas
even smoothly blending geometry can cause lighting and shadows to still change
too rapidly. However, blending geometry guarantees the existence of a true surface
at every frame. Image compositing results in an ambiguous depth buffer or surface
for global illumination purposes. For materials, trilinear interpolation (see Chap-
ter 20) is the standard approach. This generates continuous transitions and allows
tuning for either aliasing (blurring) or noise. A drawback of trilinear interpola-
tion is that it is not appropriate for many expressions, for example, unit surface
normals.

Sampling a single ray per pixel produces staircase “jaggies” along the edges of
polygons. These are unattractive in a still image, but they are worse in animation
where they lead to a false perception of motion along the edge. The solution here
is simple: antialiasing, either by taking multiple samples per pixel or through an
analytic measure of pixel coverage.

High-frequency, low-intensity noise is rarely objectionable in still images.
This property underlies the success of half-toning and dithering approaches to
increasing the precision of a fixed color gamut. However, if a static scene is ren-
dered with noise patterns that change in each frame, the noise appears as static
swimming over the surfaces in the scene and is highly objectionable.

The problem of dynamic noise patterns arises from any stochastic sampling
algorithm. In addition to dithering, other common algorithms that are susceptible
to problems here include jittered primary rays in a ray tracer and photons in a
photon mapper. Three ways to avoid this kind of artifact are making the sampling
pattern static, using a hash function, and slowly adjusting the previous frame’s
samples.

Supersampling techniques for antialiasing often rely on the static pattern
approach. This can be accomplished by stamping a specific pattern in screen
space. There has been significant research into which patterns to use [GS89,
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Coo86, Cro77, Mit87, Mit96, KCODL06, Bri07, dGBOD12]. This work is closely
tied to research on white noise random number generation [dGBOD12].

One drawback to using screen-space patterns is the screen door effect
(Chapter 34). A static pseudorandom pattern in screen space is not perceptible in
a single image, but when the pattern is held fixed in screen space and the view or
scene is dynamic, that pattern becomes perceptible. It looks as if the scene were
being viewed through a screen door. This is easy to see in the real world. Hold
your head still and look through a window (or slightly dirty eyeglasses). The glass
is largely invisible, but on moving your head imperfections in and dirt on the glass
are accentuated. This is because your visual system is trying to enforce temporal
coherence on the objects seen through the glass. Their appearance is changing in
time because of the imperfections in the glass in front of them, so you are able to
perceive those imperfections.

Fortunately, when the sampling pattern resolution falls below the resolution of
visual acuity, the perception of the screen-door effect is minimal. This is exploited
by supersampling and alpha-to-coverage transparency, which operate below the
pixel scale and are therefore inherently close to the smallest discernible feature
size. Dithering works well when the image is static or the pixels are so small as
to be invisible, but it produces a screen-door effect for animations rendered to a
display with large pixels.

It is challenging to stamp patterns in continuous spaces; for example, a ray
tracer or photon mapper’s global illumination scattering samples. Here, replacing
pseudorandom sampling with sampling based on a hash of the sample location
is more appropriate. By their very nature, hash functions tend to map nearby
inputs to disparate outputs, so this only maintains coherence for static scenes
with dynamic cameras. For dynamic scenes, a spatial noise function is prefer-
able [Per85] because it is itself spatially coherent, yet pseudorandom.

Figure 35.14: The Dynamic
Canvas algorithm [CTP+03]
produces background-paper
detail at multiple scales that
transform evocatively under 3D
camera motion. (Courtesy of
Joelle Thollot, “Dynamic Canvas
for Non-Photorealistic Walk-
throughs,” by Matthieu Cunzi,
Joelle Thollot, Sylvain Paris,
Gilles Debunne, Jean-Dominique
Gascuel and Fredo Durand, Pro-
ceedings of Graphics Interface
2003.)

Another approach to increasing temporal coherence of sample points is to
begin with an arbitrary sample set and then move the samples forward in time,
adding and removing samples as necessary. This approach is employed frequently
for nonphotorealistic rendering. The Dynamic Canvas [CTP+03] algorithm
(Figure 35.14) renders the background paper texture for 3D animations rendered
in the style of natural media. A still frame under this algorithm appears to be,
for example, a hand-drawn 3D sketch on drawing paper. As the viewer moves for-
ward, the paper texture scales away from the center to avoid the screen-door effect
and give a sense of 3D motion. As the viewer rotates, the paper texture trans-
lates. The algorithm overlays multiple frequencies of the same texture to allow for
infinite zoom and solves an optimization problem for the best 2D transformation
to mimic arbitrary 3D motion. The initial 2D transformation is arbitrary, and at
any point in the animation the transformation is determined by the history of the
viewer’s motion, not the absolute position of the viewer in the scene.

Figure 35.15: The view-
dependent tufts on the trees,
grass, and bushes are rendered
with graftals that move coher-
ently between adjacent frames
of camera animation. (Courtesy
of the Brown Graphics Group,
©2000 ACM, Inc. Reprinted by
permission.)

Another example of moving samples is brushstroke coherence, of the style
originally introduced for graftals [MMK+00] (see Figure 35.15). Graftals are
scene-graph elements corresponding to strokes or collections of strokes for small-
detail objects, such as tree leaves or brick outlines. A scene is initially rendered
with some random sampling of graftals; for example, leaves at the silhouettes of
trees. Subsequent frames reuse the same graftal set. When a graftal has moved
too far from the desired distribution due to viewer or object motion, it is replaced
with a newly sampled graftal. For example, as the viewer orbits a tree, graftals
moving toward the center of the tree in the image are replaced with new graftals
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at the silhouette. Of course, this only amortizes the incoherence, because there is
still a pop when the graftal is replaced. Previously discussed strategies such as
2D composition can then reduce the incoherence of the pop.

An open question in expressive rendering is the significance of temporal coher-
ence for large objects like strokes. On the one hand, we know that their motion
is visually distracting. On the other hand, films have been made with hand-drawn
cartoons and live-action stop motion in the past. There, the incoherence can be
considered part of the style and not an artifact. Classic stop-motion animation
involves taking still images of models that are then manually posed for the next
frame. When the stills are shown in sequence, the models appear to move of their
own volition because the intermediate time in which the animator appeared in the
scene to manipulate it is not captured on film.

35.4 Representations

We now talk about animation methods, the naming of parts of animatable models,
and alternatives among which one might choose to express the parameters and
computational model of animation.

The state of an animated object or scene is all of the information needed to
uniquely specify its pose. For animation, a scene representation must encompass
both the state and a parameterization scheme for controlling it. For example, how
do we encode the shape and location of an apple and the force of gravity on it?

As is the case in rendering, one generally wants the simplest representation
that can support plausible simulation of an object. For rendering, interaction with
light is significant, so the surface geometry and its reflectance properties must be
fairly detailed. For animation, interaction with other objects is significant, so prop-
erties like mass and elasticity are important. Animation geometry may be coarse,
and different from that used for rendering. A variety of animation representations
have been designed for different applications. This chapter references many and
explores particles and fluid boundaries in depth as case studies.

We categorize schemes for parameterizing, and thus controlling, state into key
poses created by an artist, dynamics simulation by the laws of physics, and explicit
procedures created by an artist-programmer. Many systems are hybrids. These
leverage different control schemes for different aspects of the scene to accommo-
date varying simulation level of detail or artistic control.

35.4.1 Objects

The notion of an object is a defining one for an animation system. For example,
by calling an automobile an “object” one assumes a complex simulation model
that abstracts individual systems. If one instead considers an individual gear as
an “object,” then the simulation system for an automobile is simple but has many
parts. This can be pushed to extremes: Why not consider finite elements of the
gears themselves, or molecules, or progress the other way and consider all traffic
on a highway to be one “object”?

The choice of object definition controls not only the complexity of the underly-
ing simulation rules, but also what behaviors will emerge naturally versus requir-
ing explicit implementation. For example, finite-element objects might naturally
simulate breaking and deformation of gears and bricks, whereas atomic gear
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or brick objects cannot break without explicit simulation rules for creating new
objects from their pieces.

How much complexity do we need to abstract the behaviors of scenes that we
might want to simulate? A tumbling crate retains a rigid shape relative to its own
reference frame, but that frame moves through space. A walking person exhibits
underlying articulated skeleton of rigid bones connected at joints that are then
covered by deforming muscle and skin. The water in a stream lacks any rigid
substructure. It deforms around obstacles and conforms to the shape of the stream
bed under forces including gravity, pressure, and drag.

In each of these scenarios, the objects involved have varying amounts of state
needed to describe their poses and motion. The algorithms for computing changes
of that state vary accordingly.

Some object representations commonly employed in computer graphics (with
examples) are

1. Particles (smoke, bullets, people in a crowd)

2. Rigid body (metal crate, space ship)

3. Soft rigid body (beach ball)

4. Articulated rigid body (robot)

5. Mass-spring system (cloth, rope)

6. Skinned skeleton (human)

7. Fluid (mud, water, air)

These are listed in approximate order of complexity and algorithmic state. For
example, the dynamic state of a particle consists of its position and velocity. A
rigid body adds a 3D orientation to the particle representation.

Why are so many different representations employed? As an alternative, a
single unified representation would be much more theoretically appealing, be eas-
ier from a software engineering perspective, and automatically handle the tricky
interactions between objects of different representations.

One seemingly attractive alternative is to choose the simplest representation as
the universal one and sample very finely. Specifically, all objects in the real world
are composed of atoms, for which a particle system is an appropriate representa-
tion. Although it is possible to simulate everything at the particle level [vB95], in
practice this is usually considered awkward for an artist and overwhelming for a
physical simulation algorithm.

35.4.2 Limiting Degrees of Freedom

The authoring method and representation do not always match what is perceived
by the viewer. For example, many films and video games move the root frame of
seemingly complex characters as if they were simple rigid bodies under physical
simulation. In both cases, the individual characters are also animated by key pose
animation of skinned skeletons relative to their root frames. Thus, at different
scales of motion the objects have different specifications and representations. This
avoids the complexity of computing true interactions between characters while
retaining most of the realism.

This is analogous to level-of-detail modeling tricks for rendering. For exam-
ple, a building may be represented by boxlike geometry, a bump map that
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describes individual bricks and window casings, and bidirectional scattering
distribution functions (BSDFs) that describe the microscopic roughness that
makes the brick appear matte and the flower boxes appear shiny.

Switching to a less complex object representation is a way to reduce the num-
ber of independent (scalar) state variables in a physical system, also known as the
number of degrees of freedom of a system. For example, a dot on a piece of paper
has two degrees of freedom—its x- and y-positions. A square drawn on the paper
has four degrees of freedom—the position of the center along horizontal and ver-
tical axes, the length of the side, and the angle to the edge of the page. A 3D rigid
body has trillions of degrees of freedom if the underlying atoms are considered,
but only six degrees of freedom (3D position and orientation) if taken as a whole.
Simulating the root positions of the characters in a crowd is a reduction of the
number of degrees of freedom from simulating the muscles of every individual
character.

Furthermore, an object may be modeled for rendering purposes with much
higher detail than is present for simulation. For example, a space ship can be
modeled as a cylinder for inertia and collision purposes but rendered with fins, a
cockpit, and rotating radar dishes without the viewer perceiving the difference.

Separating the rendering representation, motion control scheme, and object
representation introduces error into the simulation of a virtual world. This may or
may not be perceptually significant. From a system design perspective, error is not
always bad. In fact, acceptable error can be your friend: It provides room to tweak
and choose where to put simulation (and therefore development) effort.

35.4.3 Key Poses

In a key pose animation scheme (a.k.a. key frame, interpolation-based animation),
an animation artist (animator) specifies the poses to hit at specific times, and an
algorithm computes the intermediate poses, usually in the absence of full physics.

The challenges in key pose animation are creating suitable authoring envi-
ronments for the animators and performing interpolation that conserves impor-
tant properties, such as momentum or volume. Because an animator’s creation is
expressive and not necessarily realistic or algorithmic, perfect key pose anima-
tion is ultimately an artificial intelligence problem: Guess the intermediate pose
a human animator would have chosen. Nonetheless, this is the most popular con-
trol scheme for character performances, and for sufficiently dense key poses it is
considered a solved problem with many suitable algorithms.

35.4.4 Dynamics

In a dynamics (a.k.a. physically based animation, simulation) scheme, objects are
represented by positions and velocities and physical laws are applied to advance
this state between frames. The laws need not be those of real-world physics.

The laws of mechanics from physics are well understood, but generally admit
only numerical solutions. Two challenges in dynamics are stability and artistic
control. It is hard to make numerical methods efficient while preserving stability,
that is, conserving energy, or at least not increasing energy and “exploding.” It
is also hard to make realistic physics act the way that an art director might want
(e.g., a film explosion blowing a door directly into the camera or a video game car
that skids around corners without spinning out).
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35.4.5 Procedural Animation

In a procedural animation, the artist, who is usually a programmer, specifies an
explicit equation for the pose at all times. In a sense, all computer animation is
procedural. After all, to execute an animation on a computer a procedure must
be computing the new object positions. In the case of key pose animation that
procedure performs interpolation and in the case of dynamics it evaluates physi-
cal forces. However, it is useful to think of a separate case where we specify an
explicit, and typically not physically based, equation for the motion. Our cannon-
ball example straddled the line between dynamics and procedural animation. A
good example of complex procedural motion is Perlin’s [Per95] dancer, whose
limbs move according to a noise function.

Procedural animations today are primarily used for very simple demonstra-
tions, like a planet orbiting a star, and for particle system effects in games. The lack
of general use is probably because of the challenges of encoding artist-specified
motion as an explicit equation and making such motion interact with other objects.

35.4.6 Hybrid Control Schemes

The current state of the art is to combine poses with dynamics. This combines
the expression of an actor’s performance or artist’s hand with the efficiency and
realism of physically based simulation. There are many ways to approach hybrid
control schemes. We outline only a few of the key ideas here.

An active research topic is adjusting or authoring poses using physics or phys-
ically inspired methods. For example, given a model of a chair and a human, a
system autonomously solves for the most stable and lowest-energy position for a
sitting person. A classic method in this category is inverse kinematics (IK). An
IK solver is given an initial pose, a set of constraints, and a goal. It then solves
for the intermediate poses that best satisfy these (see Figure 35.16), and the final
pose if it was underdetermined. For example, the pose may be a person standing
near a bookshelf. The goal may be to place the person’s hand on a book that is
on the top of the shelf, above the character’s head. The constraints may be that
the person must remain balanced, that all joints remain connected, and that no
joint exceeds a physical angular limit. IK systems are used extensively for small
modifications, such as ensuring that feet are properly planted when walking on
uneven terrain, and reaching for nearby objects. They must be supported by more
complex systems when the constraints are nontrivial.

It is also often desirable to insert a previously authored animation into a novel
scene with minor adjustment; for example, to adapt a walk animation recorded
on a flat floor to a character that is ascending a flight of stairs without the feet
penetrating the ground or the character losing balance. This is especially the case
for video games, where the character’s motion is a combination of user input,
external forces, and preauthored content [MZS09, AFO05, AdSP07, WZ10].

As we said earlier, motion planning is an AI problem. But it is closely coupled
with dynamics. Getting dressed in the morning is more complex than reaching for
a book—it cannot be satisfied by a single pose. Presented with a dresser full of
clothing, a virtual human would have to not only find the series of poses required
to step into a pair of pants while remaining balanced, but also realize that the
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Figure 35.17: Four images of animated characters autonomously performing complex tasks
requiring motion planning. (Courtesy of the Graphics Lab at Carnegie Mellon University.
©2004 ACM, Inc. Reprinted by permission.)

Figure 35.19: A complex traversal requiring both pathfinding and general motion planning
[SH07]. (Courtesy of Jessica Hodgins and Alla Safonova ©2007 ACM, Inc. Reprinted by
permission.)

drawers must be opened before the clothes could be taken out. Figure 35.17 shows
some examples of “simple” daily tasks that represent complex planning challenges
for virtual characters.

A special case of motion planning is the task of navigating through a vir-
tual world. At a high level, this is simply pathfinding for a single character. When
there are enough characters to form a crowd, the multiple-character planning prob-
lem is more challenging. Creating the phenomenon of real crowds (or herds, or
flocks . . . ) is surprisingly similar to simulating a fluid at the particle level, with
global behavior emerging from local rules as shown in Figure 35.18.

Key2
position

Key1
position

Interpolated
position

Figure 35.16: An interpolated
leg position between key poses
found by one of the earliest
inverse kinematics algorithms.
(Courtesy of A.A. Maciejewski,
©1985 ACM, Inc. Reprinted by
permission.)

Figure 35.18: Complex global
flocking behaviors (top) emerge
in Reynolds’s seminal “boids”
animation system [Rey87] from
simple, local rules for each
virtual bird (bottom). (©1987
ACM, Inc. Included here by
permission.) (Courtesy of Craig
Reynolds, ©1987 ACM, Inc.
Reprinted by permission.)

When the space to be traversed does not admit a character’s default method
of locomotion, the pathfinding problem is of course much harder. For example,
the character in Figure 35.19 must not only find a path, but also decide when to
crouch and when to jump to avoid obstacles on the desired path while satisfying
physical constraints on the body.
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Secondary motion is the motion of small parts of a figure relative to its root
motion; for example, the flowing of cloth and hair and the jiggling of muscle and
fat. Secondary motion is important to our perception of motion and performance,
but it is often inefficient to simulate as part of the entire system or explicitly pose.
Animators often develop special-case secondary motion simulators that create the
character of the motion detail without the full cost [PH06, BBO+09, JP02]. This
is analogous to modeling small-scale visual detail in texture instead of geometry.

It is often desirable to transfer an animation performance that was authored
or captured on one body to another body [BVGP09, SP04, BCWG09, BLB+08].
There are some cases where there is little choice but to transfer motion between
bodies. For example, to animate a centaur with motion capture, we must transfer
the motion from a human and a horse onto a single virtual creature. In other cases,
it is a matter of cost. Rather than recording the performance of actors of many
sizes wearing many costumes, with transfer we could record a single actor and
adapt the performance to multiple characters in a crowd [LBJK09].

Plausible animation is the problem of working backward to compute the start
state of a system, given the end state [BHW96, KKA05, YRPF09, CF00, TJ07,
MTPS04]. For example, a film shot may require a player to roll two sixes on a pair
of dice. We would like to start with the sixes facing up at the end of the shot, and
solve backward for a physically viable series of bounces as the dice roll that leads
them to that position. Since the problem may be overconstrained, we are willing to
accept any “plausible” solution in which the laws of physics are bent only in ways
that are imperceptible to the average observer. It is plausible for the momentum of
a die to be exaggerated by 5% to produce one extra tumble, but not for the die to
bounce three meters in the air off the initial throw.

35.5 Pose Interpolation

35.5.1 Vertex Animation

The most straightforward way to represent poses is to specify a separate mesh
for each key frame. The mesh topology is usually constant over the animation so
that every key frame contains the same number of vertices. Only their positions
change, not their adjacency and ordering. To simplify the discussion, assume that
key poses k[t] are defined at the ends of integers at time intervals, and that we want
to form a continuous expression for the pose at the fractional times t in between
these poses.

Sample-and-hold interpolation,

x(t) = k[�t�], (35.14)

produces substantial temporal aliasing. The character simply holds its position
until the end of the time period and then instantaneously snaps to the next pose.
This also produces infinite velocity at the frame intervals because x(t) is discon-
tinuous.

We’d like to make smoother transitions with finite velocities. As we said
in the introduction, one solution is to linearly interpolate between key poses,
which produces continuous positions but discontinuous velocity. That is, we’ve
ensured C0 continuity but still exhibit infinite acceleration, which is unnatural
for character motion. A higher-order interpolation scheme can produce smoother
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interpolation. This is a progression that we’ve seen before, when discussing
splines in Chapter 22.

Splines are in fact a common solution to the problem of interpolating between
key poses. Fitting one Catmull-Rom spline per vertex produces globally smooth
animation. Vertex-position splines do not address all of the key pose problems,
however. They still require storage proportional to the product of the vertex count
and the number of key poses and require a number of interpolation operations lin-
ear in the vertex count at runtime. Vertex splines require an artist to pose individual
vertices instead of working with higher-level primitives like limbs. Furthermore,
the results can be hard to control.

Because each vertex is animated independently and the vertices are only on
the surface of the character, there are no constraints to preserve volume or surface
area during animation.

35.5.2 Root Frame Motion

Object geometry and vertex animation is typically expressed relative to the root
frame of the object. This means that a walking character will stay at the origin
while its feet swing below the center of mass. To make the character move around
the world we could create an animation in which the vertices all travel away from
that starting position; however, this would require a tremendous amount of redun-
dant animation data. Instead, one typically models the transformation of the object
root. Root transformations are useful for more than just visible objects in the vir-
tual world. Lights, cameras, 3D widgets, and pointers all define their own frames
which may be subject to motion. Throughout this book, we’ve constantly worked
with transformations between reference frames, and we’ve seen several alternative
representations of a 3D reference frame in Chapters 6, 11, and 12:

• 4 × 4 matrix

• 3 × 3 rotation matrix and translation vector

• Euler angles: roll, yaw, pitch, and translation vector

• Rotation axis, rotation angle, and translation vector

• Unit quaternion and translation vector

In rendering, the 4 × 4 matrix representation is often convenient and is what
most APIs have adopted. Because conversions exist between all of these repre-
sentations, the animation system need not use the same representation as the ren-
dering system. Although the matrix representation is sometimes convenient, the
quaternion-plus-vector representation is often preferred for simulation during ani-
mation and the Euler frame for motion specification of animation.

When choosing a representation, one typically seeks to minimize error and
simplify computations—both for performance and for readability. In animation,
we’ll interpolate, differentiate, and integrate expressions containing the reference
frames. For a rotating body, performing those operations on the inherently linear
matrix structure will typically send points along the tangent to the desired sphere
of motion. For small steps, we can correct that error by projecting back onto the
sphere of motion, but small steps are not always possible or efficient. Although
not without their own problems, the quaternion and angle formulations are bet-
ter suited to expressing operations on the surface of a sphere. Among these, the
axis-angle representation presents something of the same problem as the matrix.
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The axis itself must rotate to describe rotations in other planes, and the axis is a
linear representation. Euler angles prefer the arbitrary axes chosen (i.e., the mag-
nitude of the derivatives depends on the direction of rotation) and allow gimbal
lock under successive 90◦ rotations. The uniformity of the quaternion therefore
leaves it as the best choice in many cases, particularly for freely moving bodies.

Now consider the problem of specifying an object’s motion or the forces that
inspire that motion. We often want to choose the reference frame within which
it is easiest to create this specification. For many objects, a suitably chosen Euler
frame is ideal. For example, an automobile’s front wheels rotate about exactly two
axes relative to the car frame. An airplane’s controls affect yaw, roll, and pitch in
its own reference frame.

Once the root frame has been transformed, the rigid or dynamic body attached
to it can also be moved by simply transforming all of the vertices from the root
frame to the world frame. Note that although it is common to place the root frame’s
origin within the body (and often at the center of mass), this is just a reference
frame, and its origin can lie outside the geometry itself.

35.5.3 Articulated Body

Many objects that we would like to model as a single scene element change their
shape as well as their root position and orientation. Some of these objects can be
modeled as a collection of bodies that are individually rigid but which transform
relative to one another. For example, an automobile can be modeled as a rigid
frame and four rigid wheels that rotate relative to the frame. Each vertex in the
automobile is contained within exactly one of the bodies, and can therefore be
expressed relative to one body’s frame.

A natural way of organizing the bodies relative to one another is a small “scene
graph” subtree (see Chapter 6). There is some root body, whose children are other
bodies in its frame and the vertices defining the shape of the root body. The other
bodies recursively have their own children. In the case of the automobile, it would
be natural to choose the car’s frame as the root body. However, a nice property
of a tree is that any node can be chosen as the root and the result is still a tree.
So we could choose the front-left wheel to be the root, with the frame as its only
child body, and the frame would then have three other wheels as child bodies. That
choice would probably make it awkward to express the forces exerted by the drive
train on the wheels since the tree has little symmetry, but it is a mathematically
valid model of the system.

We call this structure an articulated rigid body because the edges of the scene
graph typically correspond to joints in the model. A joint is a constraint on the
relative movement of two bodies. For the automobile, these are the axles. For an
android they would be the knees, elbows, waist, etc.; for a building they would
be the door hinges and grooves within which the windows slide. Geometry is
often added to the model to visually depict the physical basis for the constraint.
However, the animation joints need have no visual representation or physical ana-
log. Typically one puts the root frame of a body at the joint where it is connected
to its parent, since that is the frame in which it is most natural to express the joint’s
constraint and forces on the two bodies.

An advantage of the articulated rigid body is that complex dynamic objects,
such as most machines, can be represented without vertex animation. This is more
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efficient in both space and time and much simpler to implement. Except at joints,
the representation automatically preserves volume.

The limitation of an articulated rigid body is that motion necessarily appears
mechanical because the individual pieces remain rigid. Were we to animate a char-
acter in this way, the character would appear robotic instead of humanoid. A more
general solution is the articulated body. This maintains a scene graph of refer-
ence frames, but performs some other kind of animation, such as keyframe vertex
interpolation, on the data within those reference frames. The particular combi-
nation of rigid frames with vertex-interpolated key frames was very popular for
real-time applications like games until fairly recently, when it was overtaken by
the more general scheme of skeletal animation.

35.5.4 Skeletal Animation

The shape of the surface of a living creature under motion is dictated by the
dynamic position of its skeleton and the constraints of its musculature and other
internals. It is sensible to consider parameterizing virtual objects that model such
creatures in a similar way. (This is an example of the Wise Modeling principle
that says that you should decide what phenomena you want to model, and then be
sure your model is rich enough to represent those phenomena.) This is known as
a skeletal animation (a.k.a. matrix skinning) model.

A skeletal animation model defines a set of reference frames called bones.
That is evocative but something of a misnomer, because reference frames cor-
respond most closely to the joints of the character, not the bones between those
joints. The bones may be in a common object space or arranged hierarchically into
a tree with parent-child relationships.

We are used to expressing a point as a weighted combination of axis vec-
tors in some reference frame. A single vertex in a skeletal animation mesh is
a weighted combination of points in multiple reference frames. For example, a
point near a human’s elbow may be defined as halfway between a point defined
in the shoulder/upper arm’s reference frame and a point defined in the elbow/
forearm’s reference frame. This joint parameterization allows that vertex and its
similarly defined neighbors to define a smoothly deforming mesh near the elbow
as it bends. That is in contrast to the sharp intersection of surfaces defined in dif-
ferent reference frames observed under articulated rigid body animation.

We can think of a point x represented as a linear combination of specific points
Pb transformed by corresponding bone transformation matrices Bb at given times
under various scalar weights wb:

x(t) =
∑

b∈bones

(Bb(t)Pb)wb, (35.15)

where
∑

wb = 1. However, since Pb and wb are both part of the parameterization
that we will compute from an artist’s input and all relevant operators are linear, in
practice we need only store 3-vectors P′

b = Pbwb.
One typically constructs the representation by having an artist place a skeleton

inside a mesh that is in some standard pose. The artist then assigns bone weights
to each vertex and the system computes P′

b for each vertex from them. A first
approximation might be that each vertex has a single nonzero weight, which is for
its position in the standard pose relative to the closest reference frame. The artist
then manipulates the skeleton to create a different pose and the vertices transform
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accordingly. Those near joints are likely to land in undesirable positions, so the
artist moves them to the desired position. The system can then recompute a set
of P′

b values that minimize the position representation error under both inputs.
The artist then repeats the process for more poses. Since this quickly becomes an
overconstrained optimization process, the resultant weights might not satisfy the
visual goal sufficiently in any pose. The artist can reduce the constraints on the
system by adding more bones. Often this process results in a majority of bones
with no physical interpretation in the original creature—they are present merely
to offer enough degrees of freedom for the optimizer to satisfy each of the desired
pose deformations. Since the bones need not have a true skeletal correspondence,
skeletal animation can also be applied to objects like trees or even water that has
no proper skeleton but which exhibits smooth deforming animation.

Learning to intuitively introduce new “bones” to yield the desired result from
a nonlinear optimizer is difficult. This is one of the reasons that skilled rigging
animators are in great demand. Just as we can ease the difficulty of approximat-
ing arbitrary shapes with a mesh by increasing the tessellation, we can ease the
challenge of rigging a skeleton by increasing the number of bones available. The
drawbacks of doing so follow from that analogy as well. At animation creation
time (versus model rigging time), each bone must be positioned for each key
frame. The number of bones obviously increases the difficulty and time cost of
animation. At runtime, the system must transform each vertex. The summation
for a single vertex in Equation 35.15 need only be performed for each matrix
corresponding to a nonzero weight. Yet even if there are as few as three bones
affecting each vertex, that transformation will be three times as expensive as
for a rigid body with a single transformation, and the vertices must be batched
into small (inefficient) groups that share the same subset of bone matrices versus
large uniform streams that are more amenable to efficient processing on parallel
architectures.

35.6 Dynamics

35.6.1 Particle

In dynamics, a particle is an infinitesimal body. At human scale, a particle is a rea-
sonable approximation for a molecule, or a grain of sand. At astronomical scale,
planets and moons can be modeled as particles. We study particles for two rea-
sons. First, particles and particle systems are frequently used in graphics to model
either very small objects, such as bullets, or amorphous compressible objects, such
as smoke, rain, and fire [Ree83]. The second reason that we study particles is that
they provide a simple system in which to derive dynamics. After deriving the
dynamics of a particle we will then generalize to more complex bodies.

Although the particles are infinitesimal, we might still choose to render them
as with geometry or billboards. This improves their appearance (a zero-volume
particle wouldn’t be visible!) and gives the impression of more complexity than is
actually being simulated.

Given the initial position of a particle, its initial velocity, and an expression for
its acceleration over time, we want an expression for its position at a later time.
Let the unknown position function be t 
→ x(t), where the known initial position
is x(0). Recall that x(0) denotes a vector in 3-space. Particles are modeled as
points, so we can ignore rotation. This simplifies the physics. Furthermore, for
translation, we can treat each axis independently, with two exceptions related to
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contact: For collisions, objects must overlap along all axes (e.g., at noon on the
equator you and the sun have the same xz-position in your local reference frame,
but are separated by a huge vertical distance, so you aren’t inside the sun); and for
contact force, we need the normal components from all axes to compute the force
along each one. For the moment we ignore contact.

Velocity is change in position divided by change in time. When we say “veloc-
ity” we typically are referring to instantaneous velocity ẋ(t), which is the limit
of velocity as the time duration approaches zero:

velocity = ẋ(t) = lim
Δt→0

x(t +Δt/2)− x(t −Δt/2)
Δt

. (35.16)

Acceleration has the same relationship to velocity as velocity has to position.
Instantaneous acceleration can therefore be expressed as the second time deriva-
tive of position:

acceleration = ẍ(t) = lim
Δt→0

ẋ(t +Δt/2)− ẋ(t −Δt/2)
Δt

. (35.17)

In this notation, our problem is thus to derive an expression for x(t) given
x(0), ẋ(0), and ẍ(t). By the second fundamental theorem of calculus, if x(t) is
differentiable, then

x(t) = x(0) +
∫ t

0
ẋ(s) ds. (35.18)

Since we have the first and second derivatives of x(t), we will assume that it is in
fact a differentiable function.

We cannot apply Equation 35.18 directly because we have no explicit expres-
sion for ẋ(t) in our initial state. Therefore, we apply the second fundamental the-
orem again to obtain an expression in terms of only known values:

ẋ(s) = ẋ(0) +
∫ s

0
ẍ(r) dr (35.19)

x(t) = x(0) +
∫ t

0

(
ẋ(0) +

∫ s

0
ẍ(r) dr

)
ds (35.20)

x(t) = x(0) + ẋ(0)t +
∫ t

0

∫ s

0
ẍ(r) dr ds (35.21)

One way to produce a dynamics animation is to evaluate this integral for x(t)
analytically and then evaluate it at successive times t = {0, Δt, 2Δt, . . .}. When
an expression is available for ẍ(t) and it is integrable in elementary (symbolic)
terms, this approach is convenient and produces no incremental position error
throughout the animation. The analytic approach is viable for simple scenarios,
such as a body falling or sliding under constant linear acceleration or a satellite
orbiting a planet under constant radial acceleration (both examples due to gravity).
Introductory physics textbooks focus on such problems because most complicated
scenarios cannot be solved analytically.

35.6.2 Differential Equation Formulation

Often we have the means to compute instantaneous acceleration given the position
and velocity of an object, but no analytic solution for all time. For example, by
Newton’s second law (F = m · a), the net acceleration ẍ(t) experienced by a body
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is the net force applied to it, divided by its mass. The force can often be computed
from the current position and velocity of the particle, so given values x(t) and ẋ(t),
we could compute

ẍ(t) =
f(t, x(t), ẋ(t))

m
(35.22)

for a particle of known mass m and force function f at any possible time t.
(Exceptions arise in situations where the force is controlled by user input, for
example.)

Equation 35.22 is a (vector) differential equation because it relates x and its
derivatives. It is specifically an ordinary differential equation (ODE) because
x is a function of a single variable, t. Because f is arbitrary, this happens to be a
nonlinear differential equation, which is a hard class to solve. In fact, there is no
known analytic solution for general equations of this form.

Introducing an acceleration function does not immediately help us. That’s
because we started with the problem that we didn’t have analytic solutions for
x and ẋ for all time. Introducing a new function that depends on the two functions
we don’t know (and which can’t be evaluated analytically) seems like we’re going
in the wrong direction. The key idea here is that if we had values of the func-
tions at a single time, we could compute the forces and thus the acceleration that
will help advance the simulation toward a future time without explicitly knowing
exactly where it is headed. This will lead us to a numeric integration strategy. This
is an important point that underlies most dynamics algorithms. Let us consider a
concrete example.

Consider a 1D system of a single falling ball whose height is given by height
x(t) relative to the ground. Following the notation introduced in Chapter 7, we can
explicitly give the type of this function:

x : R→ R : t 
→ x(t) (35.23)

(which we might implement in C as float x(float t);, but again, this is a func-
tion that we’ll assume we don’t actually have an explicit implementation for).

Likewise, the force function f is

f : R3 → R : (t, y, v) 
→ f(t, y, v) (35.24)

(which we might implement in C as float f(float t, float y, float v);

and for which we are assuming the implementation exists).
The function f computes the force on a ball at time t if the ball currently

has height y and velocity v. We might model this force as gravity on the Earth’s
surface:

f(t, y, v) = −9.81 kg ·m/s2. (35.25)

Note that under this model f is constant. It doesn’t depend on time, position, or
velocity.

A more realistic model accounts for the fact that as the ball moves faster, it
experiences more friction with the surrounding air. This drag force inhibits the
ball’s motion. That is, it decelerates the ball along the velocity vector. Choosing
an arbitrary drag coefficient, we might enhance our model to

f(t, y, v) = −9.81 kg ·m/s2 − v · 0.5 kg/s. (35.26)
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Under this new force model, the force on a ball with velocity v = 0 m/s is
−9.81 kg · m/s2, while the force on a ball that is already falling with velocity
v = −2 m/s has lower magnitude: −8.81 kg · m/s2. This new force model still
does not depend on time or position. But we could imagine a more sophisticated
model that includes air currents, whose effects depend on the location in space
time at which the current is experienced.

Now, consider the ball moving in three spatial dimensions. How do the types
of the functions change? Positions and velocities are now 3-vectors:

x : R→ R3 (35.27)

f : R1 × R3 × R3 → R3 : (t, y, v) 
→ f(t, y, v) (35.28)

: R7 → R3 : (t, y, v) 
→ f(t, y, v) (35.29)

The force function still takes three arguments. Because it is always applied to
position and velocity, people sometimes write f(t, x, ẋ), treating the x and ẋ func-
tions as if they were variables.2 Recall the pitfalls of that notation identified earlier
in the chapter. So, although you may see that as a convenience in animation notes
and research papers, we will continue to be careful to distinguish the function and
its value here.

35.6.3 Piecewise-Constant Approximation

Assume for the moment that the force function is constant with respect to time, and
that acceleration is therefore also constant. In a physics textbook on Newtonian
mechanics, the final position of a body experiencing constant acceleration would
be expressed as

x1 = x0 + v0t +
1
2

a0t2, (35.30)

x(t) = x(0) + ẋ(0)t +
1
2

ẍ(0)t2, and (35.31)

= x(0) + ẋ(0)t +
1
2

f(0, x(0), ẋ(0))
m

t2, (35.32)

where the second version follows our notation. The right side is quadratic in t
and all other factors are constant, so this describes a parabola. That is the arc of a
thrown ball, which experiences essentially constant acceleration due to gravity, so
this matches our intuition for the position of an object as a function of time. These
equations arise from integrating Equation 35.21 under the constant acceleration
assumption:

2. We could make this notation meaningful by redefining force as a higher-order function,
f : R × (R → R3)× (R → R3) → R3, but contorting ourselves to make the notation
consistent is not useful because in practice we will apply force function to points and
velocities from the previous frame, not functions over all time.
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x(t) = x(0) +
∫ t

0

(
ẋ(0) +

∫ s

0
ẍ(0) dr

)
ds (35.33)

= x(0) +
∫ t

0
(ẋ(0) + ẍ(0)s) ds (35.34)

= x(0) + ẋ(0)t +
1
2

ẍ(0)t2 (35.35)

= x(0) + ẋ(0)t +
1
2

f(0, x(0), ẋ(0))
m

t2 (35.36)

Thus far, we haven’t advanced over the original analytic solution, since we
could always evaluate the integral when acceleration is constant. But we can now
generalize this result. Assume that f is only constant for each time interval from
ti to ti+1 of duration Δt, but may change between intervals. Acceleration is now
only piecewise constant over time, which is a much better approximation of the
real world.

Under this assumption, we can rework Equation 35.36 to advance a known
state described by x(t1) and ẋ(t1) at the beginning of the time interval to the state
at the end of the time interval under constant acceleration:

x(t2) = x(t1) + ẋ(t1)Δt +
1
2

f(t1, x(t1), ẋ(t1))
m

Δt2 (35.37)

ẋ(t2) = ẋ(t1) +
f(t1, x(t1), ẋ(t1))

m
Δt (35.38)

(for constant force on the interval). This is Heun-Euler integration, also known
as Heun integration or Improved Euler integration (it is distinct from just
“Euler” integration, described in Section 35.6.7.1).

Nothing in these equations assumes a specific number of spatial dimensions,
so they hold equally well for the common cases of 1D, 2D, or 3D particles. In fact,
we can generalize even further. Rather than limiting x to describing the motion of a
single particle, we can pack the positions of multiple particles into x(t) by simply
treating them as separate dimensions. We’ll later generalize this even further and
encode orientation for bodies with volume in the same vector.

This integration scheme is by no means perfect, but it is often good enough.
If the animation doesn’t look right or is unstable, you can often reduce the time
interval and the quality will improve. This is because in the limit as Δt → 0 s the
Heun-Euler’s estimate approaches the true integral of any arbitrary (integrable)
force function. For systems with large or high-frequency forces, you may have
to make Δt so small to ensure stability that the simulation becomes quite com-
putationally intense. Section 35.6.6 discusses integration schemes that are more
efficient than Heun-Euler for such scenarios.

35.6.4 Models of Common Forces

There are fundamental and derived forces. Fundamental forces such as gravity
and electrical force are the elements of the standard physics model and cannot be
simplified to the interaction of other forces under that model. Derived forces such
as buoyancy are a method for abstracting many microscopic forces into a simple
high-level model for macroscopic behavior.
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Recall that the net force on a system is written f(t, y, v). If we were consider-
ing a single body, then it would have its center of mass be at point y and linear
velocity v. In terms of our position function x, we can and often will apply the
force function as f(t, x(t), ẋ(t)). As previously discussed, we make the position
and velocity explicit arguments distinct from x because that is the form of the
function when incorporated into a dynamics solving system.

Forces always arise between a pair of objects. By Newton’s third law of
motion, both objects in the pair experience the force with the same magnitude
but in opposing directions. Thus, it is sufficient to describe a model of the force
on one object in the pair. Likewise, one need only explicitly compute the force on
one object in the pair when implementing a simulator. In a system with multiple
bodies, the y and v arguments are in arrays of vectors, and the net force function f
computes the force on all objects, due to all objects.

For n bodies, there are O(n2) pairs to consider. Forces combine by superpo-
sition, so the net force on object 1 is the sum of the forces from all other objects
on object 1. This means that the general force implementation of the force func-
tion looks like Listing 35.2, where the pairwise force F(t, y, v, i, j) function
computes the force on the object with index i due to the object with index j. There
will be many kinds of forces, such as gravity and friction, so we consider an array
of numForces instances of F.

Listing 35.2: Naive implementation of the net force function.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

// Net force on all objects
Vector3[n] f(float t, Vector3[n] y, Vector3[n] v) {

Vector3[n] net;

// for each pair of objects
for (int i = 0; i < n; ++i) {

for (int j = i + 1; j < n; ++j) {

// for each kind of force
for (int k = 0; k < numForces; ++k) {

Vector3 fi = F [k](t, y, v, i, j);
Vector3 fj = -fi;
net[i] += fi;
net[j] += fj;

}

}
}

return net;
}

One would rarely implement the net and pairwise force functions this gen-
erally. In practice many forces can be trivially determined to be zero for a pair.
For example, the spring force between two objects that are not connected by a
spring is zero, gravity near the Earth’s surface can be modeled without an explicit
ball model of the Earth, and gravity is negligible between most objects. Other
forces only apply when objects are near each other, which can be determined effi-
ciently using a spatial data structure (see Chapter 37). Many of the pairwise force
functions don’t require all of their parameters. Taking these ideas into account, an
efficient implementation of the net force function for a system with a known set
of kinds of forces would look something like Listing 35.3.
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Listing 35.3: Specialized net force function.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

// Net force on all objects
Vector3[n] f(float t, Vector3[n] y, Vector3[n] v) {

Vector3[n] net;

// for each object
for (int i = 0; i < n; ++i) {

net[i] += Fgravity(i) + Fbuoyancy(t, y, i);

for (int j in objectsNeariWithHigherIndex(i, y)) {
Vector3 fi = Ffriction(t, y, v, i, j) + Fnormal(y, i, j);
Vector3 fj = -fi;
net[i] += fi;
net[j] += fj;

}
}

// for each pair connected by a spring
for (int s = 0; s < numSprings; ++s) {

int i = spring[s].index[0];
int j = spring[s].index[1];
Vector3 fi = Fspring(y, v, i, j);
Vector3 fj = -fi;
net[i] += fi;
net[j] += fj;

}

return net;
}

Note that we use subscripts to denote the kind of force pair. For example, the
force of gravity is denoted Fgravity. This is a standard notation in physics, although
it is unusual in math. It follows our convention that subscripts denoting meaning
(like “gravity” or the “i” and “o” for “incoming” and “outgoing”) are typeset in
roman font, while subscripts indicating indexing are treated as variables and type-
set in italic. The “gravity” is part of the name of the function, not a variable. In
equations we’ll shorten this to just Fg.

Most force functions depend on additional constants that are not explicit argu-
ments. This means that in an actual implementation they would have access to
additional information about each object (maybe through applying the provided
indices to a global scene array). This is reminiscent of the typical design for a
BSDF implementation, where the canonical incoming and outgoing light direc-
tion vector arguments are augmented by member variables such as reflectivity and
index of refraction.

35.6.4.1 Gravity

i

j
g(y, j, i)

g(y, i, j)

Figure 35.20: Forces due to grav-
ity between two bodies.

Assume that the object with index i is a point mass and that the object with index
j is a sphere (or a second point mass). By Newton’s law of universal gravitation,
the gravitational force experienced by object i (at yi) due to object j (at yj) is

Fg(y, i, j) = G
mimj

||yj − yi||2
yj − yi

||yj − yi|| . (35.39)

This remains a good approximation if the radius of the bounding sphere around
each object is small compared to the distance between them (e.g., for computing
the forces that planets and stars exert on one another).
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When mj >> mi and the radius of the bounding sphere of object i is small
compared to ||yj − yi||, the gravitational acceleration experienced by object i is
approximately constant and the gravitational acceleration experienced by object j
is negligible. This is the case, for example, when object j is a planet and object i is
a human-scale object on the surface of the planet. In this case (Figure 35.21), we
can simply ignore j and define the function by

Fg(i) ≈ gmi, (35.40)

which is a good approximation of gravitational attraction, where g is the accel-
eration vector. On the surface of the Earth, for example, ||g|| ≈ 9.81m/s2 is a
reasonable approximation of the magnitude. The direction is “toward the center
of the Earth.” Because it is common to work in a local tangent reference frame
on the surface of the Earth that neglects planetary curvature, one often calls that
direction “down” and assumes that gravity acts along the constant “vertical” axis.

Fg(i)

i

Figure 35.21: Force of gravity on
a small object near a planet.

Note that although the gravitational force on an object is proportional to its
mass, the acceleration is independent of its mass. This gives rise to the observation
that all objects fall at the same pace, neglecting air resistance and other forces.
Specifically, the centers of mass of two bodies that experience only gravitational
force will fall at the same pace. Individual points on those objects may experience
different acceleration and velocity curves. For example, one end of a tumbling
stick may actually have a net upward velocity even while the center of the stick is
falling.

Gravity is surprisingly weak compared to other forces. A coin-sized refrigera-
tor magnet is able to resist the gravitational attraction of the entire Earth. A human
being can temporarily overcome gravity entirely just by jumping. That gravity
would be so weak is a puzzling clue as to the nature of the universe, and there is
not yet consensus on why it should be this way. For simulation, the weak-gravity
observation yields two practical insights. First, we can neglect gravity except in
cases of a tremendous size difference between objects or the absence of almost
all other forces. For many applications, this generally means we only care about
gravitational attraction to the Earth. Second, we can expect most of the forces in
a virtual world to have magnitude on the scale of gravity, because they oppose it
and keep objects at rest, or to have magnitude substantially stronger than gravity
because they move objects despite gravity. This means that tuning the integrator’s
constants to be stable for a pile of tumbling blocks is a bad strategy. The force
experienced by a rifle bullet when fired or by a car when accelerating can easily
be an order of magnitude larger than gravity. Stability should be ensured under
the largest anticipated force, which is seldom gravity, and then constants should
be tuned for sensitivity so that gravity can still accelerate an unsupported
body from rest.

THE STRUCTURE PRINCIPLE: We can generalize this observation into a
Structure principle: Treat surprising structural symmetries and asymmetries as
both clues about underlying structure..., and warnings to check the robustness
of your plan. For example, if otherwise-similar elements differ by orders of mag-
nitude or demand different parameters, as is the case for the fundamental forces
of nature, something interesting is going on that can either lead to insight if fol-
lowed, or bite you if ignored.
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35.6.4.2 Buoyancy
Buoyancy arises from pressure within a fluid medium, such as air or water. It is
only observed when the medium and objects within it are exposed to a common
external acceleration, such as that due to gravity.

Let vi be3 the volume (in m3) of an object i, ρ the density (kg/m3) of the
medium, and g the net gravitational acceleration (m/s2) at the location of the
object. Assume that g is constant in the region of interest. Furthermore, assume
that both the medium and the object are incompressible, meaning that their vol-
umes do not change significantly under pressure. Water is incompressible, as are
many of the things that one might expect to find floating in it, such as wood, buoys,
boats, fish, and people.

Fb(x, i)

i

r

yi

Figure 35.22: Buoyancy on an
object with volume vi submerged
in a fluid with density ρ.

If object i is not in the medium, the buoyancy force that it experiences is obvi-
ously Fb(x, i) = 0 N. If it is submerged (Figure 35.22), then the buoyancy force
is

Fb(x, i) = −ρvig. (35.41)

Note that the density of the object does not appear. A dense object will experi-
ence less upward acceleration against gravity because of the high force of gravity
on the object, not because of a reduction in its buoyancy force. Thus, a “buoyant”
object counterintuitively experiences no greater “buoyancy” force than a nonbuoy-
ant one.

The medium of course experiences a force of equal magnitude and opposite
direction. However, the medium is by definition a fluid composed of individual
freely moving particles, so it is internally a very loosely coupled system. In prac-
tice, for animation one often deals with very large bodies of fluid and neglects the
impact of buoyancy on them.

For a sense of scale, the density of liquid water is about 1,000 kg/m3 at 4◦C,
and falls slightly as it is heated or cooled. That this number is exactly a power of
ten is no accident—it is one of the constants around which the metric system was
originally designed.

Note that the mass and density of the submerged object do not appear. So
why do dense objects sink and less dense ones float? Because the net force also
depends on gravity: fi = Fg(i) + Fb. If the object is dense, then Fg(i) is large
compared to Fb and a net downward acceleration is observed.

When the fluid is not at rest, different parts of the fluid exert differing pressure
on itself and the objects within it. This leads to wave and vortex phenomena, both
at the surface and within the fluid.

35.6.4.3 Springs
Consider an ideal spring that has no mass of its own and that always returns to
its rest length after being stretched or compressed and then released. Assume that
this spring also only expands and contracts along its “length” axis and is perfectly
rigid along axes orthogonal to the length.

Fs(y, i, j)
Fs(y, i, j)

j j

i

i

Compressed Extended

Figure 35.23: Spring force
between two bodies.

Let the spring connect objects i and j (Figure 35.23). Let the spring have
rest length r, which means that the spring exerts no force on its ends when

3. Note that volume vi is distinct from v and ẋ, the variables used for velocity in this
chapter.
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||yi − yj|| = r. By Hooke’s Spring Law, the restorative spring force experienced
by object i is

Fs(y, i, j) = ks (r − ||yi − yj||) yi − yj

||yi − yj|| . (35.42)

Some springs are stiffer than others. The spring constant ks describes the
stiffness of the spring in kg/s2 (this is another case where subscript s is part of
the name, not a proper index). Larger constants describe springs that exert higher
restorative forces, which we call stiffer, and smaller constants exert smaller forces,
which we call softer. When mass is attached to the spring, a stiffer spring will
accelerate that mass faster.

Like a pendulum under gravity, a spring will overshoot the rest position and
oscillate. Energy lost to friction within the spring or between the mass and air or a
surface will cause it to gradually decelerate and come to rest. For some combina-
tion of initial conditions and forces the spring could be critically damped so that
it exactly comes to rest without oscillating, but the oscillating behavior is more
typical. This means that a stiffer spring will not necessarily resume its rest length
sooner than a soft one if disturbed—it may merely oscillate with higher frequency,
if the frictional forces are too small.

Oscillators under numerical simulation can increase in energy due to roundoff
and integration errors, making them unstable. This is exacerbated by the fact that
ropes are often simulated as chains of very stiff springs and cloth as networks of
stiff springs. Those yield very large forces and high-frequency oscillations, which
require very accurate integration to handle stably.

Most springs in the real world lose significant energy due to their own mass
and material deformation. It is common to add an explicit damping term to springs
to model that loss. This term has the form of a frictional force because it opposes
velocity. The damping term has the same form as the original force term, but it
applies to velocity instead of position. This means it acts like a “higher order”
spring. This makes the problem of tuning springs for stability easier, but does not
eliminate it. In the case of a numerical integrator with fixed time steps, an overly
large damping constant can actually increase oscillation rather than reducing it
when the integral of the acceleration due to damping exceeds the original velocity.

35.6.4.4 Normal Force
An apple on a table experiences a downward force from gravity and negligible
downward buoyancy from the surrounding air. Yet the apple is at rest relative to
the table, so there must be a force opposing gravity to prevent the apple from
experiencing a net downward force. The source of the force is electrostatic repul-
sion between the molecules of the apple and the table, which keep their surfaces
from interpenetrating. We call this a normal force because its axis is perpendicu-
lar to the interface between the surfaces. In this case, the interface is the horizontal
tabletop, so the force vector experienced by the apple is directed vertically upward
along the table’s normal vector. When we consider the case of an object on a tilted
surface (Figure 35.24), the normal force is directed away from the surface, but not
directly opposing gravity, so it can create a net horizontal acceleration.

FNormal

Fg

n̂

Figure 35.24: The normal force
prevents penetration. It is in the
direction of the adjacent sur-
face’s normal and has magnitude
dependent on all other forces.

The force is trivial to describe but challenging to compute: A normal force is as
large as it needs to be to prevent interpenetration of (rigid) objects. It has direction
along the normal to the interface and magnitude that is equal to the magnitude of
the net sum of all other forces, projected onto that axis.
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The normal force is very different from the other forces that we’ve consid-
ered. It depends not only on the state of the system, but also on the other forces.
For example, when considering spring forces, we can put two masses near each
other, attach some springs, and consider their change in velocity and position
based solely on the state of the objects. But if we stack ten books on top of a table
and ask what the contact forces are between them, then the question doesn’t even
make sense. The notion of “compute all of the other forces first” implies an acyclic
ordering, which doesn’t exist in this case. Each book within the stack presses both
up and down. Therefore, the friction of the normal force breaks down and there
are cases where we simply can’t compute reasonable normal forces. Even this
simple case of rigid bodies with stacking has proven remarkably challenging—
stable, efficient algorithms for solving it were introduced only in the past few
years [GBF03, WTF06]. When objects become heavily articulated or have com-
plex contact constraints like the pieces of a completed jigsaw puzzle, simple mod-
els like “normal force” break down.

In other words, we’ve changed modes. We have to model something that is out-
side of our Newtonian model proper, so we’re extending it with a hack. That will
be a point where things go wrong. It is ironic that resting contact is surprisingly
hard (even before we consider stacking) to simulate compared to the ballistics of a
fast-moving bullet. Friction, which relies on normal force, has the same problems.
As we discussed in Chapter 1, science depends on the art of modeling what you
need for the level of accuracy desired. The simple, first-year Newtonian physics
model of normal forces is efficient and accessible, but it is a poor model for com-
plex interactions of many bodies. One can live within those limitations and avoid
complex interactions, attempt to patch over the model to hide its failures, or incor-
porate a more sophisticated model that is probably more expensive to compute
and to integrate.

As an example of developing a more sophisticated model, consider that the
circular relationships of contact forces are very similar to those studied in light
transport. What we need is a steady state solution to an integral equation, and as
with light transport there are many mathematical models for numerically approx-
imating that steady state. For this chapter, we will leave this particular problem at
that analogy in the interest of returning to efficient simulation of simple systems.

35.6.4.5 Friction and Drag
Friction is a description of a set of forces that lead to the common phenomenon of
deceleration. In general, we call any force frictional that is negatively proportional
to velocity. This is why friction is described as a force that “opposes motion.”
However, “motion” depends on your reference frame.

For example, a car could not move or turn without friction. When a car accel-
erates linearly, the drive shaft rotates the axles, which then rotate the wheels.
Friction between the tires covering the wheels and the road resists the rotation
of the wheels. This causes the car to move forward relative to the road, or the
road to move backward relative to the car, depending on the reference frame we
choose. For ideal tires, this completely eliminates motion in the axis along the
road between the point of contact of the tire and the road itself. Thus, friction is
indeed opposing some motion. However, there’s little friction perpendicular to the
road, so the point of contact is still able to move outside the plane of the road. In
this case, it moves upward a moment after it breaks contact. Ignoring deformation,
every point on the tire has instantaneous velocity along a tangent to the tire, in the
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rotational plane of the tire. The tire as a whole is driven by the wheel, the axle, and
ultimately the drive train and engine to rotate. Because the point of contact resists
motion in the plane of the road, that frictional force propagates backward through
the system and produces a net linear acceleration of the car along the road. On ice
or in mud there is little friction between a tire and the road. In this case, the points
on the tire can move freely relative to the road, so the car does not move.

A similar situation applies to turning a car. At the point of contact, high fric-
tion along the axis of the axle resists motion along that axis, while lower friction
perpendicular to the axis of the car’s wheel allows motion. This creates a net rota-
tion of the car. Thus, in the broader sense, friction can be essential for enabling
motion.

Frictional forces arise from electrostatic repulsion and attraction. In the repul-
sion case, molecules of adjacent surfaces collide. As we saw when studying
BSDFs, surfaces that are macroscopically planar may be microscopically rough.
Thus, what appears to be two smooth surfaces sliding parallel to each other may
actually more closely resemble the meshed teeth of two long linear gears. This is
why rougher surfaces increase friction. It is also why the sole of a new dress shoe
is slippery. That sole is a relatively smooth piece of leather. After the shoe has
been worn, say, by walking on concrete sidewalks for a few days, the leather sole
exhibits small bumps and cracks from uneven wear. These mesh with bumps on
the ground and create greater friction.

In the attraction case, materials of different surfaces chemically bond with
each other when in contact, and resist being pulled apart. The bonding is often
strongest when the two materials are the same. This is why smooth glass slides
easily on smooth wood but is hard to drag across another piece of smooth glass
(try this with two juice glasses at breakfast!).

There are case-specific models of friction for commonly arising scenarios. We
present two here. Dry friction occurs between solids moving parallel to the plane
of contact, and drag occurs between a solid and a fluid.

In the dry friction model, the force is factored into static and kinetic (a.k.a.
dynamic) terms. Let the two objects be numbered 1 and 2. We consider the force
on object 1 in the reference frame the combined system. That is, the center of mass
of both objects combined will always be at rest.

Static friction is zero when object 1 is moving, that is, when x(t) �= 0 in the
system’s frame. When object 1 is still relative to the reference frame of the system
and is in contact with object 2 only along a surface, then we model static friction
as able to resist acceleration due to net forces up to

k = μs||Fn|| (35.43)

parallel to the surface. That is, if the net force is f, then the object will experience
no acceleration in the plane of the surface if ||f|| − |f · n̂| < k. Otherwise, it will
experience some acceleration and kinetic friction as described shortly.

The coefficient of static friction μs is determined by the chemical composition
of the two surfaces, the amount of surface area in contact, and the microgeometry
of the surfaces. In other words, there are a lot of hidden parameters in the static
friction equation. However, the coefficient is often approximated as a constant
material property in simple simulations.

When two objects already have relative velocity with respect to each other in
the plane of their contact, we model kinetic friction. Kinetic friction has lower
magnitude than the static friction threshold. This is because objects that are
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already in motion tend to be bouncing away from their plane of contact at a micro-
scopic scale. Small bounces preclude many of the surface interactions, both chem-
ical and mechanical, that cause friction.

We model kinetic friction (Figure 35.25) as a force

Fkf(t, y, v) = −μk||Fn|| v
||v|| (35.44)

. . . but we must be careful in simulation to never reverse direction of velocity in a
time step due to frictional forces. This constraint must be enforced by the integra-
tor or at least with knowledge of the integrator’s time steps.

