
9 0 0 0 0

9 7 8 0 1 3 4 6 0 1 5 3 3

ISBN-13: 978-0-13-460153-3
ISBN-10: 0-13-460153-X

DATABASEConcepts

David M. Kroenke

David J. Auer

Scott L. Vandenberg

Robert C. Yoder

EIGHTH EDITION

D
ATA

B
A

S
E

 C
o
n
ce

p
ts

Kroenke • Auer • Vandenberg • Yoder

8E

www.pearsonhighered.com

Introductory MIS

Experiencing MIS, 7/e
Kroenke & Boyle ©2017

Using MIS, 10/e
Kroenke & Boyle ©2018

Management Information Systems, 15/e
Laudon & Laudon ©2018

Essentials of MIS, 12/e
Laudon & Laudon ©2017

IT Strategy, 3/e
McKeen & Smith ©2015

Processes, Systems, and Information: An
Introduction to MIS, 2/e
McKinney & Kroenke ©2015

Information Systems Today, 8/e
Valacich & Schneider ©2018

Introduction to Information Systems, 3/e
Wallace ©2018

Database

Hands-on Database, 2/e
Conger ©2014

Modern Database Management, 12/e
Hoffer, Ramesh & Topi ©2016

Database Concepts, 8/e
Kroenke, Auer, Vandenburg, Yoder ©2018

Database Processing, 14/e
Kroenke & Auer ©2016

Systems Analysis and Design

Modern Systems Analysis and Design, 8/e
Hoffer, George & Valacich ©2017

Systems Analysis and Design, 9/e
Kendall & Kendall ©2014

Essentials of Systems Analysis and
Design, 6/e
Valacich, George & Hoffer ©2015

Decision Support Systems

Business Intelligence, Analytics, and Data
Science, 4/e
Sharda, Delen & Turban ©2018

Business Intelligence and Analytics:
Systems for Decision Support, 10/e
Sharda, Delen & Turban ©2014

Data Communications & Networking

Applied Networking Labs, 2/e
Boyle ©2014

Digital Business Networks
Dooley ©2014

Business Data Networks and Security, 10/e
Panko & Panko ©2015

Electronic Commerce

E-Commerce: Business, Technology,
Society, 13/e
Laudon & Traver ©2018

Enterprise Resource Planning

Enterprise Systems for Management, 2/e
Motiwalla & Thompson ©2012

Project Management

Project Management: Process, Technology
and Practice
Vaidyanathan ©2013

OTHER MIS TITLES OF INTEREST

EIGHTH EDITION

David M. Kroenke

David J. Auer
Western Washington University

Scott L. Vandenberg
Siena College

Robert C. Yoder
Siena College

330 Hudson Street, NY NY 10013

DATABASEDATABASEConcepts

A01_KROE1533_08_SE_FM.indd 1 11/21/16 7:21 PM

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page
within text.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related
graphics published as part of the services for any purpose. All such documents and related graphics are provided “as is” without warranty of any
kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties
and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall
Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of
use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance
of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added
to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s)
described herein at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book
is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

MySQL®, the MySQL Command Line Client®, the MySQL Workbench®, and the MySQL Connector/ODBC® are registered trademarks of Sun
Microsystems, Inc./Oracle Corporation. Screenshots and icons reprinted with permission of Oracle Corporation. This book is not sponsored or
endorsed by or affiliated with Oracle Corporation.

Oracle Database XE 2016 by Oracle Corporation. Reprinted with permission.

PHP is copyright The PHP Group 1999–2012, and is used under the terms of the PHP Public License v3.01 available at http://www.php.net/
license/3_01.txt. This book is not sponsored or endorsed by or affiliated with The PHP Group.

Copyright © 2017, 2015, 2013, 2011 by Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030. All rights reserved. Manufactured
in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, 221 River Street, Hoboken, New Jersey 07030.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Kroenke, David M., 1948- author. | Auer, David J., author.
Database concepts / David M. Kroenke, David J. Auer, Western
 Washington University, Scott L. Vandenberg, Siena College, Robert C.
 Yoder, Siena College.
Eighth edition. | Hoboken, New Jersey : Pearson, [2017] |
 Includes index.
LCCN 2016048321| ISBN 013460153X | ISBN 9780134601533
LCSH: Database management. | Relational databases.
LCC QA76.9.D3 K736 2017 | DDC 005.74--dc23
LC record available at https://lccn.loc.gov/2016048321

10 9 8 7 6 5 4 3 2 1

VP Editorial Director: Andrew Gilfillan
Senior Portfolio Manager: Samantha Lewis
Content Development Team Lead: Laura Burgess
Program Monitor: Ann Pulido/SPi Global
Editorial Assistant: Madeline Houpt
Product Marketing Manager: Kaylee Carlson
Project Manager: Katrina Ostler/Cenveo® Publisher Services
Text Designer: Cenveo® Publisher Services

Interior design: Stock-Asso/Shutterstock; Faysal Shutterstock
Cover Designer: Brian Malloy/Cenveo® Publisher Services
Cover Art: Artwork by Donna R. Auer
Full-Service Project Management: Cenveo® Publisher Services
Composition: Cenveo® Publisher Services
Printer/Binder: Courier/Kendallville
Cover Printer: Lehigh-Phoenix Color/Hagerstown
Text Font: 10/12 Simoncini Garamond Std.

ISBN 10: 01-34-60153-X
ISBN 13: 978-0-13-460153-3

A01_KROE1533_08_SE_FM.indd 2 11/21/16 7:21 PM

http://www.php.net/license/3_01.txt
https://lccn.loc.gov/2016048321
http://www.php.net/license/3_01.txt

Brief Contents

PART 1 DATABASE FUNDAMENTALS 1

1 Getting Started 3

2 The Relational Model 70

3 Structured Query Language 133

PART 2 DATABASE DESIGN 263

4 Data Modeling and the Entity-
Relationship Model 265

5 Database Design 317

PART 3 DATABASE MANAGEMENT 363

6 Database Administration 365

7 Database Processing
Applications 422

8 Data Warehouses, Business Intelligence
Systems, and Big Data 488

Glossary 542

Index 553

ONLINE APPENDICES : SEE PAGE 541
FOR INSTRUCTIONS

Appendix A: Getting Started with
Microsoft SQL Server
2016

Appendix B: Getting Started with
Oracle Database XE

Appendix C: Getting Started with
MySQL 5.7 Community
Server

Appendix D: James River Jewelry
Project Questions

Appendix E: Advanced SQL

Appendix F: Getting Started in Systems
Analysis and Design

Appendix G: Getting Started with
Microsoft Visio 2016

Appendix H: The Access Workbench—
Section H—Microsoft
Access 2016 Switchboards

Appendix I: Getting Started with Web
Servers, PHP, and the
NetBeans IDE

Appendix J: Business Intelligence
Systems

Appendix K: Big Data

iii

A01_KROE1533_08_SE_FM.indd 3 11/21/16 7:21 PM

Contents

PART 1 DATABASE FUNDAMENTALS 1

1 Getting Started 3
THE IMPORTANCE OF DATABASES IN THE INTERNET

AND MOBILE APP WORLD 4
WHY USE A DATABASE? 7
WHAT ARE THE PROBLEMS WITH USING

LISTS? 7
USING RELATIONAL DATABASE TABLES 10
HOW DO I PROCESS RELATIONAL TABLES? 16
WHAT IS A DATABASE SYSTEM? 18
PERSONAL VERSUS ENTERPRISE-CLASS DATABASE

SYSTEMS 23
WHAT IS A WEB DATABASE APPLICATION? 29
WHAT ARE DATA WAREHOUSES AND BUSINESS

INTELLIGENCE (BI) SYSTEMS? 29
WHAT IS BIG DATA? 30
WHAT IS CLOUD COMPUTING? 30
THE ACCESS WORKBENCH SECTION 1—GETTING

STARTED WITH MICROSOFT ACCESS 31
Summary 61 • Key Terms 62 • Review
Questions 62 • Exercises 64 • Access
Workbench Key Terms 65 • Access Workbench
Exercises 65 • San Juan Sailboat Charters
Case Questions 67 • Garden Glory Project
Questions 68 • James River Jewelry Project
Questions 69 • The Queen Anne Curiosity Shop
Project Questions 69

2 The Relational Model 70
RELATIONS 70
TYPES OF KEYS 74
THE PROBLEM OF NULL VALUES 83
TO KEY OR NOT TO KEY—THAT IS THE

QUESTION! 84
FUNCTIONAL DEPENDENCIES AND

NORMALIZATION 85
THE ACCESS WORKBENCH SECTION 2—WORKING

WITH MULTIPLE TABLES IN MICROSOFT
ACCESS 101

Summary 119 • Key Terms 120 • Review
Questions 120 • Exercises 122 • Access

Workbench Key Terms 124 • Access
Workbench Exercises 124 • Regional Labs
Case Questions 128 • Garden Glory Project
Questions 129 • James River Jewelry Project
Questions 130 • The Queen Anne Curiosity Shop
Project Questions 130

3 Structured Query Language 133
WEDGEWOOD PACIFIC 134
SQL FOR DATA DEFINITION (DDL)—CREATING

TABLES AND RELATIONSHIPS 141
SQL FOR DATA MANIPULATION (DML)—INSERTING

DATA 155
SQL FOR DATA MANIPULATION (DML)—SINGLE

TABLE QUERIES 159
SUBMITTING SQL STATEMENTS TO THE

DBMS 162
SQL ENHANCEMENTS FOR SINGLE TABLE

QUERIES 164
SQL QUERIES THAT PERFORM

CALCULATIONS 176
GROUPING ROWS USING SQL SELECT

STATEMENTS 180
SQL FOR DATA MANIPULATION (DML)—MULTIPLE

TABLE QUERIES 183
SQL FOR DATA MANIPULATION (DML)—DATA

MODIFICATION AND DELETION 197
SQL FOR DATA DEFINITION (DDL)—TABLE

AND CONSTRAINT MODIFICATION AND
DELETION 200

SQL VIEWS 202
THE ACCESS WORKBENCH SECTION 3—WORKING

WITH QUERIES IN MICROSOFT ACCESS 202
Summary 231 • Key Terms 233 • Review
Questions 233 • Exercises 238 • Access
Workbench Key Terms 239 • Access Workbench
Exercises 239 • Heather Sweeney Designs
Case Questions 242 • Garden Glory Project
Questions 253 • James River Jewelry Project
Questions 256 • The Queen Anne Curiosity Shop
Project Questions 256

iv

A01_KROE1533_08_SE_FM.indd 4 11/21/16 7:22 PM

Contents v

PART 2 DATABASE DESIGN 263

4 Data Modeling and the Entity-
Relationship Model 265
REQUIREMENTS ANALYSIS 266
THE ENTITY-RELATIONSHIP DATA MODEL 267
ENTITY-RELATIONSHIP DIAGRAMS 272
DEVELOPING AN EXAMPLE E-R DIAGRAM 282
THE ACCESS WORKBENCH SECTION 4—

PROTOTYPING USING MICROSOFT
ACCESS 290

Summary 308 • Key Terms 309 • Review
Questions 309 • Exercises 311 • Access
Workbench Key Terms 311 • Access Workbench
Exercises 311 • Highline University Mentor
Program Case Questions 312 • Writer’s Patrol
Case Questions 314 • Garden Glory Project
Questions 315 • James River Jewelry Project
Questions 315 • The Queen Anne Curiosity Shop
Project Questions 315

5 Database Design 317
THE PURPOSE OF A DATABASE DESIGN 318
TRANSFORMING A DATA MODEL INTO A DATABASE

DESIGN 318
REPRESENTING ENTITIES WITH THE RELATIONAL

MODEL 319
REPRESENTING RELATIONSHIPS 327
DATABASE DESIGN AT HEATHER SWEENEY

DESIGNS 340
THE ACCESS WORKBENCH SECTION 5—

RELATIONSHIPS IN MICROSOFT ACCESS 348
Summary 354 • Key Terms 355 • Review
Questions 355 • Exercises 356 • Access
Workbench Key Terms 357 • Access Workbench
Exercises 357 • San Juan Sailboat Charters
Case Questions 358 • Writer’s Patrol Case
Questions 360 • Garden Glory Project
Questions 360 • James River Jewelry Project
Questions 360 • The Queen Anne Curiosity Shop
Project Questions 360

PART 3 DATABASE MANAGEMENT 363

6 Database Administration 365
THE HEATHER SWEENEY DESIGNS

DATABASE 366
THE NEED FOR CONTROL, SECURITY, AND

RELIABILITY 366
CONCURRENCY CONTROL 368
SQL TRANSACTION CONTROL LANGUAGE AND

DECLARING LOCK CHARACTERISTICS 374
CURSOR TYPES 378
DATABASE SECURITY 380
DATABASE BACKUP AND RECOVERY 387
ADDITIONAL DBA RESPONSIBILITIES 391
THE ACCESS WORKBENCH SECTION 6—

DATABASE ADMINISTRATION IN MICROSOFT
ACCESS 392

Summary 412 • Key Terms 413 • Review
Questions 414 • Exercises 415 • Access
Workbench Key Terms 416 • Access Workbench
Exercises 416 • Marcia’s Dry Cleaning
Case Questions 417 • Garden Glory Project
Questions 418 • James River Jewelry Project
Questions 419 • The Queen Anne Curiosity Shop
Project Questions 420

7 Database Processing
Applications 422
A WEB DATABASE APPLICATION FOR HEATHER

SWEENEY DESIGNS 425
THE WEB DATABASE PROCESSING

ENVIRONMENT 425
DATABASE SERVER ACCESS STANDARDS 429
DATABASE PROCESSING, XML AND JSON 458
THE ACCESS WORKBENCH SECTION 7—WEB

DATABASE PROCESSING USING MICROSOFT
ACCESS 462

Summary 478 • Key Terms 479 • Review
Questions 479 • Exercises 481
Access Workbench Exercises 483 • Marcia’s
Dry Cleaning Case Questions 483 • Garden
Glory Project Questions 485 • James River
Jewelry Project Questions 487 • The Queen
Anne Curiosity Shop Project Questions 487

A01_KROE1533_08_SE_FM.indd 5 11/21/16 7:22 PM

vi Contents

8 Data Warehouses, Business
Intelligence Systems, and Big
Data 488
BUSINESS INTELLIGENCE SYSTEMS 491
THE RELATIONSHIP BETWEEN OPERATIONAL AND

BI SYSTEMS 491
REPORTING SYSTEMS AND DATA MINING

APPLICATIONS 491
DATA WAREHOUSES AND DATA MARTS 492
OLAP 503
DISTRIBUTED DATABASE PROCESSING 507
OBJECT-RELATIONAL DATABASES 510
VIRTUALIZATION 511
CLOUD COMPUTING 511
BIG DATA AND THE NOT ONLY SQL

MOVEMENT 513
THE ACCESS WORKBENCH SECTION 8—BUSINESS

INTELLIGENCE SYSTEMS USING MICROSOFT
ACCESS 518

Summary 531 • Key Terms 533 • Review
Questions 533 • Exercises 535 • Access
Workbench Exercises 537 • Marcia’s Dry
Cleaning Case Questions 537 • Garden Glory
Project Questions 538 • James River Jewelry
Project Questions 539 • The Queen Anne
Curiosity Shop Project Questions 539

Glossary 542

Index 553

ONLINE APPENDICES : SEE PAGE 541
FOR INSTRUCTIONS

Appendix A: Getting Started with
Microsoft SQL Server
2016

Appendix B: Getting Started with
Oracle Database XE

Appendix C: Getting Started with
MySQL 5.7 Community
Server

Appendix D: James River Jewelry
Project Questions

Appendix E: Advanced SQL

Appendix F: Getting Started in
Systems Analysis and
Design

Appendix G: Getting Started with
Microsoft Visio 2016

Appendix H: The Access Workbench—
Section H—Microsoft
Access 2016
Switchboards

Appendix I: Getting Started with
Web Servers, PHP, and
the NetBeans IDE

Appendix J: Business Intelligence
Systems

Appendix K: Big Data

A01_KROE1533_08_SE_FM.indd 6 11/21/16 7:22 PM

Preface

Colin Johnson is a production supervisor for a small manufacturer in Seattle. Several years
ago, Colin wanted to build a database to keep track of components in product packages. At
the time, he was using a spreadsheet to perform this task, but he could not get the reports
he needed from the spreadsheet. Colin had heard about Microsoft Access, and he tried to
use it to solve his problem. After several days of frustration, he bought several popular
Microsoft Access books and attempted to learn from them. Ultimately, he gave up and
hired a consultant who built an application that more or less met his needs. Over time,
Colin wanted to change his application, but he did not dare try.

Colin was a successful businessperson who was highly motivated to achieve his goals. A
seasoned Windows user, he had been able to teach himself how to use Microsoft Excel,
Microsoft PowerPoint, and a number of production-oriented application packages. He was
flummoxed at his inability to use Microsoft Access to solve his problem. “I’m sure I could do it,
but I just don’t have any more time to invest,” he thought. This story is especially remarkable
because it has occurred tens of thousands of times over the past decade to many other people.

Microsoft, Oracle, IBM, and other database management system (DBMS) vendors are
aware of such scenarios and have invested millions of dollars in creating better graphical inter-
faces, hundreds of multi-panel wizards, and many sample applications. Unfortunately, such
efforts treat the symptoms and not the root of the problem. In fact, most users have no clear
idea what the wizards are doing on their behalf. As soon as these users require changes to data-
base structure or to components such as forms and queries, they drown in a sea of complexity
for which they are unprepared. With little understanding of the underlying fundamentals, these
users grab at any straw that appears to lead in the direction they want. The consequence is
poorly designed databases and applications that fail to meet the users’ requirements.

Why can people like Colin learn to use a word processor or a spreadsheet product yet
fail when trying to learn to use a DBMS product? First, the underlying database concepts
are unnatural to most people. Whereas everyone knows what paragraphs and margins are,
no one knows what a relation (also called a table) is. Second, it seems as though using a
DBMS product ought to be easier than it is. “All I want to do is keep track of something.
Why is it so hard?” people ask. Without knowledge of the relational model, breaking a sales
invoice into five separate tables before storing the data is mystifying to business users.

This book is intended to help people like Colin understand, create, and use databases
in a DBMS product, whether they are individuals who found this book in a bookstore or
students using this book as their textbook in a class.

vii

Students and other readers of this book will benefit from new content and features in this
edition. These include the following:

• The material on Structured Query Lanquage in Chapter 3 has been reorganized
and expanded to provide a more concise and comprehensive presentation of SQL
topics. New material to illustrate the concepts of SQL joins has been added to
Chapter 3 to make this material easier for students to understand.

• The discussion of SQL is continued in a revised and expanded Appendix E, which
is now retitled as “Advanced SQL”, and which contains a discussion of the SQL

NEW TO THIS EDITION

A01_KROE1533_08_SE_FM.indd 7 11/21/16 7:22 PM

viii Preface

ALTER statement, SQL set operators (UNION), SQL correlated subqueries, SQL
views, and SQL/Persistent Stored Modules (SQL/PSM).

• Microsoft Office 2016, and particularly Microsoft Access 2016, is now the basic
software used in the book and is shown running on Microsoft Windows 10.1

• DBMS software coverage has been updated to include Microsoft SQL Server 2016
Developer Edition, which is now freely available from Microsoft and which has the
full functionality of the Microsoft SQL Server Enterprise edition.

• DBMS software coverage has been updated to include MySQL 5.7 Community Server.
• DBMS software coverage on Microsoft SQL Server 2016 (Appendix A), Oracle

Database Express Edition (Oracle Database XE) (Appendix B), and MySQL 5.7
Community Server (Appendix C) has been extended, and now includes detailed
coverage of software installation and configuration.

• The discussion of importing Microsoft Excel data into a DBMS table has
been moved from Appendix E into the specific coverage of each of the DBMS
products—see coverage of Microsoft SQL Server 2016 in Appendix A, of
Oracle Database Express Edition (Oracle Database XE) in Appendix B, and of
MySQL 5.7 Community Server in Appendix C.

• Chapter 8 has been updated to include material on cloud computing and virtual-
ization in addition to revisions tying together the various topics of the chapter. This
gives a more complete, contextualized treatment of Big Data and its various facets
and relationships to the other topics.

• Appendices J, “Business Intelligence Systems,” and K, “Big Data,” continue to
expand on Chapter 8. Coverage of decision trees is added to Appendix J at a level
similar to that of the coverage of market basket analysis. Appendix K now includes
coverage of JSON modeling (and retains the XML coverage) for document-based
NoSQL databases. Appendix K also now includes basic coverage and examples of
cloud databases and a document-based NoSQL database management system.

We kept all the main innovations included in DBC e06 and DBC e07, including:

• The coverage of Web database applications in Chapter 7 now includes data input
Web form pages. This allows Web database applications to be built with both data-
input and data-reading Web pages.

• The coverage of Microsoft Access 2016 now includes Microsoft Access switchboard
forms (covered in Appendix H, “The Access Workbench—Section H—Microsoft
Access 2016 Switchboards”), which are used to build menus for database applications.
Switchboard forms can be used to build database applications that have a user-friendly
main menu that users can use to display forms, print reports, and run queries.

• Each chapter now features an independent Case Question set. The Case Question
sets are problem sets that generally do not require the student to have completed
work on the same case in a previous chapter (there is one intentional exception
that ties data modeling and database design together). Although in some instances
the same basic named case may be used in different chapters, each instance is still
completely independent of any other instance.

• Material on SQL programming via SQL/Persistent Stored Modules (SQL/PSM)
has been added to Appendix E to provide a better-organized discussion and
expanded discussion of this material, which had previously been spread among
other parts of the book.

1Microsoft recommends installing and using the 32-bit version of Microsoft Office 2016, even on 64-bit
versions of the Microsoft Windows operating system. We also recommend that you install and use the
32-bit version. The reason for this is that the 64-bit version of Microsoft Office 2016 does not have certain
components (particularly ODBC drivers [discussed in Chapter 7]) needed to implement the Web sites
discussed and illustrated in Chapter 7. While this omission by Microsoft makes no sense to us, there is
nothing we can do about it, and so we will stick with the 32-bit version of Microsoft Office 2016. Hopefully
Microsoft will eventually add the missing pieces to the 64-bit version!

A01_KROE1533_08_SE_FM.indd 8 11/21/16 7:22 PM

Preface ix

2David M. Kroenke and David J. Auer, Database Processing: Fundamentals, Design, and Implementation,
14th ed. (Upper Saddle River, NJ: Pearson/Prentice Hall, 2016).

With today’s technology, it is impossible to utilize a DBMS successfully without first learn-
ing fundamental concepts. After years of developing databases with business users, we
believe that the following database concepts are essential:

• Fundamentals of the relational model
• Structured Query Language (SQL)
• Data modeling
• Database design
• Database administration

And because of the increasing use of the Internet, the World Wide Web, commonly
available analysis tools, and the emergence of the NoSQL movement, four more essential
concepts need to be added to the list:

• Web database processing
• Data warehouse structures
• Business intelligence (BI) systems
• Nonrelational structured data storage (Big Data)

Users like Colin—and students who will perform jobs similar to his—need not learn
these topics to the same depth as future information systems professionals. Consequently,
this textbook presents only essential concepts—those that are necessary for users like Colin
who want to create and use small databases. Many of the discussions in this book are
rewritten and simplified explanations of topics that you will find fully discussed in
David M. Kroenke and David J. Auer’s Database Processing: Fundamentals, Design, and
Implementation.2 However, in creating the material for this text, we have endeavored to
ensure that the discussions remain accurate and do not mislead. Nothing here will need to
be unlearned if students take more advanced database courses.

THE NEED FOR ESSENTIAL CONCEPTS

This book does not assume that students will use any particular DBMS product. The book
does illustrate database concepts with Microsoft Access, Microsoft SQL Server Developer
edition, Oracle Database Express Edition (Oracle Database XE), and MySQL Community
Server so that students can use these products as tools and actually try out the material, but
all the concepts are presented in a DBMS-agnostic manner. When students learn the mate-
rial this way, they come to understand that the fundamentals pertain to any database, from
the smallest Microsoft Access database to the largest Microsoft SQL Server or Oracle
Database database. Moreover, this approach avoids a common pitfall. When concepts and
products are taught at the same time, students frequently confound concepts with product
features and functions. For example, consider referential integrity constraints. When they
are taught from a conceptual standpoint, students learn that there are times when the val-
ues of a column in one table must always be present as values of a column in a second table.
Students also learn how this constraint arises in the context of relationship definition and
how either the DBMS or the application must enforce this constraint. If taught in the con-
text of a DBMS—say, in the context of Microsoft Access—students will only learn that in
some cases you check a check box and in other cases you do not. The danger is that the
underlying concept will be lost in the product feature.

TEACHING CONCEPTS INDEPENDENT OF DBMS PRODUCTS

A01_KROE1533_08_SE_FM.indd 9 11/21/16 7:22 PM

x Preface

All this is not to say that a DBMS should not be used in this class. On the contrary,
students can best master these concepts by applying them using a commercial DBMS prod-
uct. This edition of the book was written to include enough basic information about
Microsoft Access, SQL Server Express edition, Oracle Database Express Edition, and
MySQL so that you can use these products in your class without the need for a second
book or other materials. Microsoft Access is covered in some depth because of its popular-
ity as a personal database and its inclusion in the Microsoft Office Professional suite of
applications. However, if you want to cover a particular DBMS in depth or use a DBMS
product not discussed in the book, you need to supplement this book with another text or
additional materials. Pearson provides a number of books for Microsoft Access 2016 and
other DBMS products, and many of them can be packaged with this text.

This new edition of the text continues using “The Access Workbench,” a feature first intro-
duced in the third edition. Because Microsoft Access is widely used in introductory database
classes, we feel it is important to include specific information on using Microsoft Access.
Each chapter has an accompanying section of “The Access Workbench,” which illustrates the
chapter’s concepts and techniques using Microsoft Access. “The Access Workbench” topics
start with creating a database and a single table in Chapter 1 and move through various top-
ics, finishing with Web database processing against a Microsoft Access database in Chapter 7
and using Microsoft Access (together with Microsoft Excel) to produce PivotTable OLAP
reports in Chapter 8. This material is not intended to provide comprehensive coverage of
Microsoft Access, but all the necessary basic Microsoft Access topics are covered so that your
students can learn to effectively build and use Microsoft Access databases.

THE ACCESS WORKBENCH

Because it is important for students to apply the concepts they learn, each chapter con-
cludes with sets of key terms, review questions, exercises (including exercises tied to “The
Access Workbench”), Case Question sets, and three projects that run throughout the book.
Students should know the meaning of each of the key terms and be able to answer the
review questions if they have read and understood the chapter material. Each of the exer-
cises requires students to apply the chapter concepts to a small problem or task.

The first of the projects, Garden Glory, concerns the development and use of a data-
base for a partnership that provides gardening and yard maintenance services to individu-
als and organizations. The second project, James River Jewelry, addresses the need for a
database to support a frequent-buyer program for a retail store. The third project, The
Queen Anne Curiosity Shop, concerns the sales and inventory needs of a retail business.
These three projects appear in all of the book’s chapters (although the actual text of the
James River Jewelry project is found in online Appendix D). In each instance, students are
asked to apply the project concepts from the chapter. Instructors will find more informa-
tion on the use of these projects in the instructor’s manual and can obtain databases and
data from the password-protected instructor’s portion of this book’s Web site (www.pear-
sonhighered.com/kroenke).

KEY TERMS, REVIEW QUESTIONS, EXERCISES, CASES, AND PROJECTS

Just as we have treated our discussions in a DBMS-agnostic way, whenever possible, we
have selected software to be as operating system independent as possible. It is amazing how
much excellent software is available online. Many major DBMS vendors provide free ver-
sions of their premier products (for example, Microsoft’s SQL Server Developer edition
and Express edition, Oracle Corporation’s Oracle Database Express Edition (Oracle
Database XE), and MySQL Community Server). Web editors and integrated development

SOFTWARE USED IN THE BOOK

A01_KROE1533_08_SE_FM.indd 10 11/21/16 7:22 PM

http://www.pear-sonhighered.com/kroenke
http://www.pear-sonhighered.com/kroenke

Preface xi

The most significant changes in this edition are:

• The framing of database topic discussions within today’s Internet and mobile
applications based networked environment and economy. Today, databases are no
longer isolated entities found somewhere in obscure server rooms, but rather are
ubiquitous parts of Web sites and tablet and smart phone apps. We are literally
dependent upon databases in our lives, whether exchanging email messages, post-
ing to our Facebook pages, or shopping online.

• The revised discussion of Structured Query Lanaguage (SQL) in Chapter 3 and
Appendix E, “Advanced SQL.” Taken together, this material provides a better
organized and easier to understand coverage of SQL topics previously included in
the book, and also adds a set of new SQL topics into the mix.

• The revised coverage of the rapidly evolving use of Big Data and the associated
NoSQL movement. The need to be able to store and process extremely large datasets
is transforming the database world. Although these developments leave the database
fundamentals covered in this book unchanged, they do require us to put the relational
databases that are the core of this text into the context of the overall database picture
and to provide the reader with an understanding of the nonrelational structured
storage used in the Big Data environment. Therefore, Chapter 8 is now organized
around the topic of Big Data, and the topics of data warehouses, clustered database
servers, distributed databases, and an introduction to business intelligence (BI)
systems find a natural home in that chapter. To provide additional coverage of Big
Data, Appendix K, “Big Data,” contains a more in-depth discussion than the page
limitations of the book itself allow. For those wanting more coverage of BI than found
in Chapter 8, Appendix J, “Business Intelligence Systems,” contains a current and
updated discussion of the topic in depth.

• The extension of coverage of Microsoft SQL Server 2016 Developer edition
(Appendix A), Oracle Database XE (Appendix B), and MySQL 5.7 Community
Server (Appendix C). Complete installation instructions are now included, as well
as other new topics.

CHANGES FROM THE SEVENTH EDITION

environments (IDEs) are also available (for example, Eclipse, NetBeans, and Visual Studio
Express edition). PHP, considered the fourth most commonly used programming lan-
guage, is downloadable for use with many operating systems and Web servers.

So although the examples in this book were created using a Microsoft operating sys-
tem, SQL Server 2016 Developer edition, Microsoft Access 2016, Microsoft Excel 2016,
and the IIS Web Server, most of them could just as easily be accomplished using Linux,
MySQL Server Community edition, Apache OpenOffice Base, Apache OpenOffice Calc,
and the Apache Web server. Some software products used in the book, such as PHP and
NetBeans, are available for multiple operating systems.

Important Note: We are using the Microsoft Windows 10 operating system, and
Microsoft recently released the Windows 10 Anniversary Update (Feature update to
Windows 10, version 1607). As noted in Chapter 7’s section of “The Access Workbench,”
in order to successfully complete all the work in this book, you need to be using the
Windows 10 Anniversary Update version of Windows 10, patched with at least the
Windows 10 Version 1607 update for August 23, 2016 (KB3176936), and the Windows 10
Version 1607 cumulative update for September 29, 2016 (KB3194496).

Over the past 30-plus years, we have found the development of databases and database
applications to be an enjoyable and rewarding activity. We believe that the number, size,
and importance of databases will increase in the future and that the field will achieve even
greater prominence. It is our hope that the concepts, knowledge, and techniques presented
in this book will help students to participate successfully in database projects now and for
many years to come.

A01_KROE1533_08_SE_FM.indd 11 11/21/16 7:22 PM

xii Preface

Finally, we have maintained the chapter-independent Case Question sets we added in
the sixth edition. Although the chapter projects tie the topics in each chapter together, the
case questions do not require the student to have completed work on the same case in a
previous chapter or chapters. There is one intentional exception that spans Chapters 4
and 5 that ties data modeling and database design together, but each of these chapters also
includes a standalone case. Although in some instances the same basic named case may be
used in different chapters, each instance is still completely independent of any other
instance, and we provide needed Microsoft Access 2016 database and SQL scripts at the
text Web site at www.pearsonhighered.com/kroenke.

We have kept and improved upon several features introduced in earlier editions of the
book:

• The use of “The Access Workbench” sections in each chapter to provide coverage
of Microsoft Access fundamentals now includes Microsoft Access switchboards
(Appendix H, “The Access Workbench—Section H—Microsoft Access 2016
Switchboards,” available online).

• Introductions to the use of Microsoft SQL Server 2016 Developer edition
(Appendix A, “Getting Started with Microsoft SQL Server 2016,” available on-
line), Oracle Database XE (Appendix B, “Getting Started with Oracle Database
XE,” available online) and Oracle MySQL 5.7 Community Server (Appendix C,
“Getting Started with MySQL 5.7 Community Server,” available online).

• The use of fully developed datasets for the three example databases that run
throughout various portions of the book—Wedgewood Pacific, Heather Sweeney
Designs, and Wallingford Motors.

• The use of the PHP scripting language, now used in the NetBeans IDE, in the Web
database processing topics now includes code for Web page input forms.

• Coverage of the dimensional database model is maintained in the restructured
Chapter 8, together with coverage of OLAP.

• In order to make room for this new material, we have had to move some valuable
material previously found in the book itself to online appendices. This includes the
James River Jewelry set of project questions, which is now in online Appendix D,
“James River Jewelry Project Questions.” The material on SQL views is now in
online Appendix E, “Advanced SQL,” with additional material on SQL Persistent
Stored Modules (SQL/PSM). Discussions of how to import Microsoft Excel data
into the DBMS products are now found in each related appendix— for Microsoft
SQL Server 2016 Developer Edition, see online Appendix A, “Getting Started with
Microsoft SQL Server 2016”; for Oracle Database XE, see online Appendix B,
“Getting Started with Oracle Database XE”; and for MySQL 5.7 Community Server,
see online Appendix C, “Getting Started with MySQL 5.7 Community Server.”

• The business intelligence systems material on reporting systems and data mining is
now in online Appendix J, “Business Intelligence Systems.”

This textbook consists of 8 chapters and 11 appendices (all of which are readily available
online at www.pearsonhighered.com/kroenke). Chapter 1 explains why databases are
used, what their components are, and how they are developed. Students will learn the pur-
pose of databases and their applications as well as how databases differ from and improve
on lists in spreadsheets. Chapter 2 introduces the relational model and defines basic rela-
tional terminology. It also introduces the fundamental ideas that underlie normalization
and describes the normalization process.

Chapter 3 presents fundamental SQL statements. Basic SQL statements for data defi-
nition are described, as are SQL SELECT and data modification statements. No attempt is
made to present advanced SQL statements; only the essential statements are described.

BOOK OVERVIEW

A01_KROE1533_08_SE_FM.indd 12 11/21/16 7:22 PM

http://www.pearsonhighered.com/kroenke
http://www.pearsonhighered.com/kroenke

Preface xiii

Online Appendix E, “Advanced SQL,” adds coverage of advanced SQL topics, such as the
SQL ALTER TABLE statement, SQL set operators (UNION), SQL views, and SQL/
Persistent Stored Modules (SQL/PSM).

The next two chapters consider database design. Chapter 4 addresses data modeling
using the entity-relationship (E-R) model. This chapter describes the need for data model-
ing, introduces basic E-R terms and concepts, and presents a short case application
(Heather Sweeney Designs) of E-R modeling. Chapter 5 describes database design and
explains the essentials of normalization. The data model from the case example in
Chapter 4 is transformed into a relational design in Chapter 5.

In this edition, we continue to use the prescriptive procedure for normalizing relations
through the use of a four-step process. This approach not only makes the normalization
task easier, it also makes normalization principles easier to understand. For instructors who
want a bit more detail on normal forms, short definitions of most normal forms are
included in Chapter 5.

The last three chapters consider database management and the uses of databases in
applications. Chapter 6 provides an overview of database administration. The case example
database is built as a functioning database, and it serves as the example for a discussion of
the need for database administration. The chapter surveys concurrency control, security,
and backup and recovery techniques. Database administration is an important topic
because it applies to all databases, even personal, single-user databases. In fact, in some
ways this topic is more important for those smaller databases because no professional data-
base administrator is present to ensure that critical tasks are performed.

Chapter 7 introduces the use of Web-based database processing, including a discus-
sion of Open Database Connectivity (ODBC) and the use of the PHP scripting language. It
also discusses the emergence and basic concepts of Extensible Markup Language (XML),
and introduces Java Script Object Notation (JSON).

Chapter 8 discusses the emerging world of Big Data and the NoSQL movement,
including under this umbrella business intelligence (BI) systems and the data warehouse
architectures that support them, which often involve Big Data and NoSQL concepts.
Chapter 8 also provides a discussion of distributed databases, object-relational databases,
virtualization, and cloud computing as they relate to the continuing evolution of NoSQL
systems and Big Data. Many details of BI systems have been moved to online Appendix J,
“Business Intelligence Systems.” More specifically, Chapter 8 discusses dimensional data-
bases as an example of a data warehouse architecture, walking through how to build a
dimensional database for Heather Sweeney Designs and then using it to produce a
PivotTable online analytical processing (OLAP) report as an example of BI reporting.

Appendix A provides an introduction to Microsoft SQL Server 2016 Developer
Edition, Appendix B provides an introduction for Oracle Database XE, and Appendix C
provides a similar introduction for MySQL 5.7 Community Server. Microsoft Access is
covered in “The Access Workbench” sections included in each chapter. Appendix D con-
tains the James River Jewelry project questions. Appendix E covers material on advanced
SQL topics such as SQL views and SQL/PSM. Appendix F provides an introduction to
systems analysis and design and can be used to provide context for Chapter 4 (data model-
ing) and Chapter 5 (database design)—although in this book we focus on databases, data-
bases are used in applications. Appendix F describes the application development process
in more detail. Appendix G is a short introduction to Microsoft Visio 2016, which can be
used as a tool for data modeling (Chapter 4). A useful database design (Chapter 4) tool is
the MySQL Workbench, and this use of the MySQL Workbench is discussed in
Appendix C. Appendix H extends Chapter 5’s section of “The Access Workbench” by
providing coverage of Microsoft Access 2016 switchboards. Appendix I provides detailed
support for Chapter 7 by giving detailed instructions on getting the Microsoft IIS Web
server, PHP, and the NetBeans IDE up and running. Appendix J provides additional mate-
rial on business intelligence (BI) systems to supplement and support Chapter 8 by giving
details on report systems and data mining. Finally, Appendix K provides additional mate-
rial on Big Data and NoSQL databases to also supplement and support Chapter 8.

A01_KROE1533_08_SE_FM.indd 13 11/21/16 7:22 PM

xiv Preface

In order to keep Database Concepts up to date between editions, we post updates on the
book’s Web site at www.pearsonhighered.com/kroenke as needed. Instructor resources
and student materials are also available on the site, so be sure to check it from time to time.

KEEPING CURRENT IN A RAPIDLY CHANGING WORLD

We would like to thank the following reviewers for their insightful and helpful comments:

Arthur Lee, Lord Fairfax Community College
Behrooz Saghafi, Ph.D., Chicago State University
Betsy Page Sigman, Georgetown University
Bijoy Bordoloi, Southern Illinois University, Edwardsville
Carolyn Carvalho, Kent State University at Ashtabula
David Chou, Eastern Michigan University
David L. Olson, University of Nebraska
Fen Wang, Central Washington University
Gabriel Peterson, North Carolina Central University
Jeffrey Burton, Daytona State College
Jim Pierson, Forsyth Technical Community College
Jing Wang, University of New Hampshire
Jose Nieves, Lord Fairfax Community College
Joshua S White, PhD, State University of New York Polytechnic Institute
Julie Lewis, Baker College
June Lane, Bucks County Community College
Kui Du, University of Massachusetts Boston
Manuel Rossetti, University of Arkansas
Matt Hightower, Cerro Coso Community College
Maya Tolappa, Waubonsee Community College
Meg Murray, Kennesaw State University
Norman Hahn, Thomas Nelson Community College
Patrick Appiah-Kubi, Indiana State University
Paul Pennington, University of Houston
Paul Tallon, Loyola University Maryland
Richard Grant, Seminole State College of Florida
Richard T Evans, South Suburban College
Robert Demers, University of Massachusetts - Lowell
Stephen Larson, Slippery Rock University

We would like to thank Donna Auer (www.donnaauer.com) for letting us use her
painting “out to sea” as the cover art for this book. This artwork was also the basis for
design elements within the book.

We would like to thank Samantha Lewis, our editor; Ann Pullido, our program man-
ager; and Katrina Ostler, our project manager, for their professionalism, insight, support,
and assistance in the development of this project. We would also like to thank Darren Lim
for his comments on the final manuscript and his work on the supplements. Finally, David
Kroenke would like to thank his wife, Lynda; David Auer would like to thank his wife,
Donna; Scott Vandenberg would like to thank his wife, Kristin; and Robert Yoder would
like to thank Diane, Rachael, and Harrison Yoder for their love, encouragement, and
patience while this project was being completed.

ACKNOWLEDGMENTS

David Kroenke David Auer Scott Vandenberg Robert Yoder

A01_KROE1533_08_SE_FM.indd 14 11/21/16 7:22 PM

http://www.pearsonhighered.com/kroenke
http://www.donnaauer.com

David M. Kroenke entered the computing profession as a summer intern at the RAND
Corporation in 1967. Since then, his career has spanned education, industry, consulting,
and publishing.

He has taught at the University of Washington, Colorado State University, and Seattle
University. Over the years, he has led dozens of teaching seminars for college professors. In
1991 the International Association of Information Systems named him Computer Educator
of the Year.

In industry, Kroenke has worked for the U.S. Air Force and Boeing Computer
Services, and he was a principal in the startup of three companies. He was also vice presi-
dent of product marketing and development for the Microrim Corporation and was chief
technologist for the database division of Wall Data, Inc. He is the father of the semantic
object data model. Kroenke’s consulting clients include IBM Corporation, Microsoft,
Computer Sciences Corporation, and numerous other companies and organizations.

His text Database Processing: Fundamentals, Design, and Implementation, first pub-
lished in 1977, is now in its 14th edition (coauthored with David Auer for the 11th, 12th,
13th, and 14th editions). He introduced Database Concepts (now in the eighth edition that
you are reading) in 2003. Kroenke has published many other textbooks, including the clas-
sic Business Computer Systems (1981). Recently, he has authored Using MIS (8th edition),
Experiencing MIS (6th edition), MIS Essentials (4th edition), Processes, Systems and
Information: An Introduction to MIS (2nd edition) (coauthored with Earl McKinney), and
Essentials of Processes, Systems and Information (coauthored with Earl McKinney).

An avid sailor, Kroenke also wrote Know Your Boat: The Guide to Everything That
Makes Your Boat Work. Kroenke lives in Seattle, Washington. He is married and has two
children and three grandchildren.

David J. Auer is a Senior Instructor Emeritus at the College of Business (CBE) of Western
Washington University in Bellingham, WA. He served as the director of Information
Systems and Technology Services at CBE from 1994 to 2014 and taught in CBE’s
Department of Decision Sciences from 1981 to 2015. He has taught CBE courses in quan-
titative methods, production and operations management, statistics, finance, and manage-
ment information systems. Besides managing CBE’s computer, network, and other
technology resources, he also teaches management information systems courses. He has
taught the Principles of Management Information Systems and Business Database
Development courses, and he was responsible for developing CBE’s network infrastructure
courses, including Computer Hardware and Operating Systems, Telecommunications, and
Network Administration.

He has coauthored several MIS-related textbooks, including Database Processing:
Fundamentals, Design, and Implementation, first published in 1977, is now in its 14th edi-
tion (coauthored with David Kroenke for the 11th, 12th, 13th, and 14th editions), and
Database Concepts, now in the eighth edition that you are reading (coauthored with
David Kroenke for the 3rd, 4th, 5th, 6th, and 7th editions, and coauthored with David
Kroenke, Scott Vandenberg, and Robert Yoder for this 8th edition).

Auer holds a bachelor’s degree in English literature from the University of Washington, a
bachelor’s degree in mathematics and economics from Western Washington University, a
master’s degree in economics from Western Washington University, and a master’s degree in

About the Authors

xv

A01_KROE1533_08_SE_FM.indd 15 11/21/16 7:22 PM

counseling psychology from Western Washington University. He served as a commissioned
officer in the U.S. Air Force, and he has also worked as an organizational development spe-
cialist and therapist for an employee assistance program (EAP).

Auer and his wife, Donna, live in Bellingham, Washington. He has two children and
four grandchildren.

Scott L. Vandenberg has been on the Computer Science faculty at Siena College since
1993, where he regularly teaches three different database courses at several levels to both
computer science and business majors. Prior to arriving at Siena, he taught undergraduate
and graduate courses in database systems at the University of Massachusetts–Amherst.
Since arriving at Siena, he also taught graduate and undergraduate database courses at the
University of Washington–Seattle. He has developed five different database courses over
this time. His other teaching experience includes introductory computer science, introduc-
tory programming, data structures, management information systems, and three years
teaching Siena’s required interdisciplinary freshman writing course.

Vandenberg’s recent research publications are mainly in the areas of computer science
education and data science applications, with earlier work on query optimization and alge-
braic query languages. He holds a bachelor’s degree in mathematics and computer science
from Cornell University and master’s and PhD degrees in computer science from the
University of Wisconsin–Madison. Medieval history and playing hockey are two things that
can tear him away from a database. Vandenberg lives in Averill Park, NY, with his wife,
Kristin, and two children.

Robert C. Yoder began his professional career at the University at Albany as a systems pro-
grammer managing mainframes and Unix servers. He has two years of research experience
working on 3-D solid modeling systems. Robert holds BS and MS degrees in computer sci-
ence and a PhD in information science, all from the University at Albany.

Yoder joined the Computer Science department at Siena College in 2001 and teaches
Business Database, Management Information Systems, Geographic Information Systems,
Data Structures, Networks, and Operating Systems courses. Yoder lives in Niskayuna, NY,
with his wife, Diane, and two children and enjoys traveling, hiking, and walking his dog.

xvi About the Authors

A01_KROE1533_08_SE_FM.indd 16 11/21/16 7:22 PM

1

P art 1 introduces fundamental concepts and techniques of relational

database management. Chapter 1 explains database technology,

discusses why databases are used, and describes the components

of a database system. Chapter 2 introduces the relational model and defines

key relational database terms. It also presents basic principles of relational

database design. Chapter 3 presents Structured Query Language (SQL), an

international standard for creating and processing relational databases.

After you have learned these fundamental database concepts, we will

focus on database modeling, design, and implementation in Part 2. Finally,

we will discuss database management, Web database applications, data ware-

houses, business intelligence (BI) systems, cloud computing, and Big Data

in Part 3.

1
PART

Database
Fundamentals

M01_KROE1533_08_SE_P01.indd 1 11/21/16 6:18 PM

A01_LO5943_03_SE_FM.indd ivA01_LO5943_03_SE_FM.indd iv 04/12/15 4:22 PM04/12/15 4:22 PM

This page intentionally left blank

3

K nowledge of database technology increases in importance every
day. Databases are used everywhere: They are key components of
e-commerce and other Web-based applications. They lay at the heart

of organization-wide operational and decision support applications. Databases
are also used by thousands of work groups and millions of individuals. It is
estimated that there are more than 10 million active databases in the world
today.

The purpose of this book is to teach you the essential relational database
concepts, technology, and techniques that you need to begin a career as a
database developer. This book does not teach everything of importance in
relational database technology, but it will give you sufficient background to
be able to create your own personal databases and to participate as a mem-
ber of a team in the development of larger, more complicated databases.
You will also be able to ask the right questions to learn more on your own.

This chapter discusses the importance of databases in the Internet world
and then introduces database processing concepts. We will investigate the
reasons for using a relational database. We begin by describing some of the
problems that can occur when using lists. Using a series of examples, we
illustrate how using sets of related tables helps you to avoid those prob-
lems. Next, we describe the components of a database system and explain
the elements of a database, the purpose of a database management system
(DBMS), and the functions of a database application. Finally, we introduce
nonrelational databases.

 ■ Understand the importance of databases in Internet
Web applications and mobile apps

 ■ Understand the nature and characteristics of databases

 ■ Understand the potential problems with lists

 ■ Understand the reasons for using a database

 ■ Understand how using related tables helps you avoid
the problems of using lists

 ■ Know the components of a database system

 ■ Learn the elements of a database

 ■ Learn the purpose of a database management system
(DBMS)

 ■ Understand the functions of a database application

 ■ Introduce Web database applications

 ■ Introduce data warehouses and business intelligence
(BI) systems

 ■ Introduce Big Data and cloud computing

CHAPTER OBJECTIVES

1CHAPTE
R

Getting Started

M01_KROE1533_08_SE_C01.indd 3 11/21/16 6:15 PM

4 Part 1 Database Fundamentals

Let’s stop for a moment and consider the incredible information technology available for
our use today.

The personal computer (PC) became widely available with the introduction of the
Apple II in 1977 and the IBM Personal Computer (IBM PC) in 1981. PCs were net-
worked into Local Area Networks (LANs) using the Ethernet networking technology,
which was developed at the Xerox Palo Alto Research Center in the early 1970s and ad-
opted as a national standard in 1983.

The Internet—the global computer network of networks—was created as the
ARPANET in 1969 and then grew and was used to connect all the LANs (and other types
of networks). The Internet became widely known and used when the World Wide Web
(also referred to as the Web and WWW) became easily accessible in 1993. Everyone got a
computer software application called a Web browser and starting browsing Web sites.
Online retail Web sites such as Amazon.com (online since 1995) and “brick-and-mortar”
stores with an online presence such as Best Buy appeared, and people started extensively
shopping online.

In the early 2000s, Web 2.01 Web sites started to appear—allowing users to add con-
tent to Web sites that had previously held static content. Web applications such as
Facebook, Wikipedia, and Twitter appeared and flourished.

In a parallel development, the mobile phone or cell phone was demonstrated and de-
veloped for commercial use in the 1970s. After decades of mobile phone and cell phone
network infrastructure development, the smartphone appeared. Apple brought out the
iPhone in 2007. Google created the Android operating system, and the first Android-
based smartphone entered the market in 2008. Eight years later, in 2016 (as this is being
written), smartphones and tablet computers (tablets) are widely used, and thousands of
application programs known as apps are widely available and in daily use. Most Web ap-
plications now have corresponding smartphone and tablet apps (you can “tweet” from ei-
ther your computer or your smartphone)!

What many people do not understand is that in today’s Web application and smart-
phone app environment, most of what they do depends upon databases.

We can define data as recorded facts and numbers. We can initially define a database
(we will give a better definition later in this chapter) as the structure used to hold or store
that data. We process that data to provide information (which we also define in more detail
later in this chapter) for use in the Web applications and smartphone apps.

Do you have a Facebook account? If so, all your posts, your comments, your “likes,”
and other data you provide to Facebook (such as photos) are stored in a database. When
your friend posts an item, it is initially stored in the database and then displayed to you.

Do you have a Twitter account? If so, all your tweets are stored in a database. When
your friend tweets something, it is initially stored in the database and then displayed to you.

Do you shop at Amazon.com? If so, how do you find what you are looking for? You
enter some words in a search text window on the Amazon home Web page (if you are us-
ing a Web browser) and click the Go button. Amazon’s computers then search Amazon’s
databases and return a formatted report on-screen of the items that matched what you
searched for.

The search process is illustrated in Figure 1-1, where we search the Pearson Higher
Education Web site for books authored by David Kroenke. Figure 1-1(a) shows the upper
portion of the Pearson Higher Education Web site home page. While many Web sites (in-
cluding Amazon.com, REI, and Best Buy) have a text box for entering search key words on

1Web 2.0 was originated by Darcy DiNucci in 1999 and introduced to the world at large in 2004 by pub-
lisher Tim O’Reilly. See the Wikipedia article Web 2.0 (accessed May 2016) at https://en.wikipedia.org/
wiki/Web_2.0.

THE IMPORTANCE OF DATABASES IN THE INTERNET
AND MOBILE APP WORLD

M01_KROE1533_08_SE_C01.indd 4 11/21/16 6:15 PM

https://en.wikipedia.org/wiki/Web_2.0
https://en.wikipedia.org/wiki/Web_2.0
http://Amazon.com
http://Amazon.com
http://Amazon.com

Chapter 1 Getting Started 5

The Pearson Higher Education Web site home page

The Search button

FIGURE 1-1

Searching a Database in a Web Browser

(a) The Pearson Higher Education Web Site Home Page

Enter the author name Kroenke as the search keyword

The Search button

(b) Entering Author Name Kroenke as the Search Keyword

The Search Results Web page

Each block displays the data on one book by Kroenke
as found in the database—a thumbnail picture of the
cover is shown when the cover art is available,
otherwise a placeholder labeled Pearson is displayed

(c) Books by Author Kroenke Found in the Database
Pearson Education Inc, Microsoft Edge, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 5 11/21/16 6:15 PM

6 Part 1 Database Fundamentals

Users Personal computer with
Web browser client

Internet

Cell phone system
data network

Smartphone with
app client

Web server

App data server

Database

DatabaseUsers

Users Personal computer with
Web browser client

Internet

Cell phone system
data network

Smartphone with
app client

Web server

App data server

Database

DatabaseUsers

the home page itself for immediate use, at the Pearson site we have to click on a Search
catalog button to access the search function on the Advanced Catalog Search page shown in
Figure 1-1(b). On this page, we enter the author name Kroenke in the Author text box, and
then click the Search button. The Pearson catalog database is searched, and the Web ap-
plication returns a Search Results page containing a listing of books authored by David
Kroenke, as shown in Figure 1-1(c).

The use of databases by Web applications and smartphone apps is illustrated in
Figure 1-2. In this figure, people have computers (desktop or notebook) and smartphones,
which are examples of devices used by people, who are referred to as users. On these

It is much more effective to see this process than to just read about it. Take
a minute, open a Web browser, and go to Amazon.com (or any other online
retailer, such as Best Buy, L.L.Bean, or REI). Search for something you are
interested in, and watch the database search results be displayed for you. You
just used a database.

BTW

Even if you are simply shopping in a local grocery store (or a coffee shop or piz-
zeria), you are interacting with databases. Businesses use Point of Sale (POS)
systems to record every purchase in a database, to monitor inventory, and, if you
have a sales promotion card from the store (the one you use to get those special
prices for “cardholders only”), to keep track of everything you buy for marketing
purposes. All the data POS systems gather is stored in, of course, a database.

BTW

FIGURE 1-2

The Internet and Mobile Device World

M01_KROE1533_08_SE_C01.indd 6 11/21/16 6:15 PM

http://Amazon.com

Chapter 1 Getting Started 7

devices are client applications (Web browsers, apps) used by people to obtain services such
are searching, browsing, online purchasing, and tweeting over the Internet or cell phone
networks. These services are provided by server computers, and these are the computers
that hold the databases containing the data needed by the client applications.

This structure is known as client-server architecture, and it supports most of the Web
applications in use today. The simple fact is that without databases, we could not have the
ubiquitous Web applications and apps that are currently used by so many people.

A database is used to help people keep track of things, and the most commonly used type
of database is the relational database. We will discuss the relational database model in
depth in Chapter 2, so for now we just need to understand a few basic facts about how a
relational database helps people track things of interest to them.

You might wonder why we need a special term (and course) for such technology when
a simple list could serve the same purpose. Many people do keep track of things by using
lists, and sometimes such lists are valuable. In other cases, however, simple lists lead to data
inconsistencies and other problems.

In this section, we examine several different lists and show some of these problems. As
you will see, we can solve the problems by splitting lists into tables of data. Such tables are
the key components of a database. A majority of this text concerns the design of such tables
and techniques for manipulating the data they contain.

WHY USE A DATABASE?

Figure 1-3 shows a simple list of student data, named the Student List,2 stored in a spread-
sheet. The Student List is a very simple list, and for such a list a spreadsheet works quite
well. Even if the list is long, you can sort it alphabetically by last name, first name, or email
address to find any entry you want. You can change the data values, add data for a new
student, or delete student data. With a list like the Student List in Figure 1-3, none of these
actions is problematic, and a database is unnecessary. Keeping this list in a spreadsheet is
just fine.

Suppose, however, we change the Student List by adding adviser data, as shown in
Figure 1-4. You can still sort the new Student with Adviser List in a number of ways to find
an entry, but making changes to this list causes modification problems. Suppose, for ex-
ample, that you want to delete the data for the student Chip Marino. As shown in
Figure 1-5, if you delete the eighth row (the row numbered 8—this is actually the seventh
row of data because of the column headers, but it is easier to refer to the row number
shown in the figure) you not only remove Chip Marino’s data, you also remove the fact that

WHAT ARE THE PROBLEMS WITH USING LISTS?

2In order to easily identify and reference the lists being discussed, we capitalize the first letter of each word
in the list names in this chapter. Similarly, we capitalize the names of the database tables associated with the
lists.

FIGURE 1-3

The Student List in a
Spreadsheet

Excel 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 7 11/21/16 6:15 PM

8 Part 1 Database Fundamentals

there is an adviser named Tran and that Professor Tran’s email address is Ken.Tran@
ourcampus.edu.

Similarly, updating a value in this list can have unintended consequences. If, for exam-
ple, you change AdviserEmail in the fifth row, you will have inconsistent data. After the
change, the fourth row indicates one email address for Professor Taing, and the fifth row
indicates a different email address for the same professor. Or is it the same professor?
From this list, we cannot tell if there is one Professor Taing with two inconsistent email ad-
dresses or whether there are two professors named Taing with different email addresses. By
making this update, we add confusion and uncertainty to the list.

Finally, what do we do if we want to add data for a professor who has no advisees? For
example, Professor George Green has no advisees, but we still want to record his email ad-
dress. As shown in Figure 1-5, we must insert a row with incomplete values, called null
values, in the database field. In this case, the term null value means a missing value, but
there are other meanings of the term null value that are used when working with databases.
We will discuss the problems of null values in detail in the next chapter, where we will
show that null values are always problematic and that we want to avoid them whenever
possible.

Now, what exactly happened in these two examples? We had a simple list with four
columns, added two more columns to it, and thereby created several problems. The prob-
lem is not just that the list has six columns instead of four. Consider a different list that has
six columns: the Student with Residence List shown in Figure 1-6. This list has five col-
umns, yet it suffers from none of the problems of the Student with Adviser List in
Figure 1-5.

In the Student with Residence List in Figure 1-6, we can delete the data for student
Chip Marino and lose only data for that student. No unintended consequences occur.
Similarly, we can change the value of Residence for student Tzu Lai without introducing
any inconsistency. Finally, we can add data for student Garret Ingram and not have any null
values.

FIGURE 1-4

The Student with Adviser List

Changed row—
inconsistent data

Deleted row—too
much data lost

Inserted row—
data missing

FIGURE 1-5

Modification Problems in the Student with Adviser List

Excel 2016, Windows 10, Microsoft Corporation.

Excel 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 8 11/21/16 6:15 PM

mailto:Ken.Tran@ourcampus.edu
mailto:Ken.Tran@ourcampus.edu

Chapter 1 Getting Started 9

An essential difference exists between the Student with Adviser List in Figure 1-5 and
the Student with Residence List in Figure 1-6. Looking at those two figures, can you deter-
mine the difference? The essential difference is that the Student with Residence List in
Figure 1-6 is all about a single thing: All the data in that list concern students. In contrast,
the Student with Adviser List in Figure 1-3 is about two things: Some of the data concern
students, and some of the data concern advisers. In general, whenever a list has data about
two or more different things, modification problems will result.

To reinforce this idea, examine the Student with Adviser and Department List in
Figure 1-7. This list has data about three different things: students, advisers, and depart-
ments. As you can see in the figure, the problems with inserting, updating, and deleting
data just get worse. A change in the value of AdviserLastName, for example, might neces-
sitate a change in only AdviserEmail, or it might require a change in AdviserEmail,
Department, and AdminLastName. As you can imagine, if this list is long—for example, if
the list has thousands of rows—and if several people process it, the list will be a mess in a
very short time.

Inserted row—
data OK

Changed row—no
inconsistent data

Deleted row—no
data loss

FIGURE 1-6

The Student with Residence List

If Adviser Baker is changed to Taing,
we need to change AdviserEmail as
well. If changed to Valdez, we need to
change AdviserEmail, Department, and
AdminLastName.

Deleted row—Student and Adviser
data lost

Inserted row—both Student and Adviser
data missing

FIGURE 1-7

The Student with Adviser and Department List

Excel 2016, Windows 10, Microsoft Corporation.

Excel 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 9 11/21/16 6:15 PM

10 Part 1 Database Fundamentals

The problems of using lists were first identified in the 1960s, and a number of different
techniques were developed to solve them. Over time, a methodology called the relational
model emerged as the leading solution, and today almost every commercial database is
based on the relational model. We will examine the relational model in detail in Chapter 2.
Here, however, we introduce the basic ideas of the relational model by showing how it
solves the modification problems of lists.

Remember your eighth-grade English teacher? He or she said that a paragraph should
have a single theme. If you have a paragraph with more than one theme, you need to break
it up into two or more paragraphs, each with a single theme. That idea is the foundation of
the design of relational databases. A relational database contains a collection of separate
tables. A table holds data about one and only one theme in most circumstances. If a table
has two or more themes, we break it up into two or more tables.

A Relational Design for the Student with Adviser List
The Student with Adviser List in Figures 1-4 and 1-5 has two themes: students and advisers.
If we put this data into a relational database, we place the student data in one table named
STUDENT and the adviser data in a second table named ADVISER.

A database usually has multiple tables, and each table contains data about a different
type of thing. For example, Figure 1-8 shows a database with two tables: The STUDENT
table holds data about students, and the ADVISER table holds data about classes.

A table has rows and columns, like those in a spreadsheet. Each row of a table has
data about a particular occurrence or instance of the thing of interest. For example,
each row of the STUDENT table has data about one of seven students: Andrews,
Brisbon, Fischer, Hwang, Lai, Marino, and Thompson. Similarly, each row of the
ADVISER table has data about a particular adviser. Because each row records the data
for a specific instance, rows are also known as records. Each column of a table stores a
characteristic common to all rows. For example, the first column of STUDENT stores
StudentNumber, the second column stores StudentLastName, and so forth. Columns
are also known as fields.

USING RELATIONAL DATABASE TABLES

STUDENT data linked
to ADVISER data via
AdviserLastName

FIGURE 1-8

The Adviser and Student Tables

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 10 11/21/16 6:15 PM

Chapter 1 Getting Started 11

We still want to show which students have which advisers, however, so we leave
AdviserLastName in the STUDENT table. As shown in Figure 1-8, the values of
AdviserLastName now let us link rows in the two tables to each other.

Now consider possible modifications to these tables. As you saw in the last section,
three basic modification actions are possible: insert, update, and delete. To evaluate a de-
sign, we need to consider each of these three actions. As shown in Figure 1-9, we can insert,
update, and delete in these tables with no modification problems.

A table and a spreadsheet (also known as a worksheet) are very similar in that
you can think of both as having rows, columns, and cells. The details that
define a table as something different from a spreadsheet are discussed in
Chapter 2. For now, the main differences you see are that tables have column
names instead of identifying letters (for example, Name instead of A) and that
the rows are not necessarily numbered.

Although, in theory, you could switch the rows and columns by putting
instances in the columns and characteristics in the rows, this is never done.
Every database in this text and 99.999999 percent of all databases throughout
the world store instances in rows and characteristics in columns.

BTW

In this book, table names appear in all capital, or uppercase, letters (STUDENT,
ADVISER). Column names have initial capitals (Phone, Address), and where
column names consist of more than one word, the initial letter of each word is
capitalized (LastName, AdviserEmail).

BTW

Changed data—data
remains consistent

Inserted data—no
STUDENT data
required

Deleted data—no
ADVISER data lost

FIGURE 1-9

Modifying the Adviser and Student Tables

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 11 11/21/16 6:16 PM

12 Part 1 Database Fundamentals

For example, we can insert the data for Professor Bill Yeats by just adding his data to
the ADVISER table. No student references Professor Yeats, but this is not a problem.
Perhaps a student will have Professor Yeats as an adviser in the future. We can also update
data values without unintended consequences. The email address for Professor Susan
Taing can be changed to Sue.Taing@ourcampus.edu, and no inconsistent data will result
because Professor Taing’s email address is stored just once in the ADVISER table. Finally,
we can delete data without unintended consequences. For example, if we delete the data
for student Chip Marino from the STUDENT table, we lose no adviser data.

A Relational Design for the Student with Adviser and
Department List
We can use a similar strategy to develop a relational database for the Student with Adviser
and Department List shown in Figure 1-7. This list has three themes: students, advisers, and
departments. Accordingly, we create three tables, one for each of these three themes, as
shown in Figure 1-10.

As illustrated in Figure 1-10, we can use AdviserLastName and Department to link the
tables. Also, as shown in this figure, this set of tables does not have any modification prob-
lems. We can insert new data without creating null values, we can modify data without
creating inconsistencies, and we can delete data without unintended consequences. Notice
in particular that when we add a new row to DEPARTMENT we can add rows in
ADVISER, if we want, and we can add rows in STUDENT for each of the new rows in
ADVISER, if we want. However, all these actions are independent. None of them leaves
the tables in an inconsistent state.

Similarly, when we modify an AdviserLastName in a row in STUDENT, we automati-
cally pick up the adviser’s correct first name, email address, and department. If we change

Can change
STUDENT Adviser
name as needed—
new value is linked to
its own data

Can delete
STUDENT data as
needed—no
DEPARTMENT or
ADVISER data lost

Can insert
DEPARTMENT
data as needed—
no ADVISER or
STUDENT data
required

FIGURE 1-10

The Department, Adviser, and Student Tables

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 12 11/21/16 6:16 PM

mailto:Sue.Taing@ourcampus.edu

Chapter 1 Getting Started 13

AdviserLastName in the first row of STUDENT to Taing, it will be connected to the row in
ADVISER that has the correct AdviserFirstName, AdviserEmail, and Department values.
If we want, we can also use the value of Department in ADVISER to obtain the correct
DEPARTMENT data. Finally, notice that we can delete the row for student Marino with-
out a problem.

As an aside, the design in Figure 1-10 has removed the problems that occur when
modifying a list, but it has also introduced a new problem, this time in the ADVISER table.
Specifically, what would happen if we deleted the first row in ADVISER? Students
Andrews and Fischer would have an invalid value of AdviserLastName because Professor
Baker would no longer exist in the ADVISER table. To prevent this problem, we can de-
sign the database so that a deletion of a row is not allowed if other rows depend on it, or we
can design it so that the dependent rows are deleted as well. We are skipping way ahead
here—however, we will discuss such issues in later chapters.

A Relational Design for Art Course Enrollments
To fix in your mind the ideas we have been examining, consider the Art Course List in
Figure 1-11, which is used by an art school that offers art courses to the public. This list has
modification problems. For example, suppose we change the value of CourseDate in the
first row. This change might mean that the date for the course is changing, in which case
the CourseDate values should be changed in other rows as well. Alternatively, this change
could mean that a new Advanced Pastels (Adv Pastels) course is being offered. Either is a
possibility.

As with the previous examples, we can remove the problems and ambiguities by creat-
ing a separate table for each theme. However, in this case the themes are more difficult to
determine. Clearly, one of the themes is customer and another one is art course. However, a
third theme exists that is more difficult to bring to light. The customer has paid a certain
amount toward a course. The amount paid is not a property of the customer because it var-
ies depending on which course the customer is taking. For example, customer Ariel
Johnson paid $250 for the Advanced Pastels (Adv Pastels) course and $350 for the
Intermediate Pastels (Int Pastels) course. Similarly, the amount paid is not a property of the
course because it varies with which customer has taken the course. Therefore, the third
theme of this list must concern the enrollment of a particular student in a particular class.
Figure 1-12 shows a design using three tables that correspond to these three themes—we
name this set of three tables the Art Course Database.

Notice that the Art Course Database design assigns an ID column named
CustomerNumber that assigns a unique identifying number to each row of CUSTOMER;
this is necessary because some customers might have the same name. Another ID column,
named CourseNumber, has also been added to COURSE. This is necessary because some
courses have the same name. Finally, notice that the rows of the ENROLLMENT table

How to enter the fee
for a new course?

Consequences of
changing this date?

Consequences of
deleting this row?

FIGURE 1-11

The Art Course List with Modification Problems

Excel 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 13 11/21/16 6:16 PM

14 Part 1 Database Fundamentals

show the amount paid by a particular customer for a particular course and that the ID col-
umns CustomerNumber and CourseNumber are used as linking columns to the other
tables.

A Relational Design for Parts and Prices
Now let’s consider a more complicated example. Figure 1-13 shows a spreadsheet that
holds the Project Equipment List used by a housing contractor named Carbon River
Construction to keep track of the parts that it buys for various construction projects.

The first problem with this list concerns modifications to the existing data. Suppose
your job is to maintain the Project Equipment List, and your boss tells you that customer
Elizabeth Barnaby changed her phone number. How many changes would you need to
make to this spreadsheet? For the data in Figure 1-13, you would need to make this change
10 times. Now suppose the spreadsheet has 5,000 rows. How many changes might you
need to make? The answer could be dozens, and you need to worry not only about the time
this will take but also about the possibility of errors—you might miss her name in a row or
two and fail to properly update her phone number in these rows.

Consider a second problem with this list. In this business, each supplier agrees to a
particular discount for all parts it supplies. For example, in Figure 1-13 the supplier NW
Electric has agreed to a 25 percent discount. With this list, every time you enter a new part
quotation, you must enter the supplier of that part along with the correct discount. If

Can change COURSE
CourseDate without
problems

Can insert new
COURSE data as
needed

Can delete
ENROLLMENT
rows as needed—
no adverse
consequences

FIGURE 1-12

The Art Course Database Tables

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 14 11/21/16 6:16 PM

Chapter 1 Getting Started 15

dozens or hundreds of suppliers are used, there is a chance that you will sometimes enter
the wrong discount. If you do, the list will have more than one discount for one supplier—a
situation that is incorrect and confusing.

A third problem occurs when you enter data correctly but inconsistently. The first row
has a part named 200 Amp panel, whereas the 15th row has a part named Panel, 200 Amp.
Are these two parts the same item, or are they different? It turns out that they are the same
item, but they were named differently.

A fourth problem concerns partial data. Suppose you know that a supplier offers a
20 percent discount, but Carbon River has not yet ordered from the supplier. Where do
you record the 20 percent discount?

Just as we did for the previous examples, we can fix the Project Equipment List by
breaking it up into separate tables. Because this list is more complicated, we need to use
more tables. When we analyze the Project Equipment List, we find data about four themes:
projects, items, price quotations, and suppliers. Accordingly, we create a database with four
tables and relate those four tables using linking values, as before. Figure 1-14 shows our
four tables and their relationships—we will name this set of tables the Project Equipment
Database.

In Figure 1-14, note that the QUOTE table holds a unique quote identifier (QuoteID),
a quantity, a unit price, an extended price (which is equal to [quantity * unit price]), and
three ID columns as linking values: ProjectID for PROJECT, ItemNumber for ITEM, and
SupplierID for SUPPLIER.

FIGURE 1-13

The Project Equipment List as a Spreadsheet

Excel 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 15 11/21/16 6:16 PM

16 Part 1 Database Fundamentals

FIGURE 1-14

The Project Equipment Database Tables

By now, you may have a burning question: It may be fine to tear the lists up into pieces in
order to eliminate processing problems, but what if the users want to view their data in the
format of the original list? With the data separated into different tables, the users will have
to jump from one table to another to find the information they want, and this jumping
around will become tedious.

This is an important question and one that many people addressed in the 1970s and
1980s. Several approaches were invented for combining, querying, and processing sets of
tables. Over time, one of those approaches, a language called Structured Query Language
(SQL), emerged as the leading technique for data definition and manipulation. Today,
SQL is an international standard. Using SQL, you can reconstruct lists from their underly-
ing tables; you can query for specific data conditions; you can perform computations on
data in tables; and you can insert, update, and delete data.

Processing Tables by Using SQL
You will learn how to code SQL statements in Chapter 3. However, to give you an idea of
the structure of such statements, let’s look at an SQL statement that joins the three tables in
Figure 1-12 to produce the original Art Course List. Do not worry about understanding the
syntax of this statement, just realize that it produces the result shown in Figure 1-15, which

HOW DO I PROCESS RELATIONAL TABLES?

Now if Elizabeth Barnaby changes her phone number we need to make that change
only once—in the PROJECT table. Similarly, we need to record a supplier discount only
once—in the SUPPLIER table.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 16 11/21/16 6:16 PM

Chapter 1 Getting Started 17

contains all the Art Course List data (although in a slightly different row order). As you will
learn in Chapter 3, it is also possible to select rows, to order them, and to make calculations
on row data values.

SELECT CUSTOMER.CustomerLastName,

CUSTOMER.CustomerFirstName, CUSTOMER.Phone,

COURSE.CourseDate, ENROLLMENT.AmountPaid,

COURSE.Course, COURSE.Fee

FROM CUSTOMER, ENROLLMENT, COURSE

WHERE CUSTOMER.CustomerNumber = ENROLLMENT.
CustomerNumber

AND COURSE.CourseNumber = ENROLLMENT.CourseNumber;

The next SQL statement joins the Art Course Database tables together, computes the
difference between the course Fee and the AmountPaid, and stores this result in a new
column named AmountDue. The SQL statement then selects only rows for which
AmountDue is greater than zero and presents the results sorted by CustomerLastName.
Compare the data in Figure 1-15 with the results in Figure 1-16 to ensure that the results
are correct.

SELECT CUSTOMER.CustomerLastName,

CUSTOMER.CustomerFirstName, CUSTOMER.Phone,

COURSE.Course, COURSE.CourseDate, COURSE.Fee,

ENROLLMENT.AmountPaid,

(COURSE.Fee-ENROLLMENT.AmountPaid) AS AmountDue

FROM CUSTOMER, ENROLLMENT, CUSTOMER

WHERE CUSTOMER.CustomerNumber = ENROLLMENT.
CustomerNumber

AND COURSE.CourseNumber = ENROLLMENT.CourseNumber

 AND (COURSE.Fee ENROLLMENT.AmountPaid) > 0

ORDER BY CUSTOMER.CustomerLastName;

FIGURE 1-15

Results of the SQL Query to Recreate the Art Course List Data

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 17 11/21/16 6:16 PM

18 Part 1 Database Fundamentals

FIGURE 1-16

Results of the SQL Query to Compute Amount Due

As shown in Figure 1-17, a database system has four components: users, the database ap-
plication, the database management system (DBMS), and the database.

Starting from the right of Figure 1-17, the database is a collection of related tables and
other structures. The database management system (DBMS) is a computer program used
to create, process, and administer the database. The DBMS receives requests encoded in
SQL and translates those requests into actions on the database. The DBMS is a large, com-
plicated program that is licensed from a software vendor; companies almost never write
their own DBMS programs.

A database application is a set of one or more computer programs that serves as an
intermediary between the user and the DBMS. Application programs read or modify data-
base data by sending SQL statements to the DBMS. Application programs also present
data to users in the format of forms and reports. Application programs can be acquired
from software vendors, and they are also frequently written in-house. The knowledge you
gain from this text will help you write database applications.

Users, the fourth component of a database system, employ a database application to
keep track of things. They use forms to read, enter, and query data, and they produce
reports.

Of these components, we will consider the database, the DBMS, and database applica-
tions in more detail.

The Database
In the most general case, a database is defined as a self-describing collection of related re-
cords. For all relational databases (the majority of databases today and the primary type
considered in this book), this definition can be modified to indicate that a database is a self-
describing collection of related tables.

WHAT IS A DATABASE SYSTEM?

Database
application

Database
management

system
(DBMS)

Database

Users

FIGURE 1-17

Components of a
Database System

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 18 11/21/16 6:16 PM

Chapter 1 Getting Started 19

The two key terms in this definition are self-describing and related tables. You al-
ready have a good idea of what we mean by related tables. One example of related tables
consists of the ADVISER and STUDENT tables, which are related by the common col-
umn AdviserName. We will build on this idea of relationships further in the next
chapter.

Self-describing means that a description of the structure of the database is contained
within the database itself. Because this is so, the contents of a database can always be deter-
mined just by looking inside the database itself. It is not necessary to look anywhere else.
This situation is akin to that at a library, where you can tell what is in the library by examin-
ing the catalog that resides within the library.

Data about the structure of a database are called metadata. Examples of metadata are
the names of tables, the names of columns and the tables to which they belong, properties
of tables and columns, and so forth.

All DBMS products provide a set of tools for displaying the structure of their data-
bases. For example, Figure 1-18 shows a diagram produced by Microsoft Access that dis-
plays the relationships between the Art Course database tables shown in Figure 1-12.
Other tools describe the structure of the tables and other components.

The contents of a database are illustrated in Figure 1-19. A database has user data and
metadata, as just described. A database also has indexes and other structures that exist to
improve database performance, and we will discuss such structures in later chapters.
Finally, some databases contain application metadata; these are data that describe applica-
tion elements, such as forms and reports. For example, Microsoft Access carries applica-
tion metadata as part of its databases.

FIGURE 1-18

Example Metadata: A
Relationship Diagram
for the Art Course
Tables in Figure 1-12

• User data

• Metadata

• Indexes and other
 overhead data

• Application metadata

FIGURE 1-19

Database Contents

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 19 11/21/16 6:16 PM

20 Part 1 Database Fundamentals

The DBMS
The purpose of a DBMS is to create, process, and administer databases. A DBMS is a large,
complicated product that is almost always licensed from a software vendor. One DBMS
product is Microsoft Access. Other commercial DBMS products are:

• Microsoft SQL Server
• Oracle Corporation’s MySQL
• Oracle Corporation’s Oracle Database
• IBM’s DB2

Dozens of other DBMS products exist, but these five have the lion’s share of the
market.

Figure 1-20 lists the functions of a DBMS. A DBMS is used to create a database and to
create tables and other supporting structures inside that database. As an example of the
latter, suppose that we have an EMPLOYEE table with 10,000 rows and that this table in-
cludes a column, DepartmentName, that records the name of the department in which an
employee works. Furthermore, suppose that we frequently need to access employee data
by DepartmentName. Because this is a large database, searching through the table to find,
for example, all employees in the accounting department would take a long time. To im-
prove performance, we can create an index (akin to the index at the back of a book) for
DepartmentName to show which employees are in which departments. Such an index is an
example of a supporting structure that is created and maintained by a DBMS.

The next two functions of a DBMS are to read and modify database data. To do this, a
DBMS receives SQL and other requests and transforms those requests into actions on the
database files. Another DBMS function is to maintain all the database structures. For ex-
ample, from time to time it might be necessary to change the format of a table or another
supporting structure. Developers use a DBMS to make such changes.

With most DBMS products, it is possible to declare rules about data values and have a
DBMS enforce them. For example, in the Art Course database tables in Figure 1-12, what
would happen if a user mistakenly entered a value of 9 for CustomerNumber in the
ENROLLMENT table? No such customer exists, so such a value would cause numerous
errors. To prevent this situation, it is possible to tell the DBMS that any value of
CustomerNumber in the ENROLLMENT table must already be a value of CustomerNumber
in the CUSTOMER table. If no such value exists, the insert or update request should be disal-
lowed. The DBMS then enforces these rules, which are called referential integrity constraints.

The last three functions of a DBMS listed in Figure 1-20 have to do with database ad-
ministration. A DBMS controls concurrency by ensuring that one user’s work does not in-
appropriately interfere with another user’s work. This important (and complicated) func-
tion is discussed in Chapter 6. Also, a DBMS contains a security system that is used to
ensure that only authorized users perform authorized actions on the database. For exam-
ple, users can be prevented from seeing certain data. Similarly, users’ actions can be con-
fined to making only certain types of data changes on specified data.

• Create database
• Create tables
• Create supporting structures (e.g., indexes)
• Read database data
• Modify (insert, update, or delete) database data
• Maintain database structures
• Enforce rules
• Control concurrency
• Provide security
• Perform backup and recovery

FIGURE 1-20

Functions of a DBMS

M01_KROE1533_08_SE_C01.indd 20 11/21/16 6:16 PM

Chapter 1 Getting Started 21

Finally, a DBMS provides facilities for backing up database data and recovering it from
backups when necessary. The database, as a centralized repository of data, is a valuable or-
ganizational asset. Consider, for example, the value of a book database to a company such
as Amazon.com. Because the database is so important, steps need to be taken to ensure
that no data will be lost in the event of errors, hardware or software problems, or natural or
human catastrophes.

Application Programs
Figure 1-21 lists the functions of database application programs. First, an application pro-
gram creates and processes forms. Figure 1-22 shows a typical form for entering and pro-
cessing customer data for the Art Course application.

Notice that this form hides the structure of the underlying tables from the user. By
comparing the tables and data in Figure 1-12 to the form in Figure 1-22, we can see that
data from the CUSTOMER table appear at the top of the form, whereas data from the
ENROLLMENT and the COURSE tables are combined and presented in a tabular section
labeled Course Enrollment Data.

• Create and process forms
• Process user queries
• Create and process reports
• Execute application logic
• Control application

FIGURE 1-21

Functions of Database
Application Programs

FIGURE 1-22

Example Data Entry Form

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 21 11/21/16 6:16 PM

http://Amazon.com

22 Part 1 Database Fundamentals

The goal of this form, like that for all data entry forms, is to present the data in a for-
mat that is useful for the users, regardless of the underlying table structure. Behind the
form, the application processes the database in accordance with the users’ actions. The ap-
plication generates an SQL statement to insert, update, or delete data for any of the three
tables that underlie this form.

The second function of application programs is to process user queries. The applica-
tion program first generates a query request and sends it to the DBMS. Results are then
formatted and returned to the user. Figure 1-23 illustrates this process in a query of the Art
Course database in Figure 1-12.

In Figure 1-23(a), the application obtains the name or part of a name of a course. Here
the user has entered the characters pas. When the user clicks OK, the application con-
structs an SQL query statement to search the database for any course containing these
characters. The result of this SQL query is shown in Figure 1-23(b). In this particular case,
the application queried for the relevant course and then joined the ENROLLMENT and
CUSTOMER data to the qualifying COURSE rows. Observe that the only rows shown are
those with a course name that includes the characters pas.

The third function of an application is to create and process reports. This function is
somewhat similar to the second because the application program first queries the DBMS
for data (again using SQL). The application then formats the query results as a report.
Figure 1-24 shows a report that displays all the Art Course database enrollment data in or-
der by course. Notice that the report, like the form in Figure 1-22, is structured according
to the users’ needs and not according to the underlying table structure.

In addition to generating forms, queries, and reports, the application program takes
other actions to update the database in accordance with application-specific logic. For ex-
ample, suppose a user using an order entry application requests 10 units of a particular
item. Suppose further that when the application program queries the database (via the
DBMS) it finds that only eight units are in stock. What should happen? It depends on the
logic of that particular application. Perhaps no units should be removed from inventory
and the user should be notified, or perhaps the eight units should be removed and two
more placed on back order. Perhaps some other action should be taken. Whatever the case,
it is the job of the application program to execute the appropriate logic.

FIGURE 1-23

Example Query

(a) Query Parameter Form

(b) Query Results
Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 22 11/21/16 6:16 PM

Chapter 1 Getting Started 23

Finally, the last function of application programs listed in Figure 1-21 is to control the
application. This is done in two ways. First, the application needs to be written so that only
logical options are presented to the user. For example, the application may generate a
menu with user choices. In this case, the application needs to ensure that only appropriate
choices are available. Second, the application needs to control data activities with the
DBMS. The application might direct the DBMS, for example, to make a certain set of data
changes as a unit. The application might tell the DBMS to either make all these changes or
none of them. You will learn about such control topics in Chapter 6.

FIGURE 1-24

Example Report

Database technology can be used in a wide array of applications. On one end of the spec-
trum, a researcher might use database technology to track the results of experiments per-
formed in a lab. Such a database might include only a few tables, and each table would
have, at most, several hundred rows. The researcher would be the only user of this applica-
tion. This is a typical use of a personal database system.

At the other end of the spectrum, some enormous databases support international or-
ganizations. Such databases have hundreds of tables with millions of rows of data and sup-
port thousands of concurrent users. These databases are in use 24 hours a day, 7 days a
week. Just making a backup of such a database is a difficult task. These databases are typi-
cal uses of enterprise-class database systems.

Figure 1-25 shows the four components of a personal database application. As you can
see from this figure, Microsoft Access (or another personal DBMS product) takes on the
role of both the database application and the DBMS. Microsoft designed Microsoft Access
this way to make it easier for people to build personal database systems. Using Microsoft
Access, you can switch between DBMS functions and application functions and never
know the difference.

By designing Microsoft Access this way, Microsoft has hidden many aspects of data-
base processing. For example, behind the scenes Microsoft Access uses SQL just as all
other relational DBMS products do. You have to look hard, however, to find it. Figure 1-26
shows the SQL statement that Microsoft Access used for the query in Figure 1-15. As you

PERSONAL VERSUS ENTERPRISE-CLASS DATABASE SYSTEMS

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 23 11/21/16 6:16 PM

24 Part 1 Database Fundamentals

examine this figure, you might be thinking, “I’m just as glad they hid it—it looks compli-
cated and hard.” In fact, it looks harder than it is, but we will leave that topic for Chapter 3.

Figure 1-27 shows the Microsoft Access query results (the same results shown in
Figure 1-15) in Microsoft Access 2016. Microsoft Access 2016 is a commonly used personal
DBMS and is available as part of the Microsoft Office 2016 suite. We will introduce you to
Microsoft Access 2016 in this book using a section in each chapter called “The Access
Workbench.” By the time you have completed all the sections of “The Access Workbench,”
you will have a solid understanding of how to use Microsoft Access 2016 to create and use
databases.

The problem with database technology being hidden (and with using lots of wizards to
accomplish database design tasks) is that you do not understand what is being done on
your behalf. As soon as you need to perform some function that the Microsoft Access team
did not anticipate, you are lost. Therefore, to be even an average database developer you
have to learn what is behind the scenes.

Furthermore, such products are useful only for personal database applications. When
you want to develop larger database systems, you need to learn all the hidden technology.
For example, Figure 1-28 shows an enterprise-class database system that has three different
applications, each of which has many users. The storage of the database itself is spread over
many different disks—perhaps even over different specialized computers known as data-
base servers.

Notice that in Figure 1-28 the applications are written in three different languages:
Java, C#, and a blend of HTML and ASP.NET. These applications call on an industrial-
strength DBMS product to manage the database. No wizards or simple design tools are
available to develop a system like this; instead, the developer writes program code using
standard tools, such as those in integrated development environments. To write such code,
you need to know SQL and other data access standards.

Database
application

Database
management

system
(DBMS)

Microsoft Access or
other personal DBMS

Database

User

FIGURE 1-25

Personal Database
System

The SQL has
been arranged to
make it easy to read

FIGURE 1-26

SQL Generated by Microsoft Access Query

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 24 11/21/16 6:16 PM

http://asp.net

Chapter 1 Getting Started 25

The database name
Art-Course-Database

The table object
CUSTOMER is
displayed under the
Tables section of
All Access Objects

The query object
Art Course List stores
the query itself

The query results in
table format

Database
application B

Database
application A

Database
management

system
(DBMS)

Database

Java code

C# code

Database
application C

HTML and ASP.NET

SQL Server (Microsoft)
Oracle Database (Oracle)
MySQL (Oracle)
Others

FIGURE 1-27

Microsoft Access 2016

FIGURE 1-28

Enterprise-Class
Database System

Although hidden technology and complexity are good in the beginning, business re-
quirements will soon take you to the brink of your knowledge, and then you will need to
know more. To be a part of a team that creates such a database application, you will need to
know everything in this book. Over time, you will need to add to your skills. We will close
this chapter with three examples of enterprise-class DBMS products.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 25 11/21/16 6:16 PM

http://asp.net

26 Part 1 Database Fundamentals

Microsoft SQL Server 2016
Figure 1-29 shows the same SQL query used to produce the query results in Figure 1-15
and the associated query results when the SQL is executed in the Microsoft SQL Server
2016 DBMS. We are actually running the query in the Microsoft SQL Server Management
Studio, which is the user client interface to Microsoft SQL Server 2016.

We are using the freely downloadable Microsoft SQL Server 2016 Developer Edition.
This version is a great learning tool, but can only be used in a single-user development en-
vironment. Microsoft also has the freely downloadable Microsoft SQL Server 2016
Express Edition, which in addition to being used as a learning tool can also be used for
smaller production databases. For more information, see Appendix A, “Getting Started
with Microsoft SQL Server 2016.”

Note that in Figure 1-29 we are using exactly the same SQL statement we used previ-
ously, but now you can see how it is entered into a text editor window in Microsoft SQL
Server Management Studio and how the Execute button is used to execute the SQL state-
ment against the Art_Course_Database tables. You can also see how the query results,
which match those shown in Figure 1-15 but are sorted in a different order, are displayed in
a separate Results window. This illustrates the importance of SQL—it is essentially the
same in all DBMS products, and thus it is vendor and product independent (although
there are some differences in SQL syntax between various DBMS products).

Oracle Database XE
Figure 1-30 shows the same SQL query used to produce the query results in Figure 1-15
and the associated query results when the SQL is executed in the Oracle Database 11
Express Edition DBMS, which is commonly referred to as Oracle Database XE. We are
using Oracle SQL Developer as the user client interface to Oracle Database XE.

The table object
CUSTOMER is
displayed under
the Art_Course
_Database object

The SQL query

The query results
in table format

The database
object Art_Course
_Database is
displayed in the
Object Explorer

Click this button to
run the SQL query

FIGURE 1-29

Microsoft SQL Server 2016

SQL Server 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 26 11/21/16 6:16 PM

Chapter 1 Getting Started 27

Oracle Database XE is available for free download. Oracle Database XE is a great
learning tool, and it can also be used for smaller production databases. For more informa-
tion, see Appendix B, “Getting Started with Oracle Database XE.”

Note that in Figure 1-30 we are again using exactly the same SQL statement we
used previously, but now you can see how it is entered into a text editor window in
Oracle SQL Developer and how to click a button to run the SQL statement against the
Art_Course_Database (note that there are specific naming conventions for each
DBMS) tables (the COURSE, CUSTOMER, and ENROLLMENT table objects). You
can also see how the query results, which match those shown in Figure 1-15 but are
sorted in a different order, are displayed in a separate Query Result window.

MySQL 5.7 Community Server
Figure 1-31 shows the same SQL query used to produce the query results in Figure 1-15
and the associated query results when the SQL is executed in Oracle’s MySQL 5.7
Community Server DBMS. We are actually running the query in the user client interface to
MySQL 5.7, which is the MySQL Workbench.

MySQL 5.7 Community Server edition can be downloaded for free. MySQL 5.7
Community Server edition is a standard, full-strength edition of MySQL, and may be
used in production environments. However, if you want the full product support pack-
age, you have to purchase MySQL 5.7 Enterprise Edition from Oracle. MySQL is a
popular open-source product and is widely used for Web database applications (see our
discussion of Web database applications in Chapter 7). This version is a great learning
tool, and more information can be found in Appendix C, “Getting Started with Oracle
MySQL 5.7.”

Click this button to run
the SQL query

The database object
Art_Course_Database
is displayed in the
Connections browser

The table object
CUSTOMER is
displayed in the
Tables objects

The SQL query

The query results in
table format

FIGURE 1-30

Oracle Database XE

Oracle SQL Developer 4.01, Oracle Corporation.

M01_KROE1533_08_SE_C01.indd 27 11/21/16 6:16 PM

28 Part 1 Database Fundamentals

Note that in Figure 1-31 we are again using exactly the same SQL statement we used
previously, but now you can see how it is entered into a text editor window in the MySQL
Workbench and which button to click to run the SQL query against the art_course_database
(note that MySQL uses all lower case letters in object names) tables. You can also see how the
query results, which match those shown in Figure 1-15 but are sorted in a different order, are
displayed in a separate Results window.

Click this button to run
the SQL query

The database object
art_course_database
is displayed in the
Object Browser

The table object
CUSTOMER is
displayed under the
art_course_database
object

The SQL query

The query results in
table format

FIGURE 1-31

MySQL 5.7

Of these three enterprise-class DBMS products, Oracle Database, while perhaps
the most powerful DBMS product of the three, is the most difficult to master.
If you are studying Oracle Database in a class, your instructor will know how to
introduce Oracle Database topics to you to ease the learning process as well as
the appropriate order of topics to make sure you learn the material in an orderly
fashion. Oracle Database is widely used in industry, and your efforts to learn
about it will be a good investment.

However, if you are working through this book on your own, we believe you
will find is easier to start with Microsoft SQL Server 2016 (which is the DBMS
we use to illustrate most topics in the text) or Oracle MySQL 5.7 Community
Server. Both of these products are relatively easy to download, install, and start
using. Both are also widely used and will be good investments of your time and
energy.

BTW

Oracle MySQL Community Server 5.7, Oracle Corporation.

M01_KROE1533_08_SE_C01.indd 28 11/21/16 6:16 PM

Chapter 1 Getting Started 29

As we discussed earlier in this chapter, today’s Internet and mobile device world relies on
the user having (1) a Web browser or (2) a mobile app to access an application powered by
data in a database. Figure 1-2 illustrated this environment.

The Web browser user interface is now commonly used on PCs. When an application
with a Web user interface, such as the Web application that lets you shop at amazon.com, is
dependent upon a database to store the data needed by the application, we call this a Web
database application. Figure 1-32 illustrates a Web database application for the Wedgewood
Pacific (WP) company, which manufactures and sells consumer drones.3 We will build the
database for WP in Chapter 3, and we will learn how to build Web pages that connect to
databases and display database data in Chapter 7.

WHAT IS A WEB DATABASE APPLICATION?

3The technical term is unmanned aerial vehicle (UAV). See the Wikipedia article Unmanned aerial vehicle
(accessed May 2016) at https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle.

FIGURE 1-32

The WP Web Page

When you buy a product online, your purchase becomes a transaction that is recorded in
the company’s database. Specifically, it is recorded in an online transaction processing
(OLTP) database. These databases maintain current production data for the company.

Another type of database is used for data analysis by the company. Data analysis work
should not be done on the production database—we do not want any chance of breaking

WHAT ARE DATA WAREHOUSES AND BUSINESS INTELLIGENCE
(BI) SYSTEMS?

Microsoft Edge, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 29 11/21/16 6:16 PM

https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
http://Amazon.com

30 Part 1 Database Fundamentals

the production database while we are doing our analysis of company data! Therefore, we
create another place to store the data for data analysis, and this is called a data warehouse.
We use the data warehouse for such work as online analytical processing (OLAP). OLAP
is an example of a business intelligence (BI) system. BI systems are tools used to analyze
and report on company data. Data warehouses and BI systems are introduced in Chapter 8,
with an extension of the discussion in Appendix J, “Business Intelligence (BI) Systems.”

4See the Wikipedia article Big data (accessed May 2016 – not the alternative spelling of the term with lower
case first letters) at https://en.wikipedia.org/wiki/Big_data.
5See the Wikipedia article Cloud Computing (accessed May 2016) at https://en.wikipedia.org/wiki/
Cloud_computing.

Big Data is the current term for the enormous datasets generated by Web and mobile ap-
plications such as search tools (for example, Google and Bing), Web 2.0 social networks
(for example, Facebook, LinkedIn and Twitter), and scientific data collection tools.4

Big Data datasets are often stored in non-relational databases, which are often referred
to as NoSQL databases. The term NoSQL, however, is really a bit of a misnomer. It means,
literally, a database that doesn’t use SQL. What it really means, however, is a nonrelational
database, regardless of what query language is used.

The need for nonrelational databases arose out of the development of Web 2.0 appli-
cations that allowed users to create and store data that would be subsequently displayed on
a Web page. These applications required a database with different capabilities (specifically
the ability to quickly create and store massive amounts of data), and nonrelational data-
bases were created to handle this data. For example, both Facebook and Twitter use the
Apache Software Foundation’s Cassandra database.

We will introduce Big Data and nonrelational databases in Chapter 8, and extend the
discussion in Appendix K, “Big Data.” For now, simply understand that the components of
a database system shown in Figure 1-17 apply regardless of whether the DBMS is working
with relational or nonrelational databases.

WHAT IS BIG DATA?

Until recently, companies bought their computer and networking hardware (server com-
puters, routers, switches, etc.), and kept them in-house on the business premises.
Currently, however, many companies are opting to use hardware owned and operated by
another company. This can result in lower business costs for companies because they do
not incur the costs of buying, housing and maintaining computer hardware and the soft-
ware that runs on the hardware. So, for example, a company may decide to use a Microsoft
product such as Office 365 for Business or Azure as the platform to host their email ser-
vices or Web server. In this case, we say that the company’s computing resources are “in
the cloud,” and that the company is using cloud computing.5 Figure 1-33 shows the
Microsoft Azure cloud services. Note that we are hosting two databases here—a Microsoft
SQL Server database named WP, and also a MySQL 5.7 version of the WP database. The
list of options in the left hand column gives a good idea of the services available in cloud
computing.

Basically, if you actually know where your company’s servers are, you are not using
cloud computing. If the servers are off site somewhere, and you only know there are at

WHAT IS CLOUD COMPUTING?

M01_KROE1533_08_SE_C01.indd 30 11/21/16 6:16 PM

https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Cloud_computing

Chapter 1 Getting Started 31

somebody else’s data center (a facility that houses many servers and their associated infra-
structure), you are using cloud computing. Many companies besides Microsoft offer cloud
computing services. For example, Amazon offers Amazon Web Services, and Google of-
fers the Google Cloud Platform. We will discuss cloud computing, and the associated topic
of virtual machines in Chapter 8.

Microsoft SQL
Server database
named WP

MySQL 5.7
database named
wp

FIGURE 1-33

Microsoft Azure Cloud Service

(Continued)

Section 1
Getting Started with Microsoft Access
The sections of “The Access Workbench” are designed to reinforce the concepts you learn
in each chapter. In addition, you will learn many Microsoft Access skills by following along
on your computer. In this chapter’s section of “The Access Workbench,” we will review
some database basics from Chapter 1 as we walk through the basic steps necessary to build
and use Microsoft Access database applications.

As discussed in this chapter, Microsoft Access is a personal database that combines a
DBMS with an application generator. The DBMS performs the standard DBMS functions
of database creation, processing, and administration, and the application generator adds
the abilities to create and store forms, reports, queries, and other application-related func-
tions. In this section, we will work with only one table in a database; in Chapter 2’s section
of “The Access Workbench” you will expand this to include two or more tables.

We will begin by creating a Microsoft Access database to store the database tables and
the application forms, reports, and queries. In this section, we will work with basic forms

THE ACCESS WORKBENCH

Azure, Microsoft Edge, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 31 11/21/16 6:16 PM

32 Part 1 Database Fundamentals

and reports. Microsoft Access queries are discussed in Chapter 3’s section of “The Access
Workbench.”

The Wallingford Motors Customer Relationship Management System

Our Microsoft Access database will be used by a car dealership named Wallingford
Motors, which is located in the Wallingford district of Seattle, Washington. Wallingford
Motors is the dealer for a new line of hybrid cars named Gaea.6 Instead of using only a
gasoline or diesel engine, hybrid cars are powered by a combination of energy sources,
such as gasoline and electricity. Gaea produces the following four models:

1. SUHi The sport-utility hybrid (Gaea’s answer to the SUV)
2. HiLuxury A luxury-class four-door sedan hybrid
3. HiStandard A basic four-door sedan hybrid
4. HiElectra A variant of the HiStandard that uses a higher proportion of electrical power

Interest in hybrid cars—and specifically in the Gaea product line—is increasing. The
sales staff at Wallingford Motors needs a way to track its customer contacts. Therefore, our
database application will be a simple example of what is known as a customer relationship
management (CRM) system. A CRM is used by sales staff to track current, past, and
potential customers as well as the sales staff’s contacts with these customers (among other
uses). We will start out with a personal CRM used by one salesperson and expand it into a
companywide CRM in later sections.7

Creating a Microsoft Access Database

We will name our Microsoft Access application and its associated database WMCRM. Our
first step is to create a new Microsoft Access database.

Creating the Microsoft Access Database WMCRM

1. For Windows 10, select Start | All Apps | Access 2016 as shown in Figure AW-1-1.
 ■ NOTE: We are using the original Windows 10 (with Microsoft supplied updates).

The Windows 10 Anniversary Update (Windows 10 version 1607) is now available.
It has a slightly different menu, and uses the command Start | Access 2016.

 ■ NOTE: For Windows 8 and Windows 8.1, click the Access tile on the Start screen
 ■ NOTE: For Windows 7, select Start | All Programs | Microsoft Office | Microsoft

Access 2016.
 ■ NOTE: We recommend that you pin a Microsoft Access 2016 button to the

Windows Desktop Taskbar for ease of use. To do this, right-click the Microsoft
Access 2016 icon in the Start menu to open a shortcut menu, and then click the Pin to
Taskbar command. The result is shown in Figure AW-1-1.

 ■ NOTE: The menu commands, icon locations, and file locations used in “The Access
Workbench” are those found when using Microsoft Access 2016 in the Microsoft
Windows 10 operating system. If you are using the Microsoft Windows 8.1 or the
Microsoft Windows 7 operating systems, the exact operating system terminology may
vary somewhat, but these variations will not change the required actions.

 ■ NOTE: Microsoft Access 2016 is used in these sections, and the wording of the
steps and appearance of the screenshots reflect its use. If you have a different version
of Microsoft Access, there will be some differences in the step details and in what
you see onscreen. However, the basic functionality is the same, and you can complete
“The Access Workbench” operations using any version of Microsoft Access.

6Gaea, or Gaia, was the Greek goddess of the earth.
7Many CRM applications are available in the marketplace. In fact, Microsoft has one: Microsoft Dynamics
CRM.

M01_KROE1533_08_SE_C01.indd 32 11/21/16 6:16 PM

Chapter 1 Getting Started 33

2. The Microsoft Access 2016 Splash Screen appears, as shown in Figure AW-1-2. This screen
displays the names of database files that have been recently used, an Open Other Files com-
mand, and template buttons for various types of databases and database applications.

3. Click the Blank desktop database template button to open the Blank desktop database dia-
log box as shown in Figure AW-1-3.

■ NOTE: By default, in Windows 10 and Windows 8.1 the database will be created
in the Documents folder on This PC. Note that this is a major difference introduced
in Windows 8.1. In Windows 8, Windows 7, and Windows XP, the database will be
created in the My Documents folder in the Documents library folder. The Documents
library folder contains both a My Documents folder and a Public Documents folder.

4. Type in the database name WMCRM in the File Name text box, and then click the Create
button.

■ NOTE: If you clicked the Open button (as shown in Figure AW-1-3) to browse to a
different file location, use the File New Database dialog box to create the new data-
base file. Once you have browsed to the correct folder, type the database name in the
File Name text box of the File New Database dialog box, and then click the OK but-
ton to create the new database.

5. The new database appears, as shown in Figure AW-1-4. The Microsoft Access window itself
is now named (in full—only part may be visible) WMCRM : Database – C:\Users\David
Auer\Documents\WMCRM.accdb (Access 2007-2016 file format) – Access to include the
database name.

■ NOTE: The reference to Microsoft Access 2007-2016 in the window name indicates
that the database is stored as an *.accdb file, which is the Microsoft Access database
file format introduced with Microsoft Access 2007. Prior versions of Microsoft Access

The Microsoft Access
2016 icon in the Windows
10 Start menu—click this
icon to start Microsoft
Access 2016

Right-click the Microsoft
Access 2016 icon, and
then click More | Pin to
Taskbar to place the
Microsoft Access 2016
button on the Desktop
Taskbar

The Microsoft Access
2016 button on the Desktop
Taskbar—double-click this
icon to start Microsoft
Access 2016

FIGURE AW-1-1

Starting Microsoft Access 2016

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 33 11/21/16 6:16 PM

34 Part 1 Database Fundamentals

The Recent list—
this is empty
because we haven’t
opened any files

The Open Other
Files button

The Blank desktop
database template
button—use this to
create new a new
database on the
computer itself

Type the database file
name WMCRM here

The Blank desktop
database dialog box

The Open button—use
this button to browse
to a di�erent file
location if needed

Click the Create button
after you have typed in
the database file name

The database will be
created in this file
location

FIGURE AW-1-2

The Microsoft Access 2016 Splash Screen

FIGURE AW-1-3

The Blank Desktop Database Dialog Box

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 34 11/21/16 6:16 PM

Chapter 1 Getting Started 35

used the *.mdb file format. Microsoft Access 2016 does not introduce a new database
file format but continues to use the Microsoft Access 2007 *.accdb file format.

6. Note that because this is a new database Microsoft Access has assumed that you will want
to immediately create a new table. Therefore, a new table named Table1 is displayed in
Datasheet view in the document window. We do not want this table open at this time, so
click the Close Table document button shown in Figure AW-1-4.

7. The Microsoft Access 2016 window with the new database appears, as shown in
Figure AW-1-5. You can see most of the features of the Microsoft Office Fluent user inter-
face in this window.

The Microsoft Office Fluent User Interface

Microsoft Access 2016 uses the Microsoft Office Fluent user interface found in most (but
not all) of the Microsoft Office 2007, Office 2010, Office 2013, and Office 2016 applica-
tions. The major features of the interface can be seen in Figure AW-1-5. To illustrate its use,
we will modify some of the default settings of the Microsoft Access database window.

The Quick Access Toolbar
First, we will modify the Quick Access Toolbar shown in Figure AW-1-5 to include a Quick
Print button and a Print Preview button.

Modifying the Microsoft Access Quick Access Toolbar

1. Click the Customize Quick Access Toolbar drop-down arrow button shown in Figure AW-1-5.
The Customize Quick Access Toolbar drop-down list appears, as shown in Figure AW-1-6.

The database name WMCRM :
Database – C:Users\David Auer\
Documents\ WMCRM.accdb (Access
2007-2016 file format) - Access

The Document Window using the
tabbed documents interface

The Close button

The object Navigation Pane—adjust
the right boundary so that the entire
label All Access Objects is displayed

FIGURE AW-1-4

The New Microsoft Access Database

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 35 11/21/16 6:16 PM

36 Part 1 Database Fundamentals

The Quick Access Toolbar

The Customize Quick Access
Toolbar drop-down arrow button

The Customize Quick Access
Toolbar drop-down list – click
an item to add it to the toolbar

The Quick Access Toolbar

The Document Window

The Close [Exit] button

The File command tab

The status bar

The Help button

The Ribbon with command
tabs

The object Navigation Pane

FIGURE AW-1-5

The Microsoft Office Fluent User Interface

FIGURE AW-1-6

The Quick Access Toolbar

2. Click Quick Print. The Quick Print button is added to the Quick Access Toolbar.
3. Click the Customize Quick Access Toolbar drop-down button. The Customize Quick

Access Toolbar drop-down list appears.
4. Click Print Preview. The Print Preview button is added to the Quick Access Toolbar.
5. The added buttons are visible in the figures shown later in this section of “The Access

Workbench,” such as Figure AW-1-7.

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 36 11/21/16 6:16 PM

Chapter 1 Getting Started 37

Database Objects and the Navigation Pane
Microsoft uses the term object as a general name for the various parts of a Microsoft Access
database. Thus, a table is an object, a report is an object, a form is an object, and so on.
Microsoft Access objects are displayed in the Microsoft Access Navigation Pane, as shown
in Figure AW-1-4. However, because you have not created any objects in the WMCRM
database, the Navigation Pane is currently empty.

The Navigation Pane is currently labeled as All Access Objects, which is what we want
to see displayed. We can, however, select exactly which objects will be displayed by using
the Navigation Pane drop-down list. As shown in Figure AW-1-7, the Navigation Pane
drop-down list is controlled by the Navigation Pane drop-down list button. Figure AW-1-8
shows the empty Navigation Pane and the Shutter Bar Open/Close button. We can hide
the Navigation Pane if we want to by clicking the Shutter Bar Open/Close button, which is
displayed as a left-facing double-chevron button on the upper-right corner of the
Navigation Pane in Figure AW-1-8. If we click the button, the Navigation Pane shrinks to a
small band labeled Navigation Pane on the right side of the Microsoft Access 2016 window.
The band will then display the Shutter Bar Open/Close button as a right-facing double-
chevron button that we can click to restore the Navigation Pane when we want to use it
again.

Closing a Database and Exiting Microsoft Access

The Close button shown in Figure AW-1-5 is actually a close and exit button. You can click
it to close the active database and then exit Microsoft Access. Note that Microsoft Access
actively saves most changes to a database, and it prompts you with Save command requests
when they are needed. For example, when you close a table with modified column widths

The Quick Print
button (faded)

The Navigation
Pane drop-down
list button

The Print
Preview button
(faded)

The All Access
Objects drop-
down list

FIGURE AW-1-7

The Navigation Pane Drop-Down List

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 37 11/21/16 6:16 PM

38 Part 1 Database Fundamentals

Microsoft Access asks if you want to save the changes in the table layout. Therefore, you do
not need to save Microsoft Access databases the way you save Microsoft Word documents
and Microsoft Excel workbooks. You can simply close a database, knowing that Microsoft
Access has already saved all critical changes since you opened it.

Closing a Database and Exiting Microsoft Access
1. Click the Close button. The database closes, and you exit Microsoft Access.

Use the Shutter
Bar Open/Close
button to hide or
display the
Navigation Pane

The Navigation
Pane is empty
because we have
not created any
objects for this
database

FIGURE AW-1-8

The Empty Navigation Pane

Instead of clicking the Close button, you can simultaneously close the data-
base and exit Microsoft Access by clicking the File command tab, and then
clicking the Exit command. To close just the database while leaving Microsoft
Access open, select the File command tab, and then click the Close Database
command.

BTW

Opening an Existing Microsoft Access Database

Earlier in this section of “The Access Workbench” we created a new Microsoft Access da-
tabase for the Wallingford Motors CRM (WMCRM.accdb), modified some Microsoft
Access settings, and closed the database and exited Microsoft Access. Before we can con-
tinue building this database, we need to start Microsoft Access and open the WMCRM.
accdb database.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 38 11/21/16 6:16 PM

Chapter 1 Getting Started 39

When we open an existing database, Microsoft Access 2016 (like Microsoft Access
2007, Microsoft Access 2010, and Microsoft Access 2013 before it) gives us the option of
using Microsoft Access security options to shut down certain Microsoft Access 2016 fea-
tures in a database to protect ourselves against harm not only from viruses but also from
other possible problems. Unfortunately, the Microsoft Access 2016 security options also
shut down significant and needed operational features of Microsoft Access. Therefore, we
will normally enable the features that the Microsoft Access 2016 security warning warns us
about when we open an existing database.

Opening a Recently Opened Microsoft Access Database

1. Open Microsoft Access 2016 by using the Start | All Apps | Access 2016 command on the
Windows Desktop screen (or click the Microsoft Access 2016 icon on the Windows Taskbar
if you pinned it there as suggested). Microsoft Access 2016 is displayed with the splash
screen open, as shown in Figure AW-1-9.

2. The Recent list is displayed on the splash screen, and the database file WMCRM is now
listed there.

 ■ NOTE: By default, Microsoft Windows hides the file extension for known file types
such as the Microsoft Access 2016 *.accdb files. To change this setting (which we pre-
fer to do), open File Explorer, then click the View tab, then click the Options button
to display the Folder Options dialog box. In the Folder Options dialog box, click
the View tab. In the Advanced settings, uncheck the Hide extensions of known file
types checkbox. Click the Apply button, then click the OK button to close the Folder
Options dialog box. Finally, close File Explorer itself. When Microsoft Access 2016 is

The WMCRM database in the Recent list—click
the file name to open the file. Right-clicking the
file name displays a shortcut menu with options
to:
(1) remove this file from the Recent list, and
(2) pin it to the list permanently—moving the
 mouse over the file name displays a
 thumbtack icon that can also be used to pin
 the file to the Recent list permanently.

FIGURE AW-1-9

The Recent File List

(Continued)Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 39 11/21/16 6:16 PM

40 Part 1 Database Fundamentals

closed and reopened, file names will be shown with the *.accdb file extension visible.
For more details and screen shots, see the discussion of File Explorer in Appendix I –
“Getting Started with Web Servers, PHP, and the NetBeans IDE.”

3. Note that if the database has been used very recently it will be available in the Recent file
list. You may make the file a permanent part of the Recent file list, by right-clicking the file
name to display a shortcut menu, and then clicking the Pin to list command (or by clicking
the thumbtack icon that is displayed when the mouse pointer is moved over the file name).
Similarly, you can remove a file from the Recent list by using the Remove from list command
on the shortcut menu (or by clicking the thumbtack icon that is displayed when the mouse
pointer is moved over the file name).

4. Click the WMCRM file name in the Recent file list to open the database. A Security
Warning bar appears with the database, as shown in Figure AW-1-10.

5. At this point, we have the option of clicking the Security Warning bar’s Click for more
details link, which will display a detailed version of the warning together with security op-
tions. However, for our purposes in this text, we simply need to enable the active content,
so click the Enable Content button.

 ■ NOTE: At some point, you should select the Click for more details link and explore
the available security settings.

 ■ NOTE: In Microsoft Access 2007, the Security Warning bar appeared every time the
database was reopened (although from a nontrusted location—see Chapter 6’s section
of “The Access Workbench” for a discussion of trusted locations). In Microsoft Access
2010, Microsoft Access 2013, and Microsoft Access 2016, the Security Warning bar
is only displayed the first time you reopen a database, and your choice of options is
remembered from that point on.

Creating a Microsoft Access Database Table

At this point in the development of the WMCRM database application, the database will
be used by one salesperson, so we need only two tables in the WMCRM database—
CUSTOMER and CONTACT. We will create the CUSTOMER table first. The
CUSTOMER table will contain the columns and characteristics shown in the table in
Figure AW-1-11. The column characteristics are type, key, required, and remarks.

Type refers to the kind of data the column will store. Some possible Microsoft Access
data types are shown in Figure AW-1-12. For CUSTOMER, most data are stored as short
text data which can store up to 255 characters (also commonly called character data, this
data type was previously called just text—long text now refers to a data type previously

The Click for more details link

The Security Warning bar

Click the Enable Content button

FIGURE AW-1-10

The Security Warning Bar

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 40 11/21/16 6:16 PM

Chapter 1 Getting Started 41

FIGURE AW-1-11

Database Column Characteristics for the CUSTOMER Table

Column Name Type Key Required Remarks
CustomerID AutoNumber Primary Key Yes Surrogate Key

LastName Short Text (25) No Yes

FirstName Short Text (25) No Yes

Address Short Text (35) No No

City Short Text (35) No No

State Short Text (2) No No

ZIP Short Text (10) No No

Phone Short Text (12) No Yes

Fax Short Text (12) No No

EmailAddress Short Text (100) No No

FIGURE AW-1-12

Microsoft Access 2016 Data Types

Name Type of Data Size
Short Text Characters and numbers Maximum 255 characters

Long Text Large text Maximum 65,535 characters

Number Numeric data Varies with Number type

Date/Time Dates and times from the year 100 to
the year 9999

Stored as 8-byte double–precision integers

Currency Numbers with decimal places One to four decimal places

AutoNumber A unique sequential number Incremented by one each time

Yes/No Fields that can contain only two values Yes/No, On/Off, True/False, etc.

OLE Object An object embedded in or linked to a
Microsoft Access table

Maximum 1 GB

Hyperlink A hyperlink address Maximum 2,048 characters in each of three
parts of the hyperlink address

Attachment Any supported type of file may be
attached to a record

Independent of Microsoft Access

Calculated Results of a calculation based on data in
other cells

Varies depending on values used in
calculation

Lookup Wizard ... A list of possible data values located in
a value list

Varies depending on the values in the value
list

called memo, which can store up to 65,535 characters), which means we can enter strings
of letters, numbers, and symbols (a space is considered a symbol). The number behind the
words Short Text indicates how many characters can be stored in the column. For example,
customer last names may be up to 25 characters long. The only number, or numeric, data
column in the CUSTOMER table is CustomerID, which is listed as AutoNumber. This

(Continued)

M01_KROE1533_08_SE_C01.indd 41 11/21/16 6:16 PM

42 Part 1 Database Fundamentals

indicates that Microsoft Access will automatically provide a sequential number for this col-
umn for each new customer that is added to the table.

Key refers to table identification functions assigned to a column. These are described
in detail in Chapter 2. At this point, you simply need to know that a primary key is a col-
umn value used to identify each row; therefore, the values in this column must be unique.
This is the reason for using the AutoNumber data type, which automatically assigns a
unique number to each row in the table as it is created.

Required refers to whether the column must have a data value. If it must, a value must be
present in the column. If not, the column may be blank (which is called a NULL value). Note
that because CustomerID is a primary key used to identify each row it must have a value.

Remarks contains comments about the column or how it is used. For CUSTOMER,
the only comment is that CustomerID is a surrogate key. Surrogate keys are discussed in
Chapter 2. At this point, you simply need to know that surrogate keys are usually computer-
generated unique numbers used to identify rows in a table (that is, a primary key). This is
done by using the Microsoft Access AutoNumber data type.

Creating the CUSTOMER Table

1. Click the Create command tab to display the Create command groups.
2. Click the Table Design button, as shown in Figure AW-1-13.
3. The Table1 tabbed document window is displayed in Design view, as shown in

Figure AW-1-14. Note that along with the Table1 window a contextual tab grouping named
Table Tools is displayed and that this tab grouping adds a new command tab named Design
to the set of command tabs displayed.

 ■ NOTE: It seems like now would be a good time to name the new table
CUSTOMER. With Microsoft Access, however, you do not name a table until you
save it the first time, and you cannot save a table until you have at least one column
defined. So, we will define the columns, and then we will save and name the table. If
you want, save the table after you have defined just one column. This will close the
table, so you will have to reopen it to define the remaining columns.

4. In the Field Name column text box of the first line, type the column name CustomerID
and then press the Tab key to move to the Data Type column. (You can also click the Data
Type column to select it.)

 ■ NOTE: The terms column and field are considered synonyms in database work. The
term attribute is also considered to be equivalent to these two words.

5. Select the AutoNumber data type for CustomerID from the Data Type drop-down list, as
shown in Figure AW-1-15.

The Create tab

The Table Design button

When the mouse is held over the Table
Design button, a tool tip for the button
that shows that a new table object will be
created will be displayed below the button.

FIGURE AW-1-13

The Table Design Button

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 42 11/21/16 6:16 PM

Chapter 1 Getting Started 43

The Table Tools
contextual
command tab is
displayed along
with the set of
command tabs
that comprise
Table Tools

The Design
command tab and
its command
groups are
displayed

The Table1
tabbed document
window in Design
view

FIGURE AW-1-14

The Table1 Tabbed Document Window

The Data Type
drop-down list
arrow button

The Data Type
drop-down list

Select
AutoNumber

FIGURE AW-1-15

Selecting the Data Type

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 43 11/21/16 6:17 PM

44 Part 1 Database Fundamentals

6. If you like, an optional comment may be stored in the Description column. To do so, move
to the Description column by pressing the Tab key or clicking in the Description text box.
Type the text Surrogate key for CUSTOMER and then press the Tab key to move to the
next row. The Table1 tabbed document window now looks as shown in Figure AW-1-16.

 ■ NOTE: The Remarks column in the set of database column characteristics shown
in Figure AW-1-11 is not the same as the table Description column shown in Figure
AW-1-16. Be careful not to confuse them. The Remarks column is used to record tech-
nical data, such as facts about table keys and data default values that are necessary for
building the table structure. The Description column is used to describe to the user
the data stored in that field so that the user understands the field’s intended use.

7. The other columns of the CUSTOMER table are created using the sequence described in
steps 4 through 6—at this point you should add each of the remaining columns shown in
Figure AW-1-11 to the CUSTOMER table while following those steps.

 ■ NOTE: See Figure AW-1-19 for the Description entries.
8. To set the number of characters in text columns, edit the Data Type Field Properties Field

Size property text box, as shown in Figure AW-1-17. The default value for Field Size is 255,
which is also the maximum value for a Short Text field.

9. To make a column required, click anywhere in the column Data Type Field Properties
Required property text box to display the Required property drop-down list arrow but-
ton, then click the button to display the Required property drop-down list, as shown in
Figure AW-1-18, and then select Yes from the Required property drop-down list. The
default is No (not required), and Yes must be selected to make the column required.8

Now we need to set a primary key for the CUSTOMER table. According to
Figure AW-1-11, we need to use the CustomerID column as the primary key for this table.

The completed
CustomerID
column definition

FIGURE AW-1-16

The Completed CustomerID Column

8Microsoft Access has an additional Data Type property named Allow Zero Length. This property con-
founds the settings necessary to truly match the SQL constraint NOT NULL discussed in Chapter 3.
However, the discussion of Allow Zero Length is beyond the scope of this book. See the Microsoft Access
Help system for more information.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 44 11/21/16 6:17 PM

Chapter 1 Getting Started 45

Setting the CUSTOMER Table Primary Key

1. Move the mouse pointer to the row selector column of the row containing the CustomerID
properties, as shown in Figure AW-1-19. Click to select the row.

2. Click the Primary Key button in the Tools group of the Design tab, as shown in
Figure AW-1-20. CustomerID is selected as the primary key for the CUSTOMER table.

We have finished building the CUSTOMER table. Now we need to name, save, and
close the table.

Edit this number
to set the number
of characters

FIGURE AW-1-17

Editing the Text Field Size

Click anywhere in
the Required text
box to display the
Required
property drop-
down list arrow
button

Select Yes from
the Required
property drop-
down list

FIGURE AW-1-18

Setting the Column Required Property Value

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 45 11/21/16 6:17 PM

46 Part 1 Database Fundamentals

The row selector
column—move
the mouse pointer
into this column to
select a specific
row

Move the mouse
pointer here and
click to select the
CustomerID row

FIGURE AW-1-19

Selecting the CustomerID Row

Click the Primary Key button in the
Tools group of the Design tab to set
CustomerID as the primary key

A key symbol here indicates that
CustomerID is the primary key of the
table

FIGURE AW-1-20

Setting the Primary Key

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 46 11/21/16 6:17 PM

Chapter 1 Getting Started 47

Naming, Saving, and Closing the CUSTOMER Table

1. To name and save the CUSTOMER table, click the Save buton (the one that looks like a
floppy disk) in the Quick Access Toolbar. The Save As dialog box appears, as shown in
Figure AW-1-21.

2. Type the table name CUSTOMER into the Save As dialog box’s Table Name text box and
then click OK. The table is named and saved. The table name CUSTOMER now appears
on the document tab, and the CUSTOMER table object is displayed in the Navigation
Pane, as shown in Figure AW-1-22.

Click the Save
button in the
Quick Access
Toolbar to display
the Save As
dialog box

Type the table
name
CUSTOMER in
the Table Name
text box

The OK button

FIGURE AW-1-21

Naming and Saving the CUSTOMER Table

The table object CUSTOMER
is displayed in the Navigation
Pane

The table is now named
CUSTOMER, and the table
name now appears on the
document tab

Click the Close button to close
the CUSTOMER table

FIGURE AW-1-22

The Named CUSTOMER Table

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 47 11/21/16 6:17 PM

48 Part 1 Database Fundamentals

3. To close the CUSTOMER table, click the Close button in the upper-right corner of the tabbed
documents window, as shown in Figure AW-1-22. After the table is closed, the CUSTOMER
table object remains displayed in the Navigation Pane, as shown in Figure AW-1-23.

Inserting Data into Tables: The Datasheet View

There are three commonly used methods for adding data to a table. First, we can use a ta-
ble as a datasheet, which is visually similar to and works like a Microsoft Excel worksheet.
When we do this, the table is in Datasheet view, and we enter the data cell by cell. Second,
we can build a data entry form for the table and then use the form to add data. Third, we
can use SQL to insert data. This section covers the first two of these methods; we will use
the SQL method in Chapter 3’s section of “The Access Workbench.”

In Microsoft Access 2016, we can also use Datasheet view to create and modify table
characteristics. When we open a table in Datasheet view, the Table Tools contextual tab
includes a Datasheet command tab and ribbon with tools to do this. We do not recommend
this; it is better to use Design view, as previously discussed in this section, for creating and
modifying table structures.

However, at this point we do not need to modify the table structure—we simply need to
put some data into the CUSTOMER table. Figure AW-1-24 shows some data for Wallingford
Motors customers (note that the LastName and FirstName data is repeated for proper align-
ment of the continued data).

The table object CUSTOMER
is displayed in the Navigation
Pane

FIGURE AW-1-23

The CUSTOMER Table Object

FIGURE AW-1-24

Wallingford Motors CUSTOMER Data

LastName FirstName Address City State Zip
Griffey Ben 5678 25th NE Seattle WA 98178

Christman Jessica 3456 36th SW Seattle WA 98189

Christman Rob 4567 47th NW Seattle WA 98167

Hayes Judy 234 Highland Place Edmonds WA 98210

LastName FirstName Phone Fax EmailAddress
Griffey Ben 206-456-2345 Ben.Griffey@somewhere.com

Christman Jessica 206-467-3456 Jessica.Christman@somewhere.com

Christman Rob 206-478-4567 206-478-9998 Rob.Christman@somewhere.com

Hayes Judy 425-354-8765 Judy.Hayes@somewhere.com

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 48 11/21/16 6:17 PM

mailto:Ben.Griffey@somewhere.com
mailto:Jessica.Christman@somewhere.com
mailto:Rob.Christman@somewhere.com
mailto:Judy.Hayes@somewhere.com

Chapter 1 Getting Started 49

If you need to switch between
Datasheet view and Design
view use the Design View
button

The Table Tools tab

The CUSTOMER tabbed
document window with the
table in Datasheet view

The Shutter Bar Open/Close
button

FIGURE AW-1-25

The CUSTOMER Table in Datasheet View

Adding Data to the CUSTOMER Table in Datasheet View

1. In the Navigation Pane, double-click the CUSTOMER table object. The CUSTOMER
table window appears in a tabbed document window in Datasheet view, as shown in
Figure AW-1-25. Note that some columns on the right side of the datasheet do not appear
in the window, but you can access them by scrolling or minimizing the Navigation Pane.

 ■ NOTE: As in a worksheet, the intersection of a row and column in a datasheet is
called a cell.

2. Click the Shutter Bar Open/Close button to collapse the Navigation Pane. This makes
more of the CUSTOMER datasheet visible, as shown in Figure AW-1-26.

3. Click the CUSTOMER document tab to select the CUSTOMER table in Datasheet view.
4. Click the cell in the CustomerID column with the phrase (New) in it to select that cell in

the new row of the CUSTOMER datasheet.
5. Press the Tab key to move to the LastName cell in the new row of the CUSTOMER data-

sheet. For customer Ben Griffey, type Griffey in the LastName cell. Note that as soon as
you do this the AutoNumber function puts the number 1 in the CustomerID cell and a new
row is added to the datasheet, as shown in Figure AW-1-27.

6. Using the Tab key to move from one column to another in the CUSTOMER datasheet, en-
ter the rest of the data values for Ben Griffey.

7. The final result is shown in Figure AW-1-28. Note that the width of the Email column
was expanded using the mouse to move the border of the column—just as you would in a
Microsoft Excel worksheet.

 ■ NOTE: If you make a mistake and need to return to a cell, click the cell to select it and
Microsoft Access will automatically shift into Edit mode. Alternatively, you can use Shift-
Tab to move to the left in the datasheet and then press F2 to edit the contents of the cell.

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 49 11/21/16 6:17 PM

50 Part 1 Database Fundamentals

The collapsed Navigation
Pane

The CUSTOMER tabbed
document window with the
table in Datasheet view

The Shutter Bar Open/
Close button

Column widths are
adjustable—the
EmailAddress column width
has been expanded

FIGURE AW-1-26

The Collapsed Navigation Pane

A new, blank row is added to the
datasheet

This row has been autonumbered
as CustomerID 1

FIGURE AW-1-27

Entering Data Values for Ben Griffey

■ NOTE: Remember that LastName, FirstName, and Phone require a data value. You
will not be able to move to another row or close the table window until you have a
value in each of these cells.

■ NOTE: Figure AW-1-28 shows a column labeled Click to Add to the right of the
Email column. This is a table tool in Datasheet view that you can use to create or
modify table structures. We do not recommend using these tools—we prefer to use
Design view instead!

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 50 11/21/16 6:17 PM

Chapter 1 Getting Started 51

8. Use the Tab key to move to the next row of the CUSTOMER datasheet and enter the data
for Jessica Christman, as shown in Figure AW-1-29.

 9. Adjust the datasheet column widths so that you can see the contents of the datasheet in
one screen. The final result is shown in Figure AW-1-29.

10. We are adding only the data for Jessica Christman at this point, and we will add the re-
maining CUSTOMER data later in this section of “The Access Workbench.” Click the
Close button in the upper-right corner of the document window to close the CUSTOMER
datasheet. A dialog box appears that asks if you want to save the changes you made to the
layout (column widths). Click the Yes button.

11. Click the Shutter Bar Open/Close button to expand the Navigation Pane. This makes the
objects in the Navigation Pane visible.

Modifying Data in Tables: The Datasheet View

After entering data into a table, you can modify or change the data by editing the data val-
ues in the Datasheet view. To illustrate this, we will temporarily change Jessica Christman’s
phone number to 206-467-9876.

Column widths can be adjusted by
using the mouse to drag the column
border to the desired width

FIGURE AW-1-28

The Completed Row of Data Values

Many column widths had to be adjusted to fit all
the data into the one window—use the mouse to
drag the column borders to the desired widths

Click the Close button
to close the
CUSTOMER datasheet

FIGURE AW-1-29

The Completed CUSTOMER Datasheet

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 51 11/21/16 6:17 PM

52 Part 1 Database Fundamentals

Modifying Data in the CUSTOMER Table in Datasheet View

1. In the Navigation Pane, double-click the CUSTOMER table object. The CUSTOMER
table window appears in a tabbed document window in Datasheet view.

2. Click the Shutter Bar Open/Close button to collapse the Navigation Pane.
3. Click the cell that contains Jessica Christman’s phone number to select it. Microsoft Access

automatically puts the cell into Edit mode.
■ NOTE: If you instead use the Tab key (or Shift-Tab to move to the left in the data-

sheet) to select the cell, press the F2 key to edit the contents of the cell.
4. Change the phone number to 206-467-9876.

■ NOTE: Remember that Phone has a field size of 12 characters. You have to delete
characters before you can enter new ones.

5. Press the Enter key or otherwise move to another cell to complete the edit. The
CUSTOMER datasheet appears as shown in Figure AW-1-30.

6. Because we really do not want to change Jessica Christman’s phone number, edit the Phone
value back to its original value of 206-467-3456. Complete the edit and click the Save but-
ton on the Quick Access Toolbar to save the changes.

7. Click the Close button in the upper-right corner of the document window to close the
CUSTOMER datasheet.

8. Click the Shutter Bar Open/Close button to expand the Navigation Pane.

Deleting Rows in Tables: The Datasheet View

After the data have been entered into a table, you can delete an entire row in Datasheet
view. To illustrate this, we will temporarily delete Jessica Christman’s data.

Deleting a Row in the CUSTOMER Table in Datasheet View

1. In the Navigation Pane, double-click the CUSTOMER table object. The CUSTOMER
table window appears in a tabbed document window in Datasheet view.

2. Click the Shutter Bar Open/Close button to collapse the Navigation Pane.
3. Right-click the row selector cell on the left side of the CUSTOMER datasheet for the row

that contains Jessica Christman’s data. This selects the entire row and displays a shortcut
menu, as shown in Figure AW-1-31.

■ NOTE: The terms row and record are synonymous in database usage.

The phone number
has been modified

FIGURE AW-1-30

The Modified CUSTOMER Datasheet

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 52 11/21/16 6:17 PM

Chapter 1 Getting Started 53

4. Click the Delete Record command in the shortcut menu. As shown in Figure AW-1-32, a
Microsoft Access dialog box appears, warning you that you are about to permanently delete
the record.

 ■ NOTE: As also shown in Figure AW-1-32, Microsoft Access 2016 with default set-
tings performs the visual trick of actually removing the row! However, the row is not
permanently deleted until you click the Yes button in the Microsoft Access dialog
box. If you click the No button, the row reappears.

5. Click the Yes button to complete the deletion of the row.
 ■ NOTE: Alternatively, you can delete the row by clicking the row selector cell and

then pressing the Delete key. The same Microsoft Access dialog box shown in Figure
AW-1-32 then appears.

6. Because we do not want to really lose Jessica Christman’s data at this point, add a new row
to the CUSTOMER datasheet that contains Jessica’s data. As shown in Figure AW-1-33, the
CustomerID number for Jessica Christman is now 3 instead of 2. In an autonumbered col-
umn, each number is used only once.

Click a cell in this column to select an entire row – a
left-click will simply select the row, while a right-click
will select the row and display a shortcut menu

The Delete Record command in the shortcut menu

FIGURE AW-1-31

Deleting a Row in the CUSTOMER Datasheet

The row with Jessica
Christman’s data has
already been visually
removed!

Click the Yes button to
actually delete the row

FIGURE AW-1-32

The Microsoft Access Deletion Warning Dialog Box

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 53 11/21/16 6:17 PM

54 Part 1 Database Fundamentals

7. Click the Close button in the upper-right corner of the document window to close the
CUSTOMER datasheet.

8. Click the Shutter Bar Open/Close button to expand the Navigation Pane.

Inserting Data into Tables: Using a Form

Now, we will create and use a form to insert data into a table. A form provides a visual ref-
erence for entering data into the various data columns, and Microsoft Access has a form
generator as part of its application generator functions. We could build a form manually in
Form Design view, but instead we can take the easy route and use the Form Wizard, which
will take us through a step-by-step process to create the form we want.

Creating a Data Entry Form for the CUSTOMER Table

1. Click the Create command tab to display the Create command tab and its command
groups, as shown in Figure AW-1-34.

2. Click the Form Wizard button shown in Figure AW-1-34. The Form Wizard appears, as
shown in Figure AW-1-35.

The row with the reentered Jessica
Christman data now has a CustomerID
of 3— AutoNumber numbers are
sequential and are used only once!

FIGURE AW-1-33

The New CustomerID Number

The Create command tab

The Form Wizard button

The Forms command group

FIGURE AW-1-34

The Create Command Tab and Form Wizard Button

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 54 11/21/16 6:17 PM

Chapter 1 Getting Started 55

3. The CUSTOMER table is already selected as the basis for the form, so we only have to se-
lect which columns we want to include on the form. We can choose columns one at a time
by highlighting a column name and clicking the right-facing single-chevron button. Or we
can choose all the columns at once by clicking the right-facing double-chevron button. We
want to add all the columns in this case, so click the right-facing double-chevron button to
add all the columns and then click the Next button.

 ■ NOTE: In a real-world situation, we might not want to display the CustomerID
value. In that case, we would deselect it by highlighting it and clicking the left-facing
single-chevron button.

4. When asked, “What layout would you like for your form?” click the Next button to select
the default Columnar layout.

5. When asked, “What title do you want for your form?” type the form title WMCRM
Customer Data Form into the text box and then click the Finish button. As shown
in Figure AW-1-36, the completed form appears in a tabbed document window and a
WMCRM Customer Data Form object is added to the Navigation Pane.

 ■ NOTE: The WMCRM Customer Data Form is properly constructed and sized for
our needs. Sometimes, however, we might need to make adjustments to the form de-
sign. We can make form design changes by switching to form Design view. To switch
to form Design view, click the Design View button in the View gallery.

Now that we have the form we need, we can use the form to add some data to the
CUSTOMER table.

Inserting Data into the CUSTOMER Table Using a Form

1. Click the New Record button. A blank form appears.
2. Click the LastName text box to select it. Enter the data for Rob Christman shown in Figure

AW-1-24. You can either use the Tab key to move from text box to text box or you can click
the text box you want to edit.

The CUSTOMER
table is already
selected

The right-facing
single chevron
button

The Form Wizard

Click the right-
facing double
chevron button to
select all of the
fields in the table

The Next button

FIGURE AW-1-35

The Form Wizard

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 55 11/21/16 6:17 PM

56 Part 1 Database Fundamentals

3. When you are done entering the data for Rob Christman, enter the data for Judy Hayes
shown in Figure AW-1-24. After you have entered the data for Judy Hayes, your form will
look as shown in Figure AW-1-37.

4. Click the Close button in the upper-right corner of the document window to close the
WMCRM Customer Data Form.

The WMCRM Customer Data
Form object

The Forms section of the
Navigation Pane

The WMCRM Customer Data
Form tabbed document window

The New Record button

The WMCRM
Customer Data
Form with the data
for Judy Hayes

The First Record
button

The Previous
Record button

The Next Record
button

The Last Record
button

The Close button

FIGURE AW-1-36

The Completed WMCRM Customer Data Form

FIGURE AW-1-37

The WMCRM Customer Data Form for Customer Judy Hayes

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 56 11/21/16 6:17 PM

Chapter 1 Getting Started 57

Modifying Data and Deleting Records: Using a Form

Just as we can modify data and delete rows in Datasheet view, we can edit data and delete
records by using a form. Editing data is simple: Move to the record you want to edit by us-
ing the record navigation buttons (First Record, Previous Record, etc.) shown in Figure
AW-1-37, click the appropriate field text box, and then edit the contents. Deleting a record
is also simple: Move to the record you want to edit by using the record navigation buttons
and then click the Delete Record button in the Delete drop-down list of the Records group
of the Home command tab, as shown in Figure AW-1-38. However, you will not use these
capabilities at this time.

Creating Single-Table Microsoft Access Reports

One common function of an application is to generate printed reports. Microsoft Access
2016 has a report generator as part of its application generator functions. Just as with forms,
we could build a form manually, or we can take the easy route and use the Report Wizard.

Creating a Report for the CUSTOMER Table

1. Click the Create command tab to display the Create command groups, as shown in
Figure AW-1-39.

2. Click the Report Wizard button shown in Figure AW-1-39. The Report Wizard appears, as
shown in Figure AW-1-40.

3. The CUSTOMER table is already selected as the basis for the report, so we only have to
select which columns we want on the report. Just as with the Form Wizard, we can choose
columns one at a time by highlighting the column name and clicking the right-facing

The Delete Record button

The Delete drop-down list
arrow button

The Records command group

The Home command tab

FIGURE AW-1-38

The Delete Record Button

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 57 11/21/16 6:17 PM

58 Part 1 Database Fundamentals

single-chevron button. We can also choose all the columns at once by clicking the right-
facing double-chevron button. In this case, we want to use only the columns LastName,
FirstName, Phone, Fax, and Email. Click each column name in the Available Fields list
to select it and then click the right-facing single-chevron button to move each column to
Selected Fields. The completed selection looks as shown in Figure AW-1-41.

 ■ NOTE: You can select only one column at a time. The usual technique of select-
ing more than one column name at a time by pressing and holding the Ctrl key while
clicking each additional column name does not work in this case.

4. Click the Next button.
5. Microsoft Access now asks, “Do you want to add any grouping levels?” Grouping can be

useful in complex reports, but we do not need any groupings for this simple report that lists

The Create command tab

The Report Wizard button

The Reports command group

FIGURE AW-1-39

The Create Command Tab and Report Wizard Button

The CUSTOMER
table is already
selected

The Report
Wizard

Click the right-
facing single
chevron button to
select the
highlighted field in
the table

The Next button

The Available
Fields list

FIGURE AW-1-40

The Report Wizard

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 58 11/21/16 6:17 PM

Chapter 1 Getting Started 59

customers. Instead, we can use the default nongrouped column listing, so click the Next
button.

6. As shown in Figure AW-1-42, we are now asked, “What sort order do you want for your
records?” The most useful sorting order in this case is by last name, with sorting by first
name for identical last names. For both sorts, we want an ascending sort (from A to Z).

The Next button

The Selected
Fields list

FIGURE AW-1-41

The Completed Column Selection

The Next button

The sort field 1
drop-down list
arrow button

Select LastName
from the drop-
down list

FIGURE AW-1-42

Choosing the Sort Order

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 59 11/21/16 6:17 PM

60 Part 1 Database Fundamentals

Click the sort field 1 drop-down list arrow and select LastName. Leave the sort order but-
ton set to Ascending.

7. Click the sort field 2 drop-down list arrow and select FirstName, leave the sort order but-
ton set to Ascending, and click the Next button.

8. We are now asked, “How would you like to lay out your report?” We will use the default
setting of Tabular Layout, but click the Landscape Orientation radio button to change the
report orientation to landscape. Click the Next button.

9. Finally, when we are asked, “What title do you want for your report?” we edit the report
title to read Wallingford Motors Customer Report. Leave the Preview the report radio
button selected. Click the Finish button. As shown in Figure AW-1-43, the completed
report appears in a tabbed document window, a Reports section has been added to the
Navigation Pane, and the Wallingford Motors Customer Report object appears in this
section.

10. Click the Close button in the upper-right corner of the document window.

Closing a Database and Exiting Microsoft Access 2016

We have finished all the work we need to do in this chapter’s “The Access Workbench.”
We have learned how to create a database; how to build database tables, forms, and re-
ports; and how to populate a table with data by using Datasheet view and a form. We finish
by closing the database and Microsoft Access.

Closing the WMCRM Database and Exiting Microsoft Access 2016
1. To close the WMCRM database and exit Microsoft Access 2016, click the Close button in

the upper-right corner of the Microsoft Access 2016 window.

The report is sorted by LastName
and then FirstName

The Wallingford Motors Customer
Report print preview window

The Reports section of the
Navigation Pane

The Wallingford Motors Customer
Report object

The Print Preview command tab

FIGURE AW-1-43

The Finished Report

Access 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 60 11/21/16 6:17 PM

Chapter 1 Getting Started 61

SUMMARY

The importance of database processing increases every day because databases are used in
information systems everywhere—and increasingly so. The purpose of this book is to teach
you essential database concepts and to help you get started using and learning database
technology.

Today’s Internet and smartphone world depends upon databases. Personal computers
use Web clients to browse, shop, and communicate online. Smartphones use apps over cell
phone data networks to do the same. All these applications rely on databases.

The purpose of a database is to help people keep track of things. Lists can be used for
this purpose, but if a list involves more than one theme, modification problems will occur
when data are inserted, updated, or deleted.

Relational databases store data in the form of tables. Almost always, the tables are de-
signed so that each table stores data about a single theme. Lists that involve multiple
themes need to be broken up and stored in multiple tables, one for each theme. When this
is done, a column needs to be added to link the tables to each other so that the relationship
from a row in one table to a row in another table can be shown.

Structured Query Language (SQL) is an international language for processing tables in
relational databases. You can use SQL to join together and display data stored in separate
tables, create new tables, and query data from tables in many ways. You can also use SQL
to insert, update, and delete data.

The components of a database system are the database, the database management sys-
tem (DBMS), one or more database applications, and users. A database is a self-describing
collection of related records. A relational database is a self-describing collection of related
tables. A database is self-describing because it contains a description of its contents within
itself, which is known as metadata. Tables are related by storing linking values of a common
column. The contents of a database are user data; metadata; supporting structures, such as
indexes; and sometimes application metadata.

A database management system (DBMS) is a large, complicated program used to cre-
ate, process, and administer a database. DBMS products are almost always licensed from
software vendors. Specific functions of a DBMS are summarized in Figure 1-20.

The functions of database applications are to create and process forms, to process user
queries, and to create and process reports. Application programs also execute specific ap-
plication logic and control the application. Users provide data and data changes and read
data in forms, queries, and reports.

DBMS products for personal database systems provide functionality for application
development and database management. They hide considerable complexity, but at a cost:
Requirements unanticipated by DBMS features cannot be readily implemented. Enterprise-
class database systems include multiple applications that might be written in multiple lan-
guages. These systems may support hundreds or thousands of users.

An example of a personal database system is Microsoft Access 2016, which is dis-
cussed in this book in chapter sections titled “The Access Workbench.” These sections
cover all the basic knowledge that you need to create and use databases in Microsoft
Access 2016.

Examples of enterprise-class DBMS products include Microsoft SQL Server 2016,
Oracle MySQL 5.7, and Oracle Database XE. Information about these DBMS products is
provided in Appendix A, “Getting Started with Microsoft SQL Server 2016”; Appendix B,
“Getting Started with Oracle Database XE”; and Appendix C, “Getting Started with
Oracle MySQL 5.7 Community Server.”

Web sites that interact with the user by displaying data stored in a database are known
as Web database applications. Online transaction data is stored in an online transaction
processing (OLTP) database. Companies build data warehouse to store data needed for
data analysis in a business intelligence (BI) system, which includes tools such as online ana-
lytical processing (OLAP) systems. Web database applications are discussed in Chapter 7,

M01_KROE1533_08_SE_C01.indd 61 11/21/16 6:17 PM

62 Part 1 Database Fundamentals

and BI systems are discussed in Chapter 8 and Appendix J, “Business Intelligence
Systems.”

The term Big Data refers to the extremely large datasets generated by Web 2.0 applica-
tions such as Facebook and Twitter. Big Data datasets are often stored in nonrelational
DBMSs. The term NoSQL refers to nonrelational databases used in Web 2.0 applications.
NoSQL databases are discussed in Chapter 8 and Appendix K, “Big Data.”

The term cloud computing is used to denote applications run on hardware and net-
work resources located at a hosted data center instead of owned and operated by the com-
pany itself. Cloud computing is discussed in Chapter 8.

KEY TERMS

Amazon Web Services
Android operating system
Apple II
apps
ARPANET
business intelligence (BI) system
cell phone
client (applications)
client-server architecture
cloud computing
column
concurrency
data
data center
data warehouse
database
database analysis
database application
database management system

(DBMS)
database system
delete
devices
enterprise-class database system
Ethernet networking technology
field
Google Cloud Platform
IBM Personal Computer (IBM PC)
ID column

in the cloud
Insert
instance
Internet
iPhone
list
Local Area Networks (LANs)
metadata
Microsoft SQL Server Management

Studio
Microsoft SQL Server 2016
Microsoft SQL Server 2016

Developer Edition
Microsoft SQL Server 2016 Express

Edition
mobile phone
modification action
modification problem
MySQL 5.7 Community Server
MySQL 5.7 Workbench
nonrelational database
NoSQL
null value
Office 365 for Business
online analytical processing (OLAP)
online transaction processing

(OLTP)
Oracle Database 11g Express

Edition

Oracle Database XE
Oracle SQL Developer
personal computer (PC)
personal database system
Point of Sale (POS) system
record
referential integrity constraint
related tables
relational database
relational model
row
self-describing
server
services
smartphone
Structured Query Language (SQL)
table
tablet computers
tablets
the Web
transaction
update
user
Web 2.0
Web browser
Web database application
Web sites
World Wide Web
WWW

REVIEW QUESTIONS

1.1 Describe the historic development of Internet and smartphone technology from
the early days of personal computers (PCs) to today’s Internet Web application and
smartphone app–based information systems environment.

1.2 Why do today’s Internet Web applications and smartphone apps need databases?

1.3 Read the description of the search process on the Pearson Web site. Using your
own computer, find another retailer Web site (other than those discussed or

M01_KROE1533_08_SE_C01.indd 62 11/21/16 6:17 PM

Chapter 1 Getting Started 63

mentioned in this chapter), and search for something of interest to you. Write up a
description (with screen shots if possible) of your search.

1.4 Why is the study of database technology important?

1.5 What is the purpose of this book?

1.6 Describe the purpose of a database.

1.7 What is a modification problem? What are the three possible types of modification
problems?

1.8 Figure 1-34 shows a list that is used by a veterinary office. Describe three modifica-
tion problems that are likely to occur when using this list.

1.9 Name the two themes in the list in Figure 1-34.

1.10 What is an ID column?

1.11 Break the list in Figure 1-34 into two tables, each with data for a single theme.
Assume that owners have a unique phone number but that pets have no unique col-
umn. Create an ID column for pets like the one created for customers and courses
for the Art Course database tables in Figure 1-12.

1.12 Show how the tables you created for question 1.11 solve the problems you de-
scribed in question 1.8.

1.13 What does SQL stand for, and what purpose does it serve?

1.14 Another version of the list used by the veterinary office is shown in Figure 1-35.
How many themes does this list have? What are they?

1.15 Break the list in Figure 1-35 into tables, each with a single theme. Create ID col-
umns as you think necessary.

1.16 Show how the tables you created for question 1.15 solve the three problems of lists
identified in this chapter.

 1.17 Describe in your own words and illustrate with tables how relationships are repre-
sented in a relational database.

 1.18 Name the four components of a database system.

 1.19 Define the term database.

FIGURE 1-34

The Veterinary Office List—Version One

FIGURE 1-35

The Veterinary Office List—Version Two

Excel 2016, Windows 10, Microsoft Corporation.

Excel 2016, Windows 10, Microsoft Corporation.

M01_KROE1533_08_SE_C01.indd 63 11/21/16 6:17 PM

64 Part 1 Database Fundamentals

 1.20 Why do you think it is important for a database to be self-describing?

 1.21 List the components of a database.

 1.22 Define the term metadata, and give some examples of metadata.

 1.23 Describe the use of an index.

 1.24 Define the term application metadata, and give some examples of application
metadata.

 1.25 What is the purpose of a DBMS?

 1.26 List the specific functions of a DBMS.

 1.27 Define the term referential integrity constraint. Give an example of a referential
integrity constraint for the tables you created for question 1.11.

 1.28 Explain the difference between a DBMS and a database.

 1.29 List the functions of a database application.

 1.30 Explain the differences between a personal database system and an enterprise-class
database system.

 1.31 What is the advantage of hiding complexity from the user of a DBMS? What is the
disadvantage?

 1.32 Summarize the differences between the database systems in Figures 1-25 and 1-28.

 1.33 What is a Web database application? Why are Web database applications important
in today’s Web and mobile computing enviromment?

 1.34 What is online transaction processing (OLTP), and what is online analytical pro-
cessing (OLAP)? What is a business intelligence (BI) system, and where is the data
used by a BI system stored?

 1.35 What is Big Data? What is a NoSQL database? What are Web 2.0 applications,
how are they related to Big Data, and why can’t these applications use a relational
database?

 1.36 What is cloud computing? Where are the hardware and network resources used in
cloud computing located?

EXERCISES

The following spreadsheets form a set of named spreadsheets with the indicated column
headings. Use these spreadsheets to answer exercises 1.37 through 1.39.