Fkinetic
  friction

FNormal

x∙

Fg

n̂

Figure 35.25: Kinetic friction
has magnitude proportional to
the normal force magnitude and
direction opposite velocity (in the
plane of the surface).

Drag is the frictional force on a moving object (Figure 35.26) due to the sur-
rounding fluid medium, which is often water or air. Lord Raleigh’s model of drag
is a force,

Fd(t, y, v) = −1
2
ρ||v||aCdv, (35.45)

where a is the surface area of the object presented along the direction of motion;
Cd is the drag coefficient, which depends on the shape of the object, its roughness,
and the chemical composition of the materials; and ρ is the density of the fluid.
As with other frictional forces, we must be careful that the drag force does not
reverse the direction of motion during a time step.

Drag force leads to two particularly interesting macroscopic phenomena. The
first is terminal velocity. An object falling through a medium does not experience
continual net acceleration. For example, a skydiver’s velocity levels off during
freefall. This occurs because at some point Fg = −Fd, since Fd is proportional
to velocity but Fg is constant on the object.

x Fdrag

Figure 35.26: Drag forces are
caused by friction between an
object and the surrounding fluid,
and by the pressure built up in
the fluid by the object’s relative
motion and friction within the
fluid. Drag forces are hard to
model accurately and efficiently
because the fluid’s behavior is
complex and highly dependent on
the object’s shape at all scales.

Lift is another interesting phenomenon. An airfoil moving through a fluid
experiences a net upward force, which allows airplanes and birds to rise in the
absence of updrafts. Bernoulli’s principle describes how lift arises from variations
in drag force over the entire surface. As was the case with a car tire, friction is
paradoxically enabling motion in this case—just not motion in the direction that
the friction opposed.

35.6.4.6 Other Forces
There are of course other fundamental real-world forces: for example, magnetic,
strong and weak nuclear, and electrical. These can be adopted from a physics text-
book in the same manner as the ones described here. There are also nonfundamen-
tal forces that are useful modeling techniques, such as tension and compression,
that can be found in any mechanical engineering text.

Nonphysical forces, such as tractor and repulsor beams in a science fiction
context, can be described using arbitrary functions. Any force desired can be
inserted into the simulation framework, since Newton’s first law of motion reduces
it to an acceleration that can be inserted into the integrator.

35.6.5 Particle Collisions

35.6.5.1 Collision Detection
For particles with very small cross sections, collision detection is equivalent to ray
tracing. We can ignore the collisions between particles because the probability
of those collisions occurring is vanishingly small. The path of a particle over a
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sufficiently small time interval is a line segment, so by tracing a ray from the
particle’s origin in the direction of its velocity we can detect collisions with other
parts of the scene. All of the data structures and algorithms built for tracing light
rays can thus be applied to dynamics simulation.

It is also possible to model collisions between particles with volume while
simulating the movement of each particle as if it were a point mass. To detect a
general intersection between two particles we choose the reference frame of one
(so that it is not moving), and then extrude the other one along the relative veloc-
ity vector. For particles with spherical bounds the intersection test is relatively
simple because it is equivalent to testing whether a point is inside a capsule (a
cylinder with a hemispherical cap on each end). Collisions between other shapes
are often more difficult to compute, and the best solution can be to use a spatial
data structure to detect intersecting polygons (see Chapter 37).

35.6.5.2 Normal Forces through Transient Constraints
After a collision is detected, the system must respond to prevent particles from
penetrating the scene. We’ve already seen one response—normal forces. When a
collision occurs between objects with very low velocity toward each other, it is
likely due to resting contact. In this case, reacting to the collision by reversing
velocity might introduce energy into the system, since the “collision” itself is an
artifact of limited numerical precision for times and positions: Two objects in
resting contact should never have accelerated toward each other in the first place.
We can restore stability by explicitly moving the objects out of contact or applying
normal forces to prevent penetration before it occurs.

We’ve seen that normal forces can be tricky to apply because they must occur
“after all other forces” . . . which leads to an awkward ordering constraint when
normal forces from multiple surfaces are in effect. In systems with a sophisticated
integration scheme, it is possible to apply normal forces implicitly rather than
explicitly. In these cases, contact creates a temporary “joint” between two objects,
requiring that the solution to the simulation during the time step must not move
the point of contact on either object [Lö81].

35.6.5.3 Penalty Forces
A generalization of normal forces can elegantly resolve collisions between objects
with significant velocities. A penalty force is something like a normal force.
It applies to objects that are interpenetrating. The magnitude of a penalty force
increases with the level of penetration, and the direction is that which will most
quickly separate them. This is actually a reasonable model for microscopic elec-
trostatic repulsion. Atoms never really contact one another. As they come close,
they repulse each other with increasing strength until the relative velocities reverse
and the proximity decreases. When the force is integrated over the time period
from when the penalty force first becomes significant to when it again becomes
insignificant, the net result is that of an elastic collision: The velocities of the
objects have been reflected about the normal to the plane of their “collision.”

Penalty forces are simple to compute and apply, but often difficult to tune.
If the penalty force is too weak, then objects will interpenetrate too far before
rebounding. This gives the appearance of overly rubbery materials. If the penalty
force is too strong, then any inaccuracy in the integration process can destabi-
lize the system by creating energy due to undersampling. When there are multiple
potential points of contact, uneven application of penalty forces due to differing
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depths of penetration can create a net rotation. With sufficiently large penalty
forces this is a further potential for destabilization in the system as small trans-
lational error may lead to large rotational error.

35.6.5.4 Impulses
The problem with penalty forces is that they take time to apply, which makes their
effectiveness sensitive to the numerical integration scheme of a dynamics simu-
lator. Impulses are an alternative collision resolution strategy that avoids this by
directly and instantaneously changing velocities outside of the numerical integra-
tion process. This is a good example of the principle of knowing the limits of a
model and changing models, rather than patching, when those limits are exceeded.

Numerical integration of forces is stable for constant or slowly varying accel-
erations, such as those due to gravity, springs, and buoyancy. Numerical integra-
tion becomes more fragile for forces with dependency cycles or those that depend
on velocity, such as normal and friction forces. For accelerations that vary over
time scales shorter than the simulation interval, such as penalty forces, numerical
methods generally fail. One approach is to try ever-shorter simulation intervals
or more sophisticated integrators, but that is merely shifting the limitation of the
model rather than removing it. By pausing numerical integration, directly manipu-
lating velocities with momentum impulses, and then restarting numerical integra-
tion, we escape the inherent limitations of integrating derivatives. Note that there is
an analogous situation in light transport. In that context, an “impulse” is a spike in
a probability distribution function, such as created by a directional light source or a
perfect specular reflection. Integrating those zero-area phenomena is just as unsta-
ble as integrating a zero-time force. So, stable renderers explicitly handle specular
reflections and directional sources with absolute probabilities rather than attempt-
ing to make very small angular measurements of very high-magnitude probability
distribution functions. In dynamics, we will directly apply velocity changes rather
than trying to integrate large-magnitude derivatives of velocity over small-scale
time intervals.

Concretely, an instantaneous change means that the integral of acceleration (ẍ)
over a zero-second time interval is nonzero; therefore, ẍ is infinite. So we’re apply-
ing infinite force for zero time. Specifically, the force and acceleration functions
contain mathematical impulses. We can’t directly represent impulses within the
integration framework because presenting an infinite acceleration to the numerical
integrator will simply result in infinity × 0 = “not a number” under floating-point
representations, and because any attempt to perform higher-order integration on
such quantities will simply propagate the “not a number” value further. So we step
outside the integrator. This of course is a source of instability and error. Anytime
the integrator can’t observe a value or control an operation, it becomes vulnerable
to roundoff and approximation errors in that operation.

The impulse equations are derived from the physical concept of linear momen-
tum, which is simply

pi(t) = miẋ(t). (35.46)

The change in velocity at a collision will therefore be

Δẋi(t) =
Δpi(t)

mi
. (35.47)
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The distinction between Δẋ(t) and ẍ(t) is important. We have a rigorous definition
of the acceleration function as a derivative:

ẍ(t) = lim
Δt→0

ẋ(t +Δt)− ẋ(t)
Δt

= lim
Δt→0

ẋ(t)− ẋ(t −Δt)
Δt

. (35.48)

In the presence of an impulse at time t0, ẋ(t) is discontinuous at t0. This means
that the lower and upper limits are not equal, so ẋ(t) is not differentiable at t0.
In other words, ẍ(t0) is not defined (which makes sense, since it is “infinite,” yet
integrates to a finite quantity).

Physicists often employ a Dirac delta “function” δ(t) for which∫ +∞

−∞
δ(t)dt = 1 and (35.49)

δ(t) = 0 ∀ t �= 0 (35.50)

as a notational tool for assigning a value to ẍ(t0) (e.g., ẍ(t) = δ(t − t0)Δẋ(t)).
However, beware that δ(t) is not actually a proper function, and that this notation
conceals the fact that differential and integral calculus cannot represent ẍ(t).

Since the rest of our simulation is based on numerical integration of estimated
derivatives, concealing the facts that ẋ is not differentiable at t0 and ẍ is not inte-
grable at t0 is a dangerous practice. We therefore accept that ẍ(t0) does not exist
and define a closely related function that does generally exist:

Δẋ(t) = ẋ(t)+ − ẋ(t)−, (35.51)

where the sign superscripts denote the single-sided limits

ẋ(t)− = lim
Δt→0

ẋ(t −Δt) (35.52)

= lim
Δt→0

x(t)− x(t −Δt)
Δt

(35.53)

and

ẋ(t)+ = lim
Δt→0

ẋ(t +Δt) (35.54)

= lim
Δt→0

x(t +Δt)− x(t)
Δt

. (35.55)

In plain language, a plus sign denotes a value immediately after a collision and a
minus sign denotes a value immediately before a collision. The value at the time
of the collision is irrelevant, since we’re using the impulse to resolve the collision
and jump from the before value to the after value.

The advantage of moving from velocity to momentum is that the law of
conservation linear momentum in physics states that the momentum of a closed
system is always constant. Therefore,∑

i

p+
i (t) =

∑
i

p−
i (t). (35.56)

For a system with exactly two objects whose indices are i and j, the law
expands to

p−
i (t) + p−

j (t) = p+
i (t) + p+

j (t0), (35.57)

p+
i (t)− p−

i (t) =− (p+
j (t) + p−

j (t)), and (35.58)

Δpi(t) =−Δpj(t), (35.59)
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which indicates that we only need to solve for the momentum change of one object
explicitly.

Now consider a system with more objects. If we assume that all collisions
are pairwise and that exactly one collision occurs at a given time t0, then we can
ignore the change in momentum of all objects except i and j and still apply Equa-
tion 35.59. This also requires that we be able to assign a strict ordering on multiple
collisions. When a simulator encounters a multibody collision the assumption has
been violated, and assigning an artificial ordering creates instability. For example,
each internal object in a stack continuously collides with two other objects, so it
is not surprising that impulse-based simulators often are unstable in the presence
of stacked objects.

The linear momentum change in a collision is given by [BW97a]

Δpi(t0) = n̂
(1 + εi,j)n̂ · (ẋ−i (t0)− ẋ−j (t0))

1
mi

+ 1
mj

and Δpj(t0) = −Δpi(t0),

(35.60)

where εi,j is the coefficient of restitution (a measure of how much they resist
interpenetration) between objects i and j, n̂ is the unit normal to the contact plane,
and m is mass. (Δpi(t0) is often denoted ji.)

One nice property of this equation is that it is expressed in terms of inverse
masses, rather than masses. This means that the limit of Δp as one of the masses
goes to infinity exists and is finite. In practice, it is useful to pin certain objects so
that they are not affected by collisions. For example, in a human-scale simulation,
simulating the Earth, or even a building as having infinite mass introduces no sig-
nificant error and typically leads to a simpler implementation of these immovable
objects. Beware that assigning infinite mass to a moving object can lead to unde-
sirable behavior, since that object’s momentum is then also infinite. For example,
if a train following a prescripted spline strikes a car simulated by dynamics, that
car will receive infinite momentum in the collision.

A common model is εi,j = min(εi, εj), where the single-object coefficients
are chosen to such that more deformable materials have lower ε. In a perfectly
inelastic collision, the objects stick together after collision.

35.6.6 Dynamics as a Differential Equation

Digital computers have limited precision. Therefore, with every iteration of the
Heun-Euler Equations 35.37 and 35.38, some error will be introduced. The longer
we simulate, the less predictable, and potentially, the less accurate, our solution
will be. Of course, unless the forces really were piecewise-constant, approximat-
ing them as piecewise-constant is another source of error. Smaller time intervals
will lead to finer sampling of the forces and therefore improve accuracy. However,
we need many more iterations to span a given time period with small intervals,
so there will be more computation and more accumulated error. We now con-
sider numerical methods for solving for x that relax the assumption of piecewise-
constant force. These allow fairly large time intervals without undersampling
force, which can mitigate the accumulated error problem without increasing the
net amount of computation.

Let the function describing the state of the universe at time t be

X(t) =

[
x(t)
ẋ(t)

]
. (35.61)
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Although X will be a computationally convenient representation, there is also
some physical motivation for it. Both position and velocity (as a proxy for momen-
tum) are included in the state vector because they are properties of objects that
appear in mechanical models of the real world. The laws of physics tell us how to
compute forces, which are proportional to acceleration. The inputs to force func-
tions are always position and velocity. Forces never turn out to be proportional to
acceleration, so we don’t explicitly store acceleration in the state. The exception
is the “normal” force model, for which we have already described the problems
arising from including acceleration as an input.

Note that X(t) describes the second and third parameters of the f and impulse
functions; we can redefine them to take only two parameters and thus write

Ẋ(t) =

[
ẋ(t)
ẍ(t)

]
=

[
X(t)[n + 1. .2n]

f(t,X(t))
m + dj(t,X(t))

dt

]
. (35.62)

When considering multiple particles with varying mass, we could replace f/m
with f ·M−1 for some diagonal matrix of masses M. Note that differential Equa-
tion 35.62 is the system version of the single-particle relation previously intro-
duced in Equation 35.22.

Chapter 29 framed light transport in the rendering equation, which was an inte-
gral equation. As was the case there, considering general-purpose numeric meth-
ods will lead us to broader computer science than needed for the specific dynamics
problem at hand. This has two advantages. We can build on previous work that is
not graphics-specific, including not just mathematics but also numerical ODE-
solving software libraries. We can also take the algorithms that we develop and
apply them to other problems beyond dynamics, both in computer graphics and in
other fields.

35.6.6.1 Time-State Space
Let’s look at a concrete example to gain some intuition for the 2n+1-dimensional
time-state space defined by t, X(t).

Figure 35.27 shows the path (described by its y-coordinate) of a cannonball
that is modeled as a particle in a 1D universe. The upper-left plot shows the famil-
iar time-space path plot of x(t) versus t, which is a parabola. The upper-right plot
shows the time-velocity path plot of ẋ(t) versus t, which is linear because the ball
experiences constant negative acceleration. This path crosses ẋ(t) = 0 at the apex
of the cannonball’s flight. The lower-left image combines these to show the time-
state path plot of X(t) versus t. Keep in mind that X describes the entire universe,
not just one object. In this example, they happen to be the same because we’re
considering a universe with a single particle. Were there more particles, the plot
would have many more dimensions.

The thick line in the lower-left subfigure shows one particular X of the many
that could exist. The thin lines are its projection onto the (t, x)- and (t, ẋ)-planes as
“shadows” for reference. Those shadows are exactly the upper-left and upper-right
figures.

From the perspective of t = 0, the dark (t, X(t))-curve describes the entire
future fate of the universe. From the perspective of some point at the high end of
the timeline, this is the history of the universe. But that curve is only one possi-
ble reality. Were there different initial conditions, X would have been a different
function and traced a different curve.

The lower-right subfigures depicts three alternative curves that could have
been solutions to X, given different initial conditions. Here only the shadows on
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˙ x(t)˙ x(t) Rolled off roof
Fired from cannon
Weak cannon

˙ x(t)

Figure 35.27: Cannonball path in time-state space.

the (t, ẋ)-plane are shown to keep the diagram simpler. One thick curve is our
original cannonball, another is a cannonball rolling off a roof, where ẋ(0) = 0
and x(t) > 0; and the third is a cannonball fired from a weak cannon so that
the initial velocity is small but nonzero. That cannonball strikes the ground early
and has zero velocity and position after collision. There are infinitely many other
solutions for X in Equation 35.62, depending on the initial state.

By definition, the initial state of the universe is entirely identified by the value
that we choose for X(0). There is nothing special about t = 0. Ignoring forces
from human interaction, for any particular ti the entire future solution for t > ti is
determined by X(ti). In other words, if you give me an X(0), I can tell you X(t) for
all subsequent t. My response is a curve in (t, X)-space. If you give me a different
X(0), I’ll give you a different curve. Every point lies in space on one of these
many possible curves. Furthermore, the curves aren’t merely geometry: They are
parametric curves, with parameter t. That is why it makes sense to compute Ẋ(t).

Inline Exercise 35.3: This exercise is mandatory. Don’t progress until you’ve
completed it.

We’ve just discussed the initial conditions that give rise to three different
(t, X) curves shown in the lower-right subfigure of Figure 35.27. Make a copy
by hand of that lower-right subfigure. Think about how we drew the curves and
the equations that govern them—don’t just copy the shape.

Now, consider a new scenario. Someone takes the (ill-advised) action of
leaning out a window halfway up the building with a cannon, points it straight
upward, and fires off a cannonball. Write down the equation of motion as a
function X(t) and draw the trajectory in time-state space superimposed on the
previous curves.
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˙ x(t)

x(t)

t

Figure 35.28: Visualization of D for the state space of one 1D particle under some arbitrary
forces.

Consider the tangents to solution curves for t versus X, like those in
Figure 35.27. They define some vector field over the time-state space such that
if the universe we are simulating has solution X, the value of this vector field is
Ẋ(t) at (t, X(t)). Formally, let D be the vector-valued function such that

D(t, Y) = Ẋ(t) if Y = X(t), ∀ physically possible X. (35.63)

In the context of physical simulation under Equation 35.62, this means that

D(t, Y) =

[
Y[n + 1. . 2n]
f(t,Y)

m + j(t,Y)
Δt

]
, (35.64)

although in the following derivation we will make no assumptions about D, X,
or Ẋ, so as to keep the discussion valid for all ordinary differential equations.
From here on, these will simply be arbitrary functions, which may not even be
vector-valued, and our goal is to trace a flow curve through the tangent field.

We chose the letter “D” because the tangent field function is reminiscent of
the derivative Ẋ. It is not actually the derivative: D is a field over time-state space
(as shown in Figure 35.28) and Ẋ is the tangent function to one particular curve X
through that space. That is, every solution X is a flow curve of the field D.

If we were following a particular solution X and somehow stepped off that
curve, the D field would guide us along some other flow curve that quite likely
diverged from our original solution. Figure 35.29 depicts two instances of this
situation for a simple tangent field. Although it is undesirable, this will prove to
be unavoidable during our numerical evaluation, and the best that we can do is to
try to minimize divergence and encourage transitions that are at least plausible.

35.6.6.2 Following the Tangent Field
Consider a series of state vectors {Y1, Y2, . . .} such that Yi ≈ X(ti), where the
sampling period ti+1− ti = Δt is constant. These are the regularly spaced samples
of the state function X that we want the simulation system to provide.
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Figure 35.29: A flow curve through a tangent field, and two attempts to follow it in discrete
steps.

To find these, we begin with an exact initial state Y1 = X(t1). We want to
follow the flow curve of D that passes through (t1, Y1) until it intersects the plane
t = t2. That intersection is at Y2. We then repeat the process for every other sam-
ple. This strategy evaluates X by numerical integration of the Ẋ function implicit
in D, rather than solving for an explicit expression for X or Ẋ.

The process is a little like a detective tailing a suspect in a black sedan in city
traffic. The detective doesn’t want to be observed. So he stays a few cars behind
on the road, out of the suspect’s line of sight. But he also doesn’t want to lose the
suspect, so he has to periodically pull up closer to catch sight of the sedan. Here,
the sedan’s path is the solution X that we (and the detective) want to follow, and
checking the location of the sedan is like evaluating D. The detective’s actual path
is defined by the Y values, which we want to follow X, but might diverge if he
isn’t careful. Unfortunately for our detective, there are a lot of other black sedans
on the road that don’t contain the suspect—and for our dynamics solver there are
other solutions to X that don’t match our initial conditions. If the detective waits
too long between checking on his suspect, he might accidentally start following
the wrong sedan. In the equivalent situation, our solver might start tracking the
wrong solution.

The previously explored Heun-Euler solver in Equations 35.37 and 35.38
made the assumption that the D field described linear flows over the time inter-
vals. This is like pausing exactly once per time interval, choosing a direction, and
then following the parabolic curve that exits our current position in that direction.
We could do worse; for example, following a line that exits our current position
in that direction. That process is called Explicit Euler integration. We can also do
much better than either Heun-Euler or Explicit Euler, in terms of estimator quality
versus computation.

To see how, we stretch our car-chase analogy a little further. The detective has
more choices than just driving straight toward where he last saw the sedan. He can
watch the sedan for a while (i.e., evaluate D at multiple points), and then make an
educated guess about where it is really going before dropping back out of sight.
We’ll cover strategies for this in Section 35.6.7. First let’s look at how we will
employ such a strategy in terms of a general dynamics solver.

35.6.6.3 A General ODE Solver
The framework for the numerical method for evaluating solutions to ODEs at
specific time intervals is extremely simple. Function D is implemented as a first-
class closure. The mechanism for this depends on the language: a class in C#,



ptg11539634

35.6 Dynamics 1017

C++, or Java, a function in Python, Scheme, or Matlab, and a function pointer and
void pointer in C.

The integrator that advances Yi to Yi+1 is shown in Listing 35.4.

Listing 35.4: ODE integrator using Explicit Euler steps.

1
2
3
4
5
6
7
8
9

10
11

vector<float> integrate
(float t,
vector<float> Y,
float Δt,
vector<float> D(float t, vector<float> Y) {

// Insert your preferred integration scheme on the next line:
ΔY = D(t, Y) ·Δt

return Y +ΔY
}

We will replace the center line with alternate expressions in what follows. The
method shown is the least computationally expensive and least accurate reason-
able method for evaluating ΔY .

35.6.7 Numerical Methods for ODEs

There is a tradeoff between the computational cost of a single iteration and the
number of iterations required to maintain accuracy. In general, one is willing to
perform significantly more work per iteration to take large time steps. However,
for graphics applications the time step may be driven by the rendering or user
input rate, and therefore there is a limit to how large it can be made. Furthermore,
the D function may be very expensive to evaluate because it can include collision
detection and a constraint solver. Thus, although for general applications the 4th-
order Runge-Kutta scheme is the default choice, many dynamics simulators for
real-time computer graphics still rely on simple Euler integration.

The basic idea underlying all of the integration schemes presented in this chap-
ter is that any infinitely differentiable function f can be expressed as the Taylor
polynomial,4

f (t) = lim
N→∞

N∑
n=0

dnf (t0)
dtn

(t − t0)n

n!
(35.65)

= f (t0) + ḟ (t0)(t − t0) + f̈ (t0)
(t − t0)2

2
+

...
f (t0)

(t − t0)3

6
+ . . . (35.66)

A finite number of Taylor terms allows approximation of f (t) for arbitrary t.
To apply this, we must know the value of the function f (t0) at some specific time
t0, and some derivatives of f at t0. For the dynamics application of approximat-
ing Y ≈ X(t), we know X(t0) because that is the current state of the system.
We also know Ẋ(t0) because that is the velocity and acceleration, which can be
computed by the D function. We can therefore immediately make the two-term
approximation:

4. This is only guaranteed to hold on some neighborhood of t0. In practice, this neighbor-
hood is usually the whole real line (for functions which mathematians call “analytic”),
but there exist functions for which the neighborhood is very small. Impulses are one
case where the neighborhood is not the entire real line, which gives more intuition as
to why they do not interact well with the ODE framework for dynamics.
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X(t) ≈ X(t0) + Ẋ(t0)(t − t0). (35.67)

The highest-order term present in this approximation is the n = 1 term, so
this is called a first-order approximation. This particular first-order approximation
leads to the integration scheme just presented, and is known as Forward Euler
integration.

The error in an approximation of a Taylor polynomial with a finite number of
terms is the missing higher-order terms. If the magnitude of higher-order deriva-
tives grows no faster than the factorial, higher-order terms have successively less
impact. This is true for many functions encountered in practice, especially physi-
cal simulation without impulses. The error in a first-order approximation is there-
fore dominated by a second-order term. That term contains (t− t0)2, so for a time
step Δt = t − t0, it is often referred to as growing like O(Δt2). This is a bit mis-
leading. For large n, the factorial in the denominator decreases the magnitude of
the higher-order terms faster than the exponent on Δt. Furthermore, for Δt > 1,
Δtn increases with order, and the point at which that occurs depends on the arbi-
trary choice of units for measuring time (although the derivative also changes to
counteract this, as we’ll see in a moment). So a better way to think about the accu-
racy of an approximation is that an “nth-order approximation” contains n terms of
the Taylor expansion.

In a dynamics system we do not have an explicit function for higher-order
derivatives of X. However, by applying the definition of the derivative to D, we
can estimate higher-order derivatives for specific values of t. For example:

Ẍ(t) = lim
t→t0

D(t, X(t))− D(t0, X(t0))
t − t0

. (35.68)

We can approximate the limit by choosing any t > t0, with accuracy typically
decreasing at larger time steps. Recursively applying the numerical derivative
form allows estimation of arbitrarily high derivatives. Note that the nth derivative
contains (t − t0)n in its denominator, which will be canceled by the same coeffi-
cient in the numerator of the Taylor polynomial. Thus, many numerical integrators
don’t explicitly contain higher powers of the time step in their final form.

The challenge in estimating the numerical derivatives is that we can’t apply
the D function at t0 unless we know X(t0). Since we’re trying to solve for X(t0),
this means we can’t solve until we already know the solution. Fortunately, we can
estimate X(t0) with some (n − 1)th-order method. We can then use that value
to numerically estimate an nth-order derivative. To prevent the error from these
successive estimations from accumulating, many schemes then go back and rees-
timate X(t0).

One can estimate arbitrarily high derivatives with arbitrary accuracy by this
method. Increasing accuracy in the derivatives allows larger time steps, which
allows fewer computations per unit simulation time. However, there is a com-
putational cost for each D evaluation. If the net cost of computing an accurate
derivative to take a large time step is higher than that of computing a less accu-
rate derivative and making many small time steps, nothing has been gained. The
choice of what order of integrator to apply therefore depends on the cost of D,
which depends on the complexity of the scene and forces. This is why there is no
single “best” integration scheme for dynamics.
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35.6.7.1 Explicit Forward Euler
We’ve already seen the Explicit (a.k.a. Forward) Euler method,

ΔY = D(t, Y) ·Δt, (35.69)

in which Y is the initial state of the system, D is the field for which D(t0, Y) ≈
dY(t0)/dt, and Δt is the duration of the time interval.

This is perhaps the simplest and most intuitive integrator. The change in state
of the system is our estimate of the current derivative scaled by the time step. For
position, this corresponds to assuming that velocity is constant (i.e., acceleration is
zero) and thus advancing by the current velocity. It obviously is a good estimator
when those conditions are true and is a worse estimator when there is significant
acceleration.

35.6.7.2 Semi-Implicit Euler
Explicit Euler integration only considers the derivative (e.g., velocity) at the begin-
ning of a time step. Under large accelerations, that is a poor estimate for the deriva-
tive throughout the time step. An alternative is to use the derivative from the end
of the time step. The challenge in doing so is that since we’re trying to estimate
the state of the system at the end of the time step, it is hard to use values from that
time to reach it.

The Semi-Implicit Euler (confusingly also known as Semi-Explicit Euler)
method performs a tentative Explicit Euler step to the end of a time interval and
measures the derivative there. It then returns to the beginning of the interval and
applies the discovered derivative to the original position. This is more stable than
Explicit Euler and much less expensive than the full Implicit Euler method, which
requires iterating on this process to find a fixed point [Par07].

Expressed in our state notation, the Semi-Implicit Euler integrator is

Let Z = Y + D(t, Y) ·Δt; (35.70)

s = t +Δt; (35.71)

ΔY = D (s, Z) ·Δt. (35.72)

35.6.7.3 Second-Order Runge-Kutta
Runge-Kutta5 refers to a family of related iterative methods for approximating
solutions to ODEs. They are described by a set of coefficients and the number
of stages, where each stage requires one evaluation of D based on the result of
previous evaluations. See [Pre95] for the general form of Runge-Kutta methods.

Explicit Euler is the only one-stage Runge-Kutta method. A commonly
employed one of the many possible two-stage Runge-Kutta methods is

ΔY = D
(

ti +
Δt
2

, Yi +
Δt
2

D(ti, Yi)

)
·Δt. (35.73)

35.6.7.4 Heun
Heun’s method is an improved two-stage Runge-Kutta method compared to the
one just presented. It is equivalent to averaging the steps from the Explicit and

5. Phonetically: “run-ga cut-a”



ptg11539634

1020 Motion

Semi-Implicit Euler methods, and to the scheme previously presented in Equa-
tions 35.37 and 35.38. Heun’s method is also known as the Modified Euler and
Explicit Trapezoidal methods.

Let Z = Y + D(t, Y) ·Δt (35.74)

s = t +Δt (35.75)

ΔY =
D(t, Y) + D(s, Z)

2
·Δt (35.76)

35.6.7.5 Explicit Fourth-Order Runge-Kutta
The classic fourth-order Runge-Kutta method is one of the most commonly used
integrators for dynamics in computer graphics and is the most accurate integrator
in this chapter. It is:

K1 = D(t, Y) (35.77)

K2 = D(t +
Δt
2

, Y + K1 · Δt
2
) (35.78)

K3 = D(t +
Δt
2

, Y + K2 · Δt
2
) (35.79)

K4 = D(t +Δt, Y + K3 ·Δt) (35.80)

ΔY =
1
6
(K1 + 2K2 + 2K3 + K4) ·Δt (35.81)

One might always use fourth-order Runge-Kutta, and in fact, that is the
approach of many dynamics experts. However, for state configurations in which
evaluating D is very expensive, one must consider the net cost of using a better
integrator compared to using more and smaller time steps with a worse integrator.
We generally care about the wall-clock time to achieve stable integration, and that
might be better achieved through taking many small Euler steps. Again we see
analogy to light transport: Many inexpensive samples may achieve faster conver-
gence than few expensive samples. Thus, only with an end-to-end convergence,
stability, and performance goal can we make a design decision for a particular
system.

35.7 Remarks on Stability in Dynamics

While performance and scalability are important, dynamics is one of the few areas
in computer graphics where numerical stability, and not performance, is the pri-
mary concern and focus of advancement. Numerical stability is related to preci-
sion and accuracy, but it is not the same as them. A simulation of a block tumbling
down stairs is accurate if it produces results close to those of the corresponding
real-world scenario. The simulation is precise if there are many bits in the output
(regardless of whether they have the correct values!). The simulation is stable if
the block reliably tumbles down, rather than gaining energy and launching into
space or exploding, for example. The challenge is that stability is often opposed
to accuracy. If the block merely remains sitting at the top of the stairs, even when
unbalanced, the simulation is stable but so inaccurate that it is useless. Although
stability is often driven by energy conservation, such events as missed collisions,
infinite (conserving) spring oscillations, and infinite (conserving) micro-collisions
may also be characterized as instability.
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Why is stability so difficult to achieve in dynamics? As we’ve seen in this
chapter, dynamics is deeply related to ordinary differential equations and numer-
ical integration. A numerical integrator’s precision and accuracy are governed by
three elements: its representation precision (e.g., floating-point quaternions), its
approximation method for derivatives, and its advancement (stepping and inte-
gration) method. Each of these is a complex source of error. When integrating
forward in time, the feed-forward nature of the system creates positive feedback
that tends to amplify errors. This is what often creates additional energy and is
a major cause of instability. Solving via a noncausal process (i.e., looking both
forward and backward in time) can counter the positive feedback loop with corre-
sponding negative feedback, which may increase stability. Unfortunately, solving
a system for all time generally precludes interactivity, in which future inputs are
unknown.

In contrast to dynamics, physical simulation of light transport by various algo-
rithms typically converges to a stable result. Energy in light differs from that in
matter in three ways: Photons do not interact with one another (at macroscopic
scales, at least), energy strictly decreases at interactions along a transport path
through time and space (in everyday scenarios, at least), and the energy of light is
independent of its position between interactions. The last point of comparison is
the subtlest: Kinetic energy is explicit in a dynamics solver, but potential energy
is largely hidden from the integrator and therefore a place in which error easily
accumulates.

Thus, although algorithms like radiosity and photon mapping simulate light
exclusively forward (or backward) in time, the feedback in the light transport
integrator is not amplified by the underlying physics. In contrast, in dynamics, the
laws of mechanics and the hidden potential energy repository conspire to amplify
error and instability. Even worse, this error is often not proportional to precision,
so one’s first efforts at addressing it by increasing precision are often insufficient.
For example, turning all 32-bit floating-point values into 64-bit ones or halving
the integration time step often doubles simulation cost without “doubling” stabil-
ity. As a result, many practical dynamics simulators are rife with scene-specific
constants controlling bias, energy restitution, and constraint weights. Manual tun-
ing of these constants is tricky and often unsatisfying, since a loss of accuracy is
frequently the price of stability.

Thus, instability is an inherent problem in dynamics for interactive systems.
Stability is a primary criterion for evaluating dynamics systems and algorithms,
and much good work has been done on it in both industry and academia. Looking
toward the future, we offer two speculations on stability.

The first speculation is that the structure of the integrator may be at least as
important as the schemes it uses for derivatives and steps, and that this may be
a fruitful area in which to seek improvements. This statement is motivated by
Guendelman, Bridson, and Fedkiw’s work on stability for stacks of rigid bodies
[GBF03]. They showed that simply reordering steps in the inner loop of the inte-
grator can dramatically increase stability for scenarios that have been traditionally
challenging to simulate, and then demonstrated some additional sorting methods
for enhancing stability further. This inspired others to experiment with the integra-
tion loop, and has led to various minor changes that produced significant increases
in the stability of popular dynamics simulators. This area merits further study.

The second speculation is that the conventional wisdom, “fourth-order Runge-
Kutta with fixed time steps is good enough” for dynamics in computer graphics,
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has not been formally explored. Numerical integration is essential to other fields
and is an area of constant scientific advance. We are not aware of experiments with
various newer integration methods, particularly adaptive step-size ones, in dynam-
ics simulation for computer graphics. Thus, it is an open question where the best
tradeoff lies between per-step cost and steps per frame. Recall that the benefits of
higher-order integration are only justified if they result in fewer steps and implic-
itly conserve precision. Taking more low-order steps, especially on massively par-
allel processors, could be preferable in some systems. Alternatively, taking very
few high-order steps could be preferable. Thus, experimentation with the core
numerical integration scheme is another area that may yield interesting results.
Our understanding is that physical simulation for nongraphics engineering and
science applications has been proceeding in this direction and we encourage its
development within graphics as well.

35.8 Discussion

We’ve explained in this chapter how physically based animation can be described
by differential equations whose solutions present various challenges, depending
on context. The other kind of animation, which one might call “fine-art anima-
tion,” and which involves human animators, is a separate discipline. Nonetheless,
physically based animation and algorithmic animation are being used more and
more, even within fine-art animation. This presents challenges and opportunities
in designing comprehensible interfaces for artists who must interact with physics
and try to control it to achieve certain artistic goals.
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Chapter 36

Visibility Determination

36.1 Introduction

Determining the visible parts of surfaces is a fundamental graphics problem. It
arises naturally in rendering because rendering objects that are unseen is both
inefficient and incorrect. This problem is called either visible surface determi-
nation or hidden surface removal, depending on the direction from which it is
approached.

The two distinct goals for visibility are algorithm correctness and efficiency.
A visibility algorithm responsible for the correctness of rendering must exactly
determine whether an unobstructed line of sight exists between two points, or
equivalently, the set of all points to which one point has an unobstructed line of
sight. The most intuitive application is primary visibility: Solve visibility exactly
for the camera. Doing so will only allow the parts of the scene that are actu-
ally visible to color the image so that the correct result is produced. Ray casting
and the depth buffer are by far the most popular methods for ensuring correct
visibility today.

A conservative visibility algorithm is designed for efficiency. It will distin-
guish the parts of the scene that are likely visible from those that are definitely not
visible, with respect to a point. Conservatively eliminating the nonvisible parts
reduces the number of exact visibility tests required but does not guarantee cor-
rectness by itself. When a conservative result can be obtained much more quickly
than an exact one, this speeds rendering if the conservative algorithm is used to
prune the set that will be considered for exact visibility. For example, it is more
efficient to identify that the sphere bounding a triangle mesh is behind the camera,
and therefore invisible to the camera, than it is to test each triangle in the mesh
individually.

Backface culling and frustum culling are two simple and effective methods
for conservative visibility testing; occlusion culling is a more complex refinement
of frustum culling that takes occlusion between objects in the scene into account.
Sophisticated spatial data structures have been developed to decrease the cost of
conservative visibility testing. Some of these, such as the Binary Space Partition

1023
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(BSP) tree and the hierarchical depth buffer, simultaneously address both efficient
and exact visibility by incorporating conservative tests into their iteration mecha-
nism. But often a good strategy is to combine a conservative visibility strategy for
efficiency with a precise one for correctness.

THE CULLING PRINCIPLE: It is often efficient to approach a problem with
one or more fast and conservative solutions that narrow the space by culling
obviously incorrect values, and a slow but exact solution that then needs only
to consider the fewer remaining possibilities.

Primary visibility tells us which surfaces emit or scatter light toward a cam-
era. They are the “last bounce” locations under light transport and are the only
surfaces that directly affect the image. However, keep in mind that a global illu-
mination renderer cannot completely eliminate the points that are invisible to the
camera. This is because even though a surface may not directly scatter light toward
the camera, it may still affect the image. Figure 36.1 shows an example in which
removing a surface that is invisible to the camera changes the image, since that
surface casts light onto surfaces that are visible to the camera. Another example is
a shadow caster that is not visible, but casts a shadow on points that are visible to
the camera. Removing the shadow caster from the entire rendering process would
make the shadow disappear. So, primary visibility is an important subproblem that
can be tackled with visibility determination algorithms, but it is not the only place
where we will need to apply those algorithms.

light

Camera

Figure 36.1: The yellow wall is
illuminated only by light reflected
from the hidden red polygon.
Removing it will cause the yel-
low wall to be illuminated only by
light from the blue surface.

The importance of indirect influence on the image due to points not visible
to the camera is why we define exact visibility as a property that we can test for
between any pair of points, not just between the camera and a scene point. A ren-
dering algorithm incorporating global illumination must consider the visibility of
each segment of a transport path from the source through the scene to the cam-
era. Often the same algorithms and data structures can be applied to primary and
indirect visibility. For example, the shadow map from Chapter 15 is equivalent to
a depth buffer for a virtual camera placed at a light source.

There are of course nonrendering applications of algorithms originally intro-
duced for visibility determination. Collision detection for the simulation of fast-
moving particles like bullets and raindrops is often performed by tracing rays as
if they were photons. Common modeling intersection operations such as cutting
one shape out of another are closely related to classic visibility algorithms for
subdividing surfaces along occlusion lines.

The motivating examples throughout this chapter emphasize primary visibil-
ity. That’s because it is perhaps the most intuitive to consider, and because the
camera’s center of projection is often the single point that appears in the most vis-
ibility tests. For each example, consider how the same principles apply to general
visibility tests. As you read about each data structure, think in particular about how
many visibility tests at a point are required to amortize the overhead of building
that data structure.

In this chapter, we first present a modern view of visibility following the light
transport literature. We formally frame the visibility problem as an intersection
query for a ray (“What does this ray hit first?”) and as a visibility function on pairs
of points (“Is Q visible from P?”). We then describe algorithms that can amortize
that computation when it is performed conservatively over whole primitives for
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efficient culling. This isn’t the historical order of development. In fact, the topic
developed in the opposite order.

Historically, the first notion of visibility was the question “Is any part of this
triangle visible?” That grew more precise with “How much of this triangle is vis-
ible?” which was a critical question when all rendering involved drawing edges
on a monochrome vector scope or rasterizing triangles on early displays and slow
processors. With the rise of ray tracing and general light transport algorithms, a
new visibility question was framed on points. That then gave a formal definition
for the per-primitive questions, which expanded under notions of partial coverage
to the framework encountered today. Of course, classic graphics work on primi-
tives was performed with an understanding of the mathematics of intersection and
precise visibility. The modern notion is just a redirection of the derivation: work-
ing up from points and rays with the rendering equation in mind, rather than down
from surfaces under an ad hoc illumination and shading model.

36.1.1 The Visibility Function

Visible surface determination algorithms are grounded in a precise definition of
visibility. We present this formally here in terms of geometry as the basis for
the high-level algorithms. While it is essential for defining and understanding the
algorithms, this direct form is rarely employed.

A performance reason that we can’t directly apply the definition of visibility
is that with large collections of surfaces in a scene, exhaustive visibility testing
would be inefficient. So we’ll quickly look for ways to amortize the cost across
multiple surfaces or multiple point pairs.

A correctness concern with direct visibility is that under digital representa-
tions, the geometric tests involved in single tests are also very brittle. In general,
it is impossible to represent most of the points on a line in any limited-precision
format, so the answer to “Does this point occlude that line of sight?” must neces-
sarily almost always be “no” on a digital computer. We can escape the numerical
precision problem by working with spatial intervals—for example, line segments,
polygons, and other curves—for which occlusion of a line of sight is actually rep-
resentable, but we must always implicitly keep in mind the precision limitation
at the boundaries of those intervals. Thus, the question of whether a ray passes
through a triangle if it only intersects the edge is moot. In general, we can’t even
represent that intersection location in practice, so our classification is irrelevant.
So, beware that everything in this chapter is only valid in practice when we are
considering potential intersections that are “far away” from surface boundaries
with respect to available precision, and the best that we can hope for near bound-
aries is a result that is spatially coherent rather than arbitrarily changing within the
imprecise region.

Given points P and Q in the scene, let visibility function V(P, Q) = 1 if there
is no intersection between the scene and the open-ended line segment between P
and Q, and V(P, Q) = 0 otherwise. This is depicted in Figure 36.2. Sometimes it
is convenient to work with the occlusion function H(P, Q) = 1 − V(P, Q). The
visibility function is necessarily symmetric, so V(P, Q) = V(Q, P).

B

A

P D

C

window

mirror

Figure 36.2: V(P, A) = 1
because there is no occluder.
V(P, B) = 0 because a wall is in
the way. V(P, C) = 0 because,
even though P can see C through
the window, the window is an
occluder as far as mathematical
“visibility” is concerned. Like-
wise, V(P, D) = 0, even though
P sees a reflection of D in the
mirror.

Note that the “visibility” in “visibility function” refers strictly to geometric
line-of-sight visibility. If P and Q are separated by a pane of glass, V(P, Q) is zero
because a nonempty part of the scene (the glass pane) is intersected by the line
segment between P and Q. Likewise, if an observer at Q has no direct line of sight
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to P, but can see P through a mirror or see its shadow, we still say that there is no
direct visibility: V(P, Q) = 0.

Let X be the first scene point encountered along a ray with origin P in direction
v̂ = S(()Q − P). Point X partitions the ray into two visibility ranges. To see
this, define f to be visibility as a function of distance from Q, that is, let f (t) =
V(P, P + v̂t). Between X and P, 0 ≤ t ≤ |X − P|, there is visibility, so f (t) = 1
as shown in Figure 36.3. Beyond X, t > ||X − P||. For that domain there is no
visibility because X is an occluder, so f (t) = 0.

P

Q

X

f(t) 
5 1

f(t) 
5 0

Figure 36.3: Visibility parameter-
ized by distance along a ray.Evaluating the visibility function is mathematically equivalent to finding that

first occluding point X, given a starting point P and ray direction v̂. The first
occluding point along a ray is the solution to a ray intersection query. Chapter 37
presents data structures for efficiently solving ray intersection queries. It is not
surprising that a common way to evaluate V(P, Q) is to solve for X. If X exists
and lies on the line segment PQ, then V(P, Q) = 0; otherwise, V(P, Q) = 1.

Some rendering algorithms explicitly evaluate the visibility function between
pairs of points by testing for any intersection between a line segment and the
surfaces in a scene. Examples include direct illumination shadow tests in a ray
tracer and transport path testing in bidirectional path tracing [LW93, VG94], and
Metropolis light transport [VG97].

Others solve for the first intersection along a ray instead, thus implicitly evalu-
ating visibility by only generating the visible set of points. Examples include pri-
mary and recursive rays in a ray tracer and deferred-shading rasterizers. These are
all algorithms with explicit visibility determination. They resolve visibility before
computing transport (often called “shading” in the real-time rendering commu-
nity) between points, thus avoiding the cost of scattering computations for points
with no net transport. Simpler renderers compute transport first and rely on order-
ing to implicitly resolve visibility. For example, a naive ray tracer might shade
every intersection encountered along a ray, but only retain the radiance computed
at the one closest to the ray origin. This is equivalent to an (also naive) rasteri-
zation renderer that does not make a depth prepass. Obviously it is preferable to
evaluate visibility before shading in cases where the cost of shading is relatively
high, but whether to evaluate that visibility explicitly or implicitly greatly depends
on the particular machine architecture and scene data structure. For example, ras-
terization renderers prefer a depth prepass today because the memory to store a
depth buffer is now relatively inexpensive. Were the cost of a full-screen buffer
very expensive compared to the cost of computation (as it once was, and might
again become if resolution or manufacturing changes significantly), then a visibil-
ity prepass might be the naive choice and some kind of spatial data structure again
dominate rasterization rendering.

Observe that following conventions from the literature, we defined the visi-
bility function on the open line segment that does not include its endpoints. This
means that if the ray from P to Q first meets scene geometry at a point X dif-
ferent from P, then V(P, X) = 1. This is a convenient definition given that the
function is typically applied to points on surfaces. Were we to consider the closed
line segment, then there would never be any visibility between the surfaces of
a scene—they would all occlude themselves. We would have to consider points
slightly offset from the surfaces in light transport equations.

In practice, the distinction between open and closed visibility only simpli-
fies the notation of transport equations, not implementations in programs. That is
because rounding operations implicitly occur after every operation when working



ptg11539634

36.1 Introduction 1027

with finite-precision arithmetic, introducing small-magnitude errors (see Fig-
ure 36.5). So we must explicitly phrase all applications of the visibility function
and all intersection queries with some small offset. This is often called ray bump-
ing because it “bumps” the origin of the visibility test ray a small distance from the
starting surface. Note that the bumping must happen on the other end as well. For
example, to evaluate V(Q, P), attempt to find a scene point X = Q+S(Q− P)t for
ε < t < |P−Q|−ε. If and only if there is no scene point satisfying that constraint,
then V(Q, P) = 1. Failing to choose a suitably large ε value can produce artifacts
such as shadow acne (i.e., self-shadowing), speckled highlights and reflections,
and darkening of the indirect components of illumination shown in Figure 36.4.
The noisy nature of these artifacts arises from the sensitivity of the comparison
operations to the small-magnitude representation error in the floating-point values.

Figure 36.4: (Top) Self-occlusion
from insufficient numerical pre-
cision or offset values causes
the artifacts of shadow acne and
speckling in indirect illumination
terms such as mirror reflections.
(Bottom) The same scene with the
shadow acne removed.

36.1.2 Primary Visibility

Primary visibility (a.k.a. eye ray visibility, camera visibility) is visibility
between a point on the aperture of a camera and a point in the scene. To render
an image, one visibility test must be performed per light ray sample on the image
plane. In the simplest case, there is one sample at the center of each pixel. Comput-
ing multiple samples at each pixel often improves image quality. See Section 36.9
for a discussion of visibility in the presence of multiple samples per pixel.

A pinhole camera has a zero-area aperture, so for each sample point on the
image plane there is only one ray along which light can travel. That is the primary
ray for that point on the image plane. Consider three points on the primary ray:
sample point Q on the imager, the aperture A, and a point P in the scene. Since
there are no occluding objects inside the camera, V(Q, P) = V(A, P).

Since the visibility function evaluations or intersection queries at all samples
share a common endpoint of the pinhole aperture, there are opportunities to amor-
tize operations across the image. Ray packet tracing and rasterization are two
algorithms that exploit this technique. For more details, see Chapter 15, which
develops the amortized aspect of rasterization and presents the equivalence of
intersection queries under rasterization and ray tracing.

36.1.3 (Binary) Coverage

Coverage is the special case of visibility for points on the image plane. For a
scene composed of a single geometric primitive, the coverage of a primary ray is

Incoming ray

True intersection 
point, on surface

Object Object

Possible intersection
approximations due
to finite precision

Possible
outgoing rays

Self-occlusion

Figure 36.5: Finite precision leads to self-occlusions. “Bumping” the outgoing ray biases
the representation error in a direction less likely to produce artifacts by favoring the points
above the surface as the ray origin.
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a binary value that is 1 if the ray intersects the primitive between the image plane
and infinity, and 0 otherwise. This is equivalent to the visibility function applied
to the primary ray origin and a point infinitely far away along the primary ray.

A
B

Figure 36.6: The quantitative
invisibility of two points is the
number of surface intersections
on the segment between them.
The quantitative invisibility of B
with respect to A is 2 in this fig-
ure. The depth complexity of a
ray is the total number of surface
intersections along the ray. The
ray from A through B has depth
complexity 3 in this figure.

For a scene containing multiple primitives, primitives may occlude each other
in the camera’s view. The depth complexity of a ray is the number of times it
intersects the scene. At any given intersection point P, the quantitative invisibil-
ity [App67] is the number of other primitive intersections that lie between the ray
origin and P. Figure 36.6 shows examples of each of these concepts.

For some applications, backfaces—surfaces where the dot product of the geo-
metric normal and the ray direction is positive—are ignored when computing
depth complexity and quantitative invisibility. The case where the intersection of
the ray and a surface is a segment (e.g., Figure 36.7) instead of a finite number
of points is tricky. We’ve already discussed that the existence of such an intersec-
tion is already suspect due to limited precision, and in fact for it to occur at all
with nonzero probability requires us to have explicitly placed geometry in just the
right configuration to make such an unlikely intersection representable. Of course,
humans are very good at constructing exactly those cases, for example, by plac-
ing edges at perfectly representable integer coordinates and aligning surfaces with
axes in ways that could never occur in data measured from the real world. We
note that for a closed polygonal model, it is common to ignore these line-segment
intersections, but the definition of depth complexity and quantitative invisibility
for this case varies throughout the literature.

Figure 36.7: A ray tangent to an
intersected surface.

In the case of multiple primitive intersections, we say that the coverage is 1
at the first intersection and 0 at all later ones to match the visibility function
definition.

At the end of this chapter, in Section 36.9, we extend binary coverage to par-
tial coverage by considering multiple light paths per pixel.

36.1.4 Current Practice and Motivation

Most rendering today is on triangles. The triangles may be explicitly created, or
they may be automatically generated from other shapes. Some common modeling
primitives that are reducible to triangles are subdivision surfaces, implicit sur-
faces, point clouds, lines, font glyphs, quadrilaterals, and height field models.

Ray-tracing renderers solve exact visibility determination by ray casting (Sec-
tion 36.2): intersecting the model with a ray to produce a sample. Data structures
optimized for ray-triangle intersection queries are therefore important for efficient
evaluation of the visibility function. Chapter 37 describes several of these data
structures. Backface culling (Section 36.6) is implicitly part of ray casting.

Hardware rasterization renderers today tend to use frustum culling (Sec-
tion 36.5), frustum clipping (Section 36.5), backface culling (Section 36.6),
and a depth buffer (Section 36.3) for per-sample visible surface determination.
Those methods provide correctness, but they require time linear in the number of
primitives. So relying on them exclusively would not scale to large scenes. For
efficiency it is therefore necessary to supplement those with conservative meth-
ods for determining occlusion and hierarchical methods for eliminating geometry
outside the view frustum in sublinear time.

A handful of applications rely on the painter’s algorithm (Section 36.4.1)
of simply drawing everything in the scene in back-to-front order and letting the
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ordering resolve visibility. This is neither exact nor conservative1, but it has the
benefit of extreme simplicity. It is used almost exclusively for 2D graphical user
interface rendering to handle overlapping windows. The primary 3D application of
the painter’s algorithm today is for rasterization of translucent surfaces, although
recent trends favor more accurate per-sample stochastic and lossy-volumetric
alternatives [ESSL10, LV00, Car84, SML11, JB10, MB07].

Many applications combine multiple visibility determination algorithms. For
example, a hybrid renderer might rasterize primary and shadow rays but perform
ray casting for visibility determination on other global illumination paths. A real-
time hardware rasterization renderer might augment its depth buffer with hier-
archical occlusion culling or precomputed conservative visibility. Many games
rely on those techniques, but they include a ray-casting algorithm for visibility
determination used to determine line of sight for character AI logic and physical
simulation.

36.2 Ray Casting

Ray casting is a direct process for answering an intersection query. As previously
shown, it also computes the visibility function: V(P, Q) = 1, if P is the result of
the intersection query on the ray with origin Q and direction (P−Q)/|P−Q|; and
V(P, Q) = 0 otherwise. Chapter 15 introduced an algorithm for casting rays in
scenes described by arrays of triangles, and showed that the same algorithm can
be applied to primary and indirect (in that case, shadow) visibility.

The time cost of casting a ray against n triangles in an array is O(n) opera-
tions. If V(P, Q) = 1, then the algorithm must actually test every ray-triangle pair.
If V(P, Q) = 0, then the algorithm can terminate early when it encounters any
intersection with the open segment PQ. In practice this means that computing the
visibility function by ray casting may be faster than solving the intersection query;
hence, resolving one shadow ray may be faster than finding the surface to shade
for one ray from the camera. For a dense scene with high depth complexity, the
performance ratio between them may be significant.

Terminating on any intersection still only makes ray casting against an array
of surfaces faster by a constant, so it still requires O(n) operations for n surfaces.
Linear performance is impractical for large and complex scenes, especially given
that such scenes are exactly those in which almost all surfaces are not visible
from a given point. Thus, there are few cases in which one would actually cast
rays against an array of surfaces, and for almost all applications some other data
structure is used to achieve sublinear scaling.

Chapter 37 describes many spatial data structures for accelerating ray intersec-
tion queries. These can substantially reduce the time cost of visibility determina-
tion compared to the linear cost under an array representation. However, building
such a structure may only be worthwhile if there will be many visibility tests
over which to amortize the build time. Constants vary with algorithms and archi-
tectures, but for more than one hundred triangles or other primitives and a few

1. . . . nor how artists actually paint—for example, sometimes the sky is painted after
foreground objects—but the name is now both a technical term and appropriately
evocative.
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thousand visibility tests, building some kind of spatial data structure will usually
provide a net performance gain.

We now give an example of how a ray-primitive intersection query operates
within the binary space partition tree data structure. The issues encountered
in this example apply to most other spatial data structures, including bounding
volume hierarchies and grids.

36.2.1 BSP Ray-Primitive Intersection

The binary space partition tree (BSP tree) [SBGS69, FKN80] is a data structure
for arranging geometric primitives based on their locations and extents. Chapter 37
describes in detail how to build and maintain such a structure, and some alternative
data structures. The BSP tree supports finding the first intersection between a ray
and a primitive. The algorithm for doing this often has only logarithmic running
time in the number of primitives. We say “often” because there are many patho-
logical tree structures and scene distributions that can make the intersection time
linear, but these are easily avoidable for many scenes. This logarithmic scaling
makes ray casting practical for large scenes.

The BSP tree can also be used to compute the visibility function. The algo-
rithm for this is nearly identical to the first-intersection query. It simply terminates
with a return value of false when any intersection is detected, and returns true
otherwise.

There are a few variations on the BSP structure. For the following example, we
consider a simple one to focus on the algorithm. In our simple tree, every internal
node represents a splitting plane (which is not part of the scene geometry) and
every leaf node represents a geometric primitive in the scene. A plane divides
space into two half-spaces. Let the positive half-space contain all points in the
plane and on the side to which the normal points. Let the negative half-space
contain all points in the plane and on the side opposite to which the normal points.
Figure 36.8 shows one such plane (for a 2D scene, so the “plane” is a line). Both
the positive and negative half-spaces will be subdivided by additional planes when
creating a full tree, until each sphere primitive is separated from the others by at
least one plane.

Splitting plane

Negative half-space

Positive half-space
“Closer” in this case because

it contains the ray origin

Object

Plane normal

Query ray

Ray origin

Figure 36.8: The splitting plane for a single internal BSP node divides this scene composed
of five spheres into two half-spaces.
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The internal nodes in the BSP tree have at most two children, which we label
positive and negative. The construction algorithm for the tree ensures that the
positive subtree contains only primitives that are in the positive half-space of the
plane (or on the plane itself) and that the negative subtree contains only those
in the negative half-space of the plane. If a primitive from the scene crosses a
splitting plane, then the construction algorithm divides it into two primitives, split
at that plane.

Listing 36.1 gives the algorithm to evaluate the visibility function in this sim-
ple BSP tree. The recursive intersects function performs the work. Point Q is
visible to point P if no intersection exists between the line segment PQ and the
geometry in the subtree with node at its root. When node is a leaf, it contains one
geometric primitive, so intersects tests whether the line-primitive intersection
is empty. Chapter 7 describes intersection algorithms that implement this test for
different types of geometric primitives, and Chapter 15 contains C++ code for
ray-triangle intersection.

Figure 36.9 visualizes the algorithm’s iteration through a 2D tree for a scene
consisting of disks.

If node is an internal node, then it contains a splitting plane that creates two
half-spaces. We categorize the child nodes corresponding to these as being closer
and farther with respect to P. Figure 36.8 shows an example classification at an
internal node. With an eye toward reusing this algorithm’s structure for the related
problem of finding the first intersection, we choose to visit the closer node first.
That is because if there is any intersection between segment PQ and the scene in
closer, it must be closer to P than every intersection in farther [SBGS69].

If PQ lies entirely in one half-space, the result of the intersection test for the
current node reduces to the result of the test on that half-space. Otherwise, there
is an intersection if one is found in either half-space, so the algorithm recursively
visits both.