A. Name of spreadsheet: EQUIPMENT
Column headings:
Number, Description, AcquisitionDate, AcquisitionPrice

B. Name of spreadsheet: COMPANY
Column headings:
Name, IndustryCode, Gross Sales, OfficerName, OfficerTitle

C. Name of spreadsheet: COMPANY
Column headings:
Name, IndustryCode, Gross Sales, NameOfPresident

D. Name of spreadsheet: COMPUTER
Column headings:
SerialNumber, Make, Model, DiskType, DiskCapacity

E. Name of spreadsheet: PERSON
Column headings:
Name, DateOfHire, DeptName, DeptManager, ProjectID, NumHours,
ProjectManager

M01_KROE1533_08_SE_C01.indd 64 11/21/16 6:17 PM

Chapter 1 Getting Started 65

1.37 For each of the spreadsheets provided, indicate the number of themes you think
the spreadsheet includes and give an appropriate name for each theme. For some
of them, the answer may depend on the assumptions you make. In these cases, state
your assumptions.

1.38 For any spreadsheet that has more than one theme, show at least one modification
problem that will occur when inserting, updating, or deleting data.

1.39 For any spreadsheet that has more than one theme, break up the columns into ta-
bles such that each table has a single theme. Add ID columns if necessary, and add
a linking column (or columns) to maintain the relationship between the themes.

ACCESS WORKBENCH

Key Terms
AutoNumber (data type)
character (data type)
customer relationship management

(CRM) system
data entry form
datasheet
Datasheet view
form
Form Wizard
key
long text (data type)
memo (data type)
Microsoft Office Fluent user interface
Navigation Pane
Navigation Pane drop-down list

Navigation Pane drop-down
list button

number (data type)
numeric (data type)
object
primary key
record navigation buttons
remarks
Report Wizard
required
short text (data type)
Shutter Bar Open/Close button
surrogate key
text (data type)
type

Exercises
The Wedgewood Pacific (WP) company, founded in 1987 in Seattle, Washington, manu-
factures and sells consumer drone aircraft. This is an innovative and rapidly developing
market. In January, 2016, the FAA said that 181,000 drones (out of the approximately
700,000 drones that may have been sold during the 2015 Christmas season) had been regis-
tered under the new FAA drone registration rules.9

WP currently produces three drone models, the Alpha III, the Bravo III, and the Delta
IV. These products are created by WP’s Research and Development group, and produced
at WP’s production facilities. WP manufactures some of the parts used in the drones, but
also purchases some parts from other suppliers.

The company is located in two buildings. One building houses the Administration, Legal,
Finance, Accounting, Finance, Human Resources, and Sales and Marketing departments, and
the second houses the Information Systems, Research and Development, and Production de-
partments. The company database contains data about employees; departments; projects; as-
sets, such as finished goods inventory, parts inventory, and computer equipment; and other as-
pects of company operations.

9See http://www.msn.com/en-us/lifestyle/smart-living/how-many-us-drones-are-registered-in-the-faa-data-
base/vi-AAgrTT7?refvid=CCgxby (accessed May 2016).

M01_KROE1533_08_SE_C01.indd 65 11/21/16 6:17 PM

http://www.msn.com/en-us/lifestyle/smart-living/how-many-us-drones-are-registered-in-the-faa-data-base/vi-AAgrTT7?refvid=CCgxby
http://www.msn.com/en-us/lifestyle/smart-living/how-many-us-drones-are-registered-in-the-faa-data-base/vi-AAgrTT7?refvid=CCgxby

66 Part 1 Database Fundamentals

FIGURE 1-36

Database Column Characteristics for the WP EMPLOYEE Table

EMPLOYEE
Column Name Type Key Required Remarks
EmployeeNumber AutoNumber Primary Key Yes Surrogate Key

FirstName Short Text (25) No Yes

LastName Short Text (25) No Yes

Department Short Text (35) No Yes

Position Short Text (35) No No

Supervisor Number No No Long Integer

OfficePhone Short Text (12) No No

EmailAddress Short Text (100) No Yes

FIGURE 1-37

Wedgewood Pacific EMPLOYEE Data

Employee
Number

FirstName LastName Department Position Super-
visor

OfficePhone EmailAddress

1 Mary Jacobs Administration CEO 360-285-8110 Mary.Jacobs@WP.com

2 Rosalie Jackson Administration Admin
Assistant

1 360-285-8120 Rosalie.Jackson@WP.com

3 Richard Bandalone Legal Attorney 1 360-285-8210 Richard.Bandalone@WP.com

4 George Smith Human
Resources

HR3 1 360-285-8310 George.Smith@WP.com

5 Alan Adams Human
Resources

HR1 4 360-285-8320 Alan.Adams@WP.com

6 Ken Evans Finance CFO 1 360-285-8410 Ken.Evans@WP.com

7 Mary Abernathy Finance FA3 6 360-285-8420 Mary.Abernathy@WP.com

8 Tom Caruthers Accounting FA2 6 360-285-8430 Tom.Caruthers@WP.com

9 Heather Jones Accounting FA2 6 360-285-8440 Heather.Jones@WP.com

10 Ken Numoto Sales and
Marketing

SM3 1 360-285-8510 Ken.Numoto@WP.com

11 Linda Granger Sales and
Marketing

SM2 10 360-285-8520 Linda.Granger@WP.com

12 James Nestor InfoSystems CIO 1 360-285-8610 James.Nestor@WP.com

13 Rick Brown InfoSystems IS2 12 Rick.Brown@WP.com

14 Mike Nguyen Research and
Development

CTO 1 360-285-8710 Mike.Nguyen@WP.com

15 Jason Sleeman Research and
Development

RD3 14 360-285-8720 Jason.Sleeman@WP.com

16 Mary Smith Production OPS3 1 360-285-8810 Mary.Smith@WP.com

17 Tom Jackson Production OPS2 16 360-285-8820 Tom.Jackson@WP.com

18 George Jones Production OPS2 17 360-285-8830 George.Jones@WP.com

19 Julia Hayakawa Production OPS1 17 Julia.Hayakawa@WP.com

20 Sam Stewart Production OPS1 17 Sam.Stewart@WP.com

M01_KROE1533_08_SE_C01.indd 66 11/21/16 6:17 PM

mailto:Mary.Jacobs@WP.com
mailto:Rosalie.Jackson@WP.com
mailto:Richard.Bandalone@WP.com
mailto:George.Smith@WP.com
mailto:Alan.Adams@WP.com
mailto:Ken.Evans@WP.com
mailto:Mary.Abernathy@WP.com
mailto:Tom.Caruthers@WP.com
mailto:Heather.Jones@WP.com
mailto:Ken.Numoto@WP.com
mailto:Linda.Granger@WP.com
mailto:James.Nestor@WP.com
mailto:Rick.Brown@WP.com
mailto:Mike.Nguyen@WP.com
mailto:Jason.Sleeman@WP.com
mailto:Mary.Smith@WP.com
mailto:Tom.Jackson@WP.com
mailto:George.Jones@WP.com
mailto:Julia.Hayakawa@WP.com
mailto:Sam.Stewart@WP.com

Chapter 1 Getting Started 67

A. Create a Microsoft Access database named WP in a Microsoft Access file named
WP.accdb.

B. Figure 1-36 shows the column characteristics for the WP EMPLOYEE table.
Using the column characteristics, create the EMPLOYEE table in the WP
database.

C. Figure 1-37 shows the data for the WP EMPLOYEE table. Using Datasheet view,
enter the data for the first three rows of data in the EMPLOYEE table shown in
Figure 1-37 into your EMPLOYEE table.

D. Create a data input form for the EMPLOYEE table and name it WP Employee
Data Form. Make any adjustments necessary to the form so that all data display
properly. Use this form to enter the rest of the data in the EMPLOYEE table
shown in Figure 1-37 into your EMPLOYEE table.

E. Create a report named Wedgewood Pacific Employee Report that presents the
data contained in your EMPLOYEE table sorted first by employee last name and
second by employee first name. Make any adjustments necessary to the report so
that all headings and data display properly. Print a copy of this report.

SAN JUAN SAILBOAT CHARTERS CASE QUESTIONS
San Juan Sailboat Charters (SJSBC) is an agency that leases (charters) sailboats. SJSBC
does not own the boats. Instead, SJSBC leases boats on behalf of boat owners who want
to earn income from their boats when they are not using the boats themselves, and SJSBC
charges the owners a fee for this service. SJSBC specializes in boats that can be used for
multiday or weekly charters. The smallest sailboat available is 28 feet in length, and the
largest is 51 feet in length.

Each sailboat is fully equipped at the time it is leased. Most of the equipment is pro-
vided at the time of the charter. The majority of the equipment is provided by the owners,
but some is provided by SJSBC. Some of the owner-provided equipment is attached to the
boat, such as radios, compasses, depth indicators and other instrumentation, stoves, and
refrigerators. Other owner-provided equipment is not physically attached to the boat, such
as sails, lines, anchors, dinghies, life preservers, and equipment in the cabin (dishes, silver-
ware, cooking utensils, bedding, and so on). SJSBC provides consumable supplies such as
charts, navigation books, tide and current tables, soap, dish towels, toilet paper, and similar
items. The consumable supplies are treated as equipment by SJSBC for tracking and ac-
counting purposes.

Keeping track of equipment is an important part of SJSBC’s responsibilities. Much of
the equipment is expensive, and those items not physically attached to the boat can be eas-
ily damaged, lost, or stolen. SJSBC holds the customers responsible for all of the boat’s
equipment during the period of their charter.

SJSBC likes to keep accurate records of its customers and charters, and customers are
required to keep a log during each charter. Some itineraries and weather conditions are
more dangerous than others, and the data from these logs provides information about the
customer experience. This information is useful for marketing purposes, as well as for
evaluating a customer’s ability to handle a particular boat and itinerary.

M01_KROE1533_08_SE_C01.indd 67 11/21/16 6:17 PM

68 Part 1 Database Fundamentals

Sailboats need maintenance (two definitions of boat are: (1) “break out another thou-
sand” and (2) “a hole in the water into which one pours money”). SJSBC is required by its
contracts with the boat owners to keep accurate records of all maintenance activities and costs.

A. Create a sample list of owners and boats. Your list will be similar in structure to that in
Figure 1-34, but it will concern owners and boats rather than owners and pets. Your
list should include, at a minimum, owner name, phone, and billing address, as well as
boat name, make, model, and length.

B. Describe modification problems that are likely to occur if SJSBC attempts to maintain
the list in a spreadsheet.

C. Split the list into tables such that each has only one theme. Create appropriate ID
columns. Use a linking column to represent the relationship between a boat and an
owner. Demonstrate that the modification problems you identified in part B have been
eliminated.

D. Create a sample list of owners, boats, and charters. Your list will be similar to that in
Figure 1-35. Your list should include the data items from part A as well as the charter
date, charter customer, and the amount charged for each charter.

E. Illustrate modification problems that are likely to occur if SJSBC attempts to maintain
the list from part D in a spreadsheet.

F. Split the list from part D into tables such that each has only one theme. Create appro-
priate ID columns. Use linking columns to represent relationships. Demonstrate that
the modification problems you identified in part E have been eliminated.

 GARDEN GLORY PROJECT QUESTIONS

Garden Glory is a partnership that provides gardening and yard maintenance services to
individuals and organizations. Garden Glory is owned by two partners. They employ two
office administrators and a number of full- and part-time gardeners. Garden Glory will
provide one-time garden services, but it specializes in ongoing service and maintenance.
Many of its customers have multiple buildings, apartments, and rental houses that require
gardening and lawn maintenance services.

A. Create a sample list of owners and properties. Your list will be similar in structure to
that in Figure 1-34, but it will concern owners and properties rather than owners and
pets. Your list should include, at a minimum, owner name, phone, and billing address,
as well as property name, type, and address.

B. Describe modification problems that are likely to occur if Garden Glory attempts to
maintain the list in a spreadsheet.

C. Split the list into tables such that each has only one theme. Create appropriate ID col-
umns. Use a linking column to represent the relationship between a property and an
owner. Demonstrate that the modification problems you identified in part B have been
eliminated.

D. Create a sample list of owners, properties, and services. Your list will be similar to that
in Figure 1-35. Your list should include the data items from part A as well as the date,
description, and amount charged for each service.

M01_KROE1533_08_SE_C01.indd 68 11/21/16 6:17 PM

Chapter 1 Getting Started 69

 JAMES RIVER JEWELRY PROJECT QUESTIONS

The James River Jewelry project questions are available in Appendix D, which can be
downloaded from the textbook’s Web site: www.pearsonhighered.com/kroenke.

 THE QUEEN ANNE CURIOSITY SHOP PROJECT QUESTIONS

The Queen Anne Curiosity Shop sells both antiques and current-production household
items that complement or are useful with the antiques. For example, the store sells antique
dining room tables and new tablecloths. The antiques are purchased from both individuals
and wholesalers, and the new items are purchased from distributors. The store’s customers
include individuals, owners of bed-and-breakfast operations, and local interior designers
who work with both individuals and small businesses. The antiques are unique, although
some multiple items, such as dining room chairs, may be available as a set (sets are never
broken). The new items are not unique, and an item may be reordered if it is out of stock.
New items are also available in various sizes and colors (for example, a particular style of
tablecloth may be available in several sizes and in a variety of colors).

A. Create a sample list of purchased inventory items and vendors and a second list of
customers and sales. The first list should include inventory data, such as a description,
manufacturer and model (if available), item cost, and vendor identification and con-
tact data you think should be recorded. The second list should include customer data
you think would be important to The Queen Anne Curiosity Shop, along with typical
sales data.

B. Describe problems that are likely to occur when inserting, updating, and deleting data
in these spreadsheets.

C. Attempt to combine the two lists you created in part A into a single list. What prob-
lems occur as you try to do this?

D. Split the spreadsheets you created in part A into tables such that each has only one
theme. Create appropriate ID columns.

E. Explain how the tables in your answer to part D will eliminate the problems you iden-
tified in part B.

F. What is the relationship between the tables you created from the first spreadsheet
and the tables you created from the second spreadsheet? If your set of tables does not
already contain this relationship, how will you add it into your set of tables?

E. Illustrate modification problems that are likely to occur if Garden Glory attempts to
maintain the list from part D in a spreadsheet.

F. Split the list from part D into tables such that each has only one theme. Create appro-
priate ID columns. Use linking columns to represent relationships. Demonstrate that
the modification problems you identified in part E have been eliminated.

M01_KROE1533_08_SE_C01.indd 69 11/21/16 6:18 PM

http://www.pearsonhighered.com/kroenke

70

T his chapter explains the relational model, the single most important
standard in database processing today. This model, which was devel-
oped and published in 1970 by Edgar Frank Codd, commonly referred

to as E. F. Codd,1 then an employee at IBM, was founded on the theory of re-
lational algebra. The model has since found widespread practical application,
and today it is used for the design and implementation of every commercial
relational database worldwide. This chapter describes the conceptual founda-
tion of this model.

 ■ Learn the conceptual foundation of the relational model

 ■ Understand how relations differ from nonrelational tables

 ■ Learn basic relational terminology

 ■ Learn the meaning and importance of keys, foreign keys,
and related terminology

 ■ Understand how foreign keys represent
relationships

 ■ Learn the purpose and use of surrogate keys

 ■ Learn the meaning of functional dependencies

 ■ Learn to apply a process for normalizing relations

CHAPTER OBJECTIVES

2CHAPTE
R

The Relational Model

1E. F. Codd, “A Relational Model of Data for Large Shared Databanks,” Communications of the ACM
(June 1970): 377–387. A downloadable copy of this paper in PDF format is available at http://dl.acm.org/
citation.cfm?id=362685

Chapter 1 states that databases help people keep track of things and that relational DBMS
products store data in the form of tables. Here we need to clarify and refine those state-
ments. First, the formal name for a “thing” that is being tracked is entity, which is defined
as something of importance to the user that needs to be represented in the database.
Further, it is not entirely correct to say that DBMS products store data in tables. DBMS
products store data in the form of relations, which are a special type of table. Specifically, a
relation is a two-dimensional table consisting of rows and columns that has the following
characteristics:

1. Each row of the table holds data that pertain to some entity or a portion of some entity.
2. Each column of the table contains data that represent an attribute of the entity. For exam-

ple, in an EMPLOYEE relation each row would contain data about a particular employee
and each column would contain data that represented an attribute of that employee, such
as LastName, Phone, or EmailAddress.

3. The cells of the table must hold a single value, and thus no repeating elements are allowed
in a cell.

4. All the entries in any column must be of the same kind. For example, if the third column
in the first row of a table contains EmployeeNumber, then the third column in all other
rows must contain EmployeeNumber as well.

RELATIONS

M02_KROE1533_08_SE_C02.indd 70 11/21/16 6:19 PM

http://dl.acm.org/citation.cfm?id=362685
http://dl.acm.org/citation.cfm?id=362685

Chapter 2 The Relational Model 71

5. Each column must have a unique name.
6. The order of the columns within the table is unimportant.
7. The order of the rows is unimportant.
8. The set of data values in each row must be unique—no two rows in the table may hold

identical sets of data values.

The characteristics of a relation are summarized in Figure 2-1.
Note that in our definition of a relation, all of the values in a column are of the same

kind. If, for example, the second column of the first row of a relation has FirstName, then
the second column of every row in the relation has FirstName. This is an important re-
quirement that is known as the domain integrity constraint, where the term domain means
a grouping of data that meets a specific type definition. For example, FirstName would
have a domain of names such as Albert, Bruce, Cathy, David, Edith, and so forth, and all
values of FirstName must come from the names in that domain.

1. Rows contain data about an entity
2. Columns contain data about attributes of the entity
3. Cells of the table hold a single value
4. All entries in a column are of the same kind
5. Each column has a unique name
6. The order of the columns is unimportant
7. The order of the rows is unimportant
8. No two rows may hold identical sets of data values

FIGURE 2-1

Characteristics of a
Relation

In Figure 2-1 and in this discussion, we use the term entity to mean some
identifiable thing. A customer, a salesperson, an order, a part, and a lease
are all examples of what we mean by an entity. When we introduce the entity-
relationship model in Chapter 4, we will make the definition of entity more
precise. For now, just think of an entity as some identifiable thing that users
want to track.

BTW

A Sample Relation and Two Nonrelations
Figure 2-2 shows a sample EMPLOYEE table. Consider this table in light of the character-
istics discussed earlier. First, each row is about an EMPLOYEE entity, and each column
represents an attribute of employees, so those two conditions are met. Each cell has only
one value, and all entries in a column are of the same kind. Column names are unique, and
we could change the order of either the columns or the rows and not lose any information.
Finally, no two rows are identical—each row holds a different set of data values. Because

FIGURE 2-2

Sample EMPLOYEE
Relation

M02_KROE1533_08_SE_C02.indd 71 11/21/16 6:19 PM

72 Part 1 Database Fundamentals

this table meets all requirements of the definition of relation, we can classify it as a
relation.

Now consider the tables shown in Figures 2-3 and 2-4. Neither of these tables is a
relation. The EMPLOYEE table in Figure 2-3 is not a relation because the Phone col-
umn has cells with multiple entries. For example, Tom Caruthers has three values for
phone, and Richard Bandalone has two values. Multiple entries per cell are not permitted
in a relation.

The table in Figure 2-4 is not a relation for two reasons. First, the order of the rows is
important. Because the row under Tom Caruthers contains his fax number, we may lose
track of the correspondence between his name and his fax number if we rearrange the
rows. The second reason this table is not a relation is that not all values in the Email col-
umn are of the same kind. Some of the values are email addresses, and others are types of
phone numbers.

Although each cell can have only one value, that value can vary in length. Figure 2-5
shows the table from Figure 2-2 with an additional variable-length Comment attribute.
Even though a comment can be lengthy and varies in length from row to row, there is still
only one comment per cell. Thus, the table in Figure 2-5 is a relation.

FIGURE 2-3

Nonrelational Table—
Multiple Entries per
Cell

FIGURE 2-5

Relation with Variable-
Length Column Values

FIGURE 2-4

Nonrelational Table—
Order of Rows Matters
and Kind of Column
Entries Differs in Email

M02_KROE1533_08_SE_C02.indd 72 11/21/16 6:19 PM

Chapter 2 The Relational Model 73

A Note on Presenting Relation Structures
Throughout this book, when we write out the relation structure of a relation that we are
discussing, we use the following format:

RELATION_NAME (Column01, Column02, . . ., LastColumn)

The relation name is written first, and it is written in all capital (uppercase) letters (for ex-
ample, EMPLOYEE), and the name is singular, not plural (EMPLOYEE, not
EMPLOYEES). If the relation name is a combination of two or more words, we join the
words with an underscore (for example, EMPLOYEE_PROJECT_ASSIGNMENT).
Column names are contained in parentheses and are written with an initial capital letter fol-
lowed by lowercase letters (for example, Department). If the column name is a combina-
tion of two or more words, the first letter of each word is capitalized (for example,
EmployeeNumber and LastName). Thus, the EMPLOYEE relation shown in Figure 2-2
would be written as:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department,
EmailAddress, Phone)

Relation structures, such as the one shown earlier, are part of a database
schema. A database schema is the design on which a database and its associ-
ated applications are built.

BTW

Table

File

Relation

Row

Record

Tuple

Column

Field

Attribute

A Note on Terminology
In the database world, people generally use the terms table and relation interchangeably.
Accordingly, from now on this book does the same. Thus, any time we use the term table
we mean a table that meets the characteristics required for a relation. Keep in mind, how-
ever, that, strictly speaking, some tables are not relations.

Sometimes, especially in traditional data processing, people use the term file instead of
table. When they do so, they use the term record for row and the term field for column. To
further confound the issue, database theoreticians sometimes use yet another set of terms:
Although they do call a table a relation, they call a row a tuple (rhymes with couple) and a
column an attribute. These three sets of terminology are summarized in Figure 2-6.

To make matters even more confusing, people often mix up these sets of terms. It is
not unusual to hear someone refer to a relation that has rows and fields. As long as you
know what is intended, this mixing of terms is not important.

FIGURE 2-6

Equivalent Sets of
Terms

M02_KROE1533_08_SE_C02.indd 73 11/21/16 6:19 PM

74 Part 1 Database Fundamentals

We should discuss one other source of confusion. According to Figure 2-1, a table that
has duplicate rows is not a relation. However, in practice this condition is often ignored.
Particularly when manipulating relations with a DBMS, we may end up with a table that
has duplicate rows. To make that table a relation, we should eliminate the duplicates. On a
large table, however, checking for duplication can be time-consuming. Therefore, the de-
fault behavior for DBMS products is not to check for duplicate rows. Hence, in practice,
tables might exist with duplicate (nonunique) rows that are still called relations.You will
see examples of this situation in the next chapter.

A key is one or more columns of a relation that is used to identify a row. A key can be
unique or nonunique. For example, for the EMPLOYEE relation in Figure 2-2
EmployeeNumber is a unique key because a data value of EmployeeNumber identifies a
unique row. Thus, a query to display all employees having an EmployeeNumber of 200 will
produce a single row. In contrast, Department is a nonunique key. It is a key because it is
used to identify a row, but it is nonunique because a data value of Department potentially
identifies more than one row. Thus, a query to display all rows having a Department value
of Accounting will produce several rows.

From the data in Figure 2-2, it appears that EmployeeNumber, LastName, and Email
are all unique identifiers. However, to decide whether this is true, database developers
must do more than examine sample data. Instead, they must ask the users or other subject-
matter experts whether a certain column is unique. The column LastName is an example
where this is important. It might turn out that the sample data just happen to have unique
values for LastName. The users, however, might say that LastName is not always unique.

Composite Keys
A key that contains two or more attributes is called a composite key. For example, suppose
that we are looking for a unique key for the EMPLOYEE relation, and the users say that
although LastName is not unique, the combination of LastName and Department is
unique. Thus, for some reason the users know that two people with the same last name will
never work in the same department. Two Johnsons, for example, will never work in ac-
counting. If that is the case, then the combination (LastName, Department) is a unique
composite key.

Alternatively, the users may know that the combination (LastName, Department) is
not unique but that the combination (FirstName, LastName, Department) is unique. The
latter combination, then, is a composite key with three attributes.

TYPES OF KEYS

Composite keys, like one-column keys, can be unique or nonunique.

BTW

Candidate and Primary Keys
Candidate keys are keys that uniquely identify each row in a relation. Candidate keys can
be single-column keys, or they can be composite keys. The primary key is the candidate key
that is chosen as the key that the DBMS will use to uniquely identify each row in a relation.
For example, suppose that we have the following EMPLOYEE relation:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department,
EmailAddress, Phone)

M02_KROE1533_08_SE_C02.indd 74 11/21/16 6:19 PM

Chapter 2 The Relational Model 75

The users tell us that EmployeeNumber is a unique key, that Email is a unique key, and
that the composite key (FirstName, LastName, DepartmentName) is a unique key.
Therefore, we have three candidate keys. When designing the database, we choose one of
the candidate keys to be the primary key. In this case, for example, we use EmployeeNumber
as the primary key.

It may help you to understand why the unique keys that could be used as the
main identifier for the relation are referred to as candidate keys if you think
of them as the “candidates” in the running to be elected “primary key”—but
remember that only one candidate will win the election. Any “losing” candi-
date keys will still be present in the relation, and each will be known as an
alternate key.

BTW

The primary key is important not only because it can be used to identify unique rows but
also because it can be used to represent rows in relationships. Although we did not indicate it
in the Art Course Database tables in Figure 1-12 in Chapter 1, CustomerNumber was the
primary key of CUSTOMER. As such, we used CustomerNumber to represent the relation-
ship between CUSTOMER and ENROLLMENT by placing CustomerNumber as a column
in the ENROLLMENT table to create the link between the two tables. In addition, many
DBMS products use values of the primary key to organize storage for the relation. They also
build indexes and other special structures for fast retrieval of rows using primary key values.

In this book, we indicate primary keys by underlining them. Because EmployeeNumber
is the primary key of EMPLOYEE, we write the EMPLOYEE relation as:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department,
EmailAddress, Phone)

In order to function properly, a primary key, whether it is a single column or a composite
key, must have unique data values inserted into every row of the table. While this fact may
seem obvious, it is significant enough to be named the entity integrity constraint and is a
fundamental requirement for the proper functioning of a relational database.

What do you do if a table has no candidate keys? In that case, define the pri-
mary key as the collection of all of the columns in the table. Because there are
no duplicate rows in a stored relation, the combination of all of the columns
of the table will always be unique. Again, although tables generated by SQL
manipulation may have duplicate rows, the tables that you design to be stored
should never be constructed to have data duplication. Thus, the combination of
all columns is always a candidate key.

BTW

Each DBMS program has its own way of creating and indicating a primary key. In
Chapter 1’s section of “The Access Workbench,” we briefly discussed primary keys and
explained how to set a primary key in Microsoft Access 2016. Figure 2-7 shows the

M02_KROE1533_08_SE_C02.indd 75 11/21/16 6:20 PM

76 Part 1 Database Fundamentals

CUSTOMER table from the Art Course database in Figure 1-12 in the Microsoft Access
table Design view. In table Design view, we can spot the primary key of the table by finding
the key symbol next to the names of the columns in the primary key. In this case, a key sym-
bol is located next to CustomerNumber, which means that the developer has defined
CustomerNumber as the primary key for this table.

Figure 2-8 shows the same CUSTOMER table in Microsoft SQL Server 2016,2 as it
appears in the Microsoft SQL Server Management Studio graphical utility program. This
display is more complex, but again we can spot the primary key of the table by finding the
key symbol next to the names of the columns in the primary key. Again, there is a key sym-
bol next to CustomerNumber, indicating that CustomerNumber is the primary key for
this table.

Primary Key button

The key symbol
indicates which column
or columns are being
used as the primary key

FIGURE 2-7

Defining a Primary Key in Microsoft Access 2016

2Microsoft has released various versions of SQL Server, and the latest version is SQL Server 2016. We are
using the now freely downloadable SQL Server 2016 Developer Edition, which is for single user, non-
production use. SQL Server 2016 Express is the least powerful version available, but it is intended for
general production use and can be downloaded for free from the Microsoft SQL Server 2016 Express
homepage at www.microsoft.com/en-us/server-cloud/products/sql-server/#fbid=LO4TSseuGs9. For more
information, see Appendix A, “Getting Started with Microsoft SQL Server 2016.”

In Figure 2-8, the table names are often listed with dbo preceding the table
name, as in dbo.CUSTOMER. The dbo stands for database owner, and it occurs
frequently in SQL Server.

BTW

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 76 11/21/16 6:20 PM

http://www.microsoft.com/en-us/server-cloud/products/sql-server/#fbid=LO4TSseuGs9

Chapter 2 The Relational Model 77

Figure 2-9 shows the same CUSTOMER table in Oracle’s Oracle Database XE (also
known as Oracle Database Express Edition 11g Release 2),3 as seen in the Oracle SQL
Developer graphical utility program. This display is more complex than Microsoft Access,
but we can spot the primary key of the table by finding the row with the term Primary_Key
in the CONSTRAINT_TYPE column, and then selecting that row. When we do so, the set
of primary key columns is displayed in the tabbed Columns pane.

Figure 2-10 shows the same CUSTOMER table in Oracle’s MySQL 5.7 Community
Server,4 as seen in the MySQL Workbench graphical utility program. This display is more

Primary Key button

The key symbol indicates which
column or columns are being
used as the primary key

The Identity Seed setting

The Identity Increment setting

The Is Identity setting

FIGURE 2-8

Defining a Primary Key in Microsoft SQL Server 2016

3Originally just referred to as Oracle, the database product is now known as Oracle Database because
Oracle Corporation has grown far beyond its database product roots and now owns and sells a large range
of products. These can be seen at www.oracle.com. As of this writing, Oracle Database 12c is the latest
production version. The freely downloadable Oracle Database XE (Oracle Database Express Edition 11g
Release 2) is available at www.oracle.com/technetwork/database/database-technologies/express-edition/
downloads/index.html?ssSourceSiteId=ocomen. Oracle Database XE is an enterprise-class DBMS and,
as such, is much more complex than Microsoft Access. For more information, see Appendix B, “Getting
Started with Oracle Database XE.”
4On February 26, 2008, Sun Microsystems acquired MySQL from MySQL AB. On April 29, 2009, Oracle
Corporation made an offer to buy Sun Microsystems, and on January 27, 2010, Oracle completed its acqui-
sition of Sun Microsystems. For more details, see www.oracle.com/us/sun/index.htm. This makes Oracle
the owner of both the Oracle Database and the MySQL DBMS. As of this writing, MySQL 5.7 is the lat-
est production version of the popular MySQL DBMS. The free MySQL Community Server edition and
the MySQL Workbench can be downloaded from the MySQL Web site at http://dev.mysql.com/down-
loads/. If you are running a Microsoft Windows OS, you should download and use the MySQL Installer
for Windows available at http://dev.mysql.com/downloads/windows/installer/. Like SQL Server 2016,
MySQL is an enterprise-class DBMS and, as such, is much more complex than Microsoft Access. Also
like SQL Server 2016, MySQL does not include application development tools, such as form and report
generators. For more information, see Appendix C, “Getting Started with Oracle MySQL 5.7 Community
Server.”

SQL Server 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 77 11/21/16 6:20 PM

http://www.oracle.com
http://www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html?ssSourceSiteId=ocomen
http://www.oracle.com/us/sun/index.htm
http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/windows/installer/
http://www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html?ssSourceSiteId=ocomen
http://dev.mysql.com/downloads/

78 Part 1 Database Fundamentals

The constraint type Primary_Key
indicates which constraints are
being used to create the primary key

The columns used in the primary
key constraint CUSTOMER_PK are
shown in the Columns pane

This constraint creates the
primary key for CUSTOMER

Sequences used to define primary
key values are shown here

FIGURE 2-9

Defining a Primary Key in Oracle Database XE

The PK check box selects which
column or columns are being
used as the primary key

The AI check box indicates that
AUTO_INCREMENT is being used
to set primary key values

FIGURE 2-10

Defining a Primary Key in MySQL 5.7

Oracle SQL Developer 4.01, Oracle Corporation.

Oracle MySQL Community Server 5.7, Oracle Corporation.

M02_KROE1533_08_SE_C02.indd 78 11/21/16 6:20 PM

Chapter 2 The Relational Model 79

complex than Microsoft Access, but we can spot the primary key of the table by finding the
key symbol next to the name(s) of the primary key column(s) in the Column Name list.

A common method of specifying primary keys is to use SQL, which we briefly intro-
duced in Chapter 1. We will see how SQL is used to designate primary keys in Chapter 3.

Surrogate Keys
A surrogate key is a column with a unique, DBMS-assigned identifier that has been added
to a table to be the primary key. The unique values of the surrogate key are assigned by the
DBMS each time a row is created, and the values never change.

An ideal primary key is short and numeric and never changes. Sometimes one column
in a table will meet these requirements or come close to them. For example,
EmployeeNumber in the EMPLOYEE relation should work very well as a primary key.
But in other tables, the primary key does not come close to being ideal. For example, con-
sider the relation PROPERTY:

PROPERTY (Street, City, State, ZIP, OwnerID)

The primary key of PROPERTY is (Street, City, State, ZIP), which is long and nonnumeric
(although it probably will not change). This is not an ideal primary key. In cases like this,
the database designer will add a surrogate key, such as PropertyID:

PROPERTY (PropertyID, Street, City, State, ZIP, OwnerID)

Surrogate keys are short and numeric and never change—they are ideal primary keys.
Because the values of the surrogate primary key will have no inherent meaning to users,
they are often hidden on forms, query results, and reports.

Surrogate keys have been used in the databases we have already discussed. For exam-
ple, in the Art Course Database tables shown in Figure 1-12 we added the surrogate keys
CustomerNumber to the CUSTOMER table and CourseNumber to the COURSE table.

Most DBMS products have a facility for automatically generating key values. In
Figure 2-7, we can see how surrogate keys are defined with Microsoft Access 2016. In
Microsoft Access, Data Type is set to AutoNumber. With this specification, Microsoft
Access assigns a value of 1 to CustomerNumber for the first row of CUSTOMER, a value
of 2 to CustomerNumber for the second row, and so forth.

Enterprise-class DBMS products, such as Microsoft SQL Server, Oracle MySQL, and
Oracle Database, offer more capability. For example, with SQL Server, the developer can
specify the starting value of the surrogate key as well as the amount by which to increment
the key for each new row. Figure 2-8 shows how this is done for the definition of the sur-
rogate key CustomerNumber for the CUSTOMER table. In the Column Properties win-
dow, which is below the dbo.CUSTOMER table column details window, there is a set of
identity specifications that have been set to indicate to SQL Server that a surrogate key
column exists. The is identity value for CustomerNumber is set to Yes to make
CustomerNumber a surrogate key. The starting value of the surrogate key is called the
identity seed. For CustomerNumber, it is set to 1. Furthermore, the amount that is added
to each key value to create the next key value is called the identity increment. In this
example, it is set to 1. These settings mean that when the user creates the first row of the
CUSTOMER table, SQL Server will give the value 1 to CustomerNumber. When the sec-
ond row of CUSTOMER is created, SQL Server will give the value 2 to CustomerNumber,
and so forth.

Oracle Database uses a SEQUENCE function to define automatically increasing
sequences of numbers that can be used as surrogate key numbers. When using a
SEQUENCE, the starting value can be any value (the default is 1), but the increment will
always be 1. Figure 2-9 shows the existing sequences in the Art Course Database.

M02_KROE1533_08_SE_C02.indd 79 11/21/16 6:20 PM

80 Part 1 Database Fundamentals

MySQL uses the AUTO_INCREMENT function to automatically assign surrogate
key numbers. In AUTO_INCREMENT, the starting value can be any value (the default
is 1), but the increment will always be 1. Figure 2-12 shows that CustomerNumber is a sur-
rogate key for CUSTOMER that uses AUTO_INCREMENT (AI) to set the value of the
column.

Foreign Keys and Referential Integrity
As described in Chapter 1, we place values from one relation into a second relation to rep-
resent a relationship. The values we use are the primary key values (including composite
primary key values, when necessary) of the first relation. When we do this, the attribute in
the second relation that holds these values is referred to as a foreign key. For example, in
the Art Course database shown in Figure 1-12 we represent the relationship between cus-
tomers and the art courses they are taking by placing CustomerNumber, the primary key of
CUSTOMER, into the ENROLLMENT relation. In this case, CustomerID in
ENROLLMENT is referred to as a foreign key. This term is used because CustomerNumber
is the primary key of a relation that is foreign to the table in which it resides.

Consider the following two relations, where besides the EMPLOYEE relation we now
have a DEPARTMENT relation to hold data about departments:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department,
EmailAddress, Phone)

and:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber,
DepartmentPhone)

where EmployeeNumber and DepartmentName are the primary keys of EMPLOYEE and
DEPARTMENT, respectively.

Now suppose that Department in EMPLOYEE contains the names of the depart-
ments in which employees work and that DepartmentName in DEPARTMENT also con-
tains these names. In this case, Department in EMPLOYEE is said to be a foreign key to
DEPARTMENT. In this book, we denote foreign keys by displaying them in italics. Thus,
we would write these two relation descriptions as follows:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department,
EmailAddress, Phone)

and:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber,
DepartmentPhone)

Note that it is not necessary for the primary key and the foreign key to have the same col-
umn name. The only requirement is that they have the same set of values.

In most cases, it is important to ensure that every value of a foreign key matches a value
of the primary key. In the previous example, the value of Department in every row of
EMPLOYEE should match a value of DepartmentName in DEPARTMENT. If this is the
case (and it usually is), then we declare the following rule:

Department in EMPLOYEE must exist in DepartmentName in DEPARTMENT

Such a rule is called a referential integrity constraint. Whenever you see a foreign key, you
should always look for an associated referential integrity constraint.

M02_KROE1533_08_SE_C02.indd 80 11/21/16 6:20 PM

Chapter 2 The Relational Model 81

Consider the Art Course database shown in Figure 1-12. The structure of this database is:

CUSTOMER (CustomerNumber, CustomerLastName, CustomerFirstName,
Phone)

COURSE (CourseNumber, Course, CourseDate, Fee)
ENROLLMENT (CustomerNumber, CourseNumber, AmountPaid)

The ENROLLMENT table has a composite primary key of (CustomerNumber,
CourseNumber), where CustomerNumber is a foreign key linking to CUSTOMER and
CourseNumber is a foreign key linking to COURSE. Therefore, two referential integrity
constraints are required:

CustomerNumber in ENROLLMENT must exist in CustomerNumber in
CUSTOMER

and:

CourseNumber in ENROLLMENT must exist in CourseNumber in COURSE

Just as DBMS products have a means of specifying primary keys, they also have a way to set
up foreign key referential integrity constraints. We discuss the details of setting up referen-
tial integrity constraints in this chapter’s section of “The Access Workbench.” Figure 2-11
shows the tables from the Art Course database in Figure 1-12 in the Microsoft Access
Relationships window and with the Edit Relationships dialog box showing the details of
the relationship between CUSTOMER and ENROLLMENT. Notice that the Enforce
Referential Integrity check box is checked, so the referential integrity constraint between

The relationship is between CUSTOMER
and ENROLLMENT—the foreign key
CustomerNumber in ENROLLMENT
references the primary key
CustomerNumber in CUSTOMER

Use this check box to enforce referential
integrity in this relationship

FIGURE 2-11

Enforcing Referential Integrity in Microsoft Access 2016

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 81 11/21/16 6:20 PM

82 Part 1 Database Fundamentals

The relationship
is between
ENROLLMENT
and CUSTOMER

We are enforcing
the foreign key
constraint—which
is the referential
integrity constraint

FIGURE 2-12

Enforcing Referential Integrity in Microsoft SQL Server 2016

This constraint creates the foreign
key relationship is between
ENROLLMENT and CUSTOMER

The constraint type Foreign_Key
indicates which constraints are being
used to create the foreign keys

The columns used in the foreign
key constraint ENROLL_CUST_FK
are shown in the Columns pane

FIGURE 2-13

Enforcing Referential Integrity in Oracle Database XE

SQL Server 2016, Windows 10, Microsoft Corporation.

Oracle SQL Developer 4.01, Oracle Corporation.

M02_KROE1533_08_SE_C02.indd 82 11/21/16 6:20 PM

Chapter 2 The Relational Model 83

CustomerNumber in ENROLLMENT (the foreign key) and CustomerNumber in
CUSTOMER (the primary key) is being enforced.

Figure 2-12 shows the same foreign key relationship between CUSTOMER and
ENROLLMENT in the Microsoft SQL Server Management Studio program. Again, this
display is more complex, but notice that the property Table Designer: Enforce Foreign Key
Constraint is set to Yes. This means that the referential integrity constraint between
CustomerNumber in ENROLLMENT (the foreign key) and CustomerNumber in
CUSTOMER (the primary key) is being enforced.

Figure 2-13 shows foreign keys in Oracle Database XE. Here the Constraints tab in the
Oracle SQL Developer utility displays the properties of each foreign key.

Figure 2-14 shows foreign keys in MySQL 5.7 Community Server. Here the Foreign
Keys tab in the MySQL Workbench utility displays the properties of each foreign key.

Just as SQL can be used to specify primary keys, it can also be used to set referential
integrity constraints.We will look at how to use SQL to do this in the next chapter.

The foreign key between ENROLLMENT
and CUSTOMER

The CustomerNumber column in
ENROLLMENT references the
CustomerNumber column in CUSTOMER

FIGURE 2-14

Enforcing Referential Integrity in MySQL 5.7

Before we leave the discussion of relations and the relationships between them, we need to
discuss a subtle but important topic: null values. A null value is a missing value in a cell in
a relation. Consider the following relation, which is used to track finished goods for an
apparel manufacturer:

ITEM (ItemNumber, ItemName, Color, Quantity)

THE PROBLEM OF NULL VALUES

Oracle MySQL Community Server 5.7, Oracle Corporation.

M02_KROE1533_08_SE_C02.indd 83 11/21/16 6:20 PM

84 Part 1 Database Fundamentals

Figure 2-15 shows sample data for this table. Notice that in the last row of data—the
row with ItemNumber 400 and ItemName Spring Hat—there is no value for Color. The
problem with null values is that they are ambiguous; we do not know how to interpret
them because three possible meanings can be construed. First, it might mean that no value
of Color is appropriate; Spring Hats do not come in different colors. Second, it might
mean that the value is known to be blank; that is, Spring Hats have a color, but the color
has not yet been decided. Maybe the color is established by placing ribbons around the
hats, but this is not done until an order arrives. Finally, the null value might mean that the
hats’ color is simply unknown; the hats have a color, but no one has checked yet to see
what it is.

You can eliminate null values by requiring an attribute value. DBMS products allow
you to specify whether a null value can occur in a column. We discussed how to do this
for Microsoft Access in Chapter 1’s “The Access Workbench.” For Microsoft SQL
Server 2016, notice the column in the dbo.CUSTOMER table column details window
labeled Allow Nulls in Figure 2-8. A check box without a checkmark means that null
values are not allowed in this column. Note that, in Figure 2-9, the Oracle SQL
Developer utility for Oracle Database XE is showing the data on the Constraints tab, and
this tab does not indicate null values. If, however, we looked at the Columns tab, we
would see whether null values are allowed in each column. For MySQL 5.7 Community
Server, note that in Figure 2-10 the Column Details tab in the MySQL Table Editor
shows an NN (NOT NULL) check box that indicates whether null values are allowed in
the column. Regardless of the DBMS being used, if nulls are not allowed then some value
must be entered for each row in the table. If the attribute is a text value, users can be al-
lowed to enter values such as “not appropriate,” “undecided,” or “unknown,” when
necessary. If the attribute is not text, then some other coding system can be developed.

For now, be aware that null values can occur and that they always carry some ambigu-
ity. Chapter 3 will show another, possibly more serious, problem of null values.

FIGURE 2-15

Sample ITEM Relation
and Data

Again, as defined by Codd, the rows of a relation must be unique (no two rows may be
identical), but there is no requirement for a designated primary key in the relation. You will
recall that we described a primary key as a column (or columns) with a set of values that
uniquely identify each row.

However, the requirement that no two rows be identical implies that a primary key can
be defined for the relation. Further, in the “real world” of databases, every relation (or ta-
ble as it is more often referred to in daily use) does have a defined primary key.

To understand how to designate or assign a primary key for a relation, we need to
learn about the different types of keys used in relational databases, and this means we
need to learn about functional dependencies, which are the foundation upon which
keys are built. We will then discuss specifically how to assign primary keys in
relations.

TO KEY OR NOT TO KEY—THAT IS THE QUESTION!

M02_KROE1533_08_SE_C02.indd 84 11/21/16 6:20 PM

Chapter 2 The Relational Model 85

We have defined three constraints so far in our discussion:

• The domain integrity constraint
• The entity integrity constraint
• The referential integrity constraint

The purpose of these three constraints, taken as a whole, is to create database
integrity, which means that the data in our database will be useful, meaningful
data.5

BTW

5For more information and discussion, see the Wikipedia article on Data integrity at http://en.wikipedia.
org/wiki/Data_integrity and the articles linked to that article.
6See David M. Kroenke and David J. Auer, Database Processing: Fundamentals, Design, and Implementation,
14th ed. (Upper Saddle River, NJ: Prentice Hall, 2016), and C. J. Date, An Introduction to Database
Systems, 8th ed. (Boston: Addison-Wesley, 2004).

This section introduces some of the concepts used for relational database design; these
concepts are used in the next several chapters and expanded upon in Chapter 5. This book
presents only the essentials. To learn more, you should consult other, more comprehensive
references.6

Functional Dependencies
To get started, let us take a short excursion into the world of algebra. Suppose you are buy-
ing boxes of cookies, and someone tells you that each box costs $5. Knowing this fact, you
can compute the cost of several boxes with the formula:

CookieCost 5 NumberOfBoxes 3 $5

A more general way to express the relationship between CookieCost and
NumberOfBoxes is to say that CookieCost depends upon NumberOfBoxes. Such a state-
ment tells the character of the relationship between CookieCost and NumberOfBoxes,
even though it doesn’t give the formula. More formally, we can say that CookieCost is func-
tionally dependent on NumberOfBoxes. Such a statement, which is called a functional de-
pendency, can be written as follows:

NumberOfBoxes S CookieCost

This expression says that NumberOfBoxes determines CookieCost. The term on the left,
NumberOfBoxes, is called the determinant.

Using another example, we can compute the extended price of a part order by multi-
plying the quantity of the item by its unit price:

ExtendedPrice 5 Quantity 3 UnitPrice

FUNCTIONAL DEPENDENCIES AND NORMALIZATION

M02_KROE1533_08_SE_C02.indd 85 11/21/16 6:20 PM

http://en.wikipedia.org/wiki/Data_integrity
http://en.wikipedia.org/wiki/Data_integrity

86 Part 1 Database Fundamentals

In this case, we would say that ExtendedPrice is functionally dependent on Quantity and
UnitPrice, or:

(Quantity, UnitPrice) S ExtendedPrice

The composite (Quantity, UnitPrice) is the determinant of ExtendedPrice.
Now, let us expand these ideas. Suppose you know that a sack contains either red,

blue, or yellow objects. Further suppose you know that the red objects weigh 5 pounds
each, the blue objects weigh 5 pounds each, and the yellow objects weigh 7 pounds each. If
a friend looks into the sack, sees an object, and tells you the color of the object, you can tell
the weight of the object. We can formalize this in the same way as in the previous example:

ObjectColor S Weight

Thus, we can say that Weight is functionally dependent on ObjectColor and that
ObjectColor determines Weight. The relationship here does not involve an equation, but
this functional dependency is still true. Given a value for ObjectColor, you can determine
the object’s weight.

In addition, if we know that the red objects are balls, the blue objects are cubes, and
the yellow objects are cubes, then:

ObjectColor S Shape

Thus, ObjectColor also determines Shape. We can put these two together and state:

ObjectColor S (Weight, Shape)

Thus, ObjectColor determines Weight and Shape.
Another way to represent these facts is to put them into a table, as shown in

Figure 2-16. Note that this table meets all the conditions in our definition of a relation, as
listed in Figure 2-1, so we can refer to it as a relation. If we call it the OBJECT relation and
use ObjectColor as the primary key, we can write this relation as:

OBJECT (ObjectColor, Weight, Shape)

Now, you may be thinking that we have just performed some trick or sleight of hand to ar-
rive at a relation, but one can make the argument that the only reason for having relations is
to store instances of functional dependencies. Consider a relation such as the CUSTOMER
relation from the Art Course database in Figure 1-12:

CUSTOMER (CustomerNumber, CustomerLastName, CustomerFirstName,
Phone)

Here we are simply storing facts that express the following functional dependency:

CustomerNumber S (CustomerLastName, CustomerFirstName, Phone)

Object Color Weight Shape

Red

Blue

5

5

Ball

Cube

Yellow 7 Cube

FIGURE 2-16

Sample OBJECT
Relation and Data

M02_KROE1533_08_SE_C02.indd 86 11/21/16 6:20 PM

Chapter 2 The Relational Model 87

Primary and Candidate Keys Revisited
Now that we have discussed the concept of functional dependency, we can define primary
and candidate keys more formally. Specifically, a primary key of a relation can be defined as
“one or more attributes that functionally determine all the other attributes of the relation.”
The same definition holds for candidate keys as well.

Recall the EMPLOYEE relation from Figure 2-2 (shown without primary or foreign
keys indicated):

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department,
EmailAddress, Phone)

As previously discussed, based on information from users, this relation has three candidate
keys: EmployeeNumber, EmailAddress, and the composite (FirstName, LastName,
Department). Because this is so, we can state the following:

EmployeeNumber S (FirstName, LastName, Department, EmailAddress, Phone)

Equivalently stated in words, if we are given a value for EmployeeNumber, we can determine
FirstName, LastName, Department, EmailAddress, and Phone. Similarly, we can state that:

EmailAddress S (EmployeeNumber, FirstName, LastName, Department, Phone)

That is, if we are given a value for EmailAddress, we can determine EmployeeNumber,
FirstName, LastName, Department, and Phone. Finally, we also can state that:

(FirstName, LastName, Department) S (EmployeeNumber, EmailAddress, Phone)

This means that if we are given values of FirstName, LastName, and Department, we can
determine EmployeeNumber, EmailAddress, and Phone.

These three functional dependencies express the reason the three candidate keys are
candidate keys. When we choose a primary key from the candidate keys, we are choosing
which functional dependency we want to define as the one that is most meaningful or
important to us.

Perhaps the easiest way to understand functional dependencies is:
If I tell you one specific fact, can you respond with a unique associated

fact?
Using the OBJECT relation in Figure 2-16, if I tell you that the ObjectColor

is Red, can you uniquely tell me the associated Shape? Yes, you can, and it is
Ball. Therefore, ObjectColor determines Shape, and a functional dependency
exists with ObjectColor as the determinant.

Now, if I tell you that the Shape is Cube, can you uniquely tell me the
associated ObjectColor? No, you cannot because it could be either Blue or
Yellow. Therefore, Shape does not determine ObjectColor, and ObjectColor is
not functionally dependent on Shape.

BTW

M02_KROE1533_08_SE_C02.indd 87 11/21/16 6:20 PM

88 Part 1 Database Fundamentals

Normalization
The concepts of functional dependencies and determinants can be used to help in the de-
sign of relations. Recalling the concept from Chapter 1 that a table or relation should have
only one theme, we can define normalization as the process of (or set of steps for) breaking
a table or relation with more than one theme into a set of tables such that each has only
one theme. Normalization is a complex topic, and it consumes one or more chapters of
more theoretically oriented database books. Here we reduce this topic to a few ideas that
capture the essence of the process. After this discussion, if you are interested in the topic,
you should consult the references mentioned earlier for more information.

The problem that normalization addresses is as follows: A table can meet all the char-
acteristics listed in Figure 2-1 and still have the modification problems we identified for
lists in Chapter 1. Specifically, consider the following ADVISER_LIST relation:

ADVISER_LIST (AdviserID, AdviserName, Department, Phone, Office,
StudentNumber, StudentName)

What is the primary key of this relation? Given the definitions of candidate key and pri-
mary key, it has to be an attribute that determines all the other attributes. The only attri-
bute that has this characteristic is StudentNumber. Given a value of StudentNumber, we
can determine the values of all the other attributes:

StudentNumber S (AdviserID, AdviserName, Department, Phone, Office,
StudentName)

We can then write this relation as follows:

ADVISER_LIST (AdviserID, AdviserName, Department, Phone, Office,
StudentNumber, StudentName)

However, this table has modification problems. Specifically, an adviser’s data are repeated
many times in the table, once for each advisee. This means that updates to adviser data
might need to be made multiple times. If, for example, an adviser changes offices, that
change will need to be completed in all the rows for the person’s advisees. If an adviser has
20 advisees, that change will need to be entered 20 times.

Another modification problem can occur when we delete a student from this list. If we
delete a student who is the only advisee for an adviser, we will delete not only the student’s
data but also the adviser’s data. Thus, we will unintentionally lose facts about two entities
while attempting to delete one.

You cannot always determine functional dependencies from sample data.
You may not have any sample data, or you may have just a few rows that

are not representative of all of the data conditions. In such cases, you must
ask the users who are experts in the application that creates the data. For the
EMPLOYEE relation, you would ask questions such as “Is a combination of
FirstName and LastName always associated with the same Department?” and
“Can a Department have more than one person with the same FirstName and
LastName?” In most cases, answers to such questions are more reliable than
sample data. When in doubt, trust the users.

BTW

M02_KROE1533_08_SE_C02.indd 88 11/21/16 6:20 PM

Chapter 2 The Relational Model 89

If you look closely at this relation, you will see a functional dependency that involves
the adviser’s data. Specifically:

AdviserID S (AdviserName, Department, Phone, Office)

Now, we can state the problem with this relation more accurately—in terms of functional
dependencies. Specifically, this relation is poorly formed because it has a functional depen-
dency that does not involve the primary key. Stated differently, AdviserID is a determinant
of a functional dependency, but it is not a candidate key and thus cannot be the primary
key under any circumstances.

Relational Design Principles
From the discussion so far, we can formulate the following design principles for what we
can call a well-formed relation:

1. For a relation to be considered well formed, every determinant must be a candidate key.
2. Any relation that is not well formed should be broken into two or more relations that are

well formed.

These two principles are the heart of normalization—the process of examining rela-
tions and modifying them to make them well formed. This process is called normalization
because you can categorize the problems to which relations are susceptible into different
types called normal forms.

There are many defined normal forms. Technically, our well-formed relations are those
that are said to be in Boyce-Codd Normal Form (BCNF). Another example of a normal
form, a relation is in first normal form (1NF) if it:

• has the characteristics listed in Figure 2-1, and
• has a defined primary key, and
• no repeating groups.

The statement that 1NF has “no repeating groups” refers to what are known as multi-
valued dependencies, and this occurs when there are multiple values of a data item such as
the multiple phone numbers shown in Figure 2-3.

To simplify the discussion of normal forms, we will put off our discussion of multival-
ued dependencies until later in this chapter. Thus, in our initial 1NF examples, there are no
“repeating groups” that we have to worry about. After our discussion of multivalued de-
pendencies and the associated multivalue, multicolumn problem, you will have no trouble
spotting and dealing with repeating groups and 1NF.

Besides first normal form and Boyce-Codd normal form, other normal forms exist,
such as second, third, fourth, fifth, and domain/key normal form. We further describe nor-
mal forms later in this chapter.

However, if we simply follow the aforementioned BCNF design principles we will
avoid almost all the problems associated with non-normalized tables. In some rare in-
stances, these principles do not address the problems that arise (see exercises 2.40 and
2.41), but if you follow these principles, you will be safe most of the time.

The Normalization Process
We can apply the principles just described to formulate the following normalization pro-
cess for normalizing relations:

1. Identify all the candidate keys of the relation.
2. Identify all the functional dependencies in the relation.

M02_KROE1533_08_SE_C02.indd 89 11/21/16 6:20 PM

90 Part 1 Database Fundamentals

3. Examine the determinants of the functional dependencies. If any determinant is not a can-
didate key, the relation is not well formed. In this case:
a. Place the columns of the functional dependency in a new relation of their own.
b. Make the determinant of the functional dependency the primary key of the new relation.
c. Leave a copy of the determinant as a foreign key in the original relation.
d. Create a referential integrity constraint between the original relation and the new relation.

4. Repeat step 3 as many times as necessary until every determinant of every relation is a can-
didate key.

To understand this process, consider the following relation:

PRESCRIPTION (PrescriptionNumber, Date, Drug, Dosage, CustomerName,
CustomerPhone, CustomerEmailAddress)

Sample data for the PRESCRIPTION relation are shown in Figure 2-17.

Step 1 of the Normalization Process According to the normalization process, we
first identify all candidate keys. PrescriptionNumber clearly determines Date, Drug, and
Dosage. If we assume that a prescription is for only one person, then it also determines
CustomerName, CustomerPhone, and CustomerEmailAddress. By law, prescriptions must
be for only one person, so PrescriptionNumber is a candidate key.

Does this relation have other candidate keys? Date, Drug, and Dosage do not deter-
mine PrescriptionNumber because many prescriptions can be written on a given date,
many prescriptions can be written for a given drug, and many prescriptions can be written
for a given dosage.

What about customer columns? If a customer had only one prescription, then we
could say that some identifying customer column—for example, CustomerEmailAddress—
would determine the prescription data. However, people can have more than one prescrip-
tion, so this assumption is invalid.

Given this analysis, the only candidate key of PRESCRIPTION is PrescriptionNumber.

Step 2 of the Normalization Process In step 2 of the normalization process, we
now identify all functional dependencies. PrescriptionNumber determines all the other
attributes, as just described. If a drug had only one dosage, then we could state that:

Drug S Dosage

But this is not true because some drugs have several dosages. Therefore, Drug is not a
determinant. Furthermore, Dosage is not a determinant because the same dosage can be
given for many different drugs.

However, examining the customer columns, we do find a functional dependency:

CustomerEmailAddress S (CustomerName, CustomerPhone)

To know whether a functional dependency is true for a particular application, we need to
look beyond the sample data in Figure 2-17 and ask the users. For example, it is possible
that some customers share the same email address, and it is also possible that some

FIGURE 2-17

Sample PRESCRIPTION Relation and Data

M02_KROE1533_08_SE_C02.indd 90 11/21/16 6:20 PM

Chapter 2 The Relational Model 91

customers do not have email. For now, we can assume that the users say that
CustomerEmailAddress is a determinant of the customer attributes.

Step 3 of the Normalization Process In step 3 of the normalization pro-
cess, we ask whether there is a determinant that is not a candidate key. In this example,
CustomerEmailAddress is a determinant and not a candidate key. Therefore, PRESCRIP-
TION has normalization problems and is not well formed. According to step 3, we split the
functional dependency into a relation of its own:

CUSTOMER (CustomerEmailAddress, CustomerName, CustomerPhone)

We make the determinant of the functional dependency, CustomerEmailAddress, the
primary key of the new relation.

We leave a copy of CustomerEmailAddress in the original relation as a foreign key.
Thus, PRESCRIPTION is now:

PRESCRIPTION (PrescriptionNumber, Date, Drug, Dosage, CustomerEmailAddress)

Finally, we create the referential integrity constraint:

CustomerEmailAddress in PRESCRIPTION must exist in CustomerEmailAddress, in
CUSTOMER

At this point, if we move through the three steps, we find that neither of these relations has
a determinant that is not a candidate key, and we can say that the two relations are now
normalized. Figure 2-18 shows the result for the sample data.

Normalization Examples
We now illustrate the use of the normalization process with four examples.

Normalization Example 1 The relation in Figure 2-19 shows a table of student resi-
dence data named STU_DORM. The first step in normalizing it is to identify all candidate
keys. Because StudentNumber determines each of the other columns, it is a candidate key.
LastName cannot be a candidate key because two students have the last name Smith. None of
the other columns can be a candidate key, either, so StudentNumber is the only candidate key.

Next, in step 2, we look for the functional dependencies in the relation. Besides those
for StudentNumber, a functional dependency appears to exist between DormName and
DormCost. Again, we would need to check this out with the users. In this case, assume that
the functional dependency:

DormName S DormCost

is true and assume that our interview with the users indicates that no other functional
dependencies exist.

FIGURE 2-18

Normalized CUSTOMER
and PRESCRIPTION
Relations and Data

M02_KROE1533_08_SE_C02.indd 91 11/21/16 6:20 PM

92 Part 1 Database Fundamentals

In step 3, we now ask if any determinants exist that are not candidate keys. In this
example, DormName is a determinant, but it is not a candidate key. Therefore, this relation
is not well formed and has normalization problems.

To fix those problems, we place the columns of the functional dependency
(DormName, DormCost) into a relation of their own and call that relation DORM. We
make the determinant of the functional dependency the primary key. Thus, DormName is
the primary key of DORM. We leave the determinant DormName as a foreign key in
STU_DORM. Finally, we find the appropriate referential integrity constraint. The result is:

STU_DORM (StudentNumber, LastName, FirstName, DormName)
DORM (DormName, DormCost)

with the constraint:

DormName in STU_DORM must exist in DormName in DORM

The data for these relations appear as shown in Figure 2-20.

Normalization Example 2 Now consider the EMPLOYEE table in Figure 2-21. First,
we identify the candidate keys in EMPLOYEE. From the data, it appears that Employee-
Number and EmailAddress each identify all the other attributes. Hence, they are candidate
keys (again, with the proviso that we cannot depend on sample data to show all cases; we
must verify this assumption with the users).

In step 2, we identify other functional dependencies. From the data, it appears that
there are two other functional dependencies:

Department S DepartmentPhone

and

DepartmentPhone S Department

FIGURE 2-19

Sample STU_DORM
Relation and Data

FIGURE 2-20

Normalized STU_DORM
and DORM Relations
and Data

FIGURE 2-21

Sample EMPLOYEE
Relation and Data

M02_KROE1533_08_SE_C02.indd 92 11/21/16 6:20 PM

Chapter 2 The Relational Model 93

Assuming that this is true, then according to step 3 we have two determinants, Department
and DepartmentPhone, that are not candidate keys. Thus, EMPLOYEE has normalization
problems.

To fix those problems, we generally simply place the columns in the extra functional
dependencies in tables of their own and make the determinants the primary keys of the
new tables. We leave the determinants as foreign keys in the original table.

However, note that the two extraneous functional dependencies are simply the reverse
of each other. This often occurs when two columns are functionally dependent upon each
other. In such a case, we only need to move one of the functional dependencies into a new
table. The other dependency will be removed as well when we do this. Which one should we
move? It really doesn’t matter, and we can choose to create the new table based on either
functional dependency. Our choice becomes a matter of reasonably, and in this case it seems
more reasonable to make Department the primary key of a new table named DEPARTMENT.

The result is the two tables:

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, EmailAddress)
DEPARTMENT (Department, DepartmentPhone)

with the referential integrity constraint:

Department in EMPLOYEE must exist in Department in DEPARTMENT

The result for the sample data is shown in Figure 2-22.

Normalization Example 3 Now consider the MEETING table in Figure 2-23. We
begin by looking for candidate keys. No column by itself can be a candidate key. Attorney
determines different sets of data, so it cannot be a determinant. The same is true for Client-
Number, ClientName, and MeetingDate. In the sample data, the only column that does not
determine different sets of data is Duration, but this uniqueness is accidental. It is easy to
imagine that two or more meetings would have the same duration.

The next step is to look for combinations of columns that can be candidate keys.
(Attorney, ClientNumber) is one combination, but the values (Boxer, 1000) determine two
different sets of data. They cannot be a candidate key. The combination (Attorney,
ClientName) fails for the same reason. The only combinations that can be candidate keys
of this relation are (Attorney, ClientNumber, MeetingDate) and (Attorney, ClientName,
MeetingDate).

Let us consider those possibilities further. The name of the relation is MEETING, and
we are asking whether (Attorney, ClientNumber, MeetingDate) or (Attorney, ClientName,
MeetingDate) can be a candidate key. Do these combinations make sense as identifiers of a
meeting? They do unless more than one meeting of the same attorney and client occurs on
the same day. In that case, we need to add a new column, MeetingTime, to the relation and

FIGURE 2-22

Normalized EMPLOYEE
and DEPARTMENT
Relations and Data

FIGURE 2-23

Sample MEETING
Relation and Data

M02_KROE1533_08_SE_C02.indd 93 11/21/16 6:20 PM

94 Part 1 Database Fundamentals

make this new column part of the candidate key. In this example, we assume that this is not
the case and that (Attorney, ClientNumber, MeetingDate) and (Attorney, ClientName,
MeetingDate) are the candidate keys.

The second step is to identify other functional dependencies. Here two exist:

ClientNumber S ClientName

and:

ClientName S ClientNumber

Each of these determinants is part of one of the candidate keys. For example, ClientNumber
is part of (Attorney, ClientNumber, MeetingDate). However, being part of a candidate key
is not enough. The determinant must be the same as the entire candidate key. Thus, the
MEETING table is not well formed and has normalization problems.

When you are not certain whether normalization problems exist, consider the three
modification operations discussed in Chapter 1: insert, update, and delete. Do problems
exist with any of them? For example, in Figure 2-23 if you change ClientName in the first
row to ABC, Limited, do inconsistencies arise in the data? The answer is yes because
ClientNumber 1000 would have two different names in the table. This and any of the other
problems that were identified in Chapter 1 when inserting, updating, or deleting data are
sure signs that the table has normalization problems.

To fix the normalization problems, we create a new table, CLIENT, with columns
ClientNumber and ClientName. Both of these columns are determinants; thus, either can
be the primary key of the new table. However, whichever one is selected as the primary key
also should be made the foreign key in MEETING. Thus, two correct designs are possible.
First, we can use:

MEETING (Attorney, ClientNumber, MeetingDate, Duration)
CLIENT (ClientNumber, ClientName)

with the referential integrity constraint:

ClientNumber in MEETING must exist in ClientNumber in CLIENT

Second, we can use:

MEETING (Attorney, ClientName, MeetingDate, Duration)
CLIENT (ClientNumber, ClientName)

with the referential integrity constraint:

ClientName in MEETING must exist in ClientName in CLIENT

Data for the first design are shown in Figure 2-24.
Notice in these two designs that either the attribute ClientNumber or ClientName is

both a foreign key and also part of the primary key of MEETING. This illustrates that for-
eign keys can be part of a composite primary key.

FIGURE 2-24

Normalized MEETING
and CLIENT Relations
and Data

M02_KROE1533_08_SE_C02.indd 94 11/21/16 6:20 PM

Chapter 2 The Relational Model 95

Note that when two attributes, such as ClientNumber and ClientName, each determine
one another they are synonyms. They both must appear in a relation to establish their equiv-
alent values. Given that equivalency, the two columns are interchangeable; one can take the
place of the other in any other relation. All things being equal, however, the administration
of the database will be simpler if one of the two is used consistently as a foreign key. This
policy is just a convenience, however, and not a logical requirement for the design.

Normalization Example 4 For our last example, let us consider a relation that involves
student data. Specifically:

GRADE (ClassName, Section, Term, Grade, StudentNumber, StudentName,
ProfessorName, Department, ProfessorEmailAddress)

Given the confused set of columns in this table, it does not seem well formed, and it ap-
pears that the table will have normalization problems. We can use the normalization pro-
cess to find what they are and to remove them.

First, what are the candidate keys of this relation? No column by itself is a candidate
key. One way to approach this is to realize that a grade is a combination of a class and a
student. In this table, which columns identify classes and students? A particular class is
identified by (ClassName, Section, Term), and a student is identified by StudentNumber.
Possibly, then, a candidate key for this relation is:

(ClassName, Section, Term, StudentNumber)

This statement is equivalent to saying:

(ClassName, Section, Term, StudentNumber) S (Grade, StudentName,
ProfessorName, Department, ProfessorEmailAddress)

This is a true statement as long as only one professor teaches a class section. For now, we
will make that assumption and consider the alternate case later. If only one professor
teaches a section, then (ClassName, Section, Term, StudentNumber) is the one and only
candidate key.

Second, what are the additional functional dependencies? One involves student data,
and another involves professor data, specifically:

StudentNumber S StudentName

and:

ProfessorName S ProfessorEmailAddress

We also need to ask if ProfessorName determines Department. It will if a professor teaches
in only one department. In that case, we have:

ProfessorName S (Department, ProfessorEmailAddress)

Otherwise, Department must remain in the GRADE relation.
We will assume that professors teach in just one department, so we can confirm the

following functional dependencies from our discussion above:

StudentNumber S StudentName

and:

ProfessorName S (Department, ProfessorEmailAddress)

M02_KROE1533_08_SE_C02.indd 95 11/21/16 6:20 PM

96 Part 1 Database Fundamentals

If we examine the GRADE relation a bit further, however, we can find one other functional
dependency. If only one professor teaches a class section, then:

(ClassName, Section, Term) S ProfessorName

Thus, according to step 3 of the normalization process, GRADE has normalization prob-
lems because the determinants StudentNumber, ProfessorName, and (ClassName, Section,
Term) are not candidate keys. Therefore, we form a table for each of these functional de-
pendencies. As a result, we have a STUDENT table, a PROFESSOR table, and a CLASS_
PROFESSOR table. After forming these tables, we then take the appropriate columns out
of GRADE and put them into a new version of the GRADE table, which we will name
GRADE_1. We now have the following design:

STUDENT (StudentNumber, StudentName)
PROFESSOR (ProfessorName, Department, ProfessorEmailAddress)
CLASS_PROFESSOR (ClassName, Section, Term, ProfessorName)
GRADE_1 (ClassName, Section, Term, Grade, StudentNumber)

with the referential integrity constraints:

StudentNumber in GRADE_1 must exist in StudentNumber in STUDENT
ProfessorName in CLASS_PROFESSOR must exist in ProfessorName in PROFESSOR
(ClassName, Section, Term) in GRADE_1 must exist in (ClassName, Section, Term)

in CLASS_PROFESSOR

Next, consider what happens if more than one professor teaches a section of a class. In that
case, the only change is to make ProfessorName part of the primary key of CLASS_
PROFESSOR. Thus, the new relation is:

CLASS_PROFESSOR_1 (ClassName, Section, Term, ProfessorName)

Class sections that have more than one professor will have multiple rows in this table—one
row for each of the professors.

This example shows how normalization problems can become more complicated than
simple examples might indicate. For large commercial applications that potentially involve
hundreds of tables, such problems can sometimes consume days or weeks of design time.

Eliminating Anomalies from Multivalued Dependencies
In the interest of full disclosure, if professors can teach more than one class in the previous
example, then GRADE has what is called a multivalued dependency. When modification
problems are due to functional dependencies and we then normalize relations to BCNF, we
eliminate these anomalies. However, anomalies can also arise from another kind of depen-
dency—the multivalued dependency. A multivalued dependency occurs when a determi-
nant is matched with a particular set of values.

Examples of multivalued dependencies are (note the use of the double arrows to indi-
cate a multivalued dependency):

EmployeeName S S EmployeeDegree
EmployeeName S S EmployeeSibling
PartKitName S S Part

In each case, the determinant is associated with a set of values, and example data for
each of these multivalued dependencies are shown in Figure 2-25. Such expressions are

M02_KROE1533_08_SE_C02.indd 96 11/21/16 6:20 PM

Chapter 2 The Relational Model 97

read as “EmployeeName multidetermines EmployeeDegree” and “EmployeeName multi-
determines EmployeeSibling” and “PartKitName multidetermines Part.” Note that multi-
determinants are shown with a double arrow rather than a single arrow.

Employee Jones, for example, has degrees AA and BA. Employee Green has degrees
BS, MS, and PhD. Employee Chau has just one degree, BS. Similarly, employee Jones has
siblings (brothers and sisters) Fred, Sally, and Frank. Employee Green has sibling Nikki,
and employee Chau has siblings Jonathan and Eileen. Finally, PartKitName Bike Repair
has parts Wrench, Screwdriver, and Tube Fix. Other kits have parts as shown in
Figure 2-25.

Unlike functional dependencies, the determinant of a multivalued dependency can
never be the primary key. In all three of the tables in Figure 2-25, the primary key consists
of the composite of the two columns in each table. For example, the primary key of the
EMPLOYEE_DEGREE table is the composite key (EmployeeName, EmployeeDegree).

Multivalued dependencies pose no problem as long as they exist in tables of their own.
None of the tables in Figure 2-25 has modification anomalies. Notice that when you put

EMPLOYEE_DEGREE

EMPLOYEE_SIBLING

PARTKIT_PART

FIGURE 2-25

Three Examples
of Multivalued
Dependencies

M02_KROE1533_08_SE_C02.indd 97 11/21/16 6:20 PM

98 Part 1 Database Fundamentals

multivalued dependencies into a table of their own, they disappear. The result is just a table
with two columns, and the primary key (and sole candidate key) is the composite of those
two columns. When multivalued dependencies have been isolated in this way, the table is
said to be in fourth normal form (4NF).

The hardest part of multivalued dependencies is finding them. And if A S S B, then
any relation that contains A, B, and one or more additional columns will have modification
anomalies. The modified original table will now have its repeating group eliminated, and
will be in at least 1NF. The moved data will be in 4NF.

Whenever you encounter tables with odd anomalies, especially anomalies that require
you to insert, modify, or delete different numbers of rows to maintain integrity, check for
multivalued dependencies. You are likely to encounter the multivalue, multicolumn prob-
lem when creating databases from nondatabase data. It is particularly common in spread-
sheet and text data files. Fortunately, the preferred two-table design is easy to create, and
the SQL for moving the data to the new design is easy to write.

A few years ago, people argued that only three phone number columns were
needed per person: Home, Office, and Fax. Later they said, “Well, OK, maybe
we need four: Home, Office, Fax, and Mobile.” Today, who would want to guess
the maximum number of phone numbers a person might have? Rather than
guess, just store Phone in a separate table; such a design will allow each per-
son to have from none to an unlimited number of phone numbers.

BTW

If you have a table in 4NF and add additional columns that are dependent upon
the original composite key in the 4NF table, the revised table must now be put
into BCNF. Consider the 4NF table PHONE_NUMBER:

PHONE_NUMBER (CustomerNumber, PhoneNumber)

If we now include a PhoneType column, which will be dependent on the com-
posite primary key, we now have a table that is in BCNF instead of 4NF:

PHONE_NUMBER (CustomerNumber, PhoneNumber, PhoneType)

Note that while we created this table to resolve a multivalue, multicolumn prob-
lems, that problem is still solved, and any repeating group problem has also
been resolved.

BTW

You will get a chance to work with multivalued dependencies and 4NF in
exercises 2.40 and 2.41. If you want to learn about them, see one of the more
advanced texts mentioned in the footnote on page 85. In general, you should
normalize your relationships so that they are either in BCNF or 4NF.

BTW

M02_KROE1533_08_SE_C02.indd 98 11/21/16 6:21 PM

Chapter 2 The Relational Model 99

NORMAL FORMS: ONE STEP AT A TIME
Instead of normalizing directly to BCNF, some people prefer to take a step-by-step approach, starting at 1NF
and then moving through successive normal forms until BCNF. Here is a brief discussion of the successive
normal forms, and how to reach them.

A table and a spreadsheet are very similar to one another in that we can think of both as having rows,
columns, and cells. Edgar Frank (E. F.) Codd, the originator of the relational model, defined three normal
forms in an early paper on the relational model. He defined any table that meets the definition of a relation (see
Figure 2-1 on page 71) as being in first normal form (1NF).

This definition, however, brings us back to the “To Key or Not to Key” discussion. Codd’s set of condi-
tions for a relation does not require a primary key, but one is clearly implied by the condition that all rows
must be unique. Thus, there are various opinions on whether a relation has to have a defined primary key to
be in 1NF.7

For practical purposes, we will define 1NF as it is used in this book as a table that:

1. Meets the set of conditions for a relation, and
2. Has a defined primary key, and
3. No repeating groups.

For 1NF, ask yourself: Does the table meet the definition in Figure 2-1 such that there are no repeating
groups, and does it have a defined primary key? If the answer is yes, then the table is in 1NF.

Codd pointed out that such tables can have anomalies (which are referred to elsewhere in the text as nor-
malization problems), and he defined a second normal form (2NF) that eliminated some of those anomalies.
A relation is in 2NF if and only if (1) it is in 1NF and (2) all nonkey attributes are determined by the entire
primary key. This means that if the primary key is a composite primary key, no nonkey attribute can be deter-
mined by an attribute or attributes that make up only part of the key. Thus, if you have a relation (A, B, N,
O, P) with the composite key (A, B), then none of the nonkey attributes—N, O, or P—can be determined by
just A or just B.

For 2NF, ask yourself: (1) Is the table in 1NF, and (2) are all nonkey attributes determined by only the
entire primary key rather than part of the primary key? If the answers are yes and yes, then the table is in 2NF.
Note that the problem solved by 2NF can only occur in a table with a composite primary key—if the table has
a single column primary key, then this problem cannot occur and if the table is in 1NF it will also be in 2NF.

However, the conditions of 2NF did not eliminate all the anomalies, so Codd defined third normal form
(3NF). A relation is in 3NF if and only if (1) it is in 2NF and (2) there are no nonkey attributes determined by
another nonkey attribute. Technically, the situation described by the preceding condition is called a transitive
dependency. Thus, in our relation (A, B, N, O, P) none of the nonkey attributes—N, O, or P—can be deter-
mined by N, O, or P or any combination of them.

For 3NF, ask yourself: (1) Is the table in 2NF, and (2) are there any nonkey attributes determined by an-
other nonkey attribute or attributes? If the answers are yes and no, then the table is in 3NF.

Not long after Codd published his paper on normal forms, it was pointed out to him that even relations
in 3NF could have anomalies. As a result, he and R. Boyce defined the Boyce-Codd Normal Form (BCNF),
which eliminated the anomalies that had been found with 3NF. As stated earlier, a relation is in BCNF if and
only if every determinant is a candidate key.

For BCNF, ask yourself: (1) Is the table in 3NF, and (2) are all determinants also candidate keys? If the
answers are yes and yes, then the table is in BCNF.

1NF through BCNF are summed up in a widely known phrase:

I swear to construct my tables so that all nonkey columns are dependent on the key, the whole key, and
nothing but the key, so help me Codd!

7For a review of some of the discussion, see the Wikipedia article First normal form at http://en.wikipedia.
org/wiki/First_normal_form.

M02_KROE1533_08_SE_C02.indd 99 11/21/16 6:21 PM

http://en.wikipedia.org/wiki/First_normal_form
http://en.wikipedia.org/wiki/First_normal_form

100 Part 1 Database Fundamentals

This phrase actually is a very good way to remember the order of the normal forms:

I swear to construct my tables so that all nonkey columns are dependent on

• the key, [This is 1NF]
• the whole key, [This is 2NF]
• and nothing but the key, [This is 3NF and BCNF]

so help me Codd!

Also note that all these definitions were made in such a way that a relation in a higher normal form is
defined to be in all lower normal forms. Thus, a relation in BCNF is automatically in 3NF, a relation in 3NF is
automatically in 2NF, and a relation in 2NF is automatically in 1NF.

There the matter rested until others discovered another kind of dependency, called a multivalued depen-
dency, which is discussed earlier in this chapter and is illustrated in exercises 2.40 and 2.41. To eliminate multi-
valued dependencies, fourth normal form (4NF) was defined. To put tables into 4NF, the initial table must be
split into tables such that the multiple values of any multivalued attribute are moved into the new tables. These
are then accessed via 1:N relationships between the original table and the tables holding the multiple values.

For 4NF, ask yourself: (1) Have the multiple values determined by any multivalued dependency been
moved into a separate table? If the answer is yes, then the tables are in 4NF.

A little later, another kind of anomaly involving tables that can be split apart but not correctly joined back
together was identified, and fifth normal form (5NF) was defined to eliminate that type of anomaly. A discus-
sion of 5NF is beyond the scope of this book.

You can see how the knowledge evolved: None of these normal forms was perfect—each one eliminated
certain anomalies, and none asserted that it was vulnerable to no anomaly at all. At this stage, in 1981, R. Fagin
took a different approach and asked why, rather than just chipping away at anomalies, we do not look for
conditions that would have to exist in order for a relation to have no anomalies at all. He did just that and, in
the process, defined domain/key normal form (DK/NF), and, no, that is not a typo—the name has the slash
between domain and key, while the acronym places it between DK and NF! Fagin proved that a relation in
DK/NF can have no anomalies, and he further proved that a relation that has no anomalies is also in DK/NF.

For some reason, DK/NF never caught the fancy of the general database population, but it should have.
As you can tell, no one should brag that their relations are in BCNF—instead we should all brag that our rela-
tions are in DK/NF. But for some reason (perhaps because there is fashion in database theory, just as there is
fashion in clothes), it just is not done.

You are probably wondering what the conditions of DK/NF are. Basically, DK/NF requires that all the
constraints on data values be logical implications of the definition of domains and keys. To the level of detail of
this text, and to the level of detail experienced by 99 percent of all database practitioners, this can be restated
as follows: Every determinant of a functional dependency must be a candidate key. This is exactly where we
started and what we have defined as BCNF.

You can broaden this statement a bit to include multivalued dependencies and say that every determinant
of a functional or multivalued dependency must be a candidate key. The trouble with this is that as soon as we
constrain a multivalued dependency in this way, it is transformed into a functional dependency. Our original
statement is fine. It is like saying that good health comes to overweight people who lose weight until they are
of an appropriate weight. As soon as they lose their excess weight, they are no longer overweight. Hence, good
health comes to people who have appropriate weight.

For DK/NF, ask yourself: Is the table in BCNF? For our purposes in this book, the two terms are synony-
mous, so if the answer is yes, we will consider that the table is also in DK/NF.

So, as Paul Harvey used to say, “Now you know the rest of the story.” Just ensure that every determinant of
a functional dependency is a candidate key (BCNF), and you can claim that your relations are fully normalized.
You do not want to say they are in DK/NF until you learn more about it, though, because someone might ask
you what that means. However, for most practical purposes your relations are in DK/NF as well.

Note: For more information on normal forms, see David M. Kroenke and David J. Auer, Database
Processing: Fundamentals, Design, and Implementation, 14th ed. (Upper Saddle River, NJ: Prentice Hall,
2016): 149–167.8

8For another view of normalization see Marc Rettig’s 5 Rules of Data Normalization presented in poster
form at http://www.databaseanswers.org/downloads/Marc_Rettig_5_Rules_of_Normalization_Poster.pdf.

M02_KROE1533_08_SE_C02.indd 100 11/21/16 6:21 PM

http://www.databaseanswers.org/downloads/Marc_Rettig_5_Rules_of_Normalization_Poster.pdf

Chapter 2 The Relational Model 101

(Continued)

Section 2
Working with Multiple Tables in Microsoft Access
In Chapter 1’s “The Access Workbench,” we learned how to create Microsoft Access 2016
databases, tables, forms, and reports. However, we were limited to working with only one
table. In this section, we will:

• See examples of the modification problems discussed in Chapters 1 and 2.
• Work with multiple tables.

We will continue to use the WMCRM database we created in Chapter 1’s section of
“The Access Workbench.” At this point, you have created and populated (which means
you have inserted the data into) the CONTACT table. Figure AW-2-1 shows the contacts
that have been made with each customer. Note that there is no customer with CustomerID
2—this is because we deleted and reentered the data for Jessica Christman.

THE ACCESS WORKBENCH

FIGURE AW-2-1

CONTACT Data

CustomerID Date Type Remarks
1 7/7/2016 Phone General interest in a Gaea.

1 7/7/2016 Email Sent general information.

1 7/12/2016 Phone Set up an appointment.

1 7/14/2016 Meeting Bought a HiStandard.

3 7/19/2016 Phone Interested in a SUHi, set up an appointment.

1 7/21/2016 Email Sent a standard follow-up message.

4 7/27/2016 Phone Interested in a HiStandard, set up an appointment.

3 7/27/2016 Meeting Bought a SUHi.

4 8/2/2016 Meeting Talked up to a HiLuxury. Customer bought one.

3 8/3/2016 Email Sent a standard follow-up message.

4 8/10/2016 Email Sent a standard follow-up message.

5 8/15/2016 Phone General Interest in a Gaea.

Possible Modification Problems in the WMCRM Database

We know from the topics covered in this chapter that we really need a separate table to
store the CONTACT data, but in order to illustrate the modification problems discussed in
Chapter 1 let us combine it into one table with the data already in CUSTOMER. This table
is available in the file WMCRM-Combined-Data.accdb, which is available at the Web site
for this book (www.pearsonhighered.com/kroenke). We will use this database to see modi-
fication problems in non-normalized tables and then build the correctly normalized tables
in the actual WMCRM database.

We will need to start Microsoft Access 2016, open the WMCRM-Combined-Data.
accdb file, and take a look at the WMCRM-Combined-Data database.

M02_KROE1533_08_SE_C02.indd 101 11/21/16 6:21 PM

http://www.pearsonhighered.com/kroenke

102 Part 1 Database Fundamentals

Opening an Existing Microsoft Access Database

1. Select the Start | All Apps | Access 2016 command, or click the Microsoft Access 2016
button on the Taskbar if you pinned it there. The Microsoft Access 2016 splash screen
window appears, as shown in Figure AW-2-2.

■ NOTE: The menu command or icon location used to start Microsoft Access 2016
may vary, depending on the operating system and how Microsoft Office is installed
on the computer you are using.

 2. Click the Open Other Files button on the Microsoft Access 2016 splash screen to open
the File | Open page, as shown in Figure AW-2-3.

 3. Click the This PC button to open the Open | This PC pane, as shown in Figure AW-2-4.
 4. Click the Browse button to open the Open dialog box, as shown in Figure AW-2-5.
 5. Browse to the WMCRM-Combined-Data.accdb file, click the file name to highlight it, and

then click the Open button.
 6. The Security Warning bar appears with the database. Click the Security Warning bar’s

Enable Content button to select this option.
 7. In the Navigation Pane, double-click the CUSTOMER_CONTACT table object to

open it.
 8. Click the Shutter Bar Open/Close button to minimize the Navigation Pane.
 9. The CUSTOMER_CONTACT table appears in Datasheet view, as shown in

Figure AW-2-6. Note that there is one line for each contact, which has resulted in the
duplication of basic customer data. For example, there are five sets of basic data for Ben
Griffey.

10. Close the CUSTOMER_CONTACT table by clicking the document window’s Close
button.

11. Click the Shutter Bar Open/Close button to expand the Navigation Pane.

The WMCRM file name
in the Recent list

Click the Open Other
Files button to display
the file menu Open page

FIGURE AW-2-2

The Microsoft Access 2016 Splash Screen

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 102 11/21/16 6:21 PM

Chapter 2 The Relational Model 103

Click the This PC button
to display the Open | This
PC pane

The File | Open page

The Open | Recent pane is
displayed with WMCRM
file name in the Recent
list—you can click a file
name to open the file

The File | MyPC page

Click the Browse button to
display the Open dialog box

The Open | My PC pane is
displayed with the
Documents folder
contents displayed—you
can click a file here or
use the Browse button to
search for files

FIGURE AW-2-3

The Microsoft Access 2016 File | Open Page

FIGURE AW-2-4

The Microsoft Access 2016 Open | This PC Pane

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 103 11/21/16 6:21 PM

104 Part 1 Database Fundamentals

Click the file name
to select the file

Click the Open button

FIGURE AW-2-5

The Open Dialog Box

FIGURE AW-2-6

The CUSTOMER_CONTACT Table

12. In the Navigation Pane, double-click the Customer Contact Data Input Form object to
open it. The Customer Contact Data Input Form appears, as shown in Figure AW-2-7.
Note that the form displays all the data for one record in the CUSTOMER_CONTACT
table.

13. Close the Customer Contact Data Input Form by clicking the document window’s Close
button.

14. In the Navigation Pane, double-click the Wallingford Motors Customer Contact Report
to open it.

15. Click the Shutter Bar Open/Close button to minimize the Navigation Pane.
16. The Wallingford Motors Customer Contact Report appears, as shown in Figure AW-2-8.

Note that the form displays the data for all contacts in the CUSTOMER_CONTACT

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 104 11/21/16 6:21 PM

Chapter 2 The Relational Model 105

All fields from the
CUSTOMER_CONTACT
table appear on the form

Form browsing buttons

FIGURE AW-2-7

The Customer Contact Data Input Form

table, sorted by CustomerNumber and Date. For example, all the contact data for Ben
Griffey (who has a CustomerID of 1) is grouped at the beginning of the report.

17. Close the Wallingford Motors Customer Contact Report by clicking the document win-
dow’s Close button.

18. Click the Shutter Bar Open/Close button to expand the Navigation Pane.
Now, assume that Ben Griffey has changed his email address from Ben.Griffey@some-

where.com to Ben.Griffey@elsewhere.com. In a well-formed relation, we would have to
make this change only once, but a quick examination of Figures AW-2-6 through AW-2-8
shows that Ben Griffey’s email address appears in multiple records. We therefore have to
change it in every record to avoid update problems. Unfortunately, it is easy to miss one or
more records, especially in large tables.

Updating Ben Griffey’s Email Address

1. In the Navigation Pane, double-click the Customer Contact Data Input Form object to
open it. Because Ben Griffey is the customer in the first record, his data is already in the
form.

2. Edit the Email address to read Ben.Griffey@elsewhere.com, as shown in Figure AW-2-9.
3. Click the Next Record button to move to the next record in the table. Again, the record

shows Ben Griffey’s data, so again edit the Email address to read Ben.Griffey@elsewhere.com.
4. Click the Next Record button to move to the next record in the table. For the third time,

the record shows Ben Griffey’s data, so again edit the Email address to read Ben.Griffey@
elsewhere.com.

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 105 11/21/16 6:21 PM

mailto:Ben.Griffey@some-where.com
mailto:Ben.Griffey@some-where.com
mailto:Ben.Griffey@elsewhere.com
mailto:Ben.Griffey@elsewhere.com
mailto:Ben.Griffey@elsewhere.com
mailto:Ben.Griffey@elsewhere.com
mailto:Ben.Griffey@elsewhere.com

106 Part 1 Database Fundamentals

Contact data for
each customer are
grouped together
and sorted by date

The email address has
been updated

The Next Record button

FIGURE AW-2-8

The Wallingford Motors Customer Contact Report

FIGURE AW-2-9

The Customer Contact Data Input Form with the Updated Email Address

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 106 11/21/16 6:21 PM

Chapter 2 The Relational Model 107

5. Click the Next Record button to move to the next record in the table. For the fourth time,
the record shows Ben Griffey’s data, so again edit the Email address to read Ben.Griffey@
elsewhere.com.

6. Click the Next Record button to move to the next record in the table. Finally, another cus-
tomer’s data (the data for Jessica Christman’s contact on 7/19/2016) appears in the form,
so we assume that we have made all the necessary updates to the database records.

7. Close the Customer Contact Data Input form by clicking the document window’s Close
button.

8. In the Navigation Pane, double-click the report Wallingford Motors Customer Contact
Report to open it.

9. Click the Shutter Bar Open/Close button to minimize the Navigation Pane.
10. The Wallingford Motors Customer Contact Report now looks as shown in

Figure AW-2-10. Note that the email addresses shown for Ben Griffey are inconsistent—
we missed one record when we updated the table, and now we have inconsistent data. A
modification error—in this case an update error—has occurred.

11. Close the Wallingford Motors Customer Contact Report by clicking the document win-
dow’s Close button.

12. Click the Shutter Bar Open/Close button to expand the Navigation Pane.

This simple example shows how easily modification problems can occur in tables that
are not normalized. With a set of well-formed, normalized tables, this problem would not
have occurred.

Closing the WMCRM-Combined-Data Database
1. Click the Close button to close the database and exit Microsoft Access.

Working with Multiple Tables

The table structure for the CUSTOMER_CONTACT table in the WMCRM-Combined-
Data database is:

CUSTOMER_CONTACT (CustomerID, LastName, FirstName, Address, City, State,
ZIP, Phone, Fax, EmailAddress, Date, Type, Remarks)

A modification
problem has
occurred. Not all
records were
updated with the
new email address,
and the database
records are now
inconsistent

FIGURE AW-2-10

The Updated Wallingford Motors Customer Contact Report

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 107 11/21/16 6:21 PM

mailto:Ben.Griffey@elsewhere.com
mailto:Ben.Griffey@elsewhere.com

108 Part 1 Database Fundamentals

Applying the normalization process discussed in this chapter, we will have the following set
of tables:

CUSTOMER (CustomerID, LastName, FirstName, Address, City, State, ZIP, Phone,
Fax, EmailAddress)

CONTACT (ContactID, CustomerID, ContactDate, ContactType, Remarks)

with the referential integrity constraint:

CustomerID in CONTACT must exist in CustomerID in CUSTOMER

Note that we have modified a couple of column names in the CONTACT table—we are us-
ing ContactDate instead of Date and ContactType instead of Type. We will discuss the reason
for this later in this section. Our task now is to build and populate the CONTACT table and
then to establish the relationship and referential integrity constraint between the two tables.

First, we need to create and populate (insert data into) the CONTACT table,
which will contain the columns and column characteristics shown in the table in
Figure AW-2-11.9 The CustomerID column appears again in CONTACT, this time desig-
nated as a foreign key. As discussed in this chapter, the term foreign key designates this
column as the link to the CUSTOMER table. The value in the CustomerID column of
CONTACT tells which customer was contacted. All we have to do is look up the value of
CustomerID in the CUSTOMER table.

Note that when we build the CONTACT table there is no “foreign key” setting. We
will set up the database relationship between CUSTOMER and CONTACT after we have
finished building the CONTACT table.

Note the following:

• Some new data types are being used: Number, Date/Time, and Long Text.
• CustomerID must be set as a Number data type and specifically as a Long Integer data

type to match the data type Microsoft Access creates for the AutoNumber data type in the
CUSTOMER table.

• The Type column has only four allowed values: Phone, Fax, Email, and Meeting. For
now, we can simply input only these data values.You will learn how to enforce the data
restriction for this column in Chapter 3.

9Although we are using it for simplicity in this example, a column such as Remarks (also often called
Comments or Notes) can cause problems in a database. For a complete discussion, see David M. Kroenke
and David J. Auer, Database Processing: Fundamentals, Design, and Implementation, 14th ed. (Upper
Saddle River, NJ: Prentice Hall, 2016).

FIGURE AW-2-11

Database Column Characteristics for the WMCRM CONTACT Table

Column Name Type Key Required Remarks
ContactID AutoNumber Primary Key Yes Surrogate Key

CustomerID Number Foreign Key Yes Long Integer

ContactDate Date/Time No Yes Short Date

ContactType Short Text (10) No Yes Allowed values are Phone, Fax,
Email, and Meeting

Remarks Long Text No No

M02_KROE1533_08_SE_C02.indd 108 11/21/16 6:21 PM

Chapter 2 The Relational Model 109

Creating the CONTACT Table

1. Open Microsoft Access 2016.
2. In the Recent list of database files, click WMCRM.accdb. The database file opens in

Microsoft Access.
3. Click the Create command tab.
4. Click the Table Design button.
5. The Table1 tabbed document window is displayed in Design view. Note that along with

the Table1 window a contextual tab named Table Tools is displayed and that this tab adds
a new command tab and ribbon, named Design, to the set of command tabs displayed.

6. Using the steps we followed to create the CUSTOMER table in Chapter 1’s section of
“The Access Workbench,” begin to create the CONTACT table. The following steps de-
tail only new information that you need to know to complete the CONTACT table.

■ NOTE: When creating the CONTACT table, be sure to enter appropriate com-
ments in the Description column.

 7. When creating the CustomerID column, set the data type to Number. Note that the de-
fault Field Size setting for Number is Long Integer, so no change is necessary. Be sure to
set the Required property to Yes.

 8. After creating the ContactID column, set it as the primary key of the table.
 9. When creating the ContactDate column, start by using the column name Date. As soon

as you enter the column name and try to move to the Data Type column, Microsoft
Access displays a dialog box, warning you that Date is a reserved word, as shown in
Figure AW-2-12. Click the Cancel button, and change the column name to ContactDate.

■ NOTE: Normally, you should avoid reserved words such as Date and Time.
Generally, column names such as ContactDate are preferred, both to avoid reserved
words and to clarify exactly which date you are referring to, and that is why we
changed the column names in the CONTACT table.

The column name Date
is a reserved work—do
not use reserved words
as column names

Click the Cancel button
and revise the column name

FIGURE AW-2-12

The Reserved Word Warning

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 109 11/21/16 6:21 PM

110 Part 1 Database Fundamentals

10. When creating the ContactDate column, set the data type to Date/Time and set the format
to Short Date, as shown in Figure AW-2-13. Be sure to set the Required property to Yes.

11. To name and save the CONTACT table, click the Save button in the Quick Access Toolbar.
12. Type the table name CONTACT into the Save As dialog box text box, and then click

the OK button. The table is named and saved, and it now appears with the table name
CONTACT.

13. To close the CONTACT table, click the Close button in the upper-right corner of the
tabbed document window. The CONTACT table now appears as a table object in the
Navigation Pane.

Creating Relationships Between Tables

In Microsoft Access, you build relationships between tables by using the Relationships
window, which you access by using the Database Tools | Relationships command. After a
relationship is created in the Relationships window, referential integrity constraints are set
in the Edit Relationships dialog box within that window by using the Enforce Referential
Integrity check box.

Creating the Relationship Between the CUSTOMER and CONTACT Tables

1. Click the Database Tools command tab to display the Database Tools command groups, as
shown in Figure AW-2-14.

2. Click the Relationships button in the Relationships group. As shown in Figure AW-2-15,
the Relationships tabbed document window appears, together with the Show Table dialog
box. Note that along with the Relationships window, a contextual tab named Relationship
Tools is displayed and that this tab adds a new command tab named Design to the set of
command tabs displayed.

Select the Short Date date
format from the drop-down list

FIGURE AW-2-13

Setting the Date Format

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 110 11/21/16 6:21 PM

Chapter 2 The Relational Model 111

3. In the Show Table dialog box, the CONTACT table is already selected. Click the Add but-
ton to add CONTACT to the Relationships window.

4. In the Show Table dialog box, click the CUSTOMER table to select it. Click the Add but-
ton to add CUSTOMER to the Relationships window.

5. In the Show Table dialog box, click the Close button to close the dialog box.
6. Rearrange and resize the table objects in the Relationships window using standard Windows

drag-and-drop techniques. Rearrange the CUSTOMER and CONTACT table objects until

The Database Tools
command tab

The Relationships
button

The Relationships
command group

The Relationship Tools
contextual command tab

The Relationships tabbed
document window

The Show Table dialog box

The Design command tab

Select a table name and click
the Add button to add the table
to the Relationships window

The Add button

FIGURE AW-2-14

The Database Tools Command Tab

FIGURE AW-2-15

The Relationships Window

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 111 11/21/16 6:21 PM

112 Part 1 Database Fundamentals

The table objects have been
enlarged and rearranged into
the arrangement shown here

Click, drag, and drop the
CUSTOMER CustomerID
field onto the CONTACT
CustomerID field

FIGURE AW-2-16

The Table Objects in the Relationships Window

they appear as shown in Figure AW-2-16. Now we are ready to create the relationship be-
tween the tables.

 ■ NOTE: A formal description of how to create a relationship between two tables is
“In the Relationships window, drag a primary key column and drop it on top of the
corresponding foreign key column.” It is easier to understand this after you have
actually done it.

 7. Click and hold the column name CustomerID in the CUSTOMER table and then drag it
over the column name CustomerID in the CONTACT table. Release the mouse button,
and the Edit Relationships dialog box appears, as shown in Figure AW-2-17.

 ■ NOTE: In CUSTOMER, CustomerID is the primary key, and in CONTACT,
CustomerID is the foreign key.

 8. Click the Enforce Referential Integrity check box.
 9. Click the Create button to create the relationship between CUSTOMER and CONTACT.

The relationship between the tables now appears in the Relationships window, as shown in
Figure AW-2-18.

10. To close the Relationships window, click the Close button in the upper-right corner of
the document window. A Microsoft Access warning dialog box appears, asking whether
you want to save changes to the layout of relationships. Click the Yes button to save the
changes and close the window.

At this point, we need to add data on customer contacts to the CONTACT table.
Using the CONTACT table in Datasheet view, as discussed earlier, we enter the data shown
in Figure AW-2-1 into the CONTACT table. Again, note that there is no customer with
CustomerID of 2—this is because we deleted and reentered the data for Jessica Christman
in Chapter 1’s section of “The Access Workbench.” Also note that because referential

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 112 11/21/16 6:21 PM

Chapter 2 The Relational Model 113

The Edit Relationships dialog box

Click the Enforce Referential
Integrity check box and then
click the Create button to
create the relationship

The new 1:N relationship
now appears in the
Relationships window
diagram—note that the line
connects the related fields,
that the 1 indicates the one
side of the 1:N relationship
while the infinity symbol
indicates the many side

FIGURE AW-2-17

The Edit Relationships Dialog Box

FIGURE AW-2-18

The Completed Relationship

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 113 11/21/16 6:21 PM

114 Part 1 Database Fundamentals

integrity is enabled, we cannot enter a CustomerID that does not already exist in the
CUSTOMER table. The CONTACT table with the data inserted looks as shown in
Figure AW-2-19. Be sure to close the table after the data have been entered.

Resolving the Multivalue, Multicolumn Problem in the
CUSTOMER Table

Wallingford Motors customer Ben Griffey has just called give the sales staff his new cell
phone number. This phone number does not replace the current phone number we have
for Ben—he has now told us that that is his home phone—so we want to add the new cell
phone number to his record in the CUSTOMER table. However, as can be seen in
Figure AW-2-20, we already have his home phone number in the table. So, where do we
put the cell phone number?

Do we add another column labeled CellPhone? If we do, we will create the multivalue,
multicolumn problem discussed in Chapter 2. If fact, this problem already exists in the table
because we already have multiple columns to store phone numbers: Phone and Fax!

As noted in the discussion of normal forms and normalization, the solution to the mul-
tivalue, multicolumn problem is to create a new table in 4NF to hold the multivalue data.

FIGURE AW-2-19

Data in the CONTACT Table

FIGURE AW-2-20

Data in the WCRM CUSTOMER Table

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 114 11/21/16 6:21 PM

Chapter 2 The Relational Model 115

This means we should create the following table: we created a data entry form for the
CUSTOMER table. Now we will create a Microsoft Access form that will let us work with
the combined data from both tables.

PHONE_NUMBER (CustomerID, PhoneNumber)

with the referential integrity constraint:

CustomerID in PHONE_NUMBER must exist in CustomerID in CUSTOMER

Note that in a 4NF table, the two columns together form a composite primary key.
However, it makes sense to add a column named PhoneType so that we know which phone
number is which. This puts our new table into BCNF instead of 4NF, but still solves the
problem and gives us:

PHONE_NUMBER (CustomerID, PhoneNumber, PhoneType)

with the referential integrity constraint:

CustomerID in PHONE_NUMBER must exist in CustomerID in CUSTOMER

We must then remove the Phone and Fax columns from CUSTOMER, and our final
schema is:

CUSTOMER (CustomerID, LastName, FirstName, Address, City, State, ZIP,
EmailAddress)

CONTACT (ContactID, CustomerID, ContactDate, ContactType, Remarks)
PHONE_NUMBER (CustomerID, PhoneNumber, PhoneType)

with the referential integrity constraint:

CustomerID in CONTACT must exist in CustomerID in CUSTOMER
CustomerID in PHONE_NUMBER must exist in CustomerID in CUSTOMER

The column characteristics for the new PHONE_NUMBER table are shown in
Figure AW-2-21, and the WMCRM PHONE_NUMBER table data (including Ben’s new
cell phone number) are shown in Figure AW-2-22. Using the techniques we have covered in
this section of “The Access Workbench”, we need to create the PHONE_NUMBER table,

FIGURE AW-2-21

Database Column Characteristics for the WMCRM PHONE_NUMBER Table

PHONE_NUMBER
Column Name Type Key Required Remarks
CustomerID Number Primary Key,

Foreign Key
Yes Long Integer

PhoneNumber Short Text (12) Primary Key Yes

PhoneType Short Text (25) No No

(Continued)

M02_KROE1533_08_SE_C02.indd 115 11/21/16 6:21 PM

116 Part 1 Database Fundamentals

create the foreign key link to the CUSTOMER table, populate the PHONE_NUMBER ta-
ble, and finally drop the Phone and Fax columns from the CUSTOMER table.

Creating, Linking and Populating the PHONE_NUMBER Table

1. Using the techniques you have learned to create a table in Microsoft Access 2016, create the
PHONE_NUMBER table as specified in Figure AW-2-21.

2. The only new step here is setting a composite primary key. To do this select the CustomerID
row as you normally would to set a primary key. Then hold down the CRTL key and click
the PhoneNumber row. When both rows are now selected, as shown in Figure AW-2-23,
click the Primary Key button to set the composite primary key.

FIGURE AW-2-22

WMCRM PHONE_NUMBER Table Data

CustomerID PhoneNumber PhoneType
1 206-456-2345 Home

1 206-765-5678 Cell

3 206-467-3456

4 206-478-4567

4 206-478-9998 Fax

5 425-354-8765

The Table Tools contextual
command tab

The Primary Key button

Click here first to select the
CustomerID field

The Design command tab

Hold down the CTRL key and
click here to select the
additional PhoneNumber
field─note the darker grey
color that indicates that both
rows are selected

FIGURE AW-2-23

Setting the Composite Primary Key in the PHONE_NUMBER Table

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 116 11/21/16 6:21 PM

Chapter 2 The Relational Model 117

3. Save the new table as PHONE_NUMBER.
4. Using the techniques you have learned to link two tables by using a foreign key, create a

relationship to link the PHONE_NUMBER table CustomerID column to the CUSTOMER
table CustomerID column. Enforce referential integrity on the relationship. When you are
done, the relationships between the tables will appear as shown in in Figure AW-2-24.

5. Using the techniques you have learned, populate the PHONE_NUMBER table with the
data shown in Figure AW-2-22. When you are done, the PHONE_NUMBER table data will
appear as shown in in Figure AW-2-25.

6. To remove the Phone column from the CUSTOMER table, first open the CUSTOMER
table in Design view. Next, select the row that contains the Phone column specifica-
tions by right-clicking on the row boundary. This also opens the shortcut menu shown in
Figure AW-2-26. Click the Delete Rows command to delete the Phone columns. A warn-
ing dialog box will be displayed—click the Yes button in this dialog box to confirm the
deletion.

The 1:N relationship between
CUSTOMER and PHONE_NUMBER

Referential integrity is
enforced─values inserted into
PHONE_NUMBER.CustomerID
must already exist in
CUSTOMER.CustomerID

FIGURE AW-2-24

The WMCRM Relationships with the PHONE_NUMBER Table

FIGURE AW-2-25

Data in the WMCRM
PHONE_NUMBER Table

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 117 11/21/16 6:21 PM

118 Part 1 Database Fundamentals

7. To remove the Fax column from the CUSTOMER table, repeat the process in step 6
(except for opening the CUSTOMER table—it is already open in Design view).

8. Save the changes to the CUSTOMER table, and switch to Datasheet view. The data in the
CUSTOMER table now appears as shown in Figure AW-2-27.

9. Close the CUSTOMER table.

Closing the Database and Exiting Microsoft Access

We have finished the work we need to do in this chapter’s “The Access Workbench.” As
usual, we finish by closing the database and Microsoft Access.

Closing the WMCRM Database and Exiting Microsoft Access
1. To close the WMCRM database and exit Microsoft Access 2016, click the Close button in

the upper-right corner of the Microsoft Access 2016 window.

The Table Tools contextual
command tab

Right-click here first to select
the Phone field and display
the shortcut menu

The Design command tab

Click Delete Rows
command─when the warning
dialog box is displayed to
confirm the deletion, click the
Yes button

FIGURE AW-2-26

Deleting the Phone Column in the WMCRM CUSTOMER Table

FIGURE AW-2-27

Data in the Altered WMCRM CUSTOMER Table

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M02_KROE1533_08_SE_C02.indd 118 11/21/16 6:21 PM

Chapter 2 The Relational Model 119

SUMMARY

The relational model is the most important standard in database processing today. It was
first published by E. F. Codd in 1970. Today, it is used for the design and implementation
of almost every commercial database.

An entity is something of importance to a user that needs to be represented in a data-
base. A relation is a two-dimensional table that has the characteristics listed in Figure 2-1.
In this book, and in the database world in general, the term table is used synonymously
with the term relation. Three sets of terminology are used for relational structures. The
terms table, row, and column are used most commonly, but file, record, and field are some-
times used in traditional data processing. Theorists also use the terms relation, tuple, and
attribute for the same three constructs. Sometimes these terms are mixed and matched.
Strictly speaking, a relation may not have duplicate rows; however, sometimes this condi-
tion is relaxed because eliminating duplicates can be a time-consuming process.

A key is one or more columns of a relation that is used to identify a row. A unique key
identifies a single row; a nonunique key identifies several rows. A composite key is a key that
has two or more attributes. A relation has one primary key, which must be a unique key. A
relation may also have additional unique keys, called candidate keys. A primary key is used
to represent the table in relationships, and many DBMS products use values of the primary
key to organize table storage. In addition, an index normally is constructed to provide fast
access via primary key values. An ideal primary key is short and numeric and never changes.

A surrogate key is a unique numeric value that is included in a relation to serve as the
primary key. Surrogate key values have no meaning to the user and are normally hidden on
forms, query results, and reports.

A foreign key is an attribute that is placed in a relation to represent a relationship. A
foreign key is the primary key of a table that is different from (foreign to) the table in which
it is placed. Primary and foreign keys may have different names, but they must use the same
data types and sets of values. A referential integrity constraint specifies that the values of a
foreign key be present in the primary key.

A null value occurs when no value has been given to an attribute. The problem with
a null value is that its meaning is ambiguous. It can mean that no value is appropriate,
that a value is appropriate but has not yet been chosen, or that a value is appropriate and
has been chosen but is unknown to the user. It is possible to eliminate null values by
requiring attribute values. Another problem with null values will be discussed in the
Chapter 3.

A functional dependency occurs when the value of one attribute (or set of attributes)
determines the value of a second attribute (or set of attributes). The attribute on the left
side of a functional dependency is called the determinant. One way to view the purpose of
a relation is to say that the relation exists to store instances of functional dependencies.
Another way to define a primary (and candidate) key is to say that such a key is an attribute
that functionally determines all the other attributes in a relation.

Normalization is the process of evaluating a relation and, when necessary, breaking the
relation into two or more relations that are better designed and said to be well formed.
According to normalization theory, a relation is poorly structured if it has a functional
dependency that does not involve the primary key. Specifically, in a well-formed relation,
every determinant is a candidate key.

The multivalue, multicolumn design sets a fixed number of repeating values and stores
each in a column of its own (e.g., storing home phone and cell phone numbers in separate
columns). Such a design limits the number of items allowed and results in awkward
Structured Query Language (SQL) query statements (SQL queries are discussed in
Chapter 3). A better design results from putting multiple values in a table of their own.

A process for normalizing relations into BCNF is shown on page 89, and a discussion
of multivalued dependencies and 4NF is found on pages 96–98. According to this process,
relations that have normalization problems are divided into two or more relations that do

M02_KROE1533_08_SE_C02.indd 119 11/21/16 6:21 PM

120 Part 1 Database Fundamentals

not have such problems. Foreign keys are established between the old and new relations,
and referential integrity constraints are created. For reference, a brief discussion of all nor-
mal forms is presented on pages 99–100.

KEY TERMS

alternate key
attribute
AUTO_INCREMENT
Boyce-Codd Normal Form (BCNF)
candidate key
column
composite key
database integrity
database schema
determinant
domain
domain integrity constraint
domain key/normal form (DK/NF)
entity
entity integrity constraint
field
file

fifth normal form (5NF)
first normal form (1NF)
fourth normal form (4NF)
foreign key
functional dependency
functionally dependent
identity
identity increment
identity seed
is identity
key
multivalue, multicolumn problem
multivalued dependency
nonunique key
normalization
normalization process
null value

primary key
record
referential integrity constraint
relation
repeating groups
row
second normal form (2NF)
SEQUENCE
surrogate key
synonyms
table
third normal form (3NF)
transitive dependency
tuple
unique key
well-formed relation

REVIEW QUESTIONS

2.1 Why is the relational model important?

2.2 Define the term entity, and give an example of an entity (other than the one from
this chapter).

2.3 List the characteristics a table must have to be considered a relation. Define the
term domain, and explain the significance of the domain integrity constraint to a
relation.

2.4 Give an example of a relation (other than one from this chapter).

2.5 Give an example of a table that is not a relation (other than one from this chapter).

2.6 Under what circumstances can an attribute of a relation be of variable length?

2.7 Explain the use of the terms file, record, and field.

2.8 Explain the use of the terms relation, tuple, and attribute.

2.9 Under what circumstances can a relation have duplicate rows?

2.10 Define the term unique key and give an example.

2.11 Define the term nonunique key and give an example.

2.12 Give an example of a relation with a unique composite key.

2.13 Define the terms candidate key and primary key. Explain the difference between
a primary key and a candidate key. Explain the significance of the entity integrity
constraint to a primary key

2.14 Describe four uses of a primary key.

2.15 What is a surrogate key, and under what circumstances would you use one?

2.16 How do surrogate keys obtain their values?

M02_KROE1533_08_SE_C02.indd 120 11/21/16 6:22 PM

Chapter 2 The Relational Model 121

2.17 Why are the values of surrogate keys normally hidden from users on forms, queries,
and reports?

2.18 Explain the term foreign key, and give an example.

2.19 Explain how primary keys and foreign keys are denoted in this book.

2.20 Define the term referential integrity constraint, and give an example of one. How
does the referential integrity constraint contribute to database integrity?

 2.21 Explain three possible interpretations of a null value.

 2.22 Give an example of a null value (other than one from this chapter), and explain
each of the three possible interpretations for that value.

 2.23 Define the terms functional dependency and determinant using an example not from
this book.

 2.24 In the following equation, name the functional dependency and identify the
determinant(s):

Area 5 Length 3 Width
2.25 Explain the meaning of the following expression:

A S (B, C)
Given this expression, tell if it is also true that:

A S B
and:

A S C
2.26 Explain the meaning of the following expression:

(D, E) S F
Given this expression, tell if it is also true that:

D S F
and:

E S F
2.27 Explain the differences in your answers to questions 2.25 and 2.26.

2.28 Define the term primary key in terms of functional dependencies.

2.29 If you assume that a relation has no duplicate data, how do you know there is al-
ways at least one primary key?

2.30 How does your answer to question 2.29 change if you allow a relation to have du-
plicate data?

2.31 In your own words, describe the nature and purpose of the normalization process.

2.32 Examine the data in the Veterinary Office List—Version One in Figure 1-34 (see
page 63), and state assumptions about functional dependencies in that table. What
is the danger of making such conclusions on the basis of sample data?

 2.33 Using the assumptions you stated in your answer to question 2.32, what are the
determinants of this relation? What attribute(s) can be the primary key of this
relation?

 2.34 Describe a modification problem that occurs when changing data in the relation in
question 2.32 and a second modification problem that occurs when deleting data in
this relation.

 2.35 Examine the data in the Veterinary Office List—Version Two in Figure 1-35 (see
page 63), and state assumptions about functional dependencies in that table.

 2.36 Using the assumptions you stated in your answer to question 2.35, what are the
determinants of this relation? What attribute(s) can be the primary key of this
relation?

M02_KROE1533_08_SE_C02.indd 121 11/21/16 6:22 PM

122 Part 1 Database Fundamentals

2.37 Explain a modification problem that occurs when changing data in the relation in
question 2.35 and a second modification problem that occurs when deleting data in
this relation.

EXERCISES

 2.38 Apply the normalization process to the Veterinary Office List—Version One rela-
tion shown in Figure 1-34 (see page 63) to develop a set of normalized relations.
Show the results of each of the steps in the normalization process.

 2.39 Apply the normalization process to the Veterinary Office List—Version Two rela-
tion shown in Figure 1-35 (see page 63), to develop a set of normalized relations.
Show the results of each of the steps in the normalization process.

 2.40 What is the multivalue, multicolumn problem? What is a multivalued dependency,
and how is it resolved by 4NF? To answer these questions, consider the following
relation:

 STUDENT(StudentNumber, StudentName, SiblingName, Major)

 Assume that the values of SiblingName are the names of all of a given student’s
brothers and sisters; also assume that students have at most one major.

A. Define and discuss the multivalue, multicolumn problem. Define and discuss a
multivalued dependency.

B. Show an example of this relation for two students, one of whom has three sib-
lings and the other of whom has only two siblings.

C. List the candidate keys in this relation.

D. State the functional dependencies in this relation.

E. Explain why this relation does not meet the relational design criteria set out in
this chapter (that is, why this is not a well-formed relation).

F. Define and discuss 4NF and how 4NF can be used to allow a set of well-
formed relations.

G. Divide this relation into a set of relations that meet the relational design criteria
(that is, that are well formed). Specify the type of final normal form for each
the final relations.

 2.41 What is the multivalue, multicolumn problem? What is a multivalued dependency,
and how is it resolved by 4NF? To answer these questions, alter exercise 2.40 to
allow students to have multiple majors. In this case, the relational structure is:

 STUDENT (StudentNumber, StudentName, SiblingName, Major)

A. Define and discuss the multivalue, multicolumn problem. Define and discuss a
multivalued dependency.

B. Show an example of this relation for two students, one of whom has three
siblings and the other of whom has one sibling. Assume that each student has
a single major.

C. Show the data changes necessary to add a second major for only the first
student.

M02_KROE1533_08_SE_C02.indd 122 11/21/16 6:22 PM

Chapter 2 The Relational Model 123

D. Based on your answer to part C, show the data changes necessary to add a sec-
ond major for the second student.

E. Explain the differences in your answers to parts C and D. Comment on the
desirability of this situation.

F. Define and discuss 4NF, and how 4NF can be used to allow a set of well-
formed relations.

G. Divide this relation into a set of well-formed relations. Specify the type of nor-
mal form for each of the final relations.

 2.42 The text states that you can argue that “the only reason for having relations is to
store instances of functional dependencies.” Explain, in your own words, what this
means.

 2.43 Consider a table named ORDER_ITEM, with data as shown in Figure 2-26. The
schema for ORDER_ITEM is:

ORDER_ITEM (OrderNumber, SKU, Quantity, Price)

where SKU is a “Stock Keeping Unit” number, which is similar to a part number.
Here it indicates which product was sold on each line of the table. Note that one
OrderNumber must have at least one SKU associated with it and may have several.
Use this table and the detailed discussion of normal forms on pages 99–100 to
answer the following questions.

A. Define 1NF. Is ORDER_ITEM in 1NF? If not, why not, and what would have
to be done to put it into 1NF? Make any changes necessary to put ORDER_
ITEM into 1NF. If this step requires you to create an additional table, make
sure that the new table is also in 1NF.

B. Define 2NF. Now that ORDER_ITEM is in 1NF, is it also in 2NF? If not, why
not, and what would have to be done to put it into 2NF? Make any changes
necessary to put ORDER_ITEM into 2NF. If this step requires you to create
an additional table, make sure that the new table is also in 2NF.

C. Define 3NF. Now that ORDER_ITEM is in 2NF, is it also in 3NF? If not, why
not, and what would have to be done to put it into 3NF? Make any changes
necessary to put ORDER_ITEM into 3NF. If this step requires you to create
an additional table, make sure that the new table and any other tables created
in previous steps are also in 3NF.

D. Define BCNF. Now that ORDER_ITEM is in 3NF, is it also in BCNF? If not,
why not, and what would have to be done to put it into BCNF? Make any
changes necessary to put ORDER_ITEM into BCNF. If this step requires you
to create an additional table, make sure that the new table and any other tables
created in previous steps are also in BCNF.

FIGURE 2-26

The ORDER_ITEM Table

M02_KROE1533_08_SE_C02.indd 123 11/21/16 6:22 PM

124 Part 1 Database Fundamentals

ACCESS WORKBENCH

Key Terms
Edit Relationships dialog box
Enforce Referential Integrity check box

Relationships window

Exercises
In the “Access Workbench Exercises” in Chapter 1, we created a database for the
Wedgewood Pacific (WP) company of Seattle, Washington, and created and populated the
EMPLOYEE table. In this exercise, we will build the rest of the tables needed for the data-
base, create the referential integrity constraints between them, and populate them.

The full set of normalized tables for the WP database is as follows:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber,
DepartmentPhone)

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Position,
Supervisor, OfficePhone, EmailAddress)

PROJECT (ProjectID, ProjectName, Department, MaxHours, StartDate, EndDate)
ASSIGNMENT (ProjectID, EmployeeNumber, HoursWorked)

The primary key of DEPARTMENT is DepartmentName, the primary key of EMPLOYEE
is EmployeeNumber, and the primary key of PROJECT is ProjectID. Note that the
EMPLOYEE table is the same as the table we have created, except that Department is now
a foreign key. In EMPLOYEE and PROJECT, Department is a foreign key that references
DepartmentName in DEPARTMENT. Note that a foreign key does not need to have the
same name as the primary key to which it refers. The primary key of ASSIGNMENT is the
composite (ProjectID, EmployeeNumber). ProjectID is also a foreign key that references
ProjectID in PROJECT, and EmployeeNumber is a foreign key that references
EmployeeNumber in EMPLOYEE.

The referential integrity constraints are:

Department in EMPLOYEE must exist in DepartmentName in DEPARTMENT
Department in PROJECT must exist in DepartmentName in DEPARTMENT
ProjectID in ASSIGNMENT must exist in ProjectID in PROJECT
EmployeeNumber in ASSIGNMENT must exist in EmployeeNumber in

EMPLOYEE

A. Figure 2-27 shows the column characteristics for the WP DEPARTMENT
table. Using the column characteristics, create the DEPARTMENT table in the
WP.accdb database.

B. For the DEPARTMENT table, create a data input form named WP Department
Data Form. Make any necessary adjustments to the form so that all data display
properly. Use this form to enter into your DEPARTMENT table the data in the
DEPARTMENT table shown in Figure 2-28.

C. Create the relationship and referential integrity constraint between
DEPARTMENT and EMPLOYEE. Enable enforcing of referential integrity and
enable cascading of data updates, but do not enable cascading of deletions.

M02_KROE1533_08_SE_C02.indd 124 11/21/16 6:22 PM

Chapter 2 The Relational Model 125

D. Figure 2-29 shows the column characteristics for the WP PROJECT table. Using
the column characteristics, create the PROJECT table in the WP.accdb database.

E. Create the relationship and referential integrity constraint between
DEPARTMENT and PROJECT. Enable enforcing of referential integrity and en-
able cascading of data updates, but do not enable cascading of deletions.

F. For the PROJECT table, create a data input form named WP Project Data Form.
Make any necessary adjustments to the form so that all data display properly.
Use this form to enter into your PROJECT table the data in the PROJECT table
shown in Figure 2-30.

FIGURE 2-27

Column Characteristics for the WP DEPARTMENT Table

Column Name Type Key Required Remarks
DepartmentName Short Text (35) Primary Key Yes

BudgetCode Short Text (30) No Yes

OfficeNumber Short Text (15) No Yes

DepartmentPhone Short Text (12) No Yes

FIGURE 2-28

WP DEPARTMENT Table Data

DepartmentName BudgetCode OfficeNumber DepartmentPhone
Administration BC-100-10 BLDG01-210 360-285-8100

Legal BC-200-10 BLDG01-220 360-285-8200

Human Resources BC-300-10 BLDG01-230 360-285-8300

Finance BC-400-10 BLDG01-110 360-285-8400

Accounting BC-500-10 BLDG01-120 360-285-8405

Sales and Marketing BC-600-10 BLDG01-250 360-285-8500

InfoSystems BC-700-10 BLDG02-210 360-285-8600

Research and Development BC-800-10 BLDG01-250 360-285-8700

Production BC-900-10 BLDG01-110 360-285-8800

FIGURE 2-29

Column Characteristics for the WP PROJECT Table

Column Name Type Key Required Remarks
ProjectID Number Primary Key Yes Long Integer

ProjectName Short Text (50) No Yes

Department Short Text (35) Foreign Key Yes

MaxHours Number No Yes Double, fixed, 2 decimal places

StartDate Date/Time No No Medium date

EndDate Date/Time No No Medium date

(Continued)

M02_KROE1533_08_SE_C02.indd 125 11/21/16 6:22 PM

126 Part 1 Database Fundamentals

FIGURE 2-30

WP PROJECT Table Data

ProjectID ProjectName Department MaxHours StartDate EndDate
1000 2017 Q3 Production Plan Production 100.00 05/10/17 06/15/17

1100 2017 Q3 Marketing Plan Sales and Marketing 135.00 05/10/17 06/15/17

1200 2017 Q3 Portfolio Analysis Finance 120.00 07/05/17 07/25/17

1300 2017 Q3 Tax Preparation Accounting 145 00 08/10/17 10/15/17

1400 2017 Q4 Production Plan Production 100.00 08/10/17 09/15/17

1500 2017 Q4 Marketing Plan Sales and Marketing 135.00 08/10/17 09/15/17

1600 2017 Q4 Portfolio Analysis Finance 140 00 10/05/17

G. When creating and populating the DEPARTMENT table, the data were entered
into the table before the referential integrity constraint with EMPLOYEE was
created, but when creating and populating the PROJECT table the referential in-
tegrity constraint was created before the data were entered. Why did the order of
the steps differ? Which order is normally the correct order to use?

H. Figure 2-31 shows the column characteristics for the WP ASSIGNMENT
table. Using the column characteristics, create the ASSIGNMENT table in the
WP.accdb database.

I. Create the relationship and referential integrity constraint between
ASSIGNMENT and PROJECT and between ASSIGNMENT and EMPLOYEE.
When creating both relations, enable enforcing of referential integrity, but do not
enable cascading of data updates or cascading of data from deleted records.

J. For the ASSIGNMENT table, create a data input form named WP Assignment
Data Form. Make any necessary adjustments to the form so that all data display
properly. Use this form to enter into your ASSIGNMENT table the data in the
ASSIGNMENT table shown in Figure 2-32.

K. When creating the relationships between the database tables, we allowed the cas-
cading of data changes between some tables but not between others. (Cascading
means that changes to data in one table are also made to the other table in the
relationship.) The value of a primary key changes in this case, and that change
is then made in the values of the matching foreign key. Why did we enable

FIGURE 2-31

Column Characteristics for the WP ASSIGNMENT Table

Column Name Type Key Required Remarks
ProjectID Number Primary Key,

Foreign Key
Yes Long Integer

EmployeeNumber Number Primary Key,
Foreign Key

Yes Long Integer

HoursWorked Number No No Double, fixed, 1 decimal places

M02_KROE1533_08_SE_C02.indd 126 11/21/16 6:22 PM

Chapter 2 The Relational Model 127

cascading of related field values between (1) DEPARTMENT and EMPLOYEE
and (2) DEPARTMENT and PROJECT but not for (3) EMPLOYEE and
ASSIGNMENT and (4) PROJECT and ASSIGNMENT?

L. Does the multivalue, multicolumn problem exist in the current set of WP tables?
If so, how would you fix it? If not, what modifications to the EMPLOYEE table
would create the problem, and how you then fix this problem?

FIGURE 2-32

WP ASSIGNMENT Table Data

ProjectID EmployeeNumber HoursWorked
1000 1 30.00

1000 6 50.00

1000 10 50.00

1000 16 75.00

1000 17 75.00

1100 1 30.00

1100 6 75.00

1100 10 55.00

1100 11 55.00

1200 3 20.00

1200 6 40.00

1200 7 45.00

1200 8 45.00

1300 3 25.00

1300 6 40.00

1300 8 50.00

1300 9 50.00

1400 1 30.00

1400 6 50.00

1400 10 50.00

1400 16 75.00

1400 17 75.00

1500 1 30.00

1500 6 75.00

1500 10 55.00

1500 11 55.00

1600 3 20.00

1600 6 40.00

1600 7 45.00

1600 8 45.00

(Continued)

M02_KROE1533_08_SE_C02.indd 127 11/21/16 6:22 PM

128 Part 1 Database Fundamentals

REGIONAL LABS CASE QUESTIONS
Regional Labs is a company that conducts research and development work on a contract
basis for other companies and organizations. Figure 2-33 shows data that Regional Labs
collects about projects and the employees assigned to them.

This data is stored in a relation (table) named PROJECT:

PROJECT (ProjectID, EmployeeName, EmployeeSalary)

A. Assuming that all functional dependencies are apparent in this data, which of the fol-
lowing are true?

1. ProjectID S EmployeeName

2. ProjectID S EmployeeSalary

3. (ProjectID, EmployeeName) S EmployeeSalary

4. EmployeeName S EmployeeSalary

5. EmployeeSalary S ProjectID

6. EmployeeSalary S (ProjectID, EmployeeName)

B. What is the primary key of PROJECT?

C. Are all the nonkey attributes (if any) dependent on the primary key?

D. In what normal form is PROJECT?

E. Describe two modification anomalies that affect PROJECT.

F. Is ProjectID a determinant? If so, based on which functional dependencies in part A?

G. Is EmployeeName a determinant? If so, based on which functional dependencies in
part A?

H. Is (ProjectID, EmployeeName) a determinant? If so, based on which functional depen-
dencies in part A?

I. Is EmployeeSalary a determinant? If so, based on which functional dependencies in
part A?

J. Does this relation contain a transitive dependency? If so, what is it?

K. Redesign the relation to eliminate modification anomalies.

FIGURE 2-33

Sample Data for
Regional Labs

M02_KROE1533_08_SE_C02.indd 128 11/21/16 6:22 PM

Chapter 2 The Relational Model 129

FIGURE 2-34

Sample Data for Garden Glory

 GARDEN GLORY PROJECT QUESTIONS

Figure 2-34 shows data that Garden Glory collects about properties and services.

A. Using these data, state assumptions about functional dependencies among the columns
of data. Justify your assumptions on the basis of these sample data and also on the basis
of what you know about service businesses.

B. Given your assumptions in part A, comment on the appropriateness of the following
designs:

1. PROPERTY (PropertyName, PropertyType, Street, City, ZIP, ServiceDate,
Description, Amount)

2. PROPERTY (PropertyName, PropertyType, Street, City, ZIP, ServiceDate,
Description, Amount)

3. PROPERTY (PropertyName, PropertyType, Street, City, ZIP, ServiceDate,
Description, Amount)

4. PROPERTY (PropertyID, PropertyName, PropertyType, Street, City, ZIP,
ServiceDate, Description, Amount)

5. PROPERTY (PropertyID, PropertyName, PropertyType, Street, City, ZIP,
ServiceDate, Description, Amount)

6. PROPERTY (PropertyID, PropertyName, PropertyType, Street, City, ZIP,
ServiceDate)

and:

SERVICE (ServiceDate, Description, Amount)

7. PROPERTY (PropertyID, PropertyName, PropertyType, Street, City, ZIP,
ServiceDate)

and:

SERVICE (ServiceID, ServiceDate, Description, Amount)

8. PROPERTY (PropertyID, PropertyName, PropertyType, Street, City, ZIP,
ServiceDate)

and:

SERVICE (ServiceID, ServiceDate, Description, Amount, PropertyID)

M02_KROE1533_08_SE_C02.indd 129 11/21/16 6:22 PM

130 Part 1 Database Fundamentals

9. PROPERTY (PropertyID, PropertyName, PropertyType, Street, City, ZIP)

and:

SERVICE (ServiceID, ServiceDate, Description, Amount, PropertyID)

C. Suppose Garden Glory decides to add the following table:

SERVICE_FEE (PropertyID, ServiceID, Description, Amount)

Add this table to what you consider to be the best design in your answer to part B. Modify
the tables from part B as necessary to minimize the amount of data duplication. Will this
design work for the data in Figure 2-34? If not, modify the design so that this data will
work. State the assumptions implied by this design.

 JAMES RIVER JEWELRY PROJECT QUESTIONS

The James River Jewelry project questions are available in Appendix D, which can be
downloaded from the textbook’s Web site: www.pearsonhighered.com/kroenke.

 THE QUEEN ANNE CURIOSITY SHOP PROJECT QUESTIONS
Figure 2-35 shows typical sales data for The Queen Anne Curiosity Shop, and Figure 2-36
shows typical purchase data.

A. Using these data, state assumptions about functional dependencies among the col-
umns of data. Justify your assumptions on the basis of these sample data and also on
the basis of what you know about retail sales.

FIGURE 2-35

Sample Sales Data for The Queen Anne Curiosity Shop

LastName FirstName Phone InvoiceDate InvoiceItem Price Tax Total
Shire Robert 206-524-2433 14-Dec-16 Antique Desk 3,000.00 249.00 3,249.00

Shire Robert 206-524-2433 14-Dec-16 Antique Desk
Chair

500.00 41.50 541.50

Goodyear Katherine 206-524-3544 15-Dec-16 Dining Table
Linens

1,000.00 83.00 1,083.00

Bancroft Chris 425-635-9788 15-Dec-16 Candles 50.00 4.15 54.15

Griffith John 206-524-4655 23-Dec-16 Candles 45.00 3.74 48.74

Shire Robert 206-524-2433 5-Jan-17 Desk Lamp 250.00 20.75 270.75

Tierney Doris 425-635-8677 10-Jan-17 Dining Table
Linens

750.00 62.25 812.25

Anderson Donna 360-538-7566 12-Jan-17 Book Shelf 250.00 20.75 270.75

Goodyear Katherine 206-524-3544 15-Jan-17 Antique Chair 1,250.00 103.75 1,353.75

Goodyear Katherine 206-524-3544 15-Jan-17 Antique Chair 1,750.00 145.25 1,895.25

Tierney Doris 425-635-8677 25-Jan-17 Antique Candle
Holders

350.00 29.05 379.05

M02_KROE1533_08_SE_C02.indd 130 11/21/16 6:22 PM

http://www.pearsonhighered.com/kroenke

Chapter 2 The Relational Model 131

FIGURE 2-36

Sample Purchase Data for The Queen Anne Curiosity Shop

PurchaseItem PurchasePrice PurchaseDate Vendor Phone
Antique Desk 1,800.00 7-Nov-16 European Specialties 206-325-7866

Antique Desk 1,750.00 7-Nov-16 European Specialties 206-325-7866

Antique Candle Holders 210.00 7-Nov-16 European Specialties 206-325-7866

Antique Candle Holders 200.00 7-Nov-16 European Specialties 206-325-7866

Dining Table Linens 600.00 14-Nov-16 Linens and Things 206-325-6755

Candles 30.00 14-Nov-16 Linens and Things 206-325-6755

Desk Lamp 150.00 14-Nov-16 Lamps and Lighting 206-325-8977

Floor Lamp 300.00 14-Nov-16 Lamps and Lighting 206-325-8977

Dining Table Linens 450.00 21-Nov-16 Linens and Things 206-325-6755

Candles 27.00 21-Nov-16 Linens and Things 206-325-6755

Book Shelf 150.00 21-Nov-16 Harrison, Denise 425-746-4322

Antique Desk 1,000.00 28-Nov-16 Lee, Andrew 425-746-5433

Antique Desk Chair 300.00 28-Nov-16 Lee, Andrew 425-746-5433

Antique Chair 750.00 28-Nov-16 New York Brokerage 206-325-9088

Antique Chair 1,050.00 28-Nov-16 New York Brokerage 206-325-9088

B. Given your assumptions in part A, comment on the appropriateness of the following
designs:

1. CUSTOMER (LastName, FirstName, Phone, InvoiceDate, InvoiceItem,
Price, Tax, Total)

2. CUSTOMER (LastName, FirstName, Phone, InvoiceDate, InvoiceItem,
Price, Tax, Total)

3. CUSTOMER (LastName, FirstName, Phone, InvoiceDate, InvoiceItem,
Price, Tax, Total)

4. CUSTOMER (LastName, FirstName, Phone, InvoiceDate, InvoiceItem,
Price, Tax, Total)

5. CUSTOMER (LastName, FirstName, Phone, InvoiceDate, InvoiceItem,
Price, Tax, Total)

6. CUSTOMER (LastName, FirstName, Phone)

and:

SALE (InvoiceDate, InvoiceItem, Price, Tax, Total)

7. CUSTOMER (LastName, FirstName, Phone, InvoiceDate)

and:

SALE (InvoiceDate, InvoiceItem, Price, Tax, Total)

8. CUSTOMER (LastName, FirstName, Phone)

and:

SALE (InvoiceDate, InvoiceItem, Price, Tax, Total, LastName, FirstName)

M02_KROE1533_08_SE_C02.indd 131 11/21/16 6:22 PM

132 Part 1 Database Fundamentals

C. Modify what you consider to be the best design in part B to include surrogate ID col-
umns called CustomerID and SaleID. How does this improve the design?

D. Modify the design in part C by breaking SALE into two relations named SALE and
SALE_ITEM. Modify columns and add additional columns as you think necessary.
How does this improve the design?

E. Given your assumptions, comment on the appropriateness of the following designs:

1. PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor, Phone)

2. PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor, Phone)

3. PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor, Phone)

4. PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor, Phone)

5. PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate)

 and:

 VENDOR (Vendor, Phone)

6. PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor)

 and:

 VENDOR (Vendor, Phone)

7. PURCHASE (PurchaseItem, PurchasePrice, PurchaseDate, Vendor)

 and:

 VENDOR (Vendor, Phone)

F. Modify what you consider to be the best design in part E to include surrogate ID col-
umns called PurchaseID and VendorID. How does this improve the design?

G. The relations in your design from part D and part F are not connected. Modify the
database design so that sales data and purchase data are related.

M02_KROE1533_08_SE_C02.indd 132 11/21/16 6:22 PM

133

T his chapter describes and discusses Structured Query Language (SQL).
SQL is not a complete programming language; rather, it is a data sub-
language. SQL consists only of constructs for defining and processing

a database. To obtain a full programming language, SQL statements must be
embedded in scripting languages, such as VBScript, or in programming lan-
guages, such as Java or C#. SQL statements also can be submitted interac-
tively, using a DBMS-supplied command prompt.

SQL was developed by the IBM Corporation in the late 1970s, and
successive versions were endorsed as national standards by the American
National Standards Institute (ANSI) in 1986, 1989, and 1992. The 1992
version is sometimes referred to as SQL-92 or sometimes ANSI-92 SQL.
In 1999, SQL:1999 (also referred to as SQL3), which incorporated some
object-oriented concepts, was released. This was followed by the release
of SQL:2003 in 2003, SQL:2006 in 2006, SQL:2008 in 2008, and, most
recently, SQL:2011 in 2011. Each of these added new features or extended
existing SQL features, including SQL support for Extensible Markup Language
(XML), which is discussed in Chapter 7 and Appendix K, “Big Data,” and,
in SQL:2008, the SQL TRUNCATE TABLE and SQL MERGE statements.
SQL has also been endorsed as a standard by the International Organization
for Standardization (ISO) (and, no, that’s not a typo—the acronym is ISO, not
IOS!). Our discussion here focuses on common language features that have
been in SQL since SQL-92 but does include some features from SQL:2003
and SQL:2008.1

 ■ Learn basic SQL statements for creating database
structures

 ■ Learn basic SQL statements for adding data to a
database

 ■ Learn basic SQL SELECT statements and options for
processing a single table

 ■ Learn basic SQL SELECT statements for processing
multiple tables with subqueries

 ■ Learn basic SQL SELECT statements for processing
multiple tables with joins

 ■ Learn basic SQL statements for modifying and deleting
data from a database

 ■ Learn basic SQL statements for modifying and deleting
database tables and constraints

CHAPTER OBJECTIVES

3CHAPTE
R

Structured Query Language

1For more information about the history and development of SQL, see the Standardization section of the
Wikipedia article on SQL at https://en.wikipedia.org/wiki/SQL. Wikipedia also has articles on some of
the named versions of SQL. For example, see the article on SQL:2008 at https://en.wikipedia.org/wiki/
SQL:2008 for a discussion of the features added to SQL:2008.

M03_KROE1533_08_SE_C03.indd 133 11/21/16 6:23 PM

https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL:2008
https://en.wikipedia.org/wiki/SQL:2008

134 Part 1 Database Fundamentals

SQL is text-oriented. It was developed long before the graphical user
interface (GUI) became common and requires only a text processor. Today,
Microsoft Access, Microsoft SQL Server, Oracle Database, MySQL, and other
DBMS products provide GUI tools for performing many of the tasks that are
performed using SQL. However, the key phrase in that last sentence is many
of. You cannot do everything with graphical tools that you can do with SQL.
Furthermore, to generate SQL statements dynamically in program code, you
must use SQL.

You will learn how to use SQL with Microsoft Access in this chap-
ter’s “The Access Workbench.” Access uses SQL but hides it behind the
scenes, presenting a variant of the Query by Example (QBE) GUI for general
use. Although knowledge of SQL is not a requirement for using Access, you
will be a stronger and more effective Access developer if you know SQL.

SQL statements are commonly divided into categories, five of which are
of interest to us here:

• Data definition language (DDL) statements, which are used for creating tables,
relationships, and other structures.

• Data manipulation language (DML) statements, which are used for querying,
inserting, modifying, and deleting data. One component of SQL DML is
SQL views. Views are used to create predefined queries.2

• SQL/Persistent stored modules (SQL/PSM) statements, which extend SQL by
adding procedural programming capabilities, such as variables and flow-
of-control statements, that provide some programmability within the SQL
framework.

• Transaction control language (TCL) statements, which are used to mark
transaction boundaries and control transaction behavior.

• Data control language (DCL) statements, which are used to grant database
permissions (or to revoke those permissions) to users and groups so that the
users or groups can perform various operations on the data in the database.

In this chapter, we discuss the basic components of SQL DDL and
DML. Additional SQL DML (SQL views) and SQL/PSM are discussed in
Appendix E, and SQL TCL and DCL are discussed in Chapter 6.

2Queries by themselves are sometimes considered to be another major category of SQL commands, but we
do not make that distinction in this book. For more details, see the Wikipedia article on SQL at https://
en.wikipedia.org/wiki/SQL.
3See http://www.msn.com/en-us/lifestyle/smart-living/how-many-us-drones-are-registered-in-the-faa-database/
vi-AAgrTT7?refvid=CCgxby (accessed May 2016).

The Wedgewood Pacific (WP) company, founded in 1957 in Seattle, Washington, manu-
factures and sells consumer drone aircraft. This is an innovative and rapidly developing
market. In January, 2016, the FAA said that 181,000 drones (out of the approximately
700,000 drones that may have been sold during the 2015 Christmas season) had been regis-
tered under the new FAA drone registration rules.3

WEDGEWOOD PACIFIC

M03_KROE1533_08_SE_C03.indd 134 11/21/16 6:23 PM

https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL
http://www.msn.com/en-us/lifestyle/smart-living/how-many-us-drones-are-registered-in-the-faa-database/vi-AAgrTT7?refvid=CCgxby
http://www.msn.com/en-us/lifestyle/smart-living/how-many-us-drones-are-registered-in-the-faa-database/vi-AAgrTT7?refvid=CCgxby

Chapter 3 Structured Query Language 135

WP currently produces three drone models, the Alpha III, the Bravo III, and the Delta
IV. These products are created by WP’s Research and Development group, and produced
at WP’s production facilities. WP manufactures some of the parts used in the drones, but
also purchases some parts from other suppliers.

The company is located in two buildings. One building houses the Administration,
Legal, Finance, Accounting, Human Resources, and Sales and Marketing departments, and
the second houses the Information Systems, Research and Development, and Production
departments. The company database contains data about employees, departments, projects,
assets (such as finished goods inventory, parts inventory, and computer equipment), and
other aspects of company operations.

In this chapter, we use an example database for WP that has the following four
relations:

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, DepartmentPhone)
EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Position,

Supervisor, OfficePhone, EmailAddress)
PROJECT (ProjectID, ProjectName, Department, MaxHours, StartDate, EndDate)
ASSIGNMENT (ProjectID, EmployeeNumber, HoursWorked)

The primary key of DEPARTMENT is DepartmentName, the primary key of
EMPLOYEE is EmployeeNumber, and the primary key of PROJECT is ProjectID. In
EMPLOYEE and PROJECT, Department is a foreign key that references DepartmentName
in DEPARTMENT. Remember that a foreign key does not need to have the same name as
the primary key to which it refers. The primary key of ASSIGNMENT is the composite
(ProjectID, EmployeeNumber). ProjectID is also a foreign key that references ProjectID in
PROJECT, and EmployeeNumber is a foreign key that references EmployeeNumber in
EMPLOYEE.

Finally, note the foreign key Supervisor in EMPLOYEE, which references
EmployeeNumber in the same EMPLOYEE table. When a foreign key links to the primary
key of the same table, this forms what is called a recursive relationship. We will discuss
recursive relationships in detail in Chapters 4 and 5, and in Appendix E, “Advanced SQL.”
In this case, we use the recursive relationship to enforce a constraint that a number entered
into the Supervisor column must already exist as an EmployeeNumber.

The referential integrity constraints are:

Department in EMPLOYEE must exist in Department in DEPARTMENT
Supervisor in EMPLOYEE must exist in EmployeeNumber in EMPLOYEE
Department in PROJECT must exist in Department in DEPARTMENT
ProjectID in ASSIGNMENT must exist in ProjectID in PROJECT
EmployeeNumber in ASSIGNMENT must exist in EmployeeNumber in

EMPLOYEE

An illustration of these tables in Microsoft Access 2016 and the database column char-
acteristics for these tables are shown in Figure 3-1. Note that the tables and relationships
shown in Figure 3-1(a) do not include the recursive relationship in EMPLOYEE—the cre-
ation of recursive relationships in Microsoft Access 2016 is discussed in Appendix E,
“Advanced SQL.” Sample data for these relations are shown in Figure 3-2.

In this database, each row of DEPARTMENT is potentially related to many rows of
EMPLOYEE and PROJECT. Similarly, each row of PROJECT is potentially related to
many rows of ASSIGNMENT, and each row of EMPLOYEE is potentially related to many
rows of ASSIGNMENT.

M03_KROE1533_08_SE_C03.indd 135 11/21/16 6:23 PM

136 Part 1 Database Fundamentals

FIGURE 3-1

Database Column Characteristics for the WP Database

(a) The WP Tables in Microsoft Access 2016 (without recursive relationship in EMPLOYEE)

Column Name Type Key Required Remarks
DepartmentName Text (35) Primary Key Yes

BudgetCode Text (30) No Yes

OfficeNumber Text (15) No Yes

DepartmentPhone Text (12) No Yes

(b) DEPARTMENT Table

Column Name Type Key Required Remarks
EmployeeNumber AutoNumber Primary Key Yes Surrogate Key

FirstName Text (25) No Yes

LastName Text (25) No Yes

Department Text (35) Foreign Key Yes Links to DepartmentName in
DEPARTMENT

Position Text (35) No No

Supervisor Number Foreign Key No Long Integer. Links to
EmployeeNumber in EMPLOYEE

OfficePhone Text (12) No No

EmailAddress Text (100) No Yes

(c) EMPLOYEE Table
(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 136 11/21/16 6:23 PM

Chapter 3 Structured Query Language 137

ColumnName Type Key Required Remarks
ProjectID Number Primary Key Yes Long Integer

ProjectName Text (50) No Yes

Department Text (35) Foreign Key Yes Links to DepartmentName
in DEPARTMENT

MaxHours Number No Yes Double

StartDate Date No No

EndDate Date No No

(d) PROJECT Table

Column Name Type Key Required Remarks
ProjectID Number Primary Key,

Foreign Key
Yes Long Integer

Links to ProjectID in PROJECT

EmployeeNumber Number Primary Key,
Foreign Key

Yes Long Integer
Links to EmployeeNumber in EMPLOYEE

HoursWorked Number No No Double

(e) ASSIGNMENT Table

FIGURE 3-1 Continued

FIGURE 3-2

Sample Data for the WP Database

DepartmentName BudgetCode OfficeNumber DepartmentPhone
Administration BC-100-10 BLDG01-210 360-285-8100

Legal BC-200-10 BLDG01-220 360-285-8200

Human Resources BC-300-10 BLDG01-230 360-285-8300

Finance BC-400-10 BLDG01-110 360-285-8400

Accounting BC-500-10 BLDG01-120 360-285-8405

Sales and Marketing BC-600-10 BLDG01-250 360-285-8500

InfoSystems BC-700-10 BLDG02-210 360-285-8600

Research and Development BC-800-10 BLDG02-250 360-285-8700

Production BC-900-10 BLDG02-110 360-285-8800

(a) DEPARTMENT Table Data

(Continued)

M03_KROE1533_08_SE_C03.indd 137 11/21/16 6:23 PM

138 Part 1 Database Fundamentals

Em
pl

oy
ee

N

um
be

r
Fi

rs
tN

am
e

La
st

N
am

e
D

ep
ar

tm
en

t
Po

sit
io

n
Su

pe
rv

iso
r

O
ffi

ce
Ph

on
e

Em
ai

lA
dd

re
ss

 1
M

ar
y

Ja
co

bs
A

dm
in

ist
ra

tio
n

C
E

O
36

0-
28

5-
81

10
M

ar
y.J

ac
ob

s@
W

P.
co

m

 2
R

os
al

ie
Ja

ck
so

n
A

dm
in

ist
ra

tio
n

A
dm

in
 A

ss
ist

an
t

1
36

0-
28

5-
81

20
R

os
al

ie
.Ja

ck
so

n@
W

P.
co

m

 3
R

ic
ha

rd
B

an
da

lo
ne

L
eg

al
A

tto
rn

ey
1

36
0-

28
5-

82
10

R
ic

ha
rd

.B
an

da
lo

ne
@

W
P.

co
m

 4
G

eo
rg

e
Sm

ith
H

um
an

 R
es

ou
rc

es
H

R
3

1
36

0-
28

5-
83

10
G

eo
rg

e.
Sm

ith
@

W
P.

co
m

 5
A

la
n

A
da

m
s

H
um

an
 R

es
ou

rc
es

H
R

1
4

36
0-

28
5-

83
20

A
la

n.
A

da
m

s@
W

P.
co

m

 6
K

en
E

va
ns

Fi
na

nc
e

C
FO

1
36

0-
28

5-
84

10
K

en
.E

va
ns

@
W

P.
co

m

 7
M

ar
y

A
be

rn
at

hy
Fi

na
nc

e
FA

3
6

36
0-

28
5-

84
20

M
ar

y.A
be

rn
at

hy
@

W
P.

co
m

 8
To

m
C

ar
ut

he
rs

A
cc

ou
nt

in
g

FA
2

6
36

0-
28

5-
84

30
To

m
.C

ar
ut

he
rs

@
W

P.
co

m

 9
H

ea
th

er
Jo

ne
s

A
cc

ou
nt

in
g

FA
2

6
36

0-
28

5-
84

40
H

ea
th

er
.Jo

ne
s@

W
P.

co
m

10
K

en
N

um
ot

o
Sa

le
s a

nd
 M

ar
ke

tin
g

SM
3

1
36

0-
28

5-
85

10
K

en
.N

um
ot

o@
W

P.
co

m

11
L

in
da

G
ra

ng
er

Sa
le

s a
nd

 M
ar

ke
tin

g
SM

2
10

36
0-

28
5-

85
20

L
in

da
.G

ra
ng

er
@

W
P.

co
m

12
Ja

m
es

N
es

to
r

In
fo

Sy
st

em
s

C
IO

1
36

0-
28

5-
86

10
Ja

m
es

.N
es

to
r@

W
P.

co
m

13
R

ic
k

B
ro

w
n

In
fo

Sy
st

em
s

IS
2

12
R

ic
k.

B
ro

w
n@

W
P.

co
m

14
M

ik
e

N
gu

ye
n

R
es

ea
rc

h
an

d
D

ev
el

op
m

en
t

C
T

O
1

36
0-

28
5-

87
10

M
ik

e.
N

gu
ye

n@
W

P.
co

m

15
Ja

so
n

Sl
ee

m
an

R
es

ea
rc

h
an

d
D

ev
el

op
m

en
t

R
D

3
14

36
0-

28
5-

87
20

Ja
so

n.
Sl

ee
m

an
@

W
P.

co
m

16
M

ar
y

Sm
ith

Pr
od

uc
tio

n
O

PS
3

1
36

0-
28

5-
88

10
M

ar
y.S

m
ith

@
W

P.
co

m

17
To

m
Ja

ck
so

n
Pr

od
uc

tio
n

O
PS

2
16

36
0-

28
5-

88
20

To
m

.Ja
ck

so
n@

W
P.

co
m

18
G

eo
rg

e
Jo

ne
s

Pr
od

uc
tio

n
O

PS
2

17
36

0-
28

5-
88

30
G

eo
rg

e.
Jo

ne
s@

W
P.

co
m

19
Ju

lia
H

ay
ak

aw
a

Pr
od

uc
tio

n
O

PS
1

17
Ju

lia
.H

ay
ak

aw
a@

W
P.

co
m

20
Sa

m
St

ew
ar

t
Pr

od
uc

tio
n

O
PS

1
17

Sa
m

.S
te

w
ar

t@
W

P.
co

m

(b
) E

M
P

LO
Y

E
E

 T
ab

le
 D

at
a

FI
GU

RE
 3

-2
 C

on
tin

ue
d

(C
on

ti
nu

ed
)

M03_KROE1533_08_SE_C03.indd 138 11/21/16 6:23 PM

mailto:Mary.Jacobs@WP.com
mailto:Rosalie.Jackson@WP.com
mailto:Richard.Bandalone@WP.com
mailto:George.Smith@WP.com
mailto:Alan.Adams@WP.com
mailto:Ken.Evans@WP.com
mailto:Mary.Abernathy@WP.com
mailto:Tom.Caruthers@WP.com
mailto:Heather.Jones@WP.com
mailto:Ken.Numoto@WP.com
mailto:Linda.Granger@WP.com
mailto:James.Nestor@WP.com
mailto:Rick.Brown@WP.com
mailto:Mike.Nguyen@WP.com
mailto:Jason.Sleeman@WP.com
mailto:Mary.Smith@WP.com
mailto:Tom.Jackson@WP.com
mailto:George.Jones@WP.com
mailto:Julia.Hayakawa@WP.com
mailto:Sam.Stewart@WP.com

Chapter 3 Structured Query Language 139

ProjectID ProjectName Department MaxHours StartDate EndDate
1000 2017 Q3 Production Plan Production 100.00 05/10/17 06/15/17
1100 2017 Q3 Marketing Plan Sales and Marketing 135.00 05/10/17 06/15/17

1200 2017 Q3 Portfolio Analysis Finance 120.00 07/05/17 07/25/17

1300 2017 Q3 Tax Preparation Accountinq 145.00 08/10/17 10/15/17
1400 2017 Q4 Production Plan Production 100.00 08/10/17 09/15/17
1500 2017 Q4 Marketing Plan Sales and Marketing 135.00 08/10/17 09/15/17

1600 2017 Q4 Portfolio Analysis Finance 140.00 10/05/17

(c) PROJECT Table Data

ProjectID EmployeeNumber HoursWorked
1000 1 30.00
1000 6 50.00
1000 10 50.00
1000 16 75.00
1000 17 75.00
1100 1 30.00
1100 6 75.00
1100 10 55.00
1100 11 55.00
1200 3 20.00
1200 6 40.00
1200 7 45.00
1200 8 45.00
1300 3 25.00
1300 6 40.00
1300 8 50.00
1300 9 50.00
1400 1 30.00
1400 6 50.00
1400 10 50.00
1400 16 75.00
1400 17 75.00
1500 1 30.00
1500 6 75.00
1500 10 55.00
1500 11 55.00
1600 3 20.00
1600 6 40.00
1600 7 45.00

1600 8 45.00

(d) ASSIGNMENT Table Data

FIGURE 3-2 Continued

(Continued)

M03_KROE1533_08_SE_C03.indd 139 11/21/16 6:23 PM

140 Part 1 Database Fundamentals

Finally, assume the following rules, which are called business rules:

• If an EMPLOYEE row is to be deleted and that row is connected to any
ASSIGNMENT, the EMPLOYEE row deletion will be disallowed.

• If a PROJECT row is deleted, then all the ASSIGNMENT rows that are con-
nected to the deleted PROJECT row will also be deleted.

The business sense of these rules is as follows:

• If an EMPLOYEE row is deleted (for example, if the employee is transferred),
then someone must take over that employee’s assignments. Thus, the applica-
tion needs someone to reassign assignments before deleting the employee row.

• If a PROJECT row is deleted, then the project has been canceled, and it is
unnecessary to maintain records of assignments to that project.

These rules are typical business rules.You will learn more about such rules in Chapter 5.

“Does Not Work with Microsoft Access ANSI-89 SQL”
If you have completed the end-of-chapter “Access Workbench Exercises” for Chapters 1
and 2, you will recognize the database we’re using in this chapter as the Wedgewood
Pacific database from those exercises. You can use that database to try out the SQL com-
mands in this chapter. However, be warned that not all standard SQL syntax works in
Access.

As mentioned previously, our discussion of SQL is based on SQL features present in
SQL standards since the ANSI SQL-92 standard (which Microsoft refers to as ANSI-92
SQL). Unfortunately, Microsoft Access defaults to the earlier SQL-89 version—Microsoft
calls it ANSI-89 SQL or Microsoft Jet SQL (after the Microsoft Jet DBMS used by Access).
ANSI-89 SQL differs significantly from SQL-92, and therefore some features of the
SQL-92 language will not work in Access.

Microsoft Access 2016 (and the earlier Microsoft Access 2003, 2007, and 2010 ver-
sions) does contain a setting that allows you to use SQL-92 instead of the default ANSI-89
SQL. Microsoft included this option to allow Access tools such as forms and reports to be
used in application development for Microsoft SQL Server, which supports newer SQL
standards. To set the option, after you have opened Microsoft Access 2016, click the File
command tab and then click the Options command to open the Access Options dialog
box. In the Access Options dialog box, click the Object Designers button to display the
Access Options Object Designers page, as shown in Figure 3-3.

As shown in Figure 3-3, the SQL Server Compatible Syntax (ANSI 92) options con-
trol which version of SQL is used in an Access 2016 database. If you check the This
database check box, you will use SQL-92 syntax in the current database (if you open
Microsoft Access without opening a database, this option is grayed out and not available).
Or you can check the Default for new databases check box to make SQL-92 syntax the
default for all new databases you create.

Unfortunately, very few Access users or organizations using Access are likely to set the
Access SQL version to the SQL-92 option, and in this chapter, we assume that Access is
running in the default ANSI-89 SQL mode. One advantage of doing so is that it will help
you understand the limitations of Access ANSI-89 SQL and how to cope with them.

In the discussion that follows, we use “Does Not Work with Microsoft Access ANSI-
89 SQL” boxes to identify SQL commands and clauses that do not work in Access
ANSI-89 SQL. We also identify any workarounds that are available. Remember that the
one permanent workaround is to choose to use the SQL-92 syntax option in the databases
you create!

M03_KROE1533_08_SE_C03.indd 140 11/21/16 6:23 PM

Chapter 3 Structured Query Language 141

The Object
Designers button

The SQL Server
Compatible Syntax
(ANSI 92) option
controls the use of
SQL-89 versus
SQL-92 syntax in
Access queries

Use this check box
to use SQL-92
syntax in just the
open database

Use this check box
to use SQL-92
syntax when new
databases are
created

Different DBMS products implement SQL in slightly different ways. The SQL
statements in this chapter run on Microsoft SQL Server (SQL Server 2016
Developer edition was used to obtain the output shown in this chapter) and also
run on Microsoft Access with exceptions as noted. If you are running the SQL
statements on a different DBMS, you may need to make adjustments—consult
the documentation for the DBMS you are using. Most of the SQL in this chapter
will also work with Oracle Database XE and MySQL 5.7, with minor syntactic
adjustments that will be noted.

BTW

SQL FOR DATA DEFINITION (DDL)—CREATING TABLES AND
RELATIONSHIPS

The SQL DDL is used to create and alter database structures, such as tables, and to insert,
modify, and delete data in the tables.

Before creating tables, you must create a database. Although there is an SQL statement
for creating a database, most developers use GUI tools to create databases. The tools are
DBMS specific. Creating a database in Microsoft Access is demonstrated in Chapter 1’s sec-
tion of “The Access Workbench.” For instructions on how to create a database in Microsoft
SQL Server 2016, see Appendix A, “Getting Started with Microsoft SQL Server 2016.” For
instructions on how to create a database in Oracle Database XE, see Appendix B, “Getting

Access 2016, Windows 10, Microsoft Corporation.

FIGURE 3-3

The Microsoft Access 2016 Options Object Designers Page

M03_KROE1533_08_SE_C03.indd 141 11/21/16 6:23 PM

142 Part 1 Database Fundamentals

Started with Oracle Database XE.” For instructions on how to create a database in MySQL
5.7 Community Server, see Appendix C, “Getting Started with MySQL 5.7 Community
Server.” For all other DBMS products, consult the documentation.4

The SQL CREATE TABLE statement is used to create table structures. The essential
format of this statement is:

CREATE TABLE NewTableName (

three-part column definition,

three-part column definition,

three-part column definition,

optional table constraints

. . .

);

The parts of the three-part column definition are the column name, the column data type,
and, optionally, one or more constraints on column values. Thus, we can restate the
CREATE TABLE format as:

CREATE TABLE NewTableName (

ColumnName DataType OptionalColumnConstraints,

 ColumnName DataType OptionalColumnConstraints,

 ColumnName DataType OptionalColumnConstraints,

 optional table constraints

 . . .

);

The column constraints we consider in this text are PRIMARY KEY, FOREIGN KEY,
NOT NULL, NULL, and UNIQUE. In addition to these, there is also a CHECK column
constraint, which is discussed with the ALTER statement at the end of this chapter. Finally,
the DEFAULT keyword (DEFAULT is not considered a column constraint) can be used to
set initial values.

4Also see David M. Kroenke and David J. Auer, Database Processing: Fundamentals, Design, and
Implementation, 14th ed. (Upper Saddle River, NJ: Prentice Hall, 2016), Chapter 10A, for information on
creating databases in SQL Server 2014 (which is also applicable to SQL Server 2016), online Chapter 10B
for information on creating databases in Oracle Database XE, and online Chapter 10C for information on
creating databases in MySQL Community Server 5.7.

Does Not Work with Microsoft Access ANSI-89 SQL

Microsoft Access ANSI-89 SQL does not support the UNIQUE and CHECK column
constraints nor the DEFAULT keyword.

Solution: Equivalent constraints and initial values can be set in the table Design view.
See the discussion in this chapter’s section of “The Access Workbench.”

Consider the SQL CREATE TABLE statements for the DEPARTMENT and
EMPLOYEE tables shown in Figure 3-4 (which includes the DEPARTMENT,
EMPLOYEE, and PROJECT tables but intentionally omits the ASSIGNMENT table at
this point in the discussion).

While Figure 3-1 shows column data types as used in Microsoft Access 2016, Figure 3-4
shows SQL data types. Although the two are basically the same, SQL uses some different
terms and syntax to denote the SQL data types.

M03_KROE1533_08_SE_C03.indd 142 11/21/16 6:23 PM

Chapter 3 Structured Query Language 143

The EMPLOYEE column EmployeeNumber has an Integer (abbreviated Int) data type
and a PRIMARY KEY column constraint. The next column, FirstName, uses a Character
(signified by Char) data type and is 25 characters in length. The column constraint NOT
NULL indicates that a value must be supplied when a new row is created. The seventh col-
umn, OfficePhone, uses a Char(12) data type (to store separators between the area code,
prefix, and number) with a column constraint of NULL. NULL indicates that null values
are allowed, which means that a row can be created without a value for this column.

The fourth column, Department, uses the Char(35) data type, a NOT NULL column
constraint, and the DEFAULT keyword to set the department value to the human re-
sources department if no department value is entered when a new row is created.

The eighth and final column, EmailAddress, uses the VarChar(100) data type and the
NOT NULL and UNIQUE column constraints. VarChar means a variable-length charac-
ter data type. Thus, EmailAddress contains character data values that vary in length from
row to row, and the maximum length of an EmailAddress value is 100 characters. However,
if an EmailAddress value has only 14 characters, then only 14 characters will be stored.

As implied by the existence of VarChar, Char values are of fixed length. The Char(25)
definition for FirstName means that 25 characters will be stored for every value of
FirstName, regardless of the length of the value entered. FirstNames will be padded with
blanks to fill the 25 spaces when necessary.

You might wonder, given the apparent advantage of VarChar, why it isn’t used all the
time. The reason is that extra processing is required for VarChar columns. A few extra
bytes are required to store the length of the value, and the DBMS must go to some trouble
to arrange variable-length values in memory and on disk. Vendors of DBMS products usu-
ally provide guidelines for when to use which type, and you should check the documenta-
tion for your specific DBMS product for more information.

The UNIQUE column constraint for EmailAddress means that there cannot be any
duplicated values in the EmailAddress column. This ensures that each person has a differ-
ent email address.

In the PROJECT table, the MaxHours column uses the Numeric (8,2) data type. This
means that MaxHours values consist of up to eight decimal digits, with two digits assumed
to the right of the decimal point. The decimal point is not stored and does not count as one

CREATE TABLE DEPARTMENT(
DepartmentName Char(35) PRIMARY KEY,
BudgetCode Char(30) NOT NULL,
O�iceNumber Char(15) NOT NULL,
DepartmentPhone Char(12) NOT NULL
);

CREATE TABLE EMPLOYEE(
EmployeeNumber Int PRIMARY KEY,
FirstName Char(25) NOT NULL,
LastName Char(25) NOT NULL,
Department Char(35) NOT NULL DEFAULT 'Human Resources',
Position Char(35) NULL,
Supervisor Int NULL,
O�icePhone Char(12) NULL,
EmailAddress VarChar(100) NOT NULL UNIQUE
);

CREATE TABLE PROJECT (
ProjectID Int PRIMARY KEY,
ProjectName Char(50) NOT NULL,
Department Char(35) NOT NULL,
MaxHours Numeric(8,2) NOT NULL DEFAULT 100,
StartDate Date NULL,
EndDate Date NULL
);

FIGURE 3-4

SQL CREATE TABLE Statements

M03_KROE1533_08_SE_C03.indd 143 11/21/16 6:23 PM

144 Part 1 Database Fundamentals

of the eight digits. Thus, the DBMS would display the stored value 12345 as 123.45, and
the stored value of 12345678 (which uses all eight of the allowed digits) as 123456.78.

In the EMPLOYEE and PROJECT tables, the SQL DEFAULT keyword is used.
Although technically not a constraint, DEFAULT appears in the constraints column in our
three column CREATE TABLE structure, and it is used to specify the data value that will
be used if no specific value is inserted into a row of data. For example, DEFAULT 100
means that when a new row is created in the PROJECT table, if no value is provided for
MaxHours, the DBMS is to provide the value 100.00. Note that the input value does not
assume that the last two numbers are to the right of the decimal place.

Also in the PROJECT table, the StartDate column uses the Date data type. This means
that StartDate values will consist of dates (there is a Time data type for use with times).
Various DBMS products handle date and time values in different ways, and, again, you
should consult the documentation for your specific DBMS product. According to the SQL
standard and as shown in Figure 3-4, every SQL statement should end with a semicolon.
Although some DBMS products do not require the semicolon, it is good practice to learn
to provide it. Also, as a matter of style, we place the ending parenthesis and the semicolon
on a line of their own. This style blocks out the table definitions for easy reading.

The four data types shown in Figure 3-4 are the basic SQL data types, but DBMS ven-
dors have added others to their products. Figures 3-5(a), 3-5(b), and 3-5(c) show some of
the data types allowed by SQL Server 2016, Oracle Database XE, and MySQL 5.7,
respectively.

Does Not Work with Microsoft Access ANSI-89 SQL

Although Microsoft Access supports a Number data type, it does not support the
(m, n) extension to specify the number of digits and the number of digits to the right
of the decimal place.

Solution: You can set these values in the table Design view after the column is created.
See the discussion in this chapter’s section of “The Access Workbench.”

FIGURE 3-5

Data Types for Widely Used DBMS Products

Microsoft SQL Server 2016

(a) Common Microsoft SQL Server 2016 Data Types

Numeric Data Types Description
Bit 1-bit integer. Values of only 0, 1, or NULL.

Tinyint 1-byte integer. Range is from 0 to 255.

Smallint 2-byte integer. Range is from −2(15) (−32,768) to +2(15) −1 (+32,767).

Int 4-byte integer. Range is from −2(31) (−2,147,483,468) to +2(31) −1
(+2,147,483,467).

Bigint 8-byte integer. Range is from −2(63) (−9,223,372,036,854,775,808) to +2(63) −1
(+9,223,372,036,854,775,807).

Decimal (p[,s]) Fixed precision (p) and scale (s) numbers. Range is from −1038 +1 to 1038 –1 with
maximum precision (p) of 38. Precision ranges from 1 through 38, and default precision
is 18. Scale (s) indicates the number of digits to the right of the decimal place. Default
scale value is 0, and scale values range from 0 to p, where 0 <= s <= p.

Numeric (p[,s]) Numeric works identically to Decimal.

M03_KROE1533_08_SE_C03.indd 144 11/21/16 6:23 PM

Chapter 3 Structured Query Language 145

FIGURE 3-5 Continued

Microsoft SQL Server 2016 Continued

Numeric Data Types Description
Smallmoney 4-byte money. Range is from −214,748.3648 to +214,748.3647 with accuracy of one ten-

thousandth of a monetary unit. Use decimal point to separate digits.

Money 9-byte money. Range is from −922,337,203,685,477.5808 to
+922,337,203,685,477.5807 with accuracy of one ten-thousandth of a monetary unit.
Use decimal point to separate digits.

Float (n) n-bit storage of the mantissa in scientific floating point notation. The value of n ranges
from 1 to 53, and the default is 53.

Real Equivalent to Float (24).

Date and Time
Data Types

Description

Date 3-bytes fixed. Default format YYYY-MM-DD. Range is from January 1, 1 (0001-01-01)
through December 31, 9999 (9999-12-31).

Time 5-bytes fixed is default with 100 nanosecond precision (.0000000).
Default format is HH:MM:SS.NNNNNNN. Range is from 00:00:00.0000000
through 23:59:59.9999999.

Smalldatetime 4-bytes fixed. Restricted date range, and rounds time to nearest second. Range is from
January 1, 1900 00:00:00 AM (1900-01-01
00:00:00) through June 6, 2079 23:59.59 PM (2079-06-06 23:59.59).

Datetime 8-bytes fixed. Basically combines Date and Time, but spans fewer dates and has less time
precision (rounds to .000, .003 or .007 seconds).
Use DATETIME2 for more precision. Date range is from January 1,
1753 (1753-01-01) through December 31, 9999 (9999-12-31).

Datetime2 8-bytes fixed. Combines Date and Time with full precision. Use
instead of DATETIME. Range is from January 1, 1 00:00:00.0000000 AM
(0001-01-01 00:00:00.0000000) through December 31, 9999
23:59.59.9999999 PM (9999-12-31 23:59.59.9999999).

Datetimeoffset 10-byte fixed-length default with 100 nanosecond precision (.0000000). Uses 24 hour
clock, based on Coordinated Universal Time (UTC).
UTC is a refinement of Greenwich Mean Time (GMT), based on the prime merid-
ian at Greenwich, England, which defines when midnight (00:00:00.0000000) occurs.
Offset is the time zone difference from the Greenwich time zone. Default format is
YYYY-MM-DD HH:MM:SS.NNNNNNN (+|−)HH:MM. Range is from January 1,
1 00:00:00.0000000 AM (0001-01-01 00:00:00.0000000) through December 31, 9999
23:59.59.9999999 PM (9999-12-31 23:59.59.9999999) with an offset of −14:59 to
+14:59. Use for 24 hour time.

Timestamp See documentation.

String Data Types Description
Char (n) n-byte fixed-length string data (non-Unicode). Range of n is from 1 through 8000.

Varchar (n | max) n-byte variable-length string data (non-Unicode). Range of n is from 1 through 8000.
Max creates a maximum +2(31) −1 bytes (2 GBytes).

Text Use VARCHAR(max). See documentation.

Nchar (n) (n x 2)-byte fixed-length Unicode string data. Range of n is from 1 through 4000.

(Continued)

(a) continued - Common Microsoft SQL Server 2016 Data Types

M03_KROE1533_08_SE_C03.indd 145 11/21/16 6:23 PM

146 Part 1 Database Fundamentals

FIGURE 3-5 Continued

Microsoft SQL Server 2016 Continued

String Data Types Description
Nvarchar (n | max) (n x 2)-byte variable-length Unicode string data. Range of n is from 1 through 4000.

Max creates a maximum +2(31) −1 bytes (2 GBytes).

Ntext Use NVARCHAR(max). See documentation.

Binary (n) n-byte fixed-length binary data. Range of n is from 1 through 8000.

Other Data Types Description
Varbinary (n | max) Variable-length binary data. Range of n is from 1 through 8000. Max creates a maximum

+2(31) −1 bytes (2 GBytes).

Image Use VARBINARY(max). See documentation.

Uniqueidentifier 16-byte Globally Unique Identifier (GUID). See documentation.

hierarchyid See documentation.

Cursor See documentation.

Table See documentation.

XML Use for storing XML data. See documentation.

Sql_variant See documentation.

(a) continued - Common Microsoft SQL Server 2016 Data Types

(b) Common Oracle Database XE Data Types

Oracle Database XE

Numeric Data Types Description
SMALLINT Synonym for INTEGER, implemented as NUMBER(38,0).

INT Synonym for INTEGER, implemented as NUMBER(38,0).

INTEGER When specified as a data type, it is implemented as NUMBER(38,0).

NUMBER (p[,s]) 1 to 22 bytes. Fixed precision (p) and scale (s) numbers. Range is from −1038 +1 to 1038 − 1
with maximum precision (p) of 38. Precision ranges from 1 through 38, and default
precision is 18. Scale (s) indicates the number of digits to the right of the decimal place.
Default scale value is 0, and scale values range from −84 to 127, where s can be greater
than p.

FLOAT (p) 1 to 22 bytes. Implemented as NUMBER(p). The value of p ranges from 1 to 126 bits.

BINARY_FLOAT 5-byte 32-bit floating point number.

BINARY_LONG 9-byte 64-bit floating point number.

RAW (n) n-byte fixed-length raw binary data. Range of n is from 1 through
2000.

LONG RAW Raw variable-length binary data. Maximum is 2 GBytes.

BLOB Maximum [(4-GByte – 1)x(database block size)] binary large object.

BFILE See documentation.

Date and Time
Data Types

Description

DATE 7-bytes fixed. Default format is set explicitly with the NLS_DATE_FORMAT
parameter. Range is from January 1, 4712 BC through December 31, 9999 AD. It
contains the fields YEAR, MONTH, DAY, HOUR, MINUTE and SECOND (no
fractional seconds). It does not include a time zone.

M03_KROE1533_08_SE_C03.indd 146 11/21/16 6:23 PM

Chapter 3 Structured Query Language 147

FIGURE 3-5 Continued

Oracle Database XE Continued

Date and Time
Data Types

Description

TIMESTAMP (p) Includes fractional seconds base on a precision of p. Default of p is 6, and the range is
0 to 9. 7 to 11-bytes fixed, based on precision. Default format is set explicitly with the
NLS_TIMESTAMP_FORMAT parameter. Range is from January 1, 4712 BC through
December 31, 9999 AD.
It contains the fields YEAR, MONTH, DAY, HOUR, MINUTE and SECOND. It
contains fractional seconds. It does not include a time zone.

TIMESTAMP (p)
WITH TIME ZONE

Includes fractional seconds base on a precision of p. Default of p is 6, and
the range is 0 to 9. 13-bytes fixed. Default format is set explicitly with the
NLS_TIMESTAMP_FORMAT parameter. Range is from January 1, 4712 BC
through December 31, 9999 AD. It contains the fields YEAR, MONTH, DAY,
TIMEZONE_HOUR, TIMEZONE_MINUTE and TIMEZONE_SECOND. It
contains fractional seconds. It includes a time zone.

TIMESTAMP (p)
WITH LOCAL TIME
ZONE

Basically the same as TIMESTAMP WITH TIME ZONE, with the following
modifications: (1) Data is stored with times based on the database time zone when
stored, and (2) Users view data in session time zone.

INTERVAL YEAR
[p(year)] TO MONTH

See documentation.

INTERVAL
DAY [p(day)]
TO SECOND
[p(seconds)]

See documentation.

String Data Types Description
CHAR
(n[BYTE | CHAR])

n-byte fixed-length string data (non-Unicode). Range of n is from 1 through 2000.
BYTE and CHAR refer to the semantic usage. See documentation.

VARCHAR2
(n[BYTE | CHAR])

n-byte variable-length string data (non-Unicode). Range of n is from 1 through 4000 BYTEs
or CHARACTERs. BYTE and CHAR refer to the semantic usage. See documentation.

NCHAR (n) (n x 2)-byte fixed-length Unicode string data. Up to (n x 3)-bytes for UTF8 encoding.
Maximum size is 2000 bytes.

NVARCHAR2 (n) Variable-length Unicode string data. Up to (n x 3)-bytes for UTF8 encoding. Maximum
size is 4000 bytes.

LONG Variable-length string data (non-Unicode) with maximum a maximum 2(31–1) bytes
(2 GBytes). See documentation.

CLOB Maximum [(4-GByte – 1)x(database block size)] character large object (non-Unicode).
Supports fixed-length and variable length character sets.

NCLOB Maximum [(4-GByte – 1)x(database block size)] Unicode character large object.
Supports fixed-length and variable length character sets.

Other Data Types Description
ROWID See documentation.

UROWID See documentation.

HTTPURIType See documentation.

XMLType Use for storing XML data. See documentation.

SDO_GEOMETRY See documentation.

(b) continued - Common Oracle Database XE Data Types
(Continued)

M03_KROE1533_08_SE_C03.indd 147 11/21/16 6:23 PM

148 Part 1 Database Fundamentals

FIGURE 3-5 Continued

MySQL 5.7

NumericData Type Description
BIT (M) M = 1 to 64.
TINYINT Range is from −128 to 127.
TINYINT UNSIGNED Range is from 0 to 255.
BOOLEAN 0 = FALSE; 1 = TRUE. Synonym for TINYINT(1).
SMALLINT Range is from −32,768 to 32,767.
SMALLINT UNSIGNED Range is from 0 to 65,535.
MEDIUMINT Range is from −8,388,608 to 8,388,607.
MEDIUMINT UNSIGNED Range is from 0 to 16,777,215.
INT or INTEGER Range is from −2,147,483,648 to 2,147,483,647.
INT UNSIGNED or
INTEGER UNSIGNED

Range is from 0 to 4,294,967,295.

BIGINT Range is from −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.
BIGINT UNSIGNED Range is from 0 to 1,844,674,073,709,551,615.
FLOAT (P) P = Precision; Range is from 0 to 53.
FLOAT or REAL (M, D) Small (single-precision) 4-byte floating-point number:

M = Display width D = Number of digits after the decimal point
DOUBLE (M, D) Normal (double-precision) 8-byte floating-point number:

M = Display width D = Number of digits after decimal point
DEC (M[,D]) or
DECIMAL (M[,D]) or
FIXED (M[,D]) or
NUMERIC (M[,D])

Fixed-point number:
M = Total number or digits
D = Number of digits after the decimal point.

Date and Time
Data Types

Description

DATE YYYY-MM-DD : Range is from 1000-01-01 to 9999-12-31.
DATETIME YYYY-MM-DD HH:MM:SS.

Range is from 1000-01-01 00:00:00 to 9999-12-31 23:59:59.
TIMESTAMP See documentation.
TIME HH:MM:SS : Range is from -838:59:59:000000 to 838:59:59:000000.
YEAR (M) M = 2 or 4 (default).

IF M = 2, then range is from 1970 to 2069 (70 to 69).
IF M = 4, then range is from 1901 to 2155.

String Data Types Description
CHAR (M) Fixed length character string. M = 0 to 255 bytes.
VARCHAR (M) Variable length character string. M = 0 to 65,535 bytes.
BLOB (M) BLOB = Binary Large Object: maximum 65,535 characters.
TEXT (M) Maximum 65,535 characters.
TINYBLOB, TINYTEXT
MEDIUMBLOB, MEDIUMTEXT
LONGBLOB, LONGTEXT

See documentation.
See documentation.
See documentation.

ENUM ('value1', 'value2', . . .) An enumeration. Only one value, but chosen from list. See documentation.

SET ('value1', 'value2', . . .) A set. Zero or more values, all chosen from list. See documentation.

(c) Common MySQL 5.7 Data Types

M03_KROE1533_08_SE_C03.indd 148 11/21/16 6:23 PM

Chapter 3 Structured Query Language 149

Even when Microsoft Access reads standard SQL, the results of running an
SQL statement may be a bit different in Access. For example, Microsoft Access
reads SQL statements containing both Char and VarChar data types but con-
verts both these data types to a fixed Text data type in the Access database.

BTW

Defining Primary Keys with Table Constraints
Although primary keys can be defined as shown in Figure 3-4, we prefer to define primary
keys using a table constraint. Table constraints are identified by the CONSTRAINT key-
word and can be used to implement various constraints. Consider the CREATE TABLE
statements shown in Figure 3-6, with the ASSIGNMENT table now included, which
shows how to define the primary key of a table by using a table constraint.

First, the columns of the table are defined as usual, except that the column that will be
the primary key must be given the column constraint NOT NULL. After the table columns
are defined, a table constraint, identified by the word CONSTRAINT, is used to create the
primary key. Every table constraint has a name followed by the definition of the constraint.

FIGURE 3-6

Creating Primary Keys with SQL Table Constraints
CREATE TABLE DEPARTMENT(

DepartmentName Char(35) NOT NULL,
BudgetCode Char(30) NOT NULL,
O�iceNumber Char(15) NOT NULL,
DepartmentPhone Char(12) NOT NULL,
CONSTRAINT DEPARTMENT_PK PRIMARY KEY(DepartmentName)
);

CREATE TABLE EMPLOYEE(
EmployeeNumber Int NOT NULL IDENTITY (1, 1),
FirstName Char(25) NOT NULL,
LastName Char(25) NOT NULL,
Department Char(35) NOT NULL DEFAULT 'Human Resources',
Position Char(35) NULL,
Supervisor Int NULL,
O�icePhone Char(12) NULL,
EmailAddress VarChar(100) NOT NULL UNIQUE,
CONSTRAINT EMPLOYEE_PK PRIMARY KEY(EmployeeNumber)
);

CREATE TABLE PROJECT (
ProjectID Int NOT NULL IDENTITY (1000, 100),
ProjectName Char(50) NOT NULL,
Department Char(35) NOT NULL,
MaxHours Numeric(8,2) NOT NULL DEFAULT 100,
StartDate Date NULL,
EndDate Date NULL,
CONSTRAINT PROJECT_PK PRIMARY KEY (ProjectID)
);

CREATE TABLE ASSIGNMENT (
ProjectID Int NOT NULL,
EmployeeNumber Int NOT NULL,
HoursWorked Numeric(6,2) NULL,
CONSTRAINT ASSIGNMENT_PK PRIMARY KEY (ProjectID, EmployeeNumber)
);

M03_KROE1533_08_SE_C03.indd 149 11/21/16 6:23 PM

150 Part 1 Database Fundamentals

Note that in the DEPARTMENT table the DepartmentName column is now labeled as
NOT NULL and a CONSTRAINT clause has been added at the end of the table defini-
tion. This is a PRIMARY KEY constraint, and is named DEPARTMENT_PK, and it is
defined by the keywords PRIMARY KEY(DepartmentName). The constraint name is se-
lected by the developer, and the only naming restriction is that the constraint name must be
unique in the database. Usually a standard naming convention is used. In this text, we
name primary PRIMARY KEY constraints using the name of the table followed by an un-
derscore and the letters P and K:

CONSTRAINT TABLENAME_PK PRIMARY KEY({PrimaryKeyColumns})

Defining primary keys using table constraints offers three advantages. First, it is required
for defining composite keys because the PRIMARY KEY column constraint cannot be
used on more than one column. We previously excluded the ASSIGNMENT table from
Figure 3-4 because it is not possible to declare the primary key of the ASSIGNMENT table
using the technique in Figure 3-4, but Figure 3-6 now includes the ASSIGNMENT table
and illustrates the declaration of the primary key ASSIGNMENT_PK as a composite key
using the SQL phrase PRIMARY KEY(ProjectID, EmployeeNumber). The second advan-
tage is that by using table constraints you can choose the name of the constraint that de-
fines the primary key. Controlling the name of the constraint has advantages for administer-
ing the database, as you will see later when we discuss the SQL DROP statement.

Finally, using a table constraint to define the primary key allows us to easily define sur-
rogate keys in some DBMS products. Notice that in Figure 3-6 the EmployeeNumber col-
umn definition in EMPLOYEE and the ProjectID column definition in PROJECT now
include the IDENTITY (M,N) property. This illustrates how surrogate keys are defined in
Microsoft SQL Server. The keyword IDENTITY indicates that this is a surrogate key that
will start a value M for the first row created and increase by increment N as each additional
row is created. Thus, EmployeeNumber will start with the number 1 and increase by an
increment of 1 (that is, 1, 2, 3, 4, 5,….). ProjectID will start with the number 1000 and in-
crease by 100 (that is, 1000, 1100, 1200,….). The exact techniques used to define surrogate
key sequences vary extensively from DBMS to DBMS, so consult the documentation for
your specific product.

Does Not Work with Microsoft Access ANSI-89 SQL

Although Microsoft Access does support an AutoNumber data type, it always starts at
1 and increments by 1. Further, AutoNumber cannot be used as an SQL data type.

Solution: For a surrogate primary key that starts at 1 and increments by 1, set the
AutoNumber data type manually after the table is created but before any data is inserted
into the table. For any surrogate primary key that either does not start at 1 or does not
increment by 1 (or both), create the primary key column as a long integer data type, and
enter the primary key data manually (or by application code) after the table is created.

Defining Foreign Keys with the Table Constraints
You may have noticed that none of the tables in Figure 3-4 or Figure 3-6 include any for-
eign key columns. You can also use table FOREIGN KEY constraints to define foreign
keys and their associated referential integrity constraints. Figure 3-7 shows the final SQL
code for our tables, complete with the needed FOREIGN KEY constraints.

EMPLOYEE has a table constraint named EMP_DEPART_FK that defines the for-
eign key relationship between the Department column in EMPLOYEE and the
DepartmentName column in DEPARTMENT.

M03_KROE1533_08_SE_C03.indd 150 11/21/16 6:23 PM

Chapter 3 Structured Query Language 151

Notice the phrase ON UPDATE CASCADE. The ON UPDATE phrase shows what
action should be taken if a value of the primary key DepartmentName in DEPARTMENT
changes. The CASCADE keyword means that the same change should be made to the re-
lated Department column in EMPLOYEE. This means that if a department named Sales and
Marketing is changed to Sales/Marketing, then the foreign key values should be updated to
reflect this change. Because DepartmentName is not a surrogate key, the values could be
changed, and setting ON UPDATE CASCADE is reasonable. Note that we also establish the
recursive relationship with the EMPLOYEE table by adding a FOREIGN KEY constraint.
We discuss using SQL in recursive relationships in Appendix E, “Advanced SQL.”

The PROJECT table has a similar foreign key relationship with DEPARTMENT, and the
same logic applies, except that here there will be two types of project: completed and in-pro-
cess. The business rules dealing with this situation are explored in the end-of-chapter exercises.

FIGURE 3-7

Creating Foreign Keys with SQL Table Constraints

CREATE TABLE DEPARTMENT(
DepartmentName Char(35) NOT NULL,
BudgetCode Char(30) NOT NULL,
OfficeNumber Char(15) NOT NULL,
DepartmentPhone Char(12) NOT NULL,
CONSTRAINT DEPARTMENT_PK PRIMARY KEY(DepartmentName)
);

CREATE TABLE EMPLOYEE(
EmployeeNumber Int NOT NULL IDENTITY (1, 1),
FirstName Char(25) NOT NULL,
LastName Char(25) NOT NULL,
Department Char(35) NOT NULL DEFAULT 'Human Resources',
Position Char(35) NULL,
Supervisor Int NULL,
OfficePhone Char(12) NULL,
EmailAddress VarChar(100) NOT NULL UNIQUE,
CONSTRAINT EMPLOYEE_PK PRIMARY KEY(EmployeeNumber),
CONSTRAINT EMP_DEPART_FK FOREIGN KEY(Department)

REFERENCES DEPARTMENT(DepartmentName)
ON UPDATE CASCADE,

CONSTRAINT EMP_SUPER_FK FOREIGN KEY(Supervisor)
REFERENCES EMPLOYEE(EmployeeNumber)

);

CREATE TABLE PROJECT (
ProjectID Int NOT NULL IDENTITY (1000, 100),
ProjectName Char(50) NOT NULL,
Department Char(35) NOT NULL,
MaxHours Numeric(8,2) NOT NULL DEFAULT 100,
StartDate Date NULL,
EndDate Date NULL,
CONSTRAINT PROJECT_PK PRIMARY KEY (ProjectID),
CONSTRAINT PROJ_DEPART_FK FOREIGN KEY(Department)

REFERENCES DEPARTMENT(DepartmentName)
ON UPDATE CASCADE

);

CREATE TABLE ASSIGNMENT (
ProjectID Int NOT NULL,
EmployeeNumber Int NOT NULL,
HoursWorked Numeric(6,2) NULL,
CONSTRAINT ASSIGNMENT_PK PRIMARY KEY (ProjectID, EmployeeNumber),
CONSTRAINT ASSIGN_PROJ_FK FOREIGN KEY (ProjectID)

REFERENCES PROJECT (ProjectID)
ON UPDATE NO ACTION
ON DELETE CASCADE,

CONSTRAINT ASSIGN_EMP_FK FOREIGN KEY (EmployeeNumber)
REFERENCES EMPLOYEE (EmployeeNumber)

ON UPDATE NO ACTION
ON DELETE NO ACTION

);

M03_KROE1533_08_SE_C03.indd 151 11/21/16 6:23 PM

152 Part 1 Database Fundamentals

For the ASSIGNMENT table, there are two foreign key constraints: one to
EMPLOYEE and one to PROJECT. The first one defines the constraint ASSIGN_PROJ_
FK (the name is up to the developer, as long as it is unique) that specifies that ProjectID in
ASSIGNMENT references the ProjectID column in PROJECT. Here the ON UPDATE
phrase is set to NO ACTION. Recall that ProjectID is a surrogate key and thus will never
change. In this situation, there is no need to cascade updates to the referenced primary key.

Notice that there is also an ON DELETE phrase, which shows what action should be
taken if a row in PROJECT is deleted. Here the phrase ON DELETE CASCADE means
that when a PROJECT row is deleted all rows in ASSIGNMENT that are connected to the
deleted row in PROJECT also should be deleted. Thus, when a PROJECT row is deleted,
all ASSIGNMENT rows for that PROJECT row will be deleted as well. This action imple-
ments the second business rule on page 140.

The second foreign key table constraint defines the foreign key constraint ASSIGN_
EMP_FK. This constraint indicates that the EmployeeNumber column references the
EmployeeNumber column of EMPLOYEE. Again, the referenced primary key is a surro-
gate key, so ON UPDATE NO ACTION is appropriate for this constraint. The phrase ON
DELETE NO ACTION indicates to the DBMS that no EMPLOYEE row deletion should
be allowed if that row is connected to an ASSIGNMENT row. This declaration imple-
ments the first business rule on page 140.

Because ON DELETE NO ACTION is the default, you can omit the ON DELETE
expression, and the declaration will default to no action. However, specifying it makes bet-
ter documentation.5

Table constraints can be used for purposes other than creating primary and foreign
keys. One of the most important purposes is to define constraints on data values, and we
will explore the SQL CHECK constraint in the end-of-chapter exercises. As always, see
the documentation for your DBMS for more information on this topic.

5You may be wondering why we don’t use the ON DELETE phrase with the foreign key constraints be-
tween DEPARTMENT and EMPLOYEE and between DEPARTMENT and PROJECT. After all, there
will probably be business rules defining what should be done with employees and projects if a department
is deleted. However, enforcing those rules will be more complex than simply using an ON DELETE state-
ment, and this topic is beyond the scope of this book. For a full discussion, see David M. Kroenke and
David J. Auer, Database Processing: Fundamentals, Design, and Implementation, 14th ed. (Upper Saddle
River, NJ: Prentice Hall, 2016), Chapter 6.

Does Not Work with Microsoft Access ANSI-89 SQL

Microsoft Access does not completely support foreign key CONSTRAINT phrases.
Although the basic referential integrity constraint can be created using SQL, the ON
UPDATE and ON DELETE clauses are not supported.

Solution: ON UPDATE and ON DELETE actions can be set manually after the relation-
ship is created. See the discussion in this chapter’s section of “The Access Work-
bench.”

Submitting SQL to the DBMS
After you have developed a text file with SQL statements like those in Figures 3-4, 3-6, and
3-7, you can submit them to the DBMS. The means by which you do this varies from
DBMS to DBMS. With SQL Server 2016, you can type them into a query window in the
Microsoft SQL Server Management Studio, or you can enter them via Visual Studio.NET.
Oracle Database XE and MySQL 5.7 use similar techniques. How to do this in Microsoft
Access is discussed in this chapter’s section of “The Access Workbench.”

M03_KROE1533_08_SE_C03.indd 152 11/21/16 6:23 PM

http://studio.net

Chapter 3 Structured Query Language 153

Figure 3-8 shows the Microsoft SQL Server Management Studio window after the
SQL statements in Figure 3-7 have been entered and processed in SQL Server Express
Edition. The SQL code itself appears in a query window on the upper right, and the mes-
sage “Command(s) completed successfully” in the Messages window on the lower right in-
dicates that the SQL statements were processed correctly. The object icons representing
the tables can be seen in the Object Explorer window on the left, where the name of each
table is prefixed with dbo, which SQL Server uses for database owner.

Figure 3-9 shows the Oracle SQL Developer window after the SQL statements in
Figure 3-7 (slightly modified to conform to Oracle Database syntax—see Appendix B,
“Getting Started with Oracle Database XE”) have been processed in Oracle Database XE.
The SQL code appears in a tabbed script window on the right, and object icons represent-
ing the newly created tables can be seen in the tabbed Connections window on the left.

Figure 3-10 shows the MySQL Workbench window after the SQL statements in
Figure 3-7 [slightly modified to conform to MySQL syntax—see Appendix C, “Getting
Started with MySQL 5.7 Community Server,” and note use of the AUTO_INCREMENT
keyword instead of IDENTITY (1, 1)] have been processed in MySQL. The SQL code
appears in a tabbed script window on the right, and the object icons representing the newly
created tables can be seen in the Object Browser window on the left.

The objects representing
the tables created by the
script are shown in the
expanded Tables
folder—dbo stands for
database owner

Messages are shown
here—either that the
commands were
successful or appropriate
error messages

The SQL script in the
tabbed script window

Does Not Work with Microsoft Access ANSI-89 SQL

Unlike SQL Server 2016, Oracle Database XE, and MySQL 5.7, Microsoft Access does
not support SQL scripts.

Solution: You can still create tables by using the SQL CREATE command and inserting
data by using the SQL INSERT command (discussed later in this chapter), but you
must do so one command at a time. See the discussion in this chapter’s section of
“The Access Workbench.”

SQL Server 2016, Windows 10, Microsoft Corporation.

FIGURE 3-8

Processing the SQL CREATE TABLE Statements Using Microsoft SQL Server 2016

M03_KROE1533_08_SE_C03.indd 153 11/21/16 6:23 PM

154 Part 1 Database Fundamentals

The objects
representing the tables
created by the script are
shown in the expanded
Tables folder

Messages are shown
here—either that the
commands were
successful or appropriate
error messages

The SQL script in the
tabbed SQL Worksheet
window

The objects
representing the tables
created by the script are
shown in the expanded
wp schema

The SQL script in the
tabbed script window

Messages are shown
here—either that the
commands were
successful or appropriate
error messages

Oracle SQL Developer 4.01, Oracle Corporation.

Oracle MySQL Community Server 5.7, Oracle Corporation.

FIGURE 3-9

Processing the SQL CREATE TABLE Statements Using Oracle Database XE

FIGURE 3-10

Processing the SQL CREATE TABLE Statements Using MySQL 5.7

M03_KROE1533_08_SE_C03.indd 154 11/21/16 6:23 PM

Chapter 3 Structured Query Language 155

The SQL DML is used to query databases and to modify data in the tables. In this section,
we discuss how to use SQL to insert data into a database, how to query the data, and how
to change and delete the data.

There are three possible data modification operations: insert, update, and delete.
Because we need to populate our database tables, we discuss how to insert data at this time.
We will wait until later in the chapter, after we’ve discussed some other useful SQL syntax,
to consider updating and deleting data.

Inserting Data
Data can be added to a relation by using the SQL INSERT statement. This statement has
two forms, depending on whether data are supplied for all of the columns.

We’ll put the data shown in Figure 3-2(a) into the DEPARTMENT table. If the data
for all columns are supplied, such as for the administration department, then the following
INSERT can be used:

INSERT INTO DEPARTMENT VALUES('Administration',
'BC-100-10', 'BLDG01-210', '360-285-8100');

SQL FOR DATA MANIPULATION (DML)—INSERTING DATA

Some DBMS products can create database diagrams that show the tables and relation-
ships in a database. We’ve already used the Microsoft Access Relationships window (in
Chapter 2’s section of “The Access Workbench”). For SQL Server 2016, Figure 3-11 shows
the WP database structure in Microsoft SQL Server Management. Note that the recursive
relationship in the EMPLOYEE table is shown in this database diagram.

The database tables and the links between
them are shown in the tabbed Diagram window

The object representing the database diagram
is shown in the expanded Database Diagrams
folder—dbo stands for database owner

SQL Server 2016, Windows 10, Microsoft Corporation.

FIGURE 3-11

Database Diagram in the Microsoft SQL Server Management Studio

M03_KROE1533_08_SE_C03.indd 155 11/21/16 6:23 PM

156 Part 1 Database Fundamentals

If the DBMS is providing a surrogate key, then the primary key value does not need to be
specified.

SQL statements can also include an SQL comment, which is a block of text that is
used to document the SQL statement but not executed as part of the SQL statement. SQL
comments are enclosed in the symbols /* and */, and any text between these symbols is
ignored when the SQL statement is executed. For example, here is the previous SQL
INSERT statement with an SQL comment added to document the statement by including
a statement label:

/* *** SQL-INSERT-CH03-01 *** */

INSERT INTO DEPARTMENT VALUES('Administration',

'BC-100-10', 'BLDG01-210, '360-285-8100');

Because the SQL comment is ignored when the SQL statement is executed, the result of
running this statement will be identical to the result of running the statement without the
comment. We will use similar comments to label the SQL statements in this chapter as an
easy way to reference a specific SQL statement in the text.

The data shown in Figure 3-2(c) will be put in the PROJECT table. Because ProjectID
is a surrogate key—specified as IDENTITY (1000, 100) in SQL Server—the same type of
INSERT statement can be used when data are supplied for all other columns. For example,
to insert the data for the 2017 Q3 Production Plan, the following INSERT can be used:

/* *** SQL-INSERT-CH03-02 *** */

INSERT INTO PROJECT VALUES('2017 Q3 Production Plan',

'Sales and Marketing', 135.00, '10-MAY-17', '15-JUN-17');

Note that numbers such as Integer and Numeric values are not enclosed in single quotes,
but Char, VarChar, and DateTime values are.

SQL is very fussy about single quotes. It wants the plain, nondirectional quotes
found in basic text editors. The fancy directional quotes produced by many
word processors will produce errors. For example, the data value '2017 Q3
Production Plan' is correctly stated, but ‘2017 Q3 Production Plan’ is not. Do
you see the difference?

BTW

If data for some columns are missing, then the names of the columns for which data
are provided must be listed. For example, consider the 2017 Q4 Portfolio Analysis project,
which does not have an EndDate value. The correct INSERT statement for this data is:

/* *** SQL-INSERT-CH03-03 *** */

INSERT INTO PROJECT
(ProjectName, Department, MaxHours, StartDate)

VALUES('2017 Q4 Portfolio Analysis', 'Finance',
140.00, '05-OCT-17');

M03_KROE1533_08_SE_C03.indd 156 11/21/16 6:23 PM

Chapter 3 Structured Query Language 157

A NULL value will be inserted for EndDate.
Let’s consider three points regarding the second version of the INSERT command.

First, the order of the column names must match the order of the values. In the preceding
example, the order of the column names is Name, Department, MaxHours, StartDate, so
the order of the values must also be Name, Department, MaxHours, StartDate.

Second, although the order of the data must match the order of the column names, the
order of the column names does not have to match the order of the columns in the table.
For example, the following INSERT, where Department is placed at the beginning of the
column list, would also work:

/* *** SQL-INSERT-CH03-04 *** */

INSERT INTO PROJECT
(Department, ProjectName, MaxHours, StartDate)

VALUES('Finance', '2017 Q4 Portfolio Analysis',
140.00, '05-OCT-17');

Finally, for the INSERT to work, values for all NOT NULL columns must be pro-
vided. You can omit EndDate only because this column is defined as NULL.

Figure 3-12 shows the SQL INSERT statements needed to populate the WP database
tables created by the SQL CREATE TABLE statements in Figure 3-7. Note that the order
in which the tables are populated does matter because of the foreign key referential integ-
rity constraints.

FIGURE 3-12

SQL INSERT Statements
/***** DEPARTMENT DATA **/

INSERT INTO DEPARTMENT VALUES(
'Administration', 'BC-100-10', 'BLDG01-210', '360-285-8100');

INSERT INTO DEPARTMENT VALUES(
'Legal', 'BC-200-10', 'BLDG01-220', '360-285-8200');

INSERT INTO DEPARTMENT VALUES(
'Human Resources', 'BC-300-10', 'BLDG01-230', '360-285-8300');

INSERT INTO DEPARTMENT VALUES(
'Finance', 'BC-400-10', 'BLDG01-110', '360-285-8400');

INSERT INTO DEPARTMENT VALUES(
'Accounting', 'BC-500-10', 'BLDG01-120', '360-285-8405');

INSERT INTO DEPARTMENT VALUES(
'Sales and Marketing', 'BC-600-10', 'BLDG01-250', '360-287-8500');

INSERT INTO DEPARTMENT VALUES(
'InfoSystems', 'BC-700-10', 'BLDG02-210', '360-287-8600');

INSERT INTO DEPARTMENT VALUES(
'Research and Development', 'BC-800-10', 'BLDG02-250', '360-287-8700');

INSERT INTO DEPARTMENT VALUES(
'Production', 'BC-900-10', 'BLDG02-110', '360-287-8800');

/***** EMPLOYEE DATA ***/

INSERT INTO EMPLOYEE
(FirstName, LastName, Department, Position, OfficePhone, EmailAddress)
VALUES(
'Mary', 'Jacobs', 'Administration', 'CEO',
'360-285-8110', 'Mary.Jacobs@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Rosalie', 'Jackson', 'Administration', 'Admin Assistant', 1,
'360-285-8120', 'Rosalie.Jackson@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Richard', 'Bandalone', 'Legal', 'Attorney', 1,
'360-285-8210', 'Richard.Bandalone@WP.com');

INSERT INTO EMPLOYEE VALUES(
'George', 'Smith', 'Human Resources', 'HR3', 1,
'360-285-8310', 'George.Smith@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Alan', 'Adams', 'Human Resources', 'HR1', 4,
'360-285-8320', 'Alan.Adams@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Ken', 'Evans', 'Finance', 'CFO', 1,
'360-285-8410', 'Ken.Evans@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Mary', 'Abernathy', 'Finance', 'FA3', 6,
'360-285-8420', 'Mary.Abernathy@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Tom', 'Caruthers', 'Accounting', 'FA2', 6,
'360-285-8430', 'Tom.Caruthers@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Heather', 'Jones', 'Accounting', 'FA2', 6,
'360-285-8440', 'Heather.Jones@WP.com');

(Continued)

M03_KROE1533_08_SE_C03.indd 157 11/21/16 6:23 PM

158 Part 1 Database Fundamentals

/***** DEPARTMENT DATA **/

INSERT INTO DEPARTMENT VALUES(
'Administration', 'BC-100-10', 'BLDG01-210', '360-285-8100');

INSERT INTO DEPARTMENT VALUES(
'Legal', 'BC-200-10', 'BLDG01-220', '360-285-8200');

INSERT INTO DEPARTMENT VALUES(
'Human Resources', 'BC-300-10', 'BLDG01-230', '360-285-8300');

INSERT INTO DEPARTMENT VALUES(
'Finance', 'BC-400-10', 'BLDG01-110', '360-285-8400');

INSERT INTO DEPARTMENT VALUES(
'Accounting', 'BC-500-10', 'BLDG01-120', '360-285-8405');

INSERT INTO DEPARTMENT VALUES(
'Sales and Marketing', 'BC-600-10', 'BLDG01-250', '360-287-8500');

INSERT INTO DEPARTMENT VALUES(
'InfoSystems', 'BC-700-10', 'BLDG02-210', '360-287-8600');

INSERT INTO DEPARTMENT VALUES(
'Research and Development', 'BC-800-10', 'BLDG02-250', '360-287-8700');

INSERT INTO DEPARTMENT VALUES(
'Production', 'BC-900-10', 'BLDG02-110', '360-287-8800');

/***** EMPLOYEE DATA ***/

INSERT INTO EMPLOYEE
(FirstName, LastName, Department, Position, OfficePhone, EmailAddress)
VALUES(
'Mary', 'Jacobs', 'Administration', 'CEO',
'360-285-8110', 'Mary.Jacobs@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Rosalie', 'Jackson', 'Administration', 'Admin Assistant', 1,
'360-285-8120', 'Rosalie.Jackson@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Richard', 'Bandalone', 'Legal', 'Attorney', 1,
'360-285-8210', 'Richard.Bandalone@WP.com');

INSERT INTO EMPLOYEE VALUES(
'George', 'Smith', 'Human Resources', 'HR3', 1,
'360-285-8310', 'George.Smith@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Alan', 'Adams', 'Human Resources', 'HR1', 4,
'360-285-8320', 'Alan.Adams@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Ken', 'Evans', 'Finance', 'CFO', 1,
'360-285-8410', 'Ken.Evans@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Mary', 'Abernathy', 'Finance', 'FA3', 6,
'360-285-8420', 'Mary.Abernathy@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Tom', 'Caruthers', 'Accounting', 'FA2', 6,
'360-285-8430', 'Tom.Caruthers@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Heather', 'Jones', 'Accounting', 'FA2', 6,
'360-285-8440', 'Heather.Jones@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Ken', 'Numoto', 'Sales and Marketing', 'SM3', 1,
'360-287-8510', 'Ken.Numoto@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Linda', 'Granger', 'Sales and Marketing', 'SM2', 10,
'360-287-8520', 'Linda.Granger@WP.com');

INSERT INTO EMPLOYEE VALUES(
'James', 'Nestor', 'InfoSystems', 'CIO', 1,
'360-287-8610', 'James.Nestor@WP.com');

INSERT INTO EMPLOYEE
(FirstName, LastName, Department, Position, Supervisor, EmailAddress)
VALUES(
'Rick', 'Brown', 'InfoSystems', 'IS2', 12, 'Rick.Brown@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Mike', 'Nguyen', 'Research and Development', 'CTO', 1,
'360-287-8710', 'Mike.Nguyen@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Jason', 'Sleeman', 'Research and Development', 'RD3', 14,
'360-287-8720', 'Jason.Sleeman@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Mary', 'Smith', 'Production', 'OPS3', 1,
'360-287-8810', 'Mary.Smith@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Tom', 'Jackson', 'Production', 'OPS2', 14,
'360-287-8820', 'Tom.Jackson@WP.com');

INSERT INTO EMPLOYEE VALUES(
'George', 'Jones', 'Production', 'OPS2', 15,
'360-287-8830', 'George.Jones@WP.com');

INSERT INTO EMPLOYEE
(FirstName, LastName, Department, Position, Supervisor, EmailAddress)
VALUES(
'Julia', 'Hayakawa', 'Production', 'OPS1', 15, 'Julia.Hayakawa@WP.com');

INSERT INTO EMPLOYEE
(FirstName, LastName, Department, Position, Supervisor, EmailAddress)
VALUES(
'Sam', 'Stewart', 'Production', 'OPS1', 15, 'Sam.Stewart@WP.com');

/***** PROJECT DATA **/

INSERT INTO PROJECT VALUES(
'2017 Q3 Production Plan', 'Production', 100.00, '10-MAY-17', '15-JUN-17');

INSERT INTO PROJECT VALUES(
'2017 Q3 Marketing Plan', 'Sales and Marketing', 135.00, '10-MAY-17', '15-JUN-17');

INSERT INTO PROJECT VALUES(
'2017 Q3 Portfolio Analysis', 'Finance', 120.00, '05-JUL-17', '25-JUL-17');

INSERT INTO PROJECT VALUES(
'2017 Q3 Tax Preparation', 'Accounting', 145.00, '10-AUG-17', '15-OCT-17');

INSERT INTO PROJECT VALUES(
'2017 Q4 Production Plan', 'Production', 100.00, '10-AUG-17', '15-SEP-17');

INSERT INTO PROJECT VALUES(
'2017 Q4 Marketing Plan', 'Sales and Marketing', 135.00, '10-AUG-17', '15-SEP-17');

INSERT INTO PROJECT(ProjectName, Department, MaxHours, StartDate)
VALUES(
'2017 Q4 Portfolio Analysis', 'Finance', 140.00, '05-OCT-17');

FIGURE 3-12 Continued

M03_KROE1533_08_SE_C03.indd 158 11/21/16 6:23 PM

Chapter 3 Structured Query Language 159

FIGURE 3-12 Continued

INSERT INTO EMPLOYEE VALUES(
'Ken', 'Numoto', 'Sales and Marketing', 'SM3', 1,
'360-287-8510', 'Ken.Numoto@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Linda', 'Granger', 'Sales and Marketing', 'SM2', 10,
'360-287-8520', 'Linda.Granger@WP.com');

INSERT INTO EMPLOYEE VALUES(
'James', 'Nestor', 'InfoSystems', 'CIO', 1,
'360-287-8610', 'James.Nestor@WP.com');

INSERT INTO EMPLOYEE
(FirstName, LastName, Department, Position, Supervisor, EmailAddress)
VALUES(
'Rick', 'Brown', 'InfoSystems', 'IS2', 12, 'Rick.Brown@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Mike', 'Nguyen', 'Research and Development', 'CTO', 1,
'360-287-8710', 'Mike.Nguyen@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Jason', 'Sleeman', 'Research and Development', 'RD3', 14,
'360-287-8720', 'Jason.Sleeman@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Mary', 'Smith', 'Production', 'OPS3', 1,
'360-287-8810', 'Mary.Smith@WP.com');

INSERT INTO EMPLOYEE VALUES(
'Tom', 'Jackson', 'Production', 'OPS2', 14,
'360-287-8820', 'Tom.Jackson@WP.com');

INSERT INTO EMPLOYEE VALUES(
'George', 'Jones', 'Production', 'OPS2', 15,
'360-287-8830', 'George.Jones@WP.com');

INSERT INTO EMPLOYEE
(FirstName, LastName, Department, Position, Supervisor, EmailAddress)
VALUES(
'Julia', 'Hayakawa', 'Production', 'OPS1', 15, 'Julia.Hayakawa@WP.com');

INSERT INTO EMPLOYEE
(FirstName, LastName, Department, Position, Supervisor, EmailAddress)
VALUES(
'Sam', 'Stewart', 'Production', 'OPS1', 15, 'Sam.Stewart@WP.com');

/***** PROJECT DATA **/

INSERT INTO PROJECT VALUES(
'2017 Q3 Production Plan', 'Production', 100.00, '10-MAY-17', '15-JUN-17');

INSERT INTO PROJECT VALUES(
'2017 Q3 Marketing Plan', 'Sales and Marketing', 135.00, '10-MAY-17', '15-JUN-17');

INSERT INTO PROJECT VALUES(
'2017 Q3 Portfolio Analysis', 'Finance', 120.00, '05-JUL-17', '25-JUL-17');

INSERT INTO PROJECT VALUES(
'2017 Q3 Tax Preparation', 'Accounting', 145.00, '10-AUG-17', '15-OCT-17');

INSERT INTO PROJECT VALUES(
'2017 Q4 Production Plan', 'Production', 100.00, '10-AUG-17', '15-SEP-17');

INSERT INTO PROJECT VALUES(
'2017 Q4 Marketing Plan', 'Sales and Marketing', 135.00, '10-AUG-17', '15-SEP-17');

INSERT INTO PROJECT(ProjectName, Department, MaxHours, StartDate)
VALUES(
'2017 Q4 Portfolio Analysis', 'Finance', 140.00, '05-OCT-17');

/***** ASSIGNMENT DATA **/

INSERT INTO ASSIGNMENT VALUES(1000, 1, 30.0);
INSERT INTO ASSIGNMENT VALUES(1000, 6, 50.0);
INSERT INTO ASSIGNMENT VALUES(1000, 10, 50.0);
INSERT INTO ASSIGNMENT VALUES(1000, 16, 75.0);
INSERT INTO ASSIGNMENT VALUES(1000, 17, 75.0);
INSERT INTO ASSIGNMENT VALUES(1100, 1, 30.0);
INSERT INTO ASSIGNMENT VALUES(1100, 6, 75.0);
INSERT INTO ASSIGNMENT VALUES(1100, 10, 55.0);
INSERT INTO ASSIGNMENT VALUES(1100, 11, 55.0);
INSERT INTO ASSIGNMENT VALUES(1200, 3, 20.0);
INSERT INTO ASSIGNMENT VALUES(1200, 6, 40.0);
INSERT INTO ASSIGNMENT VALUES(1200, 7, 45.0);
INSERT INTO ASSIGNMENT VALUES(1200, 8, 45.0);
INSERT INTO ASSIGNMENT VALUES(1300, 3, 25.0);
INSERT INTO ASSIGNMENT VALUES(1300, 6, 40.0);
INSERT INTO ASSIGNMENT VALUES(1300, 8, 50.0);
INSERT INTO ASSIGNMENT VALUES(1300, 9, 50.0);
INSERT INTO ASSIGNMENT VALUES(1400, 1, 30.0);
INSERT INTO ASSIGNMENT VALUES(1400, 6, 50.0);
INSERT INTO ASSIGNMENT VALUES(1400, 10, 50.0);
INSERT INTO ASSIGNMENT VALUES(1400, 16, 75.0);
INSERT INTO ASSIGNMENT VALUES(1400, 17, 75.0);
INSERT INTO ASSIGNMENT VALUES(1500, 1, 30.0);
INSERT INTO ASSIGNMENT VALUES(1500, 6, 75.0);
INSERT INTO ASSIGNMENT VALUES(1500, 10, 55.0);
INSERT INTO ASSIGNMENT VALUES(1500, 11, 55.0);
INSERT INTO ASSIGNMENT VALUES(1600, 3, 20.0);
INSERT INTO ASSIGNMENT VALUES(1600, 6, 40.0);
INSERT INTO ASSIGNMENT VALUES(1600, 7, 45.0);
INSERT INTO ASSIGNMENT VALUES(1600, 8, 45.0);

/***/

Oracle Database and MySQL handle surrogate keys in their own unique ways.
Oracle Database uses sequences (see Appendix B and the Oracle Database XE
documentation), and MySQL treats the AUTO_INCREMENT value as a missing
value so that you have to list all the other column names or use NULL values
(see Appendix C and the MySQL 5.7 Community Server documentation).

BTW

After the tables have been defined and populated, you can use SQL DML to query data in
many ways. You can also use it to change and delete data, but the SQL statements for these
activities will be easier to learn if we begin with the query statements. In the following discus-
sion, assume that the sample data shown in Figure 3-2 have been entered into the database.

SQL FOR DATA MANIPULATION (DML)—SINGLE TABLE QUERIES

M03_KROE1533_08_SE_C03.indd 159 11/21/16 6:24 PM

160 Part 1 Database Fundamentals

When SQL statements are executed, the statements transform tables. SQL query
statements start with a table, process that table in some way, and then place the results
in another table structure. Even if the result of the processing is just a single number,
that number is considered to be a table with one row and one column. As you will
learn at the end of this chapter, some SQL statements process multiple tables.
Regardless of the number of input tables, though, the result of every SQL statement is
a single table.

The SQL SELECT/FROM/WHERE Framework
This section introduces the fundamental statement framework for SQL query statements.
After we discuss this basic structure, you will learn how to submit SQL statements to
Microsoft Access, SQL Server, Oracle Database, and MySQL. If you choose, you can then
follow along with the text and process additional SQL statements as they are explained in
the rest of this chapter. The basic form of SQL queries uses the SQL SELECT/FROM/
WHERE framework. In this framework:

• The SQL SELECT clause specifies which columns are to be listed in the query
results.

• The SQL FROM clause specifies which tables are to be used in the query.

• The SQL WHERE clause specifies which rows are to be listed in the query
results.

We will use and expand this framework as we work through examples in the following
sections. All the examples use the data in Figure 3-2 as the basis for the results of the queries.

Reading Specified Columns from a Single Table
We begin very simply. Suppose we want to obtain the values that are in the PROJECT
table. To do this, we write an SQL SELECT statement that contains all the column names
in the table. An SQL statement to read that data is the following:

/* *** SQL-Query-CH03-01 *** */

SELECT ProjectID, ProjectName, Department, MaxHours,
StartDate, EndDate

FROM PROJECT;

Using the data in Figure 3-12, when the DBMS processes this statement the result will be:

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 160 11/21/16 6:24 PM

Chapter 3 Structured Query Language 161

SQL provides a shorthand notation for querying all of the columns of a table. The
shorthand is to use an SQL asterisk (*) wildcard character to indicate that we want all the
columns to be displayed:

/* *** SQL-Query-CH03-02 *** */

SELECT *

FROM PROJECT;

The result will again be a table with all rows and all six of the columns in PROJECT:

Specifying Column Order in SQL Queries from a Single Table
Suppose we want to obtain just the values of the ProjectName, Department, and
MaxHours columns of the PROJECT table. In this case, we specify only the column names
ProjectName, Department, and MaxHours, and an SQL SELECT statement to read that
data is the following:

/* *** SQL-Query-CH03-03 *** */

SELECT ProjectName, Department, MaxHours

FROM PROJECT;

Using the data in Figure 3-12, the result of this statement is:

In the SQL SELECT statement, the SELECT clause and the FROM clause are
the only required clauses in the statement. We will have a complete query by
simply telling SQL which columns should be read from which table. In the rest
of this chapter, we will discuss other clauses, such as the WHERE clause, that
can be used as part of an SQL SELECT statement. All of these other clauses,
however, are optional.

BTW
SQL Server 2016, Windows 10, Microsoft Corporation.

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 161 11/21/16 6:24 PM

162 Part 1 Database Fundamentals

Before continuing the explanation of SQL, it will be useful for you to learn how to submit
SQL statements to specific DBMS products. That way, you can work along with the text by
keying and running SQL statements as you read the discussion. The particular means by
which you submit SQL statements depends on the DBMS.

To show you how the results look in actual DBMS management tools, Figure 3-13 shows
query SQL-Query-CH03-03 as executed in Microsoft SQL Server 2016 using Microsoft SQL
Server Management Studio, Figure 3-14 shows the query as executed in Oracle Database XE
using Oracle SQL Developer, and Figure 3-15 shows the query as executed in MySQL 5.7
using MySQL Workbench. For more details, see Appendix A, “Getting Started with

SUBMITTING SQL STATEMENTS TO THE DBMS

The SQL statement in the
tabbed query window

The query results in the
tabbed Results window

The New Query button

The Execute button

The order of the column names after the keyword SELECT determines the order of
the columns in the resulting table. Thus, if you change the order of columns in the previous
SELECT statement to:

/* *** SQL-Query-CH03-04 *** */

SELECT ProjectName, MaxHours, Department

FROM PROJECT;

The result will be:

SQL Server 2016, Windows 10, Microsoft Corporation.

SQL Server 2016, Windows 10, Microsoft Corporation.

FIGURE 3-13

SQL Query Results in the Microsoft SQL Server Management Studio

M03_KROE1533_08_SE_C03.indd 162 11/21/16 6:24 PM

Chapter 3 Structured Query Language 163

The query results in the
tabbed Query Result
window

The WP tabbed SQL
Worksheet window

The Run Statement button

The SQL statement in the
tabbed SQL Worksheet
window

The SQL statement in the
MySQL Workbench Query
window

The query results in the
Results Grid tabbed
window named PROJECT 1

The Execute button

Oracle SQL Developer 4.01, Oracle Corporation.

Oracle MySQL Community Server 5.7, Oracle Corporation.

FIGURE 3-14

SQL Query Results in the Oracle SQL Developer

FIGURE 3-15

SQL Query Results in the MySQL Workbench

M03_KROE1533_08_SE_C03.indd 163 11/21/16 6:24 PM

164 Part 1 Database Fundamentals

Now that we know how to run SQL queries in the DBMS product that we are using, we
can return to our discussion of SQL syntax itself. We started our discussion of SQL queries
with SQL statements for processing a single table, and now we will add additional SQL
features to those queries. As we proceed, you will begin to see how powerful SQL can be
for querying databases and for creating information from existing data.

SQL ENHANCEMENTS FOR SINGLE TABLE QUERIES

The SQL results shown in this chapter were generated using Microsoft SQL
Server 2016. Query results from other DBMS products will be similar but may
vary a bit.

BTW

Reading Specified Rows from a Single Table
The next SQL statement obtains only the Department column from the PROJECT table:

/* *** SQL-Query-CH03-05 *** */

SELECT Department

FROM PROJECT;

The result is:

Notice that the first and fifth rows of this table are duplicates, as are the second and
sixth rows (and the third and seventh rows). According to the definition of relation given in
Chapter 2, such duplicate rows are prohibited. However, as also mentioned in Chapter 2,
the process of checking for and eliminating duplicate rows is time-consuming. Therefore,
by default, DBMS products do not check for duplication. Thus, in practice, duplicate rows
can occur.

If you want the DBMS to check for and eliminate duplicate rows, you must use the
DISTINCT keyword, as follows:

/* *** SQL-Query-CH03-06 *** */

SELECT DISTINCT Department

FROM PROJECT;

The result of this statement is:

Microsoft SQL Server 2016,” Appendix B, “Getting Started with Oracle Database XE,” and
Appendix C, “Getting Started with MySQL 5.7 Community Server.”

SQL Server 2016, Windows 10, Microsoft Corporation.

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 164 11/21/16 6:24 PM

Chapter 3 Structured Query Language 165

The duplicate rows have been eliminated, as desired.
In the previous SQL statements, we selected certain columns for all rows of a table.

SQL statements can also be used for the reverse; that is, they can be used to select all the
columns for certain rows. The rows to be selected are specified by using the SQL WHERE
clause. For example, the following SQL statement will obtain all the columns of the
PROJECT table for projects sponsored by the finance department:

/* *** SQL-Query-CH03-07 *** */

SELECT *

FROM PROJECT

WHERE Department = 'Finance';

The result is:

The specific treatment of date and time values varies widely among DBMS
products. Note that we input the StartDate for ProjectID 1200 as 05-JUL-17
(DD-MMM-YY), but the output above shows it as 2017-07-05 (YYYY-MM-DD).
As always, see the documentation for your DBMS product.

BTW

As previously stated, the pattern SELECT/FROM/WHERE is the fundamental pat-
tern of SQL SELECT statements. Many different conditions can be placed in a WHERE
clause. These conditions are expressed using the SQL comparison operators shown in
Figure 3-16. The equal sign (=) that appears in the WHERE clause of SQL-Query-CH03-07
is an SQL comparison operator.

In an SQL WHERE clause, if the column contains text or date data, the comparison
values must be enclosed in single quotation marks ('{text or date data}'). For example, in
the PROJECT table, we can find projects with a start date of May 10, 2017 by using the
following query:

/* *** SQL-Query-CH03-08 *** */

SELECT *

FROM PROJECT

WHERE StartDate = '05/10/2017';

The results are:

SQL Server 2016, Windows 10, Microsoft Corporation.

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 165 11/21/16 6:24 PM

166 Part 1 Database Fundamentals

If the column contains numeric data, however, the comparison values need not be in
quotes. Thus, to find all of the PROJECT rows with a MaxHours value greater than 135,
we would use the SQL statement (also note that no comma is included in the numeric value
code when working with large numbers):

SQL Comparison Operators

Operator Meaning

= Is equal to

<> Is NOT Equal to

< Is less than

> Is greater than

<= Is less than OR equal to

>= Is greater than OR equal to

IN Is equal to one of a set of values

NOT IN Is NOT Equal to any of a set of values

BETWEEN Is within a range of numbers (includes the end points)

NOT BETWEEN Is NOT within a range of numbers (includes the end points)

LIKE Matches a set of characters

NOT LIKE Does NOT match a set of characters

IS NULL Is equal to NULL

IS NOT NULL Is NOT equal to NULL

When using a date in the WHERE clause, you can usually enclose it in single
quotes just as you would a character string as shown in SQL-Query-CH03-08.
However, when using Microsoft Access 2016, you must enclose dates within
the # symbol. For example:

/* *** SQL-Query-CH03-08-Access *** */

SELECT *

FROM PROJECT

WHERE StartDate = #05/10/2017#;

Oracle Database XE and MySQL 5.7 also use the single quotes, but they
can have other idiosyncrasies when using date data in SQL statements, and this
is discussed in Appendix B and Appendix C, respectively.

BTW

FIGURE 3-16

SQL Comparison
Operators

M03_KROE1533_08_SE_C03.indd 166 11/21/16 6:24 PM

Chapter 3 Structured Query Language 167

For example, the query:

/* *** SQL-Query-CH03-09 *** */

SELECT *

FROM PROJECT

WHERE MaxHours > 135;

selects all columns from PROJECT where the value of the MaxHours column is greater
than 135. The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

Values placed in quotation marks may be case sensitive. For example, WHERE
Department = 'Finance' and WHERE Department = 'FINANCE' may not be considered
the same—check your DBMS documentation (or experiment with some data).

Reading Specified Columns and Rows from a Single Table
So far, we have generally selected certain columns and all rows, or we have selected all col-
umns and certain rows (the exceptions being our discussion of the DISTINCT function).
However, we can combine these operations to select certain columns and certain rows by
naming the columns we want and then using the SQL WHERE clause. For example, to
obtain the FirstName, LastName, and OfficePhone of employees in the accounting depart-
ment from the EMPLOYEE table, we use the SQL query:

/* *** SQL-Query-CH03-10 *** */

SELECT FirstName, LastName, Department, OfficePhone

FROM EMPLOYEE

WHERE Department = 'Accounting';

The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

Sorting the Results of a Query
The order of rows in the result of a SELECT statement is somewhat arbitrary. If this is un-
desirable, we can use the ORDER BY clause to sort the rows. For example, the following
will display the names, phone numbers, and departments of all employees, sorted by
Department:

/* *** SQL-Query-CH03-11 *** */

SELECT FirstName, LastName, Department, OfficePhone

FROM EMPLOYEE

ORDER BY Department;

M03_KROE1533_08_SE_C03.indd 167 11/21/16 6:24 PM

168 Part 1 Database Fundamentals

The result is:

By default, SQL sorts in ascending order. The ASC keyword and DESC keyword can
be used to specify ascending and descending order when necessary. Thus, to sort employ-
ees in descending order by Department, use:

/* *** SQL-Query-CH03-12 *** */

SELECT FirstName, LastName, Department, OfficePhone

FROM EMPLOYEE

ORDER BY Department DESC;

The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 168 11/21/16 6:24 PM

Chapter 3 Structured Query Language 169

Two or more columns can be used for sorting purposes. To sort the employee names
and departments first in descending value of Department and then within Department by
ascending value of LastName, you specify:

/* *** SQL-Query-CH03-13 *** */

SELECT FirstName, LastName, Department, OfficePhone

FROM EMPLOYEE

ORDER BY Department DESC, LastName ASC;

The result is:

SQL WHERE Clause Options
SQL includes a number of SQL WHERE clause options that greatly expand SQL’s power
and utility. In this section, we consider three options: compound clauses, ranges, and
wildcards.

Compund SQL WHERE Clauses Using Logical Operators You can place more
than one condition in a WHERE clause by using the SQL logical operators, which include
the AND, OR, and NOT operators and which are shown in Figure 3-17.

If the SQL AND operator is used, only rows meeting all the conditions will be
selected.

For example, the following query uses the AND operator to ask for employees who
work in accounting and have the phone number 360-285-8430:

/* *** SQL-Query-CH03-14 *** */

SELECT FirstName, LastName, Department, OfficePhone

FROM EMPLOYEE

WHERE Department = 'Accounting'

AND OfficePhone = '360-285-8430';

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 169 11/21/16 6:24 PM

170 Part 1 Database Fundamentals

The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

If the SQL OR operator is used, then rows that meet any of the conditions will be
selected.

For example, the following query uses the OR operator to ask for employees who work
in accounting or have the phone number 360-285-8410:

/* *** SQL-Query-CH03-15 *** */

SELECT FirstName, LastName, Department, OfficePhone

FROM EMPLOYEE

WHERE Department = 'Accounting'

OR OfficePhone = '360-285-8410';

The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

The SQL NOT operator negates or reverses a condition set by an AND or OR opera-
tor. For example, to find all of the rows in EMPLOYEE that have a Department named
Accounting but not an office phone number of 360-285-8430, we can use the SQL NOT
operator in our query code. The following query uses the AND keyword to ask for employ-
ees who work in accounting and do not have the phone number 360-285-8430:

/* *** SQL-Query-CH03-16 *** */

SELECT FirstName, LastName, Department, OfficePhone

FROM EMPLOYEE

WHERE Department = 'Accounting'

AND NOT OfficePhone = '360-285-8430';

The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

Three or more AND and OR conditions can be combined, but in such cases it is often
easiest to use SQL IN and NOT IN comparison operators.

SQL Logical Operators
Operator Meaning
AND Both arguments are TRUE

OR One or the other or both of the arguments are TRUE

NOT Negates the associated operator

FIGURE 3-17

SQL Logical Operators

M03_KROE1533_08_SE_C03.indd 170 11/21/16 6:24 PM

Chapter 3 Structured Query Language 171

SQL WHERE Clauses Using Sets of Values When we want to include a set of values
in the SQL WHERE clause, we use the SQL IN operator or the SQL NOT IN operator
(Figure 3-16). For example, suppose we want to obtain all of the rows in EMPLOYEE for
the employees in the set of departments Administration, Finance, and Accounting. We could
construct a WHERE clause with two AND conditions, but an easier way to do this is to use
the IN comparison operator, which specifies the set of values to be used in the SQL query:

/* *** SQL-Query-CH03-17 *** */

SELECT FirstName, LastName, Department, OfficePhone

FROM EMPLOYEE

WHERE Department IN ('Administration', 'Finance',
'Accounting');

In this query, a row will be displayed if it has a Department value equal to Administration,
Finance, or Accounting. The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

To select rows that do not have any of these Department values, you would use the
NOT logical operator in the NOT IN comparison operator, as follows:

/* *** SQL-Query-CH03-18 *** */

SELECT FirstName, LastName, Department, OfficePhone

FROM EMPLOYEE

WHERE Department NOT IN ('Administration', 'Finance',
'Accounting');

The result of this query is:

SQL Server 2016, Windows 10, Microsoft Corporation.

Observe an important difference between the IN and NOT IN operators:

• A row qualifies for an IN condition if the column is equal to any of the values
in the parentheses.

• A row qualifies for a NOT IN condition if it is not equal to all of the items in
the parentheses.

M03_KROE1533_08_SE_C03.indd 171 11/21/16 6:24 PM

172 Part 1 Database Fundamentals

SQL WHERE Clauses Using Ranges of Values
WHERE clauses can refer to ranges of values and partial values. When we want to include
or exclude a range of numerical values in the SQL WHERE clause, we use the SQL
BETWEEN operator or the SQL NOT BETWEEN operator (Figure 3-16). For example,
if we want to see data on the employees with EmployeeNumber values from 2 to 5, we
could use the following SQL query:

/* *** SQL-Query-CH03-19 *** */

SELECT FirstName, LastName, Department, OfficePhone

FROM EMPLOYEE

WHERE EmployeeNumber >= 2

 AND EmployeeNumber <= 5;

The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

However, rather than specifying the range of values by using a compound SQL
WHERE clause, we can accomplish the same results by using the SQL BETWEEN opera-
tor. Note how the SQL BETWEEN operator is used to create a simple, one-line WHERE
clause in SQL-Query-CH03-20 below. Note that the SQL BETWEEN comparison opera-
tor includes the end points, and thus SQL-Query-CH03-20 is equivalent to SQL-
Query-CH03-19, which uses the SQL comparison operators >= (greater than or equal to)
and <= (less than or equal to):

/* *** SQL-Query-CH03-20 *** */

SELECT FirstName, LastName, Department, OfficePhone

FROM EMPLOYEE

WHERE EmployeeNumber BETWEEN 2 AND 5;

SQL-Query-CH03-20 produces the following result, which is identical to the result for
SQL-Query-CH03-19:

SQL Server 2016, Windows 10, Microsoft Corporation.

SQL WHERE Clauses That Use Character String Patterns There are times when
we want to use the SQL WHERE clause to find matching sets or patterns of character
stings. Character strings include the data that we store in a CHAR or VARCHAR
data–type column (CHAR columns use a fixed number of bytes to store the data, while
VARCHAR columns adjust the number of bytes used to fit the actual length of the data)
and are composed of letters, numbers, and special characters. For example, the name
Smith is a character string, as are 360-567-9876 and Joe#34@elsewhere.com. To find rows
with values that match or do not match specific character string patterns, we use the SQL
LIKE comparison operator and the SQL NOT LIKE comparison operator (Figure 3-16).

M03_KROE1533_08_SE_C03.indd 172 11/21/16 6:24 PM

mailto:Joe#34@elsewhere.com

Chapter 3 Structured Query Language 173

To help specify character string patterns, we use two SQL wildcard characters:

• The SQL underscore symbol (_) wildcard character, which represents a single,
unspecified character in a specific position in the character string.

• The SQL percent sign (%) wildcard character, which represents any sequence of
contiguous, unspecified characters (including spaces) in a specific position in the
character string.

In the following query, the LIKE operator is used with the underscore symbol to find val-
ues that fit the pattern 2017 Q_ Portfolio Analysis:

/* *** SQL-Query-CH03-21 *** */

SELECT *

FROM PROJECT

WHERE ProjectName LIKE '2017 Q_ Portfolio Analysis';

The underscore means that any character can occur in the spot occupied by the under-
score. The result of this statement is:

While our example in SQL-Query-CH03-22 is correct, it does oversimplify
this type of wildcard search a bit. If we are using wildcards with an INTEGER
valued column (with the values automatically converted by the DBMS to char-
acter strings during the query), there will be no problem. And if we are using a
VARCHAR column, again there will be no problem.

But OfficePhone is a CHAR column, and the query could have problems
because there would be extra spaces to the right of the characters used as
padding to completely fill the CHAR length. For example, if we store the value
“four” in a CHAR(8) column named Number, the DBMS will actually store
“four ” (“four” plus four spaces). To deal with these extra spaces, we use
the RTRIM function:

WHERE Number LIKE RTRIM('four');

BTW

One underscore is used for each unknown character. To find all employees who have a
Phone value that begins with 360-287-88, you can use two underscores to represent any last
two digits, as follows:

/* *** SQL-Query-CH03-22 *** */

SELECT *

FROM EMPLOYEE

WHERE OfficePhone LIKE '360-287-88 ';

The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 173 11/21/16 6:24 PM

174 Part 1 Database Fundamentals

Because the percent sign represents zero or one or more unknown characters, another
way to write the query for employees who have a phone number that starts with 360-287-88 is:

/* *** SQL-Query-CH03-23 *** */

SELECT *

FROM EMPLOYEE

WHERE OfficePhone LIKE '360-287-88%';

The result is the same as in the previous example:

If you want to find all the employees who work in departments that end in ing, you can
use the % character as follows:

/* *** SQL-Query-CH03-24 *** */

SELECT *

FROM EMPLOYEE

WHERE Department LIKE '%ing';

The result is:

The NOT logical operator, which we used previously as part of the NOT IN compari-
son operator, can also be used with the LIKE comparison operator to form the SQL NOT
LIKE comparison operator. For example, if you want to find all the employees who work
in departments that do not end in ing, you can use the following SQL query:

/* *** SQL-Query-CH03-25 *** */

SELECT *

FROM EMPLOYEE

WHERE Department NOT LIKE '%ing';

SQL Server 2016, Windows 10, Microsoft Corporation.

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 174 11/21/16 6:24 PM

Chapter 3 Structured Query Language 175

While our examples in SQL-Query-CH03-23 and SQL-Query-CH03-24 are cor-
rect, they again oversimplify this type of wildcard search a bit, as previous dis-
cussed in the BTW box on page 173.

BTW

Does Not Work with Microsoft Access ANSI-89 SQL

Microsoft Access ANSI-89 SQL uses wildcards but not the SQL-92 standard wild-
cards. Microsoft Access uses a question mark (?) instead of an underscore to rep-
resent single characters and an asterisk (*) instead of a percent sign to represent
multiple characters. These symbols have their roots in the SQL-89 standard, where
they are the correct standard.

Furthermore, Microsoft Access can sometimes be fussy about stored trailing spaces in
a text field. You may have problems with a WHERE clause like this:

WHERE ProjectName LIKE '2017 Q? Portfolio Analysis';

Solution: Use the appropriate Microsoft Access wildcard characters, and use a RTRIM
function to eliminate trailing spaces:

WHERE RTRIM(ProjectName) LIKE '2017 Q? Portfolio Analysis';

The result is:

SQL WHERE Clauses That Use NULL Values As we discussed earlier in this
chapter, a missing data value is called a null value. In relational databases, null values
are indicated with the special marker NULL (written as shown in uppercase letters).
When we want to include or exclude rows that contain NULL values, we use the SQL
IS NULL comparison operator or the SQL IS NOT NULL comparison operator

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 175 11/21/16 6:25 PM

176 Part 1 Database Fundamentals

(Figure 3-16). Note that in this situation the SQL IS keyword is equivalent to an is equal
to comparison operator. However, the is equal to comparison operator is never used
with NULL values, and the IS NULL and IS NOT NULL operators are never used with
values other than NULL.

The following SQL will find the names and departments of all employees who have a
NULL value for OfficePhone:

/* *** SQL-Query-CH03-26 *** */

SELECT FirstName, LastName, Department, OfficePhone

FROM EMPLOYEE

WHERE OfficePhone IS NULL;

The result of this query is:

SQL Server 2016, Windows 10, Microsoft Corporation.

The NOT logical operator can also be used with the IS NULL comparison operator to
form the IS NOT NULL comparison operator. For example, if you want to find all the
employees who do have phone numbers, you can use the following SQL query:

/* *** SQL-Query-CH03-27 *** */

SELECT FirstName, LastName, Department, OfficePhone

FROM EMPLOYEE

WHERE OfficePhone IS NOT NULL;

SQL Server 2016, Windows 10, Microsoft Corporation.

It is possible to perform certain types of calculations in SQL query statements. One group
of calculations involves the use of SQL built-in functions. Another group involves simple
arithmetic operations on the columns in the SELECT statement. We will consider each
in turn.

SQL QUERIES THAT PERFORM CALCULATIONS

M03_KROE1533_08_SE_C03.indd 176 11/21/16 6:25 PM

Chapter 3 Structured Query Language 177

SQL Built-in Aggregate Functions
Function Meaning
COUNT(*) Count the number of rows in the table

COUNT
({Name})

Count the number of rows in the table where column
{Name} IS NOT NULL

SUM Calculate the sum of all values (numeric columns only)

AVG Calculate the average of all values (numeric columns only)

MIN Calculate the minimum value of all values

MAX Calculate the maximum value of all values

FIGURE 3-18

SQL Built-in Aggregate
Functions

Using SQL Built-in Aggregate Functions
SQL allows you to calculate values based on the data in the tables. There are five standard
SQL built-in aggregate functions. As shown in Figure 3-18, SQL includes five built-in
aggregate functions: COUNT, SUM, AVG, MAX, and MIN. Some DBMS products
extent these standard functions, but here we will focus only on the five standard SQL built-
in aggregate functions. These functions operate on the results of a SELECT statement.
COUNT, MAX, and MIN work regardless of column data type, but SUM and AVG
operate only on integer, numeric, and other number-oriented columns.

COUNT and SUM sound similar but are different. COUNT counts the number of
rows in the result, whereas SUM totals the set of values of a numeric column. Thus, the fol-
lowing SQL statement counts the number of rows in the PROJECT table:

/* *** SQL-Query-CH03-28 *** */

SELECT COUNT(*)

FROM PROJECT;

The result of this statement is the following relation:

SQL Server 2016, Windows 10, Microsoft Corporation.

As stated earlier, the result of an SQL SELECT statement is always a relation. If, as is
the case here, the result is a single number, that number is considered to be a relation that
has only a single row and a single column.

Note that the result shown above has no column name. You can assign a column name
to the result by using the SQL AS keyword:

/* *** SQL-Query-CH03-29 *** */

SELECT COUNT(*) AS NumberOfProjects

FROM PROJECT;

Now the resulting number is identified by the column title:

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 177 11/21/16 6:25 PM

178 Part 1 Database Fundamentals

Consider the following two SELECT statements:

/* *** SQL-Query-CH03-30 *** */

SELECT COUNT(Department) AS NumberOfDepartments

FROM PROJECT;

and:

/* *** SQL-Query-CH03-31 *** */

SELECT COUNT(DISTINCT Department) AS NumberOfDepartments

FROM PROJECT;

The result of SQL-Query-CH03-30 is the relation:

SQL Server 2016, Windows 10, Microsoft Corporation.

and the result of SQL-Query-CH03-31 is:

SQL Server 2016, Windows 10, Microsoft Corporation.

Why do we get two different numbers? Because the first query counts some departments
more than once. For example, the Accounting department is counted twice. The second
query eliminates the duplicate rows in the count of the departments.

Does Not Work with Microsoft Access ANSI-89 SQL

Microsoft Access does not support the DISTINCT keyword as part of the COUNT
expression, so while the SQL command with COUNT (Department) will work, the SQL
command with COUNT (DISTINCT Department) will fail.

Solution: Use an SQL subquery structure (discussed later in this chapter) with the
DISTINCT keyword in the subquery itself. The following SQL query works:

/* *** SQL-Query-CH03-31-Access *** */

SELECT COUNT(*) AS NumberOfDepartments

FROM (SELECT DISTINCT Department

 FROM PROJECT) AS DEPT;

Note that this query is a bit different from the other queries using subqueries we show
in this text because the subquery above is in the FROM clause instead of (as you’ll
see) the WHERE clause. Basically, this subquery builds a new temporary table named
DEPT containing only distinct Department values, and the query counts the number
of those values.

M03_KROE1533_08_SE_C03.indd 178 11/21/16 6:25 PM

Chapter 3 Structured Query Language 179

We can use multiple SQL built-in aggregate functions in the same query. The following
is an example of using the four built-in functions that operate on numerical data:

/* *** SQL-Query-CH03-32 *** */

SELECT SUM(MaxHours) AS TotalMaxHours,

AVG(MaxHours) AS AverageMaxHours,

MIN(MaxHours) AS MinimumMaxHours,

MAX(MaxHours) AS MaximumMaxHours

FROM PROJECT

WHERE ProjectID <= 1200;

The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

You should be aware of two limitations to SQL built-in functions. First, except for
grouping (defined later), you cannot combine table column names with an SQL built-in
aggregate function. For example, what happens if we run the following SQL query?

/* *** SQL-Query-CH03-33 *** */

SELECT ProjectName, COUNT(*)

FROM PROJECT;

The result in Microsoft SQL Server 2016 is:

SQL Server 2016, Windows 10, Microsoft Corporation.

This is the specific SQL Server 2016 error message. However, you will receive an
equivalent message from Microsoft Access 2016, Oracle Database XE, or MySQL 5.7.

The second problem with the SQL built-in aggregate functions that you should under-
stand is that you cannot use them in an SQL WHERE clause. This is because the SQL
WHERE clause operates on rows (choosing which rows will be displayed), while the
aggregate functions operate on columns (each function calculates a single value based on all
the attribute values stored in a column). Thus, you cannot use the following SQL statement:

/* *** SQL-Query-CH03-34 *** */

SELECT *

FROM PROJECT

WHERE MaxHours > AVG(MaxHours);

An attempt to use such a statement will also result in an error statement from the DBMS:

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 179 11/21/16 6:25 PM

180 Part 1 Database Fundamentals

Again, this is the specific SQL Server 2016 error message, but other DBMS products
will give you an equivalent error message. The desired result of the above query can be
computed using an SQL subquery (discussed later in this chapter). The desired result can
also be obtained using a sequence of SQL views, which are discussed in Appendix E —
Advanced SQL.

Using SQL Expressions in SQL SELECT Statements
Standard mathematical calculations can also be done in SQL. For example, suppose that
all employees at Wedgewood Pacific are paid $24.50 per hour. Given that each project has
a MaxHours value, you might want to calculate a maximum project cost value for each proj-
ect that is equal to MaxHours multiplied by the hourly wage rate. You can calculate the
needed numbers by using the following query:

/* *** SQL-Query-CH03-35 *** */

SELECT ProjectID, ProjectName, MaxHours,

(24.50 * MaxHours) AS MaxProjectCost

FROM PROJECT;

The result of the query, which now shows the maximum project cost for each project, is:

SQL Server 2016, Windows 10, Microsoft Corporation.

An SQL expression is basically a formula or set of values that determines the exact results
of an SQL query. We can think of an SQL expression as anything that follows an actual or
implied is equal to (=) comparison operator (or any other comparison operator, such as
greater than (>), less than (<), and so on) or that follows certain SQL comparison operator
keywords, such as LIKE and BETWEEN. Thus, in the WHERE clause

WHERE Department IN ('Administration', 'Finance',
'Accounting')

the SQL expression consists of the three text values following the IN keyword.
Another use for SQL expressions in SQL statements is to perform character string

manipulation. For example, we may want to combine the EMPLOYEE FirstName and
LastName columns into a single output column named EmployeeName. This use of SQL
expressions is discussed in Appendix E, “Advanced SQL.”

In SQL, you can use the SQL GROUP BY clause to group rows by common values. This
is a powerful feature, but it can be difficult to understand. What do we mean by a group?
Consider the EMPLOYEE table in Figure 3-19, where we show the employees grouped by
which department they work in. Because there are 9 departments, we have the employees
divided into 9 groups.

GROUPING ROWS USING SQL SELECT STATEMENTS

M03_KROE1533_08_SE_C03.indd 180 11/21/16 6:25 PM

Chapter 3 Structured Query Language 181

One use of grouping it to increase the utility of SQL built-in aggregated functions be-
cause you can apply them to groups of rows. For example, SQL-Query-CH03-36 counts
the number of employees in each department. To do this, it uses syntax similar to SQL-
Query-CH03-33, which failed to run! What is the difference in the two queries? It is that
the GROUP BY clause that has been added to SQL-Query-CH03-36:

/* *** SQL-Query-CH03-36 *** */

SELECT Department, Count(*) AS NumberOfEmployees

FROM EMPLOYEE

GROUP BY Department;

The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

The GROUP BY keyword tells the DBMS to sort the table by the named column and
then to apply the built-in function to groups of rows that have the same value for the
named column. When GROUP BY is used, the name of the grouping column and built-in
functions may appear in the SELECT clause. This is the only time that a column name and
a built-in function can appear together.

This group of rows
is employees in the
Administration
department

This group of rows
is employees
in the Production
department

FIGURE 3-19

Department Groups in the EMPLOYEE Table

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 181 11/21/16 6:25 PM

182 Part 1 Database Fundamentals

We can further restrict the results by using the SQL HAVING clause to apply condi-
tions to the groups that are formed. For example, if you want to consider only groups with
at least two members, you could specify:

/* *** SQL-Query-CH03-37 *** */

SELECT Department, Count(*) AS NumberOfEmployees

FROM EMPLOYEE

GROUP BY Department

HAVING COUNT(*) > 1;

The result of this SQL statement is:

SQL Server 2016, Windows 10, Microsoft Corporation.

It is possible to add WHERE clauses when using GROUP BY. However, an ambiguity
can arise when this is done. If the WHERE condition is applied before the groups are
formed, we obtain one result. If, however, the WHERE condition is applied after the
groups are formed, we get a different result. To resolve this ambiguity, the SQL standard
specifies that when WHERE and GROUP BY occur together, the WHERE condition will
be applied first. For example, consider the following query:

/* *** SQL-Query-CH03-38 *** */

SELECT Department, Count(*) AS NumberOfEmployees

FROM EMPLOYEE

WHERE EmployeeNumber <= 10

GROUP BY Department

HAVING COUNT(*) > 1;

In this expression, first the WHERE clause is applied to select employees with an
EmployeeNumber less than or equal to 10. Then the groups are formed. Finally, the
HAVING condition is applied. The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

Note that SQL built-in aggregate functions can be used in the SQL HAVING clause
because they are working on the set of column values in each group. Earlier we noted that
those functions cannot be used in the WHERE clause because the WHERE clause is ap-
plied to each single row. It is easy to get confused between the SQL WHERE clause and
the SQL HAVING clause. The best way to understand the difference is to remember that:

• The SQL WHERE clause specifies which rows will be used to determine the groups.
• The SQL HAVING clause specifies which groups will be used in the final result.

M03_KROE1533_08_SE_C03.indd 182 11/21/16 6:25 PM

Chapter 3 Structured Query Language 183

The queries considered so far have involved data from a single table. However, at times,
more than one table must be processed to obtain the desired information.

SQL provides two different techniques for querying data from multiple tables:

• The SQL subquery
• The SQL join

As you will learn, although both work with multiple tables, they are used for slightly
different purposes.

Querying Multiple Tables with Subqueries
For example, suppose we want to know the names of all employees who have worked more
than 50 hours on any single assignment. The names of employees are stored in the
EMPLOYEE table, but the hours they have worked are stored in the ASSIGNMENT table.

If we knew that employees with EmployeeNumber 6, 10, 11, 16, and 17 have worked
more than 50 hours on an assignment (which is true), we could obtain their names with the
following expression:

/* *** SQL-Query-CH03-39 *** */

SELECT FirstName, LastName

FROM EMPLOYEE

WHERE EmployeeNumber IN (6, 10, 11, 16, 17);

The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

But, according to the problem description, we are not given the employee numbers.
We can, however, obtain the appropriate employee numbers with the following query:

/* *** SQL-Query-CH03-40 *** */

SELECT DISTINCT EmployeeNumber

FROM ASSIGNMENT

WHERE HoursWorked > 50;

The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

SQL FOR DATA MANIPULATION (DML)—MULTIPLE TABLE QUERIES

M03_KROE1533_08_SE_C03.indd 183 11/21/16 6:25 PM

184 Part 1 Database Fundamentals

Is there some way to obtain the results of SQL-Query-CH03-40, and then feed them
into the WHERE clause in SQL-Query-CH03-39? Yes, there is, and we can combine these
two SQL statements by using an SQL subquery as follows:

/* *** SQL-Query-CH03-41 *** */

SELECT FirstName, LastName

FROM EMPLOYEE

WHERE EmployeeNumber IN

(SELECT DISTINCT EmployeeNumber

 FROM ASSIGNMENT

 WHERE HoursWorked > 50);

The result of this expression is:

SQL Server 2016, Windows 10, Microsoft Corporation.

These are indeed the names of the employees who have worked more than 50 hours on
any single assignment. In SQL-Query-CH03-41, the second SELECT statement, the one
enclosed in parentheses, is called the SQL subquery. An SQL subquery is an SQL query
statement used to determine a set of values that are provided (or returned) to the SQL query
(often referred to as the top level query) that used (or called) the subquery. A subquery is
often described as a nested query or a query within a query. The subquery is usually in-
dented, as shown in SQL-Query-CH03-41 above, to make the entire query statement easier
to read.

It is important to note that SQL queries using subqueries still function like a single
table query in the sense that only the columns of the top level query can be displayed in the
query results. For example, in SQL-Query-CH03-41 above, because the HoursWorked
column is in the ASSIGNMENT table (the table used in the subquery itself), the values of
the HoursWorked column cannot be displayed in the final results.

Subqueries can be extended to include three, four, or even more levels. Suppose, for
example, that you need to know the names of employees who have worked more than
40 hours on an assignment sponsored by the accounting department. You can obtain the
project IDs of projects sponsored by accounting with:

/* *** SQL-Query-CH03-42 *** */

SELECT DISTINCT ProjectID

FROM PROJECT

WHERE Department = 'Accounting';

The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

You can obtain the employee numbers of employees working more than 40 hours on
those projects with:

M03_KROE1533_08_SE_C03.indd 184 11/21/16 6:25 PM

Chapter 3 Structured Query Language 185

/* *** SQL-Query-CH03-43 *** */

SELECT DISTINCT EmployeeNumber

FROM ASSIGNMENT

WHERE HoursWorked > 40

AND ProjectID IN

(SELECT ProjectID

 FROM PROJECT

 WHERE Department = 'Accounting');

The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

Finally, you can obtain the names of the employees in the preceding SQL statement with:

/* *** SQL-Query-CH03-44 *** */

SELECT FirstName, LastName

FROM EMPLOYEE

WHERE EmployeeNumber IN

(SELECT DISTINCT EmployeeNumber

 FROM ASSIGNMENT

 WHERE HoursWorked > 40

 AND ProjectID IN

 (SELECT ProjectID

 FROM PROJECT

 WHERE Department = 'Accounting'));

The final result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

Querying Multiple Tables with Joins
Subqueries are effective for processing multiple tables, as long as the results come from a
single table. If, however, we need to display data from two or more tables, subqueries do
not work. We need to use an SQL join operation instead.

The basic idea of a join is to form a new relation by connecting the contents of two or
more other relations. In an SQL join operation, the SQL JOIN operator is used to com-
bine two or more tables by concatenating (sticking together) the rows of one table with the
rows of another table. If the JOIN operator is actually used as part of the SQL statement
syntax, we refer to the join operation as an explicit join. If the JOIN operator itself does
not appear in the SQL statement, we refer to the join operation as an implicit join.

Consider how we might combine data in the EMPLOYEE and ASSIGNMENT tables.
We can concatenate the rows of one table with the rows of the second table with the follow-
ing SQL statement, where we simply list the names of the tables we want to combine:

/* *** SQL-Query-CH03-45 *** */

SELECT FirstName, LastName, ProjectID, HoursWorked

FROM EMPLOYEE, ASSIGNMENT;

M03_KROE1533_08_SE_C03.indd 185 11/21/16 6:25 PM

186 Part 1 Database Fundamentals

This is known as a CROSS JOIN, and the result is what is mathematically known as
the Cartesian product of the rows in the tables, which means that this statement will just
stick every row of one table together with every row of the second table. For the
EMPLOYEE and ASSIGNMENT tables, there are 20 rows in EMPLOYEE and 30 rows
in ASSIGNMENT, so this results in a table with 600 rows! We are not going to show that
table here, so if you want to see that result, run SQL-Query-CH03-45 yourself!

This is clearly not what we had in mind. What we really need to do is to select only
those rows for which the EmployeeNumber of EMPLOYEE (primary key) matches the
EmployeeNumber in ASSIGNMENT (foreign key). This is known as an inner join, and
this is easy to do—we simply add an SQL WHERE clause to the query requiring that the
values in the two columns are equal to each other as follows, as shown in Figure 3-20.

We now use this SQL statement as our query:

/* *** SQL-Query-CH03-46 *** */

SELECT FirstName, LastName, ProjectID, HoursWorked

FROM EMPLOYEE, ASSIGNMENT

WHERE EMPLOYEE.EmployeeNumber = ASSIGNMENT.EmployeeNumber;

The function of this statement is to create a new table having the four columns FirstName,
LastName, ProjectID, and HoursWorked. Those columns are to be taken from the
EMPLOYEE and ASSIGNMENT tables, under the condition that EmployeeNumber in
EMPLOYEE (written in the format TABLENAME.ColumnName as EMPLOYEE.
EmployeeNumber) equals EmployeeNumber in ASSIGNMENT (written as ASSIGNMENT.
EmployeeNumber). Whenever there is ambiguity about which table the column data are
coming from, the column name is always preceded with the table name in the format
TABLENAME.ColumnName.

This ambiguity about which table the column data are coming from often hap-
pens (as in this case) because the primary key and foreign key column names
are the same, but it can happen in other situations.

BTW

You can think of the join operation working as follows. Start with the first row in
EMPLOYEE. Using the value of EmployeeNumber in this first row (1 for the data in
Figure 3-2(b)), examine the rows in ASSIGNMENT. When you find a row in
ASSIGNMENT where EmployeeNumber is also equal to 1, join FirstName and LastName
of the first row of EMPLOYEE with ProjectID and HoursWorked from the row you just
found in ASSIGNMENT.

FIGURE 3-20

Using Primary Key and Foreign Key Values in the SQL WHERE Clause in an Implicit SQL Join

SQL WHERE clause

EmployeeNumber
is the primary key
of EMPLOYEE

EmployeeNumber
is a foreign key in
ASSIGNMENT

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 186 11/21/16 6:25 PM

Chapter 3 Structured Query Language 187

For the data in Figure 3-2(c), the first row of ASSIGNMENT has EmployeeNumber equal
to 1, so you join FirstName and LastName from the first row of EMPLOYEE with
ProjectID and HoursWorked from the first row in ASSIGNMENT to form the first row of
the join. The result is:

SQL Server 2016, Windows 10, Microsoft Corporation.

Now, still using the EmployeeNumber value of 1, look for a second row in ASSIGNMENT
that has EmployeeNumber equal to 1. For our data, the sixth row of ASSIGNMENT has
such a value. So, join FirstName and LastName from the first row of EMPLOYEE to
ProjectID and HoursWorked in the sixth row of ASSIGNMENT to obtain the second row
of the join, as follows:

SQL Server 2016, Windows 10, Microsoft Corporation.

Continue in this way, looking for matches for the EmployeeNumber value of 1. There is
another in the 18th row, and finally one more in the 23rd row, and you would add the data
for that match to obtain the result:

SQL Server 2016, Windows 10, Microsoft Corporation.

At this point, no more EmployeeNumber values of 1 appear in the sample data, so now you
move to the second row of EMPLOYEE, obtain the new value of EmployeeNumber (2),
and begin searching for matches for it in the rows of ASSIGNMENT. In this case, there are
no ASSIGNMENT matches for the EmployeeNumber of 2. Next, you look for rows with
an EmployeeNumber value of 3. Now, the tenth row has such a match, so you add
FirstName, LastName, ProjectID, and HoursWorked to the result to obtain:

SQL Server 2016, Windows 10, Microsoft Corporation.

You continue until all rows of EMPLOYEE have been examined. The final result is shown
in Figure 3-21.

Actually, that is the theoretical result—remember that row order in an SQL query can
be arbitrary. To ensure that you get the result shown in Figure 3-21, you need to add an
ORDER BY clause to the query:

/* *** SQL-Query-CH03-47 *** */
SELECT FirstName, LastName, ProjectID, HoursWorked
FROM EMPLOYEE, ASSIGNMENT
WHERE EMPLOYEE.EmployeeNumber = ASSIGNMENT.

 EmployeeNumber
ORDER BY EMPLOYEE.EmployeeNumber, ProjectID;

M03_KROE1533_08_SE_C03.indd 187 11/21/16 6:25 PM

188 Part 1 Database Fundamentals

The actual result when the SQL-Query-CH03-46 is run in SQL Server has the same
data results, but the row order is definitely different!

The SQL JOIN ON Syntax
Our SQL join examples so far have used the original, but older, form of the SQL join syn-
tax. While it can still be used, today most SQL users prefer to use the SQL JOIN ON syn-
tax. Consider our query example SQL-Query-CH03-46 as modified with an ORDER BY
clause to become SQL-Query-CH03-47. This query uses a join in the WHERE clause:

/* *** SQL-Query-CH03-47 *** */

SELECT FirstName, LastName, HoursWorked

FROM EMPLOYEE, ASSIGNMENT

WHERE EMPLOYEE.EmployeeNumber = ASSIGNMENT.
 EmployeeNumber

ORDER BY EMPLOYEE.EmployeeNumber, ProjectID;

Using the JOIN ON syntax, SQL-Query-CH-47 would be modified as follows to become
SQL-Query-CH03-48:

SQL Server 2016, Windows 10, Microsoft Corporation.

FIGURE 3-21

Final SQL Join Results for
SQL-Query-CH03-47

M03_KROE1533_08_SE_C03.indd 188 11/21/16 6:25 PM

Chapter 3 Structured Query Language 189

/* *** SQL-Query-CH03-48 *** */

SELECT FirstName, LastName, ProjectID, HoursWorked

FROM EMPLOYEE JOIN ASSIGNMENT

 ON EMPLOYEE.EmployeeNumber = ASSIGNMENT.EmployeeNumber

ORDER BY EMPLOYEE.EmployeeNumber, ProjectID;

The result of SQL-Query-CH03-48 is shown in Figure 3-22, and is, as you would expect,
identical to the results for SQL-Query-CH03-47 shown in Figure 3-21.

While these two join syntaxes are functionally equivalent, the implicit join syntax is early
SQL standard syntax and is considered to have been replaced by the explicit SQL JOIN ON
join syntax as of the 1992 SQL-92 standard. Most people think that the SQL JOIN ON syn-
tax is easier to understand than the first. Note that when using the SQL JOIN ON syntax:

• The SQL JOIN keyword is placed between the table names in the SQL
FROM clause, where it replaces the comma that previously separated the two
table names, and

• The SQL ON keyword now leads into an SQL ON clause, which includes
the statement of matching key values that was previously in an SQL WHERE
clause.

• The SQL WHERE clause is no longer used as part of the join, which makes it
easier to read the actual restrictions on the rows in the query in the WHERE
clause itself.

FIGURE 3-22

Final SQL Join Results
for SQL-Query-CH03-48

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 189 11/21/16 6:25 PM

190 Part 1 Database Fundamentals

Note that the JOIN ON syntax still requires a statement of primary key to foreign key
equivalence, as shown in Figure 3-23. Also note that the SQL ON clause does not replace
the SQL WHERE clause, which can still be used to determine which rows will be
displayed.

A join is just another table, so all the earlier SQL SELECT commands are available for
use. We could, for example, group the rows of the join by employee using a GROUP BY
clause, and sum the hours they worked using the SUM built-in aggregate function. The fol-
lowing is the SQL for such a query:

/* *** SQL-Query-CH03-49 *** */

SELECT FirstName, LastName,

SUM(HoursWorked) AS TotalHoursWorked

FROM EMPLOYEE AS E JOIN ASSIGNMENT AS A

ON E.EmployeeNumber = A.EmployeeNumber

GROUP BY LastName, FirstName

ORDER BY LastName, FirstName;

Note another use for the SQL AS keyword, which is now used to assign aliases to table
names so that we can use these aliases in the ON and other clauses. This makes it much
easier to write queries with long table names. The result of this query is:

SQL Server 2016, Windows 10, Microsoft Corporation.

SQL ON clause

EmployeeNumber
is the primary key
of EMPLOYEE

 EmployeeNumber
is a foreign key in
ASSIGNMENT

FIGURE 3-23

Using Primary Key and Foreign Key Values in the SQL ON Clause in an Explicit SQL Join

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 190 11/21/16 6:25 PM

Chapter 3 Structured Query Language 191

We could apply a WHERE clause during the process of creating the join as follows:

/* *** SQL-Query-CH03-50 *** */

SELECT FirstName, LastName, ProjectID, HoursWorked

FROM EMPLOYEE AS E JOIN ASSIGNMENT AS A

ON E.EmployeeNumber = A.EmployeeNumber

WHERE HoursWorked > 50

ORDER BY LastName, FirstName, ProjectID;

The result of this join is:

SQL Server 2016, Windows 10, Microsoft Corporation.

Our first examples used only two tables, but we can also use the implicit join syntax or
the JOIN ON syntax for joins of more than two tables. Here is a three table query to com-
bine data for EMPLOYEE, PROJECT, and ASSIGNMENT rewritten using the JOIN ON
style:

/* *** SQL-Query-CH03-51 *** */

SELECT ProjectName, FirstName, LastName, HoursWorked

FROM EMPLOYEE AS E JOIN ASSIGNMENT AS A

ON E.EmployeeNumber = A.EmployeeNumber

JOIN PROJECT AS P

 ON A.ProjectID = P.ProjectID

ORDER BY P.ProjectID, A.EmployeeNumber;

Oracle Database and MySQL create table aliases in a similar manner, but Oracle
Database does not allow use of the SQL AS keyword. In Oracle Database, the
table name is just followed immediately by the alias to be used (this will also
work in Microsoft SQL Server). This is shown in SQL-Query-CH03-49-Oracle:

/* *** SQL-Query-CH03-49-Oracle *** */

SELECT FirstName, LastName,

 SUM(HoursWorked) AS TotalHoursWorked

FROM EMPLOYEE E JOIN ASSIGNMENT A

 ON E.EmployeeNumber = A.EmployeeNumber

GROUP BY LastName, FirstName

ORDER BY LastName, FirstName;

BTW

M03_KROE1533_08_SE_C03.indd 191 11/21/16 6:25 PM

192 Part 1 Database Fundamentals

FIGURE 3-24

Final SQL Join Results
for SQL-Query-CH03-51

Does Not Work with Microsoft Access ANSI-89 SQL

Microsoft Access supports the JOIN ON syntax only with a keyword specifying a
standard (INNER) or nonstandard (OUTER) JOIN. OUTER joins are discussed next
in the text.

Solution: The Microsoft Access JOIN ON queries run when written with the INNER
keyword as:

/* *** SQL-Query-CH03-48-Access *** */

SELECT FirstName, LastName, ProjectID, HoursWorked

FROM EMPLOYEE INNER JOIN ASSIGNMENT

ON EMPLOYEE.EmployeeNumber = ASSIGNMENT.
 EmployeeNumber

ORDER BY EMPLOYEE.EmployeeNumber, ProjectID;

(Continued)

Note how the additional table is added into the query by the additional JOIN ON con-
struction. For each new table added to the query, we simply add another JOIN ON phrase.
The results of SQL-Query-CH03-51 are shown in Figure 3-24.

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 192 11/21/16 6:25 PM

Chapter 3 Structured Query Language 193

Comparing Subqueries and Joins
Subqueries and joins both process multiple tables, but they differ slightly. As mentioned
earlier, a subquery can be used only to retrieve data from the top table, whereas a join can
be used to obtain data from any number of tables. Thus, a join can do everything a sub-
query can do and more. So why learn subqueries? For one, if you just need data from a
single table, you might use a subquery because it is easier to write and understand. This is
especially true when processing multiple tables.

There is, however, a type of subquery called a correlated subquery that can do work
that is not possible with joins. Correlated subqueries are discussed in Appendix E,
“Advanced SQL.” Thus, it is important for you to learn about both joins and subqueries,
even though right now it appears that joins are uniformly superior.

Inner Joins and Outer Joins
Let’s add a new project, the 2017 Q4 Tax Preparation project run by the accounting
department, to the PROJECT table as follows:

/* *** SQL-INSERT-CH03-05 *** */

INSERT INTO PROJECT

(ProjectName, Department, MaxHours, StartDate)

VALUES('2017 Q4 Tax Preparation', 'Accounting', 175.00,
'10-DEC-17');

To see the updated PROJECT table, we use the query:

/* *** SQL-Query-CH03-52 *** */

SELECT * FROM PROJECT;

Further, Microsoft Access requires that the joins be grouped using parentheses
when three or more tables are joined:

/* *** SQL-Query-CH03-51-Access *** */

SELECT ProjectName, FirstName, LastName,
 HoursWorked

FROM (EMPLOYEE AS E INNER JOIN ASSIGNMENT AS A

ON E.EmployeeNumber = A.EmployeeNumber)

 INNER JOIN PROJECT AS P

 ON A.ProjectID = P.ProjectID

ORDER BY P.ProjectID, A.EmployeeNumber;

Note that these versions of the queries will also work in Microsoft SQL Server
2016, Oracle Database XE, and MySQL 5.7.

M03_KROE1533_08_SE_C03.indd 193 11/21/16 6:25 PM

194 Part 1 Database Fundamentals

The results are:

SQL Server 2016, Windows 10, Microsoft Corporation.

Now, with the new project added to PROJECT, we’ll rerun the previous query on
EMPLOYEE, ASSIGNMENT, and PROJECT but here relabeled as SQL-Query-CH03-53:

/* *** SQL-Query-CH03-53 *** */
SELECT ProjectName, FirstName, LastName, HoursWorked
FROM EMPLOYEE AS E JOIN ASSIGNMENT AS A
 ON E.EmployeeNumber = A.EmployeeNumber
 JOIN PROJECT AS P
 ON A.ProjectID = P.ProjectID
ORDER BY P.ProjectID, A.EmployeeNumber;

The results of SQL-Query-CH03-53 are shown in Figure 3-25.

FIGURE 3-25

The Results for
SQL-Query-CH03-53

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 194 11/21/16 6:25 PM

Chapter 3 Structured Query Language 195

The results shown here are correct, but a surprising result occurs. What happened to
the new 2017 Q4 Tax Preparation project? The answer is that it does not appear in the join
results because its ProjectID value of 1700 had no match in the ASSIGNMENT table.
Nothing is wrong with this result; you just need to be aware that unmatched rows do not
appear in the result of a join. The join operation discussed in the previous sections is some-
times referred to as an SQL equijoin or SQL inner join. An inner join only displays data
from the rows that match based on join conditions, and as you saw in the last query in the
previous section, data can be lost (or at least appear to be lost) when you perform an inner
join. In particular, if a row has a value that does not match the WHERE clause condition,
that row will not be included in the join result. The 2017 Q4 Tax Preparation project did
not appear in the previous join because no row in ASSIGNMENT matched its ProjectID
value. This kind of loss is not always desirable, so a special type of join, called an SQL
outer join, was created to avoid it.

Consider the STUDENT and LOCKER tables in Figure 3-26(a), where we have drawn
two tables to highlight the relationships between the rows in each table. The STUDENT
table shows the StudentPK (student number) and StudentName of students at a university.
The LOCKER table shows the LockerPK (locker number) and LockerType (full size or
half size) of lockers at the recreation center on campus. If we run a join between these two
tables as shown in SQL-Query-CH03-54, we get a table of students who have lockers as-
signed to them together with their assigned locker. This result is shown in Figure 3-26(b).

* *** EXAMPLE CODE - DO NOT RUN *** */

/* *** SQL-Query-CH03-54 *** */

SELECT StudentPK, StudentName, LockerFK, LockerPK,
 LockerType

FROM STUDENT INNER JOIN LOCKER

 ON STUDENT.LockerFK = LOCKER.LockerPK

ORDER BY StudentPK;

The type of SQL join shown in SQL-Query-CH03-54 is an SQL inner join using an
SQL JOIN ON syntax that uses the INNER keyword.

Now, suppose we want to show all the rows already in the join, but also want to show
any rows (students) in the STUDENT table that are not included in the inner join. This
means that we want to see all students, including those who have not been assigned a locker.
To do this, we use the SQL outer join, which is designed for this very purpose. And because
the table we want is listed first in the query and is thus on the left side of the table listing, we
specifically use an SQL left outer join, which uses the SQL LEFT JOIN syntax. This is
shown in SQL-Query-CH03-55, which produces the results shown in Figure 3-26(c).

/* *** EXAMPLE CODE - DO NOT RUN *** */

/* *** SQL-Query-CH03-55 *** */

SELECT StudentPK, StudentName, LockerFK, LockerPK,
 LockerType

FROM STUDENT LEFT OUTER JOIN LOCKER

ON STUDENT.LockerFK = LOCKER.LockerPK

ORDER BY StudentPK;

In the results shown in Figure 3-26(c), note that all the rows from the STUDENT table
are now included and that rows that have no match in the LOCKER table are shown with
NULL values for locker data. Looking at the output, we can see that the students Adams
and Buchanan have no linked rows in the LOCKER table. This means that Adams and
Buchanan have not been assigned a locker in the recreation center.

M03_KROE1533_08_SE_C03.indd 195 11/21/16 6:25 PM

196 Part 1 Database Fundamentals

If we want to show all the rows already in the join, but now also any rows in the
LOCKER table that are not included in the inner join, we specifically use an SQL right
outer join, which uses the SQL RIGHT JOIN syntax because the table we want is listed
second in the query and is thus on the right side of the table listing. This means that we
want to see all lockers, including those that have not been assigned to a student. This is
shown in SQL-Query-CH03-56, which produces the results shown in Figure 3-26(d).

FIGURE 3-26

Types of SQL JOINS

Only the rows where
LockerFK=LockerPK
are shown—Note that
some StudentPK and
some LockerPK
values are not in the
results

All rows from STUDENT
are shown, even where
there is no matching
LockerFK=LockerPK
value

All rows from
LOCKER are shown,
even where there is no
matching
LockerFK=LockerPK
value

(a) The STUDENT and LOCKER Tables Aligned to Show Row Relationships

(b) INNER JOIN of the STUDENT and LOCKER Tables

(c) LEFT OUTER JOIN of the STUDENT and LOCKER Tables

(d) RIGHT OUTER JOIN of the STUDENT and LOCKER Tables

M03_KROE1533_08_SE_C03.indd 196 11/21/16 6:25 PM

Chapter 3 Structured Query Language 197

/* *** EXAMPLE CODE - DO NOT RUN *** */

/* *** SQL-Query-CH03-56 *** */

SELECT StudentPK, StudentName, LockerFK, LockerPK,
 LockerType

FROM STUDENT RIGHT OUTER JOIN LOCKER

ON STUDENT.LockerFK = LOCKER.LockerPK

ORDER BY LockerPK;

In the results shown in Figure 3-26(d), note that all the rows from the LOCKER table
are now included and that rows that have no match in the STUDENT table are shown with
NULL values for student data. Looking at the output, we can see that the lockers num-
bered 70, 80, and 90 have no linked rows in the STUDENT table. This means that these
lockers are currently unassigned to a student and are available for use. DBMS products to-
day support outer joins, but the specific SQL syntax for the outer join varies by DBMS
product. Be sure to consult the documentation for the DBMS product you are using.

The SQL outer join is an important topic, and we will continue our discussion, includ-
ing examples for our WP database, in Appendix E — Advanced SQL

Using SQL Set Operators
Mathematicians use the term set theory to describe mathematical operations on sets, where
a set is defined as a group of distinct items. A relational database table meets the definition
of a set, so it is little wonder that SQL includes a group of SQL set operators for use with
SQL queries. SQL set operators are discussed in Appendix E — Advanced SQL.

The SQL DML contains commands for the three possible data modification operations:
insert, modify, and delete. We have already discussed inserting data, and now we consider
modifying and deleting data.

Modifying Data
You can modify the values of existing data by using the SQL UPDATE . . . SET statement.
However, this is a powerful command that needs to be used with care. Consider the
EMPLOYEE table. We can see the current data and who does not yet have an office phone
number by using the command:

/* *** SQL-Query-CH03-57 *** */

SELECT *

FROM EMPLOYEE

WHERE OfficePhone IS NULL;

The results of this query on the EMPLOYEE table look like this:

SQL FOR DATA MANIPULATION (DML)—DATA MODIFICATION AND DELETION

Note that Rick Brown (EmployeeNumber = 13) has a NULL value for his phone num-
ber. Suppose that he has just gotten a phone with phone number 360-287-8620. We can

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 197 11/21/16 6:25 PM

198 Part 1 Database Fundamentals

change the value of the Phone column for his data row by using the SQL UPDATE . . .
SET statement, as shown in the following SQL command:

/* *** SQL-UPDATE-CH03-01 *** */

UPDATE EMPLOYEE

SET OfficePhone = '360-287-8620'

 WHERE EmployeeNumber = 13;

To see the result, we uset the command:

/* *** SQL-Query-CH03-58 *** */

SELECT *

FROM EMPLOYEE

 WHERE EmployeeNumber = 13;

The revised data in the EMPLOYEE table for Rick with his new phone number now look
like this:

Now consider why this command is dangerous. Suppose that while intending to make
this update, we make an error and forget to include the WHERE clause. Thus, we submit
the following to the DBMS:

/* *** EXAMPLE CODE - DO NOT RUN *** */

/* *** SQL-UPDATE-CH03-02 *** */

UPDATE EMPLOYEE

SET OfficePhone = '360-287-8620';

After this command has executed, we would again use a SELECT command to display
the contents of the EMPLOYEE relation:

/* *** SQL-Query-CH03-59 *** */

SELECT * FROM EMPLOYEE;

The EMPLOYEE relation will appear as follows where all the OfficePhone values are now
the same!

SQL Server 2016, Windows 10, Microsoft Corporation.

SQL Server 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 198 11/21/16 6:25 PM

Chapter 3 Structured Query Language 199

This is clearly not what we intended to do. If you did this at a new job where there are
10,000 rows in the EMPLOYEE table, you would experience a sinking feeling in the pit of
your stomach and make plans to update your résumé (unless you have mastered how to
rollback transactions in your DBMS to restore lost data as discussed in Chapter 6, which
just might save your job)! The message here: The SQL UPDATE … SET statement is pow-
erful and easy to use, but it is also capable of causing disasters.

The SQL UPDATE … SET statement can modify more than one column value at a time,
as shown in the following statement. For example, if Heather Jones (EmployeeNumber = 9)
is transferred to the finance department from accounting and given a new finance phone
number, you can use the following command to update her data:

/* *** EXAMPLE CODE - DO NOT RUN *** */

/* *** SQL-UPDATE-CH03-03 *** */

UPDATE EMPLOYEE

SET Department = 'Finance', OfficePhone = '360-285-8420'

WHERE EmployeeNumber = 9;

This command changes the values of Phone and Department for the indicated
employee.

SQL:2003 introduced the SQL MERGE statement, which essentially combines the
INSERT and UPDATE statements into one statement that can either insert or
update data depending upon whether some condition is met. Thus, the MERGE
statement requires some rather complex SQL code, and you should concentrate
on thoroughly understanding both the INSERT and UPDATE statements at this
point. The SQL MERGE statement is discussed in Appendix E, “Advanced
SQL.”

BTW

Deleting Data
You can eliminate rows with the SQL DELETE statement. However, the same warnings
pertain to DELETE as to UPDATE. DELETE is deceptively simple to use and easy to
apply in unintended ways. The following, for example, deletes all projects sponsored by the
marketing department:

/* *** EXAMPLE CODE - DO NOT RUN *** */

/* *** SQL-DELETE-CH03-01 *** */

DELETE

FROM PROJECT

WHERE Department = 'Sales and Marketing';

Given that we created an ON DELETE CASCADE referential integrity constraint, this
DELETE operation not only removes PROJECT rows, it also removes any related
ASSIGNMENT rows. For the WP data in Figure 3-2, this DELETE operation removes
the projects with ProjectID 1100 (2017 Q3 Marketing Plan) and 1500 (2017 Q4 Marketing
Plan) and eight rows (rows 6, 7, 8, and 9 for ProjectID 1100 and rows 23, 24, 25, and 26 for
ProjectID 1500) of the ASSIGNMENT table.

M03_KROE1533_08_SE_C03.indd 199 11/21/16 6:25 PM

200 Part 1 Database Fundamentals

As with the SQL UPDATE … SET statement, if you forget to include the WHERE
clause, disaster ensues. For example, the SQL code:

/* *** EXAMPLE CODE - DO NOT RUN *** */

/* *** SQL-DELETE-CH03-02 *** */

DELETE

FROM PROJECT;

deletes all the rows in PROJECT (and because of the ON DELETE CASCADE constraint,
all the ASSIGNMENT rows as well). This truly would be a disaster!

Observe how the referential integrity constraint differs with the EMPLOYEE table.
Here, if we try to process the command:

/* *** EXAMPLE CODE - DO NOT RUN *** */

/* *** SQL-DELETE-CH03-03 *** */

DELETE

FROM EMPLOYEE

WHERE EmployeeNumber = 1;

the DELETE operation fails because rows in ASSIGNMENT depend on the
EmployeeNumber value of 1 in EMPLOYEE:

SQL Server 2016, Windows 10, Microsoft Corporation.

If you want to delete the row for this employee, you must first reassign or delete his or her
rows in ASSIGNMENT.

There are many data definition SQL statements that we have not yet described. Two of the
most useful are the SQL DROP TABLE and SQL ALTER TABLE statements.

The SQL DROP TABLE Statement
The SQL DROP TABLE statement is also one of the most dangerous SQL statements
because it drops the table’s structure along with all of the table’s data. For example, to drop
the ASSIGNMENT table and all its data, you use the following SQL statement:

/* *** EXAMPLE CODE - DO NOT RUN *** */

/* *** SQL-DROP-TABLE-CH03-01 *** */

DROP TABLE ASSIGNMENT;

The SQL DROP TABLE statement does not work if the table contains or could con-
tain values needed to fulfill referential integrity constraints. EMPLOYEE, for example,

SQL FOR DATA DEFINITION (DDL)—TABLE AND CONSTRAINT
MODIFICATION AND DELETION

M03_KROE1533_08_SE_C03.indd 200 11/21/16 6:25 PM

Chapter 3 Structured Query Language 201

contains values of EmployeeNumber needed by the foreign key constraint ASSIGN_
EMP_FK. In this case, an attempt to issue the statement DROP TABLE EMPLOYEE
fails, and an error message is generated.

The SQL ALTER TABLE Statement
To drop the EMPLOYEE table, you must first drop the ASSIGNMENT table or at least
delete the foreign key constraint ASSIGN_EMP_FK. This is one place where the ALTER
TABLE command is useful. You use the SQL ALTER TABLE statement to add, modify,
and drop columns and constraints. For example, you can use it to drop the ASSIGN_
EMP_FK constraint with the statement:

/* *** EXAMPLE CODE - DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH03-01 *** */

ALTER TABLE ASSIGNMENT
DROP CONSTRAINT ASSIGN_EMP_FK;

After either dropping the ASSIGNMENT table or the ASSIGN_EMP_FK foreign key
constraint, you can then successfully drop the EMPLOYEE table.

We will discuss the SQL ALTER TABLE statement in more detail in Appendix E,
“Advanced SQL,” and we illustrate another use of the SQL ALTER TABLE statement in
this chapter’s section of “The Access Workbench.”

Now you know why it is an advantage to control constraint names by using the
CONSTRAINT syntax. Because we created the foreign key constraint name
ASSIGN_EMP_FK ourselves, we know what it is. This makes it easy to use when
we need it.

BTW

The SQL TRUNCATE TABLE Statement
The SQL TRUNCATE TABLE statement was added in the SQL:2008 standard, so it is
one of the latest additions to SQL. Like the SQL DELETE statement, it is used to remove
all data from a table while leaving the table structure itself in the database. However, un-
like the SQL DELETE statement, the SQL TRUNCATE TABLE statement also resets any
surrogate primary key values back to the starting point. The SQL TRUNCATE TABLE
statement does not use an SQL WHERE clause to specify conditions for the data dele-
tion—all the data in the table are always removed when the TRUNCATE TABLE state-
ment is used.

The following statement could be used to remove all the data in the PROJECT table:

/* *** EXAMPLE CODE - DO NOT RUN *** */

/* *** SQL-TRUNCATE-TABLE-CH03-01 *** */

TRUNCATE TABLE PROJECT;

The TRUNCATE TABLE statement cannot be used with a table that is referenced by a
foreign key constraint because this could result in foreign key values that have no corre-
sponding primary key value. Thus, while we can use TRUNCATE TABLE with the
ASSIGNMENT table, we cannot use it with the DEPARTMENT table.

M03_KROE1533_08_SE_C03.indd 201 11/21/16 6:25 PM

202 Part 1 Database Fundamentals

SQL contains a powerful tool known as an SQL view. An SQL view is a virtual table cre-
ated by a DBMS-stored SELECT statement and thus can combine access to data in multi-
ple tables and even in other views. SQL views are discussed in online Appendix E —
Advanced SQL, where we show how to create and use SQL views and discuss several
specific applications of SQL views in database applications. This is important material that
you will find very useful when building databases and database applications, and we will
use SQL views in our discussion of online analytical processing (OLAP) reporting systems
in Chapter 8.

SQL VIEWS

Section 3
Working with Queries in Microsoft Access
In the previous sections of “The Access Workbench,” you learned to create Microsoft
Access databases, tables, forms, and reports in multiple-table databases. In this section, you
will:

• Learn how to use Microsoft Access SQL
• Learn how to run queries in single and multiple tables using both SQL and Query

by Example (QBE)
• Learn how to manually set table and relationship properties not supported by

Microsoft Access SQL

In this section, we will continue to use the WMCRM database you’ve been using. At
this point, we’ve created and populated (that is, inserted the data into) the CUSTOMER,
PHONE_NUMBER, and CONTACT tables and set the referential integrity constraints
between them.

Working with Microsoft Access SQL

You work with Microsoft Access SQL in the SQL view of a query window. The following
simple query shows how this works:

/* *** SQL-Query-AW03-01 *** */

SELECT *

FROM CUSTOMER;

Opening a Microsoft Access Query Window in Design View

1. Start Microsoft Access 2016.
2. Click the File command tab to display the File menu and then click the WMCRM.accdb

database filename in the quick access list to open the database.
3. Click the Create command tab to display the Create command groups, as shown in

Figure AW-3-1.
4. Click the Query Design button.
5. The Query1 tabbed document window is displayed in Design view, along with the Show

Table dialog box, as shown in Figure AW-3-2.

THE ACCESS WORKBENCH

M03_KROE1533_08_SE_C03.indd 202 11/21/16 6:25 PM

Chapter 3 Structured Query Language 203

The Query Design button

The Create command tab

FIGURE AW-3-1

The Create Command Tab

The Query1 tabbed
document window in
Design view

The Show Table dialog box

Click the Close button

FIGURE AW-3-2

The Show Table Dialog Box

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 203 11/21/16 6:26 PM

204 Part 1 Database Fundamentals

6. Click the Close button on the Show Table dialog box. The Query1 document window now
looks as shown in Figure AW-3-3. This window is used for creating and editing Access que-
ries in Design view and is used with Access QBE, as discussed later in this section.

Note that in Figure AW-3-3 the Select button is selected in the Query Type group on
the Design tab. You can tell this is so because active or selected buttons are always high-
lighted in darker gray on the Ribbon. This indicates that we are creating a query that is the
equivalent of an SQL SELECT statement.

Also note that in Figure AW-3-3 the View gallery is available in the Results group of
the Design tab. We can use this gallery to switch between Design view and SQL view.
However, we can also just use the displayed SQL View button to switch to SQL view,
which is being displayed because Access considers that to be the view you would most
likely choose in the gallery if you used it. Access always presents a “most likely needed”
view choice as a button above the View gallery.

Opening a Microsoft Access SQL Query Window and Running a Microsoft
Access SQL Query

1. Click the SQL View button in the Results group on the Design tab. The Query1 window
switches to the SQL view, as shown in Figure AW-3-4. Note the basic SQL command
SELECT; that’s shown in the window. This is an incomplete command, and running it will
not produce any results.

2. Edit the SQL SELECT command to read

SELECT *

FROM CUSTOMER;

as shown in Figure AW-3-5.

The Query Tools command tab

The SQL View button

The Design command tab

The View gallery drop-down
arrow button

The Select Query Type button

FIGURE AW-3-3

The Query Tools Contextual Command Tab

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 204 11/21/16 6:26 PM

Chapter 3 Structured Query Language 205

3. Click the Run button on the Design tab. The query results appear, as shown in Figure AW-3-6.

Just as we can save Access objects such as tables, forms, and reports, we can save Access
queries for future use.

Saving a Microsoft Access SQL Query

1. To save the query, click the Save button on the Quick Access Toolbar. The Save As dialog
box appears, as shown in Figure AW-3-7.

The Query1 window in SQL view

The SQL SELECT; statement—
this is an incomplete
statement and will not run as
written—it is intended as the
start of an SQL query

FIGURE AW-3-4

The Query1 Window in SQL View

The Run button

The complete SQL query
statement:
SELECT * FROM CUSTOMER;

FIGURE AW-3-5

The SQL Query

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 205 11/21/16 6:26 PM

206 Part 1 Database Fundamentals

2. Type in the query name SQL-Query-AW-03-01 and then click the OK button. The query is
saved, and the window is renamed with the query name, as shown in Figure AW-3-8.

3. Click the Shutter Bar Open/Close button to expand the Navigation Pane. As shown in
Figure AW-3-8, the query document window is now named SQL-Query-AW-03-01, and
a newly created SQL-Query-AW-03-01 query object appears in a Queries section of the
Navigation Pane.

4. Close the Query-AW-03-01 window by clicking the document window’s Close button.
5. If Access displays a dialog box asking whether you want to save changes to the design of the

query SQL-Query-AW-03-01, click the Yes button.

Working with Microsoft Access QBE

By default, Microsoft Access does not use the SQL interface. Instead, it uses a version of
Query by Example (QBE), which uses the Access GUI to build queries. To understand
how this works, we’ll use QBE to recreate the SQL query we just created using QBE.

Creating and Running a Microsoft Access QBE Query

1. Click the Create command tab to display the Create command groups.
2. Click the Query Design button.
3. The Query1 tabbed document window is displayed in Design view, along with the Show

Table dialog box, as shown in Figure AW-3-2.
4. Click CUSTOMER to select the CUSTOMER table. Click the Add button to add the

CUSTOMER table to the query.
5. Click the Close button to close the Show Table dialog box.

The query results

FIGURE AW-3-6

The SQL Query Results

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 206 11/21/16 6:26 PM

Chapter 3 Structured Query Language 207

6. Rearrange and resize the query window objects in the Query1 query document window
using standard Windows drag-and-drop techniques. Rearrange the window elements until
they look as shown in Figure AW-3-9.

7. Note the elements of the Query1 window shown in Figure AW-3-9: Tables and their asso-
ciated set of columns—called a field list—that are included in the query are shown in the
upper pane, and the columns (fields) actually included in the query are shown in the lower

The Save button

The Save As dialog box

The OK button

The query window is now
named SQL-Query-AW-03-01

The Queries section of the
Navigation Pane

The SQL-Query-AW-03-01
query object

FIGURE AW-3-7

The Save As Dialog Box

FIGURE AW-3-8

The Named and Saved Query

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 207 11/21/16 6:26 PM

208 Part 1 Database Fundamentals

pane. For each included column (field), you can set whether this column’s data appear in
the results, how the data are sorted, and the criteria for selecting which rows of data will
be shown. Note that the first entry in the table’s field list is the asterisk (*), which has its
standard SQL meaning of “all columns in the table.”

 8. Include columns in the query by dragging them from the table’s field list to a field column
in the lower pane. Click and drag the * in CUSTOMER to the first field column, as shown
in Figure AW-3-10. Note that the column is entered as CUSTOMER.* from the table
CUSTOMER.

 9. To save the QBE query, click the Save button on the Quick Access Toolbar to display
the Save As dialog box. Type in the query name QBE-Query-AW-03-01, and then click
the OK button. The query is saved, the window is renamed QBE-Query-AW-03-01, and
a newly created QBE-Query-AW-03-01 query object appears in a Queries section of the
Navigation Pane.

10. Click the Run button on the Query Design toolbar.
11. Click the Shutter Bar Open/Close button to minimize the Navigation Pane. You may

need to resize column widths to see all the data. The query results appear, as shown
in Figure AW-3-11. Note that these results are identical to the results shown in Figure
AW-3-6.

12. Click the Shutter Bar Open/Close button to expand the Navigation Pane and then click
the query document tab to select it.

13. Close the QBE-Query-AW03-01 query.
14. If Access displays a dialog box asking whether you want to save changes to the layout of

the query QBE-Query-AW03-01, click the Yes button.

Columns in the query are
called fields and appear in the
bottom pane, together with
related property values

Tables in the query appear in
the top pane, together with a
list of their columns (the field list)
and an asterisk (*), meaning
“all columns”

This query is a Select query

FIGURE AW-3-9

The QBE Query1 Query Window

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 208 11/21/16 6:26 PM

Chapter 3 Structured Query Language 209

The table name is automatically added to the
query to specify the source of the column—this
is important if there is more than one table in
the query with the same column name

The asterisk (*) symbol was dragged and
dropped here to add the field CUSTOMER.*
field to the query

To add a column to the query, click the
column name and drag it to a cell in the
Field: row in the lower pane

FIGURE AW-3-10

Adding Columns to the QBE Query

As expected, the query results
are identical to those shown in
Figure AW-3-6

FIGURE AW-3-11

The QBE Query Results

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 209 11/21/16 6:26 PM

210 Part 1 Database Fundamentals

The results will show only
customers with a CustomerID
greater than 2

The results will be sorted by
LastName in descending order
(Z–A)

The CustomerID, LastName,
and FirstName fields are in the
query

FIGURE AW-3-12

The QBE-Query-AW-03-02 Query Window

This query is about as simple as they get, but we can use QBE for more complicated
queries. For example, consider a query that uses only some of the columns in the table,
includes the SQL WHERE clause, and also sorts data using the SQL ORDER BY clause:

/* *** SQL-Version of QBE-Query-AW-03-02 *** */

SELECT CustomerID, LastName, FirstName

FROM CUSTOMER

WHERE CustomerID > 2

ORDER BY LastName DESC;

This QBE query, named QBE-Query-AW-03-02, is shown in Figure AW-3-12. Note that
now we’ve included the specific columns that we want used in the query instead of the as-
terisk, we’ve used the Sort property for LastName, and we’ve included row selection con-
ditions in the Criteria property for CustomerID.

Creating and Running QBE-Query-AW03-02

1. Using the previous instructions for QBE-Query-AW-03-01, create, run, and save QBE-
Query-AW-03-02. The query results are shown in Figure AW-3-13.

Of course, we can use more than one table in a QBE query. Next, we’ll create the QBE ver-
sion of this SQL query:

/* *** SQL-Version-of-QBE-Query-AW-CH03-03 *** */

SELECT LastName, FirstName,

 ContactDate, ContactType, Remarks

FROM CUSTOMER, CONTACT

WHERE CUSTOMER.CustomerID = CONTACT.CustomerID

 AND CUSTOMER.CustomerID = 3

ORDER BY ContactDate;

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 210 11/21/16 6:26 PM

Chapter 3 Structured Query Language 211

Creating and Running a Microsoft Access QBE Query with Multiple Tables

1. Click the Create command tab.
2. Click the Query Design button.
3. The Query1 tabbed document window is displayed in Design view, along with the Show

Table dialog box.
4. Click CUSTOMER to select the CUSTOMER table. Click the Add button to add the

CUSTOMER table to the query.
5. Click CONTACT to select the CONTACT table. Click the Add button to add the

CONTACT table to the query.
6. Click the Close button to close the Show Table dialog box.
7. Rearrange and resize the query window objects in the Query1 query document window by

using standard Windows drag-and-drop techniques. Rearrange the window elements until
they look as shown in Figure AW-3-14. Note that the relationship between the two tables
is already included in the diagram. This implements the SQL clause:

WHERE CUSTOMER.CustomerID = CONTACT.CustomerID

8. From the CUSTOMER table, click and drag the CustomerID, LastName, and FirstName
column names to the first three field columns in the lower pane.

9. From the CONTACT table, click and drag the ContactDate, ContactType, and Remarks
column names to the next three field columns in the lower pane.

10. In the field column for CustomerID, uncheck the Show check box so that the data from
this column is not included in the results display.

11. In the field column for CustomerID, type the number 3 in the Criteria row.
12. In the field column for ContactDate, set the Sort setting to Ascending. The completed

QBE query appears, as shown in Figure AW-3-15.
13. Click the Run button. The query results appear, as shown in Figure AW-3-16.
14. To save the query, click the Save button on the Quick Access Toolbar to display the Save

As dialog box. Type in the query name QBE-Query-AW-03-03, and then click the OK
button. The query is saved, the document window is renamed with the new query name,
and the QBE-Query-AW-03-03 object is added to the Queries section of the Navigation
Pane.

15. Close the QBE-Query-AW-03-03 window.

The results show only
customers with a CustomerID
greater than 2, sorted by
LastName in descending order
(Z–A)

FIGURE AW-3-13

The QBE-Query-AW-03-02 Query Results

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 211 11/21/16 6:26 PM

212 Part 1 Database Fundamentals

The relationship and referential integrity constraint
between the two tables are automatically included in the
query—this means that the SQL clause

WHERE CUSTOMER.CustomerID = CONTACT.CustomerID

is automatically part of the query

Both the CUSTOMER table and
the CONTACT table are in the
query

FIGURE AW-3-14

The Query Window with Two Tables

The results will show only for the
customer with the CustomerID
of 3, but CustomerID will not be
displayed in the results

The results will be sorted by
ContactDate in ascending order
(earliest date to latest)

From CUSTOMER, the
CustomerID, LastName, and
FirstName columns are in the
query

From CONTACT, the
ContactDate, ContactType,
and Remarks columns are in
the query

FIGURE AW-3-15

The Completed Two-Table Query

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 212 11/21/16 6:26 PM

Chapter 3 Structured Query Language 213

Working with Microsoft Access Parameter Queries

Access allows us to construct queries that prompt the user for values to be used in the
WHERE clause of the query. These are known as parameterized queries, where the word
parameter refers to the column for which a value is needed. And because we can create re-
ports that are based on queries, parameterized queries can be used as the basis of parame-
terized reports.

For an example of a parameterized query, we’ll modify QBE-Query-AW-03-03 so that
CustomerID is the parameter and the user is prompted for the CustomerID value when the
query is run.

Creating and Running a Microsoft Access Parameterized Query

1. In the Navigation Pane, right-click the QBE-Query-AW03-03 query object to select it and
open the shortcut menu and then click the Copy button.

2. Click the Home command tab, and then click the Paste command to display the Paste As
dialog box, as shown in Figure AW-3-17.

3. In the Query Name ‘Copy of QBE-Query-AW-03-03’ text box of the Paste As dialog box,
edit the query name to read QBE-Query-AW-03-04.

4. Click the OK button to save the query.
5. Click the Design command tab to return to Design view of query, which is now renamed

QBE-Query-AW-03-04.
6. Click the Shutter Bar Open/Close button to minimize the Navigation Pane.
7. In the Criteria row of the CustomerID column, delete the number value (which is 3), and

enter the text [Enter the CustomerID Number:] in its place. You will need to expand
the CustomerID column width for all the text to be visible at the same time. The QBE-
Query-AW-03-04 window now looks as shown in Figure AW-3-18.

8. Click the Save button on the Quick Access Toolbar to save the changes to the query
design.

9. Click the Run button. The Enter Parameter Value dialog box appears, as shown in Figure
AW-3-19. Note that the text we entered in the Criteria row now appears as a prompt in the
dialog box.

10. Enter the CustomerID number 3 as a parameter value and then click the OK button. The
query results appear. They are identical to those shown in Figure AW-3-16.

The results are sorted by
ContactDate in ascending order
(earliest date to latest date)

The results are shown for the
customer with the CustomerID
of 3, which is Jessica Christman

FIGURE AW-3-16

The Two-Table Query Results

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 213 11/21/16 6:26 PM

214 Part 1 Database Fundamentals

Type the new query name
QBE-Query-AW-03-04 in this
text box

The Paste As dialog box

The OK button

Right-click the query object
QBE-Query-AW-03-03 to
display a short-cut menu, and
then click the Copy command

The Home command tab

The Paste button

FIGURE AW-3-17

The Paste As Dialog Box

Criteria for the CustomerID column now contains
the text for a prompt to be displayed in the Enter
Parameter Value dialog box that will be displayed
to get a parameter value from the user

The CustomerID column has
been repositioned as the last
column because it is not
displayed in the query results

FIGURE AW-3-18

The Completed Parameterized Query

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 214 11/21/16 6:26 PM

Chapter 3 Structured Query Language 215

11. Click the Save button to save the changes to the design of the query and then close the
query.

12. Click the Shutter Bar Open/Close button to expand the Navigation Pane.

This completes our discussion of SQL and QBE queries in Microsoft Access 2016.
With the query tools we’ve described, you should be able to run any needed query in an
Access database.