1 2 3

4 5 6

Figure 36.9: Tracing a ray through a scene containing disks stored in a 2D BSP tree.
Highlighted portions of space correspond to the node at which the algorithm is operating
in each step. Iteration proceeds depth-first, preferring to descend into the geometrically
closer of the two children at each node.
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Listing 36.1: Pseudocode for visibility testing in a BSP tree.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

function V(P, Q):
return not intersects(P, Q, root)

function intersects(P, Q, node):
if node is a leaf:

return (PQ intersects the primitive at the node)

closer = node.positiveChild
farther = node.negativeChild

if P is in the negative half-space of node:
// The negative side of the plane is closer to P
swap closer, farther

if intersects(P, Q, closer):
// Terminate early because an intersection was found
return true

if P and Q are in the same half-space of node:
// Segment PQ does not extend into the farther side
return false

// After searching the closer side, recursively search
// for an intersection on the farther side
return intersects(P, Q, farther)

Inline Exercise 36.1: The visibility testing code assumes that there’s a closer
and a farther half-space. What will this code do when the splitting plane con-
tains the camera point P? Will it still perform correctly? If not, what modifica-
tions are needed?

In the worst case the routine must visit every node of the tree. In practice this
rarely occurs. Typically, PQ is small with respect to the size of the scene and the
planes carve space into convex regions that do not all lie along the same line.
So we expect a relatively tight depth-first search with runtime proportional to the
height of the tree.

There are many ways to improve the performance of this algorithm by a
constant factor. These include clever algorithms for constructing the tree and
extending the binary tree to higher branching factors. For sparse scenes, alter-
native spatial partitions can be advantageous. The convex spaces created by the
splitting planes often have a lot of empty space compared to the volumes bounded
by the geometric primitives within them in a BSP tree. A regular grid or bound-
ing volume hierarchy may increase the primitive density within leaf nodes, thus
reducing the number of primitive intersections performed.

Where BSP tree iteration is limited by memory bandwidth, substantial savings
can be gained by using techniques for compressing the plane and node pointer
representation [SSW+06].

36.2.2 Parallel Evaluation of Ray Tests

The previous analysis considered serial processing on a single scalar core. Paral-
lel execution architectures change the analysis. Tree search is notoriously hard to
execute concurrently for a single query. Near the root of a tree there isn’t enough
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work to distribute over multiple execution units. Deeper in the tree there is plenty
of work, but because the lengths of paths may vary, the work of load balancing
across multiple units may dominate the actual search itself. Furthermore, if the
computational units share a single global memory, then the bandwidth constraints
of that memory may still limit net performance. In that case, adding more compu-
tational units can reduce net performance because they will overwhelm the mem-
ory and reduce the coherence of memory access, eliminating any global cache
efficiency.

There are opportunities for scaling nearly linearly in the number of compu-
tational units when performing multiple visibility queries simultaneously, if they
have sufficient main memory bandwidth or independent on-processor caches. In
this case, all threads can search the tree in parallel. Historically the architectures
capable of massively parallel search have required some level of programmer
instruction batching, called vectorization. Also called Single Instruction Multi-
ple Data (SIMD), vector instructions mean that groups of logical threads must
all branch the same way to achieve peak computational efficiency. When they do
branch the same way, they are said to be branch-coherent; when they do not, they
are said to be divergent. In practice, branch coherence is also a de facto require-
ment for any memory-limited search on a parallel architecture, since otherwise,
executing more threads will require more bandwidth because they will fetch dif-
ferent values from memory.

There are many strategies for BSP search on SIMD architectures. Two that
have been successful in both research and industry practice are ray packet trac-
ing [WSBW01, WBS07, ORM08] and megakernel tracing [PBD+10]. Each
essentially constrains a group of threads to descend the same way through the tree,
even if some of the threads are forced to ignore the result because they should
have branched the other way (see Figure 36.10). There are some architecture-
specific subtleties about how far to iterate before recompacting threads based on
their coherence, and how to schedule and cache memory results.

Figure 36.10: Packets of rays with similar direction and origin may perform similar traver-
sals of a BSP tree. Processing them simultaneously on a parallel architecture can amortize
the memory cost of fetching nodes and leverage vector registers and instructions. Rays that
diverge from the common traversal (illustrated by dashed lines) reduce the efficiency of this
approach.
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Adding this kind of parallelism is more complicated than merely spawning
multiple threads. It is also hard to ignore when considering high-performance
visibility computations. At the time of this writing, vector instructions yield an
8x to 32x peak performance boost over scalar or branch-divergent instructions
on the same processors. Fortunately, this kind of low-level visibility testing is
increasingly provided by libraries, so you may never have to implement such an
algorithm outside of an educational context. From a high level, one can look at
hardware rasterization as an extreme optimization of parallel ray visibility testing
for the particular application of primary rays under pinhole projection.

36.3 The Depth Buffer

A depth buffer [Cat74] is a 2D array parallel to the rendered image. It is also
known as a z-buffer, w-buffer, and depth map. In the simplest form, there is one
color sample per image pixel, and one scalar associated with each pixel represent-
ing some measure of the distance from the center of projection to the surface that
colored the pixel.

To reduce the aliasing arising from taking a single sample per pixel, renderers
frequently store many color and depth samples within a pixel. When resolving to
an image for display, the color values are filtered (e.g., by averaging them), and
the depth values are discarded. A variety of strategies for efficient rendering allow
more independent depth samples than color samples, separating “shading” (color)
from “coverage” (visibility). This section is limited to discussions of a single depth
sample per pixel. We address strategies for multiple samples in Section 36.9.

Notice that the use of the depth buffer assumes that a single surface determines
the value of each pixel. If the scene does not satisfy this assumption, then
aliasing artifacts (see Chapter 18) are likely in the resultant rendering. This
assumption often fails for distant complex objects, where many surfaces may
all project within the same pixel. It makes sense, in these cases, to use a level-
of-detail representation in which distant objects (or even collections of objects)
are represented more and more simply to ensure that the assumption is valid.
Chapter 25 discusses simplification techniques for meshes. Other approaches,
like carefully choosing a far clipping plane, or masking distant objects with
fog, can also help to address this problem.

Obviously, more than one surface contributes to pixels that contain the sil-
houette of an object, regardless of how large the object is in screen space.
This is a pity, because this is a location at which the human visual system
is extremely sensitive to artifacts—we are much less likely to notice aliasing
within the interior of a shape.

Figure 36.11 reproduces Dürer’s etching of himself and an assistant manu-
ally rendering a musical instrument under perspective projection. We have seen
and referred to this classic etching before. In it, one man holds a pen at the loca-
tion where a string crosses the image plane to dot a canvas that corresponds to
our color buffer. The pulley on the wall is the center of projection and the string
corresponds to a ray of light. Now note the plumb bob on the other side of the pul-
ley. It maintains tension in the string. Dürer’s primary interest was the 2D image
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Figure 36.11: Two people using an early “rendering engine” to make a picture of a lute.

produced by marking intersections of that string with the image plane. But, as we
noted in Chapter 3, this apparatus can in fact measure more than just the image.
Consider what would happen if the artist were to annotate each point he marked
on the image plane with the length of string between the plumb bob and the pulley
corresponding to that point. He would then record a depth buffer for the scene,
encoding samples of all visible three-dimensional geometry.

Dürer’s artist had little need of a depth buffer for a single image. The physical
object in front of him ensured correct visibility. However, given two images with
depth buffers, he could have composited them into a single scene with correct
visibility at each point. At each sample, only the nearer depth value (which in this
case means a longer string below the pulley) could be visible in the combined
scene. Our rendering algorithms work with virtual objects and lack the benefit
of automatic physical occlusion. For simple convex or planar primitives such as
points and triangles we know that each primitive does not occlude itself. This
means we can render a single image plus depth buffer for each primitive without
any visibility determination. The depth buffer allows us to combine rendering of
multiple primitives and ensure correct visibility at each sample point.

The depth buffer is often visualized with white values in the distance and black
values close to the camera, as if black shapes were emerging from white fog (see
Figure 36.12). There are many methods for encoding the distance. The end of
this section describes some that you may encounter. Depth buffers are commonly
employed to ensure correct visibility under rasterization. However, they are also
useful for computing shadowing and depth-based post-processing in other render-
ing frameworks, such as ray tracers.

There are three common applications of a depth buffer in visibility determi-
nation. First, while rendering a scene, the depth buffer provides implicit visible
surface determination. A new surface may cover a sample only if its camera-space
depth is less than the value in the depth buffer. If it is, then that new surface over-
writes the color in the depth buffer and its depth value overwrites the depth in
the depth buffer. This is implicit visibility because until rendering completes it
is unknown what the closest visible surface is at a sample, or whether a given
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Figure 36.12: Rendering of a scene (left), and a visualization of its depth buffer (right).

surface is visible to the camera. Yet when rendering is complete, correct visibility
is ensured.

Second, after the scene is rendered, the depth buffer describes the first scene
intersection for any ray from the center of projection through a sample. Because
the position of each sample on the image plane and the camera parameters are all
known, the depth value of a sample is the only additional information needed to
reconstruct the 3D position of the sample that colored it.

Third, after the scene is rendered, the depth buffer can directly evaluate the
visibility function relative to the center of projection. For camera-space point Q,
V((0, 0, 0), Q) = 1 if and only if the depth value at the projection of Q is less than
the depth of Q.

The second and third applications deserve some more explanation of why one
would want to solve visibility queries after rendering is already completed. Many
rendering algorithms make multiple passes over the scene and the framebuffer.
The ability to efficiently evaluate ray intersection queries and visibility after an
initial pass means that subsequent rendering passes can be more efficient. One
common technique exploiting this is the depth prepass [HW96]. In that pass,
the renderer renders only the depth buffer, with no shading computations per-
formed. Such a limited rendering pass may be substantially more efficient than
a typical rendering pass, for two reasons. First, fixed-function circuitry can be
employed because there is no shading. Second, minimal memory bandwidth is
required when writing only to the depth buffer, which is often stored in com-
pressed form [HAM06].

Note that a depth buffer must be paired with another algorithm such as raster-
ization for finding intersections of primary rays with the scene. Chapter 15 gives
C++ code for ray casting and rasterization implementations of that intersection
test. The rasterization implementation includes the code for a simple depth buffer.
That implementation assumes that all polygons lie beyond the near clipping plane
(see Chapter 13 for a discussion of clipping planes). This is to work around one
of the drawbacks of the depth buffer: It is not a complete solution for visibility.
Polygons need to be clipped against the near plane during rasterization to avoid
the projection singularity at z = 0. The depth buffer can represent depth values
behind the camera; however, rasterization algorithms are awkward and often inef-
ficient to implement on triangles before projection. As a result, most rasterization
algorithms pair a depth buffer with a geometric clipping algorithm. That geomet-
ric algorithm effectively performs a conservative visibility test by eliminating the
parts of primitives that lie behind the camera before rasterization. The depth buffer
then ensures correctness at the screen-space samples.
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The depth buffer has proved to be a powerful solution for screen-space visi-
bility determination. It is so powerful that not only has it been built in dedicated
graphics circuitry since the 1990s, but it has also inspired many image-space tech-
niques. Image space is a good place to solve many graphics problems because
solving at the resolution of the output avoids excessive computation. In exchange
for a constant memory factor overhead, many algorithms can run in time pro-
portional to the number of pixels and sublinear to, if not independent of, the
scene complexity. That is a very good algorithmic tradeoff. Furthermore, geo-
metric algorithms are susceptible to numerical instability as infinitely thin rays
and planes pass near one another on a computer with finite precision. This makes
rasterization/image-space methods a more robust way of solving many graphics
problems, albeit at the expense of aliasing and quantization in the result.

Inline Exercise 36.2: If there are T triangles in the scene and P pixels in the
image, under what conditions on T and P would you expect image-space meth-
ods to be a good approach to visibility or related problems?

Inline Exercise 36.3: Image-space algorithms seem like a panacea. Describe
a situation in which the discrete nature of image-space data makes it inappro-
priate for solving a problem.

36.3.1 Common Depth Buffer Encodings

Broadly speaking, there are two common choices for encoding depth: hyperbolic
in camera-space z, and linear in camera-space z. Each has several variations for
scaling conventions within the mapping. All have the property that they are mono-
tonic, so the comparison z1 < z2 can be performed as m(z1) < m(z2) (perhaps
with negation) so that the inverse mapping is not necessary to implement correct
visibility determination.

There are many factors to weigh in choosing a depth encoding. The operation
count of encoding and decoding (for depth-based post-processing) may be signif-
icant. The underlying numeric representation, that is, floating point versus fixed
point, affects how the mapping ultimately reduces to numeric precision. The dom-
inant factor is often the relative amount of precision with respect to depth. This is
because the accuracy of the visibility determination provided by a depth buffer is
limited by its precision. If two surfaces are so close that their depths reduce to the
same digital representation, then the depth buffer is unable to distinguish which
is closer to the ray origin or camera. This means that the visibility determina-
tion will be arbitrarily resolved by primitive ordering or by small roundoff errors
in the intersection algorithm. The resultant artifact is the appearance of individ-
ual samples with visibility results inconsistent with their neighbors. This is called
z-fighting. Often z-fighting artifacts reveal the iteration order of the rasterizer or
other intersection algorithm, which tends to cause regular patterns of small bias in
depth. Different mappings and underlying numerical representation for depth vary
the amount of precision throughout the scene. Depending on the kind of scene and
rendering application, it may be desirable to have more precision close to the cam-
era, uniform precision throughout, or possibly even high precision at some specific
depth. Akeley and Su give an extensive and authoritative treatment [AS06] of this
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Figure 36.13: The points in (x, z bufferValue) space that are exactly representable under
fixed-point, reverse-mapped fixed-point, and floating-point schemes. Fixed-point represen-
tations result in wildly varying depth precision with respect to screen-space x (or y).

topic. We summarize the basic ideas of the common mappings here and show Fig-
ures 36.13 and 36.14 by them to give a sense of the impact of representation on
precision throughout the frustum.

Following (arbitrary) OpenGL conventions, for the following definitions let z
be the position on the camera-space z-axis of the point coloring the sample. It is
always a negative value. Let the far and near clipping planes be at zf = −f and
zn = −n.

36.3.1.1 Hyperbolic
The classic graphics choice describes a hyperbolically scaled normalized value
arising from a projection matrix. This is typically called the z-buffer because
it stores the z-component of points after multiplication by an API-specified per-
spective projection matrix and homogeneous division. This representation is also
known as a warped z-buffer because it distorts world-space distances.

The OpenGL convention maps −n to 0, −f to 1, and values in between hyper-
bolically by

z→ f + n
f − n

+
2fn

f − n
1
z

. (36.1)

Direct3D maps to the interval [−1, 1] by

z→ f
n− f

− fn
n− f

1
z

. (36.2)
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Figure 36.14: Comparison of precision versus depth for various z-buffer representations:
24-bit fixed point (green) is obviously strictly more accurate than 16-bit fixed point (blue);
16-bit floating point is more accurate than 16-bit fixed point when far from the camera (on
the right), but has less precision very near to the camera (on the left). The blue and green
curves are lines in log-log space, but would appear as hyperbolas in a linear plot. The
red floating-point line is jagged because floating-point spacing is uniform within a single
exponent and then jumps at the next exponent; the red curve is a smoothed trendline.

These mappings assign relatively more precision close to the near plane
(where z-fighting artifacts may be more visible), have a normalized range that is
appropriate for fixed-point implementation, and are expressible as a matrix multi-
plication followed by a homogeneous division. The amount of precision close to
the near plane is based on the relative distance of the near and far planes from the
center of projection. As the near plane moves closer to the center of projection, all
precision rapidly shifts toward it, giving poor depth resolution deep in the scene.

A complementary or reversed hyperbolic [LJ99] encoding maps the far plane
to the low end of the range and the near plane to the high end. For a fixed-point
representation this is usually undesirable because nearby objects would receive
higher depth representation errors, but under a floating-point representation this
assigns nearly equal accuracy throughout the scene.

Another advantage of the nonlinear depth range is that it is possible to take
the limit of the mapping as f →∞ [Bli93]. This allows a representation of depth
within an infinite frustum using finite precision.

Inline Exercise 36.4: For n = 1m, f = 101m, compute the range of z-values
within the view frustum that map to [0, 0.9] under the OpenGL projection
matrix. Repeat the exercise for n = 0.1m. How would this inform your choice
of near and far plane locations? What is the drawback of pushing the near plane
farther into the scene?
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This was the preferred depth encoding until fairly recently. It was preferred
because it is mathematically elegant and efficient in fixed-function circuitry to
express the entire vertex transformation process as a matrix product. However, the
widespread adoption of programmable vertex transformations and floating-point
buffers in consumer hardware has made other formats viable. This reopened a
classic debate on the ideal depth buffer representation. Of course, the ideal rep-
resentation depends on the application, so while this mapping may no longer be
preferred for some applications, it remains well suited for others. More than stor-
age precision is at stake. For example, algorithms that expect to read world-space
distances from the depth buffer pay some cost to reconstruct those values from
warped ones, and the precision of the world-space value and cost of recovering it
may be significant considerations.

Linear The terms linear z, linear depth, and w-buffer describe a family of
possible values that are all linear in z. The “w” refers to the w-component of a point
after multiplication by a perspective projection matrix but before homogeneous
division.

These representations include the direct z-value for convenience; the positive
“depth” value −z; the normalized value (z + n)/(n − f ) that is 0 at the near
plane and 1 at the far plane; and 1 − (z + n)/(n − f ), which happens to have
nice precision properties in floating-point representation [LJ99]. In fixed point
these give uniform world-space depth precision throughout the camera frustum,
which makes z-fighting consistent in depth and can simplify the process of assign-
ing decal offsets and other “epsilon” values. Linear depth is often conceptually
(and computationally!) easier to work with in pixel shaders that require depth as
an input. Examples include soft particles [Lor07] and screen-space ambient occlu-
sion [SA07].

36.4 List-Priority Algorithms

The list-priority algorithms implicitly resolve visibility by rendering scene ele-
ments in an order where occluded objects have higher priority, and are thus hidden
by overdraw later in the rendering process. These algorithms were an important
part of the development of real-time mesh rendering.

Today list-priority algorithms are employed infrequently because better alter-
natives are available. Spatial data structures can explicitly resolve visibility for
ray casts. For rasterization, the memory for a depth buffer is now fast and inex-
pensive. In that sense, brute force image-space visibility determination has come
to dominate rasterization. But the depth buffer also supports an intelligent algo-
rithmic choice. Early depth tests and early depth rendering passes avoid the inef-
ficiency of overdrawing samples, and today’s renderers spend significantly more
time shading samples than resolving visibility for them because shading models
have grown very sophisticated. So a list-priority visibility algorithm that increases
shading time is making the expensive part of rendering more expensive. Despite
their current limited application, we discuss three list-priority algorithms.

However, the implicit and refreshingly simple approach of implicit visibility
by priority is a counterpoint to the relative complexity of something like hier-
archical occlusion culling. There are also some isolated applications, especially
graphics for nonraster output, where list priority may be the right approach. We
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find that the painter’s algorithm is embedded in most user interface systems, and
is often encountered even in sophisticated 3D renderers for handling issues like
transparency when memory or render time is severely limited.

Figure 36.15: Three convex poly-
gons that cannot be rendered
properly using the painter’s algo-
rithm due to their mutual over-
laps. At each point, a strict depth
ordering exists, but there is no
correct ordering of whole rectan-
gles.

Some list-priority algorithms are heuristics that often generate a correct order-
ing, but fail in some cases. Others produce an exact ordering, which may require
splitting the input primitives to resolve cases such as Figure 36.15. There’s an
important caveat for the algorithms that produce exact results: If we are going to
do the work of subdivision, we can achieve more efficient rendering by simply
culling all occluded portions, rather than just overdrawing them later in render-
ing. This was a popular approach in the 1970s. Area-subdivision algorithms such
as Warnock’s Algorithm [War69] and the Weiler-Atherton Algorithm [WA77]
eliminate culled areas in 2D. There are similar per-scanline 1D algorithms such
as those by Wylie et al. [WREE67], Bouknight [Bou70], Watkins [Wat70], and
Sechrest and Greenberg [SG81] that use an active edge table to maintain the
current-closest polygon along a horizontal line. These were historically extended
to single-line depth buffers [Mye75, Cro84]. The obvious trend ensued, and today
all of these are largely ignored in favor of full-screen depth buffers. This is a cau-
tionary tale for algorithm development in the long run, since the simplicity found
in the depth buffer and painter’s algorithm leads to better performance and more
practical implementation than decades of sophisticated visibility algorithms.

36.4.1 The Painter’s Algorithm

Consider a possible process for an artist painting a landscape. The artist paints
the sky first, and then the mountains occluding the sky. In the foreground, the
artist paints trees over the mountains. This is called the painter’s algorithm in
computer graphics. Occlusion and visibility are achieved by overwriting colors
due to distant points with colors due to nearer points. We can apply this idea
to each sample location because at each sample there is always a correct back-
to-front ordering of the points directly affecting it. In this case, the algorithm is
potentially inefficient because it requires sorting all of the points, but it gives a
correct result.

For efficiency, the painter’s algorithm is frequently applied to whole primi-
tives, such as triangles. Here it fails as an algorithm. While primitives larger than
points can often be ordered so as to give correct visibility, there are situations
where this cannot be done. Figure 36.15 shows three triangles for which there is
no correct back-to-front order. Here the “algorithm” is merely a heuristic, although
it can be an effective one. If we allow subdividing primitives where their projec-
tions cross, then we can achieve an ordering. This is discussed in the following
section.

Despite its inability to generate either correct or conservative results in the
general case, the painter’s algorithm is employed for some niche applications in
computer graphics and is a useful concept in many cases. It is trivially simple,
requires no space, and can operate out of core (provided the sort is implemented
out of core). It is the predominant visibility algorithm in 2D user interfaces and
presentation graphics. In these systems, all objects are modeled as lying in planes
parallel to the image plane. For that special case, the primitives can always be
ordered, and the ordering is trivial to achieve because those planes are typically
parallel to the image plane.
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Primarily-2D rendering systems such as windowed GUIs that also incorporate
occlusion or “stacking” are called 2.5D because they have a depth ordering
(a.k.a. z-order) and overlap even though explicit position in a third dimension
is ambiguous. We’ve argued that this is a reasonable application of the painter’s
algorithm, especially when the primitives obey a strict depth ordering so that
sorting is guaranteed to correctly resolve visibility.

An alternative for occlusion in 2.5D systems is to consider only local solu-
tions and relax the need for a consistent global interpretation of the scene (even
though one may exist). Two examples of this are Live Paint and Local Layer-
ing. Live Paint [ASP07] is a system for editing 2D drawings composed of
curves and flood-fill regions, that is, “presentation vector graphics” such as
those found in Microsoft PowerPoint or created in Adobe Illustrator. Most sys-
tems for such graphics treat the elements as 2.5D filled primitives, with stack-
ing creating the occlusion. Operations for computing intersections, unions, and
subtractions between them allow editing based on occlusion but destroy the
underlying curves in the process. Live Paint instead works with the curves
themselves as a planar graph and attempts to maintain the consistency of the
fill commands through a series of clever methods. This allows for more natural
editing of the image and preserves curves during editing operations.

Local Layering [MP09] is an alternative system for managing discrete,
nonconvex primitives in a 2.5D system. Instead of assigning a strict global
depth ordering, it allows the artist to specify which primitive is closer to the
viewer separately at each intersection. This allows complex overlapping behav-
ior such as braiding different primitives together.

When we render with a depth buffer and an early depth test, it is advantageous
to encounter proximate surfaces before distant ones. Distant surfaces will then
fail the early depth test where they are occluded, and not require shading. A
reverse painter’s algorithm improves efficiency in that case: Render from front to
back. A depth prepass eliminates the need for ordering. During the prepass itself
the ordering provides a speedup. Surprisingly, for many models a static ordering
of primitives can be precomputed that provides a good front-to-back ordering
from any viewpoint [SNB07]. This allows the runtime performance without the
runtime cost.

The painter’s algorithm is often employed for translucency, which can be mod-
eled as fractional visibility values between zero and one, as done in OpenGL
and Direct3D. Compositing translucent surfaces from back to front allows a good
approximation of their fractional occlusion of each other and the background in
many cases. However, stochastic methods yield more robust results for this case
at the expense of noise and a larger memory footprint. See Section 36.9 for a more
complete discussion.

36.4.2 The Depth-Sort Algorithm

Newell et al.’s depth-sort algorithm [NNS72] extends the painter’s algorithm for
polygons to produce correct output in all cases. It operates in four steps.
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1. Assign each polygon a sort key equal to the camera-space z-value of the
vertex farthest from the viewport.

2. Sort all polygons from farthest to nearest according to their keys.

3. Detect cases where two polygons have ambiguous ordering. Subdivide
such polygons until the pieces have an explicit ordering, and place those
in the sort list in the correct priority order.

4. Render all polygons in priority order, from farthest to nearest.

The ordering of two polygons is considered ambiguous under this algorithm
if their z-extents and 2D projections (i.e., their homogeneous clip-space, axis-
aligned bounding boxes) overlap and one polygon intersects the plane of the other.

36.4.3 Clusters and BSP Sort

Consider a scene defined by a set of polygons and a viewer using a pinhole pro-
jection model. Schumacker [SBGS69] noted that a plane passing through the
scene that does not intersect any polygons divides them into two sets. Those poly-
gons on the same side of the plane as the viewer must be strictly closer to the
viewer, and thus cannot be occluded by those polygons on the farther side. He
grouped polygons into clusters, and recursively subdivided them when suitable
partition planes could not be found. Within each cluster he precomputed a viewer-
independent ordering (see later work by Sander et al. [SNB07] on a related prob-
lem), and employed a special-purpose rasterizer that followed these orderings.

Fuchs, Kedem, and Naylor [FKN80] generalized these ideas into the binary
space partition tree. We have already discussed in this chapter how BSP trees
can solve visible surface determination by accelerating ray-primitive intersection.
They can also be applied in the context of a list-priority algorithm, and that was
their original motivating application. (We will shortly see two more applications
of BSP trees to visibility: portals and mirrors, and precomputed visibility.)

The same logic found in the ray-intersection algorithm applies to the list-
priority rendering with a BSP tree; we are conceptually performing ray intersec-
tion on all possible view rays. Listing 36.2 gives an implementation that sorts all
polygons from farthest to nearest, given a previously computed BSP tree. We can
look at this as a variation on the depth-sort algorithm where we are guaranteed to
never encounter the case requiring subdivision. We never need to subdivide during
traversal because the tree’s construction already performed subdivision at partition
planes between nearby polygons.

Listing 36.2: The list-priority algorithm for rendering polygons in a BSP tree
with root node as observed by a viewer at P.

1
2
3
4
5
6
7
8
9

10
11
12
13

function BSPPriorityRender(P, node):
if node is a leaf:

render the polygon at node
return

closer = node.positiveChild
farther = node.negativeChild

if P is in the negative half-space of node:
swap closer, farther

BSPPriorityRender(P, farther)
BSPPriorityRender(P, closer)
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36.5 Frustum Culling and Clipping

Assume that we rely on an exact method like a depth buffer or Newell et al.’s
depth-sort algorithm for correct visibility under rasterization. To avoid writing
to illegal or incorrect memory addresses, assume that we perform 2D scissoring
to the viewport. This just means that the rasterizer may generate (x, y) locations
that are outside the viewport, but we only allow it to write to memory at locations
inside the viewport. We can also scissor in depth: No sample may be written whose
depth indicates that it is behind the camera or past the far plane.

Recall that Chapter 13 showed that a rectangular viewport with near and far
planes parallel to the image plane defines a volume of 3D space called the view
frustum. This is a pyramid with a rectangular base and the top cut off. Clipping
to the sides of the view frustum in 3D corresponds to clipping the projection of
primitives to the viewport, and produces equivalent results to simply scissoring
in 2D.

Scissoring alone ensures correctness, but it may lead to poor efficiency. For
example, most primitives that are rasterized may fail the scissor test. There are
three common approaches to increasing efficiency in this case that are related to
the view frustum.

• Frustum culling: Eliminate polygons that are entirely outside the frustum,
for efficiency.

• Near-plane clipping: Clip polygons against the near plane to enable sim-
pler rasterization algorithms and avoid spending work on samples that fail
depth scissoring.

• Whole-frustum clipping: Clip polygons to the side and far planes, for
efficiency.

In general, it is a good strategy to use scissoring and clipping to complement
each other. Use each only for the case where it has high efficiency and low imple-
mentation complexity. For example, use a coarse culling based on the view frus-
tum followed by clipping to the near plane and scissoring in 2D. For primitives
whose projections are small compared to the viewport, this leads to the scissor
test usually passing, which means that most parts of most rasterized primitives for
which significant computation is performed are usually on the screen.

36.5.1 Frustum Culling

Eliminating polygons outside the view frustum is simple. One 3D algorithm for
this tests each vertex of a polygon against each plane bounding the view frustum.
Assume that the planes are oriented so that the view frustum is the intersection of
the six positive half-spaces. If there exists some plane for which all vertices of a
polygon are in the negative half-space, then that polygon must lie entirely outside
the view frustum and can be culled. For small polygons, it may not be efficient to
perform this test on each polygon. For example, if a polygon affects at most one
sample, then a 3D bounding box test on a single point yields the same result. So
frustum culling may be performed on a bounding box hierarchy.

A drawback of the 3D frustum culling algorithm just described is that it may
be too conservative. Polygons that are outside the view frustum but near a corner
or edge may intersect multiple planes.
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36.5.2 Clipping

36.5.2.1 Sutherland-Hodgman 2D Clipping
There are many clipping algorithms. Perhaps the simplest is the 2D variation of
Sutherland’s and Hodgman’s [SH74] algorithm. It clips one (arbitrary) source
polygon against a second, convex boundary polygon (see Figure 36.16). The
algorithm proceeds by incrementally clipping the source against the line through
each edge of the boundary polygon, as shown in Listing 36.3.

Inline Exercise 36.5: Construct an example input polygon which, when
clipped against the unit square by the Sutherland-Hodgman algorithm, pro-
duces a polygon with degenerate edges (i.e., edges that meet at a vertex v with
an exterior angle of 180◦).

Figure 36.16: The red input poly-
gon is clipped against the con-
vex blue boundary polygon; the
result is the boundary of the yel-
low shaded area.

For viewport clipping, Sutherland-Hodgman is applied to a projected polygon
and the rectangle of the viewport. For projected polygons that have significant area
outside the viewport, clipping to the viewport is an efficient alternative to scissor-
testing each sampled point. The algorithm is further useful as a general geometric
operation in many contexts, including modeling shapes in the first place.

Listing 36.3: Pseudocode for Sutherland-Hodgman clipping in 2D.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

// The arrays are the vertices of the polygons.
// boundaryPoly must be convex.
function polyClip(Point sourcePoly[], Point boundaryPoly[]):

for each edge (A, B) in boundaryPoly:
sourcePoly = clip(sourcePoly, A, Vector(A.y-B.y, B.x-A.x))

return sourcePoly

// True if vertex V is on the "inside" of the line through P
// with normal n. The definition of inside depends on the
// direction of the y-axes and whether the winding rule is
// clockwise or counter-clockwise.
function inside(Point V, Point P, Vector n):

return (V - P).dot(n) > 0

// Intersection of edge CD with the line through P with normal n
function intersection(Point C, Point D, Point P, Vector n):

distance = (C - P).dot(n) / n.length()
t = (D - C).length()
return D * t + C * (1 - t)

// Clip polygon sourcePoly against the line through P with normal n
function clip(Point sourcePoly[], Point P, Vector n):

Point result[];

// Add the last point, if it is inside
D = sourcePoly[sourcePoly.length - 1]
Din = inside(D, P, n)
if (Din): result.append(D)

for (i = 0; i < sourcePoly.length; ++i) :
C = D, Cin = Din

D = sourcePoly[i]
Din = inside(D, P, n)
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36
37
38
39
40
41

if (Din != Cin): // Crossed the line
result.append(intersection(C, D, P, n))

if (Din): result.append(D)

return result

The algorithm produces some degenerate edges, which don’t matter for poly-
gon rasterization but can cause problems when we apply the same ideas in other
contexts.

36.5.2.2 Near-Plane Clipping
The 2D Sutherland-Hodgman algorithm generalizes to higher dimensions. To clip
a polygon to a plane, we walk the edges finding intersections with the plane. We
can do this for the whole view frustum, processing one plane at a time. Consider
just the step of clipping to the near plane for now, however.

In camera space, the intersections between polygon edges and the near plane
are easy to find because the near plane has a simple equation: z = −n. In fact,
this is exactly the same problem as clipping a polygon by a line, since we can
project the problem orthogonally into either the xz- or yz-plane. We interpolate
vertex attributes that vary linearly across the polygon linearly to the new vertices
introduced by clipping, as if they were additional spatial dimensions. Listing 36.4
gives the details in pseudocode for clipping a polygon specified by its vertex list
against the plane z = zn, where zn < 0.

Listing 36.4: Clipping of the polygon represented by the vertex array
against the near plane z = zn.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

function clipPolygon(inVertices, zn):
outVertices = []
Let start = inputVertices.last();
for end in inputVertices:

if end.z <= zn:
if start.z > zn:

// We crossed into the frustum
outVertices.append( clipLine(start, end, zn) )

// the endpoint of this edge is in the frustum
outVertices.append( end )

elif start.z <= zn:
// We crossed out of the frustum
outVertices.append( clipLine(start, end, zn) )

start = end

return outVertices

function clipLine(start, end, zn):
a = (zn - start.z) / (end.z - start.z)
// This holds for any vertex properties that we
// wish to linearly interpolate, not just position
return start * a + end * (1 - a)
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36.5.3 Clipping to the Whole Frustum

Having clipped against the near plane, we are guaranteed that for every vertex
in the polygon z < 0. This means that we can project the polygon into homo-
geneous clip space, mapping the frustum to a cube through perspective projection
as described in Chapter 13.

We could continue with Sutherland-Hodgman clipping for the other frustum
planes in 3D before projection. However, the side planes are not orthogonal to
an axis the way that the near plane is, so clipping to those planes takes more
operations per vertex. In comparison, after perspective projection every frustum
plane is orthogonal to some axis, so clipping is just as efficient for a side plane as
it was for the near plane. That is, clipping is again a 2D operation. Clipping to the
far plane can be performed either before or after projection.

When clipping in Cartesian 3D space against the near plane, we were able to
linearly interpolate per-vertex attributes such as texture coordinates. In homoge-
neous clip space, those attributes do not vary linearly along an edge, so we cannot
directly linearly interpolate. However, the relationship is nearly as simple.

In practice, we don’t need all of those operations for each edge clipping oper-
ation. Instead, we can project every attribute by u′ = −u/z when projecting posi-
tion. Then we can perform all clipping on the u′ attributes as if they were linear
and all operations were 2D. Recall that rasterization needs to interpolate attributes
in a perspective-correct fashion, so it operates on the u′ attributes along a scan
line anyway (see The Depth Buffer). Only at the per-sample “shading” step do we
return to the original attribute space, by computing u = −u′z with the hyperbol-
ically interpolated z-value. Thus, in practice, the clipping (and rasterization) cost
for 3D attributes is the same as for 2D attributes, and all of the 2D optimization
techniques such as finite differences can be applied to the u′-values.

36.6 Backface Culling

The back of an opaque, solid object is necessarily hidden from direct line of sight
from an observer. The object itself occludes the view rays. Culling primitives that
lie on the backs of objects can therefore conservatively eliminate about half of
the scene geometry. As pointed out previously, backface culling is a good opti-
mization when computing the visibility function, but not for the entire render-
ing pipeline. When we consider the entire rendering pipeline, the image may be
affected by points not directly visible to the camera, such as objects seen by their
reflections in mirrors and shadows cast by objects outside the field of view. So,
while backface culling is one of the first tools that we reach for when optimiz-
ing visibility, it is important to apply it at the correct level. One can occasionally
glimpse errors arising from programs culling at the wrong stage, such as shadows
disappearing when their caster is not in view.

Although backface culling could be applied to parametric curved surfaces, it
is typically performed on polygons. That is because a test at a single point on the
polygon indicates whether the entire polygon lies on the front or back of an object,
so it is very efficient to test polygons. A curve may require tests at multiple points
or an analytic test over the entire surface to make the same determination.

We intuitively recognize the back of an object—it is what we can’t see!—but
how can we distinguish it geometrically? Consider a closed polygonal mesh with
no self-intersections, and an observer at point Q that lies outside the polyhedron
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defined by the mesh. Let P be the vertex of a polygon and n̂ be the normal to the
polygon (specifically, the true geometric normal to the polygon, not some implied
surface normal at the vertex to be used in smooth shading). The polygon defines
a plane that passes through P and has normal n̂. We say that the polygon is a
frontface with respect to Q if Q lies in the positive half-plane of the polygon and
that the polygon is a backface if Q lies in the negative half-plane. If Q lies exactly
in the plane, then the polygon lies on the contour curve dividing the front and
back of the object.

(Q− P) · n̂ > 0 : Polygon is a frontface (36.3)

(Q− P) · n̂ < 0 : Polygon is a backface (36.4)

(Q− P) · n̂ = 0 : Polygon is on the contour (36.5)

The result will be the same for the polygon regardless of which vertex we
choose for a polygon, and regardless of the field of view of the camera. How-
ever, Figure 36.17 shows that an object close to the camera tends to have more
backfaces than the same object far from the camera, and that this is a general
phenomenon, at least for convex objects.

Inline Exercise 36.6: Prove that for a triangle and a viewer, the backface clas-
sification is independent of which vertex we consider.

Most ray tracers and rasterizers perform backface culling on whole triangles
before progressing to per-sample intersection tests. This is a more effective strat-
egy for rasterizers because they can amortize the backface test (and the corre-
sponding cost of reading the triangle into memory) over the whole triangle. A ray
tracer generally must perform the test once per sample.

Backface culling assumes opaque, solid objects. If the ray starting point Q
(e.g., the viewpoint for a primary ray) is inside the volume bounded by a mesh,
then it is not conservative to cull backfaces. It also isn’t obvious what the result

Figure 36.17: Two cameras facing to the right, toward spheres. The long lines depict the
rays from the center of projection to the silhouette of the sphere, which is where the backfac-
ing and frontfacing surfaces meet. The top camera is near a sphere, so most of the sphere’s
surface is backfacing. The bottom camera is distant from its sphere, so only about half of
the sphere’s surface is backfacing.
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of visibility determination should be in such a situation because it does not corre-
spond to a physically plausible scene. If an object is composed of a material that
transmits light, then a geometric “visibility” test does not correspond to a light
transport visibility test.

If we abuse geometric visibility in this case and apply backface culling, the
back surface will disappear. In practice one can model a transmissive object with
coincident and oppositely oriented surfaces. For example, a glass ball consists of
a spherical air-glass interface oriented outward from the center of the ball and a
glass-air interface oriented inward. Backface culling remains conservative under
this model. Along a path that does not experience total internal refraction, light
originating outside the ball first interacts with an air-glass frontface to enter the
ball and then with a glass-air frontface to exit again, as shown in Figure 36.18.

Air AirGlass

Air-glass
interface

Glass-air
interface

Figure 36.18: Backface culling
allows a ray to intersect the cor-
rect one of the two coincident air-
glass and glass-air interfaces of a
glass ball surrounded by air.

36.7 Hierarchical Occlusion Culling

If no part of a box is visible from a point Q that is outside of the box, and if the
box is replaced with some new object that fits inside it, then no part of that object
can possibly be visible either. This observation holds for any shape, not just a box.
This is the key idea of occlusion culling. It seeks to conservatively identify that
a complex object is not visible by proving that a geometrically simpler bounding
volume around the object is also not visible. It is an excellent strategy for efficient
conservative visibility determination on dynamic scenes.

How much simpler should the bounding volume be? If it is too simple, then
it may be much larger than the original object and will generate too many false-
positive results (i.e., the bounding volume will often be visible even when the
actual object is not). If it is too complex, then we gain little net efficiency even
if it is a good predictor. The natural solution is to divide and conquer. Create a
Bounding Volume Hierarchy (BVH; see Chapter 37) and walk its tree. If a node
is not visible, then all of its children must not be visible. This is one form of
hierarchical occlusion culling.

A ray tracer with a hierarchical spatial data structure effectively performs
occlusion culling, although the term is not typically applied to that case. For
example, a ray cast through a BVH corresponds exactly to the algorithm from
the previous paragraph.

For rasterization, occlusion culling is only useful if we can test visibility for
the bounding volumes substantially faster than we can for the primitives them-
selves. There are two implementation strategies, commonly built directly into ras-
terization hardware, that support this.

The first is a special rasterization operation called an occlusion query [Sek04]
that invokes no shading or changes to the depth buffer. Its only output is a count
of the number of samples that would have passed the depth buffer visibility test.
It can be substantially faster than full rasterization because it requires no output
bandwidth to the framebuffer and no synchronous access to the depth buffer for
updates, interpolates no attributes except depth, and launches no shading opera-
tions. Chapter 38 shows that those are often the expensive operations in rasteriza-
tion, so eliminating them decreases the cost of rasterization substantially.

Occlusion culling with an occlusion query issues several queries asyn-
chronously from the main rendering thread. When the result of a query is avail-
able, it then renders the corresponding object if and only if one or more pixels
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passed the occlusion query. This is made hierarchical by recursively considering
bounds on smaller parts of the scene when a visible bound is observed.

The second strategy for efficient hardware occlusion culling is the hierarchi-
cal depth buffer, a.k.a. hierarchical z-buffer [GKM93]. This is an image pyra-
mid similar to a MIP map in depth. Level zero of the tree is the full-resolution
depth buffer. Every subsequent level has half the resolution of its parent level.
A sample in level k + 1 of the hierarchical depth buffer stores two values: the
minimum and maximum depths of four corresponding samples from level k. A
hierarchical rasterizer [GKM93, Gre96] working with such a structure solves for
minimum (or maximum, depending on the desired depth test) depth of a primitive
within the area surrounding each of the depth samples at the lowest resolution.
If the primitive’s minimum depth is smaller (i.e., closer to the camera) than the
maximum depth at a sample, then some part of that primitive may be visible at the
highest resolution, so the rasterizer progresses to the next level for that sample. If
the primitive’s minimum depth is greater than or equal to the maximum depth at a
depth buffer sample, then even the farthest point in the subtree represented by that
sample is still closer to the camera than the closest point on the primitive and the
primitive must be occluded at all resolutions represented.

A hierarchical depth buffer is naturally most efficient for large primitives.
This is because because when parts of a large primitive are conservatively clas-
sified as invisible near the top of the tree, many high-resolution visibility tests
are eliminated. Small primitives force the rasterizer to begin tests deeper in the
tree where the potential cost savings are smaller. Because hierarchical occlusion
queries on BVHs tend to bound meshes of small primitives with a few large ones,
they benefit from both the occlusion query and the improved hierarchical depth
buffer efficiency. Thus, the “hierarchical” in hierarchical occlusion query often
refers to both the image-space depth buffer tree and the geometric bounding vol-
ume tree.

36.8 Sector-based Conservative Visibility

In this section we explore alternative uses of the spatial partitioning created by
the partition operations that occur when building a BSP tree. These techniques,
especially stabbing trees, were critical for real-time rendering of indoor environ-
ments from the early 1990s through the 2000s. They contain some beautiful com-
puter science and geometric ideas. However, at the time of this writing they are
passing out of favor because hierarchical occlusion culling allows more flexibil-
ity for managing dynamic and arbitrarily shaped environments. Although these
algorithms can be applied for explicit point-to-point visibility tests, they are typ-
ically used to generate a potentially visible set (PVS) of primitives for a given
viewpoint.

Recall that the leaves of a BSP tree are polygons that have been repeatedly
clipped against planes, at least for the version that we have discussed in this chap-
ter. If we assume that the original polygons, before all of the subdivision, were
convex and planar, then the leaves must also be convex and planar.

Any point in space can be classified by some path through the tree, correspond-
ing to whether it is in the positive or negative half-space of each node’s splitting
plane. That series of planes carves space into a convex polyhedron that contains
the point. The space inside this polyhedron is called a sector. The polyhedron may
have infinite volume if the point is near the edge of the scene.
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Some of the faces of a sector correspond to leaves in the BSP tree. These poly-
gons block visibility. Others are empty space. Those are called portals because
they are windows to adjacent sectors. A convex space has a nice visibility prop-
erty: All points within the space are visible to all other points. (For a pinhole
camera, one may choose to then restrict that visibility by the field of view to the
image frame.) From any point in a sector, one can look through any portal into
any adjacent sector. However, in doing so, our visibility within the adjacent sec-
tor is restricted to a frustum that is the extrusion of the portal’s boundary away
from the viewer. If we look straight through a sector into another sector through a
second portal, visibility becomes restricted by the intersection of the two portals’
extrusions. After many portals, this frustum can become small; if one portal lies
outside the frustum of another, the intersection of their frusta is empty. Most of
these key observations are due to Jones [Jon71] and form a family of visibility
determination algorithms.

Consider the graph in which sectors are nodes and portals are edges. A point
is visible to another point only if it is reachable in this graph. Furthermore, we
can detect cases where the specific geometry of adjacent sectors prevents looking
straight through more than two portals. For example, in a grid of nonrefractive
and nonreflective windows, we can look through a window to our north into an
adjacent sector and then through its east window into another one; but we cannot
look through that sector’s south window because that would require bending a
viewing ray into an arc. This corresponds to the case of the third sector’s south
window lying entirely outside the intersection for the frusta of the first two.

For an interesting scene there might be a tremendous number of sectors, so
following the graph line of thinking might be inefficient. But if we exclude small
objects such as furniture from the sector-building algorithm and only consider
large objects such as walls when building sectors and portals, we may find a rel-
atively small number of sectors [Air90]. Any approach to visibility computation
that ignores the so-called small detail objects only provides conservative visibil-
ity, and must be succeeded by another algorithm for correctness—the depth buffer
is a common choice here.

Explicitly, V(P, Q) must be zero if no part of the sector containing point P is
visible to the sector containing Q. Given some algorithm for determining sector-
to-sector visibility, we can then conservatively approximate point and primitive
visibility. Airey [Air90] pioneered a number of sector-to-sector visibility algo-
rithms including ray casting and shadow volumes. The methods that he described
are all correct with high probability for large numbers of samples, but are not all
conservative; thus, the net visibility computation is not conservative under those
approaches.

36.8.1 Stabbing Trees

Teller [Tel92] devised a closed-form, conservative, analytic algorithm for conser-
vative visibility between sectors. His algorithm computes a BSP tree on n poly-
gons in O(n2) operations to form the sectors. It then computes all possible straight-
line stabbing line traversals through the sector adjacency graph until occlusion in
worst-case O(n3) time, using a linear programming optimization framework. The
full set of traversals from one sector is called a stabbing tree. In practice, the
O(n3) asymptotic bound is misleading. There are many trivial rejection cases,
such as when a portal is a backface to the viewer, and the constant factors are
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fairly small. Teller observed O(n) behavior in practice on complex indoor models.
Nonetheless, the latter step must be performed for each pair of sectors, so the
entire algorithm is slow enough to be an offline process that may take minutes or
hours. When the algorithm terminates, each sector is annotated with a list of all
other sectors that are conservatively visible to it.

At runtime in Teller’s framework, a point in space is associated with a sec-
tor by walking the original BSP tree in typically O(log n) time. That sector then
provides its list of all potentially visible sectors, which quickly culls most of the
scene geometry. Individual point-to-point visibility tests by ray casting can then be
performed for explicit visibility tests. Alternatively, all polygons (including detail
objects) in the potentially visible sectors can be rasterized with a depth buffer
for implicit visibility during rendering. The latter approach was introduced in the
Quake video game in 1996 and quickly spread throughout the game industry.

36.8.2 Portals and Mirrors

Teller’s stabbing trees require a long precomputation step that precludes their
application to scenes with dynamic (nondetail) geometry. The Portals and Mir-
rors algorithm [LG95] is an alternative. It is simpler to implement and extends to
both dynamic scenes and a notion of indirect visibility through mirrors. It revis-
its the frustum created when looking through a portal, but in the absence of the
BSP tree and in the case where sectors may be nonconvex. That allows the sector
geometry to change at runtime. The idea of the algorithm is to recursively trace
the view frustum through portals, clipping it to each portal traversed. Figure 36.19
shows two visualizations of the algorithm. The first image is the camera’s view,
with clipping regions at portals and mirrors highlighted. The second image is a top
view of the scene, showing how the frustum shrinks as it passes through successive
portals and reflects when it hits a mirror.

Let the scene be represented as the sector polyhedra, the adjacency infor-
mation between them, and the detail objects. Assume that at the beginning of
an interactive sequence we know which sector contains the viewer, and that the
viewer must move continuously through space (i.e., no teleportation!). Whenever
the viewer moves through a portal, update the viewer state to retain a pointer to
the sector that now contains the center of projection by following the adjacency
information associated with that portal. This allows identifying the viewer’s sector
in O(1) time during any frame.

To render a frame, let clipPoly initially be the screen-space rectangle
bounding the viewport and sector be the viewer’s current sector. Invoke the
portalRender(sector, clipPoly) function from Listing 36.5. It will recursively
render objects seen through portals, recursing when there are no new portals that
can be seen. The intersect routine is simply 2D convex polygon-polygon inter-
section, which can be performed using the Sutherland-Hodgman algorithm.

For a scene in which the sectors are convex and there is no detail geometry, this
algorithm provides exact visibility—no depth buffer is needed. A strength of the
method is that if we do use a depth buffer, not only can it accommodate noncon-
vex portals and detail geometry, but also the general 2D clipping can be replaced
with conservative rectangle clipping on the bounding box of projPoly. This may
trigger a few extra recursive calls, but it dramatically simplifies the clipping/
intersection process because we need only work with screen-space, axis-aligned
rectangles.
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Figure 36.19: (Top) View inside Fred Brooks’ bedroom. There are two open doors and
a mirror between them. The resultant portals are outlined in white and the mirrors are
outlined in red. (Bottom) Schematic of visible regions for the observer from the top image.
Note how the sight lines to the mirror give rise to a reflected visibility frustum that passes
behind the viewer. (Courtesy of David Luebke ©1995 ACM, Inc. Reprinted by permission.)

The extension to mirrors is conceptually straightforward. We can model a mir-
ror as a portal to a virtual world that resembles the real world but is flipped left-to-
right. To implement this, augment portalRender to track whether the viewpoint
has been reflected through an even or odd number of mirrors, and reflect the viewer
through the plane of the mirror. Two complications of the mirrors are that they
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Listing 36.5: Portal portion of the Portals and Mirrors algorithm.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

function portalRender(sector, clipPoly):
render all detail objects in sector

for each face F in sector:
if F is not a backface:

if F is a portal:
// Limit visibility by the bounds of the portal
projPoly = project( clipToNearPlane(F.polygon) )
newClip = intersect( projPoly, clipPoly )

if newClip is not empty:
portalRender( F.nextSector, newClip )

else:
// F is an opaque wall
render F.polygon

must lie on the faces of a sector (i.e., they cannot be detail polygons) and that for
a nonconvex sector, care must be taken not to reflect geometry that is behind the
mirror in front of it in the virtual world. That is, the virtual world seen through
the mirror must be clipped against the plane of the mirror, until the next mirror is
encountered. The issues that arise in this case are analogous to those for stencil-
masked mirrors; see Kilgard’s technical report [Kil99] for an explanation of how
to perform the clipping and reflect the projection matrix.

36.9 Partial Coverage

There are several situations in which it is useful to extend binary visibility, also
known as binary coverage, to partial coverage values on the interval [0, 1]. Many
of these relate to the imaging model.

Consider the imaging model under which we defined binary coverage. For a
pinhole camera with an instantaneous shutter there is a single ray that can transport
light to each point on the image plane. The scene does not move relative to the
camera because the exposure time is zero. At a single point Q on the image plane
we can thus directly apply the binary visibility function to a point P in the scene.

Now consider a physically based lens camera model that has a nonzero shut-
ter time and pixels of nonzero area. The radiant energy measured by a pixel in
an image is an integral of the incident radiance function over the area of the
pixel, solid angle subtended by the aperture, and exposure time. This creates a
set of five parameters, sometimes labeled (x, y, u, v, t), that identify the path from
a point Q′(x, y, u, v, t) on the image plane through the lens to a point P′(t) in the
scene. We introduce the primes to distinguish these from the points with which
we have previously been concerned.

The binary visibility function between points on P′ and Q′ may vary with the
parameters. The partial coverage (a.k.a. coverage) of points in the set P′(t) from
points in the set Q′(x, y, u, v, t) is the integral of the binary visibility function over
all parameter variations within the domain of those sets. As the area-weighted
average of binary visibility, partial coverage values are necessarily on the range
[0, 1]. To extend the definition to whole surfaces, we can consider points on a
surface P′(i, j, t) parameterized by both surface location (i, j) and time t.



ptg11539634

36.9 Partial Coverage 1055

36.9.1 Spatial Antialiasing (xy)

Visibility under instantaneous pinhole projection, and thus coverage as well,
between points P and Q is a binary value. However, coverage between a set of
points in the scene and a set of points on the image plane can be fractional, since
those sets give rise to many possible rays that may have different binary visibility
results.

Of particular interest is the case where the region in the scene is a surface
defined by values of the function P′(i, j, t)—a moving patch—and the region on
the image plane is a pixel. For simplicity in definitions, assume the surface is a
convex polygon so that it cannot occlude itself. We say that a surface defined by
P′(i, j, t) fully covers the pixel when the binary visibility function to all points of
the form Q(x, y, u, v, t) is 1 for all parameters. We say that the surface partially
covers the pixel if the integral of the binary visibility function over the parameter
space is less than 1.

Aliasing is, broadly speaking, caused by trying to store too many values in too
few slots (see Figure 36.21 and Chapter 18). As in a game of musical chairs, some
values cannot be stored. Aliasing arises in imaging when we try to represent all
of the light from the scene that passes through a pixel using a single sample point
(e.g., the one in the center). In this case, a single, binary visibility value represents
the visibility of the whole portion of the surface that projects within the pixel area.
The single sample covers infinitesimal area. Over that area, the binary visibility
result is in fact accurate. But the pixel’s area2 is much larger, so the binary result is
insufficient to represent the true coverage—there may be only fractional coverage.
Rounding that fractional coverage to 0 or 1 creates inaccuracies that often appear
in the form of a blocky image. Introducing a better approximation of partial cov-
erage that considers multiple light paths can reduce the impact of this artifact.
The process of considering more paths (or equivalently, samples) is thus called
antialiasing.

Ideally, we’d integrate the incident radiance function over the entire pixel area,
or perhaps the support of a sensor-response function, which may be larger than a
pixel. For now, let’s assume that pixels respond only to light rays that pass through
their bounds and have uniform response regardless of where within the pixel we
sample the light.

Some definitions will maintain precise languages when we distinguish
between the value of a pixel and a value at a point within the pixel. Figure 36.20
shows a single primitive (a triangle) overlaid on a pixel grid. A fragment is the
part of a pixel that lies within a given pixel. Each pixel contains one or more
samples, which correspond to primary rays. To produce an image, we need to
compute a color for each pixel. This color is computed from values at each sam-
ple. The samples, however, need not be computed independently. For example,
all of the samples in the central pixel are completely covered by one fragment,
so perhaps we could compute a single value and apply it to all of them. We refer
to the process of computing a value for one or more samples as shading, to distin-
guish it from computing coverage, that is, which samples are covered by a frag-
ment. Although our discussion has been couched in the language of physically
based rendering, “shading” applies equally well to arbitrary color computations
(e.g., for text or expressive rendering).

2. More precisely: the support of the measurement or response function for the pixel.
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Figure 36.20: A pixel is a rectangular region of the framebuffer. A primitive is the geometric
shape to be rendered, such as a triangle. A fragment is the portion of a primitive that lies
within a pixel. A sample is a point within a pixel. Coverage and shading are computed at
samples (although possibly not at the same samples). The color of a pixel is determined by
a resolve operation that filters nearby samples, for example, averaging all sample values
within a pixel.

The easiest way to convert a renderer built for one sample per pixel to approx-
imate the integral of incident radiance across its area is to numerically integrate
by taking many samples. This is the strategy employed by many algorithms.

Supersampled antialiasing (SSAA) computes binary visibility for each sam-
ple. Those samples at which visibility is one for a given fragment are then shaded
independently. A single fragment may produce a different shade at each sample
within a pixel. The final supersampled framebuffer is resolved to a one-value-per-
pixel image by averaging all samples that lie within each pixel.

Figure 36.21: The triangle has
binary visibility 1 on the pix-
els marked with solid blue and
0 on the pixels that are white.
A binary value cannot accurately
represent the triangle’s visibility
on the pixels along the triangle’s
slanted sides that are marked in
light green. Attempting to com-
pute binary visibility at those pix-
els necessarily produces aliasing.

There are several advantages to SSAA. Increasing the sample count auto-
matically increases the sampling of geometry, materials, lighting, and any other
inputs to the shading computation. This aliasing arising from many sources can
be addressed using a single algorithm. Implementing SSAA is very simple, and
using it is intuitive and yields predictable results. One way to implement SSAA on
a renderer that does not natively support it is to use an accumulation buffer. The
accumulation buffer allows rendering in multiple one-sample-per-pixel passes and
averaging the results of all passes. If each pass is rendered with a different subpixel
offset, the net result is identical to that created using multiple samples within each
pixel. The accumulation buffer implementation reduces the peak memory require-
ment of the framebuffer but increases the cost of transforming and rasterizing
geometry.

The primary drawback of SSAA is that computing N samples per pixel is typi-
cally N times more expensive than computing a single sample per pixel, yet it may
be unnecessary. In many situations, the shading result arising from illumination
and materials either varies more slowly across a primitive than between primitives,
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or is at least amenable to filtering strategies such as MIP mapping so that it can be
band-limited. This means that all of the samples within a pixel that are shaded by a
single fragment are likely to have similar values. When this is the case, computing
shading at each sample independently is inefficient.

The A-buffer [Car84] separates the coverage computation from the shading
computation to address the overshading problem of SSAA. An A-buffer renderer
computes coverage at each sample for a fragment. If at least one sample is covered,
it appends the fragment to a list of fragments within that pixel. If that fragment
completely occludes some fragment that was previously in the list, the occluded
fragment is removed. When all primitives have been rasterized, shading proceeds
on the fragments that remain within each pixel. The renderer computes a single
shade per fragment and applies it to the covered and unoccluded samples within
the pixel. This allows more accurate measurement of coverage due to geometric
variation than shading. Because coverage is a simple and fixed computation, it
can be computed far more efficiently than shading in general, and MSAA (cov-
ered shortly) enjoys the advantage that there is minimal overhead in increasing
the number of samples per pixel. Thus, N samples may cost nearly the same as
1 sample.