Creating Tables with Microsoft Access SQL

In previous sections of “The Access Workbench,” we created and populated Microsoft
Access tables using Table Design view. Now we’ll create and populate a table by using
Microsoft Access SQL, as done in the SQL view of a query window. So far, the Wallingford
Motors CRM database has been for use by only a single salesperson. Now we’ll add a
SALESPERSON table. Each salesperson at Wallingford Motors is identified by a nick-
name. The nickname may be the person’s actual first name or a true nickname, but it must
be unique. We can assume that one salesperson is assigned to each customer and that only
that salesperson makes contact with the customer.

The full set of tables in the WMCRM database will now look like this:

SALESPERSON (NickName, LastName, FirstName, HireDate, WageRate,
CommissionRate, OfficePhone, EmailAddress)

CUSTOMER (CustomerID, LastName, FirstName, Address, City, State, ZIP,
EmailAddress, NickName)

PHONE_NUMBER (CustomerID, PhoneNumber, PhoneType)
CONTACT (ContactID, CustomerID, Date, Type, Remarks)

The referential integrity constraints are:

NickName in CUSTOMER must exist in NickName in SALESPERSON
CustomerID in CONTACT must exist in CustomerID in CUSTOMER
CustomerID in PHONE_NUMBER must exist in CustomerID in CUSTOMER

The database column characteristics for SALESPERSON are shown in Figure AW-3-20,
and SALESPERSON data are shown in Figure AW-3-21.

Note that adding the SALESPERSON table will require alterations to the existing
CUSTOMER table. We need a new column for the foreign key NickName, a referential
integrity constraint between CUSTOMER and SALESPERSON, and new data for the
column.

This is the text
that was entered
into the criteria
field for
CustomerID

The Enter
Parameter Value
dialog box

Enter the
CustomerID
number here

Click the OK
button to run
the query

FIGURE AW-3-19

The Enter Parameter Value Dialog Box

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 215 11/21/16 6:26 PM

216 Part 1 Database Fundamentals

First, we’ll build the SALESPERSON table. The correct SQL statement is:

/* *** SQL-CREATE-TABLE-AW03-01 *** */

CREATE TABLE SALESPERSON(

NickName Char(35) NOT NULL,

LastName Char(25) NOT NULL,

FirstName Char(25) NOT NULL,

HireDate Date NOT NULL,

WageRate Numeric(5,2) NOT NULL DEFAULT(12.50),

CommissionRate Numeric(5,3) NOT NULL,

OfficePhone Char(12) NOT NULL,

EmailAddress Varchar(100) NOT NULL UNIQUE,

CONSTRAINT SALESPERSON_PK PRIMARY KEY (NickName)

);

This statement uses standard SQL data types (specifically SQL Server data types), but this is
not a problem because Access will correctly read them and translate them into Access data
types. However, from the SQL discussion in this chapter, we know that Access does not sup-
port the numeric data type with the (m,n) syntax (where m = total number of digits and n =
number of digits to the right of the decimal). Further, Access does not support the UNIQUE
constraint or the DEFAULT keyword. Therefore, we have to create an SQL statement with-
out these items and then use the Access GUI to fine-tune the table after it is created.

FIGURE AW-3-20
Database Column Characteristics for the WMCRM SALESPERSON Table

Column Name Type Key Required Remarks
NickName Text (35) Primary Key Yes

LastName Text (25) No Yes

FirstName Text (25) No Yes

HireDate Date/Time No Yes Medium Date

WageRate Number No Yes Double, Currency, Default value = $12.50

CommissionRate Number No Yes Double, Percent, 3 Decimal places

OfficePhone Text (12) No Yes

EmailAddress Text (100) No Yes Unique

FIGURE AW-3-21
Data for the WMCRM SALESPERSON Table

Nick Last First Hire Wage Commission
Name Name Name Date Rate Rate OfficePhone EmailAddress
Tina Smith Tina 10-AUG-10 $ 15.50 12.500% 206-287-7010 Tina@WM.com

Big Bill Jones William 25-SEP-10 $ 15.50 12.500% 206-287-7020 BigBill@WM.com

Billy Jones Bill 17-MAY-11 $ 12.50 12.000% 206-287-7030 Billy@WM.com

M03_KROE1533_08_SE_C03.indd 216 11/21/16 6:26 PM

mailto:Tina@WM.com
mailto:BigBill@WM.com
mailto:Billy@WM.com

Chapter 3 Structured Query Language 217

The SQL that will run in Access is:

/* *** SQL-CREATE-TABLE-AW03-02 *** */

CREATE TABLE SALESPERSON(

NickName Char(35) NOT NULL,

 LastName Char(25) NOT NULL,

 FirstName Char(25) NOT NULL,

 HireDate Date NOT NULL,

 WageRate Numeric NOT NULL,

 CommissionRate Numeric NOT NULL,

 OfficePhone Char(12) NOT NULL,

 EmailAddress Varchar(100) NOT NULL,

 CONSTRAINT SALESPERSON_PK PRIMARY KEY (NickName)

);

Creating the SALESPERSON Table by Using Microsoft Access SQL

1. As described earlier in this chapter’s section of “The Access Workbench,” open an Access
query window in SQL view.

2. Type the SQL code into the query window. The query window now looks as shown in
Figure AW-3-22.

3. Click the Run button. The statement runs, but because this statement creates a table the
only immediately visible results are that the SALESPERSON table object is added to the
Tables section of the Navigation Pane.

4. Save the query as Create-Table-SALESPERSON.
5. Close the query window. The Create-Table-SALESPERSON query object now appears in

the Queries section of the Navigation Pane, as shown in Figure AW-3-23.

Modifying Access Tables to Add Data Requirements
Not Supported by Access SQL

To modify the SALESPERSON table to add the table requirements not supported by
Access SQL, we use the Access table Design view.6

First, recall that Access SQL does not support the numeric (m,n) syntax, where m is
the number of digits stored and n is the number of digits to the right of the decimal place.
We can set the number of digits to some extent by setting the Field Size field property
(which is as close as Access gets to setting the value of m). By default, Access sets a numeric
value Field Size property to double. We could change this, but a full discussion of this field
property is beyond the scope of this book—see the Microsoft Access help system discus-
sion of the Field Size property for more information.

(Continued)

6Although we do not fully discuss the matter in this book, it’s important to mention that Access SQL con-
founds the treatment of the SQL NOT NULL column constraint. When you use NOT NULL in defining
a column, Access properly sets the column’s Required field property to Yes. (We discussed how to do this
manually in Chapter 1’s section of “The Access Workbench” when we created the CUSTOMER table.)
However, Access adds a second field property, the Allow Zero Length field property, which it sets to Yes.
To truly match NOT NULL, this value should be set to No. For a full discussion of setting the Allow Zero
Length field property, see the Microsoft Access help system.

M03_KROE1533_08_SE_C03.indd 217 11/21/16 6:26 PM

218 Part 1 Database Fundamentals

We can, however, easily set the number of decimal places (which is the value of n) us-
ing the Decimal Places field property. In addition, Microsoft Access does have the advan-
tage of having a Format field property that allows us to apply formatting to a numeric value
so that the data appear as currency, a percentage, or in other formats. We will leave the de-
fault Field Size setting and change the Format and Decimal Places property values.

Recall that Access SQL does not support the SQL DEFAULT keyword, so we will have
to add any needed default values. We can do this using the Default Value field property.

Setting Number and Default Value Field Properties

1. To open the SALESPERSON table in Design view, right-click the SALESPERSON table ob-
ject to select it and open the shortcut menu and then click the Design View button in the short-
cut menu. The SALESPERSON table appears in Design view, as shown in Figure AW-3-24.

2. Select the WageRate field. The WageRate field properties are displayed in the General tab,
as shown in Figure AW-3-25.

3. Click the Format text field. A drop-down list arrow appears on the right end of the text
field, as shown in Figure AW-3-26. Click the drop-down list arrow to display the list and
select Currency.

The Create-Table-
SALESPERSON query—note the
Design icon that identifies this
as a data definition query

The SALESPERSON table

FIGURE AW-3-23

The SALESPERSON Objects in the Navigation Pane

The complete SQL CREATE
TABLE SALESPERSON
statement

FIGURE AW-3-22

The SQL CREATE TABLE SALESPERSON Statement

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 218 11/21/16 6:26 PM

Chapter 3 Structured Query Language 219

Move the mouse cursor here,
and then click to select the
WageRate column (field)

The General tab in the Field
Properties section

The WageRate column is selected

The Format text box

The Decimal Places text box

The Default Value text box

FIGURE AW-3-24

The SALESPERSON Table in Design View

FIGURE AW-3-25

The WageRate Field Properties

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 219 11/21/16 6:26 PM

220 Part 1 Database Fundamentals

 ■ NOTE: When you do this, a small icon appears to the left of the text field. This is
the Property Update Options drop-down list. Simply ignore it, and it will disappear
when you take the next action. Then it will reappear for that action! In general, ignore
it and keep working.

 4. Click the Decimal Places text field (which is currently set to Auto). Again, a drop-down
list arrow appears. Use the drop-down list to select 2 decimal places.

 5. Click the Default Value text box. The Expression Builder icon appears, as shown in Figure
AW-3-27. We do not need to use the Expression Builder at this point. Type 12.50 into the
Default Value text box. We have finished setting the field property values for WageRate.
The final values are shown in Figure AW-3-28.

 ■ NOTE: Access actually stores this number as 12.5, which is the same value without
the trailing zero. Don’t be alarmed if you look at these property values again and no-
tice the missing zero!

 6. Click the Save button to save the completed changes to the SALESPERSON table.
 7. Select the CommissionRate field. The CommissionRate field properties are displayed in

the General tab.
 8. Set the Format value to Percentage.
 9. Set the Decimal Places value to 3.
10. Select the HireDate field. The HireDate field properties are displayed in the General tab.
11. Set the Format value to Medium Date.
12. Click the Save button to save the completed changes to the SALESPERSON table.
13. Leave the SALESPERSON table open in Design view for the next set of steps.

The UNIQUE constraint is another SQL constraint that Access SQL does not sup-
port. To set a UNIQUE constraint in Access, we set the value of the Indexed field prop-
erty. Access initially sets this value to No, which means that no index (a tool for making

Click the Format text box
drop-down arrow to display
the drop-down list

Select Currency

Click the Format text box to
select it

FIGURE AW-3-26

The Format Text Box

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 220 11/21/16 6:26 PM

Chapter 3 Structured Query Language 221

The Property Update Options
icon—you can simply ignore it

Click in the Default Value text
box to select it

The Expression Builder button,
which we will not use at this time

Data format is set to Currency

Number of decimal places is
set to 2

The default value is set to
12.5─we typed in 12.50, and
Access took o� the trailing zero

FIGURE AW-3-27

The Default Value Text Box

FIGURE AW-3-28

The Completed WageRate Field Properties

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 221 11/21/16 6:26 PM

222 Part 1 Database Fundamentals

queries more efficient) is built for this column. The two other possible values of this prop-
erty are Yes (Duplicates OK) and Yes (No Duplicates). We enforce the UNIQUE con-
straint by setting the property value to Yes (No Duplicates).

Setting Indexed Field Properties

1. The SALESPERSON table should already be open in Design view. If it isn’t, open the table
in Design view.

2. Select the EmailAddress field.
3. Click the Indexed text field. A drop-down list arrow button appears on the right end of the

text field, as shown in Figure AW-3-29. Click the Indexed drop-down list arrow button to
display the list and select Yes (No Duplicates).

4. Click the Save button to save the completed changes to the SALESPERSON table.
5. Close the SALESPERSON table.

Finally, we’ll implement the SQL CHECK constraint. When we created the
CONTACT table, the only allowed data types for the Type column were Phone, Fax,
Email, and Meeting. The correct SQL statement to add this constraint to the CONTACT
table would be:

/* *** SQL-ALTER-TABLE-AW03-01 *** */

ALTER TABLE CONTACT

ADD CONSTRAINT CONTACT_Check_ContactType

CHECK (ContactType IN ('Phone', 'Fax', 'Email', 'Meeting'));

The EmailAddress column is
selected

The Indexed text box

Select Yes (No Duplicates)

FIGURE AW-3-29

The Email Field Properties

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 222 11/21/16 6:26 PM

Chapter 3 Structured Query Language 223

To implement the CHECK constraint in Access, we set the value of the Validation Rule
field property for the ContactType column.

Creating the CHECK Constraint for the CONTACT Table

1. Open the CONTACT table in Design view.
2. Select the ContactType column.
3. Click the Validation Rule text box and then type in the text Phone or Fax or Email or

Meeting, as shown in Figure AW-3-30.
 ■ NOTE: Do not enclose the allowed terms in quotation marks. Access will add quo-

tation marks to each term when it saves the changes to the table design. If you add
your own set of quotation marks, you’ll end up with each word enclosed in two sets
of quotes, and Access will not consider this a match to the existing data in the table
when it runs the data integrity check discussed in step 4.

4. Click the Save button on the Quick Access Toolbar to save the CONTACT table. As shown
in Figure AW-3-31, Access displays a dialog box warning that existing data may not match
the data integrity rule we have just established by setting a validation rule.

The ContactType column is
selected

Enter the possible values for the
column in the Validation Rule
text box separated by the word or

Click the Yes
button

The Data
Integrity warning
dialog box

FIGURE AW-3-30

Specifying a Validation Rule

FIGURE AW-3-31

The Data Integrity Warning Dialog Box

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 223 11/21/16 6:26 PM

224 Part 1 Database Fundamentals

5. Click the Yes button on the dialog box
6. Close the CONTACT table.

Inserting Data with Microsoft Access SQL

We can use Access SQL to enter the data shown in Figure AW-3-21 into the SALESPERSON
table. The only problem here is that Access will not handle multiple SQL commands in one
query, so each row of data must be input individually. The SQL commands to enter the
data are:

/* *** SQL-INSERT-AW03-01 *** */

INSERT INTO SALESPERSON

VALUES('Tina', 'Smith', 'Tina', '10-AUG-10',

'15.50', '.125', '206-287-7010', 'Tina@WM.com');

/* *** SQL-INSERT-AW03-02 *** */

INSERT INTO SALESPERSON

VALUES('Big Bill', 'Jones', 'William', '25-SEP-10',

'15.50', '.125', '206-287-7020', 'BigBill@WM.com');

/* *** SQL-INSERT-AW03-03 *** */

INSERT INTO SALESPERSON

VALUES('Billy', 'Jones', 'Bill', '17-MAY-11',

'12.50', '.120', '206-287-7030', 'Billy@WM.com');

Inserting Data into the SALESPERSON Table by Using Microsoft Access SQL

1. As described previously, open an Access query window in SQL view.
2. Type the SQL code for the first SQL INSERT statement into the query window.
3. Click the Run button. As shown in Figure AW-3-32, the query changes to Append Query,

and a dialog box appears, asking you to confirm that you want to insert the data.
4. Click the Yes button in the dialog box. The data are inserted into the table.
5. Repeat steps 2, 3, and 4 for the rest of the SQL INSERT statements for the

SALESPERSON data.
6. Close the Query1 window. A dialog box appears, asking if you want to save the query. Click

the No button—there is no need to save this SQL statement.
7. Open the SALESPERSON table in Datasheet view.

The SQL INSERT command

The dialog box confirming the
INSERT

Click the Yes button to
complete the INSERT

FIGURE AW-3-32

Inserting Data into the SALESPERSON Table

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 224 11/21/16 6:26 PM

Chapter 3 Structured Query Language 225

8. Click the Shutter Bar Open/Close button to minimize the Navigation Pane and then ar-
range the columns so that all column names and data are displayed correctly.

9. The table looks as shown in Figure AW-3-33. Note that the rows are sorted alphabetically,
in ascending order, on the primary key (NickName) value—they do not appear in the order
in which they were input.

 ■ NOTE: This is not typical of an SQL DBMS. Normally, if you run a SELECT *
FROM SALESPERSON query on the table, the data appear in the order in which
they were input, unless you added an ORDER BY clause.

10. Click the Shutter Bar Open/Close button to expand the Navigation Pane.
11. Click the Save button on the Quick Access Toolbar to save the change to the table layout.
12. Close the SALESPERSON table.

At this point, the SALESPERSON table has been created and populated. At
Wallingford Motors each customer is assigned to one and only one salesperson, so now we
need to create the relationship between SALESPERSON and CUSTOMER. This will re-
quire a foreign key in CUSTOMER to provide the needed link to SALESPERSON.

The problem is that the column needed for the foreign key—NickName—does not ex-
ist in CUSTOMER. Therefore, before creating the foreign key constraint, we must modify
the CUSTOMER table by adding the NickName column and the appropriate data values.

Figure AW-3-34 shows the column characteristics for the NickName column in the
CUSTOMER table, and Figure AW-3-35 shows the data for the column.

The data is sorted by
NickName (the primary key
value), in ascending order

FIGURE AW-3-33

The Data in the SALESPERSON Table

FIGURE AW-3-34

Database Column Characteristics for the CUSTOMER Table NickName Column

Column Name Type Key Required Remarks
NickName Text (35) Foreign Key Yes Links to NickName

in SALESPERSON

FIGURE AW-3-35

CUSTOMER Table NickName Data

CustomerID LastName FirstName ... NickName
1 Griffey Ben ... Big Bill

3 Christman Jessica ... Billy

4 Christman Rob ... Tina

5 Hayes Judy ... Tina

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 225 11/21/16 6:26 PM

226 Part 1 Database Fundamentals

As shown in Figure AW-3-34, NickName is constrained as NOT NULL. However,
adding a populated NOT NULL column requires multiple steps. This topic is discussed in
Appendix E, “Advanced SQL.” Here, we will simply walk through the needed steps. First,
the column must be added as a NULL column. Next, the column values must be added.
Finally, the column must be altered to NOT NULL. We could do this by using Access’s
GUI interface, but because we are working with Access SQL in this section, we will do
these steps in SQL. The needed SQL statements are:

/* *** SQL-ALTER-TABLE-AW03-02 *** */

ALTER TABLE CUSTOMER

ADD NickName Char(35) NULL;

/* *** SQL-UPDATE-AW03-01 *** */

UPDATE CUSTOMER

SET NickName = 'Big Bill'

 WHERE CustomerID = 1;

/* *** SQL-UPDATE-AW03-02 *** */

UPDATE CUSTOMER

 SET NickName = 'Billy'

 WHERE CustomerID = 3;

/* *** SQL-UPDATE-AW03-03 *** */

UPDATE CUSTOMER

 SET NickName = 'Tina'

 WHERE CustomerID = 4;

/* *** SQL-UPDATE-AW03-04 *** */

UPDATE CUSTOMER

 SET NickName = 'Tina'

 WHERE CustomerID = 5;

/* *** SQL-ALTER-TABLE-AW03-03 *** */

ALTER TABLE CUSTOMER

 ALTER COLUMN NickName Char(35) NOT NULL;

Creating and Populating the NickName Column in the CUSTOMER Table by
Using Microsoft Access SQL

1. As described previously, open an Access query window in SQL view.
2. Type the SQL code for the first SQL ALTER TABLE statement into the query window.
3. Click the Run button.

 ■ NOTE: The only indication that the command has run successfully is the fact that no
error message is displayed.

 4. Type the SQL code for the first SQL UPDATE statement into the query window.
 5. Click the Run button. When the dialog box appears, asking you to confirm that you want to

insert the data, click the Yes button in the dialog box. The data are inserted into the table.
 6. Repeat steps 4 and 5 for the rest of the SQL UPDATE statements for the CUSTOMER data.
 7. Type the SQL code for the second SQL ALTER TABLE statement into the query window.
 8. Click the Run button.

 ■ NOTE: Again, the only indication that the command has run successfully is the fact
that no error message is displayed.

 9. Close the Query1 window. A dialog box appears, asking if you want to save the query.
Click the No button—there is no need to save this SQL statement.

10. Open the CUSTOMER table.

M03_KROE1533_08_SE_C03.indd 226 11/21/16 6:26 PM

Chapter 3 Structured Query Language 227

11. Click the Shutter Bar Open/Close button to minimize the Navigation Pane and then scroll
to the right so that the added NickName column and the data in it are displayed. The table
looks as shown in Figure AW-3-36.

12. Click the Shutter Bar Open/Close button to expand the Navigation Pane and then click
the Design View button to switch the CUSTOMER table into Design view.

13. Click the NickName field name to select it.
14. The table with the added NickName column looks as shown in Figure AW-3-37. Note that

the data are required in the column—this is the Access equivalent of NOT NULL.
15. Close the CUSTOMER table.

The added NickName
column and data

The Design View button

FIGURE AW-3-36

The CUSTOMER Table with NickName Data

The added NickName column

Data in the column are
required, which is the Access
equivalent of NOT NULL

FIGURE AW-3-37

The Altered CUSTOMER Table

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 227 11/21/16 6:26 PM

228 Part 1 Database Fundamentals

Adding Referential Integrity Constraints by Using Microsoft
Access SQL

Now that the NickName column has been added and populated in the CUSTOMER table,
we can create the needed referential integrity constraint by adding a foreign key constraint
between SALESPERSON and CUSTOMER. Because NickName is not a surrogate key, we
will want any changed values of NickName in SALESPERSON to be updated in
CUSTOMER. However, if a row is deleted from SALESPERSON, we do not want that
deletion to cause the deletion of CUSTOMER data. Therefore, the needed constraint, writ-
ten as an SQL ALTER TABLE statement, is:

/* *** SQL-ALTER-TABLE-AW03-04 *** */

ALTER TABLE CUSTOMER

ADD CONSTRAINT CUSTOMER_SP_FK FOREIGN KEY(NickName)

REFERENCES SALESPERSON(NickName)

 ON UPDATE CASCADE;

Unfortunately, as discussed in this chapter, Access SQL does not support ON UPDATE
and ON DELETE clauses. Therefore, we have to set ON UPDATE CASCADE manually
after creating the basic constraint with the SQL statement:

/* *** SQL-ALTER-TABLE-AW03-05 *** */

ALTER TABLE CUSTOMER

ADD CONSTRAINT CUSTOMER_SP_FK FOREIGN KEY(NickName)

REFERENCES SALESPERSON(NickName);

Creating the Referential Integrity Constraint Between CUSTOMER and
SALESPERSON by Using Microsoft Access SQL

1. As described previously, open an Access query window in SQL view.
2. Type the SQL code for the SQL ALTER TABLE statement into the query window.
3. Click the Run button.

 ■ NOTE: As before, the only indication that the command has run successfully is the
fact that no error message is displayed.

4. Close the Query1 window. A dialog box appears, asking if you want to save the query. Click
the No button; there is no need to save this SQL statement.

Modifying Microsoft Access Databases to Add Constraints Not
Supported by Microsoft Access SQL

We’ll set the ON UPDATE CASCADE constraint by using the Relationships window and
the Edit Relationships dialog box, as discussed in Chapter 2’s section of “The Access
Workbench.”

Creating a Referential Integrity Constraint Between CUSTOMER and
SALESPERSON by Using Microsoft Access SQL

1. Click the Database Tools command tab and then click the Relationships button in the
Show/Hide group. The Relationships window appears, as shown in Figure AW-3-38.

2. Click the Show Table button in the Relationships group of the Design ribbon. The Show
Table dialog box appears, as shown in Figure AW-3-39.

3. In the Show Table dialog box, click SALESPERSON to select it, and then click the Add
button to add SALESPERSON to the Relationships window.

M03_KROE1533_08_SE_C03.indd 228 11/21/16 6:26 PM

Chapter 3 Structured Query Language 229

The Show Table button

This is the relationship
diagram—note that
the NickName column has
been added to CUSTOMER

FIGURE AW-3-38

The Relationships Window with the Current Relationship Diagram

The Show Table dialog
box—click a table name
to select it, and then
click the Add button to
add the table to the
relationship diagram

When you have added
all the tables needed,
click the Close button

The Add button

FIGURE AW-3-39

Adding the SALESPERSON Table to the Relationship Diagram

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 229 11/21/16 6:26 PM

230 Part 1 Database Fundamentals

4. Click the Close button to close the Show Table dialog box.
5. Rearrange and resize the table objects in the Relationships window by using standard

Windows drag-and-drop techniques. Rearrange the SALESPERSON, CUSTOMER, and
CONTACT table objects until they look as shown in Figure AW-3-40. Note that the rela-
tionship between SALESPERSON and CUSTOMER that we created using SQL is already
shown in the diagram.

6. Right-click the relationship line between SALESPERSON and CUSTOMER, and then
click Edit Relationship in the shortcut menu that appears. The Edit Relationships dialog
box appears. Note that the Enforce Referential Integrity check box is already checked—
this was set by the SQL ALTER TABLE statement that created the relationship between the
two tables.

7. Set ON UPDATE CASCADE by clicking the Cascade Update Related Fields check box.
The Edit Relationships dialog box now looks as shown in Figure AW-3-41.

8. Click the OK button.
9. Close the Relationships window. An Access dialog box appears, asking whether you want to

save changes to the layout of “Relationships.” Click the Yes button to save the changes and
close the window.

Closing the Database and Exiting Microsoft Access

Now we’re done adding the SALESPERSON table to the database. We created the
SALESPERSON table, added data, altered the CUSTOMER data with a new column and
foreign key values, and created the referential integrity constraint between the two tables.
In the process, we saw where Microsoft Access SQL does not support the standard SQL
language and learned how to use the Access GUI to compensate for the missing SQL lan-
guage features.

The relationship between SALESPERSON and
CUSTOMER already exists—it was created
using SQL—so right-click the relationship
line and then click Edit Relationship in the
shortcut menu that appears to display the
Edit Relationships dialog box

FIGURE AW-3-40

The Updated Relationship Diagram

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 230 11/21/16 6:26 PM

Chapter 3 Structured Query Language 231

That completes the work we’ll do in this chapter’s section of “The Access Workbench.”
If you have taken a class in Microsoft Access, you probably did many of the tasks we cov-
ered in a different way. In Microsoft Access, SQL DDL is usually quite hidden, but in this
section of “The Access Workbench,” we’ve shown you how to complete the tasks using
SQL. As usual, we finish by closing the database and Access.

Closing the WMCRM Database and Exiting Microsoft Access
1. Close the WMCRM database and exit Access by clicking the Close button in the upper-

right corner of the Microsoft Access window.

The Enforce Referential Integrity
check box is already selected
because of the SQL CONSTRAINT
FOREIGN KEY statement

Check the Cascade Update
Related Fields check box to set
the equivalent of the SQL ON
UPDATE CASCADE statement

Leave the Cascade Delete Related
Records check box unchecked—this
is equivalent to the SQL ON DELETE
NO ACTION statement

FIGURE AW-3-41

The Completed Edit Relationships Dialog Box

SUMMARY

Structured Query Language (SQL) is a data sublanguage that has constructs for defining
and processing a database. SQL has several components, two of which are discussed in this
chapter: a data definition language (DDL), which is used for creating database tables and
other structures, and a data manipulation language (DML), which is used to query and
modify database data. SQL can be embedded into scripting languages, such as VBScript,
or programming languages, such as Java and C#. In addition, SQL statements can be pro-
cessed from a command window. SQL was developed by IBM and has been endorsed as a

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 231 11/21/16 6:26 PM

232 Part 1 Database Fundamentals

national standard by the American National Standards Institute (ANSI) and as an interna-
tional standard by the OSI. There have been several versions of SQL. Our discussion is
based on SQL-92, but later versions exist that have added, in particular, support for
Extensible Markup Language (XML). Modern DBMS products provide graphical facilities
for accomplishing many of the tasks that SQL does. Use of SQL is mandatory for program-
matically creating SQL statements.

Microsoft Access 2016 uses a variant of SQL known as ANSI-89 SQL, or Microsoft Jet
SQL, which differs significantly from SQL-92. Not all SQL statements written in SQL-92
and later versions run in Access ANSI-89 SQL.

The SQL CREATE TABLE statement is used to create relations. Each column is de-
scribed in three parts: the column name, the data type, and optional column constraints.
Column constraints considered in this chapter are PRIMARY KEY, FOREIGN KEY,
NULL, NOT NULL, and UNIQUE. The DEFAULT keyword (not considered a con-
straint) is also considered. If no column constraint is specified, the column is set to NULL.

Standard data types are Char, VarChar, Integer, Numeric, and DateTime. These types
have been supplemented by DBMS vendors. Figure 3-5 shows some of the additional data
types for SQL Server, Oracle Database, and MySQL.

If a primary key has only one column, you can define it by using the primary key con-
straint. Another way to define a primary key is to use the table constraint. You can use such
constraints to define single-column and multicolumn primary keys, and you can also imple-
ment referential integrity constraints by defining foreign keys. Foreign key definitions can
specify whether either updates and/or deletions should cascade.

After the tables and constraints are created, you can add data by using the SQL
INSERT statement, and you can query data by using the SQL SELECT statement. The
basic format of the SQL SELECT statement is SELECT (column names or the asterisk
symbol [*]), FROM (table names, separated by commas if there is more than one),
WHERE (conditions). You can use SELECT to obtain specific columns, specific rows, or
both.

Conditions after WHERE require single quotes around values for Char and VarChar
columns. However, single quotes are not used for Integer and Numeric columns. You can
specify compound conditions with AND and OR. You can use sets of values with IN
(match any in the set) and NOT IN (not match any in the set). You can use the wildcard
symbols _ and % (? and * in Microsoft Access) with LIKE to specify a single unknown
character or multiple unknown characters, respectively. You can use IS NULL to test for
null values.

You can sort results by using the ORDER BY clause in the SQL SELECT statement.
You can create groups by using the GROUP BY clause in the SQL SELECT statement,
and you can limit groups by using the HAVING clause. If the WHERE and HAVING
clauses both occur in an SQL SELECT statement, WHERE is applied before HAVING.
There are five SQL built-in functions: COUNT, SUM, MAX, MIN, and AVG. SQL can
also perform mathematical calculations. SQL built-in functions can be applied to groups or
to an entire table.

You can query multiple tables by using either subqueries or joins. If all the result data
come from a single table, then subqueries can be used. If results come from two or more
tables, then joins must be used. The JOIN … ON syntax can be used for joins. Rows that
do not match the join conditions do not appear in the results. Outer joins can be used to
ensure that all rows from a table appear in the results.

You can modify data by using the SQL UPDATE … SET statement and delete data by
using the SQL DELETE statement. The SQL UPDATE and SQL DELETE statements
can easily cause disasters, so the commands must be used with great care.

You can remove tables (and their data) from a database by using the SQL DROP
TABLE statement. You can remove constraints by using the SQL ALTER TABLE DROP
CONSTRAINT command. You can modify tables and constraints by using the SQL
ALTER TABLE statement. Finally, you can use the CHECK constraint to validate data
values.

M03_KROE1533_08_SE_C03.indd 232 11/21/16 6:26 PM

Chapter 3 Structured Query Language 233

KEY TERMS

/* and */ (SQL comment symbols)
American National Standards

Institute (ANSI)
ASC keyword
asterisk (*)
AVG
business rule
CASCADE keyword
CHECK constraint
CONSTRAINT keyword
COUNT
data control language (DCL)
data definition language (DDL)
data manipulation language (DML)
data sublanguage
DEFAULT keyword
DESC keyword
DISTINCT keyword
Extensible Markup Language

(XML)
FOREIGN KEY constraint
graphical user interface (GUI)
IDENTITY (M,N) property
IN comparison operator
International Organization for

Standardization (ISO)
MAX
MIN
NO ACTION
NOT IN comparison operator
NOT logical operator
NOT NULL constraint
NULL constraint

ON DELETE phrase
ON UPDATE phrase
ORDER BY clause
percent sign (%) wildcard character
PRIMARY KEY constraint
Query by Example (QBE)
question mark (?)
recursive relationship
SQL ALTER TABLE statement
SQL AND operator
SQL AS keyword
SQL asterisk (*) wildcard character
SQL BETWEEN comparison

operator
SQL built-in aggregate functions
SQL comment
SQL comparison operators
SQL CREATE TABLE statement
SQL DELETE statement
SQL DROP TABLE statement
SQL equijoin
SQL FROM clause
SQL GROUP BY clause
SQL HAVING clause
SQL inner join
SQL INNER JOIN syntax
SQL INSERT statement
SQL IS NOT NULL comparison

operator
SQL IS NULL comparison operator
SQL JOIN keyword
SQL join operation
SQL JOIN ON syntax

SQL left outer join
SQL LEFT JOIN syntax
SQL LIKE comparison operator
SQL logical operators
SQL MERGE statement
SQL NOT operator
SQL NOT BETWEEN operator
SQL NOT LIKE comparison

operator
SQL ON clause
SQL ON keyword
SQL OR operator
SQL outer join
SQL right outer join
SQL RIGHT JOIN syntax
SQL SELECT clause
SQL SELECT/FROM/WHERE

framework
SQL TRUNCATE TABLE

statement
SQL UPDATE … SET statement
SQL view
SQL WHERE clause
SQL/Persistent stored modules

(SQL/PSM)
SQL wildcard characters
Structured Query Language (SQL)
subquery
SUM
transaction control language (TCL)
underscore symbol (_) wildcard

character
UNIQUE constraint

REVIEW QUESTIONS

3.1 What does SQL stand for?

3.2 What is a data sublanguage?

3.3 Explain the importance of SQL-92.

3.4 Why is it important to learn SQL?

3.5 Describe in your own words the purpose of the two business rules listed on
page 140.

3.6 Why do some standard SQL-92 statements fail to run successfully in Microsoft
Access?

M03_KROE1533_08_SE_C03.indd 233 11/21/16 6:26 PM

234 Part 1 Database Fundamentals

Use the following tables for your answers to questions 3.7 through 3.51:

PET_OWNER (OwnerID, OwnerLastName, OwnerFirstName,
 OwnerPhone, OwnerEmail)

PET (PetID, PetName, PetType, PetBreed, PetDOB, OwnerID)

Sample data for these tables are shown in Figures 3-27 and 3-28. For each SQL statement
you write, show the results based on these data.

If possible, run the statements you write for the questions that follow in an actual
DBMS, as appropriate, to obtain results. Use data types that are consistent with the DBMS
you are using. If you are not using an actual DBMS, consistently represent data types by
using either the SQL Server, Oracle Database, or MySQL data types shown in Figure 3-5.

3.7 Write an SQL CREATE TABLE statement to create the PET_OWNER table, with
OwnerID as a surrogate key. Justify your choices of column properties.

3.8 Write an SQL CREATE TABLE statement to create the PET table without a ref-
erential integrity constraint on OwnerID in PET. Justify your choices of column
properties. Why not make every column NOT NULL?

3.9 Create a referential integrity constraint on OwnerID in PET. Assume that deletions
should not cascade.

3.10 Create a referential integrity constraint on OwnerID in PET. Assume that deletions
should cascade.

The following table schema for the PET_2 table is an alternate version of the PET table—
use it to answer review questions 3.11 and 3.12:

PET_2 (PetName, PetType, PetBreed, PetDOB, OwnerID)

FIGURE 3-27

PET_OWNER Data

OwnerID OwnerLastName OwnerFirstName OwnerPhone OwnerEmail
1 Downs Marsha 555-537-8765 Marsha.Downs@somewhere.com

2 James Richard 555-537-7654 Richard.James@somewhere.com

3 Frier Liz 555-537-6543 Liz.Frier@somewhere.com

4 Trent Miles Miles.Trent@somewhere.com

FIGURE 3-28

PET Data

PetID PetName PetType PetBreed PetDOB OwnerID
1 King Dog Std. Poodle 27-Feb-14 1

2 Teddy Cat Cashmere 01-Feb-15 2

3 Fido Dog Std. Poodle 17-Jul-13 1

4 AJ Dog Collie Mix 05-May-14 3

5 Cedro Cat Unknown 06-Jun-12 2

6 Wooley Cat Unknown 2

7 Buster Dog Border Collie 11-Dec-11 4

M03_KROE1533_08_SE_C03.indd 234 11/21/16 6:26 PM

mailto:Marsha.Downs@somewhere.com
mailto:Richard.James@somewhere.com
mailto:Liz.Frier@somewhere.com
mailto:Miles.Trent@somewhere.com

Chapter 3 Structured Query Language 235

3.11 Write the required SQL statements to create the PET_2 table.

3.12 Is PET or PET_2 a better design? Explain your rationale.

3.13 Write the SQL statements necessary to remove the PET_OWNER table from the
database. Assume that the referential integrity constraint is to be removed. Do not
run these commands in an actual database!

3.14 Write the SQL statements necessary to remove the PET_OWNER table from the
database. Assume that the PET table also needs to be removed. Do not run these
commands in an actual database!

3.15 Write an SQL statement to display all columns of all rows of PET. Do not use the
asterisk (*) notation.

3.16 Write an SQL statement to display all columns of all rows of PET. Use the asterisk
(*) notation.

3.17 Write an SQL statement to display the breed and type of all pets.

3.18 Write an SQL statement to display the breed, type, and DOB of all pets having the
type Dog.

3.19 Write an SQL statement to display the PetBreed column of PET.

3.20 Write an SQL statement to display the PetBreed column of PET. Do not show
duplicates.

3.21 Write an SQL statement to display the breed, type, and DOB for all pets having the
type Dog and the breed Std. Poodle.

3.22 Write an SQL statement to display the name, breed, and type for all pets that are
not of type Cat, Dog, or Fish.

3.23 Write an SQL statement to display the pet ID, breed, and type for all pets having a
four-character name starting with K. Note that the RTRIM function will be needed
in the solution that uses a CHAR column, but not for one that uses a VARCHAR
column.

3.24 Write an SQL statement to display the last name, first name, and email of all own-
ers who have an email address ending with somewhere.com. Assume that email ac-
count names can be any number of characters.

3.25 Write an SQL statement to display the last name, first name, and email of any
owner who has a NULL value for OwnerPhone.

3.26 Write an SQL statement to display the name and breed of all pets, sorted by
PetName.

3.27 Write an SQL statement to display the name and breed of all pets, sorted
by PetBreed in ascending order and by PetName in descending order within
PetBreed.

3.28 Write an SQL statement to count the number of pets.

3.29 Write an SQL statement to count the number of distinct breeds.

The following table schema for the PET_3 table is another alternate version of the PET
table:

PET_3 (PetID, PetName, PetType, PetBreed, PetDOB, PetWeight, OwnerID)

Data for PET_3 are shown in Figure 3-29. Except as specifically noted in the question it-
self, use the PET_3 table for your answers to all the remaining review questions.

3.30 Write the required SQL statements to create the PET_3 table. Assume that
PetWeight is Numeric(4,1).

3.31 Write an SQL statement to display the minimum, maximum, and average weight of
dogs.

M03_KROE1533_08_SE_C03.indd 235 11/21/16 6:26 PM

http://somewhere.com

236 Part 1 Database Fundamentals

3.32 Write an SQL statement to group the data by PetBreed and display the average
weight per breed.

3.33 Answer question 3.32, but consider only breeds for which two or more pets are
included in the database.

3.34 Answer question 3.33, but do not consider any pet having the breed of Unknown.

3.35 Write an SQL statement to display the last name, first name, and email of any own-
ers of cats. Use a subquery.

3.36 Write an SQL statement to display the last name, first name, and email of any own-
ers of cats with a cat named Teddy. Use a subquery.

The following table schema for the BREED table shows a new table to be added to the pet
database:

BREED (BreedName, MinWeight, MaxWeight, AverageLifeExpectancy)

Assume that PetBreed in PET_3 is a foreign key that matches the primary key BreedName
in BREED and that we have the referential integrity constraint:

PetBread in PET_3 must exist in BreedName in BREED

If needed, you may also assume that a similar referential integrity constraint exists between
PET and BREED and between PET_2 and BREED. The BREED table data are shown in
Figure 3-30.

3.37 Write SQL statements to (1) create the BREED table, (2) insert the data in
Figure 3-30 into the BREED table, (3) alter the PET_3 table so that PetBreed is
a foreign key referencing BreedName in BREED with cascading updates enabled,
and (4) with the BREED table added to the pet database, write an SQL statement
to display the last name, first name, and email of any owner of a pet that has an
AverageLifeExpectancy value greater than 15. Use a subquery.

3.38 Answer question 3.35, but use a join using JOIN ON syntax.

3.39 Answer question 3.36, but use a join using JOIN ON syntax.

3.40 Answer part (4) of question 3.37, but use joins using JOIN ON syntax.

3.41 Write an SQL statement to display the OwnerLastName, OwnerFirstName,
PetName, PetType, PetBreed, and AverageLifeExpectancy for pets with a known
PetBreed.

FIGURE 3-29

PET_3 Data

PetID PetName PetType PetBreed PetDOB PetWeight OwnerID
1 King Dog Std. Poodle 27-Feb-14 25.5 1

2 Teddy Cat Cashmere 01-Feb-15 10.5 2

3 Fido Dog Std. Poodle 17-Jul-13 28.5 1

4 AJ Dog Collie Mix 05-May-14 20.0 3

5 Cedro Cat Unknown 06-Jun-12 9.5 2

6 Wooley Cat Unknown 9.5 2

7 Buster Dog Border Collie 11-Dec-11 25.0 4

M03_KROE1533_08_SE_C03.indd 236 11/21/16 6:26 PM

Chapter 3 Structured Query Language 237

3.42 Write SQL statements to add three new rows to the PET_OWNER table. Assume
that OwnerID is a surrogate key and that the DBMS will provide a value for it. Use
the first three lines of data provided in Figure 3-31.

3.43 Write SQL statements to add three new rows to the PET_OWNER table. Assume
that OwnerID is a surrogate key and that the DBMS will provide a value for it.
Assume, however, that you have only OwnerLastName, OwnerFirstName, and
OwnerPhone and that therefore OwnerEmail is NULL. Use the last three lines of
data provided in Figure 3-31.

3.44 Write an SQL statement to change the value of Std. Poodle in BreedName of
BREED to Poodle, Std. When you ran this statement, what happened to the data
values of PetBread in the PET_3 table? Why did this occur?.

3.45 Explain what will happen if you leave the WHERE clause off your answer to ques-
tion 3.44.

3.46 Write an SQL statement to delete all rows of pets of type Anteater. What will hap-
pen if you forget to code the WHERE clause in this statement?

3.47 Write an SQL statement to add a PetWeight column like the one in PET_3 to
the PET table, given that this column is NULL. Again, assume that PetWeight is
Numeric(4,1).

3.48 Write SQL statements to insert data into the PetWeight column you created in ques-
tion 3.47. Use the PetWeight data from the PET_3 table as shown in Figure 3-29.

FIGURE 3-30

BREED Data

BreedName MinWeight MaxWeight AverageLifeExpectancy
Border Collie 15.0 22.5 20

Cashmere 10.0 15.0 12

Collie Mix 17.5 25.0 18

Std. Poodle 22.5 30.0 18

Unknown

FIGURE 3-31

Additional PET_OWNER Data

OwnerID OwnerLastName OwnerFirstName OwnerPhone OwnerEmail
5 Rogers Jim 555-232-3456 Jim.Rogers@somewhere.com

6 Keenan Mary 555-232-4567 Mary.Keenan@somewhere.com

7 Melnik Nigel 555-232-5678 Nigel.Melnik@somewhere.com

8 Mayberry Jenny 555-454-1243

9 Roberts Ken 555-454-2354

10 Taylor Sam 555-454-3465

M03_KROE1533_08_SE_C03.indd 237 11/21/16 6:26 PM

mailto:Jim.Rogers@somewhere.com
mailto:Mary.Keenan@somewhere.com
mailto:Nigel.Melnik@somewhere.com

238 Part 1 Database Fundamentals

EXERCISES

The following is a set of tables for the Art Course database shown in Figure 1-12. For the
data for these tables, use the data shown in Figure 1-12.

CUSTOMER (CustomerNumber, CustomerLastName, CustomerFirstName, Phone)
COURSE (CourseNumber, Course, CourseDate, Fee)
ENROLLMENT (CustomerNumber, CourseNumber, AmountPaid)

where:

CustomerNumber in ENROLLMENT must exist in CustomerNumber in CUSTOMER
CourseNumber in ENROLLMENT must exist in CourseNumber in COURSE

CustomerNumber and CourseNumber are surrogate keys. Therefore, these numbers will
never be modified, and there is no need for cascading updates. No customer data are ever
deleted, so there is no need to cascade deletions. Courses can be deleted. If there are enroll-
ment entries for a deleted class, they should also be deleted.

These tables, referential integrity constraints, and data are used as the basis for the SQL
statements you will create in the exercises that follow. If possible, run these statements in
an actual DBMS, as appropriate, to obtain results. Name your database ART_COURSE_
DATABASE. For each SQL statement you write, show the results based on these data. Use
data types consistent with the DBMS you are using. If you are not using an actual DBMS,
consistently represent data types using either the SQL Server, Oracle Database, or MySQL
data types shown in Figure 3-5.

3.52 Write and run the SQL statements necessary to create the tables and their referen-
tial integrity constraints.

3.53 Populate the tables with the data in Figure 1-12.

3.54 Write and run an SQL query to list all occurrences of Adv Pastels in the COURSE
table. Include all associated data for each occurrence of the class.

3.55 Write and run an SQL query to list all students and courses they are reg-
istered for. Include, in this order, CustomerNumber, CustomerLastName,
CustomerFirstName, Phone, CourseNumber, and AmountPaid.

3.56 Write and run an SQL query to list all students registered in Adv Pastels
starting on October 1, 2017. Include, in this order, Course, CourseDate, Fee,
CustomerLastName, CustomerFirstName, and Phone.

3.57 Write and run an SQL query to list all students registered in Adv. Pastels starting on
October 1, 2017. Include, in this order, Course, CourseDate, CustomerLastName,
CustomerFirstName, Phone, Fee, and AmountPaid. Use a join using JOIN ON
syntax. Can this query be run using one or more subqueries? If not, why not?

The following exercises are intended for use with a DBMS other than Microsoft Access.
If you are using Microsoft Access, see the equivalent questions in the “Access Workbench
Exercises” that follow.

3.58 If you haven’t done so, create the WP database, tables, and relationships described
in this chapter, using the SQL DBMS of your choice. Be sure to populate the tables
with the data shown in Figure 3-2.

3.59 Using the SQL DBMS of your choice, create and run queries to answer the ques-
tions in exercise AW.3.1.

3.60 Using the SQL DBMS of your choice, complete steps A through E in exercise
AW.3.3, but exclude step F.

M03_KROE1533_08_SE_C03.indd 238 11/22/16 11:16 AM

Chapter 3 Structured Query Language 239

ACCESS WORKBENCH

Key Terms
Allow Zero Length field property
Decimal Places field property
Default Value field property
Field Size field property
Format field property

Indexed field property
parameterized query
Validation Rule field property
Yes (Duplicates OK)
Yes (No Duplicates)

Exercises
In the “Access Workbench Exercises” in Chapters 1 and 2, you created a database for
Wedgewood Pacific (WP) of Seattle, Washington. In this set of exercises, you’ll:

• Create and run queries against the database by using Access SQL.
• Create and run queries against the database by using Access QBE.
• Create tables and relationships by using Access SQL.
• Populate tables by using Access SQL.

AW.3.1 Using Access SQL, create and run queries to answer the questions that follow.
Save each query using the query name format SQLQuery-AWE-3-1-## where the ## sign is
replaced by the letter designator of the question. For example, the first query will be saved
as SQLQuery-AWE-3-1-A.

A. What projects are in the PROJECT table? Show all information for each project.

B. What are the ProjectID, ProjectName, StartDate, and EndDate values of projects
in the PROJECT table?

C. What projects in the PROJECT table started before August 1, 2017? Show all the
information for each project.

D. What projects in the PROJECT table have not been completed? Show all the in-
formation for each project.

E. Who are the employees assigned to each project? Show ProjectID,
EmployeeNumber, LastName, FirstName, and OfficePhone.

F. Who are the employees assigned to each project? Show ProjectID, ProjectName, and
Department. Show EmployeeNumber, LastName, FirstName, and OfficePhone.

G. Who are the employees assigned to each project? Show ProjectID, ProjectName,
Department, and DepartmentPhone. Show EmployeeNumber, LastName,
FirstName, and OfficePhone. Sort by ProjectID in ascending order.

H. Who are the employees assigned to projects run by the Sales and Marketing de-
partment? Show ProjectID, ProjectName, Department, and DepartmentPhone.
Show EmployeeNumber, LastName, FirstName, and OfficePhone. Sort by
ProjectID in ascending order.

I. How many projects are being run by the Sales and Marketing department? Be
sure to assign an appropriate column name to the computed results.

J. What is the total MaxHours of projects being run by the Sales and Marketing de-
partment? Be sure to assign an appropriate column name to the computed results.

(Continued)

M03_KROE1533_08_SE_C03.indd 239 11/22/16 11:16 AM

240 Part 1 Database Fundamentals

K. What is the average MaxHours of projects being run by the Sales and Marketing
department? Be sure to assign an appropriate column name to the computed
results.

L. How many projects are being run by each department? Be sure to display each
DepartmentName and to assign an appropriate column name to the computed
results.

AW.3.2 Using Access QBE, create and run new queries to answer the questions in exer-
cise AW.3.1. Save each query using the query name format QBEQuery-AWE-3-1-## where
the ## sign is replaced by the letter designator of the question. For example, the first query
will be saved as QBEQuery-AWE-3-1-A.
AW.3.3 WP has decided to keep track of computers used by the employees. In order to
do this, two new tables will be added to the database. The schema for these tables, as related
to the existing EMPLOYEE table, is (note that we are purposely excluding the recursive
relationship in EMPLOYEE at this time):

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Position,
Supervisor, OfficePhone, EmailAddress)

COMPUTER (SerialNumber, Make, Model, ProcessorType, ProcessorSpeed,
MainMemory, DiskSize)

COMPUTER_ASSIGNMENT (SerialNumber, EmployeeNumber, DateAssigned,
DateReassigned)

The referential integrity constraints are:

Serial Number in COMPUTER_ASSIGNMENT must exist in SerialNumber
in COMPUTER

EmployeeNumber in COMPUTER_ASSIGNMENT must exist in
EmployeeNumber in EMPLOYEE

EmployeeNumber is a surrogate key and never changes. Employee records are never delet-
ed from the database. SerialNumber is not a surrogate key because it is not generated by the
database. However, a computer’s SerialNumber never changes, and, therefore, there is no
need to cascade updates. When a computer is at its end of life, the record in COMPUTER
for that computer and all associated records in COMPUTER_ASSIGNMENT are deleted
from the database.

A. Figure 3-32 shows the column characteristics for the WP COMPUTER table.
Using the column characteristics, use Access SQL to create the COMPUTER
table and its associated constraints in the WP.accdb database. Are there any
table characteristics that cannot be created in SQL? If so, what are they? Use the
Access GUI to finish setting table characteristics, if necessary.

B. The data for the COMPUTER table are in Figure 3-33. Use Access SQL to enter
these data into your COMPUTER table.

C. Figure 3-34 shows the column characteristics for the WP COMPUTER_
ASSIGNMENT table. Using the column characteristics, use Access SQL to create
the COMPUTER_ASSIGNMENT table and the associated constraints in the
WP.accdb database. Are there any table or relationship settings or characteristics
that cannot be created in SQL? If so, what are they? Use the Access GUI to finish
setting table characteristics and relationship settings, if necessary.

D. The data for the COMPUTER_ASSIGNMENT table are in Figure 3-35. Use
Access SQL to enter these data into your COMPUTER_ASSIGNMENT table.

M03_KROE1533_08_SE_C03.indd 240 11/21/16 6:27 PM

Chapter 3 Structured Query Language 241

FIGURE 3-32

Database Column Characteristics for the WP COMPUTER Table

Column Name Type Key Required Remarks
SerialNumber Number Primary Key Yes Long Integer
Make Short Text (12) No Yes Must be “Dell” or “Gateway” or

“HP” or “Other”
Model Short Text (24) No Yes
ProcessorType Short Text (24) No No
ProcessorSpeed Number No Yes Double [3,2], Between 1.0 and 4.0
MainMemory Short Text (15) No Yes
DiskSize Short Text (15) No Yes

FIGURE 3-33

WP Database COMPUTER Table Data

Serial
Number

Make Model ProcessorType Processor
Speed

MainMemory DiskSize

9871234 HP ProDesk 600 G1 Intel i5-4690 3.50 16.0 GBytes 1.0 TBytes
9871235 HP ProDesk 600 G1 Intel i5-4690 3.50 16.0 GBytes 1.0 TBytes
9871236 HP ProDesk 600 G1 Intel i5-4690 3.50 16.0 GBytes 1.0 TBytes
9871237 HP ProDesk 600 G1 Intel i5-4690 3.50 16.0 GBytes 1.0 TBytes
9871238 HP ProDesk 600 G1 Intel i5-4690 3.50 16.0 GBytes 1.0 TBytes
9871239 HP ProDesk 600 G1 Intel i5-4690 3.50 16.0 GBytes 1.0 TBytes
9871240 HP ProDesk 600 G1 Intel i5-4690 3.50 16.0 GBytes 1.0 TBytes
9871241 HP ProDesk 600 G1 Intel i5-4690 3.50 16.0 GBytes 1.0 TBytes
9871242 HP ProDesk 600 G1 Intel i5-4690 3.50 16.0 GBytes 1.0 TBytes
9871243 HP ProDesk 600 G1 Intel i5-4690 3.50 16.0 GBytes 1.0 TBytes
6541001 Dell OptiPlex 7040 Intel i7-6700 3.40 32.0 GBytes 2.0 TBytes
6541002 Dell OptiPlex 7040 Intel i7-6700 3.40 32.0 GBytes 2.0 TBytes
6541003 Dell OptiPlex 7040 Intel i7-6700 3.40 32.0 GBytes 2.0 TBytes
6541004 Dell OptiPlex 7040 Intel i7-6700 3.40 32.0 GBytes 2.0 TBytes
6541005 Dell OptiPlex 7040 Intel i7-6700 3.40 32.0 GBytes 2.0 TBytes
6541006 Dell OptiPlex 7040 Intel i7-6700 3.40 32.0 GBytes 2.0 TBytes
6541007 Dell OptiPlex 7040 Intel i7-6700 3.40 32.0 GBytes 2.0 TBytes
6541008 Dell OptiPlex 7040 Intel i7-6700 3.40 32.0 GBytes 2.0 TBytes
6541009 Dell OptiPlex 7040 Intel i7-6700 3.40 32.0 GBytes 2.0 TBytes
6541010 Dell OptiPlex 7040 Intel i7-6700 3.40 32.0 GBytes 2.0 TBytes

(Continued)

E. Who is currently using which computer at WP? Create an appropriate SQL
query to answer this question. Show SerialNumber, Make, and Model. Show
EmployeeID, LastName, FirstName, Department, and OfficePhone. Sort first
by Department and then by employee LastName. Save this query using the query
naming rules in exercise AW.3.1.

F. Who is currently using which computer at WP? Create an appropriate QBE query
to answer this question. Show SerialNumber, Make, Model, ProcessorType, and
ProcessorSpeed. Show the EmployeeID, LastName, FirstName, Department,
and OfficePhone. Sort first by Department and then by employee LastName.
Save this query using the query naming rules in exercise AW.3.2.

M03_KROE1533_08_SE_C03.indd 241 11/21/16 6:27 PM

242 Part 1 Database Fundamentals

FIGURE 3-35

WP Database COMPUTER_ASSIGNMENT Table Data

SerialNumber EmployeeNumber DateAssigned DateReassigned
9871234 12 15-Sep-17 21-Oct-17
9871235 13 15-Sep-17 21-Oct-17
9871236 14 15-Sep-17 21-Oct-17
9871237 15 15-Sep-17 21-Oct-17
9871238 6 15-Sep-17 21-Oct-17
9871239 7 15-Sep-17 21-Oct-17
9871240 8 15-Sep-17 21-Oct-17
9871241 9 15-Sep-17 21-Oct-17
9871242 16 15-Sep-17 21-Oct-17
9871243 17 15-Sep-17 21-Oct-17
6541001 12 21-Oct-17
6541002 13 21-Oct-17
6541003 14 21-Oct-17
6541004 15 21-Oct-17
6541005 6 21-Oct-17
6541006 7 21-Oct-17
6541007 8 21-Oct-17
6541008 9 21-Oct-17
6541009 16 21-Oct-17
6541010 17 21-Oct-17
9871234 1 21-Oct-17
9871235 2 21-Oct-17
9S71236 3 21-Oct-17
9871237 4 21-Oct-17
9871238 5 21-Oct-17
9871239 10 21-Oct-17
9871240 11 21-Oct-17
9871241 18 21-Oct-17
9871242 19 21-Oct-17
9871243 20 21-Oct-17

HEATHER SWEENEY DESIGNS CASE QUESTIONS
Heather Sweeney is an interior designer who specializes in home kitchen design. She offers
a variety of seminars at home shows, kitchen and appliance stores, and other public loca-
tions. The seminars are free; she offers them as a way of building her customer base. She
earns revenue by selling books and videos that instruct people on kitchen design. She also
offers custom-design consulting services.

FIGURE 3-34

Database Column Characteristics for the WP COMPUTER_ASSIGNMENT Table

Column Name Type Key Required Remarks
SerialNumber Number Primary Key, Foreign Key Yes Long Integer
EmployeeNumber Number Primary Key, Foreign Key Yes Long Integer
DateAssigned Date/Time Primary Key Yes Medium Date
DateReassigned Date/Time No No Medium Date

M03_KROE1533_08_SE_C03.indd 242 11/21/16 6:27 PM

Chapter 3 Structured Query Language 243

After someone attends a seminar, Heather wants to leave no stone unturned in attempt-
ing to sell that person one of her products or services. She would therefore like to develop a
database to keep track of customers, the seminars they have attended, the contacts she has
made with them, and the purchases they have made. She wants to use this database to con-
tinue to contact her customers and offer them products and services, including via a Web
application that allows customers to create an account and purchase items online.

We use the task of designing a database for Heather Sweeney Designs (HSD) as an
example for our discussion of developing first the HSD data model in Chapter 4 (pages
280–288) and then the HSD database design in Chapter 5 (pages 348–345). Although you
will study the HSD database development in detail in these chapters, you do not need to
know that material to answer the following questions. Here we will take that final database
design for Heather Sweeney Designs (HSD) and actually implement it in a database using
the SQL techniques that you learned in this chapter.

FIGURE 3-36

The Heather Sweeney Designs Database Tables in Microsoft Access 2016

Some instructors and professors will follow the chapter order as we present it
in this book, whereas others prefer to cover Chapters 4 and 5 before teaching
the SQL techniques in this chapter. It is really a matter of personal preference
(although you may hear some strong arguments in favor of one approach or the
other), and these case questions are designed to be independent of the order in
which you learn SQL, data modeling, and database design.

BTW

For reference, the SQL statements shown here are built from the HSD database design
in Figure 5-27, the column specifications in Figure 5-26, and the referential integrity con-
straint specifications detailed in Figure 5-29.

Figure 3-36 shows the tables in the Heather Sweeney Designs database as they appear
in the Microsoft Access 2016 Relationships view. This figure illustrates the tables in the
HSD database and the relationships between them.

Access 2016, Windows 10, Microsoft Corporation.

M03_KROE1533_08_SE_C03.indd 243 11/21/16 6:27 PM

244 Part 1 Database Fundamentals

The SQL statements to create the Heather Sweeney Designs (HSD) database are shown
in Figure 3-37 in SQL Server syntax. The SQL statements to populate the HSD database
are shown in Figure 3-38, again in SQL Server syntax.

Write SQL statements and answer questions for this database as follows:

A. Create a database named HSD in your DBMS.

B. Write an SQL script based on Figure 3-37 to create the tables and relationships for the
HSD database. Save this script, and then execute the script to create the HSD tables.

FIGURE 3-37

SQL Statements to Create the HSD Database

CREATE TABLE CUSTOMER(
CustomerID Int NOT NULL IDENTITY (1, 1),
LastName Char(25) NOT NULL,
FirstName Char(25) NOT NULL,
EmailAddress VarChar(100) NOT NULL,
EncryptedPassword VarChar(50) NULL,
Phone Char(12) NOT NULL,
StreetAddress Char(35) NULL,
City Char(35) NULL DEFAULT 'Dallas',
[State] Char(2) NULL DEFAULT 'TX',
ZIP Char(10) NULL DEFAULT '75201',
CONSTRAINT CUSTOMER_PK PRIMARY KEY(CustomerID),
CONSTRAINT CUSTOMER_EMAIL UNIQUE(EmailAddress)
);

CREATE TABLE SEMINAR(
SeminarID Int NOT NULL IDENTITY (1, 1),
SeminarDate Date NOT NULL,
SeminarTime Time NOT NULL,
Location VarChar(100) NOT NULL,
SeminarTitle VarChar(100) NOT NULL,
CONSTRAINT SEMINAR_PK PRIMARY KEY(SeminarID)
);

CREATE TABLE SEMINAR_CUSTOMER(
SeminarID Int NOT NULL,
CustomerID Int NOT NULL,
CONSTRAINT S_C_PK PRIMARY KEY(SeminarID, CustomerID),
CONSTRAINT S_C_SEMINAR_FK FOREIGN KEY(SeminarID)

REFERENCES SEMINAR(SeminarID)
ON UPDATE NO ACTION
ON DELETE NO ACTION,

CONSTRAINT S_C_CUSTOMER_FK FOREIGN KEY(CustomerID)
REFERENCES CUSTOMER(CustomerID)

ON UPDATE NO ACTION
ON DELETE NO ACTION

);

M03_KROE1533_08_SE_C03.indd 244 11/21/16 6:27 PM

Chapter 3 Structured Query Language 245

CREATE TABLE CONTACT(
CustomerID Int NOT NULL,

);

ContactNumber Int NOT NULL,
ContactDate Date NOT NULL,
ContactType VarChar(30) NOT NULL,
SeminarID Int NULL,
CONSTRAINT CONTACT_PK PRIMARY KEY(CustomerID, ContactNumber),
CONSTRAINT CONTACT_ContactType

CHECK (ContactType IN ('Seminar',
'WebAccountCreation', 'WebPurchase',
'EmailAccountMessage', 'EmailSeminarMessage',
'EmailPurchaseMessage',
'EmailMessageExchange' 'FormLetterSeminar',,
'PhoneConversation')),

CONSTRAINT CONTACT_SEMINAR_FK FOREIGN KEY(SeminarID)
REFERENCES SEMINAR(SeminarID)

ON UPDATE NO ACTION
ON DELETE NO ACTION,

CONSTRAINT CONTACT_CUSTOMER_FK FOREIGN KEY(CustomerID)
REFERENCES CUSTOMER(CustomerID)

ON UPDATE NO ACTION
ON DELETE NO ACTION

CREATE TABLE PRODUCT(
ProductNumber Char(35) NOT NULL,
ProductType Char(24) NOT NULL,
ProductDescription VarChar(100) NOT NULL,
UnitPrice Numeric(9,2) NOT NULL,
QuantityOnHand Int NULL,
CONSTRAINT PRODUCT_PK PRIMARY KEY(ProductNumber),
CONSTRAINT PRODUCT_ProductType

CHECK (ProductType IN ('Video',
'Video Companion', 'Book'))

);

CREATE TABLE INVOICE(
InvoiceNumber Int NOT NULL IDENTITY (35000, 1),

InvoiceDate Date NOT NULL,
CustomerID Int NOT NULL,
PaymentType Char(25) NOT NULL DEFAULT 'Cash',
SubTotal Numeric(9,2) NULL,
Shipping Numeric(9,2) NULL,
Tax Numeric(9,2) NULL,
Total Numeric(9,2) NULL,
CONSTRAINT INVOICE_PK PRIMARY KEY (InvoiceNumber),
CONSTRAINT INVOICE_PaymentType

CHECK (PaymentType IN ('VISA',
'MasterCard', 'American Express',
'PayPal', 'Check', 'Cash')),

CONSTRAINT INVOICE_CUSTOMER_FK FOREIGN KEY(CustomerID)
REFERENCES CUSTOMER(CustomerID)

ON UPDATE NO ACTION
ON DELETE NO ACTION

);

(Continued)

FIGURE 3-37 Continued

M03_KROE1533_08_SE_C03.indd 245 11/21/16 6:27 PM

246 Part 1 Database Fundamentals

CREATE TABLE LINE_ITEM(
InvoiceNumber Int NOT NULL,
LineNumber Int NOT NULL,
ProductNumber Char(35) NOT NULL,
Quantity Int NOT NULL,
UnitPrice Numeric(9,2) NULL,
Total Numeric(9,2) NULL,
CONSTRAINT LINE_ITEM_PK PRIMARY KEY (InvoiceNumber, LineNumber),
CONSTRAINT L_I_INVOICE_FK FOREIGN KEY(InvoiceNumber)

REFERENCES INVOICE(InvoiceNumber)
ON UPDATE NO ACTION
ON DELETE CASCADE,

CONSTRAINT L_I_PRODUCT_FK FOREIGN KEY(ProductNumber)
REFERENCES PRODUCT (ProductNumber)

ON UPDATE CASCADE
ON DELETE NO ACTION

);

FIGURE 3-37 Continued

FIGURE 3-38

SQL Statements to Populate the HSD Database

/***** CUSTOMER DATA **/

INSERT INTO CUSTOMER VALUES(
'Jacobs', 'Nancy', 'Nancy.Jacobs@somewhere.com', 'nf46tG9E',
'817-871-8123', '1440 West Palm Drive', 'Fort Worth', 'TX', '76110');

INSERT INTO CUSTOMER VALUES(
'Jacobs', 'Chantel', 'Chantel.Jacobs@somewhere.com', 'b65TG03f',
'817-871-8234', '1550 East Palm Drive', 'Fort Worth', 'TX', '76112');

INSERT INTO CUSTOMER VALUES(
'Able', 'Ralph', 'Ralph.Able@somewhere.com', 'm56fGH08',
'210-281-7987', '123 Elm Street', 'San Antonio', 'TX', '78214');

INSERT INTO CUSTOMER VALUES(
'Baker', 'Susan', 'Susan.Baker@elsewhere.com', 'PC93fEk9',
'210-281-7876', '456 Oak Street', 'San Antonio', 'TX', '78216');

INSERT INTO CUSTOMER VALUES(
'Eagleton', 'Sam', 'Sam.Eagleton@elsewhere.com', 'bnvR44W8',
'210-281-7765', '789 Pine Street', 'San Antonio', 'TX', '78218');

INSERT INTO CUSTOMER VALUES(
'Foxtrot', 'Kathy', 'Kathy.Foxtrot@somewhere.com', 'aa8tY4GL',
'972-233-6234', '11023 Elm Street', 'Dallas', 'TX', '75220');

INSERT INTO CUSTOMER VALUES(
'George', 'Sally', 'Sally.George@somewhere.com', 'LK8G2tyF',
'972-233-6345', '12034 San Jacinto', 'Dallas', 'TX', '75223');

INSERT INTO CUSTOMER VALUES(
'Hullett', 'Shawn', 'Shawn.Hullett@elsewhere.com', 'bu78WW3t',
'972-233-6456', '13045 Flora', 'Dallas', 'TX', '75224');

INSERT INTO CUSTOMER VALUES(
'Pearson', 'Bobbi', 'Bobbi.Pearson@elsewhere.com', 'kq6N2O0p',
'512-974-3344', '43 West 23rd Street', 'Austin', 'TX', '78710');

INSERT INTO CUSTOMER VALUES(
'Ranger', 'Terry', 'Terry.Ranger@somewhere.com', 'bv3F9Qc4',
'512-974-4455', '56 East 18th Street', 'Austin', 'TX', '78712');

INSERT INTO CUSTOMER VALUES(
'Tyler', 'Jenny', 'Jenny.Tyler@somewhere.com', 'Yu4be77Z',
'972-233-6567', '14056 South Ervay Street', 'Dallas', 'TX', '75225');

INSERT INTO CUSTOMER VALUES(
'Wayne', 'Joan', 'Joan.Wayne@elsewhere.com', 'JW4TX6g',
'817-871-8245', '1660 South Aspen Drive', 'Fort Worth', 'TX', '76115');

C. Write an SQL script based on Figure 3-38 to insert the data for the HSD database.
Save this script, and then execute the script to populate the HSD tables.

Note: For your answers to parts D through O, you should create an SQL script to save
and store your SQL statements. You can use one script to contain all the necessary state-
ments. You can also include your answer to part P, but be sure to put it in comment marks
so that it is interpreted as a comment by the DBMS and cannot actually be run!

D. Write SQL statements to list all columns for all tables.

M03_KROE1533_08_SE_C03.indd 246 11/21/16 6:27 PM

Chapter 3 Structured Query Language 247

(Continued)

/***** CUSTOMER DATA **/

INSERT INTO CUSTOMER VALUES(
'Jacobs', 'Nancy', 'Nancy.Jacobs@somewhere.com', 'nf46tG9E',
'817-871-8123', '1440 West Palm Drive', 'Fort Worth', 'TX', '76110');

INSERT INTO CUSTOMER VALUES(
'Jacobs', 'Chantel', 'Chantel.Jacobs@somewhere.com', 'b65TG03f',
'817-871-8234', '1550 East Palm Drive', 'Fort Worth', 'TX', '76112');

INSERT INTO CUSTOMER VALUES(
'Able', 'Ralph', 'Ralph.Able@somewhere.com', 'm56fGH08',
'210-281-7987', '123 Elm Street', 'San Antonio', 'TX', '78214');

INSERT INTO CUSTOMER VALUES(
'Baker', 'Susan', 'Susan.Baker@elsewhere.com', 'PC93fEk9',
'210-281-7876', '456 Oak Street', 'San Antonio', 'TX', '78216');

INSERT INTO CUSTOMER VALUES(
'Eagleton', 'Sam', 'Sam.Eagleton@elsewhere.com', 'bnvR44W8',
'210-281-7765', '789 Pine Street', 'San Antonio', 'TX', '78218');

INSERT INTO CUSTOMER VALUES(
'Foxtrot', 'Kathy', 'Kathy.Foxtrot@somewhere.com', 'aa8tY4GL',
'972-233-6234', '11023 Elm Street', 'Dallas', 'TX', '75220');

INSERT INTO CUSTOMER VALUES(
'George', 'Sally', 'Sally.George@somewhere.com', 'LK8G2tyF',
'972-233-6345', '12034 San Jacinto', 'Dallas', 'TX', '75223');

INSERT INTO CUSTOMER VALUES(
'Hullett', 'Shawn', 'Shawn.Hullett@elsewhere.com', 'bu78WW3t',
'972-233-6456', '13045 Flora', 'Dallas', 'TX', '75224');

INSERT INTO CUSTOMER VALUES(
'Pearson', 'Bobbi', 'Bobbi.Pearson@elsewhere.com', 'kq6N2O0p',
'512-974-3344', '43 West 23rd Street', 'Austin', 'TX', '78710');

INSERT INTO CUSTOMER VALUES(
'Ranger', 'Terry', 'Terry.Ranger@somewhere.com', 'bv3F9Qc4',
'512-974-4455', '56 East 18th Street', 'Austin', 'TX', '78712');

INSERT INTO CUSTOMER VALUES(
'Tyler', 'Jenny', 'Jenny.Tyler@somewhere.com', 'Yu4be77Z',
'972-233-6567', '14056 South Ervay Street', 'Dallas', 'TX', '75225');

INSERT INTO CUSTOMER VALUES(
'Wayne', 'Joan', 'Joan.Wayne@elsewhere.com', 'JW4TX6g',
'817-871-8245', '1660 South Aspen Drive', 'Fort Worth', 'TX', '76115');

/***** SEMINAR **/

INSERT INTO SEMINAR VALUES(
'12-OCT-2016', '11:00 AM', 'San Antonio Convention Center',
'Kitchen on a Budget');

INSERT INTO SEMINAR VALUES(
'26-OCT-2016', '04:00 PM', 'Dallas Convention Center',
'Kitchen on a Big D Budget');

INSERT INTO SEMINAR VALUES(
'02-NOV-2016', '08:30 AM', 'Austin Convention Center',
'Kitchen on a Budget');

INSERT INTO SEMINAR VALUES(
'22-MAR-2017', '11:00 AM', 'Dallas Convention Center',
'Kitchen on a Big D Budget');

INSERT INTO SEMINAR VALUES(
'23-MAR-2017', '11:00 AM', 'Dallas Convention Center',
'Kitchen on a Big D Budget');

INSERT INTO SEMINAR VALUES(
'05-APR-2017', '08:30 AM', 'Austin Convention Center',
'Kitchen on a Budget');

/***** SEMINAR_CUSTOMER DATA **/

INSERT INTO SEMINAR_CUSTOMER VALUES(1, 1);
INSERT INTO SEMINAR_CUSTOMER VALUES(1, 2);
INSERT INTO SEMINAR_CUSTOMER VALUES(1, 3);
INSERT INTO SEMINAR_CUSTOMER VALUES(1, 4);
INSERT INTO SEMINAR_CUSTOMER VALUES(1, 5);
INSERT INTO SEMINAR_CUSTOMER VALUES(2, 6);
INSERT INTO SEMINAR_CUSTOMER VALUES(2, 7);
INSERT INTO SEMINAR_CUSTOMER VALUES(2, 8);
INSERT INTO SEMINAR_CUSTOMER VALUES(3, 9);
INSERT INTO SEMINAR_CUSTOMER VALUES(3, 10);
INSERT INTO SEMINAR_CUSTOMER VALUES(4, 6);
INSERT INTO SEMINAR_CUSTOMER VALUES(4, 7);
INSERT INTO SEMINAR_CUSTOMER VALUES(4, 11);
INSERT INTO SEMINAR_CUSTOMER VALUES(4, 12);

/***** CONTACT DATA ***/

INSERT INTO CONTACT VALUES(1, 1, '12-OCT-2016', 'Seminar', 1);
INSERT INTO CONTACT VALUES(2, 1, '12-OCT-2016', 'Seminar', 1);
INSERT INTO CONTACT VALUES(3, 1, '12-OCT-2016', 'Seminar', 1);
INSERT INTO CONTACT VALUES(4, 1, '12-OCT-2016', 'Seminar', 1);
INSERT INTO CONTACT VALUES(5, 1, '12-OCT-2016', 'Seminar', 1);

FIGURE 3-38 Continued

M03_KROE1533_08_SE_C03.indd 247 11/21/16 6:27 PM

248 Part 1 Database Fundamentals

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(1, 2, '15-OCT-2016', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(2, 2, '15-OCT-2016', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(3, 2, '15-OCT-2016', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(4, 2, '15-OCT-2016', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(5, 2, '15-OCT-2016', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(1, 3, '15-OCT-2016', 'FormLetterSeminar');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(2, 3, '15-OCT-2016', 'FormLetterSeminar');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(3, 3, '15-OCT-2016', 'FormLetterSeminar');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(4, 3, '15-OCT-2016', 'FormLetterSeminar');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(5, 3, '15-OCT-2016', 'FormLetterSeminar');

INSERT INTO CONTACT VALUES(6, 1, '26-OCT-2016', 'Seminar', 2);
INSERT INTO CONTACT VALUES(7, 1, '26-OCT-2016', 'Seminar', 2);
INSERT INTO CONTACT VALUES(8, 1, '26-OCT-2016', 'Seminar', 2);

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(6, 2, '30-OCT-2016', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(7, 2, '30-OCT-2016', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(8, 2, '30-OCT-2016', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(6, 3, '30-OCT-2016', 'FormLetterSeminar');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(7, 3, '30-OCT-2016', 'FormLetterSeminar');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(8, 3, '30-OCT-2016', 'FormLetterSeminar');

INSERT INTO CONTACT VALUES(9, 1, '02-NOV-2016', 'Seminar', 3);
INSERT INTO CONTACT VALUES(10, 1, '02-NOV-2016', 'Seminar', 3);

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(9, 2, '06-NOV-2016', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(10, 2, '06-NOV-2016', 'EmailSeminarMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(9, 3, '06-NOV-2016', 'FormLetterSeminar');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(10, 3, '06-NOV-2016', 'FormLetterSeminar');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(3, 4, '20-FEB-2017', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(3, 5, '20-FEB-2017', 'EmailAccountMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(6, 4, '22-FEB-2017', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(6, 5, '22-FEB-2017', 'EmailAccountMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(7, 4, '25-FEB-2017', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(7, 5, '25-FEB-2017', 'EmailAccountMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(8, 4, '07-MAR-2017', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(8, 5, '07-MAR-2017', 'EmailAccountMessage');

INSERT INTO CONTACT VALUES(6, 6, '22-MAR-2017', 'Seminar', 4);
INSERT INTO CONTACT VALUES(7, 6, '22-MAR-2017', 'Seminar', 4);
INSERT INTO CONTACT VALUES(11, 1, '22-MAR-2017', 'Seminar', 4);
INSERT INTO CONTACT VALUES(12, 1, '22-MAR-2017', 'Seminar', 4);

/***** PRODUCT DATA ***/

INSERT INTO PRODUCT VALUES(
'VK001', 'Video', 'Kitchen Remodeling Basics',14.95, 50);

INSERT INTO PRODUCT VALUES(
'VK002', 'Video', 'Advanced Kitchen Remodeling', 14.95, 35);

INSERT INTO PRODUCT VALUES(
'VK003', 'Video', 'Kitchen Remodeling Dallas Style', 19.95, 25);

FIGURE 3-38 Continued

M03_KROE1533_08_SE_C03.indd 248 11/21/16 6:27 PM

Chapter 3 Structured Query Language 249INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(3, 4, '20-FEB-2017', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(3, 5, '20-FEB-2017', 'EmailAccountMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(6, 4, '22-FEB-2017', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(6, 5, '22-FEB-2017', 'EmailAccountMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(7, 4, '25-FEB-2017', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(7, 5, '25-FEB-2017', 'EmailAccountMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(8, 4, '07-MAR-2017', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(8, 5, '07-MAR-2017', 'EmailAccountMessage');

INSERT INTO CONTACT VALUES(6, 6, '22-MAR-2017', 'Seminar', 4);
INSERT INTO CONTACT VALUES(7, 6, '22-MAR-2017', 'Seminar', 4);
INSERT INTO CONTACT VALUES(11, 1, '22-MAR-2017', 'Seminar', 4);
INSERT INTO CONTACT VALUES(12, 1, '22-MAR-2017', 'Seminar', 4);

/***** PRODUCT DATA ***/

INSERT INTO PRODUCT VALUES(
'VK001', 'Video', 'Kitchen Remodeling Basics',14.95, 50);

INSERT INTO PRODUCT VALUES(
'VK002', 'Video', 'Advanced Kitchen Remodeling', 14.95, 35);

INSERT INTO PRODUCT VALUES(
'VK003', 'Video', 'Kitchen Remodeling Dallas Style', 19.95, 25);

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(3, 4, '20-FEB-2017', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(3, 5, '20-FEB-2017', 'EmailAccountMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(6, 4, '22-FEB-2017', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(6, 5, '22-FEB-2017', 'EmailAccountMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(7, 4, '25-FEB-2017', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(7, 5, '25-FEB-2017', 'EmailAccountMessage');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(8, 4, '07-MAR-2017', 'WebAccountCreation');

INSERT INTO CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
VALUES(8, 5, '07-MAR-2017', 'EmailAccountMessage');

INSERT INTO CONTACT VALUES(6, 6, '22-MAR-2017', 'Seminar', 4);
INSERT INTO CONTACT VALUES(7, 6, '22-MAR-2017', 'Seminar', 4);
INSERT INTO CONTACT VALUES(11, 1, '22-MAR-2017', 'Seminar', 4);
INSERT INTO CONTACT VALUES(12, 1, '22-MAR-2017', 'Seminar', 4);

/***** PRODUCT DATA ***/

INSERT INTO PRODUCT VALUES(
'VK001', 'Video', 'Kitchen Remodeling Basics',14.95, 50);

INSERT INTO PRODUCT VALUES(
'VK002', 'Video', 'Advanced Kitchen Remodeling', 14.95, 35);

INSERT INTO PRODUCT VALUES(
'VK003', 'Video', 'Kitchen Remodeling Dallas Style', 19.95, 25);

INSERT INTO PRODUCT VALUES(
'VK004', 'Video', 'Heather Sweeney Seminar Live in Dallas on 25-OCT-15',
24.95, 20);

INSERT INTO PRODUCT VALUES(
'VB001', 'Video Companion', 'Kitchen Remodeling Basics', 7.99, 50);

INSERT INTO PRODUCT VALUES(
'VB002', 'Video Companion', 'Advanced Kitchen Remodeling I',7.99, 35);

INSERT INTO PRODUCT VALUES(
'VB003', 'Video Companion', 'Kitchen Remodeling Dallas Style', 9.99, 25);

INSERT INTO PRODUCT VALUES(
'BK001', 'Book', 'Kitchen Remodeling Basics For Everyone', 24.95, 75);

INSERT INTO PRODUCT VALUES(
'BK002', 'Book', 'Advanced Kitchen Remodeling For Everyone', 24.95, 75);

INSERT INTO PRODUCT VALUES(
'BK003', 'Book', 'Kitchen Remodeling Dallas Style For Everyone',
24.95, 75);

/***** INVOICE DATA **/

/***** Invoice 35000 **/
INSERT INTO INVOICE VALUES(

'15-Oct-16', 3, 'VISA', 22.94, 5.95, 1.31, 30.20);
INSERT INTO LINE_ITEM VALUES(35000, 1, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35000, 2, 'VB001', 1, 7.99, 7.99);

/***** Invoice 35001 **/
INSERT INTO INVOICE VALUES(

'25-Oct-16', 4, 'MasterCard', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35001, 1, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35001, 2, 'VB001', 1, 7.99, 7.99);
INSERT INTO LINE_ITEM VALUES(35001, 3, 'BK001', 1, 24.95, 24.95);

/***** Invoice 35002 **/
INSERT INTO INVOICE VALUES(

'20-Dec-16', 7, 'VISA', 24.95, 5.95, 1.42, 32.32);
INSERT INTO LINE_ITEM VALUES(35002, 1, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35003 **/
INSERT INTO INVOICE VALUES(

'25-Mar-17', 4, 'MasterCard', 64.85, 5.95, 3.70, 74.50);
INSERT INTO LINE_ITEM VALUES(35003, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35003, 2, 'BK002', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35003, 3, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35004 ***/
INSERT INTO INVOICE VALUES(

'27-Mar-17', 6, 'MasterCard', 94.79, 5.95, 5.40, 106.14);
INSERT INTO LINE_ITEM VALUES(35004, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35004, 2, 'BK002', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35004, 3, 'VK003', 1, 19.95, 19.95);
INSERT INTO LINE_ITEM VALUES(35004, 4, 'VB003', 1, 9.99, 9.99);
INSERT INTO LINE_ITEM VALUES(35004, 5, 'VK004', 1, 24.95, 24.95);

(Continued)

FIGURE 3-38 Continued

M03_KROE1533_08_SE_C03.indd 249 11/21/16 6:27 PM

250 Part 1 Database Fundamentals

/***** INVOICE DATA **/

/***** Invoice 35000 **/
INSERT INTO INVOICE VALUES(

'15-Oct-16', 3, 'VISA', 22.94, 5.95, 1.31, 30.20);
INSERT INTO LINE_ITEM VALUES(35000, 1, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35000, 2, 'VB001', 1, 7.99, 7.99);

/***** Invoice 35001 **/
INSERT INTO INVOICE VALUES(

'25-Oct-16', 4, 'MasterCard', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35001, 1, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35001, 2, 'VB001', 1, 7.99, 7.99);
INSERT INTO LINE_ITEM VALUES(35001, 3, 'BK001', 1, 24.95, 24.95);

/***** Invoice 35002 **/
INSERT INTO INVOICE VALUES(

'20-Dec-16', 7, 'VISA', 24.95, 5.95, 1.42, 32.32);
INSERT INTO LINE_ITEM VALUES(35002, 1, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35003 **/
INSERT INTO INVOICE VALUES(

'25-Mar-17', 4, 'MasterCard', 64.85, 5.95, 3.70, 74.50);
INSERT INTO LINE_ITEM VALUES(35003, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35003, 2, 'BK002', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35003, 3, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35004 ***/
INSERT INTO INVOICE VALUES(

'27-Mar-17', 6, 'MasterCard', 94.79, 5.95, 5.40, 106.14);
INSERT INTO LINE_ITEM VALUES(35004, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35004, 2, 'BK002', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35004, 3, 'VK003', 1, 19.95, 19.95);
INSERT INTO LINE_ITEM VALUES(35004, 4, 'VB003', 1, 9.99, 9.99);
INSERT INTO LINE_ITEM VALUES(35004, 5, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35005 ***/
INSERT INTO INVOICE VALUES(

'27-Mar-17', 7, 'MasterCard', 94.80, 5.95, 5.40, 106.15);
INSERT INTO LINE_ITEM VALUES(35005, 1, 'BK001', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35005, 2, 'BK002', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35005, 3, 'VK003', 1, 19.95, 19.95);
INSERT INTO LINE_ITEM VALUES(35005, 4, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35006 ***/
INSERT INTO INVOICE VALUES(

'31-Mar-17', 9, 'VISA', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35006, 1, 'BK001', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35006, 2, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35006, 3, 'VB001', 1, 7.99, 7.99);

/***** Invoice 35007 ***/
INSERT INTO INVOICE VALUES(

'03-Apr-17', 11, 'MasterCard', 109.78, 5.95, 6.26, 121.99);
INSERT INTO LINE_ITEM VALUES(35007, 1, 'VK003', 2, 19.95, 39.90);
INSERT INTO LINE_ITEM VALUES(35007, 2, 'VB003', 2, 9.99, 19.98);
INSERT INTO LINE_ITEM VALUES(35007, 3, 'VK004', 2, 24.95, 49.90);

/***** Invoice 35008 ***/
INSERT INTO INVOICE VALUES(

'08-Apr-17', 5, 'MasterCard', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35008, 1, 'BK001', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35008, 2, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35008, 3, 'VB001', 1, 7.99, 7.99);

/***** Invoice 35009 ***/
INSERT INTO INVOICE VALUES(

'08-Apr-17', 1, 'VISA', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35009, 1, 'BK001', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35009, 2, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35009, 3, 'VB001', 1, 7.99, 7.99);

/***** Invoice 35010 ***/
INSERT INTO INVOICE VALUES(

'23-Apr-17', 3, 'VISA', 24.95, 5.95, 1.42, 32.32);
INSERT INTO LINE_ITEM VALUES(35010, 1, 'BK001', 1, 24.95, 24.95);

/***** Invoice 35011 ***/
INSERT INTO INVOICE VALUES(

'07-May-17', 9, 'VISA', 22.94, 5.95, 1.31, 30.20);
INSERT INTO LINE_ITEM VALUES(35011, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35011, 2, 'VB002', 1, 7.99, 7.99);

/***** Invoice 35012 ***/
INSERT INTO INVOICE VALUES(

'21-May-17', 8, 'MasterCard', 54.89, 5.95, 3.13, 63.97);
INSERT INTO LINE_ITEM VALUES(35012, 1, 'VK003', 1, 19.95, 19.95);
INSERT INTO LINE_ITEM VALUES(35012, 2, 'VB003', 1, 9.99, 9.99);
INSERT INTO LINE_ITEM VALUES(35012, 3, 'VK004', 1, 24.95, 24.95);

FIGURE 3-38 Continued

M03_KROE1533_08_SE_C03.indd 250 11/21/16 6:27 PM

Chapter 3 Structured Query Language 251

/***** Invoice 35007 ***/
INSERT INTO INVOICE VALUES(

'03-Apr-17', 11, 'MasterCard', 109.78, 5.95, 6.26, 121.99);
INSERT INTO LINE_ITEM VALUES(35007, 1, 'VK003', 2, 19.95, 39.90);
INSERT INTO LINE_ITEM VALUES(35007, 2, 'VB003', 2, 9.99, 19.98);
INSERT INTO LINE_ITEM VALUES(35007, 3, 'VK004', 2, 24.95, 49.90);

/***** Invoice 35008 ***/
INSERT INTO INVOICE VALUES(

'08-Apr-17', 5, 'MasterCard', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35008, 1, 'BK001', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35008, 2, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35008, 3, 'VB001', 1, 7.99, 7.99);

/***** Invoice 35009 ***/
INSERT INTO INVOICE VALUES(

'08-Apr-17', 1, 'VISA', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35009, 1, 'BK001', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35009, 2, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35009, 3, 'VB001', 1, 7.99, 7.99);

/***** Invoice 35010 ***/
INSERT INTO INVOICE VALUES(

'23-Apr-17', 3, 'VISA', 24.95, 5.95, 1.42, 32.32);
INSERT INTO LINE_ITEM VALUES(35010, 1, 'BK001', 1, 24.95, 24.95);

/***** Invoice 35011 ***/
INSERT INTO INVOICE VALUES(

'07-May-17', 9, 'VISA', 22.94, 5.95, 1.31, 30.20);
INSERT INTO LINE_ITEM VALUES(35011, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35011, 2, 'VB002', 1, 7.99, 7.99);

/***** Invoice 35012 ***/
INSERT INTO INVOICE VALUES(

'21-May-17', 8, 'MasterCard', 54.89, 5.95, 3.13, 63.97);
INSERT INTO LINE_ITEM VALUES(35012, 1, 'VK003', 1, 19.95, 19.95);
INSERT INTO LINE_ITEM VALUES(35012, 2, 'VB003', 1, 9.99, 9.99);
INSERT INTO LINE_ITEM VALUES(35012, 3, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35013 ***/
INSERT INTO INVOICE VALUES(

'05-Jun-17', 3, 'VISA', 47.89, 5.95, 2.73, 56.57);
INSERT INTO LINE_ITEM VALUES(35013, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35013, 2, 'VB002', 1, 7.99, 7.99);
INSERT INTO LINE_ITEM VALUES(35013, 3, 'BK002', 1, 24.95, 24.95);

/***** Invoice 35014 ***/
INSERT INTO INVOICE VALUES(

'05-Jun-17', 11, 'MasterCard', 45.88, 5.95, 2.62, 54.45);
INSERT INTO LINE_ITEM VALUES(35014, 1, 'VK002', 2, 14.95, 29.90);
INSERT INTO LINE_ITEM VALUES(35014, 2, 'VB002', 2, 7.99, 15.98);

/***** Invoice 35015 ***/
INSERT INTO INVOICE VALUES(

'05-Jun-17', 12, 'MasterCard', 94.79, 5.95, 5.40, 106.14);
INSERT INTO LINE_ITEM VALUES(35015, 1, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35015, 2, 'BK002', 1, 24.95, 24.95);
INSERT INTO LINE_ITEM VALUES(35015, 3, 'VK003', 1, 19.95, 19.95);
INSERT INTO LINE_ITEM VALUES(35015, 4, 'VB003', 1, 9.99, 9.99);
INSERT INTO LINE_ITEM VALUES(35015, 5, 'VK004', 1, 24.95, 24.95);

/***** Invoice 35016 ***/
INSERT INTO INVOICE VALUES(

'05-Jun-17', 3, 'VISA', 45.88, 5.95, 2.62, 54.45);
INSERT INTO LINE_ITEM VALUES(35016, 1, 'VK001', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35016, 2, 'VB001', 1, 7.99, 7.99);
INSERT INTO LINE_ITEM VALUES(35016, 3, 'VK002', 1, 14.95, 14.95);
INSERT INTO LINE_ITEM VALUES(35016, 4, 'VB002', 1, 7.99, 7.99);

/***/

(Continued)

FIGURE 3-38 Continued

M03_KROE1533_08_SE_C03.indd 251 11/21/16 6:27 PM

252 Part 1 Database Fundamentals

E. Write an SQL statement to list LastName, FirstName, and Phone for all customers
who live in Dallas.

F. Write an SQL statement to list LastName, FirstName, and Phone for all customers
who live in Dallas and have a LastName that begins with the letter T.

G. Write an SQL statement to list the INVOICE.InvoiceNumber for sales that include
the Heather Sweeney Seminar Live in Dallas on 25-OCT-15 video. Use a subquery.
(Hint: The correct solution uses three tables in the query because the question asks for
INVOICE.InvoiceNumber. Otherwise, there is a possible solution with only two tables
in the query.)

H. Answer part G but use a join in JOIN ON syntax.
(Hint: The correct solution uses three tables in the query because the question asks for
INVOICE.InvoiceNumber. Otherwise, there is a possible solution with only two tables
in the query.)

I. Write an SQL statement to list the FirstName, LastName, and Phone of customers (list
each name only once) who have attended the Kitchen on a Big D Budget seminar.

J. Write an SQL statement to list the FirstName, LastName, Phone, ProductNumber,
and ProductDescription for customers who have purchased a video product (list each
combination of name and product only once.) Sort the results by LastName in de-
scending order, then by FirstName in descending order, and then by ProductNumber
in descending order. (Hint: Video products have a ProductNumber that starts with
VK.)

K. Write an SQL statement to show all Heather Sweeney Designs seminars and the
customers who attended them. The output from this statement should include any
seminars that do not have any customers shown as attending them. The SQL statement
output should list SeminarID, SeminarDate, Location, SeminarTitle, CustomerID,
LastName, and FirstName. (Hint: Use JOIN ON syntax.)

L. Write an SQL statement to show all customers and the products that they have pur-
chased. The output from this statement should include any products that have not
been purchased by any customer. The SQL statement output should list CustomerID,
LastName, FirstName, InvoiceNumber, ProductNumber, ProductType, and
ProductDescription. (Hint: Use JOIN ON syntax.)

M. Write an SQL statement to show the sum of Subtotal (this is the money earned
by HSD on products sold exclusive of shipping costs and taxes) for INVOICE as
SumOfSubTotal.

N. Write an SQL statement to show the average of Subtotal (this is the money earned
by HSD on products sold exclusive of shipping costs and taxes) for INVOICE as
AverageOfSubTotal.

O. Write an SQL statement to show both the sum and the average of Subtotal (this is the
money earned by HSD on products sold exclusive of shipping costs and taxes) for
INVOICE as SumOfSubTotal and AverageOfSubTotal respectively.

P. Write an SQL statement to modify PRODUCT UnitPrice for ProductNumber VK004
to $34.95 instead of the current UnitPrice of $24.95.

Q. Write an SQL statement to undo the UnitPrice modification in part P.

R. Do not run your answer to the following question in your actual database! Write the few-
est number of DELETE statements possible to remove all the data in your database
but leave the table structures intact.

M03_KROE1533_08_SE_C03.indd 252 11/21/16 6:27 PM

Chapter 3 Structured Query Language 253

OwnerID OwnerName OwnerEmailAddress OwnerType
1 Mary Jones Mary.Jones@somewhere.com Individual

2 DT Enterprises DTE@dte.com Corporation

3 Sam Douglas Sam.Douglas@somewhere.com Individual

4 UNY Enterprises UNYE@unye.com Corporation

5 Doug Samuels Doug.Samuels@somewhere.com Individual

 GARDEN GLORY PROJECT QUESTIONS

Assume that Garden Glory designs a database with the following tables:

OWNER (OwnerID, OwnerName, OwnerEmailAddress, OwnerType)
OWNED_PROPERTY (PropertyID, PropertyName, PropertyType, Street, City,

State, Zip, OwnerID)
GG_SERVICE (ServiceID, ServiceDescription, CostPerHour);
EMPLOYEE (EmployeeID, LastName, FirstName, CellPhone, ExperienceLevel)
PROPERTY_SERVICE (PropertyServiceID, PropertyID, ServiceID, ServiceDate,

EmployeeID, HoursWorked)

The referential integrity constraints are:

OwnerID in OWNED_PROPERTY must exist in OwnerID in OWNER
PropertyID in PROPERTY_SERVICE must exist in PropertyID in OWNED_

PROPERTY
ServiceID in PROPERTY_SERVICE must exist in ServiceID in GG_SERVICE
EmployeeID in PROPERTY_SERVICE must exist in EmployeeID in EMPLOYEE

Assume that OwnerID in OWNER, PropertyID in PROPERTY, ServiceID in GG_SER-
VICE, EmployeeID in EMPLOYEE, and PropertyServiceID in PROPERTY_SERVICE
are surrogate keys with values as follows:

OwnerID Start at 1 Increment by 1
PropertyID Start at 1 Increment by 1
ServiceID Start at 1 Increment by 1
EmployeeID Start at 1 Increment by 1
PropertyServiceID Start at 1 Increment by 1

Sample data are shown in Figures 3-39, 3-40, 3-41, 3-42, and 3-43. OwnerType is either In-
dividual or Corporation. PropertyType is one of Office, Apartments, or Private Residence.
ExperienceLevel is one of Junior, Senior, or Master. These tables, referential integrity con-
straints, and data are used as the basis for the SQL statements you will create in the exer-
cises that follow. If possible, run these statements in an actual DBMS, as appropriate, to
obtain your results. Name your database GARDEN_GLORY.

Use data types consistent with the DBMS you are using. If you are not using an actual
DBMS, consistently represent data types using either the SQL Server, Oracle Database, or
MySQL data types shown in Figure 3-5. For each SQL statement you write, show the results
based on your data.

FIGURE 3-39

Sample Data for Garden Glory OWNER Table

M03_KROE1533_08_SE_C03.indd 253 11/21/16 6:27 PM

mailto:Mary.Jones@somewhere.com
mailto:DTE@dte.com
mailto:Sam.Douglas@somewhere.com
mailto:UNYE@unye.com
mailto:Doug.Samuels@somewhere.com

254 Part 1 Database Fundamentals

PropertyID PropertyName PropertyType Street City State ZIP OwnerID
1 Eastlake Building Office 123 Eastlake Seattle WA 98119 2

2 Elm St Apts Apartments 4 East Elm Lynwood WA 98223 1

3 Jefferson Hill Office 42 West 7th St Bellevue WA 98007 2

4 Lake View Apts Apartments 1265 32nd Avenue Redmond WA 98052 3

5 Kodak Heights Apts Apartments 65 32nd Avenue Redmond WA 98052 4

6 Jones House Private Residence 1456 48th St Bellevue WA 98007 1

7 Douglas House Private Residence 1567 51st St Bellevue WA 98007 3

8 Samuels House Private Residence 567 151st St Redmond WA 98052 5

FIGURE 3-40

Sample Data for Garden Glory OWNED_PROPERTY Table

EmployeeID LastName FirstName CellPhone ExperienceLevel
1 Smith Sam 206-254-1234 Master

2 Evanston John 206-254-2345 Senior

3 Murray Dale 206-254-3456 Junior

4 Murphy Jerry 585-545-8765 Master

5 Fontaine Joan 206-254-4567 Senior

FIGURE 3-41

Sample Data for Garden Glory EMPLOYEE Table

ServiceID ServiceDescription CostPerHour
1 Mow Lawn 25.00

2 Plant Annuals 25.00

3 Weed Garden 30.00

4 Trim Hedge 45.00

5 Prune Small Tree 60.00

6 Trim Medium Tree 100.00

7 Trim Large Tree 125.00

FIGURE 3-42

Sample Data for Garden Glory GG_SERVICE Table

Write SQL statements and answer questions for this database as follows:

A. Write CREATE TABLE statements for each of these tables.

B. Write foreign key constraints for the relationships in each of these tables. Make your
own assumptions regarding cascading updates and deletions and justify those assump-
tions. (Hint: You can combine the SQL for your answers to parts A and B.)

M03_KROE1533_08_SE_C03.indd 254 11/21/16 6:27 PM

Chapter 3 Structured Query Language 255

C. Write SQL statements to insert the data into each of the five Garden Glory database
tables. Assume that any surrogate key value will be supplied by the DBMS. Use the
data in Figures 3-39, 3-40, 3-41, 3-42, and 3-43.

D. Write SQL statements to list all columns for all tables.

E. Write an SQL statement to list LastName, FirstName, and CellPhone for all employees
having an experience level of Master.

F. Write an SQL statement to list LastName, FirstName, and CellPhone for all employees
having an experience level of Master and FirstName that begins with the letter J.

G. Write an SQL statement to list LastName, FirstName, and CellPhone of employees
who have worked on a property in Seattle. Use a subquery.

H. Answer question G but use a join using JOIN ON syntax.

I. Write an SQL statement to list LastName, FirstName, and CellPhone of employees
who have worked on a property owned by a corporation. Use a subquery.

J. Answer question I but use a join using JOIN ON syntax.

K. Write an SQL statement to show the LastName, FirstName, CellPhone, and sum of
hours worked for each employee.

L. Write an SQL statement to show the sum of hours worked for each ExperienceLevel of
EMPLOYEE. Sort the results by ExperienceLevel, in descending order.

M. Write an SQL statement to show the sum of HoursWorked for each type of OWNER
but exclude services of employees who have ExperienceLevel of Junior.

N. Write an SQL statement to modify all EMPLOYEE rows with ExperienceLevel of
Master to SuperMaster.

PropertyServiceID PropertyID ServiceID ServiceDate EmployeeID HoursWorked
1 1 2 2017-05-05 1 4.50

2 3 2 2017-05-08 3 4.50

3 2 1 2017-05-08 2 2.75

4 6 1 2017-05-10 5 2.50

5 5 4 2017-05-12 4 7.50

6 8 1 2017-05-15 4 2.75

7 4 4 2017-05-19 1 1.00

8 7 1 2017-05-21 2 2.50

9 6 3 2017-06-03 5 2.50

10 5 7 2017-06-08 4 10.50

11 8 3 2017-06-12 4 2.75

12 4 5 2017-06-15 1 5.00

13 7 3 2017-06-19 2 4.00

FIGURE 3-43

Sample Data for Garden Glory PROPERTY_SERVICE Table

M03_KROE1533_08_SE_C03.indd 255 11/21/16 6:27 PM

256 Part 1 Database Fundamentals

O. Write SQL statements to switch the values of ExperienceLevel so that all rows cur-
rently having the value Junior will have the value Senior and all rows currently having
the value Senior will have the value Junior.

P. Given your assumptions about cascading deletions in your answer to part B, write the
fewest number of DELETE statements possible to remove all the data in your database
but leave the table structures intact. Do not run these statements if you are using an
actual database!

 JAMES RIVER JEWELRY PROJECT QUESTIONS

The James River Jewelry project questions are available in online Appendix D, which can
be download from the textbook’s Web site: www.pearsonhighered.com/kroenke.

 THE QUEEN ANNE CURIOSITY SHOP PROJECT QUESTIONS

Assume that The Queen Anne Curiosity Shop designs a database with the following tables:

CUSTOMER (CustomerID, LastName, FirstName, Address, City, State, ZIP, Phone,
EmailAddress)

EMPLOYEE (EmployeeID, LastName, FirstName, Phone, EmailAddress)
VENDOR (VendorID, CompanyName, ContactLastName, ContactFirstName,

Address, City, State, ZIP, Phone, Fax, EmailAddress)
ITEM (ItemID, ItemDescription, PurchaseDate, ItemCost, ItemPrice, VendorID)
SALE (SaleID, CustomerID, EmployeeID, SaleDate, SubTotal, Tax, Total)
SALE_ITEM (SaleID, SaleItemID, ItemID, ItemPrice)

The referential integrity constraints are:

VendorID in ITEM must exist in VendorID in VENDOR
CustomerID in SALE must exist in CustomerID in CUSTOMER
EmployeeID in SALE must exist in EmployeeID in EMPLOYEE
SaleID in SALE_ITEM must exist in SaleID in SALE
ItemID in SALE_ITEM must exist in ItemID in ITEM

Assume that CustomerID of CUSTOMER, EmployeeID of EMPLOYEE, VendorID of
VENDORE, ItemID of ITEM, and SaleID of SALE are all surrogate keys with values as
follows:

CustomerID Start at 1 Increment by 1
EmployeeID Start at 1 Increment by 1
VendorID Start at 1 Increment by 1
ItemID Start at 1 Increment by 1
SaleID Start at 1 Increment by 1

SaleItemID of SALE_ITEM is not a true surrogate key, but rather a counter that starts at
1 and increments by 1 for each SaleID in SALE. This number will require special handling
in the database, needing to be either manually inserted or to have specific program logic
written to insert the correct number. In this text we will simply insert the number manually.

A vendor may be an individual or a company. If the vendor is an individual, the Compa-
nyName field is left blank, while the ContactLastName and ContactFirstName fields must

M03_KROE1533_08_SE_C03.indd 256 11/21/16 6:27 PM

http://www.pearsonhighered.com/kroenke

Chapter 3 Structured Query Language 257

have data values. If the vendor is a company, the company name is recorded in the Com-
panyName field, and the name of the primary contact at the company is recorded in the
ContactLastName and ContactFirstName fields.

Sample data are shown in Figures 3-44, 3-45, 3-46, 3-47, 3-48, and 3-49. These tables,
referential integrity constraints, and data are used as the basis for the SQL statements you
will create in the exercises that follow. If possible, run these statements in an actual DBMS,
as appropriate, to obtain your results. Name your database QACS.

Use data types consistent with the DBMS you are using. If you are not using an actual
DBMS, consistently represent data types using either the SQL Server, Oracle Database, or
MySQL data types shown in Figure 3-5. For each SQL statement you write, show the results
based on your data.

Write SQL statements and answer questions for this database as follows:

A. Write SQL CREATE TABLE statements for each of these tables.

B. Write foreign key constraints for the relationships in each of these tables. Make your
own assumptions regarding cascading deletions and justify those assumptions. (Hint:
You can combine the SQL for your answers to parts A and B.)

C. Write SQL statements to insert the data into each of these tables. Assume that all sur-
rogate key column values will be supplied by the DBMS. Use the data in Figures 3-44,
3-45, 3-46, 3-47, 3-48, and 3-49.

D. Write SQL statements to list all columns for all tables.

E. Write an SQL statement to list ItemID and ItemDescription for all items that cost
$1000 or more.

F. Write an SQL statement to list ItemID and ItemDescription for all items that cost
$1000 or more and were purchased from a vendor whose CompanyName starts with
the letters New.

G. Write an SQL statement to list LastName, FirstName, and Phone of the customer
who made the purchase with SaleID 1. Use a subquery.

H. Answer part G but use a join using JOIN ON syntax.

I. Write an SQL statement to list LastName, FirstName, and Phone of the customers
who made the purchases with SaleIDs 1, 2, and 3. Use a subquery.

J. Answer part I but use a join using JOIN ON syntax.

K. Write an SQL statement to list LastName, FirstName, and Phone of customers who
have made at least one purchase with SubTotal greater than $500. Use a subquery.

L. Answer part K but use a join using JOIN ON syntax.

M. Write an SQL statement to list LastName, FirstName, and Phone of customers who
have purchased an item that has an ItemPrice of $500 or more. Use a subquery.

N. Answer part M but use a join using JOIN ON syntax.

O. Write an SQL statement to list LastName, FirstName, and Phone of customers who
have purchased an item that was supplied by a vendor with a CompanyName that be-
gins with the letter L. Use a subquery.

P. Answer part O but use a join using JOIN ON syntax.

M03_KROE1533_08_SE_C03.indd 257 11/21/16 6:27 PM

258 Part 1 Database Fundamentals

C
us

to
m

er
ID

La

st
N

am
e

Fi
rs

tN
am

e
A

dd
re

ss

C
ity

St

at
e

ZI
P

Ph
on

e
E

m
ai

lA
dd

re
ss

1
Sh

ir
e

R
ob

er
t

62
25

 E
va

ns
to

n
A

ve
 N

Se

at
tle

W

A

98
10

3
20

6-
52

4-
24

33

R
ob

er
t.S

hi
re

@
so

m
ew

he
re

.c
om

2
G

oo
dy

ea
r

K
at

he
ri

ne

73
35

 1
1t

h
A

ve
 N

E

Se
at

tle

W
A

98

10
5

20
6-

52
4-

35
44

K

at
he

ri
ne

.G
oo

dy
ea

r@
so

m
ew

he
re

.c
om

3
B

an
cr

of
t

C
hr

is

12
60

5
N

E
 6

th
 S

tr
ee

t
B

el
le

vu
e

W
A

98

00
5

42
5-

63
5-

97
88

C

hr
is

.B
an

cr
of

t@
so

m
ew

he
re

.c
om

4
G

ri
ffi

th

Jo
hn

33

5
A

lo
ha

 S
tr

ee
t

Se
at

tle

W
A

98

10
9

20
6-

52
4-

46
55

Jo

hn
.G

ri
ffi

th
@

so
m

ew
he

re
.c

om

5
T

ie
m

ey

D
or

is

14
51

0
N

E
 4

th
 S

tr
ee

t
B

el
le

vu
e

W
A

98

00
5

42
5-

63
5-

86
77

D

or
is

.T
ie

m
ey

@
so

m
ew

he
re

.c
om

6
A

nd
er

so
n

D
on

na

14
10

 H
ill

cr
es

t P
ar

kw
ay

M

t.
V

em
on

W

A

98
27

3
36

0-
53

8-
75

66

D
on

na
.A

nd
er

so
n@

el
se

w
he

re
.c

om

7
Sv

an
e

Ja
ck

32

11
 4

2n
d

St
re

et

Se
at

tle

W
A

98

11
5

20
6-

52
4-

57
66

Ja

ck
.S

va
ne

@
so

m
ew

he
re

.c
om

8
W

al
sh

D

en
es

ha

67
12

 2
4t

h
A

ve
nu

e
N

E

R
ed

m
on

d
W

A

98
05

3
42

5-
63

5-
75

66

D
en

es
ha

.W
al

sh
@

so
m

ew
he

re
.c

om

9
E

nq
ui

st

C
ra

ig

53
4

15
th

 S
tr

ee
t

B
el

lin
gh

am

W
A

98

22
5

36
0-

53
8-

64
55

C

ra
ig

.E
nq

ui
st

@
el

se
w

he
re

.c
om

10

A
nd

er
so

n
R

os
e

68
23

 1
7t

h
A

ve
 N

E

Se
at

tle

W
A

98

10
5

20
6-

52
4-

68
77

R

os
e.

A
nd

er
so

n@
el

se
w

he
re

.c
om

FI
GU

RE
 3

-4
4

Sa
m

pl
e

Sa
m

pl
e

Da
ta

 fo
r t

he
 Q

AC
S

Da
ta

ba
se

 C
US

TO
M

ER
 T

ab
le

M03_KROE1533_08_SE_C03.indd 258 11/21/16 6:27 PM

mailto:Robert.Shire@somewhere.com
mailto:Katherine.Goodyear@somewhere.com
mailto:Chris.Bancroft@somewhere.com
mailto:John.Griffith@somewhere.com
mailto:Doris.Tiemey@somewhere.com
mailto:Donna.Anderson@elsewhere.com
mailto:Jack.Svane@somewhere.com
mailto:Denesha.Walsh@somewhere.com
mailto:Craig.Enquist@elsewhere.com
mailto:Rose.Anderson@elsewhere.com

Chapter 3 Structured Query Language 259

EmployeeID LastName FirstName Phone EmailAddress
1 Stuart Anne 206-527-0010 Anne.Stuart@QACS.com

2 Stuart George 206-527-0011 George.Stuart@QACS.com

3 Stuart Mary 206-527-0012 Mary.Stuart@QACS.com

4 Orange William 206-527-0013 William.Orange@QACS.com

5 Griffith John 206-527-0014 John.Griffith@QACS.com

FIGURE 3-45

Sample Data for the QACS Database EMPLOYEE Table

Q. Write an SQL statement to show the sum of SubTotal for each customer. List
CustomerID, LastName, FirstName, Phone, and the calculated result. Name the sum
of SubTotal as SumOfSubTotal and sort the results by CustomerID, in descending
order.

R. Write an SQL statement to modify the vendor with CompanyName of Linens and
Things to Linens and Other Stuff.

S. Write SQL statements to switch the values of vendor CompanyName so that all rows
currently having the value Linens and Things will have the value Lamps and Lighting
and all rows currently having the value Lamps and Lighting will have the value Linens
and Things.

T. Given your assumptions about cascading deletions in your answer to part B, write the
fewest number of DELETE statements possible to remove all the data in your data-
base but leave the table structures intact. Do not run these statements if you are using
an actual database!

U. Chapter 2 discussed multivalued dependencies (pages 96-98) and the associated
multivalue, multicolumn problem and how to resolve it (pages 114-118). Does the
VENDOR table have the multivalue, multicolumn problem? If so, use the discussion
on pages 114-118 as the basis for solving it for the QACS database. Create a new table
named PHONE_NUMBER, link it to the VENDOR table, populate the PHONE_
NUMBER table, and finally alter the VENDOR table to remove any unneeded col-
umns. Hint: Read the additional discussion of the SQL ALTER TABLE statement in
Appendix E, “Advanced SQL.”

M03_KROE1533_08_SE_C03.indd 259 11/21/16 6:27 PM

mailto:Anne.Stuart@QACS.com
mailto:George.Stuart@QACS.com
mailto:Mary.Stuart@QACS.com
mailto:William.Orange@QACS.com
mailto:John.Griffith@QACS.com

260 Part 1 Database Fundamentals

Ve
nd

or
ID

C

om
pa

ny
N

am
e

C
on

ta
ct

La
st

N
am

e
C

on
ta

ct
Fi

rs
tN

am
e

A
dd

re
ss

C

ity

St
at

e
ZI

P
Ph

on
e

Fa
x

E
m

ai
lA

dd
re

ss

1
L

in
en

s
an

d
T

hi
ng

s
H

un
tin

gt
on

A

nn
e

15
15

 N
W

 M
ar

ke
t

St
re

et

Se
at

tle

W
A

98

10
7

20
6-

32
5-

67
55

20

6-
32

9-
96

75

L
A

T
@

bu
si

ne
ss

.c
om

2
E

ur
op

ea
n

Sp
ec

ia
lti

es

Ta
de

m
a

K
en

61

23
 1

5t
h

A
ve

nu
e

N
W

Se

at
tle

W

A

98
10

7
20

6-
32

5-
78

66

20
6-

32
9-

97
86

E

S@
bu

si
ne

ss
.c

om

3
L

am
ps

 a
nd

L

ig
ht

in
g

Sw
an

so
n

Sa
lly

50

6
P

ro
sp

ec
t

St
re

et

Se
at

tle

W
A

98

10
9

20
6-

32
5-

89
77

20

6-
32

9-
98

97

L
A

L
@

bu
si

ne
ss

.c
om

4
N

U
L

L

L
ee

A

nd
re

w

11
02

 3
rd

 S
tr

ee
t

K
ir

kl
an

d
W

A

98
03

3
42

5-
74

6-
54

33

N
U

L
L

A

nd
re

w
.L

ee
@

so
m

ew
he

re
.c

om

5
N

U
L

L

H
am

is
on

D

en
is

e
53

3
10

th
 A

ve
nu

e
K

ir
kl

an
d

W
A

98

03
3

42
5-

74
6-

43
22

N

U
L

L

D
en

is
e.

H
am

is
on

@
so

m
ew

he
re

.c
om

6
N

ew
 Y

or
k

B
ro

ke
ra

ge

Sm
ith

M

ar
k

62
1

R
oy

 S
tr

ee
t

Se
at

tle

W
A

98

10
9

20
6-

32
5-

90
88

20

6-
32

9-
99

08

N
Y

B
@

bu
si

ne
ss

.c
om

7
N

U
L

L

W
al

sh

D
en

es
ha

67

12
 2

4t
h

A
ve

nu
e

N
E

R

ed
m

on
d

W
A

98

05
3

42
5-

63
5-

75
66

N

U
L

L

D
en

es
ha

.W
al

sh
@

so
m

ew
he

re
.c

om

8
N

U
L

L

B
an

cr
of

t
C

hr
is

12

60
5

N
E

 6
th

St

re
et

B

el
le

vu
e

W
A

98

00
5

42
5-

63
5-

97
88

42

5-
63

9-
99

78

C
hr

is
.B

an
cr

of
t@

so
m

ew
he

re
.c

om

9
Sp

ec
ia

lty
 A

nt
iq

ue
s

N
el

so
n

F
re

d
25

12
 L

uc
ky

St

re
et

Sa

n
F

ra
nc

is
co

C

A

94
11

0
41

5-
42

2-
21

21

41
5-

42
3-

52
12

SA

@
bu

si
ne

ss
.c

om

10

G
en

er
al

 A
nt

iq
ue

s
G

am
er

P

at
ty

25

15
 L

uc
ky

St

re
et

Sa

n
F

ra
nc

is
co

C

A

94
11

0
41

5-
42

2-
32

32

41
5-

42
9-

93
23

G

A
@

bu
si

ne
ss

.c
om

FI
GU

RE
 3

-4
6

Sa
m

pl
e

Da
ta

 fo
r t

he
 Q

AC
S

Da
ta

ba
se

 V
EN

DO
R

Ta
bl

e

M03_KROE1533_08_SE_C03.indd 260 11/21/16 6:27 PM

mailto:LAT@business.com
mailto:ES@business.com
mailto:LAL@business.com
mailto:Andrew.Lee@somewhere.com
mailto:Denise.Hamison@somewhere.com
mailto:NYB@business.com
mailto:Denesha.Walsh@somewhere.com
mailto:Chris.Bancroft@somewhere.com
mailto:SA@business.com
mailto:GA@business.com

Chapter 3 Structured Query Language 261

ItemID ItemDescription PurchaseDate ItemCost ItemPrice VendorID
1 Antique Desk 2016-11-07 $1,800.00 $3,000.00 2

2 Antique Desk Chair 2016-11-10 $300.00 $500.00 4

3 Dining Table Linens 2016-11-14 $600.00 $1,000.00 1

4 Candles 2016-11-14 $30.00 $50.00 1

5 Candles 2016-11-14 $27.00 $45.00 1

6 Desk Lamp 2016-11-14 $150.00 $250.00 3

7 Dining Table Linens 2016-11-14 $450.00 $750.00 1

8 Book Shelf 2016-11-21 $150.00 $250.00 5

9 Antique Chair 2016-11-21 $750.00 $1,250.00 6

10 Antique Chair 2016-11-21 $1,050.00 $1,750.00 6

11 Antique Candle Holders 2016-11-28 $210.00 $350.00 2

12 Antique Desk 2017-01-05 $1,920.00 $3,200.00 2

13 Antique Desk 2017-01-05 $2,100.00 $3,500.00 2

14 Antique Desk Chair 2017-01-06 $285.00 $475.00 9

15 Antique Desk Chair 2017-01-06 $339.00 $565.00 9

16 Desk Lamp 2017-01-06 $150.00 $250.00 10

17 Desk Lamp 2017-01-06 $150.00 $250.00 10

18 Desk Lamp 2017-01-06 $144.00 $240.00 3

19 Antique Dining Table 2017-01-10 $3,000.00 $5,000.00 7

20 Antique Sideboard 2017-01-11 $2,700.00 $4,500.00 8

21 Dining Table Chairs 2017-01-11 $5,100.00 $8,500.00 9

22 Dining Table Linens 2017-01-12 $450.00 $750.00 1

23 Dining Table Linens 2017-01-12 $480.00 $800.00 1

24 Candles 2017-01-17 $30.00 $50.00 1

25 Candles 2017-01-17 $36.00 $60.00 1

FIGURE 3-47

Sample Data for the QACS Database ITEM Table

M03_KROE1533_08_SE_C03.indd 261 11/21/16 6:27 PM

262 Part 1 Database Fundamentals

SaleID CustomerID EmployeeID SaleDate SubTotal Tax Total
1 1 1 2016-12-14 $3,500.00 $290.50 $3,790.50

2 2 1 2016-12-15 $1,000.00 $83.00 $1,083.00

3 3 1 2016-12-15 $50.00 $4.15 $54.15

4 4 3 2016-12-23 $45.00 $3.74 $48.74

5 1 5 2017-01-05 $250.00 $20.75 $270.75

6 5 5 2017-01-10 $750.00 $62.25 $812.25

7 6 4 2017-01-12 $250.00 $20.75 $270.75

8 2 1 2017-01-15 $3,000.00 $249.00 $3,249.00

9 5 5 2017-01-25 $350.00 $29.05 $379.05

10 7 1 2017-02-04 $14,250.00 $1,182.75 $15,432.75

11 8 5 2017-02-04 $250.00 $20.75 $270.75

12 5 4 2017-02-07 $50.00 $4.15 $54.15

13 9 2 2017-02-07 $4,500.00 $373.50 $4,873.50

14 10 3 2017-02-11 $3,675.00 $305.03 $3,980.03

15 2 2 2017-02-11 $800.00 $66.40 $866.40

SaleID SaleItemID ItemID ItemPrice
1 1 1 $3,000.00

1 2 2 $500.00

2 1 3 $1,000.00

3 1 4 $50.00

4 1 5 $45.00

5 1 6 $250.00

6 1 7 $750.00

7 1 8 $250.00

8 1 9 $1,250.00

8 2 10 $1,750.00

9 1 11 $350.00

10 1 19 $5,000.00

10 2 21 $8,500.00

10 3 22 $750.00

11 1 17 $250.00

12 1 24 $50.00

13 1 20 $4,500.00

14 1 12 $3,200.00

14 2 14 $475.00

15 1 23 $800.00

FIGURE 3-48

Sample Data for the QACS Database SALE Table

FIGURE 3-49

Sample Data for the
QACS Database SALE_
ITEM Table

M03_KROE1533_08_SE_C03.indd 262 11/21/16 6:27 PM

263

I n Part 1, you were introduced to the fundamental concepts and tech-

niques of relational database management. In Chapter 1, you learned

that databases consist of related tables, and you learned the major

components of a database system. Chapter 2 introduced you to the relational

model, and you learned the basic ideas of functional dependencies and nor-

malization. In Chapter 3, you learned how to use SQL statements to create

and process a database.

All the material you have learned so far gives you a background for under-

standing the nature of database management and the required basic tools and

techniques. However, you do not yet know how to apply all this technology to

solve a business problem. Imagine, for example, that you walk into a small

business—for example, a bookshop—and are asked to build a database to

support a frequent buyer program. How would you proceed? So far, we have

assumed that the database design already exists. How would you go about

creating the design of the database?

The next two chapters address this important topic. We begin Chapter 4

with an overview of the database design process and then we describe data

modeling: a technique for representing database requirements. In Chapter 5,

you will learn how to transform a data model into a relational database design.

After that database design is complete, it will be implemented in a DBMS us-

ing the SQL statements we previously discussed in Chapter 3. You will learn

about managing and using the implemented database in Part 3.

2
PART

Database Design

M04_KROE1533_08_SE_P02.indd 263 11/21/16 6:35 PM

264 Part 2 Database Design

Note the dual use of the term database design. We speak of database

design as a process—the database design process—that results in a final

product—the database design—that is the plan for actually building the data-

base in a DBMS. The overall topic of Part 2 is database design as a process,

and the topic of Chapter 5 is the database design as the final plan for the

database.

M04_KROE1533_08_SE_P02.indd 264 11/21/16 6:35 PM

265

T he database development process, as we describe it here, is a sub-
set of the systems development life cycle (SDLC) process. The SDLC
is described in detail in Appendix F, “Getting Started in Systems

Analysis and Design,” and if you want more information about how the da-
tabase development process fits into the creation of the information systems
used in businesses today, you should refer to Appendix F. It is important
to understand and remember that database development is usually done
as a part of an information system or application development process and
that the database itself is only one component of the information system or
application. Users use the entire information system or application—they do
not just use the database by itself!

For our purposes, the database development process consists of three
major stages: requirements analysis, component design, and implementation.
During the requirements analysis stage (also referred to as the requirements
stage), system users are interviewed and sample forms, reports, queries, and
descriptions of update activities are obtained. These system requirements
are used to create a data model as part of the requirements analysis stage. A
data model is a representation of the content, relationships, and constraints
on the data needed to support the system requirements. Often, prototypes,
or working demonstrations of selected portions of the future system, are
created during the requirements phase. Such prototypes are used to obtain
feedback from the system users.

During the component design stage (also referred to as the system design
stage and the design stage), the data model is transformed into a database
design. Such a design consists of tables, relationships, and constraints.

 ■ Learn the basic stages of database development

 ■ Understand the purpose and role of a data model

 ■ Know the principal components of the E-R data model

 ■ Understand how to interpret traditional E-R diagrams

 ■ Understand how to interpret the Information Engineering
(IE) model’s Crow’s Foot E-R diagrams

 ■ Learn to construct E-R diagrams

 ■ Know how to represent 1:1, 1:N, N:M, and binary
relationships with the E-R model

 ■ Understand two types of weak entities and know how to
use them

 ■ Understand nonidentifying and identifying relationships
and know how to use them

 ■ Know how to represent subtype entities with the E-R
model

 ■ Know how to represent recursive relationships with the
E-R model

 ■ Learn how to create an E-R diagram from source
documents

CHAPTER OBJECTIVES

4CHAPTE
R

Data Modeling and the
Entity-Relationship Model

M04_KROE1533_08_SE_C04.indd 265 11/21/16 6:31 PM

266 Part 2 Database Design

The design includes the table names and the names of all table columns.
The design also includes the data types and properties of the columns as
well as a description of primary and foreign keys. Data constraints consist
of limits on data values (for example, part numbers are seven-digit numbers
starting with the number 3), referential integrity constraints, and business
rules. An example of a business rule for a manufacturing company is that
every purchased part will have a quotation from at least two suppliers.

The last stage of database development is the implementation stage.
During this stage, the database is constructed in the DBMS and populated
with data; queries, forms, and reports are created; application programs are
written; and all these are tested. Finally, during this stage users are trained,
documentation is written, and the new system is put into use.

In this chapter, we will briefly discuss the requirements analysis stage
and then focus on the data modeling component of requirements analysis.
In Chapter 5, we will see how a data model is converted to a database de-
sign in the component design stage. The database itself would be built and
populated with data in a DBMS during the implementation step of the SDLC,
and this would be done using SQL as we previously described in Chapter 3.

The first step in the database development process is user requirements analysis. Sources of
user requirements are listed in Figure 4-1. As described in Appendix F, and as you will
learn in your systems development class, the general practice is to identify the users of the
new information system and to interview them. During the interviews, examples of existing
forms, reports, queries, application programs and Web sites are obtained. In addition, the
users are asked about the need for changes to existing forms, reports, and queries and also
about the need for new forms, reports, and queries.

Use cases are descriptions of the ways users will employ the features and functions of
the new information system. A use case consists of a description of the roles users will play
when utilizing the new system, together with descriptions of activities’ scenarios. Inputs pro-
vided to the system and outputs generated by the system are defined. Sometimes dozens of
such use cases are necessary. Use cases provide sources of requirements and also can be used
to validate the data model, the database design, and the actual database implementation.

In addition to these requirements, you need to document characteristics of data items.
For each data item in a form, report, or query, the team needs to determine its data type,
properties, and limits on values.

Finally, during the process of establishing requirements, system developers need to
document business rules that constrain actions on database activity. Generally, such rules

REQUIREMENTS ANALYSIS

User interviews
Forms
Reports
Queries
Application programs
Web sites
Use cases
Business rules

FIGURE 4-1

Sources of
Requirements for a
Database Application

M04_KROE1533_08_SE_C04.indd 266 11/21/16 6:31 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 267

arise from business policy and practice. For example, the following business rules could
pertain to an academic database:

• Students must declare a major before enrolling in any class.
• Graduate classes can be taken by juniors or seniors with a grade point average

of 3.70 or greater.
• No adviser may have more than 25 advisees.
• Students may declare one or two majors but no more.

Books on systems analysis and design often identify three design stages:

• Conceptual design (conceptual schema)
• Logical design (logical schema)
• Physical design (physical schema)

The data model we are discussing is equivalent to the conceptual design as
defined in these books.

BTW

1Peter P. Chen, “The Entity-Relationship Model-Towards a Unified View of Data,” ACM Transactions on
Database Systems (March 1976): 9–36. For information on Peter Chen, see http://en.wikipedia.org/wiki/
Peter_Chen, and for a copy of the article, see http://www2.cis.gsu.edu/dmcdonald/cis8040/Chen.pdf.

The system requirements described in the preceding section, although necessary and im-
portant as a first step, are not sufficient for designing a database. In order to be useful as
the basis for a database design, these requirements must be transformed into a data model.
When you write application programs, program logic must first be documented in flow-
charts or object diagrams—when you create a database, data requirements must first be
documented in a data model.

THE ENTITY-RELATIONSHIP DATA MODEL

A number of different techniques can be used to create data models. By far the most
popular is the entity-relationship model, first published by Peter Chen1 in 1976. Chen’s
basic model has since been extended to create the extended entity-relationship (E-R)
model. Today, when we say E-R model, we mean the extended E-R model, and we use it in
this text.

Several versions of the E-R model are in use today. We begin with the traditional E-R
model. Later in the chapter, after the basic principles of E-R models have been examined,
we will look at and use another version of the E-R model.

The most important elements of the E-R model are entities, attributes, identifiers, and
relationships. We now consider each of these in turn.

Entities
An entity is something that users want to track. Examples of entities are CUSTOMER John
Doe, PURCHASE 12345, PRODUCT A4200, SALES_ORDER 1000, SALESPERSON
John Smith, and SHIPMENT 123400. Entities of a given type are grouped into an entity
class. Thus, the EMPLOYEE entity class is the collection of all EMPLOYEE entities. In
this text, entity classes are shown in capital letters.

M04_KROE1533_08_SE_C04.indd 267 11/21/16 6:32 PM

http://en.wikipedia.org/wiki/Peter_Chen
http://www2.cis.gsu.edu/dmcdonald/cis8040/Chen.pdf
http://en.wikipedia.org/wiki/Peter_Chen

268 Part 2 Database Design

An entity instance of an entity class is the occurrence of a particular entity, such as
CUSTOMER 12345. It is important to understand the differences between an entity class and
an entity instance. An entity class is a collection of entities and provides the structure of the
entities in that class. There are usually many instances of an entity in an entity class. For ex-
ample, the class CUSTOMER has many instances—one for each customer represented in the
database. The ITEM entity class and two of its instances are shown in Figure 4-2.

When developing a data model, the developers analyze the forms, reports, queries,
application programs, Web pages, and other system requirements. Entities are usually the
subject of one or more forms or reports, or they are a major section in one or more forms or
reports. For example, a form named Product Data Entry Form indicates the likelihood of
an entity class called PRODUCT. Similarly, a report named Customer Purchase Summary
indicates that most likely the business has CUSTOMER and PURCHASE entities.

Attributes
Entities have attributes, which describe the entity’s characteristics. Examples of attributes
include EmployeeName, DateOfHire, and JobSkillCode. In this text, attributes are printed
in a combination of uppercase and lowercase letters. The E-R model assumes that all in-
stances of a given entity class have the same attributes. For example, in Figure 4-2 the ITEM
entity has the attributes ItemNumber, Description, Cost, ListPrice, and QuantityOnHand.

An attribute has a data type (character, numeric, date, currency, and the like) and
properties that are determined from the requirements. Properties specify whether the at-
tribute is required, whether it has a default value, whether its value has limits, and any
other constraint.

Identifiers
Entity instances have identifiers, which are attributes that name, or identify, entity in-
stances. For example, the ITEM entity in Figure 4-2 uses ItemNumber as an identifier.
Similarly, EMPLOYEE instances could be identified by SocialSecurityNumber, by
EmployeeNumber, or by EmployeeName. EMPLOYEE instances are not likely to be iden-
tified by attributes such as Salary or DateOfHire because these attributes normally are not
used in a naming role as they are typically not unique. CUSTOMER instances could be
identified by CustomerNumber or CustomerName, and SALES_ORDER instances could
be identified by OrderNumber.

ITEM

ItemNumber
Description
Cost
ListPrice
QuantityOnHand

Entity Class

1100
100 amp panel
$127.50
$170.00
14

2000
Door handle set
$52.50
$39.38
0

Two Entity Instances

FIGURE 4-2

The ITEM Entity and
Two Entity Instances

M04_KROE1533_08_SE_C04.indd 268 11/21/16 6:32 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 269

The identifier of an entity instance consists of one or more of the entity’s attributes.
Identifiers that consist of two or more attributes are called composite identifiers. Examples
are (AreaCode, LocalNumber), (ProjectName, TaskName), and (FirstName, LastName,
PhoneExtension).

An identifier may be either unique or nonunique. The value of a unique identifier identi-
fies one, and only one, entity instance. In contrast, the value of a nonunique identifier identi-
fies a set of instances. EmployeeNumber is normally a unique identifier, but EmployeeName
is most likely a nonunique identifier (for example, more than one John Smith might be em-
ployed by the company). An entity class must have at least one unique identifier.

As shown in Figure 4-3, entities can be portrayed at three levels of detail in a data
model. Sometimes an entity and all its attributes are displayed. In such cases, the unique
identifier of the entity is shown at the top of the entity and a horizontal line is drawn after

As you can tell from these definitions, identifiers are similar to keys in the
relational model but with two important differences. First, an identifier is a
logical concept: It is one or more attributes that users think of as indicating an
occurrence (instance) of the entity. Such identifiers might or might not be rep-
resented as keys in the database design. Second, primary and candidate keys
must be unique, whereas identifiers might or might not be unique.

BTW

the identifier, as shown in Figure 4-3(a). In a large data model, so much detail can make the
data model diagrams unwieldy. In those cases, the entity diagram is abbreviated by showing
just the identifier, as in Figure 4-3(b), or by showing just the name of the entity in a rectan-
gle, as shown in Figure 4-3(c).

Relationships
Entities can be associated with one another in relationships. The E-R model contains rela-
tionship classes and relationship instances. Relationship classes are associations among
entity classes, and relationship instances are associations among entity instances. In the
original specification of the E-R model, relationships could have attributes. In modern
practice, that feature is not used, and only entities have attributes.

A relationship class can involve many entity classes. The number of entity classes in the
relationship is known as the degree of the relationship. In Figure 4-4(a), the SUPPLIER-
QUOTATION relationship is of degree two because it involves two entity classes:
SUPPLIER and QUOTATION. The PARENT relationship in Figure 4-4(b) is of degree
three because it involves three entity classes: MOTHER, FATHER, and CHILD.

Description
Cost
ListPrice
QuantityOnHand

ItemNumber

ITEM ITEM

ItemNumber ITEM

(a) Entity with All
Attributes

(b) Entity with
Identifier
Attribute
Only

(c) Entity with No
Attributes

FIGURE 4-3

Levels of Entity
Attribute Display

M04_KROE1533_08_SE_C04.indd 269 11/21/16 6:32 PM

270 Part 2 Database Design

Relationships of degree two, which are the most common, are called binary relationships.
Similarly, relationships of degree three are called ternary relationships.

QUOTATION

SUPPLIER MOTHER FATHER

CHILD

SUPPLIER-
QUOTATION PARENT

(a) Binary Relationship (b) Ternary Relationship

FIGURE 4-4

Example Relationships

You may be wondering what the difference is between an entity and a table.
They may seem like different terms for the same thing. The principal difference
between an entity and a table is that you can express a relationship between
entities without using foreign keys. In the E-R model, you can specify a rela-
tionship just by drawing a line connecting two entities. Because you are doing
logical data modeling and not physical database design, you need not worry
about primary and foreign keys, referential integrity constraints, and the like.

This characteristic makes entities easier to work with than tables, espe-
cially early in a project when entities and relationships are fluid and uncertain.
You can show relationships between entities before you even know what the
identifiers are. For example, you can say that a DEPARTMENT relates to many
EMPLOYEEs before you know any of the attributes of either EMPLOYEE or
DEPARTMENT. This characteristic allows you to work from the general to the
specific. When you are creating a data model, you first identify the entities,
then you think about the relationships, and finally you determine the attributes.

BTW

Three Types of Binary Relationships Figure 4-5 shows the three types of binary
relationships:

• The one-to-one (1:1) relationship
• The one-to-many (1:N) relationship
• The many-to-many (N:M) relationship

In a 1:1 relationship, a single entity instance of one type is related to a single entity in-
stance of another type. In Figure 4-5(a), the LOCKER-ASSIGNMENT relationship associ-
ates a single EMPLOYEE with a single LOCKER. According to this diagram, no employee
has more than one locker assigned, and no locker is assigned to more than one employee.

Figure 4-5(b) shows a 1:N binary relationship. In this relationship, which is called the
ITEM-QUOTE relationship, a single instance of ITEM relates to many instances of
QUOTATION. According to this sketch, an item has many quotations, but a quotation has
only one item.

M04_KROE1533_08_SE_C04.indd 270 11/21/16 6:32 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 271

Think of the diamond as representing the relationship. The position of the 1 is nearest
the line connecting ITEM, and the position of the N is nearest the line connecting
QUOTATION. Thus, one ITEM can have many QUOTATIONS. Notice that if the 1 and
the N were reversed and the relationship were written N:1, then one QUOTATION would
have many ITEMS.

When discussing 1:N relationships, the terms parent and child are sometimes used.
The parent entity is the entity on the one side of the relationship and the child entity is the
entity on the many side of the relationship. Thus, in the 1:N relationship between ITEM
and QUOTATION, ITEM is the parent and QUOTATION is the child.

Figure 4-5(c) shows an N:M binary relationship. This relationship is named ITEM-
SOURCE, and it relates instances of ITEM to instances of SUPPLIER. In this case, an item
can be supplied by many suppliers, and a supplier can supply many items.

Maximum Cardinality The three types of binary relationships are named and classi-
fied by their cardinality, which is a word that means count. In each of the relationships in
Figure 4-5, the numbers inside the relationship diamond show the maximum number of
entity instances that can occur on each side of the relationship. These numbers are called
the relationship’s maximum cardinality, which is the maximum number of entity instances
that can participate in a relationship instance.

The ITEM-QUOTE relationship in Figure 4-5(b), for example, is said to have a maxi-
mum cardinality of 1:N. However, the cardinalities are not restricted to the values shown
here. It is possible, for example, for the maximum cardinality to be other than 1 and N. The
relationship between BASKETBALL-TEAM and PLAYER, for example, could be 1:5,
indicating that a basketball team has at most five players.

Minimum Cardinality Relationships also have a minimum cardinality, which is the
minimum number of entity instances that must participate in a relationship instance. Mini-
mum cardinality can be shown in several different ways. One way, illustrated in Figure 4-6,
is to place a hash mark across the relationship line to indicate that every instance of the other
entity in the relationship must be related to at least one of these entities, and to place an oval
across the relationship line to indicate that an instance of the other entity in the relationship
need not be related to any of these entities.

Accordingly, Figure 4-6 shows that an ITEM must have a relationship with at least one
SUPPLIER but that a SUPPLIER is not required to have a relationship with an ITEM. The
complete relationship restrictions are that an ITEM has a minimum cardinality of zero and

N:MITEM SUPPLIER

ITEM-SOURCE

1:NITEM QUOTATION

ITEM-QUOTE

1:1EMPLOYEE LOCKER

LOCKER-ASSIGNMENT

(a) One-to-One Relationship

(b) One-to-Many Relationship

(c) Many-to-Many Relationship

FIGURE 4-5

Three Types of Binary
Relationships

M04_KROE1533_08_SE_C04.indd 271 11/21/16 6:32 PM

272 Part 2 Database Design

a maximum cardinality of many—a SUPPLIER can supply many items, but does not have
to supply any. A SUPPLIER has a minimum cardinality of one and a maximum cardinality
of many—an ITEM may be available from many suppliers, and must be associated with at
least one supplier.

If the minimum cardinality is zero, the entity’s participation in the relationship is optional.
If the minimum cardinality is one, the entity’s participation in the relationship is mandatory.

N:MITEM SUPPLIER

ITEM-SOURCEFIGURE 4-6

A Relationship with
Minimum Cardinalities

Interpreting minimum cardinalities in diagrams such as Figure 4-6 is often one
of the most difficult parts of E-R models. It is very easy to become confused
about which entity is optional and which is required (mandatory). An easy way
to clarify this situation is to imagine that you are standing in the diamond, on
the relationship line, and looking toward one of the entities. If you see an oval
in that direction, then that entity is optional (has a minimum cardinality of
zero). If you see a hash mark, then that entity is required (has a minimum car-
dinality of one). Thus, in Figure 4-6, if you stand on the diamond and look to-
ward SUPPLIER, you see a hash mark. This means that SUPPLIER is required
in the relationship (every ITEM must have a SUPPLIER).

BTW

The sketches in Figures 4-5 and 4-6 are called entity-relationship (E-R) diagrams. Such
diagrams are standardized but only loosely. According to this standard, entity classes are
shown using rectangles, relationships are shown using diamonds, the maximum cardinality
of the relationship is shown inside the diamond, and the minimum cardinality is shown by
the oval or hash marks next to the entity. The name of the entity is shown inside the rect-
angle, and the name of the relationship is shown near the diamond. You will see examples
of such E-R diagrams, and it is important for you to be able to interpret them.

ENTITY-RELATIONSHIP DIAGRAMS

Relationships like those in Figures 4-5 and 4-6 are sometimes called HAS-A
relationships. This term is used because each entity instance has a relationship
to a second entity instance. An employee has a badge, and a badge has an
employee. If the maximum cardinality is greater than one, then each entity has
a set of other entities. An employee has a set of skills, for example, and a skill
has a set of employees who have that skill.

BTW

Variations of the E-R Model
This original notation is seldom used today. Instead, a number of different versions of the
E-R model are in use, and they use different symbols.

M04_KROE1533_08_SE_C04.indd 272 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 273

At least three different versions of the E-R model are currently in use. One of them,
called Information Engineering (IE), was developed by James Martin in 1990. This model
uses “crow’s feet” to show the many side of a relationship, and it is sometimes called the IE
Crow’s Foot model. It is easy to understand, and we will use it in this text.

Other significant variations include the IDEF1X version and the Unified Modeling
Language (UML) version of the E-R model.2 In 1993, the National Institute of Standards
and Technology announced that the Integrated Definition 1, Extended (IDEF1X)3 ver-
sion of the E-R model would be a national standard. This standard incorporates the basic
ideas of the E-R model but uses different graphical symbols that, unfortunately, make it
difficult to understand and use. Still, it is a national standard used in government work,
and therefore it may be important to you. To add further complication, an object-oriented
development methodology called the Unified Modeling Language (UML) adopted the
E-R model but introduced its own symbols while putting an object-oriented programming
spin on it. UML has begun to be widely used among object-oriented programming (OOP)
practitioners, and you may encounter UML notation in systems development courses.

In addition to differences due to different versions of the E-R model, differences also
arise due to software products. For example, two products that both implement the IE
Crow’s Foot model may do so in different ways. Thus, when creating a data model diagram,
you need to know not just the version of the E-R model you are using but also the idiosyn-
crasies of the data modeling product you use.

The IE Crow’s Foot E-R Model
Figure 4-7 shows the same N:M optional-to-mandatory relationship in two different models.
Figure 4-7(a) shows the original E-R model version. Figure 4-7(b) shows the IE Crow’s Foot
model using common IE Crow’s Foot symbols. Notice that the line representing the relation-
ship is drawn as a dashed line. (The reason for this is explained later in this chapter.) Notice
the crow’s foot symbol used to show the many side of the relationship. The IE Crow’s Foot
model uses the notation shown in Figure 4-8 to indicate relationship cardinality.

In the IE Crow’s Foot model, the symbol closest to the entity shows the maximum car-
dinality, and the other symbol shows the minimum cardinality. A hash mark indicates one
(for maximum cardinality) or mandatory (for minimum cardinality), a circle indicates op-
tional (for minimum cardinality), and the crow’s foot indicates many (for maximum

DEPARTMENT 1:N EMPLOYEE

(a) Original E-R Model Version

DEPARTMENT EMPLOYEE

Minimum
cardinality (O-M)

Maximum
cardinality (1:N)

(b) Crow’s Foot Version

FIGURE 4-7

Two Versions of a 1:N
O-M Relationship

2For more information on these models, see David M. Kroenke and David J. Auer, Database Processing:
Fundamentals, Design, and Implementation, 14th ed. (Upper Saddle River, NJ: Prentice Hall, 2016),
Appendix C (IDEF1X) and Appendix D (UML).
3National Institute of Standards and Technology, Integrated Definition for Information Modeling (IDEF1X).
Federal Information Processing Standards Publication 184, 1993.

M04_KROE1533_08_SE_C04.indd 273 11/21/16 6:33 PM

274 Part 2 Database Design

cardinality). Thus, the diagram in Figure 4-7(b) shows that a DEPARTMENT has one or
more EMPLOYEEs (the symbol shows many and mandatory), and an EMPLOYEE be-
longs to zero or one DEPARTMENT (the symbol shows one and optional).

A 1:1 relationship would be drawn in a similar manner in IE Crow’s Foot notation, but
the ends of the line connecting the entities would both be similar to the connection shown
for the one side of the 1:N relationship in Figure 4-7(b).

Figure 4-9 shows the same N:M optional-to-mandatory relationship in two different
models. According to the original E-R model diagram shown in Figure 4-9(a), an
EMPLOYEE must have a SKILL and may have several. At the same time, although a

Symbol Meaning

Mandatory—One

Mandatory—Many

Optional—One

Optional—Many

Numeric Meaning

Exactly one

One or more

Zero or one

Zero or more

FIGURE 4-8

Crow’s Foot Notation

EMPLOYEE N:M SKILL

(a) Original E-R Model Version

EMPLOYEE SKILL

Minimum
cardinality (O-M)

Maximum
cardinality (N:M)

(b) Crow’s Foot Version

FIGURE 4-9

Two Versions of a N:M
O-M Relationship

M04_KROE1533_08_SE_C04.indd 274 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 275

particular SKILL may or may not be held by any EMPLOYEE, a SKILL may also be held
by several EMPLOYEES. The IE Crow’s Foot version in Figure 4-9(b) shows the N:M
cardinalities using the notation in Figure 4-8. The crow’s foot symbols again indicate the
maximum cardinalities for the relationship.

Throughout the rest of this text, we use the IE Crow’s Foot model for E-R diagrams.
There is no completely standard set of symbols for the IE Crow’s Foot notation, but we use
the symbols and notation described in this chapter. You can obtain various modeling prod-
ucts that will produce IE Crow’s Foot models, and they are easily understood and related
to the original E-R model. However, those products may use the oval, hash mark, crow’s
foot, and other symbols in slightly differently ways.

You can try a number of modeling products, each with its own idiosyncrasies.
First, ERwin, Inc. produces the ERwin Data Modeler, a commercial data model-
ing product (available in several editions) that handles both data modeling and
database design tasks. You can download the ERwin Data Modeler Community
Edition, a free, basic version from the ERwin Web site. You can use ERwin to
produce either IE Crow’s Foot or IDEF1X diagrams. Second, You can also try
ER-Assistant, which is free and downloadable from Software Informer. Third,
Microsoft Visio Professional 2016 is also a possibility. A trial version is available
from the Microsoft Web site. For more information on working with Microsoft Visio
2016, see Appendix G, “Getting Started with Microsoft Visio 2016.” Finally,
Oracle is continuing development of the MySQL Workbench, which is both the
GUI utility for the MySQL database and a database design tool. The MySQL
Workbench is downloadable at the MySQL developer Web site (http://dev.mysql.
com). (Note: If you are using a Windows operating system, you should install
the MySQL Workbench using the MySQL Installer for Windows available at the
MySQL developer Web site http://dev.mysql.com). Although MySQL Workbench
is better for database designs than data models, it is a very useful tool, and the
database designs it produces can be used with any DBMS, not just MySQL.
For more information on working with the MySQL Workbench, see Appendix C,
“Getting Started with MySQL 5.7 Community Server.” These are just a few of the
many data modeling products available.

BTW

Weak Entities
The E-R model defines a special type of entity called a weak entity. A weak entity is an en-
tity that cannot exist in a database unless another type of entity also exists in that database.
An entity that is not weak is called a strong entity.

ID-Dependent Entities
The E-R model includes a special type of weak entity called an ID-dependent entity. With
this type of entity, the identifier of the entity includes the identifier of another entity.
Consider the entities BUILDING and APARTMENT, shown in Figure 4-10(a).

As you would expect, the identifier of BUILDING is a single attribute, in this case
BuildingName. The identifier of APARTMENT, however, is not the single attribute
ApartmentNumber but rather the composite identifier (BuildingName, ApartmentNumber).
This happens because logically and physically an APARTMENT simply cannot exist unless
a BUILDING exists for that APARTMENT to be part of. Whenever this type of situation

M04_KROE1533_08_SE_C04.indd 275 11/21/16 6:33 PM

http://dev.mysql.com
http://dev.mysql.com
http://dev.mysql.com

276 Part 2 Database Design

occurs, an ID-dependent entity exists. In this case, APARTMENT is ID-dependent on
BUILDING. The identifier of an ID-dependent entity is always a composite that includes
the identifier of the entity that the ID-dependent entity depends on for its existence.

As shown in Figure 4-10, in our E-R models we use an entity with rounded corners to
represent the ID-dependent entity. We also use a solid line to represent the relationship
between the ID-dependent entity and its parent. This type of a relationship is called an
identifying relationship. A relationship drawn with a dashed line (refer to Figure 4-7) is
used between strong entities (or between a weak entity and a strong entity that it does not
depend on) and is called a nonidentifying relationship because the relationship is not used
to identify an ID-dependent entity.

ID-dependent entities are common. Another example is shown in Figure 4-10(b),
where the entity VERSION is ID-dependent on the entity PRODUCT. Here PRODUCT is
a software product, and VERSION is a release of that software product. The identifier of
PRODUCT is ProductName, and the identifier of VERSION is (ProductName,
VersionNumber). A third example is shown in Figure 4-10(c), where EDITION is
ID-dependent on TEXTBOOK. The identifier of TEXTBOOK is Title, and the identifier
of EDITION is (Title, EditionNumber). In each of these cases, the ID-dependent entity
cannot exist unless the parent (the entity on which it depends) also exists. Thus, the mini-
mum cardinality from the ID-dependent entity to the parent is always one.

However, whether the parent is required to have an ID-dependent entity depends on
business requirements. In Figure 4-10(a), the database can contain any BUILDING, such
as a store or warehouse, so APARTMENT is optional. In Figure 4-10(b), every PRODUCT
made by this company has versions (including version 1.0), so VERSION is mandatory.
Similarly, in Figure 4-10(c), every TEXTBOOK has an EDITION number (including the
first edition), which makes EDITION mandatory. Those restrictions arise from the nature
of each business and its applications and not from any logical requirement.

APARTMENT

BuildingName
ApartmentNumber

NumberOfBedrooms
NumberOfBaths
MonthlyRent

BUILDING

BuildingName

StreetAddress
City
State
ZIP

(a) APARTMENT is
ID-Dependent on
BUILDING

PRODUCT

ProductName

OperatingSystem
DevTeamEmail
DevTeamPhone

VERSION

ProductName
VersionNumber

ReleaseDate
MemoryRequired
DiskSpaceRequired

(b) VERSION is
ID-Dependent on
PRODUCT

TEXTBOOK

Title

Author
Publisher

EDITION

Title
EditionNumber

ISBN
CopyrightDate
NumberOfPages

(c) EDITION is
ID-Dependent on
TEXTBOOK

FIGURE 4-10

Example ID-Dependent Entities

M04_KROE1533_08_SE_C04.indd 276 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 277

Finally, notice that you cannot add an ID-dependent entity instance until the parent
entity instance is created, and when you delete the parent entity instance you must delete
all the ID-dependent entity instances as well.

Non–ID-Dependent Weak Entities
All ID-dependent entities are weak entities. However, there are other entities that are weak
but not ID-dependent. To understand this kind of weak entity, consider the relationship
between the AUTO_MODEL and VEHICLE entity classes in the database of a car manu-
facturer, such as Ford or Honda, as shown in Figure 4-11.

In Figure 4-11(a), each VEHICLE is assigned a sequential number as it is manufac-
tured. So, for the “Super SUV” AUTO_MODEL, the first VEHICLE manufactured gets a
ManufacturingSeqNumber of 1, the next gets a ManufacturingSeqNumber of 2, and so on.
This is clearly an ID-dependent relationship because ManufacturingSeqNumber is based
on the Manufacturer and Model.

Now let us assign VEHICLE an identifier that is independent of the Manufacturer and
Model. We will use a VIN (vehicle identification number), as shown in Figure 4-11(b).
Now the VEHICLE has a unique identifier of its own and does not need to be identified by
its relation to AUTO_MODEL.

This is an interesting situation. VEHICLE has an identity of its own and therefore is not ID-
dependent (note the dashed line in Figure 4-11(b)), yet the VEHICLE is an AUTO_MODEL,
and if that particular AUTO_MODEL did not exist the VEHICLE itself would never have ex-
isted. Therefore, VEHICLE is now a weak but non–ID-dependent entity. In our E-R diagrams,
while we will continue to use rounded corners to indicated ID-dependent weak entities, we will
now use square corners on non-ID-independent weak entities. Note that both types of weak en-
tities are shown as tan colored to flag that, whether ID-dependent or not, they are weak entities.

Consider your car—let us say it is a Ford Mustang just for the sake of this discussion. Your
individual Mustang is a VEHICLE, and it exists as a physical object and is identified by the VIN
that is required for each licensed automobile. It is not ID-dependent on AUTO_MODEL, which

AUTO_MODEL
Manufacturer
Model

Description
NumberOfPassengers
EngineType
RatedMPG

VEHICLE
Manufacturer
Model
ManufacturingSeqNumber

DateManufactured
Color
DealerName
DealerCost
SalesDate
SalesPrice

(a) ID-Dependent Entity

VEHICLE
VIN

DateManufactured
Color
DealerName
DealerCost
SalesDate
SalesPrice

AUTO_MODEL
Manufacturer
Model

Description
NumberOfPassengers
EngineType
RatedMPG

(b) Non–ID-Dependent
Weak Entity

FIGURE 4-11

Weak Entity Examples

M04_KROE1533_08_SE_C04.indd 277 11/21/16 6:33 PM

278 Part 2 Database Design

in this case is Ford Mustang, for its identity. However, if the Ford Mustang had never been cre-
ated as an AUTO_MODEL—a logical concept that was first designed on paper—your car
would never have been built because no Ford Mustangs would ever have been built! Therefore,
your physical individual VEHICLE would not exist without a logical AUTO_MODEL of Ford
Mustang, and in a data model (which is what we’re talking about) a VEHICLE cannot exist with-
out a related AUTO_MODEL. This makes VEHICLE a weak but non–ID-dependent entity.

Unfortunately, an ambiguity is hidden in the definition of weak entity, and this ambi-
guity is interpreted differently by different database designers (as well as different textbook
authors). The ambiguity is that, in a strict sense, if a weak entity is defined as any entity
whose presence in the database depends on another entity, then any entity that participates
in a relationship having a minimum cardinality of one to a second entity is a weak entity.
Thus, in an academic database, if a STUDENT must have an ADVISER, then STUDENT
is a weak entity because a STUDENT entity cannot be stored without an ADVISER.

This interpretation seems too broad to some people. A STUDENT is not physically
dependent on an ADVISER (unlike an APARTMENT to a BUILDING), and a STUDENT
is not logically dependent on an ADVISER (despite how it might appear to either the stu-
dent or the adviser). Therefore, STUDENT should be considered a strong entity.

To avoid such situations, some people interpret the definition of weak entity more nar-
rowly. They say that to be a weak entity an entity must logically depend on another entity.
According to this definition, APARTMENT is a weak entity, but STUDENT is not. An
APARTMENT cannot exist without a BUILDING in which it is located. However, a
STUDENT can logically exist without an ADVISER, even if a business rule requires it.

To illustrate this interpretation, consider the examples shown in Figure 4-12. Suppose that
a data model includes the relationship between an ORDER and a SALESPERSON shown in
Figure 4-12(a). Although you might state that an ORDER must have a SALESPERSON, it does
not necessarily require one for its existence. (The ORDER could be a cash sale in which the
salesperson is not recorded.) Hence, the minimum cardinality of one arises from a business rule,
not from logical necessity. Thus, ORDER requires a SALESPERSON but is not existence-
dependent on it. Therefore, ORDER is a strong entity.

Now, consider ASSIGNMENT in Figure 4-12(b), which is ID-dependent on
PROJECT, and the identifier of ASSIGNMENT contains the identifier of PROJECT.
Here, not only does ASSIGNMENT have a minimum cardinality of one and not only is

SALESPERSON
SalespersonID

SalespersonName
Phone
EmailAddress

ORDER
OrderID

CustomerName
OrderDate
OrderSubtotal
OrderTax
OrderTotal

(a) ORDER is a Strong
Entity

PROJECT
ProjectID

ProjectName
BudgetCode
Description

ASSIGNMENT
ProjectID
AssignmentID

StartDate
EndDate
BudgetAmount
ActualAmount

(b) ASSIGNMENT is an
ID-Dependent Entity

PRESCRIPTION
PrescriptionID

PrescriptionDate
PrescriptionText
isGenericDrugAllowed

PATIENT
PatientID

PatientName
Address
City
State
ZIP

(c) PRESCRIPTION is a
Non–ID-Dependent
Weak Entity

FIGURE 4-12

Examples of Required
Entities

M04_KROE1533_08_SE_C04.indd 278 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 279

ASSIGNMENT existence-dependent on PROJECT, but ASSIGNMENT is also ID-
dependent on PROJECT because its identifier requires the key of the parent entity. Thus,
ASSIGNMENT is a weak entity that is ID-dependent.

Finally, consider the relationship of PATIENT and PRESCRIPTION in Figure 4-12(c).
Here a PRESCRIPTION cannot logically exist without a PATIENT. Hence, not only is the
minimum cardinality one, but the PRESCRIPTION is also existence-dependent on
PATIENT. Thus, PRESCRIPTION is a weak entity, but is not ID-dependent because it has
its own unique identifier.

In this text, we define a weak entity as an entity that logically depends on another en-
tity. Hence, not all entities that have a minimum cardinality of one in relation to another
entity are weak. Only those that are logically dependent are weak. This definition implies
that all ID-dependent entities are weak. In addition, every weak entity has a minimum car-
dinality of one on the entity on which it depends, but every entity that has a minimum car-
dinality of one is not necessarily weak.

As illustrated in Figures 4-11 and 4-12, in our E-R models we again use an entity with
square corners to represent the non–ID-dependent weak entity, and we also use a dashed line to
represent the nonidentifying relationship between the non–ID-dependent entity and its parent.

Associative Entities
Let’s take another look at the Wedgewood Pacifc (WP) database that we used in our dis-
cussion of SQL in Chapter 3. At WP, employees are assigned to projects. If all we are inter-
ested in knowing is (1) which employees are assigned a single project and (2) which proj-
ects a single employee has been assigned to, we have a simple N:M relationship between
EMPLOYEE and PROJECT. This is illustrated in Figure 4-13(a).

EMPLOYEE
EmployeeNumber

FirstName
LastName
Department
Position
Supervisor
O�cePhone
EmailAddress

PROJECT
ProjectID

ProjectName
Department
MaxHours
StartDate
EndDate

(a) N:M Relationship Between EMPLOYEE and PROJECT

(b) EMPLOYEE and PROJECT 1:N Relationships with the Associative Entity ASSIGNMENT

ASSIGNMENT
EmployeeNumber
ProjectID

HoursWorked

PROJECT
ProjectID

ProjectName
Department
MaxHours
StartDate
EndDate

EMPLOYEE
EmployeeNumber

FirstName
LastName
Department
Position
Supervisor
O�cePhone
EmailAddress

FIGURE 4-13

The Associative Entity

M04_KROE1533_08_SE_C04.indd 279 11/21/16 6:33 PM

280 Part 2 Database Design

However, WP also wants to record the number of hours each employee works on each
project in an attribute named HoursWorked. Where should we put this attribute? If we
add it to EMPLOYEE, it will total the number of hours that employee has worked on all
assigned projects, not the number of hours worked per project. Similarly, if we add it to
PROJECT, it will record the total number of hours worked on that project by all assigned
employees. Neither of these solutions will record the data that WP needs.

One way of thinking about this situation is that HoursWorked is an attribute of the as-
signment relationship between EMPLOYEE and PROJECT. But we can’t put an attribute
in a relationship (note the the original E-R model allowed for this, but the current version
of the E-R model does not). So what can we do?

The answer is to create a new entity between EMPLOYEE and PROJECT named
ASSIGNMENT to record both (1) the actual assignments of employees to projects and (2)
the hours each employee works on each project in the HoursWorked attribute. This type of
entity is called an associative entity (or association entity) and is used whenever a pure
N:M relationship cannot properly hold attributes that are describing aspects of the rela-
tionship between two entities. This is illustrated in Figure 4-13(b), and if you look back at
Figure 3-1, you will see that the WP database has always had such a structure.

Subtype Entities
The extended E-R model introduced the concept of subtypes. A subtype entity is a special case
of another entity called the supertype entity. Students, for example, may be classified as under-
graduate or graduate students. In this case, STUDENT is the supertype, and
UNDERGRADUATE and GRADUATE are subtypes. Figure 4-14 shows these subtypes for a
student database. Note that the identifier of the supertype is also the identifier of the subtypes.

Alternatively, a student could be classified as a freshman, sophomore, junior, or senior.
In that case, STUDENT would be the supertype, and FRESHMAN, SOPHOMORE,
JUNIOR, and SENIOR would be the subtypes.

As illustrated in Figure 4-14, in our E-R models we use a circle with a line under it as a
subtype symbol to indicate a supertype/subtype relationship. Think of this as a symbol for an
optional (the circle) 1:1 (the line) relationship. In addition, we use a solid line to represent an
ID-dependent subtype entity because each subtype is ID-dependent on the supertype. Also
note that none of the line end symbols shown in Figure 4-8 are used on the connecting lines.

In some cases, an attribute of the supertype indicates which of the subtypes is appropriate for
a given instance. An attribute that determines which subtype is appropriate is called a discrimina-
tor. In Figure 4-14(a), the attribute is GradStudent (which has only the values Yes and No) is the
discriminator. In our E-R diagrams, the discriminator is shown next to the subtype symbol, as il-
lustrated in Figure 4-14(a). Not all supertypes have a discriminator. Where a supertype does not
have a discriminator, application code must be written to create the appropriate subtype.

isGradStudent

GRADUATE
StudentID

UndergraduateGPA
ScoreOnGMAT

STUDENT
StudentID

LastName
FirstName
isGradStudent

UNDERGRADUATE
StudentID

HighSchoolGPA
ScoreOnSAT

(a) Exclusive Subtypes with Discriminator

HIKING_CLUB
StudentID

DateDuesPaid
AmountPaid

STUDENT
StudentID

LastName
FirstName

SAILING_CLUB
StudentID

DateDuesPaid
AmountPaid

(b) Inclusive Subtypes

FIGURE 4-14

Example Subtype
Entities

M04_KROE1533_08_SE_C04.indd 280 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 281

Subtypes can be exclusive or inclusive. With exclusive subtypes, a supertype instance
is related to at most one subtype. With inclusive subtypes, a supertype instance can relate
to one or more subtypes. In Figure 4-14(a), the X in the circle means that the
UNDERGRADUATE and GRADUATE subtypes are exclusive. Thus, a STUDENT can
be either an UNDERGRADUATE or a GRADUATE, but not both.

Figure 4-14(b) shows that a STUDENT can join either the HIKING_CLUB or the
SAILING_CLUB or both or neither. These subtypes are inclusive (note that there is no X
in the circle). Because a supertype may relate to more than one subtype, inclusive subtypes
do not have a discriminator.

Some models include another dimension of subtypes, called the total or partial distinc-
tion: For example, in Figure 4-14(b), can there be students who are in neither club? If so,
the subtype/supertype relationship is partial; if not, it is total. To indicate a total require-
ment, we would put a hash mark on the relationship line just below the supertype entity to
indicate that the supertype is mandatory in the relationship.

Subtypes are used in a data model, among other reasons, to avoid inappropriate NULL
values. Undergraduate students take the SAT exam and report that score, whereas graduate
students take the GMAT and report their score on that exam. Thus, the SAT score would be
NULL in all STUDENT entities for graduates, whereas the GMAT score would be NULL
for all undergraduates. Such NULL values can be avoided by creating subtypes.

The relationships that connect supertypes and subtypes are called IS-A relation-
ships because a subtype is the same entity as the supertype. Because this is so,
the identifier of a supertype and all its subtypes must be the same; they all rep-
resent different aspects of the same entity. Contrast this with HAS-A relation-
ships, in which an entity has a relationship to another entity but the identifiers
of the two entities are different.

BTW

Recursive Relationships
It is possible for an entity to have a relationship to itself. Figure 4-15 shows a CUSTOMER
entity in which one customer can refer many other customers to the business. This is called
a recursive relationship (and because it has only one entity, it is also known as a unary rela-
tionship). As with binary relationships, recursive relationships can be 1:1, 1:N (shown in
Figure 4-15), and N:M. We discuss each of these three types further in Chapter 5.

CUSTOMER

CustomerID

LastName
FirstName
Address
City
State
ZIP
Phone
EmailAddress

REFERRED-BY

FIGURE 4-15

Example Recursive
Relationship

M04_KROE1533_08_SE_C04.indd 281 11/21/16 6:33 PM

282 Part 2 Database Design

Heather Sweeney Designs
Seminar Customer List

Date: October 12, 2016 Location: San Antonio Convention Center

Time: 11 AM Title: Kitchen on a Budget

Name Phone Email Address

Nancy Jacobs 817–871–8123 Nancy.Jacobs@somewhere.com

Chantel Jacobs 817–871–8234 Chantel.Jacobs@somewhere.com

Ralph Able

Etc.

27 names in all

210–281–7987 Ralph.Able@somewhere.com

FIGURE 4-16

Example Seminar
Customer List

The best way to gain proficiency with data modeling is to do it. In this section, we examine
a set of documents used by a small business and create a data model from those documents.
After you have read this section, you should practice creating data models with one or
more of the projects at the end of the chapter.

Heather Sweeney Designs
Heather Sweeney is an interior designer who specializes in home kitchen design. She offers
a variety of seminars at home shows, kitchen and appliance stores, and other public loca-
tions. The seminars are free; she offers them as a way of building her customer base. She
earns revenue by selling books and videos that instruct people on kitchen design. She also
offers custom-design consulting services.

After someone attends a seminar, Heather wants to leave no stone unturned in at-
tempting to sell that person one of her products or services. She would therefore like to
develop a database to keep track of customers, the seminars they have attended, the con-
tacts she has made with them, and the purchases they have made. She wants to use this da-
tabase to continue to contact her customers and offer them products and services.

The Seminar Customer List
Figure 4-16 shows the seminar customer list form that Heather or her assistant fills out at
seminars. This form includes basic data about the seminar as well as the name, phone, and
email address of each seminar attendee. If we examine this list in terms of a data model,
you see two potential entities: SEMINAR and CUSTOMER. From the form in Figure 4-16,
we can conclude that a SEMINAR relates to many CUSTOMERs, and we can make the
initial E-R diagram shown in Figure 4-17(a).

However, from this single document we cannot determine a number of other facts. For
example, we are not sure about cardinalities. Currently, we show a 1:N relationship, with
both entities required in the relationship, but we are not certain about this. Neither do we
know what to use for the identifier of each entity.

DEVELOPING AN EXAMPLE E-R DIAGRAM

M04_KROE1533_08_SE_C04.indd 282 11/21/16 6:33 PM

mailto:Nancy.Jacobs@somewhere.com
mailto:Chantel.Jacobs@somewhere.com
mailto:Ralph.Able@somewhere.com

Chapter 4 Data Modeling and the Entity-Relationship Model 283

Is this correct ?

Is this correct ?

CUSTOMER
??? is CUSTOMER identifier

LastName
FirstName
EmailAddress
Phone

SEMINAR
??? is SEMINAR identifier

SeminarDate
SeminarTime
Location
SeminarTitle

(a) First Version of the SEMINAR and CUSTOMER E-R Diagram

10

CUSTOMER
??? is CUSTOMER identifier

LastName
FirstName
EmailAddress
Phone

SEMINAR
??? is SEMINAR identifier

SeminarDate
SeminarTime
Location
SeminarTitle

(b) Second Version of the SEMINAR and CUSTOMER E-R Diagram

CUSTOMER
CustomerID

LastName
FirstName
EmailAddress
Phone

SEMINAR
SeminarID

SeminarDate
SeminarTime
Location
SeminarTitle

(c) Third Version of the SEMINAR and CUSTOMER E-R Diagram

FIGURE 4-17

Initial E-R Diagram for Heather Sweeney Designs

Having missing facts is typical during the data modeling process. We examine docu-
ments and conduct user interviews, and then we create a data model with the data we have.
We also note where data are missing and supply those data later as we learn more. Thus, there
is no need to stop data modeling when something is unknown; we just note that it is un-
known and keep going, with the goal of supplying missing information at some later point.

Suppose we talk with Heather and determine that customers can attend as many semi-
nars as they would like, but she would like to be able to record customers even if they have
not been to a seminar. (“Frankly, I’ll take a customer wherever I can find one!” was her ac-
tual response.) Also, she never offers a seminar to fewer than 10 attendees. Given this in-
formation, you can fill out more of the E-R diagram, as shown in Figure 4-17(b).

Before continuing, consider the minimum cardinality of the relationship from
SEMINAR to CUSTOMER in Figure 4-17(b). The notation says that a seminar must have
at least 10 customers, which is what we were told. However, this means that we cannot add
a new SEMINAR to the database unless it already has 10 customers. This is incorrect.
When Heather first schedules a seminar, it probably has no customers at all, but she would
still like to record it in the database. Therefore, even though she has a business policy of
requiring at least 10 customers at a seminar, we cannot place this limit as a constraint in the
data model.

In Figure 4-17(b), neither of the entities has an identifier. For SEMINAR, the compos-
ites (SeminarDate, SeminarTime, Location) and (SeminarDate, SeminarTime, SeminarTitle)
are probably unique, and either could be the identifier. However, identifiers will become

M04_KROE1533_08_SE_C04.indd 283 11/21/16 6:33 PM

284 Part 2 Database Design

table keys during database design, and these will be large character keys. A surrogate key is
probably a better idea here, so we should create an equivalent unique identifier (SeminarID)
for this entity. For CUSTOMER, looking at the data and thinking about the nature of email
addresses, we can reasonably suppose that EmailAddress can be the identifier of
CUSTOMER. However, some couples share an email address, and it may not be com-
pletely unique. Therefore, we will use CustomerID as our unique identifier. All these deci-
sions are shown for the E-R diagram in Figure 4-17(c).

The Customer Form Letter
Heather records every customer contact she makes. She considers customer attendance at a
seminar as one type of customer contact, and Figure 4-18 shows a form letter that Heather
Sweeney Designs uses as another type of customer contact and as a follow-up to seminar
attendance.

Heather also sends messages like this via email. In fact, she sends both a written letter and
an email message as a follow-up with every seminar attendee. We should therefore represent
this form letter with an entity called CONTACT, which could be a letter, an email, or some
other form of customer contact. Heather uses several different form letters and emails, and she
refers to each one by a specific name (form letter seminar, email seminar message, email

Heather Sweeney Designs
122450 Rockaway Road

Dallas, Texas 75227
972-233-6165

Ms. Nancy Jacobs
1440 West Palm Drive
Fort Worth, Texas 76110

Dear Ms. Jacobs:

Thank you for attending my seminar “Kitchen on a Budget” at the San Antonio Convention
Center. I hope that you found the seminar topic interesting and helpful for your design
projects.

As a seminar attendee, you are entitled to a 15 percent discount on all of my video and
book products. I am enclosing a product catalog and I would also like to invite you to visit
our Web site at www.Sweeney.com.

Also, as I mentioned at the seminar, I do provide customized design services to help you
create that just-perfect kitchen. In fact, I have a number of clients in the Fort Worth area.
Just give me a call at my personal phone number of 555-122-4873 if you’d like to schedule
an appointment.

Thanks again and I look forward to hearing from you!

Best regards,

Heather Sweeney

FIGURE 4-18

Heather Sweeney
Designs Customer
Form Letter

M04_KROE1533_08_SE_C04.indd 284 11/21/16 6:33 PM

http://www.Sweeney.com

Chapter 4 Data Modeling and the Entity-Relationship Model 285

purchase message, etc.). For now, we will represent the attributes of CONTACT as
ContactNumber (the first, second, and so on, contact for a specific customer), ContactDate and
ContactType, where ContactType can be Seminar, FormLetterSeminar, EmailSeminarMessage,
EmailPurchaseMessage, or some other type.

Reading the form letter, we see that it refers to both a seminar and a customer.
Therefore, we can add it to the E-R diagram with relationships to both of those entities, as
shown in Figure 4-19.

As shown in the design in Figure 4-19(a), a seminar can result in many contacts and a
customer may receive many contacts, so the maximum cardinality of these relationships is
N. However, neither a customer nor a seminar need generate a contact, so the minimum
cardinality of these relationships is zero.

Working from CONTACT back to SEMINAR and CUSTOMER, we can determine
that the contact is for a single CUSTOMER and refers to a single SEMINAR, so the maxi-
mum cardinality in that direction is one. Also, some of the messages to customers refer to
seminars and some do not, so the minimum cardinality back to SEMINAR is zero.
However, a contact must have a customer, so the minimum cardinality of that relationship
is one. These cardinalities are shown in Figure 4-19(a).

Now, however, consider the identifier of CONTACT, which is shown as unknown in
Figure 4-19(a). What could be the identifier? None of the attributes by itself suffices because
many contacts will have the same values for ContactNumber, ContactDate, or ContactType.
Reflect on this for a minute, and you will begin to realize that some attribute of CUSTOMER
has to be part of CONTACT. That realization is a signal that something is wrong. In a data
model, the same attribute should not logically need to be part of two different entities.

Could it be that CONTACT is a weak entity? Can a CONTACT logically exist without
a SEMINAR? Yes, because not all CONTACTs refer to a SEMINAR. Can a CONTACT
logically exist without a CUSTOMER? The answer to that question has to be no. Who
would we be contacting without a CUSTOMER? Aha! That is it: CONTACT is a weak
entity, depending on CUSTOMER. In fact, it is an ID-dependent entity because the identi-
fier of CONTACT includes the identifier of CUSTOMER.

Figure 4-19(b) shows the data model with CONTACT as an ID-dependent entity on
CUSTOMER. After further interviews with Heather, we determine that she often contacts
a customer more than once on the same day (both the form letter and email message thank-
ing the customer for seminar attendance are always sent on the same day), so (CustomerID,
Date) cannot be the identifier of CONTACT. We will choose to use the ContactNumber
attribute, which is a simple sequence number, as the second part of the composite identifier
(CustomerID, ContactNumber) for CONTACT.

This E-R diagram has a couple of other problems, because Heather has some other
data requirements. First, the contact letter has the customer’s address, but the CUSTOMER
entity has no address attributes. Consequently, they need to be added. Second, Heather al-
lows customers to create a login account on her Web site so that they can purchase items
online securely. She uses the customer EmailAddress as their login name, and has them cre-
ate a password. For security, we need to allow for encryption of this password and storage
of it in the CUSTOMER entity. The additional attributes for these requirements are added
to the CUSTOMER entity, as shown in Figure 4-19(c). This adjustment is typical; as more
forms and reports are obtained new attributes and other changes will need to be made to
the data model.

The Sales Invoice
The sales invoice that Heather uses to sell books and videos is shown in Figure 4-20. The
sales invoice itself needs to be an entity, and because the sales invoice has customer data it
has a relationship back to CUSTOMER. (Note that we do not duplicate the customer data
because we can obtain data items via the relationship; if data items are missing, we add them
to CUSTOMER.) Because Heather runs her computer with minimal security, she decided
that she did not want to record credit card numbers in her computer database. Instead, she

M04_KROE1533_08_SE_C04.indd 285 11/21/16 6:33 PM

286 Part 2 Database Design

CUSTOMER

CustomerID

LastName
FirstName
EmailAddress
EncryptedPassword
Phone
StreetAddress
City
State
ZIP

CUSTOMER

CustomerID

LastName
FirstName
EmailAddress
Phone

CUSTOMER

CustomerID

LastName
FirstName
EmailAddress
Phone

SEMINAR

SeminarID

SeminarDate
SeminarTime
Location
SeminarTitle

CONTACT

??? is CONTACT Identifier

ContactNumber
ContactType
ContactDate

(a) First Version with CONTACT
SEMINAR

SeminarID

SeminarDate
SeminarTime
Location
SeminarTitle

CONTACT

CustomerID
ContactNumber

ContactDate
ContactType

(b) Second Version with CONTACT as a Weak Entity

SEMINAR

SeminarID

SeminarDate
SeminarTime
Location
SeminarTitle

CONTACT

CustomerID
ContactNumber

ContactDate
ContactType

(c) Third Version with Modified CUSTOMER

FIGURE 4-19

Heather Sweeney Designs Data Model with CONTACT

M04_KROE1533_08_SE_C04.indd 286 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 287

records only the PaymentType value in the database and files the credit card receipts in a
(locked) physical file with a notation that relates them back to an invoice number.

Figure 4-21 shows the completion of the Heather Sweeney Designs data model.
Figure 4-21(a) shows a first attempt at the data model with INVOICE. This diagram is miss-
ing data about the line items on the order. Because there are multiple line items, the line
item data cannot be stored in INVOICE. Instead, an ID-dependent entity, LINE_ITEM,
must be defined. The need for an ID-dependent entity is typical for documents that contain
a group of repeating data. If the repeating group is not logically independent, then it must
be made into an ID-dependent weak entity. Figure 4-21(b) shows the adjusted design.

Because LINE_ITEM belongs to an identifying relationship from INVOICE, it needs
an attribute that can be used to identify a particular LINE_ITEM within an INVOICE.
The identifier we will use for LINE_ITEM will be the composite (InvoiceNumber,
LineNumber), where InvoiceNumber is the identifier of INVOICE and the LineNumber
attribute identifies the line within the INVOICE on which an item appears.

3500035000

78214

1610

210-281-7987

13

123 Elm Street

FIGURE 4-20

Heather Sweeney Designs Sales Invoice

M04_KROE1533_08_SE_C04.indd 287 11/21/16 6:33 PM

288 Part 2 Database Design

CUSTOMER
CustomerID
LastName
FirstName
EmailAddress
EncryptedPassword
Phone
StreetAddress
City
State
ZIP

SEMINAR
SeminarID
SeminarDate
SeminarTime
Location
SeminarTitle

CONTACT
CustomerID
ContactNumber

ContactDate
ContactType

INVOICE
InvoiceNumber
InvoiceDate
PaymentType
Subtotal
Shipping
Tax
Total

(a) Version with INVOICE
CUSTOMER
CustomerID

LastName
FirstName
EmailAddress
EncryptedPassword
Phone
StreetAddress
City
State
ZIP

SEMINAR
SeminarID
SeminarDate
SeminarTime
Location
SeminarTitle

CONTACT
CustomerID
ContactNumber
ContactDate
ContactType

INVOICE
InvoiceNumber
InvoiceDate
PaymentType
Subtotal
Shipping
Tax
Total

LINE_ITEM
InvoiceNumber
LineNumber
Quantity
UnitPrice
Total

(b) Version with LINE_ITEM CUSTOMER
CustomerID

LastName
FirstName
EmailAddress
EncryptedPassword
Phone
StreetAddress
City
State
ZIP

SEMINAR
SeminarID
SeminarDate
SeminarTime
Location
SeminarTitle

CONTACT
CustomerID
ContactNumber

ContactDate
ContactType

INVOICE
InvoiceNumber
InvoiceDate
PaymentType
Subtotal
Shipping
Tax
Total

LINE_ITEM
InvoiceNumber
LineNumber
Quantity
UnitPrice
Total

PRODUCT
ProductNumber
ProductType
ProductDescription
UnitPrice
QuantityOnHand

(c) The Finished Data Model

FIGURE 4-21

The Final Data Model
for Heather Sweeney
Designs

M04_KROE1533_08_SE_C04.indd 288 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 289

We need to make one more correction to this data model. Heather sells standard
products—that is, her books and videos have standardized names and prices. She does not
want the person who fills out an order to be able to use nonstandard names or prices. We
therefore need to add a PRODUCT entity and relate it to LINE_ITEM, as shown in
Figure 4-21(c).

Observe that UnitPrice is an attribute of both PRODUCT and LINE_ITEM. This was
done so that Heather can update UnitPrice without affecting the recorded orders. At the
time a sale is made, UnitPrice in LINE_ITEM is set equal to UnitPrice in PRODUCT. The
LINE_ITEM UnitPrice never changes. However, as time passes and Heather changes prices
for her products she can update UnitPrice in PRODUCT. If UnitPrice were not copied into
LINE_ITEM, when the PRODUCT price changes, the price in already stored LINE_ITEMs
would change as well, and Heather does not want this to occur. Therefore, although two at-
tributes are named UnitPrice, they are different attributes used for different purposes.

Note in Figure 4-21(c) that based on interviews with Heather we have added
ProductNumber and QuantityOnHand to PRODUCT. These attributes do not appear in
any of the documents, but they are known by Heather and are important to her.

Attribute Specifications
The data model in Figure 4-21(c) shows entities, attributes, and entity relationships, but it
does not document details about attributes. These details are normally dealt with as col-
umn specifications during the creation of the database design from the data model as
described in Chapter 5. However, during the requirements analysis, you may learn of some
desired or required attribute specifications (such as default values). These should be docu-
mented for use in creating the database design column specifications.

Business Rules
When creating a data model, we need to be on the lookout for business rules that constrain
data values and the processing of the database. We encountered such a business rule with
regard to CONTACT, when Heather Sweeney stated multiple contacts, e.g. more than one
email message, may be made with one customer on the same day.

In more complicated data models, many such business rules would exist. Some of
these rules can be implemented in the DBMS using built-in constraints, triggers, or stored
procedures (see Chapter 7), but many of these rules are too specific or too complicated to
be enforced by the DBMS. Rather, application programs or other forms of procedural logic
need to be developed to enforce such rules.

Validating the Data Model
After a data model has been completed, it needs to be validated. The most common way to do
this is to show it to the users and obtain their feedback. However, a large, complicated data
model is off-putting to many users, so often the data model needs to be broken into sections
and validated piece by piece or expressed in some other terms that are more understandable.

As mentioned earlier in this chapter, prototypes are sometimes constructed for users to
review. Prototypes are easier for users to understand and evaluate than data models. We
can develop prototypes that show the consequences of data model design decisions with-
out requiring the users to learn E-R modeling. For example, showing a form with room for
only one customer is a way of indicating that the maximum cardinality of a relationship is
one. If the users respond to such a form with the question “But where do I put the second
customer?” you know that the maximum cardinality is greater than one.

It is relatively easy to create mock-ups of forms and reports by using Microsoft Access
wizards. We can even develop such mock-ups in situations where Microsoft Access is not
going to be used as the operational DBMS because they are still useful for demonstrating
the consequences of data modeling decisions.

M04_KROE1533_08_SE_C04.indd 289 11/21/16 6:33 PM

290 Part 2 Database Design

v

Section 4
Prototyping Using Microsoft Access
In this chapter, when discussing data modeling concepts and techniques, we talked about
building a prototype database for users to review as a model-validation technique.
Prototypes are easier for users to understand and evaluate than data models. In addition,
they can be used to show the consequences of data-model design decisions.

Because it is relatively easy to create mock-ups of forms and reports by using Microsoft
Access wizards, mock-ups are often developed even in situations in which Microsoft
Access is not going to be used as the operational DBMS. The mock-ups can be used as a
prototyping tool to demonstrate the consequences of data modeling decisions. In this sec-
tion, you will use Microsoft Access as a prototyping tool. We will continue to use the
WMCRM database. At this point, we have created and populated the CONTACT,
CUSTOMER, PHONE_NUMBER, and SALESPERSON tables. In the preceding sec-
tions of “The Access Workbench,” you also learned how to create forms, reports, and
queries. And if you studied Appendix E’s section of “The Access Workbench” together
with Chapter 3, you have learned how to create and use view-equivalent queries.

Let us start by considering what the WMCRM database looks like from a data modeling
point of view. Figure AW-4-1 shows the WMCRM database as an IE Crow’s Foot E-R model.

This model is based on the business rule that each CUSTOMER works with one and
only one SALESPERSON. Therefore, we have a 1:N relationship between SALESPERSON
and CUSTOMER, which shows that each SALESPERSON can work with many
CUSTOMERs but each CUSTOMER is attended to by only one SALESPERSON. Further,
because there is no doubt about which SALESPERSON is involved in each CONTACT
with a CUSTOMER, the connection to CONTACT is a 1:N relationship from CUSTOMER.

THE ACCESS WORKBENCH THE ACCESS WORKBENCH

Finally, a data model needs to be evaluated against all use cases. For each use case, we
need to verify that all the data and relationships necessary to support the use case are pres-
ent and accurately represented in the data model.

Data model validation is exceedingly important. It is far easier and less expensive to cor-
rect errors at this stage than it is to correct them after the database has been designed and
implemented. Changing the cardinality in a data model is a simple adjustment to a document,
but changing the cardinality later might require the construction of new tables, new relation-
ships, new queries, new forms, new reports, new applications, new Web pages, and so forth.
So every minute spent validating a data model will pay great dividends down the line.

CUSTOMER
CustomerID
LastName
FirstName

PHONE_NUMBER
CustomerID
PhoneNumber
PhoneType

Address
City
State
ZIP
EmailAddress

CONTACT
ContactID
ContactDate
ContactType
Remarks

SALESPERSON
NickName
LastName
FirstName
HireDate
WageRate
CommissionRate
O�cePhone
EmailAddress

FIGURE AW-4-1

The WMCRM Database as a Data Model

M04_KROE1533_08_SE_C04.indd 290 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 291

But all this would change if the business rule were that any CUSTOMER could work
with more than one SALESPERSON. This would allow any SALESPERSON to contact
the CUSTOMER as needed rather than relying on just one SALESPERSON to be available
whenever needed for work with a particular CUSTOMER. Each CONTACT would now
need to be linked to the CUSTOMER contacted and the SALEPERSON making the
CONTACT. This results in a data model like the one shown in Figure AW-4-2.

Here we have a 1:N relationship between SALESPERSON and CONTACT instead of
between SALESPERSON and CUSTOMER, while the 1:N relationship between
CUSTOMER and CONTACT remains the same. CONTACTs for one CUSTOMER can
now be linked to various SALESPERSONs.

Imagine that you have been hired as a consultant to create the WMCRM database.
You now have two alternative data models that you need to show to managers at
Wallingford Motors so that they can make a decision about which model to use. But they
do not understand E-R data modeling.

How can you illustrate the differences between the two data models? One way is to
generate some mock-up prototype forms and reports in Microsoft Access. Users can more
easily understand forms and reports than they can understand your abstract E-R model.

Creating a Prototype Form for the Original Data Model

We will start by creating a sample form in the current version of the WMCRM database,
which we are treating here as a prototype we created to illustrate the first data model. (This
includes populating the database with sample data.) The database structure for this data-
base is shown in the Relationships window in Figure AW-4-3.

(Continued)

CUSTOMERCUSTOMER
CustomerID

LastName
FirstName
Address
City
State
ZIP
EmailAddress

CONTACT
ContactID

ContactDate
ContactType
Remarks

PHONE_NUMBER

CustomerID
PhoneNumber
PhoneType

SALESPERSONSALESPERSON
NickName

LastName
FirstName
HireDate
WageRate
CommissionRate
O�cePhone
EmailAddress

FIGURE AW-4-2

The Modified WMCRM Data Model

M04_KROE1533_08_SE_C04.indd 291 11/21/16 6:33 PM

292 Part 2 Database Design

1:N relationship between
SALESPERSON and
CUSTOMER

NickName is a foreign key linking
to SALEPERSON

FIGURE AW-4-3

The Original WMCRM Database

The Form Wizard button

The Create command tab

FIGURE AW-4-4
The Form Wizard Button

Using a Form That Includes Multiple Tables

In Chapter 1’s section of “The Access Workbench,” we created a data entry form for a
single table using the CUSTOMER table. Now we will create a Microsoft Access form that
will let us work with the combined data from multiple tables.

Creating a Form for Multiple Tables

1. Click the Create command tab.
2. Click the Form Wizard button in the Forms command group, as shown in Figure AW-4-4.

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 292 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 293

The Form Wizard

The Tables/Queries
drop-down list button

Select
Table: SALESPERSON

FIGURE AW-4-5

The Form Wizard

The Selected Fields list

The right-facing single
–chevron button–use
this button to add one
field at a time to the
Selected Fields list

The Available Fields
list

The right-facing
double–chevron
button –use this button
to add all the available
fields to the Selected
Fields list

FIGURE AW-4-6

The Selected SALESPERSON Columns

3. The Form Wizard appears, as shown in Figure AW-4-5.
4. Select the SALESPERSON table in the Tables/Queries drop-down list. Individually select

and add the NickName, LastName, FirstName, OfficePhone, and EmailAddress columns
to the Selected Fields list by using the right-facing single-chevron button, as shown in
Figure AW-4-6. Do not click the Next button yet.

5. Select the CUSTOMER table in the Tables/Queries drop-down list. Individually select and add
the LastName, FirstName, Address, City, State, ZIP, and EmailAddress columns to the Selected
Fields list by using the right-facing single-chevron button. Do not click the Next button yet.

6. Select the CONTACT table in the Tables/Queries drop-down list. Individually select and
add the ContactDate, ContactType, and Remarks columns to the Selected Fields list by
using the right-facing single-chevron button. Do not click the Next button yet. The Form
Wizard now appears as shown in Figure AW-4-7. Do not click the Next button yet.

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 293 11/21/16 6:33 PM

294 Part 2 Database Design

7. Now click the Next button.
 ■ NOTE: You have just created a set of columns from three tables that you want to

appear on one form.
 8. When asked “How do you want to view your data?” use the default by SALESPERSON se-

lection because we want to see all contacts for each salesperson. Also use the selected Forms
with subform(s) option to treat the CUSTOMER and CONTACT data as subforms within
the SALESPERSON form. The Form Wizard now appears as shown in Figure AW-4-8.

 9. Click the Next button.
10. When asked “What layout would you like for each subform?” click the Next button to use

the default Datasheet layouts.

The complete Selected
Fields list–this list now
includes fields
(columns) from three
di	erent tables

The Next button

FIGURE AW-4-7

The Complete Selected Fields List

Keep or select by
SALEPERSON as the
top level data layer

The Next button

Keep or select Form
with subform(s) as
form structure

FIGURE AW-4-8

Specifying How to View the Data

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 294 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 295

11. When asked “What titles do you want for your forms?” type the form title WMCRM
Salesperson Contacts Form into the Form: text box, the subform title Customer Data into
the first Subform: text box, and the form title Contact Data into the second Subform: text
box. The Form Wizard now appears as shown in Figure AW-4-9.

12. Click the Finish button. The completed form appears as shown in Figure AW-4-10.

Type in the Form title
WMCRM Salesperson
Contacts Form

The Finish button

Type in the Subform title
Customer Data

Type in the Subform title
Contact Data

FIGURE AW-4-9

Specifying the Form Titles

The View drop-down list button

The Layout View button

FIGURE AW-4-10

The Generated Form for Salesperson Contact Data

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 295 11/21/16 6:33 PM

296 Part 2 Database Design

The subform title Customer Data
has been moved

The Customer Data tabular data
section is selected and is being
modified

FIGURE AW-4-11

Modifying the WMCRM Salesperson Contacts Form

Access 2016, Windows 10, Microsoft Corporation.

SALESPERSON data

CUSTOMER data—use the record
buttons to move between
CUSTOMERs associated with the
current SALESPERSON

CONTACT data—only the data for
the current CUSTOMER are
shown

FIGURE AW-4-12

The Final WMCRM Salesperson Contacts Form

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 296 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 297

13. Unfortunately the form is not that well designed. To make modifications to the form, click the
Layout View button in the View drop-down list to switch to Layout view. Figure AW-4-11
shows modifications to the layout of the WMCRM Salesperson Contacts form. You can select
various elements of the form, and rearrange them as needed.

14. Figure AW-4-12 shows the final modified WMCRM Salesperson Contacts form. Once you
have the form looking approximately like this, click the Save button to save the changes.

15. Close the form window.

This form has three distinct sections: The top section shows SALESPERSON data, the
middle section shows selectable CUSTOMER data, and the bottom section shows the
CONTACT data for the current CUSTOMER. It should be fairly easy to explain this form
to the Wallingford Motors management and users.

Creating a Report That Includes Data from Multiple Tables

In this section, we will create a report that includes data from two or more tables. This
Microsoft Access report will let us use the combined data from both the SALESPERSON,
CUSTOMER and CONTACT tables.

Creating a Report for Multiple Tables

1. Click the Create tab.
2. Click the Report Wizard button in the Forms command group, as shown in Figure AW-4-13.
3. The Form Wizard appears, as shown in Figure AW-4-14.
4. Select the SALESPERSON table in the Tables/Queries drop-down list. Individually select

and add the NickName, LastName, FirstName, OfficePhone, and EmailAddress columns
to the Selected Fields list by using the right-facing single-chevron button, as shown in
Figure AW-4-15. Do not click the Next button yet.

5. Select the CUSTOMER table in the Tables/Queries drop-down list. Individually select and
add the LastName, FirstName, and EmailAddress columns to the Selected Fields list by us-
ing the right-facing single-chevron button. Do not click the Next button yet.

6. Select the CONTACT table in the Tables/Queries drop-down list. Individually select and
add the ContactDate, ContactType, and Remarks columns to the Selected Fields list by

The Report Wizard button

The Create command tab

FIGURE AW-4-13

The Report Wizard Button

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 297 11/21/16 6:33 PM

298 Part 2 Database Design

using the right-facing single-chevron button. Do not click the Next button yet. The Form
Wizard now appears as shown in Figure AW-4-16. Do not click the Next button yet.

7. Now click the Next button.
 ■ NOTE: You have just created a set of columns from three tables that you want to ap-

pear on one report.

8. When asked “How do you want to view your data?” click the Next button to use the
default by SALESPERSON selection (in order to see all customer contacts for each
salesperson).

9. When asked “Do you want to add any grouping levels?” simply click the Next button to
use the default column structure.

The Report Wizard

The Tables/Queries
drop-down list button

Select
Table: SALESPERSON

FIGURE AW-4-14

The ReportWizard

Access 2016, Windows 10, Microsoft Corporation.

The Selected Fields list

The right-facing single
–chevron button–use
this button to add one
field at a time to the
Selected Fields list

The Available Fields
list

The right-facing
double–chevron
button –use this button
to add all the available
fields to the Selected
Fields list

FIGURE AW-4-15

The Selected Report SALESPERSON Columns

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 298 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 299

10. We are now asked “What sort order do you want for detail records?” This is the sort or-
der for the CONTACT data. The most useful sorting order is by date, in ascending order.
Click the sort field 1 drop-down list arrow and select ContactDate. Leave the sort order
button set to Ascending as shown in Figure AW-4-17. Click the Next button.

11. We are now asked “How would you like to lay out your report?” We will use the default
setting of stepped layout, but click the Landscape orientation radio button to change the
report orientation to landscape. Then click the Next button.

The complete Selected
Fields list–this list now
includes fields
(columns) from three
di	erent tables

The Next button

FIGURE AW-4-16

The Complete Report Selected Fields List

Keep or select
Ascending to sort in
ascending order
(earliest dates first)

The Next button

Select ContactDate to
sort by ContactDate

FIGURE AW-4-17

The Report Sort Order

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 299 11/21/16 6:33 PM

300 Part 2 Database Design

12. When asked “What title do you want for your report?” edit the report title to read
WMCRM Salesperson Contacts Report. Leave the Preview the report radio button
selected, as shown in Figure AW-4-18.

13. Click the Finish button. The completed report is displayed in Print Preview mode. Click
the Shutter Bar Open/Close button to minimize the Navigation Pane. The completed
report is displayed as shown in Figure AW-4-19.

Type in the report title
WMCRM Salesperson
Contacts Report

The Finish button

FIGURE AW-4-18

Specifying the Report Title

FIGURE AW-4-19

The Generated Report for Salesperson Contact Data

Access 2016, Windows 10, Microsoft Corporation.

The View drop-down list button

The Design View button

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 300 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 301

14. Unfortunately the report is not that well designed. To correct the report, we use the
Microsoft Access Banded Report Editor.

The Microsoft Access Banded Form and Report Editors

Microsoft Access uses banded form editors and banded report editors, where each element
of the form or report is displayed in its own band (for example, Header, Detail, or Footer),
which makes rearranging very easy to do. While we will illustrate using the report editor
here, the form editor works exactly the same way.

You can resize form and report sections as necessary, and you can resize the entire
form or report itself. You change the size and position of areas. You can move or resize the
labels and text boxes that display the data by using standard Windows drag-and-drop ac-
tions. You can edit label text, and you can add additional labels or other text.

Using the Microsoft Access Banded Report Editor

1. Click the Design View button in the View drop-down list as shown in Figure AW-4-19 to
put the report into Design view as shown Figure AW-4-20.

2. The report in Figure AW-4-21 has extensively rearranged labels and data text boxes in the
Customer and Contact sections of the form. This is the final version of the report. Use the
banded report editor to make your report look something like this.

3. Save the changes to the report.
4. Click the Shutter Bar Open/Close button to expand the Navigation Pane.
5. Click the document window’s Close button to close the report window.
6. To close the WMCRM database and exit Microsoft Access, click the Close button in the

upper-right corner of the Microsoft Access Window.

SALESPERSON portion of the
report–note the Form Header and
Detail bands

CUSTOMER portion of the report

Labels and data text boxes can be
moved and resized as necessary

CONTACTS portion of the report

FIGURE AW-4-20

The Access Banded Report Editor

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 301 11/21/16 6:33 PM

302 Part 2 Database Design

Creating a Prototype Form for the Modified Data Model

Before we can create the equivalent WMCRM Salesperson Contacts Form for the second
data model, we must prototype the resulting database in Microsoft Access. Fortunately, we
do not need to create a new database from scratch—we can simply make a copy of the ex-
isting Microsoft Access database. One of the nice features of Microsoft Access is that each
database is stored in one *.accdb file. For example, recall from Chapter 1’s section of “The
Access Workbench” that the original database was named WMCRM.accdb and stored in
the Documents library. We can make renamed copies of this file as the basis for prototyp-
ing other data models.

Copying the WMCRM.accdb Database

1. Select Start | Documents to open the My Documents library.
2. Right-click the WMCRM.accdb file object to display the shortcut menu, and then click

Copy.
3. Right-click anywhere in the empty area of the Documents library window to display the

shortcut menu and then click Paste. A file object named WMCRM Copy.accdb appears in
the Documents library window.

4. Right-click the WMCRM Copy.accdb file object to display the shortcut menu, and then
click Rename.

5. Edit the file name to read WMCRM-AW04-v02.accdb, and then press the Enter key.

SALESPERSON data

CUSTOMER data

CONTACT data—data for each
CUSTOMER shown with that
customer’s data

FIGURE AW-4-21

The Final WMCRM Salesperson Contacts Report

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 302 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 303

Now we need to modify this database file. The goal is the set of database relationships
shown in Figure AW-4-22.

The modifications are straightforward, and we have done most of the steps in previous
sections. We need to:

• Remove the relationship between SALESPERSON and CUSTOMER (this is new).
• Delete the NickName field in CUSTOMER.
• Add the NickName field to CONTACT as NULL.
• Populate the NickName field in CONTACT.
• Modify the NickName field in CONTACT to NOT NULL.
• Create the relationship between SALESPERSON and CONTACT.

The only new steps are deleting a relationship and deleting a field from a table.

Deleting the SALESPERSON-to-CUSTOMER Relationship

1. Start Microsoft Access 2016.
2. If the File command tab is not selected, click the File command tab to display the Backstage

view, and then click the Open button. The Open dialog box appears. Browse to the
WMCRM-AW04-v02.accdb file, click the file name to highlight it, and then click the Open
button.

3. The Security Warning bar appears with the database. Click the Security Warning bar’s
Enable Content button.

4. Click the Database Tools command tab.

1:N relationship between
SALESPERSON and CONTACT

NickName is a
foreign key linking
CONTACT to
SALEPERSON

Referential Integrity is being
enforced, and updates to
NickName will cascade from
SALEPERSON to CONTACT

FIGURE AW-4-22

The Modified WMCRM Database

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 303 11/21/16 6:33 PM

304 Part 2 Database Design

5. Click the Relationships button in the Relationships command group. The Relationships
tabbed document window appears. Note that along with the Relationships window a con-
textual tab named Relationship Tools is displayed and that this tab adds a new command
tab named Design to the set of command tabs displayed.

6. Right-click the relationship line between SALESPERSON and CUSTOMER to display the
shortcut menu, and then click Delete.

7. A dialog box appears with the message “Are you sure you want to permanently delete the
selected relationship from your database?” Click the Yes button.

8. Click the Relationships window’s Close button to close the window.
9. If a dialog box appears with the message “Do you want to save the changes to the layout of

‘Relationships’?” click the Yes button.

With the SALESPERSON-to-CUSTOMER relationship now deleted, we can proceed
to delete the NickName field from the CUSTOMER table.

Deleting a Column (Field) in a Microsoft Access Table

1. Open the CUSTOMER table in Design view.
2. Select the NickName column (field).
3. Right-click anywhere in the selected row to display the shortcut menu. Click Delete Rows.

 ■ NOTE: A Delete Rows button is also included in the Tools group on the Design
command tab of the Table Tools contextual command tab. You can use this button
instead of the shortcut menu if you want to.

4. A dialog box appears with the message “Do you want to permanently delete the selected
field(s) and all the data in the field(s)?” To permanently delete the column, click the Yes
button.

5. Click the Save button on the Quick Access Toolbar to save the changes to the table design.
6. Close the CUSTOMER table.

The NickName column

The data type is Short Text (35)

The column is not required at this
time

FIGURE AW-4-23

The NickName Column in CONTACT

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 304 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 305

The other steps needed to modify the database are the same ones we used when we
added the SALESPERSON table to the database in Chapter 3’s section of “The Access
Workbench.” Following the instructions in that section, we can add the NickName column
to CONTACT, populate it, and create the relationship between SALESPERSON and
CONTACT. In Chapter 3’s section of “The Access Workbench,” we used Microsoft Access
SQL to accomplish these tasks. In this section, we will walk through similar steps with
Microsoft Access QBE. Note that Figure AW-4-23 shows NickName inserted as the third
column (field) in the table—it could just as easily be added as the last column in the table.
In a relational table, the column order does not matter: We use the one that makes it easier
for database developers to read!

Figure AW-4-23 shows the NickName column as it is initially added to the CONTACT
table. Note that the data type is Short Text(35), but currently the column is not required.
This is the Microsoft Access equivalent of the SQL NULL constraint.

Figure AW-4-24 shows the NickName column data added to the CONTACT table.
These values are simply typed into the CONTACT table in Data View. Now each
CONTACT record contains the name of the salesperson making the contact.

After the NickName column data have been added to the CONTACT table, we need to
set the NickName column’s Required field property to Yes, as shown in Figure AW-4-25. This
is the equivalent of the SQL NOT NULL constraint, and because every contact must have
been made by a salesperson, the NickName column in CONTACT must be NOT NULL.

With the CONTACT table modifications done, we need to open the Relationships
window to build the new relationship between the SALESPERSON and CONTACT ta-
bles. This relationship is shown in Figure AW-2-22, with the Edit Relationships dialog box
showing that referential integrity is being enforced for the relationship, and Cascade
Update Related Fields is also checked. Close the Relationships window.

The SALESPERSON NickName
is entered for every CONTACT
record

The NickName column

FIGURE AW-4-24

The NickName Data in CONTACT

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 305 11/21/16 6:33 PM

306 Part 2 Database Design

The column is now required —this
is the equivalent of the SQL NOT
NULL constraint.

The NickName column

FIGURE AW-4-25

The Required NickName Column in CONTACT

Access 2016, Windows 10, Microsoft Corporation.

The Customer Contacts data area
now includes CUSTOMER data as
well as the CONTACT data—
each contact record shows which
customer was contacted

SALESPERSON data

FIGURE AW-4-26

The WMCRM Salesperson Contacts Form for the Modified Database

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 306 11/21/16 6:33 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 307

With these modifications done, we now create another version of the WMCRM
Salesperson Contacts Form. This version is shown in Figure AW-4-26.

This form has two distinct sections: The top section shows SALESPERSON data, and
the bottom section shows that the data for each CUSTOMER are combined with the
CONTACT data for each customer contact. This form is distinctively different from the
form based on the first data model, but, again, it should be fairly easy to explain this form
to Wallingford Motors’ management and users. Based on the two forms, management and
users will be able to decide how they want the data presented, and this decision will then
determine which data model should be used.

Working with Microsoft Access Switchboards

Most users would find working with Microsoft Access 2016 database applications at the
level of detail that we have been using to be intimidating. Users want a simple way to access
forms (so that they can input data) and reports (so that they can view and print them). They
really don’t want all the complexity of tables, views, and relationships. This is particularly
true when prototyping applications—users want to see what the application can do, not
how it does it! In Microsoft Access 2016, we can build a switchboard that will provide this
functionality. A switchboard is simply a specialized Microsoft Access form that provides a
way for the user to easily navigate to other forms and reports in the application with
a button-based menu system. An example for our WMCRM database is shown in
Figure AW-4-27. A full discussion of Microsoft Access switchboards and how to create
them can be found in Appendix H, “The Access Workbench—Section H—Microsoft
Access 2016 Switchboards.”

(Continued)

FIGURE AW-4-27

A Microsoft Access 2016 Switchboard

Access 2016, Windows 10, Microsoft Corporation.

M04_KROE1533_08_SE_C04.indd 307 11/21/16 6:33 PM

308 Part 2 Database Design

Closing the Database and Exiting Microsoft Access

This completes the work we will do in this chapter’s “The Access Workbench.” As usual,
we finish by closing the database and Microsoft Access.

Closing the WMCRM-AW04-v02 Database

1. To close the WMCRM-AW04-v02 database and exit Microsoft Access, click the Close
button in the upper-right corner of the Microsoft Access window.

SUMMARY

The process of developing a database system consists of three stages: requirements analysis,
component design, and implementation. During the requirements analysis stage, you inter-
view users, document systems requirements, and construct a data model. Oftentimes, you
will create prototypes of selected portions of the future system. During the component de-
sign stage, you transform the data model into a relational database design. During the im-
plementation stage, you construct the database, fill it with data, and create queries, forms,
reports, application programs, and Web pages.

In addition to creating a data model, you must also determine data-item data types,
properties, and limits on data values. You also need to document business rules that con-
strain database activity.

The entity-relationship (E-R) model is the most popular tool used to develop a data
model. With the E-R model, entities, which are identifiable things of importance to the us-
ers, are defined. All the entities of a given type form an entity class. A particular entity is
called an instance. Attributes describe the characteristics of entities, and one or more attri-
butes identify an entity.

Relationships are associations among entities. The E-R model explicitly defines rela-
tionships. Each relationship has a name, and there are relationship classes as well as rela-
tionship instances. According to the original specification of the E-R model, relationships
may have attributes; however, this is not common in contemporary data models.

The degree of a relationship is the number of entities participating in the relationship.
Most relationships are binary. The three types of binary relationships are 1:1, 1:N, and
N:M. A recursive relationship occurs when an entity has a relationship to itself.

In traditional E-R diagrams, such as the traditional E-R model, entities are shown in
rectangles and relationships are shown in diamonds. The maximum cardinality of a rela-
tionship is shown inside the diamond. The minimum cardinality is indicated by a hash
mark or an oval.

A weak entity is one whose existence depends on another entity; an entity that is not
weak is called a strong entity. In this text, we further define a weak entity as an entity that
logically depends on another entity. An entity can have a minimum cardinality of one in a
relationship with another entity and not necessarily be a weak entity. ID-dependent entities
must include the identifier of the entity on which the ID-dependent entity depends as part
of the identifier of the ID-dependent entity.

When a data model has one or more attributes that seem to be associated with a rela-
tionship between two entities rather than with either of the entities themselves, an associa-
tive entity (also called an association entity) must be added to the data model. Each of the
original entities will have a 1:N relationship with the associative entity, which will have a
composite primary key consisting of the two primary keys of the original entities. The as-
sociative entity will be ID-dependent on both of the original entities.

M04_KROE1533_08_SE_C04.indd 308 11/21/16 6:34 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 309

The extended E-R model introduced the concept of subtypes. A subtype entity is a
special case of another entity known as its supertype. In some cases, an attribute of the su-
pertype, called a discriminator, indicates which of the subtypes is appropriate for a given
instance. Subtypes can be exclusive (the supertype relates to at most one subtype) or inclu-
sive (the supertype can relate to one or more subtypes). The identifier of the subtype is the
identifier of the supertype.

This text’s E-R diagrams use the Information Engineering Crow’s Foot E-R model.
You should be familiar with diagrams of that style, but you should also realize that when
creating a database design no fundamental difference exists between the traditional style
and this style. When creating a data model, it is important to document business rules that
constrain database activity.

After E-R models are completed, they must be evaluated. You can show the data
model, or portions of the data model, directly to the users for evaluation. This requires the
users to learn how to interpret an E-R diagram. Sometimes, instead of showing users a data
model, you may create prototypes that demonstrate the consequences of the data model.
Such prototypes are easier for users to understand.

KEY TERMS

association entity
associative entity
attribute
binary relationship
cardinality
child entity
component design stage
composite identifier
crow’s foot symbol
data model
database design
database development process
degree
design stage
discriminator
entity
entity class
entity instance
entity-relationship (E-R) diagram
entity-relationship model

exclusive subtype
extended entity-relationship

(E-R) model
HAS-A relationship
ID-dependent entity
identifier
identifying relationship
IE Crow’s Foot model
implementation stage
inclusive subtype
Information Engineering

(IE) model
Integrated Definition 1, Extended

(IDEF1X)
IS-A relationship
mandatory
maximum cardinality
minimum cardinality
nonidentifying relationship
nonunique identifier

optional
parent entity
recursive relationship
relationship
relationship class
relationship instance
requirements analysis stage
strong entity
subtype entity
supertype entity
system design stage
systems development life cycle

(SDLC)
ternary relationship
unary relationship
Unified Modeling Language

(UML)
unique identifier
use case
weak entity

REVIEW QUESTIONS

4.1 Name the three stages in the process of developing database systems. Summarize
the tasks in each.

4.2 What is a data model, and what is its purpose?

4.3 What is a prototype, and what is its purpose?

4.4 What is a use case, and what is its purpose?

4.5 Give an example of a data constraint.

M04_KROE1533_08_SE_C04.indd 309 11/21/16 6:34 PM

310 Part 2 Database Design

4.6 Give an example of a business rule that would need to be documented in a data-
base development project.

4.7 Define the term entity, and give an example other than those used in this book.

4.8 Explain the difference between an entity class and an entity instance.

4.9 Define the term attribute, and give examples for the entity you described in ques-
tion 4.7.

4.10 Define the term identifier, and indicate which attribute(s) defined in your answer to
question 4.9 identifies the entity.

4.11 Define the term composite identifier, and give an example other than those used in
this book.

4.12 Define the term relationship, and give an example other than those used in this
book.

4.13 Explain the difference between a relationship class and a relationship instance.

4.14 Define the term degree of relationship. Give an example, other than one used in this
text, of a relationship greater than degree two.

4.15 List and give an example of the three types of binary relationships other than the
ones used in this book. Draw both a traditional E-R diagram and an IE Crow’s
Foot E-R diagram for each.

4.16 Define the terms maximum cardinality and minimum cardinality.

4.17 Draw an IE Crow’s Foot E-R diagram for the entities DEPARTMENT and
EMPLOYEE and the 1:N relationship between them. Assume that a DEPARTMENT
does not need to have an EMPLOYEE but that every EMPLOYEE is assigned to a
DEPARTMENT. Include appropriate identifiers and attributes for each entity.

 4.18 Define the term ID-dependent entity, and give an example other than one used in
this text. Draw an IE Crow’s Foot E-R diagram for your example.

 4.19 Define the term weak entity, and give an example of a non-ID-dependent weak
entity other than one used in this text. Draw an IE Crow’s Foot E-R diagram for
your example.

 4.20 Explain the ambiguity in the definition of the term weak entity. Explain how this
book interprets this term.

 4.21 Define the term associative entity, and give an example other than one used in this
text. Your example should start with a N:M relationship between two strong enti-
ties and then be modified by an additional data requirement. Draw IE Crow’s Foot
E-R diagrams for both your N:M relationship and for the relationships among the
three entities that include the associative entity.

 4.22 Define the terms supertype, subtype, and discriminator.

 4.23 What is an exclusive subtype relationship? Give an example other than one shown
in this book. Draw an IE Crow’s Foot E-R diagram for your example.

 4.24 What is an inclusive subtype relationship? Give an example other than one shown
in this chapter. Draw an IE Crow’s Foot E-R diagram for your example.

 4.25 Give an example of a recursive relationship other than the one shown in this
chapter. Draw an IE Crow’s Foot E-R diagram for your example.

 4.26 Give an example of a business rule for your work for question 4.17.

 4.27 Describe why it is important to evaluate a data model.

 4.28 Summarize one technique for evaluating a data model and explain how that
technique could be used to evaluate the data model in Figure 4-21(c).

M04_KROE1533_08_SE_C04.indd 310 11/21/16 6:34 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 311

EXERCISES

 4.29 Suppose that Heather Sweeney wants to include records of her consulting services in
her database. Extend the data model in Figure 4-21(c) to include CONSULTING_
PROJECT and DAILY_PROJECT_HOURS entities. CONSULTING_PROJECT
contains data about a particular project for one of Heather’s customers, and
DAILY_PROJECT_HOURS contains data about the hours spent and a descrip-
tion of the work accomplished on a particular day for a particular project. Use
strong and/or weak entities, as appropriate. Specify minimum and maximum cardi-
nalities. Use the IE Crow’s Foot E-R model for your E-R diagram.

 4.30 Extend your work for exercise 4.29 to include supplies that Heather uses on a proj-
ect. Assume that she wants to track the description, price, and amount used of each
supply. Supplies are used on multiple days of a project. Use the IE Crow’s Foot E-R
model for your E-R diagrams.

 4.31 Using recursive relationships, as appropriate, develop a data model of the boxcars
on a railway train. Use the IE Crow’s Foot E-R model for your E-R diagrams.

 4.32 Develop a data model of a genealogical diagram. Model only biological parents; do
not model stepparents. Use the IE Crow’s Foot E-R model for your E-R diagrams.

 4.33 Develop a data model of a genealogical diagram. Model all parents, including step-
parents. Use the IE Crow’s Foot E-R model for your E-R diagrams.

ACCESS WORKBENCH

Key Terms
banded form editor
banded report editor

prototype database
switchboard

Exercises
This chapter’s section of “The Access Workbench” describes how to create two prototype
databases and sample forms. That section details some steps that are new, but you have
done most of the needed steps before. In the following set of exercises, you will:

• Create prototype forms.
• Create prototype reports.

AW.4.1 You have built an extensive database for Wedgewood Pacific (WP.accdb). You
will now use it to build some prototype forms and reports so that the users at WP can
evaluate the proposed database. In this case, there is no need to restructure the database.

A. Create a form that allows users to view and edit employee data. The form should
show information about the employee, the department that he or she works for,
and which projects the employee is assigned to.

B. Create a report that displays the employee information shown on the form you
created in part A. The report should show this information for all users, sorted
alphabetically in ascending order by LastName.

(Continued)

M04_KROE1533_08_SE_C04.indd 311 11/21/16 6:34 PM

312 Part 2 Database Design

C. Create a form that allows users to view and edit project data. The form should
show information about the project and the department that is responsible for the
project, and it should list all employees who are assigned to work on that project.

D. Create a report that displays the project information shown on the form you cre-
ated in part C. The report should show this information for all projects, sorted in
ascending order by ProjectID.

HIGHLINE UNIVERSITY MENTOR PROGRAM CASE QUESTIONS
Highline University is a 4-year undergraduate school located in the Puget Sound region of
Washington State.4 Highline University, like many colleges and universities in the Pacific
Northwest, is accredited by the Northwest Commission on Colleges and Universities
(NWCCU—see www.nwccu.org). Like all the colleges and universities accredited by the
NWCCU, Highline University must be reaccredited at approximately 5-year intervals.
Additionally, the NWCCU requires annual status-update reports. Highline University
is made up of five colleges: the College of Business, the College of Social Sciences and
Humanities, the College of Performing Arts, the College of Sciences and Technology,
and the College of Environmental Sciences. Jan Smathers is the president of Highline
University, and Dennis Endersby is the provost (a provost is a vice president of academics;
the deans of the colleges report to the provost).

A discussion of the design of a college information system for Highline University is
used in Appendix F, “Getting Started with Systems and Analysis and Design,” as an
example of creating data models (discussed in this chapter) and database designs (dis-
cussed in Chapter 5). In this set of case questions, we will consider a different information
system for Highline University, one that will be used by Highline University’s Mentor
Program. The Highline University Mentor Program recruits business professionals as men-
tors for Highline University students. The mentors are unpaid volunteers who work to-
gether with the students’ advisers to ensure that the students in the mentoring program
learn needed and relevant management skills. In this case study, you will develop a data
model for the Mentor Program Information System.

A. Draw an E-R data model for the Highline University Mentor Program Information
System (MPIS). Use the IE Crow’s Foot E-R model for your E-R diagrams. Justify the
decisions you make regarding minimum and maximum cardinalities.

Your model should track students, advisers, and mentors. Additionally, Highline
University needs to track alumni because the program administrators view alumni as
potential mentors.

1. Create separate entities for students, alumni, faculty advisers, and mentors.

• At Highline University, all students are required to live on campus and are assigned
Highline University ID numbers and email accounts in the format FirstName.
LastName@students.hu.edu. The student entity should track student last name, stu-
dent first name, student University ID number, student email address, dorm name,
dorm room number, and dorm phone number.

4Highline University is a fictional university and should not be confused with Highline Community
College located in Des Moines, Washington. Any resemblance between Highline University and Highline
Community College is unintentional and purely coincidental.

M04_KROE1533_08_SE_C04.indd 312 11/21/16 6:34 PM

http://www.nwccu.org
mailto:FirstName.LastName@students.hu.edu
mailto:FirstName.LastName@students.hu.edu

Chapter 4 Data Modeling and the Entity-Relationship Model 313

• At Highline University, all faculty advisers have on-campus offices and are assigned
Highline University ID numbers and email accounts in the format FirstName.
LastName@hu.edu. The faculty entity should track faculty last name, faculty first
name, faculty University ID number, faculty email address, department, office
building name, office building room number, and office phone number.

• Highline University alumni live off campus and were previously assigned Highline
University ID numbers. Alumni have private email accounts in the format
FirstName.LastName@somewhere.com. The alumni entity should track alumnus last
name, alumnus first name, alumnus former-student number, email address, home
address, home city, home state, home ZIP code, and phone number.

• Highline University mentors work for companies and use their company address,
phone, and email address for contact information. They do not have Highline
University ID numbers as mentors. Email addresses are in the format FirstName.
LastName@companyname.com. The mentor entity should track mentor last name,
mentor first name, mentor email address, company name, company address,
company city, company state, company ZIP code, and company phone number.

2. Create relationships between entities based on the following facts:

• Each student is assigned one and only one faculty adviser and must have an adviser. One
faculty member may advise several students, but faculty members are not required to
advise students. Only the fact of this assignment is to be recorded in the data model—
not possible related data (such as the date the adviser was assigned to the student).

• Each student may be assigned one and only one mentor, but students are not re-
quired to have a mentor. One mentor may mentor several students, and a person
may be listed as a mentor before he or she is actually assigned students to men-
tor. Only the fact of this assignment is to be recorded in the data model—not
possible related data (such as the date the mentor was assigned to the student).

• Each mentor is assigned to work and coordinate with one and only one faculty mem-
ber, and each mentor must work with a faculty member. One faculty member may
work with several mentors, but faculty members are not required to work with men-
tors. Only the fact of this assignment is to be recorded in the data model—not pos-
sible related data (such as the date the faculty member was assigned to the mentor).

• Each mentor may be an alumnus, but mentors are not required to be alumni.
Alumni cannot, of course, be required to become mentors.

B. Revise the E-R data model you created in part A to create a new E-R data model based
on the fact that students, faculty, alumni, and mentors are all a PERSON. Use the IE
Crow’s Foot E-R model for your E-R diagrams. Justify the decisions you make regard-
ing minimum and maximum cardinalities. Note that while the following business rules
need to be implemented in your design, the E-R model notation may not be able to
express them, in which case you will need to add text notes to your diagram indicating
which rules will be to be enforced in SQL structures or application code (alternatively,
write a memo to accompany your E-R diagram that contains these notes). The relevant
business rules are:

• A person may be a current student, an alumnus, or both because Highline
University does have alumni return for further study.

• A person may be a faculty member or a mentor, but not both.
• A person may be a faculty member and an alumnus.
• A person may be a mentor and an alumnus.
• A current student cannot be a mentor.
• Each mentor may be an alumnus, but mentors are not required to be alumni.

Alumni cannot, of course, be required to become mentors.

M04_KROE1533_08_SE_C04.indd 313 11/21/16 6:34 PM

mailto:FirstName.LastName@hu.edu
mailto:FirstName.LastName@somewhere.com
mailto:FirstName.LastName@companyname.com
mailto:FirstName.LastName@hu.edu
mailto:FirstName.LastName@companyname.com

314 Part 2 Database Design

C. Extend and modify the E-R data model you created in part B to allow more data to
be recorded in the MPIS system. Use the IE Crow’s Foot E-R model for your E-R dia-
grams. Justify the decisions you make regarding minimum and maximum cardinalities.
The MPIS needs to record:

• The date a student enrolled at Highline University, the date the student gradu-
ated, and the degree the student received

• The date an adviser was assigned to a student and the date the assignment ended
• The date an adviser was assigned to work with a mentor and the date the

assignment ended
• The date a mentor was assigned to a student and the date the assignment ended

D. Write a short discussion of the difference between the three data models you have cre-
ated. How does data model B differ from data model A, and how does data model C
differ from data model B? What additional features of the E-R data model were intro-
duced when you created data models B and C?

WRITER’S PATROL CASE QUESTIONS
Consider the Writer’s Patrol traffic citation shown in Figure 4-22. The rounded corners on
this form provide visual hints about the boundaries of the entities represented.

A. Draw an E-R data model based on the traffic citation form. Use five entities, create
identifiers (watch out for any composite identifiers that may be needed, and you can
use surrogate identifiers if appropriate), and use the data items on the form to specify
attributes for the entities. Use the IE Crow’s Foot E-R model for your E-R diagram.

X

WRITER’S PATROL CORRECTION NOTICE

Kroenke

5053 88 Ave SE

Mercer Island Wa 98040
00000

AAA000 Wa

11 7 2016 935 2 17

17 E Enumckum SR410

Writing text while driving

S Scott 850

90 900Saab

Wa 2/27 46 6 165 Bl

David M

FIGURE 4-22

Writer’s Patrol Traffic
Citation

M04_KROE1533_08_SE_C04.indd 314 11/21/16 6:34 PM

Chapter 4 Data Modeling and the Entity-Relationship Model 315

B. Specify relationships among the entities. Name the relationships, and specify the re-
lationship types and cardinalities. Justify the decisions you make regarding minimum
and maximum cardinalities, indicating which cardinalities can be inferred from the
data on the form and which need to be checked out with the system users.

 GARDEN GLORY PROJECT QUESTIONS

Garden Glory wants to expand its database applications beyond the recording of prop-
erty services. The company still wants to maintain data on owners, properties, employees,
services, and the service work done at the properties, but it wants to include other data as
well. Specifically, Garden Glory wants to track equipment, how it is used during services,
and equipment repairs. In addition, employees need to be trained before they use certain
equipment, and management wants to be able to determine who has obtained training on
which equipment.

With regard to properties, Garden Glory has determined that most of the properties it
services are too large and complex to be described in one record. The company wants the
database to allow for many subproperty descriptions of a property. Thus, a particular prop-
erty might have subproperty descriptions such as Front Garden, Back Garden, Second-
Level Courtyard, and so on. For better accounting to the customers, services are to be
related to the subproperties rather than to the overall property.

A. Draw an E-R data model for the Garden Glory database schema shown in Chapter 3’s
“Garden Glory Project Questions.” Use the IE Crow’s Foot E-R model for your
E-R diagrams. Justify the decisions you make regarding minimum and maximum
cardinalities.

B. Extend and modify the E-R data model to meet Garden Glory’s new requirements. Use
the IE Crow’s Foot E-R model for your E-R diagrams. Create appropriate identifiers
and attributes for each entity. Justify the decisions you make regarding minimum and
maximum cardinalities.

C. Describe how you would go about validating the model in part B.

 JAMES RIVER JEWELRY PROJECT QUESTIONS

The James River Jewelry project questions are available in Appendix D, which can be
downloaded from the textbook’s Web site: www.pearsonhighered.com/kroenke.

 THE QUEEN ANNE CURIOSITY SHOP PROJECT QUESTIONS

The Queen Anne Curiosity Shop wants to expand its database applications beyond the
current recording of sales. The company still wants to maintain data on customers, employ-
ees, vendors, sales, and items, but it wants to (a) modify the way it handles inventory and
(b) simplify the storage of customer and employee data.

Currently, each item is considered unique, which means the item must be sold as a
whole, and multiple units of the item in stock must be treated as separate items in the
ITEM table. The Queen Anne Curiosity Shop management wants the database modified
to include an inventory system that will allow multiple units of an item to be stored under
one ItemID. The system should allow for a quantity on hand, a quantity on order, and an
order due date. If the identical item is stocked by multiple vendors, the item should be

M04_KROE1533_08_SE_C04.indd 315 11/21/16 6:34 PM

http://www.pearsonhighered.com/kroenke

316 Part 2 Database Design

orderable from any of these vendors. The SALE_ITEM table should then include Quantity
and ExtendedPrice columns to allow for sales of multiple units of an item.

The Queen Anne Curiosity Shop management has noticed that some of the fields
in CUSTOMER and EMPLOYEE store similar data. Under the current system, when
an employee buys something at the store, his or her data has to be reentered into the
CUSTOMER table. The managers would like to have the CUSTOMER and EMPLOYEE
tables redesigned using subtypes.

A. Draw an E-R data model for The Queen Anne Curiosity Shop database schema shown
in Chapter 3’s “The Queen Anne Curiosity Shop Project Questions.” Use the IE
Crow’s Foot E-R model for your E-R diagrams. Justify the decisions you make regard-
ing minimum and maximum cardinalities.

B. Extend and modify the E-R data model by adding only The Queen Anne Curiosity
Shop’s inventory system requirements. Use the IE Crow’s Foot E-R model for your
E-R diagrams. Create appropriate identifiers and attributes for each entity. Justify the
decisions you make regarding minimum and maximum cardinalities.

C. Extend and modify the E-R data model by adding only The Queen Anne Curiosity
Shop’s need for more efficient storage of CUSTOMER and EMPLOYEE data. Use
the IE Crow’s Foot E-R model for your E-R diagrams. Create appropriate identifiers
and attributes for each entity. Justify the decisions you make regarding minimum and
maximum cardinalities.

D. Combine the E-R data models from parts B and C to meet all of The Queen Anne
Curiosity Shop’s new requirements, making additional modifications, as needed. Use
the IE Crow’s Foot E-R model for your E-R diagrams.

E. Describe how you would go about validating your data model in part D.

M04_KROE1533_08_SE_C04.indd 316 11/21/16 6:34 PM

317

I n Chapter 4, we defined the database development process as consist-
ing of three major stages: requirements analysis, component design, and
implementation. We then discussed the requirements analysis stage and

how to create a data model in entity-relationship (E-R) notation. This chapter
describes a process for converting an E-R data model into a relational data-
base design. We begin by explaining how data model entities are expressed
as relations (or tables) in a relational database design. We then apply the nor-
malization process that you learned in Chapter 2. Next, we show how to rep-
resent relationships using foreign keys, including how to use these techniques
for representing recursive relationships. Finally, we apply all these techniques
to design a database for the data model of Heather Sweeney Designs that we
developed in Chapter 4.

Database design occurs in the component design step of the systems
development life cycle (SDLC). For an introduction to systems analysis and
design and to the SDLC, see Appendix F, “Getting Started with Systems
Analysis and Design.”

 ■ Learn how to transform E-R data models into relational
designs

 ■ Practice applying the normalization process

 ■ Understand the need for denormalization

 ■ Learn how to represent weak entities with the relational
model

 ■ Know how to represent 1:1, 1:N, and N:M binary
relationships

 ■ Know how to represent 1:1, 1:N, and N:M recursive
relationships

 ■ Learn SQL statements for creating joins over binary and
recursive relationships

CHAPTER OBJECTIVES

5CHAPTE
R

Database Design

M05_KROE1533_08_SE_C05.indd 317 11/21/16 6:36 PM

318 Part 2 Database Design

Books on systems analysis and design often identify three design stages:

• Conceptual design (conceptual schema)
• Logical design (logical schema)
• Physical design (physical schema)

The database design we are discussing is basically equivalent to logical design,
which is defined in these books as the conceptual design as modified to be
implemented in a specific DBMS product. The physical design deals with
aspects of the database encountered when it is actually implemented in the
DBMS, such as physical record and file structure and organization, index-
ing, and query optimization. However, our discussion of database design will
include data type specifications, which is often considered a physical design
issue in systems analysis and design.

BTW

1The transformation is actually a bit more complex than this when you consider the need to enforce mini-
mum cardinalities. Although the referential integrity constraints (with ON UPDATE and ON DELETE)
handle some parts of this, application logic is required to handle other parts, and that is beyond the scope
of this book. See David M. Kroenke and David J. Auer, Database Processing: Fundamentals, Design, and
Implementation, 14th ed. (Upper Saddle River, NJ: Prentice Hall, 2016), Chapter 6.

As you learned in Chapter 2, the technically correct term for the representation
of an entity in a relational model is relation. However, the use of the synonym
table is common, and we use it in this chapter. Just remember that the two
terms mean the same thing when used to discuss databases.

BTW

A database design is a set of database specifications that can actually be implemented as a
database in a DBMS. The data model we discussed in Chapter 4 is a generalized, non-
DBMS-specific design. A database design, on the other hand, is a DBMS-specific design in-
tended to be implemented in a DBMS product such as Microsoft SQL Server 2016 or
MySQL 5.7. Because each DBMS product has its own way of doing things, even if based
on the same relational database model and the same SQL standards, each database design
must be created for a particular DBMS product. The same data model will result in slightly
different database designs depending upon the intended DBMS product.

THE PURPOSE OF A DATABASE DESIGN

The steps for transforming a data model into a database design are shown in Figure 5-1.
First, we create a table for each entity in the data model, including creating a primary key
and specifying column properties. Then we make sure that each of the tables is properly
normalized. Finally, we create the relationships between the tables.1

TRANSFORMING A DATA MODEL INTO A DATABASE DESIGN

M05_KROE1533_08_SE_C05.indd 318 11/21/16 6:36 PM

Chapter 5 Database Design 319

 1. Create a table for each entity:

 – Specify primary key (consider surrogate keys as appropriate)

 – Specify properties for each column:

 • Data type

 • Null status

 • Default value (if any)

 • Specify data constraints (if any)

 – Verify normalization

 2. Create relationships by placing foreign keys:

 – Strong entity relationships (1:1, 1:N, N:M)

 – ID-dependent and non–ID-dependent weak entity relationships

 – Subtypes

 – Recursive (1:1, 1:N, N:M)

FIGURE 5-1

The Steps for
Transforming a Data
Model into a Database
Design

The representation of entities using the relational model is direct and straightforward.
First, you define a table for each entity and give that table the same name as the entity. You
make the primary key of the relation the identifier of the entity. Then you create a column
in the relation for each attribute in the entity. Finally, you apply the normalization process
described in Chapter 2 to remove any modification anomalies. To understand this process,
we will consider three examples.

Representing the ITEM Entity
Consider the ITEM entity shown in Figure 5-2(a), which contains the attributes
ItemNumber, Description, Cost, ListPrice, and QuantityOnHand. To represent this entity
with a table, we define a table named ITEM and place the attributes in it as columns in the
relation. ItemNumber is the identifier of the entity and becomes the primary key of the ta-
ble. The result is shown in Figure 5-2(b), where a key symbol identifies the primary key.
The ITEM table can also be written as:

ITEM (ItemNumber, Description, Cost, ListPrice, QuantityOnHand)

Note that in this notation the primary key of the table is underlined.

REPRESENTING ENTITIES WITH THE RELATIONAL MODEL

ITEM

ItemNumber

Description
Cost
ListPrice
QuantityOnHand

ITEM

ItemNumber

Description
Cost
ListPrice
QuantityOnHand

(a) The ITEM Entity (b) The ITEM Table

FIGURE 5-2

The ITEM Entity and
Table

M05_KROE1533_08_SE_C05.indd 319 11/21/16 6:36 PM

320 Part 2 Database Design

Surrogate Keys The ideal primary key is short, numeric, and nonchanging. Item-
Number meets these criteria. However, if the primary key does not meet these criteria,
a DBMS-generated surrogate key should be used. Surrogate key values are numeric, are
unique within a table, and never change. These keys are assigned when a row is created and
removed when the row is deleted—the numbers are never reused. Surrogate keys would be
ideal primary keys except for a couple of considerations.

First, the numbers generated have no intrinsic meaning. For example, if surrogate key
values are used as the values of ItemNumber in the ITEM table, you cannot interpret them
in a meaningful way. Second, although the surrogate key values may not be duplicated
within a table, they may not be unique between two databases. Consider two databases,
each of which has an ITEM table with the surrogate ID of ItemNumber. If the data from
these databases are ever shared, this may present a problem. Nonetheless, surrogate keys
are very useful and are commonly used as ID numbers in tables.

Column Properties Note that each attribute in the ITEM entity has become a column
in the ITEM table. You need to specify certain column properties for each column, as men-
tioned in the discussion of attributes at the end of Chapter 4. These include data types, null
status, default values, and any constraints on the values.

Data Types Each DBMS supports certain data types. (Data types for SQL Server 2016,
MySQL 5.7, and Oracle Database XE were discussed in Chapter 3, and data types for
Microsoft Access 2016 were discussed in Chapter 1.) For each column, you indicate exactly
what type of data will be stored in that column. Data types are usually set when the table is
actually created in the database, as discussed in Chapter 3.

NULL Status Next, you need to decide which column must have data values entered when
a new row is created in the table. If a column must have a data value entered, then this col-
umn will be designated NOT NULL. If the value can be left empty, then the column will be
designated NULL. The NULL status—NULL or NOT NULL—of the column is usually
set when the table is actually created in the database, as discussed in Chapter 3.

You have to be careful here: If you specify columns as NOT NULL when you do not
know the data value at the time the row is being created, you will not be able to create the
row. For this reason, some columns that may appear to you as needing to be NOT NULL
must actually be specified as NULL. This data will be entered, but not at the exact moment
the row is created in the table.

For the ITEM table, you set only ListPrice as NULL. This is a number that may not
have been determined by management at the time data on an ITEM are entered into the
database. All other columns should have known values at the time a row is created and are
NOT NULL.

Default Values A default value is a value that the DBMS automatically supplies when a
new row is created. The default value may be a static value (one that remains the same) or
one calculated by application logic. In this book, we deal with only static values. Default
values are usually set when the table is actually created in the database, as discussed in
Chapter 3. In the ITEM table, you should specify a default of 0 for QuantityOnHand. This
will indicate that the ITEM is out of stock until this value is updated.

Data Constraints The data values in some columns may be subject to restrictions on the
values that can exist in those columns. Such limitations are called data constraints. An
example we have already seen is the referential integrity constraint, which states that the
only values allowed in a foreign key column are values already existing in the corresponding
primary key column in the related table. Data constraints are usually set when the table is
actually created in the database, as discussed in Chapter 3. In the ITEM table, one needed
data constraint is (ListPrice > Cost), which ensures that you do not inadvertently sell an
ITEM for less than you paid for it.

M05_KROE1533_08_SE_C05.indd 320 11/21/16 6:36 PM

Chapter 5 Database Design 321

Verifying Normalization Finally, you need to verify that the ITEM table is properly
normalized because the table resulting from converting an entity sometimes has modifica-
tion problems. Therefore, the next step is to apply the normalization process from Chapter 2,
and we strongly suggest that at this point you review the normalization definitions and pro-
cesses discussed in that chapter so that you are familiar with them before proceeding with
our discussion of normalization.

In the case of ITEM, the only candidate key is the primary key, which is ItemNumber,
and no other functional dependencies exist. Therefore, the ITEM table is normalized to
Boyce-Codd Normal Form (BCNF). The final ITEM table, with column types, surrogate
key indicator, and NULL/NOT NULL constraints indicated, is shown in Figure 5-3.
Generally, we do not show this much detail in the illustrations of tables in this chapter, but
note that these types of details are available in commercial database design programs and
can usually be displayed as needed.

Representing the CUSTOMER Entity
To understand an entity that gives rise to modification problems, consider the CUSTOMER
entity in Figure 5-4(a). If you transform the entity as just described, you obtain the table
shown in Figure 5-4(b):

CUSTOMER (CustomerNumber, CustomerName, StreetAddress, City, State, ZIP,
ContactName, Phone)

CustomerNumber is the key of the relation, and you can assume that you have done all the
necessary work on column definition.

According to the normalization process (see page 89), you need to check for functional
dependencies besides those involving the primary key. At least one exists:2

ZIP S (City, State)

ITEM

ItemNumber: int IDENTITY(10000,1)

Description: varchar(100) NOT NULL
Cost: numeric(9,2) NOT NULL
ListPrice: numeric(9,2) NULL
QuantityOnHand: int NOT NULL

FIGURE 5-3

The Final ITEM Table

2While the example of ZIP determining City and State is a commonly used and very understandable ex-
ample, a five-digit ZIP code (as commonly used instead of a nine-digit number) does not, in fact, determine
City and State! There are cases of one ZIP code determining more than one city and state. For example,
both Sparta, IL, and Eden, IL, have the ZIP code 62286.

CUSTOMER

CustomerNumber

CustomerName
StreetAddress
City
State
ZIP
ContactName
Phone

(a) The CUSTOMER Entity

CUSTOMER

CustomerNumber

CustomerName
StreetAddress
City
State
ZIP
ContactName
Phone

(b) The CUSTOMER Table

FIGURE 5-4

The CUSTOMER Entity
and Table

M05_KROE1533_08_SE_C05.indd 321 11/28/16 4:38 PM

322 Part 2 Database Design

The only candidate key in CUSTOMER is CustomerNumber. ZIP is not a candidate key
for this relation; therefore, this relation is not normalized. Furthermore, another possible
functional dependency involves Phone. Is Phone the phone number of the CUSTOMER,
or is it the phone number of the contact? If PhoneNumber is the phone number of the
CUSTOMER, then:

CustomerNumber S Phone

and no additional normalization problem exists. However, if the PhoneNumber is that of
the contact, then:

ContactName S Phone

and because ContactName is not a candidate key, there are modification problems here
as well.

You can determine whose phone number it is by asking the users. Assume that you do
that, and the users say that it is indeed the phone number of the contact. Thus:

ContactName S Phone

Given these facts, you can proceed to normalize the CUSTOMER table. According to the
normalization process, you pull the attributes of the functional dependencies out of the ta-
bles while leaving a copy of their determinants in the original relation as foreign keys. The
result is the three relations shown in Figure 5-5:

CUSTOMER (CustomerNumber, CustomerName, StreetAddress, ZIP,
ContactName)

ZIP (ZIP, City, State)
CONTACT (ContactName, Phone)

with the referential integrity constraints:

ZIP in CUSTOMER must exist in ZIP in ZIP
ContactName in CUSTOMER must exist in ContactName in CONTACT

CONTACT

ContactName

Phone

ZIP

ZIP

City

State

CUSTOMER

CustomerNumber

CustomerName

StreetAddress

ZIP

ContactName

ZIP
is a foreign key referencing
ZIP in ZIP

ContactName
is a foreign key referencing
ContactName in CONTACT

FIGURE 5-5

The Normalized CUSTOMER and Associated Tables

M05_KROE1533_08_SE_C05.indd 322 11/21/16 6:36 PM

Chapter 5 Database Design 323

These three relations are now normalized, and you can continue with the design process.
However, let us first consider another perspective on normalization.

Denormalization
It is possible to take normalization too far. Most practitioners would consider the construc-
tion of a separate ZIP table to be going too far. People are accustomed to writing their city,
state, and ZIP as a group, and breaking City and State away from ZIP will make the design
difficult to use. It will also mean that the DBMS has to read two separate tables just to get
the customer’s address. Therefore, even though it results in normalization problems, a bet-
ter overall design would result by leaving ZIP, City, and State in the CUSTOMER relation.
This is an example of denormalization.

What are the consequences of this decision to denormalize? Consider the three basic
operations: insert, update, and delete. If you leave ZIP, City, and State in CUSTOMER,
then you will not be able to insert data for a new ZIP code until a customer has that ZIP
code. However, you will never want to do that. You only care about ZIP code data when
one of the customers has that ZIP code. Therefore, leaving the ZIP data in CUSTOMER
does not pose problems when inserting.

What about modifications? If a city changes its ZIP code, then you might have to
change multiple rows in CUSTOMER. How frequently do cities change their ZIP codes,
though? Because the answer is almost never, updates in the denormalized relation are not a
problem. Finally, what about deletes? If only one customer has the ZIP data (80210,
Denver, Colorado), then if you delete that customer you will lose the fact that 80210 is in
Denver. This does not really matter because when another customer with this ZIP code is
inserted that customer also will provide the city and state.

Therefore, denormalizing CUSTOMER by leaving the attributes ZIP, City, and State in
the relation will make the design easier to use and not cause modification problems. The
denormalized design is better, and it is shown in Figure 5-6:

CUSTOMER (CustomerNumber, CustomerName, StreetAddress, City, State, ZIP,
ContactName)

CONTACT (ContactName, Phone)

with the referential integrity constraints:

ContactName in CUSTOMER must exist in ContactName in CONTACT

CONTACT

ContactName

Phone

CUSTOMER

CustomerNumber

CustomerName

StreetAddress

City

State

ContactName
is a foreign key referencing
ContactName in CONTACT

ZIP

ContactName

FIGURE 5-6

The Denormalized
CUSTOMER and
Associated CONTACT
Tables

M05_KROE1533_08_SE_C05.indd 323 11/21/16 6:36 PM

324 Part 2 Database Design

The need for denormalization can also arise for reasons such as security and perfor-
mance. If the cost of modification problems is low (as for ZIP codes) and if other factors
cause denormalized relations to be preferred, then denormalizing is a good idea.

A Relational Design for the SALES_COMMISSION Entity
To summarize the discussion so far, when representing an entity with the relational model
the first step is to construct a table that has all the entity’s attributes as columns. The identi-
fier of the entity becomes the primary key of the table, and we define the column con-
straints. Then the table is normalized. A reason might exist for leaving parts of a table
denormalized.

By proceeding in this way, we always consider the normalized design. If we make a de-
cision to denormalize, we then do so from a position of knowledge and not from
ignorance.

To reinforce these ideas, let us consider a third example: the SALES_COMMISSION
entity in Figure 5-7(a). First, you create a relation that has all the attributes as columns, as
shown in Figure 5-7(b):

SALES_COMMISSION (SalespersonNumber, SalespersonLastName,
SalespersonFirstName, Phone, CheckNumber, CheckDate, CommissionPeriod,
TotalCommissionSales, CommissionAmount, BudgetCategory)

As shown, the primary key of the table is CheckNumber, the identifier of the entity. The
attributes of the relation have three additional functional dependencies:

SalespersonNumber S
(SalespersonLastName, SalespersonFirstName, Phone, BudgetCategory)

CheckNumber S CheckDate
(SalespersonNumber, CommissionPeriod) S

(TotalCommissionSales, CommissionAmount, CheckNumber, CheckDate)

According to the normalization process, you extract the attributes of these functional
dependencies from the original table and make the determinants the primary keys of the
new tables. You also leave a copy of the determinants in the original table as foreign keys.

SALES_COMMISSION

CheckNumber

SalespersonNumber
SalespersonLastName
SalespersonFirstName
Phone
CheckDate
CommissionPeriod
TotalCommissionSales
CommissionAmount
BudgetCategory

(a) The SALES_COMMISSION Entity

SALES_COMMISSION

CheckNumber

SalespersonNumber
SalespersonLastName
SalespersonFirstName
Phone
CheckDate
CommissionPeriod
TotalCommissionSales
CommissionAmount
BudgetCategory

(b) The SALES_COMMISSION Table

FIGURE 5-7

The SALES_
COMMISSION Entity
and Table

M05_KROE1533_08_SE_C05.indd 324 11/21/16 6:36 PM

Chapter 5 Database Design 325

The only complication in this case is that the name of the original table actually makes
more sense when used for one of the new tables that has been created! The original table,
given the primary key CheckNumber, should actually be called COMMISSION_CHECK,
and it has been renamed as such in the normalization results shown in Figure 5-8:

SALESPERSON (SalespersonNumber, SalespersonLastName, SalespersonFirstName,
 Phone, BudgetCategory)
SALES_COMMISSION (SalespersonNumber, CommissionPeriod,

TotalCommissionSales,
 CommissionAmount, CheckNumber)
COMMISSION_CHECK (CheckNumber, CheckDate)

with the referential integrity constraints:

SalespersonNumber in SALES_COMMISSION must exist in SalespersonNumber in
SALESPERSON

CheckNumber in SALES_COMMISSION must exist in CheckNumber in
COMMISSION_CHECK

Now consider denormalization. Is there any reason not to create these new relations?
Is the design better if you leave them in the COMMISSION_CHECK relation (the re-
named SALES_COMMISSION relation)? In this case, there is no reason to denormalize,
so you leave the normalized relations alone.

Representing Weak Entities
The process described so far works for all entity types, but weak entities sometimes require
special treatment. Recall that a weak entity logically depends on another entity. In
Figure 5-8, SALES_COMMISSION is an ID-dependent weak entity that depends on
SALESPERSON for its existence. In this model, there cannot be a SALES_COMMISSION
without a SALESPERSON. Also note that in Figure 5-8 we consider COMMISSION_
CHECK to be a strong entity because once the check is written it has a separate, physical
existence of its own, just like a SALESPERSON (an alternate conceptualization would

SALESPERSON

SalespersonNumber

SalespersonLastName
SalespersonFirstName
Phone
BudgetCategory

SALES_COMMISSION

SalespersonNumber

CommissionPeriod

TotalCommissionSales

SalespersonNumber is a foreign key referencing
SalespersonNumber in SALESPERSON

SALES_COMMISSION is ID-dependent on SALESPERSON

CheckNumber is a foreign key referencing CheckNumber
in COMMISSION_CHECK

CommissionAmount
CheckNumber

COMMISSION_CHECK

CheckNumber

CheckDate

FIGURE 5-8

The Normalized SALES_COMMISSION and Associated Tables

M05_KROE1533_08_SE_C05.indd 325 11/21/16 6:36 PM

326 Part 2 Database Design

require an additional CHECKING_ACCOUNT entity as the strong entity with CHECK
as an ID-dependent weak entity, in which case the composite primary key of CHECK
would be used as the foreign key in SALES_COMMISSION).

If a weak entity is not ID-dependent, it can be represented as a table, using the tech-
niques just described. The dependency needs to be recorded in the relational design so that
no application will create a weak entity without its proper parent (the entity on which the
weak entity depends). Finally, a business rule will need to be implemented so that when the
parent is deleted the weak entity is also deleted. These rules are part of the relational design
and, in this case, take the form of an ON DELETE CASCADE constraint on the weak,
non–ID-dependent table.

The situation is slightly different if a weak entity is also ID-dependent. This is the case
in the dependence of SALES_COMMISSION on SALESPERSON because each SALES_
COMMISSION is identified by the SALESPERSON who made the sale. When creating a
table for an ID-dependent entity, we must ensure that the identifier of the parent and the
identifier of the ID-dependent weak entity itself appear in the table. For example, consider
what would happen if you established the table for SALES_COMMISSION without in-
cluding the key of SALESPERSON. What would be the key of this table? It would be just
CommissionPeriod, but because SALES_COMMISSION is ID-dependent, this is not a
complete key. In fact, without the needed reference to SALESPERSON included,
CommissionPeriod by itself cannot be the primary key because this table would likely have
duplicate rows. (This would happen if two occurrences of a specific CommissionPeriod
had the same TotalCommissionSales in the same BudgetCategory, which could happen be-
cause this table records data for more than one SALESPERSON.) Thus, for an
ID-dependent weak entity it is necessary to add the primary key of the parent entity to the
weak entity’s table, and this added attribute becomes part of that table’s key. In Figure 5-8,
note that SALES_COMMISSION has the correct composite primary key
(SalespersonNumber, CommissionPeriod).

As another example, consider Figure 5-9(a), where LINE_ITEM is an ID-dependent
weak entity. It is weak because its logical existence depends on INVOICE, and it is
ID-dependent because its identifier contains the identifier of INVOICE. Again, consider
what would happen if you established a relation for LINE_ITEM without including the
key of INVOICE. What would be the key of this relation? It would be just LineNumber,
but because LINE_ITEM is ID-dependent that cannot be a complete key. Without the
needed reference to ITEM included, LINE_ITEM, like SALESPERSON_SALES in the
previous example, would likely have duplicate rows. (This would happen if two invoices

INVOICE
InvoiceNumber
InvoiceDate
PaymentType
Subtotal
Tax
Total

LINE_ITEM
InvoiceNumber
LineNumber
Quantity
UnitPrice
Total

(a) Example ID-Dependent Weak Entity Data Model

INVOICE
InvoiceNumber

InvoiceDate
PaymentType
Subtotal
Tax
Total

LINE_ITEM
InvoiceNumber
LineNumber

Quantity

InvoiceNumber
is a foreign key referencing
InvoiceNumber in INVOICE

LINE_ITEM
is ID-dependent on INVOICE

UnitPrice
Total

(b) The LINE_ITEM Table with the Correct Primary Key

FIGURE 5-9

Relational Representation of an ID-Dependent Weak Entity

M05_KROE1533_08_SE_C05.indd 326 11/21/16 6:36 PM

Chapter 5 Database Design 327

had the same quantity of the same item on the same line.) Figure 5-9(b) shows LINE_
ITEM with the correct composite primary key (InvoiceNumber, LineNumber). Note that
the tables in Figure 5-9(b) are intentionally shown without a relationship—we will discuss
adding relationships in the next section.

So far, you have learned how to create a relational design for the entities in an E-R model.
However, to convert a data model to a relational design we must also represent the relation-
ships by placing foreign keys into tables.

The techniques used to represent E-R relationships depend on the maximum cardinality
of the relationships. As you saw in Chapter 4, three relationship possibilities exist: one-to-
one (1:1), one-to-many (1:N), and many-to-many (M:N). A fourth possibility, many-to-one
(N:1), is represented in the same way as 1:N, so we need not consider it as a separate case.
The following sections foreign key placement in various types of relationships.

Relationships Between Strong Entities
The easiest relationships to work with are relationships between strong entities. We will
start with these and then consider other types of relationships.

Representing 1:1 Strong Entity Relationships The simplest form of a binary
relationship is a 1:1 relationship, in which an entity of one type is related to at most one enti-
ty of another type. In Figure 5-10(a), the same 1:1 relationship that was used in Figure 4-5(a)
between EMPLOYEE and LOCKER is shown in IE Crow’s Foot notation. According to
this diagram, an employee is assigned at most one locker, and a locker is assigned to at most
one employee.

REPRESENTING RELATIONSHIPS

EMPLOYEE
EmployeeNumber

LastName
FirstName
O
ceNumber
O
cePhone

LOCKER
LockerNumber
LockerRoom
LockerSize
EmployeeNumber (FK)

(c) Placing the Primary Key of EMPLOYEE into LOCKER

EMPLOYEE
EmployeeNumber

LastName
FirstName
O
ceNumber
O
cePhone

LOCKER
LockerNumber

(a) Example 1:1 Strong Entity Relationship

LockerRoom
LockerSize

EMPLOYEE
EmployeeNumber
LastName
FirstName
O
ceNumber
O
cePhone
LockerNumber (FK)

LOCKER
LockerNumber

LockerRoom
LockerSize

(b) Placing the Primary Key of LOCKER into EMPLOYEE

FIGURE 5-10

1:1 Strong Entity
Relationships

M05_KROE1533_08_SE_C05.indd 327 11/21/16 6:36 PM

328 Part 2 Database Design

Representing a 1:1 relationship with the relational model is straightforward. First, each
entity is represented with a table as just described, and then the key of one of the tables is
placed in the other as a foreign key. In Figure 5-10(b), the key of LOCKER is stored in
EMPLOYEE as a foreign key, and you create the referential integrity constraint:

LockerNumber in EMPLOYEE must exist in LockerNumber in LOCKER

In Figure 5-10(c), the key of EMPLOYEE is stored in LOCKER as a foreign key, and
you create the referential integrity constraint:

EmployeeNumber in LOCKER must exist in EmployeeNumber in EMPLOYEE

In general, for a 1:1 relationship the key of either table can be placed as a foreign key in the
other table. To verify that this is so, consider both cases in Figure 5-10. Suppose that for the
design in Figure 5-10(b) you have an employee and want the locker assigned to that em-
ployee. To get the employee data, you use EmployeeNumber to obtain the employee’s row
in EMPLOYEE. From this row, you obtain the LockerNumber of the locker assigned to
that employee. You then use that number to look up the locker data in LOCKER.

Now consider the other direction. Assume that you have a locker and want to know
which employee is assigned to that locker. Using the design in Figure 5-10(b), you access
the EMPLOYEE table and look up the row that has the given LockerNumber. The data of
the employee who has been assigned that locker appears in that row.

You take similar actions to travel in either direction for the alternative design in which
the foreign key of EmployeeNumber is placed in LOCKER, as shown in Figure 5-10(c).
Using this design, to go from EMPLOYEE to LOCKER you go directly to the LOCKER
table and look up the row in LOCKER that has the given employee’s number as its value of
EmployeeNumber. To travel from LOCKER to EMPLOYEE, you look up the row in
LOCKER that has a given LockerNumber. From this row, you extract the EmployeeNumber
and use it to access the employee data in EMPLOYEE.

In this situation, we are using the term look up to mean “to find a row given a value of
one of its columns.” Another way to view this is in terms of joins. For the relations in
Figure 5-10(b), you can form the following join:

/* *** EXAMPLE CODE-DO NOT RUN *** */

/* *** SQL-QUERY-CH05-01 *** */

SELECT *

FROM EMPLOYEE, LOCKER

WHERE EMPLOYEE.LockerNumber=LOCKER.LockerNumber;

Because the relationship is 1:1, the result of this join will have a single row for a given com-
bination of employee and locker. The row will have all columns from both tables.

For the relations in Figure 5-10(c), you can join the two tables on EmployeeNumber as
follows:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-QUERY-CH05-02 *** */

SELECT *

FROM EMPLOYEE, LOCKER

WHERE EMPLOYEE.EmployeeNumber=LOCKER.EmployeeNumber;

Again, one row will be found for each combination of employee and locker. In both of
these joins, neither unassigned employees nor unassigned lockers will appear.

M05_KROE1533_08_SE_C05.indd 328 11/21/16 6:36 PM

Chapter 5 Database Design 329

Although the two designs in Figures 5-10(b) and 5-10(c) are equivalent in concept,
they may differ in performance. For instance, if a query in one direction is more common
than a query in the other, we might prefer one design to the other. Also, depending on un-
derlying structures, if an index (a metadata structure that makes searches for specific data
faster) for EmployeeNumber is in both tables but no index on LockerNumber is in either
table, then the first design is better. In addition, considering the join operation, if one table
is much larger than the other, then one of these joins might be faster to perform than the
other.

Another example of a 1:1 strong entity relationship is the relationship between the
CUSTOMER and CONTACT tables shown in Figure 5-6. For each CUSTOMER, there is
one and only one CONTACT, and, based on our normalization process, we have used the
primary key of CONTACT as the foreign key in CUSTOMER. The resulting relationship is
shown in Figure 5-11.

To actually implement a 1:1 relationship in a database, we must constrain the values of
the designated foreign key as UNIQUE. This can be done in the SQL CREATE TABLE
statement that is used to build the table containing the foreign key, or it can be done by al-
tering the table structure after the table is created using the SQL ALTER TABLE state-
ment. Consider the EMPLOYEE-to-LOCKER relationships. If, for example, we decide
that to place the foreign key EmployeeNumber in the LOCKER table to create the rela-
tionship, we will need to constrain EmployeeNumber in LOCKER as UNIQUE. To do this
we will use the SQL statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-CONSTRAINT-CH05-01 *** */

CONSTRAINT UniqueEmployeeNumber UNIQUE(EmployeeNumber)

as a line of SQL code either in the original CREATE TABLE LOCKER command or
in the following ALTER TABLE LOCKER command (which assumes that any data already
in LOCKER will not violate the UNIQUE constraint),

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-ALTER-TABLE-CH05-01 *** */

ALTER TABLE LOCKER

ADD CONSTRAINT UniqueEmployeeNumber

UNIQUE (EmployeeNumber);

Representing 1:N Strong Entity Relationships The second type of binary rela-
tionship, known as 1:N, is a relationship in which an entity of one type can be related
to many entities of another type. In Figure 5-12(a), the 1:N relationship that was used in
Figure 4-5(b) between ITEM and QUOTATION is shown in IE Crow’s Foot notation.
According to this diagram, we have received from zero to several quotations for each item
in the database.

CONTACT
ContactName

Phone

CUSTOMER
CustomerNumber

CustomerName
StreetAddress
City
State
ZIP
ContactName (FK)

FIGURE 5-11

1:1 Strong Entity
Relationship Between
CUSTOMER and
CONTACT

M05_KROE1533_08_SE_C05.indd 329 11/21/16 6:36 PM

330 Part 2 Database Design

The terms parent and child are sometimes applied to relations in 1:N relationships.
The parent relation is on the one side of the relationship, and the child relation is on the
many side. In Figure 5-12(a), ITEM is the parent entity and QUOTATION is the child
entity.

Representing 1:N relationships is simple and straightforward. First, each entity is rep-
resented by a table, as described, and then the key of the table representing the parent en-
tity is placed in the table representing the child entity as a foreign key. Thus, to represent
the relationship in Figure 5-12(a) you place the primary key of ITEM, which is ItemNumber,
into the QUOTATION table, as shown in Figure 5-12(b), and you create the referential
integrity constraint:

ItemNumber in QUOTATION must exist in ItemNumber in ITEM

Notice that with ItemNumber stored as a foreign key in QUOTATION you can process
the relationship in both directions. Given a QuoteNumber, you can look up the appropri-
ate row in QUOTATION and get the ItemNumber of the item from the row data. To ob-
tain the rest of the ITEM data, you use the ItemNumber obtained from QUOTATION to
look up the appropriate row in ITEM. To determine all the quotes associated with a par-
ticular item, you look up all rows in QUOTATION that have the item’s ItemNumber as a
value for ItemNumber. Quotation data are then taken from those rows.

In terms of joins, you can obtain the item and quote data in one table with the
following:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-QUERY-CH05-03 *** */

SELECT *

FROM ITEM, QUOTATION

WHERE ITEM.ItemNumber = QUOTATION.ItemNumber;

Contrast this 1:N relationship design strategy with that for 1:1 relationships. In both cases,
we store the key of one relation as a foreign key in the second relation. In a 1:1 relationship,
we can place the key of either relation in the other. In a 1:N relationship, however, the key
of the parent relation must be placed in the child relation.

ITEM
ItemNumber

Description
Cost
ListPrice
QuantityOnHand

QUOTATION
QuoteNumber

VendorName
Quantity
CostEach

(a) Example 1:N Strong Entity Relationship

ITEM
ItemNumber

Description
Cost
ListPrice
QuantityOnHand

QUOTATION
QuoteNumber

VendorName
Quantity
CostEach
ItemNumber (FK)

(b) Placing the Primary Key of ITEM into QUOTATION

FIGURE 5-12

1:N Strong Entity
Relationships

M05_KROE1533_08_SE_C05.indd 330 11/21/16 6:36 PM

Chapter 5 Database Design 331

To understand this better, notice what would happen if you tried to put the key of the
child into the parent relation (that is, put QuoteNumber in ITEM). Because attributes in
a relation can have only a single value, each ITEM record has room for only one
QuoteNumber. Consequently, such a structure cannot be used to represent the many
side of the 1:N relationship. Hence, to represent a 1:N relationship we must always place
the key of the parent relation in the child relation.

To actually implement a 1:N relationship in a database, we only need to add the for-
eign key column to the table holding the foreign key. Because this column will normally be
unconstrained in terms of how many times a value can occur, a 1:N relationship is estab-
lished by default. In fact, this is the reason that we must use a UNIQUE column constraint
to create a 1:1 relationship, as discussed early in this chapter. We will illustrate this point in
this chapter’s section of “The Access Workbench.”

Representing N:M Strong Entity Relationships The third and final type of binary
relationship is N:M, in which an entity of one type corresponds to many entities of the
second type and an entity of the second type corresponds to many entities of the first type.

Figure 5-13(a) shows an E-R diagram of the N:M relationship between students and
classes. A STUDENT entity can correspond to many CLASS entities, and a CLASS entity
can correspond to many STUDENT entities. Notice that both participants in the relation-
ship are optional: A student does not need to be enrolled in a class, and a class is not re-
quired to have any students. Figure 5-13(b) gives sample data.

N:M relationships cannot be represented directly by relations in the same way that 1:1
and 1:N relationships are represented. To understand why this is so, try using the same
strategy as for 1:1 and 1:N relationships—placing the key of one relation as a foreign key
into the other relation. First, define a relation for each of the entities; call them STUDENT
and CLASS. Then try to put the primary key of STUDENT, which is SID, into CLASS.
Because multiple values are not allowed in the cells of a relation, you have room for only
one StudentNumber, so you have no place to record the StudentNumber of the second and
subsequent students.

A similar problem occurs if you try to put the primary key of CLASS, which is
ClassNumber, into STUDENT. You can readily store the identifier of the first class in
which a student is enrolled, but you have no place to store the identifier of additional
classes.

CLASS
ClassNumber

ClassTime
ClassName
Description

STUDENT
SID

StudentName
Phone
EmailAddress

(a) Example N:M Strong Entity Relationship

Student 100

Student 300

Student 200

Class 10

Class 30

Class 40

Class 20

(b) Sample Data for the STUDENT-to-CLASS Relationship

FIGURE 5-13

N:M Strong Entity
Relationships

M05_KROE1533_08_SE_C05.indd 331 11/21/16 6:36 PM

332 Part 2 Database Design

Figure 5-14 shows another (but incorrect) strategy. In this case, a row is stored in the
CLASS relation for each STUDENT enrolled in one class, so you have two records for
Class 10 and two for Class 30. The problem with this scheme is that it duplicates the class
data and creates modification anomalies. Many rows will need to be changed if, for exam-
ple, the schedule for Class 10 is modified. Also, consider the insertion and deletion anoma-
lies: How can you schedule a new class until a student has enrolled? In addition, what will
happen if Student 300 drops out of Class 40? This strategy is unworkable.

The solution to this problem is to create a third table, called an intersection table, that
represents the relationship itself. The intersection table is a child table that is connected to
two parent tables by two 1:N relationships which replace the single N:M relationship in the
data model. Thus, we define a table named STUDENT_CLASS, as shown in Figure 5-15(a):

STUDENT (SID, StudentName, Phone, EmailAddress)
CLASS (ClassNumber, ClassTime, ClassName, Description)
STUDENT_CLASS (SID, ClassNumber)

with the referential integrity constraints:

SID in STUDENT_CLASS must exist in SID in STUDENT
ClassNumber in STUDENT_CLASS must exist in ClassNumber in CLASS

Some instances of this relation are shown in Figure 5-15(b). Such relations are called inter-
section tables because each row documents the intersection of a particular student with a
particular class. Notice in Figure 5-15(b) that the intersection relation has one row for each
line between STUDENT and CLASS, as in Figure 5-13(b).

In Figure 5-15(a), notice that the relationship from STUDENT to STUDENT_CLASS
is 1:N and the relationship from CLASS to STUDENT_CLASS is also 1:N. In essence, we
have decomposed the M:N relationship into two 1:N relationships. The key of STUDENT_
CLASS is (SID, ClassNumber), which is the combination of the primary keys of both of its
parents. The key for an intersection table is always the combination of parent keys. Note
that the parent relations are both required because a parent must now exist for each key
value in the intersection relation.

Finally, notice that STUDENT_CLASS is an ID-dependent weak entity, which is
ID-dependent on both STUDENT and CLASS. In order to create a database design
for an N:M strong entity relationship we have had to introduce an ID-dependent weak

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

100
200
300

Other STUDENT DataSID

STUDENT

10:00 MWF
10:00 MWF
 3:00 TH
 3:00 TH
 8:00 MWF

10
10
30
30
40

100
200
200
300
300

ClassTime Other CLASS Data SIDClassNumber

CLASS

FIGURE 5-14

Incorrect
Representation of an
N:M Relationship

M05_KROE1533_08_SE_C05.indd 332 11/21/16 6:36 PM

Chapter 5 Database Design 333

entity! (We will have more to say about relationships with weak entities in the next
section.)

To summarize the above discussion, to actually implement an N:M relationship in a
database we must create a new intersection table, to which we add foreign key columns
linking to the two tables in the N:M relationship. These foreign key columns will be the
corresponding primary keys of the two tables, and together they will form a composite pri-
mary key in the intersection table. The relationship between each table and the intersection
table will be a 1:N relationship, and thus we implement an N:M relation by creating two
1:N relationships. And because each primary key in the original tables appears as in the
primary key of the intersection table, the intersection table is ID-dependent on both origi-
nal tables.

You can obtain data about students and classes by using the following SQL statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH05-04 *** */

SELECT *

FROM STUDENT, CLASS, STUDENT_CLASS

WHERE STUDENT.SID = STUDENT_CLASS.SID

AND STUDENT_CLASS.ClassNumber = CLASS.ClassNumber;

The result of this SQL statement is a table with all columns for a student and the classes the
student takes. The student data will be repeated in the table for as many classes as the stu-
dent takes, and the class data will be repeated in the relation for as many students as are
taking the class.

CLASS
ClassNumber

ClassTime
ClassName
Description

STUDENT
SID

StudentName
Phone
EmailAddress

STUDENT_CLASS
SID (FK)
ClassNumber (FK)

(a) The STUDENT_CLASS Intersection Table

Jones, Mary
Parker, Fred
Wu, Jason

100
200
300

10
10
30
30
40

100
200
200
300
300

Accounting
Finance
Marketing
Database

10
20
30
40

(b) Sample Data for the STUDENT-to-CLASS Relationship

FIGURE 5-15

Representing an N:M Strong Entity Relationship

M05_KROE1533_08_SE_C05.indd 333 11/21/16 6:36 PM

334 Part 2 Database Design

Now that you know that an N:M relationship in a data model is transformed
into two 1:N relationships in a database design, let us revisit the topic of data
modeling and database design software products discussed in Chapter 4. Some
products, such as ERwin Data Modeler, can create true data models with cor-
rectly drawn N:M relationships. These products are also capable of correctly trans-
forming the data models into database designs with intersection tables. Oracle’s
MySQL Workbench (even though it displays an N:M relationship as an option)
cannot correctly draw a data model N:M relationship. Instead, it immediately
creates a database design with an intersection table and two 1:N relationships.
Nonetheless, creating database designs in MySQL Workbench can be helpful in
modeling, designing, and building a database. For example, Figure 5-16 shows the
database design for the Wedgewood Pacific database used in Chapter 3 (including
the recursive relationship for EMPLOYEE) in MySQL Workbench, and Figure 5-17
shows just the resulting database design. Note that MySQL Workbench uses
the same symbols for line ends and line types (solid or dashed) as are used in
Chapters 4 and 5. See Appendix C, “Getting Started with MySQL 5.7 Community
Server,” for more information on using MySQL Workbench.

BTW

The E-R diagram using
IE Crow’s Foot notation

The table editor—
column characteristics
are specified here

FIGURE 5-16

A Database Design in MySQL Workbench

Oracle MySQL Community Server 5.7, Oracle Corporation.

M05_KROE1533_08_SE_C05.indd 334 11/21/16 6:36 PM

Chapter 5 Database Design 335

Relationships Using Weak Entities
Because weak entities exist, they are bound to end up as tables in relationships! We have
just seen one place where this occurs: in the case of the STUDENT and CLASS entities in
Figure 5-15, a new ID-dependent entity is created and becomes the table that represents an
N:M relationship. Note that the intersection table that is formed in this case has only the
columns that make up its composite primary key. In the STUDENT_CLASS table, this key
is (SID, ClassNumber).

Another ID-dependent weak entity occurs when we take an intersection table and add
entity attributes (table columns) beyond those in the composite primary key. For example,
Figure 5-18 shows the table and relationship structure of Figure 5-15(a) but with one new
attribute (column)—Grade—added to STUDENT_CLASS.

STUDENT_CLASS is an example of the associative entity that we discussed in
Chapter 4, and this entity has been converted into the new STUDENT_CLASS table. Note
that although STUDENT_CLASS still connects STUDENT and CLASS (and is still
ID-dependent on both of these tables), it now has data that are uniquely its own. This pat-
tern is called an association relationship.

The E-R diagram
using IE Crow’s Foot
notation

FIGURE 5-17

The WP Database Design

CLASS
ClassNumber

ClassTime
ClassName
Description

STUDENT
SID

StudentName
Phone
EmailAddress

STUDENT_CLASS
SID (FK)
ClassNumber (FK)

Grade

FIGURE 5-18

The Association Relationship

Oracle MySQL Community Server 5.7, Oracle Corporation.

M05_KROE1533_08_SE_C05.indd 335 11/21/16 6:36 PM

336 Part 2 Database Design

Finally, let us take another look at the tables shown in Figure 5-8, where you normal-
ized SALES_COMMISSION into three related tables. Figure 5-19 shows these tables with
their correct relationships.

Note the 1:N identifying relationship between SALESPERSON and the ID-dependent
table SALES_COMMISSION, which correctly uses the primary key of SALESPERSON as
part of the composite primary key of SALES_COMMISSION. Also note the 1:1 relation-
ship between SALES_COMMISSION and COMMISSION_CHECK. Because
COMMISSION_CHECK is a strong entity and has its own unique primary key, this is a
nonidentifying relationship. This set of tables and relationships illustrates a mixed entity
pattern.3

Relationships with Subtypes
Because the identifier of a subtype entity is the identifier of the associated supertype entity,
creating relationships between the STUDENT table and its subtypes is simple. The identi-
fier of the subtype becomes the primary key of the subtype and the foreign key linking the
subtype to the supertype. Figure 5-20(a) shows the E-R model in Figure 4-14(a), and
Figure 5-20(b) shows the equivalent database design.

Representing Recursive Relationships
A recursive relationship is a relationship among entities of the same class. Recursive rela-
tionships are not fundamentally different from other relationships and can be represented
using the same techniques. As with nonrecursive relationships, three types of recursive re-
lationships are possible: 1:1, 1:N, and N:M. Figure 5-21 shows an example of each of these
three types.

Let us start by considering the 1:1 recursive SPONSORED_BY relationship in
Figure 5-21(a). As with a regular 1:1 relationship, one person can sponsor another person,
and each person is sponsored by no more than one person. Figure 5-22(a) shows sample
data for this relationship.

SALESPERSON
SalespersonNumber

SalespersonLastName
SalespersonFirstName
Phone

SALES_COMMISSION

SalespersonNumber (FK)
CommissionPeriod
TotalCommissionSales
CommissionAmount
CheckNumber(FK)

BudgetCategory

COMMISSION_CHECK
CheckNumber

CheckDate

FIGURE 5-19

Mixed Entity
Relationship Example

3For more information on mixed entity patterns, see David Kroenke and David J. Auer, Database
Processing: Fundamentals, Design, and Implementation, 14th ed. (Upper Saddle River, NJ: Prentice Hall,
2016): 221–224, 268–270.

M05_KROE1533_08_SE_C05.indd 336 11/21/16 6:36 PM

Chapter 5 Database Design 337

To represent 1:1 recursive relationships, we take an approach nearly identical to that
for regular 1:1 relationships; that is, we can place the key of the person being sponsored in
the row of the sponsor, or we can place the key of the sponsor in the row of the person be-
ing sponsored. Figure 5-22(b) shows the first alternative, and Figure 5-22(c) shows the
second. Both work.

This technique is identical to that for nonrecursive 1:1 relationships except that the
child and parent rows reside in the same table. You can think of the process as follows:
Pretend that the relationship is between two different tables. Determine where the key
goes, and then combine the two tables into a single one.

We also can use SQL joins to process recursive relationships; to do so, however, we
need to introduce additional SQL syntax. In the FROM clause, it is possible to assign a
synonym for a table name. For example, the expression FROM CUSTOMER A assigns the

isGradStudent

GRADUATE
StudentID

UndergraduateGPA
ScoreOnGMAT

STUDENT
StudentID

LastName
FirstName
isGradStudent

UNDERGRADUATE
StudentID

HighSchoolGPA
ScoreOnSAT

(a) Example Subtype-Supertype Relationship

GRADUATE
StudentID (FK)

UndergraduateGPA
ScoreOnGMAT

STUDENT
StudentID

LastName
FirstName
isGradStudent

UNDERGRADUATE
StudentID (FK)

HighSchoolGPA
ScoreOnSAT

(b) The Primary Key of the Supertype as the Primary Key
and Foreign Key of the Subtype

REFERRED-BY

CUSTOMER
CustomerNumber

LastName
FirstName
Address
City
State
ZIP
Phone

(b) 1:N Recursive Relationship

SPONSORED-BY

PERSON
Person

Phone
Email

(a) 1:1 Recursive Relationship

TREATED-BY

DOCTOR
Doctor

O
ceAddress
City
State
ZIP
Phone

(c) N:M Recursive Relationship

FIGURE 5-20

Representing Subtypes

FIGURE 5-21

Example Recursive Relationships

M05_KROE1533_08_SE_C05.indd 337 11/21/16 6:36 PM

338 Part 2 Database Design

synonym A to the table CUSTOMER. Using this syntax, you can create a join on a recur-
sive relationship for the design in Figure 5-22(b) as follows:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH05-05 *** */

SELECT *

FROM PERSON1 A, PERSON1 B

WHERE A.Person = B.PersonSponsored;

The result is a table with one row for each person that has all the columns of the person
and also of the person that he or she sponsors.

Similarly, to create a join of the recursive relationship shown in Figure 5-22(c), you
would use:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH05-06 *** */

SELECT *

FROM PERSON2 A, PERSON2 B

WHERE A.Person = B.PersonSponsoredBy;

The result is a table with a row for each person that has all the columns of the person and
also of the sponsoring person.

Now consider the 1:N recursive relationship REFERRED-BY in Figure 5-21(b). This
is a 1:N relationship, as shown in the sample data in Figure 5-23(a).

When these data are placed in a table, one row represents the referrer, and the other
rows represent those who have been referred. The referrer row takes the role of the parent,
and the referred rows take the role of the child. As with all 1:N relationships, you place the
key of the parent in the child. In Figure 5-21(b), you place the CustomerNumber of the
referrer in all the rows for people who have been referred.

You can join the 1:N recursive relationship with:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH05-07 *** */

SELECT *

FROM CUSTOMER A, CUSTOMER B

WHERE A.CustomerNumber = B.ReferredBy;

Smith
Parks
null
Pines
null

Jones
Smith
Parks
Myrtle
Pines

PersonSponsoredPerson
PERSON1 Relation

Referential integrity constraint:
PersonSponsored in PERSON1
must exist in Person in PERSON1

(b) First Alternative for Representing a
1:1 Recursive Relationship

null
Jones
Smith
null
Myrtle

Jones
Smith
Parks
Myrtle
Pines

PersonSponsoredBy
PERSON2 Relation

Person

Referential integrity constraint:
PersonSponsoredBy in PERSON2
must exist in Person in PERSON2

(c) Second Alternative for Representing a
1:1 Recursive Relationship

Person

Jones
Smith
Parks
Myrtle
Pines

(a) Sample Data for a 1:1
Recursive Relationship

FIGURE 5-22

Example 1:1 Recursive Relationship

M05_KROE1533_08_SE_C05.indd 338 11/21/16 6:36 PM

Chapter 5 Database Design 339

The result is a row for each customer that is joined to the data for the customer who
referred the person. To show data for customers that did not have any referrals from other
customers, we would use an OUTER JOIN as described in Chapter 3.

Finally, let us consider N:M recursive relationships. The TREATED-BY relationship in
Figure 5-21(c) represents a situation in which doctors give treatments to each other. Sample
data are shown in Figure 5-24(a).

(a) Sample Data for a 1:N Recursive Relationship

Customer Number

100
300
400

Referred These Customers

 200, 400
 500
 600, 700

. . .

. . .

. . .

. . .

. . .

. . .

. . .

100
200
300
400
500
600
700

null
100
null
100
300
400
400

CustomerData
CUSTOMER Relation

ReferredByCustomerNumber

Referential integrity constraint:
ReferredBy in CUSTOMER must exist in
CustomerNumber in CUSTOMER

(b) Representing a 1:N Recursive Relationship
Within a Table

FIGURE 5-23

Example 1:N Recursive Relationship

Provider

Jones
Parks
Smith
Abernathy
Franklin

Receiver

Smith

Abernathy
Jones
Franklin

(a) Sample Data for an N:M Recursive
Relationship

. . .

. . .

. . .

. . .

. . .

. . .

Jones
Parks
Smith
Abernathy
O'Leary
Franklin

Other Attributes
DOCTOR Relation

Name

Smith
Smith
Abernathy
Jones
Franklin
Abernathy
Abernathy

Jones
Parks
Smith
Abernathy
Parks
Franklin
Jones

Patient
TREATMENT-INTERSECTION Relation

Physician

Referential integrity constraints:
Physician in TREATMENT-INTERSECTION
must exist in Name in DOCTOR

Patient in TREATMENT-INTERSECTION
must exist in Name in DOCTOR

(b) Representing an N:M Recursive
Relationship Using Tables

FIGURE 5-24

Example N:M Recursive Relationship

M05_KROE1533_08_SE_C05.indd 339 11/21/16 6:36 PM

340 Part 2 Database Design

As with other N:M relationships, you must create an intersection table that shows pairs
of related rows. The name of the doctor in the first column is the one who provided the
treatment, and the name of the doctor in the second column is the one who received the
treatment. This structure is shown in Figure 5-24(b). You can join the N:M relationship
with:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-Query-CH05-08 *** */

SELECT *

FROM DOCTOR A, TREATMENT-INTERSECTION, DOCTOR B

WHERE A.Name = TREATMENT-INTERSECTION.Physician

AND TREATMENT-INTERSECTION.Patient = B.Name;

The result of this is a table that has rows of doctor (as treatment provider) joined to
doctor (as patient). The doctor data will be repeated once for every patient (as treatment
receiver) treated and once for every time a doctor (as treatment provider) gave a treatment.

Recursive relationships are thus represented in the same way as are other relationships;
however, the rows of the tables can take two different roles. Some are parent rows, and oth-
ers are child rows. If a key is supposed to be a parent key and the row has no parent, its
value is NULL. If a key is supposed to be a child key and the row has no child, its value is
NULL. For more on recursive relationships, see Appendix E, “Advanced SQL.”

Figure 5-25 shows the final E-R diagram for Heather Sweeney Designs, the database ex-
ample discussed in Chapter 4. To transform this E-R diagram into a relational design, we
follow the process described in the preceding sections. First, represent each entity with a
relation of its own, and specify a primary key for each relation:

SEMINAR (SeminarID, SeminarDate, SeminarTime, Location, SeminarTitle)
CUSTOMER (CustomerID, LastName, FirstName, EmailAddress,

EncryptedPassword, Phone, StreetAddress, City, State, ZIP)
CONTACT (CustomerID, ContactNumber, ContactDate, ContactType)
PRODUCT (ProductNumber, ProductType, ProductDescription, UnitPrice,

QuantityOnHand)
INVOICE (InvoiceNumber, InvoiceDate, PaymentType, SubTotal, Shipping, Tax,

Total)
LINE_ITEM (InvoiceNumber, LineNumber, Quantity, UnitPrice, Total)

Weak Entities
This model has two weak entities, and they are both ID-dependent. CONTACT is a
weak entity, and its identifier depends, in part, on the identifier of CUSTOMER. Thus,
we have placed the key of CUSTOMER, which is CustomerID, into CONTACT.
Similarly, LINE_ITEM is a weak entity, and its identifier depends on the identifier of
INVOICE. Consequently, we have placed the key of INVOICE in LINE_ITEM. Note
that in the preceding schema text both CONTACT.CustomerID and LINE_ITEM.
InvoiceNumber are underlined and italicized because they are part of a primary key and
also a foreign Key. These are the only two foreign keys already in the schema.

DATABASE DESIGN AT HEATHER SWEENEY DESIGNS

M05_KROE1533_08_SE_C05.indd 340 11/21/16 6:36 PM

Chapter 5 Database Design 341

Verifying Normalization
Next, apply the normalization process to each of these tables. Do any of them have a func-
tional dependency that does not involve the primary key? From what we know so far, the
only such functional dependency to consider moving to a separate table is:

ZIP S (City, State)

However, for the reasons explained earlier, we choose not to place ZIP in its own table.
One possible functional dependency concerns locations, dates, times, or titles. If, for

example, Heather offers seminars only at certain times in some locations or if she only gives
certain seminar titles in some locations, then a functional dependency would exist with
Location as its determinant. It would be important for the design team to check this out,
but for now assume that no such dependency exists.

Specifying Column Properties
The data model in Figure 5-25 shows entities, attributes, and entity relationships, but it
does not document details about attributes. We do this as part of creating the database de-
sign columns. Figure 5-26 documents the data type, null status, default values, data con-
straints, and other properties of the columns in each table before the addition of foreign
keys other than those already in the data model because of ID-dependent entities.

CUSTOMER
CustomerID

LastName

EmailAddress
EncryptedPassword
Phone
StreetAddress
City
State
ZIP

SEMINAR
SeminarID
SeminarDate
SeminarTime
Location
SeminarTitle

CONTACT
CustomerID
ContactNumber
ContactDate
ContactType

INVOICE
InvoiceNumber
InvoiceDate
PaymentType
Subtotal
Shipping
Tax
Total

LINE_ITEM
InvoiceNumber
LineNumber
Quantity
UnitPrice
Total

PRODUCT
ProductNumber
ProductType
ProductDescription
UnitPrice
QuantityOnHand

FirstName

FIGURE 5-25

The Final Data Model for Heather Sweeney Designs

M05_KROE1533_08_SE_C05.indd 341 11/21/16 6:36 PM

342 Part 2 Database Design

FIGURE 5-26

Heather Sweeney Designs HSD Database Column Specifications

Column Name
Data Type
(Length) Key Required Default Value Remarks

SeminarID Integer Primary Key Yes DBMS supplied Surrogate Key:
Initial value=1
Increment=1

SeminarDate Date No Yes None Format: yyyy-mm-dd

SeminarTime Time No Yes None Format: 00:00:00.000

Location VarChar (100) No Yes None

SeminarTitle VarChar (100) No Yes None

(a) SEMINAR

Column Name
Data Type
(Length) Key Required Default Value Remarks

CustomerID Integer Primary Key Yes DBMS Supplied
Surrogate Key:
Initial Value=1
Increment=1

LastName Char (25) No Yes None

FirstName Char (25) No Yes None

EmailAddress VarChar (100) Primary Key Yes None

Phone Char (12) No Yes None Format: ###-###-####
StreetAddress Char (35) No No None

EncryptedPassword VarChar(50) No No None

City Char (35) No No Dallas

State Char (2) No No TX Format: AA

ZIP Char (10) No No 75201 Format: #####-####

(b) CUSTOMER

Column Name
Data Type
(Length) Key Required Default Value Remarks

ContactNumber Integer Yes None

Format: yyyy-mm-ddContactDate Date Yes None

CustomerID Integer Primary Key,
Foreign Key

Yes None REF: CUSTOMER

ContactType Char (15) No Yes None

Primary Key

No

(c) CONTACT

M05_KROE1533_08_SE_C05.indd 342 11/21/16 6:36 PM

Chapter 5 Database Design 343

Column Name
Data Type
(Length) Key Required Default Value Remarks

InvoiceNumber Integer Primary Key Yes DBMS supplied Surrogate Key:
Initial value=35000
Increment=1

InvoiceDate Date No Yes None Format: yyyy-mm-dd
PaymentType Char (25) No Yes Cash
Subtotal Numeric (9,2) No No None
Shipping Numeric (9,2) No No None
Tax Numeric (9,2) No No None
Total Numeric (9,2) No No None

(d) INVOICE

Column Name
Data Type
(Length) Key Required Default Value Remarks

InvoiceNumber Integer Primary Key,
Foreign Key

Yes None REF: INVOICE

LineNumber Integer Primary Key Yes None This is not quite a
Surrogate Key—for
each InvoiceNumber:
Increment=1
Application logic will
be needed to supply
the correct value

Quantity Integer No No None
UnitPrice Numeric (9,2) No No None

Total Numeric (9,2) No No None

(e) LINE_ITEM

Column Name
Data Type
(Length) Key Required Default Value Remarks

ProductNumber Char (35) Primary Key Yes None

ProductType Char (24) No Yes None
ProductDescription VarChar (100) No Yes None
UnitPrice Numeric (9, 2) No Yes None
QuantityOnHand Integer No Yes 0

(f) PRODUCT

FIGURE 5-26 Continued

M05_KROE1533_08_SE_C05.indd 343 11/21/16 6:36 PM

344 Part 2 Database Design

Relationships
Now, considering the relationships in this diagram, 1:N relationships exist between
SEMINAR and CONTACT, between CUSTOMER and INVOICE, and between
PRODUCT and LINE_ITEM. For each of these, we place the key of the parent in the
child as a foreign key. Thus, we place the key of SEMINAR in CONTACT, the key of
CUSTOMER in INVOICE, and the key of PRODUCT in LINE_ITEM. The relations are
now as follows:

SEMINAR (SeminarID, SeminarDate, SeminarTime, Location, SeminarTitle)
CUSTOMER (CustomerID, LastName, FirstName, EmailAddress,

EncryptedPassword, Phone, StreetAddress, City, State, ZIP)
CONTACT (CustomerID, ContactNumber, ContactDate, ContactType, SeminarID)
PRODUCT (ProductNumber, ProductType, ProductDescription, UnitPrice,

QuantityOnHand)
INVOICE (InvoiceNumber, InvoiceDate, CustomerID, PaymentType, SubTotal, Tax,

Total)
LINE_ITEM (InvoiceNumber, LineNumber, ProductNumber, Quantity, UnitPrice,

Total)

Finally, one N:M relationship exists between SEMINAR and CUSTOMER. To represent it,
we create an intersection table, which we name SEMINAR_CUSTOMER. As with all in-
tersection tables, its columns are the keys of the two tables involved in the N:M relation-
ship. The final set of tables is:

SEMINAR (SeminarID, SeminarDate, SeminarTime, Location, SeminarTitle)
CUSTOMER (CustomerID, LastName, FirstName, EmailAddress,

EncryptedPassword, Phone, StreetAddress, City, State, ZIP)
SEMINAR_CUSTOMER (SeminarID, CustomerID)
CONTACT (CustomerID, ContactDate, ContactDate, ContactType, SeminarID)
PRODUCT (ProductNumber, ProductType, ProductDescription, UnitPrice,

QuantityOnHand)
INVOICE (InvoiceNumber, InvoiceDate, CustomerID, PaymentType, SubTotal, Tax,

Total)
LINE_ITEM (InvoiceNumber, LineNumber, ProductNumber, Quantity, UnitPrice,

Total)

The set of referential integrity constraints will be discussed in the next section.
Now, to express the minimum cardinalities of children back to their parents, we need

to decide whether foreign keys are required. In Figure 5-25, we see that an INVOICE is
required to have a CUSTOMER and that LINE_ITEM is required to have a PRODUCT.
Thus, we will make INVOICE.CustomerID and LINE_ITEM.ProductNumber required.
CONTACT.SeminarID will not be required because a contact is not required to refer to a
seminar. The final design is shown in the database design diagram in Figure 5-27, and the
revised table column specification for those tables affected by the addition of foreign keys
is shown in Figure 5-28.

Enforcing Referential Integrity
Figure 5-29 summarizes the relationship enforcement for Heather Sweeney Designs.
SeminarID is a surrogate key, so no cascading update behavior will be necessary for any of
the relationships that it carries. Similarly, CustomerID in CUSTOMER and InvoiceNumber

M05_KROE1533_08_SE_C05.indd 344 11/21/16 6:36 PM

Chapter 5 Database Design 345

CUSTOMER
CustomerID
LastName
FirstName
EmailAddress
EncryptedPassword
Phone
StreetAddress
City
State
ZIP

SEMINAR
SeminarID
SeminarDate
SeminarTime
Location
SeminarTitle

CONTACT
CustomerID (FK)
ContactNumber
ContactDate
ContactType
SeminarID (FK)

INVOICE
InvoiceNumber

InvoiceDate
CustomerID (FK)
Subtotal
Shipping
Tax
Total

LINE_ITEM
InvoiceNumber (FK)
LineNumber
ProductNumber (FK)
Quantity
UnitPrice
Total

PRODUCT
ProductNumber
ProductType
ProductDescription
UnitPrice
QuantityOnHand

SEMINAR_CUSTOMER
SeminarID (FK)
CustomerID (FK)

FIGURE 5-27

Database Design for Heather Sweeney Designs

in INVOICE are unchanging values, so these relationships do not need cascading updates.
However, updates of ProductNumber do need to cascade through their relationships.

With regard to cascading deletions, rows in the intersection table require a SEMINAR
and a CUSTOMER parent. Therefore, when a user attempts to cancel a seminar or to re-
move a customer record, the deletion must either cascade or be prohibited. We must dis-
cuss this issue with Heather and her employees and determine whether users should be
able to remove seminars that have customers enrolled or to remove customers who have
enrolled in a seminar. We decide that neither seminars nor customers are ever deleted from

FIGURE 5-28

Modified Column Specifications for HSD Tables with Added Foreign Keys

Column Name
Data Type
(Length) Key Required Default Value Remarks

SeminarID Integer Primary Key,
Foreign Key

Yes None

CustomerID Integer Primary Key,
Foreign Key

Yes None

(a) SEMINAR_CUSTOMER

(continued)

M05_KROE1533_08_SE_C05.indd 345 11/21/16 6:36 PM

346 Part 2 Database Design

Column Name
Data Type
(Length) Key Required Default Value Remarks

CustomerID Integer Primary Key,
Foreign Key

Yes None REF: CUSTOMER

ContactNumber Integer Primary Key Yes None This is not quite a Surrogate
Key—for each ContactNumber:
Start=1 Increment=1 Application
logic will be needed to -supply the
correct value

ContactDate Date No Yes None Format: yyyy-mm-dd

ContactType Char (15) No Yes None

SeminarID Integer Foreign Key No None REF: SEMINAR

(b) CONTACT

Column Name
Data Type
(Length) Key Required Default Value Remarks

InvoiceNumber Integer Primary Key Yes DBMS supplied Surrogate Key: Initial
value=35000 Increment=1

InvoiceDate Date No Yes None Format: yyyy-mm-dd

CustomerID Integer Foreign Key Yes None REF: CUSTOMER
PaymentType Char (25) No Yes Cash

Subtotal Numeric (9,2) No No None

Shipping Numeric (9,2) No No None

Tax Numeric (9,2) No No None

Total Numeric (9,2) No No None

(c) INVOICE

Column Name
Data Type
(Length) Key Required Default Value Remarks

InvoiceNumber Integer Primary Key,
Foreign Key

Yes None REF: INVOICE

LineNumber Integer Primary Key Yes None This is not quite a Surrogate
Key—for each InvoiceNumber:
Start=1
Increment=1 Application logic
will be needed to supply the
correct value

ProductNumber Char (35) Foreign Key Yes None REF: PRODUCT
Quantity Integer No No None

UnitPrice Numeric (9,2) No No None

Total Numeric (9,2) No No None

(d) LINE_ITEM

FIGURE 5-28 Continued

M05_KROE1533_08_SE_C05.indd 346 11/21/16 6:36 PM

Chapter 5 Database Design 347

FIGURE 5-29

Referential Integrity Constraint Enforcement for Heather Sweeney Designs

Relationship
Referential Integrity
Constraint Cascading Behavior

Parent Child On Update On Delete
SEMINAR SEMINAR_CUSTOMER SeminarID in SEMINAR_

CUSTOMER must exist in
SeminarID in SEMINAR

No No

CUSTOMER SEMINAR_CUSTOMER CustomerID in SEMINAR_
CUSTOMER must exist in
CustomerID in CUSTOMER

No No

SEMINAR CONTACT SeminarID in CONTACT
must exist in SeminarID in
SEMINAR

No No

CUSTOMER CONTACT CustomerID in CONTACT
must exist in CustomerID in
CUSTOMER

No No

CUSTOMER INVOICE CustomerID in INVOICE
must exist in CustomerID in
CUSTOMER

No No

INVOICE LINE_ITEM InvoiceNumber in LINE_ITEM
must exist in InvoiceNumber in
INVOICE

No Yes

PRODUCT LINE_ITEM ProductNumber in LINE_
ITEM must exist in
ProductNumber in PRODUCT

Yes No

the database (Heather never cancels a seminar, even if no customers show up, and once
Heather has a customer record she never lets go of it!). Hence, as shown in Figure 5-29,
neither of these relationships has cascading deletions.

Figure 5-29 shows other decisions reached in the example. Because of the need to keep
historic information about seminar attendance and contacts, we cannot delete a customer
record. Doing so would distort seminar attendance data and data about contacts such as
email messages and regular mail letters, which need to be accounted for. Foreign key con-
straints thus prohibit deleting the primary key record in CUSTOMER.

As shown in Figure 5-29, the deletion of an INVOICE will cause the deletion of re-
lated LINE_ITEMs. Finally, an attempt to delete a PRODUCT that is related to one or
more LINE_ITEMs will fail; cascading the deletion here would cause LINE_ITEMs to
disappear out of ORDERs, a situation that cannot be allowed.

The database design for the Heather Sweeney Designs database is now complete
enough to create tables, columns, relationships, and referential integrity constraints us-
ing a DBMS. Before going on, we would need to document any additional business rules
to be enforced by application programs or other DBMS techniques. After this, the data-
base can be created, using the SQL statements discussed in Chapter 3. The full set of
the SQL statements needed to create and populate the database in SQL Server 2016 are
located in the Chapter 3 Heather Sweeney Designs Case Questions on pages 242–252.
These SQL statements will need to be slightly modified for use with Oracle Database
XE or MySQL 5.7.

M05_KROE1533_08_SE_C05.indd 347 11/28/16 4:38 PM

348 Part 2 Database Design

Section 5
Relationships in Microsoft Access
At this point, we have created and populated the CONTACT, CUSTOMER, and
SALESPERSON tables in the Wallingford Motors CRM database. You learned how to cre-
ate forms, reports, and queries in the preceding sections of “The Access Workbench.” If
you have worked through Chapter 3’s section of “The Access Workbench,” you know how
to create and use view equivalent queries.

All the tables you have used so far have had 1:N relationships. But how are 1:1 and
N:M relationships managed in Microsoft Access? In this section, you will:

• Understand 1:1 relationships in Microsoft Access.
• Understand N:M relationships in Microsoft Access.

N:M Relationships in Microsoft Access

We will start by discussing N:M relationships. This is actually a nonissue because pure N:M
relationships only occur in data modeling. Remember that when a data model is trans-
formed into a database design an N:M relationship is broken down into two 1:N relation-
ships. Each 1:N relationship is between a table resulting from one of the original entities in
the N:M relationship and a new intersection table. If this does not make sense to you, then
review the chapter section “Representing N:M Strong Entity Relationships” and see
Figures 5-13 and 5-15 for an illustration of how N:M relationships are converted to two
1:N relationships.

Because databases are built in DBMSs, such as Microsoft Access, from the database
design, Microsoft Access only deals with the resulting 1:N relationships. As far as Microsoft
Access is concerned, there are no N:M relationships!

1:1 Relationships in Microsoft Access

Unlike N:M relationships, 1:1 relationships definitely exist in Microsoft Access. At this point
the WMCRM database does not contain a 1:1 relationship, and here we will add one. We will
let each SALESPERSON use one and only one car from the Wallingford Motors inventory as
a demo vehicle. The database design with this addition is shown in Figure AW-5-1.

Note that both SALESPERSON and VEHICLE are optional in this relationship. First, a
VEHICLE does not have to be assigned to a SALESPERSON, which makes sense because
there will be a lot of cars in inventory and only a few SALESPERSONs. Second, a
SALESPERSON does not have to take a demo car and may choose not to (yeah, right!). Also
note that we have chosen to put the foreign key in SALESPERSON. In this case, there is an
advantage to putting the foreign key in one table or the other because if we put it in VEHICLE
the foreign key column (which would have been NickName) would be NULL for every car
except the few used as demo vehicles. Finally, note that we are using this table just to illustrate
a 1:1 relationship—a functional VEHICLE table would have a lot more columns.

The column characteristics for the VEHICLE table are shown in Figure AW-5-2, and
the data for the table are shown in Figure AW-5-3.

Let us open the WMCRM.accdb database and add the VEHICLE table to it.

Opening the WMCRM.accdb Database

1. Start Microsoft Access.
2. If necessary, click the File command tab, and then click the WMCRM.accdb file name in

the quick access list of recently opened databases to open the database.

THE ACCESS WORKBENCH

M05_KROE1533_08_SE_C05.indd 348 11/21/16 6:36 PM

Chapter 5 Database Design 349

FIGURE AW-5-2

Database Column Characteristics for the WMCRM VEHICLE Table

Column Name Type Key Required Remarks
InventoryID AutoNumber Primary Key Yes Surrogate Key

Model Text(25) No Yes

VIN Text(35) No Yes

FIGURE AW-5-3

Wallingford Motors VEHICLE Data

InventoryID Model VIN
[AutoNumber] HiStandard G17HS123400001

[AutoNumber] HiStandard G17HS123400002

[AutoNumber] HiStandard G17HS123400003

[AutoNumber] HiLuxury G17HL234500001

[AutoNumber] HiLuxury G17HL234500002

[AutoNumber] HiLuxury G17HL234500003

[AutoNumber] SUHi G17HU345600001

[AutoNumber] SUHi G17HU345600002

[AutoNumber] SUHi G17HU345600003

[AutoNumber] HiElectra G17HE456700001

CUSTOMER
CustomerID
LastName
FirstName
Address
City
State
ZIP
EmailAddress
NickName (FK)

CONTACT
ContactID
ContactDate
ContactType
Remarks
CustomerID (FK)

SALESPERSON
NickName
LastName
FirstName
HireDate
WageRate
CommissionRate
O�cePhone
EmailAddress
InventoryID (FK)

VEHICLE
InventoryID
Model
VIN

PHONE_NUMBER
CustomerID (FK)
PhoneNumber
PhoneType

FIGURE AW-5-1

The WMCRM Database Design with VEHICLE

(Continued)

M05_KROE1533_08_SE_C05.indd 349 11/21/16 6:36 PM

350 Part 2 Database Design

We already know how to create a table and populate it with data, so we will go ahead
and add the VEHICLE table and its data to the WMCRM.accdb database. Next, we need
to modify SALESPERSON by adding the InventoryID column and populating it with data.
The column characteristics for the new InventoryID column in the SALESPERSON table
are shown in Figure AW-5-4, and the data for the column are shown in Figure AW-5-5.
(Tina and Big Bill are driving the HiLuxury model, while Billy opted for a SUHi.)

There is nothing here that you do not know how to do—you altered the CUSTOMER
table in a similar way in Chapter 3’s section of “The Access Workbench”—so you can go
ahead and add the InventoryID column and its data to the SALESPERSON table. This is
an easier table alteration to make than the one we made to CUSTOMER because the Inven-
toryID column in SALESPERSON is NULL, so you do not have to set it to NOT NULL
after entering the data.

Now, we are ready to establish the relationship between the two tables.

Creating the Relationship Between SALESPERSON and VEHICLE

1. If you have any tables open, close them, and the click the Database Tools command tab.
2. Click the Shutter Bar Open/Close button to minimize the Navigation Pane.
3. Click the Relationships button in the Relationships group. The Relationships tabbed docu-

ment window appears.
 ■ NOTE: Warning! The next steps lead to a peculiarity of Microsoft Access, not the

final outcome that we want. Remember that we want a 1:1 relationship. See if you can
figure out what is happening as we go along.