The A-buffer can also be used to composite translucent fragments in back-to-
front order. In this case, a fragment is not considered occluded if the occluding
fragment is translucent. Fragments are sorted before shading and composit-
ing. The drawback of the A-buffer is that the implementation requires variable
space and significant logic within the coverage and rasterization process for
updating the state. As a result, it is commonly used for offline software ren-
dering. However, variations on the A-buffer that bound the storage space have
recently been demonstrated to yield sufficiently good results for production
use [MB07, SML11, You10]. These simply replace existing values when the maxi-
mum per-pixel sample list length is exceeded. A more sophisticated approach is to
store some higher-order curve within a pixel that approximates all coverage and
depth samples that have been observed. This approach has predominantly been
applied to volumes of relatively homogeneous, translucent material, like smoke
and hair [LV00, JB10].

Multisample antialiasing (MSAA) is similar to the A-buffer, but it applies a
depth test and shades immediately after per-sample coverage computation to avoid
managing per-pixel lists. This limits its application to spatial antialiasing, although
stochastic approaches can extend temporal (motion blur), translucent, and lens
(depth-of-field) sampling into the spatial domain [MESL10, ESSL10].

For each fragment, MSAA computes a coverage mask representing the binary
visibility at each sample. In the most common application this is done by ras-
terizing and applying a depth buffer test with more samples than color pixels. If
any sample was visible, an MSAA renderer then computes a single shading value
for the entire pixel. The location of this shading sample varies between imple-
mentations; some choose the sample closest to the center of the pixel (regardless
of whether it was visible!), and others choose the first visible sample. This single
shading value is then used to approximate the shading at every sample in the pixel.

MSAA has several drawbacks. The first is that the shading computation must
estimate the average value of the shade across the pixel rather than at a single
point. In other words, MSAA leaves the problem of aliasing due to variation in
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the shading function to the shader programmer—it only reduces aliasing due to
geometric edges. For a shader that computes the color of a flat, matte surface
with uniform appearance, this is a good approximation. In contrast, a shader that
samples specular reflections off of a bumpy surface may exhibit significant under-
sampling because the shading function rapidly varies in space.

The second problem is that MSAA requires storage for a separate shade at
each pixel. Thus, it has the same memory bandwidth and space cost as SSAA,
even though it often reduces computation substantially.

Third, MSAA works best for primitives that are substantially larger than a
pixel, and for pixels with many samples. If a mesh is tessellated so that each
primitive covers only a small number of samples, then many shading computations
are still needed.

Fourth and finally, MSAA does not work with the shading step of deferred
shading algorithms. Deferred shading separates visible surface determination
from shading. It operates in two passes. The first pass computes the inputs to
the shading function at each sample and stores them in a buffer. The second pass
iterates over each sample, reads the input values, and computes a shading value for
the sample. When there are more samples than pixels, a final “resolve” operation is
needed to filter and downsample the results to screen resolution. MSAA depends
on amortizing a single shading computation over multiple samples. Under forward
shading, that is possible because the coverage information for a single fragment
is in memory at the same time that shading is being computed. Because deferred
shading resolves coverage for all fragments before any shading occurs, the infor-
mation about which samples within a pixel corresponded to the same fragment has
been lost at shading time. Thus, one is faced with the two undesirable options of
rediscovering which samples can share a shading result or of shading all samples
by brute force.

Shading caches and decoupled shading [SaLY+08, RKLC+11, LD12] are
methods currently under active research for adding a layer of indirection to capture
the relationship between shading and coverage samples under a bounded memory
footprint. The goal of this line of research is to combine the advantages of MSAA
and deferred shading without necessarily creating an algorithmic framework that
resembles either.

Coverage sampling antialiasing (CSAA) [You06] combines the strengths of
the A-buffer and MSAA. It separates the resolution of coverage from both the
resolution of shading and the resolution of the depth buffer. The key idea is that
within each pixel there is a large set of high-resolution samples, but those sam-
ples are pointers to a small set of unique color (and depth, and stencil, etc.) val-
ues rather than explicit color values. For example, Figure 36.22 shows 16 sample
locations within a pixel that reference into a table of four potentially unique color
values.

CSAA allows a more accurate estimate of the area of the fragment within
the pixel than the estimate of the occlusion of a fragment by other fragments.
As each fragment is rasterized, CSAA computes a single shade per pixel, many
binary visibility samples ignoring occlusion, and a few binary visibility samples
taking occlusion into account. A small, fixed number of slots (usually four) are
maintained within each pixel that are similar to entries in an A-buffer’s list. Each
slot stores the high-resolution coverage mask, shade value, and depth (and sten-
cil) sample for a single fragment. Fragments are retained while there are some
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Figure 36.22: Depiction of the storage allocated for a single pixel under 16x
CSAA [You06]. The large box on the left depicts the coverage samples. Each color sam-
ple contains a 2-bit integer that indexes into the four slots in the color table depicted by
the smaller box on the right. When a fifth unique color is required, one of the four color
samples is replaced. Thus, CSAA is heuristic and cannot guarantee correctness when many
different surfaces color a pixel. (Courtesy of NVIDIA)

high-resolution coverage samples unique to them, and while there are available
slots. When all of the slots are filled, some fragments are replaced. Thus, a pixel
with 16 coverage samples and four slots may be forced to drop up to 12 fragments
that actually should affect the pixel value. However, for primitives of screen-space
area greater than one pixel it is often the case that only a few fragments will have
nonzero coverage at a pixel. So, although CSAA is lossy, it often succeeds at rep-
resenting fine-grained coverage using less storage than MSAA and the A-buffer,
and with a low shading rate.

Analytic coverage historically predates CSAA, but can be thought of today as
the limit of the CSAA process. Rather than taking many discrete samples of frag-
ment coverage ignoring occlusion, one might simply compute the true coverage
of a pixel by a fragment from the underlying geometric intersection. In the case of
an instantaneous pinhole camera and simple surface geometry, this is a straight-
forward measure of the area of a convex polygon. The ratio of that area to the area
of the pixel is the partial coverage of the pixel by that surface.

In the context of rasterization, for some primitives this computation can be
amortized over many pixels so that computing analytic partial coverage informa-
tion adds little cost to the rasterization itself. Primitives for which efficient partial
coverage rasterization algorithms are known include lines [Wu91, CD05a] and cir-
cles [Wu91], which naturally extend to polygons and disks by neglecting one side.

Modern hardware rasterization APIs such as OpenGL and Direct3D include
options to compute partial coverage for these primitives as part of the rasteriza-
tion process. The implementation details vary. Sometimes the underlying process
involves taking a large number of discrete samples rather than computing the true
analytic result. Since there is a fixed precision for the result, the difference is irrel-
evant once enough samples are taken.

Analytic coverage has the advantage of potentially significantly higher preci-
sion than multiple discrete samples, with no additional memory or shading cost
per pixel. It is often used for rasterization of thin lines and for polygons and curves
in 2.5D presentation graphics and user interfaces.
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The tremendous drawback of analytic coverage is that by computing a single
partial-coverage value per fragment, it loses the information about which part of
the pixel was covered. Thus, the coverage for two separate fragments within the
pixel cannot be accurately combined. This problem is compounded when occlu-
sion between fragments is considered, because that alters the net coverage mask of
each. Porter and Duff’s seminal paper [PD84] on this topic enumerates the ways
that coverage can combine and explains the problem in depth (see Chapter 17). In
practice, their OVER operator is commonly employed to combine fragment col-
ors within a pixel under analytic antialiasing. In this case, there is a single depth
sample per pixel, a single shade, and continuous estimation of coverage. Let α rep-
resent the partial coverage of a new fragment, s be its shading value, and d be the
shading value previously stored at the pixel. If the new fragment’s depth indicates
that it is closer to the viewer than the fragment that previously shaded the pixel,
then the stored shade is overwritten by αs+(1−α)d. This result produces correct
shading on average, provided that two conditions are met. First, fragments with
α < 1 must be rendered in farthest-to-nearest order so that the shade at a pixel can
be updated without knowledge of the fragments that previously contributed to it.
Second, all of the fragments with nonunit coverage that contribute to a pixel must
have uncorrelated coverage areas. If this does not hold, then it may be the case,
for example, that some new fragment with α = 0. 1 entirely occludes a previous
fragment with the same coverage, so the shade of the new one should overwrite
the contribution of the former one, not combine with it.

In the case of 2.5D presentation graphics, it is easy to ensure the back-to-front
ordering. The uncorrelated property is hard to ensure. When it is violated, the
pixels at the edges between adjacent primitives in the same layer are miscolored.
This can also occur at edges between primitives in different layers, although the
effect is frequently less noticeable in that case.

Inline Exercise 36.7: Give an example, using specific coverage values and
geometry, of a case where the monochrome shades from two fragments com-
bine incorrectly at a pixel under analytic occlusion despite correct ordering.

36.9.2 Defocus (uv)

For a lens camera, there are many transport paths to each point on the image plane.
The last segment of each path is between a point on the aperture and a point on
the image plane. The “rays” between points on the image plane and points in the
scene are not simple geometric rays, since they refract at the lens. However, we
only need to model visibility between the aperture and the scene, since we know
that there are no occluders inside the camera body.

For a scene point P there is a pencil of rays that radiate toward the aperture.
For example, if the aperture is shaped like a disk, these rays lie within a cone. We
can apply the binary visibility function to the rays within the pencil.

If there are no occluding objects in the scene and the camera is focused on
that point, the lens refracts all of these rays to a single point on the image plane
(assuming no chromatic aberration; see Chapter 26). The point Q on the image
plane to which P projects in a corresponding pinhole camera thus receives full
coverage from the light transported along the original pencil of rays.

If the point is still in focus, but an occluder lies between the scene point and the
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lens in such a way that it blocks only some of the rays in the pencil from reaching
the aperture, then only some of the light leaving the point toward the aperture will
actually form an image. In this case, depicted in Figure 36.23, Q only receives
partial coverage from P.

If there are no occluders but P is out of focus, then the light from the pencil
originating at P is spread over a region on the image plane. Point Q now receives
only a fraction of the light that it did in the in-focus case, so it now receives partial
coverage by P.

Occluder

Point in
scene

Lens

Point on image plane
Q

P

Figure 36.23: Partial occlusion
of the lens leads to partial occlu-
sion of the single point P at
point Q.

Of course, a point may have partial coverage because it is both out of focus
and partly occluded, and other sources of partial coverage can combine with these
as well.

Note that in a sense any point is partially occluded by the camera case and
finite lens—there are light rays from a scene point that would have struck the
aperture had the lens only been larger. For a lens camera it is always necessary
to know the size of the lens to compute the total incident light. The total light
is proportional to the partial coverage, but we must know the size of the lens to
compute the total power.

One way to compute partial coverage due to defocus is to sample visibility
at many rays within the pencil and average the result. Because all the rays of the
pencil share a common origin, there is an opportunity to amortize the cost of these
binary visibility operations. The packet tracing and rasterization algorithms dis-
cussed in Chapter 15 leverage this observation.

36.9.3 Motion Blur (t )

Just as real cameras have nonzero aperture areas, they also have nonzero exposure
times. This means that visibility can vary throughout the exposure. For any spe-
cific time, binary visibility may be determined between two points. The net visibil-
ity during an exposure will be the integral of that binary visibility over the expo-
sure period, during which primitives may potentially cross between the points,
producing an effect known as motion blur. For primary visibility in the presence
of motion blur, we must consider the fact that the points for which we are testing
visibility are on curves through space and time. This is easily resolved by per-
forming all tests in camera space, where the primary rays are static with respect to
time. Then we need only consider the motion of the scene relative to the camera.

Spatial data structures must be extended to represent motion. In particular, a
spatial structure needs to bound the extrusion of each primitive along its motion
path during the exposure. This step was not necessary for defocus because in that
case we were performing ray-intersection queries that varied only the rays, not the
triangles. When the triangles move with respect to each other a data structure built
for a single position is no longer valid. A common strategy is to first replace each
primitive with a conservative (and typically convex) bound on its motion. The
second step is then to build the hierarchy on those proxies rather than the primi-
tives themselves. When thin primitives rotate this can create excessively conser-
vative bounds, but on the other hand, this approach is relatively straightforward
to implement compared to considering the complex shapes that tightly bound
rotating primitives.

This strategy generalizes to simply considering ray casting as a “four-
dimensional” problem, where both rays and surfaces exist in a 4D space [Gla88].
The first three dimensions happen to be spatial and the fourth is temporal, but
mathematically one can frame both the ray-intersection problem and the spa-
tial data structure construction so that they are oblivious to this distinction. For
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a bounding box hierarchy, the result is the same as was described in the previ-
ous paragraph. However, with this generality we can consider arbitrary bounding
structures, such as a 4D BSP tree or bounding sphere hierarchy, which may pro-
vide tighter (if less intuitive) bounds.

36.9.4 Coverage as a Material Property (α)

A single geometric primitive may be used as a proxy for more complex geometry,
for example, representing a window screen or a maple leaf as single rectangle.
In this case, the small-scale coverage can be stored as a material property. By
convention this property is represented by the variable α. Alpha is explicit cover-
age: α = 0 is no coverage (e.g., areas outside of the leaf’s silhouette), α = 1 is
total coverage (e.g., areas inside the leaf’s silhouette), and 0 < α < 1 is partial
coverage (e.g., the entire window screen may be represented with α = 0. 5).

Inline Exercise 36.8: Under what circumstances (e.g., position of the object
relative to other objects or the camera) might the use of coverage-as-material-
property lead to substantial errors in an image?

Note that a single α value is insufficient to represent colored translucency. A
red wall viewed through a green wine bottle should appear black. Yet, if we model
a bottle with a green surface as α = 0. 5, we will observe a brown wall through the
bottle, whose color is 50% red and 50% green. This is a common artifact in real-
time rendering. Offline rendering tends to model this situation more accurately
with one coverage value per frequency of light simulated, or by sampling the light
passing through the bottle as scattered rather than composited. This can also be
done efficiently for real-time rendering by trading spatial precision for coverage
precision [ME11].

An explicit coverage α must still be injected into the coverage resolution
scheme for the entire framebuffer. Two common approaches are analytic and
stochastic coverage. For the analytic approach, one simply renders in back-to-
front order (with all of the limitations this implies) and explicitly composites each
fragment as it is rendered, or injects the fragments into an A-buffer for it to process
in that manner during resolution.

Stochastic approaches randomly set the fraction of coverage mask bits approx-
imately equal to α and then allow another scheme such as MSAA to drive the
shading and resolve operations. It is essential to ensure that the choice of which
coverage bits are set is statistically independent for each fragment [ESSL10]
because this is an underlying assumption of the compositing operations [PD84]
implicit in the resolve filter.

Recent work shows that the quality of the resolve operation for stochastic
antialiasing methods can be improved by filters more sophisticated than the typical
box filter, although it has yet to be shown that the cost of complex resolve opera-
tions is less than the cost of simply increasing the number of samples [SAC+11].

36.10 Discussion and Further Reading

The classic paper “A characterization of ten hidden-surface algorithms” by Suther-
land and Sproul [SSS74] surveys the state of the art for visibility in 1974, when the
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typical goal was to determine the set triangles visible to the camera. None of those
algorithms are in common use today for primary visibility on triangles. They’ve
been replaced by the brute force z-buffer and by coarse hierarchical occlusion
culling. However, it is worth familiarizing yourself with the algorithms Suther-
land and Sproul surveyed for other potential applications. For example, we saw
that BSP trees [SBGS69, FKN80] were originally designed to order polygons by
depth so that they could be rendered perfectly using a variant of the painter’s algo-
rithm. BSP trees became popular for computing polygon-level visibility in game
rendering engines in the 1990s and they are at the heart of a popular illumination
algorithm [Jen01] used on most CG film effects today. Instead of ordering poly-
gons for back-to-front rendering, BSP trees were found to be an effective way
of carving up 3D space for O(log n) access to surfaces and creating convex cells
between which visibility determination is efficient. We anticipate that today’s vis-
ible surface algorithms and data structures will find similar new uses in another
30 years, while newer and better approaches to visibility determination evolve as
well.

36.11 Exercise

Exercise 36.1: Typically in Sutherland-Hodgman clipping, the polygon to be
clipped is small compared to the boundary polygon, and it intersects at most
one side of the boundary polygon; often the input polygon starts on the inside,
crosses the boundary, remains outside for a while, and then recrosses the same
boundary edge and returns inside. In this case, clipping an input polygon with n
edges against a boundary with k edges involves generating and inserting only two
intersection points, although it involves testing O(nk) edge pairs for intersections.
Build an example input in which there are O(nk) intersection points computed and
inserted.
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Chapter 37

Spatial Data Structures

37.1 Introduction

Spatial data structures, such as the oct tree (Figure 37.1), are the multidimen-
sional generalization of classic ordered data structures, such as the binary search
tree. Because spatial data structures generally trade increased storage space for
decreased query time, these are also known as spatial acceleration data struc-
tures. Spatial data structures are useful for finding intersections between different
pieces of geometry. For example, they are used to identify the first triangle in a
mesh that is intersected by a ray of light.

Figure 37.1: A gargoyle model
embedded in an oct tree. The
cube volume surrounding the
model is recursively subdivided
into smaller cubes, forming a tree
data structure that allows effi-
cient spatial intersection queries
compared to iterating exhaus-
tively over the triangles in the
mesh. The boundaries of the
cube cells are visualized as thin
lines in this image. (Courtesy of
Preshu Ajmera.)

The development and analysis of spatial data structures is an area in which the
field of computer graphics has contributed greatly to computer science in general.
The practice of associating values with locations in spaces of various dimensions
is of use in many fields. For example, many machine learning, finite element anal-
ysis, and statistics algorithms rely on the data structures originally developed for
rendering and animation.

The ray-casting renderer in Chapter 15 represented surfaces in the scene using
an unordered list of triangles. This chapter describes how to abstract that list
with an interface. Once the implementation is abstracted, we can then change that
implementation without constantly rewriting the ray caster. Why would we change
it? Introductory computer science courses present data structures that improve the
space and time cost of common operations. In this chapter we apply the same ideas
to 3D graphics scenes. Of course, when comparing 3D points or whole shapes
instead of scalars, we have to adjust our notions of “greater than” and “less than,”
and even “equals.”

The original ray caster could render tens of triangles in a reasonable amount of
time—maybe a few minutes, depending on the image resolution and your proces-
sor speed. A relatively small amount of elegant programming will speed this up
by an amazing amount. Even a naive bounding volume hierarchy should enable
your renderer to process millions of triangles in a few minutes. We hope you’ll
share the joy that we experienced when we first implemented this speedup. It is
a great instance of algorithmic understanding leading directly to an impressive

1065
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and practical result—where a small amount of algorithmic cleverness brings the
miraculous suddenly to hand.

To support the generalization of 1D to k-dimensional data structures and build
intuition for the performance of the spatial data structures, we first describe classic
1D ordered data structures and how they are characterized.

Because triangle meshes are a common surface representation and rays are
central to light transport, data structures for accelerating ray-triangle intersection
receive particular attention in this chapter and in the literature.

We select our examples from the 2D and 3D spatial data structures most com-
monly encountered in computer graphics. However, the structures described in
this chapter apply to arbitrary dimensions and have both graphics and nongraph-
ics applications.

Read the first half of this chapter if you are new to spatial data structures;
you may want to skip it if you are familiar with the concept and are looking
for details. That first half of this chapter motivates their use, explains practical
details of implementing in various programming languages, and reviews evalua-
tion methodology for data structures.

The second half of this chapter assumes that you are familiar with the concepts
behind spatial data structures. It explores four of the most commonly used struc-
tures: lists, trees, grids, and hash grids. For each, a few variations are presented;
for example, the BSP, kd, oct, BVH, and sphere tree variants of “trees.” The expo-
sition emphasizes the tradeoffs between structures and how to tune a specific data
structure once you have chosen to apply it.

Our experience is that it is relatively easy to understand the algorithms behind
the spatial data structures, but converting that understanding to an interface and
implementation that work smoothly in practice (e.g., ones that are efficient, con-
venient, maintainable, and general) may take years of experience.

37.1.1 Motivating Examples
Many graphics algorithms rely on queries that can be described by geometric inter-
sections. For example, consider an animated scene containing a ball that is moving
with constant velocity toward a pyramid of three boxes resting on the ground, as
depicted in Figure 37.2. As the ball moves along its straight-line path, the ball
traces a 3D volume called a capsule, which is a cylinder with radius equal to
that of the ball and capped by two hemispheres bounding all of the trailing and
leading sides of the sphere. For each discrete physical simulation time step, there
is a capsule bounding all of the ball’s locations during the time. The boxes are
static, so the volume that they occupy remains constant. A collision between the
moving sphere and the boxes will occur during some time step. To determine if
the collision is in the current step, we can compute the geometric intersection of
the capsule and the boxes. If it is empty, then at no time did the ball intersect the
boxes, so there was no collision. If the intersection is nonempty, then there was
a collision and the dynamics system can respond appropriately by knocking over
the boxes and altering the ball’s path.

Intersection computation is also essential for rendering. Some common inter-
section queries in graphics that arise from rendering are

• The first intersection of a light ray with a scene for ray casting or photon
tracing

• The intersection of the camera’s view frustum with the scene to determine
which objects are potentially visible
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Velocity vector 

Position at time t0 Position at time t1

Bounding capsule for the ball on the interval [t0, t1]

Figure 37.2: During any time interval, a sphere moving with constant velocity traces the
volume of a capsule. If the intersection of the capsule and the boxes is not empty during a
time interval, a collision occurred during that interval.

• The intersection of a ball1 around a light source with a scene to determine
which objects receive significant direct illumination from it

• The intersection of a ball with a set of stored incoming photon paths to
estimate radiance in photon mapping

In the dynamics example of a scene with three boxes and a single moving
sphere, it would be reasonable to compute the capsule at each time step and then
iterate through all boxes testing for intersections with it. That strategy for colli-
sion detection would not scale to a scene with millions of geometric primitives.
Informally, to scale well, we require an algorithm that can detect a collision in
fewer than a linear number of operations in the number of primitives, n. We expect
that using data structures such as trees can reduce the intersection-testing costs to
O(log n) in the average case, for example. The best asymptotic time performance
that an algorithm could exhibit in a nontrivial case is O(m) for m actual intersec-
tions, since the intersections themselves must be enumerated. This is achievable
if we place spatial distribution constraints on the input; for example, accepting an
upper bound on the spatial density of primitives [SHH99]. Note that even with
such constraints, m = n in the worst case, so any spatial intersection query neces-
sarily exhibits worst-case O(n) time complexity. Furthermore, obtaining optimal
performance might require more storage space or algorithmic complexity than an
implementation is able to support.

There is no “best” spatial data structure. Different ones are appropriate for dif-
ferent data and queries. For example, finding capsule-box intersections in a scene
with four primitives lends itself to a different data structure than ray-triangle inter-
sections in a scene with millions of rays and triangles. This is the same principle

1. A ball is the volume inside the sphere; technically, a geometric sphere Sk is the (k− 1)
dimensional surface and not the k-dimensional volume within it. However, beware
that intersections with balls are casually referred to as “sphere intersections” by most
practitioners.
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that holds for classic data structures: e.g., A hash table is neither better nor worse
than a binary search tree in general; they are appropriate for different kinds of
applications. With spatial data structures, a list of boxes may be a good fit for a
small scene. For a large scene, a binary space partition tree may be a better choice.

The art of algorithm and system design involves selecting among alternative
data structures and algorithms for a specific application. In doing so, one consid-
ers the time, space, and implementation complexity in light of the input size and
characteristics, query frequency, and implementation language and resources. The
rest of this chapter explores those issues.

37.2 Programmatic Interfaces

Spatial data structures are typically implemented as polymorphic types. That is,
each data structure is parameterized on some primitive type that in this chap-
ter we’ll consistently name Value. For example, in most programming languages
you don’t just instantiate a list; instead, you make a list of something. These are
known as templated classes in C++ and C# and generics in Java. Languages
like Scheme, Python, JavaScript, and Matlab rely on runtime dynamic typing
for polymorphic types, and languages like ML use type inference to resolve
the polymorphism at compile time. The three popular graphics OOP languages
Java/C++/C# use angle-bracket notation for this polymorphism, so we adopt it too
(e.g., List<Triangle> is the name of a structure representing a list of triangles).

Throughout this chapter, we assume that Value is the type of the geometric
primitive stored in the data structure. Common primitive choices include triangle,
sphere, mesh, and point. A value must support certain spatial queries in order to
be used in building general spatial data structures. We describe one scheme for
abstracting this in Section 37.2.2.2. Briefly, a data structure maps keys to values.
For a spatial data structure the keys are geometry and the values are the proper-
ties associated with that geometry. One frequently implements the key and value
as different interfaces for the same object through some polymorphic mechanism
of the implementation language. For example, a building object might present a
rectangular slab of geometry as a key for arrangement within a data structure but
also encodes as a value information about its surface materials, mass, occupants,
and replacement cost for simulation purposes. Note that depending on the appli-
cation, the key might assume radically different forms, such as a finely detailed
mesh, a coarse bounding volume on the visible geometry, or even a single point
at the center of mass for simulation purposes. The same value may be represented
by different keys in different data structures, but extracting a specific class of key
from a value must be a deterministic process for a specific data structure.

Beware that the use of the data-structure term “key” here is consistent with
the general computer science terminology employed throughout the chapter, but
it is uncommon in typical graphics usage. Instead, keys that are volumes are often
called bounding geometry, bounding volumes [RW80], or proxies.

In this chapter, we use the variable name key to represent whatever form of
geometric key is employed by the data structure at that location in the implemen-
tation. The type of the key depends on the data structure and application. We also
use the name value, which will always have class Value.

In terms of an application interface, the methods implementing the intersec-
tion queries may be framed precisely to return the geometric intersections (see
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Geometric intersection Conservative intersection 

Figure 37.3: (Left) The geometric intersection of a ball with a set of boxes in 2D. (Right) A
conservative result that may be more efficient to compute.

Figure 37.3, left) or conservatively to return all primitives containing the intersec-
tion geometry (see Figure 37.3, right). The latter is important because the inter-
sections between simple shapes may be hard to represent efficiently. For example,
consider the intersection of a set of triangles with a ball about a point light. The
intersection probably contains many triangles that are cut by the surface of the
ball. The resultant shapes are not representable as triangles. However, the render-
ing system that will use this information likely operates on triangles, since that
was the representation chosen for the underlying scene. Creating a representation
for triangles-cut-by-curves will create complexity in the system that only results
in shapes that the renderer can’t directly process anyway. In this case, a conser-
vative query that returns all triangles that intersect the ball is more useful than a
precise query that returns the geometric intersection of the scene and the ball.

To make the structures useful, traditional set operations such as insert, remove,
and is-member are generally provided along with geometric intersection. The
algorithms for those tend to be straightforward applications of nonspatial data
structure techniques. In contrast, the intersection queries depend on the geometry.
They are the core of what makes spatial data structures unique, so we’ll focus on
those.

37.2.1 Intersection Methods

Some of the most common methods of spatial data structures are those that are
used to find the intersection of a set of primitives with a ball (the solid interior
bounded by a sphere), an axis-aligned box, and a ray. Listing 37.1 gives a sample
C++ interface for these.

Listing 37.1: Typical intersection methods on all spatial data structures.

1
2
3
4
5
6
7

template<class Value>
class SpatialDataStructure {
public:
void getBallIntersection (const Ball& ball, std::vector<Value*>& result) const;
void getAABoxIntersection(const AABox& box, std::vector<Value*>& result) const;
bool firstRayIntersection(const Ray& ray, Value*& value, float& distance) const;

};
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There are of course many other useful intersection queries, such as the capsule-
box intersection from the collision detection example. For an application in which
a particular intersection query occurs very frequently and affects the performance
of the entire system, it may be a good idea to implement a data structure designed
for that particular query.

In other cases, it may make more sense to perform intersection computations
in two passes. In that case, the first pass leverages a general spatial data structure
from a library to conservatively find intersections against some proxy geometry.
The second pass then performs exhaustive and precise intersection testing against
only the primitives returned from the first query. For the right kinds of queries, this
combines the performance of the sophisticated data structure with the simplicity
of list iteration.

For example, dynamics systems often step through short time intervals com-
pared to the velocities involved, so the capsule swept by a moving ball may in
fact not be significantly larger than the original ball. It can thus be reasonably
approximated by a ball that encloses the entire capsule, as shown in Figure 37.4.

A generic ball-box intersection finds all boxes that are near the capsule, includ-
ing some that may not actually intersect the capsule. If there are few boxes
returned from this query, simply iterating through that set is efficient. In fact, the
two-pass operation may be more efficient than a single-pass query on a special-
purpose data structure for capsule-box intersection. This is because the geometric
simplicity of a ball may allow optimizations within the data structure that a cap-
sule may not admit.

Figure 37.4: Approximating a
short capsule (dashed line) with
a bounding ball (solid line). To
satisfy persistence of vision, the
rendering frame rate for an ani-
mation is usually chosen so that
objects move only a fraction of
their own extent between frames.
In this case, a static bounding
ball around the path of a dynamic
ball is not too conservative.

Like a ball, an axis-aligned box and a ray have particularly simple geome-
try. Thus, while our three sample intersection query methods motivate the design
patterns that could be applied to alternative query geometry, they are often good
choices in themselves.

Some careful choices in the specifications of intersection query methods can
make the implementation and the application particularly convenient. We now
detail a particular specification as an example of a useful one for general appli-
cation. Consider this as a small case study of some issues that can arise when
designing spatial data structures, and add the solutions to your mental program-
mer’s toolbox.

You may follow the exact specification given here at some point, but more
likely you will apply these ideas to a slightly different specification of your own.
You will also likely someday find yourself using someone else’s spatial data struc-
ture API. That API will probably follow a different specification. Your first task
will be to understand how it addresses the same issues under that specification,
and how the differences affect performance and convenience.

Method getBallIntersection,

1
2
3

void getBallIntersection
(const Ball& ball,
std::vector<Value*>& result) const;

appends all primitives that overlap (intersect) the ball onto the result array.2 It does
not return the strict intersection itself, which would require clipping primitives to
the ball in the general case.

2. In this chapter, “array” denotes a dynamic array data structure (e.g., std::vector in
C++) to distinguish that concept from geometric vectors.



ptg11539634

37.2 Programmatic Interfaces 1071

Appending to, rather than overwriting, the array allows the caller more flexi-
bility. If the caller requires overwrite behavior, then it can simply clear the array
itself before invoking the query. Some tasks in which overwriting is undesirable
are accumulating the results of several queries, and applying the same query to
primitive sets stored in different data structures.

We assume getBallIntersection returns only primitives that overlap the
ball. The primitives stored in the data structure may contain additional informa-
tion that is unnecessary for the intersection computation, such as reflectivity data
for rendering or a network connection for a distributed application like a multi-
player game. They may also present different geometry to different subsystems.
Thus, while a data structure may make conservative approximations for efficiency,
it must ultimately query the primitive to determine exact intersections. Querying
the primitives may be relatively expensive compared to the conservative approx-
imations. An alternative interface to the ball intersection routine would return a
conservative result of primitives that may overlap the ball, using only the conser-
vative tests. This is useful, for example, if the caller intends to perform additional
intersection tests on the result anyway.

Method getAABoxIntersection,

void getAABoxIntersection(const AABox& box, std::vector<Value*>& result) const;

is similar to getBallIntersection. It finds all primitives in the data structure
that overlap the interior of the axis-aligned box named box. Overlap tests against
an axis-aligned box are often significantly faster than those performed against an
arbitrarily oriented box, and the box itself can be represented very compactly.

The use of axis-aligned boxes is important for more than primitive intersec-
tions. For data structures such as the kd-tree and grid that contain spatial partitions
aligned with the axes, the axis-aligned box intersection against internal nodes in a
data structure may be particularly efficient and implemented with only one or two
comparisons per axis.

Method firstRayIntersection,

bool firstRayIntersection(const Ray& ray, Value*& value, float& distance) const;

tests for intersections between the primitive set and a ray (Figure 37.5). There are
three possible results.

1. There is no intersection. The method returns false and the referenced
parameters are unmodified.

2. The intersection closest to the ray origin is at distance r and r ≥ distance.
The method returns false and the referenced parameters are unmodified.

Q

B

I = Q    B
Q

B

F

Geometric intersection “First” intersection 

Figure 37.5: (Left) The geometric intersection I of a 2D query ray Q with box B. (Right)
The point F that we call the first intersection between the ray and box, that is, the point on
the geometric intersection that is closest to the ray origin.
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3. The intersection closest to the ray origin is at distance r < distance. The
method returns true. Parameter distance is overwritten with r and value

is a pointer to the primitive on which the intersection lies.

This interface is motivated by the common applications of the query method,
such as the one from Listing 37.2. For example, consider the cases of ray casting
for eye rays, light rays (photons), moving particles, or picking (a.k.a. selecting)
an object whose projection lies under a mouse pointer. In each case, there may
be many objects that have a nonzero intersection with the ray, but the caller only
needs to know about the one producing the intersection closest to the ray origin.
These objects might be stored in multiple data structures—perhaps distinguishing
static and dynamic objects or ones whose different geometry is better suited to
different data structures. Given an intersection query result from one data struc-
ture, the query to the second data structure need not search any farther than the
previously found intersection. The caller almost always will overwrite the previ-
ously closest-known distance, so it makes sense to simply update that in place.
Listing 37.2 demonstrates a terse yet readable implementation of this case. Note
that there’s potential for a subtle bug in this code—if the second ray intersection
were accidentally written as hit = hit || dynamicObjects..., then any inter-
section with a static object would preclude ever testing for a closer intersection
with a dynamic object. Misuse of the early-out behavior of the logical OR opera-
tor is a danger not limited to ray intersection or computer graphics, of course!

Listing 37.2: Typical application of FirstRayIntersection
in a ray-tracing renderer.

1
2
3
4
5
6
7
8
9

10
11
12
13

Radiance rayTrace(const Ray& ray) {
float distance = INFINITY;
Value* ptr = NULL;

bool hit = staticObjects.firstRayIntersection (ray, ptr, distance);
hit = dynamicObjects.firstRayIntersection(ray, ptr, distance) || hit;

if (hit) {
return shade(ptr, ray.origin + distance * ray.direction);

} else {
return Radiance(0);

}
}

Even when the high-level scene management code creates only one spatial
data structure, there are likely many spatial data structures in the program. This is
because, like any other sophisticated data structures, complex spatial data struc-
tures tend to be implemented using multiple instances of simpler spatial data
structures. For example, the contents of each node in a spatial tree are typically
stored in a spatial list, and the child subtrees of that node are simply other instances
of spatial trees. Intersection methods like the ones proposed here that are designed
to accumulate the results from multiple structures make it easy to design complex
spatial data structures.

In addition to the convenience for the caller of passing a distance limit that will
be updated, there are some applications for which there is inherently some limit to
how far the caller wants to search. Examples include picking with a range-limited
virtual tool or casting a shadow ray to a light source. Communicating the search
limit to the data structure allows it to optimize searching for the intersection.
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For ray-triangle intersection, firstRayIntersection is often extended to
return the barycentric coordinates of the intersection location on the triangle hit.
As described in Section 9.2, these three weights are sufficient to reconstruct both
the location on the triangle where the ray first intersects it and any shading param-
eters interpolated from the vertices of the triangle. Returning the barycentric coor-
dinates is not necessary because, given the distance along the ray to the inter-
section, the caller could reconstruct them. However, they are naturally computed
during the intersection computation, so it is efficient and convenient to pass them
back to the caller rather than imposing the cost of recomputing them outside the
query operation.

Some data structures can resolve the query of whether any intersection exists
for r < distance faster than they can find the closest one. This is useful for
shadow and ambient occlusion ray casting. In that case a method variant that takes
no value parameter and does not update distance is a useful extension.

37.2.2 Extracting Keys and Bounds

We want to be able to make data structures that can be instantiated for differ-
ent kinds of primitives. For example, a tree of triangles and a tree of boxes should
share an implementation. This notion of the tree template as separate from a spe-
cific type of tree is called polymorphism. It is something that you are probably
very familiar with from classic data structures. For example, std::vector<int>
and std::vector<std::string> share an implementation but are specialized for
different value types.

For spatial data structures, we therefore require some polymorphic interface
both for each data structure and for extracting a key from each Value. The choice
of interface depends on the implementation language and the needs of the sur-
rounding program.

37.2.2.1 Inheritance
In an object-oriented language such as Java, one typically uses inheritance to
extract keys, as shown in Listings 37.3 and 37.4 (the latter listing has the example).

Listing 37.3: A Java inheritance interface for expressing axis-aligned
bounding box, sphere, and point keys on a primitive and responding to

corresponding conservative intersection queries.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

public interface Primitive {
/** Returns a box that surrounds the primitive for use in

building spatial data structures. */
public void getBoxBounds (AABox bounds);

public void getSphereBounds (Sphere bounds);

public void getPosition (Point3 pos);

/** Returns true if the primitive overlaps a box for use
in responding to spatial queries. */

public bool intersectsBox (AABox box);

public bool intersectsBall (Ball ball);
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17
18
19
20
21
22
23
24
25
26
27
28
29

/** Returns the distance to the intersection, or inf if
there is none before maxDistance */

public float findFirstRayIntersection(Ray ray, float maxDistance);
}

public class SomeStructure<Value> {
...
void insert(Value value) {

Point3 key = new Point3();
value.getPosition(key);
...

}
}

Listing 37.4: One possible implementation of a triangle under an
inheritance-based scheme. The getBoxBounds implementation computes the

bounds as needed; an alternative is to precompute and store them.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

public class Triangle implements Primitive {

private Point3 _vertex[3];

public Point3 vertex(int i) {
return _vertex[i];

}

public void getBoxBounds(AABox bounds) {
bounds.set(Point3::min(vertex[0], vertex[1], vertex[2]),

Point3::max(vertex[0], vertex[1], vertex[2]));
}
...

}

Inheritance is usually well understood by programmers working in an object-
oriented language. It also keeps the implementation of program features related
to a Value within that Value’s class. This makes it a very attractive choice for
extracting keys. The simplicity comes at a cost in flexibility, however. Using an
inheritance approach, one cannot associate two different key extraction methods
with the same class, and the needs of a spatial data structure impose on the design
of the Value class, forcing them to be designed concurrently.

37.2.2.2 Traits
A C++ implementation might use a trait data structure in the style of the design
of the C++ Standard Template Library (STL). In this design pattern, a templated
trait class defines a set of method prototypes, and then specialized templates give
implementations of those methods for particular Value classes. Listing 37.5 shows
an example of one such interface named PrimitiveKeyTrait that supports box,
ball, and point keys. Below that definition is a specialization of the template for a
Triangle, and an example of how a spatial data structure would use the trait class
to obtain a position key from a value.
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Listing 37.5: A C++ trait for exposing axis-aligned bounding box, sphere, and
point keys from primitives.

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

template<class Value>
class PrimitiveKeyTrait {
public:

static void getBoxBounds (const Value& primitive, AABox& bounds);
static void getBallBounds (const Value& primitive, Ball& bounds);
static void getPosition (const Value& primitive, Point3& pos);

static bool intersectsBox (const Value& primitive, const AABox& box);
static bool intersectsBall(const Value& primitive, const Ball& ball);
static bool findFirstRayIntersection(const Value& primitive, const Ray& ray,

float& distance);
};

template<>
class PrimitiveKeyTrait<Triangle> {
public:

static void getBoxBounds(const Triangle& tri, AABox& bounds) {
bounds = AABox(min(tri.vertex(0), tri.vertex(1), tri.vertex(2)),

max(tri.vertex(0), tri.vertex(1), tri.vertex(2)));
}
...

};

template< class Value, class Bounds = PrimitiveKeyTrait<Value> >
class SomeStructure {

...
void insert(const Value& value) {

Box key;
Bounds<Value>::getBoxBounds(value, key);
...

}
};

Overloaded functions are a viable alternative to partial template specialization
in languages that support them. An example of providing an interface through
overloading in C++ is shown in Listing 37.6. This is similar to the template spe-
cialization, but is a bit more prone to misuse because some languages (notably
C++) dispatch on the compile-time type instead of the runtime type of an object.
(ML is an example of a language that dispatches on runtime type.) If mixed with
inheritance, overloading can thus lead to semantic errors.

Listing 37.6: A C++ trait implemented with overloading instead of templates.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

void getBoxBounds(const Triangle& primitive, AABox& bounds) { ... }
void getBoxBounds(const Ball& primitive, AABox& bounds) { ... }
void getBoxBounds(const Mesh& primitive, AABox& bounds) { ... }
...

template<class Value>
class SomeStructure {

...
void insert(const Value& value) {

Box key;
// Automatically finds the closest overload
getBoxBounds(value, key);
...

}
};



ptg11539634

1076 Spatial Data Structures

Traits can also be implemented at runtime in languages with first-class func-
tions or closures. This forgoes static type checking but allows the flexibility of
the design pattern with less boilerplate and in more languages. For example, List-
ing 37.7 uses the trait pattern in Python and depends on dynamic typing and run-
time error checks to ensure correctness.

Listing 37.7: A Python trait for exposing axis-aligned bounding box, sphere,
and point keys from primitives.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

def getTriangleBoxBounds(triangle, box):
box = AABox(min(tri.vertex(0), tri.vertex(1), tri.vertex(2)),

max(tri.vertex(0), tri.vertex(1), tri.vertex(2)))
}

class SomeStructure:
_bounds = null

def __init__(self, boundsFunction):
self._bounds = boundsfunction

...
def insert(self, value):

Box key;
self._bounds(value, key)
...

}
};

SomeStructure s(getTriangleBoxBounds)

The trait design pattern for extracting keys has three main advantages. Traits
allow the data structure implementor to make the data structure work with Value

classes that predate it. For example, you can create your own new binary space par-
tition tree spatial data structure and write a trait to make it work with the Triangle
class from an existing library that you cannot modify. A related advantage is that
traits move the complexity of the key-extraction operation out of the Value class.

Another advantage of traits is that they allow instances of data structures
with the same Value to use different traits. For example, you may wish to
build one tree that uses the vertex of a triangle that is closest to the origin as
its position key, and another that uses the centroid of the triangle as its posi-
tion key. However, if getPositionKey is a method of Triangle, then this is
not possible. Under the pattern shown in Listing 37.5, these would be instan-
tiated as SomeStructure<Triangle, MinKey> and SomeStructure<Triangle,

CentroidKey>.
A disadvantage of traits compared to inheritance is that traits separate the

implementation of a Value class into multiple pieces. This can increase the cost
of designing and maintaining such a class.

Traits also involve more complicated semantics and syntax than other
approaches. This is particularly true for the variant shown in Listing 37.5 that
uses C++ templates. Many C++ programmers have never written their own trait-
based classes, or even their own templated classes. Almost all have used tem-
plated classes and traits, however. So this design pattern significantly increases
the barrier to creating a new kind of data structure and slightly increases the bar-
rier to creating a new kind of primitive, but introduces little barrier to using a data
structure.
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Overall, we find the trait design necessary in practice for efficiency and mod-
ularity, but we regret the modularity lost in Value classes. We regard traits as a
necessary evil in practice.

37.3 Characterizing Data Structures
Classic ordered structures contain a set of elements. Each element has value

and a single integer or real number key. For example, the values might be stu-
dent records and the keys the students’ grades. We say that the data structures are
ordered because there is a total ordering on the keys.

Regardless of their original denotation, one can interpret the key as a position
on the real number line. This leads to our later generalization of multidimensional
keys representing points in space.

There are many ways to analyze data structures. In this chapter, you’ll see two
kinds of analysis intermixed. It is impossible to give a one-size-fits-all characteri-
zation of these structures and advice on which is “best”—it depends on the kind of
data you expect to encounter in the scene. We therefore sketch asymptotic analyses
and offer practical considerations of how they apply to real use. The conclusions
of each section aren’t really the goal. Instead, the issues raised in the course of
reaching them are what we want you to think about and apply to problems.

We do recognize two usage patterns and prescribe the following high-level
advice in selecting data structures.

• When using data structures in a generic way, trust asymptotic bounds
(“big-O”). Generic use means for a minor aspect of an algorithm, for fairly
large problems, and where you know little about the distribution of keys
and queries. Trusting bounds means, for example, that operations on trees
are often faster than on lists at comparable storage cost. Parameterize the
bound on the factor that you really expect to dominate, which is often the
number of elements.

• When considering a specific problem for which you have some domain
knowledge and really care about performance, use all of your engineering
skill. Consider the actual kinds of scenes/distributions and computer archi-
tecture involved, and perform some experiments. Perhaps for the size of
problem at hand the scattered memory access for a tree is inferior to that of
an array, or perhaps the keys fall into clusters that can be exploited.

To make the analysis tools concrete and set up an analogy to spatial data struc-
tures, we show an example on two familiar classic data structures in the following
subsections. Consider two alternatives for storing n values that are student records
in a course database at a college, where each record is associated with a real-
number key that is the student’s grade in the course.

The first structure to consider is a linked list. Although we say that a list is
an “ordered” data structure, recall that the description applies to the fact that any
two keys have a mathematical ordering: less than, greater than, or equal to. The
order of elements within the list itself will be arbitrary. More sophisticated data
structures exploit the ordering of the keys to improve performance.

The second data structure is a balanced binary tree. The elements within the
tree are arranged so that every element in the right subtree of a node contains
elements whose keys are larger than or equal to the key at the node. The left
subtree of a node contains elements whose keys are less than or equal to the key
at the node.
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37.3.1 1D Linked List Example
The list requires storage space proportional to n, the number of student records.
The exact size of the list is probably n times the sum of the size of one record and
the size of one pointer to the next record, plus some additional storage in a wrapper
class, such as the one in Listing 37.8. We describe this as the list occupying O(n)
space, which means that for sufficiently large n the actual size is less than or equal
to c · n for some constant c.

Concretely, consider the time cost of finding student records in the list that
lie within a continuous range of grades. If we think of the records as distributed
along a number line at points indicated by their keys, the find operation is equiv-
alent to finding the geometric intersection of the desired grade interval and the
set of records. This geometric interpretation will later guide us in building higher-
dimensional keys, where we want to perform intersection queries against higher-
dimensional shapes such as balls and boxes.

To find records intersecting the grade interval, we must examine all n records
and accept only those whose keys lie within the interval. Note that because the
list index is independent of the key, we must always look at all n records. There
is probably some overhead time for launching the find operation and the time cost
of each comparison depends on the processor architecture. These make it hard
to predict the exact runtime, but we can characterize it as O(n) for a single find
operation.

When employed with care, the big-O notation is useful for characterizing the
asymptotic growth of the data structure without the distraction of small overhead
constants. The important idea is that for lists that we are likely to encounter in
practice, if we double the length of the list we approximately double the memory
requirement. That is, if the list has length 100, we probably don’t care about the
small overhead cost of storing a constant number of extra values.

When we are ready to implement a system, with some idea of the data’s size
and capabilities of the hardware, we augment the asymptotic analysis with more
detailed engineering analysis. At this stage it is important to consider the impact
of constant space and time factors. For example, say that our list stores a few
kilobytes of data in addition to the records. This might be information about a
freelist buffer pool for fast memory allocation, the length of the list, and an extra
pointer to the tail of the list for fast allocation, as described in Listing 37.8.

Listing 37.8: Sample templated list class.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

template<class Value>
class List {

class Node {
public:

float key;
Value value;
Node* next;

};

Node* head;
Node* tail;
int length;
Node* freelist;
...

};
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Under this list representation, a list of three small elements might require
almost the same amount of space as a list of six elements. For small lists, we’ll
find that the length of the freelist dominates the total space cost of the list.

Under an engineering analysis we should thus extend our implementation-
independent asymptotic analysis with both the constant factors and the newly
revealed parameters from the implementation, such as the size of the freelist and
the overhead of accessing a record.

37.3.2 1D Tree Example
A binary search tree exploits the ordering on the keys to increase the performance
of some find operations. In doing so it incurs some additional constant perfor-
mance overhead for every search and increases the storage space.

The motivation for using a tree is that we’d like to be able to find all students
with grades in some interval and do so faster than we could with the list. The tree
representation is similar to the list, although there are two child pointers in each
node. So the space bounds are slightly higher by a constant factor, but the storage
cost for n elements is still O(n).

The height of a balanced binary tree of n students is �log2 n�. If there is only
one student whose grade is in the query interval, then we can find that student
using at most �log2 n� comparisons. Furthermore, if that student’s record is at an
internal (versus leaf) node of the tree, it may take as few as three comparison
operations to locate the student and eliminate all others.

Thus, for the case of a single student in the interval, the search takes worst-case
O(lg n) time, which is better than the list. In practice, the constants for iterating
through a tree are similar to those for iterating through a list, so it is reasonable to
expect the tree to always outperform the list.

Depending on the size of the interval in the query and the distribution of stu-
dents, there may be more than one student in the result. This means that the time
cost of the find operation is output-sensitive, and the size of the output appears in
the bound. If there are s students that satisfy the query, the runtime of the query is
necessarily O(s + lg n). Since 0 ≤ s ≤ n, in the worst case all students may be in
the output. Thus, the tightest upper bound for the general case is O(n) time.

We could try to characterize the time cost based on the distribution of grades
and queries that we expect. However, at that point we’re mixing our theory with
engineering and we’re unlikely to produce a bound that informs either theory or
practice. Once we know something about the distribution and implementation
environment, we should perform back-of-the-envelope analysis with the actual
specifications or start performing some experiments.

At a practical level, we might consider the cache coherence implications of
chasing tree pointers through memory versus sequential access for a tree packed
into an array as a vector heap, or a list packed into an array. We might also look at
the complexity of the data structure and the runtime to build and update the tree
to support the fast queries.

In the case where queries and geometry are unevenly distributed, balancing the
tree might not lead to optimal performance over many queries. For example, say
that there are many students whose grades cluster around 34 but we don’t expect
to query for grades less than 50 very often. In that case, we want a deep subtree
for grades less than 50 so that students with grades greater than 50 can appear near
the root. Nodes near the root can be reached more quickly and are more likely to
stay in cache.
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37.4 Overview of k -dimensional Structures
The remainder of this chapter discusses four classes of spatial data structures.
These correspond fairly closely to k-dimensional generalizations of classic one-
dimensional lists, trees, arrays, and hash tables under the mapping shown in
Table 37.1. In that table, the actual intersection time depends on the spatial distri-
bution of the elements and the intersection query geometry, but the big-O values
provide a useful bound.

Table 37.1: Approximate time and space costs of various data structures
containing n elements in k dimensions. The grids have g subdivisions per
axis, which is not modeled by these expressions.

1D Data Structure kd Analog Intersection Time Total Space

List List and Array O(n) O(n)

Tree BVH and BSP tree O(log n) O(n)

Array of cells Grid of cells O(n/gk) O(gk + n)

Hash table Hash grid O(1) O(n)

We can build some intuition for the runtimes of spatial data structures: Oper-
ations should take linear time on lists, log time on trees, and constant time on
regular grids. The space requirements of a regular grid are problematic because
the grid allocates memory even for areas of the scene that contain no geometry.
However, using a hash table, we can store only the nonempty cells. Thus, we can
expect list, tree, and hash grid structures to require only a linear amount of space
in the number of primitives that they encode.

With some knowledge of the scene’s structure, one can often tune the data
structures to achieve amortized constant factor speedups through architecture-
independent means. These might be factors of two to ten. Those are often nec-
essary to achieve real-time performance and enable interaction. They may not
be worthwhile for smaller data sets or applications that do not have real-time
constraints.

All of these observations are predicated on some informal notions of what
is a “reasonable” scene and set of parameters. It is also possible to fall off the
asymptotic path if the scene’s structure is poor. In fact, you can end up making
computations slower than linear time. The worst-case space and time bounds for
many data structures are actually unbounded. To address this, for each data struc-
ture we describe some of the major problems that people have encountered. From
that you’ll be able to recognize and address the common problems. That is, the
time and space bounds given in the table are only to build intuition for the general
case. As discussed in the previous section, one has to assume certain distributions
and large problems to prove these bounds, and doing so is probably reductive.
Understanding your scenes’ geometry distributions and managing constant factors
are important parts of computer graphics. Concealing those behind assumptions
and abstractions is useful when learning about the data structures. Rolling back
assumptions and breaking those mathematical abstractions are necessary when
applying the data structures in a real implementation.

In addition to algorithmic changes and architecture-independent constant-
factor optimizations, there are some big (maybe 50x over “naive” implementa-
tions) constant-factor speedups available. These are often achieved by minding
details like minimizing memory traffic, avoiding unnecessary comparisons, and



ptg11539634

37.5 List 1081

exploiting small-scale instruction parallelism. Which of these micro-optimizations
are worthwhile depends on your target platform, scenes, and queries, and how
much you are willing to tailor the data structure to them. We describe some of
the more timeless conventional wisdom accumulated over a few decades of the
field’s collective experience. Check the latest SIGGRAPH course notes, EGSR
STAR report, and books in series like GPU Pro for the latest advice on current
architectures.

37.5 List
A 1D list is an ordered set of values stored in a way that does not take advantage
of the keys to lower the asymptotic order of growth time for query operations.
For instance, consider the example of a mapping from student grades to student
records encoded as a linked list that is described in Section 37.3.1. Each element
of the list contains a record with a grade and other student information. Searching
for a specific record by grade takes n comparisons for a list of n records if they are
unordered. At best, we could keep the list sorted on the keys and bring this down
to expected n/2 comparisons, but it is still linear and still has a worst case of
n comparisons.

For the unsorted 1D list, there’s little distinction between the expected space
and time costs of a dynamic array (see Listing 37.9) and a linked-list implemen-
tation (see Listing 37.8). For the sorted case, the array admits binary search while
the linked list simplifies insertion and deletion. The array implementation is good
for small sets of primitives with small memory footprints each; the linked list is a
better underlying representation for primitives with a large memory footprint, and
even more sophisticated spatial data structures are preferred for larger sets.

Listing 37.9: C++ implementation of a spatial list, using an array as the
underlying structure.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

template<class Value, class Trait = PrimitiveKeyTrait<Value> >
class List {
std::vector<Value> data

public:

int size() const {
return data.size();

}

/* O(1) time */
void insert(const Value& v) {
data.push_back(v);

}

/* O(1) time */
void remove(const Value& v) {
int i = data.find(v);
if (i != -1) {
// Remove the last
data[i] = data[data.size() - 1];
data.pop();

}
}

...
};
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Figure 37.6: A set of points distributed in 2D and two logical data structures describing
them with list semantics. The list interface on the left relies on an underlying array. The
one on the right uses an underlying linked list. Note that the order of elements within the
list is arbitrary.

Now consider the implications of generalizing from a 1D key such as a grade
to a higher-dimensional key such as a 2D location. Figure 37.6 shows a sample
2D data set with seven points labeled a–g and two alternative list implementations
corresponding to those data.

Compared to a 1D list, there is no longer a total ordering on keys. For example,
there is no general definition of “greater” between (0, 1) and (1, 0) the way that
there is between 3 and 6. Note that this problem occurs because the key has two or
more dimensions. There are still many cases in computer graphics where one has
values that describe 3D data and associates those with 1D keys like the depth of
each object in a scene from the camera. One-dimensional data structures remain
as useful in graphics as in any field of computer science or software development.

Given a set of n values each paired with a kd key (Figure 37.6), a list data
structure backed by a linked list or array implementation requires O(n) space. In
practice, both implementations require space for more than just the n elements if
the data structure is dynamic. In the linked list there is the overhead of the link
pointers. A dynamic array must allocate an underlying buffer that is larger by a
constant factor to amortize the cost of resizing.

Because we cannot order the values in an effective way for general queries,
a query such as ray or box intersection requires n individual tests (see Listings
37.10–11). It must consider each element, even after some results that satisfy the
query have been obtained. We could imagine imposing a specific ordering such as
sorting by distance from the origin or by the first dimension, but unless we know
that our queries will favor early termination under that sorting, this cannot even
promise a constant performance improvement.
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Listing 37.10: C++ implementation of ray-primitive intersection in a list. The
method signature choices streamline the implementation.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

/* O(n) time for n = size() */
bool firstRayIntersection(const Ray& ray, Value*& value, float& distance) const {
bool anyHit = false;

for (int i = 0; i < data.size(); ++i) {
if (Trait::intersectRay(ray, data[i], distance)) {

// distance was already updated for us!
value = &data[i];
anyHit = true;

}
}

return anyHit;
}

Listing 37.11: C++ implementation of conservative ball-primitive
intersection in a list.

1
2
3
4
5
6
7
8

/* O(n) time for n = size() */
void getBallIntersection(const Ball& ball, std::vector<Value*>& result) const {
for (int i = 0; i < data.size(); ++i) {
if (Trait::intersectsBall(ray, data[i])) {

result.push_back(&data[i]);
}

}
}

Both structures allow insertion of new elements in amortized O(1) time. The
linked list prefers insertion at the head and the array at the end. Finding an element
to delete is a query, so it takes n operations. Once found, the linked list can delete
the element in O(1) time by adjusting pointers. The array can also delete in O(1)
time—it copies the last element over the one to be deleted and then reduces the
element count by 1. Because the array is unordered, there is no need to copy more
elements. It is critical, however, that the array and its contents be private so that
there can be no external references to the now-moved last entry.

There may be some advantage to the array’s packing of values in a cache-
friendly fashion, but only if the elements are small. If the values are large, then
they may not fit in cache lines anyway, and the cost of copying them during inser-
tion and removal may dwarf the main memory latency and bandwidth savings.

37.6 Trees

Just as they do for sorted data in one dimension, trees provide substantial speedups
in two or more dimensions. In 1D, “splitting” the real line is easy: We consider
all numbers greater than or less than some splitting value v. In higher dimensions,
we generally use hyperplanes for dividing space, and different choices for hyper-
planes lead to different data structures, some of which we now describe.
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Figure 37.7: A depiction of a 1D binary tree as partitions (black lines) of values with
associated keys (red disks). The thickness of the partition line represents the tree depth of
that partition node in the tree; the root is the thickest.

37.6.1 Binary Space Partition (BSP) Trees

A 1D binary search tree recursively separates the number line with splitting
points, as depicted in Figures 37.7 and 37.8. In 2D, a spatial tree separates 2-
space with splitting lines, as depicted in Figure 37.9. In 3D, a spatial tree separates
3-space with splitting planes.

The analogy continues to higher dimensions. For any number of dimensions,
a binary space partition (BSP) tree expresses a recursive binary (i.e., two-sided)
partition (i.e., division) of space [SBGS69, FUCH80]. This partitioning divides
space into convex subspaces, that is, convex polygons, polyhedra, or their higher-
dimensional analogs, called polytopes. The leaves of the tree correspond to these
subspaces, which we’ll call polyhedra in general. The internal nodes correspond
to the partition planes. They also represent convex spaces that are unions of their
children.