4. Click the Show Table button in the Relationships group of the Design ribbon.
5. In the Show Table dialog box, click VEHICLE to select it, and then click the Add button

to add VEHICLE to the Relationships window.
6. In the Show Table dialog box, click the Close button to close the dialog box.
7. Rearrange and resize the table objects in the Relationships window by using standard

Windows drag-and-drop techniques. Rearrange the SALESPERSON, CUSTOMER,
CONTACT, and VEHICLE table objects until they look as shown in Figure AW-5-6.

 ■ NOTE: Remember that we create a relationship between two tables in the
Relationships window by dragging a primary key column and dropping it on top of the
corresponding foreign key column.

8. Click and hold the column name InventoryID in the VEHICLE table object, then drag
it over the column name InventoryID in the SALESPERSON table, and then release the
mouse button. The Edit Relationships dialog box appears.

9. Click the Enforce Referential Integrity check box.

FIGURE AW-5-4

Database Column Characteristics for the InventoryID Column in the WMCRM SALESPERSON Table

Column Name Type Key Required Remarks
InventoryID Long Integer Foreign Key No

FIGURE AW-5-5

SALESPERSON InventoryID Data

NickName LastName FirstName ... InventoryID
Tina Smith Tina ... 4

Big Bill Jones William ... 5

Billy Jones Bill ... 7

M05_KROE1533_08_SE_C05.indd 350 11/21/16 6:36 PM

Chapter 5 Database Design 351

The new VEHICLE
table

FIGURE AW-5-6

The Relationships
Window with the
Current Relationship
Diagram

10. Click the Create button to create the relationship between VEHICLE and
SALESPERSON.

11. Right-click the relationship line between VEHICLE and SALESPERSON, and then click Edit
Relationship in the shortcut menu that appears. The Edit Relationships dialog box appears.

12. The relationship between the tables now appears in the Relationships window, as shown in
Figure AW-5-7.

But now we have a serious problem: The relationship that was created is a 1:N relationship,
not the 1:1 relationship that we wanted. It seems like there should be a way to fix the rela-
tionship somewhere on the Edit Relationships dialog box. Unfortunately, there is not. Go
ahead and try everything you can think of, but it will not work. This is the peculiarity of
Microsoft Access that was mentioned earlier.

The relationship is 1:N—this is not
the 1:1 relationship we wanted

The VEHICLE-to-SALEPERSON
relationship

FIGURE AW-5-7

The Completed VEHICLE-to-SALESPERSON Relationship

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M05_KROE1533_08_SE_C05.indd 351 11/21/16 6:36 PM

352 Part 2 Database Design

So what is the trick to creating a 1:1 relationship in Microsoft Access? As discussed in
this chapter, the trick is to create a UNIQUE constraint on the foreign key column. To do this
in Microsoft Access, we set the Indexed field property of the foreign key column (InventoryID
in SALESPERSON in this case) to Yes (No Duplicates), as shown in Figure AW-5-8. As long
as the same value can occur more than once in the foreign key column, Microsoft Access will
create a 1:N relationship instead of the desired 1:1 relationship.

To create the 1:1 relationship, we need to delete the existing relationship, modify the
InventoryID property in SALESPERSON, and create a new relationship between the ta-
bles. First, we will delete the existing 1:N relationship.

Deleting the Incorrect Relationship Between SALESPERSON and VEHICLE

1. Click the OK button on the Edit Relationships dialog box.
2. Right-click the relationship line between VEHICLE and SALESPERSON to display the

shortcut menu, and then click Delete.
3. A dialog box appears asking whether you are sure you want to permanently delete the se-

lected relationship from your database. Click the Yes button.
4. Close the Relationships window.
5. A dialog box appears asking whether you want to save the changes to the layout of

Relationships. Click the Yes button.
6. Click the Shutter Bar Open/Close button to expand the Navigation Pane.

Next, we will modify the SALESPSERSON table.

Setting the Indexed Property of the InventoryID Column in SALESPERSON

1. Open the SALESPERSON table in Design view.
2. Select the InventoryID field. The InventoryID field properties are displayed in the General tab.

Select the InventoryID column

Set the Indexed property to Yes
(No Duplicates)

FIGURE AW-5-8

Setting the Indexed Property Value in the SALESPERSON Table

Access 2016, Windows 10, Microsoft Corporation.

M05_KROE1533_08_SE_C05.indd 352 11/21/16 6:37 PM

Chapter 5 Database Design 353

3. Click the Indexed text field. A drop-down list arrow appears on the right end of the text
field. Click the drop-down list arrow to display the list and select Yes (No Duplicates).
The result appears as shown in Figure AW-5-8. Note that because the InventoryID column
Required field is set to No, a row of SALESPERSON is not required to have a VEHICLE
assigned to it.

4. Click the Save button to save the completed changes to the SALESPERSON table.
5. Close the SALESPERSON table.

Finally, we create the 1:1 relationship that we want between the SALESPERSON and
VEHICLE tables.

Creating the Correct 1:1 Relationship Between SALESPERSON and VEHICLE

1. Click the Database Tools command tab.
2. Click the Shutter Bar Open/Close button to minimize the Navigation Pane.
3. Click the Relationships button in the Relationships group. The Relationships tabbed

document window appears.
4. Click and hold the column name InventoryID in the VEHICLE table object, then drag

it over the column name InventoryID in the SALESPERSON table, and then release the
mouse button. The Edit Relationships dialog box appears.

5. Click the Enforce Referential Integrity check box.
6. Click the Create button to create the relationship between VEHICLE and SALESPERSON.
7. To verify that you now have the correct 1:1 relationship, right-click the relationship line

between SALESPERSON and VEHICLE, and then click Edit Relationship in the shortcut
menu that appears. The Edit Relationships dialog box appears.

8. Note that the correct one-to-one relationship between the tables now appears in the
Relationships window, as shown in Figure AW-5-9.

The relationship is now the correct
1:1 relationship

The VEHICLE-to-SALEPERSON
relationship

FIGURE AW-5-9

The Correct 1:1 VEHICLE-to-SALESPERSON Relationship

(Continued)Access 2016, Windows 10, Microsoft Corporation.

M05_KROE1533_08_SE_C05.indd 353 11/21/16 6:37 PM

354 Part 2 Database Design

9. Click the Cancel button on the Edit Relationships dialog box.
10. Close the Relationships window.
11. If a dialog box appears asking whether you want to save the changes to the layout of

Relationships window, click the Yes button.
12. Click the Shutter Bar Open/Close button to expand the Navigation Pane.

We have successfully created the 1:1 relationship that we wanted. We just had to learn the
Microsoft Access way of doing it.

Closing the Database and Exiting Microsoft Access

That completes the work we will do in this chapter’s section of “The Access Workbench.”
As usual, we finish by closing the database and Microsoft Access.

Closing the WMCRM Database and Exiting Microsoft Access

1. To close the WMCRM database and exit Microsoft Access, click the Microsoft Access
Close button in the upper-right corner of the Microsoft Access window.

SUMMARY
To transform an E-R data model into a relational database design, you create a table for
each entity. The attributes of the entity become the columns of the table, and the identifier
of the entity becomes the primary key of the table. For each column, you must define data
types, null status, any default values, and any data constraints. You then apply the normal-
ization process to each table and create additional tables, if necessary. In some cases, you
need to denormalize a table. When you do, the table could have insertion, update, and de-
letion modification problems.

Denormalization makes sense if the benefit of not normalizing outweighs the possible
problems that could be caused by such modifications.

Weak entities are represented by a table. ID-dependent entities must include the key
columns of the tables on which they depend as well as of the identifiers of the entities
themselves. Non–ID-dependent weak entities must have their existence dependence
recorded as business rules, and will still have a foreign key linking them to another table.

Supertypes and subtypes are each represented by separate tables. The identifier of the
supertype entity becomes the primary key of the supertype table, and the identifiers of the
subtype entities become the primary keys of the subtype tables. The primary key of each
subtype is also the same primary key that is used for the supertype, and the primary key of
each subtype serves as a foreign key that links the subtype back to the supertype.

The E-R model has three types of binary relationships: 1:1, 1:N, and N:M. To repre-
sent a 1:1 relationship, you place the key of one table into the other table. To implement the
1:1 relationship, the specified foreign key must be constrained as UNIQUE. To represent a
1:N relationship, you place the key of the parent table in the child table. Finally, to repre-
sent an M:N relationship, you create an intersection table that contains the keys of the
other two tables.

Recursive relationships are relationships in which the participants in the relationship
arise from the same entity class. The three types of recursive relationships are 1:1, 1:N, and
N:M. These types of relationships are represented in the same way as are their equivalent
nonrecursive relationships. For 1:1 and 1:N relationships, you add a foreign key to the rela-
tion that represents the entity. For an N:M recursion, you create an intersection table that
represents the M:N relationship.

M05_KROE1533_08_SE_C05.indd 354 11/21/16 6:37 PM

Chapter 5 Database Design 355

KEY TERMS

associative entity
association relationship
Boyce-Codd Normal Form (BCNF)
child
column property
component design
data constraint

data model
data type
database design
default value
denormalization
intersection table
mixed entity pattern

NULL status
parent
relation
surrogate key
systems development life cycle

(SDLC)
table

REVIEW QUESTIONS

5.1 Explain how entities are transformed into tables.

5.2 Explain how attributes are transformed into columns. What column properties do
you take into account when making the transformations?

5.3 Why is it necessary to apply the normalization process to the tables created accord-
ing to your answer to question 5.1?

5.4 What is denormalization?

5.5 When is denormalization justified?

5.6 Explain the problems that denormalized tables may have for insert, update, and
delete actions.

5.7 Explain how the representation of weak entities differs from the representation of
strong entities.

5.8 Explain how supertype and subtype entities are transformed into tables.

5.9 List the three types of binary relationships, and give an example of each. Do not
use the examples given in this text.

5.10 Define the term foreign key, and give an example.

5.11 Show two different ways to represent the 1:1 relationship in your answer to ques-
tion 5.9. Use IE Crow’s Foot E-R diagrams.

5.12 For your answers to question 5.11, describe a method for obtaining data about one
of the entities, given the key of the other. Describe a method for obtaining data
about the second entity, given the key of the first. Describe methods for both of
your alternatives in question 5.11.

5.13 Code SQL statements to create a join that has all data about both tables from your
work for question 5.11.

5.14 Define the terms parent and child as they apply to tables in a database design, and
give an example of each.

5.15 Show how to represent the 1:N relationship in your answer to question 5.9. Use an
IE Crow’s Foot E-R diagram.

5.16 For your answer to question 5.15, describe a method for obtaining data for all the
children, given the key of the parent. Describe a method for obtaining data for the
parent, given a key of the child.

5.17 For your answer to question 5.15, code an SQL statement that creates a table that
has all data from both tables.

5.18 For a 1:N relationship, explain why you must place the key of the parent table in
the child table rather than place the key of the child table in the parent table.

5.19 Give examples of binary 1:N relationships, other than those in this text, for (a)
an optional-to-optional relationship, (b) an optional-to-mandatory relationship,

M05_KROE1533_08_SE_C05.indd 355 11/21/16 6:37 PM

356 Part 2 Database Design

(c) a mandatory-to-optional relationship, and (d) a mandatory-to-mandatory rela-
tionship. Illustrate your answer by using IE Crow’s Foot E-R diagrams.

 5.20 Show how to represent the N:M relationship in your answer to question 5.9. Use an
IE Crow’s Foot E-R diagram.

 5.21 Explain the meaning of the term intersection table.

 5.22 Explain how the terms parent table and child table relate to the tables in your an-
swer to question 5.20.

 5.23 For your answers to questions 5.20, 5.21, and 5.22, describe a method for obtaining
the children for one of the entities in the original data model, given the primary key of
the table based on the second entity. Also, describe a method for obtaining the chil-
dren for the second entity, given the primary key of the table based on the first entity.

 5.24 For your answer to question 5.20, code an SQL statement that creates a relation
that has all data from all tables.

 5.25 Why is it not possible to represent N:M relationships with the same strategy used
to represent 1:N relationships?

 5.26 What is an associative entity (also called an association entity)? What is an associa-
tion relationship? Give an example of an association relationship other than one
shown in this text. Illustrate your answer using an IE Crow’s Foot E-R diagram.

 5.27 Give an example of a 1:N relationship with an ID-dependent weak entity, other
than one shown in this text. Illustrate your answer using an IE Crow’s Foot E-R
diagram.

 5.28 Give an example of a supertype–subtype relationship, other than one shown in this
text. Illustrate your answer using an IE Crow’s Foot E-R diagram.

 5.29 Define the three types of recursive binary relationships, and give an example of
each, other than the ones shown in this text.

 5.30 Show how to represent the 1:1 recursive relationship in your answer to ques-
tion 5.29. How does this differ from the representation of 1:1 nonrecursive
relationships?

 5.31 Code an SQL statement that creates a table with all columns from the parent and
child tables in your answer to question 5.30.

 5.32 Show how to represent a 1:N recursive relationship in your answer to question 5.29.
How does this differ from the representation of 1:N nonrecursive relationships?

 5.33 Code an SQL statement that creates a table with all columns from the parent and
child tables in your answer to question 5.32.

 5.34 Show how to represent the M:N recursive relationship in your answer to question
5.29. How does this differ from the representation of M:N nonrecursive relationships?

 5.35 Code an SQL statement that creates a table with all columns from the parent and
child tables in your answer to question 5.34. Code an SQL statement using a left
outer join that creates a table with all columns from the parent and child tables.
Explain the difference between these two SQL statements.

EXERCISES

5.36 Consider the following table, which holds data about employee project assignments:

ASSIGNMENT (EmployeeNumber, ProjectNumber, ProjectName,
HoursWorked)

Assume that ProjectNumber determines ProjectName, and explain why this rela-
tion is not normalized. Demonstrate an insertion anomaly, a modification anomaly,

M05_KROE1533_08_SE_C05.indd 356 11/21/16 6:37 PM

Chapter 5 Database Design 357

and a deletion anomaly. Apply the normalization process to this relation. State the
referential integrity constraint.

5.37 Consider the following relation that holds data about employee assignments:

ASSIGNMENT (EmployeeNumber, ProjectNumber, ProjectName,
HoursWorked)

Assume that ProjectNumber determines ProjectName, and explain why this rela-
tion is not normalized. Demonstrate an insertion anomaly, a modification anomaly,
and a deletion anomaly. Apply the normalization process to this relation. State the
referential integrity constraint.

5.38 Explain the difference between the two ASSIGNMENT tables in exercises 5.36
and 5.37. Under what circumstances is the table in exercise 5.36 more correct?
Under what circumstances is the table in exercise 5.37 more correct?

5.39 Create a relational database design for the data model you developed for exercise 4.30.

5.40 Create a relational database design for the data model you developed for exercise 4.31.

5.41 Create a relational database design for the data model you developed for exercise 4.32.

5.42 Create a relational database design for the data model you developed for exercise 4.33.

ACCESS WORKBENCH

Key Term
Indexed field property

Exercises
AW.5.1 Using an IE Crow’s Foot E-R diagram, draw a database design for the
Wedgewood Pacific (WP) database completed at the end of Chapter 3’s section of “The
Access Workbench.”
AW.5.2 This chapter’s section of “The Access Workbench” describes how to create 1:1
relationships in Microsoft Access. In particular, we added the business rule that each sales-
person at Wallingford Motors can have one and only one vehicle as a demo car. Suppose
that the rule has been changed so that each salesperson can have one or more cars as demo
vehicles.

A. Using an IE Crow’s Foot E-R diagram, redraw the database design in Figure AW-5-1
to show the new relationship between VEHICLE and SALESPERSON. Which
table(s) is (are) the parent(s) in the relationship? Which table(s) is (are) the
child(ren)? In which table(s) do you place a foreign key?

B. Start with the Wallingford Motors database that you have created so far
(WMCRM.accdb) as it exists after working through all the steps in this chapter’s
section of “The Access Workbench.” (If you have not completed those actions,
do so now.) Copy the WMCRM.accdb database and rename the copy WMCRM-
AW05-v02.accdb. Modify the WMCRM-AW05-v02.accdb database to implement
the new relationship between VEHICLE and SALESPERON. (Note: Copying
a Microsoft Access database is discussed in Chapter 4’s section of “The Access
Workbench.”)

M05_KROE1533_08_SE_C05.indd 357 11/21/16 6:37 PM

358 Part 2 Database Design

AW.5.3 This chapter’s section of “The Access Workbench” describes how to create 1:1
relationships in Microsoft Access. In particular, we added the business rule that each sales-
person at Wallingford Motors can have one and only one vehicle as a demo car. Suppose
that the rule has been changed so that (1) each salesperson can have one or more cars as
demo vehicles and (2) each demo vehicle can be shared by two or more salespersons.

A. Using an IE Crow’s Foot E-R diagram, redraw the database design in Figure AW-5-1
to show the new relationship between VEHICLE and SALESPERSON. Which
table(s) is (are) the parent(s) in the relationship? Which table(s) is (are) the
child(ren)? In which table(s) do you place a foreign key?

B. Start with the Wallingford Motors database that you have created so far
(WMCRM.accdb) as it exists after working through all the steps in this chapter’s
section of “The Access Workbench.” (If you have not completed those actions,
do so now.) Copy the WMCRM.accdb database and rename the copy WMCRM-
AW05-v03.accdb. Modify the WMCRM-AW05-v03.accdb database to implement
the new relationship between VEHICLE and SALESPERSON. (Note: Copying
a Microsoft Access database is discussed in Chapter 4’s section of “The Access
Workbench.”)

SAN JUAN SAILBOAT CHARTERS CASE QUESTIONS
San Juan Sailboat Charters (SJSBC) is an agency that leases (charters) sailboats. SJSBC does
not own the boats. Instead, SJSBC leases boats on behalf of boat owners who want to earn
income from their boats when they are not using them, and SJSBC charges the owners a fee
for this service. SJSBC specializes in boats that can be used for multiday or weekly charters.
The smallest sailboat available is 28 feet in length and the largest is 51 feet in length.

Each sailboat is fully equipped at the time it is leased. Most of the equipment is pro-
vided at the time of the charter. Most of the equipment is provided by the owners, but
some is provided by SJSBC. The owner-provided equipment includes equipment that is
attached to the boat, such as radios, compasses, depth indicators and other instrumenta-
tion, stoves, and refrigerators. Other owner-provided equipment, such as sails, lines, an-
chors, dinghies, life preservers, and equipment in the cabin (dishes, silverware, cooking
utensils, bedding, and so on), is not physically attached to the boat. SJSBC provides con-
sumable supplies, such as charts, navigation books, tide and current tables, soap, dish tow-
els, toilet paper, and similar items. The consumable supplies are treated as equipment by
SJSBC for tracking and accounting purposes.

Keeping track of equipment is an important part of SJSBC’s responsibilities. Much of
the equipment is expensive, and those items not physically attached to the boat can be eas-
ily damaged, lost, or stolen. SJSBC holds the customer responsible for all of the boat’s
equipment during the period of the charter.

SJSBC likes to keep accurate records of its customers and charters, and customers are
required to keep a log during each charter. Some itineraries and weather conditions are
more dangerous than others, and the data from these logs provide information about the
customer experience. This information is useful for marketing purposes as well as for eval-
uating a customer’s ability to handle a particular boat and itinerary.

Sailboats need maintenance. Note that two definitions of boat are (1) “break out an-
other thousand” and (2) “a hole in the water into which one pours money.” SJSBC is re-
quired by its contracts with the boat owners to keep accurate records of all maintenance
activities and costs.

M05_KROE1533_08_SE_C05.indd 358 11/21/16 6:37 PM

Chapter 5 Database Design 359

A data model of a proposed database to support an information system for SJSBC is
shown in Figure 5-30. Note that because the OWNER entity allows for owners to be com-
panies as well as individuals SJSBC can be included as an equipment owner (note that the
cardinalities in the diagram allow SJSBC to own equipment while not owning any boats).
Also note that this model relates EQUIPMENT to CHARTER rather than BOAT even
when the equipment is physically attached to the boat. This is only one possible way to
handle EQUIPMENT, but it is satisfactory to the managers of SJSBC.

A. Convert this data model to a database design. Specify tables, primary keys, and foreign
keys. Using Figures 5-26 and 5-28 as guides, specify column properties.

B. Describe how you have represented weak entities, if any exist.

C. Describe how you have represented supertype and subtype entities, if any exist.

D. Create a visual representation of your database design as an IE Crow’s Foot E-R dia-
gram similar to the one in Figure 5-27.

E. Document referential integrity constraint enforcement, using Figure 5-29 as a guide.

OWNER
OwnerID
CompanyName
LastName
FirstName
Address
City
State
ZIP
Phone
EmailAddress
BankName
BankAccountNumber

EQUIPMENT
ItemIDTabNumber
ItemNumber
ItemSerialNumber
ItemMake
ItemModel
NumberOfItems
ItemCost

BOAT
CoastGuardRegNumber
BoatName
BoatMake
BoatModel
BoatType
Length
Beam
NumberOfBerths

CHARTER
CharterID
DepartureDate
ReturnDate
NumberInParty
BoatCost
EquipmentCost
TotalCost

SCHEDULED_MAINTENANCE
MaintenanceID
MaintenanceItem
RequiredDate
ScheduledDate
CompletedDate
Cost

CUSTOMER
CustomerID
LastName
FirstName
Address
City
State
ZIP
Phone
Email
CreditCardNumber

LOG
CharterID
EntryNumber

EntryDate
EntryTime
EntryLocation
Weather
DepartingFrom
SailingTo

FIGURE 5-30

Data Model for San Juan Sailboat Charters

M05_KROE1533_08_SE_C05.indd 359 11/21/16 6:37 PM

360 Part 2 Database Design

WRITER’S PATROL CASE QUESTIONS

Answer the Writer’s Patrol Case Questions in Chapter 4 if you have not already done so.
Design a database for your data model from Chapter 4. Your design should include a speci-
fication of tables and (using Figures 5-26 and 5-28 as guides) column properties as well as
primary, candidate, and foreign keys. Create a visual representation of your database design
as an IE Crow’s Foot E-R diagram similar to the one in Figure 5-27. Document your refer-
ential integrity constraint enforcement in the format shown in Figure 5-29.

 JAMES RIVER JEWELRY PROJECT QUESTIONS

The James River Jewelry project questions are available in Appendix D, which can be
downloaded from the textbook’s Web site: www.pearsonhighered.com/kroenke.

 GARDEN GLORY PROJECT QUESTIONS

Convert the data model you constructed for Garden Glory in part B at the end of Chapter
4 (or an equivalent data model that your instructor provides for you to use) into a relational
database design for Garden Glory. Document your database design as follows.

A. Specify tables, primary keys, and foreign keys. Using Figures 5-26 and 5-28 as guides,
specify column properties.

B. Describe how you have represented weak entities, if any exist.

C. Describe how you have represented supertype and subtype entities, if any exist.

D. Create a visual representation of your database design as an IE Crow’s Foot E-R dia-
gram similar to the one in Figure 5-27.

E. Document referential integrity constraint enforcement, using Figure 5-29 as a guide.

F. Document any business rules that you think might be important.

G. Describe how you would validate that your design is a good representation of the data
model on which it is based.

 THE QUEEN ANNE CURIOSITY SHOP PROJECT QUESTIONS

Convert the data model you constructed for The Queen Anne Curiosity Shop in part
D at the end of Chapter 4 (or an equivalent data model that your instructor provides for
you to use) into a relational database design for The Queen Anne Curiosity Shop.
Document your database design as follows.

A. Specify tables, primary keys, and foreign keys. Using Figures 5-26 and 5-28 as guides,
specify column properties.

M05_KROE1533_08_SE_C05.indd 360 11/21/16 6:37 PM

http://www.pearsonhighered.com/kroenke

Chapter 5 Database Design 361

B. Describe how you have represented weak entities, if any exist.

C. Describe how you have represented supertype and subtype entities, if any exist.

D. Create a visual representation of your database design as an IE Crow’s Foot E-R
diagram similar to the one in Figure 5-27.

E. Document referential integrity constraint enforcement, using Figure 5-29 as a guide.

F. Document any business rules that you think might be important.

G. Describe how you would validate that your design is a good representation of the data
model on which it is based.

M05_KROE1533_08_SE_C05.indd 361 11/21/16 6:37 PM

A01_LO5943_03_SE_FM.indd ivA01_LO5943_03_SE_FM.indd iv 04/12/15 4:22 PM04/12/15 4:22 PM

This page intentionally left blank

363

S o far, you have been introduced to the fundamental concepts

and techniques of relational database management and database

design. In Chapter 1, you learned about databases and the major

components of a database system. Chapter 2 introduced you to the relational

model, functional dependencies, and normalization. In Chapter 3, you learned

how to use SQL statements to create and process a database. Chapter 4 gave

you an overview of the database design process and a detailed introduction to

data modeling. In Chapter 5, you learned how to transform a data model into

a relational database design. Now that you know how to design, create, and

query databases, it is time to learn how to manage databases and use them to

solve business problems.

In Chapter 6, you will learn about database management and some of the

problems that occur when a database is processed concurrently by more than

one user. You will also learn about database security, and how to control user

and application developer use of databases. In Chapter 7, you will learn how

to create Web database applications, which use databases to support Web

sites. Finally, in Chapter 8, you will learn how databases support data ware-

houses and modern business intelligence (BI) systems and about Big Data,

the NoSQL movement, and cloud computing. After completing these chap-

ters, you will have surveyed all the basics of database technology.

3
PART

Database
Management

M06_KROE1533_08_SE_P03.indd 363 11/21/16 6:41 PM

A01_LO5943_03_SE_FM.indd ivA01_LO5943_03_SE_FM.indd iv 04/12/15 4:22 PM04/12/15 4:22 PM

This page intentionally left blank

365

T his chapter describes the major tasks of an important business
function called database administration. This function involves
managing a database in order to maximize its value to an organiza-

tion. Usually, database administration involves balancing the conflicting
goals of protecting the database and maximizing its availability and benefit
to users. Both the terms data administration and database administration are
used in the industry. In some cases, the terms are considered to be synony-
mous; in other cases, they have different meanings. Most commonly, the term
data administration refers to a function that applies to an entire organization; it
is a management-oriented function that concerns corporate data privacy and
security issues. The term database administration refers to a more technical
function that is specific to a particular database, including the applications
that process that database. This chapter addresses database administration.

Databases vary considerably in size and scope, from single-user personal
databases to large interorganizational databases, such as airline reservation
systems. All databases have a need for database administration, although
the tasks to be accomplished vary in complexity. When using a personal
database, for example, individuals follow simple procedures for backing
up their data, and they keep minimal records for documentation. In this
case, the person who uses the database also performs the DBA functions,
even though he or she is probably unaware of it.

For multiuser database applications, database administration becomes
both more important and more difficult. Consequently, it generally has
formal recognition. For some applications, one or two people are given
this function on a part-time basis. For large Internet or intranet databases,

 ■ Understand the need for and importance of database
administration

 ■ Learn different ways of processing a database

 ■ Understand the need for concurrency control, security,
and backup and recovery

 ■ Learn about typical problems that can occur when
multiple users process a database concurrently

 ■ Understand the use of locking and the problem of deadlock

 ■ Learn the difference between optimistic and pessimistic
locking

 ■ Know the meaning of ACID transaction

 ■ Learn the four 1992 ANSI standard isolation levels

 ■ Understand the need for security and specific tasks for
improving database security

 ■ Know the difference between recovery via reprocessing
and recovery via rollback/rollforward

 ■ Understand the nature of the tasks required for recovery
using rollback/rollforward

 ■ Know basic administrative and managerial DBA
functions

CHAPTER OBJECTIVES

6CHAPTE
R

Database Administration

M06_KROE1533_08_SE_C06.indd 365 11/21/16 6:38 PM

366 Part 3 Database Management

database administration responsibilities are often too time-consuming and
too varied to be handled even by a single full-time person. Supporting a
database with dozens or hundreds of users requires considerable time as
well as both technical knowledge and diplomatic skill, and it is usually
handled by an office of database administration. The manager of the office
is often known as the database administrator. In this case, DBA refers to either
the office or the manager.

The overall responsibility of a DBA is to facilitate the development and
use of a database. Usually, this means balancing the conflicting goals of
protecting the database and maximizing its availability and benefit to users.
The DBA is responsible for the development, operation, and maintenance of
the database and its applications.

In this chapter, we examine three important database administration
functions: concurrency control, security, and backup and recovery. Then
we discuss the need for configuration change management. But before you
learn about any of this, we will create the Heather Sweeney Designs data-
base discussed in the previous chapters; you’ll use it as an example data-
base for the discussion in this chapter and in Chapters 7 and 8.

The SQL statements to create the Heather Sweeney Designs (HSD) database are shown in
Figure 3-37. These SQL statements are in Microsoft SQL Server 2016 syntax and will need
to be appropriately modified to implement the HSD database in Oracle Database or
MySQL. The SQL statements are built from the HSD database design in Figure 5-27, and
the column constraints follow the attribute specifications in Figures 5-26 and 5-28 and the
referential integrity constraint specifications outlined in Figure 5-29.

The SQL statements to populate the HSD database are shown in Figure 3-38. Again,
these SQL statements are shown in SQL Server syntax and will need to be appropriately
modified for use in Oracle Database or MySQL. The completed HSD database is shown in
the Microsoft SQL Server Management Studio in Figure 6-1.

THE HEATHER SWEENEY DESIGNS DATABASE

Databases come in a variety of sizes and scopes, from single-user databases to huge, inter-
organizational databases, such as inventory management systems. As shown in Figure 6-2,
databases also vary in the way they are processed.

We will define and discuss the various pieces of the environment shown in Figure 6-2 in
detail in Chapter 7 when we discuss database processing applications. For now, just realize
that it is possible for every one of the application elements in Figure 6-2 to be operating at
the same time. Queries, forms, and reports can be generated while Web pages [using Active
Server Pages (ASP), Java Server Pages (JSP), PHP, or other options] access the database,
possibly invoking stored procedures. Traditional application programs running in Visual
Basic, C#, Java, and other programming languages can be processing transactions on
the database. All this activity can cause pieces of programming code stored in the
DBMS—which are known as SQL/Persistent Stored Modules (SQL/PSM), which
include user-defined functions, triggers, and stored procedures, and which are discussed in

THE NEED FOR CONTROL, SECURITY, AND RELIABILITY

M06_KROE1533_08_SE_C06.indd 366 11/21/16 6:38 PM

Chapter 6 Database Administration 367

Appendix E—to be invoked. While all this is occurring, constraints, such as those on refer-
ential integrity, must be enforced. Finally, hundreds, or even thousands, of people might be
using the system, and they might want to process the database 24 hours a day, 7 days a week.

Three database administration functions are necessary to bring order to this potential
chaos. First, the actions of concurrent users must be controlled to ensure that results are

The HSD table objects—dbo
stands for database owner

The data in the CUSTOMER
table

The HSD database object

FIGURE 6-1

The HSD Database in Microsoft SQL Server 2016

Java Server
Pages (JSP)

Application Programs in
Visual Basic,
C#, Java, etc.

DBMS
Active Server
Pages .NET
(ASP.NET)

Forms

Queries

Database

Triggers

Stored
Procedures

Reports
FIGURE 6-2

The Database
Processing
Environment

SQL Server 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 367 11/21/16 6:38 PM

368 Part 3 Database Management

consistent with what is expected. Second, security measures must be in place and enforced
so that only authorized users can take authorized actions at appropriate times. Finally,
backup and recovery techniques and procedures must be operating to protect the database
in case of failure and to recover it as quickly and accurately as possible when necessary. We
will consider each of these, in turn, and we will see some of them in use in Chapter 7 when
we use Web applications to access databases.

The purpose of concurrency control is to ensure that one user’s work does not inappropri-
ately influence another user’s work. In some cases, these measures ensure that a user gets
the same result when processing with other users as that person would have received if
processing alone. In other cases, it means that the user’s work is influenced by other users
but in an anticipated way.

For example, in an order-entry system, a user should be able to enter an order and
get the same result, whether there are no other users or hundreds of other users. How-
ever, a user who is printing a report of the most current inventory status might want to
obtain in-process data changes from other users, even if those changes might later be
canceled.

Unfortunately, no concurrency control technique or mechanism is ideal for all circum-
stances; they all involve trade-offs. For example, a user can obtain strict concurrency control
by locking the entire database, but while that person is processing no other user will be able
to do anything. This is robust protection, but it comes at a high cost. As you will see, other
measures are available that are more difficult to program and enforce but that allow more
throughput, which is defined as the maximum rate of processing. Still other measures are
available that maximize throughput but for a low level of concurrency control. When design-
ing multiuser database applications, developers need to choose among these trade-offs.

The Need for Atomic Transactions
In most database applications, users submit work in the form of transactions, also known
as logical units of work (LUWs). A transaction (or LUW) is a series of actions to be taken
on a database such that all of them are performed successfully or none of them are per-
formed at all, in which case the database remains unchanged. Such a transaction is some-
times called atomic because it is performed as a unit. Consider the following sequence of
database actions that could occur when recording a new order:

1. Change the customer record, increasing the value of Amount Owed.
2. Change the salesperson record, increasing the value of Commission Due.
3. Insert the new-order record into the database.

Suppose the last step fails, perhaps because of insufficient file space. Imagine the con-
fusion that would ensue if the first two changes were made but the third one was not. The
customer would be billed for an order that was never received, and a salesperson would
receive a commission on an order that was never sent to the customer. Clearly, these three
actions need to be taken as a unit: Either all of them should be done or none of them
should be done.

Figure 6-3 compares the results of performing these activities as a series of indepen-
dent steps [Figure 6-3(a)] and as an atomic transaction [Figure 6-3(b)].

Notice that when the steps are carried out atomically and one fails, no changes are
made in the database. Also note that the application program must issue the commands
equivalent to the Start Transaction (marks the beginning of the transaction), Commit Trans-
action (saves the new data to the database and ends the transaction), and Rollback Transac-
tion (undoes any data changes and ends the transaction) commands shown in Figure 6-3(b)

CONCURRENCY CONTROL

M06_KROE1533_08_SE_C06.indd 368 11/21/16 6:38 PM

Chapter 6 Database Administration 369

to mark the boundaries of the transaction logic. The particular form of these commands
varies from one DBMS product to another. In SQL, this set of commands is known as SQL
Transaction Control Language (TCL), and we will discuss it later in this chapter.

Concurrent Transaction Processing
When two transactions are being processed against a database at the same time, they are
termed concurrent transactions. Although it might appear to the users that concurrent
transactions are being processed simultaneously, this cannot be true because the central pro-
cessing unit (CPU) of the machine processing the database can execute only one instruction
at a time. Even a multi-core CPU or multi-CPU system has a finite number of CPUs, and

CUSTOMER

C-no Order # Description Cost
123 1000 400 Baseballs $2400

Name
Total-
Sales

JONES $3200

SALESPERSON

ORDERS

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Order #

FULL

Before

CUSTOMER

C-no Order # Description Cost
123 1000 400 Baseballs $2400

Name
Total-
Sales

JONES $9700

SALESPERSON

ORDERS

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Order #

FULL

After

123 8000 250 Basketballs $6500

START

1. Add new-order
 data to
 CUSTOMER.

2. Add new-order
 data to
 SALESPERSON.

3. Insert new
 ORDER.

STOP

Action

(a) Two of Three Activities Successfully Completed, Resulting in Database Anomalies

CUSTOMER

C-no Order # Description Cost
123 1000 400 Baseballs $2400

Name
Total-
Sales

JONES $3200

SALESPERSON

ORDERS

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Order #

FULL

Before

CUSTOMER

C-no Order # Description Cost

123 1000 400 Baseballs $2400

Name
Total-
Sales

JONES $3200

SALESPERSON

ORDERS

1000
2000
3000
4000
5000
6000
7000

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Order #

FULL

After

Start Transaction
 Change
 CUSTOMER data
 Change SALESPERSON
 data
 Insert ORDER data
If no errors then
 Commit Transaction
Else
 Rollback Transaction
End If

Transaction

.

(b) No Change Made Because Entire Transaction Not Successful

FIGURE 6-3

Comparison of the
Results of Applying
Serial Actions Versus
a Multiple-Step
Transaction

M06_KROE1533_08_SE_C06.indd 369 11/21/16 6:38 PM

370 Part 3 Database Management

you cannot count on having one CPU per transaction. Usually transactions are interleaved,
which means the operating system switches CPU services among tasks so that some portion
of each of them is carried out in a given interval. This switching among tasks is done so
quickly that two people seated at browsers side by side, processing against the same data-
base, might believe that their two transactions are completed simultaneously. However, in
reality, the two transactions are interleaved.

Figure 6-4 shows two concurrent transactions. User A’s transaction reads Item 100,
changes it, and rewrites it in the database. User B’s transaction takes the same actions but
on Item 200. The CPU processes User A’s transaction until the CPU must wait for a read or
write operation to complete or for some other action to finish. The operating system then
shifts control to User B. The CPU processes User B’s transaction until a similar interrup-
tion in the transaction processing occurs, at which point the operating system passes con-
trol back to User A. Again, to the users, the processing appears to be simultaneous, but in
reality it is interleaved, or concurrent.

The Lost Update Problem
The concurrent processing illustrated in Figure 6-4 poses no problems because the users
are processing different data. Now suppose both users want to process Item 100. For
example, User A wants to order 5 units of Item 100, and User B wants to order 3 units of
Item 100. Figure 6-5 illustrates this problem.

User A reads Item 100’s record, which is transferred into a user work area. According
to the record, 10 items are in inventory. Then User B reads Item 100’s record, and it goes
into another user work area. Again, according to the record, 10 items are in inventory.
Now, User A takes 5 of them, decrements the count of items in its user work area to 5, and
rewrites the record for Item 100. Then User B takes 3, decrements the count in its user
work area to 7, and rewrites the record for Item 100. The database now shows, incorrectly,
that 7 units of Item 100 remain in inventory. To review, the inventory started at 10, then
User A took 5, User B took 3, and the database wound up showing that 7 were left in
inventory. Clearly, this is a problem.

Both users obtained data that were correct at the time they obtained the data. How-
ever, when User B read the record, User A already had a copy that it was about to update.
This situation is called the lost update problem or the concurrent update problem. Another
similar problem is called the inconsistent read problem. In this situation, User A reads data
that have been processed by only a portion of a transaction from User B. As a result, User
A reads incorrect data.

1. Read Item 100 for A.
2. Read Item 200 for B.
3. Change Item 100 for A.
4. Write Item 100 for A.
5. Change Item 200 for B.
6. Write Item 200 for B.

1. Read Item 100.
2. Change Item 100.
3. Write Item 100.

One possible order of processing at database server

User A

1. Read Item 200.
2. Change Item 200.
3. Write Item 200.

User BFIGURE 6-4

Example of Concurrent
Processing of Two
Users’ Tasks

M06_KROE1533_08_SE_C06.indd 370 11/21/16 6:38 PM

Chapter 6 Database Administration 371

Resource Locking
One remedy for the inconsistencies caused by concurrent processing is to prevent multiple
applications from obtaining copies of the same rows or tables when those rows or tables are
about to be changed. This remedy, called resource locking, prevents concurrent processing
problems by disallowing sharing by locking data that are retrieved for update. Figure 6-6
shows the order of processing for the scenario in Figure 6-5 using a lock command.

Because of the lock, User B’s transaction must wait until User A is finished with the
Item 100 data. Using this strategy, User B can read Item 100’s record only after User A has
completed the modification. In this case, the final item count stored in the database is 2,
which is what it should be. (It started with 10, then A took 5 and B took 3, leaving 2.)

1. Read Item 100 (for A).
2. Read Item 100 (for B).
3. Set item count to 5 (for A).
4. Write Item 100 for A.
5. Set item count to 7 (for B).
6. Write Item 100 for B.

1. Read Item 100
 (assume item count is 10).
2. Reduce count of items by 5.
3. Write Item 100.

Order of processing at database server

Note: The change and write in steps 3 and 4 are lost.

User A User B

1. Read Item 100
 (assume item count is 10).
2. Reduce count of items by 3.
3. Write Item 100.

FIGURE 6-5

Example of the Lost
Update Problem

 1. Lock Item 100 for A.
 2. Read Item 100 for A.
 3. Lock Item 100 for B; cannot,
 so place B in wait state.
 4. Set item count to 5 for A.
 5. Write Item 100 for A.
 6. Release A’s lock on Item 100.
 7. Place lock on Item 100 for B.
 8. Read Item 100 for B.
 9. Set item count to 2 for B.
10. Write Item 100 for B.
11. Release B’s lock on Item 100.

1. Lock Item 100.
2. Read Item 100.
3. Reduce count by 5.
4. Write Item 100.

Order of processing at database server

User A User B

1. Lock Item 100.
2. Read Item 100.
3. Reduce count by 3.
4. Write Item 100.

B’s transaction

A’s transaction

FIGURE 6-6

Example of Concurrent
Processing with
Explicit Locks

M06_KROE1533_08_SE_C06.indd 371 11/21/16 6:38 PM

372 Part 3 Database Management

Locks can be placed automatically by the DBMS or by a command issued to the
DBMS from the application program or query user. Locks placed by the DBMS are called
implicit locks; those placed by command are called explicit locks.

In the preceding example, the locks were applied to rows of data; however, not all
locks are applied at this level. Some DBMS products lock at the page level, some at the
table level, and some at the database level. The size of a lock is referred to as the lock
granularity. Locks with large granularity are easy for the DBMS to administer but fre-
quently cause conflicts. Locks with small granularity are difficult to administer (the DBMS
has many more details to keep track of and check), but conflicts are less common.

Locks also vary by type. An exclusive lock locks an item from access of any type. No
other transaction can read or change the data. A shared lock locks an item from being
changed but not from being read; that is, other transactions can read the item as long as
they do not attempt to alter it.

Serializable Transactions
When two or more transactions are processed concurrently, the results in the database
should be logically consistent with the results that would have been achieved had the trans-
actions been processed in an arbitrary serial fashion (serial means that only one command
or step can be done at a time, as opposed to parallel which means that two or more com-
mands or steps can be done at once). A scheme for processing concurrent transactions in
this way is said to be serializable.

Serializability can be achieved through a number of different means. One way is to
process the transaction by using two-phase locking. With this strategy, transactions are
allowed to obtain locks as necessary, but when the first lock is released, no other lock can
be obtained. Transactions have a growing phase in which the locks are obtained and a
shrinking phase in which the locks are released.

A special case of two-phase locking is used with a number of DBMS products. With it,
locks are obtained throughout the transaction, but no lock is released until the COMMIT
or ROLLBACK command is issued. This strategy is more restrictive than two-phase lock-
ing requires, but it is easier to implement.

Consider an order-entry transaction that involves processing data in the CUSTOMER,
SALESPERSON, and ORDER tables. To make sure the database will suffer no anomalies due
to concurrency, the order-entry transaction issues locks on CUSTOMER, SALESPERSON,
and ORDER as needed; makes all the database changes; and then releases all its locks.

Deadlock
Although locking solves one problem, it causes another. Consider what might happen
when two users want to order two items from inventory. Suppose User A wants to order
some paper, and, if she can get the paper, she also wants to order some pencils. In addition,
suppose that User B wants to order some pencils, and, if he can get the pencils, he also
wants to order some paper. An example of the possible order of processing is shown in
Figure 6-7 (note that the simplified steps shown are only part of the actual set of transac-
tion steps that would occur).

In this figure, Users A and B are locked in a condition known as deadlock, sometimes
called the deadly embrace. Each is waiting for a resource that the other person has locked.
Two common ways of solving this problem are preventing the deadlock from occurring and
allowing the deadlock to occur and then breaking it.

Deadlock can be prevented in several ways. One way is to allow users to issue only one
lock request at a time; in essence, users must lock all the resources they want at once. For
example, if User A in Figure 6-7 had locked both the paper and the pencil records at the
beginning, the deadlock would not have occurred. A second way to prevent deadlock is to
require all application programs to lock resources in the same order.

Almost every DBMS has algorithms for detecting deadlock. When deadlock occurs, the
normal solution is to roll back one of the transactions to remove its changes from the database.

M06_KROE1533_08_SE_C06.indd 372 11/21/16 6:38 PM

Chapter 6 Database Administration 373

1. Lock paper for User A.
2. Lock pencils for User B.
3. Process A’s request; write paper record.
4. Process B’s request; write pencil record.
5. Put A in wait state for pencils.
6. Put B in wait state for paper.

1. Lock paper.
2. Take paper.
3. Lock pencils.

Order of processing at database server

** Locked **

User A User B

1. Lock pencils.
2. Take pencils.
3. Lock paper.

FIGURE 6-7

Example of Deadlock

OldQuantity = PRODUCT.Quantity

Set NewQuantity = PRODUCT.Quantity – 5

{process transaction – take exception action if NewQuantity < 0, etc.}

{If no errors have occurred:}

LOCK PRODUCT {at some level of granularity}

SELECT
FROM
WHERE

PRODUCT.Name, PRODUCT.Quantity
PRODUCT
PRODUCT.Name = ‘Pencil’

UPDATE
SET
WHERE
 AND

UNLOCK PRODUCT

{check to see if update was successful;
if not, repeat transaction}

PRODUCT
PRODUCT.Quantity = NewQuantity
PRODUCT.Name = 'Pencil'
PRODUCT.Quantity = OldQuantity

FIGURE 6-8

Example of Optimistic
Locking

Optimistic Versus Pessimistic Locking
Locks can be invoked in two basic styles. With optimistic locking, the assumption is made
that no conflict will occur. Data are read, the transaction is processed, updates are issued,
and then a check is made to see if conflict occurred. If there was no conflict, the transaction
finishes. If there was conflict, the transaction is repeated until it processes with no conflict.
With pessimistic locking, the assumption is made that conflict will occur. Locks are issued,
the transaction is processed, and then the locks are freed.

Figures 6-8 and 6-9 show examples of both styles of locking for a transaction that is
reducing the quantity of the pencil row in the PRODUCT table by 5. Figure 6-8 shows
optimistic locking. First, the data are read and the current value of Quantity of pencils is
saved in the variable OldQuantity. The transaction is then processed, and, if no errors have

M06_KROE1533_08_SE_C06.indd 373 11/21/16 6:38 PM

374 Part 3 Database Management

occurred, a lock is obtained on PRODUCT. The lock might be only for the pencil row, or it
might be at a larger level of granularity. In any case, an SQL statement is issued to update
the pencil row with a WHERE condition that the current value of Quantity equals Old-
Quantity. If no other transaction (or set of transactions) has changed the Quantity of the
pencil row, then this UPDATE will be successful. If another transaction (or set of transac-
tions) has changed the Quantity of the pencil row, the UPDATE will fail, and the transac-
tion will need to be repeated.

Figure 6-9 shows the logic for the same transaction using pessimistic locking. In this
case, a lock is obtained on PRODUCT (at some level of granularity) before any work is
begun. Then values are read, the transaction is processed, the UPDATE occurs, and
PRODUCT is unlocked.

The advantage of optimistic locking is that the lock is obtained only after the transac-
tion has been processed. Thus, the lock is held for less time than with pessimistic locking.
If the transaction is complicated or if the client is slow (due to transmission delays or to the
user doing other work, getting a cup of coffee, or shutting down without exiting the appli-
cation), the lock will be held for considerably less time. This advantage is especially impor-
tant if the lock granularity is large (for example, the entire PRODUCT table).

The disadvantage of optimistic locking is that if a lot of activity occurs on the pencil
row the transaction might have to be repeated many times. Thus, transactions that involve
a lot of activity on a given row (purchasing a popular stock, for example) are poorly suited
for optimistic locking.

Note that these examples assume explicit locking. The same optimistic/pessimistic
choice is available to the DBMS using implicit locking. Most DBMSs will use pessimistic
locking by default.

LOCK

SELECT
FROM
WHERE

Set NewQuantity = PRODUCT.Quantity – 5

{process transaction – take exception action if NewQuantity < 0, etc.}

{If no errors have occurred:}

UPDATE
SET
WHERE

UNLOCK

{no need to check if update was successful}

PRODUCT {at some level of granularity}

PRODUCT.Name, PRODUCT.Quantity
PRODUCT
PRODUCT.Name = 'Pencil'

PRODUCT
PRODUCT.Quantity = NewQuantity
PRODUCT.Name = 'Pencil'

PRODUCT

FIGURE 6-9

Example of Pessimistic
Locking

Concurrency control is a complicated subject; some of the decisions about lock types and
strategy have to be made on the basis of trial and error. For this and other reasons, database
application programs generally do not explicitly issue locks, as shown in Figures 6-8
and 6-9. Instead, the programs mark transaction boundaries using SQL Transaction Con-
trol Language (TCL) and then declare the type of locking behavior they want the DBMS

SQL TRANSACTION CONTROL LANGUAGE AND
DECLARING LOCK CHARACTERISTICS

M06_KROE1533_08_SE_C06.indd 374 11/21/16 6:38 PM

Chapter 6 Database Administration 375

to use. In this way, the DBMS can place and remove locks and even change the level and
type of locks dynamically.

Figure 6-10 shows the pencil transaction with transaction boundaries marked with the
SQL standard commands for controlling transactions:

• The SQL BEGIN TRANSACTION statement,
• The SQL COMMIT TRANSACTION statement, and
• The SQL ROLLBACK TRANSACTION statement.

The SQL BEGIN TRANSACTION statement explicitly marks the start of a new
transaction, while the SQL COMMIT TRANSACTION statement makes any database
changes made by the transaction permanent and marks the end of the transaction. If there
is a need to undo the changes made during the transaction due to an error in the process,
the SQL ROLLBACK TRANSACTION statement is used to undo all transaction changes
and return the database to the state it was in before the transaction was attempted. Thus,
the SQL ROLLBACK TRANSACTION statement also marks the end of the transaction
but with a very different outcome.

These boundaries are the essential information that the DBMS needs to enforce the
different locking strategies. If the developer now declares via a system parameter that he or
she wants optimistic locking, the DBMS will implicitly set locks for that locking style. If,
however, the developer declares pessimistic locking, the DBMS will set the locks
differently.

BEGIN TRANSACTION:

SELECT
FROM
WHERE

Old Quantity = PRODUCT.Quantity

Set NewQuantity = PRODUCT.Quantity – 5

{process part of transaction – take exception action if NewQuantity < 0, etc.}

UPDATE
SET
WHERE

{continue processing transaction} . . .

IF transaction has completed normally THEN

 COMMIT TRANSACTION

ELSE

 ROLLBACK TRANSACTION

END IF

Continue processing other actions not part of this transaction . . .

PRODUCT.Name, PRODUCT.Quantity
PRODUCT
PRODUCT.Name = 'Pencil'

PRODUCT
PRODUCT.Quantity = NewQuantity
PRODUCT.Name = 'Pencil'

FIGURE 6-10

Example of Marking
Transaction Boundaries

M06_KROE1533_08_SE_C06.indd 375 11/21/16 6:38 PM

376 Part 3 Database Management

Consistent Transactions
Sometimes the acronym ACID is applied to transactions. An ACID transaction is one that
is atomic, consistent, isolated, and durable. Atomic and durable are easy to define. As men-
tioned earlier in this chapter, an atomic transaction is one in which all the database actions
occur or none of them do. A durable transaction is one in which all committed changes are
permanent. The DBMS will not remove such changes, even in the case of failure. If the
transaction is durable, the DBMS will provide facilities to recover the changes of all com-
mitted actions when necessary.

The terms consistent and isolated are not as definitive as the terms atomic and durable.
Consider the following SQL UPDATE command:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-UPDATE-CH06-01 *** */

UPDATE CUSTOMER

SET AreaCode = '425'

 WHERE ZIPCode = '98050';

Suppose the CUSTOMER table has 500,000 rows, and 500 of them have a ZIPCode value
equal to 98050. It will take some time for the DBMS to find all 500 rows. During that time,
will other transactions be allowed to update the AreaCode or ZIPCode fields of
CUSTOMER? If the SQL statement is consistent, such updates will be disallowed. The
update will apply to the set of rows as they existed at the time the SQL statement started.
Such consistency is called statement-level consistency.

You may be wondering when transactions begin and end when you run SQL
queries directly against the database from one of the GUI utility programs (as
you have probably been doing in SQL Server 2016 [using SQL Server Manage-
ment Studio], Oracle Database XE [using SQL Developer], or MySQL 5.7 [using
MySQL Workbench]). In this case, transaction boundaries are set automatically
by the DBMS. Each system does this in a slightly different way, and each sys-
tem also allows the user to explicitly commit or rollback the current transaction
(query). For more detail, see the documentation for your specific DBMS product.

BTW

As usual, each DBMS product implements these SQL statements in a slightly
different way. SQL Server does not require the SQL keyword TRANSACTION,
allows the abbreviation TRANS, and also allows the use of the SQL WORK key-
word with COMMIT and ROLLBACK. Oracle Database uses SET TRANSACTION
with COMMIT and ROLLBACK. MySQL does not use the SQL keyword TRANS-
ACTION, while it allows (but does not require) use of the SQL WORK keyword
in its place.

BTW

M06_KROE1533_08_SE_C06.indd 376 11/21/16 6:38 PM

Chapter 6 Database Administration 377

Dirty Read The transaction reads a row that has been
changed, but the change has not been committed.
If the change is rolled back, the transaction has
incorrect data.

Nonrepeatable Read The transaction rereads data that has been
changed, and finds changes due to committed
transactions.

Phantom Read The transaction rereads data and finds new rows
inserted by a committed transaction.

Data Read Problem Type DefinitionFIGURE 6-11

Summary of Data Read
Problems

Now consider a transaction that contains two SQL UPDATE statements:

/* *** EXAMPLE CODE – DO NOT RUN *** */
/* *** SQL-TRANSACTION-CH06-01 *** */
BEGIN TRANSACTION;
/* *** SQL-UPDATE-CH06-01 *** */
UPDATE CUSTOMER

SET AreaCode = '425'
WHERE ZIPCode = '98050';

. . .
{other transaction work}
. . .
/* *** SQL-UPDATE-CH06-02 *** */
UPDATE CUSTOMER

SET Discount = 0.05
WHERE AreaCode = '425';

. . .
{other transaction work}
. . .
COMMIT TRANSACTION;

In this context, what does consistent mean? Statement-level consistency means that each
statement independently processes consistent rows, but changes from other users to those
rows might be allowed during the interval between the two SQL statements. Transaction-
level consistency means that all rows affected by either of the SQL statements are pro-
tected from changes during the entire transaction.

However, for some implementations of transaction-level consistency, a transaction will
not see its own changes. In this example, the second SQL statement might not see rows
changed by the first SQL statement.

Thus, when you hear the term consistent look further to determine which type of con-
sistency is intended. Be aware as well of the potential trap of transaction-level consistency.
The situation is even more complicated for the term isolated, which we consider next.

Transaction Isolation Level
The term isolated has several different meanings. To understand those meanings, we need
first to define several terms that describe various problems that can occur when we read
data from a database, which are summarized in Figure 6-11.

• A dirty read occurs when one transaction reads a changed record that has not been
committed to the database. This can occur, for example, if one transaction reads a row
changed by a second transaction and the second transaction later cancels its changes.

M06_KROE1533_08_SE_C06.indd 377 11/21/16 6:38 PM

378 Part 3 Database Management

• A nonrepeatable read occurs when a transaction rereads data it has previously
read and finds modifications or deletions caused by another transaction.

• A phantom read occurs when a transaction rereads data and finds new rows
that were inserted by a different transaction after the prior read.

In order to deal with these potential data read problems, the SQL standard defines four
transaction isolation levels or isolation levels that specify which of the concurrency control
problems are allowed to occur. These isolation levels are summarized in Figure 6-12.

The goal of having four isolation levels is to allow the application programmer, DBA, or
sophisticated end user to declare the type of isolation level desired and then to have the
DBMS manage locks to achieve that level of isolation. The transaction isolation levels shown
in Figure 6-12 can be defined as:

• The read uncommitted isolation level allows dirty reads, nonrepeatable reads,
and phantom reads to occur.

• The read committed isolation level allows nonrepeatable reads and phantom
reads but disallows dirty reads.

• The repeatable read isolation level allows phantom reads but disallows both
dirty reads and nonrepeatable reads.

• The serializable isolation level does not allow any of these three data read
problems to occur.

Generally, the more restrictive the isolation level, the less throughput, although much
depends on the workload and how the application programs were written. Moreover, not
all DBMS products support all these levels. Products also vary in the manner in which they
are supported and in the burden they place on the application programmer.

Dirty Read
Nonrepeatable
Read
Phantom Read

Problem
Type

Possible
Possible

Possible

Isolation Level

Read
Uncommitted

Not possible
Possible

Possible

Read
Committed

Not possible
Not possible

Possible

Repeatable
Read

Not possible
Not possible

Not possible

Serializable

FIGURE 6-12

Summary of Isolation Levels

A cursor is a pointer into a set of rows that is the result set from an SQL SELECT state-
ment, and cursors are usually defined using SELECT statements. For example, the follow-
ing statement defines a cursor named TransCursor that operates over the set of rows
indicated by this SELECT statement:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-DECLARE-CURSOR-CH06-01 *** */

DECLARE CURSOR TransCursor AS

SELECT *

 FROM [TRANSACTION]

 WHERE PurchasePrice > 10000;

CURSOR TYPES

M06_KROE1533_08_SE_C06.indd 378 11/21/16 6:38 PM

Chapter 6 Database Administration 379

Cursor Type Description Comments

Static

Keyset

Dynamic Changes of any type and from
any source are visible.

Application sees the data as
they were at the time the
cursor was opened.

When the cursor is opened, a
primary key value is saved
for each row in the recordset.
When the application
accesses a row, the key is
used to fetch the current
values for the row.

Changes made by this cursor
are visible. Changes from
other sources are not visible.
Backward and forward
scrolling are allowed.

All inserts, updates, deletions,
and changes in recordset order
are visible. If the isolation level
is dirty read, then uncommitted
changes are visible. Otherwise,
only committed changes are
visible.

Updates from any source are
visible. Inserts from sources
outside this cursor are not visible
(there is no key for them in the
keyset). Inserts from this cursor
appear at the bottom of the
recordset. Deletions from any
source are visible. Changes in
row order are not visible. If the
isolation level is dirty read, then
committed updates and deletions
are visible; otherwise, only
committed updates and deletions
are visible.

FIGURE 6-13

Summary of Cursor
Types

After an application program opens a cursor, it can place the cursor somewhere in the
result set. Most commonly, the cursor is placed on the first or last row, but other possibili-
ties exist.

A transaction can open several cursors—either sequentially or simultaneously. In
addition, two or more cursors may be open on the same table either directly on the table
or through an SQL view on that table. Because cursors require considerable memory,
having many cursors open at the same time (for example, for a thousand concurrent
transactions) consumes considerable memory. One way to reduce cursor burden is to
define reduced-capability cursors and use them when a full-capability cursor is not
needed.

Figure 6-13 lists three cursor types supported by SQL Server 2016. In SQL Server
2016, of any of these three types be either forward-only cursors or scrollable cursors. With
a forward-only cursor, the application can only move forward through the records, and
changes made by other cursors in this transaction and other transactions will be visible only
if they occur to the rows ahead of the cursor. With a scrollable cursor, the application can
scroll forward and backward through the records.

A static cursor takes a snapshot of a relation and processes that snapshot. Changes
made using this cursor are visible to the cursor; changes from other sources are not visible.

A dynamic cursor is a fully featured cursor. All inserts, updates, deletions, and changes
in row order are visible to a dynamic cursor. Unless the isolation level of the transaction is a
dirty read, only committed changes are visible.

Keyset cursors combine some features of static cursors with some features of dynamic
cursors. When the cursor is opened, a primary key value is saved for each row. When the
application positions the cursor on a row, the DBMS uses the key value to read the current

M06_KROE1533_08_SE_C06.indd 379 11/21/16 6:39 PM

380 Part 3 Database Management

A word of caution: If you do not specify the isolation level of a transaction or do
not specify the type of cursors you open, the DBMS will use a default level and
type. These defaults may be perfect for your application, but they also may be
terrible. Thus, even though you can ignore these issues, you cannot avoid their
consequences. You must learn the capabilities of your DBMS product.

BTW

Database
Authorization

Users

Permissions

Authentication

Login Name

Password

FIGURE 6-14

Database Security
Authentication and
Authorization

value of the row. Inserts of new rows by other cursors (in this transaction or in other trans-
actions) are not visible. If the application issues an update on a row that has been deleted
by a different cursor, the DBMS creates a new row with the old key value and places the
updated values in the new row (assuming that all required fields are present). As with
dynamic cursors, unless the isolation level of the transaction is a dirty read, only committed
updates and deletions are visible to the cursor.

Cursor types for DBMSs besides SQL Server 2016 are similar, except that the forward-
only cursor is sometimes implemented as a fourth cursor type. In this case, the static,
keyset, and dynamic cursors will be strictly scrollable cursors.

The amount of overhead and processing required to support a cursor is different for
each type. In general, the cost goes up as you move down the cursor types shown in
Figure 6-13. In order to improve DBMS performance, therefore, an application developer
should create cursors that are just powerful enough to do the job. It is also very important
to understand how a particular DBMS implements cursors and whether cursors are located
on the server or on the client. In some cases, it might be better to place a dynamic cursor on
the client than to have a static cursor on the server. No general rule can be stated because
performance depends on the implementation used by the DBMS product and the applica-
tion requirements.

The goal of database security is to ensure that only authorized users can perform autho-
rized activities at authorized times. This goal is usually broken into two parts: authentica-
tion, which makes sure the user has the basic right to use the system in the first place, and
authorization, which assigns the authenticated user specific rights or permissions to do
specific activities on the system. As shown in Figure 6-14, user authentication is achieved
by requiring the user to log in to the system with a password (or other means of positive
identification, such as a biometric scan of a fingerprint), whereas user authorization is
achieved by granting DBMS-specific permissions.

Note that authentication (when the user logs in to the system) by itself is not sufficient
for use of the database—unless the user has been granted permissions, he or she cannot
access the database or take any actions that use it.

DATABASE SECURITY

M06_KROE1533_08_SE_C06.indd 380 11/21/16 6:39 PM

Chapter 6 Database Administration 381

The user’s DBMS password

The user’s DMBS login
name

The HSD default database

FIGURE 6-15

Creating the Database Server Login

Permissions can be managed using SQL Data Control Language (DCL) statements:

• The SQL GRANT statement is used to assign permissions to users and
groups so that the users or groups can perform various operations on the data
in the database.

• The SQL REVOKE statement is used to take existing permissions away from
users and groups.

While these statements can be used in SQL scripts and with SQL command line utili-
ties, we will find it much easier to use the GUI DBMS administration utilities provided for
use with each of the major DBMS products to manage user permissions.

The goal of database security is difficult to achieve, and to make any progress at all
the database development team must determine (1) which users should be able to use the
database (authentication) and (2) the processing rights and responsibilities of each user.
These security requirements can then be enforced using the security features of the
DBMS as well as additions to those features that are written into the application
programs.

User Accounts
Consider, for example, the database security needs of Heather Sweeney Designs. There
must be some means of controlling which employees can have access to the database.
There is: you can create a user account for each employee. Figure 6-15 shows the creation
of the user login HSD-User at the DBMS security level in SQL Server.

This step creates the initial user account in the DBMS—not a specific database. The
password being assigned is HSD-User+password, which we will also need for the HSD Web
pages in Chapter 7. Note that in the Windows environment there are two choices for

SQL Server 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 381 11/21/16 6:39 PM

382 Part 3 Database Management

USER

OBJECT

ROLE

Accounting
Tellers
Shop Managers
Unknown Public

Eleanore Wu
James Johnson
Richard Ent

Eleanore Wu can execute the MonthEnd stored procedure.
James Johnson can alter all tables.

Accounting can update the CUSTOMER table.

Note: Each PERMISSION must be associated
with at least one USER or ROLE

PERMISSION

FIGURE 6-16

A Model of DBMS
Security

controlling authentication: We can use the Windows operating system to control authenti-
cation, or we can create an SQL Server internal user account with its own login name and
password. For other DBMS products that are not as operating system specific as SQL
Server, only the second option of internal user accounts can be used.

User accounts and passwords need to be managed carefully. The exact terminology,
features, and functions of DBMS account and password security depend on the DBMS
product used. For example, in Oracle Database creating a user implicitly creates a database
that the user will interact with every time that user logs in.

User Processing Rights and Responsibilities
All major DBMS products provide security tools that limit certain actions on certain
objects to certain users. A general model of DBMS security is shown in Figure 6-16.

According to Figure 6-16, a user can be assigned to zero or one or more roles (groups),
and a role can have zero or one or more users. Users, roles, and objects (used in a generic sense)
have many permissions. Each permission is assigned to one user or role and one object. Once a
user is authenticated by the DBMS, the DBMS limits the person’s actions to the defined per-
missions for that user and to the permissions for roles to which that user has been assigned.

Now, let’s consider user authorization at Heather Sweeney Designs. The company has
three types of users: administrative assistants, management (Heather and others), and a
system administrator (Heather’s consultant). Figure 6-17 summarizes the processing rights
that Heather determined were appropriate for her business.

Administrative assistants can read, insert, and change data in all tables. However, they
can delete data only from SEMINAR_CUSTOMER and LINE_ITEM. This means that
administrative assistants can disenroll customers from seminars and can remove items from
an order. Management can take all actions on all tables except delete CUSTOMER data.
Heather believes that for as hard as she works to get a customer, she does not want to ever
run the risk of accidentally deleting one.

Finally, the system administrator can modify the database structure and grant rights
(assign permissions) to other users but can take no action on data. The system administra-
tor is not a user and so should not be allowed access to user data. This limitation might
seem weak. After all, if the system administrator can assign permissions, he or she can get
around the security system by changing the permissions to take whatever action is desired,
make the data changes, and then change the permissions back. This is true, but it would
leave an audit trail in the DBMS logs. That, coupled with the need to make the security
system changes, will dissuade the administrator from unauthorized activity. It is certainly
better than allowing the administrator to have user data access permissions with no effort.

A very important principle of database security administration (and of network administra-
tion) is that the types of permissions shown in Figure 6-17 are given to user groups (also known

M06_KROE1533_08_SE_C06.indd 382 11/21/16 6:39 PM

Chapter 6 Database Administration 383

as user roles) and not to individual users unless absolutely necessary. There may be some cases
in which specific users need to be assigned permissions within the database, but we want to
avoid this whenever possible. Note that because groups or roles are used, it is necessary to have
a means for assigning users to groups or roles. When Heather Sweeney signs onto the com-
puter, some means must be available to determine which group or groups she belongs to.

Now we need to make role and permission assignments in the HSD database. HSD-
User is one of Heather’s administrative assistants and, therefore, needs the ability to read,
insert, and change data in all tables. First, we need to grant HSD-User permission to use
the HSD database within the DBMS. Figure 6-18 shows the creation of the database-level
user named HSD-Database-User at the HSD database security level in SQL Server. Note
that this user is being created specifically for the HSD database but is based on the already
created DBMS login name. Also note that in SQL Server no password is assigned at the
database security level, only at the DBMS security level.

Figure 6-19 shows the fixed database roles in SQL Server and their associated permis-
sions. Because HSD-Database-User needs to be able to read, insert, and change data in all
tables in the HSD database, we should assign HSD-Database-User to the roles db_
datareader and db_datawriter. Figure 6-20 shows HSD Database User being added to the
db_datareader role. As shown in Figure 6-29, a permission may come with the GRANT
option, meaning that the user can in turn assign that permission to other users. Further,
note that the DBA can also create new roles not shown here, and then assign users to them
as needed.

In this discussion, we have used the phrase processing rights and responsibilities. As
this phrase implies, responsibilities go with processing rights. If, for example, the
system administrator deletes CUSTOMER data, it is that person’s responsibility to
ensure that those deletions do not adversely affect the company’s operation, account-
ing, and so forth.

Processing responsibilities cannot be enforced by the DBMS or the database applica-
tions. Responsibilities are, instead, encoded in manual procedures and explained to users
during systems training. These are topics for a systems development book, and we do not
consider them further here except to reiterate that responsibilities go with rights. Such
responsibilities must be documented and enforced.

FIGURE 6-17

Processing Rights at Heather Sweeney Designs

DATABASE RIGHTS GRANTED
Table Administrative Assistants Management System Administrator
SEMINAR Read, Insert, Change Read, Insert, Change, Delete Grant Rights, Modify

Structure

CUSTOMER Read, Insert, Change Read, Insert, Change Grant Rights, Modify
Structure

SEMINAR_
CUSTOMER

Read, Insert, Change, Delete Read, Insert, Change, Delete Grant Rights, Modify
Structure

CONTACT Read, Insert, Change Read, Insert, Change, Delete Grant Rights, Modify
Structure

INVOICE Read, Insert, Change Read, Insert, Change, Delete Grant Rights, Modify
Structure

LINE_ITEM Read, Insert, Change, Delete Read, Insert, Change, Delete Grant Rights, Modify
Structure

PRODUCT Read, Insert, Change Read, Insert, Change, Delete Grant Rights, Modify
Structure

M06_KROE1533_08_SE_C06.indd 383 11/21/16 6:39 PM

384 Part 3 Database Management

The DBA has the task of managing processing rights and responsibilities, which
change over time. As the database is used and as changes are made to the applications and
to the DBMS’s structure, the need for new or different rights and responsibilities
will arise. The DBA is a focal point for the discussion of such changes and for their
implementation.

The security systems used by Microsoft SQL Server 2016, Oracle Database XE, and
MySQL 5.7 are variations of the model shown in Figure 6-16. The terminology used might
vary, but the essence of their security systems is the same. The administrator actions to
actually create users and assign permissions, however, varies widely between the systems.
We have illustrated SQL Server 2016 procedures. For Oracle Database XE procedures see
Appendix B, and for MySQL 5.7 procedures see Appendix C.1

After processing rights have been defined, they can be implemented at many levels:
operating system, network directory service, Web server, DBMS, and application. The next
two sections consider the DBMS and application aspects. The other aspects are beyond the
scope of this book.

DBMS-Level Security
Security guidelines for a DBMS are shown in Figure 6-21. First, the DBMS should be run
behind a firewall. In most cases, no communication with the DBMS or database
applications should be allowed to be initiated from outside the organization’s network. For
example, the company’s Web site should be hosted on a separate, dedicated Web server.

1For more information on user administration in Oracle Database and MySQL, see David M. Kroenke and
David J. Auer, Database Processing: Fundamentals, Design, and Implementation, 14th ed. (Upper Saddle
River, NJ: Prentice Hall, 2016), on-line Chapter 10B (Oracle Database) and on-line Chapter 10C (MySQL).
Additional information about SQL Server can be found in on-line Chapter 10A.

The user’s DBMS login
name

The user name for the HSD
database

FIGURE 6-18

Creating the Database User Name

SQL Server 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 384 11/21/16 6:39 PM

Chapter 6 Database Administration 385

The Web server will have to communicate through the firewall, and the DBMS server
should be protected behind it.

Second, service packs and fixes for the operating system and the DBMS must be
applied as soon as possible. In spring 2003, the slammer worm exploited a security hole in
SQL Server, bringing major organizational database applications to their knees. Microsoft
had published a patch that eliminated the hole prior to the release of the slammer worm, so
any organization that had applied that patch was not affected by the worm.

A third protection is to limit the capabilities of the DBMS to only those features and
functions that the applications need. For example, Oracle Database can support many dif-
ferent communications protocols. To improve security, any Oracle-supported protocol that
is not used should be removed or disabled. Similarly, every DBMS ships with hundreds of
system-stored procedures. Any procedure that is not used should be removed from opera-
tional databases.

Another important security measure is to protect the computer that runs the DBMS.
No users should be allowed to work directly on the DBMS computer, and that computer
should reside in a separate facility behind locked doors. Visits to the room housing the
DBMS should be logged with date and time. Further, because people can log in to DBMS
servers via remote-control software (such as Microsoft Remote Desktop Connection in the
Windows environment), who has (and who can grant) remote access must be controlled.

FIGURE 6-19

Microsoft SQL Server 2016 Fixed Database Roles

Fixed Database Role Database-Specific Permissions DBMS Server Permissions
db_accessadmin Permissions granted:

ALTER ANY USER, CREATE SCHEMA
Permissions granted with GRANT option:
CONNECT

Permissions granted:
VIEW ANY DATABASE

db_backupoperator Permissions granted:
BACKUP DATABASE, BACKUP LOG,
CHECKPOINT

Permissions granted:
VIEW ANY DATABASE

db_datareader Permissions granted:
SELECT

Permissions granted:
VIEW ANY DATABASE

db_datawriter Permissions granted:
DELETE, INSERT, UPDATE

Permissions granted:
VIEW ANY DATABASE

db_ddladmin Permissions granted:
See SQL Server documentation

Permissions granted:
VIEW ANY DATABASE

db_denydatareader Permissions denied:
SELECT

Permissions granted:
VIEW ANY DATABASE

db_denydatawriter Permissions denied:
DELETE, INSERT, UPDATE

Permissions granted:
VIEW ANY DATABASE

db_owner Permissions granted with GRANT option:
CONTROL

Permissions granted:
VIEW ANY DATABASE

db_securityadmin Permissions granted:
ALTER ANY APPLICATION ROLE, ALTER
ANY ROLE, CREATE SCHEMA, VIEW
DEFINITION

Permissions granted:
VIEW ANY DATABASE

Note: For the definitions of each of the SQL server permissions shown in the table, consult the SQL server
documentation.

M06_KROE1533_08_SE_C06.indd 385 11/21/16 6:39 PM

386 Part 3 Database Management

A user can enter a name and password; in some applications, the name and password
are entered on behalf of the user. For example, as we saw in Figure 6-15, the Windows
operating system user name and password can be passed directly to SQL Server. In other
cases, an application program provides the user name and password.

Application-Level Security
Although DBMS products, such as SQL Server 2016, Oracle Database XE, and MySQL 5.7,
provide substantial database security capabilities, they are generic by their very nature. If an
application requires specific security measures—such as disallowing users to view a row of a
table or a join of a table that has an employee name other than the user’s own—the DBMS
facilities will not be adequate. In these cases, the security system must be augmented by
features in the associated application programming.

For example, application security in Internet applications is often provided on the
Web server computer. When application security is executed on this server, sensitive secu-
rity data do not need to be transmitted over the network. To understand this better,

The Database Role
db_datareader

The HSD database user
name HSD-Database-User

The Database Role
Properties – db_datareader
dialog box

FIGURE 6-20

Assigning HSD-Database-User to the db_datareader Role

• Run the DBMS behind a firewall
• Apply the latest operating system and DBMS
 service packs and fixes
• Limit DBMS functionality to needed features
• Protect the computer that runs the DBMS
• Manage accounts and passwords
• Encryption of sensitive data transmitted
 across the network
• Encryption of sensitive data stored
 in databases

FIGURE 6-21

DBMS Security
Guidelines

SQL Server 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 386 11/21/16 6:39 PM

Chapter 6 Database Administration 387

suppose an application is written such that when users click a particular button on a
browser page the following query is sent to the Web server and then to the DBMS:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-QUERY-CH06-01 *** */

SELECT *

FROM EMPLOYEE;

This statement returns all EMPLOYEE rows. If the application security allows employees
to access only their own data, then a Web server could add the following WHERE clause to
this query:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-QUERY-CH06-02 *** */

SELECT *

FROM EMPLOYEE

WHERE EMPLOYEE.Name = '<%SESSION("EmployeeName")%>';

An expression like this causes the Web server to fill in the employee’s name for the
WHERE clause. For a user signed on under the name Benjamin Franklin, the following
statement results from this expression:

/* *** EXAMPLE CODE – DO NOT RUN *** */

/* *** SQL-QUERY-CH06-03 *** */

SELECT *

FROM EMPLOYEE

WHERE EMPLOYEE.Name = 'Benjamin Franklin';

Because the name is inserted by a program on the Web server, the browser user does not
know it is occurring and cannot interfere with it. Such security processing can be done as
shown here on a Web server, and it can also be done within the application programs them-
selves or written as code stored within the DBMS to be executed by the DBMS at the
appropriate times. The DBA and application programmer must do this carefully. Other-
wise database security can be compromised by techniques such as SQL injection attacks.

You can also store additional data in a security database that is accessed by the Web
server as well as by stored DBMS code. That security database could contain, for example,
the identities of users paired with additional values of WHERE clauses. For example, sup-
pose the users in the personnel department can access more than just their own data. The
predicates for appropriate WHERE clauses could be stored in the security database, read
by the application program, and appended to SQL SELECT statements, as necessary.

Many other possibilities exist for extending DBMS security with application process-
ing. In general, you should use the DBMS security features first. Only if they are inadequate
for the requirements should you add to them with application code. The closer the security
enforcement is to the data, the lower the chance for infiltration. Also, using the DBMS
security features is faster, less expensive, and likely to produce higher-quality results than if
you develop your own.

Computer systems fail. Hardware breaks. Programs have bugs. Procedures written by
humans contain errors. People make mistakes. All these failures can and do occur in
database applications. Because a database is shared by many people and because it often is a
key element of an organization’s operations, it is important to recover it as soon as possible.

DATABASE BACKUP AND RECOVERY

M06_KROE1533_08_SE_C06.indd 387 11/21/16 6:39 PM

388 Part 3 Database Management

Several problems must be addressed. First, from a business standpoint, business func-
tions must continue. For example, customer orders, financial transactions, and packing
lists must be completed manually. Later, when the database application is operational
again, the new data can be entered. Second, computer operations personnel must restore
the system to a usable state as quickly as possible and as close as possible to what it was
when the system crashed. Third, users must know what to do when the system becomes
available again. Some work might need to be reentered, and users must know how far back
they need to go.

When failures occur, it is impossible simply to fix the problem and resume processing.
Even if no data are lost during a failure (which assumes that all types of memory are non-
volatile—an unrealistic assumption), the timing and scheduling of computer processing are
too complex to be accurately recreated. Enormous amounts of overhead data and process-
ing would be required for the operating system to be able to restart processing precisely
where it was interrupted. It is simply not possible to roll back the clock and put all the
electrons in the same configuration they were in at the time of the failure. However, two
other approaches are possible: recovery via reprocessing and recovery via rollback/
rollforward.

Recovery via Reprocessing
Because processing cannot be resumed at a precise point, the next-best alternative is to go
back to a known point and reprocess the workload from there. The simplest form of this type
of recovery involves periodically making a copy of the database (called a database save) and
keeping a record of all transactions processed since the save. Then, when failure occurs, the
operations staff can restore the database from the save and reprocess all the transactions.

Unfortunately, this simple strategy normally is not feasible. First, reprocessing transac-
tions takes the same amount of time as processing them in the first place. If the computer is
heavily scheduled, the system might never catch up. Second, when transactions are pro-
cessed concurrently, events are asynchronous. Slight variations in human activity, such as a
user reading an email message before responding to an application prompt, could change
the order of the execution of concurrent transactions. Therefore, whereas Customer A got
the last seat on a flight during the original processing, Customer B might get the last seat
during reprocessing. For these reasons, reprocessing is normally not a viable form of recov-
ery from failure in multiuser systems.

Recovery via Rollback and Rollforward
A second approach to database recovery involves periodically making a copy of the data-
base (the database save) and keeping a log of the changes made by transactions against the
database since the save. Then, when a failure occurs, one of two methods can be used.
With the first method, called rollforward, the database is restored using the saved data and
all committed transactions since the save are reapplied. Note that we are not reprocessing
the transactions because the application programs are not involved in the rollforward.
Instead, the processed changes, as recorded in the log, are reapplied.

With the second method, rollback, we correct mistakes caused by erroneous or par-
tially processed transactions by undoing the changes they made in the database. Then the
transactions that were in process at the time of the failure are restarted.

Note that the rollback method doesn’t actually use the database save, but all DBMSs
create database saves since they are useful in recovering from a failed hard drive (vs. a
system crash, which we emphasize here).

As stated, both of these methods require that a log of the transaction results be kept.
This log contains records of the data changes in chronological order. Note that transac-
tions must be written to the log before they are applied to the database. That way, if the
system crashes between the time a transaction is logged and the time it is applied, at worst,
there is a record of an unapplied transaction. If transactions were applied before being

M06_KROE1533_08_SE_C06.indd 388 11/21/16 6:39 PM

Chapter 6 Database Administration 389

logged, it would be possible (and undesirable) to change the database without having a
record of the change. If this happens, an unwary user might reenter an already completed
transaction.

In the event of a failure, we use the log to undo or redo transactions, as shown in
Figure 6-22. To undo a transaction as shown in Figure 6-22(a), the log must contain a
copy of every changed database record before it was changed. Such records are called
before-images. A transaction is undone by applying before-images of all its changes to
the database.

To redo a transaction as shown in Figure 6-22(b), the log must contain a copy of every
database record (or page) after it was changed. These records are called after-images.
A transaction is redone by applying after-images of all its changes to the database. Possible
data items of a transaction log are shown in Figure 6-23.

Database
with Changes

Before-Images

Database
Without Changes

Undo

(a) Rollback

Database
Without Changes
(Save)

After-Images

Database
with Changes

Redo

(b) Rollforward

FIGURE 6-22

Undo and Redo
Transactions

OT1
OT1
OT2
OT1
OT1
CT1
OT1
OT2
CT1
CT1

0
1
0
2
4
0
5
3
6
9

2
4
8
5
7
9
0
0

10
0

11:42
11:43
11:46
11:47
11:47
11:48
11:49
11:50
11:51
11:51

START
MODIFY
START
MODIFY
INSERT
START
COMMIT
COMMIT
MODIFY
COMMIT

CUST 100

SP AA
ORDER 11

SP BB

(old value)

(old value)

(old value)

(new value)

(new value)
(value)

(new value)

1
2
3
4
5
6
7
8
9

10

Tr
an

sa
ct

io
n

ID

R
ev

er
se

 P
o

in
te

r

Fo
rw

ar
d

 P
o

in
te

r

T
im

e

Ty
p

e
o

f
O

p
er

at
io

n

O
b

je
ct

B
ef

o
re

-I
m

ag
e

A
ft

er
-I

m
ag

e

R
el

at
iv

e
R

ec
o

rd
 N

um
b

erFIGURE 6-23

Transaction Log
Example

M06_KROE1533_08_SE_C06.indd 389 11/21/16 6:39 PM

390 Part 3 Database Management

For this example transaction log, each transaction has a unique name for identification
purposes. Furthermore, all images for a given transaction are linked together with pointers.
One pointer points to the previous change made by this transaction (the reverse pointer),
and the other points to the next change made by this transaction (the forward pointer).
A zero in the pointer field means that this is the end of the list. The DBMS recovery subsys-
tem uses these pointers to locate all records for a particular transaction. Figure 6-23 shows
an example of the linking of log records.

Other data items in the log are:

• The time of the action
• The type of operation (START marks the beginning of a transaction, and

COMMIT terminates a transaction, releasing all locks that were in place)
• The object acted upon, such as record type and identifier
• The before-images and after-images

Given a log with before-images and after-images, the undo and redo actions are
straightforward. Figure 6-24 shows how recovery for a system crash is accomplished.

To undo the (uncommitted) transaction in Figure 6-24(a), the recovery processor sim-
ply replaces each changed record with its before-image, as shown in Figure 6-24(b). When
all before-images have been restored, the transaction is undone. To redo a transaction, the
recovery processor starts with the version of the database at the time the transaction started
and applies all after-images. This action assumes that an earlier version of the database is
available from a database save.

Restoring a database to its most recent save and reapplying all transactions might
require considerable processing. To reduce the delay, DBMS products sometimes use
checkpoints. A checkpoint is a point of synchronization between the database and the
transaction log. To perform a checkpoint, the DBMS refuses new requests, finishes
processing outstanding requests, and writes its buffers to disk. The DBMS then waits until
the operating system notifies it that all outstanding write requests to the database and to
the log have been completed successfully. At this point, the log and the database are syn-
chronized. A checkpoint record is then written to the log. Later, the database can be recov-
ered from the checkpoint, and only after-images for transactions that started after the
checkpoint need to be applied.

Accept order data from browser.
Read CUSTOMER and SALESPERSON records.
Change CUSTOMER and SALESPERSON records.
Rewrite CUSTOMER record.
Rewrite SALESPERSON record.
Insert new ORDER record.

****CRASH****

(Log records written here)

(a) Processing with a Problem

Before-images of
CUSTOMER and
SALESPERSON
records

Database with
transaction
rolled back

Database with
new CUSTOMER,
SALESPERSON,
and ORDER
records

Recovery Processor
(Applies before-images of
CUSTOMER and SALESPERSON
and removes new ORDER record)

(b) Recovery Processing

FIGURE 6-24

Recovery Example

M06_KROE1533_08_SE_C06.indd 390 11/21/16 6:39 PM

Chapter 6 Database Administration 391

Checkpoints are inexpensive operations, and it is feasible to make three or four
(or more) per hour. This way, no more than 15 or 20 minutes of processing needs to be
recovered. Most DBMS products perform automatic checkpoints, making human interven-
tion unnecessary.

You will need to learn more about backup and recovery if you work in database
administration using products such as SQL Server 2016, Oracle Database XE, or
MySQL 5.7. For now, you just need to understand the basic ideas and to realize that it is
the responsibility of the DBA to ensure that adequate backup and recovery plans have
been developed and that database saves and logs are generated as required. You should
also understand that many DBMS GUI utilities allow the DBA to easily make database
backups as needed, even without a backup plan and backup schedule. Figure 6-25 shows
the Microsoft SQL Server Management Studio being used to make a simple recovery
model full database backup of the HSD database.

The FULL recovery
model

The HSD database

The Back Up
Database – HSD
dialog box

The database itself is
being backed up

The Full backup type

FIGURE 6-25

Backing Up the HSD Database

Concurrency control, security, and reliability are the three major concerns of database
administration. However, other administrative and managerial DBA functions are also
important.

For one, a DBA needs to ensure that a system exists to gather and record user-reported
errors and other problems. A means needs to be devised to prioritize those errors and
problems and to ensure that they are corrected accordingly. In this regard, the DBA works
with the development team not only to resolve these problems but also to evaluate features
and functions of new releases of the DBMS.

As the database is used and as new requirements develop and are implemented,
requests for changes to the structure of the database will occur. Changes to an

ADDITIONAL DBA RESPONSIBILITIES

SQL Server 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 391 11/21/16 6:39 PM

392 Part 3 Database Management

Section 6
Database Administration in Microsoft Access
At this point, we have created and populated the CONTACT, CUSTOMER,
SALESPERSON, PHONE_NUMBER, and VEHICLE tables in the Wallingford Motors’
CRM database. We have learned how to create forms, reports, and queries in the preced-
ing sections of “The Access Workbench” and how to create and use view-equivalent
queries in Appendix E. We have also studied how 1:1, 1:N, and N:M relationships are
created and managed in Microsoft Access.

This chapter deals with database administration topics, and in this section of “The
Access Workbench” we will look at database security in Microsoft Access. In this section,
you will:

• Understand database security in Microsoft Access 2016.

Database Security in Microsoft Access

Until Microsoft Access 2007, Microsoft Access had a user-level security system that allowed
a DBA to grant specific database permissions to individual users or groups of users on a
basis similar to that discussed in this chapter. Starting with Microsoft Access 2007, how-
ever, a very different security model has been implemented. This model is based on
whether the entire database itself is trustworthy, and it seems like Microsoft is saying that
Microsoft Access really is for personal (or small workgroup) databases and that if you need
user-level security you should be using SQL Server 2016 (especially because the SQL
Server 2016 Express edition is a free download). At the same time, Microsoft Access 2016
(and the earlier Microsoft Access 2007, 2010, and 2013) will still work with the earlier user-
level security system for Microsoft Access databases in the Microsoft Access 2003 (and

THE ACCESS WORKBENCH

operational database need to be made with great care and thoughtful planning.
Because databases are shared resources, a change to the structure of a database to
implement features desired by one user or group can be detrimental to the needs of
other users or groups.

Therefore, a DBA needs to create and manage a process for controlling the database
configuration. Such a process includes procedures for recording change requests,
conducting user and developer reviews of such requests, and creating projects and tasks for
implementing changes that are approved. All these activities need to be conducted with a
community-wide view.

Finally, a DBA is responsible for ensuring that appropriate documentation is main-
tained about database structure, concurrency control, security, backup and recovery,
applications use, and a myriad of other details that concern the management and use of the
database. Some vendors provide tools for recording such documentation. At a minimum, a
DBMS will have its own metadata that it uses to process the database. Some products aug-
ment these metadata with facilities for storing and reporting application metadata, as well
as operational procedures.

A DBA has significant responsibilities in the management and administration of a
database. These responsibilities vary with the database type and size, the number of users,
and the complexity of the applications. However, the responsibilities are important for all
databases. You should know about the need for DBA services and consider the material in
this chapter even for small, personal databases.

M06_KROE1533_08_SE_C06.indd 392 11/21/16 6:39 PM

Chapter 6 Database Administration 393

earlier) *.mdb file format. In this section of “The Access Workbench,” we will focus on the
current Microsoft Access 2016 security system.

In order to do the work in this section of “The Access Workbench,” we must be able
to see the file extension for each database file that we are working on—Microsoft actually
uses several different file extensions in Microsoft Access 2016. By default, Windows File
Manager and therefore Microsoft Access 2016 do not display the file extensions of known
file types. Up until now, this really hasn’t mattered to us, but now we need to be able to
distinguish between different Microsoft Access 2016 file types.

How to make the file extensions visible is covered in detail in Appendix I, “Getting
Started with Web Servers, PHP, and the NetBeans IDE.” Use that resource if you need
detailed and illustrated instructions. Here, we will simply state that we need to:

• Open Windows File Explorer.
• Click the View tab, then click the Options button.
• In the Folder Options dialog box, click the View tab.
• In the Advanced Settings, uncheck the Hide extensions for known file types

checkbox.
• While we are here, we will also take this opportunity to uncheck the Use Sharing

Wizard (Recommended) checkbox! We do not recommend using that Wizard!
• Click the Apply button, then click the OK button.

Now we need to make a copy of our WMCRM.accdb database file. This is necessary
because we have already enabled all security features of that database. In earlier sections of
“The Access Workbench,” we learned how to make copies of Microsoft Access 2016
databases—we simply make a copy the WMCRM.accdb database file in the My Documents
folder in the Documents library and rename this new file WMCRM-AW06-v01.accdb.

Types of Database Security in Microsoft Access 2016

You can secure Microsoft Access 2016 files in three basic ways:

• By creating trusted locations for Microsoft Access database storage
• By password encrypting and decrypting Microsoft Access databases
• By deploying databases packaged with digital signatures

Let us look at each of these in turn.

Trusted Locations
Up until now, whenever we have opened a Microsoft Access database for the first time
during our work in “The Access Workbench” the Security Warning message bar has been
displayed, as shown in Figure AW-6-1 where we have just opened the WMCRM-AW06-v01
.accdb database for the first time.

Thus far, we have always clicked the Enable Content button to enable the disabled
content. Note that we only need to do this once for each database—the first time we open
the database after it has been created. We have done this so we could use Microsoft Access
features that are otherwise disabled and unavailable to us, including:

• Microsoft Access database queries (either SQL or QBE) that add, update, or
delete data

• Data definition language (DDL) (either SQL or QBE) actions that create or
alter database objects, such as tables

• SQL commands being sent from a Microsoft Access application to a database
server, such as Microsoft SQL Server 2016, that support the Open Database
Connectivity (ODBC) standard

• ActiveX controls

(Continued)

M06_KROE1533_08_SE_C06.indd 393 11/21/16 6:39 PM

394 Part 3 Database Management

We obviously need the first of these features if we are going to build Microsoft Access 2016
databases. The third feature is important if we are using a Microsoft Access 2016 database
as an application front end (containing the application forms, queries, and reports) for data
stored in an SQL Server 2016 database. (This use of Microsoft Access and the ODBC stan-
dard is discussed in Chapter 7.) Finally, ActiveX controls are software code written to
Microsoft’s ActiveX specification, and they are often used as Web browser plug-ins. The
problem here is that Microsoft Access 2016 databases can be targeted by code written in
ActiveX-compliant programming languages that can manipulate the databases just as
Microsoft Access itself would.

Although we can simply click the Enable Content button to activate these features,
note that Microsoft Access 2016 also provides other options for dealing with this
security problem. If we click the link labeled Some active content has been disabled.
Click for more details shown in Figure AW-6-1, we are switched to the Info page in the
Backstage view and specifically to the Security Warning section of that page, as shown
in Figure AW-6-2.

Clicking the Enable Content button displays two options, as shown in Figure AW-6-3
—Enable All Content and Advanced Options. Clicking the Enable All Content button
produces the same results as clicking the Enable Content button on the Security Warning
toolbar, and all features of the database will always be available to us. Clicking the
Advanced Options button displays the Microsoft Office Security Options dialog box, as
shown in Figure AW-6-4.

The Microsoft Office Security Options dialog box provides the final two options. The
first option is to allow Microsoft Access to continue to disable the possible security risks.
Thus the Help protect me from unknown content (recommended) radio button is selected as
the default. This option is the same as simply closing the Security Warning toolbar when it
is first displayed. The second option is to enable the content in the database for only this
use (“session”) of the database by checking the Enable content for this session radio button.
This is the first new choice we have really been given, and we will open the database using
this option. Note that this means that the Security Warning message bar will be displayed
again the next time this database file is opened!

The Security Warning
message Bar

Click this link to see more
options

The Enable Content
button

FIGURE AW-6-1

The Security Warning Message Bar

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 394 11/21/16 6:39 PM

Chapter 6 Database Administration 395

The File menu on the
Backstage View

Click the Enable Content
button to see more
options

The Info button

FIGURE AW-6-2

The Security Warning Section of the File | Info Page

Clicking Enable All
Content is the same as
clicking the Enable
Content button on the
Security Warning toolbar

Click Advanced Options
to display the Microsoft
O�ce Security Options
dialog box

FIGURE AW-6-3

The Enable Content Options

However, we (nearly) always need these Microsoft Access features enabled. Is there a
way to permanently enable them so that we do not have to deal with the Security Warning
bar every time we open a new Microsoft Access database? Yes, there is.

The word Microsoft uses to describe our situation is trust: Do we trust the content of
our database? If so, we can create a trusted location in which to store our trusted data-
bases. And databases we use from the trusted location are opened without the security
warning but with all features enabled.

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 395 11/21/16 6:39 PM

396 Part 3 Database Management

Creating a Trusted Location

1. Start Microsoft Access 2016.
2. Double-click the WMCRM-AW06-v01.accdb file in the Recent list, and then click the

Enable Content button. If you are asked if you want to make this database a trusted
document, click the No button.

3. Click the File command tab to display the Backstage view.
4. Click the Options command on the Backstage view. The Microsoft Access Options dialog

box appears.
5. Click the Trust Center button to display the Trust Center page, as shown in Figure AW-6-5.
6. Click the Trust Center Settings button to display the Trust Center dialog box, as shown

in Figure AW-6-6. Note that the Message Bar Settings for all Office Applications page is
currently displayed and that the setting that enables the display of the Security Options
message bar is currently selected.

7. Click the Trusted Locations button to display the Trusted Locations page, as shown in
Figure AW-6-7. Note that the only currently trusted location is the folder that stores the
Microsoft Access wizard databases. Also note that we have the ability to disable all trusted
locations if we choose to do so.

8. Click the Add new location button to display the Microsoft Office Trusted Location dia-
log box, as shown in Figure AW-6-8.

9. Click the Browse button. The Browse dialog box appears, as shown in Figure AW-6-9.
10. Expand the Documents library to display the My Documents folder, and then click the

My Documents folder to select it.
11. Click the New Folder button to create a new folder named New Folder in edit mode.
12. Rename the new folder as My-Trusted-Location. When you have finished typing in the

folder name My-Trusted-Location, press the Enter key. The My-Trusted-Location folder
now appears, as shown in Figure AW-6-10.

The Enable content for
this session radio button

The OK button

The Microsoft Oce
Security Options dialog
box

FIGURE AW-6-4

The Microsoft Office Security Options Dialog Box

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 396 11/21/16 6:39 PM

Chapter 6 Database Administration 397

The Access
Options dialog
box

The OK button

The Trust Center
button

The Trust Center
page

The Trust Center
Settings button

FIGURE AW-6-5

The Access Options Trust Center Page

The Trust Center
dialog box

The OK button

The Trusted
Locations button

The Message Bar
button

The Message Bar
Settings for all
Oce
Applications
page

FIGURE AW-6-6

The Trust Center Dialog Box

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 397 11/21/16 6:39 PM

398 Part 3 Database Management

13. Click the OK button on the Browse dialog box. The Microsoft Office Trusted Location
dialog box appears, with the new trusted location in the Path text box.

14. Click the OK button on the Microsoft Office Trusted Location dialog box. The Trust
Center dialog box appears, with the new path added to the User Locations section of the
Trusted Locations list.

15. Click the OK button on the Trust Center dialog box to return to the Trust Center page of
the Access Options dialog box.

16. Click the OK button on the Trust Center page of the Access Options dialog box to close it.
17. Close Microsoft Access.

The OK button

The Microsoft
Oce Trusted
Location dialog
box

We can enable
trust of all
subfolders of the
trusted location

The Browse
button

FIGURE AW-6-8

The Microsoft Office Trusted Location Dialog Box

The OK button

The Trusted
Locations button

Currently the only
trusted location is
where Access
wizards are stored

The Trusted
Locations page

We can disable all
trusted locations if
necessary

The Add new
location button

FIGURE AW-6-7

The Trusted Locations Page

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 398 11/21/16 6:39 PM

Chapter 6 Database Administration 399

The OK button

The Browse
dialog box

The Documents
icon

The New Folder
button

FIGURE AW-6-9

The Browse Dialog Box

The OK button

The Browse
dialog box

The My-Trusted-
Location folder—
there are currently
no files in this
folder

FIGURE AW-6-10

The My-Trusted-Location Folder

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 399 11/21/16 6:39 PM

400 Part 3 Database Management

Earlier in this section of “The Access Workbench” we created a copy of the
WMCRM.accdb database file as the new file WMCRM-AW06-v01.accdb. We used this
file in our discussion of the Security Warning message bar and its associated options. At
this point, we will still see the Security Warning message bar whenever we open
WMCRM-AW06-v01.accdb database file in its current location in the Documents library.

Now we make a copy of the WMCRM-AW06-v01.accdb file in the Document library
and rename it as WMCRM-AW06-v02.accdb. After making the WMCRM-AW06-02.accdb
file, we move it to the My-Trusted-Location folder. Now we can try opening the
WMCRM-AW06-v02.accdb file from a Microsoft Access 2016 trusted location.

Opening a Microsoft Access Database from a Trusted Location

1. Start Microsoft Access.
2. Click the Open Other Files command in the Recent list.
3. Click the Browse command tab to display the Microsoft Access Open dialog box.
4. Browse to the WMCRM-AW06-02.accdb file in the My-Trusted-Location folder, as shown

in Figure AW-6-11.
5. Click the file name to highlight it and then click the Open button.
6. The Microsoft Access 2016 application window appears, with the WMCRM-AW06-02

database open in it. Note that the Security Warning bar does not appear when the database
is opened.

7. Close Microsoft Access 2016 and the WMCRM-AW06-02 database.

Database Encryption with Passwords
Next, let us look at database encryption. In this case, Microsoft Access will encrypt the
database, which will convert it into a secure, unreadable file format. To be able to use
the encrypted database, a Microsoft Access user must enter a password to prove that he or
she has the right to use the database. After the password is entered, Microsoft Access will
decrypt the database and allow the user to work with it.

Each password should be a strong password—a password that includes lowercase
letters, uppercase letters, numbers, and special characters (symbols) and that is at least

The OK button

The Open dialog
box

The My-Trusted-
Location folder

The WMCRM-
AW06-v02.accdb
file

FIGURE AW-6-11

The WMCRM-AW06-v02 File in the Open Dialog Box

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 400 11/21/16 6:39 PM

Chapter 6 Database Administration 401

15 characters in length. Be sure to remember or record your password in a safe place—lost
or forgotten passwords cannot be recovered!

For this example, we want to use a new copy of the WMCRM.accdb database file so
that our encryption actions apply only to that file. Specifically, make a copy of
WMCRM-AW06-02.accdb in the My-Trusted-Location folder and name this new file
WMCRM-AW06-03.accdb.

In order to encrypt a Microsoft Access database file, the file must be opened in
Exclusive mode. This gives us exclusive use of the database and prevents any other users
who have rights to use the database from opening it or using it. We start by opening
WMCRM-AW06-03.accdb for our exclusive use.

Opening a Microsoft Access Database in Exclusive Mode

1. Start Microsoft Access 2016.
2. Click the Open Other Files command in the Recent list.
3. Click the Browse command tab to display the Microsoft Access Open dialog box.
4. Browse to the WMCRM-AW06-v03.accdb file in the My-Trusted-Location folder. Click the

file object once to select it, but not twice, which would open the file in Microsoft Access.
5. Click the Open button drop-down list arrow, as shown in Figure AW-6-12. The Open

button drop-down list appears.
6. Click the Open Exclusive button in the Open button drop-down list to open the

WMCRM-AW06-v03 database in Microsoft Access 2016.
 ■ NOTE: The Security Warning bar does not appear when the database is opened

because you are opening it from a trusted location.
 ■ NOTE: The Open button mode options shown in Figure AW-6-12 are always available

when you open a Microsoft Access database. Normally, you use just Open mode

The Open button drop-
down list arrow button

The Open dialog box

The My-Trusted-
Location folder

The WMCRM-AW06-
v03.accdb file

The Open button drop-
down list

The Open Exclusive
command

FIGURE AW-6-12

The Open Exclusive Button

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 401 11/21/16 6:39 PM

402 Part 3 Database Management

because you want complete read and write permission in the database. Open Read-Only
mode prevents the user from making changes to the database. Exclusive mode, as you
have seen, stops other users from using the database while you are using it. Exclusive
Read-Only mode, as the name implies, combines Exclusive and Read-Only modes.

Now that the database is open in Exclusive mode, we can encrypt the database and set
the database password.

Encrypting a Microsoft Access Database

1. Click the File command tab to display the Backstage view.
2. The Info page should be displayed. If it is not, click the Info button to display the Info

page, as shown in Figure AW-6-13.
3. In the Encrypt with Password section of the Info page, click the Encrypt with Password

button. The Set Database Password dialog box appears, as shown in Figure AW-6-14.

The Encrypt with
Password button

The File Backstage view

The Info button

FIGURE AW-6-13

The File | Info Page

The OK button

The Set Database
Password dialog
box

The Password
text box

The Verify text
box

FIGURE AW-6-14

The Set Database Password Dialog Box

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 402 11/21/16 6:39 PM

Chapter 6 Database Administration 403

4. In the Password text box of the Set Database Password dialog box, type in the password
AW06+password.

5. In the Verify text box of the Set Database Password dialog box, again type in the password
AW06+password.

6. Click the OK button of the Set Database Password dialog box to set the database password and
encrypt the database file.

7. Microsoft Access displays the warning dialog box shown in Figure AW-6-15 regarding the
effect of encrypting on row level locking. Click the OK button to clear the warning.

8. You can check that the encryption action has been accomplished by clicking the File
command tab and the Info button. After the database is encrypted, the Encrypt with
Password button changes to a Decrypt Database button, as shown in Figure AW-6-16.

 ■ NOTE: As the Decrypt Database button name implies, if we wanted to change the
database file back to its original unencrypted form we can do so using that button.

9. Click the File command tab and then click the Close button to close the WMCRM-AW06-v03
database while leaving Microsoft Access 2016 open.

Now we can open the now-encrypted WMCRM-AW06-v03.accdb database file.

Opening an Encrypted Microsoft Access Database

1. Microsoft Access should still be open. If it is not, start Microsoft Access.
2. Click the File command tab to display the Backstage view, then click the Open command.
3. Click the WMCRM-AW06-v03.accdb file name in the quick access list of recent databases.

As shown in Figure AW-6-17, the Password Required dialog box appears.
4. In the Enter database password text box, type in the password AW06+password, and then

click the OK button. The Microsoft Access 2016 application window appears, with the
WMCRM-AW06-v03 database open in it.

 ■ NOTE: The Security Warning bar does not appear when the database is opened
because you are opening it from a trusted location.

5. Close the WMCRM-AW06-v03 database and exit Microsoft Access 2016.

Packaging and Signing a Microsoft Access Database
Microsoft has included some tools in Microsoft Access 2016 to help us distribute secured
copies of Microsoft Access databases to users. Let us look at how to use them.

The OK button

The Row Level
Locking Warning
dialog box

FIGURE AW-6-15

The Row Level Locking Warning Dialog Box

(Continued)Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 403 11/21/16 6:39 PM

404 Part 3 Database Management

Compiling Microsoft Visual Basic for Applications (VBA) Code
Microsoft Visual Basic for Applications (VBA) is included in Microsoft Access. VBA is a
version of the Microsoft Visual Basic programming language that is intended to help users
add specific programmed actions to Microsoft Access applications. How to use VBA is
beyond the scope of this section of “The Access Workbench,” but we need to know how to
secure VBA code if it is included in a Microsoft Access database.

Microsoft Access 2016 includes a Make ACCDE command to compile and hide VBA
code so that although the VBA programming still functions correctly, the user can no
longer see or modify the VBA code. When we use this tool, Microsoft Access creates a
version of the database file with an *.accde file extension.

In the next set of steps, we will use another copy of the WMCRM.accdb database file so
that our actions apply only to that file. Specifically, make a copy of WMCRM-AW06-v02
.accdb in the My-Trusted-Location folder and name this new file WMCRM-AW06-v04
.accdb. We start by opening the WMCRM-AW06-v04.accdb database file.

The OK button The Password
Required dialog
box

The Enter
database
password text
box

FIGURE AW-6-17

The Password Required Dialog Box

The File Backstage view

The Info button

The Decrypt Database
button

FIGURE AW-6-16

The Decrypt Database Button

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 404 11/21/16 6:39 PM

Chapter 6 Database Administration 405

Creating a Microsoft Access *.accde Database

1. Open Microsoft Access.
2. Click the Open Other Files command in the Recent list, and then click the This PC button.
3. Click the Browse command tab to display the Microsoft Access Open dialog box.
4. Browse to the WMCRM-AW06-v04.accdb file in the My-Trusted-Location folder. Double-

click the file object to open it.
 ■ NOTE: The Security Warning bar does not appear when the database is opened

because you are opening it from a trusted location.
5. Click the File command tab to display the Backstage view.
6. Click the Save As button to display the Save As page, as shown in Figure AW-6-18.
7. Click the Make ACCDE button in the Advanced group in the Save Database As section, and

then click the Save As button. The Save As dialog box appears, as shown in Figure AW-6-19.
8. Click the Save button in the Save As dialog box. The WMCRM-AW06-v04.accde file is

created.
 ■ NOTE: The displayed database name does not change. The only sign that this

action has been completed is that the WMCRM-AW06-v04.accde object will now be
displayed in the list of Microsoft Access files in the Open dialog box (and other file
system tools, such as Windows Explorer).

9. Close the WMCRM-AW06-v04 database and exit Microsoft Access.

To see the new database, we open it as we would any other Microsoft Access database.

Opening a Microsoft Access *.accde Database

1. Start Microsoft Access.
2. Click the Open Other Files command in the Recent list.

The Make ACCDE
command

The Save As command

The Save Database As
button

The Save As button

The File Backstage view

FIGURE AW-6-18

The File | Save As Page – Make ACCDE Command

(Continued)Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 405 11/21/16 6:39 PM

406 Part 3 Database Management

3. Click the Browse command tab to display the Microsoft Access Open dialog box.
4. Browse to the WMCRM-AW06-v04.accde file in the My-Trusted-Location folder, as shown

in Figure AW-6-20.
5. Click the Open button. The Microsoft Access 2016 application window appears, with the

WMCRM-AW06-04.accde database open in it.
 ■ NOTE: The Security Warning bar does not appear when the database is opened

because you are opening it from a trusted location.

The Save button

The Save As
dialog box

The file extension
is accde

The My-Trusted-
Location folder

FIGURE AW-6-19

The Save As Dialog Box

The WMCRM-
AW06-v04.accdb
file

The WMCRM-
AW06-v04.accde
file

The Open button

FIGURE AW-6-20

The WMCRM-AW06-v04.accde File

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 406 11/21/16 6:39 PM

Chapter 6 Database Administration 407

 ■ NOTE: Although any previously existing VBA modules have been compiled and all
editable source code for them has been removed, the functionality of this code is still
in the database. Further note that VBA itself is still functional in the database—it has
not been disabled.

6. Close the WMCRM-AW06-04 database and exit Microsoft Access.

Creating a Signed Package in Microsoft Access
A digital signature scheme is a type of public-key cryptography (also known as asymmetric
cryptography), which uses two encryption keys (a private key and a public key) to encode
documents and files to protect them. Although fascinating and important topics in their own
right, cryptography in general and public-key cryptography in particular are beyond the
scope of this section of “The Access Workbench.”2 For our purposes, a digital signature is a
means of guaranteeing another user of a database that the database is, indeed, from us and
that it is safe to use.

To use a digital signature, of course, we have to have one, so the first thing we have to
do is to create one. This is not done in Microsoft Access but rather with the SELFCERT.EXE
utility provided with Microsoft Office 2016. For the 32-bit version of Microsoft Office
2016, the file is located in the c:/Program Files (x86)/Microsoft Office/root/Office16 folder.
For the 64-bit version of Microsoft Office 2016, the file is located in the c:/Program Files/
Microsoft Office/root/Office16 folder.

Creating a Digital Signature

1. Open Microsoft File Explorer, and locate SELFCERT.EXE. Double-click the SELFCERT.exe
icon to open the Create Digital Certificate dialog box, as shown in Figure AW-6-21.

2. In the Your certificate’s name text box, type the text Digital-Certificate-AW06-01 and then
click the OK button. The certificate is created, and the SelfCert Success dialog box appears,
as shown in Figure AW-6-22.

3. Click the OK button in the SelfCert Success dialog box.

Now that we have a digital certificate, we can use it to package and sign our database.

The OK button

The Create
Digital Certificate
dialog box

The Your
certificate’s
name text box

FIGURE AW-6-21

The Create Digital
Certificate Dialog Box

(Continued)

2For more information, see the following Wikipedia articles: Public-Key Cryptography, Digital Signature,
and Public Key Certificate.

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 407 11/21/16 6:39 PM

408 Part 3 Database Management

The Package and Sign
command

The Save As button

The File Backstage view

The Save As command

FIGURE AW-6-23

The File | Save As Page – Package and Sign Command

The OK button

The SelfCert
Success dialog
box

The digital
certificate name
we provided

FIGURE AW-6-22

The SelfCert Success
Dialog Box

Creating a Microsoft Access Signed Package

1. Start Microsoft Access.
2. Open the WMCRM-AW06-v04.accde database file from the Recent list.

 ■ NOTE: The Security Warning bar does not appear when the database is opened
because you are opening it from a trusted location.

3. Click the File command tab to display the Backstage view.
4. Click the Save As button to display the Save As page, as shown in Figure AW-6-23.

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 408 11/21/16 6:39 PM

Chapter 6 Database Administration 409

The Digital-
Certificate-
AW06-001 digital
certificate

The Windows
Security dialog
box

The OK button

The Click here to
view certificate
properties link

FIGURE AW-6-24

The Windows Security
Dialog Box

5. Click the Package and Sign button to select the Package and Sign option, and then click the
Save As button. The Windows Security Select a Certificate dialog box appears, as shown in
Figure AW-6-24.

6. Select the certificate you want to use. However, to verify this, click the Click here to
view certificate properties link. The Certificate Details dialog box appears, as shown
in Figure AW-6-25, and our certificate name is clearly visible in the dialog box.

(Continued)

The Digital-
Certificate-
AW06-01 digital
certificate name is
displayed here

The Certificate
Details dialog box

The OK button

FIGURE AW-6-25

The Certificate Details
Dialog Box

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 409 11/21/16 6:39 PM

410 Part 3 Database Management

The Create button

The WMCRM-
AW06-v04.accdc
file name

The Create
Microsoft Oce
Access Signed
Package dialog
box

The My-
Distributed-
Databases folder

FIGURE AW-6-26

The Create Microsoft Office Access Signed Package Dialog Box

7. Click the OK button in the Certificate Details dialog box to close the dialog box.
8. Click the OK button in the Microsoft Security Select a Certificate dialog box to close the

dialog box. The Create Microsoft Office Access Signed Package dialog box appears, as
shown in Figure AW-6-26.

9. Click the Create button to create the signed package as the file WMCRM-AW06-v04.accdc.
Note the use of the *.accdc file extension.

10. Close the WMCRM-AW06-v04 database and Microsoft Access 2016.

We now have a signed package, which uses the *.accdc file extension, ready to distribute
to other users. To simulate this, in the My Documents folder of the Documents library create
a new folder named My-Distributed-Databases and then copy the WMCRM-AW06-v04
.accdc file into it. Now we can open the signed package from this location.

Opening a Microsoft Access *.accdc Database

1. Start Microsoft Access.
2. Browse to the WMCRM-AW06-v04.accdc file in the My-Distributed-Databases folder, as

shown in Figure AW-6-27. Note that you must change file type in order to see any of the
*.accdc files.

3. Click the WMCRM-AW06-04.accdc file to select it and then click the Open button. The
Microsoft Access Security Notice dialog box appears, as shown in Figure AW-6-28.

4. Click the Open button. The Extract Database To dialog box appears. This dialog box is
essentially the same as a Save To dialog box, so browse to the My-Distributed-Databases
folder and then click the OK button.

5. Another Microsoft Access Security Notice dialog box similar to the one shown in
Figure AW-6-28 may appear. If it does, then click the Open button.

6. The WMCRM-AW06-v04.accde database is opened in Microsoft Access.
 ■ NOTE: The Security Warning bar does not appear when the database is opened

because you have chosen to trust the source of the database as documented in the
digital certificate rather than open it from a trusted location.

7. Close the WMCRM-AW06-v04 database and Microsoft Access 2016.

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 410 11/21/16 6:39 PM

Chapter 6 Database Administration 411

Using Windows Explorer, look at the contents of the This PC\Documents\My-Dis-
tributed-Databases folder. Notice that the WMCRM-AW06-v04.accde file has been
extracted from the WMCRM-AW06-v04.accdc package and is now available for use. This
is the database file that the user will open when he or she uses the database. Also note that
when users open the database they will see the Microsoft Access Security Notice dialog box
just discussed. But we chose Trust all from publisher in step 6, so why is this happening?
The reason has to do with the location where the digital certificate has been stored on the
workstation. This is a technical matter beyond the scope of this discussion.

You must select the *.accdc file
type in order to see the file

The Open dialog
box

The My-
Distributed-
Databases folder

FIGURE AW-6-27

The WMCRM-AW06-v04.accdc File

The Open button

The Microsoft
Access Security
Notice dialog box

FIGURE AW-6-28

The Microsoft Access
Security Notice Dialog
Box

(Continued)

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M06_KROE1533_08_SE_C06.indd 411 11/21/16 6:39 PM

412 Part 3 Database Management

This completes our discussion of how Microsoft Access 2016 handles database security
for Microsoft Access 2016 *.accdb files. Note that Microsoft Access 2016 can also open
and work with older Microsoft Access 2003 *.mdb database files, which have a built-in
user-level database security system that is very different from the Microsoft Access 2016
database security we have discussed. If you need to work with one of these older *.mdb
files, consult the Microsoft Access documentation.

SUMMARY

Database administration is a business function that involves managing a database in order
to maximize its value to an organization. The conflicting goals of protecting the database
and maximizing its availability and benefit to users must be balanced using good
administration.

All databases need database administration. The database administration for small,
personal databases is informal; database administration for large, multiuser databases can
involve an office and many people. DBA can stand for database administration or database
administrator. Three basic database administration functions are necessary: concurrency
control, security, and backup and recovery.

The goal of concurrency control is to ensure that one user’s work does not inappropri-
ately influence another user’s work. No single concurrency control technique is ideal for all
circumstances. Trade-offs need to be made between the level of protection and data
throughput.

A transaction, or logical unit of work, is a series of actions taken against a database that
occur as an atomic unit; either all of them occur or none of them do. The activity of concur-
rent transactions is interleaved on the database server. In some cases, updates can be lost if
concurrent transactions are not controlled. Another concurrency problem concerns incon-
sistent reads.

A dirty read occurs when one transaction reads a changed record that has not been
committed to the database. A nonrepeatable read occurs when one transaction rereads
data it has previously read and finds modifications or deletions caused by another transac-
tion. A phantom read occurs when a transaction rereads data and finds new rows that were
inserted by a different transaction.

To avoid concurrency problems, database elements are locked. Implicit locks are
placed by the DBMS; explicit locks are issued by the application program. The size of a
locked resource is called lock granularity. An exclusive lock prohibits other users from
reading or updating the locked resource; a shared lock allows other users to read the
locked resource but not to update it.

Two transactions that run concurrently and generate results that are consistent with
the results that would have occurred if the transactions had run separately are referred to as
serializable transactions. Two-phase locking, in which locks are acquired in a growing
phase and released in a shrinking phase, is one scheme for serializability. A special case of
two-phase locking is to acquire locks throughout the transaction but not to free any lock
until the transaction is finished.

Deadlock, or the deadly embrace, occurs when two transactions are each waiting on a
resource that the other transaction holds. Deadlock can be prevented by requiring transac-
tions to acquire all locks at the same time. When deadlock occurs, the only way to cure it is
to abort one of the transactions and back out of partially completed work.

Optimistic locking assumes that no transaction conflict will occur and then deals with
the consequences if it does. Pessimistic locking assumes that conflict will occur and so

M06_KROE1533_08_SE_C06.indd 412 11/21/16 6:39 PM

Chapter 6 Database Administration 413

prevents it ahead of time with locks. In general, optimistic locking is preferred for the
Internet and for many intranet applications.

Most application programs do not explicitly declare locks. Instead, they mark transac-
tion boundaries with SQL transaction control statements—such as BEGIN, COMMIT, and
ROLLBACK statements—and declare the concurrent behavior they want. The DBMS then
places locks for the application that will result in the desired behavior. An ACID transaction
is one that is atomic, consistent, isolated, and durable. Durable means that database changes
are permanent. Consistency can refer to either statement-level or transaction-level consis-
tency. With transaction-level consistency, a transaction may not see its own changes.

The three types of data read problems that can occur are dirty read, nonrepeatable
read, and phantom read. These problems are summarized in Figure 6-11. The 1992 SQL
standard defines four transaction isolation levels: read uncommitted, read committed,
repeatable read, and serializable. The characteristics of each are summarized in Figure 6-12.

A cursor is a pointer into a set of records. Four cursor types are prevalent: forward
only, static, keyset, and dynamic. Developers should select isolation levels and cursor types
that are appropriate for their application workload and for the DBMS product in use.

The goal of database security is to ensure that only authorized users can perform
authorized activities at authorized times. To develop effective database security, the pro-
cessing rights and responsibilities of all users must be determined.

DBMS products provide security facilities. Most involve the declaration of users,
groups, objects to be protected, and permissions or privileges on those objects. Almost all
DBMS products use some form of user name and password security. DBMS security can be
augmented by application security.

In the event of system failure, the database must be restored to a usable state as soon as
possible. Transactions in process at the time of the failure must be reapplied or restarted.
Although in some cases recovery can be done by reprocessing, the use of logs and before-
images and after-images with rollback and rollforward is almost always preferred. Check-
points can be made to reduce the amount of work that needs to be done after a failure.

In addition to concurrency control, security, and backup and recovery, a DBA needs to
ensure that a system exists to gather and record errors and problems. The DBA works with
the development team to resolve such problems on a prioritized basis and also to evaluate
features and functions of new releases of the DBMS. In addition, the DBA needs to create
and manage a process for controlling the database configuration so that changes to the
database structure are made with a community-wide view. Finally, the DBA is responsible
for ensuring that appropriate documentation is maintained about database structure,
concurrency control, security, backup and recovery, and other details that concern the
management and use of the database.

KEY TERMS

ACID transaction
after-image
atomic
authentication
authorization
before-image
checkpoint
concurrent transaction
concurrent update problem
consistent
data administration
database administration

database administrator
DBA
deadlock
deadly embrace
dirty read
durable
dynamic cursor
exclusive lock
explicit lock
forward-only cursor
implicit lock
inconsistent read problem

isolation level
keyset cursor
lock granularity
log
logical unit of work (LUW)
lost update problem
nonrepeatable read
optimistic locking
parallel
permissions
pessimistic locking
phantom read

M06_KROE1533_08_SE_C06.indd 413 11/21/16 6:39 PM

414 Part 3 Database Management

read committed isolation level
read uncommitted isolation level
recovery via reprocessing
recovery via rollback/

rollforward
repeatable read isolation level
resource locking
rollback
rollforward
scrollable cursor
serial
serializable
serializable isolation level

shared lock
SQL BEGIN TRANSACTION

statement
SQL COMMIT TRANSACTION

statement
SQL Data Control Language

(DCL)
SQL GRANT statement
SQL/Persistent Stored Modules

(SQL/PSM)
SQL REVOKE statement
SQL ROLLBACK

TRANSACTION statement

SQL Transaction Control Language
(TCL)

statement-level consistency
static cursor
stored procedure
throughput
transaction
transaction isolation level
transaction-level consistency
trigger
two-phase locking
user account
user-defined function

REVIEW QUESTIONS

6.1 What is the purpose of database administration?

6.2 Explain how database administration tasks vary with the size and complexity of the
database.

6.3 What are two interpretations of the acronym DBA?

6.4 What is the purpose of concurrency control? What is throughput, and how is con-
currency control related to throughput?

6.5 What is the goal of a database security system?

6.6 Explain the meaning of the word inappropriately in the phrase “one user’s work
does not inappropriately influence another user’s work.”

6.7 Explain the major trade-off that exists in concurrency control.

6.8 Describe what an atomic transaction is, and explain why atomicity is important.

6.9 Explain the difference between concurrent transactions and simultaneous transactions.
How many CPUs are required for simultaneous transactions?

6.10 Give an example, other than the one in this text, of the lost update problem.

6.11 Define the terms dirty read, nonrepeatable read, and phantom read.

6.12 Explain the difference between an explicit lock and an implicit lock.

6.13 What is lock granularity?

6.14 Explain the difference between an exclusive lock and a shared lock.

6.15 Explain two-phase locking.

6.16 How does releasing all locks at the end of a transaction relate to two-phase locking?

6.17 What is deadlock? How can it be avoided? How can it be resolved when it occurs?

6.18 Explain the difference between optimistic and pessimistic locking.

6.19 Explain the benefits of marking transaction boundaries, declaring lock characteristics,
and letting a DBMS place locks.

6.20 Explain the use of the SQL transaction control language (TCL) statements BEGIN
TRANSACTION, COMMIT TRANSACTION, and ROLLBACK TRANSACTION.

6.21 Explain the meaning of the expression ACID transaction.

6.22 Describe statement-level consistency.

6.23 Describe transaction-level consistency. What disadvantage can exist with it?

6.24 What is the purpose of transaction isolation levels?

6.25 Explain what read uncommitted isolation level is. Give an example of its use.

M06_KROE1533_08_SE_C06.indd 414 11/21/16 6:39 PM

Chapter 6 Database Administration 415

6.26 Explain what read committed isolation level is. Give an example of its use.

6.27 Explain what repeatable read isolation level is. Give an example of its use.

6.28 Explain what serializable isolation level is. Give an example of its use.

6.29 Explain the term cursor.

6.30 Explain why a transaction may have many cursors. Also, how is it possible that a
transaction may have more than one cursor on a given table?

6.31 What is the advantage of using different types of cursors?

6.32 Explain forward-only cursors. Give an example of their use.

6.33 Explain static cursors. Give an example of their use.

6.34 Explain keyset cursors. Give an example of their use.

6.35 Explain dynamic cursors. Give an example of their use.

6.36 What happens if you do not declare transaction isolation level and cursor type to a
DBMS? Is not declaring the isolation level and cursor type good or bad?

6.37 Explain the necessity of defining processing rights and responsibilities. How are
such responsibilities enforced? What is SQL data control language (DCL), and
what SQL statements are used in DCL?

6.38 Explain the relationships of users, groups, permissions, and objects for a generic
database security system.

6.39 Describe the advantages and disadvantages of DBMS-provided security.

6.40 Describe the advantages and disadvantages of application-provided security.

6.41 Explain how a database could be recovered via reprocessing. Why is this generally
not feasible?

6.42 Define the terms rollback and rollforward.

6.43 Why is it important to write to a log before changing the database values?

6.44 Describe the rollback process. Under what conditions should rollback be used?

6.45 Describe the rollforward process. Under what conditions should rollforward be
used?

6.46 What is the advantage of making frequent checkpoints of a database?

6.47 Summarize a DBA’s responsibilities for managing database user problems.

6.48 Summarize a DBA’s responsibilities for configuration control.

6.49 Summarize a DBA’s responsibilities for documentation.

EXERCISES

6.50 If you have access to SQL Server, search its help system to answer the following
questions.

A. Does SQL Server support both optimistic and pessimistic locking?

B. What levels of transaction isolation are available?

C. What types of cursors, if any, does SQL Server use?

D. How does the security model for SQL Server differ from that shown in
Figure 6-16?

E. Summarize the types of SQL Server backup.

F. Summarize the SQL Server recovery models.

M06_KROE1533_08_SE_C06.indd 415 11/21/16 6:40 PM

416 Part 3 Database Management

6.51 If you have access to Oracle Database XE, search its help system to answer the
following questions.

A. How does Oracle Database XE use read locks and write locks?

B. What, if any, levels of transaction isolation are available in Oracle Database XE?

C. How does the security model for Oracle Database XE differ from that shown
in Figure 6-16?

D. Summarize the backup capabilities of Oracle Database XE.

E. Summarize the recovery capabilities of Oracle Database XE.

6.52 If you have access to MySQL 5.7, search its help system to answer the following
questions.

A. How does MySQL 5.7 use read locks and write locks?

B. What, if any, levels of transaction isolation are available in MySQL 5.7?

C. What types of cursors, if any, does MySQL 5.7 use?

D. How does the security model for MySQL 5.7 differ from that shown in
Figure 6-16?

E. Summarize the backup capabilities of MySQL 5.7.

F. Summarize the recovery capabilities of MySQL 5.7.

Key Terms
*.accdc file extension
*.accde file extension
ActiveX control
ActiveX specification
asymmetric cryptography
digital signature
digital signature scheme
Exclusive mode

Make ACCDE command
private key
public key
public-key cryptography
Security Warning message bar
strong password
trusted location
Visual Basic for Applications (VBA)

ACCESS WORKBENCH

Exercises
AW.6.1 Use the Wedgewood Pacific (WP) database developed in previous sections of
“The Access Workbench” to answer the following questions.

A. Analyze the data in the WP database tables (particularly DEPARTMENT and
EMPLOYEE), and create a database security plan, using Figure 6-16 as an example.

B. If you have not already created a My-Trusted-Location folder, follow the steps in
this chapter’s section of “The Access Workbench” to do so now.

M06_KROE1533_08_SE_C06.indd 416 11/21/16 6:40 PM

Chapter 6 Database Administration 417

C. Make a copy of the WP.accdb file in the My-Trusted-Location folder, and name
it WP-AW06-01.accdb. Open the WP-AW06-01.accdb database to confirm that it
opens without displaying the Security Warning bar, and then close the database.

D. Make a copy of the WP.accdb file in the My-Trusted-Location folder, and
name it WP-AW06-02.accdb. Encrypt the WP-AW06-02.accdb database with
the password AW06EX+password. Close the WP-AW06-02.accdb database, and
then reopen it to confirm that it opens properly using the password. Close the
WP-AW06-02.accdb database.

E. If you have not already created the Digital-Certificate-AW06-01 digital certificate,
follow the steps in this chapter’s section of “The Access Workbench” to do so now.

F. Make a copy of the WPC.accdb file in the My-Trusted-Location folder, and name
it WP-AW06-03.accdb. Create an ACCDE version of the WP-AW06-03.accdb
database. Create a signed package using the WP-AW06-03.accde database and
the Digital-Certificate-AW06-01 digital certificate.

G. If you have not already created a My-Distributed-Databases folder, follow the
steps in this chapter’s section of “The Access Workbench” to do so now.

H. Make a copy of the WP-AW06-03.accdc file in the My-Distributed-Databases
folder. Extract the WP-AW06-03.accde file into the folder, and then open it to
confirm that the database opens properly. Close the database.

MARCIA’S DRY CLEANING CASE QUESTIONS
Ms. Marcia Wilson owns and operates Marcia’s Dry Cleaning, which is an upscale dry
cleaner in a well-to-do suburban neighborhood. Marcia makes her business stand out from
the competition by providing superior customer service. She wants to keep track of each of
her customers and their orders. Ultimately, she wants to notify them that their clothes are
ready via email.

Assume that Marcia has hired you as a database consultant to develop an operational
database having the following four tables:

CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)
INVOICE (InvoiceNumber, CustomerID, DateIn, DateOut, Subtotal, Tax,

TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, ServiceID, Quantity, UnitPrice,

ExtendedPrice)
SERVICE (ServiceID, ServiceDescription, UnitPrice)

A. Assume that Marcia’s has the following personnel: two owners, a shift manager, a part-
time seamstress, and two salesclerks. Prepare a two- to three-page memo that addresses
the following points:

1. The need for database administration.

2. Your recommendation as to who should serve as database administrator. Assume that
Marcia’s is not sufficiently large to need or afford a full-time database administrator.

M06_KROE1533_08_SE_C06.indd 417 11/21/16 6:40 PM

418 Part 3 Database Management

3. Using the main topics in this chapter as a guide, describe the nature of database
administration activities at Marcia’s. As an aggressive consultant, keep in mind
that you can recommend yourself for performing some of the DBA functions.

B. For the employees described in part A, define users, groups, and permissions on data
in these four tables. Use the security scheme shown in Figure 6-16 as an example.
Create a table like that in Figure 6-17. Don’t forget to include yourself.

C. Suppose that you are writing a part of an application to create new records in
SERVICE for new services that Marcia’s will perform. Suppose that you know that
while your procedure is running another part of the same application that records
new or modifies existing customer orders and order line items can also be running.
Additionally, suppose that a third part of the application that records new customer
data also can be running.

1. Give an example of a dirty read, a nonrepeatable read, and a phantom read
among this group of applications.

2. What concurrency control measures are appropriate for the part of the
application that you are creating?

3. What concurrency control measures are appropriate for the two other parts of the
application?

 GARDEN GLORY PROJECT QUESTIONS

The following Garden Glory database design is used in Chapter 3:

OWNER (OwnerID, OwnerName, OwnerEmailAddress, OwnerType)
OWNED_PROPERTY (PropertyID, PropertyName, PropertyType, Street, City,

State, ZIP, OwnerID)
GG_SERVICE (ServiceID, ServiceDescription, CostPerHour)
EMPLOYEE (EmployeeID, LastName, FirstName, CellPhone, ExperienceLevel)
PROPERTY_SERVICE (PropertyServiceID, PropertyID, ServiceID, ServiceDate,

EmployeeID, HoursWorked)
The referential integrity constraints are:

OwnerID in OWNED_PROPERTY must exist in OwnerID in OWNER
PropertyID in PROPERTY_SERVICE must exist in PropertyID in

OWNED_PROPERTY
ServiceID in PROPERTY_SERVICE must exist in ServiceID in GG_SERVICE
EmployeeID in PROPERTY_SERVICE must exist in EmployeeID in EMPLOYEE

Garden Glory has modified the EMPLOYEE table by adding a TotalHoursWorked column:

EMPLOYEE (EmployeeID, LastName, FirstName, CellPhone, ExperienceLevel,
TotalHoursWorked)

M06_KROE1533_08_SE_C06.indd 418 11/21/16 6:40 PM

Chapter 6 Database Administration 419

The office personnel at Garden Glory use a database application to record ser-
vices and related data changes in this database. For a new service, the service-recording
application reads a row from the OWNED_PROPERTY table to get the PropertyID.
It then creates a new row in PROPERTY_SERVICE and updates TotalHoursWorked
in EMPLOYEE by adding the HoursWorked value in the new PROPERTY_SERVICE
record to TotalHoursWorked. This operation is referred to as a Service Update Transaction.

In some cases, the employee record does not exist before the service is recorded. In
such a case, a new EMPLOYEE row is created, and then the service is recorded. This is
called a Service Update for New Employee Transaction.

A. Explain why it is important for the changes made by the Service Update Transaction to
be atomic.

B. Describe a scenario in which an update of TotalHoursWorked could be lost during a
Service Update Transaction.

C. Assume that many Service Update Transactions and many Service Update for New
Employee Transactions are processed concurrently. Describe a scenario for a nonre-
peatable read and a scenario for a phantom read.

D. Explain how locking could be used to prevent the lost update in your answer to part B.

E. Is it possible for deadlock to occur between two Service Update Transactions? Why
or why not? Is it possible for deadlock to occur between a Service Update Transaction
and a Service Update for New Employee Transaction? Why or why not?

F. Do you think optimistic or pessimistic locking would be better for the Service Update
Transactions?

G. Suppose Garden Glory identifies three groups of users: managers, administrative
personnel, and system administrators. Suppose further that the only job of administrative
personnel is to make Service Update Transactions. Managers can make Service Update
Transactions and Service Updates for New Employee Transactions. System administrators
have unrestricted access to the tables. Describe processing rights that you think would be
appropriate for this situation. Use Figure 6-17 as an example. What problems might this
security system have?

H. Garden Glory has developed the following procedure for backup and recovery. The
company backs up the database from the server to a second computer on its network
each night. Once a month, it copies the database to a CD and stores it at a manager’s
house. It keeps paper records of all services provided for an entire year. If it ever loses
its database, it plans to restore it from a backup and reprocess all service requests. Do
you think this backup and recovery program is sufficient for Garden Glory? What
problems might occur? What alternatives exist? Describe any changes you think the
company should make to this system.

 JAMES RIVER JEWELRY PROJECT QUESTIONS

The James River Jewelry project questions are in Appendix D, which can be downloaded
from the textbook’s Web site: www.pearsonhighereducation.com/kroenke.

M06_KROE1533_08_SE_C06.indd 419 11/21/16 6:40 PM

http://www.pearsonhighereducation.com/kroenke

420 Part 3 Database Management

 THE QUEEN ANNE CURIOSITY SHOP PROJECT QUESTIONS
The Queen Anne Curiosity Shop database design used in Chapter 3 was:

CUSTOMER (CustomerID, LastName, FirstName, Address, City, State, ZIP, Phone,
EmailAddress)

EMPLOYEE (EmployeeID, LastName, FirstName, Phone, EmailAddress)
VENDOR (VendorID, CompanyName, ContactLastName, ContactFirstName,

Address, City, State, ZIP, Phone, Fax, EmailAddress)
ITEM (ItemID, ItemDescription, PurchaseDate, ItemCost, ItemPrice, VendorID)
SALE (SaleID, CustomerID, EmployeeID, SaleDate, SubTotal, Tax, Total)
SALE_ITEM (SaleID, SaleItemID, ItemID, ItemPrice)

The referential integrity constraints are:

VendorID in ITEM must exist in VendorID in VENDOR
CustomerID in SALE must exist in CustomerID in CUSTOMER
EmployeeID in SALE must exist in EmployeeID in EMPLOYEE
SaleID in SALE_ITEM must exist in SaleID in SALE
ItemID in SALE_ITEM must exist in ItemID in ITEM

The Queen Anne Curiosity Shop has modified the ITEM and SALE_ITEM tables as follows:

ITEM (ItemID, ItemDescription, UnitCost, UnitPrice, QuantityOnHand, VendorID)
SALE_ITEM (SaleID, SaleItemID, ItemID, Quantity, ItemPrice, Extended Price)

These changes allow the sales system to handle nonunique items that can be bought and
sold in quantity. When new items from vendors arrive at The Queen Anne Curiosity
Shop, the office personnel unpack the items, put them in the stockroom, and run an Item
Quantity Received Transaction that adds the quantity received to QuantityOnHand. At
the same time, another transaction, called an Item Price Adjustment Transaction is run, if
necessary, to adjust UnitCost and UnitPrice. Sales may occur at any time, and when a sale
occurs the Sale Transaction is run. Every time a SALE_ITEM line is entered, the input
Quantity is subtracted from QuantityOnHand in ITEM, and the ItemPrice is set to the
UnitPrice.

A. Explain why it is important for the changes made by each of these transactions to be
atomic.

B. Describe a scenario in which an update of QuantityOnHand could be lost.

C. Describe a scenario for a nonrepeatable read and a scenario for a phantom read.

D. Explain how locking could be used to prevent the lost update in your answer to part B.

E. Is it possible for deadlock to occur between two Sale Transactions? Why or why not?
Is it possible for deadlock to occur between a Sale Transaction and an Item Quantity
Received Transaction? Why or why not?

F. For each of the three types of transaction, describe whether you think optimistic or
pessimistic locking would be better. Explain the reasons for your answer.

M06_KROE1533_08_SE_C06.indd 420 11/21/16 6:40 PM

Chapter 6 Database Administration 421

G. Suppose that The Queen Anne Curiosity Shop identifies four groups of users: sales
personnel, managers, administrative personnel, and system administrators. Sup-
pose further that managers and administrative personnel can perform Item Quan-
tity Received Transactions, but only managers can perform Item Price Adjustment
Transactions. Describe processing rights that you think would be appropriate for this
situation. Use Figure 6-17 as an example.

H. The Queen Anne Curiosity Shop has developed the following procedure for backup
and recovery. The company backs up the entire database from the server to tape
every Saturday night. The tapes are taken to a safety deposit box at a local bank on
the following Thursday. Printed paper records of all sales are kept for five years. If
the database is ever lost, the plan is to restore the database from the last full backup
and reprocess all the sales records. Do you think this backup and recovery program
is sufficient for the Queen Anne Curiosity Shop? What problems might occur?
What alternatives exist? Describe any changes you think the company should make
to this system.

M06_KROE1533_08_SE_C06.indd 421 11/21/16 6:40 PM

422

W e have now learned how to design and implement databases.
Specifically, we have used the HSD database we have designed
and implemented for Heather Sweeney Designs as our example

throughout most of this book. We created the HSD data model in Chapter 4
and converted it to the HSD database design in Chapter 5. The SQL state-
ments to create HSD tables and populate them were given in the Heather
Sweeney Designs Case Questions in Chapter 3. We used the HSD database in
our discussion of database administration in Chapter 6.

Databases, however, do not exist in isolation. Rather, they are created as
part of an information system and are used to store the data that the system
processes to provide information to the people who use it, as discussed at
the beginning of our work in Chapter 1.

In one way or another, today we are usually working with the World Wide
Web (WWW or W3 or Web), which is now so ubiquitous and commonly used
that everyone takes it for granted.1 Application clients running in a Web
browser such as Microsoft Edge (introduced in Windows 10), Microsoft Inter-
net Explorer, Google Chrome, or Mozilla Firefox are the norm and allow users
to shop online and communicate with their friends by posts on Facebook or
tweets on Twitter.

The WWW is not a communications network itself. Instead, the WWW
runs on the Internet, a system of interconnected smaller networks that now
spans the Earth and allows computer communication worldwide.

We no longer need a computer to use the Web. In addition to using the
Web on their computers, people are using a mobile phone (or cell phone) over

 ■ To understand the nature and characteristics of the
data environment that surrounds Internet technology
database applications

 ■ To learn the purpose, features, and facilities of ODBC

 ■ To understand HTML and PHP

 ■ To be able to construct Web database applications
pages using PHP

 ■ To understand the importance of XML

 ■ To learn the basic concepts involved in using the SQL
SELECT … FOR XML statement

 ■ To understand the importance of JSON

CHAPTER OBJECTIVES

7CHAPTE
R

Database Processing Applications

1In 2014, the World Wide Web celebrated its 25th anniversary. It was created in 1989 by Tim Berners-Lee
while he was working at CERN (the European Organization for Nuclear Research, which celebrated its
60th anniversary in 2014). For more information, see the Web 25th Anniversary Web site.

M07_KROE1533_08_SE_C07.indd 422 11/21/16 6:41 PM

Chapter 7 Database Processing Applications 423

a cellular network provided by vendors such as Verizon, T-Mobile, AT&T, and
Sprint. The emerging smartphone makes use of the data packages available
from cellular providers to access the WWW, making smartphones very por-
table computers.

Another emerging form factor is the tablet, of which the Apple iPad is
the best example (although many other tablets running the Google Android
operating system (OS) are also available). Tablets connecting to the Internet
provide another link in the interconnected life style we are living today.

Figure 7-1 illustrates how people use these devices today, in what is
technically known as client-server architecture. Users actually want some sort
of service, such as shopping online or communicating on Facebook. To get
this service, a user has a hardware device (computer, smartphone, or tablet)
that runs a software client application that provides the user with an inter-
face for a desired service. A Web browser is often the client for a service
such as Facebook or Twitter (a smartphone app is also a client for these ser-
vices). A service is provided by a special computer called a server (because
it provides the service). For example, Twitter uses servers to receive, store,
and broadcast tweets. The client and the server communicate over the
Internet or a cellular data network (which itself will connect to the Internet

USERS

DEVICES
running

SERVICE CLIENT
software

INTERNET HARDWARE
running

NETWORKING
software

SERVERS
running

SERVICE SERVER
software

DATABASES

FIGURE 7-1

Client-Server Architecture

M07_KROE1533_08_SE_C07.indd 423 11/21/16 6:41 PM

424 Part 3 Database Management

at some point). Internet hardware, such as routers running networking soft-
ware, is responsible for the connections between the client and the server.

And supporting all the client-server applications are databases. Every
application needs to store, update, read, and delete data, and as we have
learned, that is the purpose of a database. Databases do not exist for their
own sake—they exist to be used by applications needing the data they hold
and maintain.

In this chapter, we will discuss and demonstrate exactly how databases
are used to support the services that users want. This chapter begins by
discussing some traditional standard interfaces and some current tools
for accessing database servers. The Open Database Connectivity standard
(ODBC) was developed in the early 1990s to provide a product-independent
interface to relational and other tabular data. Today, it is finding new life
because of the new nonrelational databases being developed to deal with
the Big Data environment (which we will discuss in detail in Chapter 8 and
Appendix K, “Big Data”). In the mid-1990s, Microsoft announced OLE DB,
which is an object-oriented interface that encapsulates data-server func-
tionality. Microsoft then developed Active Data Objects (ADO), which is a
set of objects for utilizing OLE DB that is designed for use by any language,
including VBScript and JScript/JavaScript. This technology was used in
Active Server Pages (ASP), which were the basis of Web database applica-
tions. In 2002, Microsoft introduced the .NET Framework, which included
ADO.NET (the successor to ADO) and ASP.NET (the successor to ASP) com-
ponents. Today, the .NET Framework is the basis for all application develop-
ment using Microsoft technology.

As an alternative to the Microsoft technologies, Sun Microsystems devel-
oped the Java platform, which includes the Java programming language,
Java Database Connectivity (JDBC), and Java Server Pages (JSP), in the
1990s. Sun Microsystems was purchased by Oracle Corporation in 2010,
and the Java platform is now part of the Oracle family.

Although the .NET and Java technologies are important development
platforms, additional technologies have been developed by other companies
and open source projects. We will use two of these independently developed
tools in this chapter: the NetBeans integrated development environment
(IDE) and the PHP scripting language.

This chapter also considers one of the most important recent develop-
ments in information systems technology. It discusses the confluence of two
information technology subject areas: database processing and document
processing. For more than 20 years, these two subject areas developed
independently of one another. With the advent of the Internet, however,
they crashed together in what some industry pundits called a technology
train wreck. The result is still being sorted out, with new products, product
features, technology standards, and development practices emerging every
month.

M07_KROE1533_08_SE_C07.indd 424 11/21/16 6:41 PM

http://ado.net
http://asp.net

Chapter 7 Database Processing Applications 425

We will use the HSD database in this chapter as the basis for developing a Web database
application for Heather Sweeney Designs. We will call this Web database application the
Heather Sweeney Designs Information System (HSDIS), and the HSDIS will provide both
reporting and data input capabilities for the company. The name of the database itself is
HSD, and an SQL Server database diagram for the HSD database is shown in Figure 7-2.

A WEB DATABASE APPLICATION FOR HEATHER SWEENEY DESIGNS

FIGURE 7-2

The HSD Database Diagram

The environment in which today’s Web database applications reside is rich and compli-
cated. As shown in Figure 7-3, users use Web browsers on their computers to request Web
pages from Web servers, which in turn request information from database servers, which
use a DBMS to obtain the data from their databases. Various programming languages are

THE WEB DATABASE PROCESSING ENVIRONMENT

Web Page Request Database Request Data Request

COMPUTERS
running

WEB CLIENT software

SERVERS
running

WEB SERVER software

SERVERS
running

DBMS software

DATABASES

DBMS
Database Languages:

SQL and SQL/PSM

Web Page
Programing Languages:

PHP

Web Browser
Scripting Languages:

JavaScript

FIGURE 7-3

Three-Tier Architecture

SQL Server 2016, Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 425 11/21/16 6:41 PM

426 Part 3 Database Management

used in the process of creating the Web page code that is returned to the Web browser,
which formats the Web page and displays it for the user. The final Web page coded may
include:

• Scripting language code, such as JavaScript, which runs on the user’s computer.
• Code generated by Web server programming languages, such as PHP, which

controls the code content returned to the Web browser.
• Output from databases generated by Web servers sending requests for DBMS

operations using SQL and SQL/PSM.

While we will not discuss scripting languages in this text, you are undoubtedly familiar
with their actions. A very familiar example is the “Does not match” message you see every
time a Web form requires you to reenter some data such as an email address or new pass-
word for validation and you don’t retype it exactly. This type of error checking is per-
formed locally on your computer by a Web page scripting language such as JavaScript.

We will discuss the interaction between the Web server and the DBMS. In a Web-
based database processing environment, if the Web server and the DBMS can run on the
same computer, the system has two-tier architecture. (One tier is for the Web browsers,
and one is for the Web server/DBMS computer.) Alternatively, the Web server and DBMS
can run on different computers, in which case the system has three-tier architecture, as
illustrated in Figure 7-3. High-performance applications might use many Web server com-
puters, and in some systems several computers can run the DBMS as well. In the latter
case, if the DBMS computers are processing the same databases, the system is referred to as
a distributed database (distributed databases are discussed in Chapter 8).

As shown in Figure 7-4, a typical Web server needs to create Web pages that involve
data from dozens of different sources, each with different data types. So far in this text, we
have considered only relational databases, but as you can see from this figure, there are
many other data types as well.

Web
Server

Relational Databases:
Oracle Database,
Microsoft SQL Server,
MySQL, Microsoft Access,
IBM DB2 . . .
Nonrelational Databases:
Dynamo,
Apache Cassandra,
MongoDB, Neo4j . . .

VSAM, ISAM, Other
File Processors

Email, Spreadsheets,
Other Document Types

Pictures, Audio,
Other????

Browser

Browser

Browser

DBMS

FIGURE 7-4

The Variety of Data Types in Web Database Applications

M07_KROE1533_08_SE_C07.indd 426 11/21/16 6:41 PM

Chapter 7 Database Processing Applications 427

Consider the problems that the developer of Web server applications has when inte-
grating these data. The developer may need to connect to:

• A relational database created in Microsoft SQL Server or Oracle Database.
• A nonrelational database, such as Apache Cassandra or Neo Technology’s

Neo4j.
• File-based data, such as found in spreadsheets such as Microsoft Excel.
• Email directories.

Each one of these products has a different programming interface that the developer
must learn. Further, these products evolve; thus, new features and functions will be added
over time that will increase the developer’s challenge.

Some databases are used with only a few forms and reports. Others are processed by
Web applications using Internet technology such as Active Server Pages .NET (ASP.NET)
and Java Server Pages (JSP). Still others are processed by application programs coded in
Visual Basic .NET, Java, C#, or another language. Each of these applications may use SQL/
Persistent Stored Modules (SQL/PSM) user-defined functions, stored procedures, and
triggers that are stored in the database itself to facilitate data processing.

We will consider each of these types of database processing in this chapter. Because of
the overwhelming importance of Web database applications, we will discuss those at
length—in fact, that discussion will be the main topic of this chapter.

Queries, Forms, and Reports
This book has focused on the use of a DBMS to build and process databases. For example,
it has covered the need to specify rules, such as cascading updates or deletions. Applica-
tions, however, are built to use the databases managed by a DBMS. Queries, forms, and
reports are the basis of applications. Query, form, and report generators can be built into a
database product, such as Microsoft Access, or they can be run as separate products.2

Now, let us think about some of the tasks that the DBMS—for example, Microsoft
Access—needs to do in the background to implement the database processing commands.
Suppose, for example, that you create a delete query on a table that has a 1:N relationship
to a second table that has On Delete Cascade. Suppose further that the second table has a
1:N relationship to a third table, which has Enforce Referential Integrity but not On Delete
Cascade. When running your delete query, Microsoft Access needs to delete rows from the
first and second tables consistent with these relationship properties.

The situation is even more complicated if a second user is creating a report on these
three tables as your delete query is operating. What should Microsoft Access do? Should it
show the report with whatever data remain as your query runs? Or should Microsoft
Access protect the report from your deletions and not make any of them until the report is
finished? Should it deny your query or do something else completely?

As a simpler example, suppose you create a form that has data from one table in the
main section and data from a second table in a subform. Now, suppose a user makes
changes in five rows in the subform, makes changes to some of the data in the first form,

2Until Microsoft Access 2013, it was possible to easily use Microsoft Access for its query, form, and report
features while connecting to a database in another DBMS, such as SQL Server. In this way, the Microsoft
Access “database” actually ran as an application that used an attached, but distinct, database. Unfortu-
nately, this capability was removed from Microsoft Access 2013. Some of this capability is still obtainable
by using an ODBC connection between Microsoft Access 2016 and an enterprise level DBMS. See the dis-
cussion of ODBC later in this chapter, and see the specific discussions of linking Microsoft Access 2016 (1)
to Microsoft SQL Server 2016 in Appendix A, “Getting Started with Microsoft SQL Server 2016,” (2) to
Oracle Database XE in Appendix B, “Getting Started with Oracle Database XE,” and (3) to MySQL 5.7 in
Appendix C, “Getting Started with MySQL 5.7 Community Server.”

M07_KROE1533_08_SE_C07.indd 427 11/21/16 6:41 PM

http://asp.net

428 Part 3 Database Management

and then presses the Escape key. Which of these changes will actually be made to the data-
base? None? Changes to the subform data only? Or some other option?

Even in the case of simple queries, forms, and reports, management of the background
functions is complex. You can change properties in your database to govern some of
Microsoft Access’s behavior in these cases, but you need to know the implications of such
changes. Enterprise-class DBMS products, such as Microsoft SQL Server, Oracle Data-
base, and MySQL, provide many more features and functions that let the developer change
DBMS behavior for such cases. (Many of these are discussed in Chapter 6.)

Client-Server and Traditional Application Processing
Organizational application processing using databases began in the early 1970s. Since then,
thousands, if not millions, of databases have been processed by application programs writ-
ten in such programming languages as Visual Basic, C, C++, C#, and Java. All these lan-
guages embed SQL statements or their equivalent into programs written in these standard
languages.

For example, to process an online order for Heather Sweeney Designs, an application
needs to perform the following functions:

1. Communicate with a user to obtain the customer identifier.
2. Read CUSTOMER data.
3. Present an order-entry form to a user.
4. Obtain PRODUCT and quantity data from the customer.
5. Verify stock levels for PRODUCTs.
6. Remove PRODUCTs from inventory.
7. Schedule back orders as necessary.
8. Schedule inventory picking and shipping.
9. Update CUSTOMER, INVOICE, and LINE_ITEM data (and if a sale is considered a

type of customer contact, then update CONTACT).

The application will be written to respond to exceptions, such as data not present, data in
error, communication failure, and dozens of other potential problems.

In addition, an order-processing application program will be written so that it can be
used by many users concurrently—it is possible that 50 to 100 users might be trying to run
such an application at the same time.

SQL/PSM: User-Defined Functions, Stored Procedures, and
Triggers
Enterprise-class DBMS products such as SQL Server, Oracle Database, MySQL, and DB2
include features that enable developers to create modules of logic and database actions.
These features are known as SQL/Persistent Stored Modules (SQL/PSM) and include
user-defined functions, stored procedures, and triggers. SQL/PSM, user-defined functions,
stored procedures, and triggers are discussed in detail in Appendix E, “SQL Views,” and
here we will provide only a brief description of this functionality.

User-defined functions, stored procedures, and triggers are typically3 written in lan-
guages provided by the DBMS.4 For example, SQL Server has a language called

3Some recent versions of DBMS systems allow SQL/PSM components to be written in standard program-
ming language. For example, Microsoft SQL Server 2016 allows them to be written in C++.
4For more information on triggers, stored procedures, and their uses, see David M. Kroenke and David
J. Auer, Database Processing: Fundamentals, Design, and Implementation, 14th ed. (Upper Saddle River, NJ:
Prentice Hall, 2016): Chapters 7, 10A, 10B, and 10C.

M07_KROE1533_08_SE_C07.indd 428 11/21/16 6:41 PM

Chapter 7 Database Processing Applications 429

Transact-SQL (T-SQL), and Oracle has developed a language called PL/SQL. Program-
mers can embed SQL statements into these programming languages.

A user-defined function is similar to a computer program function and provides a
reusable, single-purpose shortcut to completing some task. Stored in the database that uses
it, the function receives input values, and it returns a calculated or otherwise processed
result. A mathematical example is a function to compute the square root of a number. An
example for the HSD database would be a function similar to the one described in Appen-
dix E to concatenate a customer name in a last-name-first order (e.g., John and Smith
would become Smith, John). User-defined functions can be used in SQL queries, SQL
views, and stored procedures.

A stored procedure is similar to a computer program subroutine, but it is stored
within the database itself and performs database activity. An example for the HSD data-
base would be a stored procedure to update the columns of INVOICE for a particular
InvoiceNumber as LINE_ITEMs are added to the INVOICE. Application programs, Web
applications, and interactive query users can invoke the stored procedure, pass parameters
to it, and receive results.

A trigger is a program attached to a specific table or view within a database and exe-
cuted (“fired”) by the DBMS when specific events occur using that table or view. The
events are typically SQL commands that use the INSERT, UPDATE, or DELETE state-
ments. These events are then handled with BEFORE, AFTER, or INSTEAD OF trigger
logic. Thus, you find such trigger combinations as BEFORE DELETE, INSTEAD OF
UPDATE, and AFTER INSERT. (Note that these are only some examples—see Appendix E
for a full discussion of the nine possible combinations of trigger logic and SQL
statements.)

Different DBMS products support different sets of triggers. For example, Oracle
Database XE supports BEFORE, AFTER, and INSTEAD OF triggers. MySQL 5.7 sup-
ports only BEFORE and AFTER triggers, while SQL Server 2016 supports AFTER and
INSTEAD OF triggers.

Today, Web applications based on database processing are the rule, not the exception. For
example, Amazon.com, Facebook, and Twitter (and thousands of other Web applications)
could not function without a well-organized and efficient database processing environment
to support them. Therefore, it is important that you thoroughly understand the Web appli-
cation database processing environment.

The environment in which today’s Internet technology database applications reside is
rich and complicated. As shown in Figure 7-4, a typical Web server needs to process appli-
cations that involve data of many different data types. In this text, we have considered only
relational databases, but there are many other data types as well.

Several standard interfaces have been developed for accessing database servers. Every
DBMS product has an Application Programming Interface (API). An API is a collection
of objects, methods, and properties for executing DBMS functions from program code.
Unfortunately, each DBMS has its own API, and APIs vary from one DBMS product
to another. To save programmers from having to learn to use many different interfaces, the
computer industry has developed standards for database access.

The Open Database Connectivity (ODBC) standard was developed in the early 1990s
to provide a DBMS-independent means for processing relational database data. It is a well-
established standard and is seeing new prominence as the preferred tool to connect appli-
cations and relational databases to the “NoSQL” nonrelational data structures introduced
in Chapter 8 and discussed in detail in Appendix K, “Big Data.” Because it is a widely
known and implemented standard, we will use it in this chapter.

In the mid-1990s, Microsoft announced OLE DB, which is an object-oriented inter-
face that encapsulates data-server functionality. OLE DB was designed not just for access

DATABASE SERVER ACCESS STANDARDS

M07_KROE1533_08_SE_C07.indd 429 11/21/16 6:41 PM

http://Amazon.com

430 Part 3 Database Management

to relational databases but also for accessing many other types of data. OLE DB is readily
accessible to programmers, using such programming languages as C, C#, and Java. How-
ever, OLE DB is not as accessible to users of Visual Basic (VB) and scripting languages.
Therefore, Microsoft developed Active Data Objects (ADO), which is a set of objects for
utilizing OLE DB that is designed for use by any language, including Visual Basic (VB),
VBScript, and JScript. ADO has now been followed by ADO.NET (pronounced “A-D-O-
dot-NET”), which is an improved version of ADO developed as part of Microsoft’s .NET
(pronounced “dot-NET”) initiative.

ASP.NET, the follow-up to Microsoft Active Server Pages, is used in Web pages to
create Web-based database applications. ASP.NET uses Hypertext Markup Language
(HTML) and the Microsoft .NET languages to create Web pages that can read and write
database data and transmit it over public and private networks using Internet protocols.
ASP.NET runs on Microsoft’s Web server product, Internet Information Services (IIS).
ASP.NET is part of the Microsoft .NET Framework and relies upon ADO.NET. The use
of ADO.NET is illustrated in Figure 7-5.5

Web-based database applications can also be created by using Java Server Pages (JSP)
technology. JSP is a combination of HTML and Java that accomplishes the same function
as ASP by compiling pages into Java servlets. JSPs are often used on the open source
Apache Web server. Another favorite combination of Web developers is the Apache Web
server with the MySQL database and the PHP language. This combination is called AMP
(Apache–MySQL–PHP). When running on the Linux operating system, it is referred to as
LAMP; when running on the Windows operating system, it is referred to as WAMP.6 And
because PHP works well with all DBMS products, we will use it in this book. Other possi-
bilities include the Perl and Python languages (both of which can be the “P” in AMP,
LAMP, and WAMP), and the Ruby language with its Web development framework called
Ruby on Rails.

ODBC
Now that we have discussed various Web application database processing connectivity, we
will examine it in depth and learn how to use it to create a Web application for Heather
Sweeney Designs that connects to and uses the HSD database.

The ODBC standard allows programmers to code instructions to various DBMS prod-
ucts using ODBC standard statements. These instructions are passed to an ODBC driver,

5For more information on the Microsoft .NET framework and ADO.NET, see David M. Kroenke and
David J. Auer, Database Processing: Fundamentals, Design, and Implementation, 14th ed. (Upper Saddle
River, NJ: Prentice Hall, 2016): Chapter 11.
6For information on JSP, JDBC, and related technology and tools, see David M. Kroenke and David
J. Auer, Database Processing: Fundamentals, Design, and Implementation, 14th ed. (Upper Saddle River, NJ:
Prentice Hall, 2016): Chapter 11.

DBMSADO.NET

Web
Applications

Windows
Applications

XML Web
Services

DB

FIGURE 7-5

The Role of ADO.NET

M07_KROE1533_08_SE_C07.indd 430 11/21/16 6:41 PM

http://ado.net
http://asp.net
http://asp.net
http://ado.net
http://asp.net
http://asp.net
http://ado.net
http://ado.net

Chapter 7 Database Processing Applications 431

which translates them into the API of the particular DBMS in use. The driver receives
results back from the DBMS and translates those results into a form that is part of the
ODBC standard.

ODBC Architecture The basic ODBC architecture in a three-tier Web server environ-
ment—in a configuration without OLE DB and ADO—is shown in Figure 7-6. The applica-
tion program, the ODBC driver manager, and the ODBC DBMS driver (a multiple-tier
driver in this case) all reside on the Web server. The DBMS driver sends requests to data
sources, which reside on the database server. According to the ODBC standard, a data
source is the database and its associated DBMS, operating system, and network platform.

The application issues requests to create a connection with a data source; to issue SQL
statements and receive results; to process errors; and to start, commit, and roll back trans-
actions. ODBC provides a standard means for each of these requests, and it defines a stan-
dard set of error codes and messages.

The driver manager serves as an intermediary between the application and the DBMS
drivers. When the application requests a connection, the driver manager determines the
type of DBMS that processes a given ODBC data source and loads that driver in memory
(if it is not already loaded).

A DBMS driver manager processes ODBC requests and submits specific SQL state-
ments to a given type of data source. There is a different driver for each data source type. It
is the responsibility of the driver to ensure that standard ODBC commands execute cor-
rectly. The driver also converts data source error codes and messages into the ODBC stan-
dard codes and messages.

ODBC identifies two types of drivers: single tier and multiple tier. A single-tier driver
processes both ODBC calls and SQL statements. A multiple-tier driver processes ODBC
calls but passes the SQL requests directly to the database server. Although it may reformat
an SQL request to conform to the dialect of a particular data source, it does not process the
SQL.

Establishing an ODBC Data Source Name A data source is an ODBC data struc-
ture that identifies a database and the DBMS that processes it. The three types of data
sources are file, system, and user. A file data source is a file that can be shared among data-
base users. The only requirement is that the users have the same DBMS driver and privilege
to access the database. A system data source is local to a single computer. The operating
system and any user on that system (with proper permissions) can use a system data source.
A user data source is available only to the user who created it. Each created data source is
given a data source name (DSN) that is used to reference the data source.

In general, the best choice for Internet applications is to create a system data source on
the Web server. Browser users then access the Web server, which, in turn, uses a system
data source to set up a connection with the DBMS and the database.

We need a system data source for the Heather Sweeney Designs HSD database so that
we can use it in a Web database processing application. We created the HSD database in

SQL Commands

Web ServerUser Client

ApplicationWeb Browser Driver Manager DBMS Driver

Database Server

DBMS Database

Tier 1 Tier 2 Tier 3

FIGURE 7-6

ODBC Three-Tier Web Server Architecture

M07_KROE1533_08_SE_C07.indd 431 11/21/16 6:41 PM

432 Part 3 Database Management

SQL Server 2016, and the system data source will have to provide a connection to the SQL
Server 2016 DBMS. To create a system data source in the Windows operating system, you
use the ODBC Data Source Administrator.

In Windows 10, you open the ODBC Data Source Administrator7 by using the Start |
All apps | Windows Administrative Tools | ODBC Data Source command. Alternatively,
you can open the ODBC Data Source Administrator as follows:

1. Open the Windows Control Panel by clicking the Windows Key + X key combination on
the keyboard to open the Windows shortcut menu, and then clicking Control Panel.

2. In the Control Panel window, click System and Security.
3. In the System and Security window, click Administrative Tools.
4. In the Administrative Tools window, double-click the Data Sources (ODBC) shortcut icon.

Here is how you create a system data source named HSD for use with the Heather
Sweeney Designs HSD database on a Microsoft SQL Server 2016 DBMS:

1. In the ODBC Data Source Administrator, click the System DSN tab and then click the
Add button.

2. In the Create New Data Source dialog box, we need to connect to SQL Server 2016, so we
select the ODBC Driver 13 for SQL Server, as shown in Windows 10 in Figure 7-7.

7Warning: There are actually multiple versions of the ODBC Data Source Administrator in the 64-bit
versions of Windows 10, Windows 8.1, and Windows 7. You must use the correct version depending on
whether the DBMS you are using is a 32-bit or 64-bit version. To make matters worse, all the versions use
the same file name of odbcad32.exe! The instructions on this page open the 32-bit version, which works
with 32-bit programs. If you are using ODBC to connect to a 64-bit version of Microsoft Access 2016,
Microsoft SQL Server 2016, Oracle Database XE, or MySQL 5.7, then you may need to use the version of
the ODBC Data Source Administrator located at C:\Windows\SysWOW64\odbcad32.exe. See the discus-
sion in Appendix I, “Gettting Started with Web Servers, PHP, and the NetBeans IDE.”

Select ODBC Driver 13 for SQL
Server

Select System DSN and click the
Add button

Click the Finish button

The ODBC Data Source
Administrator (32-bit) Dialog Box

The Create New Data Source
Dialog Box

The ODBC Data Source
Administrator (32-bit) Icon

The Internet Information
Services (IIS) Manager Icon

FIGURE 7-7

The Create New Data Source Dialog Box

ODBC Data Source Administrator included with Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 432 11/21/16 6:41 PM

Chapter 7 Database Processing Applications 433

3. Click the Finish button. The Create a New Data Source to SQL Server dialog box
appears, as shown in Figure 7-8(a).

4. In the Create a New Data Source to SQL Server dialog box, enter the information for the
HSD database shown in Figure 7-8(a) (note that the database server is selected from the
Server drop-down list), and then click the Next button.

FIGURE 7-8

The Create a New Data Source to SQL Server Dialog Box

Type in a
description

Type in a name for
this system DSN

The drop-down list
arrow button
–select the server
from the drop–
down list—if the
list is empty, type
in the server name
shown the SQL
Server
Management
Studio Object
Explorer

The Next button

(a) Naming the ODBC Data Source

Type in the User
Login ID here

Click this check
box for SQL
Server
authentication

Type in the
associated user
password here

The Next button

(b) Selecting the User Login ID Authentication Method

ODBC Data Source Administrator included with Windows 10, Microsoft Corporation.

ODBC Data Source Administrator included with Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 433 11/21/16 6:41 PM

434 Part 3 Database Management

If necessary,
select the correct
database from the
drop-down list
displayed by
clicking this drop-
down list arrow
button

Click this check
box to manually
select the default
database

The Next button

(c) Selecting the Default Database

(d) Additional Setting Options

The Finish button

FIGURE 7-8 Continued

(Continued)

ODBC Data Source Administrator included with Windows 10, Microsoft Corporation.

ODBC Data Source Administrator included with Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 434 11/21/16 6:41 PM

Chapter 7 Database Processing Applications 435

The Test Data
Source button

(e) Testing the Data Source

(f) The Successfully Tested Data Source

The OK button

 ■ NOTE: If the SQL server does not appear in the Server drop-down list, enter it
manually as ComputerName\SQLServerInstanceName. Specifically, see the SQL
Server name shown in the Object Explorer window of the SQL Server Management
Studio, and use exactly what is shown there. Note that in Figure 7-8(a), we are using
the SQL Server name WIN10-001 which you can see in Figure 6-1. In this case this is
the ComputerName only, and is all that is required because the default instance name
of MSSQLSERVER is not required. In other instances, you might see something like
WIN10-001\SQLEXPRESS, which combines the ComputerName with the explicit
SQL ServerInstanceName. Again, use exactly what is shown in the Object Explorer
window!

FIGURE 7-8 Continued

ODBC Data Source Administrator included with Windows 10, Microsoft Corporation.

ODBC Data Source Administrator included with Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 435 11/21/16 6:41 PM

436 Part 3 Database Management

5. The next step, as shown in Figure 7-8(b), is to click the radio button that selects SQL
Server authentication and then enter the Login ID of HSD-User and the Password of
HSD-User + password that we created in Chapter 6. After this data has been entered,
click then Next button.

 ■ NOTE: If the Login ID and Password are not correct, an error message is displayed
at this point. Make sure you have correctly created the SQL Server login, as discussed
in Chapter 6, and that you have entered the correct data here.

6. As shown in Figure 7-8(c), click the check box to change the default database, set the
default database to HSD, and then click the Next button.

7. As shown in Figure 7-8(d), we do not need to set any options on the next page, so click the
Finish button. The ODBC Microsoft SQL Server Setup dialog box is displayed, as shown
in Figure 7-8(e).

8. In the Microsoft SQL Server Setup dialog box, click the Test Data Source button to test
the connection.

9. If all the settings are correct, the SQL Server ODBC Data Source Test dialog box
appears, as shown in Figure 7-8(f), showing that the tests were successfully completed.
Click the OK button.

10. Click the OK button in the ODBC Microsoft SQL Server Setup dialog box.
11. The completed HSD system data source is shown in Figure 7-9. Click the OK button to

close the ODBC Data Source Administrator.

Web Processing with the Microsoft IIS
Now that we have created our ODBC data source, let us take a look at Web database pro-
cessing. To do this, we will need a Web server to store the Web pages that we will build and
use. We could use the Apache HTTP Server (available from the Apache Software Founda-
tion). This is the most widely used Web server, and there is a version that will run on just
about every operating system in existence. However, because we have been using the

FIGURE 7-9

The Completed HSD System Data Source

The HSD system
data source

ODBC Data Source Administrator included with Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 436 11/21/16 6:41 PM

Chapter 7 Database Processing Applications 437

Windows operating system and Microsoft Access 2016 in “The Access Workbench” sec-
tions, we will build a Web site using the Microsoft Internet Information Services (IIS)
Web server. One advantage of using this Web server for users of the Windows 10, Win-
dows 8.1, and Windows 7 operating systems is that IIS is included with the operating sys-
tem: IIS version 10 is included with Windows 10, IIS version 8.5 is included with
Windows 8.1, and IIS version 7.5 is included with Windows 7. IIS is not installed by
default, but it can be easily installed at any time. This means that any user can practice cre-
ating and using Web pages on his or her own Windows workstation.

Complete instructions for setting up IIS 10 on Windows 10, including installing and
setting up both PHP and the NetBeans IDE (which are discussed later in this chapter), are
presented in Appendix I, “Getting Started with Web Servers, PHP, and the NetBeans
IDE,” which you can access online. We strongly recommend that you read that appendix at
this point and make sure that your computer is correctly set up before continuing with the
material in this chapter.

This discussion of Web database processing has been written to be as widely
applicable as possible. With minor adjustments to the following steps, you
should be able to use the Apache Web server if you have it available. Whenever
possible, we have chosen to use products and technologies that are available
for many operating systems.

BTW

When IIS is installed, it creates an inetpub folder on the C: drive as C:\inetpub. Within
the inetpub folder is the wwwroot folder, which is where IIS stores the most basic Web
pages used by the Web server. Figure 7-10 shows this directory structure after IIS has been

The inetpub folder

The wwwroot folder

The C: drive

The iisstart.htm file

FIGURE 7-10

The IIS wwwroot Folder

File Explorer included with Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 437 11/21/16 6:42 PM

438 Part 3 Database Management

installed, with the files in the wwwroot folder displayed in the file pane. Note that the
wwwroot folder security properties need to be set correctly to allow users access to this
folder. As discussed in detail in Appendix I—Getting Started with Web Servers, PHP, and
the NetBeans IDE, we need to give the Windows Users group Modify and Write permis-
sions to the wwwroot folder.

IIS is managed using a program called Internet Information Services Manager. To
open the program, open Control Panel, then select System and Security, and then select
Administrative Tools. The shortcut icon for Internet Information Services/Internet Infor-
mation Services Manager is located in Administrative Tools. Figure 7-11 shows the Internet
Information Services Manager window.

Note that the files shown in the Default Web Site folder in Figure 7-11 are the same
files that are in the wwwroot folder in Figure 7-10—they are the default files created by IIS
when it is installed. The file iisstart.htm generates the Web page that Internet Explorer (or
any other Web browser contacting this Web server over the Internet) will see displayed.

To test the Web server installation, open your Web browser, type in the URL
http://localhost, and press the Enter key. For Windows 10, the Web page shown in
Figure 7-12 appears. If the appropriate Web page is not displayed in your Web browser,
your Web server is not installed properly.

Now, let us set up a small Web site that can be used for Web database processing of
the HSD database. First, we will create a new folder named DBC (database concepts)
under the wwwroot folder. This new folder will be used to hold all the Web pages devel-
oped in discussions and exercises in this book. Second, we will create a subfolder of DBC
named HSD. This folder will hold the HSD Web site. You create these folders using
Windows Explorer, which is shown in Figure 7-10.

The Default Web Site
location maps to the
wwwroot folder

The Content View pane is
selected

The iisstart.htm file

FIGURE 7-11

Managing IIS

Microsoft IIS Manager included with Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 438 11/21/16 6:42 PM

http://localhost

Chapter 7 Database Processing Applications 439

Getting Started with HTML Web Pages
The most basic Web pages are created using Hypertext Markup Language (HTML).
The term hypertext refers to the fact that you can include links to other objects, such as
Web pages, maps, pictures, and even audio and video files in a Web page, and when
you click the link you are immediately taken to that other object and it is displayed in
your Web browser. HTML itself is a standard set of HTML syntax rules and HTML
document tags that can be interpreted by Web browsers to create specific onscreen
displays.

Tags are usually paired, with a specific beginning tag and a matching ending tag that
includes the backslash character (/). Thus, a paragraph of text is tagged as <p>{paragraph
text here}</p>, and a main heading is tagged as <h1>{heading text here}</h1>. Some
tags do not need a separate end tag because they are essentially self-contained. For exam-
ple, to insert a horizontal line on a Web page, you use the horizontal rule tag, <hr />.
Note that such single, self-contained tags must include the backslash character as part of
the tag.

The rules of HTML are defined as standards by the World Wide Web Consortium
(W3C), and the details of current and proposed standards can be found on its Web site
(this site also has several excellent tutorials on HTML8). The W3C Web site has current
standards for HTML; Extensible Markup Language (XML), which we will discuss later in

This Web page is generated
by the iisstart.htm file

FIGURE 7-12

The Default IIS Web Page

8To learn more about HTML, go to the W3C Web site. For good HTML tutorials, see the following tutori-
als by David Raggett: “Getting Started with HTML,” “More Advanced Features,” and “Adding a Touch
of Style.”

Microsoft Edge, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 439 11/21/16 6:42 PM

440 Part 3 Database Management

this chapter; and a mixture of the two called XHTML. A full discussion of these standards
is beyond the scope of this text—this chapter uses the new HTML5 standard.

In this chapter, we will create a simple HTML home page for the Heather Sweeney
Designs Web site and place it in the HSD folder. We will discuss some of the numerous
available Web page editors shortly, but all you really need to create Web pages is a simple
text editor. For this first Web page, we will use the Microsoft Notepad ASCII text editor,
which has the advantage of being supplied with every version of the Windows operating
system.

The index.html Web Page
The name for the file we are going to create is index.html. We need to use the name
index.html because it is a special name as far as Web servers are concerned. The file name
index.html is one of only a few file names that most Web servers automatically display
when a URL request is made without a specific file reference, and thus it will become the
new default display page for our Web database application. However, note the phrase
“most Web servers” in the last sentence. Microsoft IIS 7.0 through IIS 10 (as shown in
Figure 7-13) are configured to recognize index.html.

Creating the index.html Web Page
Now we can create the index.html Web page, which consists of the basic HTML state-
ments shown in Figure 7-14. Figure 7-15 shows the HTML code in Notepad.

If we now use the URL http://localhost/DBC/HSD, we get the Web page shown in
Figure 7-16.

The Features View Default
Document settings page

The index.html filename is
already listed

The Features View pane is
selected

Ignore this alert

FIGURE 7-13

The index.html file in Windows 10 IIS Manager

Microsoft ISS Manager version included with Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 440 11/21/16 6:42 PM

http://localhost/DBC/HSD

Chapter 7 Database Processing Applications 441

<!DOCTYPE html>
<html>
 <head>
 <title>Heather Sweeney Designs Demonstration Pages Home Page</title>

<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">

 </head>
 <body>
 <h1 style="text-align: center; color: blue">
 Database Concepts (8th Edition)
 </h1>
 <p style="text-align: center; font-weight: bold">
 David M. Kroenke, David J. Auer, Scott L. Vandenberg, and Robert C. Yoder
 </p>
 <hr />
 <h2 style="text-align: center; color: blue">
 Welcome to the Heather Sweeney Designs Home Page
 </h2>
 <hr />
 <p>Chapter 7 Demonstration Pages From Figures in the Text:</p>
 <p>Example 1:

 Display the SEMINAR Table (No surrogate key)

 </p>
 <hr />
 </body>
</html>

FIGURE 7-14

The HTML Code for the index.html File in the HSD Folder

The index.html HTML code
—note how indentation is
used to keep the code
organized and readable

FIGURE 7-15

The HTML Code for the index.html File in Notepad

Notepad 2016, Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 441 11/28/16 4:46 PM

442 Part 3 Database Management

Web Database Processing Using PHP
Now that we have our basic Web site set up, we will expand its capabilities with a Web
development environment that allows us to connect Web pages to our database. Several
technologies allow us to do this. Developers using Microsoft products usually work with
the .NET framework and use ASP.NET technology. Developers who use the Apache Web
server may prefer creating JSP files in the JavaScript scripting language or using the Java
programming language in the Java Enterprise Edition (Java EE) environment.

The PHP Scripting Language In this chapter, we will use the scripting language
PHP. PHP, which is an abbreviation for PHP: Hypertext Processor (and which was previ-
ously known as the Personal Hypertext Processor), is a scripting language that can be embed-
ded in Web pages. PHP is extremely popular. In January 2013, more than 2 million Internet

In the HTML code for index.html, the HTML code segment:

<!DOCTYPE html>

is an HTML/XML document type definition (DTD), which is used to check and vali-
date the contents of the code that you write. DTDs are discussed later in this
chapter. For right now, just include the code as it is written.

BTW

FIGURE 7-16

The index.html Web Page in HSD

Microsoft Edge, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 442 11/21/16 6:42 PM

http://asp.net

Chapter 7 Database Processing Applications 443

domains had servers running PHP,9 and the September 2016 TIOBE Programming Com-
munity Index ranked PHP as the seventh most popular programming language (following,
in order, Java, C, C++, C#, Python, and JavaScript).10 In May 2013, PHP had ranked sixth,
while in 2010 PHP held down third place for a while. PHP appears to be maintaining popu-
larity among programmers and Web page designers. PHP is easy to learn and can be used in
most Web server environments and with most databases. It is also an open source product
that is freely downloadable from the PHP Web site.

The NetBeans Integrated Development Environment (IDE) Although a simple
text editor such as Notepad is fine for simple Web pages, as we start creating more complex
pages we will move to an Integrated Development Environment (IDE). An IDE gives you
the most robust and user-friendly means of creating and maintaining your Web pages. If
you are working with Microsoft products, you will likely use Visual Studio (or the freely
downloadable Visual Studio 2016 Express Edition) or WebMatrix 3 (all downloadable
from www.microsoft.com). If you are working with JavaScript or Java, you might prefer
the Eclipse IDE.

For this chapter, we will again turn to the open source development community and use
the NetBeans IDE. NetBeans provides a framework that can be modified by add-in plugin
modules for many purposes. For PHP, we can use NetBeans as modified for the PHP plugin,
which is specifically intended to provide a PHP development environment in NetBeans.

For more information on installing and using PHP and NetBeans, see Appendix I—
Getting Started with Web Servers, PHP and the NetBeans IDE. Figure 7-17 shows the

9See the PHP Web site.
10See the Tiobe Software Web site: http://www.tiobe.com/tiobe_index?page=index (accessed October 2016).

The index.html HTML code
—note how indentation is
used to keep the code
organized and readable

FIGURE 7-17

The HTML Code for the index.html File in the NetBeans IDE

Oracle NetBeans 8.1, Oracle Corporation.

M07_KROE1533_08_SE_C07.indd 443 11/21/16 6:42 PM

http://www.microsoft.com
http://www.tiobe.com/tiobe_index?page=index

444 Part 3 Database Management

index.html file as created in a NetBeans project named DBC-e08-HSD in the NetBeans
IDE. Compare this version with the Notepad version in Figure 7-15.

Now that we have our basic Web site set up, we will start to integrate PHP into the
Web pages. First, we will create a page to read data from a database table and display the
results in a Web page. Specifically, we will create a Web page in the HSD folder named
ReadSeminar.php to run the SQL query:

/* *** SQL-UPDATE-CH07-01 *** */

SELECT * FROM SEMINAR;

This page displays the result of the query, without the table’s surrogate key of SeminarID,
in a Web page. The HTML and PHP code for ReadSeminar.php is shown in Figure 7-18,
and the same code is shown in the NetBeans IDE in Figure 7-19.

If you use the URL http://localhost/DBC/HSD in your Web browser and then click
the Example 1: Display the SEMINAR Table (No surrogate key) link on that page, the
Web page shown in Figure 7-20 is displayed.

The ReadSeminar.php code blends HTML (executed on the user’s workstation) and
PHP statements (executed on the Web server). In Figure 7-18, the statements included
between <?php and ?> are program code that is to be executed on the Web server com-
puter. All the rest of the code is HTML that is generated and sent to the browser client. In
Figure 7-18, the statements:

<!DOCTYPE html>

<html>

<head>

<meta charset=UTF-8">

<title>ReadSeminar PHP Page</title>

<style type="text/css">

h1 {text-align: center; color: blue}

h2 {font-family: Ariel, sans-serif;

text-align: left; color: blue}

p.footer {text-align: center}

table.output {font-family: Ariel, sans-serif}

</style>

</head>

<body>

are normal HTML code. When sent to the browser, these statements set the title of the
browser window to ReadSeminar PHP Page; define styles to be used by the headings,11 the
results table, and the footer; and cause other HTML-related actions. The next group of
statements are included between <?php and ?> and thus are PHP code that will be exe-
cuted on the Web server. Also note that all PHP statements, like SQL statements, must end
with a semicolon (;).

11Styles are used to control the visual presentation of the Web page and are defined in the HTML section
between the <style> and </style> tags. For more information about styles, see David Raggett’s tutorial
“Adding a Touch of Style.”

M07_KROE1533_08_SE_C07.indd 444 11/21/16 6:42 PM

http://localhost/DBC/HSD

Chapter 7 Database Processing Applications 445

<!DOCTYPE html>
<html>

<head>
<meta charset=UTF-8">
<title>ReadSeminar PHP Page</title>
<style type="text/css">

h1 {text-align: center; color: blue}
h2 {font-family: Ariel, sans-serif; text-align: left; color: blue}
p.footer {text-align: center}
table.output {font-family: Ariel, sans-serif}

</style>
</head>
<body>
<?php

// Get connection
$Conn = odbc_connect('HSD', 'HSD-User','HSD-User+password');

// Test connection
if (!Conn)

{
exit ("ODBC Connection Failed: " . $Conn);
}

// Create SQL statement
$SQL = "SELECT * FROM SEMINAR";

// Execute SQL statement
$RecordSet = odbc_exec($Conn,$SQL);

// Test existence of recordset
if (!$RecordSet)

{
exit ("SQL Statement Error: " . $SQL);
}

?>
<!-- Page Headers -->
<h1>

The Heather Sweeney Designs SEMINAR Table
</h1>
<hr />
<h2>

SEMINAR
</h2>

<?php

// Table headers
echo "<table class='output' border='1'>

<tr>
<th>SeminarDate</th>
<th>SeminarTime</th>
<th>Location</th>
<th>SeminarTitle</th>

</tr>";

FIGURE 7-18

The HTML and PHP Code for ReadSeminar.php

M07_KROE1533_08_SE_C07.indd 445 11/21/16 6:42 PM

446 Part 3 Database Management

// Table data
while($RecordSetRow = odbc_fetch_array($RecordSet))

{
echo "<tr>";
echo "<td>" . $RecordSetRow['SeminarDate'] . "</td>";
echo "<td>" . $RecordSetRow['SeminarTime'] . "</td>";
echo "<td>" . $RecordSetRow['Location'] . "</td>";
echo "<td>" . $RecordSetRow['SemniarTitle'] . "</td>";
echo "</tr>";
}

echo "</table>";

// Close connection
odbc_close($Conn);

?>

<hr />
<p class="footer">

Return to Heather Sweeney Designs Home Page

</p>
<hr />

</body>
</html>

FIGURE 7-18 Continued

The ReadSeminar.php
code—PHP code is
enclosed in the <?php
and ?> symbols, which
are displayed in black in
the NetBeans IDE

FIGURE 7-19

The HTML and PHP Code for ReadSeminar.php in the NetBeans IDE

Oracle NetBeans 8.1, Oracle Corporation.

M07_KROE1533_08_SE_C07.indd 446 11/21/16 6:42 PM

Chapter 7 Database Processing Applications 447

Creating a Connection to the Database In the HTML and PHP code in
Figure 7-18, the following PHP code is embedded in the HTML code to create and test a
connection to the database:

<?php
// Get connection
$Conn = odbc_connect('HSD', 'HSD-User',
'HSD-User+password');
// Test connection
if (!$Conn)
{

exit ("ODBC Connection Failed: " . $Conn);
}

After it runs, the variable $Conn can be used to connect to the ODBC data source
HSD. Note that all PHP variables start with the dollar sign symbol ($).

Be sure to use comments to document your Web pages. PHP code segments
with two forward slashes (//) in front of them are comments. This symbol is
used to define single-line comments. In PHP, comments can also be inserted
in blocks between the symbols /* and */, whereas in HTML comments must be
inserted between the symbols <!-- and -->.

BTW

FIGURE 7-20

The Results of ReadSeminar.php

Microsoft Edge, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 447 11/21/16 6:42 PM

448 Part 3 Database Management

The connection is used to open the HSD ODBC data source. Here the user ID of
HSD-User and the password of HSD-User+password that we created in Chapter 6 are
being used to authenticate the DBMS.

The test of the connection is contained in the code segment:

// Test connection

if (!$Conn)

{

exit ("ODBC Connection Failed: " . $Conn);

}

In English, this statement says, “IF the connection Conn does not exist, THEN print the
error message ‘ODBC Connection Failed’ followed by the contents of the variable $Conn.”
Note that the code (!Conn) means NOT Conn—in PHP the exclamation point symbol (!)
means NOT.

At this point, a connection has been established to the DBMS via the ODBC data
source, and the database is open. The $Conn variable can be used whenever a connection
to the database is needed.

Creating a Recordset Given the connection with an open database, the following
code segment from Figure 7-18 will store an SQL statement in the variable $SQL and
then use the PHP odbc_exec command to run that SQL statement against the database to
retrieve the query results and store them in the variable $RecordSet:

// Create SQL statement

$SQL = "SELECT * FROM SEMINAR";

// Execute SQL statement

$RecordSet = odbc_exec($Conn, $SQL);

// Test existence of recordset

if (!$RecordSet)

{

exit ("SQL Statement Error: " . $SQL);

}

?>

Note that again you need to test the results to be sure the PHP command executed
correctly.

Displaying the Results Now that the recordset has been created and populated, we
can process the recordset collection with the following code:

<!-- Page Headers -->

<h1>

The Heather Sweeney Designs SEMINAR Table

</h1>

<hr />

<h2>

SEMINAR

</h2>

M07_KROE1533_08_SE_C07.indd 448 11/21/16 6:42 PM

Chapter 7 Database Processing Applications 449

<?php

// Table headers

echo "<table class='output' border='1'>

<tr>

<th>SeminarDate</th>

<th>SeminarTime</th>

<th>Location</th>

<th>SeminarTitle</th>

</tr>";

// Table data

while($RecordSetRow = odbc_fetch_array($RecordSet))

{

echo "<tr>";

echo "<td>" . $RecordSetRow['SeminarDate'] . "</td>";

echo "<td>" . $RecordSetRow['SeminarTime'] . "</td>";

echo "<td>" . $RecordSetRow['Location'] . "</td>";

echo "<td>" . $RecordSetRow['SeminarTitle'] . "</td>";

echo "</tr>";

}

echo "</table>";

The HTML section defines the page headers, and the PHP section defines how to
display the SQL results in a table format. Note the use of the PHP command echo to
allow PHP to use HTML syntax within the PHP code section. Also note that a loop is
executed to iterate through the rows of the recordset using the PHP variable
$RecordSetRow.

Disconnecting from the Database Now that we have finished running the SQL
statement and displaying the results, we can end our ODBC connection to the database
with the code:

// Close connection

odbc_close($Conn);

?>

The basic page we have created here illustrates the basic concepts of using ODBC and
PHP to connect to a database and process data from that database in a Web database pro-
cessing application. You can build on this foundation by studying PHP command syntax
and incorporating additional PHP features into your Web pages. For more information on
PHP, see the PHP documentation.

Updating a Table with PHP
The previous example of a PHP Web page just read data. The next example shows how to
update table data by adding a row to a table with PHP. Figure 7-21 shows a modification
we need to make to the HSD index.html file in order to link to the new pages we are going
to create—modify your index.html file before creating the new pages. Figure 7-22 shows
the modified HSD home page in the Web browser.

M07_KROE1533_08_SE_C07.indd 449 11/21/16 6:42 PM

450 Part 3 Database Management

Figure 7-23 shows a Web page data entry form that will capture new seminar data and
create a new row in the HSD SEMINAR table. This form has four data entry fields:
The Seminar Date and Seminar Time fields are text boxes where the user types in the date
and time of the new seminar, whereas the Location and Seminar Title have been imple-
mented as drop-down lists to control the possible values and to make sure they are spelled
correctly. Figure 7-24 shows data entered in the form and illustrates the use of the Select
Seminar Location drop-down box to select the Location value from a list (Houston Con-
vention Center in this case).

<p>Example 1:

 Display the SEMINAR Table (No surrogate key)

</p>
<!-- New Code Added Here -->
<p>Example 2:

 Add a New Seminar to the SEMINAR Table

</p>
<!-- New Code Added to Here -->
<hr />

</body>
</html>

FIGURE 7-21

The HTML Code to Modify index.html File in the HSD Folder

The Example 2 Web link has
been added

FIGURE 7-22

The Modified HSD Web Home Page

Microsoft Edge, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 450 11/21/16 6:42 PM

Chapter 7 Database Processing Applications 451

When the user clicks the Add New Seminar button, the seminar is added to the data-
base. If the results are successful, the acknowledgment Web page in Figure 7-25, which
also displays the SEMINAR table with the new row added, will be displayed. We have
tested these pages by adding a session of Heather’s Kitchen on a Budget seminar to be held
on June 23, 2017, starting at 2:00 pm at the Houston Convention Center.

This processing necessitates two PHP pages. The first, shown in Figure 7-26, is the
data entry form.

It also contains the form tag:

<form action="InsertNewSeminar.php" method="POST">

This tag defines a form section on the page, and the section will be set up to obtain data
entry values. This form has only one data entry value: the table name. The POST method
refers to a process that causes the data in the form (here the seminar date, the seminar time,
the location, and the seminar title) to be delivered to the PHP server so it can be used in an
array variable named $_POST. Note that $_POST is an array and thus can have multiple
values. An alternative method is GET, but POST can carry more data, and this distinction
is not too important to us here. The second parameter of the form tag is action, which is set
to InsertNewSeminar.php. This parameter tells the Web server that when it receives the
response from this form it should store the data values in the $_POST array and pass con-
trol to the InsertNewSeminar.php page.

Text box to enter data

Drop-down list arrow button
to select data from set
values

FIGURE 7-23

The NewSeminarForm Web Page

Microsoft Edge, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 451 11/21/16 6:42 PM

452 Part 3 Database Management

Data entered in the text box

Selecting a data value from
the drop-down list

FIGURE 7-24

Entering Data Values in the NewSeminarForm Web Page

FIGURE 7-25

The New Seminar Data in the SEMINAR Table

Microsoft Edge, Microsoft Corporation.

Microsoft Edge, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 452 11/21/16 6:42 PM

Chapter 7 Database Processing Applications 453

!DOCTYPE html>
<html>

<head>
<title>NewSeminarForm HTML Page</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style type="text/css">

h1 {text-align: center; color: blue}
h2 {font-family: Ariel, sans-serif; text-align: left; color: blue}
p.footer {text-align: center}
table.output {font-family: Ariel, sans-serif}

</style>
</head>
<body>

<form action="InsertNewSeminar.php" method="POST">
<!-- Page Headers -->
<h1>

Heather Sweeney Designs New Seminar Form
</h1>
<hr />

<p>

Enter Seminar Date and Time:
</p>
<table>

<tr>
<td> Seminar Date [Format as DD-MMM-YYYY]: </td>
<td>

<input type="text" name="SeminarDate" size="16" />
</td>

</tr>
<tr>

<td> Seminar Time [Format as HH:MM AM/PM]: </td>
<td>

<input type="text" name="SeminarTime" size="16" />
</td>

</tr>
</table>
<p>

Select Seminar Location:
</p>
<select name="Location">

<option value="Austin Convention Center">Austin Convention Center</option>
<option value="Dallas Convention Center">Dallas Convention Center</option>
<option value="Fort Worth Convention Center">Fort Worth Convention

Center</option>
<option value="Houston Convention Center">Houston Convention Center</option>
<option value="San Antonio Convention Center">San Antonio Convention

Center</option>
</select>

<p>

Select Seminar Title:
</p>

FIGURE 7-26

The HTML Code for the NewSeminarForm.html File

M07_KROE1533_08_SE_C07.indd 453 11/21/16 6:42 PM

454 Part 3 Database Management

The rest of the page is standard HTML, with the addition of the structure

<select>

<option>

...

</option>

</select>

to create a drop-down list in the form. Note that the name of the first select is Location and
that of the second select is SeminarTitle.

When the user clicks the Add New Seminar button, these data are to be processed by
the InsertNewSeminar.php page. Figure 7-27 shows the HTML/PHP code for Insert-
NewSeminar.php, the page that will be invoked when the response is received from the
form. Note that the variable values for the INSERT statement are obtained from the
$_POST[] array. First, we create short variable names for the $_POST version of the name,
and then we use these short variable names to create the SQL INSERT statement. Thus:

// Create short variable names

$SeminarDate = $_POST["SeminarDate"];

$SeminarTime = $_POST["SeminarTime"];

$Location = $_POST["Location"];

$SeminarTitle = $_POST["SeminarTitle"];

// Create SQL statement to INSERT new data

$SQLINSERT = "INSERT INTO SEMINAR ";

$SQLINSERT .= "VALUES('$SeminarDate',
 '$SeminarTime', '$Location', '$SeminarTitle')";

<select name="SeminarTitle">
<option value="Kitchen on a Budget">Kitchen on a Budget</option>
<option value="Kitchen on a Big D Budget">Kitchen on a Big D Budget</option>

</select>

<p>

<input type="submit" value="Add New Seminar" />
<input type="reset" value="Reset Values" />

</p>
</form>

<hr />
<p class="footer">

Return to Heather Sweeney Designs Home Page

</p>
<hr />

</body>
</html>

FIGURE 7-26 Continued

M07_KROE1533_08_SE_C07.indd 454 11/21/16 6:42 PM

Chapter 7 Database Processing Applications 455

FIGURE 7-27

The HTML/PHP Code for the InsertNewSeminar.php File

<!DOCTYPE html>
<html>

<head>
<meta charset=UTF-8">
<title>InsertNewSeminar PHP Page</title>
<style type="text/css">

h1 {text-align: center; color: blue}
h2 {font-family: Ariel, sans-serif; text-align: left; color: blue}
p.footer {text-align: center}
table.output {font-family: Ariel, sans-serif}

</style>
</head>
<body>
<?php

// Get connection
$DSN = "HSD";
$User = "HSD-User";
$Password = "HSD-User+password";

$Conn = odbc_connect($DSN, $User, $Password);

// Test connection
if (!$Conn)

{
exit ("ODBC Connection Failed: " . $Conn);

}
// Create short variable names
$SeminarDate = $_POST["SeminarDate"];
$SeminarTime = $_POST["SeminarTime"];
$Location = $_POST["Location"];
$SeminarTitle = $_POST["SeminarTitle"];

// Create SQL statement to INSERT new data
$SQLINSERT = "INSERT INTO SEMINAR ";
$SQLINSERT .= "VALUES('$SeminarDate', '$SeminarTime', '$Location',

'$SeminarTitle')";

// Execute SQL statement
$Result = odbc_exec($Conn, $SQLINSERT);

// Test existence of result
echo "<h1>

The Heather Sweeney Designs SEMINAR Table
</h1>
<hr />";

if ($Result){
echo "<h2>

New Seminar Added:
</h2>
<table>

<tr>";
echo "<td>Seminar Date:</td>";
echo "<td>" . $SeminarDate . "</td>";

M07_KROE1533_08_SE_C07.indd 455 11/21/16 6:42 PM

456 Part 3 Database Management

echo "</tr>";
echo "<tr>";
echo "<td>Seminar Time:</td>";
echo "<td>" . $SeminarTime . "</td>";
echo "</tr>";
echo "<tr>";
echo "<td>Location:</td>";
echo "<td>" . $Location . "</td>";
echo "</tr>";
echo "<td>Seminar Title:</td>";
echo "<td>" . $SeminarTitle . "</td>";
echo "</tr>";

echo "</table>
<hr />";
}
else {

exit ("SQL Statement Error: " . $SQL);
}

// Create SQL statement to read SEMINAR table data
$SQL = "SELECT * FROM SEMINAR";

// Execute SQL statement
$RecordSet = odbc_exec($Conn,$SQL);

// Test existence of recordset
if (!$RecordSet)

{
exit ("SQL Statement Error: " . $SQL);

}
// Table headers
echo "<table class='output' border='1'>

<tr>
<th>SeminarDate</th>
<th>SeminarTime</th>
<th>Location</th>
<th>SeminarTitle</th>

</tr>";

// Table data
while($RecordSetRow = odbc_fetch_array($RecordSet))

{
echo "<tr>";
echo "<td>" . $RecordSetRow['SeminarDate'] . "</td>";
echo "<td>" . $RecordSetRow['SeminarTime'] . "</td>";
echo "<td>" . $RecordSetRow['Location'] . "</td>";
echo "<td>" . $RecordSetRow['SeminarTitle'] . "</td>";
echo "</tr>";
}

echo "</table>";

// Close connection
odbc_close($Conn);

?>

<hr />
<p class="footer">

Return to Heather Sweeney Designs Home Page

</p>
<hr />

</body>
</html>

FIGURE 7-27 Continued

M07_KROE1533_08_SE_C07.indd 456 11/21/16 6:42 PM

Chapter 7 Database Processing Applications 457

Note the use of the PHP concatenation operator (.=) (a combination of a period and
an equal sign) to combine the two sections of the SQL INSERT statement. As another
example, to create a variable named $AllOfUs with the value me, myself, and I we would
use:

$AllOfUs = "me, ";

$AllOfUs .= "myself, ";

$AllOfUs .= "and I";

Most of the code is self-explanatory, but make sure you understand how it works.

Challenges for Web Database Processing
Web database application processing is complicated by an important characteristic of
HTTP. Specifically, HTTP is stateless; it has no provision for maintaining sessions
between requests. Using HTTP, a client at a browser makes a request of a Web server.
The server services the client request, sends results back to the browser, and forgets
about the interaction with that client. A second request from that same client is treated as
a new request from a new client. No data are kept to maintain a session or connection
with the client.

This characteristic poses no problem for serving content, either static Web pages
or responses to queries of a database. However, it is not acceptable for applications
that require multiple database actions in an atomic transaction. Recall from Chapter 6
that in some cases a set of database actions needs to be grouped into a transaction, with
all of them committed to the database or none of them committed to the database. In
this case, the Web server or other program must augment the base capabilities of
HTTP.

For example, IIS provides features and functions for maintaining data about sessions
between multiple HTTP requests and responses. Using these features and functions, the
application program on the Web server can save data to and from the browser. A particular
session will be associated with a particular set of data. In this way, the application program
can start a transaction, conduct multiple interactions with the user at the browser, make
intermediate changes to the database, and commit or roll back all changes when ending the
transaction. Other means are used to provide for sessions and session data with the Apache
Web server.

In some cases, the application programs must create their own methods for tracking
session data. PHP does include support for sessions—see the PHP documentation for
more information.

The particulars of session management are beyond the scope of this chapter. However,
you should be aware that HTTP is stateless, and, regardless of the Web server, additional
code must be added to database applications to enable transaction processing.

SQL Injection Attacks
Our first example of a Web page for a Web database application was a read-only example.
To make a Web database application truly useful, we would have to have Web pages that
allow us to input data as well as read it, as our second example demonstrated by allowing
the user to enter a new Seminar.

When we do this, however, we must use care in creating input Web pages, or we may
create a vulnerability that allows an SQL injection attack. An SQL injection attack is
similar to the application-level security example we discussed in Chapter 6 and is charac-
terized by attempts to issue malicious or unexpected SQL commands to the DBMS. For
example, suppose that a Web page is used to update a user’s phone number and thus

M07_KROE1533_08_SE_C07.indd 457 11/21/16 6:42 PM

458 Part 3 Database Management

requires the user to input the new phone number. The Web application would then use
PHP code to create and run an SQL statement such as:

// Create SQL statement

$varSQL = "UPDATE CUSTOMER SET PHONE = '$NewPhone' ";

$varSQL .= "WHERE CustomerID = '$CustomerID'";

// Execute SQL statement

$RecordSet = odbc_exec($Conn, $varSQL);

If the input value of NewPhone is not carefully checked, it may be possible for an
attacker to use an input value such as:

678-345-1234; DELETE FROM CUSTOMER;

If this input value is accepted and the SQL statement is run, we may lose all data in
the CUSTOMER table if the Web application has DELETE permissions on the CUS-
TOMER table. Therefore, Web database applications must be very carefully constructed
to provide for data checking and to ensure that only necessary database permissions are
granted.

XML is a standard means for defining the structure of documents and for transmitting
documents from one computer to another. XML is important for database processing
because it provides a standardized means of submitting data to a database and for receiving
results back from the database. XML is a large, complicated subject that requires several
books to explain fully. Here we touch on the fundamentals and further explain why XML
is important for database processing.

The Importance of XML
Database processing and document processing need each other. Database processing needs
document processing for transmitting database views, and document processing needs
database processing for storing and manipulating data. In the early 1990s, the Web devel-
opment and database communities began to meet, and the result of their work became
XML.

XML provides a standardized yet customizable way to describe the content of docu-
ments. It can therefore be used to describe any database view but in a standardized way.
Database data can automatically be extracted from XML documents. And there are stan-
dardized ways of defining how document components are mapped to database schema
components, and vice versa. Today, XML is used for many purposes. One of the most
important is its use as a standardized means to define and communicate documents for
processing over the Internet.

XML as a Markup Language
As a markup language, XML is significantly better than HTML in several ways. First, XML
provides a clean separation between document structure, content, and materialization (the
way a document appears on a device). XML has facilities for dealing with each, and they can-
not be confounded, as they can with HTML.

Second, XML is standardized, but, as its name implies, the standards allow for exten-
sion by developers. With XML, you are not limited to a fixed set of elements with tags such
as <h1>…</h1> and <p>…</p>. Instead, you can create your own tags.

DATABASE PROCESSING, XML AND JSON

M07_KROE1533_08_SE_C07.indd 458 11/21/16 6:42 PM

Chapter 7 Database Processing Applications 459

Third, XML forces consistent tag use. HTML tags can be used for different purposes.
For example, consider the following HTML:

<h2>HSD Seminar Data</h2>

Although the <h2> tag can be used to structurally mark a level-two heading in a Web
page, it can be used for other purposes, too, such as causing “HSD Seminar Data” to be
displayed in a particular font size, weight, and color. Because an HTML tag has poten-
tially many purposes, you cannot rely on HTML tags to describe the structure of an
HTML page.

In contrast, the structure of an XML document is formally defined. Tags are defined in
relationship to one another. If you find the XML tag <city>…</city>, you know exactly
what data you have, where that data belong in the document, and how that tag relates to
other tags.

XML and Database Processing
What does XML have to do with database processing? How are the XML documents to be
generated in the first place? In addition, after a company has received and validated an
XML document, how does it place the data from that document into its database?

The answer is to use database applications. Such applications can be written to accept
XML documents and extract the data for storage in the database. One way is to extend
SQL to cause the results from an SQL statement to be produced in XML format. For
example, Figure 7-28 shows the following SQL statement, which uses the SQL FOR XML
clause, run on SQL Server:

/* *** SQL-QUERY-CH07-01 * ***/

SELECT *

FROM SEMINAR

FOR XML AUTO, ELEMENTS;

Note that in Figure 7-28, the output (which is all in one cell in this format) in the Messages
window is a hyperlink. Clicking the hyperlink produces the XML output shown in
Figure 7-29.

XML Web Services
The use of XML for the transmission of database data is especially important because of
the development of a new standard called XML Web Services. XML Web Services (or just
Web Services) involves several standards, including XML. XML is used for its ability to
create data tags, and XML Web Services is a means for sharing elements of program func-
tionality over the Web.

For example, suppose you have created a database application that converts curren-
cies. Your program will receive the amount of money stated in one currency and convert it
to a second currency. You can convert U.S. dollars into Mexican pesos, Japanese yen into
euros, and so on. Using XML Web Services, you can publish your database application
over the Web in such a way that other programs can communicate with your program as if
it were on their own machine. It will appear to them as if they are using a local program,
even though your program might be on the other side of the world.

Perhaps you have heard the statement “The Internet is the computer.” That statement
becomes a reality when different computers, connected via Internet plumbing, can share
programs as if they were all on the same machine. When database applications are written

M07_KROE1533_08_SE_C07.indd 459 11/21/16 6:42 PM

460 Part 3 Database Management

SQL query with FOR XML
clause

The query results are one
cell containing the entire
XML output—click on the
results to display them in full

FIGURE 7-28

An SQL FOR XML Query

The query results are now
displayed in full—note the
XML tags and data content

FIGURE 7-29

Results of the SQL FOR XML Query

SQL Server 2016, Windows 10, Microsoft Corporation.

SQL Server 2016, Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 460 11/21/16 6:42 PM

Chapter 7 Database Processing Applications 461

as XML Web Services, any computer in the world can access the database applications
using standard interfaces, and it appears as if the applications are local to the machine that
uses those applications. The particulars are beyond the scope of this discussion, but Web
Services are now pervasive in the Web environment.12 Refer to Appendix K, “Big Data,”
for a more detailed treatment of XML.

XML and JSON as Data Description Languages
Both XML and JSON (JavaScript Object Notation) are standards for describing struc-
tured data. There are industry-standard XML schema definitions for sharing and validating
data across applications and between business partners. XML can represent a wide variety
of standardized data formats supporting industrial design, real estate, engineering, and
financial industries, to name a few. The XML family includes associated languages XPath
for query capabilities, XML Schema to verify a valid XML document, and XSL to render
an XML document for display.

JSON is simpler than XML, as it is simply a data format, but it shares much structur-
ing ability with XML. It is often used as a way to share data in a Web application between a
client web page written in JavaScript and a server program written in PHP. Data can be
sent from the PHP server program to the client in text form containing attribute names and
their values, and is easily converted to a JavaScript array variable using the JSON.parse
command. In the following example of a JSON object representing a customer, JSON can
represent simple attributes (“lastname”), composite attributes that contain other attributes
(“address”), and arrays of attributes (“phones”).

{

"lastname": "Griffey",

"firstname": "Ben",

"address": {

"street": "5678 25th NE",

"city:" "Seattle",

"state": "WA"

},

"phones": [

{ "phonetype": "home", "phonenumber": "206-456-2345" },

{ "phonetype": "cell", "phonenumber": "206-756-5678" }

]

}

XML can also represent simple, composite, and arrays (lists) of attributes. XML and JSON
are used in some NoSQL databases to represent more complex “aggregate” structures than
found in relational databases. Refer to Appendix K, “Big Data,” to learn more about JSON
and XML.

12For more information about XML, see David M. Kroenke and David J. Auer, Database Processing:
Fundamentals, Design and Implementation, 14th ed. (Upper Saddle River, NJ: Prentice Hall 2016): Chapter 11.

M07_KROE1533_08_SE_C07.indd 461 11/21/16 6:42 PM

462 Part 3 Database Management

Section 7
Web Database Processing Using Microsoft Access
Now that we have built the Wallingford Motors CRM database, it is time to develop a Web
application to allow Wallingford Motors’ sales staff to access it over the Web. In this sec-
tion, you will:

• Build a Web home page for Wallingford Motors.
• Create an ODBC data source to access the WMCRM database.
• Build a Web page to display data about customer contacts.

Creating the Customer Contacts View

We want to display a list of customer contacts in a Web page. The list will contain a combi-
nation of data from the CONTACT and CUSTOMER tables. To simplify the process, we
will define a view named viewCustomerContacts. SQL views are discussed in Appendix
E — Advanced SQL—if you have not studied that material, take a few minutes to read it
and work through the appendix’s section of “The Access Workbench.” As discussed there,
in Microsoft Access a view is simply a saved query. Figure AW-7-1 shows the details of the
viewCustomerContacts query.

There is nothing new here. You know how to create Microsoft Access QBE queries, so
go ahead and create and save the viewCustomerContacts query. When you are done, close
both the WMCRM database and Microsoft Access.

THE ACCESS WORKBENCH

Sorted by ContactID in
ascending order

FIGURE AW-7-1

The viewCustomerContacts Query

Access 2016, Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 462 11/21/16 6:42 PM

Chapter 7 Database Processing Applications 463

(Continued)

A Web Home Page for Wallingford Motors

The actions we need to take to create a Web page for Wallingford Motors (WM) are the
same actions discussed for Heather Sweeney Designs in this chapter. We will create a folder
to hold the Web site files and build a home page named index.html in that folder. The
HTML code for the WM index.html page is shown in Figure AW-7-2.

The code in Figure AW-7-2 can be used in any text editor or Web page editor, but the
simplest editor to use for our purposes is the Microsoft Notepad ASCII text editor. Note-
pad is not fancy, but it does the job, produces clean HTML (what you type in and only
what you type in), and comes with Windows. The following steps describe how to create
the file using Notepad, but if you have learned how to use the NetBeans IDE described in
the chapter, you can use it instead.

Creating the Wallingford Motors Web Site

1. Select Start | File Explorer (or click the File Explorer icon on the Windows 10 taskbar) to
open File Explorer. Expand the C: drive in My Computer so that the wwwroot folder is
displayed under the inetpub folder, as shown in Figure 7.10.

2. Expand the wwwroot folder to display the DBC folder.
3. Click the DBC folder object to display the folder and files in the DBC folder.
4. Right-click anywhere in the file pane to display the shortcut menu. Click New, and then

click Folder.
5. Name the new folder WM.

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Wallingford Motors CRM Demonstration Pages Home Page</title>

</head>
<body>

<h1 style="text-align: center; color: blue">
Database Concepts (8th Edition)

</h1>
<h2 style="font-family: Ariel, sans-serif; text-align: center">

The Access Workbench
</h2>
<hr />
<h2 style="text-align: center; color: blue">

Welcome to the Wallingford Motors Home Page
</h2>
<hr />
<p>The Access Workbench Section 7 Web Pages:</p>
<p>Report 1:

Display the Customer Contacts List (viewCustomerContacts)

</p>
<hr />

</body>
</html>

FIGURE AW-7-2

The HTML Code for the index.html File in the WM Folder

M07_KROE1533_08_SE_C07.indd 463 11/21/16 6:42 PM

464 Part 3 Database Management

6. Expand the DBC folder in the folder tree pane (the left-hand pane), and then click the
new WM folder object to display the folder and files in the WM folder (which is empty).

7. Right-click anywhere in the file pane (the right-hand pane) to display the shortcut menu.
Click New, and then click Text Document.

8. Name the new text document index.html. When you complete renaming the file, a
Rename dialog box will appear warning you that you are changing the file name extension.
Click the Yes button in the Rename dialog box.

 9. Right-click the index.html file to display the shortcut menu. Click Open With, and then
click Notepad.

10. In Notepad, enter the text shown in Figure AW-7-2 into the open index.html file.
Figure AW-7-3 shows the HTML code in Notepad.

11. Use the Notepad File | Save menu command to save the index.html file.
12. Close Notepad.

 Notepad is a good, basic text editor that is available on every workstation running the
Windows operating system. Dedicated Web page editors, however, do a superior job of
working with HTML and PHP text. Figure AW-7-4 shows the index.html file being edited
in a NetBeans project named DBC-e08-WM in the NetBeans IDE.

Viewing the Wallingford Motors Web Site

1. Open Windows Internet Explorer or whatever Web browser you use.
2. Type the URL http://localhost/DBC/WM into the Address text box and press the Enter

key. The WM home page appears in the Web browser, as shown in Figure AW-7-5.
3. Close the Web browser.

The index.html HTML code
—note how indentation is
used to keep the code
organized and readable

FIGURE AW-7-3

The index.html file in Notepad

Notepad 2016, Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 464 11/21/16 6:42 PM

http://localhost/DBC/WM

Chapter 7 Database Processing Applications 465

Selecting the Database File

You will be working with the Wallingford Motors CRM database, so put a copy of the
WMCRM.accdb file from your My Documents folder—which already contains the view-
CustomerContacts query—in the WM Web site folder.

“Redmond, We Have A Problem”

The section header is, of course, a play on the line in the movie Apollo 13, where Tom
Hanks radios Houston ground control and announces “Houston, we have a problem.”
Our problem is with Microsoft, and thus we address this discussion to Redmond,
Washington.

We want to illustrate the use of OBDC and PHP with Microsoft Access 2016 in order
to dynamically display database data in the user’s Web browser. This is exactly what we did
with Microsoft SQL Server 2016 data in our discussion in this chapter’s main text. And
with previous editions of Microsoft Access, we have always been able to do so (in fact, we
have used this methodology in every edition of Database Concepts since the third edition
was published in 2008).

Until recently, however, there was a bug that occured when Microsoft Access 2016 (as
part of Microsoft Office 2016, in both the 32-bit and 64-bit versions) is installed on Win-
dows 10. Whatever this bug was, it made it impossible to create the needed ODBC data
source to access Microsoft Access 2016 data via a PHP web page.

As of this writing (early October 2016) the bug is fixed only in the 32-bit version of
Office 2016, and it is only fixed when you update Windows 10 with the Windows 10
Anniversary Update (Feature update to Windows 10, version 1607), the Windows 10

The index.html HTML code
—note how indentation is
used to keep the code
organized and readable

FIGURE AW-7-4

The index.html file in the NetBeans IDE

(Continued)

Oracle NetBeans 8.1, Oracle Corporation.

M07_KROE1533_08_SE_C07.indd 465 11/21/16 6:42 PM

466 Part 3 Database Management

Version 1607 update for August 23, 2016 (KB3176936), and the Windows 10 Version 1607
cumulative update for September 29, 2016 (KB3194496). Again, this fixes only the 32-bit
version of Office 2016, not the 64-bit version.

Our goal, of course, is to display the data in the view named viewCustomerContacts in a
Web page. Fortunately, there is a work around that will allow us to still do this even without
ODBC functioning properly with Microsoft Access 2016. However, the result creates a static
rather than a dynamic Web page, which means that the data displayed by the Web page must
be manually updated instead of being dynamically updated by a PHP statement.

First, we will show you how the ODBC set up works. Then, we will show you the work
around.

Creating an ODBC Data Source
We now have the basic Wallingford Motors Web site set up. Now, we need to create an
ODBC data source.

Again, we follow steps similar to those outlined in the chapter.

Creating the WM System Data Source

1. Open the Windows Control Panel by clicking the Start button and then clicking Control
Panel [if you have added the Data Sources (ODBC) icon to the Windows Start menu as
described in Appendix I, “Getting Started with Web Servers, PHP, and the NetBeans
IDE,” then click the ODBC Data sources (32-bit) icon and go directly to step 4].

2. In the Control Panel window, click System and Security to display the System and Security
window, and then click Administrative Tools to display the Administrative Tools window.

3. In the Administrative Tools window, click the ODBC Data Sources (32-bit) shortcut icon.
4. In the ODBC Data Source Administrator, click the System DSN tab, and then click the

Add button.
5. In the Create New Data Source dialog box, select Microsoft Access Driver (*.mdb,

*.aacdb), as shown in Figure AW-7-6, and then click the Finish button.

Type the URL text here and
then press the Enter key

FIGURE AW-7-5

The Wallingford Motors Home Page

Microsoft Edge, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 466 11/21/16 6:42 PM

Chapter 7 Database Processing Applications 467

(Continued)

Click the Finish button

Select this Microsoft Access
*.accdb driver

The ODBC Data Source
Administrator (32-bit) Dialog Box

The Create New Data Source
Dialog Box

The ODBC Data Source
Administrator (32-bit) Icon

FIGURE AW-7-6

Selecting the Microsoft Access *.accdb Driver

6. The ODBC Microsoft Access Setup dialog box appears. In the Data Source Name text
box, type WM. In the Description text box, type Wallingford Motors CRM on Microsoft
Access 2016.

7. Click the Database: Select button, and then browse to the WMCRM.accdb database in
the Select Database dialog box, as shown in Figure AW-7-7.

8. Click the OK button to close the Select Database dialog box.
9. Click the OK button to close the ODBC Microsoft Access Setup dialog box.

10. Click the OK button to close the ODBC Data Source Administrator.

Creating the PHP Page
Now we need to create a PHP Web page file that we will name ReadViewCustomerCon-
tacts.php. This is the Web page that will query the database and display the returned data.
The code for the ReadViewCustomerContacts.php file is shown in Figure AW-7-8.

We will create the ReadViewCustomerContacts.php file in the NetBeans IDE, but you
could instead do this using another IDE or a text editor such as Microsoft Notepad. We’ll
store the file in the WM folder. Figure AW-7-9 shows the ReadViewCustomerContacts.php
file being edited in the NetBeans IDE.

Running the PHP Page
Now you can try out the ReadViewCustomerContacts.php file.

Using the ReadViewCustomerContacts.php File

1. Open Internet Explorer or another Web browser.
2. Type the URL http://localhost/DBC/WM into the Address text box and press the Enter

key. The WM home page appears in the Web browser.

ODBC Data Source Administrator included with Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 467 11/21/16 6:42 PM

http://localhost/DBC/WM

468 Part 3 Database Management

FIGURE AW-7-8

The PHP Code for ReadViewCustomerContacts.php

<!DOCTYPE html>
<html>

<head>
<meta http-equiv="content-Type" content="text/html" charset="UTF-8">
<title>ReadViewCustomerContacts PHP Page</title>
<style type="text/css">

h1 {text-align: center; color: blue}
h2 {font-family: Ariel, sans-serif; text-align: left; color: blue}
p.footer {text-align: center}
table.output {font-family: Ariel, sans-serif}

</style>
</head>
<body>
<?php

// Get connection
$Conn = odbc_connect('WM', '', '');

// Test connection
if (!Conn)

{
exit ("ODBC Connection Failed: " . $Conn);
}

// Create SQL statement
$SQL = "SELECT * FROM viewCustomerContacts";

// Execute SQL statement
$RecordSet = odbc_exec($Conn,$SQL);

// Test existence of recordset
if (!$RecordSet)

{
exit ("SQL Statement Error: " . $SQL);
}

?>
<!-- Page Headers -->
<h1>

The Wallingford Motors CRM Customer Contacts List
</h1>
<hr />
<h2>

viewCustomerContacts
</h2>

<?php
// Table headers
echo "<table class='output' border='1'>

<tr>
<th>ContactID</th>
<th>LastName</th>
<th>FirstName</th>
<th>ContactDate</th>
<th>NickName</th>
<th>Type</th>
<th>Remarks</th>

</tr>";

Select the WMCRM.accdb
database

The Database Select button

Browse to the
c:\inetpub\wwwroot\DBC\WM
folder (directory)

FIGURE AW-7-7

Selecting the WMCRM.accdb Database

ODBC Data Source Administrator included with Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 468 11/21/16 6:42 PM

Chapter 7 Database Processing Applications 469

(Continued)

<!DOCTYPE html>
<html>

<head>
<meta http-equiv="content-Type" content="text/html" charset="UTF-8">
<title>ReadViewCustomerContacts PHP Page</title>
<style type="text/css">

h1 {text-align: center; color: blue}
h2 {font-family: Ariel, sans-serif; text-align: left; color: blue}
p.footer {text-align: center}
table.output {font-family: Ariel, sans-serif}

</style>
</head>
<body>
<?php

// Get connection
$Conn = odbc_connect('WM', '', '');

// Test connection
if (!Conn)

{
exit ("ODBC Connection Failed: " . $Conn);
}

// Create SQL statement
$SQL = "SELECT * FROM viewCustomerContacts";

// Execute SQL statement
$RecordSet = odbc_exec($Conn,$SQL);

// Test existence of recordset
if (!$RecordSet)

{
exit ("SQL Statement Error: " . $SQL);
}

?>
<!-- Page Headers -->
<h1>

The Wallingford Motors CRM Customer Contacts List
</h1>
<hr />
<h2>

viewCustomerContacts
</h2>

<?php
// Table headers
echo "<table class='output' border='1'>

<tr>
<th>ContactID</th>
<th>LastName</th>
<th>FirstName</th>
<th>ContactDate</th>
<th>NickName</th>
<th>Type</th>
<th>Remarks</th>

</tr>";
// Table data
while($RecordSetRow = odbc_fetch_array($RecordSet))

{
echo "<tr>";
echo "<td>" . $RecordSetRow['ContactID'] . "</td>";
echo "<td>" . $RecordSetRow['LastName'] . "</td>";
echo "<td>" . $RecordSetRow['FirstName'] . "</td>";
echo "<td>" . $RecordSetRow['ContactDate'] . "</td>";
echo "<td>" . $RecordSetRow['NickName'] . "</td>";
echo "<td>" . $RecordSetRow['Type'] . "</td>";
echo "<td>" . $RecordSetRow['Remarks'] . "</td>";
echo "</tr>";
}

echo "</table>";

// Close connection
odbc_close($Conn);

?>

<hr />
<p class="footer">

Return to Wallingford Motors Home Page
</p>
<hr />

</body>
</html>

FIGURE 7-8 Continued

M07_KROE1533_08_SE_C07.indd 469 11/21/16 6:42 PM

470 Part 3 Database Management

3. Click the Display the Customer Contacts List (viewCustomerContacts) hyperlink. The
Web page appears, as shown in Figure AW-7-10.

4. Close the Web browser.

“Redmond, We Have A Solution”

Our alternative to generating a dynamic PHP Web page is to export a static HTML Web
page from Microsoft Access 2016 itself. The problem with this is that if the data in view-
CustomerContacts changes, then we must re-export the HTML Web page to keep what
the user sees in his or her Web browser up to date. We will also need to modify our index.
html file so that it links to the HTML file rather than the PHP file.

Exporting an HTML file from Microsoft Access 2016
We begins by exporting the viewCustomerContacts data to an HTML file.

Exporting the viewCustomerContacts HTML Web Page

1. Open the WMCRM.accdb database in Microsoft Access 2016, and then open the viewCus-
tomerContacts query.

2. Click the External Data command tab to select it, and then click the More drop-down
list arrow in the Export command group to display the More drop-down list as shown in
Figure AW-7-11.

3. In the More drop-down list, click the HTML Document command.
4. The Export - HTML Document wizard dialog box with the Select the destination for the

data you want to export page open is displayed, as shown in Figure AW-7-12.

The CustomerContacts.php
code—PHP code is
enclosed in the <?php
and ?> tags, which are
displayed in black in the
NetBeans IDE

FIGURE AW-7-9

Oracle NetBeans 8.1, Oracle Corporation.

M07_KROE1533_08_SE_C07.indd 470 11/21/16 6:42 PM

Chapter 7 Database Processing Applications 471

(Continued)

Sorted by ContactID in ascending order

FIGURE AW-7-10

Results for CustomerContacts.php

The More drop-down list
arrow

The More drop-down list

The HTML Document
command

FIGURE AW-7-11

The More Drop-Down List

Microsoft Edge, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 471 11/21/16 6:42 PM

472 Part 3 Database Management

5. We need to show where the exported HTML file will be saved, so click the Browse button
to display the File Save dialog box as shown in Figure AW-7-13.

6. Browse to the C:\inetpub\wwwroot\DBC\WM folder, as shown in Figure AW-7-13. Click
the Save button.

7. The Export - HTML Document wizard dialog box is now displayed with the correct File
name location and name.

8. Check the Export data with formatting and layout check box, as shown in Figure AW-7-14.
9. Click the OK button.

10. The HTML Output Options dialog box is displayed, as shown in Figure AW-7-15. We will
use the default setting shown here, so click the OK button. The HTML page is exported
at this time.

11. The Export - HTML Document wizard dialog box Save Export Steps page is displayed, as
shown in Figure AW-7-16. Click the Save export steps checkbox to select it.

12. When the Save export steps checkbox is selected, additional settings are displayed, as
shown in Figure AW-7-17. We do not need to modify any of the additional setting, so just
click the Save Export button.

13. By saving the export steps, we have created a usable one-step routine for use when we
need to update the viewCustomerContacts.html file. To see this, click the External Data
command tab, and the click the Saved Exports button in the Export command group. The
Manage Data Tasks dialog box is displayed, as shown in Figure AW-7-18.

14. In Figure AW-7-18, note that the saved Export-viewCustomerContacts task is selected (if
there is more than one saved export, click the one you want to run to select it). We can run
this export task by clicking the Run button, and anytime that the data shown in the view-
CustomerContacts view changes we will need to so that the viewCustomerContacts.html
file is up to date.

The Export – HTML
Document Wizard
dialog box

The Browse button

The Export data with
formatting and layout
check box

The Select the
destination for the data
you want to export page

FIGURE AW-7-12

The Export – HTML Document Wizard Dialog Box

Access 2016, Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 472 11/21/16 6:42 PM

Chapter 7 Database Processing Applications 473

(Continued)

The Export – HTML
Document Wizard
dialog box

The revised File location

The checked Export
data with formatting
and layout check box

The OK button

The Select the
destination for the data
you want to export page

The File Save dialog box

Browse to the
C:\inetpub\wwwroot\DBC\WM
folder

The file name is correct as
created by the Export HTML
Document Wizard

The Save button

FIGURE AW-7-13

The File Save Dialog Box

FIGURE AW-7-14

The Completed Select the destination for the data you want to export Page

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 473 11/21/16 6:42 PM

474 Part 3 Database Management

15. At this point we do not need to update the data, so click the Close button to close the
Manage Data Tasks dialog box.

16. Close Microsoft Access 2016.

Modifying the index.html File
Now we can modify the index.html file so that it links to the exported viewCustomerCon-
tacts.html.

The HTML Output Options
dialog box

The OK button

FIGURE AW-7-15

The HTML Output Options Dialog Box

The Export – HTML
Document Wizard dialog
box

The Save export steps
check box

The Save Export Steps
page

FIGURE AW-7-16

The Save Export Steps Page

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 474 11/21/16 6:42 PM

Chapter 7 Database Processing Applications 475

(Continued)

The Export – HTML
Document Wizard dialog
box

The checked Save
export steps check box

The Save Export button

The Save Export Steps
page

Additional settings and
information are displayed

FIGURE AW-7-17

The Extended Save Export Steps Page

The External Data
command tab

The Saved Exports
command

The Manage Data Tasks
dialog box

The saved Export-
viewCustomerContacts
task

The Close button

The Run button

FIGURE AW-7-18

The Manage Data Tasks Dialog Box

Access 2016, Windows 10, Microsoft Corporation.

Access 2016, Windows 10, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 475 11/21/16 6:42 PM

476 Part 3 Database Management

Modifying the index.html file

1. Open the WMCRM index.html file in the NetBeans IDE.
2. The needed modifications to the index.html file are shown in Figure AW-7-19, and are

shown in the NetBeans IDE in Figure AW-7-20. Make the modifications as shown—we are
making the original href line into a comment so that it will not be executed, and then add-
ing a new href line that will be executed. We also add a couple of comment lines for demar-
cation of the revised text.

 ■ NOTE: If the bug gets fixed and the PHP code is executable, simply make a new
medication to this file that un-comments the first href line and another that turns the
second href line into a comment.

3. Save the index.html file, then close the file and finally close the NetBeans IDE.

<p>The Access Workbench Section 7 Web Pages:</p>
<p>Report 1:

<!-- Modifications Start Here -->
<!--

-->

<!-- Modifications End Here -->

Display the Customer Contacts List (viewCustomerContacts)

</p>

FIGURE AW-7-19

The Modified Code for the index.html File in the WM Folder

The index.html HTML code
modifications

viewCustomerContact.html
now appears in the Source
Files list

FIGURE AW-7-20

The Modified index.html File in the NetBeans IDE

Oracle NetBeans 8.1, Oracle Corporation.

M07_KROE1533_08_SE_C07.indd 476 11/21/16 6:42 PM

Chapter 7 Database Processing Applications 477

(Continued)

Running the viewCustomerContacts.html Page
Now we can try out the viewCustomerContacts.html file.

Using the viewCustomerContacts.html File

1. Open Internet Explorer or another Web browser.
2. Type the URL http://localhost/DBC/WM into the Address text box and press the Enter

key. The WM home page appears in the Web browser.
3. Click the Display the Customer Contacts List (viewCustomerContacts) hyperlink. The

Web page appears, now displaying the viewCustomerContacts.html page as shown in
Figure AW-7-21.

4. Note that the HTML Web page displayed shows the correct data, but it is not as well for-
matted with headings and colors as our PHP Web page is. We could, of course, edit the
context of the generated viewCustomerContacts.html file to format it better, but for now we
will just use the page as exported by Microsoft Access 2016.

5. Close the Web browser.

In Closing

Neither the WMCRM database nor Microsoft Access 2016 is open, so you do not have to
close them. You now know how to connect to a Microsoft Access database from a Web
page, and how to export HTML content directly from Microsoft Access 2016.

Sorted by
ContactID in
ascending order

FIGURE AW-7-21

The viewCustomerContacts.html File in the Web Browser

Microsoft Edge, Microsoft Corporation.

M07_KROE1533_08_SE_C07.indd 477 11/21/16 6:42 PM

http://localhost/DBC/WM

478 Part 3 Database Management

SUMMARY

This chapter introduced Web database processing and Extensible Markup Language
(XML).

Databases vary not only in size, scope, and the number of users but also in the way
they are processed. Some databases are processed just by queries, forms, and reports; some
are processed by ASP and JSP, which use Internet technology to publish database applica-
tions; some are processed by traditional application programs; and some are processed by
stored procedures and triggers. Other databases are processed by all these types of applica-
tions, with hundreds or thousands of concurrent users.

Web database processing systems consist of users who use browsers that connect via
HTTP to a Web server that processes communications and database applications. The
database applications process the database via the DBMS. In a two-tiered system, the Web
server and the DBMS reside on the same computer, but this is not a good configuration for
performance and security reasons. A three-tiered system is better, where the Web server
and DBMS reside on different computers. Higher-capacity systems use more than one Web
server and may use multiple database servers in clusters.

If the Web server host runs Windows, the Web server software is usually IIS. IIS pro-
cesses HTTP and ASP. ASP is a blend of HTML and scripting code. Database application
logic is often processed using such scripts. If the Web server host runs Linux or Unix, the
Web server software is normally Apache.

Every DBMS has its own API. The Open Database Connectivity (ODBC) standard
provides an interface by which database applications can access and process relational data
sources in a DBMS-independent manner. ODBC involves an application program, a driver
manager, a DBMS driver, and data source components. Single-tier and multiple-tier drivers
are defined. The three types of data source names are file, system, and user. System data
sources are recommended for Web servers. The process of defining a system data source
name involves specifying the type of driver and the identity of the database to be
processed.

Microsoft’s latest Web server offering is ASP.NET. With it, object-oriented program-
ming languages such as Visual Basic .NET, C#, and C++ can be used.

Web database processing is complicated by the fact that HTTP is stateless. When
processing atomic transactions, application programs must include logic to provide for
session state. The means by which this is done depends on the Web server and language
in use.

PHP (PHP: Hypertext Processor) is a scripting language that can be embedded in
Web pages. PHP is extremely popular and easy to learn, and it can be used in most Web
server environments and with most databases.

For creating complex pages, you need an Integrated Development Environment
(IDE). An IDE gives you the most robust and user-friendly means of creating and main-
taining Web pages. Microsoft Visual Studio, NetBeans for Java users, and the open source
Eclipse IDE are all good IDEs. Microsoft Visual Studio, NetBeans, and Eclipse all provide
a framework that can be modified by add-in modules.

Using XML is becoming the standard means for defining documents and transmitting
them from one computer to another. Increasingly, it is being used to transmit data to and
from database applications. XML tags are not fixed but can be extended by document
designers.

Although XML can be used to materialize Web pages, more important is its use for
describing, representing, and materializing database views. XML is a better markup lan-
guage than HTML primarily because XML provides a clear separation between document
structure, content, and materialization. Also, XML tags are not ambiguous.

SQL Server, Oracle Database, and MySQL can produce XML documents from data-
base data. SQL Server supports an add-on clause to the SQL SELECT statement, the FOR
XML expression. XML is important because it facilitates the sharing of business

M07_KROE1533_08_SE_C07.indd 478 11/21/16 6:43 PM

http://asp.net

Chapter 7 Database Processing Applications 479

documents (and hence database data) among organizations. An alternate to XML is Java
Script Object Notation (JSON). Both XML and JSON are discussed in more detail in
Appendix K, “Big Data.”

KEY TERMS

.NET
?>
<?php
Active Data Objects (ADO)
Active Server Pages
ASP.NET
ADO.NET
AMP
Apache
app
Apple iPad
Application Programming Interface

(API)
cell phone
cellular network
client
client-server architecture
data source
data source name (DSN)
Default Web Site folder
device
document type definitions (DTD)
dollar sign symbol ($)
driver
Extensible Markup Language

(XML)
file data source
Google Android operating system

(OS)
Google Chrome
HTML document tags
HTML syntax rules

HTML5
http://localhost
Hypertext Markup Language

(HTML)
iisstart.htm
index.html
inetpub folder
Integrated Development

Environment (IDE)
Internet
Internet Information Services (IIS)
Internet Information Services

Manager
JavaScript
Java Script Object Notation (JSON)
Java Server Pages (JSP)
LAMP
Microsoft Edge
Microsoft Internet Explorer
mobile phone
Mozilla Firefox
multiple-tier driver
NetBeans IDE
ODBC architecture
ODBC Data Source Administrator
ODBC DBMS driver
ODBC driver manager
OLE DB
Open Database Connectivity

(ODBC)
PHP
PHP: Hypertext Processor

POST method
PHP concatenation operator (.=)
PHP plugin
router
server
service
single-tier driver
smartphone
SQL FOR XML clause
SQL injection attack
SQL/Persistent Stored Modules

(SQL/PSM)
stored procedure
system data source
tablet
three-tier architecture
trigger
two-tier architecture
user data source
user-defined function
WAMP
W3
Web browser
Web Services
Web
World Wide Web
World Wide Web Consortium

(W3C)
WWW
wwwroot folder
XHTML
XML Web Services

REVIEW QUESTIONS

7.1 Describe how three-tier architecture is used in Web-based database applications.
(use Figure 7-3).

7.2 Summarize the issues involved in processing a form, as described in this chapter.

 7.3 Describe, in your own words, the nature of traditional database processing
applications.

 7.4 What is a trigger, and how is it used?

 7.5 Name three types of triggers.

M07_KROE1533_08_SE_C07.indd 479 11/21/16 6:43 PM

http://localhost
http://asp.net
http://ado.net

480 Part 3 Database Management

7.6 What is a stored procedure, and how is it used?

7.7 Describe why the data environment is complicated.

7.8 Name the three major components of a Web database application.

7.9 As explained in this chapter, what are the two major functions of a Web server?

 7.10 Explain the difference between two-tier and three-tier architecture.

 7.11 What is IIS, and what functions does it serve?

 7.12 What do the abbreviations ASP and JSP stand for?

 7.13 What is ASP.NET?

 7.14 What is Apache, and what function does it serve?

 7.15 What are AMP, LAMP, and WAMP?

 7.16 Explain the relationship among ODBC, OLE DB, and ADO.

 7.17 Name the components of the ODBC standard.

 7.18 What role does the driver manager serve?

 7.19 What role does the DBMS driver serve?

 7.20 What is a single-tier driver?

 7.21 What is a multiple-tier driver?

 7.22 Explain the differences between the three types of ODBC data sources.

 7.23 Which ODBC data source type is recommended for Web servers?

 7.24 What is an API, and what function does it serve?

 7.25 What is Hypertext Markup Language (HTML), and what function does it serve?

 7.26 What are HTML document tags, and how are they used?

 7.27 What is the World Wide Web Consortium (W3C)?

 7.28 Why is index.html a significant file name?

 7.29 What is PHP, and what function does it serve?

 7.30 How is PHP code designated in a Web page?

 7.31 How are comments designated in PHP code?

 7.32 How are comments designated in HTML code?

 7.33 What is an Integrated Development Environment (IDE), and how is it used?

 7.34 What Microsoft IDE is generally used in a Windows environment?

 7.35 What is the NetBeans IDE?

 7.36 Show a snippet of PHP code for creating a connection to a database. Explain the
meaning of the code.

 7.37 Show a snippet of PHP code for creating a recordset. Explain the meaning of the
code.

 7.38 Show a snippet of PHP code for displaying the contents of a recordset. Explain the
meaning of the code.

 7.39 Show a snippet of PHP code for disconnecting from the database. Explain the
meaning of the code.

 7.40 With respect to HTTP, what does stateless mean?

 7.41 Under what circumstances does statelessness pose a problem for database processing?

 7.42 In general terms, how are sessions managed by database applications when using
HTTP?

 7.43 What are the problems in interpreting tags such as <h1>…</h1> in HTML?

 7.44 What does XML stand for?

 7.45 How does XML differ from HTML?

M07_KROE1533_08_SE_C07.indd 480 11/21/16 6:43 PM

http://asp.net

Chapter 7 Database Processing Applications 481

7.46 Explain why XML is extensible.

7.47 In general terms, explain why XML is important for database processing.

7.48 What is the purpose of the FOR XML expression in an SQL statement?

7.49 What is the purpose of XML Web Services?

7.50 What does JSON stand for? What is the purpose of JSON?

EXERCISES

 7.51 In this exercise, you will create a Web page in the DBC folder and link it to the
HSD Web page in the HSD folder.

A. Figure 7-30 shows the HTML code for a Web page for the DBC folder. Note
that the page is called index.html, the same name as the Web page in the HSD
folder. This is not a problem because the files are in different folders. Create
the index.html Web page in the DBC folder.

<!DOCTYPE html>
<html>

<head>
<title>DBC-e08 Home Page</title>

<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">

</head>
<body>

<h1 style="text-align: center; color: blue">
Database Concepts (8th Edition) Home Page

</h1>
<hr />
<h3 style="text-align: center">

Use this page to access Web-based materials from Chapter 7 of:
</h3>
<h2 style="text-align: center; color: blue">

Database Concepts (8th Edition)
</h2>
<p style="text-align: center; font-weight: bold">

David M. Kroenke, David J. Auer, Scott L. Vandenberg, and Robert C. Yoder
</p>
<hr />
<h3>Chapter 7 Demonstration Pages from Figures in the Text:</h3>
<p>

Heather Sweeney Designs Demonstration Pages

</p>
<p>

Wallingford Motors CRM Demonstration Pages

</p>
<hr />

</body>
</html>

FIGURE 7-30

The HTML Code for the index.html File in the DBC Folder

M07_KROE1533_08_SE_C07.indd 481 11/21/16 6:43 PM

482 Part 3 Database Management

B. Figure 7-31 shows some additional HTML to be added near the end of the
code for the HSD Web page in the file index.html in the HSD folder. Update
the HSD index.html file with the code.

C. Try out the pages. Type http://localhost/DBC into your Web browser to dis-
play the DBC home page. From there, you should be able to move back and
forth between the two pages by using the hyperlinks on each page. Note: You
may need to click the Refresh button on your Web browser when using the
HSD home page to get the hyperlink back to the DBC home page to work
properly.

 7.52 Create a Web page for Heather Sweeney Designs to display all the data in the CUS-
TOMER table. Add a hyperlink to the HSD home page to access the page.

 7.53 Create a Web page for Heather Sweeney Designs to display the EmailAddress,
LastName, FirstName, and Phone of customers in the CUSTOMER table. Add a
hyperlink to the HSD home page to access the page.

 7.54 Create a Web page for Heather Sweeney Designs to display the data in the SEMI-
NAR_CUSTOMER table. Add a hyperlink to the HSD home page to access the
page.

 7.55 Create a Web page for Heather Sweeney Designs to display the data in the SEMI-
NAR_CUSTOMER table for the SEMINAR with SeminarID = 3. Add a hyperlink
to the HSD home page to access the page.

 7.56 Create a Web page for Heather Sweeney Designs to display data in the SEMINAR,
SEMINAR_CUSTOMER, and CUSTOMER tables to list the SEMINAR data and
the EmailAddress, LastName, FirstName, and Phone of any CUSTOMER who
attended the SEMINAR with SeminarID = 3. Add a hyperlink to the HSD home
page to access the page.

 7.57 Code two HTML/PHP pages to add a new CUSTOMER to the HSD database.
Create data for two new CUSTOMERs and add them to the database to demon-
strate that your pages work.

<p>Chapter 7 Demonstration Pages from Figures in the Text:</p>
<p>Example 1:

Display the SEMINAR Table (No surrogate key)

</p>
<hr />

<!-- NEW CODE STARTS HERE -->
<p style="text-align: center">

Return to the Database Concepts Home Page

</p>
<hr />

<!-- NEW CODE ENDS HERE -->
</body>

</html>

FIGURE 7-31

The HTML Modifications for the index.html File in the DBC Folder

M07_KROE1533_08_SE_C07.indd 482 11/21/16 6:43 PM

http://localhost/DBC

Chapter 7 Database Processing Applications 483

MARCIA’S DRY CLEANING CASE QUESTIONS
Ms. Marcia Wilson owns and operates Marcia’s Dry Cleaning, which is an upscale dry
cleaner in a well-to-do suburban neighborhood. Marcia makes her business stand out from
the competition by providing superior customer service. She wants to keep track of each of
her customers and their orders. Ultimately, she wants to notify them that their clothes are
ready via email.

Assume that Marcia has hired you as a database consultant to develop an operational
database named MDC that has the following four tables:

CUSTOMER (CustomerID, FirstName, LastName, Phone, EmailAddress)
INVOICE (InvoiceNumber, CustomerID, DateIn, DateOut, Subtotal, Tax,

TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, ServiceID, Quantity, UnitPrice,

ExtendedPrice)
SERVICE (ServiceID, ServiceDescription, UnitPrice)

A Microsoft Access 2016 version of the MDC database and SQL scripts to create and
populate the MDC database are available for Microsoft SQL Server 2016, Oracle Database
XE, and MySQL 5.7 Community Server at the Database Concepts 8th edition Web site at
www.pearsonhighered.com/kroenke. Sample data for the CUSTOMER table are shown in

ACCESS WORKBENCH

Exercises
If you are using Microsoft Access 2106 and cannot create an ODBC data source, use the
static page work around discussed in this chapter’s section of “The Access Workbench”
for the questions AW.7.3, AW.7.4, and AW.7.5. You will not be able to complete question
AW.7.6.

AW.7.1 If you haven’t completed exercise 7.51, do it now.
AW.7.2 Link the WM Web page to the DBC Web page.
AW.7.3 Using the WMCRM database, code a PHP Web page to display the data in
SALESPERSON, or, alternatively, export an HTML page to display the data in SALES-
PERSON. Add a hyperlink on the WM Web page to access the page. Using your database,
demonstrate that your page works.
AW.7.4 Using the WMCRM database, code a PHP Web page to display the data in
VEHICLE, or, alternatively, export an HTML page to display the data in VEHICLE. Add
a hyperlink on the WM Web page to access the page. Using your database, demonstrate that
your page works.
AW.7.5 Using the WMCRM database, create a view named viewSalespersonVehicle and
include in it all the columns in both the SALESPERSON and VEHICLE tables. Code a
PHP Web page to display viewSalespersonVehicle, or, alternatively, export an HTML page
to display the data in viewSalespersonVehicle. Add a hyperlink on the WM Web page to
access the page. Using your database, demonstrate that your page works.
AW.7.6 Using the WMCRM database, code two HTML/PHP pages to add a new CUS-
TOMER to the WMCRM database. Create data for two new CUSTOMERs and add them
to the database to demonstrate that your pages work.

M07_KROE1533_08_SE_C07.indd 483 11/21/16 6:43 PM

http://www.pearsonhighered.com/kroenke

484 Part 3 Database Management

FirstName LastNameCustomerID Phone EmailAddress

Nikki.Kaccaton@somewhere.com

Brenda.Catnazaro@somewhere.com

Bruce.LeCat@somewhere.com

Betsy.Miller@somewhere.com

George.Miller@somewhere.com

Kathy.Miller@somewhere.com

Betsy.Miller@elsewhere.com

Nikki

Brenda

Bruce

Betsy

George

Kathy

Betsy

Kaccaton

Catnazaro

LeCat

Miller

Miller

Miller

Miller

100

105

110

115

120

125

130

723-543-1233

723-543-2344

723-543-3455

723-654-3211

723-654-4322

723-514-9877

723-514-8766

ServiceDescription UnitPriceServiceID

Men’s Shirt

Dress Shirt

Women’s Shirt

Blouse

Slacks— Men’s

Slacks—Women’s

Skirt

Dress Skirt

Suit – Men’s

Suit – Women’s

Tuxedo

Formal Gown

$1.50

$2.50

$1.50

$3.50

$5.00

$6.00

$5.00

$6.00

$9.00

$8.50

$10.00

$10.00

10

11

15

16

20

25

30

31

40

45

50

60

FIGURE 7-32

Sample Data for the MDC CUSTOMER Table

FIGURE 7-33

Sample Data for the
MDC SERVICE Table

Figure 7-32, for the SERVICE table in Figure 7-33, for the INVOICE table in Figure 7-34, and for the INVOICE_
ITEM table in Figure 7-35.

A. Create a database in your DBMS named MDC, and use the MDC SQL scripts for your DBMS to create and
populate the database tables. Create a user named MDC-User with the password MDC-User+password. Assign
this user to database roles so that the user can read, insert, delete, and modify data.

B. If you haven’t completed exercise 7.51, do it now.

C. Add a new folder to the DBC Web site named MDC. Create a Web page for Marcia’s Dry Cleaning in this
folder—using the file name index.html. Link this page.

D. Create an appropriate ODBC data source for your database. Note: If you are using Microsoft Access 2106 and
cannot create an ODBC data source, use the static page work around discussed in this chapter’s section of “The
Access Workbench” for the questions E, F and G. You will not be able to complete questions H and I.

M07_KROE1533_08_SE_C07.indd 484 11/21/16 6:43 PM

mailto:Nikki.Kaccaton@somewhere.com
mailto:Brenda.Catnazaro@somewhere.com
mailto:Bruce.LeCat@somewhere.com
mailto:Betsy.Miller@somewhere.com
mailto:George.Miller@somewhere.com
mailto:Kathy.Miller@somewhere.com
mailto:Betsy.Miller@elsewhere.com

Chapter 7 Database Processing Applications 485

E. Add a new column, Status, to INVOICE. Assume that Status can have the values
[‘Waiting’, ‘In-process’, ‘Finished’, ‘Pending’].

F. Create a view called CustomerInvoiceView that has the columns LastName, First-
Name, Phone, InvoiceNumber, DateIn, DateOut, Total, and Status.

G. Code a PHP page to display CustomerInvoiceView. Using your sample database, dem-
onstrate that your page works.

H. Code two HTML/PHP pages to receive a date value AsOfDate and to display rows
of CustomerInvoiceView for orders having DateIn greater than or equal to AsOfDate.
Using your sample database, demonstrate that your pages work.

I. Code two HTML/PHP pages to receive customer Phone, LastName, and FirstName
and to display rows for customers having that Phone, LastName, and FirstName.
Using your sample database, demonstrate that your pages work.

 GARDEN GLORY PROJECT QUESTIONS

If you have not already implemented the Garden Glory database shown in Chapter 3 in a
DBMS product, create and populate the Garden Glory database now in the DBMS of your
choice (or as assigned by your instructor).

A. Create a user named GG-User with the password GG-User+password. Assign this
user to database roles so that the user can read, insert, delete, and modify data.

B. If you haven’t completed exercise 7.51, do it now.

C. Add a new folder to the DBC Web site named GG. Create a Web page for Garden Glory
in this folder—using the file name index.html. Link this page to the DBC Web page.

D. Create an appropriate ODBC data source for your database. Note: If you are using
Microsoft Access 2106 and cannot create an ODBC data source, use the static page
work around discussed in this chapter’s section of “The Access Workbench” for the
questions E and F. You will not be able to complete questions G and H.

CustomerID DateInInvoiceNumber DateOut SubTotal Tax TotalAmount

$158.50

$25.00

$49.00

$17.50

$12.00

$152.50

$7.00

$140.50

$27.00

100

105

100

115

125

110

110

130

120

04-Oct-17

04-Oct-17

06-Oct-17

06-Oct-17

07-Oct-17

11-Oct-17

11-Oct-17

12-Oct-17

12-Oct-17

2017001

2017002

2017003

2017004

2017005

2017006

2017007

2017008

2017009

06-Oct-17

06-Oct-17

08-Oct-17

08-Oct-17

11-Oct-17

13-Oct-17

13-Oct-17

14-Oct-17

14-Oct-17

$12.52

$1.98

$3.87

$1.38

$0.95

$12.05

$0.55

$11.10

$2.13

$171.02

$26.98

$52.87

$18.88

$12.95

$164.55

$7.55

$151.60

$29.13

FIGURE 7-34

Sample Data for the MDC INVOICE Table

M07_KROE1533_08_SE_C07.indd 485 11/21/16 6:43 PM

486 Part 3 Database Management

ItemNumber ServiceIDInvoiceNumber Quantity UnitPrice ExtendedPrice

$3.50

$2.50

$10.00

$5.00

$6.00

$9.00

$2.50

$5.00

$6.00

$2.50

$3.50

$2.50

$3.50

$2.50

$5.00

$6.00

$3.50

$3.50

$2.50

$5.00

$6.00

$9.00

1

2

3

4

5

6

1

1

2

1

1

2

1

2

3

4

1

1

2

3

4

1

16

11

50

20

25

40

11

20

25

11

16

11

16

11

20

25

16

16

11

20

25

40

2017001

2017001

2017001

2017001

2017001

2017001

2017002

2017003

2017003

2017004

2017005

2017005

2017006

2017006

2017006

2017006

2017007

2017008

2017008

2017008

2017008

2017009

2

5

2

10

10

1

10

5

4

7

2

2

5

10

10

10

2

3

12

8

10

3

$7.00

$12.50

$20.00

$50.00

$60.00

$9.00

$25.00

$25.00

$24.00

$17.50

$7.00

$5.00

$17.50

$25.00

$50.00

$60.00

$7.00

$10.50

$30.00

$40.00

$60.00

$27.00

FIGURE 7-35

Sample Data for the MDC INVOICE_ITEM Table

E. Code a Web page using PHP to display the data in OWNED_PROPERTY. Add a hyperlink on the GG Web
page to access the page. Using your database, demonstrate that your page works.

F. Code a Web page using PHP to display the data in PROPERTY_SERVICE. Add a hyperlink on the GG Web
page to access the page. Using your database, demonstrate that your page works.

G. Create a view named Property_Service_View that displays OWNED_PROPERTY.PropertyID, PropertyName,
PROPERTY_SERVICE.EmployeeID, ServiceDate, and HoursWorked. Code a Web page using PHP to display
the data in Property Service_View. Add a hyperlink to the GG Web page to access the page. Using your data-
base, demonstrate that your page works.

H. Code two HTML/PHP pages to add a new OWNER to the GG database. Create data for two new OWNERs
and add them to the database to demonstrate that your pages work.

M07_KROE1533_08_SE_C07.indd 486 11/21/16 6:43 PM

Chapter 7 Database Processing Applications 487

 JAMES RIVER JEWELRY PROJECT QUESTIONS

The James River Jewelry project questions are available in Appendix D, which can be
downloaded from the textbook’s Web site: www.pearsonhighered.com/kroenke.

 THE QUEEN ANNE CURIOSITY SHOP PROJECT QUESTIONS

If you have not already implemented The Queen Anne Curiosity Shop database shown in
Chapter 3 in a DBMS product, create and populate the QACS database now in the DBMS
of your choice (or as assigned by your instructor).

A. Create a user named QACS-User with the password QACS-User+password. Assign
this user to database roles so that the user can read, insert, delete, and modify data.

B. If you haven’t completed exercise 7.51, do it now.

C. Add a new folder to the DBC Web site named QACS. Create a Web page for The
Queen Anne Curiosity Shop in this folder—use the file name index.html. Link this
page to the DBC Web page.

D. Create an appropriate ODBC data source for your database. Note: If you are using
Microsoft Access 2106 and cannot create an ODBC data source, use the static page
work around discussed in this chapter’s section of “The Access Workbench” for the
questions E, F and G. You will not be able to complete question H..

E. Code a Web page using PHP to display the data in SALE. Add a hyperlink on the
QACS Web page to access the page. Using your database, demonstrate that your page
works.

F. Code a Web page using PHP to display the data in ITEM. Add a hyperlink on the
QACS Web page to access the page. Using your database, demonstrate that your page
works.

G. Create a view named Sale_Item_Item_View that displays SALE.SaleID,
SALE_ITEM.SaleItemID, SALE.SaleDate, ITEM.ItemDescription, and SALE_ITEM.
ItemPrice. Code a Web page using PHP to display the data in Sale_Item_Item_View.
Add a hyperlink to the QACS Web page to access the page. Using your database, dem-
onstrate that your page works.

H. Code two HTML/PHP pages to add a new CUSTOMER to the QACS database. Cre-
ate data for two new CUSTOMERs and add them to the database to demonstrate that
your pages work.

M07_KROE1533_08_SE_C07.indd 487 11/21/16 6:43 PM

http://www.pearsonhighered.com/kroenke

488

T his chapter introduces topics that build on the fundamentals you
have learned in the first seven chapters of this book. Now that we
have designed and built a database, we are ready to put it to work.

In Chapter 7, we built a Web database application. This chapter looks at the
problems associated with the rapidly expanding amount of data that is being
stored and used in enterprise information systems and some of the technol-
ogy that is being used to address those problems. These problems are gener-
ally included in the need to deal with Big Data, which is the current term for
the enormous datasets generated by applications such as search tools (for
example, Google and Bing); Web 2.0 social networks (for example, Facebook,
LinkedIn, and Twitter); scientific and sensor-based data (for example, the
Large Hadron Collider and DNA-derived genomics data); and large volumes
of historical transactional data (such as that generated by banks and large
retailers).

Just how big is Big Data? Figure 8-1 defines some commonly used terms
for data storage capacity. Note that computer storage is calculated based
on binary numbers (base 2), not the usual decimal (base 10) numbers with
which we are more familiar. Therefore, a kilobyte is 1,024 bytes instead of
the 1,000 bytes we would otherwise expect.

If we consider the desktop and notebook computers generally in use as
this book is being updated (early 2016), a quick check online of available
computers shows notebooks being sold with hard drives up to 2 TB in capac-
ity, whereas some desktops are available with up to 8 TB or more. That is
just for one computer. Facebook is reported to handle more than 50 billion
photos in its database.1 If a typical digital photo is about 2 MB in size, the
images alone would require about 93 PB of storage!

 ■ Learn the basic concepts of data warehouses and data
marts

 ■ Learn the basic concepts of dimensional databases

 ■ Learn the basic concepts of business intelligence
(BI) systems

 ■ Learn the basic concepts of online analytical processing
(OLAP)

 ■ Learn the basic concepts of virtualization and virtual
machines

 ■ Learn the basic concepts of cloud computing

 ■ Learn the basic concepts of Big Data, structured
storage, and the MapReduce process

CHAPTER OBJECTIVES

8CHAPTE
R

Data Warehouses, Business
Intelligence Systems, and Big Data

1Wikipedia article on Big Data (accessed March 2016), https://en.wikipedia.org/wiki/Big_data.

M08_KROE1533_08_SE_C08.indd 488 11/21/16 6:44 PM

https://en.wikipedia.org/wiki/Big_data

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 489

As another measure of Big Data, Amazon.com reported that on its
“Prime Day” (July 15, 2015), orders for 34.4 million products were placed.
This is an average of 398 product orders per second.2 Amazon.com also
reported that on November 30, 2015, its customers ordered 33 electronic
devices every second via mobile device orders alone and that for the 2015
holiday season its worldwide fulfillment network shipped items to 185 coun-
tries3. This volume of both primary business transactions (item sales) and
supporting transactions (shipping, tracking, and financial transactions) truly
requires Amazon.com to handle Big Data. As another example, the Large
Hadron Collider generates about 30 petabytes of data annually for physicists
to analyze4.

The need to deal with larger and larger datasets has grown over time. We
will look at some of the components of this growth. We will start with the
need for business analysts to have large datasets (such as data warehouses
or simply large production databases) available for analysis by business
intelligence (BI) applications and briefly look at BI systems, particularly
online analytical processing (OLAP), and the data warehouse structures
that were designed for their use. Although these new and often very vis-
ible applications and methods are highlighting the problems of dealing
with large datasets, many of the other techniques being brought to bear
on Big Data (such as cloud storage and data models more complex than
the relational model) have origins in earlier, more traditional avenues of

Symbol
Approximate Value

for Reference
Name Actual Value

KB

MB

GB

TB

PB

EB

ZB

YB

About 103

About 106

About 109

About 1012

About 1015

About 1018

About 1021

About 1024

Byte

Kilobyte

Megabyte

Gigabyte

Terabyte

Petabyte

Exabyte

Zettabyte

Yottabyte

8 bits [Store one character]

210 = 1,024 bytes

220 = 1,024 KB

230 = 1,024 MB

240 = 1,024 GB

250 = 1,024 TB

260 = 1,024 PB

270 = 1,024 EB

280 = 1,024 ZB

2Money.CNN.com, “Amazon Prime Day Shattered Global Sales Records,” http://money.cnn.com/2015/07/
15/news/amazon-walmart-sales/ (accessed March 2016).
3http://finance.yahoo.com/news/amazon-celebrates-record-setting-holiday-050000555.html (accessed March
2016).
4http://home.cern/about/computing (accessed March 2016).

FIGURE 8-1

Storage Capacity
Terms

M08_KROE1533_08_SE_C08.indd 489 11/21/16 6:44 PM

http://money.cnn.com/2015/07/15/news/amazon-walmart-sales/
http://money.cnn.com/2015/07/15/news/amazon-walmart-sales/
http://finance.yahoo.com/news/amazon-celebrates-record-setting-holiday-050000555.html
http://home.cern/about/computing
http://Amazon.com
http://Amazon.com
http://Amazon.com
http://Money.CNN.com

490 Part 3 Database Management

database development such as distributed databases and object-relational
databases. We will thus look at distributed databases (precursors of cloud
databases), object-relational systems (which include complex data types
like those used in many NoSQL systems), and finally the evolving NoSQL
systems that have been developed in large part to manage Big Data.
Because the development of NoSQL and the cloud are so closely related,
we will also briefly describe cloud computing and the related virtualiza-
tion technology that enables cloud computing. Many NoSQL systems are
deployed in the cloud, and many cloud-based databases are NoSQL sys-
tems; thus a typical NoSQL database existing in the cloud brings together
earlier ideas from object-relational and distributed database systems while
at the same time providing an affordable platform for BI activities to be
pursued on large datasets. For a more detailed presentation of BI (includ-
ing specific techniques such as RFM, market basket analysis, and decision
trees), see Appendix J. Appendix K contains more thorough descriptions of
the varieties of NoSQL systems, focusing on cloud and document database
systems, including coverage of XML and JSON modeling concepts and spe-
cific cloud and NoSQL systems.

In this chapter, we will continue to use the Heather Sweeney Designs
database that we modeled in Chapter 4, designed in Chapter 5, created in
Chapter 6, and built a Web database application for in Chapter 7. The name
of the database is HSD, and a SQL Server database diagram for the HSD
database is shown in Figure 8-2.

FIGURE 8-2

The HSD Database Diagram

SQL Server 2016, Windows 10, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 490 11/21/16 6:44 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 491

Business intelligence (BI) systems are information systems that assist managers and other
professionals in the analysis of current and past activities and in the prediction of future
events. Unlike transaction processing systems, they do not support routine operational activi-
ties, such as the recording and processing of orders. Instead, BI systems are used to support
management assessment, analysis, planning, control, and, ultimately, decision making.

BUSINESS INTELLIGENCE SYSTEMS

Figure 8-3 summarizes the relationship between operational and business intelligence systems.
Operational systems—such as sales, purchasing, and inventory-control systems—support pri-
mary business activities. They use a DBMS to retrieve, modify, and store data in the opera-
tional database. They are also known as transactional systems or online transaction processing
(OLTP) systems because they record the ongoing stream of business transactions.

Instead of supporting the primary business activities, BI systems support manage-
ment’s analysis and decision-making activities. BI systems obtain data from three possible
sources. First, they read and process data existing in the operational database—they use
the operational DBMS to obtain such data, but they do not insert, modify, or delete opera-
tional data. Second, BI systems process data that are extracted from operational databases.
In this situation, they manage the extracted database using a BI DBMS, which may be dif-
ferent from the operational DBMS. Finally, BI systems read and process data purchased
from data vendors.

We will look at BI systems in detail in Appendix J, but for now we will summarize the
basic elements of a BI system.

THE RELATIONSHIP BETWEEN OPERATIONAL AND BI SYSTEMS

Operational
Applications

(Order Entry,
Manufacturing,

Purchasing,
Inventory,

etc.)

Business Intelligence Applications

Operational
DBMS

BI
DBMS

Functional
Users

Operational
Database

Extract of
Operational
Database

Purchased
Data

Management
and Management

Support Users

Reporting Data Mining

FIGURE 8-3

The Relationship Between Operational and BI Applications

BI systems fall into two broad categories: reporting systems and data mining applications.
Reporting systems sort, filter, group, and make elementary calculations on operational
data. Data mining applications, in contrast, perform sophisticated analyses on data, analy-
ses that usually involve complex statistical and mathematical processing. The characteris-
tics of BI applications are summarized in Figure 8-4.

REPORTING SYSTEMS AND DATA MINING APPLICATIONS

M08_KROE1533_08_SE_C08.indd 491 11/21/16 6:44 PM

492 Part 3 Database Management

Reporting Systems
Reporting systems filter, sort, group, and make simple calculations. All reporting analyses
can be performed using standard SQL, although extensions to SQL, such as those used for
online analytical processing (OLAP), are sometimes used to ease the task of report pro-
duction. Another kind of reporting, called RFM analysis, is described in Appendix J.

Reporting systems summarize the current status of business activities and compare that
status with past or predicted future activities. Reports must be delivered to the proper
users on a timely basis in the appropriate format to maximize the value of the information
presented. For example, reports may be delivered on paper, via a Web browser, or in some
other format.

Data Mining Applications
Data mining applications use sophisticated statistical and mathematical techniques to per-
form what-if analyses, to make predictions, and to facilitate decision making. For example,
data mining techniques can analyze past cell phone usage and predict which customers are
likely to switch to a competing phone company. Data mining can also be used to analyze past
loan behavior to determine which customers are most (or least) likely to default on a loan.

Report delivery is not as important for data mining systems as it is for reporting sys-
tems. First, most data mining applications have only a few users, and those users have
sophisticated computer skills. Second, the results of a data mining analysis are usually
incorporated into some other report, analysis, or information system. In the case of cell
phone usage, the characteristics of customers who are in danger of switching to another
company, called “customer churn,” may be given to the sales department for action. Or the
parameters of an equation for determining the likelihood of a loan default may be incorpo-
rated into a loan approval application. Two common kinds of data mining, market basket
analysis and decision trees, are described in Appendix J.

• Reporting
 – Filter, sort, group, and make simple calculations
 – Summarize current status
 – Compare current status to past or predicted status
 – Classify entities (customers, products, employees, etc.)
 – Report delivery crucial
• Data Mining
 – Often employ sophisticated statistical and mathematical
 techniques
 – Used for:
 • What-if analyses
 • Predictions
 • Decisions
 – Results often incorporated into some other report
 or system

As shown in Figure 8-3, some BI applications read and process operational data
directly from the operational database. Although this is possible for simple reporting
systems and small databases, such direct reading of operational data is not feasible for

DATA WAREHOUSES AND DATA MARTS

FIGURE 8-4

Characteristics of
Business Intelligence
Applications

M08_KROE1533_08_SE_C08.indd 492 11/21/16 6:44 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 493

more complex applications or larger databases. Operational data are difficult to use for
several reasons:

• Querying data for BI applications can place a substantial burden on the
DBMS and unacceptably impair the performance of operational applications.

• The creation and maintenance of BI systems require application programs, facili-
ties, and expertise that are not normally available from operations departments.

• Operational data may have accuracy or consistency problems and often change
rapidly, limiting their usefulness for BI applications.

Therefore, larger organizations usually process a separate database constructed from
an extract of the operational database.

The Components of a Data Warehouse
A data warehouse is a database system that has data, programs, and personnel that special-
ize in the preparation of data for BI processing. Figure 8-5 shows the components of the
basic data warehouse architecture. Data are read from operational databases by the extract,
transform, and load (ETL) system. The ETL system then cleans and prepares the data for
BI processing. This can be a complex process.

First, operational data often cannot be directly loaded into BI applications. Some of
the problems of using operational data for BI processing include:

• “Dirty data” (for example, problematic data such as value of “G” for customer
gender, a value of “213” for customer age, a value of “999-999-9999” for a
U.S. phone number, or a part color of “gren”)

• Missing values
• Inconsistent data (for example, data that have changed, such as a customer’s

phone number or address)
• Nonintegrated data (for example, data from two or more sources that need to

be combined for BI use)
• Incorrect format (for example, data that are gathered such that there are either

too many digits or not enough digits, such as time measures in either seconds
or hours when they are needed in minutes for BI use)

Data Warehouse
DBMS

Business
Intelligence

Tools

Other
Internal

Data

Data
Warehouse
Metadata

Data
Warehouse
Database

BI Users

Operational
Databases

External
Data

ETL System

Data Extraction/
Cleaning/

Preparation
Programs

FIGURE 8-5

Components of a Data Warehouse

M08_KROE1533_08_SE_C08.indd 493 11/21/16 6:44 PM

494 Part 3 Database Management

• Too much data (for example, an excess of columns [attributes], rows
[records], or both)

Second, data may need to be changed or transformed for use in a data warehouse. For
example, the operational systems may store data about countries using standard two-letter
country codes, such as US (United States) and CA (Canada). However, applications using
the data warehouse may need to use the country names in full. Thus, the data transforma-
tion {CountryCode S CountryName} will be needed before the data can be loaded into
the data warehouse.

When the data are prepared for use, the ETL system loads the data into the data ware-
house database. The extracted data are stored in a data warehouse database using a data
warehouse DBMS, which may be from a different vendor than the organization’s opera-
tional DBMS. For example, an organization might use Oracle Database for its operational
processing but use SQL Server for its data warehouse.

Problematic operational data that have been cleaned in the ETL system can
also be used to update the operational system to fix the original data problems.

BTW

Metadata concerning the data’s source, format, assumptions, constraints, and other
facts is kept in a data warehouse metadata database. The data warehouse DBMS provides
extracts of its data to BI tools, such as data mining programs.

Data Warehouses Versus Data Marts
You can think of a data warehouse as a distributor in a supply chain. The data warehouse
takes data from the data manufacturers (operational systems and purchased data), cleans
and processes them, and locates the data on the shelves, so to speak, of the data warehouse.
The people who work in a data warehouse are experts at data management, data cleaning,
data transformation, and the like. However, they are not usually experts in a given business
function.

A data mart is a collection of data that is smaller than the data warehouse that
addresses a specific component or functional area of the business. A data mart is like a
retail store in a supply chain. Users in the data mart obtain data from the data warehouse
that pertain to a particular business function. Such users do not have the data management
expertise that data warehouse employees have, but they are knowledgeable analysts for a
given business function.

Figure 8-6 illustrates these relationships. The data warehouse takes data from the data
producers and distributes the data to three data marts. One data mart analyzes click-stream
data for the purpose of designing Web pages. A second data mart analyzes store sales data
and determines which products tend to be purchased together for the purpose of training
sales staff. A third data mart analyzes customer order data for the purpose of reducing
labor costs when picking up items at the warehouse. Companies such as Amazon.com go to
great lengths to organize their warehouses to reduce picking times and expenses.

When the data mart structure is combined with the data warehouse architecture as
shown in Figure 8-6, the combined system is known as an enterprise data warehouse
(EDW) architecture. In this configuration, the data warehouse maintains all enterprise BI
data and acts as the authoritative source for data extracts provided to the data marts. The
data marts receive all their data from the data warehouse—they do not add or maintain any
additional data.

M08_KROE1533_08_SE_C08.indd 494 11/21/16 6:45 PM

http://Amazon.com

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 495

Of course, it is expensive to create, staff, and operate data warehouses and data marts,
and only large organizations with deep pockets can afford to operate a system such as an
EDW. Smaller organizations operate subsets of such systems. For example, they may have
just a single data mart for analyzing marketing and promotion data.

Dimensional Databases
The databases in a data warehouse or data mart are built to a different type of database
design than the normalized relational databases used for operational systems. The data
warehouse databases are built in a design called a dimensional database that is designed
for efficient data queries and analysis. A dimensional database is used to store historical
data rather than just the current data stored in an operational database. Figure 8-7 com-
pares operational databases and dimensional databases.

A dimension within a dimensional database is a column or set of columns that
describes some aspect of the enterprise (for example, a location or a customer). Typically in
a data warehouse, a dimension is modeled as a table based on one or more columns from
an operational database. An address field, for example, could be expanded into a location
dimension table with separate street, city, and state columns.

Web Sales Data Mart

BI Tools
for Web-Click-Stream

Analysis

Data
Warehouse

DBMS

Data
Producers

Data
Warehouse
Metadata

Data
Warehouse
Database

Web
Log
Data

Store Sales Data Mart

BI Tools
for Store

Management

Store
Sales
Data

Inventory Data Mart

BI Tools
for Inventory
Management

Inventory
History
Data

Web Page
Design Features

Market Basket
Analysis for Sales
Training

Inventory Layout
for Optimal Item
Picking

FIGURE 8-6

Data Warehouses and Data Marts

FIGURE 8-7

Characteristics of Operational and Dimensional Databases

Operational Database Dimensional Database
Used for structured transaction data processing Used for unstructured analytical data processing

Current data are used Current and historical data are used

Data are inserted, updated, and deleted by users Data are loaded and updated systematically, not by users

M08_KROE1533_08_SE_C08.indd 495 11/21/16 6:45 PM

496 Part 3 Database Management

Because dimensional databases are used for analysis of historical data, they must be
designed to handle data that change over time. In order to track such changes, a dimen-
sional database must have a date dimension or time dimension as well. For example, a
customer may have moved from one residence to another in the same city or to a com-
pletely different city and state. This address column (or dimension) example is called a
slowly changing dimension because changes to such data are infrequent.

The Star Schema Rather than using the normalized database designs used in oper-
ational databases, a dimensional database uses a star schema. A star schema, so named
because, as shown in Figure 8-8, it visually resembles a star, has a fact table at the center of
the star and dimension tables radiating out from the center. The fact table is always fully
normalized, but dimension tables may be non-normalized.

PRODUCT
[Dimension Table]

PRODUCT_SALES
[Fact Table]

TIME
[Dimension Table]

CUSTOMER
[Dimension Table]

FIGURE 8-8

A Star Schema

There is a more complex version of the star schema called the snowflake
schema. In the snowflake schema, each dimension table is normalized, which
may create additional tables attached to the dimension tables.

BTW

A star schema for a dimensional database named HSD-DW for BI use by Heather
Sweeney Designs is shown in Figure 8-9. The SQL statements needed to create the tables
in the HSD-DW database are shown in Figure 8-10, and the data in the HSD-DW data-
base are shown in Figure 8-11. Compare this model to the HSD database diagram shown in
Figure 8-2, and note how data in the HSD database have been used in the HSD-DW
schema. Some of the details from the LINE_ITEM table are aggregated into the fact table
of the dimensional database.

Note that in the HSD-DW database the CUSTOMER table uses the same sur-
rogate primary key (CustomerID) as does the operational database, which
has an integer value. Also note that we have concatenated LastName and
FirstName into a single CustomerName column and are using only the cus-
tomer’s area code prefix, not the entire phone number. Finally, note that we do
not use individual EmailAddress values in the HSD-DW database, only values
of EmailDomain, which is not unique. This is a simple way of aggregating data.

BTW

M08_KROE1533_08_SE_C08.indd 496 11/21/16 6:45 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 497

A fact table is used to store measures of business activity, which are quantitative or
factual data about the entity represented by the fact table. For example, in the HSD-DW
database, the fact table is PRODUCT_SALES:

PRODUCT_SALES (TimeID, CustomerID, ProductNumber, Quantity, UnitPrice,
Total)

This table contains the following measures:

• Quantity is quantitative data that record how many of the item were sold.
• UnitPrice is quantitative data that record the dollar price of each item sold.
• Total (= Quantity * UnitPrice) is quantitative data that record the total dollar

value of the sale of this item.

The measures in the PRODUCT_SALES table are for units of product per customer per
day. We do not use individual sale data (which would be based on InvoiceNumber) but
rather data summed for each customer for each day. For example, if you compare the HSD
database INVOICE data in Figure 3-31 for Ralph Able (CustomerID = 3) for 6/5/17, you
will see that Ralph made two purchases on that date (InvoiceNumber 35013 and

PRODUCT dimension
table

PRODUCT_SALES
fact table

TIMELINE dimension
table

CUSTOMER
dimension table

FIGURE 8-9

The HSD-DW Star Schema

The TimeID values are the sequential serial values used in Microsoft Excel to
represent dates. Starting with 01-JAN-1900 as date value 1, the date value is
increased by 1 for each calendar day. Thus, 05-JUN-2017 = 42891. For more
information, search “Date formats” in the Microsoft Excel help system.

BTW

SQL Server 2016, Windows 10, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 497 11/21/16 6:45 PM

498 Part 3 Database Management

FIGURE 8-10

The HSD-DW SQL Create Table Statements

InvoiceNumber 35016). In the HSD-DW database, however, these two purchases are
summed into the PRODUCT_SALES data for Ralph for 6/5/17 (TimeID = 42891).

A dimension table is used to record values of attributes that describe the fact measures
in the fact table, and these attributes are used in queries to select and group the measures in
the fact table. Thus, CUSTOMER records data about the customers referenced by

M08_KROE1533_08_SE_C08.indd 498 11/21/16 6:45 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 499

CustomerID in the SALES table, TIMELINE provides data that can be used to interpret
the SALES event in time (which month? which quarter?), and so on. A query to summarize
product units sold by Customer (CustomerName) and Product (ProductName) would be:

/* *** SQL-QUERY-CH08-01 *** */

SELECT C.CustomerID, C.CustomerName,

P.ProductNumber, P.ProductName,

SUM(PS.Quantity) AS TotalQuantity

FROM CUSTOMER C, PRODUCT_SALES PS, PRODUCT P

WHERE C.CustomerID = PS.CustomerID

AND P.ProductNumber = PS.ProductNumber

GROUP BY C.CustomerID, C.CustomerName,

 P.ProductNumber, P.ProductName

ORDER BY C.CustomerID, P.ProductNumber;

FIGURE 8-11

The HSD-DW Table Data

(a) TIMELINE Dimension Table

(b) CUSTOMER Dimension Table

(c) PRODUCT Dimension Table (d) PRODUCT_SALES Fact Table

SQL Server 2016, Windows 10, Microsoft Corporation.

SQL Server 2016, Windows 10, Microsoft Corporation.

SQL Server 2016, Windows 10, Microsoft Corporation. SQL Server 2016, Windows 10, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 499 11/21/16 6:45 PM

500 Part 3 Database Management

The results of this query are shown in Figure 8-12.
In Chapter 5, we discussed how an N:M relationship is created in a database as two

1:N relationships by use of an intersection table. We also discussed how additional attri-
butes can be added to the intersection table in an association relationship. Similarly, the
fact table is an intersection table for the relationships between the dimension tables with

FIGURE 8-12

The HSD-DW Query Results: Summarize Product Units Sold by Customer and Product

SQL Server 2016, Windows 10, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 500 11/21/16 6:45 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 501

additional measures also stored in it. And, as with all intersection tables, the key of the fact
table is a composite key made up of all the foreign keys to the dimension tables.

Illustrating the Dimensional Model When you think of the word dimension, you
might think of “two-dimensional” or “three-dimensional.” The dimensional models can be
illustrated by using a two-dimensional matrix and a three-dimensional cube. Figure 8-13
shows the SQL query results from Figure 8-12 displayed as a two-dimensional matrix of
Product (using ProductNumber) and Customer (using CustomerID), with each cell show-
ing the number of units of each product purchased by each customer. Note how Product-
Number and CustomerID define the two dimensions of the matrix: CustomerID labels the
x-axis and ProductNumber labels the y-axis of the chart.

Figure 8-14 shows a three-dimensional cube with the same ProductNumber and Cus-
tomerID dimensions but now with the added Time dimension on the z-axis. Now, instead
of occupying a two-dimensional box, the total quantity of a product purchased by a cus-
tomer on a specific day occupies a small three-dimensional cube, and all these small cubes
are combined to form a large cube.

As human beings, we can visualize two-dimensional matrices and three-dimensional
cubes. Although we cannot picture models with four, five, and more dimensions, BI sys-
tems and dimensional databases routinely handle such models.

Each cell shows the
total quantity of each
product that has been
purchased by each
customer

FIGURE 8-13

The Two-Dimensional ProductNumber-CustomerID Matrix

BK001

BK002

VB001

VB002

VB003

VK001

VK002

VK003

VK004

P
ro

d
uc

tN
um

b
er

1 32 4 65 7 98 10 1211

CustomerID

Time

1

1

Each cell will show the
total quantity of each
product that has been
purchased by each
customer on a specific
date

FIGURE 8-14

The Three-Dimensional Time-ProductNumber-CustomerID Cube

M08_KROE1533_08_SE_C08.indd 501 11/21/16 6:45 PM

502 Part 3 Database Management

Multiple Fact Tables and Conformed Dimensions Data warehouse systems build
dimensional models, as needed, to analyze BI questions, and the HSD-DW star schema in
Figure 8-9 would be just one schema in a set of schemas. Figure 8-15 shows an extended
HSD-DW schema.

In Figure 8-15, a second fact table named SALES_FOR_RFM has been added:

SALES_FOR_RFM (TimeID, CustomerID, InvoiceNumber, PreTaxTotalSale)

Why would we add a fact table named SALES_FOR_RFM? This table would be used
to collect and process data for an RFM analysis, which analyzes and ranks customers
according to their purchasing patterns. It is a simple customer classification technique that
considers how recently (R) a customer ordered, how frequently (F) a customer orders, and
how much money (M) the customer spends per order. RFM analysis is a commonly used BI
report, and it is discussed in detail in Appendix J.

This table shows that fact table primary keys do not need to be composed solely of
foreign keys that link to dimension tables. In SALES_FOR_RFM, the primary key includes
the InvoiceNumber attribute. This attribute is necessary because the composite key
(TimeID, CustomerID) will not be unique and cannot be the primary key (a customer can
place multiple orders on the same day). Note that SALES_FOR_RFM links to the same
CUSTOMER and TIMELINE dimension tables as PRODUCT_SALES. This is done to

TIMELINE Dimension
Table

CUSTOMER
Dimension Table

SALES_FOR_RFM
Fact Table

FIGURE 8-15

The HSD-DW Star Schema Extended for RFM Analysis

SQL Server 2016, Windows 10, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 502 11/21/16 6:45 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 503

For an example of a BI report, we will look at OLAP, which provides the ability to sum,
count, average, and perform other simple arithmetic operations on groups of data. OLAP
systems produce OLAP reports. An OLAP report is also called an OLAP cube. This is a
reference to the dimensional data model, and some OLAP products show OLAP displays
using three axes, like a geometric cube. The remarkable characteristic of an OLAP report
is that it is dynamic: The format of an OLAP report can be changed by the viewer, hence
the term online in the name online analytical processing.

OLAP uses the dimensional database model discussed earlier in this chapter, so it is
not surprising to learn that an OLAP report has measures and dimensions. A measure is a
dimensional model fact—the data item of interest that is to be summed or averaged or
otherwise processed in the OLAP report. For example, sales data may be summed to pro-
duce Total Sales or averaged to produce Average Sales. The term measure is used because
you are dealing with quantities that have been or can be measured and recorded. A
dimension, as you have already learned, is an attribute or a characteristic of a measure.
Purchase date (TimeID), customer location (City), and sales region (ZIP or State) are all
examples of dimensions, and in the HSD-DW database you saw how the time dimension
is important.

In this section, we will generate an OLAP report by using an SQL query from the
HSD-DW database and a Microsoft Excel PivotTable.

OLAP

We use Microsoft SQL Server and Microsoft Excel to illustrate this discussion of
OLAP reports and PivotTables. For other DBMS products, such as MySQL, you
can use the DataPilot feature of the Calc spreadsheet application in the Libre-
Office or Apache OpenOffice product suites.

BTW

Now we use Microsoft Excel to

• Place the data into a Microsoft Excel worksheet:
➤	 Copy the SQL query results into a Microsoft Excel worksheet.
➤	 Add column names to the results.
➤ Format the query results as a Microsoft Excel table (optional).
➤ Select the Microsoft Excel range containing the results with column names.

• Connect to a DBMS data source.

• Click the PivotTable button in the Tables group of the Insert ribbon.
• Specify that the PivotTable should be in a new worksheet.
• Select the column variables (Column Labels), row variables (Row Labels), and

the measure to be displayed (Values). See this chapter’s section of “The Access
Workbench” for more details.

maintain consistency within the data warehouse. When a dimension table links to two or
more fact tables, it is called a conformed dimension.

M08_KROE1533_08_SE_C08.indd 503 11/21/16 6:45 PM

504 Part 3 Database Management

To use the first approach, we can write an SQL query and then copy the data into a
Microsoft Excel worksheet. In this example, we create a query that will tell us how many of
each specific product was purchased by each customer during each quarter. The SQL
query, as used in SQL Server, is:

/* *** SQL-QUERY-CH08-02 *** */

SELECT C.CustomerID, CustomerName, C.City,

P.ProductNumber, P.ProductName,

T.[Year], T.QuarterText,

SUM(PS.Quantity) AS TotalQuantity

FROM CUSTOMER C, PRODUCT_SALES PS, PRODUCT P, TIMELINE T

WHERE C.CustomerID = PS.CustomerID

AND P.ProductNumber = PS.ProductNumber

 AND T.TimeID = PS.TimeID

GROUP BY C.CustomerID, C.CustomerName, C.City,

 P.ProductNumber, P.ProductName,

 T.QuarterText, T.[Year]

ORDER BY C.CustomerName, T.[Year], T.QuarterText;

However, if we wish to use the second approach (connect Microsoft Excel to a DBMS data
source), we must first create a view based on the above query. This is because SQL Server
(and other SQL-based DBMS products, such as Oracle Database and MySQL) can store
views but not queries. The SQL query to create the HSDDWProductSalesView, as used in
SQL Server, is:

/* *** SQL-CREATE-VIEW-CH08-01 *** */

CREATE VIEW HSDDWProductSalesView AS

SELECT C.CustomerID, C.CustomerName, C.City,

P.ProductNumber, P.ProductName,

T.[Year], T.QuarterText,

SUM(PS.Quantity) AS TotalQuantity

FROM CUSTOMER C, PRODUCT_SALES PS, PRODUCT P, TIME-
LINE T

WHERE C.CustomerID = PS.CustomerID

AND P.ProductNumber = PS.ProductNumber

AND T.TimeID = PS.TimeID

GROUP BY C.CustomerID, C.CustomerName, C.City,

P.ProductNumber, P.ProductName,

T.QuarterText, T.[Year];

Figure 8-16 shows the results of SQL-QUERY-CH08-02 (which can also be obtained
by using the HSDDWProductSalesView).

Figure 8-17 shows the OLAP report as a Microsoft Excel PivotTable. Here the mea-
sure is quantity sold, and the dimensions are ProductNumber and City. This report shows
how quantity varies by product and city. For example, four copies of VB003 (Kitchen
Remodeling Dallas Style Video Companion) were sold in Dallas, but none were sold in
Austin.

M08_KROE1533_08_SE_C08.indd 504 11/21/16 6:45 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 505

FIGURE 8-16

The HSD-DW Query for OLAP Results: Time-Product-Customer Cube

SQL Server 2016, Windows 10, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 505 11/21/16 6:45 PM

506 Part 3 Database Management

We have generated the OLAP report in Figure 8-17 by using a simple SQL query and
Microsoft Excel, but many DBMS and BI products include more powerful and sophisti-
cated tools. For example, SQL Server includes SQL Server Analysis Services.5 It is possible
to display OLAP cubes in many ways in addition to Microsoft Excel. Some third-party
vendors provide more sophisticated graphical displays, and OLAP reports can be delivered
just like any of the other reports described for report management systems.

The distinguishing characteristic of an OLAP report is that the user can alter the for-
mat of the report. Figure 8-18 shows an alteration in which the user added two additional
dimensions, customer and year, to the horizontal display. Quantity sold is now broken out
by customer within each city and, in one case, by year within a customer. With an OLAP
report, it is possible to drill down into the data; that is, to further divide the data into more
detail. In Figure 8-18, for example, the user has drilled down into the San Antonio data to
display all customer data for that city and to display year sales data for Ralph Able.

In an OLAP report, it is also possible to change the order of the dimensions.
Figure 8-19 shows city quantities as vertical data and ProductID quantities as horizontal
data. This OLAP report shows quantity sold by city, by product, by customer, and by year.

Both displays are valid and useful, depending on the user’s perspective. A product
manager might like to see product families first (ProductID) and then location data (city).
A sales manager might like to see location data first and then product data. OLAP reports
provide both perspectives, and the user can switch between them while viewing a report.

5Although OLAP reports can be done without SQL Server Analysis Services, Analysis Services adds a lot
of functionality. SQL Server Analysis Services is a standard part of the SQL Server 2016 Developer edi-
tion (which is used in this book) and is included in the SQL Server 2016 Express with Advanced Services
(SQLEXPADV) edition as well.

The PivotTable
Fields pane—
select the report
elements to be
displayed here

The PivotTable
report

The data table is
in the HSD-DW
Query Results
worksheet

The PivotTable is
in the HSD-DW
PivotTable
worksheet

FIGURE 8-17

The HSD-DW OLAP ProductNumber by City Report

Excel 2016, Windows 10, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 506 11/21/16 6:45 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 507

The City = San
Antonio data are
also showing
customer data

The Customer =
Able, Ralph data
are also showing
year data

The ProductID =
VB001 data are
also showing
Customer data

The Customer =
Able, Ralph data
are also showing
Year data

The city variable
is on the column
designator

The ProductID
variable is on the
primary row
designator

FIGURE 8-18

The HSD-DW OLAP ProductNumber by City Report: CustomerName and Year Dimensions Added

FIGURE 8-19

The HSD-DW OLAP City by ProductNumber, Customer, and Year Report

One of the first solutions to increase the amount of data that could be stored and pro-
cessed by a DBMS was to simply spread the data among several database servers instead
of just one. A group of associated servers is known as a server cluster,6 and the database
shared between them is called a distributed database. A distributed database is a

DISTRIBUTED DATABASE PROCESSING

6For more information on computer clusters, see the Wikipedia article Computer cluster,
https://en.wikipedia.org/wiki/Computer_cluster.

Excel 2016, Windows 10, Microsoft Corporation.

Excel 2016, Windows 10, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 507 11/21/16 6:45 PM

https://en.wikipedia.org/wiki/Computer_cluster

508 Part 3 Database Management

database that is stored and processed on more than one computer. Depending on the
type of database and the processing that is allowed, distributed databases can present
significant problems as well as significant opportunities. Let us consider the types of dis-
tributed databases.

Types of Distributed Databases
A database can be distributed by partitioning, which means breaking the database into
pieces and storing the pieces on multiple computers; by replication, which means storing
copies of the database on multiple computers; or by a combination of replication and parti-
tioning. Figure 8-20 illustrates these alternatives.

Figure 8-20(a) shows a nondistributed database with four pieces labeled W, X, Y, and Z
and two applications labeled AP1 and AP2. In Figure 8-20(b), the database has been parti-
tioned but not replicated. Portions W and X are stored and processed on Computer 1, and
portions Y and Z are stored and processed on Computer 2. Figure 8-20(c) shows a database
that has been replicated but not partitioned. The entire database is stored and processed on
Computers 1 and 2. Finally, Figure 8-20(d) shows a database that is partitioned and repli-
cated. Portion Y of the database is stored and processed on Computers 1 and 2.

The portions to be partitioned or replicated can be defined in many different ways. A
database that has five tables (for example, CUSTOMER, SALESPERSON, INVOICE,
LINE_ITEM, and PART) could be partitioned by assigning CUSTOMER to portion W,

Single Processing Computer

DBMS/OS

WAP1

AP2
X
Y
Z

(a) Nonpartitioned, Nonreplicated
Alternative

Communication
Line

DB

DBMS/OS

Computer 1

AP1 W
X

DB1

DBMS/OS

Computer 2

AP2 Y
Z

DB2

(b) Partitioned, Nonreplicated Alternative

Communication
Line

DBMS/OS

Computer 1

WAP1

AP2
X
Y
Z

DBMS/OS

Computer 2

WAP1

AP2
X
Y
Z

DB (Copy 1)

DB (Copy 2)

(c) Nonpartitioned, Replicated Alternative

Communication
Line

DBMS/OS

Computer 1

WAP1
X
Y

DBMS/OS

Computer 2

AP2 Y
Z

DB1

DB2
DB

(d) Partitioned, Replicated Alternative

FIGURE 8-20

Types of Distributed Databases

M08_KROE1533_08_SE_C08.indd 508 11/21/16 6:45 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 509

SALESPERSON to portion X, INVOICE and LINE_ITEM to portion Y, and PART to
portion Z. Alternatively, different rows of each of these five tables could be assigned to dif-
ferent computers, or different columns of each of these tables could be assigned to differ-
ent computers.

Databases are distributed for two major reasons: performance and control. Having a
database on multiple computers can improve throughput, either because multiple comput-
ers are sharing the workload or because communications delays can be reduced by placing
the computers closer to their users. Distributing the database can improve control by seg-
regating different portions of the database to different computers, each of which can have
its own set of authorized users and permissions.

Challenges of Distributed Databases
Significant challenges must be overcome when distributing a database, and those chal-
lenges depend on the type of distributed database and the activity that is allowed. In the
case of a fully replicated database, if only one computer is allowed to make updates on one
of the copies, then the challenges are not too great. All update activity occurs on that single
computer, and copies of that database are periodically sent to the replication sites. The
challenge is to ensure that only a logically consistent copy of the database is distributed (no
partial or uncommitted transactions, for example) and to ensure that the sites understand
that they are processing data that might not be current because changes could have been
made to the updated database after the local copy was made.

If multiple computers can make updates to a replicated database, then difficult prob-
lems arise. Specifically, if two computers are allowed to process the same row at the same
time, they can cause three types of error: they can make inconsistent changes, one com-
puter can delete a row that another computer is updating, or the two computers can make
changes that violate uniqueness constraints.

To prevent these problems, some type of record locking is required. Because mul-
tiple computers are involved, standard record locking does not work. Instead, a far
more complicated locking scheme, called distributed two-phase locking, must be used.
The specifics of the scheme are beyond the scope of this discussion; for now, just know
that implementing this algorithm is difficult and expensive. If multiple computers can
process multiple replications of a distributed database, then significant problems must
be solved.

If the database is partitioned but not replicated [Figure 8-20(b)], then problems will
occur if any transaction updates data that span two or more distributed partitions. For
example, suppose the CUSTOMER and SALESPERSON tables are placed on a partition
on one computer and that INVOICE, LINE_ITEM, and PART tables are placed on a sec-
ond computer. Further suppose that when recording a sale all five tables are updated in an
atomic transaction. In this case, a transaction must be started on both computers, and it
can be allowed to commit on one computer only if it can be allowed to commit on both
computers. In this case, distributed two-phase locking also must be used.

If the data are partitioned in such a way that no transaction requires data from both
partitions, then regular locking will work. However, in this case the databases are actually
two separate databases, and some would argue that they should not be considered a dis-
tributed database.

If the data are partitioned in such a way that no transaction updates data from both
partitions but that one or more transactions read data from one partition and update data
on a second partition, then problems might or might not result with regular locking. If
dirty reads are possible, then some form of distributed locking is required; otherwise, regu-
lar locking should work.

If a database is partitioned and at least one of those partitions is replicated, then lock-
ing requirements are a combination of those just described. If the replicated portion is
updated, if transactions span the partitions, or if dirty reads are possible, then distributed
two-phase locking is required; otherwise, regular locking might suffice.

M08_KROE1533_08_SE_C08.indd 509 11/21/16 6:45 PM

510 Part 3 Database Management

Distributed processing is complicated and can create substantial problems. Except
in the case of replicated, read-only databases, only experienced teams with a substantial
budget and significant time to invest should attempt distributed databases. Such data-
bases also require data communications expertise. Distributed databases are not for the
faint of heart.

7To learn more about object-relational databases, see the Wikipedia article Object-relational database,
https://en.wikipedia.org/wiki/Object-relational_database.

Object-oriented programming (OOP) is a methodology for designing and writing computer
programs. Today, most new program development is done using OOP techniques. Java,
Python, C++, C#, and Visual Basic.NET are object-oriented programming languages.

Objects are data structures that have both methods, which are programs that perform
some task with the object, and properties, which are data items particular to an object. Objects
are organized into classes, and all objects of a given class have the same methods, but each has
its own set of data items. When using an OOP language, the properties of the object are cre-
ated and stored in main memory. Permanently storing the values of properties of an object in
secondary memory (usually disk) is called object persistence. Many different techniques have
been used for object persistence. One of them is to use some variation of database technology.

Although relational databases can be used for object persistence, using this method
requires substantial work on the part of the programmer. The problem is that, in general,
object data structures are more complicated than a row of a table. Typically, several, or
even many, rows of several different tables are required to store object data. This means the
OOP programmer must design a mini-database just to store objects. Usually, many objects
are involved in an information system, so many different mini-databases need to be
designed and processed. This method is so undesirable that it is seldom used.

In the early 1990s, several vendors developed special-purpose DBMS products for
storing object data. These products, which were called object-oriented DBMSs (OOD-
BMSs), never achieved commercial success. The problem was that by the time they were
introduced, billions of bytes of data were already stored in relational DBMS format, and
very few organizations wanted to convert their data to OODBMS format to be able to use
an OODBMS. Consequently, such products failed to capture a large share of the relational
data market, but some of these OODBMSs are still available and occupy a niche market for
DBMSs (ObjectDB, Objectivity, ObjectStore—notice the pattern—Versant, etc.).

However, the need for object persistence did not disappear. The current SQL standard
defines many object-based features (classes, methods, etc.). Some vendors, most notably
Oracle, added many of these features and functions to their relational DBMS products to
create object-relational databases. These features and functions are basically add-ons to a
relational DBMS that facilitate object persistence. With these features, object data can be
stored more readily than with a purely relational database. However, an object-relational
database can still process relational data at the same time.7

Although OODBMSs have not achieved commercial success, OOP is here to stay, and
modern programming languages are object-based. This is important because these are the
programming languages that are being used to create the latest technologies that are deal-
ing with Big Data. This is also useful when embedding queries in a programming language:
a more straightforward mapping of concepts is possible when the type systems of the pro-
gramming language and the DBMS match. This reduces what is often called the “imped-
ance mismatch” between the ways the object and relational paradigms manage data
structuring and processing. In addition, many of the complex data structuring concepts
developed for object-oriented and object-relational systems are used heavily in NoSQL
databases and the languages that support them.

OBJECT-RELATIONAL DATABASES

M08_KROE1533_08_SE_C08.indd 510 11/21/16 6:45 PM

https://en.wikipedia.org/wiki/Object-relational_database
http://basic.net

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 511

Virtualization is using hardware and software to simulate another hardware resource. For
example, we can provide the illusion of additional, virtual memory by storing small chunks
of memory called pages on disk drives and moving them back and forth between the real
(physical) memory and disk. The CPU chip and the operating system assist in providing
this resource to application programs that run as if they had their own copy of the full set
of memory that the CPU architecture provides.

A major development in computing occurred when systems administrators realized
that the hardware resources (CPU, memory, input/output from/to disk storage) were often
underutilized on most servers in a data center. This realization led to the idea of combining
several servers into one larger server. It would be cheaper and easier to manage multiple
server environments (including the operating system, libraries, and applications) if they are
consolidated into a larger server with a higher utilization. This can also conserve data cen-
ter space, electricity, air conditioning, hardware maintenance, and software licensing costs.

But how can this be done? The answer is to have one physical computer host one or
more virtual computers, more commonly known as virtual machines. To do this, the actual
computer hardware, now called the host machine, runs a special program known as a vir-
tual machine manager or hypervisor. The hypervisor creates and manages the virtual
machines and controls the interaction between each virtual machine and the physical hard-
ware. For example, if a virtual machine has been allocated two gigabytes of main memory
for its use, the hypervisor is responsible for making sure the actual physical memory is
allocated and available to the virtual machine. The virtual machines are unaware that they
are sharing a physical computer with other virtual machines. The systems administrator can
interact with the hypervisor to start new virtual machine instances, shut them down, or
adjust virtual machine configurations.

There are two basic ways to implement hypervisors. The first is the “bare metal” or
type 1 hypervisors. These are loaded into memory or “booted” before any other programs.
Thus, the hypervisor has direct control over the hardware and provides the illusion to vir-
tual machines that they are running on the physical hardware. Type 1 hypervisors are typi-
cally used in large data centers. Type 2 or “hosted” hypervisors are typically used by
students and other computer users to run multiple operating systems as regular applica-
tions on their desktop or laptop computer. If you own a Mac, you know that Microsoft
Access is not available on Apple’s Mac OS. However, you can use a type 2 hypervisor to
load Windows as another application on your Mac and use the Windows version of Office
on your Mac. Another common scenario is to be able to boot Linux as an application on a
Windows machine. Both type 1 and type 2 hypervisors can run different operating systems
as “guest” operating systems in virtual machines. Figure 8-21 illustrates the basic difference
between type 1 and type 2 hypervisors.

Type 1 hypervisor products include VMware’s vSphere/ESXi, the open source KVM
and Xen hypervisors, Red Hat’s Enterprise Virtualization, and Microsoft’s Hyper-V.
Type 2 hypervisors include VMware’s Fusion and Workstation, Oracle’s Virtual Box, and
Parallels’ Desktop for Mac. Some type 2 products are designed to run on a PC, others run
on Macs.

VIRTUALIZATION

For many years, systems administrators and database administrators knew exactly where
their servers (physical or virtual) were located—in a dedicated, secure machine room on
the company premises. With the advent of the Internet, companies started offering hosting
services on servers (physical or virtual) that were located away from their customers’ prem-
ises. The term cloud computing is somewhat of a misnomer. Although networks are some-
times diagrammed using cloud icons, the important thing to remember is that cloud
services are ultimately provided by large data centers. It is possible to reconfigure

CLOUD COMPUTING

M08_KROE1533_08_SE_C08.indd 511 11/21/16 6:45 PM

512 Part 3 Database Management

(a) Type 1 Hypervisor

FIGURE 8-21

Type 1 and Type 2 Hypervisors

(b) Type 2 Hypervisor

M08_KROE1533_08_SE_C08.indd 512 11/21/16 6:45 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 513

cloud-based data center resources (servers, storage, and network capacity) dynamically—
using software or commands from administrators. This allows customers to expand or
contract the data center capacity they lease to meet their current needs. That is why Ama-
zon’s cloud services is called EC2—Elastic Compute Cloud.

Advanced virtualization technologies are key to providing cloud services. For example,
disk storage is external to servers for maximum flexibility, reliability, and speed. Storage
area networks (SANs) have dedicated network paths from servers to disk arrays, where
several physical disks are combined together to acts as a single, larger disk. These redun-
dant arrays of independent disks (RAID) can be configured for maximum access speed or
for reliability to keep operating even if some disks fail. Other sophisticated virtualization
features include server and storage migration. Server migration allows running virtual
machines to move from one physical server host to another. Storage migration allows active
files to be moved from one set of disks to another, and possibly to other file servers, all
without noticeable delays or downtime.