BSP trees can support roughly logarithmic-time intersection queries under
appropriate conditions. These intersection queries can be framed as intersect-
ing some query geometry with either the convex polyhedra corresponding to the
leaves, or the primitives inside the leaves. In the latter case, note that the tree
is only accelerating the intersection computation on nodes. For primitives stored
within a node, it delegates the intersection operation to a list data structure. That
provides no further acceleration. But it allows the tree to have an interface that
is more useful to an application programmer. The application programmer is pri-
marily concerned with the primitives, and wants the tree’s structure to provide
acceleration but have no semantic impact on the query result.

In addition to the ray, box, and ball queries, BSP trees can also enumerate their
elements in front-to-back overlap order relative to some reference point, and they
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Figure 37.8: An alternative choice of tree structure for the same data shown in Fig-
ure 37.7. This tree is shallower and contains multiple primitives per node, indicated by
adjacent boxes. Such a structure might be preferred if the overhead of processing a node
is high.

can produce a convex polyhedron bounding the empty space around a point. Many
video games use the latter operation to locate the convex space that contains the
viewer for efficient access to precomputed visible-surface information.

The ordered enumerations are possible because the partitions impose an order-
ing of the convex spaces along a ray. This allows partially ordered enumeration of
primitives encountered along a ray. It is not a total ordering because some nodes
may contain more than one primitive in an unordered list. The ordering of nodes
allows early termination when ray casting, which is why they have been frequently
employed for accelerating ray casting as described in Section 36.2.1. It also allows
hierarchical culling of occluded nodes within a camera frustum and early termi-
nation in that case, as explained in Section 36.7.

The logical (i.e., pointer) structure of the tree in memory is simply that of a
binary tree (see Listing 37.12), regardless of the number of spatial dimensions.
Trees are typically built over primitives, such as polygons. This leaves a design
choice of how to handle primitives that span a partition. In one form, primitives
that span a partition plane are cut by the plane, and the leaves store lists of the cut
primitives that lie entirely within their convex spaces. To preserve the precision
of the input, the cutting operation may be performed while building the tree and
the original primitives stored at the leaves. Under that scheme, the same primitive
may appear in multiple leaves.

An alternative is to store primitives that span a partition plane in the node for
that plane. This can destroy the asymptotic efficiency of the tree if many primitives
span a plane near the root of the tree. However, for some scenes this problem can
be avoided by choosing the partitions to avoid splitting primitives.
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Figure 37.9: A depiction of a 2D binary space partition tree (BSP) as partitions (black
lines) of values with associated keys (red disks). The thickness of the partition line repre-
sents the tree depth of that partition node in the tree; the root is the thickest.

Listing 37.12: A C++ implementation of a binary space partition tree.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

template<class Value, class Bounds = PrimitiveKeyTrait<Value> >
class BSPTree {
class Node {
public:
Plane partition;

/* Values at this node */
List<Value, Bounds> valueArray;

Node* negativeHalfSpace;
Node* positiveHalfSpace;

};

Node* root;

...
};
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Although all leaves represent convex spaces, the ones at the spatial extremes
of the tree happen to correspond to spaces with infinite volume. For example, the
rightmost space on the number line in Figure 37.7 represents the interval from 14.5
to positive infinity. Infinite volume can be awkward for some computations. It is
also a strength of the tree data structure because every BSP tree can represent all of
space. Thus, without even changing the structure of the tree, one can dynamically
add and remove primitives from nodes. This is useful for expressing arbitrary
movement of primitives through a scene. For scenes dominated by static geometry,
this is a significant advantage that the tree holds over other spatial data structures
such as grids that represent only finite area. Those data structures must change
structure when a primitive moves outside the former bounds of the scene.

A tree containing n primitives must store at least references to all of the prim-
itives, so its size must be at least linear in n. The smallest space behavior occurs
when the tree has a small number of nodes storing a large number of primitives.
It also occurs when building a highly unbalanced tree at which most nodes have
only one branch, as shown in Figure 37.10.

(3, 6)

(1, 4)

(8, 2)

(12, 3)

(13, 1)

(16, 6)

Spatial structure

Logical structure

a

b

e

f g

(7.5, 2.5)

d

c

a

b

c
d

e

f

g

Figure 37.10: A degenerate BSP tree with the same asymptotic performance as a list. The
poor performance results from an ineffective choice of partitions. This situation can arise
even with a good tree-building strategy if elements move after the partitions have been
placed. Even worse trees exist—there could be many empty partitions.
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It is important to note that the size of the tree has no upper bound. There are
two reasons for this, both of which can easily occur in practice. First, one can
add partitions independent of the number of primitives. This may be useful if one
expects additional primitives to be inserted later. This may occur naturally from
an implementation that chooses not to remove nodes when primitives move out of
them (e.g., for time efficiency in move and delete operations).

Second, in an implementation that splits primitives, poor choice of partition
planes can significantly amplify the number of primitives stored. As discussed in
Section 37.6.2, choosing partitions is a hard problem. For arbitrary scenes there is
no reason to expect that the partitions can be chosen to avoid substantial amplifi-
cation of primitives. Since sufficient amplification of the number of primitives can
cancel any benefit from efficient structure, one must be careful when choosing the
partition planes.

Most algorithms on trees assume that they have been built reasonably, with
fewer than 2n nodes.

A balanced BSP tree can locate the leaf containing a point in O(lg n) com-
parisons, which is why it is common to think of tree operations as being log-time.
If the tree is unbalanced but has reasonable size, this may rise as high as O(n)
comparisons, as in the degenerate tree shown in Figure 37.10. For a tree with an
unreasonable size there is no upper bound on the time to locate a point, just as
there is no bound on the size of the tree.

Our common intersection problems—first-ray intersection, conservative ball
intersection, and conservative box intersection—are all at least as hard as locating
the convex region containing a point. So all intersection queries on the BSP tree
take at least logarithmic expected time for a balanced tree, yet have no upper
bound on runtime if the tree structure is poor. The volume (i.e., ball and box)
queries are also necessarily linear in the size of the output, which can be as large
as n.

The actual runtime observed for intersection queries generally grows as the
amount of space covered by the query geometry increases. Fortunately, it usually
grows sublinearly. The basic idea is that if a ray travels a long distance before it
strikes a primitive, it probably passed through many partitions, and if it travels a
short distance, it probably passed through few. The same intuition holds for the
volume of primitives.

A good intuition is that the runtime might grow logarithmically with the extent
of the query geometry, since for uniformly distributed primitives we would expect
partitions to form a balanced tree. However, one would have to assume a lot about
the distribution of primitives and partitions to prove that as a bound.

The idea of the spatial distribution of primitives is very important to the the-
ory supporting BSP trees, despite its confounding effects on formal analysis. One
typically seeks to maintain a classic binary search tree in a balanced form to min-
imize the length of the longest root-to-leaf path and thus minimize the expected
worst-case search behavior.

Balance (and big-O analysis) helps to minimize the worst-case runtime. But
under a given pattern of queries and scene distribution, you might want to find
the tree structure that minimizes the overall runtime. While your algorithms book
stresses the first one, what actually matters in practice is the second one.

For example, a balanced spatial data structure tree is rarely optimal in prac-
tice [Nay93]. This at first seems surprising—classic binary tree data structures are
usually designed to maintain balance and thus minimize the worst case. However,
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since the average-case performance depends on the queries and we expect many
queries for a graphics application, we should intentionally unbalance the tree to
favor expected queries. This is directly analogous to the tree used to build a Huff-
man code for data compression. There, one knows the statistics of the input stream
and wants to build a tree that minimizes the average node depth weighted by the
number of occurrences of each node in the input stream. Unfortunately, we don’t
know the exact queries that will be made, so we can’t apply Huffman’s algorithm
exactly to building a spatial data structure. But we can choose some reasonable
heuristics because our values have a spatial interpretation. For example, we might
assume that queries will be equally distributed in space or that the probability of
a random query returning a primitive is proportional to the size of that primitive.

Finally, because wall-clock time is what matters for this kind of analysis, we
have to factor in the tree-build time and the relative costs of memory operations
and comparisons when optimizing.

37.6.2 Building BSP Trees: oct tree, quad tree, BSP
tree, kd tree

It is hard to choose good partition planes. There are theoretically infinitely many
planes to choose from. The choice depends on the types of queries, the distribution
of data, and whether one wants to optimize the worst case, the best case, or the
“average” case. If the tree structure will be precomputed, the build process can
be made expensive—and some algorithms take O(n2) time to build a tree on n
primitives. If the tree will be built or modified frequently inside an interactive
program, it is important to minimize the combination of tree-build and query time,
so one might choose partitions that can be identified quickly rather than ones that
give optimal query behavior.

To address the problem of considering too many choices of partition planes,
it is often easier to introduce constraints so as to consider a smaller number of
options. This has the added advantage of requiring fewer bits to represent the par-
titions, which translates to reduced storage cost and reduced memory bandwidth
during queries.

One such artificial constraint is to consider only axis-aligned parti-
tions [RR78]. The resultant BSP tree is called a kd tree (also written as “k-d
tree”). The axis to split along may be chosen based on the data, or simply rotated
in round-robin fashion. In the latter case, each partition plane can be represented
(see Listing 37.13) by a single number representing its distance from the origin,
since the plane normal is determined by the depth of a plane’s node in the tree.

Listing 37.13: kd tree representation.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

template<class Value>
class KDTree {
class Node {
public:
float partition;
Node* negativeHalfSpace;
Node* positiveHalfSpace;
List<Value> valueArray;

};

Node* root;

...
};
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Regardless of restrictions, there are still many choices of where to place a
partition:

• Mean split on extent

• Mean split on primitives

• Median split on primitives

• Constant ray intersection probability [Hav00]

• Clustering

Splitting along the mean of the extent of all primitives at a node along each
axis yields a set of nested k-cubes [RR78]. That is, each partition is at the center
of its parent’s polyhedron. In 3D, this is called an oct tree (a.k.a. “octree”) (see
Listing 37.14). Although they can be represented using binary trees, for efficiency
oct trees are typically implemented with eight child pointers, hence their names.
They have 2D analogs in quad trees (see Figure 37.11), and can of course be
extended to 1D or 4D spaces and higher.

Listing 37.14: Oct tree representation.

1
2
3
4
5
6
7
8
9

10
11
12
13

template<class Value>
class OctTree {
class Node {
public:
Node* child[8];
List<Value> valueArray;

};

Node* root;
Vector3 extent;
Point3 origin;
...

};

In general, building trees is a slow operation if implemented in a straightfor-
ward manner. It was classically considered a precomputation step. In that case,
one avoided changing the structure of the tree at runtime.

However, if you are willing to complicate the tree-building process and work
with a concurrent system, you can build trees fairly fast on modern machines.
Lauterbach et al. [LGS+09] reported creating trees dynamically on a GPU at about
half the speed of rasterization for a comparable number of polygons on that GPU.
Having tree-building performance comparable to rasterization performance means
that it can be performed on dynamic scenes. Furthermore, for many applications,
most of the geometry in a scene does not change position between frames. In
this case, only the subtrees containing dynamic elements need to be rebuilt. For-
tunately, although implementing a fast tree-building system is difficult, there are
libraries that implement the tree build for you.

Here are some conventional wisdom and details.

• Current hardware architectures favor very deep trees, so plan to keep sub-
dividing down to one or two primitives per node [SSM+05].

• As discussed, we often want the tree to be unbalanced [SSM+05].
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Figure 37.11: A quad tree. If a cluster of data points is not split by a low power-of-two plane
position, the tree may become very deep, as near primitives c and d in this example. A better
tree-building strategy for this particular data set would have been to make a second-level
node containing two primitives, rather than subdividing until each node contained a single
primitive. However, if c and d represented clusters of hundreds of primitives, no efficient
tree would be possible—either many primitives would lie at each node, or there would be
a long degenerate chain of internal nodes.

• Because of memory bandwidth and cache coherence, saving space saves
runtime when constants are “small” (and we’re often in that case). So
compact tree representations can lead to substantial speedups. Here are
some tricks for reducing the memory footprint of internal nodes.
– Place children at adjacent locations in memory so that a single pointer

can reference them.
– Use kd trees instead of BSP trees to limit the footprint of each node to

a single offset, or oct trees so that no per-node information is required.
– Pack per-node values (such as the kd tree plane offset) directly into

unused bits of the child pointer value by limiting the precision for each.
These kinds of optimizations can lead to a 10x performance increase in
practice [SSM+05].
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• Be careful about precision when splitting elements. Due to finite precision,
the new vertices introduced will rarely lie on a splitting plane, and will thus
cause the split primitives to poke slightly into the sibling node.

• Be careful about less-than versus less-than-or-equal-to comparisons. Con-
sider what happens to a point on a splitting plane and ensure that your
tree-building and tree-traversal algorithms are consistent with one another.
Unfortunately, a splitting plane passing exactly through a vertex or edge is
not a rare situation because you often chose splitting planes based on the
primitives themselves.

37.6.3 Bounding Volume Hierarchy

A Bounding Volume Hierarchy (BVH) is a spatial tree comprising recursively
nested bounding volumes, such as axis-aligned boxes [Cla76]. Figure 37.12 shows
a 2D axis-aligned box bounding volume hierarchy for a set of points. Listing 37.15
shows a typical representation of the tree.

Unlike a BSP tree, this type of tree provides tight bounds for clusters of primi-
tives and has finite volume. BVHs are commonly built by constructing a BSP tree,
and then recursively, from the leaves back to the root, constructing the bounding
volumes. The bounding volumes of sibling nodes often overlap under this scheme;
as with a BSP tree one can also create a BVH that splits primitives to maintain dis-
joint sibling spaces.
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Figure 37.12: A depiction of a 2D axis-aligned box bounding volume hierarchy (BVH). This
is an alternate form of tree to the binary space partition tree that provides tighter bounds
but does not allow updates without modifying the tree structure.
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Listing 37.15: Bounding volume hierarchy using axis-aligned boxes.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

template< class Value, class Trait = PrimitiveKeyTrait<Value> >
class BoxBVH {
class Node {
public:
std::vector<Node*> childArray;

/* Children in this leaf node. These are pointers because a value
may appear in two different nodes. */
List<Value*> valueArray;

AABox bounds;
};

Node* root;
...

};

The bounding volumes chosen tend to be balls or axis-aligned boxes because
those admit compact storage and intersection queries. These are also known as
sphere trees or AABB trees, respectively.

37.7 Grid

37.7.1 Construction
A grid is the generalization of a radix-based 1D array. It divides a finite rectangu-
lar region of space into equal-sized grid cells or buckets (see Figure 37.13). Any

(3, 6)

(1, 4)

(8, 2)

(12, 3)

(13, 1)

(16, 6)

Spatial structure

Logical structure

a

b

c
d

e

f

g

b ga efdc

(7.5, 2.5)

Figure 37.13: A depiction of a 2D grid of values with point keys. The logical structure is
that of an implementation that unrolls the underlying 2D array in row-major order starting
from the bottom row.
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point P within the extent of the grid lies in exactly one cell. The multidimensional
index of that cell is given by subtracting the minimal vertex of the grid from P,
dividing by the extent of one cell, and then rounding down. For a grid with the
minimal corner at the origin and cells of extent one distance unit in each dimen-
sion, this is simply the “floor” of the point. Thus, if we hold cell extent constant,
the containing cell can be found in constant time, but the storage space for the
structure will be proportional to the sum of the number of members and the vol-
ume of the grid. Intersection queries on a grid generally run in time proportional
to the volume of the query shape (or length, for a ray).

Grids are simple and efficient to construct compared to trees, and insertion and
removal incur comparatively little memory allocation or copying overhead. They
are thus well suited to dynamic data and are frequently used for collision detection
and other nearest-neighbor queries on dynamic objects.

Listing 37.16 shows one possible representation of a grid in three dimensions,
with some auxiliary methods. The underlying representation is a multidimensional
array. As for images, which are 2D arrays of pixels, grids are frequently imple-
mented by unrolling along each axis in turn to form a 1D array. In the listing,
the cellIndex method maps points to 3D indices and the cell method returns a
reference to the cell given by a 3D index in constant time.

Listing 37.16: Sample implementation of a 3D x-major grid and
some helper functions.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

struct Index3 {
int x, y, z;

};

template< class Value, class Bounds = PrimitiveKeyTrait<Value> >
class Grid3D {
/* In length units, such as meters. */
float cellSize;
Index3 numCells;

typedef List<Value, Bounds> Cell;

/* There are numCells.x * numCells.y * numCells.z cells. */
std::vector<Cell> cellArray;

/* Map the 1D array to a 3D array. (x,y,z) is a 3D index. */
Cell& cell(const Index3& i) {
return cellArray[i.x + numCells.x * (i.y + numCells.y * z)];

}

Index3 cellIndex(const Point3& P) const {
return Index3(floor(P.x / cellSize),

floor(P.y / cellSize),
floor(P.z / cellSize));

}

bool inBounds(const Index3& i) const {
return

(i.x >= 0) && (i.x < numCells.x) &&
(i.y >= 0) && (i.y < numCells.y) &&
(i.z >= 0) && (i.z < numCells.z);

}

...
};
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Since the number of operations involved in finding a grid cell is relatively
small, each operation takes a large percentage of the cell dereference time and it
is worth micro-optimizing them from the straightforward version shown here. If
cellSize is 1.0, the divisions in cellIndex can be completely eliminated. Where
that is not possible, multiplying P by a precomputed 1/cellSize value is faster
on many architectures than performing the division operations. The floor opera-
tion is a relatively expensive floating-point operation that can be replaced with an
intrinsic-supported truncate-and-cast-to-integer operation. When numCells.x and
numCells.y are powers of two, the multiplications in the cell method become
faster bit-shift operations. Finally, at the loss of some abstraction, it is sometimes
worth exposing the 1D indexing scheme outside of the data structure. Callers can
then iterate directly through the 1D array in steps chosen to walk along any given
dimension.

By convention, elements in the 1D array varying along the lowest-indexed
dimension (e.g., x) are the ones placed at adjacent memory addresses. When the
iteration order is expected to favor some other axis, arranging to unroll along that
axis first can yield increased cache coherence. For example, if an application is
expected to trace many rays vertically, then making the vertical axis coherent is a
good choice.

Sometimes the dominant ray iteration direction cannot be predicted, or iter-
ation will be across multiple dimensions for volume queries such as ball inter-
section. If memory coherence is a concern for such applications, unrolling the
multidimensional array along a space-filling curve can be a good solution. Curves
such as the Hilbert [Hil91, Voo91] or Morton [Mor66] (a.k.a. “Z,” for its shape)
curves define an indexing scheme that, on average, assign spatially local elements
to spatially local memory addresses. These can typically be implemented with a
few bitwise operations per index computation.

Tuning the extent of each cell, or equivalently, the number of cells for a given
grid extent, requires a good understanding of the kinds of queries that will be
performed and the spatial distribution of the data. This issue is best discussed
after the query algorithms, so we set it aside until Section 37.7.3.

The inBounds method is convenient for identifying legal indices, which is
necessary because the grid has finite extent. For some applications data sets have
inherent spatial bounds. For example, in a virtual environment like a video game
level with a well-defined boundary, objects will never move beyond the boundary.
In this case the finite nature of the grid presents no limitation. In other cases, a
scene is known to be very dense in a specific region but contains a few elements
that lie far from that region, possibly without any practical spatial bound. In this
situation one can extend the grid with a single additional list of elements that
lie outside the grid proper. This allows the data structure to represent unbounded
extent yet still provide efficient queries within the dense region. If a data set is
neither spatially bounded nor primarily clustered in a dense region, the simple grid
is likely a poor choice of data structure. However, the sparse hash grid described
later in this section may still be appropriate.

37.7.2 Ray Intersection

To find the first intersection of a ray with the primitives in a grid, the query
algorithm must walk through the cells of the grid in the order in which the ray
enters them, as shown in Figure 37.14. In 2D, this is equivalent to the problem of
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Figure 37.14: Ray traversal of a 2D grid (from [AW87]). To correctly traverse the grid,
a traversal algorithm must visit cells a, b, c, d, e, f, g, and h in that order. (Reprinted
from Eurographics 1987: Conference Proceedings, 1987 (ISBN 0444702911), Marechal
ed., John Amanatides and Andrew Woo, pp. 1–10, “A Fast Voxel Traversal Algorithm for
Ray Tracing,” Figure 1.)

(ordered) conservative rasterization of the line: Find all cells that touch any part
of the line. In 3D, the process is called conservative voxelization.

Listings 37.17–37.19 give an algorithm for conservative voxelization first pro-
posed by Amanatides and Woo [AW87]. During initialization (Listing 37.17), this
algorithm finds the grid cell containing the ray origin. It then computes several
vector quantities describing the relative rate of motion of a point Q(t) = P+�dt on
the ray with origin P and direction �d. From these it can iteratively march through
the grid by stepping to the nearest grid line (Listing 37.19).

Listing 37.17: Interface for a 3D grid iterator.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

class RayGridIterator {
public:

/* Current grid cell */
Index3 index;

/* Sign of the direction that the ray moves along each axis; +/-1 or 0 */
Index3 step;

/* Size of one cell in units of t along each axis. */
Vector3 tDelta;

/* Distance along the ray of the first intersection with the
current cell (i.e., that given by index). Initially zero. */

float tEnter;

/* Distance along the ray to the intersection with the next grid
cell. tEnter and tExit can be used to bracket ray ray-primitive
intersection tests within a cell. */

Vector3 tExit;

RayGridIterator(const Ray& ray, float cellSize);

/* Increment the iterator, stepping exactly one cell along exactly one axis */
RayGridIterator& operator++();

};
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Listing 37.18: Initialization of a ray-grid iterator.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

RayGridIterator::RayGridIterator(const Ray& ray, float cellSize) {
tEnter = 0.0f;

// Iterate over axes, treating points and vectors as linear algebra vectors
for (int a = 0; a < 3; ++a) {

index[a] = floor(ray.origin()[a] / cellSize);
tDelta[a] = cellSize / ray.direction()[a];

step[a] = sign(ray.direction()[a]);

float d = ray.origin()[a] - index[a] * cellSize;
if (step[a] > 0)

// Measure from the other edge
d = cellSize - d;

if (ray.direction()[a] != 0)
tExit[a] = d / ray.direction[a];

else
// Ray is parallel to this partition axis.
// Avoid dividing by zero, which could be NaN if d == 0
tExit[a] = INFINITY;

}
}

Listing 37.19: Amanatides and Woo’s algorithm for iterating over the 3D grid
cells along a ray, in order.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

RayGridIterator& operator++() {
tEnter = tExit;

// Find the axis of the closest partition along the ray
int axis = 0;
if (tExit.x < tExit.y)
if (tExit.x < tExit.z)

axis = 0;
else

axis = 2;
else if (tExit.y < tExit.z)
axis = 1;

else
axis = 2;

index[axis] += step[axis];
tExit[axis] += tDelta[axis];

return *this;
}

A limitation of this algorithm is that all of the t-based quantities are stored in
floating point and incremented by addition. They will thus accumulate the round-
off error. If implemented in fixed-point arithmetic, the error in the intersection
positions never increases, but the error in the approximation of the ray direction
increases.

For points reasonably near the origin (e.g., with floating-point values less
than 104) this algorithm is generally considered sufficiently robust for rendering.
However, it may not be sufficiently robust for dynamics simulation, where a
missed collision can result in objects becoming stuck or falling through the world.



ptg11539634

1098 Spatial Data Structures

Listing 37.20 gives the actual intersection algorithm for the grid, considering
both primitives and cells. It iterates through all cells that are in bounds and along
the ray. For each cell encountered, it uses the underlying list’s intersection method
to find the first (if any) intersection.

Listing 37.20: Ray intersection using a 3D grid and iterator.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

class Grid3D {
...

/* Assumes that the ray begins within the grid */
bool firstRayIntersection(const Ray& ray, Value*& value, float& distance) const {

for (RayGridIterator it(ray, cellSize); inBounds(it.index); ++it) {
// Search for an intersection within this grid cell
const Cell& c = cell(it.index);
float maxdistance = min(distance, t.tExit);
if (c.firstRayIntersection(ray, value, maxdistance)) {

distance = maxdistance;
return true;

}
}

// Left the grid without ever finding an intersection
return false;

}
};

Because primitives may appear in more than one grid cell, it is essential to test
only for intersections that occur before the end of the cell at each iteration. An
example of a case that depends on this is shown in Figure 37.15. In that figure,
consider the intersection test that occurs when the iterator is at the cell labeled b.
Because the cells covered by object Y include cell b, during this iteration Y will
be tested against the ray. There is in fact an intersection—yet it occurs in cell c,
not cell b. Were the algorithm to return that intersection, it would miss the true
first intersection, which occurs with object X in cell c.

Intuition indicates that the algorithm will run in time proportional to the num-
ber of grid cells traversed, because that is the cost of the iterator. The constant
overhead of each iteration is very low—a handful of floating-point operations—
so the algorithm is practical for cases where we don’t expect the ray to travel
too far before striking something. A grid with g subdivisions along k dimensions

c dba

X

Y

Figure 37.15: A case where it is essential only to test for intersections that lie within
each cell during the ray-marching process of ray-triangle intersection accelerated by a
spatial grid. (Redrawn from Eurographics 1987: Conference Proceedings, 1987 [ISBN
0444702911], Marechal ed., John Amanatides and Andrew Woo, pp. 1–10, “A Fast Voxel
Traversal Algorithm for Ray Tracing,” Figure 1.)
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contains O(gk) cells. The longest ray traversal is the O(g)-length diagonal of the
grid. For a grid containing n primitives, in the worst case all of those primitives
cover every grid cell along the diagonal but the ray intersects none of them. The
intersection query cost is thus O(g · n).

Of course, for such a scene the grid is a poor choice of data structure, since
even a spatial list beats its performance. So the worst-case bound is very different
from the expected behavior. The grid is better suited to a scene containing roughly
uniformly distributed primitives that tend to fit within a grid cell. Likewise, it
is better suited to cases of the anticipated ray queries that will progress a small
fraction of the scene before striking a primitive.

Trees will exhibit better asymptotic performance under queries than will grids
for large scenes with uneven spatial distributions—we expect to see some kind
of logarithmic versus linear behavior comparing these data structures in the long
run. However, the iteration through empty cells in a grid is fairly fast. Thus, the
constant applied to the linear (in the length of the array) time cost term is small
and one can afford to traverse many cells for each ray. For scenes of bounded size,
the grid may outperform the tree on ray-intersection queries, especially if the time
to build the data structure is factored into the net runtime.

37.7.3 Selecting Grid Resolution

If we expect to perform many box or ball intersections, then we should size
the grid based on the expected intersection object size so that the intersection
algorithm will typically have to examine only a small number of cells (maybe
one to four).

Ray intersection on a grid takes time linear in the length of the ray because
the number of grid cells to examine is asymptotically proportional to the length of
the ray. It also takes time linear in the number of primitives in the grid cells that
are encountered. This creates a tension between minimizing the number of grid-
intersection tests and the number of element-intersection tests. We assume that
grid-intersection tests are less expensive than element intersections. The cost ratio
for each kind of test is probably constant, but it may vary over a large range—
say, 3:1 for ray-sphere : ray-grid time and 200:1 for ray-implicit-surface : ray-grid
time. We might have millions of each kind of potential intersection with signifi-
cantly varying probability of occurrence. Moreover, changing that ratio affects the
space cost of the data structure, which impacts both viability and memory per-
formance. So it is not obvious which kind of intersection test the data structure
should favor for performance. The answer is that it depends on the structure of the
scene as well as the cost of the intersection tests.

We do know that if we make g large, the grid squares are small, as depicted
in Figure 37.16 (left). This reduces the number of elements to be tested in each
nonempty cell, but it increases the number of cells that we need to examine. That
is good for dense scenes. The figure depicts this by highlighting the primitives
that are tested against the ray. That is a small fraction of the elements in the grid
in the figure, but it is a large number of grid borders compared to the number of
elements in the grid.

If we make g small, the grid squares are large. This allows the ray to quickly
step through large volumes of empty space, but it increases the number of ele-
ments that must be tested in each nonempty cell encountered. That is good for
sparse scenes. Figure 37.16 (right) shows a coarse grid over the same scene
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Figure 37.16: (Left) Large g gives small grid cells. A ray iterator must touch many cells
(shown with solid black borders), but most of those will be empty. This is good if the cost
of testing for a geometric intersection is large compared to the cost of iterating through
(or storing) cells. (Right) Small g gives large grid cells. A ray iterates through few grid
cells, but those contain many elements: The conservative ray-cell test produces many false
positives. This is good if the cost of testing for a geometric intersection is small compared
to that of iterating through cells.

from Figure 37.16 (left). For the coarse grid, there are relatively few ray-grid
intersections, but many more ray-element intersection tests must be performed
within each grid cell.

We describe scenes that contain a mixture of dense and sparse areas as hav-
ing a nonuniform spatial distribution of elements. A grid is likely a poor data
structure for ray intersection in a scene of nonuniform density because no single
g constant can serve both areas well. A tree is a better choice in that case because
it can adapt to varying spatial density.

There are three layers of subtlety that can subvert this conclusion. At first,
it seems that a grid will rarely be a useful data structure. That is because many
graphics scenes represent only surface geometry. This makes their spatial distri-
bution of geometry inherently nonuniform, in the sense that the primitives cluster
at the surfaces of objects and not on their interior.

The second point is that this characterization itself depends on scale, so it is
not a safe generalization. The Manhattan area of New York City comprises tall
buildings on a mostly regular grid. Figure 37.17 shows an idealized top view of
such a layout. If we examined a computer graphics model of the building exte-
riors over a volume about the size of a single room (e.g., choosing g so that

Dense  Geometry

No geometry Little geometry

Comparable density

Figure 37.17: Hypothetical top view of a city on an island. (Left) Small grid cells give
inhomogeneous geometric density. (Right) Sufficiently large cells produce approximately
uniform density for this scene.
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g3/n ≈ 4× 4× 2.5 m3), we’d find that the geometry is indeed distributed in a
nonuniform fashion. That’s because a room volume overlapping the edge of a
building would contain geometry, but one on the interior or completely outside
the building would be empty.

If we instead chose grid cells to have at least the footprint of a city block, we’d
find that every cell contains about the same number of building exteriors, so the
density is nearly uniform. (Of course, some buildings might have more detail in
the model than others—let’s just work with a consistent tessellation level.) So part
of the challenge in choosing the grid size is that the density, which affects our
choice, depends on the grid size itself.

The third point is that constant factors can cause orders of magnitude in per-
formance difference in ray-intersection times with a tree and a grid’s own sub-
divisions (separate from the cost of intersecting the elements within them). That
is because the regular structure of the grid allows efficient memory packing and
eliminates the need to explicitly store the grid’s geometry. Where a bounding vol-
ume hierarchy must explicitly encode each bounding box, the geometry of each
grid cell is implicit in the grid size and requires no memory access to obtain. The
process of tracing a ray through a grid is equivalent to the problem of conserva-
tively rasterizing a line. Line rasterization algorithms tend to simplify down to one
or two branches and a few additions per pixel (grid cell) on the line’s (ray’s) path.
If the ray-grid cell intersection is 50x faster than the ray-tree-node intersection,
we can afford to look at many empty grid cells before the inefficiency of doing so
overwhelms the performance advantage.

37.8 Discussion and Further Reading

We’ve covered a lot of ground in this chapter at a bunch of different levels of
detail and abstraction. Now let’s step back and review the big picture. Relatively
straightforward application of basic computer science principles to spatial data
structures for representing a scene can return huge speedups for rendering and
collision detection. Of course, there are a lot of caveats about avoiding degenerate
cases and optimizing for peak performance. But you’d be crazy not to use these
kinds of structures, because no constant speedup could possibly make a program
scale to large scenes as well as even the simplest spatial tree.

Common sense, backed by examples of some specific cases, led us to the fol-
lowing big observations.

1. Different data structures work well in different places, and the choice
isn’t always determined by their asymptotic behavior. Sometimes testing
in practice is the best solution.

2. Even when you’ve found the best data structure, you may need to do some
tuning.

3. Hardware tricks can sometimes buy you another factor of ten or more.

These items are shown in order: You should choose the right data structure
before you try to do hardware-based optimizations; you should test on sample
scenes before you do your data-structure tuning.

Spatial data structures continue to be a hot topic in computer graphics. You
should experiment by nesting (e.g., Grid3D< BSPTree<Triangle> >) and com-
bine elements of different structures. It is quite common to outperform results
from the literature that use more generic structures if your particular application
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has not been well researched; that is a large part of how the field moves forward.
In any given year there will be several new papers on strategies for placing the
partitions in a spatial tree or clustering for BVHs. For example, in 1987, one good
idea was to build a ray-primitive intersection structure that took the ray’s direction
into account [AK87]; in 2000, Havran’s work on modified surface area heuristics
[Hav00] influenced the way that engineers optimized tree builds based on area;
in 2010 Pantaleone and Luebke [PL10] targeted massively parallel real-time tree
building and tuned for tree build time rather than absolute query time.

It is also common to store the same scene data in more than one structure.
For example, you may want a list of characters in the world for efficient iteration
during Artificial Intelligence simulation, a hash grid for collision detection, and a
BSP tree for rendering them. Often a single complex data structure will contain
multiple, simpler data structures. This presents a unified interface but allows it to
combine the efficiency for different methods from different single data structures.
This approach gains performance at the cost of storage space and implementation
complexity. In particular, storing the same data multiple times creates potential for
the duplicate state becoming desynchronized, and that must be weighed carefully
against the performance advantages.

There are commonly employed data structures and increasingly exotic ones.
For example, most nongraphics programs rely on a small number of classic data
structures such as arrays, hash tables, and an occasional tree. Most graphics pro-
grams rely on those plus the spatial data structures presented in this chapter (with
the list and BVH perhaps currently the most popular). There’s a lot of practical
wisdom in primarily relying on such a small set of workhorses. It amortizes the
cost of polishing and optimizing those structures, and lets the programmer using
them focus on his or her application instead of learning about a new interface.

But sometimes a more exotic classic data structure is really needed. For exam-
ple, if your entire program’s performance depends on having a fast priority queue
for a large data set, then it may be time to read a paper about left-leaning red-
black trees [Sed] and implementing one. But if your program depends heavily
on ray-heightfield intersection performance, then it may be worth investing in a
data structure optimized for that case, such as Musgrave’s and Amanatides’s and
Woo’s grid-tracing algorithms [MKM89, AW87]. Ray-intersection data structures
are a constant topic in the global illumination literature. The ray-tracing state of
the art “STAR” reports are a good place to find surveys of current thought (e.g.,
[WMG+09]). Sphere, box and other primitive intersections often arise in the phys-
ical simulation community. The design and analysis issues presented in this chap-
ter apply equally well to the structures already discussed and to new data structures
that you will invent on your own.

We’ve used ray-triangle intersection as a motivating example throughout this
chapter, in part because ray casting is a common operation in most renderers, and
triangle meshes are a preferred representation for most scene geometries. But in
the future (and in some contexts even today), both of these may change. It may be,
for instance, that tracing frusta (essentially bundles of rays) becomes essential, or
that geometry is represented primarily by points, or by spline surfaces, or by some
yet-unimagined new kind of primitive. When that happens, the choices of accel-
eration structures will change as well, but the kinds of analysis we’ve described
in this chapter will persist: Tradeoffs involving memory coherence, patterns of
access, questions of whether our typical problem is of a size large enough that
asymptotic analysis is informative, and the costs of implementation versus use
will still guide the choices you make as you compare new structures.
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Modern Graphics Hardware

In computer design it is a truism that
smaller means faster.

Richard Russell

38.1 Introduction

All modern personal computers include special-purpose hardware to accelerate
rasterized 2D and 3D rendering. With the exception of the interface that connects
the PC to the display, this hardware is, strictly speaking, unnecessary, because the
rendering could be done on the PC’s general-purpose processor. In this chapter
we consider why PCs include special-purpose rendering hardware, how that hard-
ware is organized, how it is exposed to you, the graphics programmer, and how it
efficiently accelerates 3D rendering and other algorithms.

The history of computing includes many examples of failed special-purpose
computing hardware. Examples include language accelerators, such as Lisp
machines [Moo85] and Java interpreters [O’G10], numeric accelerators, and even
graphics accelerators, such as the Voxel Flinger [ST91]. Modern graphics pro-
cessing units, whose complexity and transistor counts can exceed those of the
general-purpose CPU, are a prominent exception to this rule. Four conditions
have allowed special-purpose graphics processing units, which we will refer to
as GPUs, to become and remain successful. These are performance differentia-
tion, workload sufficiency, strong market demand, and the inertia of ubiquity.

• Performance differentiation: Special-purpose hardware can execute
graphics algorithms far more quickly than a general-purpose CPU. The
most important reason is parallelization: GPUs employ tens or hun-
dreds [Ake93] of separate processors, all working simultaneously, to
execute graphics algorithms. While it is difficult to parallelize general
computations, graphics algorithms are easily partitioned into separate

1103
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tasks, each of which can be executed independently. They are thus more
amenable to parallel implementation.1 Historically, graphics paralleliza-
tion employed separate processors for the different stages in the graphics
pipeline described in Chapters 1 and 14. In addition to pipeline parallelism,
contemporary GPUs also employ multiple processors at each pipeline
stage. The trend is toward increased per-stage parallelism in pipelines of
fewer sequential stages.

Parallelism and other factors that contribute to GPU performance differen-
tiation are explored further in Section 38.4.

• Workload sufficiency: Graphics workloads are huge. Interactive applica-
tions such as games render scenes comprising millions of triangles pro-
ducing images, each comprising one or two million pixels, and do so 60
times per second or more. Current interactive rendering quality requires
thousands of floating-point operations per pixel, and even this demand con-
tinues to increase. Thus, workloads of contemporary interactive graphics
applications cannot be sustained by a single general-purpose CPU, or even
by a small cluster of such processors.

• Strong market demand: Technical computing applications, in fields such
as engineering and medicine, sustained a moderate market in special-
purpose graphics accelerators during the 1980s and early 1990s. Dur-
ing this period companies such as Apollo Computer and Silicon Graph-
ics developed much of the technological foundation that modern GPUs
employ [Ake93]. But GPUs became a standard component of PC archi-
tecture only when demand for the computer games they enabled increased
dramatically in the late ’90s.

• Ubiquity: Just as in the software and networking businesses, there is an
inertia that inhibits utilization of uncommon, special-purpose add-ins, and
that encourages and rewards their utilization when they have become ubiq-
uitous. Strong market demand was a necessary condition for personal-
computer GPUs to achieve ubiquity, but ubiquity also required that
GPUs be interchangeable from an infrastructure standpoint. Two graph-
ics interfaces—OpenGL [SA04] and Direct3D [Bly06]—have achieved
industry-wide acceptance. Using these interfaces application programmers
can treat GPUs from different manufacturers, and with different develop-
ment dates, as being equivalent in all respects except performance. The
abstraction that Direct3D defines is considered further in Section 38.3.

GPUs based on the classic graphics pipeline, exemplified by the NVIDIA
GeForce 9800 GTX considered in the next section, have achieved a stable position
in the architecture of personal computers. They are therefore well worth studying
and understanding. The situation may change, however, as it has for so many other
special-purpose functional units.

Parallelism, in the form of multiple processors (a.k.a. cores) on a single CPU,
has replaced increasing clock frequency as the engine of exponential CPU perfor-
mance improvement. The number of cores on a CPU is expected to increase expo-
nentially, just as clock frequency has in the past. The resultant parallelism may

1. Indeed, graphics is sometimes referred to as embarrassingly parallel, because it offers
so many opportunities for parallelism.
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make general-purpose CPUs more performance-competitive with GPUs, thereby
reducing the demand for special-purpose hardware.

Alternatively, the limitations of the classic-pipeline architecture discussed in
this chapter may allow a contending architecture to overcome and replace cur-
rent GPUs. Because GPUs have tended toward brute force algorithms, such as the
z-buffer visible-surface algorithm described in Chapter 36, the workload argument
is somewhat circular: GPUs amplify their own work requirements by implement-
ing inefficient algorithms. Accelerated ray tracing is one candidate architecture to
replace current GPUs.

Perhaps the most likely outcome is that GPU architecture will steadily evolve,
as it has in the past decade, to accommodate new algorithms and architecture
features.

The remainder of this chapter describes graphics architectures in part by
using three exemplars: the OpenGL and Direct3D software architectures, and the
NVIDIA GeForce 9800 GTX GPU, released in April 2008. While this GPU is
already fading in popularity, the decisions that influenced its design will remain
current for a long while.

This chapter defines many terms that you’ve already encountered earlier in the
book. It does so for two reasons: First, the reader with some prior experience in
graphics may profitably read this chapter first, even though it appears at the end of
the book; second, some definitions in this chapter have been chosen to correspond
to industry practice (so that, for instance, a “color” is an RGB triple rather than
a percept in the human brain!), and we want to be certain that you understand
exactly what’s being said.

38.2 NVIDIA GeForce 9800 GTX

Figure 38.1 illustrates the key components and interconnections in a state-of-the-
art personal computer (PC) system, as of early 2009. The Intel Core 2 Extreme
QX9770 CPU, Intel X48 Express chipset, and NVIDIA GeForce 9800 GTX GPU
were among the highest-performance components then available for desktop com-
puting. This is the sort of system a serious computer gamer would have bought if
the $5,000 price were within reach. With this context in mind, let’s look at the
performance and design of the 9800 GTX GPU.

Memory

512 MB GDDR3

GPU

NVIDIA 9800GTX
(16 cores,

648 GFLOPS)

Controller

Intel 82X48
Memory

4 GB DDR3

CPU

Intel QX9770
(4 cores,

102.4 GFLOPS,
12 MB L2 cache)

Front-side
bus

Memory
bus

PCIe 2.0
bus

25.6 GB/s

12.8 GB/s

16 GB/s

GPU
memory

bus

70.4 GB/s

Figure 38.1: PC block diagram.
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Figure 38.2: NVIDIA GeForce
9800 GTX graphics card. (Cour-
tesy of NVIDIA.)

Like the Extreme CPU, the GTX GPU is a single component—a packaged
silicon chip—that is mounted to a circuit board by hundreds of soldered circuit
interconnections. The CPU, chipset, and CPU memory are mounted to the pri-
mary system circuit board, called the motherboard, along with most of the PC’s
remaining electronics. The GPU and GPU memory are mounted to a separate
PCIe circuit board that is connected to the motherboard through a multiconnector
socket (see Figure 38.2).

Perhaps the most notable characteristic of the GeForce 9800 GTX is its
extremely high performance. The GTX can render 340 million small triangles per
second and, when rendering much larger triangles, a peak of almost 11 billion pix-
els per second. Executing application-specified code to compute the shaded col-
ors of rendered pixels, the GTX can perform 576 billion floating-point operations
per second (GFLOPS). This is more GFLOPS than the most powerful super-
computer available just over a decade ago, and is more than five times the
102.4 GFLOPS that the Intel Core 2 Extreme QX9770 CPU can sustain. Mem-
ory bandwidth—the rate data is moved between a processor chip and its exter-
nal random access memory—is an equally important metric of performance. The
Core 2 Extreme QX9770 CPU accesses external memory through the X48 Express
chipset. While the chipset supports memory transfers at up to 25.6 GB/s, the Front
Side Bus that connects the CPU to the chipset limits CPU-memory transfers to a
maximum of 12.8 GB/s. The GPU accesses its memory directly and achieves a
peak transfer rate of 70.4 GB/s, more than five times that available to the CPU.

In the same way that interest compounds on invested money, CPU and GPU
performance have reached their current state through steady exponential increase.
Underlying this exponential increase is Moore’s Law, Gordon Moore’s 1965 pre-
diction that the number of transistors on an economically optimum integrated cir-
cuit would continue to increase exponentially, as it had since Intel had begun
producing integrated circuits a few years earlier [Moo65]. Over the succeeding
four decades the actual increase held steady at about 50% per year, resulting in
the near-iconic status of Moore’s prediction. Compounding at high rates quickly
results in huge gains. A decade of 50% annual compounding, for example, yields
an increase of 1.510 = 57.67 times. And a decade of 100% annual compounding
yields an increase of 210 = 1,024 times, so quantities with the same initial value
that grow at these two rates differ by a factor of almost 20 after a decade. Driven
by Moore’s Law, the storage capacity of integrated circuit memory, which is pro-
portional to transistor count, has increased by a factor greater than ten million
since its first commercial availability in the early 1960s.

Increased transistor count allows increased circuit complexity, which engi-
neers parlay into increased performance through techniques such as parallelism
(performing multiple operations simultaneously) and caching (keeping frequently
used data elements in small, high-speed memory near computational units).
Increases in transistor count are driven primarily by the steady reduction in the
dimensions of transistors and interconnections on silicon integrated circuits. (The
interconnections on the Intel Core 2 Extreme QX9770 CPU have a drawn width
of just 45 nm, 1/2,000th the width of a human hair, and about one-tenth the
wavelength of blue light.) Smaller transistors change state more quickly, and
shorter interconnections introduce less delay, so circuits can be run at higher
speeds. Increases in transistor count and circuit speed compound, allowing the
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performance of well-engineered components to increase at rates approaching
100% per year.

GPU designers have made excellent use of increases in both transistor count
and circuit speed. Over the ten years between 2001 and 2010 performance metrics
of NVIDIA GPUs, such as triangles drawn per second and pixels drawn per sec-
ond, have increased by 70% to 90% per year. Memory bandwidth has increased
by only 50% per year. But data compression techniques, themselves enabled by
increased circuit complexity, have allowed an increase in effective memory band-
width of 80% per year, supporting the correspondingly large increases in drawing
performance.

CPU designers have taken full advantage of increased circuit speed, but they
have been less successful converting increased transistor count into performance.
CPU performance has historically increased by 50% per year, an amazing achieve-
ment, but still significantly lower than the 70% to 90% annual increases in GPU
performance. Today’s relative performance advantage of GPUs over CPUs is the
direct result of compounding performance at unequal rates.

Shortly after the year 2000, CPUs reached a power dissipation somewhat over
100 watts, near the maximum that can be dissipated by a single component in a
personal computer cabinet. Because circuit power is directly proportional to cir-
cuit speed, the annual 20% increase in CPU clock speed, which had been a major
driver of CPU performance increases for two decades, dropped suddenly to essen-
tially zero. This event has motivated CPU designers to incorporate more paral-
lelism into their circuits, an approach that has been very successful for GPUs. The
Intel Core 2 Extreme QX9770 CPU is a quad-core design, meaning that it contains
four microprocessor cores in a single component package. Dual-core Intel CPUs
were introduced in 2005, and quad-core designs are now available. Each core has
four floating-point Arithmetic and Logic Units (ALUs), each ALU including an
addition unit and a multiplication unit, for a total of 32 floating-point units in the
Core 2 Extreme QX9770. By comparison, the NVIDIA GeForce 9800 GTX GPU
has 16 cores, each with eight floating-point ALUs, and each ALU with two multi-
plication units and one addition unit, for a total of 384 floating-point units. While
the CPU cores are clocked at roughly twice the rate of the GPU cores (3.2 GHz
to 1.5 Ghz), the sheer number of floating-point units in the GPU gives it a greater
than five-to-one GFLOPS advantage (576 to 102).

In summary, as of 2009 GPUs sustained significantly higher performance than
CPUs because they were doing more calculations in parallel, and they did this by
devoting a greater percentage of their silicon area to computation than do CPUs.
As of 2013, there’s no sign of this trend slowing down. GPU parallelism is con-
sidered further in the following sections.

38.3 Architecture and Implementation

When you write code that uses a GPU for graphics, you do not directly manipulate
the hardware circuits of the GPU. Instead, you code to an abstraction, which is
implemented by a combination of the GPU hardware, GPU firmware (code that
runs on the GPU), and a device driver (code that runs on the CPU). The firmware
and the device driver are implemented and maintained by the GPU’s manufacturer,
which is NVIDIA in the case of the GeForce 9800 GTX. They are as fundamental
to the implementation of the abstraction as the GPU hardware itself.
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The distinction between an abstraction and its implementation, and the value
conferred by this distinction, are familiar concepts in software development. Infor-
mation hiding was introduced by Parnas in 1972 [Par72]. Today C++ develop-
ers isolate implementation details behind interfaces constructed using abstract
classes. Prior to the development of C++, C programmers were trained to use
functions, header files, and isolated code files to achieve many of the benefits that
C++ classes came to provide.

The importance of separating interface and implementation was identified
even earlier by computer hardware developers. Gerrit Blaauw and Fred Brooks,
who with Gene Amdahl and others brought computing into the modern age with
the creation of the IBM System/360 in 1964 [ABB64], define the architecture of
a system as “the system’s functional appearance to its immediate user, its concep-
tual structure and functional behavior as seen by one who programs in machine
language” [BJ97]. They use the terms implementation and realization to refer
to the logical organization and physical embodiment of a system. Careful dis-
tinction between architecture and implementation2 allowed the System/360 to be
implemented as a family of computers, with differing implementations and real-
izations (and correspondingly different costs and performances), but a single inter-
face exposed to programmers. Code written for one member of the family was
guaranteed to run correctly on all other family members.

By analogy, Direct3D, which was introduced in Chapter 16 and further dis-
cussed in Section 15.7, and OpenGL specify the architecture of modern GPUs.
They enable code portability just as the System/360 architecture did. But the anal-
ogy runs deeper. Both GPU architectures and CPU architectures do the following.

• They allow for differences in configuration, which for CPUs includes
memory size, disk storage capacity, and I/O peripherals, and for GPUs
includes framebuffer size, texture memory capacity, and specific color cod-
ings available in each.

• They make no specification of absolute performance, allowing implemen-
tations to cover a wide gamut of cost and optimization.

• They tightly specify the semantics of all inputs, both valid and invalid, to
further ensure code compatibility.

An important way that GPU and CPU architectures differ is in level: Direct3D
and OpenGL are specified as libraries of function calls, which are compiled into
application code, while CPUs are described by instruction set architectures, or
ISAs, for which instructions are generated by a compiler. The relatively higher
level of abstraction of GPU architecture has given GPU implementors more room
to innovate, and it is probably a factor in the historically greater rate of GPU per-
formance increase discussed in the previous section. Both Direct3D and OpenGL
were carefully designed to allow highly parallel implementations, for example.

38.3.1 GPU Architecture

While both Direct3D and OpenGL specify their abstractions in exacting detail,
as befits an architectural specification, here we do not completely define either

2. Modern usage of the term “architecture” sometimes includes implementation, but we
will maintain the distinction carefully in this chapter.
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Figure 38.3: Graphics pipeline. This matches both Direct3D and OpenGL at this level of
detail. Arrows indicate data flow while drawing.

interface. Instead, we develop a simplified pipeline model that matches both archi-
tectures at the chosen level of detail. Figure 38.3 is a block diagram of this
architecture.

As you’ve seen in earlier chapters, graphics architectures perform operations
on aggregate data types—vertices, primitives (e.g., triangles), pixel fragments
(often just fragments), and pixels—and on multidimensional arrays of pixels
(e.g., 2D images and 1D, 2D, and 3D textures). Pixels in a texture are called tex-
els. Operations are performed in the fixed sequence illustrated in Figure 38.3. The
sequence cannot generally be modified by the application, although some stages
(e.g., primitive processing) may be omitted.

We briefly review the operation of the graphics pipeline by considering the
processing of a single triangle (see Figure 38.3, left column). Prompted by the
application, the vertex generation stage creates three vertices from geometric and
attribute data (e.g., coordinates and color) stored in memory. The vertices are
passed to the vertex processing stage, where operations such as coordinate-space
transformations are performed, resulting in homogeneous clip-coordinate vertices.
The primitive generation stage assembles the clip-coordinate vertices into a single
triangle, possibly accessing topology information in memory to do so. The trian-
gle is passed to the primitive processing stage, where it may be culled, replaced by
a finite set of related primitives (e.g., subdivided into four smaller triangles), or left
unchanged. After reaching the fragment generation stage, the triangle is clipped
against the viewing-frustum boundaries, projected to screen coordinates, then ras-
terized such that a fragment (a piece of geometry so small that it contributes to
only a single pixel) is generated for each pixel in the output image that geometri-
cally intersects the triangle. The fragment processing stage colors each fragment
by performing lighting calculations and accessing texture images. Finally, the col-
ored fragment is merged into the corresponding pixel in the output image. Oper-
ations performed in the pixel operation stage, such as z-comparisons and simple
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color arithmetic, determine whether and how the fragment values affect or replace
corresponding pixel values.

Three of the pipeline stages—the vertex, primitive, and fragment processing
stages—are application-programmable. A (typically) simple program, specified
by the application using a C-like language, is assigned to the fragment processing
stage, where it is executed on each fragment. Likewise, programs are specified and
assigned to the vertex and primitive processing stages, where they operate on indi-
vidual vertices and primitives. Floating-point arithmetic, logical operations, and
conditional flow control are supported by each programmable processing stage,
as are indexing of global data and filtered sampling (i.e., interpolation) of tex-
ture images, both stored in memory. The remaining stages—the vertex, primitive,
and fragment generation stages and the pixel operations stage—are referred to
as fixed-function stages, because they cannot be programmed by the application.
(They can, however, be configured by various modal specifications.)

Modern graphics architectures support two types of commands, those that
specify state (the majority) and those that cause rendering to occur. Thus, drawing
is a two-step process: 1) Set up all the required state, and then 2) run the pipeline
to cause drawing to happen.3 Vertex data and topology, texture images, and the
application-specified programs for the processing stages are all large components
of pipeline state. In addition, modal state associated with each fixed-function stage
determines the details of its operation (e.g., aliased or antialiased rasterization at
the fragment generation stage). Figure 38.3 emphasizes drawing, rather than state
setup, both by omitting modal state and by indicating read-only access to bulk
memory state (e.g., texture images).

Certain properties of the graphics pipeline architecture have great significance
for both graphics applications and GPU implementations. One such property is
read-only access, during drawing operation, of all bulk memory state other than
the output image. (Writing greatly complicates coherence, the requirement that
memory state values appear consistent to all the processors in a parallel sys-
tem [see Section 38.7.2].) Perhaps even more significant is the requirement for
in-order operation. This applies both to drawing (fragments must reach the out-
put image in the order that their corresponding triangles were specified) and to
state changes (drawing activated prior to a state change cannot be affected by that
change, and drawing specified after must be). GPU implementors struggle might-
ily with in-order drawing, while read-only bulk state (state such as texture memory
that cannot be modified during rendering operation) simplifies their task. Con-
versely, application developers are constrained by read-only state semantics, but
they are supported by in-order drawing semantics. The art of architecture design
includes identifying such conflicts and making the best tradeoffs. If either con-
stituency is entirely happy with the architecture, it probably isn’t right. This is so
important that we embody it in a principle.

THE DESIGN TRADEOFF PRINCIPLE: The art of architecture design includes
identifying conflicts between the interests of implementors and users, and mak-
ing the best tradeoffs.

3. Early OpenGL interfaces blurred this distinction by providing commands that both
specified vertex state and resulted in drawing. This is what is usually meant by the
term “immediate-mode” rendering, as discussed in Chapter 16.
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Figure 38.4: NVIDIA GeForce 9800 GTX block diagram.

38.3.2 GPU Implementation

Now we turn our attention to an implementation of the graphics pipeline
architecture—NVIDIA’s GeForce 9800 GTX. Figure 38.4 is a block-diagram
depiction of this implementation. Block names have been chosen to best illus-
trate the correspondence to the blocks on the pipeline block diagram shown in
Figure 38.3. There is a one-to-one correspondence between the vertex, primitive,
and fragment generation stages in the pipeline and the identically named blocks
in the implementation diagram. Conversely, all three programmable stages in the
pipeline correspond to the aggregation of 16 cores, eight texture units (TUs), and
the block titled “Work queuing and distribution.” This highly parallel, application-
programmable complex of computing cores and fixed-function hardware is central
to the GTX implementation—we’ll have much more to say about it. Completing
the correspondence, the pixel operation stage of the pipeline corresponds to the
four pixel ops blocks in the implementation diagram, and the large memory block
adjacent to the pipeline corresponds to the aggregation of the eight L1$, four L2$,
and four GDDR3 memory blocks in the implementation. The PCIe interface and
interconnection network implementation blocks represent a significant mecha-
nism that has no counterpart in the architectural diagram. A few other significant
blocks, such as display refresh (regularly transferring pixels from the output image
to the display monitor) and memory controller logic (a complex and highly opti-
mized circuit), have been omitted from the implementation diagram.

38.4 Parallelism

As we have seen, several decades of exponential increase in transistor count and
performance have given computer system designers ample resources to design and
build high-performance systems. Fundamentally, computing involves performing
operations on data. Parallelism, the organization and orchestration of simulta-
neous operation, is the key to achieving high-performance operation. It is the
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subject of this section. We defer the discussion of data-related performance to
Section 38.6.

We are all familiar with doing more than one thing at the same time. For exam-
ple, you may think about computer graphics architecture while driving your car or
brushing your teeth. In computing we say that things are done in parallel if they are
in process at the same time. In this chapter, we’ll further distinguish between true
and virtual parallelism. True parallelism employs separate mechanisms in physi-
cally concurrent operation. Virtual parallelism employs a single mechanism that
is switched rapidly from one sequential task to another, creating the appearance
of concurrent operation.

Most parallelism that we are aware of when using a computer is virtual. For
example, the motion of a cursor and of the scroll bar it is dragging appear con-
current, but each is computed separately on a single processing unit. By allowing
computing resources to be shared, and indeed by allocating resources in propor-
tion to requirements, virtual parallelism facilitates efficiency in computing. But
it cannot scale performance beyond the peak that can be delivered by a single
computing element.

All computing hardware therefore employs true parallelism to increase com-
puting performance. For example, even a so-called scalar processor, which exe-
cutes a single instruction at a time, is in fact highly parallel in its hardware
implementation, employing separate specialized circuits concurrently for address
translation, instruction decoding, arithmetic operation, program-counter advance-
ment, and many other operations. At an even finer level of detail, both address
translation and arithmetic operations utilize binary-addition circuits that employ
per-bit full adders and “fast-carry” networks that all operate in parallel, allow-
ing the result to be computed in the period of a single instruction. In a modern,
high-performance integrated circuit the longest sequential path typically employs
no more than 20 transistors, yet billions of transistors are employed overall. The
circuit must be massively parallel.

Because true hardware parallelism is an implementation artifact, it cannot be
specified architecturally. Instead, an architecture specifies parallelism that can be
implemented either virtually (by sharing hardware circuits) or truly (with separate
hardware circuits), or, typically, through a combination of the two. To better under-
stand these alternatives, and to illustrate that parallelism has long been central to
computing performance, we will briefly consider the architecture and implemen-
tation of a decades-old system: the CRAY-1 supercomputer.

Figure 38.5: The CRAY-1 super-
computer was the fastest system
available when it was introduced
in 1976. (Courtesy of Clemens
Pfeiffer. Original image at http://
upload.wikimedia.org/wikipedia/
commons/f/f7/Cray-1-deutsches-
museum.jpg.)

The CRAY-1 was developed by Cray Research, Inc., primarily to satisfy the
computing needs of the U.S. Department of Defense (see Figure 38.5). When
introduced in 1976, it was the fastest scalar processor in the world: Its cycle
time of 12.5 ns supported the execution of 80 million instructions per second.4

Key to its peak performance of 250 million floating-point operations per second
(MFLOPS), however, were special instructions that specified arithmetic opera-
tions on vectors of up to 64 operands. Data vectors were gathered from mem-
ory, stored in 64-location vector registers, and operated on by arithmetic vector
instructions (e.g., the vector sum or vector per-element product of two vector
operands could be computed), and the results returned to main memory.

4. The analysis in this discussion is slightly simplified, because even in scalar operation
the CRAY-1 could in some cases execute two instructions per cycle.

http://upload.wikimedia.org/wikipedia/commons/f/f7/Cray-1-deutschesmuseum.jpg
http://upload.wikimedia.org/wikipedia/commons/f/f7/Cray-1-deutschesmuseum.jpg
http://upload.wikimedia.org/wikipedia/commons/f/f7/Cray-1-deutschesmuseum.jpg
http://upload.wikimedia.org/wikipedia/commons/f/f7/Cray-1-deutschesmuseum.jpg
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Because these per-element operations had no dependencies (i.e., the sum of
any pair of vector elements is independent of the values and sums at all other pairs
of vector elements) the 64 operations specified by a vector instruction could all be
computed at the same time. While such an implementation was possible in prin-
ciple, it was impractical given the circuit densities that could be achieved using
the emitter-coupled transistor logic (ECL) that was employed. Indeed, had such
an implementation been possible, its peak performance would have approached
64 × 80,000,000 = 5,120 MFLOPS, more than 20 times the peak performance
that was actually achieved. Instead, the architectural parallelism of equivalent
operations on 64 data pairs was implemented as virtual parallelism—the 64 oper-
ations were computed sequentially using a single arithmetic circuit.
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b[n]

b c d
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(b1c)[n26]

(a*(b1c))[n213]
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Figure 38.6: Chained evaluation
of the vector expression d = a ×
(b+ c) on the CRAY-1 supercom-
puter. The floating-point addition
unit takes six pipelined steps to
compute its result; the multiplica-
tion unit takes seven.

The roughly 3x improvement in peak arithmetic performance over scalar per-
formance was instead achieved using a parallelism technique called pipelining.
Two specific circuit approaches were employed. First, because floating-point oper-
ations are too complex to be computed by a single ECL circuit in 12.5 ns, the
floating-point circuits were divided into stages: 6 for addition, 7 for multiplication,
and 14 for reciprocation. Each stage performed a portion of the operation in a sin-
gle cycle, then forwarded the partial result to the next stage. Thus, floating-point
operations were organized into pipelines of sequential stages (e.g., align operands,
check for overflow), with the stages operating in parallel and the final stage of
each unit producing a result each cycle. The reduced complexity of the individ-
ual stages allowed the 12.5 ns cycle time to be achieved, and therefore enabled
sustained scalar performance of 80 MFLOPS. Second, a specialized pipelining
mechanism called chaining allowed the results of one vector instruction to be
used as input to a second vector instruction immediately, as they were computed,
rather than waiting for the 64 operations of the first vector instruction to be com-
pleted. As illustrated in Figure 38.6, this allowed small compound operations on
vectors, such as a× (b + c), to be computed in little more time than was required
for a single vector operation. In the best case, with all three floating-point proces-
sors active, the combination of stage pipelining and operation chaining allows a
performance of 250 MFLOPS to be sustained.

Another important characterization of parallelism is into task and data par-
allelism. Data parallelism is the special case of performing the same operation
on equivalently structured, but distinct, data elements. The CRAY-1 vector instruc-
tions specify data-parallel operation: The same operation is performed on up to 64
floating-point operand pairs. Task parallelism is the general case of performing
two or more distinct operations on individual data sets. Pipeline parallelism, such
as the CRAY-1 floating-point circuit stages and operation chaining, is a specific
organization of task parallelism. Other examples of task parallelism include mul-
tiple threads in a concurrent program, multiple processes running on an operating
system, and, indeed, multiple operating systems running on a virtual machine.

GPU parallelism can also be characterized using these distinctions. GPU
architecture (see Figure 38.3) is a task-parallel pipeline. The GeForce 9800 GTX
implementation of this pipeline is a combination of true pipeline parallelism and
virtual pipeline parallelism. Fixed-function vertex, primitive, and fragment gen-
eration stages are implemented with separate circuits—they are examples of true
parallelism. Programmable vertex, primitive, and fragment processing stages are
implemented with a single computation engine that is shared among these distinct
tasks. Virtualization allows this expensive computation engine, which occupies a
significant fraction of the GPU’s circuitry, to be allocated dynamically, based on
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the instantaneous requirements of the running application. A true-parallel imple-
mentation would assign fixed amounts of circuitry to these pipeline tasks, and thus
would be efficient only for applications that tuned their vertex, primitive, and frag-
ment workloads to the static, circuit-specified allocations. Such a static allocation
is forced for the fixed-function stages, but these circuits occupy a small fraction of
the overall GPU, so they can be overprovisioned without significantly increasing
the cost of the GPU.

Task parallelism, in the form of pipeline stages, is only the top level of a hier-
archy of parallelism in the GeForce 9800 GTX implementation, which continues
down to small groups of transistors. The next lower layers of parallelism are the
16 task-parallel computing cores, each of which is implemented as a data-parallel,
16-wide vector processor. Unlike the CRAY-1, whose vector implementation was
virtual parallel, the GeForce 9800 GTX vector implementation is a hybrid of vir-
tual and true parallel—there is separate circuitry for eight vector data paths, each
of which is used twice to operate on a 16-wide vector. (This parallel circuitry is
represented by the eight data paths [DPs] in each of the 16 cores of Figure 38.4.)
A true-parallel vector implementation is sometimes referred to as SIMD (Single
Instruction Multiple Data) because a single decoded instruction is applied to each
vector element. SIMD cores are desirable because they yield much more computa-
tion (GFLOPS) per unit area of silicon than scalar (SISD) cores do. And compute
rate is a high priority for GPU implementations.

It is important to understand that SIMD vector implementation of the GPU
cores is not revealed directly in the GPU architecture (as it is in the CRAY-1 vector
instructions). While the GPU programming model executes the same program
for each element (e.g., each vertex), that vertex program may contain branches,
and the branches may be taken differently for each vertex. The implementation
includes extra circuitry that implements predication. When all 16 vector data
elements take the same branch path, operation continues at full efficiency. A single
branch taken differently splits the vector data elements into two groups: those
that take one branch path and those that take the other. Both paths are executed,
one after the other, with execution suppressed for elements that don’t belong to
the path being executed. (Figure 38.9 in Section 38.7.3 illustrates diverging and
nondiverging predicated execution.) Nested branches may further split the groups.
In the limit separate execution could be required for each element, but this limit
is rarely reached. Thus, a Single Program Multiple Data (SPMD) architecture is
implemented with predicated SIMD computation cores.

38.5 Programmability

We begin our discussion of programmability by examining a simple coding
example. Listing 38.1 is a complete fragment processing program written in
the Direct3D High-Level Shading Language (HLSL). This program specifies the
operations that are applied to each pixel fragment5 resulting from the rasterization

5. Use of the term “fragment” to distinguish the data structures generated by rasterization
(and operated upon by the fragment processing pipeline stage) from the data structures
stored in the framebuffer (pixels) was established by OpenGL in 1992 and has since
become an accepted industry standard. Microsoft Direct3D and HLSL blur this dis-
tinction by referring to both data structures as pixels. The confusion is compounded by
the HLSL use of “fragment” to refer to a separable piece of HLSL code. The reader is
warned.
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of a primitive. While more complex operations are often specified, in this case
the operation is a simple one: The red, green, blue, and alpha components of the
fragment’s color are attenuated by the floating-point variable brightness. The
term shader, taken from Pixar’s RenderMan Shading Language, is often used to
refer to fragment processing programs (and also to vertex processing and primi-
tive processing programs) although they have far more functionality than simply
computing color.

Listing 38.1: A simple HLSL fragment processing program (Microsoft refers to
this as a “pixel shader”). Fragment color is attenuated by the floating-point

variable brightness.

1
2
3
4
5
6
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10
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float brightness = 0.5;

struct v2f {
float4 Position : POSITION;
float4 Color : COLOR0;

};

struct f2p {
float Depth : DEPTH0;
float4 Color : COLOR0;

}

// attenuate fragment brightness
void main(in v2f Input, out f2p Output) {

Output.Depth = Input.Position.z;
Output.Color = brightness * Input.Color;

}

HLSL is designed to be familiar to C and C++ programmers. As it would in
C++, the first line of the shader declares brightness as a global, floating-point
variable with initial value 0.5. Again, as in C++, because brightness is a global
variable, its value can be changed by nonlocal code. In HLSL such nonlocal code
includes the code of the Direct3D application that is driving the GPU pipeline. For
example, the application can change the value of brightness to 0.75 by calling
the Direct3D function.

SetFloat("brightness",0.75);

Structures v2f and f2p are defined much as they would be in C++. There
are two important additions: vector data types and semantics. Vector data types,
such as float4, are a shorthand notation that is similar to a C++ array typedef
(in this case, typedef float[4] float4;), but with additional capabilities. This
notation can be used for vectors of lengths two, three, and four. It is also avail-
able for square matrices (e.g., float4x4) and for all HLSL data types (i.e., for
half, float, double, int, and bool). Semantics are the predefined tokens, such
as POSITION and COLOR0, that are separated by colons from the variable names
(such as Position and Color). These tokens associate HLSL-program variables
with mechanisms in the fixed-function stages of the pipeline—they are the glue
that connects application-specified shaders to architecture-specified fixed-function
mechanisms.

Operation of the fragment shader is specified by the main function. Input
to main is through structure variable Input of type v2f, and output is through
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structure variable Output of type f2p. In the body of main the output depth
value is copied from the input depth value, while the output color is set to the
attenuated input color. Note that HLSL defines multiplication of a vector value
(Input.Color) by a scalar value (brightness) in the mathematical sense: The
result is a vector of the same dimension, with each component multiplied by the
scalar value.

Beginning with Direct3D 10 (2006) HLSL is the only way that programmers
can specify a vertex, primitive, or fragment shader using Direct3D. Earlier ver-
sions of Direct3D included assembly-language–like interfaces that were depre-
cated in Direct3D 9 and are unavailable in Direct3D 10. Thus, HLSL is the portion
of the Direct3D architecture through which programmers specify the operation of
a shader. While it is not the intention of this section to provide a coding tutorial
for Direct3D shaders, this simple example includes many of the key ideas.

A useful metaphor for the operation of this simple shader is that of a heater
operating on a stream of flowing water. Pixel fragments arrive in an ordered
sequence, like water flowing through a pipe. A simple operation is applied to each
pixel fragment, just as the heater warms each unit of water. Finally, the pixel frag-
ments are sent along for further processing, just as water flows out of the heater
through the exit pipe. Indeed, this metaphor is so apt that GPU processing is often
referred to as stream processing. That’s how we treat GPU programmability in
this section, although the following section (Section 38.6) will consider an impor-
tant exception with significant implications for GPU implementation.

Writing highly parallel code on a general-purpose CPU is difficult—only a
small subset of computer programmers is thought to be able to achieve reli-
able operation and scalable performance of parallel code.6 Yet writing shaders
is a straightforward task: Even novice programmers achieve correct and high-
performance results. The difference in difficulty is the result of differences
between the general-purpose architectures of CPUs and the special-purpose
architectures of GPUs. The Single Program Multiple Data (SPMD) abstraction
employed by GPUs allows shader writers to think of only a single vertex, primi-
tive, or fragment while they code—the implementation takes care of all the details
required to execute the shaders in the correct order, on the correct data, while effi-
ciently utilizing the data-parallel circuitry. CPU programmers, on the other hand,
must carefully consider parallelism while they code, because their code specifies
the details of any thread-level parallelism that is to be supported.

While GPU programming is experienced as a recent and exciting development,
the ability to program GPUs is as old as GPUs themselves. The Ikonas graphics
system [Eng86], introduced in 1978, exposed a fully programmable architecture
to application developers. Ten years later Trancept introduced the TAAC-1 graph-
ics processor, which included a C-language microcode compiler to simplify the
development of application-specific code. The architectures of these early GPUs
were akin to extended CPU architectures; they bore little similarity to the more
specialized pipeline architecture that is the subject of this chapter, and that has
coevolved with mainstream GPU implementations since the early 1980s. Unlike
these CPU-like architectures, the pipeline architecture was without support for
application-specified programs (shaders) until both OpenGL and Direct3D were

6. It’s easy to write code that exploits the circuit-level parallelism of the CPU, and oper-
ating systems make it easy to exploit virtual parallelism by concurrently executing
multiple programs. The parallelism that is difficult to exploit is at the intermediate
level: multiple-thread task parallelism within a single program.
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extended in 2001. Since that time support for shaders has become a defining fea-
ture of GPUs.

Despite the delay in exposing programmability to application programmers,
from the start essentially all implementations of OpenGL and Direct3D were pro-
grammed by their developers. For example, the programmable logic array (PLA)
that specified the behavior of the Geometry Engine, which formed the core of
Silicon Graphics’ graphics business in the early ’80s, was programmed prior to
circuit fabrication using a Stanford-developed microcode assembler. Subsequent
Silicon Graphics GPUs included microcoded compute engines, which could be
reprogrammed after delivery as a software update. But application programmers
were not allowed to specify these program changes. Instead, they were limited
to specifying modes that determined GPU operation within the constraints of the
seemingly “hardwired” pipeline architecture.

There are several reasons that the programmability of mainstream GPUs
remained hidden behind modal architectural interfaces throughout the ’80s and
’90s. Directly exposing implementation programming models, which differed
substantially from one GPU to another, would have forced applications to be
recoded as technology evolved. This would have broken forward compatibility,
a key tenet of any computing architecture. (Programmers reasonably expect their
code to run without change, albeit faster, on future systems.) Today’s GPU drivers
solve this problem by cross-compiling high-level, implementation-independent
shaders into low-level, implementation-dependent microcode. But these software
technologies were just maturing during the ’80s and ’90s; they would have exe-
cuted too slowly on CPUs of that era.

These reasons and others can be summarized in the context of exponential
performance and complexity advances.

• Need: Increasing GPU performance created the need for application-
specified programmability, both because more complex operations could
be supported at interactive rates, and because modal specification of these
operations became prohibitively complex.

• GPU hardware capability: High-performance GPUs of the ’80s and
’90s were implemented using multiple components sourced from vari-
ous vendors. But increased transistor count allows modern GPUs to be
implemented as single integrated circuits. Single-chip implementations
give implementors much more control, simplifying cross-compilation from
a high-level language to the GPU microcode by minimizing implementa-
tion differences from one product generation to the next.

• CPU hardware capability: Increasing CPU performance allowed GPU
driver software to perform the (simplified) cross-compilation from high-
level language to hardware microcode with adequate performance (both of
the compilation and of the resultant microcode).

38.6 Texture, Memory, and Latency

Thus far our discussions of parallelism and programmability have treated the
graphics pipeline as a stream processor. Such a processor operates on individ-
ual, predefined, and (typically) small data units, such as the vertices, primitives,
and fragments of the graphics pipeline, without accessing data from a larger exter-
nal memory. But the graphics pipeline is in reality not so limited. Instead, as can



ptg11539634

1118 Modern Graphics Hardware

be seen in Figure 38.3, most pipeline stages have access to a generalized memory
system, in addition to the data arriving from the previous stage. In this section we
consider both the opportunities and the performance challenges of such memory
access, using texture mapping as an archetypal example.

38.6.1 Texture Mapping

Recall from Chapter 20 that texture mapping maps image data onto a primitive.
In the graphics pipeline this is implemented in two steps: correspondence and
evaluation.

Correspondence specifies a mapping from the geometric coordinates of the
primitive to the image-space coordinates of the texture image. In the modern
graphics pipeline (see Figure 38.3) correspondence is specified by assigning tex-
ture image coordinates to the vertices of primitives. The assignment may be done
directly by the application, using interfaces such as OpenGL’s TexCoord* com-
mands, or indirectly through calculations specified by the vertex shader (i.e., the
application-specified program executing on the vertex processing pipeline stage
can generate texture coordinates, or modify application-specified texture coor-
dinates). To determine the correspondence at sample locations within individual
pixel fragments, the texture coordinates specified at vertices are linearly interpo-
lated to the sample’s corresponding position within the primitive. Texture coor-
dinate interpolation to the centers of pixel fragments is implemented as a part of
the rasterization process in the fragment generation pipeline stage. Because inter-
polation is to be linear in the primitive’s coordinates, but it is implemented in the
warped, post-projection coordinates of the framebuffer, the mathematics require a
high-precision division for each correspondence calculation (typically, one divi-
sion for each pixel fragment that is generated by rasterization). While this divi-
sion is inexpensive to implement in modern GPUs, it was a nearly insurmountable
burden prior to the ’80s, and it is a significant reason why texture mapping was
available only in expensive, specialized graphics systems such as flight training
simulators prior to that.

Evaluation is also an interpolation. But unlike the interpolation of texture
coordinates, which involves accessing only the few coordinates assigned to the
vertices of a primitive, evaluation accesses multiple pixels (called texels) within a
texture image. And texture images can be very large—Direct3D 10 implementa-
tions must support 4,096×4,096-texel images, which require a minimum of 8 mil-
lion bytes of storage. Thus, large-memory access, which is typically not required
for texture correspondence, is fundamental to texture evaluation.

Images are equivalent to 2D tables of colors, and table-driven interpolation—
constructing new data points within a regularly spaced range of discrete data
points by computing a weighted average of nearby data points—is a fundamental
mathematical operation that is available in many nongraphical systems. The heav-
ily used interp1, interp2, and interp3 commands in MATLAB are good exam-
ples: They construct new points within ranges specified as 1D, 2D, or 3D arrays.
Texture image interpolation has always been a part of OpenGL and Direct3D,
but prior to application programmability it was hidden within their fixed-function
texture-mapping mechanisms.

Now, like MATLAB, both the Direct3D and OpenGL shading languages
expose 1D, 2D, and 3D versions of table interpolation, which operate on 1D,
2D, and 3D texture images. Critically, these image-interpolation functions accept
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parameters that specify the image position to be evaluated. (Regardless of the
image size, parameter values between 0 and 1 specify positions from one edge of
the image to the other. Parameter values outside [0, 1] may wrap, reflect, or clamp,
as specified ahead of time.) Thus, a shader can specify coordinates that have been
interpolated across the primitive during rasterization (i.e., they can implement tra-
ditional texture correspondence) or they can choose to specify coordinates that
have been computed arbitrarily, perhaps as functions of the results of other texture
image interpolations. Such dependent texture image interpolation is a very pow-
erful feature of modern GPUs, but, as we will see in Section 38.7.2, it complicates
their implementation.

Listing 38.2 replaces the constant-based color attenuation of the example frag-
ment shader in Listing 38.1 with attenuation defined by a 1D texture image:
brightness_table. Like the global variable brightness, brightness_table is
specified by the application prior to rendering and remains constant throughout
rendering. Unlike brightness, however, which was stored in a GPU register (e.g.,
within a core in Figure 38.4), brightness_table is bulk memory state (see Sec-
tion 38.3), stored in the off-chip GPU memory system (e.g., GDDR3 memory in
Figure 38.4). Sampler s is a simple data structure that specifies a texture image
(brightness_table) and the technique to be used to evaluate it (linear interpola-
tion between texels).

Listing 38.2: Another simple HLSL fragment shader.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

texture1D brightness_table;

sampler1D s = sampler_State {
texture = brightness_table;
filter = LINEAR;

};

struct v2f {
float4 Position : POSITION;
float4 Color : COLOR0;
float TexCoord : TEXCOORD0;

};

struct f2p {
float Depth : DEPTH0;
float4 Color : COLOR0;

}

// attenuate fragment brightness with a 1-D texture
void main(in v2f Input, out f2p Output) {

Output.Depth = Input.Position.z;
Output.Color = tex1D(s, Input.TexCoord) * Input.Color;

}

The input structure v2f is extended with a third component, TexCoord, with
semantic TEXCOORD0, which specifies the texture location to be evaluated. Within
main, the 1D texture interpolation function tex1D is called with sampler s (spec-
ifying that brightness_table is to be interpolated linearly) and coordinate
Input.TexCoord (indicating where brightness_table is to be evaluated), and
it returns the floating-point result. The four-component vector Input.Color is
scaled by this value, and the result, an attenuated, four-component color vector, is
assigned to Output.Color.
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The process of texture image interpolation can be further partitioned into three
steps.

1. Address calculation: Based on the specified interpolation coordinates, the
memory addresses of the nearby texels are computed.

2. Data access: The texels are fetched from memory.

3. Weighted summation: Based on the specified interpolation coordinates,
an individual fractional weight is computed and applied to each accessed
texel, and the sum of the weighted texels is computed and returned.

GPUs such as the GeForce 9800 GTX implement these sequential steps using
true, hardware-instantiated parallelism: The steps are implemented as a sequen-
tial pipeline of data-parallel operations. Among these steps weighted summation
parallelizes particularly well: The 1D interpolation in our example sums only two
weighted values, but interpolations of 2D and 3D images sum four and eight val-
ues, respectively.

Image interpolation samples images accurately, but high-quality image recon-
struction requires both accuracy and sufficiency of image samples. Reconstruction
from an insufficient number of samples results in aliasing: low-frequency artifacts
in the reconstructed image corresponding to high-frequency components in the
sampled image. These artifacts are objectionable in still images (see Figures 18.10
and 18.11) but are particularly annoying in dynamic 3D graphics because they
introduce false motions (e.g., shimmering and flickering) that strongly and incor-
rectly direct the viewer’s attention. Modern graphics systems are designed to min-
imize aliasing artifacts.

Typically the image is reconstructed in the framebuffer, with each pixel’s color
specified by a pixel-fragment shader that takes a single sample of the texture image
(as does the example shader in Listing 38.1). In this case adequate image sampling
is ensured only when the texture-image samples corresponding to two adjacent
framebuffer pixels are separated in texture coordinates by no more than a single
texel.7 Texture-coordinate separations corresponding to unit-pixel separations are
a complex function of model geometry, transformation, and projection, and cannot
in general be predicted prior to rasterization. So a fragment shader risks undersam-
pling and aliasing unless it is written to detect and, when necessary, compensate
for undersampling. One reason that writing such shaders is undesirable is that, in
the worst case (when the entire texture corresponds to a single framebuffer pixel),
compensation would require that a single fragment shader access, weight, and sum
every texel in the texture image!

GPUs solve this problem by separating the process into two parts: a pre-
rendering phase that is executed only once, and additional rendering semantics
that enable interpolation instructions such as tex1D to detect undersampling, and,
when necessary, compensate for it in constant time. This two-phase approach,
called MIP mapping, was first published by Lance Williams in 1983 [Wil83].

0: 512 3 256 (original image)

1: 256 3 128

2: 128 3 64

8: 2 3 1

9: 1 3 1

Figure 38.7: A MIP map includes
the original image and repeated
half-size reductions of it. The
smallest image is a single pixel.

During the prerendering phase a MIP map, comprising the original texture
image and a sequence of reduced-size versions of it, is computed (see Figure 38.7).
The dimensions of the original image must all be powers of two, though they
need not be equal. A half-size version of this image is computed, ideally using
high-quality filtering to avoid aliasing. This process is repeated (quarter-size,

7. Recall that Chapter 18 discusses sampling, reconstruction, and aliasing.
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eighth-size, etc.) until an image with all dimensions equal to one results. If the
dimensions of the original image differ, smaller dimensions reach unit length
early—they remain unit length until the algorithm terminates.

Triangle rasterization generates pixel fragments in groups of four, called quad
fragments, with each group corresponding to a 2 × 2-pixel framebuffer region.
The sole purpose of rasterizing to quad fragments is to allow sample-to-sample
separations to be computed reliably and inexpensively.8 Separations in 1D textures
are simple differences. Separations in 2D and 3D textures are correctly computed
as square roots of summed squares of differences, but conservative approxima-
tions such as sum of differences are sometimes employed to reduce computation.
Both left-to-right and top-to-bottom separations are computed. From these separa-
tions a single representative separation ρ is computed. If ρ ≤ 1, the texture image
is sampled sufficiently—texture image interpolation is performed on the original
texture image and the resultant color is returned.

If ρ > 1, interpolation of the original texture image may result in aliasing.
But interpolation of the first MIP-map image (half-size) will alias only if ρ > 2,
and interpolation of the second MIP-map image (quarter-size) will alias only if
ρ > 4. Thus, aliasing is always avoided when interpolation is performed on the
nth MIP-map image, where n = �log2 ρ�.

While interpolating the nth MIP-map image in isolation avoids aliasing, it
introduces artifacts of its own, especially in dynamic 3D graphics, because screen-
adjacent pixels for which different values of n are computed will be colored by
different MIP-map images, and these discontinuities will move with object and
camera movements. An additional interpolation is required to avoid this.9 Both the
nth and the (n−1)th MIP-map images are interpolated (n = 0 implies the original
texture image). Then these two interpolated values are themselves interpolated,
using �log2 ρ�− log2 ρ as the weighting factor. The term trilinear MIP mapping
is sometimes used to describe this common MIP-mapping algorithm, when it is
applied with 2D texture images, because interpolation is done in three dimensions:
two spatial and one between images. But this term is imprecise and should be
avoided because, for example, a 3D texture sampled at only one MIP-map level is
also trilinearly interpolated.

Texture mapping algorithms in modern GPUs are immensely complicated—
many important details have been simplified or even ignored in this short discus-
sion. For a concise but fully detailed description of texture mapping, or indeed of
any particular of GPU architecture, refer to the OpenGL specification. The latest
version of this specification is always available at www.opengl.org.

38.6.2 Memory Basics

To understand how and why memory access complicates the implementation of
high-performance GPUs, and in particular their texture-mapping capability, we
now detour into the study of memory itself.

8. There are costs associated with quad-fragment rasterization too. See Fatahalian et al.
[FBH+10] for an example.

9. This problem and its solution are a recurring theme in dynamic 3D graphics: Any
algorithm that can introduce frame-to-frame discontinuities is interpolated to avoid
them.

http://www.opengl.org
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Memory is state. In this abstract, theoretical sense, there is no difference
between a bit stored in a memory chip, a bit stored in a register, and a bit that
is part of a finite-state machine. Each exists in one of two conditions—true or
false—and each can have its value queried or specified. In this sense, all bits are
created equal.

But all bits are not created equal. The practical difference is their location;
specifically, the distance between a bit’s physical position and the position of the
circuit that depends on (or changes) its value. Ideally, all bits would be located
immediately adjacent to their related circuits. But in practice only a few bits can
be so located, for many reasons, but fundamentally because bit storage implemen-
tations must be physically distinct.10 Thus, it is capacity that distinguishes what
we call memory (large aggregations of bits that are necessarily distant from their
related circuits) from simple state (small aggregations of bits that are intermingled
with their related circuits).

Why does distance matter? Fundamentally, because information (the value of
a bit) cannot travel faster than 1/3 of a meter per nanosecond. In our daily experi-
ence this limit—the speed of light in a vacuum—is insignificant; we are unaware
that the propagation of light takes any time at all. But in high-performance systems
this limit is crucial and very apparent. For example, a bit can travel no more than
10 cm in the 0.31 ns clock period of the (3.2 GHz) Intel Core 2 Extreme QX9770
CPU (see Figure 38.1). And this is in the best case, which is never achieved! In
practice, signal propagation never exceeds 1/2 the speed of light, and easily falls
to 1/10 that speed or less in dense circuitry. That’s a thumbnail width or less in
a single clock cycle. To quote Richard Russell, a designer of the CRAY-1 super-
computer, “In computer design it is a truism that smaller means faster.” Indeed,
the love-seat-like shape of the CRAY-1 (see Figure 38.5) was chosen to minimize
the lengths of its signal wires [Rus78].

In practice, distance not only increases the time required for a single bit to
propagate to or from memory, it also reduces bandwidth: the rate that bits can
be propagated. Individual state bits can be wired one-to-one with their related cir-
cuits, so state can be propagated in parallel, and there is effectively no limit to its
propagation rate. But larger memories cannot be wired one-to-one, because the
cost of the wiring is too great: Too many wires are required, and their individual
costs increase with their length. In particular, wires that connect one integrated cir-
cuit to another are much more expensive (and, to compound the problem, consume
far more power and are much slower) than wires within an individual integrated
circuit. But large memories are optimized with specialized fabrication techniques
that differ from the techniques used for logic and state, so they are typically imple-
mented as separate integrated circuits. For example, the four GDDR3 memory
blocks in Figure 38.4 are separate integrated circuits, each storing one billion bits.
But they are connected to the GeForce 9800 GTX GPU with only 256 wires—a
ratio of 16 million bits per wire.

Running fewer wires between memory and related circuits obviously reduces
bandwidth. It also increases delay. To query or modify a memory bit a circuit
must, of course, specify which bit. We refer to such specification as addressing
the memory. Because bits are mapped many-to-one with wires, addressing must
be implemented (at least partially) on the memory end of the wires. Thus, a circuit

10. Quantum storage approaches, such as holography, may ease this limitation in the
future, but they are not used in today’s computing systems.
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that queries memory must endure two wire-propagation delays: one for the address
to travel to the memory, and a second for the addressed data to be returned. The
time required for these two propagations, plus the time required for the memory
circuit itself to be queried, is referred to as memory latency.11 Together, latency
and bandwidth are the two most important memory-related constraints that system
implementors must contend with.

With this somewhat theoretical background in hand, let’s consider the impor-
tant practical example of dynamic random-access memory (DRAM). DRAM is
important because its combination of tremendous storage capacity (in 2009 indi-
vidual DRAM chips stored four billion bits) and high read-write performance
make it the best choice for most large-scale computer memory systems. For exam-
ple, both the DDR3-based CPU memory and the GDDR3-based GPU memory in
the PC block diagram of Figure 38.1 are implemented with DRAM technology.

Because modern integrated circuit technology is a planar technology, DRAM
is organized as a 2D array of 1-bit memory cells (see Figure 38.8). Perhaps sur-
prisingly, DRAM cells cannot be read or written individually. Instead, individ-
ual bit operations specified at the interface of the DRAM are implemented inter-
nally as operations on blocks of memory cells. (Each row in the memory array in
Figure 38.8 is a single block.) When a bit is read, for example, all the bits in the
block that contains the specified bit are transferred to a block buffer at the edge of
the 2D array. Then the specified bit is taken from the block buffer and delivered
to the requesting circuit. Writing a bit is a three-step process: All the bits in the
specified block are transferred from the array to the block buffer; the specified bit
in the block buffer is changed to its new value; then the contents of the (modified)
block buffer are written back to the memory array.

Memory array

B
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Bit selector

Block buffer (1 of 4)

Interface

Figure 38.8: Block diagram of
a simplified GDDR3 memory cir-
cuit. For increased clarity, the
true storage capacity (one billion
bits) is reduced to 256 bits, imple-
mented as an array of sixteen 16-
bit blocks (a.k.a. rows). The red
arrows arriving at the left edges
of blocks indicate control paths,
while the blue ones meeting the
tops and bottoms of blocks are
data paths.

While early DRAMs hid this complexity behind a simple interface protocol,
modern DRAMs expose their internal resources and operations.12 The GDDR3
DRAM used by the GeForce 9800 GTX, for example, implements four separate
block buffers, each of which can be loaded from the memory array, modified, and
written back to the array as individually specified, and in some cases concurrent,
operations. Thus, the circuit connected to the GDDR3 DRAM does more than
just read or write bits—it manages the memory as a complex, optimizable sub-
system. Indeed, the memory control circuits of modern GPUs are large, carefully
engineered subsystems that contribute greatly to overall system performance.

But what performance is optimized? In practice, the DRAM memory con-
troller cannot simultaneously maximize bandwidth and minimize latency. For
example, sorting requests so that operations affecting the same block can be aggre-
gated minimizes transfers between the block buffers and the array, thereby opti-
mizing bandwidth at some expense to latency. Because the performance of modern
GPUs is frequently limited by the available memory bandwidth, their optimization
is skewed toward bandwidth. The result is that total memory latency—through
the memory controller, to the DRAM, within the DRAM, back to the GPU, and
again through the memory controller—can and does reach hundreds of computa-
tion cycles. This observation is our second hardware principle.

11. Note that latency affects only memory reads. It can be hidden during writes with
pipeline parallelism, as discussed in Section 38.4.

12. Using the terminology of this chapter, DRAM architecture has evolved to more closely
match DRAM implementation.
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THE MEMORY PRINCIPLE: The primary challenge of memory is coping with
access latency and limited bandwidth. Capacity is a secondary concern.

The way that GPUs such as the GeForce 9800 GTX handle this (sometimes)
huge memory latency is the subject of the next subsection.

38.6.3 Coping with Latency

Consider again the fragment shader of Listing 38.2. Ignoring execution of the
tex1D instruction, this shader makes five floating-point assignments and performs
four floating-point multiplications, for a total of nine operations. Again, ignor-
ing texture interpolation, we would expect its execution to require approximately
ten clock cycles, perhaps fewer if the GPU’s data path implementation supports
hardware parallelism for short vector operations. (The GeForce 9800 GTX data
path does not.) Unfortunately, even if the GPU implementation provides separate
hardware for the computations required by image interpolation (the GeForce 9800
GTX, like most modern GPUs, does) the execution time of the texture-based frag-
ment shader could increase to hundreds or even thousands of cycles due to the
latency of the memory reads required to gather the values of the texels. Thus, the
performance of a naive implementation of this shader could be reduced by a factor
of ten to one hundred, or more, due to memory latency.

There are three potentially legitimate responses to this situation: 1) accept it;
2) take further steps to reduce memory latency; or 3) arrange for the system to do
something else while waiting on memory. Of course, options (2) and (3) may be
combined.

The engineering option of accepting a nonoptimal situation must always be
considered. Just as code optimization is best directed by thorough performance
profiling, hardware optimization is justified only by a significant improvement in
dynamic (i.e., real-world) performance. If texture interpolation were extremely
rare, its low performance would have little real-world effect. In fact, texture inter-
polation is ubiquitous in modern shaders, so its optimization is of paramount con-
cern to GPU implementors. Something must be done.

Once the memory controller has been optimized, further reduction of memory
latency may be achieved by caching. Briefly, caching augments a homogeneous,
large (and therefore distant and high-latency) memory with a hierarchy of var-
iously sized memories, the smallest placed nearest the requesting circuitry, and
the largest most distant from it. All modern GPUs implement caching for tex-
ture image interpolation. However, unlike CPUs such as the Intel Core 2 Extreme
QX9770, which depend primarily on their large (four-level) cache systems for
both memory bandwidth and latency optimization, GPU caches are large enough
to ensure that available memory bandwidth is utilized efficiently, but they are too
small to adequately reduce memory latency. We leave further discussion of the
important topic of caching to Section 38.7.2.

Because options (1) and (2) do not adequately address latency concerns, the
performance of GPUs such as the GeForce 9800 GTX depends heavily on their
implementation of option (3): arranging for the GPU to do something else while
waiting on memory. The technique they employ is called multithreading. A
thread is the dynamic, nonmemory state (such as the program counter and register
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contents) that is modified during the execution of a task. The idea of multithread-
ing will not be new to you—it’s related to ideas already discussed in Section 38.4.
There we learned that the (architecturally specified) programmable vertex, prim-
itive, and fragment processing stages are implemented with a single computation
engine that is shared between these distinct tasks. Multithreading is the name of
such a virtual-parallel implementation. When multiple tasks share a single pro-
cessor, the thread of the currently executing task is stored (and modified) in the
program counter and registers of the processor itself, while the threads of the
remaining tasks are saved unchanged in thread store. Changing which task is
executing on the processor involves swapping two threads: The thread of the cur-
rently active task is copied from the processor into thread store, and then the thread
of the next-to-execute task is copied from thread store into the processor.

Multithreading implementations are distinguished by their scheduling tech-
niques. Scheduling determines two things: when to swap threads, and which inac-
tive thread should become active. Interleaved scheduling cycles through threads
in a regular sequence, allocating a fixed (though not necessarily equal) number
of execution cycles to each thread in turn. Block scheduling executes the active
thread until it cannot be advanced, because it is waiting on an external dependency
such as a memory read operation, or an internal dependency such as a multicycle
ALU operation, and then swaps this thread for a thread that is runnable. Two
queues of thread IDs are maintained: a queue of blocked threads and a queue
of runnable threads. When a thread becomes blocked its ID is appended to the
blocked queue. IDs of threads that become unblocked are moved from the blocked
queue to the run queue as their status changes.

GPUs such as the GeForce 9800 GTX implement multithreading with a hier-
archical combination of interleaved and block scheduling. The GeForce 9800
GTX hardware enables zero-cycle replacement of blocked threads: No processor
cycles are lost during swaps. Because there is no performance penalty for swap-
ping threads, the GeForce 9800 GTX implements a simple static load balancing
by swapping every cycle, looping through the threads in the run queue. Load
balancing between tasks of different types—vertex, primitive, and fragment—
is implemented by including different proportions of these tasks in the mix of
threads that is executed on a single core. This per-thread-group load balancing
(the mix can’t be changed during the execution of a group of such threads) is
adjusted from thread group to thread group based on queue depths for the various
task types.

Threads are small by the standards of DRAM capacity—on the order of 2,000
bytes each (roughly 128 bytes per vector element). This suggests that thread stores
would contain large numbers of threads, but in fact they do not. The GeForce
9800 GTX, for example, stores a maximum of 48 threads per processing core in
expensive, on-chip memory. Once again memory latency is the culprit. To sup-
port zero-cycle thread swaps, there must be near-immediate access to threads on
the run queue. Thus, thread store must have low latency, and is necessarily small
and local. (In fact, the GeForce 9800 GTX stores all threads in a single register
file. Threads are not swapped in and out at all; instead, the addressing of the reg-
ister is offset based on which thread is being executed.) More generally, because
multithreading compensates for DRAM latency, it is impractical for its implemen-
tation to experience (and be complicated by) that same latency. Thus, thread store
is an expensive and scarce resource.
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Because thread store is a scarce resource whose capacity has a significant
effect on performance (the processor remains stalled while the run queue is empty)
optimizations that reduce thread storage requirements are vigorously pursued. We
discuss two such optimizations, both of which are implemented by the GeForce
9800 GTX.

First we consider thread size. Because register contents constitute a signifi-
cant fraction of a thread’s state, the size of a thread can be meaningfully reduced
by saving and restoring only the contents of “active” registers. In principle, reg-
ister activity could be tracked throughout shader execution so that thread-store
usage varied depending on the program counter of the blocked thread. In practice,
thread size is fixed, throughout the execution of a shader, to accommodate the
maximum number of registers that will be in use at any point during its execution.
Because the shader compiler is part of the GPU implementation (recall that shader
architecture is specified as a high-level language interface) the implementation not
only knows the peak register usage, but also can influence it as a compilation
optimization.

Thread size matters because the finite thread store holds more small threads
than large ones, decreasing the chances of the run queue becoming empty and the
processor stalling. While this relationship is easily understood, programmers are
sometimes surprised when their attempt to optimize shader performance by min-
imizing execution length (the number of instructions executed) reduces perfor-
mance rather than increasing it. Typically (compiled) shader length and register
usage trade off against each other—that is, shorter, heavily optimized programs
use more registers than longer, less optimized ones—hence, the counterintuitive
tuning results. Modern GPU shader compilers include heuristics to optimize this
tradeoff, but even experienced coders are sometimes confounded.

Performance may also be optimized by running threads longer, thereby keep-
ing more threads in the run queue. A naive scheduler might immediately block a
thread on a memory read (or an instruction such as tex1D that is known to read
data from memory) because it is rightly confident that the requested data will not
be available in the next cycle. But the requested data may not be required during
the next cycle—perhaps the thread will execute several instructions that do not
depend on the requested data before executing an instruction that does. A hard-
ware technique known as score boarding detects dependencies when they actu-
ally occur, allowing thread execution to continue until a dependency is reached,
thereby avoiding stalls by keeping more threads in the run queue. It is good pro-
gramming practice to sequence source code such that dependencies are pushed
forward in the code as far as possible, but shader compilers are optimized to find
such re-ordering opportunities regardless of the code’s structure.

While hiding memory latency with multithreaded processor cores is a defining
trait of modern GPUs, the practice has a long history in CPU organization. The
CRAY-1 did not use multithreading, but the CDC 6600, an early-1960s Seymour
Cray design that preceded the CRAY-1, did [Tho61]. It included a register bar-
rel that implemented a combination of pipeline parallelism and multithreading,
rotating through ten threads, each at a different stage in the execution of its ten-
clock instruction cycle. The Stellar GS 1000, a graphics supercomputer built in the
late ’80s, executed four threads in a round-robin order on its vector-processing
main CPU, which also accelerated graphics operations [ABM88]. Most Intel pro-
cessors in the IA-32 family implement “hyperthreading,” Intel’s branded version
of multithreaded execution.
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38.7 Locality

A common rule of thumb is that programs spend 90% of their time running only
10% of their program code. The 90/10 rule is an approximation—for example,
code percentages varied between six and 57 in tests reported by John Hennessy
and David Patterson [HP96]—but it suggests an essential truth, which is that the
outcomes of computing events, such as generating an address or taking a branch,
are not evenly distributed. Instead, these events, when treated as random vari-
ables, have probability distributions that are unfair (meaning that outcomes have
different probabilities) and dependent (meaning that the probability distributions
themselves change with the history of recent events).

An unfair coin is undesirable, but unfair and dependent probability distribu-
tions in computing are an important opportunity—they allow system designers
to make optimizations that dramatically improve performance and efficiency. In
computer science the term locality describes the nature of the unfair, dependent
probability distributions that are observed in functional computing systems. In this
section we define various forms of locality and study how system designers take
advantage of them.

38.7.1 Locality of Reference

In treating memory abstractly as an ordered array of items, two observations have
been made about the patterns of access to these items during the execution of a
program. First, an item that has been accessed recently has an increased proba-
bility of being accessed again. This program property is called temporal locality.
Second, items whose addresses are similar tend to be accessed close together in
time. This program property, though it is also time-dependent, is called spatial
locality to emphasize its application to multiple items. Together, temporal and
spatial locality constitute locality of reference.

While locality of reference is observed in all computing systems, design deci-
sions significantly affect how much is observed. Consider the sequence in which
instructions are fetched. A computer could be designed such that each instruction
specified the address of the subsequent instruction, allowing execution to skip
arbitrarily through the code. But this approach is never taken.13 Instead, design-
ers universally choose to execute instructions sequentially, except in the special
case of branching. This choice directly increases spatial locality in an obvious
way. Because most branches cause short sequences of instructions to be repeated
(i.e., they loop), sequential instruction fetching also increases temporal locality.
Indeed, this single decision frequently ensures that locality of reference is greater
for instruction accesses than it is for data accesses, despite designers’ attempts to
increase the latter.

Because GPU shaders are typically much smaller than the data structures they
access, GPU designers are more concerned with data locality than they are with
code locality. An example of a design decision that greatly affects GPU data local-
ity is the way that 2D texel coordinates, which specify a single texel in a 2D tex-
ture image, are mapped to the (1D) memory addresses of the texel-data storage
locations. When fragments generated by the rasterization of a small triangle are

13. To this author’s knowledge. But partially randomized execution sequences are now
employed as a security measure, to thwart the attempts of computer “hackers.”
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textured, their 2D texel coordinates typically cluster into a small region in the tex-
ture image. Data locality will be greater if the 1D memory addresses of the texels
that are accessed also cluster into a small band of locations.

Let (x, y) be the 2D integer coordinates of a texel in a square texture image of
dimension w, and a0 be the base address of the texture data in memory. Then an
obvious mapping would be raster order, specified as

a = a0 + x + w · y. (38.1)

Unfortunately Equation 38.1 results in a single tight cluster of memory addresses
only if y is single-valued. If the patch of texels is not on a single scanline of the
texture image, different values of y produce smaller clusters of addresses, them-
selves separated by intervals of texture dimension w. Because w can be large (e.g.,
1,024 or even 4,096) the overall clustering is not tight at all.

Spatial locality can be greatly improved by replacing the raster-order mapping
of Equation 38.1 with tiled mapping. The texture image is logically divided into
smaller squares that tile the image, meaning that they cover the image with no
gaps and no overlaps. Tiled mapping is hierarchical: first raster order among tiles,
then raster order within the selected tile. Given a tile dimension of wt, the mapping
is specified as

a = a0 + wt
2

(
(x÷ wt) +

w
wt

(y÷ wt)

)
+ (x" wt) + wt (y" wt) , (38.2)

where ÷ indicates truncated integer division (e.g., 7 ÷ 4 = 1) and " indicates
modulo division yielding the remainder (e.g., 7 " 4 = 3). If the accessed texels
fall within a single tile (i.e., among all the address mappings, only the last two
terms of the equation differ) then spatial locality is improved by a factor of w/wt,
because the small clusters of memory addresses are separated by wt (which multi-
plies y in the final expression in Equation 38.2) rather than w (which multiplies y
in Equation 38.1). Decreasing the tile size increases the magnitude of the improve-
ment: 8× 8-texel tiling of a 2,048× 2,048-texture image improves spatial locality
by a factor of 256! But smaller tiles also increase the likelihood that the cluster
of texels will straddle multiple tiles, which drives locality back down, potentially
below its raster-mapped value, if vertically adjacent tiles are straddled and the 2D
cluster of texels is small. Finding the best balance among such tradeoffs is central
to the art of system design. One clever solution increases the depth of the hierar-
chy by implementing tiles within tiles, or even tiles within tiles within tiles. Of
course, this approach runs into limits of complexity as the depth of the hierarchy
is increased, introducing yet another tradeoff.

We’ve just seen how the implementation of a GPU, through tiled texel map-
ping, can improve spatial locality. GPU architectures—that is, their program-
ming interfaces—can also be designed to allow improved locality of reference.
For example, the OpenGL programming interface couples each texture image
with its texture reconstruction-filtering mode, allowing the GPU driver to select
image-tiling parameters based on details such as linear versus cubic filtering. The
Direct3D interface allows a single texture image to be used with several texture
interpolation modes. This choice gives programmers more flexibility (they can use
a single texture image for multiple purposes that require different interpolations)
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but constrains optimizations by the GPU driver (e.g., a compromise tiling of the
texture image may be chosen).14

38.7.2 Cache Memory

We’ve discussed what data locality is, and seen some examples of how GPU archi-
tecture and implementation are designed to increase data locality. Now we’ll see
how data locality can be exploited by system designers to greatly improve the
performance of computing systems.

Recall from Section 38.6.2 that latency and bandwidth, the two greatest con-
cerns of a memory-system designer, are inversely related to memory capacity:
Smaller memories have lower access latency and higher access bandwidth, that
is, they are faster than larger memories. Because locality of reference makes it
likely that, for a given short window of time, most memory accesses are to a small
number of physical memory blocks, we can improve performance by storing these
blocks in a smaller, faster memory. There are two ways to expose this local mem-
ory: explicitly and implicitly.

The explicit approach directly exposes local memory in the architecture, giv-
ing programmers complete control of its use. Address fields of explicit local
memory (which is small) require fewer bits than addresses for the main memory
system (which is large), so their use reduces the bit rate of the processor instruc-
tion stream, as well as benefitting from reduced latency and increased bandwidth
to the specified data. Registers are an extreme form of explicit local memory: They
require very small addresses, and they exhibit negligible latency and huge band-
width. The local memory blocks in Figure 38.3 are a more typical form of explicit
local memory. Because these memories are not visible in either the OpenGL or the
Direct3D pipeline models, we defer discussion to Section 38.9.

Although registers are explicit in the Direct3D architecture, their allocation
and use is managed by the shader compiler rather than by programmers. In prin-
ciple, shader compilers could also manage and optimize the use of other local
memory, but in practice this is left to human programmers. Programmer-specified
management of local memory is powerful, but it is also complex, time-consuming,
and error-prone. Thus, it is desirable to provide a form of local storage that is man-
aged implicitly and automatically by low-level (typically hardware-implemented)
mechanisms within the architecture. We refer to such local memory as cache (pro-
nounced “cash”) memory.

Cache memory intercepts all accesses to main memory. If the requested data
item is already present in the cache, it is either returned with low latency (in the
case of a read request) or modified in place (in the case of a write request). If
the requested item is not present in the cache, some previously cached item is
evicted, the requested item is read from main memory into the cache, and then
either returned with high latency (in the case of a read request) or modified in place
(in the case of a write request). All of this happens implicitly, without programmer
intervention, so there is no opportunity for programmer error. But programmers
can significantly influence performance by coding to maximize data locality, since
accesses of main memory are so costly.

14. OpenGL versions 3.3 and later have adopted the Direct3D approach of decoupling
texture images and interpolation modes.
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Read requests that are fulfilled by cached data (cache hits) have dramatically
lower latency than those fulfilled from main memory (cache misses). Taking main-
memory latency as the benchmark, this disparity is desirable: If most memory
requests hit, latency is dramatically reduced. But it is tempting instead to take
the cache’s hit latency as the benchmark, because this performance is achieved
asymptotically as the cache-miss rate goes to zero. Unfortunately, the large dis-
parity in latencies is undesirable from this viewpoint, because even a few misses
dramatically increase average latency. For example, the average latency of a cache
with a miss penalty of 100x is doubled by a miss rate of only 1%. In practice, only
very large cache memories achieve average read latencies that approach this hit
latency.

Cache memory is organized into equal-size units called lines, which are typ-
ically much larger than a single data item. Transfers between the processor and
cache memory operate at the granularity of individual data items—a word is read
from a line in the cache and returned to the processor, or a byte is written from the
processor into the appropriate cache line. But transfers between cache and main
memory operate at cache-line granularity—entire cache lines are either read from
or written to main memory. Cache-line size is chosen so that these transfers make
efficient use of main-memory bandwidth. For example, cache lines may be as large
as the blocks in main memory, or at least a substantial fraction of this size. When
a cache read miss forces a line to be loaded from main memory, spatial locality
ensures that most if not all of the data items in that line will be accessed before the
line is overwritten by another. And caches can be designed to transfer lines back
to main memory infrequently (write-back cache) rather than immediately after
the processor writes a data item to the cache (write-through cache), minimizing
the main-memory bandwidth consumed by writing, and thereby maximizing the
main-memory bandwidth available for reading.

From the standpoint of the processor, cache memory addresses both of the key
concerns of main memory: Apparent memory latency is reduced, and apparent
memory bandwidth is increased. If cache memory size could be made arbitrarily
large, both apparent latency and apparent bandwidth could in principle be driven
to the point of diminishing return (i.e., to the point where further improvement
would not increase processor performance). In practice, cache size is limited to a
small fraction of the size of main memory, after which cache performance slows
to that of main memory. Because apparent latency increases quickly even for very
low miss rates, GPU implementations are typically tuned to achieve performance
that is unconstrained by memory bandwidth (assuming typical graphics loading)
with caches that are far too small to ensure the required latency. The (otherwise
unacceptable) apparent memory latency is hidden by multithreading, as described
in Section 38.6.3, rather than by outsized cache memories.

It is still possible for shader programmers to get in trouble, though, by
demanding more memory bandwidth than is available. For example, GPU tex-
ture interpolation performance is typically balanced assuming high data locality.
If this assumption is disrupted—if, for example, texture sample addresses spec-
ify disjoint, widely separated clusters of texels—then an excessively large num-
ber of memory blocks may be transferred from main memory to cache memory,
and shader performance can plummet. Undersampling a texture is one way to
create this situation. Thus, texture aliasing not only destroys image quality, it
can also destroy GPU performance! Dependent texture reads, meaning calls to
tex1D, tex2D, or tex3D, with a parameter that is not directly derived from the
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triangle-interpolated texture coordinates, can also disrupt or destroy locality. The
resultant complications contributed to the delay of support for dependent texture
lookup, which was introduced to GPUs years after shader programmability was
first supported.

Thus far we have considered a single cache memory, but modern GPUs often
have two levels of cache, and CPUs even more (three, sometimes four). By con-
vention these are named L1 cache, L2 cache, . . . Ln cache, counting outward from
the processor toward main memory.15 L1 cache has the least capacity, but also the
least latency, and is optimized to interact well with the processor. Ln cache has
the greatest capacity and the highest latency, and is optimized to interact well
with main memory. Worst-case latency may actually increase as levels of memory
hierarchy are added, due to the summation of multiple miss penalties, but overall
performance is improved.

In systems with multiple processor cores, caching is typically also parallelized.
The GeForce 9800 GTX GPU, for example, implements a separate L1 cache for
each pair of cores, and a separate L2 cache for each bank of memory (see Fig-
ure 38.4). Multiple L1 caches allow each to be tightly coupled with only two
processor cores, reducing latency by improving locality (each cache is physi-
cally closer to its cores) and by reducing access conflicts (each cache receives
requests from fewer cores). Pairing an L2 cache with each memory bank allows
each cache to aggregate accesses that map to its portion of main memory. Explicit
local memory is also parallelized—the GeForce 9800 GTX implements a separate
local memory for each core.

Recall that a key advantage of implicit local memory is the simplicity and
reliability of its programming model. Adding hierarchy does not compromise this
model: Although a single physical memory location may now be cached at mul-
tiple levels of the memory hierarchy, memory requests from multiple cores “see”
a consistent value because the requests are handled consistently. Parallel caches
(such as multiple L1 caches) potentially break the model, however, because they
are accessed and updated independently, so replications of a single physical mem-
ory location can become inconsistent. If this happens, the programmer’s model of
the memory system has become incoherent, and the likelihood of programming
errors skyrockets.

Architects of parallel systems handle the cache coherence problem in one of
three ways.

1. Coherent memory: A coherent view of memory is enforced by adding
complexity to the memory hierarchy implementation. Cache-coherent pro-
tocols ensure that changes made to one data replica are broadcast or
otherwise transferred to other replicas, either immediately or as required.
This solution is expensive, both in implementation complexity and in the
inevitable reduction in performance.

2. Incoherent memory: An incoherent view of memory is accepted—
programmers must contend with the additional complexity this entails.
This solution is frugal in system implementation, but it is expensive due to
the likely reduction in programmer efficiency.

15. Abbreviations L1$, L2$, . . . Ln$ are sometimes used informally, such as in figures.
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3. Constrained access: A coherent view of memory is enforced by con-
straining how memory is accessed, rather than by adding complexity to the
memory hierarchy implementation. This is the approach taken by GPUs as
they are exposed by the Direct3D and OpenGL interfaces. Memory that is
shared, such as texture images, is read-only, so no inconsistencies are pos-
sible. Memory that is written, such as framebuffer memory, is write-only
from the viewpoint of the parallel cores—read-modify-write framebuffer
operations, such as depth buffering and blending, are implemented by ded-
icated “pixel ops” circuits that operate directly on framebuffer physical
memory (see Figure 38.4). So again, no inconsistency is possible.

Cache memory is a central concern in computer architecture, and we have only
scratched the surface in this short section. Rich topics, such as eviction policy and
set associativity, have not been covered at all. Interested readers are encouraged to
peruse the list of suggested readings at the end of this chapter. Be warned, how-
ever, that most of the literature is written from the perspective of CPU architects,
whose experience and consequent world views differ from those of GPU archi-
tects.

38.7.3 Divergence

We learned in Section 38.4 that GPUs such as the GeForce 9800 GTX implement
a SPMD programming model with SIMD processing cores. The single-program,
multiple-data programming model allows shaders to be written as though each
was executed individually, greatly simplifying the programmer’s job. The single-
instruction, multiple-data implementation collects elements (e.g., vertices, primi-
tives, or pixel fragments) into short vectors, which are executed in parallel by data
paths that share a single instruction sequence unit. (The GeForce 9800 GTX has
16 cores, each with an effective vector length of 16 elements.)

The motivation for SIMD implementation is efficiency: Sharing a single
instruction stream among multiple data paths allows more data paths to be imple-
mented in the same silicon area and reduces instruction-fetch bandwidth per data
path. For example, if a core’s instruction sequence unit occupies the same sili-
con area as one data path, then a 16-wide true-parallel SIMD core occupies just
over half (17/32) the area required by 16 SISD cores, almost doubling peak per-
formance per unit silicon area. But this efficiency is achieved only when the ele-
ments assigned to a vector require the same sequence of instructions. When dif-
ferent sequences are required—that is, when the instruction sequences diverge—
efficiency is lost.

When GPU shader programming was first exposed in OpenGL and Direct3D,
shaders had no conditional branch instructions. Each instance of such a shader
executed the same sequence of instructions, regardless of the element data being
operated on, so divergence was limited to vectors that straddled a change made to
a shader. Then, as now, GPU architectures encouraged operations on large blocks
of data (e.g., Direct3D vertex buffers and OpenGL vertex arrays), during which
no changes can be made to shaders. And GPU implementations typically packed
SIMD vectors first-come-first-served, just as skiers are loaded onto lift chairs. So
vectors that straddled changes in shaders were unusual, and divergence was not a
significant problem.

Modern GPUs do support conditional branching in shaders, however, and its
use by programmers does increase divergence. In the worst case, when each vector
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Figure 38.9: Diverging and nondiverging execution on a four-element predicated vector
core. Each element executes the ten-operation shader A that branches on predicate p. In
case B, all four elements take the no branch, there is no divergence, and only six execu-
tion steps are required. In case C, element one takes the no branch, but the other three
elements take the yes branch. Predication handles this divergence by executing the no and
yes operations separately, so all ten execution steps are required.

element executes a completely different program section (e.g., the shader is equiv-
alent to a C++ switch statement with selection driven by unique element indices)
divergence is complete and all parallelism is lost. More typically, elements share
portions of code, which the predicated SIMD core executes in parallel, so paral-
lelism is merely reduced.

Figure 38.9 illustrates such a typical situation, using a simplified four-element
vector core. Shader A includes a single conditional branch that selects either the
two-operation no path or the four-operation yes path. Another four operations, two
ahead of the branch and two after, are common to both paths: They are executed
regardless of which path is taken. In the first example, B, all four elements take the
no branch, so there is no divergence. Predication handles this case by executing
each common no-path operation in parallel across the four-wide vector. Because
no elements require the yes-path operations, they are never executed and no cycles
are lost to them. Thus, the entire shader executes in only six cycles.

In the second example, C, element one takes the no branch, but the other ele-
ments take the yes branch. Because both branches are taken, execution diverges.
Predication handles this divergence by first executing each no operation on the
single element that requires it, then executing each yes operation in parallel across
the three elements that require it. Because both no and yes operations are executed,
shader execution requires the full ten cycles to complete.

Obviously, divergence reduces the efficiency of computation on a predicated
SIMD core. We quantify this loss by computing utilization: the ratio of the use-
ful work that is done to the number of operation slots made available for that
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work. Let n be the vector’s length, ipred be the number of predicated instruction
steps required to execute the vector to completion, and iseq be the total number of
instruction steps that would be required to execute the element’s shaders sequen-
tially, one at a time, as though on a single processor. Then the utilization of this
vector’s execution (uvec) is the ratio of useful work done (iseq) to the number of
slots available for that work (n · ipred):

uvec =
iseq

n · ipred
. (38.3)

In example B, the nondiverging case,

uvec =
6 + 6 + 6 + 6

4× 6
= 1.0, (38.4)

which is the maximum possible value, indicating full utilization. In example C,
the diverging case,

uvec =
8 + 6 + 8 + 8

4× 10
= 0.75, (38.5)

indicating partial utilization. Predication ensures that an operation is executed for
at least one element during each cycle, so the worst possible utilization for an n-
wide vector core is 1/n. Minimum utilization is achieved in the switch-statement
situation described above; it is approached asymptotically when a single element
executes a path that is much longer than the paths executed by the other elements.

Utilization directly scales performance—the 0.75 utilization achieved in
example C corresponds to 75% of peak performance, or 33% additional running
time (when aggregated across many elements). Because poor utilization is the
direct result of divergence, it is useful to understand the likelihood of divergence,
perhaps as a first step to minimizing it.

Again consider a shader with a single conditional branch. Let p be the branch’s
probability of taking the yes path, and 1−p be its probability of taking the no path.
Then, if p is evaluated independently for each element, that is, if evaluations of p
had no locality, then divergence outcome probabilities for an n-wide vector core
are:

pn no divergence, all yes outcomes
(1− p)n no divergence, all no outcomes

1− (pn + (1− p)n) divergence, various utilizations.
(38.6)

Unless p is either very near to zero or very near to one, the probability of diverging
increases rapidly as vector length n increases. For example, the probability of
divergence with p = 0.1 is 34% for n = 4, but it increases to 81% for n = 16,
97% for n = 32, and 99.9% for n = 64. Even with p = 0.01, a seemingly low
probability, divergence occurs almost half the time (47%) for a vector length of
64. These odds might dissuade GPU architects from implementing wide vector
units if they were correct, but in general they are not.

In fact, evaluations of p are not independent—they tend to cluster into yes
groups and no groups. Temporal locality predicts this: Clusters of repeated ref-
erences suggest that the same code branch is executed repeatedly. The geometric
nature of computer graphics often strengthens the effect. Consider the typical case
of a predicate p that is true in shadow and false otherwise. Some triangles will be



ptg11539634

38.8 Organizational Alternatives 1135

partially shadowed, but unless tessellation is very coarse, most will be either fully
lighted or fully in shadow. The stream of fragments resulting from the rasteriza-
tion of these triangles will therefore have long clusters of same-valued predicates.
And SIMD vectors loaded with these fragments will experience low divergence.

Just as GPU designers manipulate the texel-to-memory mapping to improve
spatial locality during texture mapping (see Section 38.7.1), they also manipu-
late the sequence in which fragments are generated during rasterization. Rather
than generating the fragment stream from a raster path, a more complex 2D path
(akin to a space-filling curve) is often employed (see Figure 38.10). For triangles
that project to a small region in the framebuffer this ordering makes little differ-
ence. But for larger triangles it substantially improves the 2D locality in the pixel
coordinates of the generated fragments. This locality reduces SIMD divergence
in the same way that rasterizing small triangles does. It has the added benefit of
improving the spatial locality of texture coordinates, and therefore of the memory
accesses required to perform texture mapping.

Figure 38.10: A portion of a ras-
terization path that exhibits high
2D spatial locality.

38.8 Organizational Alternatives

GPU architectures are specified at the relatively high levels of Direct3D and
OpenGL, leaving implementors plenty of room for innovation. But not endless
room—there exist attractive design alternatives that test and sometimes exceed
this limit. Three such alternatives are considered in this chapter: deferred shading,
binned rendering, and CPU/GPU-hybrid implementation. All have been imple-
mented in earlier research or production systems, some are employed in current
embedded or mobile systems, and all have desirable properties that make them
likely candidates for future systems.

38.8.1 Deferred Shading

The goal of deferred shading is to shade only visible samples, thereby minimiz-
ing shading costs.16 Because Direct3D and OpenGL determine visibility in the
framebuffer, using the z-buffer algorithm, visibility is fully resolved only after the
entire scene has been rendered. So shading must be deferred until this time, and
rendering becomes a two-phase process: Render the entire scene to the frame-
buffer, and then compute shading for each pixel in the framebuffer. Furthermore,
because shading requires access to various parameters that are interpolated during
rasterization—such as surface normals, material parameters, and texture names—
these values must be rendered into and stored in the framebuffer.

In addition to reducing the number of shading calculations, deferred shading
also alters the locality of the shading calculations. Consider an implementation
that executes shaders on screen-aligned tiles of pixels. Individual triangles are
often split across tile boundaries, so per-tile deferred shading reduces the inherent
locality of triangle calculations. But the set of triangles rendered to a tile have a
locality in 3D space that can allow lighting to be optimized. Specifically, many
lights in a highly lighted scene can be culled, because they are too far from the

16. Shading as it is treated here considers only light that reaches surface samples directly,
not light that is reflected from other surfaces. This is a typical simplification in high-
performance graphics rendering.
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3D region corresponding to the tile. In scenes with thousands of lights the perfor-
mance balance can tilt toward deferred shading.

Difficulties with deferred shading include the following.

• Excess storage and bandwidth: Burdening each pixel in the framebuffer
with the information required for its shading is a significant expense in
both storage and bandwidth. Indexing helps: Textures can be specified by
reference; even better, the entire shader can be specified by reference. But
parameters such as surface normals and interpolated texture coordinates are
specific to each pixel, so they require storage by value. Variability in stor-
age requirements complicates the situation, because maximum per-pixel
storage requirement is not easily inferred at the start of rendering, and nei-
ther Direct3D nor OpenGL requires that it be specified.

• Incompatibility with multi-sample anti-aliasing (MSAA): Multi-sample
anti-aliasing, the currently preferred approach to reducing edge artifacts in
full-scene rendering, requires storage for multiple color and depth samples
at each pixel. For example, multi-sample anti-aliasing with four samples
per pixel increases framebuffer storage requirements by a factor of four. In
combination with deferred shading, multi-sample anti-aliasing increases
already burdensome framebuffer storage requirements by this same factor.
Shading calculations are also increased by this factor, undoing the central
optimization of multi-sample anti-aliasing, which is limiting shading cal-
culations to one per pixel. The real possibility of a net increase in shading
calculations, and the certainty of increased storage, make deferred shading
incompatible with multi-sample anti-aliasing.17

• No shader-specified visibility: High-performance rendering sometimes
approximates the visibility of complex geometry, such as foliage, with an
alpha matte rendered as a texture. This optimization is inconsistent with
deferred shading, whose goal is full determination of visibility prior to
shading.

Against this seemingly bleak background, the story of deferred shading has a
surprisingly happy ending. All modern GPUs, including the GeForce 9800 GTX,
implement an optimization called early z-cull. An outline of the algorithm fol-
lows. As the frame is rendered, the GPU builds a hierarchical structure of z-values
in dedicated local memory. Rasterized fragments are tested against this z-pyramid
and are either culled (prior to shading) if they are not visible, or delivered to the
framebuffer (and added to the z-pyramid) if they are visible. Little extra storage,
and no main-memory bandwidth, are required, yet much of the performance gain
of deferred shading is achieved, especially when programmers deliver scene data
in an order that approximates front to back (i.e., rendering objects that are progres-
sively farther from the viewpoint). While exact front-to-back ordering is a huge
burden to programmers, approximating this ordering is often straightforward, and
the penalty for partial failure is low (just a slight decrease in performance). Alter-
natively, application programmers sometimes choose to render the entire scene
twice—first with shading disabled to create the full z-pyramid, and then again
with shading enabled to shade exactly the visible fragments—to fully achieve

17. At the time of this writing, researchers are actively investigating deferred-shading algo-
rithms that are compatible with multi-sample anti-aliasing.
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deferred shading. Of course, early z-cull doesn’t optimize computational local-
ity for scenes with thousands of lights, so GPU architects will continue to study
approaches to true deferred shading.

Inline Exercise 38.1: Suppose that the depth complexity of a pixel is n (i.e., a
ray traced through the pixel would intersect n different surfaces in the scene,
only the nearest being visible), and that these surfaces are processed in random
order, but with early z-cull, that is, a fragment is shaded only if it’s in front of
all other fragments we’ve encountered so far. What’s the expected number of
fragments that are shaded during the course of rendering this pixel?

38.8.2 Binned Rendering

We usually define rasterization as the process that converts screen-coordinate geo-
metric primitives directly to pixel fragments. But rasterization to larger screen
areas, such as to n × n-pixel tiles, is also possible. The GeForce 9800 GTX
rasterizer is a case in point—it outputs 2× 2 quad fragments to simplify texture-
mapping calculations, as described in Section 38.6.1. Binned rendering splits ras-
terization into two phases: a first phase that outputs medium-size tile fragments,
each corresponding to a (typically) 8×8-, 16×16-, or 32×32-pixel grid in screen
coordinates, followed by a second phase that reduces each tile fragment to pixel
fragments. Of course, tile fragments include information derived from the screen-
coordinate primitive so that second-phase rasterization can produce the correct
pixel fragments.

Binned rendering actually splits the entire rendering process into two phases,
corresponding to the two phases of rasterization. During the first phase the scene
is processed through tiled rasterization, and the resultant tile fragments are sorted
into bins, one bin corresponding to each screen tile. Only after the first phase is
completed (i.e., after tile fragments for the entire scene have been generated and
sorted into bins) does the second phase begin. During the second phase each bin
is processed individually to completion, yielding an n × n tile of pixels that is
deposited in the framebuffer.

Binned rendering has several attractive properties.

• Local memory: The absolute guarantee of framebuffer data coherence—
only pixels within the tile are accessed—allows pixels to be processed in
local memory, rather than cached from main memory. Both power and
main-memory cycles are conserved, making binned rendering an attractive
solution for mobile devices.

• Full-scene anti-aliasing: Recall that multi-sample anti-aliasing requires
storage for multiple color and depth samples at each pixel. As quality
is improved by increasing the sample count, both storage and bandwidth
become prohibitively expensive when rendering is to the entire frame-
buffer, but they remain economical when rendering is limited to a small
tile of pixels. Even more advanced rendering algorithms, such as order-
independent rendering of transparent surfaces, can be supported with clever
use of local memory.

• Deferred shading: Limiting rendering to a small tile of pixels addresses
the key limitations of deferred shading: its requirements of excessive
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memory storage and bandwidth, and its incompatibility with multi-sample
anti-aliasing.

The advantages of binned rendering are compelling, yet no current PC-class
GPU implements it.18 The fundamental reason is that binned rendering differs
too much from the pipeline Direct3D and OpenGL architectures—we say that the
abstraction distance is too large. Typically, excess abstraction distance results in
products with confounding performance characteristics (operations expected to be
fast are slow; those expected to be slow are fast) or subtle deviations from specified
operation. Practical problems that are encountered include the following.

• Excess latency: Previous binned rendering systems, such as the Pix-
elPlanes 5 system developed at the University of North Carolina, Chapel
Hill, have added a full frame time of latency.

• Poor multipass operation: Direct3D and OpenGL encourage advanced
multipass rendering techniques that, in a binned implementation, require
multiple two-pass operations per final frame. An example is rendering
reflection from a curved surface by 1) rendering the scene that will be visi-
ble in the reflection, 2) loading this image as a texture, and 3) rendering the
curved surface with the appropriately warped texture image. Some binned
rendering systems failed to support such operations; others supported them,
but performed poorly.

• Unbounded memory requirements: While binned rendering bounds
pixel storage to that required for a single tile, the memory required by
the bins themselves grows with scene complexity. Neither OpenGL nor
Direct3D has scene-complexity limits, so a fully confirming implementa-
tion requires infinite memory (an obvious impossibility) or must introduce
complexity to handle cases for which finite bin storage is inadequate.

These complications have been sufficient to keep binned rendering out of
mainstream PC GPUs. But recent implementation trends, in particular the use of a
time-shared single compute engine to implement all pipeline shading stages, may
overcome some of the difficulties.

38.8.3 Larrabee: A CPU/GPU Hybrid

In 2008, Intel published a technical paper [SCS+08] describing a forthcoming
GPU, code-named Larrabee. While this product never shipped, for reasons we
will discuss shortly, it was a serious attempt to combine ideas from Intel CPUs
and competitive GPUs into a single compelling product. In this short section we
will analyze this hybrid GPU, first by comparing its implementation and architec-
ture with those of the NVIDIA GeForce 9800 GTX GPU and the Intel Core 2
Extreme QX9770 CPU, and then by considering the resultant strengths and weak-
nesses. We begin with implementation, referring to the Larrabee block diagram in
Figure 38.11, which is drawn to be consistent (where possible) with the NVIDIA
GeForce 9800 GTX block diagram in Figure 38.4.

In several key respects the Larrabee implementation more closely resembles
the implementation of the NVIDIA GeForce 9800 GTX GPU than it does that of
the Intel Core 2 Extreme QX9770 CPU.

18. Inexpensive Intel GPUs have implemented binned rendering in the past, but none do
now.
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Figure 38.11: Intel Larrabee GPU block diagram. Compare this with the NVIDIA
GeForce 9800 GTX GPU block diagram in Figure 38.4.

• Many cores: The Larrabee and GeForce 9800 GTX block diagrams are
both dominated by multiple processing cores, as are the implementations
of the GPUs themselves. While the number of cores in the Larrabee GPU
was never announced, it is known to be at least 16, matching or exceed-
ing the GeForce 9800 GTX, and greatly exceeding the four cores of the
Core 2 Extreme QX9770 CPU. Furthermore, like the GeForce 9800 GTX
cores, the Larrabee cores are designed to maximize performance per unit
of silicon area (and therefore overall GPU performance), whereas the Core
2 Extreme QX9770 CPU cores are designed to maximize performance per
core (at the expense of overall performance).

• Wide vectors: The Larrabee and GeForce 9800 GTX cores both include
wide SIMD units: n = 8 for the GeForce 9800 GTX (virtualized to n = 16)
and n = 16 for Larrabee. Both GPU cores provide hardware support for
predication, and both provide separate address circuits for each element,
allowing data to be efficiently gathered into a vector, then scattered back
to memory. Conversely, the Core 2 Extreme QX9770 CPU implements nar-
row vectors (n = 4) with no support for efficient scatter/gather or predica-
tion.

• Texture evaluation: Both GPUs support texture evaluation with dedicated,
fixed-function units; the CPU provides no support.

Balanced against these important similarities, the Larrabee and GeForce 9800
GTX implementations also differ in ways that betray Larrabee’s CPU heritage.
These include the following.

• Specialized, fixed-function hardware: Except for its texture evaluation
unit, Larrabee omits support for the many GeForce 9800 GTX fixed-
function units, including vertex generation, primitive generation, frag-
ment generation (rasterization), work queueing and distribution, and pixel
operations.
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• Latency hiding: Like the Core 2 Extreme QX9770 CPU, Larrabee relies
more heavily on its large, hierarchical caches to hide memory latency.19

Each Larrabee core supports only four threads, against the 48 threads that
implement the GeForce 9800 GTX’s block multithreading.20

• Cache coherence: Larrabee’s cache hierarchy maintains full coherence,
just as the Core 2 Extreme QX9770 CPU’s caches do (though at some-
what higher cost, since Larrabee has at least four times as many caches at
each level of the hierarchy). Cache coherence is not implemented by the
GeForce 9800 GTX.

Larrabee’s strong implementation parallels to the GeForce 9800 GTX GPU
are not matched in terms of architecture, where parallels to the Core 2 Extreme
QX9770 CPU dominate.

• ISA: The Larrabee and Core 2 Extreme QX9770 cores share Intel’s IA-
32 instruction set architecture (ISA), though Larrabee’s ISA is augmented
with vector instructions. While the GeForce 9800 GTX cores are pro-
grammable, their ISA is hidden beneath the OpenGL and Direct3D shader
languages. Both Larrabee and Core 2 Extreme QX9770 can be pro-
grammed to support OpenGL and Direct3D, and in fact Intel engineers
ported both APIs to Larrabee (using binned rendering!), but these APIs are
not architectural. Indeed, there is no evidence of a pipeline model in either
CPU-like architecture.

• SPMD: Like the Core 2 Extreme QX9770, Larrabee cores are exposed in
the ISA as scalar with vector instructions. Each core has 17 ALUs: one
scalar and 16 vector. Programmers use a combination of scalar and vector
instructions to explicitly manage control flow (a single program counter for
the entire core) and vector operations on data. Predication is also explicit—
programmers manipulate a mask to control which vector elements are com-
mitted. The GeForce 9800 GTX hides all this complexity behind its SPMD
architecture, allowing programmers to treat each vector element as an indi-
vidual execution unit with full flow control (its own program counter) and
data execution capability.

Larrabee’s CPU-like architecture gives it important advantages over the
GeForce 9800 GTX’s SPMD architecture.

• Flexibility: Larrabee executes arbitrary graphics algorithms with equal
efficiency, because it isn’t optimized for a particular algorithm, as the
GeForce 9800 GTX is for the “graphics pipeline.”

• Generality: Larrabee executes arbitrary nongraphics algorithms efficiently
too.

• Capability: Like the Core 2 Extreme QX9770, Larrabee can run system-
level programs up to and including operating systems. The GeForce 9800
GTX cannot.

19. Larrabee’s cache sizes are 64 Kbytes $L1 and 256 Kbytes $L2. While NVIDIA does
not publish figures for the GeForce 9800 GTX, they are almost certainly much lower.

20. A technique called software fibers—explicitly coding a multithread instruction
sequence into a single thread—is also used to hide latency. It lacks the GPU capability
of block scheduling, however, and is therefore less effective.
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But Larrabee’s flexibility, generality, and capability come at a cost: It is sub-
stantially more difficult to program than traditional GPUs such as the GeForce
9800 GTX. And, even with the heroic programming efforts of Intel’s experts,
the resultant OpenGL and Direct3D implementations performed significantly less
well than competitive, traditional GPUs. Larrabee’s more general architecture
(ISA versus GeForce 9800 GTX’s SPMD) contributes to this situation, of course,
but the relative lack of graphics specialization in Larrabee’s implementation is the
root cause. While all graphics algorithms can be run on general-purpose vector
cores, for some algorithms this is a very inefficient approach. Traditional GPUs
such as the GeForce 9800 GTX are optimized to account for this: Independent,
per-element operations with rich, application-programmable semantics such as
those on vertices, primitives, and fragments are implemented on the data-parallel
vector cores, while pipeline-specific algorithms with inherently rigid semantics
such as rasterization (fragment generation) are implemented with specialized,
fixed-function units.

Fixed-function units improve efficiency in several ways.

• Efficient parallelization: Specialized hardware can efficiently parallelize
algorithms that are not inherently data-parallel.

• Correct provisioning: Algorithmic parameters such as numeric represen-
tation and precision can be optimized when the algorithm is implemented
in task-dedicated hardware. Eight-bit integer multiplication, for example,
requires less than one-tenth the hardware of 32-bit floating-point multipli-
cation.

• Sequence optimization: When an algorithm is cast into dedicated hard-
ware, each “step” is implemented with exactly the required capability (e.g.,
addition of two values) rather than effectively consuming the full capability
of a core’s ALU (addition, subtraction, multiplication, division, etc.). Fur-
thermore, the sequence of steps is managed with dedicated hardware (e.g.,
a simple finite-state machine) rather than expressed as a program running
on a core’s instruction unit (whose stored-program model consumes expen-
sive memory bandwidth and cache hierarchy).

All together, these advantages can yield impressive savings. For example, all mod-
ern GPUs include specialized hardware for decoding video streams.21 While video
decoding can be implemented using the data-parallel cores, it reportedly consumes
1/100th the power when run in a purpose-designed unit, allowing laptop com-
puters to display movies without quickly draining their batteries. Similar savings
ratios may be achieved by fixed-function implementations of graphics pipeline
stages.

Larrabee’s designers were not unaware of these advantages—they chose, for
example, to implement texture evaluation with a purpose-built, fixed-function
unit. But overall they shifted the traditional GPU implementation balance from
specialization toward generalization, trading the resultant loss of performance
on existing applications (OpenGL and Direct3D) for the opportunity to achieve
improved performance in new areas, such as alternative graphics pipelines, and
nongraphical algorithms. In a competitive market, performing better on new appli-
cations is a valuable differentiation, but performing well on existing applications is

21. This hardware is not otherwise discussed in this chapter.
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crucial. Faced with introducing an uncompetitive GPU, Intel chose instead to can-
cel Larrabee.

38.9 GPUs as Compute Engines

As we’ve now seen, modern GPUs such as the GeForce 9800 GTX utilize massive
parallelism, exposed as a pipeline of fixed-function and application-programmable
stages, to apply hundreds of GFLOPS to the rendering of 3D graphics. Because
the peak performance of GPUs is so much higher than that of CPUs (see Sec-
tion 38.2), and because the SPMD architecture of GPU-programmable stages
makes exploiting that performance straightforward (see Section 38.5), program-
mers are highly motivated to speed up their nongraphical programs by porting
them from CPUs to GPUs. We conclude this chapter with a short discussion of
these efforts.

Creative programmers have probably been porting nongraphical algorithms
to GPUs since they came into existence. Under the rubric of GPGPU (general-
purpose computing on GPUs), these efforts became an important trend in the
late ’90s. The primary enabler of this trend was the availability of programmable
shaders in ubiquitous, single-chip GPUs such as NVIDIA’s predecessors to the
GeForce 9800 GTX.

Algorithms with substantial data parallelism (see Section 38.4) were ported
to GPUs by implementing their kernels as shaders. The kernel of an image-
processing filter, for example, computes the value of a single output pixel as the
weighted sum of the values of nearby pixels. To run the shaders (i.e., to execute
the algorithm) initial data was loaded as a 2D texture and a 2D rectangle fitted to
the texture was rendered, causing the results to be deposited into the framebuffer.
Over time, researchers identified data-parallel representations for algorithms, such
as sorting, that aren’t typically thought of as data-parallel. This allowed GPGPU
to apply to a broader range of problems.

As GPGPU became more prevalent, new architectures were developed to bet-
ter expose the general-purpose computing capabilities of GPUs. Examples include
OpenCL, Microsoft’s Direct Compute, and NVIDIA’s CUDA. These architec-
tures all maintain the SPMD programming model (i.e., the shaders) of the tra-
ditional pipeline architectures, implemented using the same multithreaded SIMD
cores. All, however, dispense with the graphics pipeline and much of its fixed-
function implementation, exposing instead a single compute stage. Compute-
appropriate mechanisms, such as execution commands (it is no longer necessary to
rasterize a rectangle to execute the shader-implemented kernels) and explicit local
memory (as described in Section 38.7.2), are also added. The general-purpose
computing architectures are alternatives to, not replacements for, OpenGL and
Direct3D. Some in fact support interoperation, allowing a single GPU to compute
and display data without transferring intermediate data from GPU to CPU and
back.

GPGPU has come a long way during its decade of development. Today the
fastest supercomputers in the world use GPUs as their primary computing engines,
as do applications ranging from hedge-fund management to quantum physics.
GPUs will never replace CPUs, but it seems increasingly likely that a new comput-
ing architecture, derived from GPU and CPU technology and perhaps resembling
Intel’s Larrabee prototype, will define the future of computer architecture.
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38.10 Discussion and Further Reading

The design of graphics hardware is a special, but important, case of computer
architecture design. Anyone interested in studying the subject more closely should
first read the classic book by Hennessy and Patterson [HP96], where tradeoffs of
the kind discussed in this chapter are covered in great detail.

Even if you don’t want to design the next great GPU, you should be familiar
with some aspects of architecture so that you can better understand how they influ-
ence your use of the GPU you’ve got. A great starting point is Ulrich Drepper’s
“What Every Programmer Should Know About Memory” [Dre07].

For years, computers have improved—processor cores are faster, bandwidth
is greater, networks are faster, memory is larger and less expensive—and many
of these improvements have followed exponential patterns, the classic being
Moore’s Law. But the observation that everything is improving exponentially
masks the critical point that the constants in the exponents are different: GPUs
have improved faster than CPUs, for instance. Even within a single device like a
GPU, differing constants shift the landscape. If you want to understand how GPUs
will change in the future, these differing constants (and the eventual leveling off
from exponential growth) will be important predictors.

38.11 Exercises

Exercise 38.1: Recall that annual growth at rate r for y years results in t = ry

compound growth (see Section 38.2). For example, 1.5x annual growth for five
years results in 7.59 = 1.55 compound growth. Derive the formula that gives r
as a function of y and t. Using this formula, compute the annual growth rates for
ten-year compound growths of 10x, 100x, and 1,000x.

Exercise 38.2: Accurate performance measurement is a great way to under-
stand the implementation of an architecture, and it’s a prerequisite to tuning your
own graphics programs. Using either Direct3D or OpenGL, write a program that
initializes graphics state, performs a simple rendering task repeatedly for a spec-
ified number of times, and then returns the time required per iteration. Use this
program to measure the rate that triangles of various sizes are rendered. Is there
a size below which there is no significant change in performance? What might
explain this?

Here are a few tips for accurate performance measurement.

• Neither Direct3D nor OpenGL provides timers, so you’ll have to learn your
operating system’s commands for this.

• To get accurate timings you must flush the GPU before starting the timer
and before stopping it. OpenGL provides the glFlush() command for this
purpose. Why is this important?

• Don’t swap buffers during a timing test.

• Don’t run other applications during a timing test.

• Run your test repeatedly to test for consistency.

Think about other things that might affect your measurements.
Exercise 38.3: Look for performance dependencies on data coherence,

using the framework developed in the preceding exercise. Using linear image
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interpolation, map a 1,024×1,024-texture image to a 256×256 triangle. Compare
the performance of 1-to-1, 2-to-1, and 4-to-1 texel-to-pixel mappings. If there is
no performance difference, increase the demand for memory bandwidth by utiliz-
ing multiple textures until a difference is found. Make an estimate of peak memory
bandwidth based on your results. If possible, compare this value to the one that is
advertised for the GPU you are using.

Exercise 38.4: In Section 38.8.2 it is suggested that the recent trend toward
implementing all shading pipeline stages with a single, time-shared compute
engine may overcome some difficulties. Which difficulty in particular might this
trend overcome? How is the situation improved?

Exercise 38.5: One difficulty with nonbinned deferred shading is the large
amount of memory required to store interpolated parameters such as normals and
texture coordinates in the framebuffer (see Section 38.8.1). Could these large, per-
pixel data blocks be replaced with references, as was described for texture images
and shaders? Propose a solution. Compare its memory requirements to per-pixel
storage, making reasonable assumptions about parameters such as framebuffer
dimensions, numeric representation, triangles per frame, and average projected
triangle size.
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List of Principles

Here we collect the principles that we explicitly espoused throughout the book.
Like koans, these are perhaps best used to reflect on what you have learned, as new
apertures through which to view those topics, and as a concise way of discussing
the patterns that underlie computer graphics. Simply studying them outside of
their context would not be effective.

We view this book as a series of case studies of concrete techniques—the prac-
tice that shows how to apply the principles to image synthesis and other problems.
Our hope is that after reading many of the chapters you will agree that there is
indeed a compact set of ideas and many ways of applying them.

As computer graphics scientists and engineers, we explore a vast sea of knowl-
edge into which mathematics, engineering, physics, biology, psychology, and art
flow. These principles chart the many courses of “computer graphics” that allow us
to appreciate those disciplines and make forward progress in our own. For exam-
ple, dynamics simulation of a gear system and estimating light transport are two
of the many destinations presented in the field, but you can reach them with the
same mathematical vehicles by following parallel courses of numerical integration
techniques.

Computer graphics practice vertically integrates techniques from concrete,
low-level engineering to abstract, high-level mathematics. A rendering engineer
at a game company must not only understand mathematics and physics, but also
must have reasonable computer organization skills to understand a graphics pro-
cessor, cache, and bandwidth. That same engineer must also follow good software
engineering methodology to work in a team of other programmers and artists,
and nearly every day relies on calculus, geometry, optics, and color theory. Our
principles vary in scope accordingly, from implementation strategies to modes of
thought.

Know Your Problem principle: Know what problem you are solving.

Approximate the Solution principle: Approximate the solution, not the prob-
lem.

Wise Modeling principle: When modeling a phenomenon, understand the
phenomenon you’re modeling and your goal in modeling it, then choose a
rich-enough abstraction, and then choose adequate representations to capture

1145



ptg11539634

1146 List of Principles

your abstraction within the bounds of your resources, and finally, test to verify
that your abstraction was appropriate.

Visual System Impact principle: Consider the impact of the human visual
system on your problem and its models.

Coordinate-System/Basis principle: Always choose a coordinate system or
basis in which your work is most convenient, and use transformations to relate
different coordinate systems or bases.

First Pixel principle: The first pixel is the hardest.

Visual Debugging principle: Use visual displays to help you debug and under-
stand your graphics programs.

Hierarchical Modeling principle: Whenever possible, construct models hier-
archically. Try to make the modeling hierarchy correspond to a functional hier-
archy for ease of animation.

Implementation principle: If you understand a mathematical process well
enough, you can write a program that executes it.

Parametric/Implicit Duality principle: There’s a duality between parametric
and implicit forms for shapes: In general, it’s easy to find an intersection
between shapes where one’s described implicitly and the other parametrically,
and harder when either both are implicit or both parametric.

Tilting principle: If T ′ is an oriented triangle in plane P′ with normal n′, and T
is its projection to plane P, the projection being along the unit normal n to P,
then the signed area of T is n′ · n times the signed area of T ′.

Division of Modeling principle: Separate the mathematical and/or physical
model of a phenomenon from the numerical model used to represent it.

Meaning principle: For every number that appears in a graphics program, you
need to know the semantics, the meaning, of that number.

Transformation Uniqueness principle: For each class of transformations—
linear, affine, projective—and any corresponding coordinate frame, and any
set of corresponding target elements, there’s a unique transformation map-
ping the frame elements to the correponding elements in the target frame. If
the target elements themselves constitute a frame, then the transformation is
invertible.

High-Level Design principle: Start from the broadest possible view. Elements
of a graphics system don’t separate as cleanly as we might like; you can’t
design the ideal representation for an emitter without considering its impact
on light transport. Investing time at the high level lets us avoid the drawbacks
of committing, even if it defers gratification.

Noncommutativity principle: The order of operations often matters in graph-
ics. Swapping the order of operations can introduce both efficiencies in com-
putations and errors in results. You should be sure that you know when you’re
doing so.

API principle: Design APIs from the perspective of the programmer who will
use them, not that of the programmer who will implement them or from the
mathematical notation used in their derivation. For example, a single BSDF
f (vi,vo) mapped to a function API Color3 bsdf(Vector3 wi, Vector3 wo)

is easy to implement but hard to use in a real renderer.
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Early Optimization principle: It’s worth optimizing early if it makes the
difference between an interactive program and one that takes several minutes
to execute. Shortening the debugging cycle and supporting interactive testing
are worth the extra effort.

Level of Detail principle: Level of detail is important for both efficiency and
correctness.

Average Height principle: The average height of a point on the upper hemi-
sphere of the unit sphere is 1

2 . Thus, for any unit vector n, the integral∫
{v∈S2 :v·n≥0}

v · n dv = π.

Structure principle: Treat surprising structural symmetries and asymmetries as
both clues about underlying structure and as warnings to check the robustness
of any plan. For example, if otherwise similar elements differ by orders of
magnitude or demand different parameters, as is the case for the fundamen-
tal forces of nature, something interesting is going on that can either lead to
insight if followed, or bite you if ignored.

Culling principle: It is often efficient to approach a problem with one or more
fast and conservative solutions that narrow the space by culling obviously
incorrect values, and a slow but exact solution that then needs only to con-
sider the fewer remaining possibilities.

Design Tradeoff principle: The art of architecture design includes identifying
conflicts between the interests of implementors and users, and making the best
tradeoffs.

Memory principle: The primary challenge of memory is coping with access
latency and limited bandwidth. Capacity is a secondary concern.
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A
AABB trees, 1093
Absorption, 737
Abstract coordinate system, 39, 42

to specify scene, 42–44
Abstract geometric vs. ready for rendering,

467
Abstraction, defined, 10
Abstraction, in expressive rendering, 947,

959–961
factorization, 947
kinds of, 947
schematization, 947
simplification, 947

Abstraction considerations, 444
Abstraction distance, 1138
A-buffer, 1057
Acceleration data structures, 472
Accretion, 569
ACC surfaces. See Approximate

Catmull-Clark subdivision surfaces
Accumulation buffer, 1056
ACM. See Association for Computing

Machinery
ACM Transactions on Graphics, 922
Acne, shadow, 416
Active edge table, 1041
Additive color, 760
Adjacency information, on meshes, 338–339
Adjacent vertex, 637
Adjoint transformation, 253
Affine combination, 154, 160
Affine combination of points, 160
Affine transformations, 182, 234, 259
Affordances (user interfaces), 572
Albedo, 547
Algebra, geometric, 284
Aliasing, 331, 544, 557–559, 837, 1055

in line rendering, 544
Aliasing revisited, 527–729
Alpha-to-coverage, 366
Alpha value, 481

Alternative mesh structures, 187ff, 635ff, 338
AM. See Application model (AM)
Ambient light, 8, 122, 124
Ambient occlusion, 742
Ambient reflection, 136
AMIP. See Application-Model-to-IM-Platform

Pipeline (AMIP)
Analytic BSDFs, 358
Angles, 686–688

solid, 686–688
subtended, 687

Animation element, in XAML, 55
Animation(s), 94, 963

burden of temporal coherence in, 985–987
considerations for rendering, 975–987
creating a sailing ship firing a cannon

(simulation), 969–972, 970f
creating a walking character, 966–969
double buffering, 975–976
implicit curves in, 631–632
implicit shapes in, 631–632
interlacing, 978–980
level-set approach to, 631–632
motion blur, 980–983
motion perception, 976–978
navigating corridors (motion planning),

972–973
notations related to, 973–975
physically based, 963, 989
problem of the first frame in, 984–985
root frame, 972
stop-motion, 987
temporal aliasing, 980–983
temporal coherence, exploiting, 983–984
triple buffering, 976
ways to produce, 964

Animator, 966, 989
Anisotropic materials, 883
Antialiasing, 498ff, 982, 985, 1055

coverage sampling, 1058–1059
multisample, 1057–1058
spatial, 1055–1060
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Antialiasing (continued)
supersampled, 1056–1057
supersampling techniques for, 985–986

API, 15, 25–26, 32
Appearance modeling, 742
Appel’s ray-casting algorithm, 449, 797, 838
Apple Lisa, 568
Application model (AM), 36, 466–468
Application-Model-to-IM-Platform Pipeline

(AMIP), 468–474
Application programming interfaces.

See API
Approximate Catmull-Clark subdivision

surfaces, 613
Approximation (graphics)

common forms of, 825–831
of the series solution of rendering

equation, 847–848
Arcball interface, 280, 584

evaluation of, 584
practical implications of, 584

Architectural considerations, 444–445
Arctan, 152
Area-and-angle preserving, as a property of

texture mapping, 555
Area lights, 377–379, 550, 698, 740, 784,

847, 866-868, 888, 915–918, 925–926.
See also Area luminaire

hemispherical, 378–379
rectangular, 377–378
reflecting illumination from, 896

Area luminaire, 785, 788, 798, 891, 895.
See also Area lights

Area-subdivision algorithms, 1041
Area-weighted radiance, 910. See also

Biradiance
Aspect ratios

and field of view, 316–317
of triangles, 197

Associated transformations, 294
Attenuated geometric light source, 133

B
Back buffer, 971, 975
Back face, of polygon, 337
Backface culling, 337, 1023, 1028,

1047–1049
Backscattering, 730
Baking (models), 247
Band, of energies, 672
Band-limiting, 514, 522–523, 524, 534, 541

reconstruction and, 524–527
sampling and, 514–515

Band reconstruction, 534
Barycentric coordinates, 172, 183, 202, 203,

216, 218
analogs of, 182

Barycentric coordinates of x, 219
Barycentric interpolation, code for, 203–207
Basic graphics systems, 20–23

and graphics data, 21–23
Basis functions, 208, 596, 597, 600, 608,

609, 612, 625, 848–850. See also
Tent-shaped functions

Basis matrix, 597–598, 603
Beckmann distribution function, 732
Beta phenomenon, 977
Bézier curve, 598, 607
Bézier patches, 607, 608–610, 609f

described, 608
Bicubic tensor product patch, 609
Bidirectional path tracing, 853, 870–871

schematic representation of, 853f
Bidirectional reflectance distribution

function (BRDF), 646–647, 703, 783,
814, 834, 852, 946

anisotropic, 883, 885
Blinn-Phong, 883
cosine weighted, 820
glass and, 705–706
Lambertian, 814, 883
mirrors and, 705–706
Phong, 883
reciprocity and, 705–706

Bidirectional scattering distribution function
(BSDF), 354–362, 704, 712, 820, 852

analytic, 358
isotropic, 883
local representation of, 882–887
measured, 358

Bidirectional surface scattering reflectance
distribution function (BSSRDF), 704,
712, 738

Bidirectional transmittance distribution
function (BTDF), 704

Bijective, 152. See also Injective
Billboard clouds, 348
Billboards, 648

and impostors, 347–348
Binary space partition (BSP) trees,

1023–1024, 1030, 1084–1089
building, 1089–1092
C++ implementation of, 1086
conservative ball intersection, 1088
conservative box intersection, 1088
first-ray intersection, 1088
kd tree, 1089
oct tree, 1090
pseudocode for visibility testing in, 1032
quad trees, 1090, 1091f
ray-primitive intersection, 1030–1032
2D binary space partition tree (BSP),

1086f
Binary tree (data structure), 1077

1D example, 1079
Binned rendering, 1137–1138

abstraction distance in, 1138
advantages of, 1138
deferred shading in, 1137–1138
drawbacks of, 1138
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excess latency, 1138
full-scene anti-aliasing in, 1137
local memory in, 1137
poor multipass operation, 1138
properties of, 1137–1138
unbounded memory requirements, 1138

Biradiance, 910. See also Area-weighted
radiance

Birefringence, 682
Bisection method, 830–831
Bitmaps, 38
Black body, 672
Blending, 362–364

and translucency, 361–364
Blindness, motion-induced, 114
Blinn-Phong BRDF, general form of, 721
Blinn-Phong model (reflection model), 138,

395ff, 414, 721–723
Blobby modeling, 343
Blob tree, 624
Bloom and lens flare, 369
Bloom focus, 336
Blue noise distribution, 921
Blue screening, 485
Blurring, 317, 543, 545, 983
Body-centered Euler angles, 272
Body-centered rotation, 272. See also

Object-centered rotation
Boilerplate, 83
Boltzmann’s constant, 674
Bottom-up construction, and composition,

140–144
Boundaries, and light transport, 798
Boundary component, 641
Boundary edge, 194, 637

determining, 638
Boundarylike vertex, 194
Boundary of a simplex, 638
Boundary vertex, 194, 638
Bounded color models, 771
Bounding box, 38, 197, 198f, 285, 420, 429,

631, 983
Bounding-box optimization, 420–421

beyond, 429
Bounding geometry, 1068
Bounding Volume Hierarchy (BVH), 916,

1049, 1092–1093, 1092f
Bounding volumes, 1068
BRDF. See Bidirectional reflectance

distribution function (BRDF)
Brewster’s angle, 682
Brightness (light), 108, 750, 756

just noticeable difference (JND), 754
perception of, 750–756

Brush (geometric primitive), 38
Brushstroke coherence, 986
BSDF. See Bidirectional scattering

distribution function (BSDF)
B-spline basis matrix, 603
B-splines

cubic, 602–603
nonuniform, 604
nonuniform rational, 604
rational, 604
uniform spacing of, 604

BSSRDF. See Bidirectional surface
scattering reflectance distribution
function (BSSRDF)

BTDF. See Bidirectional transmittance
distribution function (BTDF)

Buckets, 1093, 1093f. See also Grid cells
Buffers, 327–330

color, 328
depth, 329
framebuffer, 329
stencil, 329

Buffer swap, 443
Building blocks of ray optics, 330
Building transformations, from view

specification, 303–310
Bump mapping, 547, 550–551

C
Cached and precomputed information on

meshes, 340–341
Caching, 983, 1129ff
Callback procedure, 23
Camera(s), 336–337

depth of field, 301
design, 406
focal distance of, 301
orthographic, 315–317
perspective camera specification, 301–303
position of, 301
specifications and transformations,

299–317
transformation and rasterizing renderer

ripeline, 310–312
Camera coordinates. See Camera-space

coordinates
Camera setup, 460–461
Camera-space coordinates, 22, 299, 928
Camera visibility. See Primary visibility
Candelas (measurement unit of luminous

intensity), 751
Capsule (3D volume), 1066
Cartoons, hand-animated, 966
Cathode-ray tubes (CRTs), 20, 770
Catmull-Clark subdivision surfaces, 610–613
Catmull-Rom spline, 540, 540f, 598–601

applications of, 602
generalization of, 601–602
nonuniform, 601
uniform, 601

Caustics, and light transport, 798
Cdf. See Cumulative distribution function

(cdf)
Channels, 483

color, 483
object ID, 485

Chateau (user interface), 589–590
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Chromatic aberration, 336–337, 680
Chunking rasterizer. See Tiling rasterizer
CIE chromaticity diagram, 765

applications of, 766
defining complementary colors, 766
excitation purity and, 766
indicating gamuts, 766

CIE Luv color coordinates, 767
CIE L*u*v* uniform color space, 767
Circularly polarized wave, 677
Client area, 37, 39, 46
Clipping, 59, 63, 1045–1046

of data, 24
near-plane, 422, 1044, 1046
Sutherland-Hodgman 2D clipping,

1045–1046
whole-frustum clipping, 1044, 1047

Clipping planes, 122
Closed interval, 150
Closed meshes, 190
Closed oriented meshes, 195
Closed surface, 638
Clustering, 665–666
Clusters, 1043
CMTM. See Composite modeling

transformation matrix
CMYK color, 774–775
Coded apertures, 493
Codomain, 151. See also Domain

for texture maps, 553–554
Coefficient of extinction, 682, 728, 738
Coefficient of restitution, 1012
Coherence, 950

spatial, 950
temporal, 950, 962

Colatitude, 688
Collision proxy geometry, 337
Color bleeding, 839
Colorblindness, 746
Color buffer, 328
Color constancy, 110, 748
Color description, 756–758, 771–774
Colorimetry, 747
Color interpolation, 777–779
Color matching, 748
Color models

bounded, 771
RGB, 772–774
YIQ, 775

Color naming, 748
Color palettes, 777
Color perception

peripheral, 781–782
physiology of the eye and, 748–750
strengths and weaknesses, 761

Color percepts, 747
Color(s)

choice, 777
CIE description of, 762–766
CMY, 774–775

CMYK, 774–775
coding, 779–780
complementary, 766
conventional color wisdom, 758–761
description, 756–758, 771–774
implications of, 746
intensity-independent, 765
interpolating, 777–779
matching, 748
naming, 748
nonspectral, 766
palettes, 777
perceived distance between, 767
perception of, 750–756
percepts, 747
perceptual spaces, 767–768
primary, 758–759
RGB sliders and, 761
sensations, 747
standard description of, 761–766
use in computer graphics, 779–780

Color selection interfaces
hue-lightness-saturation (HLS) interface,

776–777
hue-saturation-value (HSV) interface,

776–777
Color sensations, 747
Color specification in WPF, 133
Color wisdom, conventional, 758–761

blue and green make cyan, 760
color is RGB, 761
objects have colors, 759–760
primary colors, 758–759
purple isn’t a real color, 759

Comb function, and transform of, 520
Commission Internationale de l’Éclairage

(CIE), 755, 762–766
chromaticity diagram, 765
description of color, 762–766

Complementary colors, 766
Complex applications, processing demands

of, 14
Complex conjugate, 512
Component hierarchy, top-down design of,

139–140
Components, reuse of, 144–147
Composion of transformations, 235
Composite component, constructing, 142
Composited image, 485
Composite modeling transformation matrix,

314
Composite transformation matrix, 246, 314,

463
Compositing of images

operations, 488–489
physical units and, 489–490
simplifying, 487

Compression, use of splines for, 605
Compressive sensing, 530
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Computability, as a property of texture
mapping, 555

Computational photography, 493
Computations, stability of, 278
Computer-based animation industry, 932
Computer graphics, 1–33

2D transformation library, 287–298
3D transformation library, 287–298
applications, 24–25
basic graphics systems, 20–23
brief history of, 7–9
current and future application areas of, 4–6
deep understanding vs. common practice,

12
definition of, 2
examples of, 9–10
goals, resources, and appropriate

abstractions, 10–12
graphical user interfaces (GUI) and,

567–574
graphics pipeline, 14–15
interaction in graphics systems, 23–24
introduction to, 1–4
kinds of packages, 25–26
learning, 31–33
numbers and orders of magnitude in,

12–15
physical/mathematical/numerical models

of, 11
relationship with art, design, and

perception, 19–20
using color in, 779–780
world of, 4

Conceptual design (user interface), 570
Conductive materials, 714
Cones (color receptors), 107, 749

generalized, 757
Conformal mapping, 555
Conservative rasterization, 1096
Conservative rasterizer, 430
Conservative visibility, 1023
Conservative visibility algorithm, 1023
Conservative visibility testing, 1023

backface culling, 1023
frustum culling, 1023
methods of, 1023
spatial data structures and, 1023

Conservative voxelization, 1096
Constancy

application of, 111
color, 110
and its influences, 110–111
shape, 110
size, 110

Constant shading, 127
Constructive solid geometry (CSG), 450
Content, preparing viewport for, 120–122
Continuation, 111–112

applications, 112

Continuous probability. See Continuum
probability

Continuum, defined, 808
Continuum probability, 808–810, 815–818
Contour curve, 1048
Contour drawing, 551–552
Contour generator, 953. See also Contour(s)
Contour lines, 616
Contour points, 952
Contour(s), 551, 952, 953

of a smooth surface, 644
suggestive, 957–958

Contribution/detail culling, 470
Control data, 599
Control points, 599
Control templates, 49
Convex boundary polygon, 1045, 1045f
Convex cone, 747
Convex hull property, of cubic B-splines, 603
Convex polygons, 175
Convolution, 500–503

defined, 500
like computations, 504–505
properties of, 503–504

Convolution multiplication theorem, 521
Cook-Torrance model, 731–732
Coons, Steven A., 608
Coordinate frame(s), 240–241

defined, 240
rigid, 240

Coordinates, 153
operations on, 153–155

Coordinate system(s), 90–91
abstract coordinate system, 42–44
floating-point coordinates, 38–39
integer coordinate system, 38–39
physical coordinate system, 38
spectrum of, 44–45
transformations and, 229–230
WPF canvas, 45–46

Coordinate vector, 155
Cornell box, 903, 911, 916–917
Corner-cutting, on polyline, 81, 83
Correspondence (meshes), 661

building, 661
Cosine weighted BRDF, 820
Cosine-weighted sampling

on hemisphere, 815
Cotangent rule, 658
Covectors, 163, 184, 520

transforming, 250–253
Coverage

binary, 1027–1028
partial. See Partial coverage

Coverage of a pixel, 213
Coverage sampling antialiasing (CSAA),

1058–1059
Coverage testing, 422
Crease edges, 953
Critical angle, 682
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Cross product, 157–158
CRT. See Cathode-ray tubes (CRTs)
CSG. See Constructive solid geometry (CSG)
C++ Standard Template Library (STL),

1074
CTM. See Composite transformation matrix
Cube map, 554
Cube mapping, 340
Cubic B-spline filter, 540, 540f
Cubic B-splines, 602–603

convex hull property of, 603
formula for, 602–603
nonuniform, 602
uniform, 602–603

Culling
contribution/detail, 470
occlusion, 470
portal, 470
sector-based, 470
view-frustum, 470

Cumulative distribution function (cdf), 685
Curvature, 955

line of, 956, 956f
radial, 957

Curvature shadows, 946
Curved-surface

representation and rendering, 128
Curves

implicit, 616–619
Cyan-Magenta-Yellow (CMY) color,

774–775
Cybersickness, 571
Cylinder kernel, 910–911

D
Dangling edge, 637
Darken operation, 488
Data structures

characterizing, 1077–1079
generic use of, 1077
ordered, 1077
selecting, 1077
spatial, 1065–1102

DDA. See Digital Difference Analyzer
(DDA)

Debugging, 411–412
rendering and, 915–919

Declarative animation
dynamics animation via, 55–58

Declarative specification, 40
vs. procedural code, 40

Deferred lighting, 441–442
Deferred-rendering method, 440
Deferred shading, 446, 1135–1137

difficulties with, 1136
excess storage and bandwidth in, 1136
goal of, 1135
multi-sample anti-aliasing (MSAA),

incompatibility with, 1136
shader-specified visibility and, 1136

Defocus, 1060–1061
Deformation (meshes), 660
Deformation transfer, 660–664
Degenerate transformation, 224
Degree

of an edge, 637
of a vertex, 637

Delta function, 519
Density estimation, 912
Depth buffer, 329, 392, 1023, 1028,

1034–1040
common applications in visibility

determination, 1035–1036
common encodings, 1037–1040
depth prepass, 1036
encodings, 1037–1040
screen-space visibility determination and,

1037
Depth buffer encodings, 1037–1040

choices for, 1037
hyperbolic in camera-space z, 1037
linear in camera-space z, 1037

Depth complexity, defined, 446
Depth complexity of a ray, 1028
Depth map. See Depth buffer
Depth of field, 107, 301
Depth prepass, 1036
Depth-sort algorithm, 1042–1043
Depth value, 481
Derivative-based definitions of radiometric

terms, 655–656, 700–702
The Design of Everyday Things (Norman),

593
Detail objects, 1051
Development tools, 41
Device code, 432
Device coordinates, 39
Diagonal matrices, 230
Differential coordinates, 655–657
Diffraction, 676, 677

defined, 676
Diffuse, defined, 8
Diffuse reflection, 136

physical models for, 726–727
Diffuse scattering, 713, 716
Diffusion (morphogens), 561
Diffusion curves, 961
Digital cameras, 5

characteristics of, 13–14
Digital Difference Analyzer (DDA), 431
Digital signal processing, 545
Digital video cameras, 5
Direct3D, 452
Directed acyclic graph (DAG), 144, 248
Directed edges, 636
Directed-edge structure, 195
Direct illumination, 372–373

interface to, 372–373
Directional curvature in direction u, 956
Directional hemispherical reflectance, 708
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Directional light, 125
Directionally diffuse, 102
Direct light, 370. See also Indirect light
Direct lighting, 834. See also Direct

illumination
Direct shadows, 946
Dirty bit flags, 983
Dirty rectangles, 983
Discrete attributes, 651
Discrete differential geometry, 644, 667
Discrete probability, 803–804

relationship to programs, 803–804
Discrete probability space, 803
Displacement, 157
Displacement maps, 344, 547, 557ff, 562f,

647
Display-form-factor independence, 45
Display list, 473
Display transformation, 46–47
Distant objects, 346–348
Distribution (random variable), 806
Distribution ray tracing, 317, 838
Division of modeling principle, 210
DockPanel. See Panel
Dollying (camera control technique), 585
Domain, defined, 151. See also Codomains
Domain restriction, 827
Dominant wavelength, 747
Dot product, 158–159
Double-buffered rendering, 971, 975–976
Draw calls, 434

executing, 442–444
Drawing, Dürer’s, 62f, 64f, 68–72, 1035f
Drawing primitives, 461–462
Dual contouring, 653
Dual paraboloid, 554
Dual space, 163
Dual vectors. See Covectors
Dürer, Albrecht, 61–65
Dürer rendering algorithm

implementation, 65–68
Dürer’s drawing, 68–72
Dürer woodcut, 61–65, 1035f
Dynamic Canvas algorithm, 986, 986f
Dynamic range, 8
Dynamics, 463, 989, 996–1008
Dynamics animation, via declarative

animation, 55–58

E
Early-depth-test

defined, 446
example, 445–447

Early z-cull, 1136
Edge aligns, 427
Edge collapse, 197
Edge-collapse costs, 649–652
Edge detection, 533, 544, 545
Edge(s), 189

boundary, 637, 954

crease, 953
dangling, 637
directed, 636
interior, 637
sharp, 651
smooth, 953

Edges (computer vision), 952
Edge-swap operation, 197–198
Edge vectors, 175
Electric field

linearly polarized, 678
Electromagnetic spectrum, 330–331, 675f
Elements, 41

animation elements, 55–56
Elliptically polarized light, 679
Embedding topology, 637
Emission, 369, 737
Emissive lighting, 138
Emitters, 334–335
Empirical/phenomenological models, of

scattering, 713, 717–725
Energy, photons transport, 333
Energy conservation, 714
Energy function (meshes), 650
Environment map, 549, 550
Environment mapping, 340, 549–550,

939–940
Equations

approximate solutions of, 825–826
approximating, 826
domain restriction, 827
methods for solving, 825–831
Newton’s method for solving, 831
statistical estimators, using, 827–830
using bisection for solving, 830–831

Estimation
summing a series by, 828–830

Estimator random variable, 818
bias, 822–823
consistent sequence of, 818, 822–823
unbiased, 818
variance of, 818

Estimators. See Estimator random variable
Euclidean distance, 767
Euler angles, 267–269

body-centered, 272
Euler characteristic of a mesh surface, 641
Euler integration, 278
Even function, 508
Event (interaction), 92

handling, 85, 92–93
Event (probability), 802, 809
Excitation purity, 747

chromaticity diagram and, 766
defined, 747

Expectation. See Expected value
Expected value, 804–806, 810

properties of, 806–808
of a random variable, 810
related terms, 806–808
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Explicit equation, 341
Explicit Euler integration, 1016
Explicit Euler method, 1019. See also

Forward Euler method
Explicit trapezoidal methods, 1020
Exponents (display process), 769–771

encoding of, 769–771
Exposure time, 980. See also Shutter time
Expressive rendering, 945–962

abstraction in, 947
challenges of, 949–950
examples of, 948
geometric curve extraction in, 952–959
gradient-based, 952
marks, 950–951
perception and salient features, 951–952
perceptual relevance, 947
research in, 947–948
spatial coherence in, 950
strokes, 950–951
temporal coherence in, 950

Extended marching cubes algorithm, 653
Extensibility via shaders, 453
Extensible Application Markup Language

(XAML), 35, 41, 928
animation elements, 55–56
structure of, 41–42

Eye, 106–110
gross physiology of, 106–107
luminous efficiency function for, 751
physiology of, 748–750
receptors, 107–110
resolution, 13

Eye coordinates, 314
Eye path, 796
Eye ray

and camera design notes, 406
generating, 404–406
testing eye-ray computation, 406–407

Eye ray visibility. See Primary visibility

F
Factorization (abstraction), 947
FF. See Fixed-function (FF)
Field of view, and aspect ratio, 316–317
Field radiance, 834, 846
Fields (half-resolution frames), 978
FillEllipse, 39
Fill rate, 14, 636
Filter(s)

applying, 500
Catmull-Rom filter, 542t
cubic B-spline filter, 542t
filtering f with, 502
Gaussian filter, 542t, 543, 545
Mitchell-Netravali filter, 542t
separable, 544
sinc filter with spacing one, 542t
and their Fourier transforms, 542t
unit box filter, 542t

Filtering, 500, 502, 557–559
Final gather step in photon mapping, 913
Finite element method, radiosity, 839
Finite element models, 349
Finite series

summing by sampling and estimation,
828–829

Finite-state automaton (FSA), 574, 857
probabilistic, 858f

Finite support, 535
Finite-support approximations, 540–541
First-person-shooter controls, 588
Fitts, Paul, 572
Fitts’ Law, 572, 587
Fixed-function (FF), 452

era, 452–453
to programmable rendering pipeline,

452–454
Fixed-function 3D-graphics pipeline, 119
Fixed point, 325–326
Flat shading, 20. See also Constant shading
Floating point, 325, 326–327
Floating-point coordinates, 38–39
Flow curve, 1015
Fluorescence, 671
Flux responsivity, 792
Focal distance, 301
Focal points, 951

and caustics, 798
Focus dot (camera manipulation), 586
Fog, 351
Fold set, 953. See also Contour(s)
Foreground image, 485
Form factor (radiosity), 840

computation of, 842
Form factor (display), 58–59
Forward Euler integration, 1018
Forward Euler method, 1019. See also

Explicit Euler method
Forward-rendering design, 440
Fourier-like synthesis, 559–560
Fourier transform, 497

applications of, 522
of box, 517
definitions, 511
examples of, 516–517
of function on interval, 511–514
inverse, 520–521
properties of, 521
scaling property of, 521

Fourth-order Runge-Kutta method, 1020
Fovea, 107
Fractional linear transformation, 256
Fragment (pixel), 18, 1055, 1056f
Fragment generation, 17
Fragments, 18
Fragment shaders, 466, 930. See also Pixel

shaders
Fragment stage, 433
Framebuffers, 329, 971

front buffer, 971
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Frame coherence, 983. See also Temporal
coherence

Frames (individual images), 963
Frequency-based synthesis, and analysis,

509–511
Frequency domain, 513
Fresnel, Augustin-Jean, 681
Fresnel equations, 681, 727–729

unpolarized form of, 683
Fresnel reflectance, 683, 727–729
Fresnel’s law, 681–683, 682f

and polarization, 681–683
Frobenius norm, 663
Front buffer, 971, 975
Front face, of polygon, 337
Frontface polygon, 1048
Frustum clipping, 1028, 1045–1046
Frustum culling, 1023, 1028, 1044
Functional design (user interface), 570
Function classes, 505–507
Function L

writing in different ways, 706–707
Functions, 151–152

basis, 208
interpolated, 203
piecewise constant, 187
tabulated, 201

G
G3D (open source graphics system), 241,

295, 321, 356, 933
Game application platforms, 478
Game engines, 25. See also Game

application platforms
Gamma, defined, 771
Gamma correction, 769–771

defined, 771
encoding, 398, 769–771

Gamuts (color), 331, 766
chromaticity diagram and, 766
matching problem, 766

Gaussian filter, 542t, 543, 545
GDI, 38
Generalized cone, 757
General position assumption, 291–292, 292f
General purpose computing on GPUs

(GPGPU), 1142
Generics in programming languages, 1068
Gentle slope interface, 569
Genus of a surface, 196
Geometric algebra, 284
Geometric curve extraction, 952–959
Geometric light, 124, 133
Geometric model, 2, 41ff, 117ff,
Geometric modeling, 595
Geometric objects, 93–94
Geometric optics, 726
Geometric shapes, 470–472
Geometry

collision proxy, 337

instancing, 349–350
large-scale object, 337
projective, 257

Geometry matrix, 597
Geometry processing, 458–460
Geometry shaders, 931
Geomorph, 649, 650f
GIF. See Graphics Interchange Format (GIF)
Gimbal lock, 269, 994
Glass

BRDF and, 705–706
Global illumination, 340
Glossy highlights, 134, 353, 359–361
Glossy scattering, 414, 716
GLUT (OpenGL Utility Toolkit), 456
Gonioreflectometer, 702
Gouraud, Henri, 128
Gouraud shading, 128, 723, 743, 933. See

also Phong shading
fragment shader for, 937
vertex shader for, 935

GPGPU (general purpose computing on
GPUs), 1142

GPU. See Graphics Processing Units (GPUs)
GPU architectures, 1108–1111

binned rendering and, 1137–1138
deferred shading and, 1135–1137
Larrabee (CPU/GPU hybrid), 1138–1142
organizational alternatives of, 1135–1142

Grabcut (technology-enabled interface),
590–591

Gradient-domain painting, 961
Graftals (scene-graph elements), 986, 986f
Graphical user interfaces (GUI), 4, 23–24

affordances, 572
arcball interface, 584
choosing the best, 587–588
conceptual design, 570
examples of, 588–591
functional design, 570
lexical design, 570
multitouch, 574–580
natural user interfaces (NUIs), 571
sequencing design, 570
suggestive interface, 589
trackball interface, 580–584

Graphics applications, 21
architectures of, 466–478
kinds of, 24–25

Graphics data, 21–23
Graphics Interchange Format (GIF), 484
Graphics packages

kinds of, 25–26, 451ff
Graphics pipeline, 14–15, 36, 119, 310, 452,

458ff, 927, 1109ff, 432–434
defined, 434
forms of, 927–929
parts of, 17–18
stages of, 16–19

Graphics platforms, 21, 22, 25, 26
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Graphics Processing Units (GPUs), 18, 20
Graphics processor architecture, 8, 1107ff
Graphics program

with shaders, 932–937
Graphics workstations, 932
Grays (color), 756
Grayscale, 482
Great circle, 273
Grid, as a class of spatial data structures,

1093–1101
construction, 1093–1095
ray intersection, 1095–1099, 1096f, 1098f
selecting grid resolution, 1099–1101

Grid cells, 1093, 1093f. See also Buckets
Grid resolution, selecting, 1099–1101
GUI. See Graphical user interfaces (GUI)

H
Haar wavelets, 531

transform, 531
Half-edges, 338
Half-open intervals, 150
Half-plane bounded by l, 174
Half-planes

and triangles, 174–175
Half-vector, 721
Hand-animated cartoons, 966
Hash grid, 904, 1095
HDR images. See High dynamic range

(HDR) images
Heat, defined, 672
Heat equation, 529
Heightfields, 344
Helmholtz reciprocity, 703–704, 714. See

also Reciprocity
Hemicube, 842
Hemisphere

cosine-weighted sampling on, 815
producing a cosine-distributed random

sample on, 815
producing a uniformly distributed random

sample on, 814
Hemisphere area light, 378–379
Hermite basis functions, 596
Hermite curve, 595–598
Hermite functions, 596
Heun’s method, 1019–1020
Hidden surface removal, 1023. See also

Visible surface determination
Hierarchical depth buffer, 1024, 1050.

See also Hierarchical z-buffer
Hierarchical modeling, 35, 55, 313ff,

463–464
Hierarchical occlusion culling, 1049–1050
Hierarchical rasterization, 430
Hierarchical z-buffer, 1050. See also

Hierarchical depth buffer
High-aspect-ratio triangles, 197
High dynamic range (HDR) images, 481
High-level design, 388–393

High-level vision, 105
Hit point (Unicam), 585
Homogeneous clip space, 429, 1047
Homogenization, 236, 254, 259
Homogenizing transformation, 265
Host code, 432
HoverCam (camera manipulator), 591
Hue (color description), 756
Hue-lightness-saturation (HLS) interface,

776–777
Hue-saturation-value (HSV) interface,

776–777
Human-computer interaction (HCI), 568

arcball interface, 584
interaction event handling, 573–574
mouse-based camera manipulation

(Unicam), 584–587
mouse-based object manipulation in 3D,

580–584
multitouch interaction for 2D

manipulation, 574–580
prescriptions in, 571–573
suggestive interface, 589
two-contact interaction, 578

Human visual perception, 101–115
Human visual system, 29–30
Hybrid pipeline era, 453
Hyperbolic depth encoding, 1038–1040

complementary or reversed, 1039
Hyperbolic interpolation, 423

I
Identity matrix, 225
iid, see Independent dentically distributed

random variables
Illuminant C (CIE chromaticity diagram),

765
Illumination, 9, 340, 362, 370ff, 722, 751,

785
Image

choosing format of, 484–485
composited, 485
compositing, 485–490
defined, 482
enlarging, 534–537
file formats, 483
foreground, 485
gradient, 544
information stored in, 482–483
losslessly compressed, 483
meaning of pixel during compositing, 486
Moiré patterns, 544
other operations and efficiency, 541–544
processing, 492–493
representation and manipulation, 481–494
RGB, 482
scaling down, 537–538
types of, 490–491

Image-based texture mapping, 559
Image display, 29
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Image gradient, 544, 961
Images

and signal processing, 493–532
Image space, 22, 245
Image-space photon mapping, 876
Immediate mode (IM), 452

vs. retained mode (RM), 39–40
Implementation platform, 393–403

and scene representation, 400–402
and selection criteria, 393–395
and test scene, 402–403
utility classes, 395–400

Implicit curves, 616–619
Implicit functions, representing, 621–624

mathematical models and, 623–624
Implicit lines, 164
Implicitly defined shapes, 164, 615–633

advantages of, 615
in animation, 631–632
disadvantages of, 615

Implicit surfaces, 341–343, 619–620
ray tracing, 631
ray-tracing, 342–343

Importance function, 792, 819
Importance-sampled single-sample estimate

theorem, 818–819
Importance sampling, 802, 818–820, 822,

854
integration and, 818–820
multiple, 820, 868–870

Impostors, 348
and billboards, 347–348

Impulses, 356, 713, 784, 1010–1012. See
also Snell-transmissive scattering

deriving impulse equations, 1010–1011
magnitude of, 740, 793

Impulse scattering, 715–716, 740, 784. See
also Impulses; Snell-transmissive
scattering

Incremental scanline rasterization, 431
Independent identically distributed (iid)

random variables, 808
Independent random variables, 807

properties for, 807
Indexed face sets, 77
Indexed triangle meshes, 338
Indexing arrays, 156
Indexing vectors, 156
Index of refraction, 107, 332. See also

Refractive index
Indication (expressive rendering), 948
Indirect light, 370. See also Direct light
Indirect lighting, 834
Infinite series

summing by sampling and estimation,
829–830

Infinite support, 535
Information visualization, 4, 37
Inheritance, as key extraction method,

1073–1074

Initialization in OpenGL, 456–458
Injective function, 151. See also Surjective

function
Inner product, 158
Inscattering, 738
Inside/outside testing, 175–177
Instance transform, 139–140
Instancing, described, 450
Instantiated templates, 39, 50
Integral, of spectral radiance, 692
Integral equation, 786
Integration

importance sampling and, 818–820
Intel Core 2 Extreme QX9770 CPU, 1138
Intensity (light), 700, 769–771

encoding of, 769–771
high-light perception of, 770
low-light perception of, 770

Intensity-independent colors, 765
Interaction, keyboard, 95
Interface, 434–444
Interior edge, 637
Interiors of nonsimple polygons, 177
Interior vertices, 194, 638
Interlaced television broadcast and storage

formats, 978
Interlacing, 978–980

pulldown, 979–980
telecine, 978–980

International Color Consortium (ICC), 772
Interpolated function

properties of, 203
Interpolated shading (Gouraud), 128–129
Interpolating curve, 600
Interpolation

bilinear, 622
hyperbolic, 423
perspective-correct, 256, 312, 422–424
precision for incremental, 427–428
rational linear, 423
between rotations, 276–278, 277f
spherical linear, 275–276
vs. transformations, 259

Interpolation schemes, 621–622
bilinear interpolation, 622

Intersections, 167–171
of lines, 165–167
ray-plane, 168–170
ray-sphere, 170–171

Interval
Fourier transform on, 518

Invariant under affine transformations, 182
Inverse Fourier transform, 520–521
Inverse function, 151
Inverse tangent functions, 152–153
Invertibility, as a property of texture

mapping, 555
Inward edge normal, 175
Irradiance, 697–699. See also Radiosity

defined, 697
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Irradiance due to a single source, 698
Irradiance map, 557
Isocontour, 341
Isocurves, 616
Isosurfaces, 619. See also Level surfaces

J
Jaggies (image), 31
Joint transform, 140, 146–147
Just noticeable difference (JND), 754

K
k-dimensional structures, 1080–1081
kd tree, 1089
Kernel (photon map), 910

cylinder, 910–911
Kernel (photon mapping), 874, 1142
Key (data structure), 1068, 1077
Keyboard interaction, 95
Key frame, 966, 989. See also Key pose
Key pose, 966, 989. See also Key frame
Keys and bounds, extracting, 1073–1077

inheritance, use of, 1073–1074
traits, 1074–1077

Kinect (interface device), 568
Kinetic energy, 1021
Knee joint

adding, 143–144
Knots, 601
Kubelka-Munk coloring model, 760

L
L2 difference. See L2 distance
L2 distance, 104
L2 (space of functions), 506ff

2 (space of sequences), 506ff
“Lab” color, 767
Lafortune model (light scattering model),

723–724
Lag. See Latency
Lambertian, 28, 358–359
Lambertian bidirectional reflectance

distribution function (BRDF), 720, 883
Lambertian emitter, 695
Lambertian luminaire, 785
Lambertian reflectance, 28, 358, 413, 720,

925
Lambertian reflectors, 719–721
Lambertian scattering, 413–414, 716, 725
Lambertian shading, 353
Lambertian wall paint, 708
Lambert’s Law, 358
Laplacian coordinates, 655–657

applications, 657–660
properties of, 657

Large-scale object geometry, 337
Larrabee (CPU/GPU hybrid), 1138–1142,

1139f
cache coherence, 1140
capability of, 1140

correct provisioning, 1141
efficient parallelization, 1141
flexibility in, 1140
vs. GeForce 9800 GTX, 1140
generality in, 1140
Intel’s IA-32 instruction set architecture

(ISA), use of, 1140
latency hiding, 1140
multiple processing cores, 1139
sequence optimization, 1141
specialized, fixed-function hardware, 1139
SPMD and, 1140
texture evaluation, 1139
wide vectors, 1139

Latency, 17, 1123–1126
Lateral inhibition, 108
Law of conservation linear momentum, 1011
Layout, defined, 85
LCD. See Liquid-crystal displays (LCDs)
LED-based interior lighting, 752
Legacy models, 324
Lemniscate of Bernoulli, defined, 616f
Lens flare and bloom, 366, 369
Level of detail (LOD), 347
Level set, 164, 341, 616
Level set methods, 631
Levels of detail (geometric representations),

645–649
determining, 645–646
parametric curves and, 649
surfaces and, 649

Level surfaces, 619. See also Isosurfaces
Lexical design (user interface), 570
Light(s), 26, 330–333, 784

ambient, 122, 124
area, 888
bending of, at an interface, 679–680
defined, 669
direct, 835, 865
directional, 125
elliptically polarized, 679
excitation purity and, 747
geometric, 124
hemisphere area light, 378–379
indirect, 835, 865
infrared, 672
interaction with objects, 118–119
interaction with participating media,

737–738
metameric, 768
point, 886–887, 888–889
representation of, 887–889
light capture, 29
measuring, 692–699
modeling as a continuous flow, 683–692
monospectral, 747
omni-light, 379–380
other measurements of, 700
path, 796
physical properties of, 669–670
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quantized, 670
rectangular area light, 377–378
scattering, 388–390
spectral distribution of, 746–748
transport, 335–336, 783–787
ultraviolet, 671
unpolarized, 683
wavelength of, 670
wavelike, 670
wave nature of, 674–677

Light energy
and photon arrival rates, 12–13

Light geometry, 133
Lighting, 312

direct, 834, 913
indirect, 834
and materials, 458
Phong, 930
programmable, 930
vs. shading in fixed-function rendering,

127–128
Lighting specification, 120–128
Light maps, 341
Lightness, 755, 756

CIE definition of, 755
Light path, 796
Light transport, 783–787

alternative formulations of, 846–847
boundaries and, 798
caustics and, 798
classification of paths, 796–799
Metropolis, 871–872, 915
perceptually significant phenomena and,

797–799
polarization and, 798
shadow and, 797
symbols used in, 784t
transport equation, 786–787

Light-transport paths
classification of, 796–799

Linear combination, 157
Linear depth, 1040
Linear depth encoding, 1040
Linear interpolation, 201
Linearly polarized electric field, 678
Linear radiance, 398
Linear transformation, 221, 259, 307

degenerate (or singular) transformation,
224

examples of, 222–224
multiplication by a matrix as, 224
nonuniform scaling, 223
properties of, 224–233
rotation, 222–223
shearing, 223

Linear waves, 675
Linear z, 1040
Line of curvature, 956, 956f
Lines, intersections of, 165–167
Linked list (data structure), 1077

1D example, 1078–1079
Link of a vertex, 208, 641
Liquid-crystal displays (LCDs), 20
List, as a class of spatial data structures,

1081–1083, 1082f
C++ implementation of conservative

ball-primitive intersection in, 1083
C++ implementation of ray-primitive

intersection in, 1083
unsorted 1D list, 1081

List-priority algorithms, 1040–1043
BSP sort, 1043
clusters, 1043
depth-sort algorithm, 1042–1043
painter’s algorithm, 1041–1042

Live Paint, 1042
Local flatness (surface), 643, 882
Local Layering, 1042
LOD. See Level of detail (LOD)
Look vectors, 304
LookDirection, 122
Losslessly compressed image, 483
Lossy compression, 471, 483
Low-level vision, 105
Lucasfilm, 932
Luma, 771, 775
Lumens, 707
Luminaire models, 369

and direct and indirect light, 370
and nonphysical tools, 371–372
practical and artistic considerations of,

370–377
and radiance function, 370

Luminaires, 369, 784
area lights, 888
computer graphics, 369
representation of, 888–889
Lambertian, 785
point lights, 888–889
representation of, 888–889

Luminance, 707, 747, 755
of light source, 751
signal representative of, 770–771

Luminous efficiency, 707
Luminous efficiency function, 751
Luminous intensity, 751

M
Mach banding, 20, 211
Macintosh, 568
Magnitude, of impulses, 740, 793
Manifold meshes, 190, 191, 193–195

2D mesh as, 193
boundaries, 194
orientation of triangles in, 193–194

Manifold-with-boundary meshes, 195
operations on, 195

Mappings
application examples of, 557t
cylindrical, 555
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Mappings (continued)
examples of, 555–556
reflection, 556
spherical, 555

Marching cubes, 625, 628–629
algorithm, 628
extended, 653
generalization of, 652–653
variants, 652–654

Marching squares, 627
Hermite version of, 653

Markov chains, 857–861
estimating matrix entries with, 858–859,

860–861
Metropolis light transport, 871–872
path tracing and, 856–857

Markov property, 857
Marks (expressive rendering), 950–951

creation of, 951
imitation of artistic technique for creating,

951
physical simulation, 951
scanning/photography approach for

creating, 951
Mask, 485–486
Masking, 730
Master templates, 39
Material, in scattering, 712
Material models, 353–358

software interface to, 740–741
Materials

lighting and, 458
Mathematical model, 2, 11. See also

Geometric model; Numerical model;
Physical models

and sampled implicit function
representations, 623–624

Mathematics, and computer graphics, 30–31
Matrix associated to a transformation, 224
Matrix/matrices, 156

diagonal, 230
identity, 225
invertible, 225
orthogonal, 230
properties of, 230–231
rank of, 231, 261
rotation, 270–272
singular value decomposition (SVD) of,

230
special orthogonal, 230

Matrix multiplication, 161–162
Matrix transformations, 222

interpolating, 280
Matter, 336
Matting problem, 367
MaxBounce (photon mapping), 873
McCloud, Scott, 947
Mean. See Expected value
Measured BSDFs, 358

Measured/captured models, of scattering,
713, 725–726

Measurement,
and sampling, 507
value of, 323–324

Measurement equation, 791–792
Measure of a solid angle, 687
Megakernel tracing, 1033
Memoization (component of dynamic

programming technique), 983
Memory practice, 435–437
Memory principles, 434–435, 1117ff
Mesh(es), 338–341

adjacency information on, 338–339
alternative mesh structures, 338
applications, 652–667
beautification, 197
cached and precomputed information on,

340–341
closed, 190, 642
connected unoriented, 639
differential coordinates for, 657
embedding topology for, 637
functions on, 201–220
geometry, 643–644
icosahedral, 648
indexed triangle, 338
Laplacian coordinates for, 657
manifold, 191
manifold-with-boundary meshes, 195
meaning of, 644–645
nonmanifold, 195–196
nontriangle, 637
operations, 197
orientation of triangles in, 193–194
oriented, 191, 639–640
other simplification approaches, 652
per-vertex properties and, 339–340
polygonal, 953
progressive, 649–652
quad, 611, 611f
repair, 654–655
simplices, 208
simplification, 188, 197
subdivision of, 211
terminology, 641
terminology for, 208
topology of, 189, 637–643
triangle, 187, 187f, 188f
unoriented, 191
winged edge polyhedral representation

and, 338
Mesh beautification, 197
Mesh flattening, 667
Mesh geometry, 643–644
Mesh Laplacians, 656
Mesh operations, 197

edge collapse, 197
edge-swap, 197–198
mesh beautification, 197
mesh simplification, 197



ptg11539634

Index 1197

Mesh repair, 654–655
Mesh specification, 120–128
Mesh structures, 211

memory requirements for, 196–197
Mesh topology, 637–643
Metaball modeling, 343
Metadata, 483
Metameric lights, 768
Metamers, 768
Metropolis light transport, 871–872, 915
Microfacets, 729
Microgeometry, 901
Micropolygon rasterization, 431–432
Micropolygons, 340, 431
Microsoft Office Picture Manager, 569
Minecraft, 964
MIP maps, 217, 491–492, 1120
Mirrors

BRDF of, 705–706
and point lights, 886–887

Mirror scattering, 715, 717–719
Mitchell-Netravali filter, 540f
Mixed probabilities, 820–821
Model, defined, 2
Modeling, defined, 2
Modeling space, 21
Modeling stage, 460
Modeling transformation, 51
Modelview, 314
Modelview matrix, 463
Modelview projection matrix, 314
Modified Euler method, 1020
Modular modeling

motivation for, 138–139
Modulus, of complex numbers, 513
Moiré patterns (image), 544
Monet painting, 948
Monospectral distributions, 747
Monte Carlo approaches, 851–854

bidirectional path tracing, 853
classic ray tracing, 851–852
distribution ray tracing, 838
path tracing, 853
photon mapping, 853–854, 872–876

Monte Carlo integration, 783, 796, 854
Monte Carlo rendering, 786, 922
Moore’s Law, 8, 932
Morphogens, 561
Motion

methods for creating, 966–975
perception, 976–978
root, 969

Motion blur, 980–983, 1061–1062
temporal aliasing and, 980–983

Motion-blur rendering, 922
Motion-induced blindness, 114
Motion perception, 976–978

Beta phenomenon, 977
strobing, 977

Motion planning, 972–973

Mouse-based object manipulation in 3D,
580–584

arcball interface, 584
trackball interface, 580–584

MSAA. See Multi-sample anti-aliasing
(MSAA)

Multipass rendering, 441
Multiple importance sampling, 820, 868–870
Multiresolution geometry, 471
Multisample antialiasing (MSAA), 433,

1057–1058, 1136
advantages of, 1058
drawbacks of, 1057–1058

Multitouch interaction for 2D manipulation,
574–580

Munsell color-order system, 762
Mutation strategy, 871
Mutually perpendicular vectors, 229, 240

N
Natural user interfaces (NUIs), 571
Nearest neighbor (density estimation), 912
Nearest-neighbor field, 564
Nearest-neighbor strategy (animation), 967
Near-plane clipping, 1044, 1046
Negative nodes (BSP tree), 1031
Neighborhood (subdivision surfaces), 610
Neighbor-list table, 191
Nit (photometric term), 751
Nonconvex spaces, 211–213
Nonmanifold meshes, 195–196
Nonphotorealistic camera, 3
Nonphotorealistic rendering (NPR), 945, 986
Nonphysical tools, 371–372
Nonspectral colors, 766
Nonspectral radiant exitance, 700. See also

Radiosity
Nonuniform B-spline, 604
Nonuniform Catmull-Rom spline, 601–602
Nonuniform rational B-spline, 604

advantages of, 604
CAD systems and, 604

Nonuniform scale. See Nonuniform scaling
transformation

Nonuniform scaling, as linear transformation
in the plane, 223

Nonuniform scaling transformation, 223
Nonuniform spatial distribution, 1100
Nonzero winding number rule, 177
Norm, of a vector, 157
Normal. See Normal vectors
Normalization process, 72
Normalized Blinn-Phong, 359–361
Normalized device coordinates, 22, 72.

See also Camera-space coordinates
Normalized fixed point, 325
Normalizing vector, 157
Normal maps, 647
Normal transform. See Covectors,

transforming
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Normal vectors, 16, 27–28, 164, 193–194
Notation, mathematical, 150
Numbers

and orders of magnitude in graphics,
12–15

Numerical integration, 29, 801–802
deterministic method, 801–802, 804
probabilistic or Monte Carlo method, 802

Numerical methods for solving ODEs,
1017–1020

Numerical model, 11. See also Mathematical
model; Physical models

NURB. See Nonuniform rational B-spline
NVIDIA GeForce 9800 GTX GPU, 1138
Nyquist frequency, 515
Nyquist rate, 544

O
Object-centered rotation, 272. See also

Body-centered rotation
Object coordinates, 140, 245. See also

Object space
Object ID channel, 485
Object-level scattering, 711–712
Object-oriented API, 41
Objects

detail, 1051
interaction with light, 118–119
and materials, 27–28

Object space, 245. See also Modeling space;
Object coordinates

Occlusion, 308, 1023ff
in 2.5D systems, 1042

Occlusion culling, 1023, 1049
hierarchical, 1049–1050

Occlusion function, 1025
Occlusion query, 1049
Oct tree, 629, 1090
Odd winding number rule, 177
OLED. See Organic light-emitting diodes

(OLEDs)
Omnidirectional point light
Omni-light, 379–380
One-dimensional (1D) meshes, 189

boundary of, 190
data structure for, 191–192
manifoldmesh, 190
1-ring (vertices), 641

OpenGL, 452
compatibility (fixed-function) profile,

454–455
core API, 466
programmable pipeline, 464–466
program structure, 455–456
utility toolkit, 456

OpenGL ES, 479
OpenGLUtilityToolkit. See

GLUT(OpenGLUtilityToolkit)
Optic disk, 107
Optimization

early, 446–447
and performance, 444–447

Ordinary differential equation (ODE), 998
general ODE solver, 1016–1017
numerical methods for, 1017–1020

Oren-Nayar model, 732–734
Organic light-emitting diodes (OLED), 20
Orientation-preserving reflection, 264, 284
Oriented 2D meshes, 194–195

boundaries and, 194–195
Oriented meshes, 191

closed, 195
Oriented simplex, 639
Orthogonal matrix, 230
Orthographic cameras, 315–317
Orthographic projections. See Parallel

projections
Outer product (matrices), 260
Output merging stage, 433–434
Output-sensitive time cost, 1079
Outscattering, 738
Outside/inside testing, 175–177
Outward edge normal, 175
Over operator, 365

P
Packet tracing, 1061
Painter’s algorithm, 1028, 1041–1042
Panning (camera controlling technique), 585
PantoneTM color-matching system, 761
Paraboloid, dual, 554
Parallel projections, 315–316
Parameterization

building tangent vectors from, 552–553
of lines, 155
texture, 555
of triangles, 171

Parameterized model, 76
Parametric equation, 341
Parametric form of the line between P and Q,

155
Parametric-implicit line intersection, 167
Parametric lines, transforming, 254
Parametric-parametric line intersection, 166
Partial coverage, 364–367, 365, 1028,

1054–1062
defocus, 1060–1061
as a material property, 1062
motion blur, 1061–1062
spatial antialiasing, 1055–1060

Participating media, 737–738
Particle collision detection, 1008–1009
Particle collisions, 1008–1012

collision detection, 1008–1009
impulses, 1010–1012
normal forces through transient

constraints, 1009
penalty forces, 1009–1010

Particle systems, 350–351
Path mesh, 668
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Path tracer
basic, 889–904
building, 864–868
code, 893–901
core procedure in, 893
Kajiya-style, 866, 867
preliminaries, 889–893
symbols used in, 890

Path-tracer code, 893–901
Path tracing, 853, 853f, 855

algorithmic drawbacks to, 855–856
bidirectional, 853, 870–871
constructing a photon map via, 873
and Markov chains, 856–857
path tracer, building, 864–868

Pdf. See Probability density function (pdf)
Pen (geometric attribute), 38
Penalty force

application of, 1009–1010
computation of, 1009–1010
defined, 1009

Pencil of rays, 1060
Penumbra, 505, 798
Perception, human visual. See Human visual

perception
Perceptual color spaces, 767–768
Peripheral color perception, 781–782
Perlin noise, 560–561, 561f
Perspective camera specification, 301–303
Perspective-correct interpolation, 422–424
Per-vertex properties

of meshes, 339–340
Phong exponent, 736
Phong lighting, 930
Phong lighting equation, 938
Phong model (reflection model), 721–723
Phong reflectance (lighting) model, 134
Phong shader, 937–939
Phong shading, 723. See also Gouraud

shading
fragment shader for, 938–939, 940
vertex shader for, 938

Phosphorescence, 671
Photography

computational, 493
Photometry, 670, 700
Photon(s), 369, 670

defined, 872
photon-mapping, 872
propagation, 907–908

Photon arrival rates
and light energy, 12–13

Photon emission, 376–377
Photon map, 872, 908, 913

constructing via photon tracing, 873
Photon mapping, 853–854, 872–876,

904–914
bias in, 875
consistency in, 875
density estimation and, 912

final gather step in, 913
image-space, 876
limitations, 875
main parameters of, 873
phases of, 872
schematic representation of, 853f

Photon propagation, 907–908
Photon tracing, 872
Photopic vision, 753–754
Photorealism, 945
Photorealistic rendering, 31
Physical coordinate system, 38
Physically based animation, 963, 989
Physically based models, of scattering, 713,

727–734
Physical models, 11. See also Numerical

model; Physical models
Physical optics, 726
Physical units

and compositing, 489–490
Physics scene graphs, 352–353
Pick correlation, 39, 60, 139, 464
Pick path, 464
Piecewise constant function, 187
Piecewise linear extension, 210

animation, use in, 211
defined, 210
limitations of, 210–211
mesh structure and, 211

Piecewise linear reconstruction, 505
Piecewise-smooth curves, 540
Pie menus, 573, 573f
Pitching, 267
Pixar, 932
Pixel coordinates, 22
Pixel program, 433
Pixels, 5

defined, 29
Pixel shader. See Pixel program
Pixel shaders, 930. See also Fragment

shaders
Pixel stages

and vertex stage, 433
Pixel values, 482
Pixmaps. See Bitmaps
Planar wave, 676
Planck, Max, 674
Planck’s constant, 12, 670, 674
Plenoptic function, 370, 693
PNG. See Portable Network Graphics (PNG)
Point lights, 124–125, 133, 886–889

computing direct lighting from, 894
mirrors and, 886–887
reflecting illumination from, 894

Points, 234–235, 288
Point sets, 345–346
Poisson disk process, 921
Polarization, 670, 677–679

circular, 678f
Fresnel’s law and, 681–683
linear, 678f
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Polarizers, 679
Polling (interaction loop), 574
Polygonal contour extraction, 955
Polygon coordinates, 249. See also Modeling

coordinates
Polygon meshes, 635
Polygons, 175–182

back face, 337
drawing as black box, 23
front face, 337
interiors of nonsimple, 177
micropolygon, 340
normal to polygon in space, 178–179
polygon rate, 14
simple, 175

Polygon soup, 654
Polyhedral manifolds, 191
Polyhedral meshes

conversion to, 625–629
conversion to implicits, 629

Polyline, 81
Polymorphic types, 1068
Polymorphism, 1073
“Poor man’s Fourier series,” 560
Poor sample test efficiency, 420
Popping, 985
Portable Network Graphics (PNG), 484
Portal culling, 470
Portals, 1051, 1052–1054
Positive nodes (BSP tree), 1031
Positive winding number rule, 177
Potential energy, 1021
Potentially visible set (PVS), of primitives,

1050
Power vectors, 875
p-polarized light source, 681
p-polarized waves, 681
Practical lights, 372
Prebaking (models), 247
Premultiplied alpha, 366–367, 487

problem with, 489
Presentation vector graphics, 1042
Primary colors, 758–759
Primary ray, 1027
Primary visibility, 1023, 1024, 1027
Primitive components

geometries of, 140–141
instantiating, 141

Primitives, 6, 38, 461–462, 962, 969, 973,
1028, 1030–1031, 1041–1042, 1044,
1059–1060, 1084–1085, 1087–1092

Primitives per second, 6
Principal curvatures, 956
Principal directions, 956
Probability

of an event, 803
continuum, 808–810
mixed, 820–821

Probability density, 684, 686

Probability density functions (pdf), 684, 808,
810–812

Probability masses, 685, 820
Probability mass function (pmf), 803, 805
Probability of an event, 809
Procedural code, 35, 55, 58

vs. declarative specification, 40
dynamics via, 58

Procedural texturing, 549
Programmable graphics card, 8. See also

GPU.
Programmable lighting, 930. See also

Programmable shading
Programmable pipeline, 433, 453–454

abstract view of, 464–466
OpenGL, 464–466

Programmable rendering pipeline
fixed-function to, 452–454

Programmable shading, 930, 932. See also
Programmable lighting

Programmable units, 433
Programmatic interfaces, 1068–1077
Programmer instruction batching, 1033
Programmer’s model, 17, 454–464
Progressive meshes, 649–652

goal of, 649
Progressive refinement (radiosity), 843
Progressive television formats, 978
Projected solid angle, 690
Projection stage, 460
Projection textures, 555, 629
Projective frame, 265
Projective geometry, 77, 257
Projective transformations, 255, 257,

259–260, 263, 291–293, 308
general position, 291–292, 292f
properties of, 265–266

Projective transformation theorems, 265–266
Propagation, 332–333
Proxies (data structure), 1068
Pseudoinverse

defined, 232
least squares problems and, 232
SVD and, 231–233

Pseudoinverse Theorem, 232
Pulldown (interlacing), 979–980

Q
Quad fragments, 1137
Quad meshes, 611, 611f, 635
Quadratic error function, 653
Quad trees, 1090, 1091f
Quake video game, 1052
Quantitative invisibility, 1028
Quaternions, 273, 283, 993
QuickDraw, 38

R
Radial curvature, 957
Radiance, 333, 397, 693, 694–695

area-weighted, 910
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emitted, 785, 832
field, 786, 834, 846
impulse-reflected, 794
linear, 398
surface, 786–787, 834, 846

Radiance computations, 683, 695–697
Radiance function, 370
Radiance propagation, 907–908
Radiant exitance, 699

spectral, 699
Radiant flux, 699. See also Radiant power
Radiant power, 699. See also Radiant flux
Radiometry, 669, 694
Radiosity, 333, 700, 797, 838–844. See also

Nonspectral radiant exitance
characteristics, 838
color bleeding and, 839
as finite element method, 839
meshing in, 843

Radiosity equation, 840
Randomized algorithms

random variables and, 802–815
Random parametric filtering (RPF), 922
Random point, 812
Random variable(s)

in continuum probability, 809
defined, 803
estimator, 818
expected value of, 810
identically distributed, 808
independent, 807
independent identically distributed (iid),

808
and randomized algorithms, 802–815
random point and, 812
uniform, 807

Random variable with mixed probability, 820
Raster devices, 8
Raster graphics, 209

history of, 931–932
Rasterization, 18, 418–432, 1027, 1061

conservative, 1096
defined, 387, 391
hierarchical, 430
and high-level design, 388–393
incremental scanline, 431
micropolygon, 431–432
and ray casting, 387–449
rendering with API of, 432–434
swapping loops, 418–419
triangles first, 391–393

Rasterizer algorithm, 418
Rasterizing shadows, 428–429
Rasterizing stage, 433
Rasters, 391, 978, 979
Rational B-spline, 604
Rational numbers, 325
Ray bumping, 886, 1027
Ray casting, 1023, 1028, 1029–1034

defined, 387, 391

implementation platform and, 393–403
pixels first, 391–393
and rasterization, 387–449
renderer, 403–404
and sampling framework, 407–408
time cost of, 1029

Ray intersection, 1095–1099
Ray intersection query, 1026
Ray optics

building blocks of, 330
Ray packet, 445
Ray packet tracing, 1027, 1033
Ray-plane intersection, 168–170
Ray-sphere intersection, 170–171
Ray tests, parallel evaluation of, 1032–1034
Ray tracer

steps involved in, 929
Ray-tracing

defined, 391
recursive, 851–852
implicit surfaces, 342–343, 631

Ray-triangle intersection, 408–411, 1073
Reaction (morphogens), 561
Ready for rendering

vs. abstract geometric, 467
Realistic lighting

producing, 124–127
Realistic rendering, building blocks for,

26–31
Real numbers, 324–325
Real-time 3D graphics platforms, 351–480

introduction, 351–352
Reciprocity, 714. See also Helmholtz

reciprocity
and BRDF, 705–706

Reconstruction, 505
and band limiting, 524–527
piecewise linear, 505

Rectangular area light, 377–378
Recursive approach, 861–864
Reencoding, 470–471
Reference frame, 963
Reference renderer, 388
Reflectance, 133–138, 702–704, 711ff

ambient reflection, 136
diffuse reflection, 136
emissive lighting, 138
phong reflectance (lighting) model, 134
specular reflection, 137–138
WPF reflectance model, 133–138

Reflectance equation, 703, 786
Reflection mapping, 556
Reflection model, 723. See also Scattering

model
Reflective scattering, 697, 715
Reflective surface, 27
Refractive index, 679
Refractive scattering, 716
Rejection sampling, 823
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Rendering, 6
animation and, 975–987
binned, 1137–1138
debugging and, 915–919
double-buffered, 971, 975–976
expressive, 945–962
intersection queries in graphics that arise

from, 1066–1067
Monte Carlo, 922
motion blur, 980–983
motion-blur, 922
nonphotorealistic, 945, 986
pen-and-ink, 950
photorealistic, 31
stroke-based, 955
temporal aliasing, 980–983

Rendering equation, 373–376, 703, 783,
786–787, 831–836

approximating, 826
approximations of the series solution of,

847–848
discretization approach, 838–844
domain restriction, 827
for general scattering, 789–792
Markov chain approach for solving,

857–861
methods for solving, 825–831
Monte Carlo approaches for solving,

851–854
recursive approach for solving, 861–864
series solution of, 844–846
simplifying, 840
spherical harmonics approach, 848–851

Replication
in spectrum, 523–524

Representations
comparing, 278–279
evaluating, 322–323
of implicit functions, 624–625
of light, 887–888
and standard approximations, 321–384
surface, 882–887
triangle fan, 338

Resolution, 8
eye’s resolution, 13

Resolution dependence, 38
Resolved framebuffer, 1056, 1056f
Restricted transformations, 295–297

advantages of, 295
disadvantages of, 295

Retained mode (RM), 452
vs. immediate mode (IM), 39–40

Retina, 107
Retroreflective scattering, 716
Reuse of components, 144–147
Reyes micropolygon rendering algorithm,

982–983
RGB color cube, 772–773
RGB color model, 772–774
RGB format, 481

RGB image, 482
Ridges, 956–957

apparent, 958–959
Right-handed coordinate system, 158
Rigid coordinate frame, 240
Ringing, 510f, 529, 538
Rodrigues’ formula, 293
Rods (color receptors), 107, 749

saturated, 755
Rolling, defined, 267
Root frame, 972
Root frame animation, 972
Root motion, 969
Rotation, as linear transformation in the

plane, 222–223
Rotation about z by the an angle, 266
Rotation around z, 239. See also Rotation in

the xy-plane
Rotation by an angle in the xy-plane of

3-space, 266
Rotation in the xy-plane, 239. See also

Rotation around z
Rotation matrix, 270–272

finding an axis and angle from, 270–272
Rotation(s), 264, 266

3-sphere and, 273–278
axis-angle description of, 269–270
interpolating between, 276–278
vs. rotation specifications, 279–280

Rule of five, 698, 925
Russian roulette, 874

S
S (normalizing vectors), definition, 157
Sahl, Ibn, 679
Sample-and-hold strategy (animation), 967
Sample and hold reconstruction, 505
Samples (implicit functions), 621
Samples (pixel), 1055, 1056f
Sample shaders, 930
Sampling, 29, 507–508, 557–559, 724–725

approximation of, 519
and band limiting in interval, 514–515
cosine-weighted, 815
importance, 818–820, 854
integration and, 31
multiple importance, 868–870
rejection, 823
stratified, 920
summing a series by, 828–830

Sampling framework, 407–408
Sampling strategy, 854
Sampling theorem, 515
Scalability, 469
Scalar attributes, 651
Scalar multiplication, 157, 158
Scale invariance, 911
Scale transformations, 263–264
Scanline interpolation, 208–210
Scanline rendering, 209
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Scanners, 5, 5f
Scattering, 711, 792–793

approximating, 848–851
diffuse, 713, 716
diffuselike, 792
due to transmission, 900
equation, 790
glossy, 716
impulse, 715–716, 784
kinds of, 714–717
Lambertian, 716
of light, 388–390
mirror, 715, 717–719
models, 713
nonspecular, 852
object-level, 711–712
physical constraints on, 713–714
reflective, 715
refractive, 716
rendering equation for, 789–792
retroreflective, 716
Snell-transmissive, 783–784
subsurface, 720, 738–739
surface, 712–714
transmissive, 715
volumetric, 737, 793

Scattering equation, 790
Scattering functions, 354–358
Scattering models, 723. See also Reflection

model
Blinn-Phong model, 721–723
Cook-Torrance model, 731–732
empirical/phenomenological models, 713,

717–725
Lafortune model, 723–724
measured/captured models, 713
Oren-Nayar model, 732–734
Phong model, 721–723
physically based models, 713, 727–734
Torrance-Sparrow model, 729–731
types of, 713
wave theory models, 734–736

Scatters, light, 333
Scene, 21, 31, 37

abstract coordinate system to specify,
42–44

planning, 120–124
reduction of complexity, 469

Scene generator, 37
Scene graphs, 39, 118, 351–353

coordinate changes in, 248–250
hierarchical modeling using, 138–147
physics, 352–353

Scene modeling, 945
Scene representation, 400–402
Schematization (abstraction), 947
Schlick approximation, 728–729
Scotopic vision, 753–754
Screen door effect, 986
Screen space, 245

Screen tearing, 976
Second-order Runge-Kutta methods, 1019
Sector (polyhedron), 1050
Sector-based conservative visibility,

1050–1054
mirrors, 1052–1054
portals, 1052–1054
stabbing line, 1051
stabbing tree, 1051–1052

Sector-based culling, 470
Segments (of a spline), 599
Self-shadowing, 1027. See also Shadow acne
Semantic element, 352
Semi-Explicit Euler method. See

Semi-Implicit Euler method
Semi-Implicit Euler method, 1019
Sensor response, 791
Separable filter, 544
Sequencing design (user interface), 570
Sets, 150
Shaders, 8, 453. See also Programs

creating, 437–442
defined, 928
extensibility via, 453
fragment, 466, 930
geometry, 931
historical development, 929–932
Phong, 937–939
pixel, 930
sample, 930
in scattering model, 723
simple graphics program with, 932–937
subdivision surface, 931
tessellation, 931
vertex, 930, 931

Shader-specified visibility, 1136
Shader wrapper, 933

G3D, 933
Shades (color), 756
Shading, 412–413, 723, 1055

deferred, 1135–1137
interpolated, 128–129
vs. lighting in fixed-function rendering,

127–128
two-tone, 959

Shading language, 927
Shading normals, 339
Shadow, and light transport, 797
Shadow acne, 325, 416, 1027. See also

Self-shadowing
Shadow map, 428, 848
Shadow mapping, 557t
Shadows, 112–113, 414–417

acne, 325, 416, 1027
applications of, 113
curvature, 946
direct, 946

Shannon sampling theorem, 515
Shape constancy, 110
Sharp edges, 651
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Sharpening, 543, 545
Shearing transformations, 264

as linear transformation in the plane, 223
Shift-invariant, 529
Shutter time, 980. See also Exposure time
SIGGRAPH (Special Interest Group on

GRAPHics and Interactive Techniques),
4, 922

Signal processing, 500
and images, 493–532

Signal, 500
Signed area

of a plane polygon, 177–178
Signed distance transform of the a mesh, 629
Signed normalized fixed-point 8-bit

representation, 551
Silhouette, 952
Silicon Graphics, Inc., 931–932
SIMD. See Single Instruction Multiple Data

(SIMD)
Simple polygons, 175
Simplex, 208

boundary of, 208
categories of, 208
oriented, 639

Simplicial complices, 198
Simplification, 471

abstraction, 947
of triangle meshes, 188, 649

Single Instruction Multiple Data (SIMD),
430, 1033

Singular transformation. See Degenerate
transformation

Singular value decomposition (SVD), 230
computing, 231
matrix properties and, 230–231
and pseudoinverses, 231–233

Singular values of matrix M, 230
Size constancy, 110
Skyboxes, 348–349
Sky sphere. See Skyboxes
Slerp, 275. See also Spherical linear

interpolation
Slicing, 935
Smith, Alvy Ray, 498
Smooth edges, 953
Smooth manifolds, 190
Snell’s law, 679, 683, 728
Snell-transmissive scattering, 783–784. See

also Impulses
Soft particles, 351
Software-platform independence, 44
Software stack, 468
Solid angles, 370, 686–688

computations with, 688–690
measure of, 687
projected, 690
subtended, 687

Source (texture image), 563
Source polygon, 1045

Spatial acceleration data structures. See
Spatial data structures

Spatial antialiasing, 1055–1060
A-buffer, 1057
analytic coverage, 1059–1060
coverage sampling antialiasing (CSAA),

1058–1059
multisample antialiasing (MSAA),

1057–1058
supersampled antialiasing (SSAA),

1056–1057
Spatial coherence, 950
Spatial data structures, 353, 1023,

1065–1102
characterizing, 1077–1079
extracting keys and bounds, 1073–1077
generic use of, 1077
grid, 1093–1101
hash grid, 1095
Huffman’s algorithm and, 1089
intersection methods of, 1069–1073
k-dimensional structures, 1080–1081
list, 1081–1083
ordered, 1077
polymorphic types, 1068
programmatic interfaces, 1068–1077
ray intersection, 1095–1099
selecting, 1077
trees, 1083–1093

Spatial frequencies, 103
SPD. See Spectral power distribution (SPD)
Special orthogonal matrix, 230
Specification

camera, 301–303
color, 133
transformations and camera, 299–317

Spectral irradiance, units of, 698
Spectralon, 720
Spectral power distribution (SPD), 747

incandescent lights, 748
monospectral distributions, 747

Spectral radiance, 692
integral of, 692

Spectral radiant exitance, 699
Spectrum (of a signal), 513

replication in, 523–524
Specular, in graphics, 8
Specular exponent, 137
Specular power. See Specular exponent
Specular reflections, 137, 713

physical models for, 726–727
Specular (mirror) reflections, 353
Specular surface, 27
Sphere mapping, 340
Sphere-to-cylinder projection theorem, 688
Sphere trees, 649, 1093
Spherical harmonics, 531, 843, 848–851
Spherical linear interpolation, 275. See also

Slerp
Spline patches, 344

and subdivision surfaces, 343–344
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Splines, 343, 595ff, 599, 607ff, 623
Splitting plane, 1030, 1030f
s-polarized wave, 681
Spot color, 766
Spotlight, 133, 702
Square integrable, 506
Square summable, 506
sRGB standard, 774
Stabbing line, 1051
Stabbing tree, 1051–1052
Stamping, 985
Standard basis vectors, 227
Standard deviation, 807
Standard implicit form for a line, 165
Standard parallel view volume, 307
Standard perspective view volume, 307
Star, of a simplex, 208, 208f
Star, of a vertex, 208, 641
Star of an edge, 641
State machine, 454
State variable, 454
State vectors, 1015
Static frame, 462–463
Statistical estimators, 827–830
Stefan-Boltzmann law, 672
Stencil buffer, 329
Steradians, 688
Steven Anson Coons Award, 608
Stratified sampling, 920

blue-noise property of, 921
Strobing (motion perception), 977
Strokes (expressive rendering), 950–951

creation of, 951
imitation of artistic technique for creating,

951
oil-paint, 951
pen-and-ink, 951
physical simulation, 951
scanning/photography approach for

creating, 951
Styles, 85

artistic, 947
Subcomponents, 138, 141–144
Subdivision, meshes, 211
Subdivision, of triangle meshes, 188
Subdivision curves, 604
Subdivision surfaces, 344, 607

Catmull-Clark, 610–613
modeling with, 613–614

Subdivision surface shaders, 931
Subsurface reflector, 720
Subsurface scattering, 353, 720, 738–739

computing, 739
modeling, 739
physical modeling, 739
practical effects of modeling, 739

Subtractive color, 760
Suggestive contour generator, 958
Suggestive contours, 957–958

characteristics of, 958

Suggestive interface, 589
Summary measures, of light, 670
Sum-squared difference, 104
Superposition, 361
Supersampled antialiasing (SSAA),

1056–1057
advantages of, 1056
drawbacks of, 1056–1057
implementing, 1056

Surface mesh
embedding of, 642

Surface normal, 16, 27–28
Surface radiance, 786–787, 834, 846

computation from field radiance, 786
Surface radiance function, 787
Surface representations, 882–887
Surface, 390, 607

with boundary, 637–638
closed, 638
implicit, 619–620
orientable, 639
oriented, 639
representations, 882–887
triangulated, 637–638

Surface scattering, 712–714
physical constraints on, 713–714
scattering models, 713

Surface Texture, 132, 547ff
texturing via stretching, 132
texturing via tiling, 132
in WPF, 130–132

Surface with boundary, 638
Surjective, 151. See also Bijective
Sutherland-Hodgman 2D clipping,

1045–1046
Swapping loops, 418–419

T
Tabulated functions, 201
Tagged Image File Format (TIFF), 482
Tangent field, 1015–1016
Tangent-space basis, 340
Tangent vectors

building from a parameterization, 552–553
Target (texture image), 563
Taylor polynomial, 1017
Teddy (user interface), 590
Telecine (interlacing), 978–980
Template (pixels), 563
Templated classes in programming

languages, 1068
Temporal aliasing, 980–983

motion blur and, 980–983
Temporal coherence, 950, 962, 983

advantage of, 983
burden of, 985–987
exploiting, 983–984

Tent-shaped functions, 208. See also Basis
functions

Tent-shaped graphs. See Basis functions;
Tent-shaped functions
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Tessellation shaders, 652, 931
Test beds, 72, 81

2D Graphics, 81–98
application of, 95–98
details of, 82–87
structure of, 83–88
using 2D, 82–83

Test scene, 402–403
Texels, 365, 742
Texture aliasing, 216
Texture coordinates, 339, 548

assigning, 555–557
assignment of, 215–216

Texture mapping, 131, 214–215, 547ff
application examples of, 557t
defined, 548
details of, 216
image-based, 559
problems, 216–217
properties of, 555

Texture maps, 15–16, 215, 547ff
codomains for, 553–554

Texture parameterization, 555
Textures

modeling, 630
projection, 555

Texture-space diffusion, 341
Texture synthesis, 559–562

Fourier-like synthesis, 559–560
Perlin noise, 560–561, 561f
reaction-diffusion textures, 561–562

Texturing
bump mapping, 550–551
contour drawing, 551–552
environment mapping, 549–550
variations of, 549–552
via stretching, 132
via tiling, 132

3ds Max transformation widget, 588–589,
588f

3D transformations
building, 237

3D view manipulation widget, 588–589, 588f
3-space

essential mathematics and geometry of,
149–182

3:2 pulldown algorithm (interlacing), 979
TIFF. See Tagged Image File Format (TIFF)
Tile fragments, 1137
Tiling rasterizer, 430–431
Tilting principle, 180–181
Time domain, 513
Time-state space, 1013–1015
TIN. See Triangulated Irregular Network

(TIN)
Tints (color), 756
T-junction, 642
Tone mapping, 919
Tones (color), 756
Tool trays, 569

Toon-shading, 940–942
fragment shader for improved, 942
pixel shader for, 941
two versions of, 940–942
vertex shader for, 940–941

Torrance-Sparrow model, 729–731
Total internal reflection, 682
Trait data structure, 1074
Traits, as key extraction method, 1074–1077

advantages of, 1076
disadvantages of, 1076

Transformation
linear, 307
modeling hierarchy and camera, 313–315
perspective-to-parallel, 313
projective, 308
rasterizing renderer ripeline and camera,

310–312
unhinging, 307
windowing, 300

Transformation associated to the matrix M,
224

Transformation pipeline, 460
Transformations, 221–286, 288–290

adjoint, 253
affine, 234, 259
AffineTransformation2, 288
associated, 294
change-of-coordinate, 231
classes of, 288–289
composed, 235
and coordinate systems, 229–230
covector, 253
efficiency of, 289–290
finding the matrix for, 226–228
fractional linear, 256
homogenizing, 265
implementation, 290–293
vs. interpolation, 259
linear, 221, 259
LinearTransformation2, 288
matrix, 222
MatrixTransformation2, 288
modeling, 630
parametric lines, 254
projective, 255, 257, 259–260, 263,

291–293
ProjectiveTransformation2, 289
restricted, 295–297
scale, 263–264
shearing, 264
specification of, 290
in three dimensions, 263–285
in two dimensions, 221–262
of vectors, 250–253
windowing, 236–237, 236f
world-centered rotation, 272

Translation, 222, 233–234, 263
Translation equivariant reconstruction, of

signal, 546
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Translucency, and blending, 361–364
Transmission/rendering, 353, 367–368

reduction, 470–472
Transmissive scattering, 715
Transparent surface, 364
Transport, light, 335–336
Transport equation, 786–787
Transport paths, separation of, 844
Transposition, 156
Trees, as a class of spatial data structures,

1083–1093
binary space partition (BSP) trees,

1084–1089
Bounding Volume Hierarchy (BVH),

1092–1093, 1092f
building BSP trees, 1089–1092
kd tree, 1089
oct tree, 1090
quad trees, 1090, 1091f

Triangle fan, 338
Triangle list, 338
Triangle meshes, 187, 187f, 188f, 635

icosahedral, 187
1D mesh, 189
shape approximation, 187–188
simplification of, 188, 649
subdivision of, 188
uniformity of, 188

Triangle processing, 17
Triangle reordering for hardware efficiency,

664–667
Triangles, 171–175

half-planes and, 174–175
parameterization of, 171
signed area, 177
in space, 173–174

Triangle soup, 338
Triangle strip, 338
Triangulated Irregular Network (TIN), 345
Triangulated surfaces, 637–638
Triple buffering, 976
Trotter, Hale, 149
2D barycentric weights, 424–427
2D coverage sampling, 422
2D graphics

dynamics in 2D graphics using WPF,
55–58

evolution of, 37–41
overview of, 36–37
test beds, 81–98
and Windows Presentation Foundation

(WPF), 35–60
2D manipulation

multitouch interaction for, 574–580
2D raster graphics platform, 38
2D scene

WPF to specify, 41–55
2D scissoring, 1044
2D transformations, 238–239

building, 238–239
2-ring (vertices), 641

2-space
essential mathematics and geometry of,

149–182
Two-and-a-half dimensional, 43
Two-tone shading, 959

U
Übershader, 441
UI controls, 39, 41
UI generator, 37
Ulam, Stanislaw, 945
Umbilic points, 956
Umbra, 505, 798
Uncanny valley, 19
Undragging, 581
Unhinging transformation, 307
Unicam, 584–587
Uniform color space, 767
Uniform density

on the sphere, 813
defined, 809

Uniform spline, 601
Uniformity, of triangle meshes, 188
Uniform random variable, 807
Uniform scaling transformation, 223
Units, 333
Unit vector, 157, 229
Unoccluded two-point transport intensity,

847
Unoriented meshes, 191
Unpolarized light, 683
Unsigned normalized, 325
Up direction, 122, 302
User interface (UI), 6–7, 21
User interface examples, 588–591

Chateau, 589–590
first-person-shooter controls, 588
Grabcut, 590–591
Photoshop’s free-transform mode, 589
Teddy, 590
3ds Max transformation widget, 588–589,

588f
Utility classes, 395–400
uv-coordinates, 216

V
Valence, 637
Valleys, 956–957
Value (data structure), 1077
Value of measurement, 323–324
Vanishing point, 77
Variables

change of, 690–692
Variance, 807, 818
Variance reduction, 921
Vectorization (programmer instruction

batching), 1033
Vectors, 155–161, 234–235, 288

coordinate, 155
edge, 175
indexing, 156
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Vectors (continued)
kinds of, 162–163
length of, 157–161
normal, 164
normalizing, 157
operations, 157–161
transforming, 250–253

Vertex/Vertices, 50, 65, 189
boundary, 194, 638
degree of, 637
interior, 194, 638
link of, 208
locally flat, 643
manifold, 194f
star of, 208

Vertex geometry processing, 17
Vertex geometry transformation, 17
Vertex normal, 129
Vertex shaders, 465, 930, 931
Vertex stage

and pixel stages, 433
Vertical synchronization, 976
Video standards, 775–776
View center (camera manipulation), 586
ViewCube (3D view manipulation widget),

588–589, 588f
View-frustum culling, 470, 1023
Viewing stage, 460
Viewport, 37, 302, 455
Viewport3D, 119, 121
View region, 63
View specification

building transformations from, 303–310
View volume, 77, 120, 302

standard parallel, 307
standard perspective, 305, 307

Vignetting, 336
Virtual arcball, 280–283, 584
Virtual parallelism, 1113ff
Virtual sphere, 580
Virtual trackball, 280–283, 580
Virtual transitions, 671
Visibility, 65

conservative, 1023
coverage (binary), 1027–1028
goals for, 1023
list-priority algorithms, 1040–1043
primary, 1023, 1024, 1027
sector-based conservative, 1050–1054

Visibility determination
applications of depth buffer in, 1035–1036
backface culling, 1047–1049
current practice and motivation,

1028–1029
depth buffer, 1034–1040
frustum clipping, 1028, 1045–1046
frustum culling, 1023, 1028, 1044
hardware rasterization renderers and, 1028
hierarchical occlusion culling, 1049–1050
list-priority algorithms, 1040–1043
partial coverage, 1028, 1054–1062

ray casting, 1029–1034
ray-tracing renderers and, 1028

Visibility function, 786, 799, 1025–1027
evaluating, 1026

Visibility problem. See Visibility testing
Visibility testing, 422
Visible contour, 953. See also Contour(s)
Visible points, 390–391
Visible spectrum, 330–332
Visible surface determination, 1023. See also

Hidden surface removal
Vision

photopic, 753–754
scotopic, 753–754

Visual cortex, 103, 106, 108, 110
Visual perception, human. See Human visual

perception
Visual system, 103–105

applications of, 105, 109–110
components of, 103

Volumetric models, 349–351
Volumetric scattering, 737
Voxelization, conservative, 1096
Voxels, 349–350
VRML, 479
vup, 302

W
Walk cycle, 966
Warnock’s Algorithm, 1041
Warped z-buffer, 1038
Watertight model (meshes), 643
Wavelength, 332, 675
Wave theory models, 734–736
Wave velocity, 675
w-buffer, 1040. See also Depth buffer
WebGL, 479
Weiler-Atherton Algorithm, 1041
Wheel of reincarnation, 18–19
Whites (color), 769

CIE definitions, 769
illuminant C, 769
illuminant E, 769

Whole-frustum clipping, 1044, 1047
Widgets. See UI controls
Wien’s displacement law, 710
Wii (interface device), 568
WIMP (windows, icons, menus, pointers)

GUI (WIMP GUI), 6, 8, 567
Winding number, 176–177
Window chrome, 36
Windowing transformation, 236–237, 236f,

300
Windows Presentation Foundation (WPF)

2D Graphics using, 35–60
application/developer interface layers,

40–41
canvas coordinate system, 45–46
data dependencies, 91–92
dynamics in 2D graphics using, 55–58
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reflectance model, 133–138
to specify 2D scene, 41–55
surface texture in, 130–132

Winged-edge data structure, 196
Wire-frame model, 65
The Wizard of Oz (film), 950
Woodcut, Dürer, 61–65, 1035
World-centered rotation, 272
World coordinate system, 119
World space, 21, 245
WPF. See Windows Presentation Foundation

(WPF)
WPF 3D, 117

design of, 118
high-level overview of, 119–120

X
X3D (language), 479
XAML. See Extensible Application Markup

Language (XAML)

Xerox PARC, 8
XToon shading, 942–943

2D texture map for, 942f
atmospheric perspective, 942
vertex and fragment shaders for, 942–943

Y
Yaw, 267
YIQ color model, 775

Z
z-buffer, 306, 310, 392. See also Depth buffer
z-buffer value, 1038, 1039f
z-data, 482
Zero set, 164, 616. See also Isosurfaces
Zero-to-one coordinates. See Normalized

device coordinates
z-fighting, 1037
z-values

perspective and, 313
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