There are three basic ways to lease cloud services. The simplest is software as a service
(SaaS), where access to specific software applications is provided. An example of this type
of service is Salesforce.com. Their customer relationship management (CRM) application
is hosted on Salesforce’s servers and accessed by customers remotely. The software and
user data is also maintained by Salesforce.com. Companies wishing to develop their own
software and deploy it over the Web can choose platform as a service (PaaS), where oper-
ating systems, software development tools, and system program libraries are provided for
customers. Lastly, some companies may wish to lease only the physical hardware servers,
disk storage, and network devices and manage their own software environment completely
using infrastructure as a service (IaaS).

Hosting services in the cloud has become an established and lucrative business.
Hosting companies range from Web site hosting companies such as eNom, HostMonster,
and Aabaco Small Business to companies that offer complete business support packages
such as Microsoft Office 365 and Google Business Solutions to companies that provide
various components such as complete virtual servers, file storage, DBMS services, and
much more.

In this last category, significant players include Microsoft with Microsoft Azure
(http://azure.microsoft.com/en-us/) and Amazon.com with Amazon Web Services (AWS)
(http://aws.amazon.com/). Of course, there are others, but these two provide a good start-
ing point. Microsoft Azure, like any Microsoft product, is Microsoft centric and not cur-
rently as expansive in its product offerings as AWS. Of particular interest in AWS are the
EC2 service, which provides complete virtual servers, the DynamoDB database service,
which provides a NoSQL data store (discussed later in this chapter); and the Relational
DBMS Service (RDS), which provides online instances of Microsoft SQL Server, Oracle
Database, and MySQL database services. AWS can also provide Hadoop servers for Big
Data analysis, as discussed later in this chapter. The AWS Free Tier is a good way to learn
about cloud computing, with limited free services available for 12 months. It is fairly easy
to set up an account on AWS, select an operating system such as Linux, and use Web com-
ponents such as PHP and MySQL to provide hosted Web applications. There is no doubt
that we will see more and more use of cloud computing.

8For a good overview, see the Wikipedia article NoSQL, https://en.wikipedia.org/wiki/NoSQL.

We have used the relational database model and SQL throughout this book. However,
there is another school of thought that has led to what was originally known as the NoSQL
movement but now is usually referred as the Not only SQL movement.8 It has been noted
that most, but not all, DBMSs associated with the NoSQL movement are nonrelational
DBMSs.

BIG DATA AND THE NOT ONLY SQL MOVEMENT

M08_KROE1533_08_SE_C08.indd 513 11/21/16 6:45 PM

http://azure.microsoft.com/en-us/
http://aws.amazon.com/
https://en.wikipedia.org/wiki/NoSQL
http://Salesforce.com
http://Salesforce.com
http://Amazon.com

514 Part 3 Database Management

A NoSQL DBMS is often a distributed, replicated database, as described earlier in this
chapter, and used where this type of a DBMS is needed to support large datasets. NoSQL
databases also often use cloud or virtualization technology and some of the post-relational
data structuring concepts from object-relational systems. There have been several classifi-
cation systems proposed for grouping and classifying NoSQL databases.9 For our pur-
poses, we will adopt and use a set of four categories of NoSQL databases:10

• Key-value database— Examples are Dynamo, MemcacheDB, and Redis
• Document database—Examples are Couchbase, MarkLogic, and MongoDB
• Column family database—Examples are Vertica, Apache Cassandra, and HBase
• Graph database—Examples are Neo4j, AllegroGraph, and Titan

It should be noted that many NoSQL DBMSs have features from more than one category.
NoSQL databases are used by widely recognized Web applications—both Facebook and
Twitter, for example, use the Apache Software Foundation’s Cassandra database. In this
chapter, we discuss column family databases, and we discuss the other three types in
Appendix K, “Big Data,” which presents a detailed description of cloud and document
databases and an overview of how data can be structured and shared using JSON and
XML.

Column Family Databases
The basis for much of the development of column family (also known as “column-
oriented” or simply “column”) databases was a structured storage mechanism developed
by Google named Bigtable, and column family databases are now widely available, with a
good example being the Apache Software Foundation’s Cassandra project. Facebook did
the original development work on Cassandra and then turned it over to the open source
development community in 2008.

A generalized column family database storage system is shown in Figure 8-22. The
column family database storage equivalent of a relational DBMS (RDBMS) table has a very
different construction. Although similar terms are used, they do not mean the same thing
that they mean in a relational DBMS.

9Wikipedia article NoSQL (accessed March, 2016), https://en.wikipedia.org/wiki/NoSQL.
10This set of categories corresponds to the four major (non-hybrid) categories used in the Wikipedia article
NoSQL (https://en.wikipedia.org/wiki/NoSQL) as Wikipedia’s taxonomy of NoSQL databases and is also
used in Ian Robinson, Jim Webber, and Emil Eifrem, Graph Databases (Sebastopol, CA: O’Reilly Media,
2013).

Name: LastName

Value: Able

Timestamp: 40324081235

(a) A Column

FIGURE 8-22

A Generalized Column
Family Database
Storage System

Name: LastName

Value: Able

Timestamp: 40324081235

Name: FirstName

Value: Ralph

Timestamp: 40324081235

CustomerNameSuper Column Name:

Super Column Values:

(b) A Super Column

M08_KROE1533_08_SE_C08.indd 514 11/21/16 6:45 PM

https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/NoSQL

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 515

FIGURE 8-22 Continued

The smallest unit of storage is called a column but is really the equivalent of an
RDBMS table cell (the intersection of an RDMBS row and column). A column consists of
three elements: the column name, the column value or datum, and a timestamp to record
when the value was stored in the column. This is shown in Figure 8-22(a) by the LastName
column, which stores the LastName value Able.

Columns can be grouped into sets referred to as super columns. This is shown in
Figure 8-22(b) by the CustomerName super column, which consists of a FirstName column
and a LastName column and which stores the composite CustomerName value Ralph Able.

Columns and super columns are grouped to create column families, which are the col-
umn family database storage equivalent of RDBMS tables. In a column family we have
rows of grouped columns, and each row has a RowKey, which is similar to the primary key
used in an RDBMS table. However, unlike an RDBMS table, a row in a column family does

Name: LastName

Value: Able

Timestamp: 40324081235

Name: FirstName

Value: Ralph

Timestamp: 40324081235

Customer
Column
Family
Name:

RowKey001

Name: LastName

Value: Jacobs

Timestamp: 40335091055

Name: Phone

Value: 817-871-8123

Timestamp: 40335091055

Name: City

Value: Fort Worth

Timestamp: 40335091055

Name: FirstName

Value: Nancy

Timestamp: 40335091055

RowKey002

Name: EmailAddress

Value: Susan.Baker@elswhere.com

Timestamp: 40340103518

Name: LastName

Value: Baker

Timestamp: 40340103518

RowKey003

(c) A Column Family

Name: FirstName

Name: FirstName

Customer

CustomerPhone

CustomerPhone

CustomerPhone

Customer Name

Customer Name

Name: FirstName

Customer Name

Super Column Family Name:

Rowkey001

Rowkey002

Rowkey003

Value: Ralph

Value: Nancy

Value: Susan

Timestamp: 40324081235

Timestamp: 40335091055

Timestamp: 40340103518

Name: LastName Name: AreaCode

Name: AreaCode

Name: AreaCode Name: PhoneNumber

Name: PhoneNumber

Name: PhoneNumber

Timestamp: 40324081235 Timestamp: 40335091055 Timestamp: 40335091055

Timestamp: 40335091055 Timestamp: 40335091055

Value: Able Value: 210

Value: 817

Value: 210 Value: 281–7876

Value: 871–8123

Value: 281–7987

Timestamp: 40335091055

Timestamp: 40340103518 Timestamp: 40340103518 Timestamp: 40340103518

Name: LastName

Name: LastName

Value: Jacobs

Value: Baker

(d) A Super Column Family

M08_KROE1533_08_SE_C08.indd 515 11/21/16 6:45 PM

mailto:Susan.Baker@elswhere.com

516 Part 3 Database Management

not necessarily have the same number of columns as another row in the same column
family. This is illustrated in Figure 8-22(c) by the Customer column family, which consists
of three rows of data on customers.

Figure 8-22(c) clearly illustrates the difference between structured storage column fami-
lies and RDBMS tables: Column families can have variable columns and data stored in each
row in a way that is impossible in an RDBMS table. This storage column structure is definitely
not in 1NF as defined in Chapter 2, let alone BCNF! For example, note that the first row has
no Phone or City columns, while the third row not only has no FirstName, Phone, or City
columns, but also contains an EmailAddress column that does not exist in the other rows.

All the column families are contained in a keyspace, which provides the set of RowKey
values that can be used in the data store. RowKey values from the keyspace are shown being
used in Figure 8-22(c) to identify each row in a column family. While this structure may
seem odd at first, in practice it allows for great flexibility because columns containing new
data fields may be introduced at any time without modifying an existing table structure.

As shown in Figure 8-22(d), a super column family is similar to a column family but
uses super columns (or a combination of columns and super columns) instead of just col-
umns. Of course, there is more to column family database storage than discussed here, but
now you should have an understanding of the basic principles of column family databases.

MapReduce
While column family and other storage techniques provide the means to store data in a Big
Data system, the data themselves can be analyzed using the MapReduce process. Because
Big Data involves extremely large datasets, it is difficult for one computer to process all of
the data by itself. Therefore, a set of clustered computers is used using a distributed process-
ing system based on the distributed database concepts discussed previously in this chapter.

The MapReduce process is used to break a large analytical task into smaller tasks,
assign (map) each smaller task to a separate computer in the cluster, gather the results of
each of those tasks, and combine (reduce) them into the final product of the original task.
The term Map refers to the work done on each individual computer, and the term Reduce
refers to the combining of the individual results into the final result.

A commonly used example of the MapReduce process is counting how many times
each word is used in a document. This is illustrated in Figure 8-23, where we can see how
the original document is broken into sections (chunks) and then each section is passed to a
separate computer in the cluster for processing by the Map process. The output from each
of the Map processes is then passed to one computer, which uses the Reduce process to
combine the results from each Map process into the final output, which is the list of the
words in the document and how many times each word appears in the document.

Hadoop
Another Apache Software Foundation project that is becoming a fundamental Big Data
development platform is the Hadoop Distributed File System (HDFS), which provides
standard file services to clustered servers so that their file systems can function as one dis-
tributed, replicated file system that can support large-scale MapReduce processing.
Hadoop originated as part of Cassandra, but the Hadoop project has spun off a nonrela-
tional data store of its own called HBase and a query language named Pig.

Further, all the major DBMS players are supporting Hadoop. Microsoft has deployed
a Microsoft Hadoop distribution called HDInsight as part of their Azure cloud service (see
https://azure.microsoft.com/en-us/services/hdinsight) and has teamed up with HP and
Dell to offer the SQL Server Parallel Data Warehouse (see http://www.microsoft.com/
sqlserver/en/us/solutions-technologies/data-warehousing/pdw.aspx). Oracle has devel-
oped the Oracle Big Data Appliance that uses Hadoop*. A search of the Web on the term
“MySQL Hadoop” quickly reveals that a lot is being done by the MySQL team as well.

*See www.oracle.com/us/corporate/press/512001 for more information.

M08_KROE1533_08_SE_C08.indd 516 11/21/16 6:45 PM

https://azure.microsoft.com/en-us/services/hdinsight
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/data-warehousing/pdw.aspx
http://www.oracle.com/us/corporate/press/512001
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/data-warehousing/pdw.aspx

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 517

For more information on Big Data and the various types of NoSQL databases, see
Appendix K, “Big Data.” The usefulness and importance of these Big Data products to
organizations such as Facebook demonstrate that we can look forward to the development
of not only improvements to relational DBMSs but also to a very different approach to data
storage and information processing. Big Data and products associated with Big Data are
rapidly changing and evolving, and you should expect many developments in this area in
the near future.

Computer 01:
List individual words and count

how many times each word appears

MAP

Computer 02:
List individual words and count

how many times each word appears

Computer 03:
List individual words and count

how many times each word appears

Computer N:
List individual words and count

how many times each word appears

INPUT: DOCUMENT

Document
Section 01

Document
Section 02

Document
Section 03

Document
Section N

Computer:
Combine lists of individual words and

total counts of how many times
each word appears

REDUCE

OUTPUT: WORD COUNT

A
And
Boy
Dog
.
.
.
The
Shown
Sun
Way

56
85
15
27

.

.

.
67
12
12
7

FIGURE 8-23

MapReduce

The Not only SQL world is an exciting one, but you should be aware that if you
want to participate in it you will need to sharpen your OOP programming skills.
Although we can develop and manage databases in Microsoft Access, Microsoft
SQL Server, Oracle Database, and Oracle MySQL using management and appli-
cation development tools that are very user-friendly (Microsoft Access itself,
Microsoft SQL Server Management Studio, Oracle SQL Developer, and MySQL
Workbench), application development in the NoSQL world is currently done pri-
marily in programming languages.

This, of course, may change, and we look forward to seeing the future
developments in the Not only SQL realm. For now, you’ll need to sign up for
that programming course!

BTW

M08_KROE1533_08_SE_C08.indd 517 11/21/16 6:46 PM

518 Part 3 Database Management

Section 8
Business Intelligence Systems Using Microsoft Access
In Chapter 7’s section of “The Access Workbench,” we built a Web site and a Web data-
base application for the Wallingford Motors CRM. This Web site is part of a reporting sys-
tem for Wallingford Motors, and updating Web pages directly from Web-based database
queries is one way to deliver such reports.

In this section, we will explore how to produce an OLAP report by using the Micro-
soft Excel 2016 PivotTable feature. We will build an OLAP report in Microsoft Excel 2016
based on data in a Microsoft Access 2016 database. We will start by creating an OLAP
report for the WMCRM database. We will continue to use the copy of the WMCRM.accdb
database file that we placed in the C:\Inetpub\wwwroot\DBC\WM folder in Chapter 7’s
section of “The Access Workbench.” This will make anything we add to the database easily
available for possible use on the Wallingford Motors Web site.

Creating a View Query for an OLAP Report

To create an OLAP report, we need to create a new view, one that is a slight variant of the
view named viewCustomerContacts that we created earlier in Chapter 7’s section of “The
Access Workbench.” In the new view, we need to concatenate the customer’s first and last
names into a single customer name, and we need to add a quantitative measure so that we
can easily analyze the number of contacts made by the Wallingford Motors sales staff. We
will call the new view viewCustomerContactCount.

Creating the viewCustomerContactCount Query

1. Start Microsoft Access 2016 and open the copy of the WMCRM.accdb database file in the
C:\Inetpub\wwwroot\DBC\WM folder.

2. Right-click the viewCustomerContacts query. A shortcut menu is displayed.
3. In the shortcut menu, click the Copy button, then right-click and Paste. The Paste As dia-

log box appears.
4. As shown in Figure AW-8-1, in the Paste As dialog box change the new object name to

viewCustomerContactsCount.
5. Click the OK button in the Paste As dialog box. As shown in Figure AW-8-2, the new

object is created. Double-click viewCustomerContactsCount to display it in datasheet
view.

6. Click the Design View button in the Views group of the Home ribbon to switch the query
to Design view.

7. Click the Totals button in the Show/Hide group of the Query Tools Design ribbon to dis-
play the Total row in the fields pane.

8. Right-click the LastName field name in the LastName column to display the shortcut
menu, as shown in Figure AW-8-3.

9. Click the Build button in the shortcut menu to display the Expression Builder.
10. Create an expression that concatenates LastName and FirstName data into a combined

attribute named CustomerName as:

CustomerName:[CUSTOMER]![LastName]&”, “&[CUSTOMER]![FirstName]

Figure AW-8-4 shows the completed expression.

11. Create the expression in Expression Builder as shown in Figure AW-8-4, and then click
the OK button in the Expression Builder.

THE ACCESS WORKBENCH

M08_KROE1533_08_SE_C08.indd 518 11/21/16 6:46 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 519

(Continued)

The Paste As
dialog box

The new object
name has been
typed into this text
box

The OK button

FIGURE AW-8-1

The Paste As Dialog Box

The new query
name

The new query
object

The Design View
button

FIGURE AW-8-2

The Unmodified viewCustomerContactsCount Query

Access 2016, Windows 7 Enterprise, Microsoft Corporation.

Access 2016, Windows 7 Enterprise, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 519 11/21/16 6:46 PM

520 Part 3 Database Management

The Expression
Builder

The completed
expression to
create
CustomerName

Select column
names from this
pane

Select tables from
this pane

The Totals button

The shortcut
menu

The Total row

The Build button

FIGURE AW-8-3

The Shortcut Menu

FIGURE AW-8-4

The Completed Expression in the Expression Builder

Access 2016, Windows 7 Enterprise, Microsoft Corporation.

Access 2016, Windows 7 Enterprise, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 520 11/21/16 6:46 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 521

(Continued)

12. Delete the FirstName column from the query design.
13. Delete the Remarks column from the query design.
14. Add a column named ContactCount to the query, as shown in Figure AW-8-5.
15. Save the changes to the query and then run it. The query results are shown in Figure AW-8-6.
16. Close the viewCustomerContactsCount query.
17. Close the WMCRM database and Microsoft Access.

Creating a Microsoft Excel Worksheet for an OLAP Report

Because the OLAP report will be in a Microsoft Excel 2016 workbook, we need to create a
new workbook to hold the OLAP report. We will continue to use the Wallingford Motors
C:\Inetpub\wwwroot\DBC\WM Web site folder as the storage location, and now we need
to create a Microsoft Excel 2016 workbook named WM-DW-BI.xlsx in that folder.

Creating the Microsoft Excel 2016 WM-DW-BI Workbook

1. Start Windows Explorer.
2. Browse to the C:\Inetpub\wwwroot\DBC\WM folder.
3. Right-click anywhere in the right-hand folder and file pane to open the shortcut menu.
4. In the shortcut menu, click the New command.
5. In the list of new objects, click the Microsoft Excel Worksheet command.
6. A new Microsoft Excel 2016 workbook object is created, with the file name highlighted in

Edit mode.
7. Edit the file name to read WM-DW-BI, and then press the Enter key. It will automatically

be given a file extension of xlsx.

The
ContactCount
expression

Set the Total
setting to Count

The
CustomerName
data

The
ContactCount
data

FIGURE AW-8-5

The ContactCount Column

FIGURE AW-8-6

viewCustomerContactsCount Query Results

Access 2016, Windows 7 Enterprise, Microsoft Corporation.

Access 2016, Windows 7 Enterprise, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 521 11/21/16 6:46 PM

522 Part 3 Database Management

Now you can open the WM-DW-BI workbook.

Opening the Microsoft Excel 2016 WM-DW-BI Workbook

1. Start Microsoft Excel 2016.
2. Click the File command tab, and then click the Open option followed by the Browse

button.
3. In the Open dialog box, browse to the C:\inetpub\wwwroot\DBC\WM folder and

open the WM-DW-BI Excel file. The WM-DW-BI workbook is displayed, as shown in
Figure AW-8-7.

Creating a Basic OLAP Report

We can now create an OLAP report in the Microsoft Excel 2016 WM-DW-BI workbook.
Fortunately, Microsoft has made it possible to link directly to Microsoft Access 2016 to
obtain the data needed for the report. We will connect the Microsoft Excel workbook to
the Microsoft Access database and create the basic, blank OLAP report PivotTable.

The DATA command tab

The WM-DW-BI.xlsx
workbook file

FIGURE AW-8-7

The WM-DW-BI Workbook

Microsoft Excel 2016 uses the same Microsoft Office fluent user interface that
you have learned to use in Microsoft Access 2016. Because you should already
be familiar with the Microsoft Office fluent user interface, we do not discuss
the Microsoft Excel variant of this interface.

BTW

Excel 2016, Windows 7 Enterprise, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 522 11/21/16 6:46 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 523

(Continued)

Creating the Basic OLAP Report PivotTable

1. In the WM-DW-BI workbook, click the Data command tab to display the Data command
groups, as shown in Figure AW-8-8.

2. Click the From Access button in the Get External Data group of the Data ribbon. The
Select Data Source dialog box appears.

3. In the Select Data Source dialog box, which functions just like an Open dialog box, browse
to the C:\inetpub\wwwroot\DBC\WM folder. Select the Microsoft Access WMCRM.accdb
database file, and then click the Open button.

4. At this point, the Data Link Properties dialog box may appear. If it does, you do not need
to change anything in the dialog box, so just click the OK button.

5. At this point, the Please Enter Microsoft Access Database Engine OLE DB Initialization
Information dialog box may appear. If it does, you do not need to change anything in the
dialog box, so just click the OK button.

6. As shown in Figure AW-8-9, the Select Table dialog box appears.
7. In the Select Table dialog box, select the new viewCustomerContactsCount query and then

click the OK button. Note that both tables and queries (views) appear in this list.
8. As shown in Figure AW-8-10, the Import Data dialog box appears.
9. In the Import Data dialog box, select the PivotTable Report, and then click the OK button.

The Get External Data
button opens the data
source submenu

The DATA command tab

Select From Access
button in the submenu

FIGURE AW-8-8

The Excel Data Command Tab

Select the
viewCustomerContactsCount
object

The OK button

FIGURE AW-8-9

The Select Table Dialog Box

Excel 2016, Windows 7 Enterprise, Microsoft Corporation.

Excel 2016, Windows 7 Enterprise, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 523 11/21/16 6:46 PM

524 Part 3 Database Management

10. As shown in Figure AW-8-11, the basic PivotTable report structure is displayed in the
Microsoft Excel worksheet.

11. Click the Save button on Microsoft Excel Quick Access Toolbar to save your work to this
point.

 ■ NOTE: From now on, when you open the WM-DW-BI workbook a Security Warn-
ing bar will appear, warning that data connections have been disabled. This is similar
to the Microsoft Access 2016 Security Warning bar you have already learned to use,
and essentially the same action is necessary: Click the Enable Content button.

Select the
PivotTable Report
radio button

The OK button

FIGURE AW-8-10

The Import Data
Dialog Box

The PivotTable
Tools tab

The initial
PivotTable area

The PivotTable
Field List pane—
the structure of
the PivotTable is
built using these
controls

The Save button

FIGURE AW-8-11

The Basic PivotTable Report Structure

Excel 2016, Windows 7 Enterprise, Microsoft Corporation.

Excel 2016, Windows 7 Enterprise, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 524 11/21/16 6:46 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 525

(Continued)

Structuring an OLAP Report

We can now create the structure of the OLAP report. We do this by using the Microsoft
Excel PivotTable Field List pane, shown in Figures AW- 8-11 and AW- 8-12. To build the
structure of the PivotTable, we drag and drop the field objects from the field object list. We
drag the measures we want displayed to the Values box. We drag the dimension attributes
we want as column structure to the Column Labels box, and we drag the dimension attri-
butes we want as row structure to the Row Labels box.

For the Wallingford Motors Customer Contact PivotTable, we will use ContactCount as
the measure, so it needs to go in the Values box. The column structure will have customer
attributes, in this case only CustomerName. Finally, the row structure will have contact attri-
butes—NickName (for SalesPerson) first, followed by ContactType and then Contact Date.

Creating the OLAP Report’s PivotTable Structure

1. Click and hold the CustomerName field object, drag it to the Column Labels box, and drop
it there. As shown in Figure AW-8-13, the CustomerName labels and a GrandTotal label are
added to the worksheet columns, the CustomerName field object in the field objects list is
checked and displayed in bold, and the field object CustomerName is listed in the Column
Labels box.

2. Click and hold the ContactCount field object, drag it to the Values box, and drop it there.
As shown in Figure AW-8-14, the sum of the ContactCount values is added to the work-
sheet, the ContactCount field object in the field objects list is checked and displayed in
bold, and the field object Sum of ContactCount is listed in the Values box.

Field objects in this
box appear as the
PivotTable column
structure

The field object list
—drag and drop
these field objects
as needed to one
of the four boxes
below the list

Field objects in this
box appear as the
PivotTable row
structure

Field objects in this
box appear in the
PivotTable cell
structure

FIGURE AW-8-12

The PivotTable Field List Pane

Excel 2016, Windows 7 Enterprise, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 525 11/21/16 6:46 PM

526 Part 3 Database Management

The PivotTable
Column Labels

The CustomerName
field object is
displayed in the
Column Labels box

The CustomerName
field object is checked
and displayed in bold

The PivotTable
cell values are
now displayed—at
this point only the
sum for each
column is shown The Sum of

ContactCount object
is displayed in the
Values box

The ContactCount
object is checked and
displayed in bold

FIGURE AW-8-13

The CustomerName Column Labels

FIGURE AW-8-14

The CustomerCount Values

Excel 2016, Windows 7 Enterprise, Microsoft Corporation.

Excel 2016, Windows 7 Enterprise, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 526 11/21/16 6:46 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 527

(Continued)

3. Click and hold the NickName field object, drag it to the Row Labels box, and drop it there.
As shown in Figure AW-8-15, the sum of the NickName row labels is added to the work-
sheet, the NickName field object in the field objects list is checked and displayed in bold,
and the field object NickName is listed in the Row Labels box. In addition, the values in the
report are starting to show up.

4. Click and hold the ContactType field object, drag it to the Row Labels box, and drop it
there, below NickName. As shown in Figure AW-8-16, the sum of the NickName row labels
is divided into contact type, the ContactType field object in the field objects list is checked
and displayed in bold, and the field object ContactType is listed in the Row Labels box. In
addition, the values in the report are now distributed according to salesperson (NickName)
and type of contact (ContactType) within each salesperson.

5. Click and hold the ContactDate field object, drag it to the Row Labels box, and drop it
there, below ContactType. You may need to click on ContactDate and select Move to End
in the submenu. For Excel 2016, the ContactDate is further divided into Months. As shown
in Figure AW-8-17, the sum of the NickName row labels is divided into contact type and
month (date), the ContactDate field in the field objects list is checked and displayed in bold,
and the field ContactDate is listed in the Row Labels box below “months.” In addition, the
values in the report are now distributed according to salesperson (NickName), type of con-
tact (ContactType), Months (if using Excel 2016), and date of contact (ContactDate).

6. Click the Save button on the Microsoft Excel Quick Access Toolbar to save your work to
this point.

Modifying an OLAP Report
We have finished building our OLAP report. We can modify it as needed by moving the
field objects in the PivotTable Field List pane. We can also format the OLAP report to
make it look the way we want it to.

The NickName row
labels are displayed,
and now the
PivotTable cell values
are displayed The NickName field

object is displayed in
the Row Labels box

The NickName field
object is checked and
displayed in bold

FIGURE AW-8-15

The NickName Row Labels

Excel 2016, Windows 7 Enterprise, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 527 11/21/16 6:46 PM

528 Part 3 Database Management

The NickName
row labels are
divided by
ContactType

The ContactType
field object is
displayed in the
Row Labels box

The ContactType
field object is
checked and
displayed in bold

The NickName row labels are
divided by ContactType, and
Months is divided by ContactDate

The ContactDate
field object is
displayed in the
Row Labels box

The ContactDate
field object is
checked and
displayed in bold

FIGURE AW-8-16

The ContactType Row Labels

FIGURE AW-8-17

The ContactDate Row Labels

Excel 2016, Windows 7 Enterprise, Microsoft Corporation.

Excel 2016, Windows 7 Enterprise, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 528 11/21/16 6:46 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 529

(Continued)

Modifying the OLAP Report PivotTable Structure

1. Click and hold the ContactType field object in the Row Labels box, drag it within the box
to below the ContactDate label box, and drop it there. Again, you may need to click on
ContactType and select Move to End, so the order is NickName, Months, ContactDate,
ContactType. As shown in Figure AW-8-18, the order of the row labels in the OLAP report
changes, and the data move, too.

2. As shown in Figure AW-8-18, you can contract and expand various portions of the OLAP
report by clicking on the + and – symbols to the left of the row labels. In that figure, the
data for Big Bill are shown fully expanded, while Billy’s data are completely contracted. The
data for Tina are shown at the Date level of detail but without Type detail.

Formatting the OLAP Report

1. Click the PivotTable Tools Design command tab to display the Design command groups, as
shown in Figure AW-8-19.

2. Click the Banded Columns check box in the PivotTable Style Options command group.
3. Click the PivotTable Styles Gallery drop-down arrow button to display the PivotTable

Styles Gallery, as shown in Figure AW-8-20.
4. Select the PivotTable style shown in Figure AW-8-20 to format the OLAP report.
5. Adjust the column widths of columns B, C, D, E, and F so that they are uniform and the

entire table is visible on the worksheet when the PivotTable Field List pane is visible.
6. The final, formatted PivotTable OLAP report is shown in Figure AW-8-21.
7. Click the Save button on the Microsoft Excel Quick Access Toolbar.
8. Close the WM-DW-BI workbook.
9. Close Microsoft Excel.

The NickName row labels
are divided by Month and
ContactDate, and
ContactDate is divided by
ContactType

The ContactType field object
is displayed below the
ContactDate field, which is
below the Months and
NickName fields

Big Bill’s data fully
expanded, Billy’s data fully
contracted, and Tina’s data
displayed at the
ContactDate level of detail

FIGURE AW-8-18

The Rearranged Row Labels

Excel 2016, Windows 7 Enterprise, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 529 11/21/16 6:46 PM

530 Part 3 Database Management

In Closing

Our work is done. In “The Access Workbench,” you have learned the essentials of working
with Microsoft Access (and just a bit about working with Microsoft Excel). You have not
learned everything there is to know, but now you know how to create and populate Micro-
soft Access databases; build and use Microsoft Access queries (including view-equivalent
queries), forms, and reports; secure a Microsoft Access database; connect to a Microsoft
Access database from a Web page; and create a PivotTable OLAP report. You now have a
solid foundation to build on, which was, after all, the overall goal of “The Access
Workbench.”

The Banded
Columns
checkbox

The PivotTable
Styles gallery
drop-down arrow
button

The columns in
the OLAP report
now have borders

Click this style to
format the OLAP
report

The PivotTable
Styles gallery

FIGURE AW-8-19

The Excel PivotTable Tools Design Command Tab

FIGURE AW-8-20

The Excel PivotTable Styles Gallery

Excel 2016, Windows 7 Enterprise, Microsoft Corporation.

Excel 2016, Windows 7 Enterprise, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 530 11/21/16 6:46 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 531

Big Bill’s data fully
expanded, Billy’s
data fully
contracted, and
Tina’s data
displayed at the
Date level of detail

FIGURE AW-8-21

The Final PivotTable OLAP Report

SUMMARY

This chapter introduced a number of concepts that go beyond the “standard” setting of an
operational relational database housed on a single computer. Databases can support more
than standard SQL querying, in the form of BI reporting and data mining. At the same
time, the sheer volume and complexity of modern data management have led to a resurrec-
tion and expansion of ideas from distributed computing and object databases, now used in
DBMS processing in the form of cloud/virtualization and NoSQL databases.

Business intelligence (BI) systems assist managers and other professionals in the analy-
sis of current and past activities and in the prediction of future events. BI applications are
of two major types: reporting applications and data mining applications. Reporting applica-
tions make elementary calculations on data; data mining applications use sophisticated
mathematical and statistical techniques.

BI applications obtain data from three sources: operational databases, extracts of
operational databases, and purchased data. A BI system sometimes has its own DBMS,
which may or not be the operational DBMS. Characteristics of reporting and data mining
applications are listed in Figure 8-4.

Direct reading of operational databases is not feasible for any but the smallest and sim-
plest BI applications and databases for several reasons. Querying operational data can
unacceptably slow the performance of operational systems; operational data have problems
that limit their usefulness for BI applications; and BI system creation and maintenance
require programs, facilities, and expertise that are normally not available for an operational
database.

Excel 2016, Windows 7 Enterprise, Microsoft Corporation.

M08_KROE1533_08_SE_C08.indd 531 11/21/16 6:46 PM

532 Part 3 Database Management

Because of the problems with operational data, many organizations have chosen to cre-
ate and staff data warehouses and data marts. Extract, transform, and load (ETL) systems
are used to extract data from operational systems, transform the data and load them into
data warehouses; and maintain metadata that describe the source, format, assumptions, and
constraints of the data. A data mart is a collection of data that is smaller than that held in a
data warehouse and addresses a particular component or functional area of the business.

Operational databases and dimensional (data warehouse) databases have different char-
acteristics, as shown in Figure 8-7. Dimensional databases use a star schema and must deal
with slowly changing dimensions, so a time dimension is important. Fact tables hold mea-
sures of interest, and dimension tables hold attribute values used in queries. The star schema
can be extended with additional fact tables, dimension tables, and conformed dimensions.

The purpose of a reporting system is to create meaningful information from disparate
data sources and to deliver that information to the proper users on a timely basis. Reports
are produced by sorting, filtering, grouping, and making simple calculations on the data.
RFM analysis is a typical reporting application. An RFM report can be produced using
SQL statements.

Online analytical processing (OLAP) reporting applications enable users to dynami-
cally restructure reports utilizing measures and dimensions. A measure is a data item of
interest. A dimension is a characteristic of a measure. An OLAP report, or OLAP cube, is
an arrangement of measures and dimensions. With OLAP, users can drill down and
exchange the order of dimensions.

A distributed database is a database that is stored and processed on more than one
computer. Variations of distributed databases include replicated and partitioned databases.
A replicated database is one in which multiple copies of some or all of the database are
stored on different computers. A partitioned database is one in which different pieces of
the database are stored on different computers. A distributed database can include both
replication and partitioning.

Distributed databases pose processing challenges. If a database is updated on a single
computer, then the challenge is simply to ensure that the copies of the database are logi-
cally consistent when they are distributed. However, if updates are to be made on more
than one computer, the challenges become significant. If the database is partitioned and
not replicated, then challenges occur if transactions span data on more than one computer.
If the database is replicated and if updates occur to the replicated portions, then a special
locking algorithm called distributed two-phase locking is required. Implementing this algo-
rithm can be difficult and expensive.

Objects consist of methods and properties or data values. All objects of a given class
have the same methods, but they can have different property values. Object persistence is
the process of storing object property values on disk. Relational databases are difficult to
use for object persistence. Some specialized products called object-oriented DBMSs were
developed in the 1990s but never received large-scale commercial acceptance. Oracle and
others, following the SQL standard, have extended the capabilities of their relational
DBMS products to provide support for object persistence. Such databases are referred to
as object-relational databases.

The physical setting for much NoSQL and Big Data work is often in the cloud and/or
on virtual machines, which allows us to consolidate several logical servers into one larger
physical one and to provide tremendous flexibility in dynamically provisioning servers,
storage, and network resources. A special program called a hypervisor provides the virtual
environment and manages the virtual machines. Cloud computing allows remote comput-
ers to host data, software, or both, taking advantage of the Internet to provide availability
and scalability. Thus, portions of data centers can be leased by customers who are charged
only for the resources they use.

The NoSQL movement (now often read as “Not only SQL”) is built upon the need to
meet the Big Data storage needs of companies such as Amazon.com, Google, and Facebook.
These systems typically make use of cloud technology (derived in part from earlier work on
distributed databases) and complex structuring techniques (derived in part from earlier

M08_KROE1533_08_SE_C08.indd 532 11/21/16 6:46 PM

http://Amazon.com

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 533

work on object databases). The tools used to do this are nonrelational DBMSs, sometimes
referred to as structured storage or NoSQL DBMSs. An early example was Bigtable, and a
more recent popular example is Cassandra, a column family DBMS. Column family prod-
ucts use a non-normalized table structure built on columns, super columns, column families,
and super column families tied together by RowKey values from a keyspace. Other varieties
of NoSQL DBMS include key-value, document, and graph DBMSs, all of which are
described in more detail in Appendix K. Data processing of the very large datasets found in
Big Data is often done by the MapReduce process, which breaks a data processing task into
many parallel tasks performed by many computers in the cluster and then combines these
partial results to produce a final result. An emerging product that is supported by Microsoft
and Oracle Corporation is the Hadoop Distributed File System (HDFS), with its spinoffs
HBase, a nonrelational storage component, and Pig, a query language.

KEY TERMS

Amazon Web Services (AWS)
Big Data
Bigtable
business intelligence (BI) system
click-stream data
cloud computing
column
column family database
conformed dimension
customer relationship management

(CRM)
data mart
data mining application
data warehouse
data warehouse metadata database
date dimension
dimension
dimension table
dimensional database
distributed database
distributed two-phase locking
document database
drill down
DynamoDB
EC2 service
enterprise data warehouse (EDW)

architecture

extract, transform, and load (ETL)
system

fact table
graph database
Hadoop Distributed File System

(HDFS)
host machine
hypervisor
infrastructure as a service (IaaS)
keyspace
key-value database
measure
method
MapReduce
NoSQL
Not only SQL
object
object-oriented DBMS (OODBMS)
object-oriented programming

(OOP)
object persistence
object-relational database
OLAP cube
OLAP report
online analytical processing (OLAP)
online transaction processing

(OLTP) system

operational system
partitioning
PivotTable
platform as a service (PaaS)
property
redundant arrays of independent

disks (RAID)
Relational DBMS

Service (RDS)
replication
reporting system
RFM analysis
server cluster
slowly changing dimension
software as a service

(SaaS)
star schema
storage area network

(SAN)
super column
super column family
time dimension
transactional system
virtual machine
virtual machine manager
virtualization
Windows Azure

REVIEW QUESTIONS

8.1 What are BI systems?

8.2 How do BI systems differ from transaction processing systems?

8.3 Name and describe the two main categories of BI systems.

M08_KROE1533_08_SE_C08.indd 533 11/21/16 6:46 PM

534 Part 3 Database Management

8.4 What are the three sources of data for BI systems?

8.5 Summarize the problems with operational databases that limit their usefulness for
BI applications.

8.6 What is an ETL system, and what functions does it perform?

8.7 What problems in operational data create the need to clean data before loading the
data into a data warehouse?

8.8 What does it mean to transform data? Give an example other than the ones used in
this book.

8.9 Why are data warehouses necessary?

8.10 Give examples of data warehouse metadata.

8.11 Explain the difference between a data warehouse and a data mart. Give an example
other than the ones used in this book.

8.12 What is the enterprise data warehouse (EDW) architecture?

8.13 Describe the differences between operational databases and dimensional databases.

8.14 What is a star schema?

8.15 What is a fact table? What types of data are stored in fact tables?

8.16 What is a fact table measure?

8.17 What is a dimension table? What types of data are stored in dimension tables?

8.18 What is a slowly changing dimension?

8.19 Why is the time dimension important in a dimensional model?

8.20 What is a conformed dimension?

8.21 What does OLAP stand for?

8.22 What is the distinguishing characteristic of OLAP reports?

8.23 Define measure, dimension, and cube in the context of OLAP reports.

8.24 Give an example, other than ones in this text, of a measure, two dimensions related
to your measure, and a cube.

8.25 What is drill down?

8.26 Explain two ways that the OLAP report in Figure 8-19 differs from that in Figure 8-18.

8.27 Define distributed database.

8.28 Explain one way to partition a database that has three tables: T1, T2, and T3.

8.29 Explain one way to replicate a database that has three tables: T1, T2, and T3.

8.30 Explain what must be done when fully replicating a database but allowing only one
computer to process updates.

8.31 If more than one computer can update a replicated database, what three problems
can occur?

8.32 What solution is used to prevent the problems in question 8.31?

8.33 Explain what problems can occur in a distributed database that is partitioned but
not replicated.

8.34 What organizations should consider using a distributed database?

8.35 Explain the meaning of the term object persistence.

8.36 In general terms, explain why relational databases are difficult to use for object
persistence.

8.37 What does OODBMS stand for, and what is the purpose of an OODBMS?

8.38 According to this chapter, why were OODBMSs not successful?

8.39 What is an object-relational database?

8.40 What is Big Data?

M08_KROE1533_08_SE_C08.indd 534 11/21/16 6:46 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 535

8.41 What is the relationship between 1 MB of storage and 1 EB of storage?

8.42 What is the NoSQL movement?

8.43 What was the first nonrelational data store to be developed, and who developed it?

8.44 What is Cassandra, and what is the history of the development of Cassandra to its
current state?

8.45 As illustrated in Figure 8-22, what is column family database storage, and how are
such systems organized? How do column family database storage systems compare
to RDBMS systems?

8.46 Explain MapReduce processing.

8.47 What is Hadoop, and what is the history of the development of Hadoop to its cur-
rent state? What are HBase and Pig?

 8.48 What is virtualization?

 8.49 What is a hypervisor, and what is the difference between a type 1 hypervisor and a
type 2 hypervisor?

 8.50 What is cloud computing? What major technology enables cloud computing?

 8.51 What are the differences between SaaS, PaaS, and IaaS?

EXERCISES

 8.52 Based on the discussion of the Heather Sweeney Designs operational database
(HSD) and dimensional database (HSD-DW) in the text, answer the following
questions.

A. Using the SQL statements shown in Figure 8-10, create the HSD-DW data-
base in a DBMS.

B. What transformations of data were made before HSD-DW was loaded with
data? List all the transformations, showing the original format of the HSD data
and how they appear in the HSD-DW database.

C. Write the complete set of SQL statements necessary to load the transformed
data into the HSD-DW database.

D. Populate the HSD-DW database, using the SQL statements you wrote to
answer part C.

E. Figure 8-24 shows the SQL code to create the SALES_FOR_RFM fact table
shown in Figure 8-15. Using those statements, add the SALES_FOR_RFM
table to your HSD-DW database.

F. What transformations of data are necessary to load the SALES_FOR_RFM
table? List any needed transformations, showing the original format of the
HSD data and how they appear in the HSD-DW database.

G. What data will be used to load the SALES_FOR_RFM fact table? Write the
complete set of SQL statements necessary to load this data.

H. Populate the SALES_FOR_RFM fact table, using the SQL statements you
wrote to answer part G.

I. Write an SQL query similar to the one shown on page 497 that uses the total
dollar amount of each day’s product sales as the measure (instead of the num-
ber of products sold each day).

M08_KROE1533_08_SE_C08.indd 535 11/21/16 6:47 PM

536 Part 3 Database Management

J. Write the SQL view equivalent of the SQL query you wrote to answer part I.

K. Create the SQL view you wrote to answer part J in your HSD-DW database.

L. Create a Microsoft Excel 2016 workbook named HSD-DW-BI-Exercises.xlsx.

M. Using either the results of your SQL query from part K (copy the results of the
query into a worksheet in the HSD-DW-BI.xlsx workbook and then format
this range as a worksheet table) or your SQL view from part L (create a Micro-
soft Excel data connection to the view), create an OLAP report similar to the
OLAP report shown in Figure 8-17. (Hint: If you need help with the needed
Microsoft Excel actions, search in the Microsoft Excel help system for more
information.)

N. Heather Sweeney is interested in the effects of payment type on sales in dollars.

1. Modify the design of the HSD-DW dimensional database to include a
PAYMENT_TYPE dimension table.

2. Modify the HSD-DW database to include the PAYMENT_TYPE dimen-
sion table.

3. What data will be used to load the PAYMENT_TYPE dimension table?
What data will be used to load foreign key data into the PRODUCT_
SALES fact table? Write the complete set of SQL statements necessary to
load these data.

4. Populate the PAYMENT_TYPE and PRODUCT_SALES tables, using
the SQL statements you wrote to answer part 3.

5. Create the SQL queries or SQL views needed to incorporate the Payment-
Type attribute.

6. Create a Microsoft Excel 2016 OLAP report to show the effect of payment
type on product sales in dollars.

FIGURE 8-24

The HSD-DW SALES_FOR_RFM SQL Create Table Statement

M08_KROE1533_08_SE_C08.indd 536 11/21/16 6:47 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 537

ACCESS WORKBENCH

Exercises
AW.8.1 Using the discussion of dimensional models and OLAP reports in the text and
the specific discussion of OLAP reports based on a Microsoft Access 2016 database in this
chapter’s section of “The Access Workbench” as your reference, complete exercise 8.52
(excluding part N) for Heather Sweeney Designs. Create your HSD-DW database in
Microsoft Access 2016 and your OLAP report in Microsoft Excel 2016.

MARCIA’S DRY CLEANING CASE QUESTIONS
Ms. Marcia Wilson owns and operates Marcia’s Dry Cleaning, which is an upscale dry
cleaner in a well-to-do suburban neighborhood. Marcia makes her business stand out from
the competition by providing superior customer service. She wants to keep track of each of
her customers and their orders. Ultimately, she wants to notify them that their clothes are
ready via email.

Assume that Marcia has hired you as a database consultant to develop an operational
database named MDC that has the following four tables:

CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)
INVOICE (InvoiceNumber, CustomerID, DateIn, DateOut, Subtotal, Tax,

TotalAmount)
INVOICE_ITEM (InvoiceNumber, ItemNumber, ServiceID, Quantity, UnitPrice,
 ExtendedPrice)
SERVICE (ServiceID, ServiceDescription, UnitPrice)

A Microsoft Access 2016 version of the MDC database and SQL scripts to create and
populate the MDC database are available for Microsoft SQL Server 2016, Oracle Database
Express Edition 11g Release 2, and MySQL 5.7 Community Server at the Database Con-
cepts Web site at www.pearsonhighered.com/kroenke. Sample data for the CUSTOMER
table are shown in Figure 7-32, for the SERVICE table in Figure 7-33, for the INVOICE
table in Figure 7-34, and for the INVOICE_ITEM table in Figure 7-35.

A. Create a database in your DBMS named MDC, and use the MDC SQL scripts for your
DBMS to create and populate the database tables. Create a user named MDC-User
with the password MDC-User+password. Assign this user to database roles so that the
user can read, insert, delete, and modify data.

B. Create an appropriate ODBC data source for your database.

C. You need about 20 INVOICE transactions with supporting INVOICE_ITEMs in
the database. Write the needed SQL statements for any needed additional INVOICE
transactions and insert the data into your database.

D. Design a data warehouse star schema for a dimensional database named MDC-DW.
The fact table measure will be ExtendedPrice.

E. Create the MDC-DW database in your DBMS product.

M08_KROE1533_08_SE_C08.indd 537 11/21/16 6:47 PM

http://www.pearsonhighered.com/kroenke

538 Part 3 Database Management

F. What transformations of data will need to be made before the MDC-DW database can
be loaded with data? List all the transformations, showing the original format of the
MDC data and how it appears in the MDC-DW database.

G. Write the complete set of SQL statements necessary to load the transformed data into
the MDC-DW database.

H. Populate the MDC-DW database, using the SQL statements you wrote to answer part G.

I. Write an SQL query similar to the one shown in the text on page 497 that uses Extend-
edPrice as the measure.

J. Write the SQL view equivalent of the SQL query you wrote to answer part I.

K. Create the SQL view you wrote to answer part J in your MDC-DW database.

L. Create a Microsoft Excel 2016 workbook named MDC-DW-BI-Exercises.xlsx.

M. Using either the results of your SQL query from part I (copy the results of the query
into a worksheet in the MDC-DW-BI.xlsx workbook and then format this range as a
worksheet table) or your SQL view from part I (create a Microsoft Excel data con-
nection to the view), create an OLAP report similar to the OLAP report shown in
Figure 8-17. (Hint: If you need help with the needed Microsoft Excel actions, search in
the Microsoft Excel help system for more information.)

 GARDEN GLORY PROJECT QUESTIONS

If you have not already implemented the Garden Glory database shown in Chapter 3 in a
DBMS product, create and populate the Garden Glory database now in the DBMS of your
choice (or as assigned by your instructor).

A. You need about 20 SERVICE transactions in the database. Write the needed SQL
statements for any needed additional SERVICE transactions and insert the data into
your database.

B. Design a data warehouse star schema for a dimensional database named GG-DW. The
fact table measure will be HoursWorked.

C. Create the GG-DW database in a DBMS product.

D. What transformations of data will need to be made before the GG-DW database can
be loaded with data? List all the transformations, showing the original format of the
Garden Glory data and how it appears in the GG-DW database.

E. Write the complete set of SQL statements necessary to load the transformed data into
the GG-DW database.

F. Populate the GG-DW database, using the SQL statements you wrote to answer part A.

G. Write an SQL query similar to the one shown in the text on page 497 that uses the
hours worked per day as the measure.

H. Write the SQL view equivalent of the SQL query you wrote to answer part G.

I. Create the SQL view you wrote to answer part H in your GG-DW database.

J. Create a Microsoft Excel 2016 workbook named GG-DW-BI-Exercises.xlsx.

M08_KROE1533_08_SE_C08.indd 538 11/21/16 6:47 PM

Chapter 8 Data Warehouses, Business Intelligence Systems, and Big Data 539

K. Using either the results of your SQL query from part G (copy the results of the query
into a worksheet in the GG-DW-BI.xlsx workbook and then format this range as a
worksheet table) or your SQL view from part I (create a Microsoft Excel data con-
nection to the view), create an OLAP report similar to the OLAP report shown in
Figure 8-17. (Hint: If you need help with the needed Microsoft Excel actions, search in
the Microsoft Excel help system for more information.)

 JAMES RIVER JEWELRY PROJECT QUESTIONS

The James River Jewelry project questions are available in Appendix D, which can be
downloaded from the textbook’s Web site: www.pearsonhighered.com/kroenke.

 THE QUEEN ANNE CURIOSITY SHOP PROJECT QUESTIONS
If you have not already implemented The Queen Anne Curiosity Shop database shown in
Chapter 3 in a DBMS product, create and populate the QACS database now in the DBMS
of your choice (or as assigned by your instructor).

A. You need about 30 PURCHASE transactions in the database. Write the needed SQL
statements for any needed additional PURCHASE transactions and insert the data
into your database.

B. Design a data warehouse star schema for a dimensional database named QACS-DW.
The fact table measure will be ItemPrice.

C. Create the QACS-DW database in a DBMS product.

D. What transformations of data will need to be made before the QACS-DW database
can be loaded with data? List all the transformations, showing the original format of
the QACS data and how it appears in the QACS-DW database.

E. Write the complete set of SQL statements necessary to load the transformed data into
the QACS-DW database.

F. Populate the QACS-DW database, using the SQL statements you wrote to answer
part A.

G. Write an SQL query similar to the one shown in the text on page 497 that uses retail
price as the measure.

H. Write the SQL view equivalent of the SQL query you wrote to answer part G.

I. Create the SQL view you wrote to answer part H in your QACS-DW database.

J. Create a Microsoft Excel 2016 workbook named QACS-DW-BI-Exercises.xlsx.

K. Using either the results of your SQL query from part G (copy the results of the query
into a worksheet in the QACS-DW-BI.xlsx workbook and then format this range as
a worksheet table) or your SQL view from part I (create a Microsoft Excel data con-
nection to the view), create an OLAP report similar to the OLAP report shown in
Figure 8-17. (Hint: If you need help with the needed Microsoft Excel actions, search
in the Microsoft Excel help system for more information.)

M08_KROE1533_08_SE_C08.indd 539 11/21/16 6:47 PM

http://www.pearsonhighered.com/kroenke

A01_LO5943_03_SE_FM.indd ivA01_LO5943_03_SE_FM.indd iv 04/12/15 4:22 PM04/12/15 4:22 PM

This page intentionally left blank

Online Appendices

Complete versions of these appendices are available on the textbook’s Web site:
www.pearsonhighered.com/kroenke

Appendix A
Getting Started with Microsoft SQL Server 2016

Appendix B
Getting Started with Oracle Database XE

Appendix C
Getting Started with MySQL 5.7 Community Server

Appendix D
James River Jewelry Project Questions

Appendix E
Advanced SQL

Appendix F
Getting Started in Systems Analysis and Design

Appendix G
Getting Started with Microsoft Visio 2016

Appendix H
The Access Workbench—Section H—Microsoft Access 2016 Switchboards

Appendix I
Getting Started with Web Servers, PHP, and the NetBeans IDE

Appendix J
Business Intelligence Systems

Appendix K
Big Data

Z01_KROE1533_08_SE_APP.indd 541 11/21/16 6:47 PM

http://www.pearsonhighered.com/kroenke

Apple iPad: A pioneering tablet computer introduced in 2010 by
Apple Inc.

Application Programming Interface (API): The set of objects,
methods, and properties that is used to access the functionality of a
program such as a DBMS.

ARPANET: A network forerunner of the Internet that was created
by the Advanced Research Projects Agency at the Department of
Defense in 1969.

ASP.NET: The updated version of ASP for the .NET Framework.
See also Active Server Pages (ASP), .NET Framework.

Association relationship: In database design, a table pattern where
an intersection table contains additional attributes beyond the attri-
butes that make up the composite primary key.

Associative entity: Also called an association entity, this is an entity
that represents the combination of at least two other objects and
that contains data about that combination. It is often used in con-
tracting and assignment applications.

Asterisk (*): A wildcard character used in Microsoft Access queries
to represent one or more unspecified characters. See SQL percent
sign (%) wildcard character.

Atomic transaction: A group of logically related database opera-
tions that are performed as a unit. Either all the operations are
performed or none of them are.

Attribute: (1) A value that represents a characteristic of an entity.
(2) A column of a relation.

Authentication: The credentials, usually a user name and password,
used to allow a user to log into a computer, server, network or
application.

Authorization: A set of processing permissions that describes which
users or user groups can take particular actions against particular
portions of the database.

Before-image: A record of a database entity (normally a row or a
page) before a change. Used in recovery to perform rollback.

Big Data: The current term for the enormous datasets created by
Web applications, Web 2.0 social networks, scientific applications,
and transaction data.

Bigtable: A nonrelational unstructured data store developed by
Google.

Binary relationship: A relationship between exactly two entities or
tables.

Boyce-Codd Normal Form (BCNF): A relation in third normal
form in which every determinant is a candidate key.

Business intelligence (BI) systems: Information systems that assist
managers and other professionals in analyzing current and past
activities and in predicting future events. Two major categories of
BI systems are reporting systems and data mining systems.

.NET Framework (.NET): Microsoft’s comprehensive application
development platform. It includes such components as ADO.NET
and ASP.NET.

<?php and?>: The symbols used to indicate blocks of PHP code in
Web pages.

ACID transaction: A transaction that is atomic, consistent, isolated,
and durable. An atomic transaction is one in which a set of database
changes are committed as a unit; either all of them are completed
or none of them are. A consistent transaction is one in which all
actions are taken against rows in the same logical state. An isolated
transaction is one that is protected from changes by other users.
A durable transaction is one that, once committed to a database,
is permanent regardless of subsequent failure. There are different
levels of consistency and isolation. See transaction-level consistency
and statement-level consistency. See also transaction isolation level.

Active Data Objects (ADO): An implementation of OLE DB that
is accessible via object- and non-object-oriented languages. It is
used primarily as a scripting-language (JScript, VBScript) interface
to OLE DB.

Active Server Pages (ASP): A combination of HTML and scripting
language statements. Any statement included in <% … %> is pro-
cessed on the server. Used with Internet Information Server (IIS).

ADO.NET: A data access technology that is part of Microsoft’s
.NET initiative. ADO.NET provides the capabilities of ADO but
with a different object structure. ADO.NET also includes new
capabilities for the processing of datasets.

After-image: A record of a database entity (normally a row or a
page) after a change. Used in recovery to perform rollforward.

Alternate key: In entity-relationship models, a synonym for candi-
date key.

Amazon Web Services (AWS): A cloud computing environment
provided by Amazon.com.

American National Standards Institute (ANSI): The American stan-
dards organization that creates and publishes the SQL standards.

AMP: An abbreviation for Apache, MySQL, and PHP/Pearl/
Python. See Apache Web Server and PHP.

Android operating system: An operating system (OS) developed by
Google and widely used on tablets and smartphones.

Anomaly: In normalization, an undesirable consequence of a data
modification. With an insertion anomaly, facts about two or more
different themes must be added to a single row of a relation. With
a deletion anomaly, facts about two or more themes are lost when a
single row is deleted.

Apache Web Server: A popular Web server that runs on most oper-
ating systems, particularly Windows and Linux.

App: A short term for application; normally applied to applications
running on tablets and smartphones.

Apple II: A pioneering PC introduced in 1977 by Apple Inc.

Glossary

Although this section defines many of the key terms in the book, it is not meant to be exhaustive. Terms related to a specific DBMS product, for
example, should be referenced in the chapter or appendix dedicated to that product. These references can be found in the index. Similarly, SQL
concepts are included, but details of SQL commands and syntax should be referenced in the chapter that discusses those details, and Microsoft
Access 2016 terms should be referenced in the sections of “The Access Workbench.”

542

Z02_KROE1533_08_SE_GLOS.indd 542 11/21/16 6:48 PM

http://Amazon.com
http://asp.net
http://ado.net
http://ado.net
http://asp.net
http://ado.net
http://ado.net

Glossary 543

Component design stage: The third step in the systems develop-
ment life cycle (SDLC) model. The system is designed based on
specific hardware and software. The database design is created in
this step, based on the data model created during the requirements
analysis statge. See also systems development life cycle (SDLC).

Composite identifier: An identifier of an entity that consists of two
or more attributes.

Composite key: A key of a relation that consists of two or more
columns.

Computed value: A column of a table that is computed from other
column values. Values are not stored but are computed when they
are to be displayed.

Concurrency: A condition in which two or more transactions are
processed against the database at the same time. In a single CPU
system, the changes are interleaved; in a multi-CPU system, the
transactions may be processed simultaneously, and the changes on
the database server are interleaved.

Concurrent transactions: Two or more transactions that are being
processed at the same time. See also concurrency.

Concurrent update problem: An error condition in which one user’s
data changes are overwritten by another user’s data changes. Also
called lost update problem.

Confidence: In market basket analysis, the probability of a cus-
tomer’s buying one product, given that the customer has purchased
another product.

Conformed dimension: In a dimensional database design, a dimen-
sion table that has relationships to two or more fact tables.

Consistency: Two or more concurrent transactions are consistent if
the result of their being processed is the same as it would have been
had they been processed in some sequential order.

Consistent: In an ACID transaction, either statement-level or
transaction-level consistency. See ACID transaction, consistency,
statement-level consistency, and transaction-level consistency.

COUNT: In SQL, an aggregate function that counts the number of
rows in a query result. See SQL built-in aggregate functions.

Crow’s foot symbol: A symbol in the IE Crow’s Foot E-R model
that indicates a many side of the relationship. It visually resembles a
bird’s foot, thus the name crow’s foot.

Customer relationship management (CRM): An application
designed for sales and marketing personnel to help manage their
relationships and contacts with customers.

Data: The values stored in database tables.

Data administration: An enterprise-wide function that concerns the
effective use and control of an organization’s data assets. A person can
perform it, but more often it is performed by a group. Specific func-
tions include setting data standards and policies and providing a forum
for conflict resolution. See also database administration and DBA.

Data constraint: A limitation on a data value. See also domain constraint,
interrelation constraint, intrarelation constraint, range constraint

Data control language (DCL): A language used to describe the per-
missions granted in a database. SQL DCL is that portion of SQL
that is used to grant and revoke database permissions.

Data definition language (DDL): A language used to describe the
structure of a database.

Data manipulation language (DML): A language used to describe
the processing of a database.

Data mart: A facility similar to a data warehouse, but with a
restricted domain. Often, the data are restricted to particular types,
business functions, or business units.

Business rule: A statement of a policy in a business that restricts
the ways in which data can be inserted, updated, or deleted in the
database.

Candidate key: An attribute or a group of attributes that identifies
a unique row in a relation. One of the candidate keys is chosen to
be the primary key.

Cardinality: In a binary relationship, the maximum or minimum
number of elements allowed on each side of the relationship. The
maximum cardinality can be 1:1, 1:N, N:1, or N:M. The minimum
cardinality can be optional/optional, optional/mandatory, manda-
tory/optional, or mandatory/mandatory.

Cascading deletion: A property of a relationship that indicates that
when a parent row is deleted, related child rows should be deleted
as well.

Cascading update: A referential integrity action specifying that
when the key of a parent row is updated, the foreign keys of match-
ing child rows should be updated as well.

Cell phone: A term for a mobile phone, which is a device that con-
nects to the telephone system via radio signals. See also mobile
phone.

Cellular network: A wireless telephone network divided into geo-
graphical areas named cells.

Checkpoint: The point of synchronization between a database and
a transaction log. At the checkpoint, all buffers are written to
external storage. (This is the standard definition of checkpoint, but
DBMS vendors sometimes use this term in other ways.)

Child: A row, record, or node on the many side of a one-to-many
relationship. See also parent.

Child entity: An entity on the many side of a one-to-many relationship.

Click-stream data: Data about a customer’s clicking behavior on a
Web page; such data are often analyzed by e-commerce companies.

Client: In client-server architecture, the software that resides on
the user’s computer, tablet, or smartphone. See also client-server
architecture.

Client (applications): See Client.

Client-server architecture: A computer application architecture that
divides the application into two parts: the client, which resides on
the users’ device, and the server, which resides on a centralized
server computer.

Cloud computing: The use of networks, such as the Internet, to
deliver services to users, where users are unconcerned about
exactly where the servers delivering the services are located. Thus,
the servers are said to be “in the cloud.”

Column: (1) A logical group of bytes in a row of a relation or a
table. The meaning of a column is the same for every row of the
relation. (2) In a column family database, a (name, value) pair rep-
resenting a single value in a single row.

Column family [NoSQL database category]: a form of semistruc-
tured NoSQL database in which the basic unit of data is the col-
umn. Rows consist of sets of column (name, value) pairs and rows
need not contain the same columns. A column family in a column
family DBMS is loosely analogous to a relational table; each row in
a column family must have a key. See column.

Commit: A command issued to a DBMS to make database modi-
fications permanent. After the command has been processed, the
changes are written to the database and to a log in such a way that
they will survive system crashes and other failures. A commit is
usually used at the end of an atomic transaction. Contrast this with
rollback.

Component design: See Component design stage.

Z02_KROE1533_08_SE_GLOS.indd 543 11/21/16 6:48 PM

544 Glossary

DBA: An acronym for both database administrator and data-
base administration. See also database administrator, database
administration.

Deadlock: A condition that can occur during concurrent processing
in which each of two (or more) transactions is waiting to access
data that the other transaction has locked. It also is called the
deadly embrace.

Deadly embrace: See deadlock.

Default value: A value assigned to an attribute if there is no other
value assigned to it when a new row is created in a table.

Decision support system (DSS): One or more applications
designed to help managers make decisions.

Degree: In the entity-relationship model, the number of entities
participating in a relationship.

Deletion anomaly: In a relation, the situation in which the removal
of one row of a table deletes facts about two or more themes.

Denormalization: The process of intentionally designing a relation
that is not normalized. Denormalization is done to improve perfor-
mance or security.

Determinant: One or more attributes that functionally determine
another attribute or attributes. In the functional dependency (A, B)
S D, C, the attributes (A, B) are the determinant.

Device: Any equipment, such as a personal computer, that is con-
nected to the Internet.

Dimension: In a dimensional database, a column or set of columns
describing an aspect of an enterprise. See Dimension table.

Dimension table: In a star schema dimensional database, the tables
that connect to the central fact table. Dimension tables hold attri-
butes (dimensions) used in the organizing queries in analyses such
as those of OLAP cubes.

Dimensional database: A database design that is used for data
warehouses and is designed for efficient queries and analysis. It
contains a central fact table connected to one or more dimension
tables.

Dirty read: A read of data that have been changed but not yet com-
mitted to a database. Such changes may later be rolled back and
removed from the database.

Discriminator: In the entity-relationship model, an attribute of a
supertype entity that determines which subtype pertains to the
supertype.

Distributed database: A database that is stored and processed on
two or more computers.

Distributed two-phase locking: A sophisticated form of record
locking that must be used when database transactions are pro-
cessed on two or more machines.

Document [NoSQL database category]: A nonrelational database
structure based on data stored as documents. The structure is com-
monly based on Extensible Markup Language (XML) or JavaScript
Object Notation (JSON).

Document type definitions (DTD): A set of markup elements that
defines the structure of an XML document.

Domain: (1) The set of all possible values an attribute can have. (2)
A description of the format (data type, length) and the semantics
(meaning) of an attribute.

Domain integrity constraint: Also called a domain constraint, a data
constraint that limits data values to a particular set of values. See
also data constraint, interrelation constraint, intrarelation con-
straint, range constraint.

Data mining application: The use of statistical and mathematical
techniques to find patterns in database data.

Data model: (1) A model of users’ data requirements, usually
expressed in terms of the entity-relationship model. It is sometimes
called a users’ data model. (2) A language for describing the struc-
ture and processing of a database.

Data source: In ODBC, the database or other set of data that is
being connected to. See also open database connectivity (ODBC).

Data source name (DSN): In ODBC, the named set of param-
eters (such as login name and password) used to connect to a
database or other set of data. See also open database connectiv-
ity (ODBC).

Data sublanguage: A language for defining and processing a data-
base intended to be embedded in programs written in another
language—in most cases, a procedural language such as COBOL,
C#, or Visual Basic. A data sublanguage is an incomplete program-
ming language because it contains only constructs for data defini-
tion and processing.

Data type: The category of the data in a column. For example, Char,
Varchar, Integer, etc.

Data warehouse: A store of enterprise data that is designed to facili-
tate management decision making. A data warehouse includes not
only data, but also metadata, tools, procedures, training, person-
nel information, and other resources that make access to the data
easier and more relevant to decision makers.

Data warehouse metadata database: The database used to store the
data warehouse metadata.

Database: A self-describing collection of related records or, for rela-
tional databases, of related tables.

Database administration (DBA): A function that concerns the
effective use and control of a particular database and its related
applications.

Database administrator (DBA): A person or group responsible for
establishing policies and procedures to control and protect a data-
base. They work within guidelines set by data administration to
control the database structure, manage data changes, and maintain
DBMS programs.

Database application: An application that uses a database to store
the data needed by the application.

Database backup: A copy of database files that can be used to
restore a database to some previous, consistent state.

Database design: A graphical display of tables (files) and their
relationships. The tables are shown in rectangles, and the rela-
tionships are shown using lines. A many relationship is shown
with a crow’s foot on the end of the line, an optional relationship
is depicted by an oval, and a mandatory relationship is shown
with hash marks.

Database development process: A subset of the systems develop-
ment life cycle (SDLC) that specifically designs and implements the
database. See also systems development life cycle (SDLC).

Database integrity: The result of implementing domain integrity,
entity integrity, and referential integrity in a database.

Database management system (DBMS): A set of programs used
to define, administer, and process a database and its applications.

Database schema: A complete logical view of a database.

Database system: An information system composed of users, data-
base applications, a database management system (DBMS), and a
database.

Date dimension: In a dimensional database, a dimension that stores
date (and possibly time) values. See also dimensional database.

Z02_KROE1533_08_SE_GLOS.indd 544 11/21/16 6:48 PM

Glossary 545

entities, and the associations among those things are represented
by relationships. The results are usually documented in an entity-
relationship (E-R) diagram.

Extensible Markup Language (XML): A markup language whose
tags can be extended by document designers.

Extract, transform, and load (ETL) system: The portion of a data
warehouse that converts operation data to data warehouse data.

Fact table: The central table in a dimensional database. Its attri-
butes are called measures. See also measure.

Field: (1) A logical group of bytes in a record used with file processing.
(2) In the context of the relational model, a synonym for attribute.

Fifth normal form (5NF): A normal form necessary to eliminate
an anomaly where a table can be split apart but not correctly
joined back together. Also known as Project-Join Normal Form
(PJ/NF).

File: In ODBC, a type of DSN. See also open database connectivity
(ODBC), DSN.

File data source: An ODBC data source stored in a file that can be
emailed or otherwise distributed among users.

First normal form (1NF): Any table that fits the definition of a
relation.

Foreign key: An attribute or set of attributes that is a key of one or
more relations other than the one in which it appears.

Foreign key constraint: A data constraint between two tables
requiring that before a data value can be inserted into a foreign
key column, that data value must already exist in the associated
primary key column.

Form: A structured on-screen presentation of selected data from a
database. Forms are used for both data input and data reading. A
form is part of a database application. Compare this with a report.

Forward-only cursor: A type of cursor that can only move through
the data in one direction. See also cursor.

Fourth normal form (4NF): A relation in BCNF in which every
multivalued dependency is a functional dependency.

Functional dependency: A relationship between attributes in which
one attribute or group of attributes determines the value of
another. The expressions X S Y, “X determines Y,” and “Y is
functionally dependent on X” mean that given a value of X, we can
determine the value of Y.

Google Android operating system (OS): A popular operating system
(OS) developed by Google for use on smart phones and tablets.

Google Chrome: A popular Web browser developed by Google.

Graph [NoSQL database category]: A nonrelational database
structure based on graph theory. The structure is based on nodes,
properties, and edges.

Graphical user interface (GUI): A user interface in which the user
interacts with the application using icons and other visual cues
instead of text based commands.

Hadoop: See Hadoop Distributed File System (HDFS).

Hadoop Distributed File System (HDFS): An open source file
distribution system that provides standard file services to clustered
servers so that their file systems can function as one distributed file
system.

HAS-A relationship: A relationship between two entities or objects
that are of different logical types; for example, EMPLOYEE HAS-
A(n) AUTO. Contrast this with an IS-A relationship.

Host machine: (1) In networking, any computer or device con-
nected to the Internet. (2) In virtualization, the physical machine
that emulates one or more other computer systems.

Domain key/normal form (DK/NF): A relation in which all con-
straints are logical consequences of domains and keys. In this text,
this definition has been simplified to a relation in which the deter-
minants of all functional dependencies are candidate keys.

Drill down: User-directed disaggregation of data used to break
higher-level totals into components.

Driver: In ODBC, the software component that connects an appli-
cation (which may be a et of Web pages) to the database or other
set of data that is using by the application. See also open database
connectivity (ODBC).

Durable: In an ACID transaction, the database changes are perma-
nent. See ACID transaction.

Dynamic cursor: A fully featured cursor. All inserts, updates, dele-
tions, and changes in row order are visible to a dynamic cursor.

DynamoDB: A nonrelational unstructured data store developed by
Amazon.com.

EC2 service: The Amazon Web Service’s Elastic Compute Cloud
service, which provides virtual servers to customers. See also
virtualization.

Enterprise-class database system: A DBMS product capable of
supporting the operating requirements of large organizations.

Enterprise data warehouse (EDW) architecture: A data warehouse
architecture that links specialized data marts to a central data ware-
house for data consistency and efficient operations.

Entity: Something of importance to a user that needs to be repre-
sented in a database. In the entity-relationship model, entities are
restricted to things that can be represented by a single table. See
also strong entity and weak entity.

Entity class: A set of entities of the same type; two examples are
EMPLOYEE and DEPARTMENT.

Entity instance: A particular occurrence of an entity; for example,
Employee 100 (an EMPLOYEE) and Accounting Department (a
DEPARTMENT).

Entity integrity constraint: The constraint that the primary key
column or columns must have unique values so that each row can
be uniquely identified.

Entity-relationship diagram (E-R diagram): A graphic used to rep-
resent entities and their relationships. Entities are normally shown
in squares or rectangles, and relationships are shown in diamonds.
The cardinality of the relationship is shown inside the diamond.

Entity-relationship model (E-R model): The constructs and con-
ventions used to create a model of users’ data. The things in the
users’ world are represented by entities, and the associations
among those things are represented by relationships. The results
are usually documented in an entity-relationship diagram. See also
data model.

Ethernet networking technology: A commonly used network
standard.

Exclusive lock: A lock on a data resource that no other transaction
can read or update.

Exclusive subtype: A subtype in which a supertype instance is
related to at most one subtype in a set of possible subtypes.

Explicit lock: A lock requested by a command from an application
program.

Export: A function of a DBMS that writes a file of data in bulk. The
file is intended to be read by another DBMS or program.

Extended entity-relationship (E-R) model: A set of constructs and
conventions, including supertypes and subtypes, used to create
data models. The things in the users’ world are represented by

Z02_KROE1533_08_SE_GLOS.indd 545 11/21/16 6:48 PM

http://Amazon.com

546 Glossary

Information: (1) Knowledge derived from data, (2) data presented
in a meaningful context, or (3) data processed by summing, order-
ing, averaging, grouping, comparing, or other similar operations.

Information Engineering (IE) model: An E-R model developed by
James Martin.

Inner join: See join.

Infrastructure as a service (IaaS): The provision of virtual machines
to users by a cloud computing service provider such as Amazon
Web Services or Microsoft Azure.

Instance: A specific occurrence of an object of interest.

Integrated Definition 1, Extended (IDEF1X): A version of the
entity-relationship model, adopted as a national standard but dif-
ficult to understand and use. Most organizations use a simpler E-R
version like the crow’s foot model.

Integrated Development Environment (IDE): An application that
provides a programmer or application developer with a complete
set of development tools in one package.

International Organization for Standardization (ISO) The interna-
tional standards organization that works on SQL standards, among
others.

Insertion anomaly: In a relation, a condition that exists when, to
add a complete row to a table, one must add facts about two or
more logically different themes.

Internet: The network that connects the entire Earth, and the basis
for much of modern computing.

Internet Information Server (IIS): A Windows Web server product
that processes Web page code.

Internet Information Services Manager: The application used to
manage Microsoft’s IIS Web server.

Intersection table: A table (also called a relation) used to represent
a many-to-many relationship. It contains the keys of the relations
in the relationship. When used to represent entities having a many-
to-many relationship, it may have nonkey data if the relationship
contains data.

iPhone: A smartphone built by Apple Inc.

IS-A relationship: A relationship between a supertype and a sub-
type. For example, EMPLOYEE and ENGINEER have an IS-A
relationship.

Isolation level: See transaction isolation level.

Java Server Pages (JSP): A combination of HTML and Java that is
compiled into a servlet.

JavaScript: A proprietary scripting language originally created by
Netscape but now owned by Oracle Corporation. The Microsoft
version is called JScript; the standard version is called ECMA-262.
These are easily learned interpreted languages that are used for
both Web server and Web client application processing. Sometimes
written as Java Script.

Join operation: A relational algebra operation on two relations, A
and B, that produces a third relation, C. A row of A is concatenated
with a row of B to form a new row in C if the rows in A and B meet
restrictions concerning their values. For example, A1 is an attribute
in A, and B1 is an attribute in B. The join of A with B in which (A1
= B1) will result in a relation, C, having the concatenation of rows
in A and B in which the value of A1 is equal to the value of B1. In
theory, restrictions other than equality are allowed—a join could
be made in which A1 < B1. However, such non-equal joins are not
used in practice. Also known as inner join. See also natural join.

Key: (1) A group of one or more attributes that identifies a unique
row in a relation. Because relations cannot have duplicate rows,

HTML: See Hypertext Markup Language (HTML).

HTML document tags: The tags in HTML documents that indicate
the structure of the document.

HTML syntax rules: The standards that are used to create HTML
documents.

HTML5: The current version of the HTML standards. See also
Hypertext Markup Language (HTML).

http://localhost: For a Web server, a reference to the user’s
computer.

Hypertext Markup Language (HTML): A standardized set of text
tags for formatting text, locating images and other nontext files,
and placing links or references to other documents.

Hypertext Transfer Protocol (HTTP): A standardized means for
using TCP/IP to communicate over the Internet.

Hypervisor: The software that creates, controls, and communicates
with virtual machines.

IBM Personal Computer (IBM PC): A pioneering personal com-
puter developed by the IBM corporation.

ID column: A column used as a primary key that usually has sur-
rogate key values.

ID-dependent entity: An entity that cannot logically exist without
the existence of another entity. APPOINTMENT, for example,
cannot exist without CLIENT to make the appointment. To be
an ID-dependent entity, the identifier of the entity must contain
the identifier of the entity on which it depends. Such entities are a
subset of a weak entity. See also existence-dependent entity, strong
entity, and weak entity.

Identifier: In an entity, a group of one or more attributes that deter-
mine entity instances. See also nonunique identifier and unique
identifier.

Identifying relationship: A relationship that is used when the child
entity is ID-dependent upon the parent entity.

IDENTITY ({Identity seed}, {Indentity increment}): For
Microsoft SQL Server 2016, the attribute specification that is used
to create a surrogate key.

IE Crow’s Foot model: Formally known as the Information
Engineering (IE) Crow’s Foot model, it is a system of symbology used
to construct E-R diagrams in data modeling and database design.

iisstart.htm: The default Web page used by the Microsoft Internet
Information Server Web server. See also Internet Information
Server (IIS).

Implementation stage: In the systems development life cycle
(SDLC), the stage where hardware is acquired, software is installed,
and the designed information system acuatllay made functional for
users. See also systems development life cycle (SDLC).

Implicit lock: A lock that is placed automatically by a DBMS.

Inclusive subtype: In data modeling and database design, a subtype
that allows a supertype entity to be associated with more than one
subtype.

Inconsistent backup: A backup file that contains uncommitted
changes.

Inconsistent read problem: An anomaly that occurs in concurrent
processing in which transactions execute a series of reads that are
inconsistent with one another. This problem can be prevented by
using two-phase locking and other strategies.

index.html: A default Web page name provided by most Web
servers.

inetpub folder: In Windows operating systems, the root folder for
the IIS Web server.

Z02_KROE1533_08_SE_GLOS.indd 546 11/21/16 6:48 PM

http://localhost

Glossary 547

Microsoft SQL Server 2016 Management Studio: The GUI utility
that is used with Microsoft SQL Server 2016.

MIN: In SQL, an aggregate function that determines the smallest
value in a set of numbers. See SQL built-in aggregate functions.

Minimum cardinality: (1) In a binary relationship in the entity-
relationship model, the minimum number of entities required on
each side of a relationship. (2) In a binary relationship in the rela-
tional model, the minimum number of rows required on each side
of a relationship. Common values of minimum cardinality for both
definitions are optional to optional (O-O), mandatory to optional
(M-O), optional to mandatory (O-M), and mandatory to manda-
tory (M-M).

Mixed entity pattern: A portion of an E-R diagram in which a
weak entity participates in both identifying and non-identifying
relationships.

Mobile phone: A handheld device that connects to the telephone
system via radio signals. See also cell phone.

Modification action: An action that changes the value of a data item.

Modification problem: A situation that exists when the storing of
one row in a table records facts about two themes or the deletion of
a row removes facts about two themes, or when a data change must
be made in multiple rows for consistency

Mozilla Firefox: Mozilla’s open source Web browser.

Multiple-tier driver: In ODBC, a two-part driver, usually for a
client-server database system. One part of the driver resides on the
client and interfaces with the application; the second part resides
on the server and interfaces with the DBMS.

Multivalued dependency: A condition in a relation with three or
more attributes in which independent attributes appear to have rela-
tionships they do not have. Formally, in a relation R (A, B, C), having
key (A, B, C) where A is matched with multiple values of B (or of C
or of both), B does not determine C, and C does not determine B.
An example is the relation EMPLOYEE (EmpNumber, EmpSkill,
DependentName), where an employee can have multiple values of
EmpSkill and DependentName. EmpSkill and DependentName do
not have any relationship, but they do appear to in the relation.

MySQL 5.7 Community Server: The current freely downloadable
version of Oracle’s MySQL database product.

MySQL 5.7 Workbench: The GUI utility used with MySQL 5.7.

N:M: An abbreviation for a many-to-many relationship between the
rows of two tables.

Natural join: A join of a relation A having attribute A1 with relation
B having attribute B1, where A1 = B1. The joined relation, C, con-
tains either column A1 or B1 but not both.

NetBeans IDE: A popular open source integrated development
environment (IDE).

Nonidentifying relationship: In data modeling, a relationship
between two entities such that one is not ID-dependent on the
other. See identifying relationship.

Nonrelational database: A database constructed on a methodology
other the relational database methodology.

Nonrepeatable read: A situation that occurs when a transaction
reads data it has previously read and finds modifications or dele-
tions caused by a committed transaction.

Nonunique identifier: An identifier that determines a group of
entity instances. See also unique identifier.

Nonunique key: A key that potentially identifies more than one row.

Normal form: A rule or set of rules governing the allowed structure
of relations. The rules apply to attributes, functional dependencies,

every relation must have at least one key that is the composite of
all the attributes in the relation. A key is sometimes called a logical
key. (2) With some relational DBMS products, an index on a col-
umn used to improve access and sorting speed. It is sometimes
called a physical key. See also nonunique key, unique key, and
physical key.

Key-value [NoSQL database category]: A nonrelational database
structure based on data values identified by key values.

Keyset cursor: An SQL cursor that combines some of the features
of static cursors with some of the features of dynamic cursors. See
also cursor, cursor type.

Keyspace: In a column family database, the set of possible key values.

LAMP: A version of AMP that runs on Linux. See AMP.

List: a set of values, usually written in a vertical column, of some
entity. The set may or may not be sorted in some ordering.

Local Area Networks (LANs): A computer network that operates
with computers in a definable small area, such as a business or
university.

Lock: To allocate a database resource to a particular transaction in
a concurrent-processing system. The size at which the resource can
be locked is known as the lock granularity. See also exclusive lock
and shared lock.

Lock granularity: The size of the object accessed with a lock.

Log: A file that contains a record of database changes. The log con-
tains before-images and after-images.

Logical unit of work (LUW): An equivalent term for transaction.
See transaction.

Lost update problem: Same as concurrent update problem.

Mandatory: In a relationship, when the minimum number of entity
instances that must participate in a relationship is one, then par-
ticipation in the relationship is said to be mandatory. See also mini-
mum cardinality, optional.

MapReduce: A big data processing technique that breaks a data
analysis into many parallel processes (the Map function) and then
combines the results of these processes into one final result (the
Reduce function).

MAX: In SQL, an aggregate function that determines the largest
value in a set of numbers. See SQL built-in aggregate functions.

Maximum cardinality: (1) The maximum number of values that an
attribute can have within a semantic object. (2) In a relationship
between tables, the maximum number of rows to which a row of
one table can relate in the other table.

Measure: In OLAP, a data value that is summed, averaged, or pro-
cessed in some simple arithmetic manner.

Metadata: Data concerning the structure of data in a database
stored in the data dictionary. Metadata are used to describe tables,
columns, constraints, indexes, and so forth.

Method: A program attached to an object in object-oriented pro-
gramming or in an object-oriented or object-relational database.

Microsoft Azure: Microsoft’s cloud computing infrastructure pro-
vided by several data centers managed by Microsoft. The original
name was Windows Azure.

Microsoft Edge: A Web browser introduced in and distributed in
the Microsoft Windows 10 OS.

Microsoft Internet Explorer: The Web browser used by Microsoft
before Microsoft Edge.

Microsoft SQL Server 2016: The current release of Microsoft’s
SQL Server product. It is available in several editions, including
the freely downloadable Developer edition and Express edition.

Z02_KROE1533_08_SE_GLOS.indd 547 11/21/16 6:48 PM

548 Glossary

determines the required driver, loads it into memory, and coordi-
nates activity between the application and the driver. On Windows
systems, it is provided by Microsoft.

OLAP cube: In OLAP, a set of measures and dimensions arranged,
normally, in the format of a table.

OLAP report: The output of an OLAP analysis in tabular format.
For example, this can be a Microsoft Excel PivotTable. See OLAP
cube.

OLE DB: The Component Object Model (COM) based foundation
of data access in the Microsoft world. OLE DB objects support the
OLE object standard. ADO is based on OLE DB.

1:1: An abbreviation for a one-to-one relationship between the rows
of two tables.

1:N: An abbreviation for a one-to-many relationship between the
rows of two tables.

Online analytical processing (OLAP): A technique for analyzing
data values, called measures, against characteristics associated with
those data values, called dimensions.

Online transaction processing (OLTP) system: An operational
database system available for, and dedicated to, transaction
processing.

Open Database Connectivity (ODBC): A standard means for
accessing DBMS products. Using ODBC, the unique API of a
DBMS is hidden, and the programmer writes to the standard
ODBC interface.

Operational system: A database system in use for the operations of
the enterprise, typically an OLTP system. See online transaction
processing (OLTP) system.

Optimistic locking: A locking strategy that assumes no conflict
will occur, processes a transaction, and then checks to determine
whether conflict did occur. If so, the transaction is aborted. See also
deadlock and pessimistic locking.

Optional: In a relationship, when the minimum number of entity
instances that must participate in a relationship is zero, then par-
ticipation in the relationship is said to be optional. See also manda-
tory, minimum cardinality.

Oracle Database Express Edition (Oracle Database XE): The
express edition of Oracle Database, Oracle’s relational database
product. It is a free, entry-level version that is easier to install and
administer, but it is lacking some advanced features.

Oracle SQL Developer: The GUI utility for Oracle Database and
Oracle Database XE.

Outer join: A join in which all the rows of a table appear in the
resulting relation, regardless of whether they have a match in the
join condition. In a left outer join, all the rows in the left-hand
relation appear; in a right outer join, all the rows in the right-hand
relation appear.

Parent: A row, record, or node on the one side of a one-to-many
relationship. See also child.

Parent entity: An entity on the one side of a one-to-many relation-
ship. See also child entity.

Parent mandatory and child mandatory (M-M): A relationship
where the minimum cardinality of the parent is 1 and the minimum
cardinality of the child is 1.

Parent mandatory and child optional (M-O): A relationship where
the minimum cardinality of the parent is 1 and the minimum cardi-
nality of the child is 0.

Parent optional and child mandatory (O-M): A relationship where
the minimum cardinality of the parent is 0 and the minimum cardi-
nality of the child is 1.

multivalued dependencies, domains, and constraints. The most
important normal forms are 1NF, 2NF, 3NF, BCNF, 4NF, 5NF, and
DK/NF.

Normalization: (1) The process of constructing one or more rela-
tions such that in every relation the determinant of every functional
dependency is a candidate key (BCNF). (2) The process of remov-
ing multivalued dependencies (4NF). (3) In general, the process of
evaluating a relation to determine whether it is in a specified nor-
mal form and of converting it to relations in that specified normal
form, if necessary.

Normalization process: The process of evaluating a relation to
determine whether it is in a specified normal form and, if necessary,
of converting it to relations in that specified normal form.

NoSQL: See Not only SQL.

Not only SQL: Actually referring to the creation and use of non-
relational DBMS products instead of just not using the SQL
language, this movement was originally mislabeled as the NoSQL
movement. Such systems may or may not use SQL-like query lan-
guages for data retrieval. It is now recognized that both relational
and nonrelational DBMS products are needed in management
information systems and that they must interact with each other.
Thus, the term not only SQL.

Null value: An attribute value that has never been supplied. Such
values are ambiguous and can mean the value is unknown, the
value is not appropriate, or the value is known to be blank.

Object: In object-oriented programming, as well as both object-
oriented and object-relational databases, an abstraction that is
defined by its properties and methods. See also object-oriented
programming (OOP).

Object persistence: Permanently storing the property values of an
object in a database.

Object-oriented DBMS (OODBMS): A type of DBMS that pro-
vides object persistence. OODBMSs have not received commercial
acceptance.

Object-oriented programming (OOP): A programming methodol-
ogy that defines objects and the interactions between them to cre-
ate application programs.

Object-relational database: A database created by a DBMS that
provides a relational model interface as well as structures for object
persistence. Oracle Database is the leading object-relational DBMS.

ODBC architecture: In ODBC, a three-tier Web server environ-
ment using (tier 1) a Web browser on the user’s computer, (tier 2)
a Web server storing the application Web pages, ODBC driver
manager and ODBC DBMS driver, and (tier 3) a database server
running the DBMS that contains the application database. See also
Open Database Connectivity (ODBC).

ODBC conformance level: In ODBC, definitions of the features
and functions that are made available through the driver’s applica-
tion program interface (API). A driver API is a set of functions that
the application can call to receive services. There are three confor-
mance levels: Core API, Level 1 API, and Level 2 API.

ODBC data source: In the ODBC standard, a database and its asso-
ciated DBMS, operating system, and network platform.

ODBC Data Source Administrator: The application used to create
ODBC data sources.

ODBC DBMS driver: In ODBC, a program that serves as an
interface between the ODBC driver manager and a particular
DBMS product. Runs on the client machines in a client-server
architecture.

ODBC driver manager: In ODBC, a program that serves as an
interface between an application program and an ODBC driver. It

Z02_KROE1533_08_SE_GLOS.indd 548 11/21/16 6:48 PM

Glossary 549

Parent optional and child optional (O-O): A relationship where the
minimum cardinality of the parent is 0 and the minimum cardinal-
ity of the child is 0.

Partitioning: For distributed databases, separating a database into
parts, which will normally be stored on separate DBMS servers.

Permissions: The various forms of interaction a user is allowed to
have with data in a database. These permissions, or privileges, are
typically granted to a user by either a DBA or the data’s creator to
allow other users to see or modify the data.

Personal computer (PC): Also known as a micro-computer, a small
computer intended for use by one person as his or her own computer.

Personal database system: A DBMS product intended for use by
an individual or small workgroup. Such products typically include
application development tools such as form and report generators
in addition to the DBMS. For example, Microsoft Access 2016.

Pessimistic locking: A locking strategy that prevents conflict by
placing locks before processing database read and write requests.
See also deadlock and optimistic locking.

Phantom read: A situation that occurs when a transaction reads
data it has previously read and then finds new rows that were
inserted by a committed transaction.

PHP: See PHP: Hypertext Processor.
PHP concatenation operator (.=): The operator used in PHP to

join to segments together. Commonly used to create code that
spans more than one line.

PHP plugin: For the NetBeans IDE, the additional set of capabili-
ties needed to make the IDE work well with files using PHP.

PHP: Hypertext Processor: A Web page scripting language used
to create dynamic Web pages. The name is intentionally recursive.
The language now includes an object-oriented programming com-
ponent and PHP Data Objects (PDO).

PivotTable: A Microsoft Excel data summarization tool that can be
used to produce OLAP reports. See also OLAP.

Platform as a service (PaaS): A type of cloud computing service that
supports the creating of applications in the cloud without requiring
the customer to rent and support a complete virtual server.

Point of Sale (POS) system: A database application used in retail
stores to record customer purchase data and to control inventory.

Primary key: A candidate key selected to be the key of a relation.

Processing rights and responsibilities: Organizational policies
regarding which groups can take which actions on specified data
items or other collections of data.

Properties: Same as attributes.

Query by Example (QBE): A style of query interface, first devel-
oped by IBM but now used by other vendors, that enables users
to express queries by providing examples of the results they seek.

Question mark (?) wildcard character: A character used in
Microsoft Access 2016 queries to represent a single unspecified
character. See SQL underscore (_) wildcard character.

Read committed isolation: A level of transaction isolation that pro-
hibits dirty reads but allows nonrepeatable reads and phantom reads.

Read uncommitted isolation: A level of transaction isolation that
allows dirty reads, nonrepeatable reads, and phantom reads to occur.

Record: (1) A group of fields pertaining to the same entity; used in
file-processing systems. (2) In the relational model, a synonym for
row and tuple. See also row.

Recovery via reprocessing: Recovering a database by restoring the
last full backup, and then recreating each transaction since the
backup.

Recovery via rollback/rollforward: Recovering a database by
restoring the last full backup, and then using data stored in a
transaction log to modify the database as needed by either adding
transactions (roll forward) or removing erroneous transactions
(rollback).

Recursive relationship: A relationship among entities, objects, or
rows of the same type. For example, if CUSTOMERs refer other
CUSTOMERs, the relationship is recursive.

Redundant arrays of independent disks (RAID): a group of tech-
niques for placing data onto several physical disks that act as one
logical disk to gain reliability or access speed.

Referential integrity constraint: A relationship constraint on for-
eign key values. A referential integrity constraint specifies that the
values of a foreign key must be a subset of the values of the primary
key to which it refers.

Related tables: Tables in a relational database that are connected by
a foreign key column and a referential integrity constraint.

Relation: A two-dimensional array that contains single-value entries
and no duplicate rows. The meaning of the columns is the same in
every row. The order of the rows and columns is immaterial.

Relational database: A database that consists of relations. In practice,
relational databases contain relations with duplicate rows. Most
DBMS products include a feature that removes duplicate rows when
necessary and appropriate. Such removal is not done as a matter of
course because it can be time-consuming and expensive.

Relational DBMS Service (RDS): A part of Amazon’s AWS that
provides a relational database service in the cloud.

Relational model: A data model in which data are stored in relations
and relationships between rows are represented by data values.

Relational schema: A set of relations with referential integrity
constraints.

Relationship: An association between two entities, objects, or rows
of relations.

Relationship cardinality constraint: A constraint on the number of
rows that can participate in a relationship. Minimum cardinality
constraints determine the number of rows that must participate;
maximum cardinality constraints specify the largest number of
rows that can participate. See also maximum cardinality, minimum
cardinality

Relationship class: An association between entity classes.

Relationship instance: (1) An association between entity instances,
(2) a specific relationship between two tables in a database.

Repeatable reads isolation: A level of transaction isolation that
disallows dirty reads and nonrepeatable reads. Phantom reads can
occur.

Replication: In distributed databases, the act of maintaining mul-
tiple copies of the same data (relation or partition) on more than
one computer.

Report: A formatted set of information created to meet a user’s need.

Reporting systems: Business intelligence (BI) systems that process
data by filtering, sorting, and making simple calculations. OLAP is
a type of reporting system.

Requirements analysis stage: The stage in the system development
life cycle where the data model is created. See also systems develop-
ment life cycle (SDLC).

Resource locking: See lock.

RFM analysis: A type of reporting system in which customers are
classified according to how recently (R), how frequently (F), and
how much money (M) they spend on their orders.

Z02_KROE1533_08_SE_GLOS.indd 549 11/21/16 6:48 PM

550 Glossary

Rollback: A process that involves recovering a database in which
before-images are applied to the database to return to an ear-
lier checkpoint or other point at which the database is logically
consistent.

Rollforward: A process that involves recovering a database by
applying after-images to a saved copy of the database to bring it
to a checkpoint or other point at which the database is logically
consistent.

Router: Networking devices used to move messages across the
Internet and other connected networks.

Row: A group of columns in a table. All the columns in a row per-
tain to the same entity. Also known as tuple or record.

Schema-valid document: An XML document that conforms to
XML Schema.

Scrollable cursor: A cursor type that enables forward and backward
movement through a recordset. Three scrollable cursor types dis-
cussed in this text are snapshot, keyset, and dynamic.

Second normal form (2NF): A relation in first normal form in
which all non-key attributes are dependent on all the keys.

Self-describing: In a database, the characteristic of including data
about the database in the database itself. Thus, the data that define
a table are included in a database along with the data that are con-
tained in that table. These descriptive data are called metadata. See
also metadata, relation, table.

Serializable isolation level: A level of transaction isolation that dis-
allows dirty reads, nonrepeatable reads, and phantom reads.

Server: A robust computer operated by information systems staff
and used to run the server portion of client-server application such
as Web pages and email. Servers are thus said to provide services to
users. See also service, client-server architecture.

Server cluster: A group of servers that communicate and coordinate
with each other.

Service: The provision of some utility to users. For example, a Web
server provides the Web service, which is providing Web pages to
users. See also server.

Shared lock: A lock against a data resource in which no transaction
can update the data but many transactions can concurrently read
those data.

Single-tier driver: In Open Database Connectivity (ODBC), a
ODBC driver that processes both ODBC calls and SQL state-
ments. See also Open Database Connectivity (ODBC).

Slowly changing dimension: In a dimensional database, a data col-
umn with values that change occasionally but irregularly over time;
for example, a customer’s address or phone number.

Smartphone: A cell phone that is capable of running user client
applications (apps) in a client-server environment. See also cell
phone, client-server architecture.

Software as a service (SaaS): An arrangement whereby a customer
pays for access to specific software (e.g. a relational or NoSQL
database management system) in the cloud.

SQL: See Structured Query Language (SQL).

SQL AND logical operator: The SQL logical operator used to com-
bine conditions in an SQL WHERE clause.

SQL built-in aggregate function: In SQL, any of the functions
COUNT, SUM, AVG, MAX, or MIN.

SQL CREATE TABLE statement: The SQL command used to
create a database table.

SQL CREATE VIEW statement: The SQL command used to cre-
ate a database view.

SQL FROM clause: The part of an SQL SELECT statement that
specifies conditions used to determine which tables are used in a
query.

SQL GROUP BY clause: The part of an SQL SELECT statement
that specifies conditions for grouping rows when determining the
query results.

SQL HAVING clause: The part of an SQL SELECT statement that
specifies conditions used to determine which groupings appear in
the results of an SQL GROUP BY clause.

SQL OR logical operator: The SQL logical operator used to specify
alternate conditions in an SQL WHERE clause.

SQL ORDER BY clause: The part of an SQL SELECT statement
that specifies how the query results should be sorted when they are
displayed.

SQL percent sign (%) wildcard character: The standard SQL
wildcard character used to specify multiple characters. Microsoft
Access uses an asterisk (*) character instead of the underscore
character.

SQL SELECT clause: The part of an SQL SELECT statement that
specifies which columns are in the query results.

SQL SELECT/FROM/WHERE framework: The basic structure
of an SQL query. See SQL SELECT clause, SQL FROM clause,
SQL WHERE clause, SQL ORDER BY clause, SQL GROUP BY
clause, SQL HAVING clause, SQL AND operator, and SQL OR
operator.

SQL SELECT * statement: A variant of an SQL SELECT query
that returns all columns for all tables in the query.

SQL SELECT … FOR XML statement: A variant of an SQL
SELECT query that returns the query results in XML format.

SQL underscore (_) wildcard character: The standard SQL wildcard
character used to specify a single character. Microsoft Access uses a
question mark (?) character instead of the underscore character.

SQL view: A relation that is constructed from a single SQL
SELECT statement. The term view in most DBMS products,
including Microsoft Access, Microsoft SQL Server, Oracle
Database, and MySQL, means SQL view.

SQL WHERE clause: The part of an SQL SELECT statement that
specifies conditions used to determine which rows are in the query
results.

SQL/Persistent stored modules (SQL/PSM): SQL statements that
extend SQL by adding procedural programming capabilities, such
as variables and flow-of-control statements, and thus provide some
programmability within the SQL framework. SQL/PSM is used to
create user-defined functions, stored procedures, and triggers. See
also trigger, stored procedure, user-defined function.

Star schema: In a dimensional database and as used in an OLAP data-
base, the structure of a central fact table linked to dimension tables.

Statement-level consistency: A situation in which all rows affected
by a single SQL statement are protected from changes made
by other users during the execution of the statement. See also
transaction-level consistency.

Static cursor: A cursor that takes a snapshot of a relation and pro-
cesses that snapshot.

Storage area network (SAN): a dedicated network connecting
server computers to external storage devices.

Stored procedure: A collection of SQL statements stored as a file
that can be invoked by a single command. Usually, DBMS products
provide a language for creating stored procedures that augments
SQL with programming language constructs. Oracle provides PL/
SQL for this purpose, and SQL Server provides Transact-SQL

Z02_KROE1533_08_SE_GLOS.indd 550 11/21/16 6:48 PM

Glossary 551

(T-SQL). With some products, stored procedures can be written
in a standard language such as Java. Stored procedures are often
stored within the database.

Strong entity: In the entity-relationship model, any entity whose
existence in the database does not depend on the existence of any
other entity. See also ID-dependent entity and weak entity.

Structured Query Language (SQL): A language for defining the
structure and processing of a relational database. It can be used as
a stand-alone query language, or it can be embedded in applica-
tion programs. SQL was developed by IBM and is accepted as a
national standard by the American National Standards Institute.

Subquery: A SELECT statement that appears in the WHERE
clause of an SQL statement. Subqueries can be nested within each
other.

Subtype entity: In generalization hierarchies, an entity or object that
is a subspecies or subcategory of a higher-level type, called a super-
type. For example, ENGINEER is a subtype of EMPLOYEE.

SUM: In SQL, an aggregate function that adds up a set of numbers.
See SQL built-in aggregate functions.

Super column: In column family nonrelational DBMSs, a set of
columns.

Super column family: In column family nonrelational DBMSs, a set
of rows, each of which consists of a key and a set of supercolumns.

Supertype entity: In generalization hierarchies, an entity or object
that logically contains subtypes. For example, EMPLOYEE is a
supertype of ENGINEER, ACCOUNTANT, and MANAGER.

Surrogate key: A unique, system-supplied identifier used as the
primary key of a relation. The values of a surrogate key have no
meaning to the users and usually are hidden on forms and reports.

Synonyms: Terms or words that mean the same thing.

System data source: An ODBC data source that is local to a single
computer and can be accessed by that computer’s operating system
and select users of that operating system.

System definition stage: The initial stage of the systems devel-
opment life cycle (SDLC) where the project requirements and
constraints are established, and the project team created. See also
systems development life cycle (SDLC).

Systems development life cycle (SDLC): The five-stage cycle used
to develop management information systems. It consists of the
following stages: (1) system definition, (2) requirements analysis,
(3) component design, (4) implementation, and (5) system mainte-
nance. See also system design stage.

Table: A database structure of rows and columns to create cells that
hold data values. Also known as a relation in a relational database,
although strictly only tables that meet specific conditions can be
called relations. See relation.

Tablet: A handheld user device that can run user client applica-
tions. Similar to a cell phone, but generally larger and without the
telephone capability.

Tablet computers: A person computer (PC) in a tablet format. See
also tablet.

Ternary relationship: A relationship between three entities.

Third normal form (3NF): A relation in second normal form that
has no transitive dependencies.

Three-tier architecture: A Web database processing architecture in
which the DBMS and the Web server reside on separate computers.

Time dimension: A required dimension table in a dimensional data-
base. The time dimension allows the data to be analyzed over time.

Transaction: (1) A group of actions that is performed on the data-
base atomically; either all actions are committed to the database or
none of them are. (2) In the business world, the record of an event.
See also ACID transaction and atomic transaction.

Transaction control language (TCL): SQL statements that are used
to mark transaction boundaries and control transaction behavior.

Transaction isolation level: The degree to which a database trans-
action is protected from actions by other transactions. The 1992
SQL standard specifies four isolation levels: read uncommitted,
read committed, repeatable read, and serializable.

Transaction-level consistency: A situation in which all rows affected
by any of the SQL statements in a transaction are protected from
changes during the entire transaction. This level of consistency is
expensive to enforce and is likely to reduce throughput. It might
also prevent a transaction from seeing its own changes. See also
statement-level consistency.

Transactional system: A database dedicated to processing transac-
tions such as product sales and orders. It is designed to make sure
that only complete transactions are recorded in the database.

Transitive dependency: In a relation having at least three attributes,
such as R (A, B, C), the situation in which A determines B and B
determines C, but B does not determine A.

Trigger: A special type of stored procedure that is invoked by the
DBMS when a specified condition occurs. BEFORE triggers are
executed before a specified database action, AFTER triggers are
executed after a specified database action, and INSTEAD OF trig-
gers are executed in place of a specified database action. INSTEAD
OF triggers are normally used to update data in SQL views.

Tuple: See row.

Two-phase locking: A procedure in which locks are obtained and
released in two phases. During the growing phase, the locks are
obtained; during the shrinking phase, the locks are released. After
a lock is released, no other lock will be granted that transaction.
Such a procedure ensures consistency in database updates in a
concurrent-processing environment.

Two-tier architecture: A Web database processing architecture in
which the DBMS and the Web server reside on the same computer.

UML: See Unified Modeling Language (UML).

Unary relationship: A relationship between a table and itself. Also
called a recursive relationship.

Unified Modeling Language (UML): A set of structures and tech-
niques for modeling and designing object-oriented programs and
applications. UML is a methodology and a set of tools for such
development. UML incorporates the entity-relationship model for
data modeling.

Unique identifier: An identifier that determines exactly one entity
instance. See also nonunique identifier.

Unique key: A key that identifies a unique row.

Use case: In systems analysis and design, a detailed example of how
a user interacts with an information system or application.

User: A person using an application.

User account: An account for a specific user on a particular system
See also user.

User data source: An ODBC data source that is available only to
the user who created it.

User-defined function [stored procedure]: A stored set of SQL
statements that is called by name from another SQL statement,
that may have input parameters passed to it by the calling SQL

Z02_KROE1533_08_SE_GLOS.indd 551 11/21/16 6:48 PM

552 Glossary

statement, and that returns an output value to the SQL statement
that called the function.

User group: A group of users. See user.
Virtual machine: A software emulation of a computer system. See

also virtualization.

Virtual machine manager: the software on the host computer that
controls the virtual computers running on that host. See hypervisor.

Virtualization: a technique for sharing the hardware resources of
one physical computer by having it host one or more virtual com-
puters (virtual machines).

W3: A synonym for the World Wide Web. See also World Wide
Web.

WAMP: AMP running on a Windows operating system. See AMP.

Weak entity: In the entity-relationship model, an entity whose
logical existence in a database depends on the existence of another
entity. See also ID-dependent entity and strong entity.

Web (the): A synonym for the World Wide Web. See also World
Wide Web.

Web 2.0: Web sites that allow users to contribute content.

Web browser: The software that is used to connect to and interact
with Web pages.

Web Services: A set of XML standards that enable applications to
consume each other’s services using Internet technology.

Web sites: Locations on the World Wide Web. See also World
Wide Web.

Well-formed relation: A relation in which every determinant is a
candidate key. Any relation that is not well-formed should be nor-
malized into two or more relations that are well formed.

Wildcard characters: In SQL, characters that are used to repere-
sent one or more unknown characters in the WHERE claise of a
SELECT query.

World Wide Web: The set of interconnected hypertext objects
accessible on the Internet, organized into Web sites.

World Wide Web Consortium (W3C): The group that creates,
maintains, revises, and publishes standards for the World Wide
Web including HTML, XML, and XHMTL.

WWW: A synonym for the World Wide Web. See also World Wide
Web.

wwwroot folder: The root folder or directory of a Web site on a
Microsoft IIS Web server.

XHTML: The Extensible Hypertext Markup Language. A refor-
mulation of HTML to XML standards of well-formed documents.

XML: See Extensible Markup Language (XML).

XML Web Services: An XML based Web service, where a Web
service is a service proved over the Internet from one host to
another.

Z02_KROE1533_08_SE_GLOS.indd 552 11/21/16 6:48 PM

Index

Symbols
.NET, 430
<?php, 444, 446
?>, 444, 446

A
*.accdc file extension, 410
*.accde file extension, 404
Access Workbench. See also Microsoft Access

2016
business intelligence systems using, 518–531
database administration in, 392–412
explanation of, 23–24
Microsoft Access QBE, 206–212
multiple tables and, 101–118
queries in, 202–215
relationships in, 348–354
steps to get started, 31–60
Web database processing using, 462–477

ACID transaction, 376
Active Data Objects (ADO), 424, 430
Active Server Pages (ASP), 366, 367, 424, 430
ActiveX controls, 394
ActiveX specification, 394
ADO.NET, 424, 430
After-images, 389
Aggregate functions, SQL, 177–180
Allow Zero Length field property, 217n
Alternate key, 75
ALTER TABLE statement, 201
Amazon.com, 4, 489
Amazon Web Services (AWS), 31, 513
American National Standards Institute (ANSI),

SQL standards, 133
AMP, 430
AND keyword, 160
Android operating system, 4
Apache, 430
Apache Software Foundation, 30
App, 423
Apple II, 4
Apple iPad, 423
Application Programming Interface

(API), 429
Apps, 4
Arabaco Small Business, 513
ARPANET, 4
ASC keyword, 168
AS keyword, 177, 190
ASP.NET, 424, 427, 430
Association entities

example of, 279–280
explanation of, 280

Association relationship, 335
Associative entities

example of, 279–280, 335
explanation of, 280

Asterisk (*), 161, 175
Asymmetric cryptography, 407

Atomic transactions, 368, 376
Attributes, 73, 119, 268, 289
Authentication, 380
Authorization, 380
AUTO_INCREMENT, 78, 80, 153
AutoNumber (data type), 41, 42
AVG, 177
Azure cloud service (Microsoft), 30, 31

B
Backup. See Database backup and recovery
Banded form editors, 301
Banded report editors, 301
Before-images, 389
BETWEEN comparison operator, 166, 172
Big Data

explanation of, 30, 62, 488–490
Not only SQL movement and, 513–517
storage capacity terms and, 489

Bigtable (Google), 514
Binary relationships

cardinality and, 271–272
explanation of, 270
types of, 270–271

Boyce-Codd Normal Form (BCNF), 89, 99, 321
Browsing, 4
Built-in functions. See SQL built-in functions
Business intelligence (BI) systems, 30, 61, 489

explanation of, 491
operational systems vs., 491
using Microsoft Access, 518–531

Business rules, 140

C
Calculations, SQL built-in functions and,

177–180
Candidate key, 119

explanation of, 74
functional dependency and, 87

Cardinality
binary relationships and, 271–272
explanation of, 271
maximum, 271–272
minimum, 271

Cartesian product, 186
CASCADE keyword, 150–151
Cascade Update Related Fields check

box, 230, 231
Cassandra (Apache Software Foundation), 30
Cell phone, 4, 422
Cellular network, 423
Certificate, digital, 407–408
Character (data type), 40
Character string patterns, SQL WHERE clauses

using, 172–175
CHECK constraint, 142
Checkpoints, 390–391
Chen, Peter, 267
Child entity, 271, 330

Click-stream data, 494
Client, 423
Client applications, 7, 62
Client-server application processing, 428
Client-server architecture, 7, 423
Close button, 38
Cloud computing, 30–31, 62, 511, 513
Codd, Edgar Frank (E. F.), 70, 84, 99, 119
Column families, 515
Column family databases, 514–516
Column name, 515
Column order, specifying in SQL queries from

single tables, 161–162
Columns, 42, 119

adding to QBE query, 209
adjusting width of, 51
column family databases and, 515
deleting in Microsoft Access table, 304–305
explanation of, 70–71
ID column, 13–14
properties of, 320, 341–343
reading from single tables, 160–161, 167
relations and, 70, 71
row selector, 52
tab key to move from one column to

another, 44
in tables, 10

Column value (or datum), 515
Comparison operators, 165, 166
Component design stage, 265, 317
Composite identifiers, 269
Composite key, 74, 119
Conceptual design (conceptual

schema), 267
Concurrency, 20
Concurrency control

atomic transactions and, 368
deadlock and, 372
function of, 368
lost updates and, 370–371
optimistic vs. pessimistic locking and,

372–374
resource locking and, 371–372
serializable transactions and, 372
transaction processing and, 369–370

Concurrent transactions, 369–370
Concurrent update problem, 371
Conformed dimensions, 502–503
Consistent transactions, 376–377
CONSTRAINT keyword, 149
Correlated subquery, 193
COUNT, 177
Create command tab, 42, 58, 203
CREATE TABLE statement, 142–143,

154, 157
CROSS JOIN, 186
Crow's foot symbol, 273
Cursors, 378–379
CUSTOMER entity, representing, 321–323

553

Z03_KROE1533_08_SE_IDX.indd 553 11/21/16 6:48 PM

http://Amazon.com
http://ado.net
http://asp.net

554 Index

Customer relationship management (CRM)
system, 513

example of, 32–60
explanation of, 32

D
Data

defining, 4
deleting, 52–53
inserted into tables, 48–51, 54–57
Microsoft Access SQL to insert, 48,

224–227
modified in tables, 51–52
modifying using a form, 57
problems when reading from database,

377–378
Data administration, 365
Data analysis, 29–30
Database administration

administrative responsibilities for, 391
concurrency control in, 368–374
control, security, and reliability in, 366–368
cursor types and, 378–380
database backup and recovery in, 387–391
database security and, 380–387
explanation of, 365
functions of, 365–366
in Microsoft Access, 392–412
overview of, 365–366
SQL transaction control language and declar-

ing lock characteristics for, 374–378
Database administrator (DBA), 366, 391
Database application programs

explanation of, 18
functions of, 21–23

Database backup and recovery, 21
function of, 387
recovery via reprocessing and, 387–388
recovery via rollback and rollforward and,

387, 388–391
Database design

data models transformed into, 265–266,
318–320

dual use of term, 264
enforcing referential integrity, 344–347
entities in relational model and, 267–268
example of, 282–290
explanation of, 265–266
purpose of, 318
relationships in, 269–281
software products, 334
stages of, 318

Database development process
explanation of, 265
requirements analysis stage of, 266–267
stages in, 265–266, 317

Database integrity, 85
Database management system (DBMS)

database in, 18–19
data types and, 144–148
date and time values, 165
explanation of, 18, 61
functions of, 20–21
personal vs. enterprise-class, 23–28
purpose of, 20
security and, 380–381, 385–386 (See also

Database security)
SQL and, 152–155
submitting SQL statements to, 162–163

Database owner (dbo), 76, 153
Database processing applications. See also Web

application database processing
client/server and traditional, 428
in Microsoft Access, 462–477
overview of, 422–424
queries, forms, and reports, 427–429
SQL/PSM, 428–429
Web, 436–449
XML and, 458–461

Database processing environment, 367
Databases

column family, 514–516
components of, 18
contents of, 19
distributed, 507–510
explanation of, 18–19, 61
importance in Internet and mobile app world,

4–7
nonrelational, 30
NoSQL, 30, 62, 490
object-relational, 510
prototype, 290
searching in Web browser, 5
SQL and inserting data into, 48,

224–227
ubiquity of, 3
use of, 6–7

Database schema, 73
Database security

application-level, 386–387
DBMS, 385–386
function of, 380
in Microsoft Access, 392–412
overview of, 380
user accounts and, 381
user processing rights and responsibilities

and, 381–384
Database servers, 24
Database tables. See Relational database tables
Database Tools command tab, 110, 111
Database Tools/Relationships command, 110
Data center, 31
Data constraints, 320
Data control language (DCL), 134
Data definition language (DDL)

explanation of, 134
foreign keys with table constraints and,

150–152
primary keys with table constraints and,

149–150
SQL for, 141–155
submitting SQL to the DBMS and, 152–155
table constraint modification and deletion

and, 200–202
Data entry form, 48, 54–55
Data Integrity warning dialog box, 223
Data manipulation language (DML)

data modification and deletion and, 197–200
explanation of, 134, 155
grouping rows using SQL Select statements,

180–182
inserting data and, 155–159
multiple table queries and, 183–197
queries that perform calculations and,

177–180
single table queries and, 160–162, 164–176
submitting SQL statements to DBMS,

162–163

Data marts, 494, 495
Data mining applications, 491, 492
Data models

entities and, 319
explanation of, 317, 318
N:M relationship in, 331–334
prototyping and, 289–290
transformed into database

design, 265, 318–320
Datasheet

explanation of, 48
rows in, 52–54

Datasheet view
deleting rows in tables in, 52–54
explanation of, 48
inserting data into tables in, 48–51
modifying data in tables in, 51–52

Data source, 441
Data source name (DSN), 431
Data sublanguage, SQL as, 133
Data Type Field Size property, 44
Data Type Required property, 44
Data types

for DBMS products, 144–148
explanation of, 320
in Microsoft Access, 40, 41
Web database applications, 426

Data warehouse metadata database, 494
Data warehouses

components of, 493–494
data marts vs., 494–495
explanation of, 493
use of, 30, 61

Date dimension, 496
DBA, 366, 391. See also Database administrator
DBMS. See Database management system

(DBMS)
DBMS-specific design, 318
DB2, 20
Deadlock, 372, 373
Deadly embrace, 372
Decimal Places field property, 218
Decision trees, 490, 492
Default for new databases check box, 140
DEFAULT keyword, 142, 143, 144
Default value, 320
Default Value field property, 218
Default Value text box, 221
Default Web Site folder, 438
Delete, 11
Deletion Warning Dialog Box, 53
Denormalization, 323–324
DESC keyword, 168
Design stage, 265
Design view

explanation of, 42, 48, 50
opening Access query window

in, 202, 204
Determinant, 85, 119
Devices, 423

client applications on, 7
users of, 6

Digital certificate, 407–408
Digital signature, 407
Digital signature scheme, 407
Dimension, 495
Dimensional databases

characteristics of, 495
explanation of, 495

Z03_KROE1533_08_SE_IDX.indd 554 11/21/16 6:48 PM

Index 555

fact tables and conformed dimensions
and, 502–503

OLAP and, 503–507
star schema and, 496–501

Dimensional model, illustrating, 501
Dimension tables, 496, 498
Dirty read, 377
Discriminator, 280
DISTINCT keyword, 164
Distributed databases

challenges of, 509–510
explanation of, 507–508
types of, 508–509

Distributed two-phase locking, 509
DNA-derived genomics data, 488
Document database, 514
Document type definition (DTD), 442
Dollar sign symbol ($), 447
Domain, 71
Domain integrity constraint, 71, 85
Domain key/normal form (DK/NF), 100
Drill down, 506
Driver, 431
Durable transaction, 376
Dynamic cursor, 379
DynamoDB, 513

E
EC2 (Elastic Compute Cloud) service, 513
Edit Relationships dialog box, 110, 113, 230
Enable Content button, 40, 393, 394
Encryption

in Microsoft Access database, 402–404
passwords and, 400–401

Enforce Referential Integrity check box, 110,
112, 113, 230, 231, 350, 353

eNom, 513
Enter Parameter Value dialog box, 215
Enterprise-class database systems

explanation of, 23
personal vs., 23–28

Enterprise data warehouse (EDW) architecture,
494

Enterprise Virtualization (Red Hat), 511
Entities, 119

associative, 279–280, 335
explanation of, 70, 267
ID-dependent, 275–276
represented with relational model, 319–327
strong, 275, 327–333
subtype, 280–281
supertype, 280
tables vs., 270
weak, 275, 277–279, 325–327

Entity class, 267
Entity instance, 268
Entity integrity constraint, 75, 85
Entity-relationship (E-R) diagrams

example of, 282–290
explanation of, 272

Entity-relationship (E-R) model
associative entities and, 279–280
attributes in, 268
explanation of, 267
extended, 267
ID-dependent entities and, 275–276
identifiers in, 268–269
IE Crow's foot E-R model and, 273–275
non-ID-dependent weak entities in, 277–279

recursive relationships and, 281
relationships in, 269–272
subtype entities and, 280–281
variations of, 272–273
variations of E-R model and, 273
weak entities and, 275

E-R diagrams. See Entity-relationship (E-R)
diagrams

E-R model. See Entity-relationship (E-R) model
ERwin Data Modeler, 334
Ethernet networking technology, 4
Exclusive lock, 372
Exclusive Mode, 401
Exclusive subtypes, 281
Explicit join, 185
Explicit locks, 371
Extended entity-relationship (E-R) model, 267
Extensible Markup Language (XML), 133

database processing and, 459
explanation of, 439, 458
HTML vs., 459
importance of, 458
JSON and, as data description languages, 461
as markup language, 459
Web services, 459–461

Extract, transform, and load (ETL) system, 493

F
Facebook, 4, 62, 488
Fact tables, 496, 497, 498, 502
Fagin, R., 100
Field, 42, 73, 119
Field Name column, 42
Fields, 10
Field Size field property, 217
Fifth normal form (5NF), 100
File command tab, 140
File data source, 431
Files, 73, 119
First normal form (1NF), 89, 99
FOREIGN KEY constraint, 82, 142
Foreign keys, 119

explanation of, 80–81
referential integrity and, 80–83
table constraints and, 150–152

Format field property, 218
Format text box, 220
Forms

in database processing, 427–428
explanation of, 54
modifying data and deleting records with, 57

Form Wizard, 54, 55
Forward-only cursor, 378
Fourth normal form (4NF), 98, 100, 119
Functional dependencies, 119

explanation of, 85
multivalued dependencies and, 96–98
normalization and, 85–86
normalization examples and, 91–96
normalization process and, 89–91
primary and candidate keys and, 87
relational design and, 89

Functionally dependent, 85
Fusion and Workstation (VMare), 511

G
Generalized, non-DBMS-specific design, 318
Google Android operating system (OS), 423
Google Business Solutions, 513

Google Chrome, 422
Google Cloud Platform, 31
Graph database, 514
Graphical user interface (GUI), 134
Greater than or equal to comparison operator,

172
GROUP BY clause, 180, 181
Grouping, SQL built-in functions and, 180–182

H
Hadoop Distributed File System (HDFS), 516
HAS-A relationship, 272, 281
HAVING clause, 182
HBase, 516
Hosting services, in the cloud, 513
Host machine, 511
HostMonster, 513
HTML. See Hypertext Markup Language

(HTML)
HTML5, 439
http://localhost, 438
Hypertext Markup Language (HTML), 430

document tags, 439
explanation of, 439
index.html and, 440–442
syntax rules, 439
Web pages and, 440–442
XML vs., 459

Hypervisor, 511, 512

I
IBM Corporation, 133
IBM Personal Computer (IBM PC), 4
ID column, 13–14
ID-dependent entities, 275–277
Identifiers

composite, 269
explanation of, 268
keys vs., 269
nonunique, 269
unique, 269

Identifying relationship, 276
Identity, 79
Identity increment, 77, 79
IDENTITY (M, N) property, 150
Identity seed, 77, 79
IE Crow's Foot model, 273–275
Implementation stage, 266
Implicit join, 185
Implicit locks, 371
Inclusive subtypes, 281
IN comparison operator, 166, 171
Inconsistent read problem, 371–372
Index, DBMS, 20
Indexed field property, 220, 222–223, 352
index.html, 440–442, 474, 476
inetpub folder, 437
Information Engineering (IE) model, 273
Infrastructure as a service (IaaS), 513
Inner joins, 186, 193–197
Insert, 11
Instance, 10
Integrated Definition 1, Extended (IDEFIX),

273
Integrated Development Environment (IDE),

443
International Organization for Standardization

(ISO), 133
Internet, 4, 6, 61, 422

Z03_KROE1533_08_SE_IDX.indd 555 11/21/16 6:48 PM

http://localhost

556 Index

Internet Information Services (IIS), 437–438
Internet Information Services Manager, 438
Intersection table, 332–333
"In the cloud," 30
iPhone, 4
IS-A relationship, 281
Is identity setting, 77, 79
IS keyword, 176
IS NOT NULL comparison operator, 166, 176
IS NULL comparison operator, 166, 176
Isolation levels, 377, 378
isstart.htm, 438
ITEM entity, representing, 319–321

J
JavaScript, 426
JavaScript Object Notation (JSON), 461
Java Server Pages (JSP), 366, 367, 427, 430
Java technologies, 424
JOIN ON syntax, 188–193
Join operation, 185
Joins

implicit and explicit, 185
inner and outer, 186, 193–197
querying multiple tables with, 185–188
SQL join syntax and, 188–193
subqueries vs., 193

K
Keys

alternate, 75
candidate, 74, 75, 87, 119
composite, 74, 75, 119
explanation of, 42, 74
foreign, 80–83, 119
identifiers vs., 269
nonunique, 74, 119
primary, 42, 45, 46, 74, 75–79, 80, 87, 119
surrogate, 42, 79–80, 119, 159, 320
unique, 74, 75, 119

Keyset cursors, 379
Keyspace, 516
Key symbol, 46, 76, 77
Key-value database, 514

L
LAMP, 430
Large Hadron Collider, 488, 489
LEFT keyword, 196
Less than or equal to comparison operator, 172
LIKE comparison operator, 166, 172
LinkedIn, 488
Lists

function of, 7, 61
problems with, 7–9, 10

Local Area Networks (LANs), 4
Lock granularity, 372
Locking/locks

distributed two-phase, 509
exclusive, 372
explicit, 371
implicit, 371
optimistic vs. pessimistic, 372–374
resource, 371
shared, 372
two-phase, 372

Log, 388
Logical data modeling, 270
Logical design (logical schema), 267

Logical unit of work (LUW), 368
Long text (data type), 40
Lost update problem, 370–371

M
Make ACCDE command, 404
Mandatory relationship, 272
MapReduce, 516, 517
Market basket analysis, 490, 492
Markup language. See Extensible Markup

Language (XML)
Martin, James, 273
MAX, 177
Maximum cardinality, 271, 272
Measures, 497, 503
Metadata, 19
Methods, 510
Microsoft Access 2016, 24, 25. See also Access

Workbench
Allow Zero Length, 44n
banded form editors and report editors, 301
business intelligence (BI) system using,

518–531 (See also OLAP reports)
closing database and exiting, 37–38, 60, 118,

230–231, 308, 354
creating database table, 40–48
creating relationships between tables,

110–114
creating report to include data from two or

more tables, 297–301
creating single-table reports, 57–60
database administration in, 392–412
database column characteristics for tables,

135–139
database creation, 32–35
Datasheet view in, 48–54
data types, 40, 41
deleting columns in tables, 304–305
deleting rows in tables, 52–54
encryption in, 402–404
Enforce Referential Integrity check box, 110,

112, 113
in Exclusive Mode, 401
exporting HTML file from, 470–474
function of, 23
inserting data into tables, 48–51, 54–57
joins grouped using parentheses in, 193
Microsoft Office Fluent user interface,

35–37
modification problems, 101–107
modifying data and deleting records, 57
modifying data in tables, 51–52
opening database, 38–40, 102–105
options object designers page, 141
parameterized queries, 213–215
primary key in, 42, 76
prototyping using, 290–297
referential integrity constraints and, 81
relationships in, 348–354
signed package, 407–410
Splash screen, 34
SQL and, 23
starting, 33
switchboards, 307
use of form to include two tables, 115–116
Visual Basic for Applications (VBA),

404–405
working with multiple tables in, 107–110
working with queries in, 202–215

Microsoft Access ANSI-89, 140, 144, 150, 152,
175, 178, 192

Microsoft Access ANSI SQL-92, 140
Microsoft Access database tables, method to

create, 40–44
Microsoft Access QBE query, 206–210
Microsoft Access SQL. See also SQL (Struc-

tured Query Language)
data inserted with, 48, 224–227
referential integrity constraints and, 228–230
tables created with, 215–217

Microsoft Azure cloud service, 30, 31
Microsoft Dynamics CRM, 32n
Microsoft Edge, 422
Microsoft Excel

OLAP reports and, 503, 504, 505
PivotTable, 523–525
SQL query and, 504–506

Microsoft Hyper-V, 511
Microsoft Internet Explorer, 422
Microsoft Office 367, 30, 513
Microsoft Office Fluent user interface

database objects and navigation
pane, 37

explanation of, 35
Quick Access Toolbar, 35, 36
use of, 35–37

Microsoft SQL Server 2016, 20
database in, 367
Developer Edition, 26
enforcing referential integrity in, 82
example of, 366, 367
explanation of, 26
Express Edition, 26, 76
primary key in, 77
table creation and, 153

Microsoft SQL Server Management
Studio, 26

database diagram in, 155
SQL query results in, 162

Microsoft Visio Professional 2016, 275
MIN, 177
Minimum cardinality, 271
Mixed entity pattern, 336
Mobile phone, 4, 61, 422
Modification actions, 11
Modification problems

examples of, 7–9
explanation of, 7
relational model used to solve, 10–16

Mozilla Firefox, 422
Multiple-tier driver, 431
Multivalue, multicolumn problem, 89, 119

resolving in table, 114–118
Multivalued dependency, 89, 100, 119

eliminating anomalies from, 96–98
examples of, 96–97
explanation of, 96, 97

MySQL, 20
MySQL 5.7

DBMS-specific design and, 318
processing SQL CREATE TABLE statements

using, 154
MySQL 5.7 Community Server, 27
MySQL Workbench, 77

database design in, 334
explanation of, 27–28, 275
query results in, 163
working with, 153, 154

Z03_KROE1533_08_SE_IDX.indd 556 11/21/16 6:48 PM

Index 557

N
Navigation Pane, 65

collapsed, 49, 50
database objects and, 37
expanding, 51
explanation of, 37

Navigation Pane drop-down list, 65
Navigation Pane drop-down list button, 65
NetBeans IDE, 424, 443
.NET Framework, 424
.NET initiative, 430
N:M relationships

in data model, 331–334
explanation of, 270
in Microsoft Access, 348
recursive relationships and, 281, 339–340

N:M strong entity relationships, representing,
331–333

NO ACTION keyword, 152
Non-ID-dependent weak entities, 277–279
Nonidentifying relationship, 276
Non-relational databases, 30
Nonrelational tables, 72
Nonrepeatable read, 377
Nontrusted locations, 40. See also Trusted

locations
Nonunique identifiers, 269
Nonunique keys, 74, 119
Normal forms, 89, 99–100
Normalization, 19

examples to illustrate, 91–96
explanation of, 88–89
verification of, 321, 341

Normalization problems, 94, 321
Normalization process, 89–91
NoSQL, 490
NoSQL database, 30, 62
NoSQL movement, 513
NOT BETWEEN comparison operator, 166
NOT IN comparison operator, 166, 171
NOT keyword, 170, 171
NOT LIKE comparison operator, 166, 172
NOT logical operator, 169, 170, 171, 176
NOT NULL constraint, 142, 143
Not only SQL movement, 513–517
NULL constraint, 142, 143
NULL status, 320
Null values, 119

explanation of, 8, 83
problems related to, 83–84, 119
SQL and, 176

Number (data type), 41
Numeric (data type), 41

O
Object, 37, 510
Object-oriented DBMS (OODBMS), 510
Object-oriented programming (OOP), 510
Object persistence, 510
Object-relational databases, 510
OBJECT relation and data, 86
ODBC. See Open Database Connectivity

(ODBC)
ODBC architecture, 431
ODBC Data Source Administrator, 432
ODBC DBMS driver, 431
ODBC driver manager, 431
OLAP. See Online analytical processing (OLAP)
OLAP cube. See OLAP reports

OLAP reports
creating basic, 522–524
creating Microsoft Excel Workbook for,

521–522
creating view query for, 518–521
explanation of, 503
formatting, 529
method to generate, 503–507
method to modify, 527–529
method to structure, 525–527
order of dimensions in, 503, 506

OLE DB, 424, 429–430
ON DELETE phrase, 152
1:N relationships

explanation of, 270, 271
recursive relationships and, 281, 336–339

1:N strong entity relationships, representing,
329–331

1:1 relationships
explanation of, 270
in Microsoft Access, 348–354
recursive relationships and, 281, 336–339

1:1 strong entity relationships, representing,
327–329

Online analytical processing (OLAP), 30, 61,
489, 492, 503, 503–507. See also OLAP
reports

Online transaction processing (OLTP) database,
29, 61

Online transaction processing (OLTP) systems,
491

ON UPDATE phrase, 150, 151
Open Database Connectivity (ODBC)

architecture, 431
creating data source and, 466–467
data source name, 431–436
explanation of, 424, 429, 430–431

Operational databases, 495
Operational systems

business intelligence systems vs., 491
explanation of, 491

Optimistic locking, 372, 373, 374
Optional relationship, 272
Oracle Big Data Appliance, 516
Oracle Corporation, 424
Oracle Database, 20
Oracle Database Express Edition 11g Release 2

explanation of, 26–27
primary key in, 77
sequences in, 79
surrogate keys and, 159
table creation and, 154

Oracle Database XE, 26, 77, 82
Oracle MySQL 5.7

defining primary key in, 78
enforcing referential integrity in, 83

Oracle MySQL 5.7 Community Server, 27–28,
77

Oracle MySQL Workbench, 27
Oracle SQL Developer, 26, 163
ORDER BY clause, 167, 187
OR keyword, 170
Outer joins, 193–197

P
Parallels' Desktop for Mac, 511
Parameterized queries, 213–215
Parent, 271, 276, 330
Parent entity, 271, 330

Partitioning, 508, 509
Passwords, strong, 400
Paste As dialog box, 214, 519
Percent sign (%), 173
Permissions, 380
Personal computer (PC), 4
Personal database system

enterprise-class vs., 23–28
explanation of, 23

Personal Hypertext Processor. See PHP: Hyper-
text Processor

Pessimistic locking, 373, 374
Phantom read, 377
PHP, 426
PHP: Hypertext Processor

creating page and, 467
database connection and, 447–448
displaying results and, 448–449
explanation of, 442–443
Integrated Development Environment and,

443–446
recordset and, 448
running page in, 467, 477
scripting language, 442–443
symbols and, 447
table updates with, 450–457

PHP concatenation operator (.=), 457
PHP plugin, 443
Physical design (physical schema), 267
PivotTable

explanation of, 503
OLAP report and, 503–504, 523–524

Platform as a service (PaaS), 513
Point of Sale (POS) systems, 6
POST method, 451
PRIMARY KEY constraint, 142, 143
Primary keys, 80, 119

explanation of, 74, 75
functional dependency and, 87
in Microsoft Access 2016, 75–76
in Microsoft SQL Server 2016, 77
in Oracle Database Express Edition 11g

Release 2, 77, 78
in Oracle MySQL 5.7, 77, 78
setting, 45, 46
table constraints and, 149–150

Private key, 407
Properties, 510
Prototype database

explanation of, 290–291
modified data model and, 302–307
original data model and, 291–292

Prototypes, validating data model and, 289
Prototyping, in Microsoft Access 2016, 290–297
Public key, 407
Public-key cryptography, 407

Q
Queries, 134n. See also Structured Query

Language (SQL)
explanation of, 427–428
in Microsoft Access 2016, 202–215
multiple table, 183–197
in MySQL Workbench, 163
parameterized, 213–215
single table, 164–176
sorting results of, 167–169
that perform calculations, 177–180
top level, 184

Z03_KROE1533_08_SE_IDX.indd 557 11/21/16 6:48 PM

558 Index

Query by Example (QBE), 134, 206–210
Query Design button, 203
Query Tools command, 204
Query1 window, in SQL view, 205
Question mark (?), 175

R
RDBMS table, 514–516
Read committed isolation level, 378
Read uncommitted isolation level, 378
Recent file list, 39
Recent list, 39
Record navigation buttons, 57
Records, 10, 52, 57, 73, 119
Recovery

via reprocessing, 387–388
via rollback and rollforward, 387, 388–391

Recursive relationships, 281, 336–340
Redo transaction, 388, 389
Redundant arrays of independent disks (RAID),

513
Referential integrity

Access SQL to add, 228–230
enforcement of, 344–347
explanation of, 20, 80–83
foreign keys and, 80–83
tables and, 215–217

Referential integrity constraints, 20, 80,
85, 119

adding by using Access SQL, 228–230
Related tables, 19
Relational algebra, 70
Relational database, 7, 10
Relational database design

eliminating anomalies from multivalued
dependencies and, 96–98

functional dependencies and, 85–87
normalization and, 88–89
normalization examples and, 91–96
normalization process and, 89–91
primary and candidate keys and, 87
principles of, 89
well-formed relations and, 89

Relational database tables
SQL to process, 16–17
use of, 10, 61

Relational DBMS Service (RDS), 513
Relational design

for art course enrollments, 13–14
for parts and prices, 14–16
for SALES_COMMISSION entity, 324–325
for student with adviser and department list,

12–13
for student with adviser list, 10–11

Relational model, 10
background of, 70
denormalization and, 323–324
representing entities with, 319–327
table construction and, 321–323
weak entities and, 325–327

Relations, 119. See also Tables
characteristics of, 70–71
explanation of, 70, 318
in first normal form, 89, 99
keys and, 74–84
normal forms and, 89
null values and, 83–84
structure of, 73
terminology for, 73–74

two nonrelations and sample, 71–72
with variable-length column values, 72
well-formed, 89, 119

Relationship class, 269
Relationship instances, 269
Relationships

binary, 270–271
degree of, 269
examples of, 270
explanation of, 269–270
HAS-A, 272
identifying, 276
IS-A, 281
mandatory, 272
N:M, 270, 281, 339–340, 344
nonidentifying, 276
1:1, 270, 281, 336–339, 344
1:N, 270, 281, 336–339, 337, 338, 339
optional, 272
recursive, 281, 336–340
between strong entities, 327–333
with subtypes, 336
between tables, 110–114
ternary, 270
unary, 281
using weak entities, 335–336

Relationships window, 110, 111
Remarks, 42
Repeatable reads isolation level, 378
Replication, 508
Reporting systems, 491, 492
Reports

creation of, 57–60
in database processing, 427–429

Report Wizard, 57, 58
Reprocessing, recovery via, 387–388
Required, 42
Required property, 45
Requirements analysis

in database development process, 265,
266–267

explanation of, 265, 266
Resource locking, 371–372
RFM analysis, 490, 492, 502
RIGHT keyword, 196
Rollback, 388
Rollforward, 388
Router, 424
Rows, 119

deleted in tables, 52–54
duplicate, eliminating, 164–165
explanation of, 70–71
grouping using SQL SELECT statements,

180–182
in Microsoft Access, 46
relations and, 70, 71
specified in single table, 164–167
in tables, 10

Row selector cell, 52, 53
Row selector column, 45, 46

S
Salesforce.com, 513
Scrollable cursor, 378
Second normal form (2NF), 99
Security. See Database security
Security Warning message bar, 40, 393
Self-describing tables, 19
SEQUENCE, 79

Serializable, 372
Serializable isolation level, 378
Serializable transactions, 372
Server, 423
Server cluster, 507
Server computers, 7
Services, 7, 423
Set, defined, 197
Set theory, 197
Shared lock, 372
Short text (data type), 40
Show Table dialog box, 111, 203
Shutter Bar Open/Close button, 37, 49, 50, 51,

52, 54, 205, 206
Signed package, 407–410
Singe-tier driver, 431
Slowly changing dimension, 496
Smartphone, 4, 61, 423
Software as a service (SaaS), 513
Sort order, 59–60
Splash Screen, 33, 34
Spreadsheets, tables vs., 11
SQL:2008, 133
SQL:2011, 133
SQL ALTER TABLE statement, 201
SQL AND logical operator, 169, 170
SQL AS keyword, 190
SQL asterisk (*) wild card character, 161
SQL BEGIN TRANSACTION statement, 374,

375
SQL BETWEEN operator, 172
SQL built-in functions

calculations and, 177–179
explanation of, 177
grouping and, 180–182

SQL comment, 156
SQL COMMIT TRANSACTION statement,

374, 375
SQL comparison operators, 165, 166, 172
SQL CREATE TABLE statement, 142–143,

154, 157
SQL Data Control Language (DCL), 380
SQL DELETE statement, 199–200
SQL DROP TABLE statement, 200–201
SQL equijoin, 194
SQL expressions, using in SQL SELECT state-

ments, 180
SQL for XML clause, 459
SQL FROM clause, 160, 161
SQL GRANT statement, 380
SQL injection attack, 458
SQL inner join, 194
SQL INNER JOIN syntax, 196
SQL INSERT statement, 155, 156, 157–159
SQL JOIN keyword, 189
SQL JOIN ON syntax, 188–193
SQL join operation, 185
SQL JOIN operator, 185
SQL LEFT JOIN syntax, 196
SQL left outer join, 196
SQL logical operators, 169
SQL MERGE statement, 133, 199
SQL NOT BETWEEN operator, 172
SQL ON clause, 189
SQL ON keyword, 189
SQL OR logical operator, 169, 170
SQL outer join, 195
SQL percent sign (%) wildcard

character, 173, 174

Z03_KROE1533_08_SE_IDX.indd 558 11/21/16 6:48 PM

http://Salesforce.com

Index 559

SQL/Persistent Stored Modules (SQL/PSM),
134, 366, 428

SQL query
explanation of, 204, 205
OLAP reports and, 503–506

SQL REVOKE statement, 380
SQL RIGHT JOIN syntax, 196
SQL right outer join, 196
SQL ROLLBACK TRANSACTION

statement, 374, 375
SQL SELECT clause, 160, 161
SQL SELECT/FROM/WHERE framework,

160, 165
SQL SELECT statements, using SQL expres-

sions in, 180
SQL Server Compatible Syntax (ANSI 92),

140, 141
SQL Server Parallel Data Warehouse, 516
SQL set operators, 197
SQL (Structured Query Language). See also

Microsoft Access SQL
built-in aggregate functions, 177–180
categories of, 134
database example of, 135–140
data definition and, 141–155
data modification and deletion and, 197–200
development of, 133
explanation of, 16, 61, 133
foreign keys with table constraints, 150–152
inserting data and, 155–159
Microsoft Access and, 23
Microsoft Access ANSI-89 SQL and, 140,

144, 150, 152, 175, 178, 192
multiple table queries and, 183–197
primary keys with table constraints and,

149–150
for processing relational database tables,

16–17
single quotes and, 156
single table queries and, 160–176
submitted to DBMS, 152–155, 162–163
table and constraint modification and deletion

and, 200–202
table creation and, 141–155

SQL Transaction Control Language (TCL)
consistent transactions and, 376–377
lock characteristics and, 374–375
transaction isolation level and, 377–378

SQL TRUNCATE TABLE statement,
133, 201

SQL underscore (_) wildcard character, 173
SQL UPDATE...SET statement, 197–199
SQL view, 202
SQL WHERE clause, 160, 165

compound, using logical operators, 169–170
options for, 169–171
using character string patterns, 172–175
using ranges of values, 172–176
using sets of values, 171

Star schema, 496–501, 502
Statement-level consistency, 376
Static cursor, 378, 379
Storage area networks (SANs), 513
Stored procedures, 366, 367, 428, 429
Strong entities, 275, 327–333
Strong passwords, 400
Structured Query Language (SQL). See all

listings under SQL (Structured Query
Language)

Subqueries
correlated, 193
explanation of, 184
joins vs., 193
querying multiple tables with, 183–185

Subtype entities, 280–281
Subtypes, relationships with, 336
SUM, 177
Sun Microsystems, 424
Super column family, 516
Super columns, 515
Supertype entity, 280
Surrogate key, 42, 79–80, 119, 150, 159, 320
Switchboards, 307
Synonyms, 94
System data source, 431
System design stage, 265
Systems development life cycle (SDLC), 265,

317

T
Tab key, 44, 55
Table aliases, 191
Table Design button, 42
Tables, 70, 119. See also Relations

with anomalies, 99–100
columns in, 10
creating database, 40–48
creating form for multiple, 292–297
creating relationships between, 110–114
creating report including data from multiple,

297–301
deleting rows in, 52–54
dimension, 496, 498
entities vs., 270
explanation of, 10, 318
inserting data into, 48–51, 54–57
intersection, 332–333
Microsoft Access SQL to create, 215–217
modifying Access, to add data requirements

not supported by Access SQL, 217–224
modifying data in, 51–52
multiple, Access QBE query with, 211–212
nonrelational, 72
processing relational, 16–17
reading specified columns and specified rows

from single, 167
reading specified columns from single,

160–161
reading specified rows from single, 164–167
related, 19
rows in, 10
self-describing, 19
specifying column order in SQL queries from

single, 161–162
spreadsheets vs., 11
SQL and foreign keys with table constraints

and, 150–152
SQL and multiple table queries and,

 183–197
SQL and single table queries and, 160–176
SQL and table constraint modification and

deletion and, 200–202
SQL to create, 141–155
updates with PHP, 450–457
working with multiple, 101

Table Tools, 42, 43, 48, 49
Tablets, 4, 423
Ternary relationships, 270

Third normal form (3NF), 99
This database check box, 140
Three-tier architecture, 426, 431
Time dimension, 496
TimeID values, 497
Timestamp, column family databases, 515
Top level query, 184
Transactional systems, 491
Transaction control language (TCL), 134
Transaction isolation level, 377–378
Transaction-level consistency, 376
Transactions, 29

atomic, 368, 376
concurrent, 369–370
consistent, 376–377
durable, 376
explanation of, 368
isolated, 377–378

Transitive dependency, 99
Triggers, 366, 367, 428, 429
Trusted locations, 40, 393–400
Tuple, 73
Twitter, 4, 62, 488
Two-phase locking, 372
Two-tier architecture, 426

U
UAV. See Unmanned aerial vehicle (UAV)
Unary relationships, 281
Underscore (_) symbol, 173
Undo transaction, 388
Unified Modeling Language (UML), 273
UNIQUE constraint, 142, 143, 220
Unique identifiers, 269
Unique keys, 74, 119
Unmanned aerial vehicle (UAV), 29
Update, 11
Use cases, 266
User accounts, 381
User data source, 431
User-defined functions, 366, 428, 429
User groups, 383
User roles, 383
Users, 18

V
Validation Rule, 223
Values, null, 8, 83–84, 119, 176
Values, SQL WHERE clauses using ranges of,

172–176
Virtual Box (Oracle), 511
Virtualization, 511
Virtual machine manager, 511
Virtual machines, 31, 511
Visual Basic for Applications (VBA), 404–405
vSphere/ESXi, 511

W
WAMP, 430
Weak entities

explanation of, 275
non-ID-dependent, 277–279
relationships using, 335–336, 340
representing with relational model, 325–327

Web, 4, 422
Web application database processing

challenges for, 457
function of, 427, 428
HTML Web pages and, 439–442

Z03_KROE1533_08_SE_IDX.indd 559 11/21/16 6:48 PM

560 Index

Microsoft IIS and, 436–439
ODBC and, 430–436
PHP and, 442–457
SQL injection attacks and, 457–458

Web browser, 4, 422
Web database application, 29
Web home page, 462, 463–465
Web services, 459, 461
Web sites, 4
Web 2.0, 4, 30, 62
Well-formed relation, 89, 119

WHERE clause, 161
data deletion and, 200
explanation of, 169
grouping and, 182
join and, 188–189
ranges, wildcards, and nulls in, 172–176

Wikipedia, 4
Wildcard characters, 173, 174
Windows Azure, 513
Wizards, 24
World Wide Web Consortium

(W3C), 439

World Wide Web (WWW), 4, 422.
See also Web

WPC database, 30
wwwroot folder, 437

X
XHTML, 439
XML. See Extensible Markup Language
XML Schema, 461
XML Web services, 459, 461
XPath, 461
XSL, 461

Web application (Continued)

Z03_KROE1533_08_SE_IDX.indd 560 11/21/16 6:48 PM

9 0 0 0 0

9 7 8 0 1 3 4 6 0 1 5 3 3

ISBN-13: 978-0-13-460153-3
ISBN-10: 0-13-460153-X

DATABASEConcepts

David M. Kroenke

David J. Auer

Scott L. Vandenberg

Robert C. Yoder

EIGHTH EDITION

D
ATA

B
A

S
E

 C
o
n
ce

p
ts

Kroenke • Auer • Vandenberg • Yoder

8E

www.pearsonhighered.com

http://www.pearsonhighered.com

	Cover
	Title Page
	Copyright Page
	Brief Contents
	Contents
	Preface
	About the Authors
	Part 1: Database Fundamentals
	Chapter 1: Getting Started
	The Importance of Databases in the Internet and Mobile App World
	Why Use a Database?
	What are the Problems with Using Lists?
	Using Relational Database Tables
	How do I Process Relational Tables?
	What is a Database System?
	Personal Versus Enterprise-Class Database Systems
	What is a Web Database Application?
	What are Data Warehouses and Business Intelligence (BI) Systems?
	What is Big Data?
	What is Cloud Computing?
	The Access Workbench: Section 1: Getting Started with Microsoft Access
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench
	Key Terms
	Exercises

	San Juan Sailboat Charters Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions
	The Queen Anne Curiosity Shop Project Questions

	Chapter 2: The Relational Model
	Relations
	Types of Keys
	The Problem of Null Values
	To Key or Not to Key—That is the Question!
	Functional Dependencies and Normalization
	The Access Workbench: Section 2: Working with Multiple Tables in Microsoft Access
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench
	Key Terms
	Exercises

	Regional Labs Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions
	The Queen Anne Curiosity Shop Project Questions

	Chapter 3: Structured Query Language
	Wedgewood Pacific
	SQL for Data Definition (DDL)—Creating Tables and Relationships
	SQL for Data Manipulation (DML)—Inserting Data
	SQL for Data Manipulation (DML)—Single Table Queries
	Submitting SQL Statements to the DBMS
	SQL Enhancements for Single Table Queries
	SQL Queries that Perform Calculations
	Grouping Rows Using SQL Select Statements
	SQL for Data Manipulation (DML)—Multiple Table Queries
	SQL for Data Manipulation (DML)—Data Modification and Deletion
	SQL for Data Definition (DDL)—Table and Constraint Modification and Deletion
	SQL Views
	The Access Workbench: Section 3: Working with Queries in Microsoft Access
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench
	Key Terms
	Exercises

	Heather Sweeney Designs Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions
	The Queen Anne Curiosity Shop Project Questions

	Part 2: Database Design
	Chapter 4: Data Modeling and the Entity-Relationship Model
	Requirements Analysis
	The Entity-Relationship Data Model
	Entity-Relationship Diagrams
	Developing an Example E-R Diagram
	The Access Workbench: Section 4: Prototyping Using Microsoft Access
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench
	Key Terms
	Exercises

	Highline University Mentor Program Case Questions
	Writer’s Patrol Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions
	The Queen Anne Curiosity Shop Project Questions

	Chapter 5: Database Design
	The Purpose of a Database Design
	Transforming a Data Model into a Database Design
	Representing Entities with the Relational Model
	Representing Relationships
	Database Design at Heather Sweeney Designs
	The Access Workbench: Section 5: Relationships in Microsoft Access
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench
	Key Term
	Exercises

	San Juan Sailboat Charters Case Questions
	Writer’s Patrol Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions
	The Queen Anne Curiosity Shop Project Questions

	Part 3: Database Management
	Chapter 6: Database Administration
	The Heather Sweeney Designs Database
	The Need for Control, Security, and Reliability
	Concurrency Control
	SQL Transaction Control Language and Declaring Lock Characteristics
	Cursor Types
	Database Security
	Database Backup and Recovery
	Additional DBA Responsibilities
	The Access Workbench: Section 6: Database Administration in Microsoft Access
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench
	Key Terms
	Exercises

	Marcia’s Dry Cleaning Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions
	The Queen Anne Curiosity Shop Project Questions

	Chapter 7: Database Processing Applications
	A Web Database Application for Heather Sweeney Designs
	The Web Database Processing Environment
	Database Server Access Standards
	Database Processing, XML and JSON
	The Access Workbench: Section 7: Web Database Processing Using Microsoft Access
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench
	Exercises

	Marcia’s Dry Cleaning Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions
	The Queen Anne Curiosity Shop Project Questions

	Chapter 8: Data Warehouses, Business Intelligence Systems, and Big Data
	Business Intelligence Systems
	The Relationship Between Operational and BI Systems
	Reporting Systems and Data Mining Applications
	Data Warehouses and Data Marts
	OLAP
	Distributed Database Processing
	Object-Relational Databases
	Virtualization
	Cloud Computing
	Big Data and the not only SQL Movement
	The Access Workbench: Section 8: Business Intelligence Systems Using Microsoft Access
	Summary
	Key Terms
	Review Questions
	Exercises
	Access Workbench
	Exercises

	Marcia’s Dry Cleaning Case Questions
	Garden Glory Project Questions
	James River Jewelry Project Questions
	The Queen Anne Curiosity Shop Project Questions

	Online Appendices
	Glossary
	Index
	Back Cover ���

