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v

 Artifi cial Neural Networks (ANNs) are among the most fundamental techniques within the 
fi eld of Artifi cial Intelligence. Their operation loosely emulates the functioning of the 
human brain, but the value of an ANN extends well beyond its role as a biological model. 
An ANN can both memorize and reason: it provides a way in which a computer can learn 
from scratch about a previously unseen problem. Remarkably, the exact form of the prob-
lem is rarely critical; it might be fi nancial (e.g., can we predict the direction of the stock 
market in the next few months?); it might be sociological (what factors make a face attrac-
tive?); it could be medical (can we tell from an X-ray whether a bone is broken?); or, as in 
this volume, the problem might be purely scientifi c. 

 This text brings together some productive and fascinating examples of how ANNs are 
applied in the biological sciences and related areas: from the analysis of intracellular sorting 
information to the prediction of the behavior of bacterial communities; from biometric 
authentication to studies of tuberculosis; from studies of gene signatures in breast cancer 
classifi cation to the use of mass spectrometry in metabolite identifi cation; from visual navi-
gation to computer diagnosis of possible lesions; and more. The authors describe not only 
 what  they have done with ANNs but also  how  they have done it. Readers intrigued by the 
work described in this book will fi nd numerous practical details, which should encourage 
further use of these rapidly developing tools.  

  Oxford, UK     Hugh     Cartwright    

  Pref ace   
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    Chapter 1   

 Introduction to the Analysis of the Intracellular Sorting 
Information in Protein Sequences: From Molecular Biology 
to Artifi cial Neural Networks 

           R.     Claudio     Aguilar    

    Abstract 

   A precise spatial-temporal organization of cell components is required for basic cellular activities such as 
proliferation and for complex multicellular processes such as embryo development. Particularly important 
is the maintenance and control of the cellular distribution of proteins, as these components fulfi ll crucial 
structural and catalytic functions. 

 Membrane protein localization within the cell is determined and maintained by intracellular elements 
known as  adaptors  that interpret sorting information encoded in the amino acid sequence of cargoes. 
Understanding the sorting sequence code of cargo proteins would have a profound impact on many areas 
of the life sciences. For example, it would shed light onto the molecular mechanisms of several genetic 
diseases and would eventually allow us to control the fate of proteins. 

 This chapter constitutes a primer on protein-sorting information analysis and localization/traffi cking 
prediction. We provide the rationale for and a discussion of a simple basic protocol for protein sequence 
dissection looking for sorting signals, from simple sequence inspection techniques to more sophisticated 
artifi cial neural networks analysis of sorting signal recognition data.  

  Key words     Protein sorting  ,   Sequence analysis  ,   Artifi cial neural networks  ,   Intracellular localization  

1      Introduction 

        This intriguing, complex question is at the core of modern biol-
ogy, and it can be initially approached by simply stating that cells 
are not just a mix but an ordered array of their components. Cells 
require an internal spatial-temporal organization for the fulfi ll-
ment of specifi c biochemical processes (e.g., by creating chemical 
potentials—Fig.  1a ). Indeed, life can be conceived as resulting 
from the constant struggle to generate and maintain internal order 
against entropy trying to drive organisms to a lethal equilibrium.  

 This dynamic, yet highly ordered, steady state is particularly 
complex in eukaryotic cells (e.g., human cells) as they add a physical 
dimension to their spatial-temporal organization in the form of 

1.1  How Do 
the Emergent 
Properties of Cells 
Arise from a Mix 
of Proteins, Lipids, 
Sugars, and Nucleic 
Acids? (See Note 1)
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membrane-bound compartments or organelles (e.g., the nucleus). 
These physically separated entities constitute highly effi cient func-
tional stations that host specifi c biochemical processes by virtue of 
their chemical composition. 

 The evolutionary advantage that eukaryotic cells obtained from 
acquiring these specialized organelles was intimately linked to the 
development of a cargo transport/communication system among 
these processing stations. A highly effi cient organelle is useless if it 

  Fig. 1    Establishment and maintenance of cell organization. Cells are represented as compartments separating 
cytosol ( bluish ) from the extracellular space ( greyish ). A single membrane-spanning protein on the cell plasma 
membrane is represented as a rectangle with cytosolic and lumenal regions ( black  and  white  sectors, respec-
tively). A  red  segment within the protein represents the transmembrane domain (TMD). ( a )  Left panel : Isotropic 
(homogenous) distribution of the protein at equilibrium. This is a stage of low energy (no chemical potential) 
and without spatial differential properties.  Right panel : The organized (polarized) distribution of key functional 
components (e.g., proteins) allows cell function. For example, asymmetrical distribution of ion membrane 
transporters can generate electrochemical potentials required for synaptic transmission. Diffusion forces 
( black arrows ) oppose intracellular organization by promoting the dispersion of membrane proteins. Active 
(energy- consuming) transport ( red / green arrows ) of protein is constantly required to counteract diffusion in 
order to establish and maintain cell organization. ( b ) Transmembrane proteins display a tyrosine-based sorting 
signal (“Y”) recognized by adaptors ( blue  complex labeled “AP”). This cargo is actively removed from the 
plasma membrane (internalization,  red arrows ) and recycled back ( green arrows ) to polarized areas. Transport 
occurs through vesicle traffi cking, i.e., vesicles loaded with cargo by the adaptor bud off from a donor com-
partment and fuse with a target compartment. Note that the protein topology is conserved: cytosolic regions 
always face the cytosol while lumenal regions always face the lumen or the extracellular space       
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cannot receive substrates or deliver products. In addition, these 
membrane-bound compartments cannot productively contribute 
to the whole if there is no fl ow of information or feedback control 
of their activity. 

 Given the membranous nature of the organelles, the traffi cking 
system that links them must be based on exchange of membrane- 
bound carriers (or vesicles) that can pinch off from a donor com-
partment and be competent to fuse with and deliver their cargo to 
the membrane or lumen of a target compartment (Fig.  1b ). This 
vesicle-traffi cking system not only contributes to maintain the 
characteristic cellular steady state away from thermodynamic equi-
librium, but it is also crucial for organelle inheritance and cell divi-
sion among other essential cellular processes. For detailed 
descriptions and discussions on vesicle-traffi cking mechanisms in 
health and disease, the reader is referred to excellent cell biology 
textbooks and reviews available in the literature ( see   Note 2  and 
refs.  1 ,  2 ).  

   The answer to this question is (deceivingly) simple, just like the 
mail. The “mailed” cargo displays a destination “address” (or 
“addresses”) and it is delivered via the interplay of cellular “postal 
workers” (that load specifi c mail items into the proper “bag”) with 
the “addressee.” 

 If we focus on proteins (i.e., protein sorting), and specifi cally 
on integral membrane proteins ( see   Note 3 ), their destination 
addresses and/or delivery routes are encoded as consensus amino 
acid sequences that may or may not be activated/deactivated by 
posttranslational modifi cations. Most of these sorting signals are 
located in the cytoplasmic domain of the protein cargo, readily 
available for cellular “postal workers” to interpret and bag the 
cargo in a vesicle (Fig.  1b ). The loaded vesicles are connected to 
motors and placed on cytoskeleton tracks to be mobilized to their 
destinations ( see   Note 2 ). 

 Many different cellular “postal workers,” or  adaptors , have 
been identifi ed and characterized. These adaptors are also pro-
teins, or protein complexes, that associate with the cytoplasmic 
side of membranes and vary in both location and type of sorting 
signals they interpret. Table  1  shows a list of some of the most 
important protein-sorting signals and their corresponding pro-
posed adaptors.

   Within this signal recognition machinery, the clathrin- associated 
adaptor proteins (APs) emerge as major players in the protein- 
traffi cking system of higher eukaryotes [ 3 ,  4 ] (Fig.  1b ). Five tetra-
meric AP complexes (AP1 through AP5) with different intracellular 
localizations have been identifi ed and showed to  mediate different 
protein-sorting events connecting several compartments [ 5 ,  6 ]. 
Whereas other AP subunits are engaged in interactions with vari-
ous molecules, the μ (medium) subunit is in charge of recognizing 

1.2  How Are Cargoes 
Selectively Loaded 
into the Right Vesicles 
and Delivered 
to the Right 
Compartments?

Analysis of Intracellular Sorting Information
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tyrosine-based sorting signals fi tting a YXXØ consensus (where 
X = any amino acid, Y = tyrosine, and Ø = amino acids with a bulky 
hydrophobic side chain such as phenylalanine, leucine, isoleucine, 
methionine, and valine).  

  If we were able to  identify  and  interpret  the whole repertoire of 
sorting signals, we would be capable of  predicting  the fate of a 
protein cargo solely based on its amino acid sequence. This achieve-
ment would have a high impact on many different areas of the life 
sciences; for example, it would shed light on the nature of several 
hereditary diseases and would enhance our ability to control the 
intracellular fate of proteins within cells. However, we still do not 
fully understand how the sorting information is coded in protein 
sequences or the precise role in protein traffi cking of all the differ-
ent adaptors. In addition, multiple factors including topology/
accessibility and context within the protein affect the recognition 
of sorting signals by adaptors (see below), adding extra layers of 
complexity to the process. It should also be noted that cargoes 
often display multiple sorting signals from one or more types and 
that the protein fi nal destination results from the interplay of this 
composite of motifs. 

 The purpose of this chapter is to introduce the foundations of 
protein-sorting information analysis. Specifi cally, we will discuss 
how to identify candidate sorting signals within protein sequences 
and analyze their role in protein traffi cking. We will also describe 
simple techniques to experimentally assess the relevance of putative 
signals for protein sorting in the context of model and native cargo.   

1.3  Can We Predict 
the Intracellular 
Destination 
of Transmembrane 
Proteins by Reading 
Their Amino Acid 
Sequences?

            Table 1  
  Signal-adaptor specifi city   

 Sorting signal consensus a   Adaptor(s) b   Proposed role in TMP vesicle traffi c 

 YXXø  APs  General vesicle traffi c 

 NPXY  Dab2  Removal from PM 

 [D/E]XXLø  GGAs  Endosome-Golgi complex transport 

 [D/E]XXXLø  APs  General vesicle traffi c 

 NPFXD  Sla1 c   Removal from PM 

 Acidic Cluster  PACS-1  Endosome-Golgi complex transport 

   a Amino acids are indicated using the 1-letter code (e.g., Y = Tyr = Tyrosine; N = Asn = Asparagine— see   Note 2 ). “X” 
represents a position occupied by any amino acid. Ø = amino acid with a bulky hydrophobic side chain (L, I, M, V, F). 
Amino acids within brackets indicate that one or the other can be found in that position within the consensus 
  b Adaptor abbreviation:  AP  clathrin-associated adaptor protein;  Dab2  disabled 2;  GGA  Golgi-localized, gamma-
ear- containing, ARF-binding protein;  Sla1  synthetic lethal with ABP1 protein 1;  PACS - 1  phosphofurin acidic cluster 
sorting protein 1. Other abbreviations:  TMP  transmembrane protein;  PM  plasma membrane 
  c Adaptor present in  Saccharomyces cerevisiae   
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2    Method Foundations 

 This simple procedure for protein sequence analysis is aimed to 
allow the investigator to identify (Subheading  2.1 ) and interpret 
(Subheading  2.2 ) signals, and it is ultimately intended to predict 
and/or test the role of sorting determinants on the traffi c and 
localization (Subheading  2.3 ) of a protein of interest. While the 
foundations are provided here, a protocol for the implementation 
of the method can be found in Subheading  3 . 

   In order to read sorting signals, fi rst we need to fi nd them. Finding 
sequences within cargoes that would fi t into a given sorting con-
sensus is not hard. Indeed, some of these motifs (e.g., YXXØ) are 
very commonly found within protein sequences ( see  Fig.  2 ), but 
not all of them are functional for cargo sorting; actually, only a few 
are. Therefore, the real task is to identify viable sorting signal can-
didates among other sequences that, even when fi tting into the 
consensus, are likely to fulfi ll different functions within the pro-
tein. Although we only partially understand the information- 
coding system, it has been established that sequence motifs need to 
meet a few conditions related to its nature, topology/accessibility, 
and environment to be active in protein sorting. These require-
ments can be exploited to our advantage to highlight sequences 
with higher probability of being functional sorting signals: 

    (a)    Fit into a signal consensus: Although in some cases certain 
fl exibility may exist, the better a sequence fi ts into a given con-
sensus, the higher the probability that it works as a real sorting 
signal. It should also be kept in mind that posttranslational 

2.1  Looking 
for Signals

  Fig. 2    Sequence analysis of the lysosomal protein Lamp2.  Left panel : The lysosomal-associated membrane 
protein 2 (Lamp2) is transported from endosomes (E) to the lysosome (L).  Right panel : The amino acid sequence 
of the isoform A of human Lamp2 was obtained from the NCBI protein database (URL provided). Although four 
YXXø motifs (underlined) were identifi ed in Lamp2, only one (Yeqf) was located in the cytosolic region of the 
protein. Further, this motif is located within the distance range (6–10 amino acids from the TMD) for AP recog-
nition. See text for details       
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modifi cations can activate or deactivate signals. For example, 
tyrosine phosphorylation of an YXXØ motif will deactivate the 
Y-signal, while phosphorylation of a serine/threonine amino 
acid located at position −4 replacing D/E in a di-leucine motif 
( see  Table  1 ) is likely to be required for function ( see   Note 4 ). 
Therefore, the possibility that the putative sorting signal over-
laps with a known phosphorylation consensus and the effect of 
such a modifi cation should also be carefully considered.   

   (b)    Topology and accessibility: Functional sorting signals need to 
be positioned within cargo proteins so that adaptors can fi nd, 
recognize, and bind them. Since adaptors associate with the 
cytosolic side of the compartment membrane (Fig.  1b ), even 
when perfectly fi tting into a certain consensus (Table  1 ), a 
motif facing the lumenal space (inside of a vesicle/organelle or 
outside of the cell— see  Figs.  1b  and  2 ) will  NOT  work as a clas-
sical sorting determinant. Therefore, information about the 
topology of a transmembrane protein is critical. This experi-
mentally determined or predicted information can sometimes 
be found within the notes to the entry for the cargo under 
consideration in the National Center for Biotechnology 
Information (NCBI) databases ( see  Subheading  3.1 ). If not 
available in databases or the literature, it is up to the investigator 
to produce such information either experimentally or by pre-
diction. Experimental approaches such as controlled digestion 
of extracellular regions followed by biochemical identifi cation 
of fragments (e.g., by immunoblotting) can be performed [ 7 ]. 
Alternatively, transmembrane region/topology prediction 
algorithms can be used. Particularly useful are online resources 
based on the cargo sequence that can not only predict the 
position of transmembrane domains (TM,  see  Figs.  1  and  2 , 
 Note 3 ) but also estimate the probability that different protein 
segments, not embedded into the membrane, would be facing 
either the cytosol or the lumenal space ( see  Subheading  3.2 ). 

 In addition to having the proper topology, most sorting 
signals need to be positioned within a certain range/distance 
from the compartment membrane to be accessible to adaptors 
and, therefore, to be functionally active. A signal too close to 
the membrane might be sterically hindered for adaptor recog-
nition, while others might be too far for the adaptor’s spatial 
range. For example, the critical tyrosine amino acid within 
YXXØ signals usually needs to be located at 6–10 amino acids 
from the membrane (TM boundary). This spacing yields the 
Y-signal within reach of the μ subunit from membrane-bound 
APs. It should also be kept in mind that posttranslational 
modifi cations, such as palmitoylation, can alter distance to the 
membrane by re-anchoring the cytoplasmic region of the protein 
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to the inner leafl et and, for example, bringing a distant signal 
back to adaptor reach [ 8 ].    

    (c)    Structural environment: Although not impossible, it is unlikely 
that signals listed in Table  1  would be located within func-
tional domains (e.g., kinase domains— see   Note 5 ). In particu-
lar, if the candidate motif is buried in the domain’s hydrophobic 
core, it will be inaccessible to adaptors, and therefore, its 
potential role as sorting signal should be ruled out. Although 
it has been consistently indicated that TMs can participate in 
the sorting of proteins [ 9 ,  10 ], due to reasons of accessibility 
to classical adaptors, motifs fi tting the consensuses considered 
in this chapter (Table  1 ) cannot be located in the TM region of 
cargoes. 

 It is also known that some sorting signals need to be dis-
played on specifi c protein secondary structures; for example, di-
leucine signals (Table  1 ) are usually found embedded in α-helical 
structures and YXXØ signals are normally found in a β-sheet 
conformation. Online resources can also be very useful for pre-
dicting secondary structures    ( see  Subheading  3.4 ,  step 3 ). 
Nevertheless, it is also possible that, while free, some signals are 
mostly unstructured, but they would acquire proper structure 
upon adaptor binding (i.e., by an “induced fi t” mechanism). 

 Nevertheless, fulfi llment of these three criteria might not 
be suffi cient to guarantee that the candidate motif has a role as 
a sorting signal. Furthermore, as indicated above, some rule 
fl exibility has been observed. Therefore, satisfaction of some 
criteria (i.e., (a) and (c)) should be considered as contributing 
to the probability that a sequence motif may act as a sorting 
signal. In fact, the role of the putative signal in the localization 
of the native or a model cargo must be experimentally demon-
strated (see below).    

     Following the identifi cation of sorting motifs in cargoes of interest, 
most likely the investigator will aim to predict/determine (a) signal- 
adaptor specifi city and (b) signal relevance to cargo traffi cking/
localization. Although this might be the ultimate goal of the analy-
sis, it could also be the most challenging part of the process. This 
is mostly due to the previously alluded limited understanding of 
the sequence information code and of the cellular role of  different 
adaptors. Furthermore, the inherent complexity of protein cargo 
sequence and structure (e.g., multiplicity of signals for sorting and 
posttranslational modifi cations— see  Subheading  2.3 ) makes this 
task even harder. Therefore, in order to assess the specifi city and 
relevance of a given sorting motif while minimizing confounding 
effects of other signals or modifi ers, a reductionist approach is rec-
ommended; i.e., the signal under consideration should be isolated 
for analysis. 

2.2  Interpreting 
the Message

Analysis of Intracellular Sorting Information
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  Although not comprehensive (and many exceptions to these rules 
may exist), Table  1  indicates what sorting signal is recognized by 
each adaptor or family of adaptors. The signals identifi ed in the 
cargo of interest should be contrasted against Table  1  or similar. In 
addition, when signals are recognized by families of adaptors (e.g., 
APs), determining the fi ne specifi city for family members could be 
critical to predict cargo intracellular traffi cking and distribution. 
For example, different AP adaptors localize to different compart-
ments and are believed to mediate different protein-sorting events. 

 The fi ne YXXØ specifi city of members of the AP family has 
been explored in detail [ 11 ,  12 ]. These studies indicate that, in 
addition to Y and Ø, the X-positions (including amino acids 
upstream of the crucial Y) also infl uence the process of signal rec-
ognition [ 11 ,  12 ]. Based on these fi ndings, a table summarizing 
the amino acid preference of each AP complex at the X/Ø-positions 
of a XXXYXXØ generic signal was constructed (Table  2 ).

   The Y-signal amino acid preference of the different APs docu-
mented in Table  2  points to several important trends of AP consen-
sus recognition and their impact on cargo traffi cking. For example, 
enrichment of acidic amino acids (D/E) preceding the Ø position 
and presence of the amino acid glycine (G) just before the critical 
Tyr would make a protein cargo a prime subject for AP3 recogni-
tion (Table  2 ). Interestingly, AP3 has been implicated in protein 
sorting to the lysosome and many lysosomal proteins display acidic 
sequences that fi t into the GYXXø signal consensus subset. 

 However, Table  2  does not predict the experimentally 
observed synergic and inhibitory effects between amino acids on 

2.2.1  To Predict/
Determine Signal-Adaptor 
Specifi city: What Adaptor 
will Recognize a Given 
Signal?

       Table 2  
  Y-signal specifi city of the mammalian AP family a    

 Adaptor 
complex b  

 XXXYXXø motif 
 Proposed role in TMP 
vesicle traffi c  −3  −2  −1  Y  +1  +2  ø 

  AP1   +  R  S  L   Y   R/Q  P  L  Golgi complex-endosome 
 −  F/L  L  I  I  F/V 

  AP2   +  G  F  P   Y   E/Q  P/R  L  Removal of TMP from PM 
 −  F 

  AP3   +  R  A  G/D/E   Y   E  P  I  Endosome to lysosome 
 −  F/I  S  F/L/I 

  AP4  c   +  C  Y  F   Y   D  P  F  Endosome to lysosome 
 −  T  G  N/T  V 

   a Table condenses results published in ref.  11 ,  12  
  b For each adaptor amino acids, preferred (“+” row) and excluded (“−” row) at each position are indicated. Shaded cells 
indicate no signifi cant preference or exclusion. Adaptor complex AP5 is excluded from this table as no analysis for signal 
preference is currently available 
  c In addition to YXXø signals, AP4 has been shown to recognize YX[F/Y/L][F/L]E motifs  
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the recognition by APs. Indeed   , although certain amino acids 
(occupying different positions within the motif) may indepen-
dently favor signal recognition by an AP, when coexisting in the 
same Y-motif they lead to poor adaptor binding. Conversely, 
amino acids that independently did not contribute to enhance AP 
recognition, when together in the same signal, they may cooper-
ate to yield substantial binding [ 11 – 13 ]. 

 This high complexity of the signal recognition process makes it 
diffi cult to predict the adaptor specifi city of a given Y-signal for the 
different APs. However, since an extensive collection of experi-
mental examples of interactions between YXXØ motifs and APs 
were available [ 11 ,  12 ], we used an approach based on the artifi cial 
neural network (ANN) paradigm to assess the problem of Y-signal 
specifi city [ 13 ]. 

 This was possible thanks to the wealth of binding data obtained 
from a series of screens performed using the so-called “two-hybrid” 
technology [ 14 ] with a combinatorial library of XXXYXXØ motifs 
[ 11 ,  12 ]. Most of this data was used to train a few ANNs with the 
architecture depicted in Fig.  3  (training and validation of this type 
of ANNs can be found in ref.  13 ). The abovementioned ANNs can 
very effi ciently predict yeast two-hybrid results but should be only 
considered as an approximation to what would occur in native con-
text (e.g., in the cytoplasmic region of membrane-inserted proteins 

  Fig. 3    YXXø artifi cial neural network architecture. The neurons in the network are 
represented by squares and the connections between units by arrows. The input 
layer (I) is divided in 5 clusters (one for each X position within the XXXYXXØ motif) 
made up of 20 nodes each (representing the 20 possible amino acids—only 2 
per cluster are shown); the Ø cluster contains only 5 nodes (for amino acids F, M, 
I, L and V), yielding 105 neurons in total. Hidden (H) and output (O) layers are 
shown. Final network output is denoted as binary Y or N value, denoting the pres-
ence or absence of interaction between the signal and adaptor under consider-
ation, respectively ( see  ref.  13  for more details)       
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within mammalian cells). Ideally, future investigators would be 
somehow able to perform screens analyzing the distribution of 
libraries of model cargoes displaying a combinatorial array of sig-
nals in target cells. These hypothetical results should be prime 
material to train future ANNs that would be able to accurately 
predict cargo localization.  

 Nevertheless, ANNs trained with two-hybrid data were capa-
ble of predicting recognition pattern and localization of certain 
Y-signal-containing proteins in vivo [ 13 ]. The effects of certain 
mutations affecting Y-signal specifi city were also successfully pre-
dicted [ 13 ]. These encouraging results suggest that similar 
approaches could be used in the future to address fi ne recognition 
specifi city of other signal consensuses. 

 In addition, other factors should be kept in mind as they could 
also contribute to defi ne realistic signal specifi city. For example, 
lysosomal Y-signals, i.e., candidates to interact with the AP3 com-
plex, are located relatively near the compartment membrane (e.g., 
~6 amino acids from the TM). However, larger separation of the 
signal from the TM would not necessarily preclude its recognition 
by AP3. 

 It should also be considered whether the expression patterns of 
cargo and adaptor match: do the cells or species that express the 
cargo also express the adaptor? For example, AP4 and AP5 are not 
present in certain organisms such as  Drosophila melanogaster ; 
therefore, fi nding an AP4-specifi c Y-motif conserved in the fl y 
homolog of the cargo under study should be treated with 
skepticism.  

  In order to address this question, we need to understand the func-
tion of specifi c adaptors; i.e., what is going to happen to the cargo 
when a signal is bound by its specifi c adaptor? The function of 
some adaptors is well established, but in other cases it is not. 
Nevertheless, knowing the adaptor specifi city of a given signal, it is 
possible to make some predictions in terms of cargo localization or 
traffi cking of normal and signal-mutated cargoes. For example, 
Fig.  3  depicts the traffi cking of a transmembrane protein with a 
Y-signal to be recognized by AP3. 

 Following its targeting to the endoplasmic reticulum (ER), the 
nascent lysosomal-resident cargo is inserted into the ER membrane 
by sequential action of the signal recognition particle and the 
translocon systems ( see  Fig.  3  and  Note 2 ). After being transported 
to the Golgi apparatus by vesicle traffi cking, cargo would emerge at 
the trans-Golgi network (TGN) ready to be sorted. Cargo carrying 
an appropriate signal can be recognized by the AP3 complex and 
actively sent in route to late endosome/lysosomes (LE/L) or can 
be passively incorporated onto carriers destined to the plasma 
membrane (the “default pathway”). Once at the plasma membrane, 
AP2 will bind and promote cargo internalization (Fig.  4 ), leading 

2.2.2  To Predict/
Determine Signal 
Relevance to Cargo 
Traffi cking/Localization: 
What Is the Impact 
of Specifi c Adaptor-Signal 
Interactions for Cargo 
Traffi cking/Localization?
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to another round of intracellular sorting. Therefore, mutation in 
this hypothetical AP3-specifi c signal is predicted to lead to a decrease 
in LE/L localization (by affecting route III—Fig.  3 ) and to plasma 
membrane accumulation (as more protein will be traveling via the 
default pathway, i.e., route I—Fig.  3 ). A similar result is to be 
expected in cases where AP3 function is defective [ 15 ].  

 While this may be perceived as compelling, predictions should 
be experimentally tested using a model cargo system. A very suc-
cessful approach for testing the sorting role of a signal is the use of 
TAC chimeras. The interleukin-2 receptor α-subunit (also known 
as TAC) is a protein with a very short cytoplasmic region without 
sorting determinants, for which highly effi cient and commercially 
available reagents for detection (i.e., antibodies: such as the mono-
clonal antibody 7G7) are available. Therefore, if TAC were to be 
modifi ed to carry a signal of interest now devoid of the confound-
ing effects of other sequences and motifs (i.e., subjected to a reduc-
tionist approach), it would act as a model or reporter cargo. The 
resulting TAC chimera will traffi c and localize ( see   Note 6 ) only 
according the sorting role of the genetically engineered signal. 

 These reporter cargoes can also be useful to experimentally test 
adaptor recognition by detecting the formation of a TAC chimera- 
adaptor complex using immunoprecipitation (IP) techniques 
( see   Note 6 ). Besides TAC chimeras, other approaches such as the 
previously mentioned two-hybrid or in vitro binding techniques 
can also be instrumental to test the signal-adaptor interaction.   

  Fig. 4    Traffi c of a generic AP3 cargo. Following translation of the messenger RNA 
in the endoplasmic reticulum (ER), cargo is transported to the Golgi apparatus (G) 
for further processing to fi nally emerge at the trans-Golgi network (TGN) from 
where it would be sorted. While AP3 actively recruits cargo for late endosomal 
(LE) to lysosome (L) targeting (route II–III), the “default” pathway (route I) would 
transport cargo to the plasma membrane (PM). At the PM, AP2 promotes cargo 
for internalization, facilitating a new iteration of sorting (see text for details)       
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    Often the cytoplasmic regions of cargoes do not contain single but 
multiple sorting determinants, and those signals can overlap with 
each other and with sites for posttranslational modifi cation. 
Therefore, the protein’s fi nal destination will result from the inter-
play of this composite of sequence-encoded information. 

 Although adaptors and signals discussed in this chapter will 
not be involved, TM and lumenal domains can also play an impor-
tant role in the fate of the proteins. Therefore, following studies 
with simplifi ed cargo models (see above) and investigations with 
the actual cargo (i.e., the signal within its native context) should be 
conducted. The latter should involve the analysis of truncations 
and point mutations that in the native context would affect signals 
and regulatory components (e.g., palmitoylation and phosphoryla-
tion sites).   

3     Protein Sequence Analysis Protocol 

 In this section we propose a simple protocol that brings into prac-
tice the above-discussed foundations of a method for the analysis 
of cargo sorting information. Here the protocol is applied to the 
lysosomal TMP Lamp2 (Fig.  2 ), and although specifi cally focused 
on Y-signals and recognition by APs, a similar procedure would 
apply to the study of any other sorting motif. 

   There are several resources that can be explored, for example, the 
NCBI databases and some organism-specialized sites, such as the 
Saccharomyces Genome Database (SGD) or FlyBase: 

 NCBI:   http://www.ncbi.nlm.nih.gov/     (“Protein” database) 
 SGD:   http://www.yeastgenome.org/     
 FlyBase:   http://fl ybase.org/     
 In all cases, be aware of partial sequences, isoforms, and species 

variation (a corollary to the latter is that conservation of a putative 
sorting signal means functional relevance but not necessarily a role 
in protein sorting). 

  Example 
 Sequence information for Lamp2 can be found at the NCBI data-
base (Fig.  2 ).   http://www.ncbi.nlm.nih.gov/protein/P13473.2    .   

   Information in terms of what cargo regions are facing the cytosol 
might be readily available from the database protein entries 
(see above), or it may be necessary to run a topology (TM and 
cytosolic region) prediction using the cargo sequence. If the latter 
is required, a few URLs for useful online sites are provided below:

     http://smart.embl-heidelberg.de/      
    http://phobius.sbc.su.se/      
    http://www.enzim.hu/hmmtop/html/submit.html        

2.3  Testing the Fate 
of Cargo

3.1  Finding 
the Amino Acid 
Sequence of the Cargo 
of Interest

3.2  Identifi cation 
of the Cytosolic 
Region(s) Within 
the Cargo of Interest
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  Example 
 The cytosolic region of Lamp2 was predicted to encompass amino 
acids 401–410 in agreement with information provided by the cor-
responding NCBI entry (Fig.  2 ).   

  Contrast the sequence of the cargo cytosolic region(s) against 
motifs listed in Table  1 . 

  Example 
 The cytosolic region of Lamp2 was found to contain a C-terminal 
YXXø motif (YEQF).   

       1.    Consensus fi tting   
   2.    Accessibility to adaptors   
   3.    Structural environment     

   http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/
npsa_seccons.html      

  What adaptor would bind the putative sorting signal?

 –    Prediction of signal-adaptor specifi city based on Table  1  (also 
use Table  2  and ANNs if the AP family is involved).  

 –   Experimental testing of adaptor recognition. Determine the 
isolated candidate signal ability to bind adaptors: two-hybrid 
technology, in vitro binding assays, localization analysis, and 
IP of TAC chimeras.    

  Example 
 The Lamp2 YEQF motif fulfi lls the criteria to be a signal recog-
nized by AP3.   

  Mutation (truncations followed by point mutations) of candidate 
signal within native context followed by adaptor-cargo IP and 
localization analysis.   

4    Conclusion 

 This chapter discusses the basis and application of a simple method 
for the identifi cation/testing of candidate sorting signals in TM 
proteins. The understanding and control of protein sorting and 
organization is not only important to further our basic knowledge 
of cell function but also to support the development of medicinal 
and biotechnological applications. 

 The proposed protocol takes advantage of the knowledge 
obtained by researchers using the genetics, molecular biology, and 
biochemistry toolkits. Now    is the turn of information and computa-
tional approaches to move our knowledge and capabilities forward. 

3.3  Search for Motifs 
Fitting Sorting Signal 
Consensuses

3.4  Prioritize 
Isolated Motifs 
According to:

3.5  Predict Adaptor 
Recognition

3.6  Back-to-Context 
Analysis
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These approaches will not only create tools to facilitate the analysis 
of protein information, but will also allow the generation of new 
hypotheses to be tested on the classical experimental realm. 

  The method described in this chapter has been successfully and 
routinely used to analyze protein cargo of different origins (yeast, 
mammalian, etc.). However, in its current form, it relies on manual 
inspection of sequences and on the use of scattered resources. One 
obvious limitation of this “manual” approach is its inability to sup-
port high-throughput analysis. Although complete collections of 
protein sequences from entire organisms exist, we lack the tools to 
systematically analyze the databases for cargos carrying specifi c 
sorting signals. This limitation, for example, precludes us from 
searching for cargoes potentially affected by genetic diseases due to 
defi ciencies in specifi c adaptors (e.g., Hermansky-Pudlak syndrome 
forms due to AP3 abnormal function— see  [ 15 ]). If we had this 
capability, we could predict (and perhaps prevent) cellular abnor-
malities in patients. 

 Therefore, there is a clear need for applications that incorpo-
rate the myriad of factors discussed in previous sections. 
Furthermore, the application of information theory [ 16 ] should be 
instrumental for the development of methods to crack the protein- 
sorting information code.  

  Absolutely. Our basic cell and molecular knowledge still needs to 
be pushed forward and classical benchwork will play a central role 
in this effort. Indeed, there still are some basic research aspects that 
need to be resolved/clarifi ed, for example, controversies about the 
specifi city of certain adaptors and several reports of functional sig-
nals that deviate from the discussed consensuses. The existence of 
previously unrecognized signals in the cytoplasm region of cargoes 
is another possibility that should be experimentally investigated. 

 In addition to discussing the basis and application of a method 
based on resources and analytical tools, from molecular biology to 
ANNs, this chapter emphasizes the necessity to amalgamate exper-
imental and theoretical methods. The coalescence of in silico, 
in vitro, and in vivo approaches is what it will take to fully under-
stand adaptor-signal interaction and to therefore move forward 
knowledge and to fulfi ll our medical and biotechnological needs.   

5    Notes 

        1.    Emergent properties: Properties of the whole that do not 
result from the sum of the parts. Examples: based on the 
known properties of proteins, lipids, sugars, and nucleic acids, 
it is unlikely that we would predict that their combination 
would lead to a living cell. At the multicellular level, the 

4.1  Where 
to Go from Here?

4.2  Is Benchwork 
Still Needed?
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properties of individual neurons and accessory cells do not 
predict that their grouping would lead to consciousness.   

   2.    For basic concepts and terminology in cell biology and bio-
chemistry, from the 1- and 3-letter amino acid codes to the 
mechanisms of vesicle traffi cking, a few textbooks are 
recommended: 

 Bruce Alberts, Alexander Johnson, Julian Lewis, Martin 
Raff, Keith Roberts, Peter Walter (2007). Molecular Biology 
of the Cell, 5th edition, Garland Science. ISBN: 0815341059; 
ISBN-13: 9780815341055. 

 Thomas D. Pollard & William C. Earnshaw (2008). Cell 
Biology, 2nd edition; Saunders/Elsevier. ISBN10:1416022554; 
ISBN13: 9781416022558.   

   3.    Integral membrane proteins: These proteins are partially 
embedded into and permanently attached to the membranes 
of cellular compartments. Transmembrane (TM) proteins 
(TMP) are a very large subset of integral membrane proteins 
and are characterized by spanning the membrane. TMP have a 
TM domain or region made up of approximately two dozen 
hydrophobic amino acids that separate lumenal and cytosolic 
regions ( see  Fig.  2 ).   

   4.    The effect on protein structure/function of amino acids such 
as aspartic and glutamic acids (i.e., with a negatively charged 
carboxyl group) can be emulated by amino acids serine and 
threonine following the introduction of a negatively charged 
phosphate group by phosphorylation. In fact, in order to test 
the functional relevance of their phosphorylation, amino acids 
serine and threonine are often intentionally mutated to aspar-
tic or glutamic acid.   

   5.    However, several domains or 3D structures (e.g., ubiquitin) 
have been found to be capable of conveying sorting informa-
tion on their 3D array of exposed amino acids (conformational 
or 3D motifs).   

   6.    Introduction to Biochemistry and cell biology techniques 
(e.g., immunoprecipitation, immunofl uorescence) can be 
found in  Short Protocols in Cell Biology . Juan S. Bonifacino 
(Editor), Mary Dasso (Editor), Joe B. Harford (Editor), 
Jennifer Lippincott-Schwartz (Editor), Kenneth M. Yamada 
(Editor). ISBN: 978-0-471-48339-7. February 2004.         

  Acknowledgments  

 We are indebted to Arpita Sen (UC Berkeley) and members of 
the Aguilar lab for critical reading of the manuscript. The Aguilar 
lab is supported by the Center for the Science of Information, an 

Analysis of Intracellular Sorting Information



16

NSF Science and Technology Center, under grant agreement 
CCF- 0939370, by the National Institutes of Health and by the 
National Science Foundation under Grants No. 5 R21 CA151961-
02 and 1021377, respectively.  

   References 

    1.    Esposito G, Clara FA, Verstreken P (2012) 
Synaptic vesicle traffi cking and Parkinson’s dis-
ease. Dev Neurobiol 72(1):134–144. doi:
  10.1002/dneu.20916      

    2.    Aridor M, Hannan LA (2002) Traffi c jams II: 
an update of diseases of intracellular trans-
port. Traffi c 3(11):781–790. doi:  10.1034/
j.1600-0854.2002.31103.x      

    3.    Boehm M, Bonifacino JS (2002) Genetic anal-
yses of adaptin function from yeast to mam-
mals. Gene 286(2):175–186. doi:  10.1016/
s0378-1119(02)00422-5      

    4.    Bonifacino JS (2014) Adaptor proteins involved 
in polarized sorting. J Cell Biol 204(1):7–17. 
doi:  10.1083/jcb.201310021      

    5.    Hirst J, Irving C, Borner GHH (2013) Adaptor 
protein complexes AP-4 and AP-5: new players 
in endosomal traffi cking and progressive spastic 
paraplegia. Traffi c 14(2):153–164. doi:  10.1111/
tra.12028      

    6.    Ohno H (2006) Physiological roles of clathrin 
adaptor AP complexes: lessons from mutant ani-
mals. J Biochem 139(6):943–948. doi:  10.1093/
jb.mvj120      

    7.      Green N, Fang H, Kalies KU et al. (2001) 
Determining the topology of an integral mem-
brane protein. Current protocols in cell biol-
ogy/editorial board, Juan S Bonifacino [et al.]. 
Chapter 5: Unit 5.2. doi:   10.1002/0471143030.
cb0502s00      

    8.    Vergarajauregui S, Puertollano R (2006) Two 
di-leucine motifs regulate traffi cking of muco-
lipin- 1 to lysosomes. Traffi c 7(3):337–353. 
doi:  10.1111/j.1600-0854.2006.00387.x      

    9.    Neumann U, Brandizzi F, Hawes C (2003) 
Protein transport in plant cells: in and out of the 

Golgi. Ann Bot 92(2):167–180. doi:  10.1093/
aob/mcg134      

    10.    Barman S et al (2001) Transport of viral pro-
teins to the apical membranes and interac-
tion of matrix protein with glycoproteins in 
the assembly of influenza viruses. Virus Res 
77(1):61–69. doi:  10.1016/s0168-1702(01)
00266-0      

         11.    Ohno H, Aguilar RC, Yeh D et al (1998) The 
medium subunits of adaptor complexes recog-
nize distinct but overlapping sets of tyrosine- 
based sorting signals. J Biol Chem 273(40):
25915–25921. doi:  10.1074/jbc.273.40.25915      

        12.    Aguilar RC, Boehm M, Gorshkova I et al (2001) 
Signal-binding specifi city of the mu 4 subunit of 
the adaptor protein complex AP-4. J Biol 
Chem 276(16):13145–13152. doi:  10.1074/
jbc.M010591200      

         13.   Mukherjee D, Hanna CB, Aguilar RC (2012) 
Artifi cial neural network for the prediction of 
tyrosine-based sorting signal recognition by 
adaptor complexes. J Biomed Biotechnol. doi: 
  10.1155/2012/498031      

    14.    Parrish JR, Gulyas KD, Finley RL Jr (2006) 
Yeast two-hybrid contributions to interactome 
mapping. Curr Opin Biotechnol 17(4):387–
393. doi:  10.1016/j.copbio.2006.06.006      

     15.    Dell’Angelica EC, Shotelersuk V, Aguilar RC 
et al (1999) Altered traffi cking of lysosomal 
proteins in Hermansky-Pudlak syndrome due 
to mutations in the beta 3A subunit of the 
AP-3 adaptor. Mol Cell 3(1):11–21. 
doi:  10.1016/s1097-2765(00)80170-7      

    16.    Adami C (2012) The use of information theory 
in evolutionary biology. Year Evol Biol 1256:
49–65. doi:  10.1111/j.1749-6632.2011.06422.x        

R. Claudio Aguilar

http://dx.doi.org/10.1002/dneu.20916
http://dx.doi.org/10.1034/j.1600-0854.2002.31103.x
http://dx.doi.org/10.1034/j.1600-0854.2002.31103.x
http://dx.doi.org/10.1016/s0378-1119(02)00422-5
http://dx.doi.org/10.1016/s0378-1119(02)00422-5
http://dx.doi.org/10.1083/jcb.201310021
http://dx.doi.org/10.1111/tra.12028
http://dx.doi.org/10.1111/tra.12028
http://dx.doi.org/10.1093/jb.mvj120
http://dx.doi.org/10.1093/jb.mvj120
http://dx.doi.org/10.1002/0471143030.cb0502s00
http://dx.doi.org/10.1002/0471143030.cb0502s00
http://dx.doi.org/10.1111/j.1600-0854.2006.00387.x
http://dx.doi.org/10.1093/aob/mcg134
http://dx.doi.org/10.1093/aob/mcg134
http://dx.doi.org/10.1016/s0168-1702(01)00266-0
http://dx.doi.org/10.1016/s0168-1702(01)00266-0
http://dx.doi.org/10.1074/jbc.273.40.25915
http://dx.doi.org/10.1074/jbc.M010591200
http://dx.doi.org/10.1074/jbc.M010591200
http://dx.doi.org/10.1155/2012/498031
http://dx.doi.org/10.1016/j.copbio.2006.06.006
http://dx.doi.org/10.1016/s1097-2765(00)80170-7
http://dx.doi.org/10.1111/j.1749-6632.2011.06422.x


17

Hugh Cartwright (ed.), Artificial Neural Networks, Methods in Molecular Biology, vol. 1260,
DOI 10.1007/978-1-4939-2239-0_2, © Springer Science+Business Media New York 2015

Chapter 2

Protein Structural Information Derived from NMR  
Chemical Shift with the Neural Network Program TALOS-N

Yang Shen and Ad Bax

Abstract

Chemical shifts are obtained at the first stage of any protein structural study by NMR spectroscopy. 
Chemical shifts are known to be impacted by a wide range of structural factors, and the artificial neural 
network based TALOS-N program has been trained to extract backbone and side-chain torsion angles 
from 1H, 15N, and 13C shifts. The program is quite robust and typically yields backbone torsion angles for 
more than 90 % of the residues and side-chain χ1 rotamer information for about half of these, in addition 
to reliably predicting secondary structure. The use of TALOS-N is illustrated for the protein DinI, and 
torsion angles obtained by TALOS-N analysis from the measured chemical shifts of its backbone and 13Cβ 
nuclei are compared to those seen in a prior, experimentally determined structure. The program is also 
particularly useful for generating torsion angle restraints, which then can be used during standard NMR 
protein structure calculations.

Key words NMR, Chemical shifts, Protein structure, Side-chain conformation, Artificial neural 
network, Secondary structure, Backbone torsion angle

1 Introduction

The first step of any protein structural study by NMR spectroscopy 
typically involves assignment of the multitude of NMR resonances 
to individual nuclei. Originally, for proteins extracted from natural 
sources, this only involved assignment of the hydrogen NMR 
spectra [1, 2]. However, due to extensive resonance overlap in 1H 
NMR spectra, this technology was restricted to relatively small 
proteins. With advances in molecular biology, the vast majority of 
today’s structural studies focus on cloned proteins, typically over-
expressed in Escherichia coli [3–5]. By using suitable isotopically 
enriched growth media, it then is readily feasible to obtain essen-
tially full incorporation of the NMR-observable stable isotopes 13C 
and 15N. These nuclei not only are key to dispersing the crowded 
NMR spectra in three or four orthogonal frequency dimensions, 
dramatically reducing the resonance overlap problem; the 13C and 

1.1 Relations 
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15N chemical shifts themselves have proven to be important reporters 
on local backbone conformation [6–8]. NMR chemical shifts in 
proteins are exquisitely sensitive to local conformation. However, 
they depend on many different factors, including backbone and 
side-chain torsion angles, neighboring residues, ring currents 
caused by nearby aromatic groups, hydrogen bonding, electric 
fields, local strain and geometric distortions, as well as solvent 
exposure [9–15]. This not only has made it difficult to separately 
quantify the relation between each of these parameters and the 
chemical shift; it also makes it impossible to uniquely attribute 
such a structural parameter to any individual chemical shift.

For protein NMR spectroscopy, triple resonance correlation 
experiments, which link the resonances of directly bonded 1H, 13C, 
and 15N nuclei, are commonly used to assign the chemical shifts of 
1H, 13C, and 15N nuclei in proteins [16–18]. The chemical shift 
assignment procedure usually consists of two steps: (1) sequence- 
specific assignment of the backbone atoms and (2) side-chain 
assignments. Nearly complete chemical shift assignments for back-
bone and side-chain atoms are commonly required to assign 
nuclear Overhauser enhancement (NOE) spectra, which classically 
are used to derive interproton distances that serve as the primary 
experimental restraints for calculating the protein structure. The 
backbone (1Hα, 13C′, 13Cα, 15N, and 1HN) and 13Cβ chemical shifts, 
which are generally obtained in the earliest stage of any protein 
NMR study, are particularly useful reporters on local conforma-
tion. Their link to secondary structure, as well as to hydrogen 
bonding and χ1 side-chain torsion angles, has been long recog-
nized and has been the focus of both empirical studies as well as 
quantum-chemical calculations [11–15, 19, 20].

The rapid increase in the number of proteins, for which both high- 
resolution structural coordinates have been deposited in the 
Protein Data Bank (PDB) [21] and NMR chemical shift assign-
ments are available in the BioMagResBank (BMRB) [22], has 
stimulated the development of quantitative empirical methods to 
study the relation between protein structure and chemical shifts 
[23]. Among the wide array of empirical methods, TALOS [20] 
and its two successors TALOS+ [24] and TALOS-N [25] have 
become particularly widely used for making accurate ϕ/ψ back-
bone torsion angle predictions on the basis of the backbone (13Cα, 
13C′, 15N, 1Hα, and 1HN) and 13Cβ chemical shift assignments. 
These ϕ/ψ predictions can be used to validate NOE-derived NMR 
structures that did not use chemical shift-derived input parameters 
or, conversely, to generate additional restraints as input to the pro-
tein structure calculation and refinement protocols.

The original TALOS program (Torsion Angle Likeliness 
Obtained from Shift) searches a protein database, consisting origi-
nally of only 20 proteins but later expanded to ca 200 proteins, 

1.2 Protein 
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with both high-resolution X-ray coordinates and NMR chemical 
shift assignments. TALOS identifies the ten tripeptide fragments 
that represent the best match in terms of chemical shifts and resi-
due types to those of a tripeptide segment whose assignments are 
known and whose structure is under study (the “target protein”). 
The assumption underlying TALOS is that fragments with similar 
chemical shifts and residue type typically have similar backbone 
conformations. Thus, if these ten best-matched fragments have 
consistent, narrowly clustered values for the ϕ/ψ angles of their 
center residue, their averages and standard deviations are used as a 
prediction for the ϕ/ψ angles of the center residue of the target 
protein tripeptide. If the ϕ/ψ angles of the center residue of these 
ten best-matched tripeptides fall in different regions of the 
Ramachandran map, the matches are declared ambiguous, and no 
prediction is made for the central residue. With this quality control 
criterion, TALOS predicted ϕ/ψ torsion angles for, on average, ca 
72 % of the residues in any given target protein. For TALOS valida-
tion proteins, where the true ϕ/ψ angles are known, only about 
1.8 % of the predictions were inconsistent with crystallographically 
determined ϕ/ψ torsion angles. Excluding these 1.8 % erroneous 
predictions, a root mean square (RMS) difference of ca 13° is 
observed between predicted and crystallographically observed ϕ/ψ 
torsion angles.

Although rather robust, the original TALOS program was 
unable to make definitive predictions for about 28 % of the resi-
dues in any given protein. Most of these 28 % are located outside 
regular secondary structure, exactly those regions where backbone 
torsion angle information is most needed. TALOS+ was developed 
to address this shortcoming and to extend the coverage of the pro-
gram [24]. For a given residue in the target protein, TALOS+ first 
uses an artificial neural network (ANN) module to predict its 
three-state distribution in the Ramachandran map, i.e., α, β, and 
positive-ϕ. This three-state distribution is subsequently used to 
guide the database search procedure for the ten best matches. With 
the incorporation of the ANN, TALOS+ is able to increase its cov-
erage to ca 88 %, without sacrificing accuracy. Thus, compared to 
the original TALOS program, the fraction of residues whose back-
bone angles cannot be predicted is reduced from ~28 % to ~12 %. 
Importantly, most of the additional ϕ/ψ torsion angle predictions 
are made for residues in loop or turn regions, where this informa-
tion is needed most.

The recently introduced TALOS-N program relies far more 
extensively on neural network analysis of the input chemical shift data 
than TALOS+, thereby further increasing coverage, accuracy, and 
reliability. In addition, TALOS-N is the first program to  generate 
quite accurate predictions for the side-chain χ1 torsion angles (Fig. 1).

For the ϕ/ψ torsion angle prediction of a given residue i in the 
target protein, a well-trained two-level feed-forward multilayer 
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ANN, referred to as a (ϕ,ψ)-ANN, is first used by TALOS-N to 
predict the 324-state ϕ/ψ distribution of residue i on the basis of 
the NMR chemical shifts and residue type of itself and its adjacent 
residues (i − 2 to i + 2). Here, the 324-state ϕ/ψ distribution cor-
responds to the likelihood that residue i adopts torsion angles that 
fall in any of the 324 voxels, of 20° × 20° each, that make up the 
Ramachandran map. The ANN-predicted ϕ/ψ distribution is then 
used solely to search a large crystallographic database (containing 
9,523 proteins, with chemical shifts added by a computational 
method [26]), for a pool of 1,000 heptapeptide fragments with 
ϕ/ψ angles that best match the 324-state ϕ/ψ distribution. These 
top 1,000 fragments then are further evaluated for the agreement 
between their computed chemical shifts and experimental values of 
the corresponding heptapeptide segment (i − 3 to i + 3) in the tar-
get protein. The 25 best-matched database heptapeptides are 
retained, and the ϕ/ψ angles of their center residues are inspected 
by using an advanced clustering analysis, and subsequently used 
to make a prediction for the ϕ/ψ angles of the query residue. 
Validation on an independent set of proteins indicates that backbone 

Fig. 1 Flowchart of the TALOS-N program (reproduced from [25] with permission from Springer)
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torsion angles can be predicted for a larger, ≥90 % fraction of the 
residues, with an error rate of ca 3.5 % when using an acceptance 
criterion that is nearly twofold tighter than that used previously by 
TALOS and TALOS+. The RMS difference between predicted and 
crystallographically observed ϕ/ψ torsion angles is ca 12°, also 
slightly better than what was obtained with the earlier versions of 
the program.

To predict the χ1 rotameric state (g−, g+ or t) for a given residue 
i (of residue type a) in the target protein, TALOS-N uses another 
set of ANNs, referred to as (χ1)a-ANNs. The (χ1)a-ANN has been 
trained to correlate the center residue likelihood of adopting each 
of the three χ1 rotameric states to the differences between its 
observed chemical shifts and those expected on the basis of its 
backbone conformation. A separate database search procedure is 
subsequently used to estimate the three-state probability of residue 
i to adopt the three χ1 rotameric states. With an optimized error 
control criterion, TALOS-N predicts χ1 rotameric states for ca 
50 % of the residues, with an “error rate” of ca 10 % when compar-
ing the predicted χ1 rotameric state to that of any given reference 
structure. However, we note that the true error is likely to be much 
lower, as for proteins that have multiple available independently 
solved X-ray structures, the χ1 rotameric states of any “erroneous” 
χ1 prediction is typically in agreement with that of another X-ray 
structure [25].

Similar to TALOS+, TALOS-N is also implemented with an 
ANN-based module for predicting secondary structure (SS) from 
the NMR chemical shifts. For this purpose, TALOS-N uses two 
separate ANNs, referred to as SS-ANN and SSseq-ANN, which are 
trained to correlate the three-state secondary structure classifica-
tion (helix, sheet, and coil) of a residue to both the chemical shifts 
and amino acid sequence or to amino acid sequence alone, respec-
tively. The output of these two ANNs is used in a hybrid manner 
to predict secondary structure for any residue in a protein, regard-
less of the completeness of chemical shift assignments. The overall 
correctness of the SS prediction is ca 88 % when NMR chemical 
shifts are available, dropping to ca 81 % when no chemical shifts are 
available. In the absence of chemical shifts, TALOS-N matches the 
accuracy of the best sequence-only secondary structure prediction 
programs [27, 28].

2 Materials

In this chapter, we use the protein DinI [29] to illustrate the use of 
TALOS-N for predicting its backbone ϕ/ψ and side-chain χ1 torsion 
angles, as well as its secondary structure classification. To follow the 
examples, both the TALOS-N software package and an input file 
with correctly formatted chemical shift assignments are needed.

Protein Structure from NMR
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The TALOS-N software package, including the required binaries 
for three of the most common operating systems, Linux, Mac OS 
X, and Windows, as well as the requisite protein database and 
scripts, can be downloaded from http://spin.niddk.nih.gov/bax/
software/TALOS-N/ and installed straightforwardly (see Note 1). 
Alternatively, a server version of TALOS-N can be used directly, 
without installing the TALOS-N software (http://spin.niddk.nih.
gov/bax/nmrserver/talosn/).

An input table containing both the full amino acid sequence and 
the NMR chemical shift assignments is required, to be prepared 
with a specific data format (general purpose NMRPipe table for-
mat). As an example, an excerpt of such a file is shown below for 
the protein DinI:

DATA FIRST_RESID 2
DATA SEQUENCE RIEVTIAKT SPLPAGAIDA LAGELSRRIQ 

YAFPDNEGHV SVRYAAANNL
DATA SEQUENCE SVIGATKEDK QRISEILQET WESADDWFVS E
VARS   RESID RESNAME ATOMNAME SHIFT
FORMAT %4d %1s %4s %8.3f
   2 R    C  174.123
   2 R   CA   55.537
   2 R   CB   32.786
   2 R    H    8.772
   2 R   HA    4.994
   2 R    N  123.394
   3 I    C  173.941
   3 I   CA   60.986
The protein’s amino acid sequence should be provided in one 

or more lines starting with the tag “DATA SEQUENCE”. Only the 
one-character residue name is allowed (see Note 2) and space char-
acters in the sequence are ignored. An optional line beginning with 
a tag of “DATA FIRST_RESID” is needed to specify the first resi-
due number of the amino acid sequence listed in the “DATA 
SEQUENCE” line if the first residue listed is not residue number 1. 
For the chemical shift table, columns for residue number, one- 
character residue type (see Note 2), atom name (see Note 3), and 
chemical shift value must be included, and their definitions 
(“RESID,” “RESNAME,” “ATOMNAME,” and “SHIFT,” respec-
tively) must be predeclared in a line beginning with a “VARS” tag; 
a line beginning with a “FORMAT” tag is also required (immedi-
ately after the “VARS” line) to define the data type of each corre-
sponding column of the table.

Note that all chemical shifts used as input for TALOS-N are 
required to be properly referenced (see Note 4) to ensure the accu-
racy and reliability of the predictions. If the protein sample used to 
collect the NMR chemical shift data is perdeuterated, 2H isotope 
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corrections [30] need to be applied for 13Cα and 13Cβ chemical 
shifts (see Note 5).

Other standard chemical shift formats, such as the NMR-Star 
format used by the BMRB database, can also be used as input after 
a format conversion. A conversion script is provided in the 
TALOS-N package for this purpose (see Note 6). The server ver-
sion of TALOS-N includes automated chemical shift format iden-
tification and can use the NMR-Star format chemical shift file 
directly as input, without requiring prior format conversion.

3 Methods

The TALOS-N prediction can be performed for DinI with an input 
chemical shift file of name “inCS.tab” by typing the command:

      talosn -in inCS.tab
The program first converts the chemical shifts (δ) of each query 

residue to its corresponding secondary chemical shifts (Δδ) by sub-
tracting a residue-type-dependent random coil value, as well as 
corrections to account for the residue types of its two immediate 
neighbors. The converted secondary chemical shifts are stored in a 
file named “predAdjCS.tab” (in the “SHIFT” column), 
together with the original chemical shifts (“CS_OBS”) and the cor-
responding corrections (“CS_ADJ”, which is the random coil value 
including nearest neighbor (i ± 1) residue-type correction) used to 
calculate the secondary chemical shifts. To make a ϕ/ψ angle pre-
diction, the converted secondary chemical shifts together with the 
amino acid-type information are used as inputs for the (ϕ/ψ)-ANN 
to calculate the 324-state ϕ/ψ distribution for each predictable 
residue (see Note 7), with the output stored in a file named “pre-
dANN.tab”. A database search step is then performed to search a 
9,523-protein database for the 25 best-matched heptapeptides in 
terms of the 324-state ϕ/ψ angle distribution, the secondary 
chemical shifts, and the amino acid type. A single file, “predAll.
tab”, is generated in this step to store the information of those 
best database matches for each of the residues in the target protein. 
A final summarization and quality control step is performed to 
identify outliers in the 25 best-matching heptapeptides by evaluat-
ing the clustering of the ϕ/ψ angles of their center residues in the 
Ramachandran map or by using the observed ϕ/ψ of a reference 
structure if such a structure is available (this requires an additional 
option “-ref ref.pdb” in the command line, where “ref.
pdb” is the name for the reference structure). A summary file 
“pred.tab” is then created, displaying the average ϕ and ψ values 
(in the PHI and PSI columns) and their respective standard devia-
tions (DPHI and DPSI), as well as an aggregate, weighted χ2 score 
(DIST, see Eq. 12 of reference [25]), reflecting how well the target 

3.1 TALOS-N 
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protein chemical shifts match those of the database fragments. 
An excerpt of this file for DinI is shown below:

VARS   RESID RESNAME PHI PSI DPHI DPSI DIST 
S2 COUNT CS_COUNT CLASS

FORMAT %4d %s %8.3f %8.3f %8.3f %8.3f %8.3f 
%5.3f %2d %2d %s

   2 R -107.206  129.115    9.502    7.843    
0.293 0.873 25 16 Strong

   3 I -117.237  126.352    6.691    6.523    
0.180 0.883 25 18 Strong

For each predictable residue, or residue with sufficient input 
chemical shifts (see Note 7), a final classification is made (listed as 
the last “CLASS” column in the “pred.tab” file) for its ϕ/ψ 
angle prediction by a summarization step, detailed below. Prior to 
making this final classification, the program calculates the predicted 
backbone rigidity as reflected in the “random coil index” order 
parameter, RCI-S2 [31], which scales between 0 (total disorder) 
and 1 (fully rigid). Its values are included under the “S2” column 
in the “pred.tab” file. Residues below the threshold RCI-S2 
≤0.6 are assigned as dynamic (receiving a “Dyn” classification) in 
“pred.tab”. For other residues, a classification of strongly unam-
biguous is assigned (with a “Strong” tag) if the center residues of 
all 25 best-matching heptapeptides locate in a consistent ϕ/ψ 
region in the Ramachandran map. A generously unambiguous 
classification is assigned (with a “Generous” tag) if the center 
residues of only the top ten best matches cluster in a consistent 
ϕ/ψ region. All other cases are considered ambiguous (classified 
with a “Warn” tag), even though inspection of their Ramachandran 
map population may contain very useful information. For example, 
often the ambiguous residues will cluster in two distinct regions of 
the Ramachandran map, and the investigator can explore both 
options during structure calculations.

For the predictable residues, the ϕ/ψ angles are calculated by 
averaging the ϕ/ψ angles of the center residues of all 25 best 
matches (for residues classified as “Strong”) or from the top ten 
best matches (for a “Generous” prediction) and shown in the 
“PHI”/“PSI” columns. The estimated uncertainties in the 
 predicted ϕ/ψ angles are calculated from their standard deviations 
from these averages and listed in the “DPHI” and “DPSI” col-
umns. Only when a known reference structure is provided as input 
to the program will the predicted ϕ/ψ values be compared to the 
observed ϕ/ψ angles in this reference structure for all unambigu-
ously predicted (“Strong” and “Generous”) residues. A predic-
tion is labeled as “Bad” if the predicted and the observed ϕ/ψ 
angles are not consistent (see Note 8).

For DinI, 71 residues (out of a total of 81) are obtained 
with unambiguous ϕ/ψ angles prediction, 2 have an ambiguous 
ϕ/ψ angle prediction, and 6 are predicted as dynamic (Fig. 2). 
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Among those 71 unambiguous predictions, 70 are classified as 
“Strong” and two (Ala15 and Gly16) are designated “Bad” after 
inspecting their consistency relative to the ϕ/ψ angles observed in 
the reference NMR structure. It is worth noting that, in the refer-
ence structure, these latter two residues (with ϕ/ψ angles of 
−57°/49° and −176°/−18°, respectively) are located in very lowly 
populated regions of the Ramachandran map, i.e., they are statisti-
cally unlikely to occur. Without further experimental data, it is not 
possible to decide whether the “Bad” classification refers to the 
reference structure or to the quality of the prediction.

After TALOS-N prediction of ϕ/ψ angles has been completed, 
another database search and ANN-based procedure is performed 
to predict the χ1 rotameric states. A χ1 rotamer prediction summary 
file “predChi1.tab” is created with an excerpt of this file shown 
below for DinI:

VARS RESID RESNAME CS_COUNT CHI1_OBS Q_Gm Q_Gp Q_T CLASS
FORMAT %4d %s %2d %8.3f %5.3f %5.3f %5.3f %s

   2 R 16  -69.938 0.341 0.121 0.538 na
   3 I 18  -62.494 0.873 0.063 0.063 g-
   4 E 18  -61.087 0.312 0.093 0.595 na
   5 V 18  178.554 0.073 0.055 0.872 t
   6 T 18   66.182 0.302 0.464 0.235 na
   7 I 18  -75.725 0.713 0.143 0.143 g-

Fig. 2 Graphic TALOS-N inspection interface for protein DinI. (For details, see Subheading 3.2 or the TALOS-N 
webpage http://spin.niddk.nih.gov/bax/software/TALOS-N/)

Protein Structure from NMR
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For a query residue of residue type a (excluding Gly, Pro, and 
Ala) with sufficient input chemical shifts (see Note 7), TALOS-N 
first searches the database for the 1,000 best-matched heptapep-
tides in terms of the backbone torsion angles and residue types. 
It then uses a trained (χ1)a-ANN to calculate a χ1 matching score 
for each database match, which measures the likelihood of the 
center residue of the database heptapeptide to adopt the same χ1 
rotameric state as the query residue. The program then derives a 
three- state probability score, Pc, for the query residue to adopt 
each of the three χ1 rotameric states (c = g−, g+, and t, stored in the 
columns “Q_Gm,” “Q_Gp,” and “Q_T,” respectively, in “pred-
Chi1.tab”). TALOS-N then classifies the prediction for the 
query residue to adopt χ1-rotamer state c (g−, g+, or t, as listed in 
the last column of “CLASS” in the “predChi1.tab” file) only 
when the predicted probability for state c is significantly higher 
than that for the other two states, by default Pc > 0.6. Otherwise, an 
ambiguous classification is assigned (with a “na” tag). Details of 
other contents in “predChi1.tab” are as follows: the column of 
“CS_COUNT” is for the count of the experimental chemical shifts 
of the target residue itself and its two neighbors; when a reference 
structure is provided, a “CHI1_OBS” column is provided to dis-
play the χ1 angle observed in the reference structure. For DinI, 
TALOS-N makes χ1 rotameric state predictions for 30 out of a 
total of 61 (non-Gly/-Pro/-Ala) residues, among which three 
(Asp35, Asn48, and Asp75) differ in their predicted χ1 rotameric 
state from the reference NMR structure (PDB entry 1GHH).

Next to predicting ϕ, ψ, and χ1 torsion angles, TALOS-N also 
predicts the protein’s secondary structure. For residues with chem-
ical shift assignments, a two-level neural network, SS-ANN, is 
trained to make a three-state secondary structure prediction (H, E, 
or L, representing for α-helix, β-sheet, and loop, respectively) on 
the basis of both the chemical shifts and the amino acid sequence 
information. In addition, another two-level ANN, referred to as 
SSseq-ANN, is trained by using solely the amino acid sequence 
information. It can be used to make predictions for residues that 
lack chemical shift information. However, this SSseq-ANN is used 
more generally by TALOS-N in a hybrid manner with the SS-ANN 
to make secondary structure prediction for proteins when chemical 
shift assignments are incomplete. TALOS-N generates an output 
file “predSS.tab” to store the predicted secondary structure. An 
excerpt of this file is shown below for DinI:

VARS RESID RESNAME CS_CNT CS_CNT_R2 Q_H Q_E Q_L CONFIDENCE SS_CLASS
FORMAT %4d %1s %2d %2d %8.3f %8.3f %8.3f %4.2f %s

   1 M 10  4    0.333    0.333    0.333 0.00 L
   2 R 16  6    0.097    0.740    0.162 0.58 E
   3 I 18  6    0.027    0.970    0.003 0.94 E
   4 E 18  6    0.006    0.968    0.026 0.94 E
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   5 V 18  6    0.004    0.963    0.033 0.93 E
   6 T 18  6    0.009    0.970    0.021 0.95 E

Details of its contents are as follows: the column of “CS_CNT_
R2” lists the number of experimental chemical shifts of the target 
residue; “CS_CNT” contains the count of experimental chemical 
shifts of the target residue plus its two immediate neighbors; the 
columns “Q_H,” “Q_E,” and “Q_L” list the SS-ANN (or SSseq- 
ANN) predicted probability for the target residue to be of second-
ary structure type “H,” “E,” and “L,” respectively; the values 
shown in the “CONFIDENCE” column represent the confidence of 
the three-state secondary structure prediction for a given target 
residue, calculated from the difference of maximal and median val-
ues of “Q_H,” “Q_E,” and “Q_L”; and the text listed in the “SS_
CLASS” column shows the final secondary structure classification 
assigned by the program, i.e., one of the three states with the maxi-
mal predicted probability.

For DinI, when comparing to the output of the DSSP pro-
gram [32] for the reference structure (PDB entry 1GHH), the 
overall correctness ratio of the TALOS-N predicted secondary 
structure is 70/81. In this respect, it is important to note that, 
even for proteins of known structure, secondary structure assign-
ment can be ambiguous, as reflected in only ca 90 % agreement 
among the output of some of the most popular programs [23].

As mentioned above, TALOS-N predictions can either be 
made locally by downloading the requisite programs or be per-
formed via the TALOS-N server (http://spin.niddk.nih.gov/bax/
nmrserver/talosn/), which requires a chemical shift file as input 
and an e-mail address to send back the prediction results, including 
all abovementioned output files, such as “pred.tab”, “predChi1.
tab”, “predSS.tab”, “predS2.tab”, “predAll.tab”, 
“predAdjCS.tab”, and “predANN.tab”.

The TALOS-N predictions can be inspected and further adjusted 
by using a Java graphic program, jrama. Two examples of com-
mand line calls of this program are:

   jrama -in pred.tab
   jrama -in pred.tab -ref DinI.pdb
Figure 2 shows the jrama graphic interface, loaded with the 

TALOS-N predicted results for DinI. The left panel of the graphic 
interface shows a map of the ϕ/ψ angles of the center residues of 
the 25 best-matched heptapeptides in the database (green 
squares) and the query residue Thr-6 (blue, depicting the angles 
observed in the NMR-derived PDB entry 1GHH), superimposed 
on a Ramachandran map, depicting in gray the “most favorable” 
ϕ/ψ angles for Thr, i.e., those most commonly observed in high- 
resolution crystal structures of a very large array of proteins. The 
324 (ϕ/ψ)-ANN-predicted scores for Thr-6 are shown as colored 

3.2 Manual 
Inspection 
and Adjustment

Protein Structure from NMR

http://spin.niddk.nih.gov/bax/nmrserver/talosn/
http://spin.niddk.nih.gov/bax/nmrserver/talosn/


28

voxels but only for those that are populated at least one standard 
deviation above the average predicted voxel density. The top 
right panel displays the amino acid sequence of DinI, with resi-
dues colored according to their ϕ/ψ prediction classification. 
Missing predictions (e.g., residue M1) are shown in light gray, 
consistent predictions in light or dark green (for “Strong” and 
“Generous” predictions, respectively), ambiguous predictions 
in yellow, and dynamic residues in blue. Three other panels cor-
respond to the RCI-S2 value, the predicted secondary structure 
(red, α-helix; aqua, β-sheet), with the height of the bars reflecting 
the probability assigned by the SS-ANN secondary structure pre-
diction. The bottom right panel depicts the χ1 rotamer predic-
tions (red oval, g−; green, g+; yellow, t), with the height of the 
ovals corresponding to the probability assigned by the χ1 rota-
meric state prediction.

The TALOS-N prediction (including the summary of 
TALOS-N predicted ϕ/ψ angles) is normally performed with the 
default parameters and settings. However, the left panel also can 
be used to manually adjust the prediction classification of a given 
query residue according to a user’s preference. The prediction 
files then will be overwritten to reflect any changes made 
interactively.

The TALOS-N output can be converted into ϕ and ψ torsion 
angle restraints that then can be used directly as input for a con-
ventional protein NMR structure calculation procedure [33, 34]. 
Two convenient scripts, “talos2dyana.com” and “talos2x-
plor.com”, are included in the TALOS-N software package for 
this purpose. These scripts read predicted ϕ and ψ angles from 
the TALOS-N prediction summary file “pred.tab” and gener-
ate for each residue with an unambiguous TALOS-N prediction 
(classified as “Strong” or “Generous”) a ϕ and a ψ torsion 
angle restraint (see Note 9). These torsion angle restraints can be 
stored in either CYANA format, as shown below for residues 2 
and 3 of DinI:

   2   ARG  PHI    -127.2   -87.2
   2   ARG  PSI     109.1   149.1
   3   ILE  PHI    -137.2   -97.2
   3   ILE  PSI     106.4   146.4

or in XPLOR format:

assign (resid    1 and name C    )(resid    2 and name N    )
 (resid    2 and name CA   )(resid    2 and name C    )    1.0 -107.2   20.0 2

assign (resid    2 and name N    ) (resid    2 and name CA   )
 (resid    2 and name C    ) (resid    3 and name N    )    1.0  129.1   20.0 2

assign (resid    2 and name C    ) (resid    3 and name N    )
 (resid    3 and name CA   ) (resid    3 and name C    )    1.0 -117.2   20.0 2

assign (resid    3 and name N    ) (resid    3 and name CA   )
 (resid    3 and name C    ) (resid    4 and name N    )    1.0  126.4   20.0 2

3.3 Generation 
of Angular Restraints
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These input restraints then can be used for protein structure 
calculations as a complement to the conventional NOE distance 
restraints. Note that such chemical shift-derived torsion angle 
restraints alone are typically insufficient to reach a converged pro-
tein structure as each torsion angle contains a substantial uncer-
tainty (±20°, in the above example), and these uncertainties rapidly 
accumulate when building the protein chain. Moreover, as men-
tioned above, predictions are generally only about 90 % complete 
and may contain errors.

4 Notes

 1. An installation shell script “install.com” is provided with 
the TALOS-N software package, which can be use for installing 
and configuring the TALOS-N program on a Linux or a Mac 
OS X system. After the installation, two starting shell scripts 
“talosn” and “jrama” are generated with properly config-
ured installation paths for the system-specific binary and all 
required databases. For a Windows system, TALOS-N can be 
installed by simply uncompressing the package. However, when 
running the TALOS-N program, the TALOS-N installation 
path (“$talosnDir”) must be specified on the fly, for example, 
with the command (see Subheading 3.1) of “$talosnDir/ 
bin/TALOS.exe –in inCS –talosnDir $talosnDir”.

 2. In both the sequence header and the chemical shift data table, 
the lowercase “c” must be used for oxidized Cys (δ13Cβ ~ 
 42.5 ppm) and uppercase “C” for reduced Cys (δ13Cβ ~ 28 ppm), 
“h” for protonated His, and “H” for deprotonated His.

 3. Atom names should be given exactly as: “HA” for Hα atoms of 
all non-Gly residues; “HA2” for the first Hα atom of a Gly resi-
dues and “HA3” for the second; “C” for C′ (CO) atoms; “CA” 
for Cα atoms; “CB” for Cβ atoms; “N” for amide nitrogen 
atoms; and “HN” for amide hydrogens. Data for all other atom 
types will be ignored.

 4. All 13C chemical shifts (including δ13Cα, δ13Cβ, and δ13C′) 
should be referenced relative to the methyl groups of 
4,4-dimethyl-4-silapentane-1-sulfonic acid, or DSS [35]. The 
15N chemical shifts used as input for TALOS-N should be ref-
erenced relative to liquid ammonia at 25 °C [35]. A pre-check 
module in TALOS-N will be used to identify possible referencing 
problems with the δ13Cα, δ13Cβ, δ13C′, and δ1Hα chemical shift 
inputs [36] when running a typical TALOS-N command with 
an additional “-check” option, for example, by using the 
command line input argument “talosn -in inCS.tab 
-check”. This module first converts the chemical shifts (δ) of 
each residue to secondary chemical shifts (Δδ; see 
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Subheading 3.1) and subsequently evaluates these by correlat-
ing Δδ13Cα, Δδ13Cβ, Δδ13C′, and Δδ1Hα to the reference-free 
entity, Δδ13Cα − Δδ13Cβ [36]. The estimated chemical shift ref-
erencing offsets, as well as their corresponding fitting error, 
will be printed for δ13Cα, δ13Cβ, δ13C′, and δ1Hα. An offset 
correction generally is only needed when the estimated refer-
encing offset exceeds the average fitting error by more than 
about five standard deviations. This pre-check module will also 
identify residues with unusual chemical shifts, for which sec-
ondary chemical shifts fall outside the expected range. Such 
chemical shift outliers, especially those with highly unusual 
chemical shifts, for which secondary chemical shifts deviate 
from the expected range by more than two times of the normal 
range of secondary chemical shifts, may correspond to experi-
mental errors and need to be inspected carefully prior to using 
them for making torsion angle predictions.

 5. 2H isotope chemical shift corrections for 13Cα and 13Cβ [30] 
can be applied before starting the TALOS-N prediction, i.e., 
when generating the secondary chemical shifts. To do this, an 
additional option “-iso” must be added when running a 
TALOS-N prediction, for example, by using a command line 
argument of the form “talosn -in inCS.tab -iso”.

 6. A conversion Unix shell script, bmrb2talos.com, is included 
with the TALOS-N package and can be used to convert a 
NMR- Star format chemical shift table, used by the BMRB data-
base, to TALOS format. An example command line for using 
this script is “bmrb2talos.com bmrb.str > inCS.tab”.

 7. To ensure the prediction accuracy and reliability for a given 
query residue, the chemical shift sufficiency is first inspected by 
the program for the residue itself and its two immediate neigh-
bors. If at least two of the three residues have at least three 
chemical shifts, the center residue is considered to be 
predictable.

 8. The consistency between the predicted ϕ/ψ values (ϕpred/ψpred) 
and the observed ϕ/ψ angles (ϕobs/ψobs) is defined by 

f f y ypred obs pred obs-( ) + -( ) < °
2 2

60 .
 9. For a residue with a “Strong” classification of its prediction, 

the ϕ and ψ angle restraints are set to <ϕ> ± 2σ and <ψ> ± 2σ, 
where <φ> and <ψ> are the averaged TALOS-N predictions 
and 2σ is the larger of 20° or two standard deviations of the 
TALOS-N prediction. For a residue classified with a 
“Generous” prediction, the ϕ and ψ angle restraints are less 
tight, <ϕ> ± 3σ and <ψ> ± 3σ, with an allowed range of the 
larger of 30° or three standard deviations of the TALOS-N 
prediction.
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    Chapter 3   

 Predicting Bacterial Community Assemblages Using 
an Artifi cial Neural Network Approach 

              Peter     Larsen     ,     Yang     Dai    , and     Frank     R.     Collart   

    Abstract 

   Microbial communities are found in nearly all environments and play a critical role in defi ning ecosystem 
service. Understanding the relationship between these microbial communities and their environment is 
essential for prediction of community structure, robustness, and response to ecosystem changes. Microbial 
Assemblage Prediction (MAP) describes microbial community structure as an artifi cial neural network 
(ANN) that models the microbial community as functions of environmental parameters and community 
intra-microbial interactions. MAP models can be used to predict community assemblages over a wide 
range of possible environmental parameters, extrapolate the results of point observations across spatial 
scales, and make predictions about how microbial communities may fl uctuate as the result of changes in 
their environment.  

  Key words     Modeling  ,   Microbial assemblage prediction  ,   Microbial ecology  ,   Systems biology  , 
  Metagenomics    

1     Introduction 

 From boiling lakes [ 1 ,  2 ] to habitats under miles of Antarctic ice 
[ 3 ], from the upper atmosphere [ 4 ,  5 ] to deep in the planet’s crust 
[ 6 – 8 ], bacteria are found not only to thrive but to be critical driv-
ers of Earth’s biological and geochemical systems. Microbial 
metabolism contributes to all known biogeochemical cycles and 
has both direct and indirect impacts on Earth’s climate. These 
organisms have been implicated in mass extinction events [ 9 ] and 
are predicted to play important roles in future global warming 
events [ 10 ]. 

 The submitted manuscript has been created by UChicago Argonne, LLC, operator of Argonne National 
Laboratory (“Argonne”). Argonne, a US Department of Energy Offi ce of Science laboratory, is operated 
under contract no. DE-AC02-06CH11357. The US Government retains for itself, and others acting on 
its behalf, a paid-up nonexclusive, irrevocable worldwide license in the said article to reproduce and pre-
pare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on 
behalf of the government. 



34

 The identity of these key players in Earth’s ecosystems has 
until recently remained elusive. The diversity of these communities 
is vast, with the majority of microbial species uncharacterized in 
the lab and their very ubiquity challenges systematic sampling. 
Metagenomic sequencing, the sequencing of bacterial genomic 
DNA extracted directly from environmental samples, has opened 
these previously intractable ecosystems for analysis [ 11 ]. However, 
there is a wide divergence between the scale at which metagenomic 
sampling can be conducted and the scale of possible mechanisms 
by which microbial population may affect ecosystems [ 12 ]. This 
divergence supports the need for computational tools that leverage 
relatively sparse microbial population observations and extrapolate 
those biological observations to prediction of population structure 
changes over time, space, or environmental conditions [ 13 ]. 

 Here, we present a computational method, Microbial 
Assemblage Prediction (MAP), for leveraging microbial popula-
tion data using artifi cial neural networks (ANNs) to model micro-
bial populations, fi rst described by Larsen et al. [ 14 ]. MAP uses 
an ANN approach to predict a bacterial population structure, to 
a given taxonomic resolution, as a function of environmental 
parameters. This approach considers not only the impact of envi-
ronmental factors on bacterial taxonomic abundance but also the 
interrelationships between the abundance of one taxonomic 
group on another. Required data for this approach includes a set 
of metagenomic-derived microbial population structure profi les 
collected across a range of environmental conditions. 

 There are two principal steps in the process for construction 
of the MAP model (Fig.  1 ). The fi rst is to generate an environ-
mental interaction network (EIN). The EIN is a directed acyclic 
graph that is derived from the statistical dependencies between 
environmental parameters and relative abundance of microbial 
taxa. The EIN is generated such that the root nodes of the net-
work are always environmental parameters and never microbial 
taxa. In the second step, the EIN is used as the underlying topol-
ogy of the MAP ANN. Each node in the ANN has a value that is 
defi ned as a function of the values of its parent nodes with the 
root environmental parameter nodes taking values from biologi-
cal observations. In this way, values for all nodes in the ANN are 
ultimately mathematical functions of environmental parameter 
data. This enables the generation of MAP models of microbial 
populations that can be used to predict microbial population 
structure across multiple observed or extrapolated environmental 
conditions (Fig.  2 ). Model predictions can be used to direct 
future sampling efforts and design hypothesis-generated experi-
ments that interrogate the ecological relationships in microbial 
communities.    
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2    Materials 

  Two kinds of data are required in MAP models: microbial population 
structure and environmental parameter data ( see   Note 1 ). 

 While the list of possible environments and techniques for 
metagenomic sampling are outside of the scope of this protocol, 
methods for metagenomic sample collection and sequencing are 
reviewed by Thomas et al. [ 11 ]. Raw metagenomic data must be 
analyzed to identify the relative abundance of specifi c taxonomic 
groups present in the microbial populations. There are many avail-
able computational tools for this, but “QIIME” for 16 s RNA 
sequence data (  http://qiime.org/    ) [ 15 ] and “MG-Rast” for shot-
gun metagenomic data (  http://metagenomics.anl.gov/    ) [ 16 ] are 
examples of excellent and freely available software solutions. The 
population data needs to be binned to some level of taxonomy 
(e.g., order, class, or genus). The selection of specifi c taxonomic 
level to which data is binned depends greatly on the nature of the 
microbial population being modeled but generally should be 

2.1  Collected 
Biological 
Observations

  Fig. 1    Two steps to generate MAP model. Generation of MAP model requires as 
input a set of related microbial population structures and corresponding environ-
mental parameter data. The fi rst step is to generate the environmental interac-
tion network (EIN) ( left panel ). The EIN is the set of identifi ed statistical 
relationships between environmental parameters and microbial taxa abundances 
and between microbial taxa abundances, presented as a directed acyclic graph. 
In the small, theoretical example above, there are three environmental parame-
ters and four microbial taxa represented in the network. In an EIN, root nodes are 
always environmental parameters. The second step of generating a MAP model 
( right panel ) is fi tting the data to equations derived from the EIN. Each value of a 
node in the EIN is defi ned to be a function of the values of its parent nodes. In the 
complete MAP model, the relative abundance of every taxa node in the network 
is ultimately a function of the value of environmental parameter nodes       
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selected by using the highest taxonomic level for which the majority 
of observations in all populations, the observed abundance of a 
taxa is nonzero. 

 Each microbial population structure observation must be 
accompanied by a set of environmental parameters. The nature of 
this data may vary widely depending on the nature of the environ-
ment being sampled and the scale of the desired MAP model but 
may include chemical and physical attributes collected from in situ 
observations, data collected from automated sensors deployed in 
the environment, or remotely sensed data such as by satellite image.  

  Fig. 2    Examples of MAP model applications. MAP models can be used to investigate microbial populations at 
a variety of temporal and spatial scales. The included examples drawn from MAP model and data originally 
presented in Larsen et al. [ 14 ]. ( a ) In a MAP model  extrapolated across time , marine microbial populations are 
predicted for a single location over a total of 6 years. For every day in this model, environmental parameters 
at a single location in the Western English Channel were inferred from satellite imagery and used as input to a 
MAP model. In this fi gure,  gray lines  indicate changing relative abundance of individual taxa. Black “X”s indi-
cate the Bray-Curtis similarity score between the predicted and observed population structure at every time 
point. ( b ) In this MAP model  extrapolated over space , MAP model generated from data collected at a single 
point is used to extrapolate the population structure over a wide geographical area using satellite image mod-
eling data as environmental parameters. In this fi gure, height of surface is proportional to relative abundance 
of the taxa  Rickettsiales  in the surface waters of the Western English Channel on March 17, 2008. The geo-
graphical region pictured is between 48.5°N, 7.6°W and 50.8°N, 1.5°W. ( c ) In this fi gure, MAP model is used 
to  extrapolate over multiple environmental conditions . Using a MAP model generated using satellite image 
data collected between 2007 and 2008, an initial microbial population structure ( black bars ) was generated 
for August 20th, 2008. In the fi gure,  y -axis is percent abundance of total population.  X -axis is the set of 24 
bacterial taxa in this MAP model. Starting with these observed environmental parameters, environmental 
parameters were changed in silico until a “bloom” of  Vibrionales  was observed in microbial population without 
greatly altering the abundance of all other microbial taxa ( gray bars ,  Vibrionales  abundance  highlighted with 
arrow ). Strikingly, the conditions required to generate an August  Vibrionales  bloom in MAP model (i.e., lower 
soluble phosphorus, increase in chlorophyll A concentration, and moderate levels of dissolved organic carbon) 
are nearly identical to environmental parameters associated with a  Vibrionales  bloom in August 2003       
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  Some computational tools are required to generate MAP models, 
and specifi c tools are recommended here for use in construction of 
MAP models ( see   Note 2 ). 

 For generating EIN, the Bayesian Network Inference tool 
“Banjo” [ 17 ] is recommended. Banjo is a software application and 
framework for structure learning of static and dynamic Bayesian 
networks using a score-based structure inference. Banjo is freely 
available under a noncommercial use license (  http://www.cs.duke.
edu/~amink/software/banjo/    ). 

 For generating the equations in the ANN from the topology of 
the EIN, Eureqa is recommended. “Eureqa Formulize” is a soft-
ware package available from Nutonian Inc. (  http://www.nutonian.
com/    ), which is freely available for academic research (  http://
www.nutonian.com/products/eureqa/    ). As described by Eureqa 
documentation, this analysis tool searches the space of mathemati-
cal equations using symbolic regression to identify a mathematical 
model that best fi ts the data provided. Starting with initial expres-
sions that randomly couple mathematical building blocks, both the 
form and parameters of possible equations are generated by recom-
bining previous equations and varying their sub-expressions using 
a statistics-based evolutionary algorithm. The resulting models are 
ranked using a ratio of equation accuracy and complexity.   

3    Methods 

 There are two steps for construction of the MAP model: genera-
tion of EIN and fi tting equations to ANN. Before beginning, the 
available data should be divided into training and validation sub-
sets. The training subset is used to construct the MAP model and 
then verify the accuracy of the MAP model with the validation 
subset. 

  Environmental parameter data should be normalized to a uniform 
dynamic range, for example, to arbitrary units ranging from 0 to 
100 (Fig.  3 ) ( see   Note 3 ).  

 Typical microbial population data is made up of a relatively 
small number of species comprising the majority of the population 
and a long tail of numerous low-abundance species comprising the 
remainder of the population [ 18 ]. To best normalize the data dis-
tribution for MAP model, fi rst report taxonomic abundances as a 
percentage of total population. This normalized data is then log 2  
transformed (Fig.  4 ).   

  The following steps are specifi c to Banjo software ( see   Note 4 ). 
Before generating BN network in Banjo, a fi le of unallowed edges 
must be made (“edgesNotAllowed” parameter in Banjo settings fi le). 
This parameter must be set such that environmental parameter nodes 

2.2  Required 
Computational Tools

3.1  Normalize Data 
from Biological 
Observations

3.2  Generate EIN 
from Normalized Data
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have no possible parent nodes. Additional parameters in Banjo, such 
as maximum number of parents, searcher, proposer, and run dura-
tion, depend entirely on the nature of data being considered and 
must be determined empirically. Investigators should refer to the 
Banjo user manual for specifi c guidelines in selecting search parame-
ters appropriate for a particular dataset. 

 The output of Banjo is the network that best fi ts the microbial 
population data. The fi nal network is used to generate the equa-
tions in the subsequent step.  

  The same, normalized dataset used to generate the EIN is used to 
generate equations for the MAP model ANN. Specifi cs for running 
Eureqa on particular platforms are available from the Nutonian 
Eureqa website (  http://www.nutonian.com/products/eureqa/    ). 
From the output of Banjo EIN, network topology in the format of 
a list of parent nodes for each child node is converted into Eureqa. 
The operations “constant,” “add,” “subtract,” “multiply,” “divide,” 
and “exponential” are recommended. As Eureqa outputs several 

3.3  Generate ANN 
from EIN

  Fig. 3    Example normalization of environmental parameters. This very small, 
hypothetical sample dataset contains three environmental parameters and four 
observations. Raw data for collected environmental parameters ( top panel ) can 
be in different units and cover very different dynamic ranges. Before using in 
MAP models, data must be normalized to uniform ranges in arbitrary units. In this 
example ( bottom panel ), data is normalized such that the lowest observed value 
for an environmental parameter is equal to 20 and the highest is equal to 80       

 

Peter Larsen et al.

http://www.nutonian.com/products/eureqa/


39

possible functions to fi t observed data, the equation selected for use 
in MAP was selected to be the most parsimonious one as defi ned by 
the following, as many as possible, optimization criteria:

 –    Smallest equation size.  
 –   Highest correlation with observed data.  
 –   If there is a choice between an equation with an exponential 

term and one without, choose the equation without an expo-
nential term.  

 –   If there is an obvious peak or drop in observed relative bacte-
rial abundance, choose the equation that best models that peak 

  Fig. 4    Example normalization of microbial population data. In this small, hypo-
thetical microbial population dataset, there are four microbial taxa ( a – d ) and four 
observations. As in the  top panel , the initial data will be in the format of number 
of 16s RNA sequences associated with each taxa. This data is transformed ( mid-
dle panel ) to representation as percent of total population. Percent total popula-
tion data is log transformed before use in MAP analysis ( bottom panel )       
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or drop, even if it means selecting an equation with a greater 
size or lower overall correlation.    

 Eureqa’s equation search is “done” when the stability metric is 
close to 100 %. The time it takes to achieve stable solutions will 
depend on the nature of the data and on the speed of the computer 
running Eureqa. It is important to note that even if a node is pre-
dicted to have more than one parent in the EIN, not all of those 
parents will necessarily be incorporated into the Eureqa-generated 
equations that best fi t the observed data.  

  The results of the previous step are a set of linked mathematical 
equations in which the results of some equations will be the terms 
in other equations. Taken together, given a single set of normal-
ized environmental parameter data, values for all taxonomic rela-
tive abundances can be calculated with a unique solution. 
Implementation of this model can be easily accomplished in a 
number of mathematical programming platforms (e.g., R-Project 
(  http://www.r-project.org/    ) or MatLab (  http://www.mathworks.
com/products/matlab/    )) or common spreadsheet applications.  

  Once the MAP model has been generated, the model must be vali-
dated. Similarity between predicted population structures in the 
validation subset can be calculated by a variety of means, such as 
Pearson’s correlation coeffi cient, product moment correlation 
coeffi cient, or Bray-Curtis similarity score [ 19 ]. The specifi c simi-
larity metric must be chosen depending on the distribution of the 
data used to generate the model. Due to the typical distribution of 
microbial population data, in which a few taxa are consistently of 
high relative abundance and many taxa are consistently of low rela-
tive abundance [ 18 ], it is possible to get deceptively high correla-
tions between predicted and observed population structures so 
long as the model correctly identifi es the small number of high- 
abundance taxa. To correct for this, there are two null models that 
can be easily tested. The fi rst null model is to set all taxa’s predicted 
relative abundance equal to the average taxa abundance across all 
samples. The other null model is to set all taxa abundances equal to 
the minimum observed taxa’s abundance. If either of these null 
models has a better correlation with biological observations than 
the MAP model, it is likely that the MAP model is not identifying 
useful relationships in the data ( see   Note 5 ). 

 To assign a level of statistical signifi cance to the MAP model 
results, a bootstrap-style approach is recommended ( see   Note 6 ). 
In a bootstrap-like method, the model data is randomly permuted 
a large number of times. The similarity of observed data to per-
muted data is calculated each interaction. A signifi cance of the 
model can be reported as:

  

# iterations in which random permutation similarity model similar iity
Total of iterations#

  

3.4  Implement 
MAP Model

3.5  Validate 
MAP model
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This permutation approach can be accomplished in a number of 
mathematical programming tools or in common spreadsheet 
applications. 

 Identifying a MAP model that both accurately predicts 
observed microbial population structures and is likely to provide 
useful biological insight is a process that may take several iterations 
of model building and testing.   

4    Notes 

     1.    As with any biological experiment or computational model, 
there needs to be a suffi cient number of training data observa-
tions to draw meaningful biological conclusion from MAP 
model. The exact number of observations required to achieve 
results with statistical signifi cance or biological relevance will 
depend entirely on the nature of the data collected and the 
complexity of the biological system being studied and must be 
empirically determined.   

   2.    Other computational tools that perform the same or similar 
functions could also be incorporated, depending on availability 
and preference of individual investigators.   

   3.    If using a minimum of 0 and a maximum of 100 for environ-
mental parameter data in MAP model, it may be useful to 
normalize observed data to values within that range, for exam-
ple, a minimum of 20 and maximum of 80. This allows the 
possibility of modeling environmental parameters slightly out-
side the range of actual observations without running into the 
potential computational errors that might be caused by using 
input values equal to or less than zero.   

   4.    If an alternate program for BN inference is used, then follow 
the documentation for that software.   

   5.    If the resulting MAP model does not yield satisfactory results, 
it is necessary to reconsider the parameters used to build the 
model. The following are common steps to consider when 
troubleshooting a MAP model:

  Generation of EIN 

 –   Data discretization: Banjo requires discretized data for 
learning networks. It is possible that discretization could 
mask important variability in some microbial taxonomic 
abundance values. Consider a higher discretization index 
or using quantile discretization in Banjo.  

 –   Rare taxa present in data: Some taxa may be undetected in 
many samples. Rarely observed taxa tend to be over-fi tted 
in the network. Consider removing these rare taxa from 
the analysis or selecting a lower taxonomic resolution.  

Predicting Bacterial Community Assemblages
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 –   Very sparse networks: Increasing the number of allowed 
parents in Banjo requires more computer memory but may 
generate networks with higher connectivity.  

 –   Lack of interaction between environmental parameters and 
taxa abundance nodes: It is possible that Banjo will not 
identify many direct interactions between environmental 
parameters and microbial taxa abundances. It may be use-
ful to log transform environmental parameter data or select 
an alternate discretization policy in Banjo. If no statistically 
signifi cant dependencies between environmental parame-
ters and microbial taxa abundances can be found in Banjo, 
it may be necessary to resort to an alternate method, such 
as strong correlation coeffi cients between environmental 
parameters and microbial taxa abundance to identify 
potential edges in EIN.   

  Generation of MAP ANN 

 –   Over-fitting of equations by “Eureqa”: It may be that 
the training set correlates well with biological observa-
tions, but the validation set correlated poorly. From the 
set of Eureqa- proposed equations, reselect an equation 
with lower complexity, even if the equation has lower 
correlation with training data.  

 –   Unsolvable equations in MAP model: Some combinations 
of data may cause Eureqa-generated equations to return 
errors, such as attempting to divide by zero. Reselect any 
equations for which a division-by-zero error may occur or 
consider removing rare taxa from the model for which rela-
tive abundance is sometimes or often equal to zero.  

 –   Biologically meaningless results: It is possible for MAP 
model to predict biologically meaningless results such as 
negative taxonomic abundances or taxa that comprise 
more than 100 % of the total population. To prevent this, 
avoid selecting Eureqa equations with very large constants 
or exponential terms. Also, it is often helpful to set upper 
and lower limits on equation results, setting values less 
than zero equal to zero (or an empirically determined very 
small number to avoid possible division-by- zero errors) 
and establishing an upper limit on possible abundances 
(e.g., setting an upper limit equal to a value 20 % larger 
than the maximum relative abundance of the most abun-
dant taxa actually observed in the biological dataset).      

   6.    There are many ways to permute the data, and the most appro-
priate way to randomize the data will depend on the nature of 
the data and the experimental design. One common approach 
to randomization is to randomly reassign predicted abun-
dances within the same taxa and across observations.         
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Chapter 4

A General ANN-Based Multitasking Model for the Discovery 
of Potent and Safer Antibacterial Agents

A. Speck-Planche and M.N.D.S. Cordeiro

Abstract

Bacteria have been one of the world’s most dangerous and deadliest pathogens for mankind, nowadays 
giving rise to significant public health concerns. Given the prevalence of these microbial pathogens and 
their increasing resistance to existing antibiotics, there is a pressing need for new antibacterial drugs. 
However, development of a successful drug is a complex, costly, and time-consuming process. Quantitative 
Structure-Activity Relationships (QSAR)-based approaches are valuable tools for shortening the time of 
lead compound identification but also for focusing and limiting time-costly synthetic activities and in vitro/
vivo evaluations. QSAR-based approaches, supported by powerful statistical techniques such as artificial 
neural networks (ANNs), have evolved to the point of integrating dissimilar types of chemical and biologi-
cal data. This chapter reports an overview of the current research and potential applications of QSAR 
modeling tools toward the rational design of more efficient antibacterial agents. Particular emphasis is 
given to the setup of multitasking models along with ANNs aimed at jointly predicting different antibacte-
rial activities and safety profiles of drugs/chemicals under diverse experimental conditions.

Key words Antibacterial activity, Drug resistance, QSAR, Topological indices, Ontology, Moving 
average approach, Artificial neural networks, mtk-QSBER models

1 Introduction

For centuries, mankind has been particularly affected by microbial 
diseases, those caused by bacteria being among the most danger-
ous and lethal. Even though antibiotics have saved millions of lives 
and alleviated the suffering of people for many years [1], drug- 
resistant, disease-causing bacteria have emerged and spread so 
much in recent decades [2–5] that they have created a global pub-
lic health problem. This situation is so serious that nowadays bac-
teria cause high mortality rates not only in communities but also in 
healthcare environments and facilities [6]. Given the prevalence of 
the major gram-positive pathogens, especially those belonging to 
the genera Staphylococcus, Streptococcus, and Enterococcus, transfer-
ability of resistance genes is of special concern. This is exemplified 
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by the ability of enterococci to interact with methicillin-resistant 
S. aureus (MRSA), transferring to the latter vancomycin-resistant 
genes [7]. Thus, MRSA can become resistant to vancomycin, 
which is the unique antibacterial chemotherapeutic alternative. On 
the other hand, gram-negative pathogens such as Escherichia coli 
and Pseudomonas aeruginosa exhibit intrinsic resistance to almost 
any antibiotic [8]. The most deadly bacterial disease has been 
tuberculosis (TB), which is prone also to multidrug resistance. 
Indeed, more than 9 million new TB cases and about 1.7 million 
deaths were reported in 2009 [9], while a recent report confirmed 
that in 2010, 5.7 million official cases of TB were notified, with 8.8 
million incidents worldwide (equivalent to 128 cases per 100,000 
population) [10].

Diseases and infections caused by bacteria are very complex 
and depend on multiple pathogenic and epidemiological factors 
[6, 8]. For this reason, the search for new antibacterial drugs is 
very urgent. This battle against bacterial diseases/infections will 
depend on the efficiency of chemotherapies and have a profound 
influence on human health.

High-throughput screening technologies [11] along with 
combinatorial chemistry [12] were expected to solve the drug dis-
covery problem by a massive parallelization of the process. In prac-
tice, however, while the number of identified hits can substantially 
be increased using these methods, no corresponding growth in the 
number of drugs entering the market has been observed [13]. This 
fact has progressively led to a reconsideration and rationalization of 
the drug discovery process, in which chemoinformatics methods, 
led by Quantitative Structure-Activity Relationships (QSAR) tools 
[14], have gained a role of tremendous importance [15–17]. To be 
clearly effective, these methods should aim at targeting both phar-
macological profiles and desirable ADMET (absorption, distribu-
tion, metabolism, elimination, toxicity) properties, as the latter are 
the major causes of non-approval of drugs [18–20]. Particularly, in 
recent years, promising multi-target (mt-QSAR) models have been 
reported, revolutionizing concepts regarding QSAR paradigm pre-
diction [21–26]. These mt-QSAR models have been applied to 
simultaneously predict several features of biological activity by con-
sidering different biological targets such as biomolecules, cell lines, 
tissues, and organisms. The aforementioned mt-QSAR models 
have evolved to the point that nowadays it is possible to predict 
multiple biological profiles by considering different measures of 
the effects, many biological targets, and diverse levels of curation 
of the experimental information [27–32]. These new models, 
known as multitasking Quantitative Structure-Biological Effect 
Relationships (mtk-QSBER), have often employed classification 
techniques such as linear discriminant analysis (LDA) [33]. But 
sometimes, due to the complexity of the data and a lack of accuracy 
in the experiments, linear classification tools do not lead to models 
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with enough statistical quality and predictivity. In such cases, 
artificial neural networks (ANNs) can instead be applied to deal 
with nonlinear behavior and usually do enhance the performance 
of the predictions [22, 29]. This chapter is devoted to an overview 
of the setup and use of mtk-QSBER models based on ANNs. 
Overall, specific insights from our perspective and personal experi-
ence will be provided.

2 General Procedure for the Setup of QSAR Models

Generally speaking, QSAR approaches seek to uncover possible 
relationships between chemical structures (molecular descriptors) 
and one or more endpoints of interest (e.g., biological activity, tox-
icity, or pharmacokinetic profiles) [14]. Several steps should be fol-
lowed for establishing the QSAR models (Fig. 1), and these, if well 
devised, may help yielding more accurate results. Firstly, the data 
must be retrieved typically from a public source and subsequently 
curated in, for example, a spreadsheet application like Excel. 
Secondly, molecular descriptors are calculated from the molecular 
structures; finally, by applying a statistical modeling approach 
(either linear or nonlinear), the best QSAR model can be obtained.

Databases are typically organized as public sources and contain 
large collections of data describing the most relevant aspects of 
phenomena and/or experiments [34, 35]. A well-known database 
is ChEMBL [34]—an online free and dynamic source available at 

2.1 Databases 
and Handling 
of the Retrieved Data

Fig. 1 Necessary steps required for building a QSAR model

ANN-Based Mtk-Model for Discovery of Antibacterial Agents
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https://www.ebi.ac.uk/chembl/, which contains more than 12 
million assay outcomes. These biological assays derive from apply-
ing more than 1.3 million drugs/chemicals against at least one out 
of more than 9,300 biological targets (proteins, cell lines, microor-
ganisms, mammals), and it is possible to obtain specific informa-
tion about the diverse strains or breeds in the case of non-molecular 
biological entities. There is also information related to the type of 
the assay, i.e., if a test was carried out to measure binding (B), func-
tional (F), or ADMET (A) properties. All data can be easily down-
loaded into Excel-like files. Most importantly, the ChEMBL 
database provides good transparency concerning the accuracy 
and/or reliability of the experimental information. For that, two 
columns of ChEMBL are of particular interest, namely, (1) a 
“CONFIDENCE SCORE” that contains values ranging from 4 to 
9 for biomacromolecular targets, the highest number being given 
to a very accurately determined experiment, and (2) a “CURATED 
BY” that shows how much the experimental information has been 
verified, depending on the availability of data in the literature and 
certain details associated to the assay protocols, with three catego-
ries: autocuration (the lowest reliability), intermediate, and expert 
(highest reliability). In addition, in this database, each compound 
has one ChEMBL identifier and SMILES (Simplified Molecular 
Input Line Entry Specification, i.e., the 2D chemical structure) code. 
Therefore, ChEMBL is an interesting and potentially valuable 
resource for tackling drug discovery. In fact, it has been stated that 
mining ChEMBL is an excellent alternative to generate models for 
virtual screening of large libraries of drugs and compounds [36], 
allowing a greater coverage of the chemical space. With these con-
siderations in mind, ChEMBL should be the database of first choice.

A further very important database is DrugBank, which is avail-
able at http://www.drugbank.ca/. This is a unique free source 
chemo-bioinformatics database that combines specific drug infor-
mation (chemical structure, pharmacological, and therapeutic 
data) with details from the respective target(s) (sequences, struc-
tures, and pathways) [35]. DrugBank comprises 6,825 drug entries 
including 1,541 small-molecule drugs approved by the FDA (Food 
and Drug Administration) and other molecular entities such as 86 
nutraceuticals, 5,082 experimental chemicals, and 150 FDA- 
approved biotech (protein/peptide) drugs. DrugBank is a suitable 
source of raw data for deep studies of drug-target and drug-drug 
interactions. QSAR modeling using this database can facilitate the 
discovery of new targets for antibacterial drugs. At the same time, 
studies focused on drug-drug interactions can be performed in 
advanced stages of the drug discovery process to analyze, e.g., pos-
sible chemicals with which an antibacterial drug should not be 
administrated. In addition, ChEMBL and DrugBank offer the 
possibility of downloading substantial volumes of data in the form 
of tabular-based files which can be easily opened, modified, and 
filtered/curated using Excel.
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Molecular descriptors are essential hot spots of any QSAR study. 
As pointed up nicely some years ago by Todeschini and Consonni 
[37]: “The molecular descriptor is the final result of a logic and 
mathematical procedure which transforms chemical information 
encoded within a symbolic representation of a molecule into a 
useful number or the result of some standardised experiment.” 
The use of certain types of molecular descriptors depends on the 
kind of QSAR approach that is going to be employed. Molecular 
descriptors used in classical QSAR approaches may be experimen-
tally determined (e.g., physicochemical properties like the 
Hammett σ constant, refractivity, etc.) via Hansch analysis or 
through the use of simple indicator descriptors (R-group substitu-
tions of the parent core), Free-Wilson analysis [38]. 3D-QSAR 
approaches have emerged as a natural extension to the classical 
QSAR approaches pioneered by Hansch and Free-Wilson and are 
based on correlating the activity with non-covalent molecular 
interaction fields [38]. These approaches require mandatorily 3D 
structures, e.g., based on protein crystallography or molecule 
superimposition, and assume that all molecules interact with the 
bio-target in the same manner, i.e., with an identical binding mode. 
In 3D-QSAR approaches, pair potentials (e.g., Lennard-Jones) are 
calculated for the whole molecule to model the effects of shape 
and size (steric fields), the presence of hydrophobic/hydrophilic 
regions, and the behavior of the electronic density in different 
parts of the molecule (electrostatic fields). CoMFA (Comparative 
Molecular Field Analysis) and CoMSIA (Comparative Molecular 
Similarity Index Analysis) [39] are the most applied 3D-QSAR 
approaches, in particular, to support docking calculations. Over 
time, 3D-QSAR approaches have evolved to improved variants 
such as 4D-QSAR, additionally including ensemble of ligand con-
formations and protonation states in 3D-QSAR [40]; 5D-QSAR, 
adding induced-fit effects of the adaptation of the receptor- 
binding pocket to the ligand in 4D-QSAR [41]; and 6D-QSAR 
approaches, further incorporating different solvation models in 
5D-QSAR [42].

As an alternative to 3D-QSAR approaches, the structures of 
the molecules can be optimized without any superimposition of 
alignment. Toward that end, calculations based on, e.g., density 
functional theory (DFT) and molecular dynamics (MD) are car-
ried out [43], and both local (charge, polarizability HOMO-/
LUMO- based parameters) and global descriptors (different ener-
gies, volumes, and areas) can be determined and used to obtain 
correlations with biological activities. Further, highly accurate 
quantum- mechanics calculations allow the study of more specific 
interactions such as the strength of hydrogen interactions, stability 
of  coordination bonds, etc.

Several works using 3D-QSAR approaches or QM calculations 
have been reported in the field of antimicrobial research [44–48]. 

2.2 Molecular 
Descriptors and Their 
Applicability in QSAR 
Approaches
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But from our point of view, QSAR research should be focused on 
developing models best suited for the analysis of a large number of 
diverse compounds and virtual screening of databases. For that 
purpose, 3D-QSARs and related approaches have several impor-
tant drawbacks, namely:

 – Although improved approaches such as 4D-, 5D-, and 
6D-QSARs have emerged, uncertainties regarding the selec-
tion of the active conformations and the binding mode of 
ligands remain.

 – 3D-QSARs are usually used to study the inhibitory activity of 
compounds related to in vitro data. For the successful applica-
tion of these approaches to in vivo data, there must be a thor-
ough understanding of the binding mechanisms of all 
underlying ligands.

 – For 3D-QSAR approaches, optimization of the 3D structures 
of ligands can be particularly time consuming. Moreover, the 
lowest energy conformation of any ligand is usually considered 
to be the bioactive conformation and responsible for exerting 
the binding effects.

 – In the case of QM-based models, the computational cost and 
required time to perform calculations can be very high, 
depending on the complexity of the molecules to be modeled, 
the QM method to be applied (ranging from molecular 
mechanics to semiempirical and DFT methods, including 
higher-level QM methods), and the availability of computa-
tional resources.

 – If QM calculations are performed without alignment, there 
will be more uncertainty than in 3D-QSAR approaches for the 
selection of the active ligand conformation.

These handicaps can somehow be solved if 2D topological 
descriptors are applied [37]. More than 100 families of topologi-
cal descriptors have been described in the literature [49]. They are 
among the most useful sets of molecular descriptors, as corrobo-
rated by the large number of QSAR applications reported to date 
[50–60]. However, these descriptors have been criticized for a 
lack of clarity regarding their physicochemical meaning and struc-
tural interpretation [38]. Definitely, these descriptors are unable 
to provide a complete understanding of the 3D structural aspects 
of molecules, which can be considered as a possible disadvantage 
if the analysis of the binding mode of a ligand with its bio-target 
is needed. But as proven by Estrada, although topological descrip-
tors are derived from 2D representations of the molecular 
 structures, connectivity indices, for example, encode information 
related to the molecular accessibility for the surrounding medium. 
For instance, first- and second-order connectivity indices repre-
sent molecular accessibility areas and volumes, respectively, while 

A. Speck-Planche and M.N.D.S. Cordeiro



51

higher-order connectivity indices represent hyper-volumes [61]. 
The same author has also demonstrated that 2D topological 
descriptors can account for “pure” 3D structural parameters, such 
as the dihedral angle between phenyl rings in alkylbiphenyls [60].

At this point, it is easy to conclude that topological descrip-
tors do not depend on the conformation and thus do not need 
the superimposition rules and alignments used in 3D-QSAR 
approaches. Further, topological descriptors can be used in QSAR 
studies involving both in vitro and in vivo assay data. When these 
descriptors are used to generate QSAR models based on statistical 
classification techniques like LDA, the databases can be formed by 
compounds belonging to dissimilar chemical families, because the 
mechanisms of action are not so important. These descriptors will 
afford the structural patterns to successfully separate the dataset of 
compounds into groups having the observed biological activity or 
not [21–32, 54, 59]. Topological descriptors have exhibited a 
great applicability for virtual screening of antibacterial agents [62–
66]. Finally, extremely interesting kinds of topological descriptors 
are the graph-based spectral moments, designed according to the 
TOPS-MODE (TOPological Substructural MOlecular DEsign) 
approach [67–69]. The greatest advantage of the TOPS-MODE 
approach, over other traditional QSAR methods, stems from its 
substructural nature. This means that one can transform the result-
ing QSAR model into a bond additive scheme and thus describe 
the endpoint activity as a sum of bond contributions related to 
different structural fragments of the molecules. Moreover, one can 
detect the fragments on a given molecule that contribute positively 
or negatively (by summing up bond contributions) to the underly-
ing activity [51].

Many programs have been built for the calculation of molecu-
lar descriptors. One of the most widely applied is the MODESLAB 
software [70] developed by Estrada and Gutierrez for Windows. 
This software allows the calculation of physicochemical properties 
(e.g., polar surface area, van der Waals radii, etc.) and classical 
topological descriptors like atom and bond connectivity indices, as 
well as other indices [49]. The program also calculates topographi-
cal descriptors resulting from mixing topological indices with QM 
calculation features. But the most powerful set of descriptors 
implemented in MODESLAB is the spectral moments. The 
MODESLAB software is freely available through the webpage 
http://www.estradalab.org/links/index.html.

Another computer program which has attracted the attention 
of QSAR practitioners is PaDEL-Descriptor, devised by Wei [71]. 
The current version of this Java-based software calculates 905 
descriptors (770 1D and 2D descriptors, as well as 135 3D descrip-
tors) and ten types of fingerprints. These are calculated principally 
using the well-known Chemistry Development Kit. PaDEL- 
Descriptor is a free open-source software, which can work on all 
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major platforms (Windows, Linux, MacOS), supporting more 
than 90 dissimilar file formats to encode chemical information of 
the molecules. This software can be downloaded from http://
padel.nus.edu.sg/software/padeldescriptor/.

But perhaps the best known program for the calculation of 
molecular descriptors is DRAGON [72]. In the latest version of 
this program, 4,885 molecular descriptors can be calculated for 
small, medium, and even larger molecules. Furthermore, after 
computing the molecular descriptors for a given dataset, correla-
tions between variables can be analyzed by applying the same soft-
ware in order to exclude redundancies. At the same time, almost 
any version of DRAGON allows one to carry out principal compo-
nent analysis (PCA) for feature selection, in order to identify the 
variables which best explain the variability of the data. The 
DRAGON software is available at http://www.talete.mi.it/prod-
ucts/dragon_description.htm, covering different academic and 
commercial licenses.

The last stage pertains to the creation of a statistically significant 
QSAR model, where the molecular descriptors serve as the inde-
pendent variables and the desired endpoint response(s) as the 
dependent variable(s). For that purpose, there are many different 
modeling techniques available in a variety of software packages. 
This section will just focus on two of the most commonly applied 
statistical techniques to generate QSAR models. The first group 
embraces regression approaches like partial least squares (PLS) 
[33], fundamentally used in 3D-QSAR studies, and the traditional 
multiple linear regression (MLR) [38]. The second group com-
prises classification approaches such as LDA and ANNs.

A very important aspect should be highlighted here, whenever 
one is retrieving a large volume of data to develop the QSAR 
model. Usually databases are compilations of biological and chemi-
cal data reported in the literature, which have been determined 
within different laboratories by diverse workers and using several 
types of assay protocols, consequently making it difficult to esti-
mate the associated experimental errors. As regression techniques 
try to predict the real response values of the compounds, it is then 
evident that if one is working with a large and heterogeneous data-
set of chemicals, it would be very difficult to find a good predictive 
QSAR model using such techniques because it is almost impossible 
to control the uncertainty of the data. The aim of classification 
techniques is to generate lines, planes, hyperplanes, and/or surfaces 
able to separate compounds into different groups (e.g., active/
inactive). So, one has only to preestablish the cutoff value(s) of the 
endpoint response(s) under study to then categorize the compounds 
accordingly. Our personal experience, and looking at diverse pub-
lished studies in the past, led us to conclude that when classifica-
tion techniques are employed even for the prediction of diverse 
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endpoints, there is a greater possibility of obtaining high- quality 
QSAR models [21–32, 54, 59]. This reflects the fact that when 
classification techniques are used, there is no need to predict the 
exact value(s) of the endpoint(s) under study, so problems related 
to the uncertainty of the data are significantly reduced.

However, as previously commented, sometimes simple model-
ing techniques like LDA are unable to cope with the complexity of 
the data, and thus ANNs are required for gathering a deeper 
knowledge about a particular target phenomenon [22, 29, 31]. 
Any ANN is an effort to emulate biological intelligent systems 
(human brain) by simulating their structure and/or functional 
aspects [73]. ANNs entail simple processing units (neurons) that 
are linked by weighted connections (synapses), with the output 
(axon) signal transmitted through the neuron’s outgoing connec-
tion. To the best of our knowledge, three types of ANNs have been 
widely used (Fig. 2) in drug discovery [22, 29, 31], namely, linear 
neural networks (LNN), multilayer perceptron (MLP), and radial 
basis function (RBF) networks. LNN consists of a first entry layer, 
comprising the input nodes directly associated to the molecular 
descriptors, and a final output layer—the predicted response. MLP 
and RBF include additionally a second layer, known as the hidden 

Fig. 2 Different architectures of artificial neural networks
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layer, consisting of an array of neurons that receive, transform, and 
transmit the incoming signals from the first layer. The functions 
applied on the hidden layer are very important—the so-called acti-
vation functions [74], because they model the signals coming from 
the input layer, as well as the signal from the hidden layer to the 
output layer. LNN models are very similar to those which can be 
obtained through LDA, but the algorithms to optimize them are 
different. LNNs are conceived to establish direct relationships 
between the inputs (molecular descriptors) and the output, i.e., 
the endpoint activity usually expressed as a binary variable. MPLs 
use linear combinations of weights from the input layer to the hid-
den layer, and the signal from the hidden layer to the output is 
modeled by a nonlinear activation function (usually a sigmoid 
function). In RBF networks, nonlinear activation functions (usually 
Gaussian functions) are applied in the first step, i.e., from the input 
layer to the hidden layer. Following on, a linear combination of 
such functions is applied to generate the output layer. Regarding 
the nomenclature, as shown in Fig. 2, for instance, the second 
ANN has the form MLP 11:11-8-1:1, meaning that this is an MLP 
(multilayer perceptron) containing 11 variables (descriptors) which 
were used as entries to generate 11 input nodes in the first layer, 8 
nodes in the second layer, and one node in the third (output) layer 
from which one response variable (endpoint activity) is to be pre-
dicted. Similarly, the first and the last ANNs shown have profiles 
LNN 11:11-1:1 and RBF 11:11-305-1:1, respectively. Despite the 
increasing use of ANNs in different areas [22, 29, 31], in the last 
15 years, few papers have described the use of ANN-based models 
to predict antibacterial profiles of compounds [48, 75–77]. In 
these works, some models were derived with the aim of predicting 
a reduced series of analogue compounds [48, 75, 77] or heteroge-
neous but using relatively medium-sized datasets of chemicals 
[76]. This further illustrates the need to use ANNs with the aim of 
improving the discovery of desirable antibacterial drugs.

Of the software available for carrying out these modeling 
techniques, we will mention only two programs because of their 
applicability, user-friendly nature, and availability. One of the pro-
grams widely used in different fields of modern science is 
STATISTICA [73]. This is a software package developed by 
StatSoft, which affords data analysis and statistics, as well as data 
visualization and data mining procedures. The latest version of 
STATISTICA can handle large amounts of data and is able to 
tackle various file formats. This software can also generate codes 
for posterior programming after the QSAR model is built. There 
are different classification techniques implemented in STATISTICA 
such as LDA, ANNs, support vector machines (SVM), classifica-
tion trees (CT), random forest (RF), and many others [73]. 
Several types of commercial and academic licenses are available for 
different versions of STATISTICA at http://www.statsoft.com/. 
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In the past, STATISTICA has often been applied to construct 
QSAR models aimed at predicting antibacterial activity of hetero-
geneous series of compounds [62–64, 66].

Another freely available program to perform statistical analysis 
is Weka [78]. This Java program can be viewed as a collection of 
machine learning algorithms for data mining purposes. The algo-
rithms can either be applied directly to a dataset or accessed from the 
user’s own Java code. Weka contains tools for data preprocessing, 
classification, regression, clustering, association rules, and visual-
ization and a powerful tool for feature selection [78]. It is also 
well suited for developing new machine learning schemes. Weka 
can be downloaded from http://www.cs.waikato.ac.nz/ml/weka/
downloading.html.

3 An mtk-QSBER Model Combined with ANN for Virtual Screening 
of Antibacterial Agents

Despite the wide applicability of alignment-free QSAR models 
based on topological descriptors, an unfavorable aspect of such 
models is that the antibacterial activity is predicted nonspecifically, 
meaning that any compound can be predicted to have antibacterial 
activity but without information regarding the bacteria against 
which it may be active [76]. What is more, antibacterial activity 
data should be integrated with other relevant properties such as 
those related to ADMET profiles to effectively discover reliable 
antibacterial agents. Of particular interest is that the developed 
models can potentially guide the screening and discovery of effec-
tive antibacterial agents. The next subsections will describe the 
series of steps involved in building up mtk-QSBER models based 
on ANNs, which in principle overcome these limitations. Details of 
the diverse steps for the development of mtk-QSBER-ANN mod-
els are depicted in the flowchart of Fig. 3. As a typical example 
application, we will describe recent work that reported an mtk-
QSBER- ANN model whose role was to simultaneously predict the 
anti-enterococci activity and toxicity in laboratory animals of a set 
of compounds [27].

In the work referred to above [27], 13,073 endpoints belonging 
to more than 9,000 chemicals/drugs were retrieved from ChEMBL 
in an Excel-compatible file format [34]. Chemicals for which 
data were incomplete were eliminated, as were duplicates (i.e., the 
same chemicals assayed under the same experimental conditions), 
 leading to a final dataset comprising 8,560 chemicals/drugs and 
to 10,918 statistical cases, considering the various experimental 
conditions (cj). The experimental conditions cj cover an ontology 
of the form cj ⇒ (me, bt, ai, lc), where me describes the different 
measures of biological effects (anti-enterococci activity or toxicity), 

3.1 Curation 
of the ChEMBL 
Database

ANN-Based Mtk-Model for Discovery of Antibacterial Agents

http://www.cs.waikato.ac.nz/ml/weka/downloading.html
http://www.cs.waikato.ac.nz/ml/weka/downloading.html


56

and bt denotes the dissimilar biological targets such as enterococci 
(including their respective strains), human immune system cells 
(lymphocytes), and laboratory animals like mice (Mus musculus) 
and rats (Rattus norvegicus). Additionally, ai refers to the specific 
assay information, meaning that it provides details whether the 
assay focused on the assessment of functional (F) or ADMET pro-
files (A), and lc describes the degree of curation or verification of 
the experimental information of a particular assay. Therefore, the 
elements me, bt, ai, and lc embody factors that may be modified to 
obtain a specific experimental condition.

One should point out also here that the 10,918 cases were the 
results of using 8,560 chemicals/drugs to assess one out of 18 
measures of biological effects, against at least one out of 131 bio-
logical targets, by considering at least one out of two labels of assay 
information, with at least one out of three categories of curation of 
the experimental information. An important detail to take into 
account is that the measures of antibacterial activity (e.g., the mini-
mum inhibitory concentration, MIC) were often expressed in dif-
ferent units, such as nM or μg/mL, and something similar applies 
also to the toxicity measures (e.g., the median lethal dose, LD50). 
It is clearly essential that all data for a defined measure be in the same 

Fig. 3 General steps involved in the development of an mtk-QSBER model
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units; for instance, antibacterial activity should be converted to nM 
or a multiple such as μM. All these conversions can be easily made 
and are necessary if one is to correctly compare all of the com-
pounds’ biological effects (anti-enterococci potency and toxico-
logical profiles). Further, each of the 10,918 cases was assigned to 
one out of two possible groups related with the biological effect 
[BEi(cj)] of a defined compound i in a specific experimental condi-
tion cj. That is, a chemical/drug was assigned to the group of posi-
tives [BEi(cj) = + 1] when its value of biological effect fulfilled 
certain requirements within a preestablished cutoff [27]; other-
wise, the compound was considered as negative [BEi(cj) = − 1].

A useful predictive mtk-QSBER model clearly depends on the 
molecular structure of the compound and on the experimental con-
ditions/ontology cj under which the compound was assayed. But 
if the original descriptors are calculated as previously described (see 
Subheading 2.2), one will not be able to differentiate the biological 
effects for a given molecule when different elements of the ontol-
ogy cj are modified. For this reason, a new set of molecular descrip-
tors was computed by applying the moving average approach [73]:

 
D c D D ci j i i j( ) = − ( )

avg  
(1)

In Eq. 1, Di is the molecular descriptor of the compound i. The 
descriptor Di(cj)avg characterizes a defined set of nj compounds 
tested under the same experimental conditions cj. This descriptor is 
calculated as the average of the Di values for the compounds in 
subset nj that were considered as positive (desirable) cases 
[BEi(cj) = + 1] for the same element of cj. It should be clarified here 
that, though we have resorted to an arithmetic mean for comput-
ing the Di(cj)avg descriptors, which in fact is one of the best known 
measures of the central tendency of a list of data, other measures 
like geometric, harmonic means or standard scores could have 
been used instead or in addition.

To sum up, ΔDi(cj) are clearly very important descriptors 
because they encode information based on the chemical structure 
and the characteristics of cj. That is, each ΔDi(cj) represents, in 
structural terms, how much a compound deviates from the group 
of molecules which were classified as positive.

Firstly, the dataset under study (10,918 cases) was randomly 
divided into two series: training and prediction sets. The training 
set contained 8,298 cases, 4,217 assigned as positive and 4,081 as 
negative. The prediction or external set included 2,620 cases, 
1,353 positive and 1,267 negative cases.

Then, the original molecular descriptors Di were calculated—
i.e., in this case, MODESLAB spectral moments [70] and those of 
the type ΔDi(cj) determined by applying Eq. 1. The total final 
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number of ΔDi(cj) descriptors can be found by multiplying the 
number of original descriptors by the number of elements of the 
ontology cj. In this work, we have thus started with 120 ΔDi(cj) 
descriptors. As usually happens, this is a large number of molecular 
descriptors, and so the next task encompasses selecting a proper 
subset of descriptors to then build the mtk-QSBER model. In this 
work, we have resorted to program Weka [79], which contains a 
series of powerful algorithms for variable selection. Notice that the 
final set of descriptors should yield the best, or at least a very good, 
discrimination between positive and negative groups.

Two algorithms are usually followed for selecting the variable 
subset using Weka. In the first, known as the filter algorithm (attri-
bute evaluator), an independent assessment based on the general 
characteristics of the data is performed. The second algorithm is 
used in combination with the first one, being focused on the subset 
evaluation using a defined machine learning algorithm. The latter 
is called the wrapper (search) algorithm, because a machine learn-
ing algorithm is wrapped into the selection procedure. More details 
about the filter and wrapper algorithms implemented in Weka can 
be found in Witten et al. [80]. We suggest using at least a mini-
mum of two combinations of filter and wrapper algorithms, “run-
ning” the data with such combinations at least five times. In so 
doing, one is able to easily select the variables common to all such 
runs, which embrace the most important attributes. In the case 
under study [27], combinations of the attribute evaluator 
CFsSubsetEval and the wrapper algorithms called BestFirst and 
GeneticSearch were employed. Another possibility might be to use 
the forward stepwise (FS) technique as the variable selection strat-
egy, generally along with LDA. After that, the chosen descriptors 
can be applied as inputs to derive the best mtk-QSBER model 
based on ANNs. Our previous analyses and results have shown us 
that when LDA is used with FS, there is a high probability of then 
obtaining ANNs of the type RBF. In our opinion, several tech-
niques of variable selection should be combined to provide a solid 
background on which molecular descriptors do have more influ-
ence in the final model.

To find the best mtk-QSBER model based on ANNs, LNN, 
MLP, and RBF profiles were considered. A fourth ANN called a 
probabilistic neural network (PNN) was also analyzed. The soft-
ware STATISTICA was used to carry out this procedure [81]. This 
program has a package called “Intelligent Problem Solver,” which 
contains a huge number of tools, and one of them allows the evalu-
ation of the most important variables, by performing a task known 
as sensitivity analysis. That is, with the latter, only the variables 
with sensitivity values higher than one are chosen to enter in the 
final model. “Intelligent Problem Solver” should be run at least 
five times to check enough different architectures and quality of 
the resulting ANNs. Another important aspect is to ensure that at 
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least one descriptor belonging to each element of the ontology cj is 
in the final mtk-QSBER model. Moreover, possible correlation 
between descriptors should be analyzed because, if some of the 
selected descriptors are redundant, they should be discarded, since 
the stability of the model as well as its ability to make future predic-
tions might be affected.

In this work, the best model for the simultaneous prediction of 
anti-enterococci activity and toxicity in laboratory animals was 
found to be an ANN with an RBF 5:5-767-1:1 profile [27]. As can 
be judged from the results in Table 1, the RBF ANN had a far bet-
ter accuracy and predictive power than the LNN—overall accuracy 
of around 59 %, two MLPs—overall classification ranging in the 
interval 72–77 %, and PNN—accuracy of around 61 %.

The quality and predictive power of the final mtk-QSBER 
model were also assessed by checking overall and group-specific 
performance measures on the training and prediction sets, 
respectively (Table 2). These included the sensitivity, percentage 

Table 1 
Comparative analysis of the different ANNs exploited in this study

ANNa

Training set Prediction set

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

LNN 5:5-1:1 58.88 58.61 58.17 61.01

MLP 5:5-8-1:1 72.11 72.38 72.28 73.72

MLP 5:5-7-10-1:1 77.35 77.82 77.01 78.06

RBF 5:5-767-1:1 92.98 93.58 90.76 92.11

PNN 5:5-8298-2-2:1 95.04 27.96 94.38 28.02
aThe first MLP is a three-layer perceptron (TLP), while the second MLP is a four-layer perceptron (FLP)

Table 2 
Quality and classification performance of the mtk-QSBER model

Classificationa Training set Prediction set

Sensitivity/TP (%) 92.98 90.76

Specificity/TN (%) 93.58 92.11

Accuracy (%) 93.28 91.41

MCC 0.866 0.828

AUROC 0.981 0.965
aTP, TN, MCC, and AUROC stand for the true positive, true negative, the Matthews 
correlation coefficient, and for the area under the ROC curves, respectively
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of actual positives that are correctly identified as such or true 
positive rate; specificity, true negative rate; accuracy, percentage 
of correct classification for all cases; the Matthews correlation coef-
ficient (MCC) [82]; and the area under the receiver-operating 
characteristic (ROC) curve [83]. The latter allows one to confirm 
that the model is not a random classifier, that is, a model that only 
correctly predicts half of the cases (with an area under the ROC 
curve of 0.5).

As can be seen in Table 2, the areas under the ROC curves for 
the mtk-QSBER model in training and predictions sets were 
0.981 and 0.965, respectively, indicating that the model is not a 
random classifier. Also, the attained MCC values further corrob-
orate the very good quality and performance of the proposed 
mtk-QSBER model, since for both the training and prediction 
sets they are near to one. MCC will return values between −1 and 
+1, with +1 representing a perfect prediction, 0 a random predic-
tion, and −1, a total disagreement between observed and pre-
dicted biological effects.

Many scientists argue that QSAR models are not entirely validated 
as long as no novel compounds are synthesized and biologically 
tested. Yet a QSAR model is feasibly validated if the external cases 
(not used to build the model) are correctly predicted. That is the 
major reason for splitting the datasets into training and prediction 
series. The critical point here, however, is the chemical space that 
a derived model can cover. The greater the number of different 
families of compounds used to build the model, the greater will be 
the chemical space in which the model can be used prospectively. 
Besides, a well-validated QSAR model should also show promis-
ing results when applied on the virtual screening of chemicals/
drugs. The best way to reveal the promising applications of the 
present model was to predict the multiple biological effects of the 
antibacterial agent known as BC-3781 [84]. This investigational 
drug was reported to exhibit high inhibitory activity against dif-
ferent strains belonging to the genus Enterococcus. By applying 
our model, BC-3781 was predicted as a possible antibacterial 
agent against different enterococci using multiple experimental 
conditions, in good agreement with the experimental evidence. 
No toxicological data could be obtained from the literature for 
this investigational drug, but the mtk-QSBER model led us to 
infer that BC-3781 should not be potentially harmful for labora-
tory animals and, in principle, toxicologically safe for humans as 
well. Notice here that although there is still no experimental data 
about the toxicity of BC-3781, our toxicity predictions explain 
why this compound is already undergoing phase II clinical trials 
and that no significant toxic/adverse effects have been reported 
so far for humans.

3.4 Virtual Screening 
of Antibacterial 
Agents
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4 Conclusions and Future Perspectives

Nowadays, modern societies are aware of the devastating power of 
bacterial diseases and infections. The process of creating innovative 
antibacterial chemotherapies can be accelerated by using chemoin-
formatics approaches such as QSAR tools supported by powerful 
statistical techniques like ANNs. In this chapter, we have presented 
a general overview of the evolution of QSAR models in antibacte-
rial drug discovery. Particular attention was paid to test the ability 
of a recent ANN-based mtk-QSBER model in the discovery and 
virtual screening of antibacterial agents. It was shown as well how 
these types of models are able to participate in dissimilar stages of 
drug discovery. In our opinion, future perspectives regarding the 
use of mtk-QSBER models combined with ANNs may be focused 
on extending them by forward-integrating data of other biological 
assays against relevant bacteria such as staphylococci, gram- negative 
pathogens, bacteria causing diseases like pneumonia, or those 
involved in the appearance and development of nosocomial infec-
tions. As a final point, one should remark here that ANNs can be 
viewed as graphs of interconnected nodes. For this reason, the use 
of complex network theory may well be useful to analyze more 
deeply the topology of these machine learning techniques. Perhaps, 
new horizons could be opened and applied to the field of antibac-
terial research.
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Chapter 5

Use of Artificial Neural Networks in the QSAR Prediction 
of Physicochemical Properties and Toxicities for REACH 
Legislation

John C. Dearden and Philip H. Rowe

Abstract

With the introduction of the REACH legislation in the European Union, there is a requirement for property 
and toxicity data on chemicals produced in or imported into the EU at levels of 1 tonne/year or more. 
This has meant an increase in the in silico prediction of such data. One of the chief predictive approaches 
is QSAR (quantitative structure–activity relationships), which is widely used in many fields.

A QSAR approach that is increasingly being used is that of artificial neural networks (ANNs), and this 
chapter discusses its application to the range of physicochemical properties and toxicities required by 
REACH. ANNs generally outperform the main QSAR approach of multiple linear regression (MLR), 
although other approaches such as support vector machines sometimes outperform ANNs. Most ANN 
QSARs reported to date comply with only two of the five OECD Guidelines for the Validation of (Q)SARs.

Key words QSAR, Artificial neural networks, Physicochemical properties, Toxicity, REACH

1 Introduction

The European Union’s REACH legislation (concerned with the 
Registration, Evaluation, Authorisation and restriction of 
CHemicals) [1] became operational in 2008. From that date, 
chemicals produced in or imported into the EU at more than 1 
tonne/year have to be registered based on the characterization of 
their toxicities and physicochemical properties. However, com-
plete evaluation of these properties by experimental tests can be 
time-consuming and expensive. Hence the REACH legislation 
permits the use of (Q)SARs ((quantitative) structure–activity rela-
tionships) for toxicity and property prediction where appropriate.

A QSAR is a mathematical equation that correlates a toxicity or 
property for a series of compounds with one or more structural prop-
erties of the compounds; that equation can then be used to predict 
the toxicity or property of another (usually related) compound. 
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It may seem strange that a complex endpoint such as a toxicity can be 
modeled in such a way, but it should be remembered that all molecu-
lar properties—chemical, physical, and biological—are a function of 
molecular structure. An example of a simple QSAR is Eq. 1, which 
models the toxicity of barbiturates to the mouse [2]:

 Log LD1 1 02 0 27 1 8650
2/ . log . log .( ) = − ( ) +P P  (1)

 n R s= = =13 0 852 0 1132 . .  

In this QSAR, LD50 is the dose required to kill 50 % of the mice, 
and P is the octanol–water partition coefficient, an important 
property that reflects the ability of compounds to penetrate lipid 
membranes in an organism; n is the number of compounds used to 
develop the QSAR; R2 is the coefficient of determination, the frac-
tion of the toxicity that is described by the equation; and s is the 
standard error of the prediction. It can be seen that the partition 
coefficient, a simple physicochemical property, models 85.2 % of 
the acute toxicity of barbiturates to the mouse.

Another example, shown in Eq. 2, concerns the toxicity of 
nitrobenzenes to the aquatic ciliate Tetrahymena pyriformis [3]:

 Log IGC LUMO1 0 467 1 60 2 5550/ . log . .( ) = − −P E  (2)

 n R s= = =42 0 881 0 2462 . .  

IGC50 is the dose that reduces growth rate of the ciliate by 50 %. 
ELUMO is the energy of the lowest unoccupied molecular orbital, a 
measure of the electron-attracting ability (electrophilicity) of a 
compound. Equation 2 demonstrates the use of both a hydropho-
bic descriptor property, P, and an electronic property, ELUMO, in 
the same equation.

Equations 1 and 2 are examples of multiple linear regression 
(MLR), which is the most widely used QSAR modeling technique. 
There are, however, numerous other techniques that are used in 
QSAR modeling, including artificial neural networks (ANNs) [4], 
nonlinear regression, partial least squares, genetic algorithms, and 
support vector machines (SVM) [5, 6]. Each has its own strengths 
and weaknesses.

The main strength of ANNs is that they are nonlinear (strictly, 
nonrectilinear) methods and so can deal with structure–activity 
relationships in which there are nonrectilinear correlations between 
activity and one or more descriptor properties. In Eq. 1 above, there 
is a nonrectilinear correlation between barbiturate toxicity and parti-
tion coefficient. In this case, the correlation is parabolic, which can 
be accounted for by the incorporation of a (log P)2 term. However, 
in many cases, the form of nonrectilinearity is not known, so an 
MLR approach will not yield good correlations. This is particu-
larly important when non-congeneric data sets are being modeled. 
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It should be noted that most ANN-based QSAR studies have used a 
back-propagation algorithm [7].

The main weaknesses of ANNs are that they do not yield a 
QSAR equation directly, they are difficult to interpret, and they do 
not work well with small data sets [7].

It is important to know the REACH requirements and restric-
tions concerning the use of QSARs, as stated by its Annex XI:

Results obtained from valid qualitative or quantitative structure- activity 
relationship models ((Q)SARs) may indicate the presence or absence 
of a certain dangerous property. Results of (Q)SARs may be used 
instead of testing when the following conditions are met:

 – results are derived from a (Q)SAR model whose scientific validity 
has been established,

 – the substance falls within the applicability domain of the (Q)SAR 
model,

 – results are adequate for the purpose of classification and labelling 
and/or risk assessment, and,

 – adequate and reliable documentation of the applied method is 
provided.

In addition, guidance on the use of (Q)SARs for the imple-
mentation of REACH has been provided by the European 
Chemicals Agency (ECHA) [8], which states that:

In principle, (Q)SARs can be applied in a number of ways, namely to:

(a) provide information for use in priority setting procedures;
(b) guide the experimental design of an experimental test or testing 

strategy;
(c) improve the evaluation of existing test data;
(d) provide mechanistic information (which could be used, for example, 

to support the grouping of chemicals into categories);
(e) fill a data gap needed for hazard and risk assessment;
(f) fill a data gap needed for classification and labelling;
(g) fill a data gap needed for PBT or vPvB assessment.

The first four applications (a–d) are more general regulatory applica-
tions of QSARs, whereas the last three applications (e–g) are more 
REACH-specific.

In some situations, (Q)SARs could be used to replace test data, 
whereas in other situations, the models would be used to provide sup-
plementary information to experimental data. In practice, it is foreseen 
that (Q)SAR information will most often be used to supplement 
 experimental test data within chemical categories and endpoint-specific 
Integrated Testing Strategies (ITS). However, it is expected that (Q)
SARs will be used increasingly for the direct replacement of test data, 
as relevant and reliable models become increasingly available, and as 
experience in their use becomes more widespread.

The acronym QSAR (quantitative structure–activity relation-
ship) in REACH documentation is taken to include QSPR (quan-
titative structure–property relationship).

Artificial Neural Networks for REACH Property/Toxicity
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To be used in a regulatory context, QSAR models should have, 
according to the five principles proposed by the Organisation for 
Economic Co-operation and Development (OECD) [9, 10]:

 (a) A defined endpoint
 (b) An unambiguous algorithm
 (c) A defined domain of applicability
 (d) Appropriate measures of goodness of fit, robustness, and 

predictivity
 (e) A mechanistic interpretation, if possible

In particular, a series of internal and external validation tests 
are used to demonstrate the reliability of a QSAR model. Goodness 
of fit is evaluated for the compounds used to derive the model 
(i.e., the compounds of the training set). Robustness is estimated 
by cross validation and/or randomization techniques. Predictive 
power is generally evaluated using an external validation set of 
compounds that were not used to develop the model, and it is 
now a standard requirement that external validation of QSAR 
models is performed.

A useful review of QSAR modeling for regulatory purposes is 
given by Fjodorova et al. [11].

2 The Value of ANN-Derived QSARs

In general, the neural network approach to QSAR development has 
several important advantages over the standard multiple linear 
regression (MLR) approach [12]. Firstly, as pointed out above, the 
ability of ANNs to utilize nonrectilinear functions can result in bet-
ter models being obtained. Secondly, some ANNs are able to deal 
with interactions between descriptors. Thirdly, they are able to han-
dle very noisy data, and fourthly, as a corollary to the above, they 
are valuable for the derivation of QSARs for non-congeneric series.

There is a plethora of ANN methods available for QSAR mod-
eling [13–15], such as back-propagation NNs, counterpropaga-
tion NNs, probabilistic NNs, radial basis function NNs, and 
computational NNs [16]; Baskin et al. [13] list 35 types of ANNs 
that have been used in QSAR studies. Care must be taken to select 
the most appropriate method and to guard against overtraining of 
the network, which lowers the predictivity of the derived model.

It should be noted that in comparison with other methods for 
the derivation of QSAR models, ANN methods are not always the 
best performers. A study of the prediction of biomagnification factors 
for organochlorine compounds [17] found that a feed- forward ANN 
approach gave better results than did an MLR approach. However, 
for the prediction of acute toxicity of diverse organic chemicals to the 
fathead minnow [18], a support vector machine (SVM) approach 
gave better results than did a back-propagation ANN.
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3 Do ANN-Derived QSARs Meet Validity Requirements for Regulatory Purposes?

Clearly, ANN-derived QSARs must have a defined endpoint in 
order to satisfy the first OECD principle, and there is no greater 
difficulty with that than there is with any other QSAR approach. It 
must be stressed, however, that rigor is required in assembling and 
checking the database used to develop any QSAR [19].

The second OECD principle requires an unambiguous algo-
rithm, which cannot be obtained with ANN techniques, since they 
are generally regarded as “black-box” methods. The descriptors 
used to build an ANN model are known, since they form most of 
the input neuron layer, but their signs and coefficients are not 
known. Hence the algorithm cannot be said to be unambiguous. 
However, Baskin et al. [20] and Jurs and coworkers [21, 22] have 
proposed ways in which the relative importance of the descriptors 
in an ANN-derived QSAR can be obtained. This means [13] that 
“the interpretability of neural network models is not reduced in 
comparison with traditional statistical linear approaches, at least for 
interpretation methods based on ranking the relative importance of 
descriptors.” However, these proposals appear to have been little 
used to date.

The third OECD principle requires a defined applicability 
domain, which to a first approximation represents the chemical 
and biological space covered by the chemicals in the training set, 
irrespective of the QSAR approach used [23].

The fourth OECD principle calls for appropriate measures of 
goodness of fit, robustness, and predictivity, and these are as read-
ily available for ANN models as for other types of QSAR models. 
It should be mentioned, however, that great care must be taken (a) 
to avoid overtraining in the development of an ANN QSAR and 
(b) to ensure its external validation.

The fifth OECD principle calls for a mechanistic interpretation 
of the QSAR model, if possible. Thus there is a recognition that 
such interpretations cannot always be achieved. Johnson [24] has 
pointed out that “QSAR has devolved into a perfectly practiced art 
of logical fallacy; cum hoc ergo propter hoc (with this, therefore 
because of this).” He also commented that a statement to the 
effect that, say, a particular descriptor represents molecular shape is 
not a mechanistic interpretation. It may also be noted that there is 
currently a commendable increase in the number of QSARs pub-
lished that are derived from compounds known to act by a given 
mechanism. In such cases there is no (or less) need to interpret the 
QSAR mechanistically. An example is the identification of different 
mechanisms of action of chemicals that are skin sensitizers, prior to 
QSAR analysis [25].

Following publication of the OECD principles [8], Vračko 
et al. [26] carried out a validation study of counterpropagation 
ANN modeling of fish toxicity. While acknowledging the potential 
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drawbacks of the method, they concluded that “a (Q)SAR model 
can be derived and validated using a counter propagation NN 
approach whilst still satisfying most if not all of the OECD princi-
ples for validation of (Q)SAR models.”

However, this does not necessarily mean that ANN-derived 
QSARs are automatically acceptable for regulatory purposes, 
including those relating to the REACH legislation. A number of 
peer-reviewed QSARs are stored in the (Q)SAR Model Reporting 
Format (QMRF) database at the European Commission Joint 
Research Centre (JRC) at Ispra, Italy [27]. The website [28] states: 
“The database is intended to help to identify valid (Q)SARs, e.g. 
for the purposes of REACH…The information is structured 
according to the OECD principles for the validation of (Q)SAR 
models.” Nevertheless, it is important to note that the quality and 
relevance of QSARs in the QMRF database are not checked by the 
JRC before inclusion.

There are, at the time of writing, 70 QSARs in the QMRF 
database, of which 13 are ANN-derived QSARs, covering a range 
of toxicity endpoints such as acute toxicity to Daphnia magna, 
fathead minnow, birds, and rat (oral), mouse carcinogenicity, der-
mal irritation, skin sensitization, and chromosomal aberration, as 
well as QSARs for biodegradation and octanol–water partition 
coefficient.

It should be noted that QSARs for the prediction of physico-
chemical properties are usually referred to as QSPRs (quantitative 
structure–property relationships).

4 Some Case Studies of ANN-Derived QSARs

As pointed out above, QSARs to be used in connection with 
REACH need to comply with most of the OECD principles for 
validation of (Q)SAR models. Hence in this chapter an indication 
is given of that compliance; for example, (OECD 1, 2, 4I,E) 
 indicates that a model complies with OECD principles 1, 2, and 4, 
with I and E indicating that there is both internal and external vali-
dation of the model.

The REACH legislation [29] requires information on up to 19 
physicochemical properties, depending on annual supply levels. 
More detailed information can be found in Regulation (EC) No. 
1907/2006 [30].

From Annex VII (required for substances at a supply level of 
≥1 tonne/year):

State of the substance, melting/freezing point, boiling point, 
relative density, vapor pressure, surface tension, water solubility, 
n-octanol–water partition coefficient, flash point, flammability*, 
explosive properties, self-ignition temperature, oxidizing proper-
ties, and granulometry (particle size distribution).

4.1 Physicochemical 
Properties
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*Flammability includes “pyrophoric properties,” “flammability 
on contact with water,” and “flammability upon ignition.”

From Annex VIII (additionally required for substances at a 
supply level of ≥10 tonnes/year):

Adsorption/desorption (generally taken to mean relating to 
soil).

From Annex IX additionally (required for substances at a sup-
ply level of ≥100 tonnes/year):

Dissociation constant, viscosity, and stability in organic solvents.
In addition, the ECHA endpoint-specific guidance [29] 

includes an appendix on the determination of the air–water parti-
tion coefficient, otherwise known as Henry’s law constant. This is 
an important property with applications in, for example, inhalation 
toxicology and environmental distribution of chemicals.

Of the above properties, two (state of the substance and gran-
ulometry) are not amenable to QSPR analysis, and for two others 
(oxidizing properties and stability in organic solvents), QSPRs 
have not yet been derived.

Dearden et al. [31] have discussed the in silico prediction of all 
the above properties that are amenable to QSPR analysis, and 
Taskinen and Yliruusi [32] and Devillers [14] have reviewed the 
ANN QSPR modeling of a number of those properties.

Godavarthy et al. [33] used a back-propagation NN to model 
the melting points of over 1,200 organic chemicals, with 
R2 = 0.99 and RMSE (root mean square error) = 12.6° (OECD 
compliance 1,4IE) for the training set and 10.8° for the test set. 
A typical melting point prediction error is around 30°–40°, so 
this result is surprisingly good. However, the statistics are per-
haps too good, suggesting that over-fitting may have taken place. 
More realistic results were obtained [34] for a data set of 4,173 
organic chemicals using a feed-forward back-propagation NN 
and 2- and 3- dimensional (2D and 3D) descriptors; the use of 
2D descriptors gave the better results, with a training-set mean 
absolute error (MAE) of 37.6° and a 277-compound test-set 
MAE of 32.6° (OECD compliance 1,3,4IE,5).

It should be noted that melting point is probably the least well 
predicted physicochemical property, partly because of the difficulty 
of modeling crystal packing.

Boiling point is somewhat easier to predict. Hall and Story [35] 
used a back-propagation NN with atom-type electrotopological 
descriptors to model the boiling points of 298 diverse organic 
chemicals, with an MAE of 3.9° (OECD compliance 1,4IE). Using 
a feed-forward NN with quantum-mechanical descriptors, Chalk 
et al. [36] modeled the boiling points of a large number of organic 
chemicals, with a 6,000-compound training-set standard deviation 
of 16.5° and a 629-compound test-set standard deviation of 19.0° 
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(OECD compliance 1,4IE). They commented that the low error 
found by Hall and Story [35] could have been caused by overtrain-
ing of their model.

Relative density is quite simple to calculate, for liquids at least [31]. 
Gakh et al. [37] used a feed-forward back-propagation NN to pre-
dict the densities of 134 liquid hydrocarbons at 25 °C, using 
descriptors derived from graph theory. They found an MAE of 
0.6 % for a 25-chemical external test set (OECD compliance 1,4E). 
Group contributions and a feed-forward back-propagation NN 
with two hidden layers were used to predict the densities of 82 
ionic liquids [38]. An external test set of 24 ionic liquids yielded an 
MAE of 0.26 % (OECD compliance 1,4E).

Vapor pressure, being temperature dependent, must be reported 
for a specific temperature, such as 25 °C (298 K). McClelland and 
Jurs [39] used a computational NN to model the vapor pressures 
at 25 °C of 420 diverse organic chemicals. They obtained RMSE 
values of 0.19 and 0.33 log unit for the training and validation sets, 
respectively (OECD compliance 1,4IE). Chalk et al. [40] used a 
feed-forward NN to model the variation of vapor pressure with 
temperature, using quantum-mechanical descriptors with a data 
set of 7,681 measurements for 2,349 chemicals. Their standard 
deviations were 0.322 and 0.326 log unit for training and valida-
tion sets, respectively (OECD compliance 1,4IE).

The surface tensions at various temperatures of 82 organic liquids 
were modeled with a multilayer perceptron NN, with five physical 
properties as descriptors [41], and with an MAE of 1.41 % for the 
training set of 734 data points and 1.95 % for the test set of 314 
data points (OECD compliance 1,4E). Gharagheizi et al. [42] used 
a much larger number (752) of organic liquids and a range of tem-
peratures. Using a feed-forward NN with group contribution 
descriptors, they obtained standard deviations of 1.7 % for training 
and internal and external validation sets (OECD compliance 1,4IE).

One of the most important physicochemical properties is aqueous 
solubility, and there have been many QSPR studies carried out in 
this area [43], including those using ANN approaches. Yan and 
Gasteiger [44] used a back-propagation NN with 3D descriptors 
to model a set of 1,293 organic chemicals. They obtained, for the 
797-compound training set and the 496-compound test set, MAEs 
0.41 and 0.49 log unit (OECD compliance 1,4IE). These com-
pare well with the typical experimental error in aqueous solubility 
of about 0.58 log unit [45]. They are also considerably better than 
an MLR model for the same chemicals (MAEs 0.70 and 0.68 log 
unit for training and test sets, respectively). However, when an 
external set of 1,587 Merck chemicals was tested, the NN MAE 
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was 0.77 log unit. The authors commented that this was probably 
due to greater chemical diversity of the Merck chemicals. Similar 
results were obtained by Bruneau [46] using a Bayesian NN with 
physicochemical descriptors for a training set of 1,560 organic 
chemicals (standard error = 0.53 log unit) and an external test set 
of 934 organic chemicals (standard error = 0.81 log unit) (OECD 
compliance 1,4IE).

Without doubt the most important physicochemical property for 
modeling bioactivity is the n-octanol–water partition coefficient 
(P, Kow). In QSAR studies it is always used in logarithmic form as 
log P or log Kow. Some 70 % of all QSARs include this term or one 
related to it, such as the chromatographic retention term Rm. Its 
importance lies in the fact that it is a surrogate for lipid–water par-
titioning and hence models xenobiotic transport in an organism, 
although it can contribute also to receptor binding. There are a 
number of reviews of the topic [47, 48] and many published stud-
ies. Chen [49] compared the performance of MLR, radial basis 
function neural networks, and support vector machines for the 
prediction of log P of about 3,500 organic chemicals. The SVM 
results were best (training set s = 0.54, test set s = 0.56), with MLR 
slightly worse (training set s = 0.62, test set s = 0.56) and RBFNN 
somewhat worse (training set s = 0.56, test set s = 0.72) (OECD 
compliance 1,4IE). Tetko et al. [50] used electrotopological state 
(E-state) indices [51] with an ensemble of 50 different neural net-
works to model log P values of a very large number of organic 
chemicals; for a 12,908-compound training set they obtained 
RMSE = 0.38 log unit, and for a 1,174-compound test set 
RMSE = 0.36 log unit (OECD compliance 1,4IE). These results 
were better than those from MLR and from several commercially 
available software programs. Considering the very large number of 
chemicals used, this is a very good result.

The flash point of a chemical is the temperature at which the vapor 
concentration is equal to the lower explosive limit. Katritzky et al. 
[52] used both MLR and back-propagation NN with CODESSA 
descriptors to model the flash points of up to 758 organic chemi-
cals. For the training sets, MLR yielded MAE = 13.9°, while NN 
yielded better results: MAE = 12.6° (OECD compliance 1,4IE). 
No test-set results were reported. Gharagheizi et al. [53], using a 
feed-forward NN and group contributions as descriptors with a 
large data set of organic chemicals, found MAE = 7.9° for the 
1,241-compound training set and MAE = 9.9° for the 
137- compound test set (OECD compliance 1,4IE).

Upper and lower flammability limits represent the range of concen-
trations in air within which a chemical will ignite provided that an 
ignition source is present. Studies of both limits have been made by 
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Gharagheizi. He used a feed-forward NN with group contributions 
to model the upper flammability limits of 867 organic chemicals 
[54]; for the 694-compound training set MAE = 7.26 % and for the 
173-compound test set MAE = 6.23 % (OECD compliance 1,4IE), 
whereas using MLR on the same data set [55], he obtained 
MAE = 9.2 % for the full data set (MAEs not given for training and 
test sets) (OECD compliance 1,2,4IE).

In similar fashion Gharagheizi investigated the lower flamma-
bility limits of a data set of 1,057 organic chemicals. Using MLR 
[56] he obtained MAE = 7.68 % for the full data set (MAEs not 
given for training and test sets) (OECD compliance 1,2,4IE), 
while with a feed-forward NN [57], Gharagheizi obtained 
MAE = 4.35 % for the 846-compound training set and MAE = 5.70 % 
for the 211-compound test set (OECD compliance 1,4IE). Clearly, 
for the prediction of both upper and lower flammability limits, the 
neural network approach yielded considerably better results.

Explosive properties have to date been investigated very little by 
QSAR, with the exception of impact sensitivity. Cho et al. [58] used 
back-propagation NN with structural, topological, and physico-
chemical descriptors to model the impact sensitivity of 263 nitro 
compounds, with a standard error of prediction of 0.211 log unit 
(standard errors not given for training and test sets) (OECD com-
pliance 1,4IE). Wang et al. [59] compared the performance of 
MLR, partial least squares (PLS), and back-propagation NN in 
modeling the impact sensitivity of 156 diverse nitro compounds. 
The RMSEs found for the 127-compound training set and the 
49-compound test set, respectively, were MLR 0.210, 0.251; PLS 
0.214, 0.250; and BPNN 0.192, 0.247 (OECD compliance 1,4IE). 
Clearly the back-propagation NN approach gave the best results.

MLR, PLS, and radial basis function and back-propagation NNs 
with structural and physicochemical descriptors were used by 
Tetteh et al. [60] to model the self-ignition temperature of 233 
organic chemicals. Overall MAEs were MLR 90.2°, PLS 38.4°, 
RBFNN 30.1°, and BPNN 29.9° (MAEs not given for training 
and test sets separately) (OECD compliance 1,4IE). Pan et al. [61] 
used MLR and back-propagation NNs with E-state descriptors and 
group contributions, respectively, to model the self-ignition tem-
peratures of 118 hydrocarbons. MAEs for the 42-compound test 
set were MLR 32.4°, E-state BPNN 21.6°, and group contribu-
tion BPNN 24.8° (OECD compliance 1,4E).

For REACH purposes, adsorption/desorption relates mainly to 
sorption on soil and also on sediment and sludge. Liu and Yu [62] 
modeled the sorption of 42 anilines and phenols on soil, using 
both MLR and back-propagation NN. With log P, quantum- 
chemical, and topological descriptors, they found standard errors 
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of prediction of 0.374 log unit for MLR and 0.282 log unit for 
BPNN (OECD compliance 1,4I). No external validation was per-
formed. Soil sorption of 124 pesticides was investigated by 
Goudarzi et al. [63] using SPA-MLR and SPA-ANN with physico-
chemical and structural descriptors (SPA is successive projection 
algorithm); the type of NN used was not specified. The RMSEs 
obtained (log units) were training set 0.420 (MLR) and 0.282 
(NN) and test set 0.371 (MLR) and 0.289 (NN) (OECD compli-
ance 1,4IE).

Dissociation constant is a key property of many chemicals, and 
hence much effort has gone into developing methods of predicting 
pKa values. Luan et al. [64] investigated both MLR and radial 
basis function NN approaches to pKa prediction of 74 drugs, using 
CODESSA descriptors [65]. The neural network approach gave 
the better results, with MLR yielding RMSE = 0.482 (training set) 
and 0.987 (test set) and RBFNN yielding RMSE = 0.458 (training 
set) and 0.613 (test set) (OECD compliance 1,4IE). Habibi- 
Yangjeh et al. [66], using MLR and feed-forward back- propagation 
NN with physicochemical descriptors on 242 benzoic acids and 
phenols, also found much better performance with the neural net-
work approach. RMSE values (log units) were MLR 0.86 
(205-compound training set) and 0.94 (37-compound test set) 
and BPNN 0.26 (training set) and 0.27 (test set) (OECD compli-
ance 1,4IE).

Using their ADAPT descriptors, Kauffman and Jurs [67] devel-
oped both MLR and computational NN models to predict the 
viscosity of almost 200 organic solvents. For 170 training-set 
chemicals, RMSE (MLR) was found to be 0.257 mPa s, while 
RMSE (CNN) was 0.147 mPa s. RMSEs for the 21-compound 
test set were (MLR) 0.278 and (CNN) 0.242 mPa s (OECD com-
pliance 1,4IE). Artemenko et al. [68] found a back-propagation 
NN, with molecular fragment descriptors, to yield better predic-
tions than did MLR for a diverse set of liquid organic chemicals. 
For 293 training-set chemicals, RMSEs (log units) were MLR 
0.111 and BPNN 0.212. RMSEs for the 37-compound test set 
were MLR 0.212 and BPNN 0.141 (OECD compliance 1,4IE).

Although information on Henry’s law constant (HLC) is not a 
REACH requirement, its documentation [29] discusses the 
measurement and prediction of HLC, so it is pertinent to con-
sider ANN approaches to its prediction. Modarresi et al. [69] 
compared the performance of MLR and radial basis function NN 
for prediction of HLC values of 940 diverse organic chemicals 
using a wide range of physicochemical and structural descriptors. 
The neural network approach gave slightly better RMSE values 
(log units) (training set = 0.564, test set 0.520) than did MLR 
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(training set = 0.570, test set 0.520) (OECD compliance 1,4IE,5). 
Gharagheizi et al. [70] used a group contribution method with a 
feed-forward NN to predict HLC values of a large group of organic 
chemicals. RMSE values (log units) were 1,649-compound train-
ing set = 0.08 and 97-compound test set = 0.12 (OECD compli-
ance 1,3,4E).

The REACH legislation [71] requires information on a total of 19 
toxicological properties, depending on annual supply levels. Some 
of the properties relate to human health, and some to ecotoxicity. 
More detailed information can be found in Regulation (EC) No. 
1907/2006 [30].

From Annex VII (required for substances at a supply level of 
≥1 tonne/year):

Skin irritation or corrosion, eye irritation, skin sensitization, 
mutagenicity, and acute toxicity (oral if inhalation data are not 
available).

Aquatic toxicity (Daphnia preferred), growth inhibition of 
aquatic plants, and degradation (ready biodegradability).

From Annex VIII (additionally required for substances at a 
supply level of ≥10 tonnes/year):

Acute toxicity (dermal, if inhalation is unlikely), short-term 
repeated-dose toxicity, reproductive toxicity, and toxicokinetics if 
available.

Short-term fish toxicity, activated sludge respiration inhibition, 
abiotic degradation (hydrolysis), and adsorption/desorption (gen-
erally taken to mean relating to soil).

Note: adsorption/desorption is also a requirement under phys-
icochemical properties and is covered in Subheading 4.1.12 above.

From Annex IX (additionally required for substances at a 
 supply level of ≥100 tonnes/year):

Sub-chronic rodent toxicity, prenatal developmental toxicity, 
and two-generation reproductive toxicity.

Long-term aquatic toxicity, bioaccumulation in aquatic spe-
cies, and effects on terrestrial organisms (invertebrates, soil micro-
organisms, plants).

From Annex X (additionally required for substances at a supply 
level of ≥1,000 tonnes/year):

Carcinogenicity, long-term toxicity to invertebrates, sediment 
microorganisms, plants, and birds.

Note: Annex X also states that additional information may be 
required on some toxicity endpoints listed under Annexes VII–IX.

Salina et al. [72] have reviewed the QSAR prediction of skin irritation 
and corrosion. Golla et al. [73] used a feed-forward back- propagation 
NN with physicochemical and structural descriptors to model the 
rabbit skin irritation of 186 organic chemicals and obtained 
RMSE = 1.1 unit, which is reasonable for a data range of 0–8 units. 
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An external test set of 22 chemicals was also tested, but no RMSE 
value was given (OECD compliance 1,4IE). Skin corrosivity was 
studied by Barratt [74] using a back-propagation NN with a small 
number of physicochemical properties for classification as corro-
sive or noncorrosive; for 50 organic acids, 40 organic bases, and 
33 phenols, he found 97.02, 93.86, and 95.85 % correct classifica-
tion (OECD compliance 1,4). No external test set was used.

Salina et al. [72] have reviewed the QSAR prediction of eye irrita-
tion. Barratt [75] investigated the eye irritation of 57 aliphatic 
alcohols and other neutral organic chemicals using a back- 
propagation NN with a small number of physicochemical proper-
ties for classification as irritant or nonirritant and obtained 97.37 % 
correct classification (OECD compliance 1,4). No external test set 
was used.

Patlewicz et al. [76] investigated a set of 19 cationic surfactants 
with back-propagation NN using a small number of physicochemi-
cal properties, which yielded R2 = 0.702 (OECD compliance 1,4). 
No error values were given.

Patlewicz et al. [77] have reviewed the QSAR prediction of skin 
sensitization. Devillers [78] used a feed-forward back-propagation 
NN with structural and physicochemical descriptors in a classifica-
tion model of the skin sensitization of 259 organic chemicals and 
obtained an overall correct classification of 89.19 %, compared 
with 82.63 % using linear discriminant analysis [79] (OECD com-
pliance 1,4IE). No external test-set results were given.

Golla et al. [80] also used a feed-forward back-propagation 
NN with structural and physicochemical descriptors in a classifica-
tion model of skin sensitization, using three different endpoints 
(mouse local lymph node assay (LLNA), guinea-pig maximization 
test (GPMT), and a test from the German Federal Institute for 
Health Protection of Consumers and Veterinary Medicine 
(BgVV)). The training-set results were LLNA (358 chemicals) 
90 % correct classification, GPMT (307 chemicals) 95 %, and 
BgVV (251 chemicals) 90 % (OECD compliance 1,4IE). No test- 
set results were given.

Benigni [81] has reviewed the QSAR prediction of mutagenicity. 
Xu et al. [82] investigated a very large data set of 7,617 organic 
chemicals, of which 4,252 were mutagens and 3,365 were non- 
mutagens. Using molecular fingerprints as descriptors, they 
employed five different approaches, namely, SVM, decision tree, 
feed-forward NN, k-nearest neighbor, and naïve Bayes, to classify 
the chemicals. The prediction accuracies for the training set were, 
respectively, 84.1 %, 80.4 %, 80.2 %, 82.1 %, and 65.8 % (OECD 
compliance 1,4). The NN method, while good, was not quite as 
accurate as the SVM, decision tree, and k-nearest neighbor meth-
ods. No test-set results were given.
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For a set of aromatic amines, Leong et al. [83] also employed 
different approaches, namely, MLR, PLS, hierarchical support 
vector regression, SVM, radial basis function NN, and genetic 
function algorithm. The RMSEs (log units) found for the 97-com-
pound training set were, respectively, 1.46, 1.66, 0.51, 0.71, 0.85, 
and 0.90; for the 25-compound test set the RMSEs were 1.13, 
0.91, 0.65, 0.85, 0.78, and 0.83 (OECD compliance 1,4IE). 
Again, the NN approach did not yield the best results.

Tsakovska et al. [84] have reviewed the QSAR prediction of mam-
malian toxicity. Devillers [85] employed PLS regression and back- 
propagation NN to model acute oral toxicity (LD50) to the rat of 
51 organophosphorus pesticides, with the use of physicochemical 
descriptors. The NN approach yielded RMSE = 0.29 log unit for 
the training set and 0.26 log unit for the test set (OECD compli-
ance 1,4IE); these figures were greatly superior to those from PLS 
regression.

The oral toxicity of 54 benzodiazepine drugs to the mouse was 
modeled by MLR, back-propagation ANN, SVM, and PLS meth-
ods [86]. RMSE values (log units) were, respectively, training set 
0.213, 0.142, 0.183, and 0.174 and test set 0.194, 0.124, 0.192, 
and 0.165, indicating the superior predictivity of the ANN method 
(OECD compliance 1,4IE).

No mammalian inhalation toxicity QSAR studies appear to 
have been done using a neural network approach.

Kaiser and Niculescu [87] used a probabilistic NN to model a large 
data set of toxicity of organic chemicals to Daphnia magna, using a 
combination of physicochemical and structural descriptors. For the 
700-compound training set, s = 0.512 log unit, and for the 76-com-
pound test set s = 0.668 log unit (OECD compliance 1,4IE).

Another aquatic invertebrate that has been widely used in 
QSAR toxicity studies is the ciliate Tetrahymena pyriformis. Over 
2,000 chemicals have been tested in the same laboratory against 
this organism, which means that experimental error should be 
very low. Kahn et al. [88] compared the performance of MLR 
and back-propagation NN on a large number of organic chemi-
cals, using CODESSA descriptors. The BPNN results were better 
(914-compound training set s = 0.442 log unit, 457-compound 
test set s = 0.484 log unit) than were those from MLR (training 
set s = 0.551 log unit, test set s = 0.561 log unit) (OECD compli-
ance 1,4IE). Kahn et al. also reported 18 previous ANN QSAR 
studies on toxicity to T. pyriformis.

Izadiyan et al. [89] modeled the effects of 40 ionic chemicals 
on the limnic green alga Scenedesmus vacuolatus, using both MLR 
and multilayer perceptron NN, with structural descriptors. 
Standard errors of prediction in the validation set were MLR 0.525 
log unit and MLPNN 0.440 log unit (OECD compliance 1,4IE).
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Pesticide field half-lives were modeled [90] in a classification 
approach with a back-propagation NN, using structural fragments 
as descriptors. For 110 training-set compounds and 13 test-set 
compounds, correct classifications were 95.5 % and 84.6 %, respec-
tively (OECD compliance 1,4IE). These results were much better 
than those obtained with discriminant factor analysis.

Aerobic biodegradation of 21 aromatic chemicals was mod-
eled [91] by MLR, principal component regression, and back- 
propagation NN, using quantum-mechanical descriptors. The 
BPANN model yielded RMSE = 0.136 log unit (training set) 
and 0.024 log unit (validation set), markedly better than the 
results from the MLR and PCR models (OECD compliance 
1,4IE,5).

There do not appear to be any neural network QSAR studies of 
mammalian toxicity through dermal absorption.

A QSAR (No. Q17-10-31-264) in the (Q)SAR Model Reporting 
Format (QMRF) [28] uses a back-propagation NN to model 
repeat-dose reproductive/developmental toxicity in the rat. The 
reported statistics are RMSE (training set) = 0.434 log unit and 
RMSE (test set) = 2.521 log unit (OECD compliance 1,3,4IE,5). 
The fact that the test-set compounds are so poorly predicted sug-
gests either overtraining or that the test-set compounds were not 
within the applicability domain of the training set.

Most QSAR studies of reproductive toxicity have been made on 
endocrine disruption. Liu et al. [92] used least-square SVM, coun-
terpropagation NN, and k-nearest neighbor (k-NN) approaches to 
classify the endocrine-disruption capability of 232 training-set 
chemicals and 87 external test-set chemicals, using molecular 
structure descriptors. The three methods gave very similar results, 
with correct predictions as follows: LS-SVM 89.66 %, CP-NN 
87.50 %, and k-NN 89.22 % for the training set and LS-SVM 
83.91 %, CP-NN 82.76 %, and k-NN 83.91 % for the external test 
set (OECD compliance 1,3,4IE).

Roncaglioni et al. [93] investigated the performance of five 
different nonlinear QSAR models (decision forest (DF), adaptive 
fuzzy partition (AFP), decision tree (CART), multilayer percep-
tron feed-forward NN (MLPNN), and support vector machine 
(SVM)) to classify the endocrine-disruption capability of 232 
training-set chemicals and 87 external test-set chemicals, using 
topological and structural descriptors. The correct classifications 
were DF 97.04 %, AFP 86.36 %, CART 85.38 %, MLPNN 84.39 %, 
and SVM 89.92 % for the training set and DF 85.33 %, AFP 
85.33 %, CART 85.33 %, MLPNN 84.00 %, and SVM 86.67 % for 
the external test set (OECD compliance 1,3,4IE).
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There are numerous toxicokinetic parameters, and many QSAR 
studies have been made of most of them. Wajima et al. [94] inves-
tigated the prediction of human clearance from data for 68 drugs 
on humans, dogs, and rats, with physicochemical descriptors and 
dog and rat data, using several approaches. RMSEs (log units) 
were MLR 0.350, PLS 0.350, and feed-forward NN 0.395 (OECD 
compliance 1,4). No external test set was used.

Blood levels of the antibiotic tobramycin in about 300 patients 
were modeled with a back-propagation NN, using patient data 
(e.g., age, weight, sex, illness) as descriptors [95]. The MAE was 
33.9 %, which was considered acceptable (OECD compliance 1,4). 
No external test set was used. The authors concluded that “neural 
networks were capable of capturing the relationships between 
plasma drug levels and patient-related prognostic factors from rou-
tinely collected sparse within-patient pharmacokinetic data.”

Singh et al. [96] compared the performance of a number of artifi-
cial intelligence approaches (multilayer perceptron NN, radial basis 
function NN, generalized regression NN, gene expression program-
ming (GEP), SVM, and decision tree (DT)) to model the acute 
fish toxicity of 573 chemicals, of which 458 formed the training 
set and 115 the test set. The MAEs (log units) obtained for the 
training set were MLPNN 0.54, RBFNN 0.57, GRNN 0.34, GEP 
0.71, and DT 0.43, and those for the test set were MLPNN 0.46, 
RBFNN 0.41, GRNN 0.37, SVM 0.49, GEP 0.48, and DT 0.54 
(OECD compliance 1,4IE,5). The generalized regression NN in 
particular performed very well.

Gong et al. [97] used radial basis function NN and a heuristic 
method to model the acute fish toxicity of 92 substituted benzenes 
(training set 74, test set 18 chemicals) using CODESSA descrip-
tors. The RMSEs (log units) for the training and test sets, respec-
tively, were RBFNN 0.220 and 0.205 and heuristic method 0.273 
and 0.223 (OECD compliance 1,4IE,5).

Okey and Martis [98] employed a feed-forward NN to model the 
inhibition of activated sludge respiration by 139 (training set) and 
25 (test set) diverse organic chemicals, using quantum-mechanical 
and topological descriptors. They obtained MAE = 0.41 log unit 
for the test set, which is a reasonable result (OECD compliance 
1,4E,5).

A QSAR (No. Q17-10-1-226) in the (Q)SAR Model Reporting 
Format (QMRF) [28] employs a multilayer perceptron back- 
propagation NN to model the inhibition of activated sludge respi-
ration, using physicochemical and structural descriptors. The 
reported statistics are RMSE (68-chemical training set) = 0.029 log 
unit and RMSE (15-chemical test set) = 0.03 log unit (OECD 
compliance 1,2,3,4IE,5).

4.2.11 Toxicokinetics

4.2.12 Short-Term Fish 
Toxicity

4.2.13 Activated Sludge 
Respiration Inhibition
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The acid hydrolysis of a large number of carboxylic acid esters in 
water and in water–organic solvent mixtures was modeled [99] 
using a feed-forward NN and quantum-chemical descriptors, 
descriptors representing the various organic solvents, and temper-
ature and solvent concentration. For the training set (1,883 
records), RMSE = 0.271 log unit, and for the test set (209 records), 
RMSE = 0.342 log unit (OECD compliance 1,4IE).

See Subheading 4.1.12 above.

Sub-chronic toxicity is defined as the ability of a toxic substance to 
cause toxic effects for more than 1 year but less than the lifetime of 
the exposed organism. It thus excludes carcinogenicity. A recent 
paper [100] makes it clear that sub-chronic toxicology is still a 
young science, with only a few published prediction studies, and 
apparently none using ANN approaches.

There do not appear to be any neural network QSAR studies of 
either of these endpoints.

Meng and Lin [101] used feed-forward back-propagation NNs to 
model both acute and chronic (up to 56-day) toxicity of alcohol 
ethoxylates (nonionic surfactants) to fathead minnow (Pimephales 
promelas), Daphnia magna, and green alga (Pseudokirchneriella 
subcapitata). Unfortunately they presented their results largely in 
graphical form, making it virtually impossible to obtain accurate 
numerical predictions, even though they used both training and 
external test sets. It appears from the graphs that chronic toxicity 
ran more or less in parallel to acute toxicity. For example, for D. 
magna the mean ratio of acute median effect concentration to 
chronic no-observed-effect concentration was 2.8.

Bioaccumulation incorporates both bioconcentration factor, BCF 
(which relates to the uptake of chemicals by fish or other aquatic 
species from water), and biomagnification, which is the increase in 
concentration from one link in a food chain to another. For 
REACH purposes, bioaccumulation is taken to mean BCF.

Fatemi et al. [102] used a genetic algorithm-feed-forward 
back-propagation NN on a training set of fish BCF values for 44 
diverse organic chemicals and a test set of 9 similar chemicals, using 
topological and physicochemical descriptors. They obtained 
s = 0.259 log unit for the training set and s = 0.398 log unit for the 
test set (OECD compliance 1,4IE).

4.2.14 Abiotic 
Degradation (Hydrolysis)

4.2.15 Adsorption/
Desorption

4.2.16 Sub-chronic 
Rodent Toxicity

4.2.17 Prenatal 
Developmental Toxicity

4.2.18 Two-Generation 
Reproductive Toxicity

4.2.19 Long-Term 
Aquatic Toxicity

4.2.20 Bioaccumulation 
in Aquatic Species
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Zhao et al. [103] used MLR, radial basis function NN, and 
SVM to model a large data set of fish BCF values, using topological 
and physicochemical descriptors. For the 378-chemical training 
set, standard errors of prediction (log units) were MLR 0.70, 
RBFNN 0.58, and SVM 0.63, and for the 95-chemical test set, the 
errors were MLR 0.74, RBFNN 0.63, and SVM 0.62. A hybrid 
RBFNN, from two models with different descriptors, yielded 
s = 0.56 for the training set and 0.59 for the test set (OECD com-
pliance 1,4IE).

Honeybees are susceptible to pesticides, and Devillers et al. [104] 
developed a feed-forward back-propagation NN model of the 
acute toxicity of 100 pesticides to Apis mellifera. Using the auto-
correlation vectors of physicochemical properties as descriptors, 
they obtained RMSE = 0.430 log unit for the 89-chemical training 
set and 0.386 log unit for the 11-chemical test set (OECD compli-
ance 1,4IE). These good results contrasted sharply with poor 
results from a PLS model (data not given).

A study of fungicidal activities of thiazoline derivatives against 
rice blast (Magnaporthe grisea) used both MLR and feed-forward 
back-propagation NN, with physicochemical descriptors [105]. 
Three sets of thiazoline derivatives, with different substitution pat-
terns, were used, and similar good results were obtained for all 
three sets. The largest set used 82 training compounds (standard 
error (log units) = 0.139 (MLR) and 0.097 (NN)) and 18 test 
compounds (standard error (log units) = 0.162 (MLR) and 0.122 
(NN)) (OECD compliance 1,4IE).

It is perhaps surprising that carcinogenicity determination is 
required only for production rates over 1,000 tonnes/year.

Counterpropagation NN was used by Fjodorova et al. [106] 
to model both qualitative and quantitative measures of rat carcino-
genicity, using topological and molecular properties. For a 
644-compound training set and 27 descriptors, they obtained 
RMSE = 1.52 log unit, while for a 161-chemical test set, they 
obtained RMSE = 1.80 (OECD compliance 1,4E). Strangely, this 
model was developed using both carcinogens and noncarcinogens. 
However, when they redeveloped the model using only the 421 
carcinogens, the model was no better. The authors comment that 
their results for the test set “are not high enough to fulfill criteria 
for the predictive power of QSAR models concerning prediction of 
carcinogenic potency.” They therefore developed a qualitative 
(classification) model using the same training and test sets as 
before. For the training set, they obtained 92.2 % correct classifica-
tion but only 68.3 % for the test set (OECD compliance 1,4E).

Singh et al. [107] also employed NN approaches to model 
both qualitative and quantitative measures of carcinogenicity of 
rodents, using two NN methods with physicochemical, structural, 

4.2.21 Effects 
on Terrestrial Organisms 
(Invertebrates, 
Microorganisms, Plants)

4.2.22 Carcinogenicity
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and topological descriptors. For the qualitative (classification) 
work on rat data, they used probabilistic NN and, with a training 
set of 373 active and 294 inactive chemicals, found 93.85 % correct 
classification; for the test set of 93 active and 74 inactive chemicals, 
they found 85.03 % correct classification (OECD compliance 
1,2,4IE). For their quantitative modeling, they employed general-
ized regression NN on 457 carcinogens tested in the rat and, with 
an unspecified number of training and test-set chemicals, found 
MAE (training) = 0.44 log unit and MAE (test) = 0.72 log unit. 
They then used the model to predict the carcinogenicity of 292 
chemicals in the mouse (MAE = 0.68 log unit) and of 38 chemicals 
in the hamster (MAE = 0.57 log unit) (OECD compliance 1,4IE).

There do not appear to be any neural network QSAR studies of 
long-term effects on terrestrial organisms.

Many computer packages are available for the prediction of physi-
cochemical and toxicological properties. Some of these are freely 
distributed; others are commercial. Dearden et al. [31] have 
reviewed the software available for physicochemical property pre-
diction, and Dearden [108] and Lapenna et al. [109] have reviewed 
the software available for toxicity prediction. Unfortunately there 
is a general lack of transparency concerning the nature of the algo-
rithms used in these packages, and so it is impossible to say with 
confidence, in many cases, whether or not the package uses neural 
networks for prediction and whether there is OECD compliance.

Among those that predict physicochemical properties, some 
are clearly described as using methods other than neural networks. 
For example, Molecular Modelling Pro [110] is described as mod-
eling melting and boiling points by the method of Joback and Reid 
[111], which is a multiple linear regression method. Others use 
neural network methods. For example, ADMET Predictor [112] 
uses neural networks in the prediction of pKa, aqueous solubility, 
and octanol–water partition coefficient. ChemSilico [113] also 
uses neural network methods in the prediction of aqueous solubility 
and octanol–water partition coefficient.

There is a similar situation in regard to toxicity prediction. 
TOPKAT [114] is described by Lapenna et al. [109] as using 
regression analysis to predict rat oral LD50. In contrast, TerraQSAR 
[115] is described [116] as using neural net technology to predict 
mouse and rat oral and intravenous LD50, fathead minnow and 
Daphnia magna LC50, and skin irritation. ADMET Predictor 
[112] uses neural networks to predict mutagenicity and endocrine 
disruption, and ChemSilico [113] uses neural networks to predict 
mutagenicity.

4.2.23 Long-Term 
Effects on Terrestrial 
Organisms (Invertebrates, 
Microorganisms, 
Plants, Birds)

4.3 Software 
for Property 
and Toxicity Prediction
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5 Conclusions

Various types of artificial neural networks are now widely used in 
the prediction of physicochemical properties and a wide range of 
toxicity endpoints relevant to REACH requirements. Generally 
ANNs perform well in both classification and quantitative end-
point models. The ANN QSAR models reported herein are accept-
able with regard to some of the OECD Guidelines for the Validation 
of (Q)SARs, usually Guidelines 1 and 4. However, there is no rea-
son why ANN QSAR models cannot comply with Guideline 3 as 
well and perhaps with Guideline 5 also. It is unfortunate that, to 
date, very few commercially available software packages for prop-
erty and toxicity prediction give any indication on their websites as 
to whether or not ANNs are used in their predictive models.

Acknowledgments 

We are grateful to Dr. T.I. Netzeva and Dr. A.P. Worth for valuable 
comments on the draft manuscript.

References

 1. European Parliament: Regulation (EC) N° 
1907/2006 of the European Parliament 
and of the Council of 18 December 2006 
concerning the Registration, Evaluation, 
Authorisation and Restriction of Chemicals 
(REACH). Available at http://eur-lex.
europa.eu/LexUriServ/LexUriServ.do?uri=
oj:l:2006:396:0001:0849:en:pdf. Accessed 
5 Jan 2014

 2. Hansch C, Clayton JM (1973) Lipophilic 
character and activity of drugs II: the para-
bolic case. J Pharm Sci 62:1–23

 3. Cronin MTD, Gregory BW, Schultz TW 
(1998) Quantitative structure-activity analy-
ses of nitrobenzene toxicity to Tetrahymena 
pyriformis. Chem Res Toxicol 11:902–908

 4. Devillers J (ed) (1996) Neural networks in 
QSAR and drug design. Academic, London

 5. Gasteiger J, Engel T (2003) 
Chemoinformatics—a textbook. Wiley, 
Weinheim

 6. Witten IH, Frank E (2005) Data mining: 
practical machine learning tools and tech-
niques. Morgan Kaufmann, San Francisco

 7. Devillers J (1996) Strengths and weaknesses 
of the backpropagation neural network QSPR 
studies. In: Devillers J (ed) Neural networks 
in QSAR and drug design. Academic, 
London, pp 1–46

 8. ECHA Guidance on information require-
ments and safety assessment. Chapter R.6. 
QSARs and grouping of chemicals, 2008. 
Available at http://echa.europa.eu/docu-
ments/10162/13632/information_require-
ments_r6_en.pdf. Accessed 5 Jan 2014

 9. OECD Principles for the Validation of (Q)
SARs. Available at http://www.oecd.org/
dataoecd/33/37/37849783.pdf. Accessed 5 
Jan 2014

 10. OECD Environment Directorate, Joint 
Meeting of the Chemicals Committee and the 
Working Party on Chemicals, Pesticides and 
Biotechnology. Available at http://www.olis.
oecd.org/olis/2004doc.nsf/LinkTo/
NT00009192/$FILE/JT00176183.PDF. 
Accessed 5 Jan 2014

 11. Fjodorova N, Novich M, Vrachko M et al 
(2008) Directions in QSAR modeling for 
regulatory use in OECD member countries, 
EU and in Russia. J Environ Sci Health C 
Environ Carcinog Ecotoxicol Rev 26: 
201–236

 12. Devillers J (2005) A new strategy for using 
supervised artificial neural networks in 
QSAR. SAR QSAR Environ Res 16:433–442

 13. Baskin II, Palyulin VA, Zefirov NS (2008) 
Neural networks in building QSAR models. 
In: Livingstone DS (ed) Artificial neural 

John C. Dearden and Philip H. Rowe

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=oj:l:2006:396:0001:0849:en:pdf
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=oj:l:2006:396:0001:0849:en:pdf
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=oj:l:2006:396:0001:0849:en:pdf
http://www.oecd.org/dataoecd/33/37/37849783.pdf
http://www.oecd.org/dataoecd/33/37/37849783.pdf
http://www.olis.oecd.org/olis/2004doc.nsf/LinkTo/NT00009192/$FILE/JT00176183.PDF
http://www.olis.oecd.org/olis/2004doc.nsf/LinkTo/NT00009192/$FILE/JT00176183.PDF
http://www.olis.oecd.org/olis/2004doc.nsf/LinkTo/NT00009192/$FILE/JT00176183.PDF


85

networks: methods and protocols. Humana 
Press, New York, pp 137–158

 14. Devillers J (2009) Artificial neural network 
modeling of the environmental fate and eco-
toxicity of chemicals. In: Devillers J (ed) 
Ecotoxicology modeling. Springer, Dordrecht, 
pp 1–28

 15. Gleeson MP, Modi S, Bender A et al (2012) 
The challenges involved in modelling toxicity 
data in silico: a review. Curr Pharm Des 18: 
1266–1291

 16. Moore DRJ, Breton RL, MacDonald DB 
(2003) A comparison of model performance 
for six quantitative structure-activity relation-
ship packages that predict acute toxicity to 
fish. Environ Toxicol Chem 22:1799–1809

 17. Fatemi MH, Abraham MH, Haghdadi M 
(2009) Prediction of biomagnification factors 
for some organochlorine compounds using 
linear free energy relationship parameters and 
artificial neural networks. SAR QSAR Environ 
Res 20:453–465

 18. Tan N-X, Li P, Rao H-B et al (2010) 
Prediction of the acute toxicity of chemical 
compounds to the fathead minnow by 
machine learning approaches. Chemometr 
Intell Lab Syst 100:66–73

 19. Dearden JC, Cronin MTD, Kaiser KLE 
(2009) How not to develop a quantitative 
structure-activity or structure-property rela-
tionship (QSAR/QSPR). SAR QSAR 
Environ Res 20:241–266

 20. Baskin II, Ait AO, Halberstam NM et al 
(2002) An approach to the interpretation of 
backpropagation neural network models in 
QSAR studies. SAR QSAR Environ Res 13: 
35–41

 21. Guha R, Jurs PC (2005) Interpreting com-
putational neural network QSAR models: a 
measure of descriptor importance. J Chem 
Inf Model 45:800–806

 22. Guha R, Stanton DT, Jurs PC (2005) 
Interpreting computational neural network 
QSAR models: a detailed interpretation of the 
weights and biases. J Chem Inf Model 45: 
1109–1121

 23. Chaudhry Q, Piclin N, Cotterill J et al (2010) 
Global QSAR models of skin sensitisers for 
regulatory purposes. Chem Cent J 4(Suppl 1): 
S1–S6

 24. Johnson SR (2008) The trouble with QSAR 
(or how I learned to stop worrying and 
embrace fallacy). J Chem Inf Model 48:25–26

 25. Enoch SJ, Madden JC, Cronin MTD (2008) 
Identification of mechanisms of toxic action 
for skin sensitisation using a SMARTS pattern 
based approach. SAR QSAR Environ Res 
19:555–578

 26. Vračko M, Bandelj V, Barbier P et al (2006) 
Validation of counter propagation neural 
network models for predictive toxicology 
according to the OECD principles: a case 
study. SAR QSAR Environ Res 17:265–284

 27. Worth AP (2010) The role of QSAR method-
ology in the regulatory assessment of chemi-
cals. In: Puzyn T, Leszczynski J, Cronin MTD 
(eds) Recent advances in QSAR studies: meth-
ods and applications. Springer, Dordrecht, 
pp 367–382

 28. (Q)SAR Model Reporting Format. Available 
at http://qsardb.jrc.it/qmrf. Accessed 16 
Jan 2014

 29. ECHA Guidance on information require-
ments and chemical safety assessment. 
Chapter R.7a. Endpoint specific guidance, in 
Guidance for the Implementation of REACH, 
ECHA, Helsinki, 2012. Available at http://
echa.europa.eu/support/guidance-on-reach- 
and-clp-implementation/consultation- 
procedure. Accessed 25 Jan 2014

 30. Regulation (EC) No. 1907/2006 of the 
European Parliament and of the Council of 
18 December 2006. Available at http://
eurlex.europa.eu/LexUriServ/LexUriServ.
do?uri=CONSLEG:2006. Accessed 25 Jan 
2014

 31. Dearden JC, Rotureau P, Fayet G (2013) 
QSPR prediction of physico-chemical proper-
ties for REACH. SAR QSAR Environ Res 
24:279–318

 32. Taskinen J, Yliruusi J (2003) Prediction of 
physicochemical properties based on neural 
network modelling. Adv Drug Deliv Rev 
55:1163–1183

 33. Godavarthy SS, Robinson RL, Gasem KAM 
(2006) An improved structure-property model 
for predicting melting-point temperatures. Ind 
Eng Chem Res 45:5117–5126

 34. Karthikeyan M, Glen RC, Bender A (2005) 
General melting point prediction based on a 
diverse compound data set and artificial neu-
ral networks. J Chem Inf Model 45:581–590

 35. Hall LH, Story CT (1996) Boiling point and 
critical temperature of a heterogeneous data 
set. QSAR with atom type electrotopological 
state indices using artificial neural networks.  
J Chem Inf Comput Sci 36:1004–1014

 36. Chalk AJ, Beck B, Clark T (2001) A quantum 
mechanical/neural network model for boiling 
points with error estimation. J Chem Inf 
Comput Sci 41:457–462

 37. Gakh AA, Gakh EG, Sumpter BG et al (1994) 
Neural network-graph theory approach to the 
prediction of the physical properties of 
organic compounds. J Chem Inf Comput Sci 
34:832–839

Artificial Neural Networks for REACH Property/Toxicity

http://qsardb.jrc.it/qmrf. Accessed 16
http://echa.europa.eu/support/guidance-on-reach-and-clp-implementation/consultation-procedure
http://echa.europa.eu/support/guidance-on-reach-and-clp-implementation/consultation-procedure
http://echa.europa.eu/support/guidance-on-reach-and-clp-implementation/consultation-procedure
http://echa.europa.eu/support/guidance-on-reach-and-clp-implementation/consultation-procedure
http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2006
http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2006
http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2006


86

 38. Valderrama JO, Reátegui A, Rojas RE (2009) 
Density of ionic liquids using group contribu-
tion and artificial neural networks. Ind Eng 
Chem Res 48:3254–3259

 39. McClelland HE, Jurs PC (2000) Quantitative 
structure-property relationships for the pre-
diction of vapor pressures of organic com-
pounds from molecular structure. J Chem Inf 
Comput Sci 40:967–975

 40. Chalk AJ, Beck B, Clark T (2001) A 
temperature- dependent quantum mechanical/
neural net model for vapor pressure. J Chem 
Inf Comput Sci 41:1053–1059

 41. Roosta A, Setoodeh P, Jahanmiri A (2012) 
Artificial neural network modeling of surface 
tension for pure organic compounds. Ind Eng 
Chem Res 51:561–566

 42. Gharagheizi F, Eslamimanesh A, Mohammadi 
AH et al (2011) Use of artificial neural 
network- group contribution method to 
determine surface tension of pure com-
pounds. J Chem Eng Data 56:2587–2601

 43. Dearden JC (2006) In silico prediction of 
aqueous solubility. Expert Opin Drug Discov 
1:31–52

 44. Yan A, Gasteiger J (2003) Prediction of aque-
ous solubility of organic compounds based on 
a 3D structure representation. J Chem Inf 
Comput Sci 43:429–434

 45. Katritzky AR, Wang Y, Sild S et al (1998) 
QSPR studies on vapor pressure, aqueous 
solubility, and the prediction of water-air par-
tition coefficients. J Chem Inf Comput Sci 
38:720–725

 46. Bruneau P (2001) Search for predictive 
generic model of aqueous solubility using 
Bayesian neural nets. J Chem Inf Comput Sci 
41:1605–1616

 47. Livingstone DJ (2003) Theoretical property 
predictions. Curr Top Med Chem 3: 
1171–1192

 48. Klopman G, Zhu H (2005) Recent method-
ologies for the estimation of n-octanol-water 
partition coefficients and their use in the pre-
diction of membrane transport properties of 
drugs. Mini Rev Med Chem 5:127–133

 49. Chen H-F (2009) In silico log P prediction 
for a large data set with support vector 
machines, radial basis neural networks and 
multiple linear regression. Chem Biol Drug 
Des 74:142–147

 50. Tetko IV, Tanchuk VY, Villa AEP (2001) 
Prediction of n-octanol-water partition 
coefficients from PHYSPROP database 
using artificial neural networks and E-state 
indices. J Chem Inf Comput Sci 41: 
1407–1421

 51. Kier LB, Hall LH (1999) Molecular structure 
description: the electrotopological state. 
Academic, New York

 52. Katritzky AR, Stoyanova-Slavova IB, Dobchev 
DA et al (2007) QSPR modelling of flash 
points: an update. J Mol Graph Model 26: 
529–536

 53. Gharagheizi F, Alamdari RF, Angaji MT 
(2008) A new neural network-group contri-
bution method for estimation of flash point 
temperature of pure components. Energy 
Fuel 22:1628–1635

 54. Gharagheizi F (2010) Chemical structure- 
based model for estimation of the upper flam-
mability limit of pure compounds. Energy 
Fuel 24:3867–3871

 55. Gharagheizi F (2009) Prediction of upper 
flammability limit percent of pure compounds 
from their molecular structures. J Hazard 
Mater 167:507–510

 56. Gharagheizi F (2008) Quantitative 
 structure- property relationship for prediction 
of the lower flammability limit of pure com-
pounds. Energy Fuel 22:3037–3039

 57. Gharagheizi F (2009) A new group 
contribution- based model for estimation of 
lower flammability limit of pure compounds. 
J Hazard Mater 170:595–604

 58. Cho SG, No KT, Goh EM et al (2005) 
Optimization of neural networks architecture 
for impact sensitivity of energetic molecules. 
Bull Korean Chem Soc 26:399–408

 59. Wang R, Jiang J, Pan Y et al (2009) 
Prediction of impact sensitivity of nitro ener-
getic compounds by neural network based 
on electrotopological- state indices. J Hazard 
Mater 166:155–186

 60. Tetteh J, Metcalfe E, Howells SL (1996) 
Optimisation of radial basis and backpropaga-
tion neural networks for modelling auto- 
ignition temperature by quantitative 
structure-property relationships. Chemometr 
Intell Lab Syst 32:177–191

 61. Pan Y, Jiang J, Wang R et al (2008) Prediction 
of auto-ignition temperatures of hydrocar-
bons by neural network based on atom-type 
electrotopological-state indices. J Hazard 
Mater 157:510–517

 62. Liu GS, Yu JG (2005) QSAR analysis of soil 
sorption coefficients for polar organic chemi-
cals: substituted anilines and phenols. Water 
Res 39:2048–2055

 63. Goudarzi N, Goodarzi M, Araujo MCU et al 
(2009) QSPR modeling of soil sorption coef-
ficients (Koc) of pesticides using SPA-ANN 
and SPA-MLR. J Agric Food Chem 57: 
7153–7158

John C. Dearden and Philip H. Rowe



87

 64. Luan F, Ma W, Zhang H et al (2005) 
Prediction of pKa for neutral and basic drugs 
based on radial basis function neural networks 
and the heuristic method. Pharm Res 22: 
1454–1460

 65. CODESSA software. Available at www.semi-
chem.com. Accessed 26 Jan 2014

 66. Habibi-Yangjeh A, Danandeh-Jenagharad M, 
Nooshyar M (2005) Prediction acidity constant 
of various benzoic acids and phenols in water 
using linear and nonlinear QSPR models. Bull 
Korean Chem Soc 26:2007–2016

 67. Kauffman GW, Jurs PC (2001) Prediction of 
surface tension, viscosity and thermal conduc-
tivity for common organic solvents using 
quantitative structure-property relationships. 
J Chem Inf Comput Sci 41:408–418

 68. Artemenko NV, Baskin II, Palyulin VA et al 
(2001) Prediction of physical properties of 
organic compounds using artificial neural net-
works within the substructure approach. 
Doklady Chem 381:317–320

 69. Modarresi H, Modarress H, Dearden JC 
(2007) QSPR model of Henry’s law constant 
for a diverse set of organic chemicals based on 
genetic algorithm-radial basis function net-
work approach. Chemosphere 66:2067–2076

 70. Gharagheizi F, Abbasi R, Tirandazi B (2010) 
Prediction of Henry’s law constant of organic 
compounds in water from a new group-
contribution- based method. Ind Eng Chem 
Res 49:10149–10152

 71. ECHA Guidance on information require-
ments and chemical safety assessment. 
Chapter R.7b. Endpoint specific guidance, in 
Guidance for the Implementation of REACH, 
ECHA, Helsinki, 2012. Available at http://
echa.europa.eu/support/guidance-on-reach- 
and-clp-implementation/consultation- 
procedure. Accessed 17 Jan 2014

 72. Salina AG, Patlewicz G, Worth AP (2008) A 
review of QSAR models for skin and eye irri-
tation and corrosion. QSAR Comb Sci 27: 
49–59

 73. Golla S, Madihally S, Robinson RL et al 
(2009) Quantitative structure-property rela-
tionships modeling of skin irritation. Toxicol 
In Vitro 23:176–184

 74. Barratt MD (1996) Quantitative structure- 
activity relationships (QSARs) for skin corro-
sivity of organic acids, bases and phenols: 
principal components and neural networks 
analysis of extended datasets. Toxicol In Vitro 
10:85–94

 75. Barratt MD (1997) QSARs for the eye irrita-
tion potential of neutral organic chemicals. 
Toxicol In Vitro 11:1–8

 76. Patlewicz GY, Rodford RA, Ellis G et al (2000) 
A QSAR model for the eye irritation of cat-
ionic surfactants. Toxicol In Vitro 14:79–84

 77. Patlewicz G, Roberts DW, Uriarte E (2008) 
A minireview of available skin sensitization 
(Q)SARs/expert systems. Chem Res Toxicol 
21:521–541

 78. Devillers J (2000) A neural network SAR 
model for allergic contact dermatitis. Toxicol 
Methods 10:181–193

 79. Cronin MTD, Basketter DA (1994) 
Multivariate QSAR analysis of a skin sensiti-
zation database. SAR QSAR Environ Res 2: 
159–179

 80. Golla S, Madihally S, Robinson RL et al 
(2009) Quantitative structure-property rela-
tionship modeling of skin sensitization: a 
quantitative prediction. Toxicol In Vitro 23: 
454–465

 81. Benigni R (ed) (2003) Quantitative structure- 
activity relationship (QSAR) models of muta-
gens and carcinogens. CRC Press, Boca Raton

 82. Xu C, Cheng F, Chen L et al (2012) In silico 
prediction of chemical Ames mutagenicity.  
J Chem Inf Model 52:2840–2847

 83. Leong MK, Lin S-W, Chen H-B et al (2010) 
Predicting mutagenicity of aromatic amines 
by various machine learning approaches. 
Toxicol Sci 116:498–513

 84. Tsakovska I, Lessigiarska I, Netzeva T et al 
(2008) A mini review of mammalian toxicity 
(Q)SAR models. QSAR Comb Sci 27:41–48

 85. Devillers J (2004) Prediction of mammalian 
toxicity of organophosphorus pesticides from 
QSTR modelling. SAR QSAR Environ Res 
15:501–510

 86. Funar-Timofei S, Ionescu D, Suzuki T (2010) 
A tentative quantitative structure-toxicity 
relationship study of benzodiazepine drugs. 
Toxicol In Vitro 24:184–200

 87. Kaiser KLE, Niculescu SP (2001) Modeling 
acute toxicity of chemicals to Daphnia magna: 
a probabilistic neural network approach. 
Environ Toxicol Chem 20:420–431

 88. Kahn I, Sild S, Maran U (2007) Modeling the 
toxicity of chemicals to Tetrahymena pyrifor-
mis using heuristic multilinear regression and 
heuristic back-propagation neural networks.  
J Chem Inf Model 47:2271–2279

 89. Izadiyan P, Fatemi MH, Izadiyan M (2013) 
Elicitation of the most important structural 
properties of ionic liquids affecting ecotoxic-
ity in limnic green algae: a QSAR approach. 
Ecotoxicol Environ Saf 87:42–48

 90. Domine D, Devillers J, Chastrette M et al 
(1993) Estimating pesticide field half-lives 

Artificial Neural Networks for REACH Property/Toxicity

http://www.semichem.com/
http://www.semichem.com/
http://echa.europa.eu/support/guidance-on-reach-and-clp-implementation/consultation-procedure
http://echa.europa.eu/support/guidance-on-reach-and-clp-implementation/consultation-procedure
http://echa.europa.eu/support/guidance-on-reach-and-clp-implementation/consultation-procedure
http://echa.europa.eu/support/guidance-on-reach-and-clp-implementation/consultation-procedure


88

from a backpropagation neural network. SAR 
QSAR Environ Res 1:211–219

 91. Jing G-H, Li X-L, Zhou Z-M (2011) 
Quantitative structure-biodegradability rela-
tionship study about the aerobic biodegrada-
tion of some aromatic compounds. Chin J 
Struct Chem 30:368–375

 92. Liu H, Papa E, Walker JD et al (2007) In 
silico screening of estrogen-like chemicals 
based on different nonlinear classification 
models. J Mol Graph Model 26:135–144

 93. Roncaglioni A, Piclin N, Pintore M et al 
(2008) Binary classification models for 
endocrine disrupter effects mediated through 
the estrogen receptor. SAR QSAR Environ 
Res 19:697–733

 94. Wajima T, Fukumura K, Yano Y et al (2002) 
Prediction of human clearance from animal 
data and molecular structural parameters 
using multivariate regression analysis. J Pharm 
Sci 91:2489–2499

 95. Chow H-H, Tolle KM, Roe DJ et al (1997) 
Application of neural networks to population 
pharmacokinetic data analysis. J Pharm Sci 
86:840–845

 96. Singh KP, Gupta S, Rai P (2013) Predicting 
acute aqueous toxicity of structurally diverse 
chemicals in fish using artificial intelligence 
approaches. Ecotoxicol Environ Saf 95: 
221–232

 97. Gong Z, Xia B, Zhang R et al (2008) 
Quantitative structure-activity relationship 
study on fish toxicity of substituted benzenes. 
QSAR Comb Sci 27:967–976

 98. Okey RW, Martis MC (1999) Molecular level 
studies of the origin of toxicity: determination 
of key variables and selection of descriptors. 
Chemosphere 38:1419–1427

 99. Halberstam NM, Baskin II, Palyulin VA et al 
(2002) Quantitative structure-conditions- 
property relationship studies. Neural network 
modelling of the acid hydrolysis of esters. 
Mendeleev Commun 12(5):185–186

 100. Dewhurst I, Renwick AG (2013) Evaluation 
of the threshold of toxicological concern 
(TTC)—challenges and approaches. Regul 
Toxicol Pharmacol 65:168–177

 101. Meng Y, Lin B-L (2008) A feed-forward arti-
ficial neural network for prediction of the 
aquatic ecotoxicity of alcohol ethoxylate. 
Ecotoxicol Environ Saf 71:172–186

 102. Fatemi MH, Jalali-Heravi M, Konuze E 
(2003) Prediction of bioconcentration factor 
using genetic algorithm and artificial neural 
network. Anal Chim Acta 486:101–108

 103. Zhao C, Boriani E, Chana A et al (2008) A 
new hybrid system of QSAR models for pre-
diction bioconcentration factors (BCF). 
Chemosphere 73:1701–1707

 104. Devillers J, Pham-Delègue MH, Decourtye A 
et al (2002) Structure-toxicity modelling of 
pesticides to honey bees. SAR QSAR Environ 
Res 13:641–648

 105. Song JS, Moon T, Nam KD et al (2008) 
Quantitative structure-activity relationship 
(QSAR) studies for fungicidal activities of 
thiazoline derivatives against rice blast. Bioorg 
Med Chem Lett 18:2133–2142

 106. Fjodorova N, Vračko M, Tušar M et al (2010) 
Quantitative and qualitative models for carci-
nogenicity prediction for non-congeneric 
chemicals using CP NN method for regula-
tory uses. Mol Divers 14:581–594

 107. Singh KP, Gupta S, Rai P (2013) Predicting 
carcinogenicity of diverse chemicals using 
probabilistic neural network modelling 
approaches. Toxicol Appl Pharmacol 272: 
465–475

 108. Dearden JC (2010) Expert systems for tox-
icity prediction. In: Cronin MTD, Madden 
JC (eds) In silico toxicology: principles and 
applications. Royal Society of Chemistry, 
London, pp 478–507

 109. Lapenna S, Fuart-Gatnick M, Worth A (2010) 
Review of QSAR models and software tools 
for predicting acute and chronic systemic tox-
icity. Available at http://ihcp.jrc.ec.europa.
eu/our_labs/predictive_toxicology/doc/
EUR_24639_EN.pdf/view. Accessed 25 Jan 
2014

 110. Molecular Modeling Pro. Available at http://
www.chemsw.com/Software-and-Solutions/
Labora tor y -So f twar e/Drawing-and- 
Modeling-Tools/Molecular-Modeling-Pro.
aspx. Accessed 25 Jan 2014

 111. Joback KG, Reid RC (1987) Estimation of 
pure-component properties from group- 
contributions. Chem Eng Commun 57: 
 233–243

 112. ADMET Predictor. http://www.simulations- 
plus.com. Accessed 28 Jan 2014

 113. ChemSilico. Available at www.chemsilico.
com. Accessed 28 Jan 2014

 114. TOPKAT. Available at www.accelrys.com. 
Accessed 28 Jan 2014

 115. TerraBase. Available at www.terrabase-inc.
com. Accessed 28 Jan 2014

 116. Kaiser KLE (2003) Neural networks for effect 
prediction in environmental health issues using 
large datasets. QSAR Comb Sci 22:185–190

John C. Dearden and Philip H. Rowe

http://ihcp.jrc.ec.europa.eu/our_labs/predictive_toxicology/doc/EUR_24639_EN.pdf/view
http://ihcp.jrc.ec.europa.eu/our_labs/predictive_toxicology/doc/EUR_24639_EN.pdf/view
http://ihcp.jrc.ec.europa.eu/our_labs/predictive_toxicology/doc/EUR_24639_EN.pdf/view
http://www.chemsw.com/Software-and-Solutions/Laboratory-Software/Drawing-and-Modeling-Tools/Molecular-Modeling-Pro.aspx
http://www.chemsw.com/Software-and-Solutions/Laboratory-Software/Drawing-and-Modeling-Tools/Molecular-Modeling-Pro.aspx
http://www.chemsw.com/Software-and-Solutions/Laboratory-Software/Drawing-and-Modeling-Tools/Molecular-Modeling-Pro.aspx
http://www.chemsw.com/Software-and-Solutions/Laboratory-Software/Drawing-and-Modeling-Tools/Molecular-Modeling-Pro.aspx
http://www.chemsw.com/Software-and-Solutions/Laboratory-Software/Drawing-and-Modeling-Tools/Molecular-Modeling-Pro.aspx
http://www.simulations-plus.com/
http://www.simulations-plus.com/
http://www.chemsilico.com/
http://www.chemsilico.com/
http://www.accelrys.com/
http://www.terrabase-inc.com/
http://www.terrabase-inc.com/


89

Hugh Cartwright (ed.), Artifi cial Neural Networks, Methods in Molecular Biology, vol. 1260,
DOI 10.1007/978-1-4939-2239-0_6, © Springer Science+Business Media New York 2015

    Chapter 6   

 Artifi cial Neural Network for Charge Prediction 
in Metabolite Identifi cation by Mass Spectrometry 

            J.    H.     Miller     ,     B.    T.     Schrom    , and     L.    J.     Kangas   

    Abstract 

   Collision-induced dissociation (CID) is widely used in mass spectrometry to identify biologically important 
molecules by gaining information about their internal structure. Interpretation of experimental CID spec-
tra always involves some form of in silico spectra of potential candidate molecules. Knowledge of how 
charge is distributed among fragments is an important part of CID simulations that generate in silico spec-
tra from the chemical structure of the precursor ions entering the collision chamber. In this chapter we 
describe a method to obtain this knowledge by machine learning.  

  Key words     Mass spectrometry  ,   Collision-induced dissociation  ,   Charge transfer  ,   Metabolite identifi ca-
tion  ,   Lipid metabolites  

1      Introduction 

 Mass spectrometry (MS) is an analytical method that measures the 
mass-to-charge ratio ( m / z ) of charged particles. In some cases this 
quantity alone is suffi cient to identify the molecules in the sample 
being analyzed. For biological samples that contain large mole-
cules, fragmentation patterns in addition to precursor-ion mass are 
usually required for identifi cation. Collision-induced dissociation 
(CID) is a commonly used method of fragmenting ions to obtain 
a fi ngerprint of fragment masses that is unique to the molecules 
under investigation. Precursor ions are accelerated toward, and 
collide with, neutral atoms in a gas such as helium. These collisions 
transform some of the kinetic energy into internal energy, which 
causes bonds to break by a mechanism similar to thermal dissocia-
tion. The fragment ions are then analyzed by the mass spectrome-
ter in the usual way. Patterns of fragmentation obtained by this 
type of experiment are commonly referred to as MS/MS spectra. 

 Software tools like SEQUEST [ 1 ] and Mascot [ 2 ] are widely 
used in the application of MS/MS spectra for protein identifi ca-
tion. Since the peptide bond between amino acids in a protein is 
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the most likely bond to break in CID, in silico MS/MS spectra can 
be derived from protein sequence without detailed knowledge of 
protein structure. For metabolites, the connection between molec-
ular structure and CID is much more complex than for polypep-
tides; consequently, software tools for metabolite identifi cation 
from MS/MS spectra have been more diffi cult to develop [ 3 ]. 

 MetISIS [ 4 ] is a software package being developed to aid in 
the identifi cation of metabolites. Given a MS/MS spectrum 
acquired from an unknown sample, MetISIS attempts to match the 
spectrum to an entry in a database of in silico spectra developed 
from the chemical structure of metabolites. Most of the entries in 
the database can be ignored because their mass is signifi cantly dif-
ferent from the mass of the precursor ions fragmented to produce 
the MS/MS spectrum of the unknown. If the masses of the 
unknown metabolite and the database candidates are within a spec-
ifi ed tolerance, then the similarity of CID spectra is quantifi ed in 
various ways, including Pearson correlation coeffi cient (PCC). 
Requiring similarity of precursor-ion mass and PCC near unity 
produces a shortlist of candidate molecules with a high probability 
of being the unknown metabolite. 

 The success of this identifi cation technique depends on the 
quality of the database of MS/MS spectra. It should contain a 
large number of metabolites for which high-resolution CID spec-
tra are available. Populating such a database with experimental 
MS/MS spectra is both time-consuming and costly. To circumvent 
this diffi cultly, in silico databases, such as LipidBlast [ 5 ], have been 
developed. MetISIS [ 4 ] generates in silico MS/MS spectra of 
metabolites based on their molecular structure, such as those found 
in the LIPID Metabolites and Pathways Strategy (LIPID MAPS) 
database [ 6 ] and illustrated in Fig.  1  for phosphatidylcholine 
18:0/18:0 ( see   Note 1 ).  

 The simulation of CID that MetISIS [ 4 ] performs to generate 
an MS/MS spectrum for a metabolite of known chemical structure 
has two components: (1) prediction of which bonds are most likely 
to break in a collision and (2) prediction of which fragments will 
continue to carry charge and be detected by the mass spectrometer. 
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  Fig. 1    Molecular structure of phosphatidylcholine 18:0/18:0.  Arrows  mark bond cleavages in collision-induced 
dissociation (CID) that generate the fragments most frequently observed in a linear ion-trap mass 
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MetISIS uses machine learning by artifi cial neural networks (ANN) 
to make both types of prediction. The charge-prediction problem is 
the main focus of this chapter. 

 Collision-induced dissociation (CID) is a slow fragmentation 
process, which means that most collisions change the internal 
energy of ions without producing fragmentation. Consequently, 
ions have the opportunity to relax to a state where the location of 
charge minimizes their free energy. When the precursor ion con-
tains an atom like nitrogen with a low ionization potential, charge 
is likely to remain localized during the dissociation process and the 
question of which fragment is charged reduces to which fragment 
has the nitrogen atom. Dissociation events of this type are com-
monly referred to as “neutral loss.” 

 Three mechanisms of neutral loss are marked by the arrows in 
Fig.  1 . Due to the symmetry of phosphatidylcholine 18:0/18:0, 
neutral loss of a 266 Da tail can occur by cleavage of C-O bonds 
between C4 and O3 and between C36 and O7. Also due to sym-
metry, neutral loss of a 284 Da tail can occur by breaking of bonds 
between C2 and O3 and between C1 and O7. These neutral losses 
give rise to ions of mass 524 and 506 Da, respectively. The third 
mechanism of neutral loss shown in Fig.  1  is loss of both tails by 
cleavage of the bond between C23 and O24, which produces an 
ion of 184 Da. 

 Production of the 184 Da ion by loss of both tails is by far the 
most frequent event in the fragmentation of phosphatidylcholine 
18:0/18:0. It is 93 times more frequent than loss of the 284 Da 
tail and 116 times more frequent than loss of the 266 Da tail. 
Cleavage of the bond between C23 and O24 can cause charge 
transfer, resulting in a zwitterion (an overall neutral fragment) of 
mass 183 Da and an ion of mass 608 Da, but the neutral loss of 
both tails by the same bond cleavage is almost 3,000 times more 
frequent. Mechanisms of neutral loss are more complex in lipids 
that contain more than one nitrogen atom, and in some cases, the 
relative stability of positively charged atoms is not clear from the 
molecular structure. In future research, computational chemistry 
methods will be used to investigate the relative stability of sites of 
positive charge. 

 A schematic of the CID simulation and associated machine- 
learning algorithm developed by Lars Kangas as part of his doc-
toral thesis research is shown in Fig.  2 .  

 A Monte Carlo simulation of the CID process is performed on a 
large number of identical precursor ions of known molecular structure. 
The physical model of dissociation induced by ion-atom collisions 
must be consistent with the characteristics of the mass spectrometer 
used to acquire the MS/MS spectra for machine learning and met-
abolic analysis. Initially, we chose to simulate CID in a linear ion-
trap mass spectrometer because the acceleration of precursor ions in 
that type of spectrometer is a resonance process ( see   Note 2 ). Fragments 
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of precursor-ion dissociation are off resonance and unlikely to 
undergo secondary fragmentation, which allowed us to focus on 
the chemistry of the precursor ion (i.e., how strong its bonds are 
and where charge is likely to be located). 

 Since neutral fragments are not detected, an algorithm to gen-
erate in silico MS/MS spectra must have a component to predict 
which fragment after a collision-induced dissociation continues to 
carry the charge of the precursor ion. This charge-prediction com-
ponent is separate from the neural network used to learn the rela-
tive frequency of bond cleavages. The method section of this 
chapter describes a machine-learning approach to charge predic-
tion that uses the same input vectors as the ANN used to predict 
frequencies of bond cleavage. 

 In the machine-learning phase, weights of the neural network 
component in Fig.  2  are optimized through a genetic algorithm 
[ 7 ]. The exemplar database for this phase of machine learning was 
derived from experimental CID spectra acquired on a linear ion- 
trap spectrometer with pure samples of the type of metabolites 
under investigation. Lipid metabolites were chosen to demonstrate 
a proof of concept because their CID spectra were known to be 
relatively simple. High-quality CID spectra were obtained for 
about 100 molecular species distributed more or less uniformly 
over the major classes of lipid metabolites ( see   Note 3 ). 

  Fig. 2    Flow chart of the algorithm developed to learn the relative frequency of 
bond cleavages in collision-induced dissociation (CID) from experimental data. 
When training is complete, the three components above the  dotted line  are 
ignored and in silico CID spectra can be generated from the molecular structure 
of lipid metabolites. The charge-prediction component is a separate machine-
learning task using the methods described in this chapter. (Reproduced from [ 4 ] 
with permission from Oxford University Press)       
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 Both the position ( m / z ) and intensity of peaks in experimental 
MS/MS spectra were used to fi nd patterns of bond cleavage, giving 
rise to detectable charged fragments of the precursor ion. Spectra 
of singly charged fragments provide most of the data for pattern 
discovery. After weights in the neural network component con-
verged, the process of generating in silico CID spectra for a large 
database of metabolites of known chemical structure can begin. 
The LIPID MAPS database [ 6 ] contains more than 22,000 such 
structures. This application of the algorithm illustrated by Fig.  2  
does not require the components above the dotted line. 

 A method to input a molecular structure into the Monte Carlo 
simulation of CID is fundamental to the machine-learning process 
and subsequent generation of in silico spectra by MetISIS. Faulon 
et al. [ 8 ] showed that molecules could be represented by undi-
rected graphs of atoms and bonds stored in adjacency matrices. 
   Tree structures and vectors for machine learning can be derived 
from adjacency matrices [ 9 ] by selecting one atom to be the root 
and constructing the predecessor graph of a breadth-fi rst search 
[ 10 ] to a specifi ed depth. MetISIS [ 4 ] uses vectors, made up of 
blocks like that shown in Fig.  3 , to encode the fragments that are 
produced when a bond in the chemical structure of the precursor 
ion is cleaved during CID.  

 Most lipid metabolites are made up of six atom types: carbon 
(C), hydrogen (H), oxygen (O), nitrogen (N), sulfur (S), and 
phosphorus (P). An encoding scheme that records how a given 
atom is connected to another atom can be constructed with a block 
that is a vector with 18 components. The fi rst six components are 
CHONSP for single-bond connections, the next six components 
are for double-bond connections, and the fi nal six components are 
for triple-bond connections. The root atom of a fragment is the 
atom involved in the bond that was cleaved to produce the frag-
ment. A bonding pattern that connects the root atom to any other 
atom in the fragment results in a series of CHONSP components 
between the selected atom and the root. Since all of the six atom 
types and three bond types are possible, the upper bound on the 
number of paths for a distance (in bonds),  D , away from the frag-
mentation site is (6)(6 × 3)  D −1 . We fi nd that  D  = 8 is adequate to 
capture the chemical neighborhood of bonds in lipid metabolites 
( see   Note 4 ). 

  Fig. 3    A block in an input vector displaying 18 options for how an atom is bonded to its successor in the tree 
derived from of a breadth-fi rst search of a fragment from its root atom       
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 In cases where the major peaks in the MS/MS spectrum of a 
metabolite are well separated and the spectrum also contains a peak 
for the precursor ion, charge prediction in simulations of CID in a 
linear ion-trap spectrometer is of minor importance. Accurate pre-
dictions of the frequency of bond cleavage can be used to generate 
potential fragment masses for the major peaks in the MS/MS spec-
trum. Given a close alignment of a predicted fragment mass with a 
peak in the experimental spectrum, the mass of the precursor ion 
can be used to determine the mass of the corresponding neutral 
fragment, thereby allowing its peak to be eliminated from the in 
silico spectrum. Figure  4  shows the results of an early test of 
MetISIS performance without charge prediction.  

 Without charge prediction, the number of false-positive iden-
tifi cations is signifi cant even when the PCC is close to unity. This 
undesirable result could be traced directly to the cases where simu-
lation of CID predicted masses of neutral fragments that were too 
close to peaks in experimental spectra to distinguish them from 
charged fragments. These results clearly showed a need to predict 
which fragments are charged after CID events.  

  Fig. 4    The distribution of true- and false-positive identifi cations as a function of Pearson correlation coeffi cient 
( R  2 ) in a test of the MetISIS algorithm that did not contain the charge-prediction component ( see  Fig.  2 ). While 
the algorithm performed reasonably well, the approximately 50 false positives with  R  2  near unity suggested 
that charge prediction was essential for accurate simulation of MS/MS spectra       
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2    Methods 

      1.    The construction of training and testing sets begins by acquiring 
experimental CID spectra from pure samples of specifi ed 
metabolites. The training/testing process for charge prediction 
in CID of lipid metabolites was based on MS/MS experiments 
with 94 lipids of known chemical structure ( see   Note 3 ).   

   2.    The molecular structure of each lipid metabolite with an 
experimental CID spectrum was provided by the chemical 
supplier.   

   3.    Input vectors ( see   Note 4 ) for all bond cleavages that might 
be associated with peaks in experimental spectra were gener-
ated from the molecular structures. Bonds to hydrogen 
atoms for which cleavage would reduce the precursor-ion 
mass by only 1 Da were ignored. Bonds between carbon atoms 
in tails of lipids were also ignored because it seemed likely 
that any experimental peak could be explained by this type of 
fragmentation.   

   4.    To generate the output label, the left and right mass fi elds in 
the <meta data> block of the encoded vector ( see   Note 4 ) were 
used to determine the mass for each fragment and the total 
mass of the lipid. The experimental CID spectrum of the lipid 
was then examined to see if it contained a peak at either of 
these two masses. In the absence of such a peak, the potential 
input vectors for a charged and a neutral fragment were 
removed from consideration. If there was a peak in the experi-
mental spectrum at only one of potential fragment masses, 
then the exemplar with that mass in left-hand fragment was 
labeled 0.8 and the exemplar with that mass as right-hand frag-
ment was labeled 0.2. If peaks were found at both masses, then 
the mass with the higher intensity was considered the winner 
and the output of the pair of exemplars was labeled accord-
ingly. A tolerance of ±2 Da in matching peak masses with frag-
ment masses was used. For the 44 lipids selected to generate a 
training set, this process gave rise to 658 pairs of exemplars. 
For the 50 lipids selected to generate a testing set, the same 
process gave rise to 2,183 pairs of exemplars.   

   5.    Both training and testing sets contained labeled exemplars 
from all 15 classes of lipids ( see   Note 3 ) for which experimental 
MS/MS spectra were available.      

  As shown in Fig.  5 , the ANN architecture had an input layer with 
the 1,270 nodes required for input vectors that characterize the 
chemical environment around bond-cleavage sites ( see   Note 4 ) in 
the lipids with experimental spectra ( see   Note 3 ).  

2.1  Construction 
of Training and Testing 
Sets

2.2  ANN Structure

Charge Prediction in Metabolite Identifi cation
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 Between this input layer and the single node of the output 
layer is a hidden layer with two nodes. The number of nodes in the 
hidden layer was chosen equal to the number of classes the input 
data needs to distinguish, which are “left fragment charged” and 
“left fragment neutral.” The bias nodes of the input and hidden 
layers are indicated by their constant value of 1. Although charge 
prediction could be treated as classifi cation, we chose to treat it as 
multivariable nonlinear regression. Sigmoidal transformations are 
used to generate an output between 0 and 1. Back-propagation of 
the difference between this output and the label of exemplars was 
used to optimize the weights of the neural network with a learning 
rate of 0.25 and momentum coeffi cient of 0.95.  

  The root-mean-square deviation (RMSD) between output values 
and exemplar labels was selected as a measure of training conver-
gence. The lower curve in Fig.  6  shows the convergence achieved 
by 500 epochs of training. These results reveal that convergence is 
rapid, as would be expected for a neural network with only two 
nodes in a single hidden layer. The “elbow” in the RMSD for the 
training set occurs after about 25 epochs, and the RMSD decreases 
very slowly after about 200 epochs.  

 The upper curve in Fig.  6  shows the RMSD of output values 
relative to the label on exemplars of the test set, which was calcu-
lated after every epoch of training. The RMSD relative to the test 
set follows the RMSD of the training set for only about 10 
epochs, after which it deviates sharply, remains approximately 
constant, but increases slightly as the RMSD of the training set 

2.3  Training Results

  Fig. 5    Structure of the neural network used to develop charge prediction for a set 
of 94 lipid metabolites distributed over 15 classes ( see   Note 3 ). The input vector 
size (1,270) refl ects the amount of compression that was possible with this set 
of molecules ( see   Note 4 ). Bias nodes in the input and hidden layers are indi-
cated by their constant value of unity       
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continues to decrease. We interpret this behavior as an indication 
that there is a small amount of “overfi tting” with 500 epochs of 
training. Details of the performance of the model on the test set, 
after 500 epochs of training, are summarized in Table  1 .

     Results, shown in Table  1 , of the machine-learning experiment 
with data on 94 lipid metabolites are encouraging; nevertheless, 
work is in progress to improve the ANN model for prediction of 
charged fragments. This work includes the following: (1)  additional 
experimental CID spectra of non-lipid metabolites, (2) inclusion 
of secondary fragmentation so that data from instruments other 
than ion-trap spectrometers can be modeled, (3) larger training 

2.4  Future Research

  Fig. 6    Root-mean-square deviation (RMSD) of network output from exemplar 
labels in training and testing sets as a function of cycles of refi nements on the 
training set       

    Table 1  
  Accuracy of charged-fragment prediction in a test set derived from 50 
lipid metabolites distributed over 15 classes ( see   Note 3 ) after 500 cycles 
of ANN refi nement on a similar training set   

 Correct overall percentage  99.3 % 

 Incorrect overall percentage  0.7 % 

 True positives  2,170 (99.4 %) 

 True negatives  2,166 (99.2 %) 

 False positives  13 (0.6 %) 

 False negatives  17 (0.7 %) 
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sets with inclusion of cross validation, and (4) more combinations 
of training and test sets with the use of random numbers to ensure 
uniform representation of all types of metabolites.   

3    Notes 

     1.    The 18:0/18:0 notation refers to the number of carbon atoms 
and number of double bonds that are in each hydrophobic tail 
attached to the lipid’s head group. The unlabeled atoms (i.e., 
numbered only) are understood to be carbon. Hydrogen 
atoms needed to saturate chemical bonding are not shown. 
More information about the LIPID MAPS database and its 
nomenclature can be found at   http://www.lipidmaps.org/
data/classifi cation/lipid_cns.html.       

   2.    Details regarding linear ion-trap mass spectrometers and CID 
energy calculations can be found in the supplemental material 
of Kangas et al. [ 4 ].   

   3.    Training and testing exemplar sets were    based on experimental 
data and molecular structures for the following lipids:  phospha-
tidylcholine  (14:0/14:0, 14:0/16:0, 16:0/16:0, 16:1/16:1, 
17:0/17:0, 18:0/18:0, 18:1/18:1, 18:2/18:2, 18:3/18:3, 
20:1/20:1, 20:4/20:4, 23:0/23:0),  phosphatidylcholine ether  
(13:0/13:0, 18(P)/18:1, 18:1/18:1, 18(P)/20:4),  lysophos-
phatidylcholine  (14:0, 15:0, 16:0, 17:0, 17:1, 18:0, 18:1), 
 phosphatidylethanolamine  (12:0/12:0, 15:0/15:0, 16:1/16:1, 
16:0/18:1, 17:1/17:1, 18:0/18:0, 18:0/18:1),  lysophosphati-
dylethanolamine  (14:0, 16:0, 18:0, 18:1),  phosphatidylserine  
(12:0/12:0, 14:0/14:0, 16:0/18:2, 17:0/17:0, 18:0/18:0, 
18:0/18:1, 18:0/18:2),  lysophosphatidylserine     (16:0, 18:0, 
18:1),  sphingomyelin  (d18:1/12:0, d18:1/16:0, d18:1/17:0, 
d18:1/18:0, d18:1/24:1),  ceramide  (d18:1/12:0, d18:1/17:0, 
d18:1/18:0, d18:1/20:0, d18:1/22:0, d18:1/24:0),  ceramide 
1-phosphate  (d18:1/8:0, d18:1/12:0, d18:1/16:0, d18:1/18:1, 
d18:1/24:0),  hexaceramide  (d18:1/8:0, d18:1/12:0, d18:1/
16:0, d18:1/24:0, d18:1/24:1),  dihexaceramide  (d18:1/8:0, 
d18:1/12:0),  cholesterol ,  cholesterol ester  (18:2, 18:3,20:4.20:5), 
 diglycerol  (17:0/17:0, 20:0/20:0, 20:2/20:2, 20:4/20:4, 
20:5/20:5), and  triglycerol  (14:0/16:1/14:0, 15:0/18:1/15:0, 
16:0/18:0/16:0, 16:0/18:1/22:6, 16:1/17:1/17:2, 16:1/
18:1/18:2, 16:1/18:1/20:4, 17:0/17:1/17:0, 18:1/18:1/
18:2, 20:0/20:1/20:0, 20:2/18:3/20:2, 20:4/18:2/20:4, 
20:5/22:6/20:5).   

   4.    The complete encoded vector has the form <Meta data>
<Block 1><Block 2>…<Block 8>. The <Meta Data> block, 
which includes information about the lipid metabolite under 
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investigation, is not part of the input attributes but is referred 
to in the generation of the output label. MetISIS uses an 
undirected graph derived from the chemical structure to rep-
resent a metabolite. When a bond is broken in the CID simula-
tion, the two atoms that were involved in the bond become 
root nodes of a disconnected graph consisting of two sub-
graphs. One subgraph is denoted the left fragment and the 
other one is denoted the right fragment. The CHONSP count 
for each atom within eight bonds of the root atoms in the frag-
ments is easily obtained by a breadth-fi rst search [ 10 ]. 

 Each exemplar used in machine learning is associated with 
a particular bond cleavage in a specifi ed metabolite. CHONSP 
counts for both fragments generated in the cleavage are 
retained in the same input vector. Since each peak in the exper-
imental CID spectrum contributes two exemplars to the 
charge- prediction exemplar set, a charged and a neutral frag-
ment, a second input vector is generated for each bond cleav-
age by interchanging the left and right components. The 
output label of each exemplar identifi es the charge (1 or 0) of 
the left component. The equal number of charged and neutral 
exemplars in the training set prevents the encoding scheme 
from introducing bias in charge prediction. 

 In addition to this basic encoding, MetISIS performs two 
more processing steps on the encoded vectors. The fi rst is to 
compact the vectors. This is done by examining a large set of 
molecules, encoding them as described above and then remov-
ing CHONSP components that are always zero.    For example, 
if there is no triple-bonded P in any of the molecules at a given 
distance N from the root atoms, then the triple-bonded P will 
be removed from the corresponding <BlockN P > components. 
This mode of compression adapts input vectors to a particular 
set of metabolites. For lipid metabolites in  Note 3 , the com-
pressed input vectors have 1,270 components. The second 
step is normalization of the data. After compression, the 
remaining CHONSP components are normalized to values 
between 0 and 1.         
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Chapter 7

Prediction of Bioactive Peptides Using Artificial  
Neural Networks

David Andreu and Marc Torrent

Abstract

Peptides are molecules of varying complexity, with different functions in the organism and with remarkable 
therapeutic interest. Predicting peptide activity by computational means can help us to understand their 
mechanism of action and deliver powerful drug-screening methodologies. In this chapter, we describe how 
to apply artificial neural networks to predict antimicrobial peptide activity.

Key words Artificial neural network, Peptide, Antimicrobial, Screening, Drug

1 Introduction

Peptides are natural or synthetic polymers composed of amino 
acids linked by an amide bond. The different amino acids have 
different physicochemical characteristics. In nature, most proteins 
and peptides are built from 20 natural amino acids, which are 
depicted in Fig. 1a.

The peptide chain has a reduced conformational flexibility due 
to a significant double-bond character between the carbonyl car-
bon and the nitrogen (Fig. 1b). The peptide chain is mainly planar 
and conformational changes are restricted, with flexibility mainly 
limited to rotations around the α-carbon atoms [1]. In addition, 
physicochemical constraints, such as side-chain volume and charge, 
contribute to peptide structure. Therefore, peptides can be either 
unfolded or structured in α-helix, β-strands with loops and coils 
(Fig. 1c), or a combination of them. Globally, the amino acid com-
position, together with the three-dimensional structure, is what 
determines peptide action.

1.1 Peptides 
and Their Use 
in Medicinal 
Chemistry

Electronic Supplementary Material: The online version of this chapter (doi: 10.1007/978-1-4939-2239-0_7) 
contains supplementary material, which is available to authorized users
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There are different sources of natural peptides of varying 
 complexity with different functions in the organism [2]. For exam-
ple, glutathione is an antioxidant peptide that protects cells 
from free radicals [3], and angiotensin is a hormone that acts as a 
vasoconstrictor, increasing blood pressure [4]. Some well-known 
natural peptides are listed in Table 1.

The number of possible combinations of amino acids into pep-
tides is huge and depends upon the peptide length. For example, 
for a peptide with 15 amino acids, we could build 2015 different 
molecules, meaning more than 1019 different combinations.

Advanced synthetic strategies now allow us to build hundreds or 
even thousands of peptides easily [5–8]. Thanks to these technolo-
gies, we are not restricted to natural peptide templates and can 
design new peptides with novel functions that do not occur in nature 
but have relevant applications in pharmacology and medicine. Given 
the number of possible different combinations of amino acids, the 
biomedical applications of peptides are nearly infinite.

Unfortunately, we are far from exploring the effects of millions 
and millions of amino acid combinations. Even though modern 
screening methods are very versatile and widespread, testing large 
libraries of compounds can be time intensive, especially when cellular 
or animal models are required [9, 10]. In these situations, mathemati-
cal models are essential to narrow down the experimental work 
required. In addition, these models help us to understand peptide 
activity and can be used to dissect the molecular properties of active 
compounds and discover the receptors and pathways in which they are 
involved [11]. For all these reasons, mathematical models are essential 
in peptide design and have real relevance in the pharmaceutical indus-
try for the development of new  antibiotics or anti-inflammatory drugs.

Table 1 
Selected examples of natural peptides

Peptide name Peptide sequence Function

Glutathione γ-Glu-Cys-Gly Antioxidant

Angiotensin II Asp-Arg-Val-Tyr-Ile-His-Pro-Phe Vasoconstrictor

Bradykinin Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg Vasodilator

Calcitonin Cys-Gly-Asn-Leu-Ser-Thr-Cys-Met-Leu-Gly-Thr-Tyr-Thr-
Gln- Asp-Phe-Asn-Lys-Phe-His-Thr-Phe-Pro-Gln-Thr-Ala- 
Ile-Gly-Val-Gly-Ala-Pro

Calcium metabolism

Somatostatin Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys Growth and cell 
division

Melittin Gly-Ile-Gly-Ala-Val-Leu-Lys-Val-Leu-Thr-Thr-Gly-Leu-Pro- 
Ala-Leu-Ile-Ser-Trp-Ile-Lys-Arg-Lys-Arg-Gln-GlnNH2

Antimicrobial peptide

Enkephalin Tyr-Gly-Gly-Phe-Met/Leu Nociception

Prediction of Bioactive Peptides
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As detailed in Table 1, peptides can have diverse functions, which 
are correlated with amino acid composition and structure. It is of 
particular interest to develop computational tools that are able to 
predict active peptides, based on their physicochemical and struc-
tural characteristics. In this chapter we will focus on antimicrobial 
peptide classification, but the methods and techniques described 
here are widely applicable. Therefore, the same strategies can be 
applied in the prediction of other classes of biologically active 
peptides.

We aim to describe in this chapter how one can use artificial 
neural networks (ANNs) to predict peptide activity. We will 
describe how to build and curate datasets, train an ANN, and vali-
date the results in the software package R.

2 Materials

 1, 2. Software package R (see Note 1) and software package 
RStudio (see Note 2).

 3. Libraries (Interpol, corrplot, caret, RSNNS, RColorBrewer, 
SDMTools, devtools, reshape) (see Note 3).

 4. ANN script (Supplementary Materials).
 5. Peptide dataset AMPlist (Supplementary Materials).
 6. Descriptor list (Supplementary Materials).

3 Methods

In this chapter we will describe the basics of peptide classification 
using ANNs. In our example, we will develop a tool to classify 
peptides as antimicrobial or non-antimicrobial.

The protocol is structured in the following steps:

 1. Dataset building
 2. Descriptor selection
 3. Network training
 4. Model validation
 5. Network visualization

All these steps are covered in the following points with tips and 
hints that can be used to apply the present model (or an extension 
of it) to analyze similar problems.

Though it might appear obvious, it is worth stating that the results 
of computational analysis are strongly dependent on the quality of 
the databases provided. For a supervised learning strategy such as the 

1.2 Use of Prediction 
Models in the Search 
for New Drugs

3.1 Build Datasets
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one described in this chapter, we need to provide a list of peptides 
(input) and a measure of the biological property of interest for 
each peptide (output). In the classification example we are present-
ing here, the outputs are in a yes/no format, denoting that the 
peptide has or does not have antimicrobial properties respectively.

When using data from one’s own laboratory, it is possible to fix 
a set of criteria that will be applied to all samples, which are then 
processed using the same protocols. However, when obtaining 
data from the literature, caution is required to ensure consistency. 
Previously published data from other laboratories may have been 
gathered using many different protocols. For example, different 
media for bacteria cultures can affect the assessment of antimicro-
bial properties. Whenever possible, it is wise to use only values 
obtained from the same method.

When this is not possible, it may be necessary to include data 
from other sources. For antimicrobial peptides and bioactive pep-
tides in general, there are public databases that gather information 
about peptides. In general, the classification criterion in these data-
bases is based on bibliography searches, without taking into 
account the concerns described above. It is important to keep in 
mind that this can affect the performance of the calculations and 
that as a result less accurate prediction systems may be obtained. 
We describe in Subheading 3.1.1 how to build a positive dataset 
from public databases.

It is also important to avoid overrepresentation of particular 
peptide families. When a single family of peptides represents a large 
part of the dataset, this may bias the results. Always check for pep-
tide similarity and use a filter as described in Subheading 3.1.2 to 
remove large groups of similar peptides.

Though positive databases can be difficult to obtain, more 
serious problems can arise from the need for a negative data-
base, because it is hard to find a detailed list of negative results. 
For example, numerous antimicrobial peptides can be found in 
the literature but only a few examples of non-antimicrobial pep-
tides are described. This is a major problem, as it may bias the 
training process.

Frequently, large negative databases may not be built because 
not enough data is available. Therefore, an alternative method is 
required to obtain a suitable negative dataset. This is the case of 
antimicrobial peptides. Though public databases contain around 
2,000–5,000 antimicrobial peptides (positive database), it is 
impossible to build an experimentally validated negative dataset 
of similar size for non-antimicrobial peptides. In Subheading 
2.1.2 we describe a method to build such a dataset. Though this 
approach may be useful in antimicrobial peptides, it may not be 
applicable to other bioactive peptides, and particular strategies 
may need to be found, depending on the type of study.

Prediction of Bioactive Peptides
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The positive dataset is built from a list of peptides which have been 
shown experimentally to have the property of interest. The elements 
of the dataset can be retrieved from experiments done in the labora-
tory or from public databases. The dataset consists of a text file built 
using either a text engine or a spreadsheet containing the list of 
peptides. It should be saved as a non-formatted text file (.txt exten-
sion) and the peptides should be delimited by a carriage return.

For antimicrobial peptides, useful databases are listed in Table 2. 
In our working example, we have selected the cationic peptides 
from the APD2 database (see AMPlist.txt included in the 
Supplementary Material).

This dataset contains a list of peptides validated to not have the 
property of interest. As was the case with the positive dataset, it can 
be built based on experiments performed in the laboratory, or by 
relying on public databases, but also by extrapolation as described 
in the introduction to this section. The dataset consists of a text file 
as described in Subheading 2.1. Like the positive dataset, it should 
be saved as a non-formatted text file (.txt extension) and the pep-
tides should be delimited by a carriage return.

To build our example negative dataset, we have used the 
Uniprot server (http://uniprot.org) to search for non- antimicrobial, 
nontoxic, and non-antibiotic peptides, with restricted length (from 
5 to 45 amino acids). Only Uniprot-refined entries were selected. 
A list of >3,000 peptides was finally included in the negative 
dataset. As these peptides may have high sequence similarity, we 
used CD-Hit (http://weizhong-lab.ucsd.edu/cdhit_suite/, [19]) 

3.1.1 Build the Positive 
Dataset

3.1.2 Build the Negative 
Dataset

Table 2 
Databases of antimicrobial peptides

Database Number of entries Data source References

APD(APD2) 2,338 Pubmed [12]

BACTIBASE (BACTIBASE 2) 177 Uniprot [13]
Pubmed

CAMP 4,020 NCBI [14]

Defensins knowledgebase 350 SciFinder Scholar [15]
Uniprot
EMBL/GenBank

PenBase 110 Pubmed [16]
EMBL/GenBank

PhytAMP 271 Uniprot [17]
Pubmed

RAPD 179 Pubmed [18]

David Andreu and Marc Torrent
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to reduce sequence redundancy (90 %). Our final negative dataset 
contained 2,234 peptides. We have also manually curated the data-
base to delete protamines and histones that are erroneously not 
categorized by Uniprot as antimicrobials (see AMPlist.txt included 
in the Supplementary Material).

Merging the datasets is an optional but convenient step. To merge 
the datasets, we have merely copied the text contained in the posi-
tive and negative datasets (in that order) into a new text file, called 
AMPlist (see AMPlist.txt included in the Supplementary Material).

To train the classification system, peptides in the list must be 
labeled as active or inactive. To do that, active peptides were labeled 
1 and inactive peptides labeled 0. While a list of 0 s and 1 s can be 
built using a spreadsheet and then loaded into the training soft-
ware, we have for the sake of convenience included instead a code 
line to build the class vector (see below).

The script provided uses the R function read.table() to load the pep-
tide list file. In the example, the peptide list called AMPlist.txt has a 
list of 2,048 antimicrobial peptides and 2,234 non- antimicrobial 
peptides, built as described above. To load a new list instead of the 
example, just change the name in the script (line 13, bold text):

peptide_list<- read.table("AMPlist.txt", quote="\"")

The class vector, containing an appropriate number of 0 s and 
1 s, is created in line 19 of the script:

y<- c(rep(1,2048),rep(0,2234))

The first parenthesis contains the number of active peptides 
and the second parenthesis the number of inactive peptides. 
Numbers can be changed but must be consistent with the list sup-
plied as peptide_list.

Molecular descriptors are numerical values that characterize prop-
erties of the molecule of interest [20]. For example, a simple 
molecular descriptor could be the molecular weight or the charge 
of the peptide. There are many types of molecular descriptors, but 
they can be classified as either (1) structure-based, which depend 
on the structural properties and include topological or geometrical 
descriptors, or (2) property-based, which are experimentally or 
theoretically determined values and include properties such as 
hydrophobicity or accessible surface area.

Structure-based descriptors can refer to different levels of 
organization. For example, in peptides we can refer to (1) the 
amino acid sequence, (2) the secondary structure of particular 
segments in the peptide, and (3) the complete tertiary structure of 
the peptide.

3.1.3 Merge Datasets 
and Add the Class Vector

3.1.4 Script Explanation

3.2 Select 
Descriptors

Prediction of Bioactive Peptides
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Most commonly, a three-dimensional structure is not available, 
so no experimentally validated values can be obtained for structure-
based descriptors. At this point, structure modeling can be used, 
but this is time consuming and generally not reliable. Therefore, 
in this chapter we will only consider sequential descriptors and 
simple predictions of secondary structure elements (e.g., the pro-
pensity of the peptide to adopt an α-helix structure).

One of the most extensive lists of descriptors for amino acids is 
encoded in the AAindex database [21, 22]. The AAindex database 
contains a selected list of 533 descriptors, based on amino acid 
physicochemical properties, substitution matrices, and statistical 
protein contact potentials.

The method of calculating properties based on the AAindex 
values is also flexible. The simplest strategy is to compute the aver-
age for all amino acids present in the peptide sequence. This 
approach is computationally inexpensive but may miss important 
details like the order in which the amino acids appear in the struc-
ture. For example, the peptide ASLP will have the same value as 
the peptide PALS, though the peptides may have completely dif-
ferent biological properties.

Another approach is to use autocorrelation, which takes into 
account the distribution of these properties along the sequence of 
peptides [23, 24]. There are several strategies to compute autocor-
relation; one example is the Moreau-Broto autocorrelation:

 
ACMB =

=

-

+å
i

N d

i i dP P
1  

where the property of interest is named P and the autocorrelation 
value is computed as the summation of products along the sequence 
for amino acids separated by a length d. For the example described 
before, assuming a distance d of 1 amino acid and the arbitrary 
values A = 1, S = 2, L = 3, and P = 4, we would have an ACMB = 1 × 2 
+ 2 × 3 + 3 × 4 = 20 for peptide ASLP and AC = 4 × 1 + 1 × 3 + 3 × 2 = 13 
for peptide PALS.

In the script provided in this chapter, we will use the average 
strategy, but autocorrelation can be also implemented in the script. 
To learn more about other methods to calculate autocorrelation, 
see refs. 23, 24.

Though it is possible to calculate all descriptors in the script 
provided, several limitations must be taken into account. First, the 
number of descriptors should be small compared with the number 
of examples provided for the training process to be accurate. For 
example, it is not suitable to use 400 descriptors if the peptide 
dataset has only 200 peptides. Second, using a disproportionate 
number of descriptors could easily lead to model over-fitting. Third, 
many descriptors are highly correlated with others, generating 

3.2.1 Descriptor 
Calculation
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redundancy in the data. For example, the AAindex list of descriptors 
contains several different measures of amino acid hydrophobicity. 
Fourth, the more complex the model, the more difficult it is to 
analyze the results. When using a reduced number of parameters, 
it is easy to understand the contribution of each of them to the 
model and to understand its biological relevance. When large 
numbers of parameters are used, their contribution tends to bal-
ance and details are easily lost (see Note 4).

In the script provided, only a small subset of parameters [13] is used 
for prediction. To load a different subset of parameters, substitute 
the numbers given in lines 22 and 27 (highlighted in bold) by the 
corresponding numbers in the descriptor list (see Supplementary 
Material):

vector<- as.numeric(c("9", "37", "38", "39", "40", "69", "71", 
"96", "146", "151", "319", "321", "381", "401"))

rownames(ff)<- c("AA9", "AA37", "AA38", "AA39", "AA40", 
"AA69", "AA71", "AA96", "AA146", "AA151", "AA319", 
"AA321", "AA381", "AA401")

In lines 30–39, we implement a code for deleting highly cor-
related parameters. Therefore, those parameters that display a cor-
relation index of 0.90 with another parameter are disregarded for 
the network training (see Note 5).

The threshold can be changed in the script, in line 33:

highlyCor<- findCorrelation(cor2, 0.90)

Artificial neural networks are computational models inspired in the 
brain neuronal system [25, 26]. The ANNs consist of inputs (rep-
resenting the signal received by the neuron) that are multiplied by 
weights (representing the strength of the signal) and then mathe-
matically transformed to produce the outputs (the response to the 
input signal). This is represented schematically in Fig. 2a.

In summary, ANNs can be represented as weighted directed 
graphs with neurons represented by nodes and connections rep-
resented by directed edges. Following this representation, ANNs 
can be classified as (1) feed-forward networks or as (2) recurrent 
(or feedback) networks. The difference between them is that the 
first does not contain any loops while the later does contain 
loops (Fig. 2b). In this chapter we will focus only on feed-for-
ward networks and, concretely, on multilayer perceptron net-
works, a particular ANN in which neurons are organized in layers 
and are connected with unidirectional edges (Fig. 2c).

In this chapter, we aim to build ANNs that learn from given 
examples (known active and inactive peptides) to be able to predict 
new inputs (unknown peptides). This scheme is known as supervised 
learning because we provide a set of examples to help the network to 

3.2.2 Script Explanation

3.3 Develop 
the Artificial Neural 
Network Model
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Fig. 2 Typical representation of artificial neural networks. Artificial neural net-
works consist of weighted inputs that are mathematically transformed to pro-
duce the outputs (a). These networks can be represented as weighted directed 
graphs and can be classified as feed-forward networks and recurrent (or feed-
back) networks (b). Concretely, in multilayer perceptron networks, neurons are 
organized in layers connected by unidirectional edges (c)
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learn from them, in a process called network training. The network 
learns how to reproduce the outputs by modifying the weights that 
multiply the inputs.

To successfully train a network, we have to provide an environ-
ment in which the network will operate (called the learning para-
digm) and the rules that the network will use to update the weights 
(called the learning algorithm).

In our case, the learning paradigm is defined by peptide 
sequences and measurable properties (physicochemical parameters, 
biological activity, etc.). The learning rule will be an error- 
correction rule. In this rule, we randomly initialize the weights and 
feed the network with a training vector (a list of peptides with their 
properties and the classification index, 1 for active and 0 for inac-
tive). The network will then update the weights in order to mini-
mize the difference between the calculated and the given output 
(cost function). To do that, we use the back-propagation method 
that incorporates gradient descent to minimize the squared-error 
cost function.

Several packages are available to simulate neural network mod-
els in R, including neuralnet [27], RSNNS [28], and CARET [29] 
among others. Among the advantages of the CARET package are 
that it can run most network models using the same syntax and can 
automatically apply different pretreatment methods (e.g., principal 
component analysis) and validation protocols (e.g., k-fold cross 
validation). Therefore, we will be using the CARET package in our 
example.

In the script provided, we have divided the entire dataset (AMPlist) 
into a training set that contains 75 % of the observations and a test-
ing set that contains 25 % of the total observations. This division is 
variable and can be changed in line 46 (bold number) (see Note 6):

smp_size<- floor(0.75 * nrow(M))

The training step consists of feeding the model with input data and 
allowing it to optimize the weights in order to find the values that 
best fit the data. Different training strategies have been described 
in Subheading 2.3, and therefore, in this section, we will focus on 
explaining how validation is performed and why it is important.

Validation is an essential step in assessing the strength of the 
method. If the model were trained with the entire set of input data, 
we could expect that it would find a set of weights that fit the data 
with high accuracy. However, when this model is tested with a new 
set of examples, previously unseen by the model, we may find a 
poor prediction accuracy. This behavior is called over-fitting, which 
is a computational artifact that does not generate a true fitting rule 
but an overcompensated model that only fits the example data.

3.3.1 Selection 
of the Training and Test 
Datasets

3.3.2 Training 
and Validation
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A validation step is thus required to evaluate when over-fitting 
is happening. The simplest form of validation consists of a k-fold 
cross validation. In this method we divide the dataset into k differ-
ent equal-sized sets. In k different training rounds, one set is used 
as the testing set while the remaining sets are used for training the 
model. The average error and standard deviation of each round 
provides an estimation of how robust is the method.

A particular k-fold cross-validation strategy is called leave-one- 
out cross-validation strategy. This is achieved when k is equal to the 
number of observations minus one; then, only one prediction is 
made in each round (see Note 7).

As detailed before, in our example we use a multilayer percep-
tron (mlp) to fit our data using the CARET package in R. This 
package allows multiple options (see the CARET documentation 
for further details [29]).

Interestingly, we can specify the validation method through 
the trControl instruction. In our script, the validation strategy is 
fivefold cross validation, as detailed in line 56:

trC=trainControl(method="cv", number=5)

Multilayer perceptron networks can have different neuron 
layers (called hidden layers) with a variable number of neu-
rons. We can specify this using the tuneGrid instruction pro-
vided in the caret package. In our script we have used only one 
hidden layer with a variable number of neurons (line 57, from 
0 to 5):

my.grid<- expand.grid(.size=c(0,1,2,3,4,5))

Training is specified in the CARET package by using the train 
function. For the train function to be correctly defined, we must 
specify the training data, the classification data, the method used 
for training, the preProcess strategy, the validation strategy, and 
the variations in the tuneGrid parameter. The training instruction 
is detailed in line 58 of the script provided:

network <- train(train[,1:9], train[,10], method="mlp", 
preProcess=NULL, trControl=trC, tuneGrid=my.grid)

We have reproduced here typical output for a multilayer per-
ceptron trained as described above:

3,211 samples

9 predictors
No pre-processing
Resampling: cross validation (fivefold)
Summary of sample sizes: 2,569, 2,569, 2,569, 2,569, 2,569
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Resampling results across tuning parameters:

Size RMSE Rsquared RMSE SD Rsquared SD

0 0.41 0.366 0.0235 0.0477

1 0.406 0.376 0.0102 0.0409

…

4 0.358 0.515 0.0185 0.0386

5 0.346 0.539 0.00706 0.0187

RMSE was used to select the optimal model using the smallest 
value. The final value used for the model was size = 5.

The results output summarize the method, meaning that we 
have used 9 predictors over a database of 3,211 examples, with no 
pre-processing and with a fivefold cross-validation strategy (each 
step comprising 2,569 examples used to train the method).

The method has tested the different number of neurons in the 
hidden layer, from 0 to 5. To determine which model was best, the 
method identifies the model with the lowest root mean square 
error (RMSE), which is the model with 5 neurons. The RMSE is 
the square root of the variance of the residuals, indicating the abso-
lute fit of the model to the data. For classification purposes, our 
model outputs have values between 0 and 1 while the true values 
are binarized (either 0 or 1). RMSE measures the error distance 
between predicted and real data. As we need a threshold to map 
predicted to real data, RMSE does not account for prediction 
accuracy but is a good indicator of how well the model fits the data. 
As a rule of thumb, the lower the better; it should not be higher 
than 0.5.

We use the isolated section of the dataset (in our case the 25 %) to 
test the prediction power of the method. In the testing step, the 
method is applied to the testing dataset and the predictions are 
compared with the real values. In the best-case scenario, the pre-
dicted values will be identical to the real values. We define true posi-
tive values (TP) as those positive observations that are predicted as 
positive (in our case, antimicrobial peptides correctly predicted 
as antimicrobial) and true negatives (TN) as negative observations 
that are correctly predicted as negative (non-active peptides pre-
dicted as non-antimicrobial). We can also have false positives (FP, 
non-active peptides predicted as antimicrobials) and false negatives 
(FN, active peptides predicted as non-antimicrobials).

Therefore, we can build a matrix, as depicted in Table 3, known 
as the confusion matrix. Good prediction methods will have a large 
number of observations as true positives or true negatives and low 
numbers of false negatives and false positives.

3.3.3 Testing
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Good indicators of successful methods include a good sensitivity 
(the proportion of positives that are true) and specificity (the ability 
of the method to identify negative results that are truly negative). 
The mathematical expression of these indicators is

 

Sensitivity
TP

TP FN

Specificity
TN

TN FP

=
+

=
+  

Accuracy can be defined as the ability to predict true outcomes 
(positives and negatives) and can be calculated as

 
Accuracy

TP TN
TP FP TN FN

=
+

+ + +  

In binary classifications (e.g., our case to classify peptides in anti-
microbial and non-antimicrobial), we can use the Matthews cor-
relation coefficient as a measure of the prediction quality. This 
coefficient is, briefly, a measure of the correlation between the 
observations and predictions. It can be calculated using the follow-
ing formula:

 

MCC
TP TN FP FN

TP FP TP FN TN FP TN FN
=

´ - ´

+( )´ +( )´ +( )´ +( )  

Finally, when possible, an experimental validation of the method 
can also be performed as the ultimate test to validate the strategy 
presented. This is accomplished by generating a new list of com-
pounds, not previously seen by the algorithm and analyzed by the 
method. Then a subset of predictions containing both positive and 
negative examples is experimental validated.

In the script provided, the confusion matrix, specificity, selec-
tivity, and accuracy are calculated in lines 63 and 64 of the script 
(see Note 8):

confusion.matrix(test3, pred, threshold=0.5)
accuracy(test3, pred, threshold=0.5)

Table 3 
Confusion matrix

Prediction

0 1

Real 0 TN FP
1 FN TP
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The results obtained in our network example give around 85 % 
sensitivity, 85 % specificity, and 85 % accuracy. This is a good result, 
as the network detected 85 % of all positive examples in the testing 
dataset and 85 % of the negative results were true negatives.

Despite this, there is still room for improvement; this might 
be accomplished by a variety of different means. Possible strategies 
to obtain a better classification are: (1) include more parameters, 
particularly those covering other physicochemical characteristics, 
(2) include more neurons in the hidden layer, and (3) include 
another hidden layer.

It is difficult to suggest a priori which is the best strategy to 
follow but it is important to remember that all the strategies will 
add one or more degrees of complexity, therefore complicating the 
interpretation of the results. A compromise must always be consid-
ered between how important it is to get good predictions and how 
important it is to understand how the model works.

To help understand the structure of the neural network and how it 
operates, it is useful to represent it as shown in Fig. 2. Also, it is 
important to specify the weights, that is, the contribution of each 
node to the next layer of the network. The higher the contribution 
of the node, the more important it is to the prediction.

In the script provided (line 69), we have used a function called 
plot.nnet to visualize our network (please see http://beckmw.
wordpress.com/ for a complete description of this function):

Repnet<- mlp(train[,1:9], train,10, size=4)
plot.nnet(repnet)

First, we recompute the neural network with a number of hid-
den neurons (size) specified by the output results as detailed in 
Subheading 3.3.2 and then use the plot.nnet function to plot the 
results (Fig. 3).

3.4 Network 
Visualization
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Fig. 3 Example of a neural network obtained using the example model proposed in this chapter
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Weights are depicted in the edges that connect the nodes. The 
absolute value of the weight is symbolized by the width of the line 
(the wider the line, the higher the contribution). The line color 
symbolizes whether the contribution is positive (green) or negative 
(blue). In this example, descriptors 6 and 7 are contributing sig-
nificantly to the model while descriptor 2 is contributing less.

The plot.nnet function does not depict the bias values (con-
stant values added to each hidden and output layer) for the mlp 
neural network; however, this has no impact in the interpretation 
of our results. The plot.nnet function only depicts the bias values 
for the nnet function.

4 Notes

 1. The R package can be downloaded from http://www.r-project.
org/.

 2. The RStudio package can be downloaded from http://www.
rstudio.com/.

 3. To install the required libraries in R, use the install.pack-
ages(“”) function.

 4. Our suggestion is always to select a number of parameters that 
are thought to be relevant and then, if the results are not satis-
factory, try other parameters or extend the list by a small 
amount.

 5. A threshold between 0.9 and 0.95 can be used normally. If the 
threshold is much higher than 0.95, only a limited degree of 
filtering will be achieved; on the other hand, if it is less than 
0.9, there is a risk that information that may be important for 
the network can be lost.

 6. Care should be taken not to use too small a testing set, since 
that will lead to nonrepresentative results. At the other extreme, 
a very large testing set will leave too few observations for use 
during training and the model will fit poorly. In general, this 
parameter can be adjusted between 0.6 and 0.9 depending on 
the total number of total observations though values between 
0.75 and 0.85 are recommended.

 7. When the database is large, it is time consuming to perform a 
leave-one-out cross-validation approach because many training 
cycles will be required for large datasets. In that case, a more 
suitable strategy is to validate the method using a k-fold cross 
validation, usually with k values ranging from 4 to 10.

 8. Because the activation function in the neural network is the 
logistic function, the output values are in the range [0,1]. The 
threshold value will binarize the results. Therefore, if the 
threshold is 0.5, values below 0.5 will be assigned the output 
value 0 and above 0.5 the output value 1.
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Chapter 8

AutoWeka: Toward an Automated Data Mining  
Software for QSAR and QSPR Studies

Chanin Nantasenamat, Apilak Worachartcheewan, Saksiri Jamsak, 
Likit Preeyanon, Watshara Shoombuatong, Saw Simeon, Prasit Mandi, 
Chartchalerm Isarankura-Na-Ayudhya, and Virapong Prachayasittikul

Abstract

In biology and chemistry, a key goal is to discover novel compounds affording potent biological activity or 
chemical properties. This could be achieved through a chemical intuition-driven trial-and-error process or 
via data-driven predictive modeling. The latter is based on the concept of quantitative structure-activity/
property relationship (QSAR/QSPR) when applied in modeling the biological activity and chemical prop-
erties, respectively, of compounds. Data mining is a powerful technology underlying QSAR/QSPR as it 
harnesses knowledge from large volumes of high-dimensional data via multivariate analysis. Although 
extremely useful, the technicalities of data mining may overwhelm potential users, especially those in the 
life sciences. Herein, we aim to lower the barriers to access and utilization of data mining software for 
QSAR/QSPR studies. AutoWeka is an automated data mining software tool that is powered by the widely 
used machine learning package Weka. The software provides a user-friendly graphical interface along with 
an automated parameter search capability. It employs two robust and popular machine learning methods: 
artificial neural networks and support vector machines. This chapter describes the practical usage of 
AutoWeka and relevant tools in the development of predictive QSAR/QSPR models. Availability: The 
software is freely available at http://www.mt.mahidol.ac.th/autoweka.

Key words Quantitative structure-activity relationship, Quantitative structure-property relationship, 
QSAR, QSPR, Data mining

1 Introduction

Interactions of drugs with their target proteins are governed by a 
multitude of molecular forces including electrostatic, hydropho-
bic, polar, and steric. They can be rationalized through the use of 
the quantitative structure-activity/property relationship ( QSAR/
QSPR) paradigm, which has been one of the foremost tools in the 
arsenal of recent drug discovery efforts and has been almost 100 
years in the making. The prelude to the formulation of QSAR/
QSPR was the preliminary and independent efforts of Brodin [1] 
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and Cros [2] in the mid-1850s; they established that there exists an 
association between chemical constitution and physiological prop-
erties. This was at a time prior to the reporting of the aromatic ring 
structure of benzene in 1865 by Kekulé [3]. In 1868, Brown and 
Fraser observed changes to physiological action upon methylation 
of the basic nitrogen atom in alkaloids. In 1869, Richardson [4] 
showed that aliphatic alcohols of different molecular weight also 
displayed varied narcotic effects. Similarly, a few decades later in 
1893, Richet [5] showed that the water solubility of polar chemi-
cals (such as alcohols, ethers, and ketones) was inversely related to 
their toxicities, whereby a decrease in the solubility of a polar 
chemical results in an increase in its toxicity. Toward the 1900s, 
Meyer and Overton [6, 7] reported that the lipophilicity of a group 
of organic compounds exhibited a linear relationship with their 
narcotic potencies. In 1917, Moore [8] investigated the effects of 
chemical “fumigants” on insects and showed that toxicity of these 
compounds increased with their boiling point. It can be seen that 
the majority of these efforts pertained to the establishment of qual-
itative relationships between chemicals and their respective activity/
property.

Quantitative relationships between chemical structures and 
activity/property started to take shape when Hammett [9] intro-
duced a simple equation (later to be known as the Hammett equa-
tion) in 1937 that considers the substituent effect caused by 
electron-withdrawing or electron-donating groups as summarized 
by the sigma constant, while the rho constant describes the struc-
tural class or chemotype under study. Such an equation allows 
determination of electronic effects caused by the placement of sub-
stituent groups at different positions (i.e., ortho-, meta-, and para-) 
of the benzene ring. The subsequent work of Taft [10] led to the 
introduction of the steric parameter. It is these two contributions 
from Hammett and Taft that paved the way for further contribu-
tions from Hansch et al. In the mid-1950s to 1960s, Hansch and 
Muir employed the Hammett substituent constant and partition 
coefficients in their formulation of equations to correlate the 
chemical substituents and growth of Avena plant using plant 
growth regulators comprising of phenoxyacetic acids and chloro-
mycetins [11–13]. Finally in 1964, Hansch and Fujita [14] inves-
tigated the biological effects of a wide range of chemicals using a 
combination of physicochemical properties as summarized by the 
following equation:

 
log

1 2

C
a b c d= ⋅ + ⋅ − ⋅ +σ π π

 

where C is the molar concentration of hormone, σ is the Hammett 
parameter, and π is a measure of hydrophobicity. In parallel, Free 
and Wilson [15] analyzed such structure-activity relationships using 
a binary approach in which the presence or absence of a substituent 
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was described as 0 and 1, respectively. These landmark reports 
marked the beginning of classical QSAR/QSPR. Later in 1969, 
Hansch stressed the importance of computers in analyzing struc-
ture-activity relationships [16], which was an observation that is 
true to this very day, in which the ever-increasing amount of bio-
logical and chemical data makes computers indispensable in the 
analysis of these relationships.

The essence of QSAR/QSPR lies in the predictive ability of 
these models to relate a set of explanatory variables (X) with their 
response variables (Y). Such explanatory variables of compounds 
are represented by molecular descriptors, which are correlated with 
functional moieties present in the chemical structure. Descriptors 
can be calculated directly from the chemical structure, although in 
some circumstances some form of geometry optimization is needed 
prior to obtaining the molecular features. Depending on the soft-
ware used, the number of descriptors can span thousands of col-
linear and redundant descriptors, a situation that would typically 
call for the use of feature selection. Structure-activity/property 
relationships can then be discerned from traditional multiple linear 
regression as well as from a wide array of available machine learn-
ing algorithms. The reliability of constructed QSAR/QSPR mod-
els could be assessed from their internal and external validation, 
statistical measures of predictive performance, Y-randomization 
experiments, etc. Assessment of the applicability domain of the 
constructed QSAR/QSPR models may also provide useful knowl-
edge of the range or scope of compounds that are covered by the 
model, since the model is only as good as the compounds used to 
train it. The aforementioned procedures are common steps in a 
typical QSAR/QSPR workflow as summarized in Fig. 1; further 
details are discussed in previous review articles [17, 18].

As noted previously, the early days of QSAR/QSPR were pre-
dominantly concerned with its utilization for investigating toxicity 
and the narcotic effects of compounds. Over time, this use had 
expanded to encompass a wide range of biological activities and 
chemical properties, as summarized in Table 1. In a simplistic sys-
tem, compounds are isolated in the sense that they act or behave a 
certain way (e.g., as revealed by their boiling point or melting 
point) owing directly to their unique chemical structure. To com-
plicate the matter, it may be the case that minor changes to the 
chemical structure may exert a drastic influence on its observed 
property. This issue is known as the structure-activity cliff and had 
been documented previously [19, 20]. The underlying reason for 
this is that a majority of biological activities arises from the interac-
tion of compounds with target proteins. A minor change in the 
chemical structure, such as the replacement of a methyl group by 
an ethyl group, may then cause steric clashes with an amino acid 
side chain inside the protein’s binding pocket and thus radically 
alter the activity of the compound.

AutoWeka
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Although QSAR/QSPR may afford a wide range of utility in 
the life sciences, there are several potential pitfalls that practitioners 
need to be aware of. As this topic is beyond the scope of this chapter, 
readers are directed to previously reported accounts of such flaws 
[21–25] and solutions [26–29]. In particular, Dearden et al. [30] 
discuss 21 common types of error encountered in the QSAR/QSPR 
literature; they also provide recommendations on how to tackle 
such problems.

Efforts to automate some aspects of the QSAR workflow first 
appeared in 2001 when Jewell et al. [31] performed automatic 
generation of alignments for 3D-QSAR studies. A subsequent 
work from Tervo et al. [32] compared the performance of manual 
and automatic alignments. The first automated PLS-based feature 
selection was reported in 2004 by Olah et al. [33] in their exhaus-
tive analysis of biological data from WOMBAT. A year later, 
Bhonsle et al. [34] reported an automated quasi-4D-QSAR study 
of CXCR4 inhibitors based on PLS and scripting language. In the 
same year, Cartmell et al. [35] described an automated QSPR 
workflow to investigate ADME data sets based on a software archi-
tecture called competitive workflow as implemented in the 
Discovery Bus. Zhang et al. [36] introduced the Automated Lazy 
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Learning QSAR (ALL-QSAR) modeling approach in 2006 as 
applied to three sets of anticonvulsant agents. Subsequently in 
2007, Bhonsle et al. [37] reported a semiautomated QSAR work-
flow using Tcl-based Cerius2 scripts in their investigation of a set 
of insect repellants. Furthermore, Obrezanova et al. [38] described 
an automated QSAR modeling approach of ADME data sets using 
the Gaussian process. Moreover, Rodgers et al. [39] introduced an 
approach to automatically update the QSAR model with measured 
data of new compounds in their human plasma protein binding 
model. In 2008, in a continuation of their earlier work, Obrezanova 
et al. compared the results from automated QSAR models with 
those of manual efforts in their study of blood-brain barrier pene-
tration and aqueous solubility. In the same year, Ma et al. [40] 
reported an inductive data mining approach in the automatic 
generation of decision trees for modeling of the ecotoxicity of 
chemicals as well as in the analysis of a historical data from wastewater 

Table 1 
Types of biological activities modeled by QSAR and selected examples

Type Examples

Absorption Blood-brain barrier penetration
Human intestinal absorption
P-glycoprotein
Skin permeability

Distribution Aqueous solubility (logS)
Octanol-water partition coefficient (logP)
Octanol-water distribution coefficient (logD)

Metabolism Cytochrome P450 induction/inhibition

Excretion Hepatic microsomal intrinsic clearance

Toxicity AMES mutagenicity
Carcinogenicity
Hepatotoxicity
Skin sensitivity
Target/organ cytotoxicity

Receptor agonist/antagonist A3 adenosine receptor antagonist
Angiotensin II receptor antagonist
CCR5 receptor antagonist
Glucagon receptor antagonist
Peroxisome proliferator-activated receptor 

gamma agonists

Enzyme activator/inhibitor/modulator Aromatase inhibitor
Dipeptidyl peptidase IV inhibitor
Gamma-aminobutyric acid modulator
Gamma-secretase modulator
Glucokinase activator
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treatment plant. In 2011, Wood et al. [41] presented an automated 
QSAR procedure employed in AstraZeneca’s AutoQSAR system 
as tested against three properties comprising of logD, solubility, and 
human plasma protein binding. Furthermore, Sushko et al. intro-
duced the Online Chemical Modeling Environment (OCHEM) as 
a web-based tool for automating the process of QSAR modeling. 
In 2012, Pérez-Castillo et al. [42] described the genetic-algorithm-
(meta)-ensembles approach for binary classification of five data sets 
from the literature. In 2013, Cox et al. [43] reported the QSAR 
Workbench, which is based on the Pipeline Pilot workflow tool 
and evaluated against two public domain data sets. Furthermore, 
Martins and Ferreira [44] introduced software called QSAR mod-
eling for generating and validating QSAR models.

As we can see, development of QSAR models may not be a 
straightforward task, especially for the non-bioinformatician, 
and this is concomitant with the fact that efforts to automate the 
QSAR/QSPR process are an active area of research. These and 
many other factors sparked our interests and motivated us to 
develop AutoWeka starting from late 2009, which we have been 
coding ever since. The project began as an effort to automate our 
own data mining workflow as applied to QSAR/QSPR modeling 
and finally became publicly and freely available in 2012. The data 
mining capabilities, particularly through the use of artificial neural 
networks and support vector machines, of AutoWeka are powered 
by the popular and widely used Weka machine learning package [45]. 
It should be noted at the outset that the AutoWeka software is 
used for the multivariate analysis phase of QSAR/QSPR modeling, 
for which it also performs an extensive parameter optimization, the 
results of which could be scrutinized and selected for further 
rounds of computation (see Note 1). Nevertheless, specific details 
of chemical structure drawing and molecular descriptor generation 
are also mentioned in this chapter. It is also worthy of mention that 
this chapter will not cover the software development of AutoWeka, 
which will be discussed elsewhere.

In the following sections, we will provide an example of the 
practical use of AutoWeka in constructing QSAR/QSPR models 
(see Note 2). This is demonstrated in a step-by-step manner using 
a set of curcumin analogs as a case study.

2 Materials

There are several ways in which one can acquire the data that is to 
be used for QSAR/QSPR modeling. It can be measured data from 
one’s own experiments, compiled from the primary literature, 
retrieved from curated databases, or even all of the above. In most 
cases, accessibility to the primary literature is heavily dependent on 
institutional or personal subscription, while there are a growing 
number of open access journals that are freely available for readers.

2.1 Data Source
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Typical journals describing the implementation of QSAR/
QSPR models include but are not limited to the following:

●● Bioinformatics
●● Bioorganic & Medicinal Chemistry
●● Bioorganic & Medicinal Chemistry Letters
●● BMC Bioinformatics
●● Briefings in Bioinformatics
●● Chemical Biology & Drug Design
●● Chemometrics and Intelligent Laboratory Systems
●● Chemosphere
●● Computational and Theoretical Chemistry (formerly Journal of 

Molecular Structure: THEOCHEM)
●● Computational Biology and Chemistry
●● European Journal of Medicinal Chemistry
●● International Journal of Quantum Chemistry
●● Journal of Chemical Information and Modeling
●● Journal of Cheminformatics
●● Journal of Chemistry
●● Journal of Chemometrics
●● Journal of Computational Biology
●● Journal of Computational Chemistry
●● Journal of Computer-Aided Molecular Design
●● Journal of Enzyme Inhibition and Medicinal Chemistry
●● Journal of Medicinal Chemistry
●● Journal of Molecular Graphics and Modelling
●● Journal of Molecular Modeling
●● Journal of Theoretical and Computational Chemistry
●● Letters in Drug Design & Discovery
●● Medicinal Chemistry Research
●● Molecular Informatics
●● Molecular Simulation
●● PLoS Computational Biology
●● SAR and QSAR in Environmental Research

The following databases contain curated bioactivity data that 
have either been deposited by the laboratory generating the data 
or compiled from the literature:

●● BindingDB—a database containing ~1,000,000 pieces of 
interaction data for ~6,500 protein targets and ~427,000 small 
molecules. It is accessible at http://www.bindingdb.org.

AutoWeka
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●● ChEMBL—a database containing ~12,000,000 pieces of 
interaction data for ~9,000 protein targets and ~1,500,000 
small molecules. It is accessible at https://www.ebi.ac.uk/
chembldb.

●● DrugBank—a database containing ~6,800 drug entries span-
ning FDA-approved small molecules, FDA-approved peptide/
protein drugs, nutraceuticals, and experimental drugs. It is 
accessible at http://www.drugbank.ca.

●● PubChem—is comprised of three linked databases spanning 
substance, compound, and bioassay. It is accessible at http://
pubchem.ncbi.nlm.nih.gov.

●● WOMBAT—a database containing ~79,000 in vivo measure-
ment data, ~330,000 compounds, and ~1,900 protein targets. 
It is commercially available at http://www.sunsetmolecular.com.

Chemical structures can be drawn into the computer using any of 
the following software tools:

●● Accelrys Draw (available at http://www.accelrys.com)
●● MarvinSketch (available at http://www.chemaxon.com)
●● OpenEye VIDA (available at http://www.eyesopen.com)

Chemical structure file format conversion tools of use include:

●● Babel (available at http://www.eyesopen.com)
●● Open Babel (available at http://www.openbabel.org)

Molecular structures can be refined using online tools:

●● CORINA Online Demo (available at http://www.molecular- 
networks.com/online_demos/corina_demo)

●● COSMOS (accessible at http://cosmos.igb.uci.edu)

In certain cases where the molecular structure is relevant or of 
importance for use in prediction, it can also be subjected to geom-
etry optimization via quantum chemical calculations:

●● Gaussian (commercially available at http://www.gaussian.
com)

●● GAMESS (available at http://www.msg.ameslab.gov/gamess)
●● HyperChem (commercially available at http://www.hyper.

com)
●● MOLCAS (commercially available at http://www.molcas.org)
●● MOPAC (available at http://openmopac.net)

The next step is to generate numerical descriptions of compounds 
to be investigated; a wide range of software is available to perform 
this task. For example, common compounds may be available from 

2.2 Drawing 
and Refining Chemical 
Structures

2.3 Calculating 
Molecular Descriptors
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the MOLE-db website (Accessible at http://michem.disat.unimib.
it/mole_db). Moreover, quantum chemical descriptors can be 
obtained from the aforementioned software such as Gaussian, 
GAMESS, etc. Several other categories of molecular descriptors 
could be obtained from the following software:

●● CDK Descriptor GUI (available at http://www.rguha.net/
code/java/cdkdesc.html)

●● ChemAxon JChem Calculator Plugins (available at http://
www.chemaxon.com/jchem)

●● Dragon (commercially available from http://www.talete.mi.it)
●● E-Dragon (accessible at http://www.vcclab.org/lab/edragon)
●● MODEL (accessible at http://jing.cz3.nus.edu.sg/cgi-bin/

model/model.cgi)
●● PaDEL (available at http://padel.nus.edu.sg)

Prior to constructing the QSAR/QSPR model, the block of X 
molecular descriptors and Y bioactivity values are combined and 
prepared in ARFF file format for use as input to AutoWeka.

●● Spreadsheet program
 – Microsoft Excel (commercially available at http://office.

microsoft.com/excel)
 – OpenOffice (freely available at http://www.openoffice.

org)
●● Text editor

 – Notepad++ (freely available at http://notepad-plus-plus.
org) EditPad Lite (freely available at http://www.edit-
padlite.com)

●● CSV to ARFF converter
 – csv2arff (accessible from http://slavnik.fe.uni-lj.si/markot/

csv2arff/csv2arff.php)

It should be noted here that multivariate analysis or the actual pro-
cess of constructing the QSAR model is performed using AutoWeka 
(Freely available at http://www.mt.mahidol.ac.th/autoweka). It is 
in this phase that parameter optimization takes place in an auto-
mated fashion. Completed results will contain information on the 
best set of parameters for the selected machine learning algorithm.

After completing AutoWeka calculations, results from parameter 
optimization could be visualized using the Python scripts available in 
the Download section at http://www.mt.mahidol.ac.th/autoweka. 
Alternatively, plots of the results could also be created using statis-
tical graphical software such as SigmaPlot (Commercially available 
from http://www.sigmaplot.com).

2.4 Data Compilation

2.5 Multivariate 
Analysis

2.6 Plotting Graphs
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3 Methods

At this phase, the practitioner decides on the data to be used in 
their QSAR/QSPR project and therefore retrieves the necessary 
information (i.e., chemical name, SMILES, and bioactivity values) 
from resources mentioned in Subheading 2.1; the data are then 
compiled as outlined in Subheading 3.4. In the case study described 
in this chapter, we will be using a data set of 22 curcumin analogs 
with DPPH free radical-scavenging activity as previously reported 
by Venkateswarlu et al. [46] and modeled by Worachartcheewan 
et al. [47]. The bioactivity values were binned to the binary labels 
“low” and “high” activity, denoting compounds affording IC50 
values of greater than and less than 10 μM, respectively. It should 
be noted that in the previously reported QSAR modeling study 
described by Worachartcheewan et al. [47], three compounds 
(nos. 5, 6, and 10) were identified as outliers and subjected to 
removal from the data set, thereby reducing it to 19 compounds.

Chemical structures of curcumin analogs (Fig. 2) are drawn into 
the computer using software described in Subheading 2.2. 
Subsequently, chemical structures are either subjected to a rough 
energy minimization (using a molecular mechanics force field) or a 
more extensive quantum chemical calculation (using a tool such as 
HF, B3LYP, etc.) in order to obtain a more refined structure. 
These structures can be subjected to an initial geometry refine-
ment using the semiempirical Austin Model 1 (AM1) followed by 
Becke’s three-parameter hybrid method using the Lee-Yang-Parr 
correlation functional (B3LYP) along with 6-31g(d) basis set as 
performed previously by Worachartcheewan et al. [47].

Molecular descriptors can be derived from unrefined chemical 
structures, which may be applicable for 1D and 2D descriptors. 
However, in order to derive 3D descriptors, the chemical struc-
tures must first be subjected to geometry optimization using 
quantum chemical calculations as noted above. Depending on 
the software used to generate the molecular descriptors, this can 
lead to the production of hundreds or thousands of descriptors. 
It is common to observe a high degree of collinearity or redun-
dancy among these descriptors, and this issue is best handled by 
performing feature selection to select a smaller subset of informa-
tive descriptors for further multivariate analysis. As this issue is 
beyond the scope of this chapter, readers are directed to previous 
review articles.

One of the first phases of a QSAR/QSPR study is compiling the 
data set of interest, which can be performed by entering essential 
data into an appropriate spreadsheet program. For example, a typical 
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molecule or compound will occupy a row in the spreadsheet where 
the columns can contain the following information: compound 
name, compound ID, XC50 of bioactivity (where X refers to the 
type of bioactivity such as inhibition concentration, effective con-
centration, etc.), SMILES notation, molecular descriptors (molec-
ular weight, logP, number of hydrogen bond donor atoms, number 
of hydrogen bond acceptor atoms, etc.), and the reference or 
data source from which the compounds were obtained (Fig. 3). 
Therefore, as there are 19 curcumin analogs (after removal of three 
outliers) for this case study, this would correspond to 19 rows plus 
the header row (containing the descriptor labels of each column) 
resulting in a total of 20 rows.

The next step is to transform our data set from the spreadsheet 
format to an ARFF file format that is compatible with Weka, since 
this is the machine learning package that powers the software 
developed in AutoWeka. This spreadsheet to ARFF transformation 
can be carried out using a text editor or alternatively using the 
online csv2arff tool. Examples of ARFF input files are shown in 
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Tables 2 and 3 with quantitative and qualitative Y labels. Line 1 
represents the name of the data set, lines 3–8 represent the descrip-
tor names, and lines 11–29 represent the block of descriptors and 
their Y values or labels as correspondingly specified by the follow-
ing terms with the @ symbol preceding it: RELATION, 
ATTRIBUTE, and DATA. The NUMERIC terms that follow the 
descriptor names in lines 3–8 are syntax that are recognized by the 
Weka program as descriptors having quantitative values, whereas 
the braces {} encapsulating the Low and High terms are also syntax 
that are recognized by the Weka program as descriptors having 
qualitative values. It should be noted that the Y descriptor is typi-
cally located as the last variable, whereas X descriptors precede it. 
Generally, QSAR modeling of data sets having quantitative or 
qualitative Y variables is subjected to either regression or classifica-
tion analysis, respectively.

Before we move on to the multivariate analysis phase and actually 
construct the QSAR model, it is pertinent to first provide a glimpse 
of the algorithmic details of machine learning algorithms that 
are commonly used in QSAR/QSPR on biological [47–56] and 
chemical systems [57–61] and which are implemented in AutoWeka.

The artificial neural network (ANN) is a well-known multivariate 
method that is commonly used to develop QSAR/QSPR models. 
ANN takes its inspiration from the biological brain with its organi-
zation of neurons [62]. The single-layer perceptron (SLP), which 

3.5 Machine 
Learning Algorithms

3.5.1 Artificial Neural 
Network

Fig. 3 Screenshot of compiled data using Microsoft Excel
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Table 2 
Example of ARFF input file of curcumin analogs with 
quantitative Y variable

@RELATION RadicalScavengingRegression

@ATTRIBUTE dipole NUMERIC

@ATTRIBUTE gap NUMERIC

@ATTRIBUTE hardness NUMERIC

@ATTRIBUTE softness NUMERIC

@ATTRIBUTE OH NUMERIC

@ATTRIBUTE pIC50 NUMERIC

@DATA

4.82,−0.134,0.067,7.463,2,−1.322

3.53,−0.141,0.071,7.092,2,−1.531

3.793,−0.143,0.072,6.993,2,−1.519

5.91,−0.124,0.062,8.065,2,−1.38

5.819,−0.127,0.064,7.874,0,−1.716

7.447,−0.133,0.067,7.519,2,−1.415

6.721,−0.129,0.065,7.752,2,−1.407

4.584,−0.142,0.071,7.042,2,−1.681

5.27,−0.139,0.07,7.194,2,−1.633

5.122,−0.142,0.071,7.042,2,−2

3.643,−0.146,0.073,6.849,2,−2

3.277,−0.134,0.067,7.463,4,−0.778

3.949,−0.134,0.067,7.463,3,−0.845

6.099,−0.125,0.063,8,4,−0.903

2.758,−0.138,0.069,7.246,3,−0.881

1.995,−0.129,0.065,7.752,4,−0.732

3.507,−0.127,0.064,7.874,4,−0.799

3.901,−0.129,0.065,7.752,5,−0.716

4.116,−0.127,0.064,7.874,6,−0.663
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Table 3 
Example of ARFF input file of curcumin 
analogs with qualitative Y variable

@RELATION 
RadicalScavengingClassification

@ATTRIBUTE dipole NUMERIC

@ATTRIBUTE gap NUMERIC

@ATTRIBUTE hardness NUMERIC

@ATTRIBUTE softness NUMERIC

@ATTRIBUTE OH NUMERIC

@ATTRIBUTE class {Low, High}

@DATA

4.82,−0.134,0.067,7.463,2,Low

3.53,−0.141,0.071,7.092,2,Low

3.793,−0.143,0.072,6.993,2,Low

5.91,−0.124,0.062,8.065,2,Low

5.819,−0.127,0.064,7.874,0,Low

7.447,−0.133,0.067,7.519,2,Low

6.721,−0.129,0.065,7.752,2,Low

4.584,−0.142,0.071,7.042,2,Low

5.27,−0.139,0.07,7.194,2,Low

5.122,−0.142,0.071,7.042,2,Low

3.643,−0.146,0.073,6.849,2,Low

3.277,−0.134,0.067,7.463,4,High

3.949,−0.134,0.067,7.463,3,High

6.099,−0.125,0.063,8,4,High

2.758,−0.138,0.069,7.246,3,High

1.995,−0.129,0.065,7.752,4,High

3.507,−0.127,0.064,7.874,4,High

3.901,−0.129,0.065,7.752,5,High

4.116,−0.127,0.064,7.874,6,High
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is the classical model of ANN, is the simplest type of ANN; it is 
comprised of several input nodes and a single output node as 
shown in Fig. 4.

For a given training sample D = (x1, y1), (x2, y2), …, (xN, yN), we 
can estimate the variable yi by combining the weighted sum of its 
N inputs as follows:
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1  
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where yi belongs to class 1 if the weighted sum is greater than the 
selected threshold; otherwise, yi belongs to class 0. θ(•) is the acti-
vation function that maps the weighted sum of inputs to the out-
put. The most popularly currently used activation functions are 
the logistic sigmoid (1 1/ + −e xi ) and hyperbolic tangent (tanh(xi)). 
In practical application, SLP is unable to solve a nonlinearly sepa-
rable data problem, owing to the fact that during the learning pro-
cess, this approach cannot properly predict all data points on D. 
Thus, the multilayer perceptron (MLP) was proposed for handling 
nonlinearly separable data by adding one or more hidden layers 
(see Fig. 5) [63, 64].

The MLP approach is a type of supervised learning method in 
which the back-propagation algorithm is applied to estimate the 
optimized parameter wi by changing the weighted connection, 
which is dependent on the magnitude of the error (the difference 
between the actual and predicted value). The back-propagation 
algorithm is comprised of two major phases: (1) forward phase and 
(2) backward phase, as briefly described below.

Step 1. Initialize a connection weight wi with a small random value.

Step 2. Randomly select a training sample Di ⊂ D, |Di| = p where 
p < N.

x1

x2

x3

y1

Input
layer

Output
layer

Fig. 4 Schematic architecture of the single-layer perceptron

AutoWeka



134

Step 3. Calculate the partial derivative of weight wi.

Step 4. Update weight wi according to the following equations:
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where wij(n) is the value of wij prior to updating by n times while 
wij(n + 1) is the value of wij after such updates and η is the learning 
rate that determines both the convergence rate and stability of the 
training process while E is the cost or error function.

Step 5. Repeat steps 2–4 for every training sample Di, and repeat 
for these sets until the cost of output errors is minimized.

The support vector machine (SVM) is a popular learning method 
that had been adopted for solving a plethora of problems via clas-
sification and regression analysis. A notable property of SVM is its 
estimation of model parameters by means of the convex 
 optimization approach that guarantees that a local solution is also 
the global optimum [65]. Vapnik first introduced this technique 
based on the principles of structure risk minimization of the statis-
tical learning theory [66, 67]. In practice, the SVM method 
constructs a maximum- margin hyperplane to separate two classes. 
To solve nonlinearly separable data, the SVM method acts in con-
junction with a mapping function Φ(x) : x ∈ RM → RP that is used to 
transform the original data set of M-dimension onto a higher 
dimensional space or feature space of P-dimension where M ≪ P. 
Subsequently, a simple linear classifier f(xi) can then be used for 
classifying P-dimensional samples [68, 69] (shown in Fig. 6).

3.5.2 Support Vector 
Machine

x1

x2

x3

h1

h2

h3

Input
layer

Hidden
layer

y

Output
layer

Fig. 5 Schematic architecture of the multilayer perceptron
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The kernel function K(xi, xj) is used to represent the mapping 
function by taking the inner product between two samples xi and 
xj in D, which is defined as:

 
K x x x x x xi j i

T
j

i j

N

i
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j,( ) = ( ) ( ) = ( ) ( )
=
∑Φ Φ Φ Φ
, 1  
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In practice, given D, SVM is used to construct a linear function 
f(xi) representing the correlation between the structure and bio-
logical activities/chemical properties of data xi:
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where wi ∈ RM are the coefficients, b ∈ R is the bias, and N is the 
number of samples. The most popularly used kernel comprises the 
following:

●● Linear kernel:

 
Φ Φx xi
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●● Polynomial kernel:
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T
j
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where d = 2, 3, and 4 (it should be noted that d = 1 for a linear 
kernel).

●● Radial basis function (RBF) kernel:

 
exp − −( )( )γ x xi j  

(8)

where γ is greater than 0.

Input space Feature space

Kernel function

Φ(x)

Fig. 6 Schematic representation of relationship between input and feature spaces using a mapping function
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In regression problems, when y is a numerical value, estimation 
of the parameter wi can be achieved by utilizing the ε-insensitive 
loss function (Lε(y, f(x, w))) [70, 71] described as follows:
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where y is the actual value, f(x, w) is the predicted function for esti-
mating the output value, and ε is the insensitivity parameter. 
Although SVM is widely popular, SVM and ANN methods both 
suffer from the fact that they are a black-box approach and there-
fore lack interpretability; they do not readily indicate which 
feature(s) is of greatest importance in the structure of the predic-
tion model. Table 4 highlights and compares the advantages and 
disadvantages of SVM and ANN in the context of other commonly 
used learning algorithms in QSAR/QSPR modeling.

We will now proceed with the step-by-step case study of construct-
ing the QSAR model using AutoWeka. Although we try to provide 
as much detail as possible on the practical aspects of using AutoWeka, 
some adjustments may need to be made as the reader adapts this 
protocol to their own projects. As previously mentioned in 
Subheading 3.1, the case study used in this chapter is based on the 
set of 22 curcumin analogs reported by Venkateswarlu et al. [46].

Let us start by going to the website of AutoWeka that is 
accessible at http://www.mt.mahidol.ac.th/autoweka. Readers 
can click on either the Download link on top or the orange 
Download button down below (Fig. 7).

3.6 Multivariate 
Analysis

Table 4 
Summary of computational methods used in QSAR/QSPR modeling

Method Advantage Disadvantage

Built-in 
feature 
selector

Single/
ensemble

ANN Performs well on complex data Low interpretability No Single

SVM Solves nonlinearly separable data Low interpretability No Single

PCA Summarizes a data set without 
losing too much variation

Does not consider relationship 
between X and Y

Yes Single

PLS Simple and interpretable model Requires cross-term Yes Single

DT Simple and interpretable model Requires a number of training 
data sets

Yes Single

RF High interpretability and low 
risk of over-fitting

Complexity method Yes Ensemble

ANN, SVM, PCA, PLS, DT, and RF are acronyms for artificial neural network, support vector machine, principal com-
ponent analysis, partial least squares regression, decision tree, and random forest, respectively

Chanin Nantasenamat et al.
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On the following page, readers have access to the AutoWeka 
User Manual, the Python scripts for creating graphs and plots, as 
well as the AutoWeka software. After agreeing to the terms of the 
license agreement, click on the “I Agree, Please Proceed to Download 
AutoWeka” button (Fig. 8) to proceed. The next page will then 
bring out a registration form that users can fill out, and after its 
submission, the Download link will appear. The zip file of the soft-
ware is approximately 19 MB in size. After successfully download-
ing the file, unzip it to a desired location, and the following 
contents as shown in Fig. 9 (left panel) will appear. After double- 
clicking on the AutoWeka.exe file (left panel) the program window 
will appear (right panel) as shown in Fig. 9. The menu bar contains 
three possible options, Run, Tools, and About, which correspond-
ingly allow users to run the machine learning algorithms for con-
structing the QSAR/QSPR model, adjust the memory value to 
use (Fig. 10), and provide access to the About window.

Now that the software is up and running, let us get started 
with setting up an ANN calculation (Fig. 11) by first clicking on 
Run → Artificial Neural Network. This brings up a new window 
that allows us to set up the various ANN parameters or choose the 
easiest option, which is to use the default parameters. Here we 
click on the Browse button and select the ARFF input file of inter-
est (in our case, the Curcumin_regression.arff) file. Next, click on 
the Default button and finally the Start button to proceed with 
building the ANN model.

Fig. 7 Screenshot of AutoWeka’s website

AutoWeka
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Subsequently, a new window appears that summarizes the 
parameter settings that will be used for the calculation. Upon click-
ing on the OK button, a pop-up window asks for confirmation of 
the name of an automatically generated folder (Fig. 12). Here, we 
can click on the OK button again to use the default name. Next, 
the progress window (Fig. 13) appears; the time required for 
 completion will depend on the complexity of the input data. Upon 
completion, a pop-up notification box appears, and we can then 
click on the OK button to finalize the calculation.

All calculation files are located in the Results folder (Fig. 14) that 
also goes by the same folder name in the root folder of AutoWeka, 
meaning that if we unpacked AutoWeka directly to the C drive, 
the relative path of the root folder would be C:\AutoWeka\ and 
thereby the Results folder could be found at C:\AutoWeka\Results\. 
Inside the Results folder, double-click on the Curcumin_analogs 

Fig. 8 Screenshot of the Download page on AutoWeka’s website

Chanin Nantasenamat et al.
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folder to show a sub-folder that is automatically named according to 
the learning method used and the selected parameters. For example, 
if ANN was selected as the learning method and hidden nodes of 
1–25 was chosen then the folder name would start with ANN_
Hidden_1_to_25. The same convention also applies to the other 
parameters that will be appended at the end of the abovementioned 
folder name.

Inside the ANN results folder (Fig. 15), there are three 
sub- folders corresponding to the three ANN parameters, accord-
ingly named as HiddenNode, LearningAndMomentum, and 
TrainingTime. Double-clicking on one of the sub-folders reveals a 
collection of sequentially numbered files where one parameter set-
ting will generate one calculation output file. Thus, for an investi-
gation of 25 hidden nodes (also bearing in mind that for each 
parameter investigated, ten separate runs are performed owing to 
the inherently random nature of the weight initialization of the 
back-propagation algorithm of ANN), a total of 25 × 10 = 250 out-
put files will be generated. Subsequently, an average value for each 
investigated parameter will be derived from these ten calculations 
and saved into a new file called AvgHidden.txt. As data values 
within the AvgHidden.txt results file are in a tab-delimited format, 

Fig. 9 Screenshot of the contents of the zip file of AutoWeka software (left panel) and upon opening the 
AutoWeka program (right panel)

AutoWeka
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Fig. 10 Screenshot of adjusting the memory settings to be used by AutoWeka

Fig. 11 Screenshot of setting up an ANN calculation

Chanin Nantasenamat et al.
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Fig. 12 Screenshot of pop-up windows that appear prior to ANN calculations

Fig. 13 Screenshot of an ongoing (left panel) and completed (right panel) ANN calculation

AutoWeka
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it can be readily visualized by importing the file (or copying and 
pasting the data) into Microsoft Excel (Fig. 16). For convenience, 
the best parameter settings along with a summary of the statistical 
performance are provided in the SummaryHidden.txt file.

An alternative way of assessing the raw numerical data of the 
calculation results is to make a visual representation of it by creat-
ing graphical plots. This can be carried out by using the prewritten 
Python scripts or the graphical plot software mentioned in 
Subheading 2.6. Graphical plots created by the former are shown 
in Fig. 17.

Fig. 14 Screenshot of the method for accessing the calculation results folder

Chanin Nantasenamat et al.



Fig. 15 Screenshot of calculation results as divided by the three folders of the optimized parameters: 
HiddenNode, LearningRateAndMomentum, as well as TrainingTime. Shown are contents from the AvgHidden.
txt file found in the HiddenNode folder. It should be noted that the same structure and organization of calcula-
tion results apply to the other two folders

Fig. 16 Screenshot of AvgHidden.txt file as depicted in Microsoft Excel
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a 

b 

c 

Fig. 17 Graphical plots from the parameter optimization process for (a) the number 
of hidden nodes, (b) the number of learning epochs, and (c) the learning rate and 
momentum

Chanin Nantasenamat et al.
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4 Notes

 1. AutoWeka can be used in conjunction with Weka if users would 
like to benchmark their models with other learning algorithms.

 2. In a typical QSAR modeling project, the rate-limiting step, 
that is, the lengthiest step, is generally that of data compilation 
and curation. It is here that critical errors (e.g., correctness of 
data entry) must be identified to ensure data integrity. The 
next most time-consuming step is the parameter optimization 
phase, in which several iterations of parameter fine-tuning are 
carried out to produce the best performance. AutoWeka han-
dles the latter point automatically as it seeks the best set of 
parameters.
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Chapter 9

Ligand Biological Activity Predictions Using Fingerprint- 
Based Artificial Neural Networks (FANN-QSAR)

Kyaw Z. Myint and Xiang-Qun Xie

Abstract

This chapter focuses on the fingerprint-based artificial neural networks QSAR (FANN-QSAR) approach to 
predict biological activities of structurally diverse compounds. Three types of fingerprints, namely ECFP6, 
FP2, and MACCS, were used as inputs to train the FANN-QSAR models. The results were benchmarked 
against known 2D and 3D QSAR methods, and the derived models were used to predict cannabinoid (CB) 
ligand binding activities as a case study. In addition, the FANN-QSAR model was used as a virtual screen-
ing tool to search a large NCI compound database for lead cannabinoid compounds. We discovered several 
compounds with good CB2 binding affinities ranging from 6.70 nM to 3.75 μM. The studies proved that 
the FANN-QSAR method is a useful approach to predict bioactivities or properties of ligands and to find 
novel lead compounds for drug discovery research.

Key words Quantitative structure-activity relationship (QSAR), Fingerprint, Artificial neural networks 
(ANN), Biological activity, Cannabinoid

1 Introduction

Quantitative structure-activity relationship (QSAR) studies play 
essential roles in pharmaceutical research to identify and generate 
high-quality leads in the early stages of drug discovery [1–3]. 
QSAR studies help reduce the costly failures of drug candidates by 
identifying promising lead compounds and reducing the number 
of costly experiments. Such studies correlate chemical or structural 
features of compounds with their bioactivities. Descriptors are 
used to encode molecular features, and a mathematical relationship 
among a set of descriptors and biological endpoints of existing 
compounds is derived to construct a QSAR model which is then 
used to predict activities of new structures. Hence it is important 
to have a robust model which can learn important molecular 
features from a set of training compounds and then recognize such 
features in new structures to effectively predict their biological 
endpoints or activities.
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The artificial neural networks (ANN) method is a machine 
learning algorithm with adaptive learning behavior in which the 
algorithm learns from previous examples and adapts to changes in 
input parameters. In comparison with receptor docking search [4], 
ligand similarity search [5, 6], machine-learning-based search 
[7, 8], and QSAR approaches [9–11], the ANN method possesses 
good generalization and pattern recognition ability for unseen 
data. Such features make it effective and robust for nonlinear 
regression problems with multiple inputs. In fact, several studies 
have used the ANN algorithm to predict molecular properties or 
biological endpoints of chemical analogs in several case studies 
such as anti-diabetes, anticancer, anti-HIV, and allergenicity pre-
diction [12–16].

In this chapter, we focus on the fingerprint-based ANN-QSAR 
(FANN-QSAR) research work [17] in predicting biological activi-
ties of structurally diverse cannabinoid (CB) ligands using ANN. 
To the best of our knowledge, there have been no previous studies 
which have used molecular fingerprints as descriptors to predict 
biological activities (such as pIC50 or pKi), although a few studies 
have been reported to predict ligand classes [18, 19]. Three types 
of molecular fingerprints were used as network inputs to train 
ANN-QSAR models, and the results were compared to well-known 
2D and 3D QSAR methods [1] using five data sets. As a case study, 
we used the FANN-QSAR method to predict binding affinities 
of cannabinoid ligands using a large and structurally diverse CB 
ligand data set [20]. In addition, we applied the method as a vir-
tual screening tool to find new cannabinoid ligands from a large 
NCI database containing over 200,000 compounds, and we found 
three compounds with good cannabinoid receptor binding affini-
ties which were experimentally validated. The results demonstrated 
that combination of molecular fingerprints and ANN can lead to a 
reliable and robust high-throughput virtual screening method 
which can be a useful tool in chemogenomics and computer-aided 
drug discovery research.

2 Methods

As shown in Table 1, a total of six data sets were used in this study. 
Five of them were compiled by Sutherland et al. [21] and were 
downloaded from their supplemental data. The sixth data set, can-
nabinoid receptor 2 (CB2) data set, was curated by the Xie lab [5, 
20]. For this data set, if there were more than one reported CB2 
activity for a ligand, an average activity was used.

Once the structure-activity relationship (SAR) data were col-
lected, each data set was then divided into training, validation, 
and testing sets. For the ACE, AchE, BZR, COX2, and DHFR 
data sets, the same training and testing data sets provided by 

2.1 Data Sets
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Sutherland et al. were used in order to allow the direct comparison 
of FANN- QSAR models to 3D and 2D QSAR models reported 
[21]. For each data set, 10 % of randomly selected compounds 
from the training set were used as a validation set. For the canna-
binoid data set, the training and test sets were randomly divided. 
The training set contained 80 % of the compounds while the test 
set contained 10 %; the other 10 % were used as a validation set. 
The training set was used to train the model while the validation 
set was used to prevent overfitting of the model. The test set was 
used as an external set to evaluate the generalization ability of the 
trained FANN- QSAR models. The numbers of compounds found 
in each training, validation, and test sets for each data set are sum-
marized in Table 2. For statistical modeling, the process was 
repeated five times for each data set, resulting in five different 
pairs of randomly divided training and test sets.

A feed-forward back-propagation neural network method was 
implemented using MATLAB® R2007b Neural Network Toolbox 
[22, 23]. As shown in Fig. 1, there are three layers in the network: 
an input layer, a hidden layer, and an output layer. Three different 
types of molecular fingerprints, namely FP2 [24], MACCS [25], 

2.2 Implementation 
of Fingerprint- Based 
Artificial Neural 
Network QSAR 
(FANN-QSAR)

Table 1 
Summary of six data sets used in the FANN-QSAR model development

Target/receptor name Number of inhibitors pIC50 range Reference

Angiotensin-converting enzyme (ACE) 114 2.1–9.9 [45]

Acetylcholinesterase (AchE) 111 4.3–9.5 [46, 47]

Benzodiazepine receptor (BZR) 147 5.5–8.9 [48]

Cyclooxygenase-2 (COX2) 282 4.1–9.0 [49–58]

Dihydrofolate reductase inhibitors (DHFR) 361 3.3–9.8 [59–63]

Cannabinoid receptor subtype-2 (CB2) 1,699 3.9–10.8 [20]

Table 2 
Number of training, validation, and testing set compounds in each data set

ACE AchE BZR COX2 DHFR CB2

Training set 69 67 89 170 214 1,361

Validation set 7 7 9 18 23 169

Test set 38 37 49 94 124 169

Total 114 111 147 282 361 1,699

Ligand Biological Activity Predictions
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and Extended-Connectivity Fingerprint (ECFP6) [26], were used 
in this study. The generation of fingerprints is described in 
Subheading 3. The number of input layer neurons was equal to the 
size of the fingerprint. For example, FP2 and ECFP6 fingerprints 
have 1,024 bits and therefore, the number of input neurons is 
equal to 1,024. Similarly, there are 256 input neurons for the 
MACCS fingerprint. The number of hidden layer neurons was var-
ied between 100 and 1,000. The networks were trained using gra-
dient descent with momentum training function (traingdm) to 
update weights and biases, the tangent sigmoid transfer function 
(tansig) for the hidden layer and the linear transfer function (pure-
lin) for the output layer. 10 % randomly selected compounds from 
the training data were used as a validation set to decide when to 
stop training. The model training was stopped after 4,000 epochs 
(iterations) or if the mean square error (MSE) of prediction on the 
training set had reached the minimum value of 0.1. In addition, 
early stopping was enabled when the prediction error on the vali-
dation set increased for 300 epochs and the weights and biases at 
the minimum of the validation error were returned. The optimal 
number of hidden neurons was selected via cross-validation experi-
ments in which the model was trained using different numbers of 
hidden neurons, and an average of training set and validation set 
mean squared errors (MSE) was calculated. The number of hidden 
neurons which gave the lowest average MSE was used as the opti-
mal number for subsequent model testing on the test set. The 
mean squared error (MSE) is defined as
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Fig. 1 Graphical representation of the fingerprint-based ANN-QSAR (FANN-QSAR) model. (Reprinted with per-
mission from ref. 17. Copyright (2012) American Chemical Society)
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where T is the total number of training samples, t(i) is the target 
value of the ith sample, and p(i) is the predicted value of the ith 
sample.

The performance of the FANN-QSAR was compared to those of 
other reported 3D- and 2D-QSAR methods, including CoMFA 
[27], CoMSIA [28], Hologram QSAR (HQSAR) [29, 30], QSAR 
by eigenvalue analysis (EVA) [31], back-propagation feed-forward 
neural network implemented in Cerius2 using 2.5D descriptors 
(NN 2.5D), and ensemble neural network [32] (NN-ens) using 
2.5D descriptors which were implemented and tested by Sutherland 
et al. [21]. Three different fingerprints, namely FP2, ECFP6, and 
MACCS, were used as inputs for FANN-QSAR models, and each 
model was trained separately for each fingerprint type. During each 
training process, a cross-validation experiment was performed to 
decide the optimal number of hidden neurons which was used sub-
sequently on the test set prediction. To compare objectively, the 
FANN-QSAR models were trained and tested on the same training 
and test data sets provided by Sutherland et al. [21]. Three FANN- 
QSAR models were named as follows based on which molecular 
fingerprint was used as an input: ECFP6-ANN-QSAR, FP2-ANN- 
QSAR, and MACCS-ANN-QSAR. Results of CoMFA, CoMSIA 
basic, HQSAR, EVA, NN (2.5D), and NN-ens (2.5D) methods 
were taken from the work of Sutherland et al. [21].

Final correlation coefficient (r2 test) values of each data set are 
listed in Table 3. Comparisons of r2 (test) values across all data sets 
show that ECFP6 fingerprint-based ANN-QSAR model (ECFP6-
ANN- QSAR) performed better than FP2 and MACCS fingerprint- 
based models for all data sets. For ACE, AchE, and COX2 data 
sets, the CoMFA model performed better than ECFP6-ANN- 
QSAR model but by a small margin. The ECFP6-ANN-QSAR 
model performed better for the DHFR and BZR data sets. 
Performance of the CoMSIA model was similar to that of the 
ECFP6-ANN-QSAR model. It is important to note that CoMFA 

2.3 Comparison 
of the FANN- QSAR 
Model with Other 
Methods

Table 3 
Comparison of results from different QSAR methods

ECFP6-
ANN- QSAR

FP2-ANN- 
QSAR

MACCS-
ANN- QSAR CoMFA

CoMSIA 
basic HQSAR EVA

NN 
(2.5D)

NN-ens 
(2.5D)

ACE 0.41 0.2 0.08 0.49 0.52 0.3 0.36 0.39 0.51

AchE 0.43 0.13 0.04 0.47 0.44 0.37 0.28 −0.04 0.21

BZR 0.31 0.08 0.06 0 0.08 0.17 0.16 0.39 0.34

COX2 0.28 0.22 0.23 0.29 0.03 0.27 0.17 0.31 0.32

DHFR 0.63 0.43 0.48 0.59 0.52 0.63 0.57 0.42 0.54
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and CoMSIA are field-based 3D QSAR methods which require 
similar scaffolds and high-quality molecular alignments to make 
effective predictions [11]. On the other hand, ECFP6-ANN- 
QSAR is a fingerprint-based method which works on structurally 
diverse data sets and requires no alignment during the model train-
ing process, which makes it more robust and high throughput in 
virtual screening. However, different fingerprints can produce dif-
ferent results and, in our work, ECFP6 produced an overall better 
result across different data sets compared to FP2 and MACCS fin-
gerprints. In addition to 3D QSAR methods, the FANN-QSAR 
models were compared to another 2D QSAR method known as 
hologram QSAR (HQSAR), which is based on molecular holograms 
containing counts of molecular fragments similar to fingerprints. 
It can be observed that ECFP6-ANN-QSAR performed consis-
tently better than HQSAR in all data sets except for DHFR data 
set resulting in the same r2 test value (0.63). The FANN- QSAR 
models were also compared to other neural network approaches 
that used 2.5D descriptors as reported by Sutherland et al. The 
ECFP6-ANN-QSAR model performed better than the NN (2.5D) 
method in three out of five data sets and an ensemble of ten neural 
networks (NN-ens) approach using 2.5D descriptors performed 
slightly better than ECFP6-ANN-QSAR model in three out of five 
data sets. It is important to note that all QSAR models failed for 
COX2 and BZR data sets (r2 test < 0.34) and had moderate perfor-
mances (r2 test < 0.64) for the other three data sets. Overall, the 
ECFP6-ANN-QSAR model performed consistently across all data 
sets and its performance was comparable to other 3D, 2D, and 
neural networks QSAR methods previously reported.

We extended the application of FANN-QSAR by predicting the 
binding activities of cannabinoid ligands. A total of 1,699 struc-
turally diverse cannabinoid ligands with reported CB2 binding 
affinities were used. The CB2 binding activity data were down-
loaded from the CBID data set compiled by the Xie lab (http://
www.cbligand.org/cbid/index.php). The ligands were randomly 
divided into training and test sets. FANN-QSAR models using dif-
ferent fingerprints were trained on training sets and the optimal 
numbers of hidden neurons were selected via cross-validation. 
Figure 2 contains a summary of cross-validation results for all three 
FANN-QSAR models. It can be observed that different training 
and test sets as well as different types of fingerprints resulted in dif-
ferent optimal numbers of hidden neurons, which suggested that 
cross-validation experiments are necessary to train neural networks 
for the best results.

After such training and parameter tuning, the predictive accu-
racy of the final model on the test set was evaluated. The process 
was repeated five times and a summary of r2 values from each round 
of experiments can be seen in Table 4. Within each round, the 

2.4 Cannabinoid 
Receptor Binding 
Activity Prediction 
for Known 
Cannabinoid Ligands
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same training and test compounds were used across all three 
FANN-QSAR models. For example, the same training and test 
compounds in Round 1 of the ECFP6-ANN-QSAR model were 
used in the Round 1 of the FP2-ANN-QSAR and MACCS-ANN- 
QSAR models. As shown in the table, the ECFP6-ANN-QSAR 
model consistently outperformed the FP2- and MACCS-ANN- 
QSAR models in all five rounds of experiments. The ECFP6-
ANN- QSAR model achieved an average r2 test value of 0.56 
(r = 0.75) across all repeat experiments compared with 0.48 (r = 0.69) 
and 0.45 (r = 0.67) for the FP2- and MACCS-ANN-QSAR mod-
els, respectively. Results showed that the ECFP6 fingerprint was 
better than FP2 and MACCS fingerprints for the cannabinoid data 
set as well as the other five data sets. In fact, it has been also 
reported that circular fingerprints such as ECFP6 fingerprints are 
found to be more useful in virtual screening and ADMET properties’ 

MACCS-
ANN-QSAR

Optimal No. of 
Hidden Neurons

Training 
Set MSE

Validation
Set MSE

Average 
MSE

Round 1 800 0.354 0.781 0.567

Round 2 600 0.384 0.783 0.583

Round 3 900 0.361 0.617 0.489

Round 4 800 0.352 0.749 0.550

Round 5 800 0.339 0.605 0.472
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FP2-ANN-
QSAR

Optimal No. of 
Hidden Neurons

Training 
Set MSE

Validation
Set MSE

Average 
MSE

Round 1 700 0.300 0.809 0.554

Round 2 800 0.360 0.713 0.537

Round 3 800 0.360 0.466 0.413

Round 4 700 0.305 0.716 0.511

Round 5 700 0.290 0.606 0.448
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ECFP6-
ANN-QSAR

Optimal No. of 
Hidden Neurons

Training 
Set MSE

Validation
Set MSE

Average 
MSE

Round 1 1000 0.182 0.795 0.488

Round 2 600 0.257 0.749 0.503

Round 3 200 0.176 0.593 0.384

Round 4 900 0.223 0.594 0.409

Round 5 300 0.151 0.638 0.394
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Fig. 2 Cross-validation results of each FANN-QSAR method on CB2 ligand data set. (Reprinted with permission 
from ref. 17. Copyright (2012) American Chemical Society)
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prediction studies [33, 34]. Our results suggested that an ECFP6 
fingerprint- based ANN-QSAR model can be used in virtual screen-
ing of chemical ligands in a high-throughput manner since it only 
requires 2D fingerprints as inputs instead of 3D molecular align-
ments and bioactive conformations, as required by other 3D QSAR 
methods.

To more rigorously test the predictive ability of the FANN-QSAR 
method on new cannabinoid compounds which are not in the Xie 
group’s cannabinoid ligand training data set, the most recently 
reported cannabinoid ligands and associated CB2 binding affinity 
data were downloaded from ChEMBL database [35]. These com-
pounds were not found in the training (CBID) data set and were 
collected to be used as a new test set in order to evaluate the 
FANN-QSAR performance. The new test data set consisted of 
295 compounds with reported CB2 Ki values which were then 

2.5 Cannabinoid 
Receptor Binding 
Activity Prediction 
on Newly Reported 
Cannabinoid Ligands

Table 4 
A summary of the performance of each FANN-QSAR model on CB2 ligand 
data set

Round r2 Training r2 Test

ECFP6-ANN-QSAR

1 0.86 0.55

2 0.81 0.63

3 0.87 0.53

4 0.84 0.56

5 0.89 0.54

FP2-ANN-QSAR

1 0.78 0.55

2 0.74 0.60

3 0.74 0.38

4 0.77 0.46

5 0.79 0.40

MACCS-ANN-QSAR

1 0.74 0.48

2 0.72 0.53

3 0.74 0.37

4 0.74 0.47

5 0.75 0.41
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converted to pKi values. 41.55 % of new CB2 ligands were less 
than 80 % similar (2D Tanimoto similarity) and 25.34 % were less 
than 70 % similar to the training compounds. This similarity analy-
sis indicated that the newly reported CB2 compounds contained a 
good mixture of similar and dissimilar compounds to the training 
database. The ECFP6-ANN-QSAR model was trained using the 
1,699 CB2 ligand (CBID) data set. Twenty independent rounds 
of training and testing were performed. For each round, a ran-
domly selected 90 % of the database was used for training and the 
remaining 10 % was used for validation. As a result, 20 indepen-
dent trained models were derived. After 20 rounds of predictions, 
an average predicted value for each test compound was calculated. 
The average residual value was 0.046 and the standard deviation 
was 1.03. Seventeen outlier compounds with residuals more than 
two standard deviations away from the average residual were 
removed. Figure 3 shows a scatter plot of experimental and pre-
dicted pKi values of 278 test compounds after such outlier 
removal. The linear regression of these 278 data points provided 
an r of 0.75, slope of 0.686, and y intercept of 2.249. This result 
indicated that there was a good correlation between experimental 
and predicted values, given the fact that many of these test com-
pounds have novel structures and were not included in the model 
training and validation process. The result suggested that the 
FANN-QSAR possessed good generalization ability for newly 
reported cannabinoid ligands.

In order to illustrate how the FANN-QSAR model could be used 
in drug discovery research, we applied it as a virtual screening 
tool to search for CB2 lead ligands from the NCI compound data-
base [36]. For consistency, the same 20 trained models in the 

2.6 Virtual Screening 
of the NCI Compound 
Database for Lead 
Cannabinoid Ligands
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Fig. 3 Scatter plot between experimental pKi and predicted pKi values of 278 test cannabinoid ligands after the 
removal of 17 outliers. (Reprinted with permission from ref. 17. Copyright (2012) American Chemical Society)
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previous section were used. The NCI database, containing 329,089 
compounds, was filtered to remove duplicate compounds, isotopes, 
metals, and mixtures using the Tripos Selector program [30, 37]. 
This filtering reduced it to 211,782 compounds that were used as 
a test set for each round of prediction. For each compound the 
ECFP6 fingerprint was generated and used as the network input 
to predict the CB2 receptor binding activity. After 20 rounds of 
predictions, an average predicted value for each compound was 
calculated. The top ranked 50 compounds were selected, but 
only 10 compounds were physically available from the NCI via 
material transfer agreement (MTA). These ten compounds were 
experimentally tested for CB2 activities using a [3H]CP-55940 
competition binding assay experiment. The experimental proto-
col for this validation assay is described in Subheading 3.

Among the ten tested NCI compounds, four (NSC49888, 
NSC174122, NSC369049, and NSC76301) had CB2 Ki between 
6.70 nM (pKi = 8.17) and 3.80 μM (pKi = 5.42). One compound, 
which has a similar chemical scaffold to the well-known cannabi-
noid ligand, delta-9-tetrahydrocannabinol, was found to be a high- 
affinity compound with an average CB2 Ki value of 6.70 nM 
(pKi = 8.17). These four compounds and other similar compounds 
(70 % 2D Tanimoto similarity threshold was used) [38] were not 
found in the training database. Among the top 50 ligands, there 
was one NCI compound (NSC768843) which was more than 
90 % similar (Tanimoto coefficient ≥ 0.9) to a known classical can-
nabinoid ligand (CAS ID: 112830-95-2 or HU210), an analog of 
delta-9-tetrahydrocannabinol, reported in the literature [39]. 
These findings proved that the FANN-QSAR method can find not 
only novel compounds with good CB2 binding affinities but also 
compounds similar to known ligands from a testing database con-
taining thousands of compounds with diverse scaffolds. Hit ligands 
with novel scaffolds can be used as lead compounds for further 
medicinal chemistry optimization and SAR studies, while hits simi-
lar to known ligands provide additional information for scaffold 
hopping and R-group variations which may be useful for medicinal 
chemists. Table 5 contains the structures of NCI hit compounds 
and their experimental pKi as well as predicted values. Apart for 
one compound (NSC746843) that was not available from NCI, 
the other four compounds were experimentally tested in our lab 
and competition binding curves are shown in Fig. 4.

It should be noted that the predicted pKi correlated well with 
experimental pKi for two of the five hit ligands but not for the 
other three ligands. This finding could be attributed to the experi-
mental variability of the reported CB2 binding activities of train-
ing compounds among different research labs, or to a possible 
limitation of 2D fingerprint descriptors which considers individual 
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Table 5 
Identified NCI hit compounds with CB2 binding activities

Structure NSC ID MW ClogP Experimental pKi Predicted pKi

CH3
CH3

CH3

H3C

CH3

CH

HO

O

O

746843 400.55 6.61 8.81a 8.66

CH3

H3C
CH3

CH3
CH3

OH

OO

49888 330.46 5.59 8.17b 8.28

H3C

H3C CH3
O

N

N

N

O

O 174122 463.52 4.76 5.59c 8.41

H3C

H3C

H3CH3C

H3CH3C

CH3

O

O

O

O

O

HO

369049 488.66 4.00 5.51c 8.48

O

O

O

76301 354.44 3.99 5.42c 8.21

aAn average literature reported Ki value of a known cannabinoid compound (HU210) which is more than 90 % similar 
to 746843
bAn average Ki value of two independent experiments performed in duplicate
cAn experimental Ki value of one experiment performed in duplicate
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 fragment contributions but sometimes may not be as effective as 
other 3D descriptors when considering the overall structure of a 
ligand. Fingerprints such as ECFP6 have, however, been found to 
be useful in this study as well as in other several cheminformatics 
studies [5, 33, 34], and they are known to be robust and time 
efficient for high-throughput virtual screening applications where 
hundreds of thousands of chemicals are involved, as in this study. 
To conclude, results from the virtual screening exercise that was 
validated experimentally demonstrated that the derived FANN-
QSAR model is capable of successfully identifying lead CB2 com-
pounds with good binding affinities as well as compounds similar 
to known cannabinoid ligands, and providing additional insights 
for R-group and scaffold hopping of known ligands.

Fig. 4 CB2 receptor binding affinity Ki values of four NCI hit compounds measured by [3H]CP-55940 radioli-
gand competition binding assay using human CB2 receptors harvested from transfected CHO-CB2 cells. 
(Reprinted with permission from ref. 17. Copyright (2012) American Chemical Society)
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3 Notes

We used three different types of molecular fingerprints, namely 
FP2 [24], MACCS [25], and Extended-Connectivity Fingerprint 
(ECFP6) [26]. FP2 is a path-based fingerprint which indexes 
molecular fragments and MACCS is a key-based fingerprint which 
uses 166 predefined keys, whereas ECFP6 is a circular topological 
fingerprint which is derived using a variant of the Morgan algo-
rithm [40]. FP2 and MACCS fingerprints were generated using 
the “babel” command from the OpenBabel program [24] while 
ECFP6 fingerprints were generated using the “generatemd” com-
mand from the ChemAxon program (http://www.chemaxon.
com). Ligand chemical structures stored in SDF format were 
used as inputs to generate fingerprints. For each ligand, polar 
hydrogens were added using the OpenBabel program [24] before 
fingerprint generation. All fingerprints were fixed-length binary 
representations with 1,024 bits for both ECFP6 and FP2, and 
256 bits for MACCS fingerprint. Fingerprints were generated for 
each ligand in the data sets and used as inputs to train the FANN-
QSAR models.

In order to evaluate CB2 binding activity of virtually screened 
ligands, competition binding assays were performed by displacing 
radioactive [3H]CP-55940 radioligand. The experimental proto-
col has been established based on previously reported procedures 
[41–44] and is described briefly below.

A Perkin Elmer 96-well TopCounter is used in our laboratory 
to measure the CB receptor binding affinity (Ki) of the in silico- 
screened ligands by displacing [3H]CP-55940. In competition 
binding experiments, ligands were diluted in dilution buffer 
(50 mM Tris, 5 mM MgCl2, 2.5 mM EGTA) containing 0.1 % 
(w/v) fatty acid-free bovine serum albumin (BSA), 10 % dimethyl 
sulfoxide, and 0.4 % methyl cellulose. Various concentrations of 
ligands/samples are added in the same volume to 2.5 nM [3H]
CP-55940. Incubation buffer (50 mM Tris, 2.5 mM EGTA, 
5 mM MgCl2, 0.1 % (w/v) fatty acid-free BSA) and cell mem-
brane preparations from CHO cells expressing CB2 receptors 
(5 μg per well) are added to a final volume of 200 μL. For the 
saturation binding experiments, varying concentrations of [3H]
CP-55940 (0.05–4 nM) with or without 5 μM of an unlabeled 
known ligand (CP-55940) were incubated with the receptor 
membrane preparations to determine Kd and nonspecific binding. 
After the binding suspensions are incubated at 30 °C for 1 h, the 
reaction is terminated by rapid filtration through microfiltration 
plates (Unifilter GF/B filterplate, Perkin Elmer) followed by five 
washes with ice- cold TME buffer containing 0.1 % BSA on a 
Packard Filtermate Harvester (Perkin Elmer). The plates are then 
dried overnight and 30 μl MicroScint 0 scintillation liquid is added 
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to each well of the dried filter plates. Then the bound radioactivity 
is counted using a Perkin Elmer 96-well TopCounter. The Ki is 
calculated by using nonlinear regression analysis (Prism 5; 
GraphPad Software Inc., La Jolla, CA), with the Kd values for 
[3H]CP-55940 determined from saturation binding experiments. 
This assay is used for determining binding affinity parameters (Ki) 
of ligand-receptor interactions between the CB2 receptor and 
ligands.
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    Chapter 10   

 GENN: A GEneral Neural Network for Learning Tabulated 
Data with Examples from Protein Structure Prediction 

           Eshel     Faraggi      and     Andrzej     Kloczkowski    

    Abstract 

   We present a GEneral Neural Network (GENN) for learning trends from existing data and making 
 predictions of unknown information. The main novelty of GENN is in its generality, simplicity of use, and 
its specifi c handling of windowed input/output. Its main strength is its effi cient handling of the input data, 
enabling learning from large datasets. GENN is built on a two-layered neural network and has the option 
to use separate inputs–output pairs or window-based data using data structures to effi ciently represent 
input–output pairs. The program was tested on predicting the accessible surface area of globular proteins, 
scoring proteins according to similarity to native, predicting protein disorder, and has performed remark-
ably well. In this paper we describe the program and its use. Specifi cally, we give as an example the constru-
ction of a similarity to native protein scoring function that was constructed using GENN. The source code 
and Linux executables for GENN are available from Research and Information Systems at   http://mamiris.
com     and from the Battelle Center for Mathematical Medicine at   http://mathmed.org    . Bugs and problems 
with the GENN program should be reported to EF.  

  Key words     Neural network  ,   Protein scoring  ,   Windowed input  ,   Automatic learning  ,   GENN  ,   Protein 
structure prediction  

1      Introduction 

 Proteins perform their function through structure-based spatial 
and temporal interactions and give rise to the biosphere as we 
know it. More knowledge about them will contribute to our fun-
damental understanding of life and in practical terms will revolu-
tionize medicine, bioscience, and other fi elds. However, in the 
context of present day computational and analytical tools they are 
too large and too complex. This is best exemplifi ed in the ever 
growing gap between the number of known protein structures 
(relatively few) and the number of known protein sequences (rela-
tively many). As of the end of 2013, there are under 100,000 
structures deposited in the Protein Data Bank but over 33 million 

http://mamiris.com
http://mamiris.com
http://mathmed.org


166

protein sequences from about 30,000 different organisms in the 
NCBI RefSeq database. In many other areas of human endeavor 
constantly growing amount of information is being collected. 
Frequently, this information can be useful in other, related or unre-
lated, human endeavors [ 1 – 15 ]. Consumer purchasing history is 
an example where the past purchases of a consumer group can be 
used to assign a probability distribution of future purchases, and 
could, for example, give advertisers critical information for market-
ing strategy. In protein structure prediction too, experimentally 
solved protein structures can be used to infer the structure of 
unsolved proteins. 

 These vast amounts of data require specialized tools to extract 
useful information from them. Here we present one such tool that 
can be used to analyze large amounts of information and learn 
from it based on examples. The learning is achieved through the 
steepest descent training of a two layer neural network. It is able to 
effi ciently handle instance-based and window-based training as will 
be described below. Its novelty is in its ability to handle any quan-
titative information, limited only by hardware, and that it can 
 effi ciently store window-based data, enabling modifi cation of the 
modeling approaches without the need to modify the database. 
For large window-based training these are unique features as far 
as we could fi nd. We term this tool GENN for GEneral Neural 
Network. 

 GENN was programmed in FORTRAN 90. In its design and 
implementation its effi ciency and usability were of major concern. 
It is constructed out of several subroutines that process the data, 
initialize the model, and train it. It is also capable of producing 
predictions from existing single models or producing ensemble 
predictions with expected deviations. Its execution is terminal 
based. It was built on Ubuntu Linux, under the BASH (Bourne 
Again SHell) environment. For the rest we will use that environ-
ment to describe usage. 

 Although GENN can handle any data, it was designed and built 
for questions related to the relationship between the residue 
sequence of a protein and its native structure. Therefore we shall use 
terminology from that fi eld to describe various features of the pro-
gram. In general terms the problem is as follows. We are given the 
residue sequence of a protein, which can be derived from the genetic 
code. This residue sequence is in essence the chemical formula of 
the protein molecule. In turn we are to provide the best prediction 
for the physical structure of this molecule. However, since this is a 
diffi cult problem, certain approximations are usually made, either 
by coarse graining the full atom model, or by looking at derived 
structural properties such as the accessible surface area [ 16 – 26 ]. 

 The general architecture of GENN is given in Fig.  1 . The user 
supplied information includes the feature fi les which include 
 information that will be used to establish a prediction, and the 
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training fi les which contain the information that is to be predicted. 
The error between the neural network predicted value and the 
training values is used to train the weights using the steepest 
descent back propagation method [ 21 ]. These weights are between 
the inputs through hidden layers one and two (H1 and H2, respec-
tively, in Fig.  1 ) and to the prediction output.   

2    Types of Training and Prediction in GENN 

  We use the term  instance-based prediction  to describe cases in which 
each example to be learned from is independent of every other 
example in the database. This is in contrast to  windows-based pre-
diction , to be discussed next, where examples covered in  overlapping 
windows will share common features. All programs related to 
instance-based prediction have a base name of “genn2inst.” 

 An example of instance-based prediction is prediction of global 
protein features. When one wants to predict quantities for entire 
protein sequences, for example the radius of gyration, one is deal-
ing with instance-based prediction. For each protein, various input 
features are gathered but in general different proteins will have 
unique input features that are not shared by other proteins. 
Another example we have implemented using GENN, that will be 
described below, is that of predicting the fi tness of model protein 
structures to the native state. Such a scheme was implemented suc-
cessfully using GENN for the CASP10 experiment [ 27 ].  

2.1  Instance-Based 
Prediction

  Fig. 1    Schematic diagram describing the architecture of GENN. The feature fi les 
include information used to establish a prediction. The training fi les contain infor-
mation to be predicted. The error between the neural network predicted value 
and the training values is used to train its weights. H1 and H2 refer to the fi rst 
and second hidden layers, respectively       
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   Window-based prediction  is used to describe cases where different 
instances, with different outputs, share common inputs. Maybe the 
easiest case to describe is that of predictions for properties of resi-
dues along a protein sequence. In this case, we use sequentially 
neighboring residues (within a window of a certain width) to 
obtain the input features, then as we go along the chain neighbor-
ing residues will share common input features. In this case it is 
wasteful to record the inputs for each instance (residue) separately. 
It is more effi cient to only store the input/output features of the 
protein and extract the appropriate inputs and outputs appropriate 
for each residue. All programs related to window-based prediction 
have a base name of “genn2wind.” More discussion of window- 
based prediction is given in earlier works [ 21 ,  25 ,  28 – 31 ]. 

 Boundary conditions are important for window-based predic-
tion. For example, for residues near a protein terminus the sliding 
window may fall out of range. These considerations are internally 
controlled in GENN. Windows that encompass regions outside 
the boundary of the instance are truncated to include only those 
parts that fall within range. 

 Because of the relative complexity associated with partitioning 
a database of windowed instances we designed the genn2wind ver-
sion to automatically perform an  n -fold cross validation, where  n  is 
determined by the command line options. By default  n  is equal to 
ten and the last partition is taken as the test set. In this mode 5 % 
out of the remaining training data is used for over-fi t protection. 
If one wishes to use only an over-fi t protection set without a test 
set, for example while developing a server, this can be achieved 
using the “-sv” option. This built-in  n -fold cross validation mode 
is limited to the window-based programs. For the instance-based 
programs only an over-fi t set is chosen by default.   

3    Database and Initialization File 

 In general the database is composed of separate directories each 
representing a given instance, a protein in our example. Each direc-
tory contains the input and output fi les associated with each 
instance. In our example the output fi le contains a list of the nor-
malized ASA values to be predicted for each residue. The exact 
details of this normalization will be given later in the text when 
RASA will be defi ned. The input fi les then should have quantities 
that have predictive power with respect to the desired output. 
Specifi c details of the input and output fi les will be given when 
discussing ASAquick. 

 The initialization fi le is used to describe the locations of the 
required information for a given run. An example is provided in 
Fig.  2 . The fi rst line in the fi le gives the path of the head directory 

2.2  Window-Based 
Prediction
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where all the instance directories are located. This should be 
enclosed in double quotes to preserve the slashes in the path name. 
The next line describes the inputs used, which are assumed the 
same for all instances. Each input is represented by a fi le name that 
will contain its values for a particular instance in its instance direc-
tory. Multiple inputs should be separated by spaces. In a similar 
way the third line lists the outputs to be predicted, represented by 
fi les in the instance directory that contains these values. Multiple 
outputs should be separated by spaces. The design of GENN is 
intended to facilitate changing both inputs and outputs for testing 
and research. The remaining lines list the instances on which the 
training will be performed. For the case of instance-based predic-
tion this lists individual instances. For window-based prediction 
this lists a collection of instances grouped together in single fi les, 
for example the residues in a given protein. To allow for user 
 control GENN does not modify the order of the list of instances. 
Randomization of the order of training instances, which can be 
useful, is left to the user.  

 One should note that for window-based prediction, since each 
input fi le can contain many instances (residues) an additional 
requirement on the database is imposed. To ascertain a match 
between inputs and outputs for a given instance two identifi ers are 
used (originally the crystallographer index and the residue type for 
proteins). During the reading of the database both identifi ers are 
checked and the program halts on mismatches between different 
fi les.  

  Fig. 2    Example of the input fi le for GENN. The fi rst line gives the head directory where all the instance directo-
ries are. This should be enclosed in double quotes to preserve the slashes. The next line describes the inputs 
used separated by spaces. The third line lists the outputs to be predicted represented by fi le names separated 
by spaces. The remaining lines list the instances on which the training will be performed       
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4    Training and Prediction 

 The specifi cs of using GENN for training and predicting from data 
are given below. 

  The program is run from the command line. The options associ-
ated with training are given in Table  1 . By default the program 
looks for a fi le called “genn.in” to read the training dataset  structure 
from (initialization fi le). If this fi le does not exist in the directory it 
is necessary to include in the command line a “-l” option followed 
by the name of the initialization fi le.

   Given additional data a model can be retrained by including it 
as the initial condition for the new round of training. This is 
achieved using the “-wf” option followed by the name of the fi le 
containing the weights and parameters of the trained model. 
In this case the weights and other model parameters are used as 
initial values and no randomization is carried out. Then new train-
ing is performed on the new instances.  

  Once a model has been trained all parameters are stored in a fi le. 
This fi le then can be used to give a prediction for new instances. 
In addition a collection of models can be used to produce an 
 average prediction with an accompanying standard deviation. This 
standard deviation can prove benefi cial in cases where quality of 
prediction is desired, but this requires testing on specifi c cases. The 
basic options associated with prediction from a trained model are 
given in Table  1 . Note that some options are common between 
training and prediction tasks, however, model parameters such as 
the activation parameter or others that are related to the model 
architecture are stored in, and read from, the model fi le and should 
be reissued only in the uncommon event that one desires to over-
ride their values.   

5    Special Options 

 Several unique features are provided with GENN. These options 
grew out of several applications related to protein structure predic-
tion [ 21 ,  25 ,  29 – 31 ]. In this section we outline their possible uses. 
Refer to Table  1  for the required syntax. These options are  available 
for the window-based programs. 

  Some cases for window-based prediction can benefi t from a fi lter, 
where predictions over a window are used as inputs for a follow-up 
prediction. Examples include protein secondary structure where a 
fi lter prediction layer is often used [ 21 ,  25 ,  29 ]. While a fi lter layer 
can always be run using a second-stage neural network, for the 

4.1  Training a Model
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      Table 1  
  GENN options   

  Category  a    Flag  b    Description    Default  c  

 -l  db list fi le  genn.in 

 -owf  Weights output fi le 

 -m  Maximum number of epochs  1000 

 -np  Number of database fi les to use  whole db 

 -r  Random seed  time dependent 

 -cv  Test fold index  10 

 -f  Fraction of database for test fold  0.1 

 -wi  Input window size  21 

 -wo  Output window size  1 

 -h1  Number of hidden layer one nodes  21 

 -h2  Number of hidden layer two nodes  21 

 Train  -mi  Maximum number of bad iterations  100 

 -a  Activation parameter  0.2 

 -u  Learning rate  0.001 

 -p  Momentum  0.4 

 -hf  Number of fi lter hidden layer nodes  11 

 -nf  Run network fi lter 

 -gf  Guiding factor  2.d0 

 -ng  Don’t use distance guiding 

 -gi  Number of global inputs  0 

 -go  Number of global outputs  0 

 -df  Use degeneracy fi les 

 -pr1  Predict single fi le (give id) 

 Predict  -prl  File of ids to predict 

 -dw  Not same weight types, reread database 

 -aw  Average over weights in fi le 

 -d  Database head directory 

 -wf  Weights input fi le 

 Both  -so  Average over outputs (nvo) 

 -po  Probability output 

 -h  Print help 

  Options available for GENN 
  a  We distinguish three types of categories for options. “Train” for training specifi c options. “Predict” for prediction 
specifi c options. And, “universal” for options that used in both 
  b  The fl ag or command line option 
  c  Default values, some fl ags either do not have a default but require a value or are logical and do not require a value  
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window-based programs a fi lter layer can be included by using an 
option in the command line. Refer to Table  1  for the appropriate 
syntax. By default the fi lter network runs with 11 nodes, this value 
can be changed as needed. Note that a specifi c name is used to save 
the fi lter model. When getting predictions from trained fi lter mod-
els the fi lter option should also be used.  

  In some instances of window-based prediction the relevance of a 
given location to a particular prediction site can be dependent on 
the distance between the location and the prediction site. In these 
cases it may be helpful to guide the network in that direction. One 
way of achieving this is by introducing an extra set of weights that 
have such distance dependence [ 21 ]. This is the default behavior 
for the window-based program. An option is available to switch off 
this behavior.  

  For certain window-based prediction global variables may be 
important. We shall consider the case of protein secondary struc-
ture to illustrate the point. In a window-based approach the sec-
ondary structure of a given residue is considered in the context 
of a window around it. However, certain parameters such as the 
amino acid composition of the protein may contain information 
about general tendencies to form a specifi c protein class (all-alpha, 
all-beta, alpha/beta, or alpha + beta). This information would typ-
ically not be contained in a limited window view and hence can 
help the prediction. Indeed global input features can signifi cantly 
contribute to the prediction accuracy. To use global inputs/outputs, 
one should store their values in fi les called genn.gin/genn.gut, 
respectively, in the directory corresponding to that instance. 
An option, “-gi” for global input and/or “-go” for global output, is 
required in the command line to include these global fi les. These 
options should be followed by the number of values to use from 
these global fi les enabling control of how much global information 
to use. Note that options for global fi les are only required for train-
ing. The input structure is recorded in the weight fi les and is 
retrieved from them when called to predict.  

  In some cases of window-based prediction one may like to sample 
certain cases more often than others. For example, for disordered 
proteins one may like to sample more of the disordered residues in a 
given protein instance [ 31 ]. In instance-based prediction one can 
include instances and their occurrence at will by repeating them in the 
fi le “genn.in.” For window-based prediction to change the sampling 
frequency within an instance, one includes a fi le with an integer count 
of the number of times (including zero) to train on a given training 
output. Hence, the degeneracy fi le order should match the rest of the 
input/output and should include the corresponding indexes. 
Degeneracy fi les should be stored in instance directories under fi les 
named “genn.dgn,” and an option should be given for their use.  

5.2  Guided Learning

5.3  Global Inputs 
and Outputs

5.4  Degeneracy 
Training
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  GENN is able to predict multiple outputs. This in turn enables 
specifi c functionality besides general multi-output prediction. The 
fi rst option is to treat the multiple outputs as components of 
a multi-state probability vector and train, optimize, and report 
accordingly. While training is not affected by this option, optimiza-
tion is carried on the ability of the trained network to correctly 
distinguish the most dominant component of the probability 
 vector. Reporting also follows the same protocol. This behavior 
was found useful when an ancestor of GENN was used to predict 
protein secondary structure [ 25 ]. 

 Another possibility is to predict several instances of the same 
 output and generate an average prediction from the same trained 
network. This has proven benefi cial in several instances of continuous 
value prediction [ 29 ]. It provides an extra layer of averaging, with 
more control over variation between prediction models and hence 
the ability to average over specifi c random errors in certain circum-
stances. This also generates an estimate for the prediction stability in 
the reported standard deviation over predictions and in this form may 
be benefi cial in assigning prediction stability and accuracy.   

6    Automated Learning 

 GENN was started as the fi rst, and simplest, component of an auto-
mated learning machine. Automated learning here means being 
able to “sit” on a big database (e.g., the Internet) and answer in 
meaningful ways to questions posed by either humans or machines. 
A sort of Watson [wikipedia.org/wiki/Watson_(computer)] but 
without human design. Rather, continuously, progressively, and 
automatically developing an image of the database pertinent to the 
questions it was exposed to in its existence. Here we specifi cally 
mean a non-memorizing learner, it is expected that on certain ques-
tions, different learners will respond differently depending on their 
histories. In this respect GENN was set up to create local networks 
on the fl y. 

 The other, more complex component of such a learning 
machine would require to extract information in a meaningful way 
to describe both input and output features of a general  question/
answer pair. Note that some questions have multiple acceptable 
answers. Also, it would require building a self-sustaining learning 
mechanism. Both these tasks are monumental and would require 
breaking down the various problems further.  

7    Examples 

 In this section we describe work that grew out of this version of 
GENN. Older versions of GENN helped produce an NMR fl uc-
tuation predictor [ 30 ] and a protein disorder predictor termed 

5.5  Types of Output
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SPINE-D [ 31 ], as well as some other applications. GENN was also 
involved in various testing in several labs. SPINE-D participated in 
the CASP9 experiment and was ranked among the top fi ve meth-
ods [ 32 ]. This version of GENN was also used to create ASAquick, 
a fast accessible surface area predictor that uses only single sequence 
information [ 33 ], and a knowledge-based protein scoring function 
termed Seder [ 27 ] which we will present here as an example of use 
of GENN. Seder participated in the CASP10 [ 32 ] experiment as 
the “Kloczkowski_Lab” group. It was ranked second in predicting 
the structure of the “hard” targets category [ 34 ], third for “all” 
targets. It was the only prediction approach that was ranked in the 
top three for both “hard” and “all” cases. 

 This is a good place to point out that for any practical problem, 
the machine learner is only secondary to the problem of represen-
tation and interpretation of the input and the output. Care and 
thought of how to present the input and extract the output 
can produce great improvements in learning and prediction quality. 
To a second degree, given the same input/output information, 
different quality learners can produce different outcomes. For 
example, it has been our general experience that smaller sets of 
data are better learnt by methods such as support vector machines 
while larger sets are better learnt by neural networks, the difference 
being several relative percent accuracy. On the other hand, 
for example, changes of the representation of the input/output for 
predicting dihedral angles of proteins has resulted in almost 100 % 
reduction in the prediction error [ 18 ,  21 ,  28 ,  29 ]. 

 Seder [ 27 ] is an example of an implementation of GENN. 
It was developed specifi cally for structured proteins, to rank struc-
tural models according to their similarity to a native structure. 
In the directory “example/Seder” of the source code distribution 
we give examples for the feature fi les used to make Seder. We use 
the same names to introduce them here, more information is avail-
able in the Seder paper [ 27 ]. The fi rst line of the input fi le “genn.
in” gives the directory location of the database of instances. In the 
second line of “genn.in” the inputs are listed. typ233w.norm con-
tains information about the distance of individual atoms to the 
solvent. There are a total of 936 real numbers making up this 
 feature. res2res refers to the partial energy sums between pairs of 
residues. There are a total of 441 real numbers making up this 
feature. 4bod, dfi re2, and rwplus refer to the four-body [ 35 – 37 ], 
DFIRE2 [ 38 ,  39 ], and RWPlus [ 40 ] potentials, respectively. The 
desired output from the neural network, given on the third line, is 
a transformation of the TM-score [ 41 ,  42 ] used to measure simi-
larity between native and model structures (decoys). For training 
we used server models from the Critical Assessment of protein 
Structure Prediction (CASP) [ 32 ] rounds 5 through 9 (94,717 
structures). The fourth line of “genn.in” points to the single 
 example of an instance given here. This points to subdirectories of 
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the “db” directory. Actual training will involve a list of such 
instances. We average over several training realizations with differ-
ent initial conditions. For each, in addition to randomizing the 
initial weights, we also randomize the list of training proteins (PDB 
+ CASP) and select thirty thousand of them. From this subset, 
30 % were used to compose the over-fi t-protection set while the 
remaining 70 % was used for online training. Over-fi t testing was 
done after each training epoch. 

 The command line for training one realization of a Seder neu-
ral network is given by “nohup time./genn2inst.e -l seder.in -f 0.3 
-mi 200 -h1 51 -h2 31 -r $RANDOM &.” We have included three 
features of Linux/BASH that are not directly related to this work 
but are nonetheless useful. The fi rst is the “nohup” command 
which allows a training of the weights even after logout or loss of 
connection. Note that you must have the ampersand symbol at the 
end of the line for this functionality. The second is the “time” com-
mand which is useful in estimating run times and optimization. 
The third is “$RANDOM” which is a BASH reserved word for 
generation of pseudorandom numbers, it comes in handy in auto-
mation of neural network creation since seeding is done indepen-
dently of your application and depends on the system state (hence 
arbitrary). The training command line given above will train a set 
of weights and output them with other necessary information for 
prediction into a fi le. By design the weights fi le name is constructed 
uniquely from the process ID and other parameters associated with 
the run. Here we shall assume its name to be “wei.out.” A single 
prediction from this fi le for a single protein with ID, PID, would 
look something like “./genn2inst.e -wf wei.out -pr1 PID.” Where 
is it assumed that the directory mentioned in the beginning of wei.
out contains a subdirectory called PID with the necessary fi les. 
Note that GENN is designed to calculate prediction error, hence it 
will look for target fi les even if asked to predict. If such a target fi le 
does not exist, is not in your possession, or a complete blind test of 
the software is sought, trivial (zero fi lled) target fi les should be 
generated. Of course then the reported prediction errors are mean-
ingless. For a collection of proteins with PIDs listed in the fi le  “list.
PID” and taking the average over a collection of weight fi les listed 
in fi le “list.wei” prediction and prediction variation are obtained 
via the command “./genn2inst.e -aw list.wei -prl list.PID.” Both 
these prediction methods produce a text output to screen which 
can be piped to a text fi le. If a list of proteins is given the fi rst col-
umn in the output is the PID listed in “list.wei.” The program 
“awk” can then be easily used to generate individual prediction 
fi les if those are necessary. Note that we have given an example of 
instance-based prediction, and the syntax for window-based pre-
diction is identical. Example fi les for window-based prediction are 
in the subdirectory “db/pdb.window.”  

GEneral Neural Network
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8    Summary 

 We have presented GENN, a general neural network designed 
to train on ad-hoc data. GENN was designed with effi ciency and 
modularity in mind as part of a more complex algorithm of an 
automated learner. It can take any numerical input/output prob-
lem and prepare a corresponding, non-memorizing, model struc-
ture to represent this data. Data can be organized in fi les containing 
individual instances or a collection of ordered instances where each 
line is an individual input/output target. GENN is available from 
Research and Information Systems at   http://mamiris.com    , and 
from the Battelle Center for Mathematical Medicine at   http://
mathmed.org    .     
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Chapter 11

Modulation of Grasping Force in Prosthetic Hands  
Using Neural Network-Based Predictive Control

Cristian F. Pasluosta and Alan W.L. Chiu

Abstract

This chapter describes the implementation of a neural network-based predictive control system for driving 
a prosthetic hand. Nonlinearities associated with the electromechanical aspects of prosthetic devices pres-
ent great challenges for precise control of this type of device. Model-based controllers may overcome this 
issue. Moreover, given the complexity of these kinds of electromechanical systems, neural network-based 
modeling arises as a good fit for modeling the fingers’ dynamics. The results of simulations mimicking 
potential situations encountered during activities of daily living demonstrate the feasibility of this 
technique.

Key words Nonlinear control, Prosthetic hands, Neural networks, Optimization

1  Introduction

A prosthetic hand must be able to exercise precise control of many 
degrees of freedom (DoF) to maintain stable grasping for various 
scenarios in the activities of daily living (ADL). A prosthetic hand 
must be also designed to avoid psychological and muscle fatigue 
(human–machine interaction design) and must meet the electro-
mechanical specifications such as anthropomorphic dimensions, 
weight, and power consumption (mechatronic design).

The device control approach can be classified in four directions 
(Fig. 1). One approach is to control the dynamics of the hand 
using direct information decoded from bio-signals, with vision as 
the only feedback modality (Fig. 1a) [1–9]. In an attempt to reduce 
errors in control, a second approach has been proposed in which 
artificial sensory information (i.e., tactile and proprioceptive) is 
sent back to the user (Fig. 1b) [10–15]. A third approach has been 
designed to reduce psychological effort and hence increase usabil-
ity and controllability of the device. In this case, the control struc-
ture is organized in a hierarchical fashion by dividing it into low 
and high levels of control (Fig. 1c) [16–29]. In the high level of 
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control, bio-signals are decoded to interpret the intention of the 
user (for example, open/close the hand, finger pre-shape), and in 
the low level of control a stand-alone feedback controller is used to 
modulate the finger dynamics automatically. This approach feeds 
artificial sensory information back to the controller but not to the 
user. Finally, in an effort to combine the advantages of the second 
and third approaches into a fourth control structure, researchers 
have adopted the abovementioned hierarchical control strategy 
with sensory feedback to the user (Fig. 1d) [30–33]. This chapter 
focuses on the third approach. More specifically, we discuss the 
implementation of a neural networks-based control system for the 
low level of control.

Several prototypes with a hierarchical control structure have 
been developed. Cipriani et al. developed a control strategy for the 
CyberHand [23] that makes use of the information from an exten-
sive array of sensors placed at the prosthetic hand. This control 
structure is divided into two stages. The first one consists of a pre- 
shaping of the hand, whereas a position control system arranges 
the fingers in a specific configuration (such as precision pinch, tri-
pod, etc.). In the second stage, a force control system adjusts the 
grasping force around the target object. Another hierarchically 
organized control strategy was presented by Light et al. and was 
applied to control the Southampton-REMEDI hand [25]. In a 
multi-stage fashion, the fingers first pre-shape and close around the 
object while applying minimal force. When indicated by the user, 
the system modulates the force applied by the fingers to produce 
stable grasping and to avoid slippage. The object is then released 
when the hand opens after a squeeze signal coming from the user. 
Engeberg et al. have used the Motion Control hand to test several 
control approaches, in which the user controls the grip force from 
EMG signals directly, but at the same time taking advantage of a 
force control system [19–21]. Although this is not a hierarchical 

Fig. 1 Control approaches, modified from ref. 34, with permission
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control structure per se, the modulation of the grip force using 
artificial sensory information can be considered within this line of 
research. In their approach, force-derivative feedback was intro-
duced into the force control loop to improve the sensibility and to 
reduce the force overshoot at the beginning of the grasping [20]. 
A hybrid force-velocity-position control was also implemented to 
address the overshoot issue [21]. Further, using the derivative of 
the shear force, an adaptive slip prevention system was imple-
mented to improve the force control [19]. Another slip prevention 
algorithm that also minimizes object deformation was presented 
by Engeberg and Meek [27]. Andrecioli and Engeberg utilized an 
adaptive controller based on the detection of object stiffness [28]. 
Wettels et al. implemented a control system that adjusts the grip 
force according to a slippage detection system that uses a fluid- 
based tactile sensor to compute the normal and tangential compo-
nents of the grip force [17]. Peerdeman et al. utilized the University 
of Bologna hand IV to test a low level of control based on the 
intrinsically passive controller technique [29].

Consider now the low-cost mechatronic design of a prosthetic 
hand shown in Fig. 2 [35]. This is a five-fingered hand with an 
opposable thumb, with each finger containing two phalanges and 
their tips slightly bent. The thumb, index and middle fingers move 
independently (active fingers), while the ring and little fingers 
(passive fingers) are mechanically coupled to the middle finger. 
The fingers are flexed by DC gear motors by means of a tendon-cable 

Fig. 2 Mechatronic design of a low-cost prosthetic hand, modified from ref. 34, 
with permission
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system connected through a worm gear system attached to a pulley. 
An extensor tendon cable attached to a spring extends the fingers 
when the flexor cable is released. Force sensor resistors (FSR) 
placed at the tips and resistive flex sensors (RFS) placed at the 
dorsal part of the fingers are used to obtain force and flexion 
information, respectively.

Focusing on the low level of control of the hand (from a con-
trol system perspective), a prosthetic hand can be represented as a 
plant, in which inputs control the actuators (i.e., current motor) 
and the outputs are the kinematics and kinetics of the hand (i.e., 
contact force, joint angle, and torque). Thus, prostheses are highly 
nonlinear devices mainly due to the existence of motor dead bands, 
friction and large gear ratios [20], and nonlinear responses typi-
cally observed in low-cost sensors. In order to control the force/
position of the fingers the controller must be able to deal with 
these nonlinearities. In this case, a linear controller (i.e., a PID 
controller) will have difficulties stabilizing the system for all the 
possible scenarios.

One way of dealing with nonlinear systems is by modeling 
their dynamics. A nonlinear model of the relationship between 
inputs (i.e., motor current) and the outputs (i.e., grip force) can be 
used to predict future behaviors and adjust the input accordingly. 
Under these conditions, nonlinear model predictive control 
(NMPC) presents an attractive solution. This technique employs a 
nonlinear model to determine future controllable inputs over a 
defined time horizon [36]. Then, if we can predict future outputs, 
we can use them to compute the optimal input to maintain the 
desired force over this horizon [36].

Creating an acceptable model of the system can be very chal-
lenging, especially if little is known about its dynamics. A potential 
solution arises from a technique commonly referred to as “black 
box modeling”. In black box modeling, several inputs and outputs 
are presented to an algorithm that maps their relationship in an 
iterative fashion [36]. In this context, artificial neural networks are 
commonly used as a black box modeling technique given their ability 
to map any nonlinear function to a specific degree of accuracy [37]. 
Neural networks-based NMPC has been demonstrated to be a 
powerful tool in a wide variety of different scenarios [38–44].

Figure 3 shows a block diagram of an implementation of a 
neural network-based NMPC for controlling the finger dynamics 
of a prosthetic hand. Here u, y, ŷ , θ, and r represent the motor 
current/voltage, the current fingertip force, the predicted finger-
tip force, the finger flex angle, and the force reference, respectively. 
The force reference can be determined for example by a slippage 
detection system so that when slippage is detected, the force 
 reference is changed to counteract this phenomenon. In the fol-
lowing sections, we describe the main two blocks of the NMPC: 
the system model and the optimization. These procedures are 
based mainly on the general methodology presented in [36, 45].
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2  Neural Network-Based Modeling

Neural networks can be used as predictor machines by using an 
autoregressive external input structure (NNARX) (Fig. 4; θ is the 
angle measured by the RFS, which is a non-controllable variable). 
A feedforward architecture is utilized with its inputs delayed in 
time. The neural network is trained with time-delayed inputs and 
current outputs. It maps the relationship between past inputs and 
current outputs, hence is capable of predicting future outputs 
from current inputs. Different training approaches, such as the 
Levenberg–Marquardt method [4], can be applied.

Using a hyperbolic tangent and linear function for the hidden 
and output layer, respectively, the predictions of the NNARX 
model of Fig. 4 are obtained as follows:

 
ˆ tanhy t i b b+( ) = +( )  +lw iwp 1 2  

(1)

 
p = −( ) −( ) −( ) −( ) −( ) −( ) y t y t u t u t t t2 1 2 1 2 1, , , , ,θ θ

 
(2)
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g

Fig. 3 Neural network-based control scheme (from ref. 35, with permission)
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Fig. 4 NNARX structure (from ref. 34, with permission)
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where iw is the input-to-hidden weight matrix, lw is the 
hidden-to- output weight matrix, p is the two-sample-delayed 
input vector, and b1 and b2 are the bias terms

Designing the network structure includes finding the optimum 
number of inputs (number of lags) and hidden layers. In general, 
the rule of thumb is to produce a small testing error. However, it 
is possible that with a high sample frequency (compared to the 
dynamics of the system), a low test error may not necessarily lead 
to a good model [36]. Therefore, in order for the dynamics of the 
system to be modeled correctly, it is also required that no correla-
tion exists between the inputs and the training error and no auto-
correlation of the training error itself [36] (Fig. 5).

The following experiments were conducted to obtain training 
and testing data in order to find the best model. We apply an input 
signal to the motor to make the finger close around objects with 
different shapes and compliances. A chirp signal is applied as the 
input signal to the motor (following [36]):

 u t u A tt( ) = + ( )o sin ω  (3)

 
ω ω ω ωt

t
N

= + −( )start final start
 

(4)

The input signal is swept with different values of uo and A as 
well as with different values of ωstart and ωfinal to excite the full range 
of variables involved in the model. The force and the angle are 
measured for each active finger. The signal amplitudes of the train-
ing and testing data sets are finally scaled to zero mean and unity 
variance. Using these data, several models are then created off-line 
and the ones with the best performance (based on the abovemen-
tioned measurements) are chosen for the online implementation.

Fig. 5 Experiment set up (from ref. 34, with permission)
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3  Optimization

In the optimization block an objective function (Eq. 5) is mini-
mized with respect to the future control inputs. This objective 
function takes into account the error between the predictive out-
puts and the reference values, as well as the changes in the inputs 
at each iteration.

 
J t t r t i y t i u t i

i N

N

i

Nu

,U ( )( ) = +( ) − +( )  + + −( ) 
= =
∑ ∑

1

2 2

1

2
1ρ ∆

 
(5)

 
U t u t u t Nu

T( ) = ( ) + −( )  1
 

(6)

In Eqs. 5 and 6, the parameters N2, N1 and Nu are the predic-
tion horizon, minimum prediction horizon, and control horizon, 
respectively. The constant ρ restricts the changes in the control 
input [36]. The input u(t) is supplied to the motor at each sample 
point and it is bounded for convergence purposes of the optimiza-
tion algorithm.

The algorithm presented in refs. 36, 45 can be used to mini-
mize the objective function (in other words, to find the optimum 
u(t)). This algorithm utilizes a gradient descent technique where 
the future set of control inputs is determined by the update rule 
indicated in Eq. 7:

 
U U

U
t t t
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 η η αt r t y t( ) = ( )− ( )( ) 
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The constant α is determined empirically. Expressing Eq. 5 in 
matrix notation:
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A recursive algorithm is presented by Noriega and Wang [45] 
to calculate Eq. 16:
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Here, n = 1, …, N2, m = 1, …, N2 and,
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The motor power consumption and undesirable oscillations 
are reduced by turning off the motor when the measured force 
falls within a tolerance range (which we set at ±5 % of the refer-
ence value).

4  Testing the Neural Network-Based NMPC on a Single Prosthetic Finger

Once an optimum model of the finger dynamics has been obtained, 
a simple way to evaluate the performance of the neural network- 
based NMPC system is by testing its step response. In this proce-
dure, the finger is closed around different objects (Table 1), while a 
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force reference signal is applied to the control system. For the 
results presented in this chapter, the nonlinear model of the dynam-
ics of the fingers was created using the Levenberg–Marquardt 
method of the NNSYSID toolbox for Matlab [46].

Figure 6 shows a representative recording of the behavior of 
the system as the reference signal is incremented in steps of differ-
ent heights, with an approximately time interval of 20 s (N = 5). 
The performance metrics for each reference step are the average 
closing time, the average overshoot, the average rise time (the time 
in which the system reaches 85 % of the reference value), and the 
average steady state error (SSE, absolute mean difference between 
the finger force and the reference value during steady state). The 
transient state, which precedes the steady state, is defined as the 
time in which the peak value of the force oscillations is greater than 
15 % of the reference value.

Once the finger closed around the object the rise time for each 
step was around 0.5 s (Fig. 7) for most of (for the cylinder, at 
0.89 N was 1.22 s). Although the response time of the finger is 
significantly longer with the cylinder, the overall response time of 
the control system is within the acceptable range (less than 1 s).

Maximum overshoot was found at contact and it was reduced 
during the subsequent force steps (Fig. 8). Rigid objects (such as 
the aluminum cylinder) gave rise to a smaller overshoot than softer 
objects (such as the plastic bottle). In general, the overshoot 
decreased as the applied force reference increased.

The experiments showed a small SSE in all the step sizes 
(Fig. 9), with an incremental trend as the force reference increased. 
This was expected as the motor was turned off when the measured 
force was within 5 % of the reference force.

Overall, the force control system is capable of adjusting the 
grasping force adequately. The response of the system is fast 
enough to meet a rise time of approximately 500 ms, with an 
 overshoot small enough to avoid object damage. Regarding long 
term force control, the SSE is small enough (~0.02–0.13 N) to 
maintain the same force during an extended period of time.

Table 1 
Objects used to evaluate the step response of the neural network-based 
NMPC system

Object Weight (g) Diameter (cm)

Styrofoam cup 2 7

Small plastic bottle 15 6.5

Big plastic bottle 40 8.5

Aluminum cylinder 110 7.3

Adapted from ref. 34, with permission
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Fig. 6 Representative recording of the system step response (from ref. 34, with permission)

Fig. 7 Average closing and rise time for each object. Modified from ref. 34, with permission
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5  Implementation on a Whole Hand Prototype

So far we have discussed how to control the force applied by an 
artificial finger using a neural network-based NMPC. We describe 
now how to incorporate this approach into a hierarchically struc-
tured control strategy of an artificial hand.

Fig. 8 Average overshoot for each step and all objects. Modified from ref. 34, with permission

Fig. 9 Average steady state error for each object. Modified from ref. 34, with permission
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Figure 10 shows implementation of the force control system 
in the control of the hand prototype described early in this chapter. 
This control strategy consists of five stages: Pre-shape, Closing, Force 
Control, Detection, and an Open. The same scheme was applied to 
drive the thumb, index and middle fingers independently.

The control strategy starts at the Pre-shape stage, where a 
hand configuration (i.e., cylindrical, tip, lateral, etc.) is selected by 
the decoding of the user’s bio-signals. This stage will determine 
also which fingers will be involved in the grasping (i.e., in the tip 
configuration only the thumb and index fingers are used). 
Immediately after this stage, the system switches to the Closing 
stage, where the fingers close around the object at maximum speed 
until making contact with the object. Once contact with the object 
is established, the Force Control stage comes into play to maintain 
an initial minimum force over the object. In the Force Control 
stage the neural network-based NMPC technique described earlier 
is implemented to maintain this minimum force over the object. 
The value of this minimal force is empirically determined to pre-
vent slippage and object deformation. This force will be maintained 
while no unintended movement of the object is detected by the 
Detection stage. If some undesired movement occurs, the refer-
ence force of the NMPC is increased in discrete steps until the 
movement ceases. The Detection stage thus alternates with the 
Force Control stage. The Detection stage is defined by the deriva-
tive of the normal force measured by the FSR placed at the tips of 
the fingers (please refer to [35] for more detail).

Fig. 10 Block diagram of the control strategy (modified from ref. 34, with permission)
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The control strategy is tested in three different conditions that 
simulate potential scenarios of daily life [35]. These conditions are 
adopted from established testing methods [47–49]. A representa-
tive example for the first condition is shown in Fig. 11. The first 
scenario involves applying both sudden and gradual changes to the 
mass of the object while it is grasped with a transverse volar grip. 
In the second scenario a sudden perturbation is made to the 
grasped object while maintaining a pinch grip. Finally, the third 
scenario tests the ability to adjust grasping forces while rotational 
forces are applied to the grasped object. In all the three experi-
ments, the displacement of the object (i.e., the distance traveled by 
the object after applying the disturbance) is recorded by a motion 
sensor [35].

Fig. 11 Whole hand experiments (modified from ref. 35, with permission)
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For the transverse volar grip experiments, the maximum average 
displacement of 7.6 mm and the maximum average displacement 
for the pulp pinch configuration of 3.05 mm are achieved. For the 
torque experiment, the maximum average angle displacement of 
10.7° at a load of 500 g (11 N cm) is obtained. A more detailed 
discussion of these results can be found in ref. 35. Taken together, 
these results suggest that the control strategy adjusted the grasping 
force in response to the applied disturbance.

The performance assessment suggests that this low-cost pros-
thetic hand can effectively mimic and perform daily life tasks. The 
neural-network based control system accounted for nonlinear 
behaviors in a reliable fashion, leading to reproducible finger force 
and fast response. Embedded in a hierarchically structured control 
strategy, this property enabled object grasping with minimal slip-
page and deformation effects. We anticipate the use of neural- 
network approaches could optimize the function of other prosthetic 
devices where nonlinear behaviors compromise their performance.

6  Notes

The degree of object deformation and sliding rely heavily on the 
relationship between the initial reference force and the force incre-
ment step. As a result, the choice of these two parameters is critical 
in fine-tuning the performance of this control strategy. While this 
methodology proved successful in the grasping of rigid objects, it 
is anticipated that mimicking the grasping of softer objects would 
require an on-the-fly adjustment of the initial reference force 
applied so as to avoid a very high grasping force of the hand which 
could lead to subsequent object deformation.
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    Chapter 12   

 Application of Artifi cial Neural Networks 
in Computer- Aided Diagnosis 

           Bei     Liu    

    Abstract 

   Computer-aided diagnosis is a diagnostic procedure in which a radiologist uses the outputs of computer 
analysis of medical images as a second opinion in the interpretation of medical images, either to help with 
lesion detection or to help determine if the lesion is benign or malignant. Artifi cial neural networks (ANNs) 
are usually employed to formulate the statistical models for computer analysis. Receiver operating charac-
teristic curves are used to evaluate the performance of the ANN alone, as well as the diagnostic perfor-
mance of radiologists who take into account the ANN output as a second opinion. In this chapter, we use 
mammograms to illustrate how an ANN model is trained, tested, and evaluated, and how a radiologist 
should use the ANN output as a second opinion in CAD.  

  Key words     Artifi cial neural network (ANN)  ,   Medical image  ,   Mammogram  ,   CAD  ,   Receiver operating 
characteristic (ROC)  

1      Introduction 

 The goal of computer-aided diagnosis (CAD) is to improve the 
sensitivity, specifi city, and effi ciency of a radiologist’s diagnosis by 
using computer analysis of medical images as a second opinion. 
Using CAD to detect lesions and using CAD to classify lesions are 
known as CADe and CADx, respectively. 

 Recently, Eadie et al. [ 1 ] reviewed 48 CAD studies (16 CADe 
and 32 CADx) from 1992 to 2010. They concluded that, overall, 
there is no clear benefi t to using CADe, but CADx signifi cantly 
improves diagnosis in mammography and breast ultrasound, while 
CADx shows an adverse impact on diagnosis based on lung CT 
and dermatologic imaging. While the improvement of breast can-
cer diagnosis using CAD shows the great potential of the method, 
the lack of evidence of benefi t in some other applications indicates 
that CAD is still in its infancy stage and more research and devel-
opment are needed in this fi eld. 
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 Artifi cial neural networks (ANNs) have been widely used in 
CAD for tasks such as pattern recognition and lesion classifi cation 
[ 2 – 6 ]. An ANN is a computational model loosely related to how 
the human brain is presumed to operate; it can be viewed as a mul-
tivariate mathematical function that consists of interconnected 
computational nodes (or neurons). The connection between a 
neuron in one layer and the neurons in the preceding layer is 
represented by a weighted linear combination of the output of 
nodes in the proceeding layer, modifi ed by a nonlinear activation 
function (e.g., a sigmoid function). The weights are determined 
through iterative ANN training, which minimizes the sum of the 
squared error between the ANN output and the known target 
values for training cases.  

2    Materials 

  Three-layer feedforward and error-backpropagation neural net-
works can approximate any multidimensional continuous function, 
according to the universal approximation theorem [ 7 ], and this 
ANN architecture is commonly used in CAD applications. The 
number of input nodes equals the dimensionality of the input 
 feature space and, in the application described in this chapter, the 
output layer has only a single node that outputs the likelihood of 
malignancy of a known lesion. In a CAD application, the number 
of hidden nodes is limited for better generalizability because the 
number of training cases is fi nite [ 8 ,  9 ]; this number is determined 
empirically based on the dimensionality of the input feature space 
and the size of the training dataset. Once the number of hidden 
nodes has been chosen, the mathematical function format that the 
ANN represents is also delimited, and it is no longer true that the 
ANN can approximate any arbitrary multidimensional continuous 
function. 

 For the ANN used by Rana et al. in the CAD study based on 
mammograms, eight input features were available, and thus eight 
input nodes were used, together with six hidden-layer nodes [ 10 ]. 
The architecture of such an ANN is illustrated in Fig.  1 .   

  An ANN is actually a mathematical model with many weight 
parameters. For the ANN architecture in Fig.  1 , there are 54 
weight parameters that need to be optimized in the ANN training; 
the number of training cases should be much larger than the num-
ber of parameters to ensure the generalizability of the ANN model. 

 Therefore, medical images for a large number of patients need 
to be collected, in order to build an ANN model for CAD applica-
tion. The patients are partitioned into three groups: training cases, 
validation cases, and testing cases, to ensure generalizability of the 
ANN. For a patient with multiple images, such as a breast MRI and 

2.1  ANN Architecture

2.2  Data Collection

Bei Liu
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a mammogram, or a CC-view mammogram and an MLO-view 
mammogram, the data are considered as one case; therefore, all the 
images of this patient should be in just one of the training group, 
the validation group, and the testing group. The data cannot be 
partitioned such that, for example, the CC-view mammogram of a 
patient is in the training group while the MLO-view mammogram 
of the same patient is in the validation or the testing group. 

 The training cases are used to optimize the weight parameters 
through minimization of the cost function, which is usually the 
sum of the squared error between the ANN outputs and the train-
ing target. The validation cases are used to fi nd the best perform-
ing ANNs among the set of ANNs trained with different learning 
rates/momentum, and among ANNs trained to a different num-
ber of epochs, etc. The testing cases are used to evaluate the ANN 
performance independently.  

  The receiver operating characteristic (ROC) is used to evaluate the 
overall performance of the trained ANN model and the CAD sys-
tem. An ROC curve completely describes the trade-off between 
sensitivity and specifi city at different operating points [ 11 ,  12 ], 
where sensitivity or true positive fraction (TPF) is defi ned as the 
probability that an actually positive case is diagnosed as positive 
and specifi city is defi ned as the probability that an actually negative 
case is diagnosed as negative. More often, the false positive fraction 
(FPF) is used, which is defi ned as the probability that an actually 
negative case is diagnosed as positive. One can easily see that, by 
defi nition, FPF = 1–specifi city. The plot of TPF vs. FPF is the ROC 
curve (Fig.  2 ). The area under an ROC curve (AUC) is a very use-
ful summary index to describe the CAD system’s overall perfor-
mance: AUC can be viewed as the average sensitivity or  average 
specifi city of the CAD system.  

2.3  Performance 
Evaluation

  Fig. 1    8-6-1 ANN architecture. There are 54 internode connections, and thus 54 
weight parameters       

 

ANN Application in CAD
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 A binormal model has been successfully used to fi t data in a 
wide variety of practical situations [ 13 ,  14 ]; this assumes that the 
latent decision variable can be transformed to a pair of normal dis-
tributions monotonically: a standard normal distribution for actu-
ally negative cases, and a normal distribution with mean of  a / b  and 
standard deviation of 1/ b  for actually positive cases (Fig.  3 ). Under 
a binormal model, the AUC value is usually called  A  z  value.  

 Free ANN software can be downloaded from many websites, 
which can be found using a web search; professional ANN pack-
ages are available from Matlab or SAS; these require payment of a 
license fee. ROC analysis software can be downloaded from URL 
  http://metz-roc.uchicago.edu/MetzROC/software     free by setting 
up a user account.   

  Fig. 2    Three ROC curves. AUC is the average sensitivity or average specifi city       

  Fig. 3    A binormal distribution of negative cases and positive cases       
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3    Methods 

      1.    After collecting enough medical images (digital or fi lm based) 
for patient cases to build an ANN model for CAD applications, 
all the fi lm-based images need to be digitized and stored in a 
CAD server along with the digital images.   

   2.    Image pre-processing is often necessary to remove noise and 
artifacts in the images. Histogram equalization is applied on 
each image to improve contrast.   

   3.    Regions of interest (ROIs) are defi ned so that the ROIs, which 
are simply rectangular regions, enclose the lesions. It is possi-
ble that there will be multiple ROIs on one medical image.   

   4.    Lesions are segmented automatically using computer software. 
Depending on the applications, many segmentation methods 
can be used: from simple thresholding to region growing, 
watershed, or an active contour model (snake). For microcalci-
fi cation lesions of the breast, the shape and size features 
strongly depend on the segmentation algorithm used [ 15 ,  16 ]; 
therefore, various segmentation methods should be tried and 
tested in order to choose a segmentation method that most 
effectively fi ts the CAD application.      

      5.    Feature extraction: Based on the lesion segmentation, lesion 
features such as shape and size can be calculated. Feature 
extraction is a form of dimension reduction of the input data, 
which are the raw medical images in a CAD application. 
Feature extraction is essential in order to reduce computation 
time, and, more importantly, to avoid overfi tting in ANN 
training. One convenient way to accomplish feature extraction 
is to quantify the radiologists’ perception in image reading. 
For example, based on radiologists’ experience, Jiang et al. [ 4 ] 
used eight features to design a CAD system for the classifi ca-
tion of microcalcifi cations of the breast: cluster circularity, clus-
ter area, number of microcalcifi cations, average effective 
volume of microcalcifi cations, average area of microcalcifi ca-
tions, second highest microcalcifi cation-shape-irregularity 
measure in a cluster, relative standard deviations in effective 
thickness, and volume.   

   6.    Nonimage features such as patient age can also be used to 
build the ANN model [ 17 ,  18 ].   

   7.    Feature selection: Even after feature extraction, which is a form 
of dimension reduction of the input image data, the dimen-
sionality of the feature space needs to be reduced to avoid 
 overfi tting. More importantly, multicollinearity, in which two 
or more features are highly correlated, must be removed, in 
order to train the ANN more effectively and to obtain a more 

3.1  Medical Image 
Processing

3.2  Feature 
Extraction and Feature 
Selection
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stable ANN model [ 19 ]. Another goal of feature selection is to 
remove irrelevant features, which have no predicting power.     

 Stepwise feature selection can use either bottom-up or 
top- down methods. Bottom-up methods start with an empty 
feature space, and then add one feature at a time to build an 
ANN or a linear discriminant analysis (LDA) model. If, when a 
feature is added, model performance is better than a preset 
criterion, then this feature is retained; otherwise, it is discarded; 
this procedure is repeated until all the features have been tried. 
On the other hand, the top-down method starts with all the 
features; one feature is removed and an ANN or an LDA model 
is constructed. If the model performance is not too much 
worse based on a preset criterion, then this feature is discarded; 
otherwise it is retained. For large training datasets, LDA should 
be used for feature selection [ 20 ] since it is fast when handling 
large datasets; when the training dataset is small, ANN is used 
for feature selection.  

      8.    The image dataset is partitioned into three sub-datasets for 
ANN modeling: a training dataset, a validation dataset, and a 
testing dataset. The goal of ANN training, which is an iterative 
process, is to optimize the weight of each nodal connection to 
minimize the cost function. The cost function is the sum of the 
squared error between ANN outputs and training target val-
ues, which is defi ned from the golden truth based on biopsy. In 
the task of classifying a breast lesion as benign or malignant, 
the target values for benign cases and malignant cases are set to 
be 0 and 1, respectively ( see   Notes 1  and  2 ).   

   9.    Backpropagation is used for ANN training. In this method the 
weight correction is  ∆w   k   (i) = −η∂E/∂w   k    + α∆w   k   (i − 1)  in the  i - th  
iteration, where  w  is the weight factor,  E  is the cost function, 
and  ∂E/∂w   k   is the gradient descent force that drives the cost 
function to the minimum. The parameter  η  is the learning rate; 
this controls how rapidly the ANN training converges, and the 
parameter  α  is the momentum, which is used to reduce the 
weight fl uctuation. The optimal values of  η  and α are problem 
dependent and are determined by trial and error for a specifi c 
problem [ 21 ].   

   10.    Since backpropagation is a gradient descent method, there is a 
danger that the ANN training might get trapped in a local 
minimum. It is generally impossible to be certain that the 
global minimum has been located, so various initial weights 
should be tried for ANN training in order to obtain a good 
ANN model. The area under the ROC curve (AUC) is calcu-
lated from the validation dataset for each epoch, or every ten 
epochs, and the ANNs with the maximum AUC values are 
tested using the testing dataset. Since the testing dataset is 
not involved in the ANN training or ANN selection, it is 

3.3  ANN Training
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completely independent, and the ROC curve calculated from 
the testing dataset is an independent evaluation of the ANN 
performance ( see   Notes 3  and  4 ).      

      11.    ROC analysis is used to evaluate the ANN performance and 
LABROC4 is used for binormal ROC curve fi tting [ 12 ,  22 ]. 
LABROC4 and some other ROC analysis program such as 
CORROC, which calculates the p value for two ROC curves, 
are developed by the University of Chicago and can be down-
loaded free from   http://metz-roc.uchicago.edu/MetzROC/
software    . The 95 % confi dence interval for Az, which is actually 
the AUC after binormal fi tting, is also calculated.   

   12.    An observer study is conducted to evaluate the performance of 
the CAD. A number of radiologists should be recruited for an 
observer study since the CAD performance is radiologist 
dependent. Before the observer study, each radiologist is 
trained so that they are familiar with the CAD system, includ-
ing how to use the software, and to become familiar and com-
fortable with the setting and the fl ow of the study. The 
radiologists are given some details of how the ANNs are 
trained, such as the image features and nonimage features that 
are used for ANN training, the size of the training dataset, the 
validation dataset and the testing dataset, as well as the  A  z  
value of the ANN model applied on the testing case and its 
standard error. The observers also read a number of cases with 
and without computer aid, and compare those data with the 
known outcomes, so that they can build up adequate confi -
dence in use of the CAD system. After this brief training, 
observers are asked to view a set of medical images, which can 
be the ANN testing images or other independent images, but 
cannot be the training or validation images, with or without 
computer-estimated likelihood of malignancy.     

 For example, in the CAD observer study conducted by Rana 
et al. [ 10 ], four radiologists were asked to view a set of mam-
mograms with microcalcifi cation lesions with and without com-
puter aid. Each radiologist drew a square ROI to enclose the 
microcalcifi cation lesion and the computer algorithm automati-
cally calculated the number of calcifi cations and segmented 
them. For 93 out of 332 cases, observers were also asked to 
place the number of calcifi cations into one of the four catego-
ries to help the computer algorithm set a threshold for calcifi ca-
tion identifi cation [ 23 ]: (a) 3–5, (b) 6–10, (c) 11–30, or (d) 31 
or more calcifi cations. The  A  z  value of the ANN model used was 
0.79 with a standard error of 0.05. With and without computer-
estimated likelihood of malignancy, each observer read both the 
CC-view and MLO-view mammogram for each patient and 
assigned a BI-RADS category for each patient: benign fi ndings, 
probably benign, suspicious abnormality, and highly suggestive 

3.4  ROC Analysis 
and Observer Study

ANN Application in CAD
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of malignancy. The other categories are not used because all the 
mammograms have calcifi cation lesions. ROC analysis was then 
performed and compared with the radiologists’ diagnosis with 
and without computer aid ( see   Notes 5  and  6 ).   

4    Notes 

     1    When to stop ANN training: Early stopping is often used to 
avoid overfi tting as a form of regularization. However, the 
problem with this approach is that the question of just when 
training should stop is not a trivial one; consequently, early 
stopping has often been employed in an ad hoc fashion. Our 
experience is to calculate and monitor the ANN performance 
vs. epoch using an independent validation dataset and use this 
to help choose the best epoch to stop ANN training, even 
though this method leaves a smaller dataset for ANN training.   

   2    It is crucial to collect a big dataset in order to develop a CAD 
system for clinical use. However, in the research phase, it may 
be too expensive, or even impossible, for a research group to 
collect a dataset of suitable size; thus small datasets were often 
used to test new CAD ideas, such as a new segmentation 
method, a new image feature, or a new imaging modality. 
In this situation, a round-robin method (also known as a leave-
one-out method) is often used [ 4 ]. In this method, all but one 
of the cases are used for ANN training and the one case left out 
is used for testing; thus this test case is independent of the 
training cases. This training and testing procedure is repeated 
until each case has been left out once; therefore each case has 
an independent test score and ROC analysis can be applied to 
these scores to obtain the overall ANN performance.   

   3    Ideally, the ANN output is an estimation of the posterior 
probability, provided that the training dataset is suffi ciently 
large and the ANN architecture is suffi ciently complex [ 24 ,  25 ]. 
Therefore the ideal ANN output has zero variance. However, 
in reality the ANN output has fi nite variance because the 
training data size is fi nite. In our application, the goal of ANN 
training is to achieve a high AUC under the ROC curve and 
low variability in the ANN outputs. However, if we trained 
several ANNs with similar overall performance as measured by 
the AUC, a signifi cant variability in ANN outputs is actually 
benefi cial: it indicates that there is signifi cant room to improve 
the overall ANN performance, and it can be simply achieved 
by taking the average, the maximum, or the minimum. So one 
trick to achieve a higher performance classifi er is to train sev-
eral ANN with different methods and then combine the 
results. For example, one can train an ANN for each of the 

Bei Liu
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segmentation methods (region- growing, watershed, or active 
contour model) and then combine the ANN outputs in order 
to achieve higher overall ANN performance.   

   4    When the ANN training truth provides richer information than 
merely benign/positive, this extra information can sometimes 
be used in ANN training if the dataset is small. For example, the 
golden truth of ANN training for breast cancer CAD is based 
on the biopsy result: training targets of 0 and 1 are assigned to 
benign and malignant cases, respectively. However, the biopsy 
provides more information than benign/malignant. For benign 
cases, two histology subtypes exist: benign and benign with 
higher risk; for malignant cases, there are four histology sub-
types: noncomedo ductal carcinoma in situ (DCIS), comedo 
DCIS, DCIS with microinvasion, and invasive carcinoma. This 
sequence of histology subtypes is one possible representation of 
an ordered spectrum from benign tissue at one extreme to 
aggressive cancer at the other [ 26 ]. Ordered ANN training tar-
get values can be assigned according to the histology subtypes 
in ANN training for small training datasets [ 25 ].   

   5    In the mammogram study [ 10 ], eight input features were used 
and an 8-6-1 ANN architecture was employed. However, if the 
amount of training data is large, more hidden nodes can be 
used to increase the ANN complexity, and thus enhance its 
predictive ability.   

   6    In the breast cancer CAD based on mammograms, each patient 
will have two ANN scores that correspond to the probabilities 
of malignancy calculated from CC- and MLO-view mammo-
grams [ 27 – 29 ]. A natural way to use this data is to calculate the 
average score for the patients. As expected, averaging improves 
the AUC under the ROC curve compared to single-view images 
[ 30 ]; however, averaging is not always the optimal way of com-
bining the two scores: depending on the standard deviation  σ  of 
the distribution of positive cases after fi tting to a binormal 
model and the correlation of the two ANN scores, taking the 
maximum score or taking the minimum score can outperform 
the averaging approach in some situations [ 31 ,  32 ].         
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Chapter 13

Developing a Multimodal Biometric Authentication  
System Using Soft Computing Methods

Mario Malcangi

Abstract

Robust personal authentication is becoming ever more important in computer-based applications. Among 
a variety of methods, biometric offers several advantages, mainly in embedded system applications. Hard 
and soft multi-biometric, combined with hard and soft computing methods, can be applied to improve the 
personal authentication process and to generalize the applicability.

This chapter describes the embedded implementation of a multi-biometric (voiceprint and finger-
print) multimodal identification system based on hard computing methods (DSP) for feature extraction 
and matching, an artificial neural network (ANN) for soft feature pattern matching, and a fuzzy logic 
engine (FLE) for data fusion and decision.

Key words Artificial neural network, Fuzzy decision logic, Soft-biometric data, Multi-biometric

1 Introduction

More and more of the devices we deal with every day depend on 
embedded systems. This trend can reasonably be expected to accel-
erate going forward. Because of this, as well as due to other factors, 
the security of systems and of data is likely to continue to present 
challenges that developers will attempt to meet by devising new 
tools. There can be little doubt that many such methods will rely 
on the biometric approach [1–4].

Biometrics is uniquely suited to authentication tasks in embed-
ded systems because it offers simultaneous solutions to the twin 
problems of the meager demand for resources that we wish to 
place on such systems and of the high security requirements that 
their potential applications can be expected to mandate [5, 6]. It is 
not hard to imagine wanting to limit demand on resources if we 
start from the very basic concept of a system that has no keyboard, 
is designed to have the smallest possible footprint, and can be 
 considered subsidiary to a larger system, machine, or process. If we 
consider the embedded system’s role as gatekeeper to a much 
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larger and more complex reality, say the electronic ignition key to 
a sophisticated, automated installation, it is not hard, either, to 
envision the degree of security requirements for which a minuscule 
device is ultimately responsible. As such devices proliferate, the 
demand for lightweight yet robust authentication methods can 
only grow.

Because biometrics depends on physiological traits or on dis-
tinctive behavior [7, 8] unique to the individual whose identity is 
to be authenticated, or—indeed—a combination of the two, it can 
rightly stake a claim to being superior, at least potentially, to cur-
rent and established authentication methods like personal identifi-
cation numbers (PINs), passwords, or smart cards. The individual’s 
biometric data is always available, is nonrandomly unique, cannot 
be transferred to another party, cannot be forgotten, is not subject 
to theft, and cannot be guessed. These advantages mean that bio-
metrics provides very high security compared to traditional identi-
fication methods that rely on the possession of a token, such as a 
card, key, or chip, or of personal knowledge, as in the case of a 
password [9].

Despite the superiority of biometric authentication due to such 
advantages and despite its rapid spread in microelectronics, mass- 
market adoption has lagged. The primary reason widespread appli-
cation of biometrics has not taken off is that it does not offer 
surefire authentication the way a password does. A password can 
always perform. On the other hand, biometric features, in their 
original form, are analog information. As a result, they are subject 
to variation when captured by a biometric scanning device. This 
applies to fingerprint readers, microphones for voice-pattern rec-
ognition, cameras for facial feature matching, and any other digital 
system that has to match measured, analog, human traits. Of course 
such features can be digitized, but the data will nonetheless have 
been processed through fuzzy logic. Fuzziness can only be mini-
mized so much, given that the original, analog features are, them-
selves, inherently fuzzy.

False acceptance rate (FAR) and false rejection rate (FRR) [10] 
can, of course, be minimized with classical pattern-matching tech-
niques [11–13] but a 100 % correct acceptance rate cannot be 
achieved this way. However, the intrinsic fuzziness of biometric 
features makes it logical to look to soft-computing approaches 
[14–16] in the design of processes that match biometric feature 
patterns in the hope that nearly 100 % correct authentication might 
be attained that way. For example, even in prohibitive conditions, 
human beings always manage to recognize a familiar face. The 
human mind processes biometric features fuzzily and neurally.

Soft-computing data are variations and uncertainties. Biometric 
features vary constantly, present challenges to analytical  description, 
and inherently fall short of belonging to their owner 100 % of the time. 

Mario Malcangi
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It follows that soft-computing methods ought to work well for 
measuring and matching biometrics. Moreover, what humans do 
to reach nearly 100 % authentication rates amounts to acquiring 
data from multiple sources. They combine speech traits and facial 
features when matching a biometric identity to an individual [17]. 
In other words, they carry out neural and fuzzy processing on 
aggregated biometric feature sets.

While biometric authentication has seen surprisingly slow 
adoption generally, this has proved even more the case with the 
application of traditional biometric solutions to embedded systems 
[18]. Because embedded systems have limited resources—smaller 
memory and slower processors—they are ill suited to hungry 
authentication applications. Consequently, current installations of 
embedded systems typically rely on PIN codes and the like.

However, an authentication method based on soft biometric 
[19] data has the potential to be more miserly with computing 
resources than hard biometrics, using less data to map the identity 
of the person to be authenticated. Furthermore, multiple-criteria 
biometric authentication processes [8, 20, 21] can be devised so as 
to match the input capacities of embedded systems. By combining 
soft-computing methods and multi-biometrics, we can optimize 
such authentication for implementation on embedded systems.

One approach that holds promise in this regard involves set-
ting up authentication based on a combination of voiceprint and 
fingerprint that uses hard-computing digital signal processing to 
extract features and match them but then turns to an artificial neu-
ral network (ANN) [22] for soft feature pattern matching and to a 
fuzzy logic inferential engine (FLE) for data fusion and decision 
making. Such a setup can be designed to provide highly robust, 
personal, biometric authentication. Experiments have been carried 
out where this can be accomplished with a single-chip, floating- 
point, digital signal processor.

2 Materials

To design a multimodal soft computing-based hard/soft biometric 
embedded system several methodologies and technologies occur:

●● Biometric sensors.
●● Sensor data acquisition.
●● Feature extraction algorithms.
●● Hard computing pattern matching.
●● Soft computing pattern matching (artificial neural network).
●● Soft computing fusion and decision (fuzzy logic).
●● System modeling and simulation environments.

Biometric Authentication
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The biometric sensors are specifically designed to capture physiologic 
or behavioral signals generated by human beings. The sensor is the 
first device of the signal chain. It captures and converts a physical 
property into analog signals (commonly electrical) or digital sig-
nals (when it embeds the mixed-signal electronics).

The voiceprint sensor is a voice-grade microphone system able to 
capture the utterance, preserving the intelligibility of the speech.

●● Single microphone: captures the acoustic wave of the utterance 
as a direct sound source (position sensitive; sensitive to sur-
rounding noise).

●● Dual microphone: captures the acoustic sound wave of the 
utterance and the surrounding audio noise (partially position 
sensitive; low sensitivity to surrounding noise).

●● Microphone array: captures the acoustic sound wave of the 
utterance by a set of microphones spatially distributed (posi-
tion insensitive; highly insensitive to surrounding noise).

A single microphone has been used in this design (see Note 1).

A fingerprint sensor is an electronic device capable to capture the 
image of the fingerprint pattern and make it available as a bit map. 
Several technologies have been applied to develop fingerprint 
sensors:

●● Optical (special digital camera): captures visible light emitted 
from a phosphor layer which illuminates the surface of the fin-
ger—advantages: noncontact, not electrostatic discharge sensi-
tive—disadvantages: capabilities affected by the quality of skin, 
easily fooled.

●● Ultrasonic (based on medical ultrasonic imaging principles): 
captures the images of a fingerprint by penetrating the epider-
mal layer of skin with high-frequency sound—advantages: 
noncontact, not electrostatic discharge sensitive, capabilities 
not affected by the quality of skin, very difficult to fool—disad-
vantages: the price is significantly higher than for a capacitive 
fingerprint scanner.

●● Capacitance (based on electrical capacitance): consists of an 
array of capacitors in which one of the two plates is the dermal 
layer and the dielectric is the epidermal

 – Passive: Capacitance is measured across each sensor capaci-
tor to form a pixel of the fingerprint image.

 – Active: A voltage is applied to the skin first, and then the 
charge of each capacitor of the array is measured to form a 
pixel of the fingerprint image.

2.1 Biometric 
Sensors

2.1.1 Voiceprint Sensors

2.1.2 Fingerprint Sensors

Mario Malcangi
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Advantages: compatible with microelectronic integration—
disadvantages: electrostatic discharge sensitive.

A passive capacitive sensor has been used in this design  
(see Note 2).

Sensor data acquisition concerns the conditioning and digital rep-
resentation of the voiceprint and fingerprint information captured 
by the respective biometric sensors. Conditioning is necessary if 
the sensor is affected by nonlinearities and if it is not dynamically 
compatible with analog-to-digital conversion (ADC) subsystem.

The microphone sensor data acquisition process is sensitive to several 
nonlinearities and mixed signal constraints. The microphone chain 
path needs conditioning and digital-to-analog adaptation, so opti-
mal data can be available at the processing stage:

●● Transducer linearization.
●● Automatic gain control.
●● Filtering.
●● Sampling.
●● Quantization.

The microphone nonlinearities need to be compensated to 
avoid distorted measurements at the level of feature extraction. 
This can be done in the analog domain by electronic circuitry 
tuned on the specific microphone, or in the digital domain at the 
preprocessing stage of the signal acquisition. In this design the 
second option has been applied because it is more flexible and 
adaptive. The microphone transfer function is estimated at calibra-
tion time, and then the nonlinearity compensated for by applying 
at run time the inverse function to the captured signal.

The amplification is required because the small signals from 
the microphone need to be adapted to the analog-to-digital con-
verter (ADC) input dynamic range to have higher signal-to- 
quantization- noise ratio (SQNR).

Low-pass filtering (antialiasing) and high-pass filtering (offset 
removal) are applied prior to sampling the microphone signal to 
ensure lowest frequency distortion of the pulse code modulated 
(PCM) stream to be quantized and optimal SQNR.

The solid-state capacitive fingerprint sensor integrates all the required 
conditioning and digitalization resources so that optimal digital fin-
gerprint image data is available at its output. Fingerprint image is 
captured at 513 dpi (dot per inch) resolution as a bitmap image 
consisting of 64,512 pixels (224 horizontal and 288 vertical). 
Each pixel has 8-bit-depth quantization level (gray-level images). 
The fingerprint digital image array acquisition process is completed 
by synchronous serial transfer to the application processor (DSP).

2.2 Sensor Data 
Acquisition Chain

2.2.1 Microphone Sensor 
Data Acquisition

2.2.2 Fingerprint Sensor 
Data Acquisition

Biometric Authentication
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To extract the features, a set of digital signal processing algorithms 
is applied to the captured utterance.

The following formulae have been applied to measure the voice-
print hard features [23]:

●● Root mean square (RMS):
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●● Autocorrelation (AC):
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●● Cepstral linear prediction coefficients (CLPC):
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The above are short-time measurements executed by multiply-

ing the N samples-wide weighting Hamming window w(n) by the 
uttered speech stream s(n).

RMS is the root mean square of the windowed speech segment. 
Such measurement helps to identify phonetic unit end-points.

ZCR is the time-domain measurement of the dominant fre-
quency information. It is used to determine whether or not the 
current processed uttered speech segment is voiced or unvoiced 
and also to find the frequency (band) with the major energy 
concentration.

AC is the measurement of the speech-pitch frequency. It 
 preserves information about pitch-frequency amplitude while 
ignoring phase. Phase is unimportant for the purpose of speech 
identification.

CLPC is the LPC-Cepstral feature vector that models the 
vocal tract.

2.3 Feature 
Extraction Algorithms

2.3.1 Voiceprint Hard 
Features
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The following soft features are extracted from speech:

●● Speed.
●● Stress.

Speed is measured as the total duration of the speech utterance.
Stress is measured as the ratio between the peak amplitude of the 

stressed vowel and the average amplitude of the whole utterance.
Both these voiceprint features are related to the way the person 

is used to speaking a requested word.

Several preprocessing steps are executed on the captured grayscale 
fingerprint image from the stage of bitmap to its minutiae-based 
representation:

●● Orientation field and region of interest.

 – Normalization of the captured fingerprint image.
 – Image segmentation in blocks.
 – x and y gradient computation for each pixel in each block.
 – Local orientation for each pixel.
 – Orientation field correction.

●● Positioning (delta and core localization).
●● Ridging.
●● Ridge thinning.

Fingerprint hard features are the minutiae. The criteria used 
for minutiae extraction from the thinned ridge image are the 
following:

●● If a ridge pixel has two or more 8-nearest, then it is a 
bifurcation.

●● If a ridge pixel has only one 8-nearest, then it is a 
termination.

As the crest-valley image is two levels encoded (1-0), the map-
ping algorithm is
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where pi are the 8-nearest pixels of the pixel to be classified as 
bifurcation B or termination T.

The most critical step in this procedure is to avoid computing 
false minutiae caused by noise in the scanned fingerprint image. 

2.3.2 Voiceprint Soft 
Features

2.3.3 Fingerprint Hard 
Features

Biometric Authentication
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To overcome this problem, a backtracking control is executed on 
each feature pattern before it is validated, to check that each of the 
three branches of the bifurcation is significantly long:

●● Starting from the bifurcation all the three paths are checked, 
stopping if more than k pixels or a termination pixel is detected.

●● If the stop is due to the termination detection, then the bifur-
cation and the terminations are invalidated.

The scanned fingerprint image is transformed into a set minu-
tiae encoded by its x, y coordinates and the direction of the ridge 
corresponding at that position.

Two fingerprint soft features are extracted from fingerprint cap-
tured image:

●● Total area.
●● Mean intensity.

Both these two fingerprint features are related to the way the 
person approaches contact with the fingerprint sensor.

The total area is measured as the ratio between the total pixels 
available on the fingerprint scanning device and the total pixels of 
the captured fingerprint image that have a value higher than an esti-
mated peak noise level. The peak noise level is estimated at calibra-
tion time and it is applied at run time (enrolling and identification).

The mean intensity is measured as average intensity of all the 
pixels with a value higher than a threshold level. The threshold 
level is 10 % higher than the peak noise level.

The captured fingerprint and voiceprint hard features have to be 
matched with enrolled features (templates).

Two methods are applied to score the person’s identity. One is 
based on measuring Mahalanobis distance, and the other on mea-
suring the distance of dynamic time warping—k-nearest neighbor 
(DTW-KNN).

The Mahalanobis distance measurement is

 D x x x W x xi
T( ) = -( ) -( )-1

 (6)

where W is the covariance array computed using the average and 
the standard deviation features of the utterance. The input pattern 
x is processed with reference to the utterance-averaged feature vec-
tor x  that represents the person to be identified. The distance 
Di(x) is a score for the authorized user.

The DTW-KNN (dynamic time warping—k-nearest neighbor) 
method combines the dynamic-time-warping measurement with the 
k-nearest neighbor decision algorithm. The DTW clusters similar 

2.3.4 Fingerprint Soft 
Features

2.4 Hard Computing 
Pattern Matching

2.4.1 Voiceprint Hard 
Features
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elements that refer to a feature into classes (Fig. 1). The cost 
function is computed using Euclidean distance, with a granularity of 
one frame. The KNN algorithm is then applied to select k minimal 
distance matching and to choose the most recurring person in k 
minimal distance matches. This results in lower false-positive and 
false-negative rates during identification, compared to the original 
DTW algorithm.

Fingerprint hard feature pattern matching is based on minutiae. 
Pattern matching consists of a procedure that first tries to align the 
template pattern and the input pattern, and then computes an 
overlapping score (Fig. 2). The score is a measurement of the 
authenticity of the person who enrolled the input.

The captured fingerprint and voiceprint soft features have to be 
matched with enrolled features (templates). This is done using the 
artificial neural network (ANN) soft computing paradigm.

The ANN is a signal processing and pattern classification paradigm 
inspired by the structure and functions of biological neural net-
works. Information signals that flow through the ANN modify the 
connections, enabling the learning process.

2.4.2 Fingerprint Hard 
Features

2.5 Soft Computing 
Pattern Matching

2.5.1 Artificial Neural 
Network (ANN)

template
pattern

input
pattern

Warp

search space
m

n

N

1

M

1

Fig. 1 DTW boundaries for voiceprint matching
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The ANN applied to classify the soft biometric features is a 
feed-forward back-propagation neural network (FFBP-ANN) par-
adigm because of the behavioral nature of this kind of biometric 
data (Fig. 3a). It is a three-layered parallel processing network that 
processes the input data patterns at the lower layer, matches the 
data at the middle layer, and organizes the results at the upper 
layer. Its input nodes are fully connected to all the nodes in the 
hidden layer, and the hidden layer is fully connected to the output 
nodes. In this network the feed-forward action consists in that the 
i node at l + 1th layer receives signals from the j node in the lth 
layer conditioned via weight wij

l. The activation of the node i at the 
l + 1th layer is given by
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This is the activity of the ith node at the layer l + 1 for the kth input 
xj processed by the ANN, assuming that M nodes are in the lth 
layer.

Input and output layers have a linear activation function that 
controls the connection. A nonlinear (sigmoid) activation function 
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Fig. 2 Boundaries for fingerprint matching
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(Fig. 3b) connects hidden-layer nodes to output-layer nodes 
according to the following formulae:
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where ϑ is the activation threshold of the ith node and β is a con-
stant that controls the slope of the semi-linear region of the sig-
moid. When β is very small, the sigmoid approximates the linear 
activation function (Fig. 3c), so the same function can be applied 
to input, hidden, and output layers by choosing appropriate values 
for β constant.

The fusion and decision logic is based on the fuzzy logic inferential 
paradigm. A fuzzy logic engine processes the crisp inputs (scores 
and features), applies to them a set of inferential rules, and makes 
the fuzzy decision. This is done by the fuzzy logic engine.

The fuzzy logic engine (FLE) used to implement the data and deci-
sion fusion and to infer about the final decision is a zero-order 
Sugeno-type (Fig 4a). It fuzzyfies the inputs (soft features and scores) 

2.6 Soft Computing 
Fusion and Decision

2.6.1 Fuzzy Logic Engine
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Fig. 3 (a) FFBP-ANN for voiceprint and fingerprint soft feature classification, (b) linear activation function for 
input and output layers, and (c) sigmoid activation function for hidden layer
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using trapezoidal and triangular membership functions, and applies a 
set of inferential rules of the form:

IF x IS A AND y IS B THEN k is K
IF x IS A OR y IS B THEN k is K
IF x IS A THEN k IS K
The antecedent (input) part of the rule combines the fuzzyfied 

inputs by AND (minimum) fuzzy operator or by OR (maximum) 
fuzzy operator, or directly. The output of each rule is constant 
(zero order), and then the consequents are represented by single-
ton membership functions.

To defuzzify the output, so a crisp value is available, the 
weighted average (WA) method is applied (Fig 4b) (see Note 3):
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where μ(x) is the degree to which the inputs x belong to the appro-
priate fuzzy sets.

Matlab environment and the DSP toolbox are used to code the 
signal processing algorithms, to run them in simulation mode, and 
then to export the source code as ANSI-C. The Data Acquisition 
(DAQ) toolbox is used to collect data from the fingerprint sensor 
and from the microphone.

To model and simulate the FFBP-ANN the Matlab environment 
plus the DSP toolbox is used to code the FFBP-ANN, to run it in 
simulation mode, and then to export the source code as 
ANSI-C. The Data Acquisition (DAQ) toolbox is used to collect 
data from the fingerprint sensor and from the microphone.

The FLE is a Sugeno-type fuzzy logic inferential paradigm. To 
model and simulate it the Matlab environment plus the Fuzzy 
Logic toolbox is used to code the FLE, to run it in simulation 
mode, and then to export the source code as ANSI-C. The Data 
Acquisition (DAQ) toolbox is used to collect data from the finger-
print sensor and from the microphone.

To implement the embedded system, a system-on-chip (SoC) proces-
sor is used. This is an application-specific processor (ASP)  optimized 
for signal processing, with on-chip memory and peripherals.

A 32-bit floating-point DSP, architecturally optimized to 
 process data of different bit format (8-bit, 16-bit, 32-bit), has been 
chosen. Due to its computing architecture peculiarity, it is able to 
process efficiently the 8-bit data of the image pixels and the 16-bit 
data of the voice samples. The 32-bit floating-point data format 
ensures the required computing precision both for the image and 
the speech processing.

2.7 System Modeling 
and Simulation 
Environments

2.7.1 ANN

2.7.2 FLE

2.8 Digital Signal 
Processor
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3 Methods

The biometric authentication system (Fig. 5) consists of three 
processing layers, the feature-extraction layer, the matching layer, 
and the fuzzy logic-based decision layer. The feature-extraction 
layer uses signal processing-based algorithms for hard and soft fea-
ture extraction. The matching layer uses the hard computing 
(DSP) to identify the hard features and the soft computing (ANN) 
to identify the soft features. The decision layer uses the soft com-
puting (FLE) to fuse the identification scores with the soft 
features.

The feature extraction layer implements the biometric information 
capture (voiceprint and fingerprint) and the signal processing 
 algorithm (hard computing) methods for feature extraction.

The voiceprint is captured by a voice-type microphone, which is 
conditioned (linearized, amplified, and filtered), in the analog 
domain and then 16-kHz sampled, and 16-bit quantized. The utter-
ance is optimally end-pointed [21] and segmented. The Hamming 
window is applied to extract 10-ms frames from the speech-data 
stream, using a 50 % overlap between adjacent frames to avoid data 
loss at feature-extraction time.

3.1 Feature 
Extraction Layer

3.1.1 Voiceprint 
and Fingerprint Capture

hard features

soft features

soft features

hard features

authentication

Artificial
Neural
Network

Fuzzy
Logic
Engine 

authentication

voiceprint

fingerprint

authentication
score

voiceprint score
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Fig. 5 System architecture
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The fingerprint image is captured by a 512 dot-per-inch (dpi) 
solid-state fingerprint sensor. The image is available at the sensor 
output as 64,512 pixels 8-bit quantized array (224 rows and 288 
columns) image.

Features (hard and soft) are extracted from the captured voiceprint 
and fingerprint applying the hard computing algorithm. Data are 
assembled in data structures useful to be processed at the pattern 
matching layer.

Voiceprint hard features are structured as time-sequenced vec-
tors of data:

RMS(N)
ZCR(N)
AC(N)
CLPC(N)

where N is the vector length and each vector element is the 
feature measurement at the window application time.

Fingerprint hard features are structured sequences of minutiae as:

MINUTAE(M)

where M is the vector length and each vector element is the 
minutiae data.

From voiceprint the two soft features are measured as:

SPEED
STRESS

The two features are scalar data (one measurement executed 
on the whole captured voiceprint data stream).

From the fingerprint two soft features are measured as:

TOTAL_AREA
MEAN_INTENSITY

The two features are scalar data (one measurement executed 
on the whole captured fingerprint data array).

The matching layer implements the hard and soft computing scor-
ing systems. Each of these applies the appropriate algorithms for 
scoring the input data referred to a set of template data belonging 
to the persons to be identified. This layer runs in two different 
modes, enrolling and identifying.

The enrolling mode is active when a new person is to be added 
to the set of persons that are to be accepted. The identifying mode 
is active when a person (allowed or not allowed) is accessing the 
system furnishing its voiceprint and fingerprint. Both enrolling and 
identification modes run the same pattern matching algorithms, 
the first to store the reference templates, and the second to execute 
the scoring.

3.1.2 Feature Extraction

3.2 Matching Layer

Biometric Authentication
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Voiceprint enrollment mode consists in storing as multiple tem-
plates the features measured each time the allowed person utters at 
the microphone a specific (requested) vocal sequence. Fingerprint 
enrollment mode consists in storing as multiple templates the fea-
tures measured each time the allowed person puts a finger 
(requested) on the sensor.

The voiceprint and fingerprint identifying mode runs the pattern 
matching algorithms to score the input hard features related to the 
stored templates. For each input (voiceprint and/or fingerprint) a 
score is available at the matching layer output.

The soft biometric scoring is executed running the FFBP-ANN. 
To do this the FFBP-ANN inputs the soft biometric features 
and outputs the score according to how it learned about the soft 
feature belonging to the authorized person. A training phase is 
requested to embed the knowledge in the FFBP-ANN nodes 
(neurons). This is run each time the soft features at the FFBP-
ANN inputs belong to an authorized person, explicitly during the 
enrollment (training mode), and implicitly each time the person is 
identified as authorized (evolving mode). Learning is executed 
running the error back-propagation algorithm.

Back Propagating Networks (BPNs) are trained according to a 
generalized least mean-square (LMS) algorithm:

 
w k w k x k x k f kj j

t
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(10)

The weights wj(k) are modified by the kth input activity pattern 
fj(k), so that a new updated weight wj(k + 1) is available at k + 1th 
input time. The modification is proportional to the difference 
between the xt(k) target response and the current response x(k). 
The constant η controls the learning rate and is in the range 
0 < η < 1.

During the learning activity the difference between the target 
activity and the current activity at the output layer is a learning 
error indicator. To measure it, the total error E is measured as
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This is the total error measured at the N nodes of the output layer 
L after K patterns of the training set have been applied. If E is mini-
mum, then weights at the end of the training are the best for the 
L-layer BPN.

Applying the best trained weights set to the three-layer FFBP 
(L = 3) enables this ANN to perform the scoring of the biometric 
features. The ANN executes also the data fusion among the soft 
biometric data from voiceprint and fingerprint.

3.2.1 Enrollment Mode

3.2.2 Identifying Mode

3.2.3 Soft Biometric 
Training and Scoring
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The decision layer implements the data fusion and the decision 
fusion information from the matching layer. This is executed by 
the FLE that evaluates four kinds of data input:

●● Voiceprint score.
●● Fingerprint score.
●● Soft-biometric measurements.
●● Soft-biometric score.

Prior to a run, the FLE needs to be tuned for processing the 
data inputs and producing the decision. Membership functions 
and rules set have to be designed using the modeling and simula-
tion toolbox.

Input data are fuzzyfied using optimally tuned membership 
functions (Figs. 6, 7, and 8a). Singleton membership functions are 
applied for rule consequents (Fig. 8b).

The rules are tuned combining the fuzzyfied inputs as follows 
(only the most significant are reported):

 1. IF voiceprint_score IS high AND fingerprint_score IS high AND 
soft_score IS high THEN authentication IS very high.

 2. IF voiceprint_score IS medium AND fingerprint_score IS 
medium AND soft_score IS high THEN authentication IS high.

 3. IF voiceprint_score IS medium AND speech_speed IS high AND 
soft_score IS medium THEN authentication IS high.

3.3 Decision Layer

µ

µ

µ

very low low medium high very high

voiceprint score

voice speed

voice stress

very low low medium high very high

very low low medium high very high

1

0

1

0

1

0

Fig. 6 Membership functions to fuzzify inputs (voiceprint)
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fingerprint score

fingerprint speed
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1

0

1

0

1

0

Fig. 7 Membership functions to fuzzify inputs (fingerprint)
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Fig. 8 (a) Membership functions to fuzzify inputs (soft-features score) and (b) to defuzzify outputs 
(authentication)
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 4. IF voiceprint_score IS low AND speech_speed IS high AND 
speech_stress IS high THEN authentication IS average.

 5. IF fingerprint_score IS medium AND fingerprint_total_area IS 
high THEN authentication IS high.

 6. IF finger_print_score IS low AND fingerprint_total_area IS 
high AND fingerprint_mean_intensity IS high THEN authenti-
cation IS average.

 7. IF voiceprint_score IS medium and fingerprint_score IS medium 
AND soft_score IS low THEN authentication IS low.

 8. IF voiceprint_score IS high and fingerprint_score IS low AND 
soft_score IS low AND fingerprint_total_area_match IS low 
AND fingerprint_mean_intensity_match IS low AND 
speech_speed_match IS low AND speech_stress_match IS low 
THEN authentication IS very low.

 9. IF voiceprint_score IS low and fingerprint_score IS high AND 
soft_score IS low AND fingerprint_total_area_match IS low 
AND fingerprint_mean_intensity_match IS low AND 
speech_speed_match IS low AND speech_stress_match IS low 
THEN authentication IS very low.

Rules were derived from feature distribution. Each rule was 
manually tuned using a fuzzy logic rule editor, the simulator, and 
the knowledge of an expert:

●● Rule 1 is a reinforcement of voiceprint and fingerprint matchers.
●● Rule 2 combines a voiceprint matcher and a fingerprint matcher 

when both scores are too close to the decision threshold.
●● Rules 3, 4, 5, and 6 act as recovery rules when the voiceprint 

or fingerprint matchers generate a false rejection.
●● Rules 7, 8, and 9 protect against false acceptance.

For fine-tuning, many other rules can be generated to take 
additional soft-biometric measurements into account. Using more 
rules leads monotonically toward greater reliability in the 
 authentication process.

Trapezoidal and triangular membership functions are used to 
process inputs. The inference rule set is then applied. The result of 
all the rules is evaluated using the WA method, so the crisp output 
value can be computed. Singleton membership functions were 
used to defuzzify the final decision.

Performance evaluation aims to measure the reliability of the 
implemented biometric identification method. Voiceprint and fin-
gerprint authentication were first implemented and tested sepa-
rately, and then jointly, and finally combined through the fuzzy 
logic inference engine and the artificial neural network applied to 
soft-biometric features. An “all-against-all” test strategy was 
applied to obtain match and mismatch scores.

3.4 Performance 
Evaluation

Biometric Authentication
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Evaluation of joint voiceprint and fingerprint authentication 
consists of taking as good the better of the two matches (OR). 
Single-user authentication was performed, so this test had minimal 
system requirements. The following results were produced:

●● Voiceprint alone: 90.5 % correctly accepted.
●● Fingerprint alone: 85.7 % correctly accepted.
●● Voiceprint OR fingerprint: 92.3 % correctly accepted.
●● Fuzzy logic decision fusion of voiceprint, fingerprint, and arti-

ficial neural network evaluated soft features: 95.8 % correctly 
accepted.

The OR test confirmed that multi-biometrics can improve per-
formance compared to single-biometric authentication. System 
performance can be significantly improved, while keeping com-
plexity to a minimum, using fuzzy logic as decision fusion and 
reinforcing it with an artificial neural network applied to soft- 
biometric features.

4 Notes

 1. A dual microphone or an array of microphones needs to be 
used when the biometric application is targeted to outdoor 
applications and the person to be identified is close to other 
persons. Beam forming can be implemented for noise reduc-
tion purpose.

 2. The capacitive fingerprint sensors are implemented as a two- 
dimensional or a mono-dimensional (strip) scanner. The per-
formance of the biometric system is not sensitive to this form 
factor. The first is less computationally intensive and more 
intuitive, but it is not optimal for system dimension reduction. 
The second is computationally intensive because it implies that 
the two-dimensional image has to be built by software and it is 
less intuitive, but it is optimal for system dimension 
reduction.

 3. Weighted Average (WA) defuzzification method is a derivation 
of the Centroid (Center of Gravity) method that fits well the 
singleton membership function.
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Chapter 14

Using Neural Networks to Understand the Information  
That Guides Behavior: A Case Study in Visual Navigation

Andrew Philippides, Paul Graham, Bart Baddeley,  
and Philip Husbands

Abstract

To behave in a robust and adaptive way, animals must extract task-relevant sensory information efficiently. 
One way to understand how they achieve this is to explore regularities within the information animals 
perceive during natural behavior. In this chapter, we describe how we have used artificial neural networks 
(ANNs) to explore efficiencies in vision and memory that might underpin visually guided route naviga-
tion in complex worlds. Specifically, we use three types of neural network to learn the regularities within 
a series of views encountered during a single route traversal (the training route), in such a way that the 
networks output the familiarity of novel views presented to them. The problem of navigation is then 
reframed in terms of a search for familiar views, that is, views similar to those associated with the route. 
This approach has two major benefits. First, the ANN provides a compact holistic representation of the 
data and is thus an efficient way to encode a large set of views. Second, as we do not store the training 
views, we are not limited in the number of training views we use and the agent does not need to decide 
which views to learn.

Key words Visual navigation, Computational neuroscience, Machine learning, Boosting, Restricted 
Boltzmann machine, Infomax

1  Introduction

All animals are faced with the challenge of extracting useful infor-
mation from the environment and using that information to shape 
their behavior in an adaptive way. A major goal for neuroscience is 
to understand how neural circuits are organized to achieve that 
process. This goal depends on understanding the information pro-
vided by the environment as well as the information required for a 
particular behavior. For many animals, the primary sensory channel 
is vision and scientists have long sought to understand how vision 
drives behavior and underpins perception by asking questions such 
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as “What does the frog’s eye tell the frog’s brain?,”1  or “How do 
humans recognize their grandmother?”2

If we take the example of a very simple visually guided behav-
ior, we can begin to understand the style of information process-
ing that we see in biological systems. Many animals perform 
phototaxis, where they try and move in the direction of the bright-
est light; for instance to gain warmth or rise to the surface of the 
sea. For some microorganisms, such as zooplankton, we know in 
detail the visual circuits that produce this behavior. They have two 
photoreceptors which detect light from one side of the body only. 
These photoreceptors are directly connected to motile hair cells 
[1] which beat rhythmically to propel the organism through the 
world. Light on one side of the organism stimulates one photore-
ceptor, which inhibits the movement of the hair cells on the same 
side of the organism. The undamped beating from hairs on the 
“dark” side of the body will ensure a turn towards the light. 
Evolution tends not to produce overelaborate solutions; we see 
that the zooplankton has a minimal yet perfectly efficient sensory 
circuit for the task in hand. 

For more complex visually guided behaviors, however, it is 
nontrivial to understand what an efficient sensory system would 
look like and we are faced with the task of being objective about 
animals with visual systems that are very different from ours, who 
have different perspectives on the world [2, 3] and different 
behavioral requirements. As it is objective in terms of the way it 
treats sensory data, a good first step in this endeavor is to try to 
explore regularities in the sensory information perceived by animals 
during their natural behavior.

One available method, which can be used to objectively explore 
sensory data, is to use artificial neural networks (ANNs), or machine 
learning more broadly, to explore the information available in a 
raw sensory array. Such uses of ANNs provide a mapping from the 
sensory environment to behavior. Essentially ANNs can be used to 
interrogate complex data and find the regularities and affordances 
that biological agents might well be tuned to (rather than being 
used as explicit models of animal brains). Here, we present case 
studies describing how we have used ANNs to understand how 
animals might use visual information for navigation.

1
 Here Lettvin and colleagues found that parts of the frog’s visual system are 

tuned to detect small moving objects. Thus the eye is providing information 
to the frog about where to direct the tongue in the hope of catching a fly. 
McCulloch and Pitts, authors of this paper, are commonly held up as pioneers 
of neural network research. J. Y. Lettvin, H. R. Maturana, W. S. McCulloch, 
and W. H. Pitts, “What the Frog’s Eye Tells the Frog’s Brain,” Proc. IRE 47 
(1959) 1940–1951.
2
 Lettvin again came up with the concept of a sparse code in the brain where 

small numbers of individual neurons may be highly selective to concepts such 
as one’s grandmother. See Quian-Quiroga, R., Fried, I., and Koch, C. (2013) 
Brain Cells for Grandmother. Scientific American, Feb.

Andrew Philippides et al.
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Navigation is an essential task for most animals [4] and indeed 
some artificial autonomous systems. One of the champions of this 
behavior is the ant whose foragers spend much of their working life 
travelling huge distances searching for food and then accurately 
and efficiently bringing that food back to their nest along idiosyn-
cratic habitual routes [5]. Ants possess a number of mechanisms 
for orientation, including for some species social cues provided by 
pheromones [6]. However, for many ants the principal source of 
information for navigation comes from the visual scenes that they 
experience when travelling along their familiar routes [7].

Behavioral experiments have shown us the efficient way that 
ants use vision for navigation which depends on a fundamental 
property of the visual world. In a complex world, two photographs 
taken with the same camera can only be identical when the camera 
location and orientation are matched. However, Zeil et al. [8] 
showed that the difference between images taken from different 
nearby locations is minimized when the orientations match. This is 
also true for natural visual systems. Thus, if a view of the world 
from a forward-facing camera is memorized when travelling along 
a route, that memory can be used later to recover the original 
direction of travel from nearby locations, by finding the best match 
with the currently perceived view [8, 9]. In behavioral terms for 
the ant this means scanning the world and finding the direction 
that provides the best match with their memory [10]. Using this 
simple strategy the required knowledge for an experienced ant for-
ager is equivalent to the views required to set the appropriate direc-
tions at all locations along their foraging routes.

What kind of challenge does this present to an ant? The views 
experienced by ants are of low resolution (Fig. 1) with an almost 
panoramic scene being encoded with the equivalent of 1,000 pix-
els. What’s more their visual systems, unlike those of flying insects, 
are not particularly fast, so the ant may have an effective “frame 
rate” of roughly ten views per second. However, we know that ants 
easily learn routes 10s of metres in length and, given their walking 
speed, we can estimate that along a single foraging route ants will 
experience views of the world totalling millions of pixels. 
Theoretically, if ants had perfect memories they could store the raw 
pixel values for every view experienced along a route and use those 
perfect “photographic” memories for navigation. However, this 
seems unlikely given a total brain size of 500,000 neurons. Surely 
evolution has been able to come up with a more efficient system 
both in terms of efficiencies in the way a visual system encodes a 
view and also in the way visual information is stored. Here we 
describe how we have used ANNs to explore efficiencies in vision 
and memory that might underpin visually guided navigation in 
complex worlds.

Visual Navigation



230

2  Our Approach

Biological background: Ants can learn the information to visually 
guide a route after traversing it once [11]. Subsequently, they 
habitually travel within a corridor defined by the views experienced 
along the route. These stored views define the directions in which 
to travel [12, 13] for all locations along the route. Perhaps surpris-
ingly, ants do not seem to learn discrete waypoints representing 
key locations along a route [9]. Further, ants accomplish this task 
with a low-resolution visual system (Fig. 1) which is not well suited 
to object recognition but provides ants with a coarse visual encod-
ing representing the broad layout of terrestrial objects contrasted 
against the sky [14, 15].

Problem from a machine learning perspective: Given a single route 
traversal (to gather training images), we need to learn a compact 
representation which encodes the set of training images such that 
they can subsequently be used to navigate the route. Specifically, 
the network which has been used to encode the views should be 
able to be used to set a direction of travel given the  current visual 
input from locations along or close to the original route.

Fig. 1 (a) The world as seen by a human eye. The human field of view is quite large, almost 120° wide. 
However, we only have high-resolution vision at the center of our visual field, which we make up for by moving 
our eyes. (b) An ant’s eye view of the world. Ants have a horizontal field of view spanning almost 360°, but with 
homogenous low resolution. Notice how you cannot recognize the house in the ant’s eye image. This picture 
shows a vertical angle of 45°, but ants do see at increased elevations, because they extract celestial compass 
information

Andrew Philippides et al.
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Insight: We can use the views experienced in the first route traversal 
as training data for an ANN designed to perform familiarity judge-
ments. After training the ANN will be able to output a familiarity 
score for any novel view presented to it.

The fact that ants are moving, and therefore facing, in the cor-
rect direction most of the time during the first route traversal 
means that these training views implicitly define the movement 
directions required to stay on the route. Thus, it is sufficient to 
learn the views as they are experienced. After the initial route 
learning, the problem of navigation is reframed as a search for 
views similar to those associated with the route. If a novel view is 
familiar, it is likely that a similar view has been experienced before 
and so the ant is likely to be close to the route and heading in an 
appropriate direction. So, by intermittently scanning the environ-
ment and moving in the direction that gives the most familiar view 
an ant can reliably retrace its route.

To learn a route we thus train an ANN to learn the regularities 
within a series of views in such a way that it can make a familiarity 
judgement about any new view presented to it. This approach has 
two major benefits. First, an ANN is an efficient way to encode a 
series of views. We do not attempt to store every view experienced 
along the route, but instead use them to train the ANN. Second, 
and as a corollary, because we are not storing all the views used 
for training, we are not limited in the amount of training views we 
can use and so the agent does not need to decide when or which 
views to learn.

There are many different possibilities for training ANNs for 
this task. The only prerequisite for our approach is that the ANN 
should provide a measure of the familiarity of a presented view. In 
our case we also wanted biological plausibility, in the sense that the 
vision, memory size, and learning behavior should be plausibly 
achieved by an ant. These requirements have driven our research 
trajectory.

3  Approach 1: ANN as a Classifier

Our first attempt at modelling route navigation with an ANN [16] 
used training data to establish a classifier which could determine 
whether a given view is an on-route view (i.e., facing the correct 
direction) or an off-route view (i.e., facing in a non-route direc-
tion). When novel views were presented to the classifier the associ-
ated confidence in the classification could then be used as a proxy 
for the familiarity of the presented view.

In this approach, a robot with a panoramic camera is first 
moved along a predefined route to gather the training images 
(every 4 cm) along the route. In order to train a classifier it is nec-
essary to generate positive and negative training examples of the 
input to be classified. In our case this means collecting views that 

Visual Navigation
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are part of the route and views that are not part of the route. The 
positive examples are simply the forward-facing views experienced 
along the route. The negative views consisted of views from the 
route taken facing to the left and right of the direction of move-
ment at an angle of 45° relative to the route heading (Fig. 2a).

Classifying views is a difficult task because of the high dimen-
sionality of the input if one adopts a pixel-by-pixel representation. In 
order to make learning more tractable one can project this high- 
dimensional space into a lower dimensional space by passing views 
through a set of visual filters. Following Viola and Jones [17] we 
chose to construct a classifier using randomly generated filters com-
posed of Haar-like features. Haar-like features act like edge detectors 
or crude approximations to Gabor filters and are maximally activated 
at high-contrast boundaries in the image (Fig. 2b). The set of out-
puts from these feature detectors form the basis of our image repre-
sentation and are used to train a classifier via the Adaboost learning 
algorithm, a commonly used variant of boosting [18].

Boosting is a supervised learning technique for constructing a 
strong classifier from a set of weak classifiers given a training set of 
labelled positive and negative examples. A weak classifier is one 
that performs only slightly better than chance. Conversely, a strong 
classifier is one that performs arbitrarily well. A strong classifier is 
constructed from a linear weighted combination of the outputs of 
weak classifiers. In our context, each visual filter is a candidate weak 
classifier, hj(x), and consists of a Haar feature fj, a threshold θj, and 
a parity pj that determines whether the output should be greater or 
less than the threshold
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This process is illustrated in Fig. 2c–d We initially generate a large 
pool (5,000) of such filters of random types and sizes and at ran-
dom positions in the visual field. We then use Adaboost to select 
and combine a prespecified number, T, of these weak classifiers into 
a strong classifier. By specifying T, we thus control the complexity 
of the classifier. As an aside we highlight an interesting outcome of 
the boosting process. Because Adaboost starts with a large pool of 
feature detectors, and then performs feature selection to pick out 
and use only those features that are most useful for the current 
classification problem, we can interrogate sets of filters to see if 
they relate to biologically salient features or portions of the world.

The Adaboost algorithm works as follows. At each iteration, 
the training data xi (m on- and l off-route views) are weighted 
according to a distribution that indicate the current importance of 
each example in the dataset, with initial weights w0,1 set as 1/(2m) 
or 1/(2l) for on- and off-route views, respectively. The weak clas-
sifiers are evaluated according to the weighted error
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Fig. 2 Using an ANN as a classifier of on- and off-route views. (a) Training images are collected in three directions 
every 4 cm along the training route. A forward-facing image is collected as an example of an on-route view and two 
off-route views are also collected at ±45° relative to the route heading. (b) Examples of the four different classes of 
Haar-like feature detectors, from left to right, a single block, edge-detector, Gabor-like edge detector, and diagonal 
edge detector. Each feature detector can vary in size, shape, and position. As images are panoramic, feature detec-
tors wrap-around if they extend beyond the left or right edge of the image. White is a weight of 1, grey 0, and black 
−1. (c–d) Constructing a weak classifier using a single Haar-like feature. Each training image is convolved with the 
feature detector to determine an optimal threshold which determines the output for the unseen data. (c): Distribution 
of feature detector outputs for the two classes for a Haar feature f. A threshold, θ, is determined that optimally sepa-
rates the distributions (vertical bar ). (d) The final weak classifier is defined by a feature detector, a threshold, and a 
parity. For the example shown, the output of the weak classifier, h(x), for the image, x, is 1 if the feature detector 
output exceeds a threshold of 200, or 0 otherwise. (e–f) Learning a circuit of the gantry workspace. The dark line 
represents the training route. (e) The gantry workspace as viewed from above. (f) Performance of the algorithm from 
ten different start positions (dashed lines ) using a boosted classifier with 50 features
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where yi is 1 for on-route and 0 for off-route views. If the mini-
mum error across the classifiers at iteration t, et, is 0, the algorithm 
stops. Otherwise, the classifier associated with the lowest error is 
denoted as ht, added to the strong classifier and removed from the 
pool of features. The weights associated with the training data are 
then updated according to
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where ci = 0 if xi is classified correctly and 1 if not, with weights 
normalized after each iteration, so they sum to 1. Essentially, this 
process increases the weights of incorrectly classified views relative 
to correctly classified views, thereby encouraging the next weak 
classifier to focus on examples that were incorrectly classified at 
the last iteration. Weak classifiers are added until the overall clas-
sification performance exceeds a threshold or the maximum num-
ber of weak classifiers, T, is reached. The final classification is then
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with an associated confidence value of
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which is simply the degree to which the sum of the combined weak 
classifiers differs from zero, prior to the sign being taken. This con-
fidence value is key to our approach as it is used to determine the 
most likely direction of travel in subsequent navigation. 

To navigate a route the classifier is fed multiple views in different 
directions from a given position. By weighting each of the viewing 
directions that produce positive classifications by their associated 
confidence values, a movement direction is determined which is 
most likely to keep the agent on the learned route. To demonstrate 
the efficacy of this approach we implemented it on a large Cartesian 
gantry robot equipped with a panoramic camera moving through 
a 3 m × 2 m environment (Fig. 2e). During a training run a series 
of views are collected for on- and off-route directions (Fig. 2e). 
These views are used to train our classifier following the proce-
dures outlined above. During route recapitulation the camera is 
positioned at the start of the route facing in the correct direction. 
From this position views are sampled in a range of directions from 
−60° to +60° in steps of 5° relative to the current heading. Views 
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are passed into the classifier and all of the viewing directions that 
produce a positive classification contribute to a weighted  average 
which determines the direction of travel and a 5 cm step is made in 
this direction. The process is then iterated.

As can be seen (Fig. 2f), the approach works well and robust 
route navigation is achievable. As is typical of ants, the results show 
that the agent navigates along a corridor defined by the training 
path but influenced by noise and the environment. It was also 
noted that the routes “smoothed out” some of the kinks that were 
present in the original training run. While results were dependent 
on the number of classifiers used (more classifiers resulted in better 
performance) near-perfect results were achieved with 50 classifiers, 
while very robust results could still be achieved with only 20 clas-
sifiers. We have thus shown that it is possible to learn a nontrivial 
route through an environment using a simple view classification 
strategy based on positive and negative views collected during a 
single episode of learning. By using an ANN as a classifier, we 
reframed the problem of route navigation in terms of a search for 
familiar views. The benefits of the ANN are that it both provides a 
compact, holistic representation of the information required for 
route navigation but also a measure of the expected uncertainty of 
the classification.

We have thus demonstrated the principle that ANNs can be used 
to learn a holistic representation of the views that determine a route. 
Secondly, we have shown that a coarse visual system CAN encode a 
complex world because it is used to drive a specific behavior through 
familiarity recall rather than object or place recognition.

4  Approach 2: Training an ANN Without Negative Examples

One issue with the solution presented above is the biological- 
plausibility of the training as it requires both on- and off- route 
views. Additionally, an iterative Adaboost algorithm does not seem 
viable for implementation in the brain.

For our second approach we used the same general method of 
employing a training route to gather data but in a simulated world 
which mimics a desert ant habitat and therefore has the inherent 
richness of natural visual scenes (Fig. 3a). Additionally, we did not 
want to use negative examples in training. If we have no negative 
example to tell us we are wrong, an alternative approach is to learn 
a compact approximation of the distribution of views encountered 
during training which can subsequently be used to infer whether or 
not a novel view is part of the original training set.

An efficient way to do this is to learn regularities in the views 
experienced via sets of feature detectors which reduce the dimen-
sionality of the sensory data. One very successful machine learning 
approach to this kind of problem is the use of “autoencoder” 
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Fig. 3 (a) The simulation environment. Top left : A typical simulated environment. Middle : High-resolution view 
of the world from an ant’s perspective. View is panoramic, so forward is middle of the row and the view wraps 
round from left to right. Bottom : Low-resolution representation of the view shown in middle panel. (b) 
Architecture of a Restricted Boltzmann Machine. The visible nodes are associated with the input data and the 
hidden nodes with the hidden variables of the model to be learnt. (c) Left: The training route taken through a 
complex desert ant habitat. Upper right: A zoomed-in view of the familiarity landscape produced by the trained 
network. Right: Ten recapitulated routes through the environment
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 networks [19] which are able to both learn a compact representa-
tion of the data distribution and, after training, auto-generate the 
data. These processes can be thought of as encoding and decoding 
the original data, effectively learning a generative model. In the 
application of this approach to our ant navigation problem, the 
way in which visual features are selected is not generated in a super-
vised fashion as in Approach 1, but is driven by statistical regulari-
ties within the set of views experienced as the ant follows a route 
through the world.

A powerful implementation of “autoencoder” networks is as a 
Restricted Boltzmann Machine (RBM) [20, 21]. Hence we 
attempt to learn a compact representation of the distribution of 
views experienced along the route by training an RBM on the set 
of training views. Once the RBM has been trained we can use it to 
infer the probability that a novel view was part of the training set. 
Behavior is now driven by scanning the world and searching for the 
viewing direction with the highest such probability, i.e., the one 
most likely to be part of the training route.

The basic RBM architecture is shown in Fig. 3b. Nodes in the 
network are stochastic binary neuron-like elements. The visible 
nodes are associated with the visible variables (in our case the pixel 
values from on-route views) and the hidden nodes are associated 
with the hidden variables (or “causes”) inherent in the data (in our 
case the higher level features). The layers are joined by symmetri-
cally weighted connections in the manner shown in the figure, but 
there are no visible-visible or hidden-hidden connections. This latter 
constraint is what makes this class of network “restricted” in relation 
to the standard fully connected Boltzmann Machine [22, 23] and 
greatly simplifies learning and inference [21]. In general, RBMs 
can be stacked to create several hidden layers where the outputs of 
one layer act as the data for training the next layer (producing so-
called deep networks) [19]. In our ant problem application a single 
hidden layer sufficed—we used an RBM with 1,360 visible units 
and 500 hidden units.

The stochastic nature of the RBM network nodes means that 
it is natural to import methods and language from statistical phys-
ics in describing their operation. Hence we talk about a joint con-
figuration (v,h) of the visible and hidden units having an “energy” 
given by the function E(v,h) shown in Eq. 6
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where vi and hj are the binary states of the visible unit i and hidden 
unit j respectively, ai, and bj are their biases and wij is the weight 
between them. Through this energy function it is possible to 
express the probability of a given configuration by
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where Z is a normalization constant. Thus, the probability assigned 
to a single data point, v, is found by summing over all possible hid-
den vectors as shown in Eq. 8
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Following a maximum likelihood principle, training an RBM con-
sists of increasing the probability that the network assigns to the 
observed data by adjustment of the weights and biases. This is 
achieved by decreasing the energy of the observed data and increas-
ing the energy of unobserved configurations using some kind of 
gradient descent algorithm [20, 21]. There are many possibilities, 
but in the current work we employ an efficient approach called Fast 
Persistent Contrastive Divergence; full details of the training pro-
cedure can be found in Hinton [21, 24] and its application to the 
ant problem in Baddeley et al. [25].

Having trained an RBM, the probability of a visible datum (in 
our case the visual scene) is found by summing over all possible 
configurations of the hidden units as described by Eq. 8. 
Unfortunately this computation is intractable for large h. However, 
we can calculate the probability of a visible datum up to a normal-
ization constant by using an alternative, tractable, formulation for 
the probability of a datum expressed in terms of the free energy, 
F(v), as described by Eq. 9:

 
F v

h

E v h( ) = - å - ( )log e ,

 
(9)

which allows us to write P v
Z

F v
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¢

e  where Z′ is a normaliza-
tion constant. For an RBM the free energy has an analytic form 
given by Eq. 10:
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where x b w vj j
i

ij i= +å . Since we wish to compare the relative 

probabilities of different views, the normalization constants cancel 
out. This allows us to directly compare the probabilities that each 
of the views in a scan is part of the training route by simply calcu-
lating their free energies.

The routes we produced can be seen in Fig. 3c. As before, there 
is a broad route corridor defined by the training data and the structure 
of the environment. As with the classifier approach, this shows that an 
ANN-based holistic memory can achieve robust route homing. 
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However, in this instance, no “negative views” were needed and so 
the approach is more attractive in terms of biological plausibility. In 
addition, a nice feature of this algorithm is that once trained, the net-
work can be queried to see the types of regularities that have been 
encoded which again allows us to understand the visual filters that are 
appropriate for the visual navigation.

Unfortunately, the training process for RBMs has a so-called 
“burn-in” period before unbiased samples can be produced. This 
results in a computation and time heavy algorithm. So while this 
works satisfactorily without negative training views, it is not ideal 
for our biological desideratum of one-trial learning.

5  Approach 3: Learning and Discarding Views

We have shown that it is possible to learn a compact holistic route 
memory that gives a confidence that any novel view is part of that 
route and that this can be done without off-route (i.e., negative 
examples). However, so far we have used an ANN’s confidence in 
its classification as a proxy for familiarity. In so doing, during ANN 
training we have needed to have all the views available which seems 
somewhat counterintuitive biologically; the agent would need an 
almost perfect memory before then being able to acquire a com-
pact representation by training the network. We now turn to an 
alternative network and training regime. Instead of storing all of 
the views experienced on a training route, the views are used to 
train a two-layered ANN to perform familiarity discrimination 
using an Infomax learning rule [26]. That is, once trained, the 
network takes a view as input and outputs a familiarity measure 
based on the views that the network was trained with. The key dif-
ference to the previous ANN approaches is that each training view 
is presented to the network once only and then discarded follow-
ing a single cycle of weight updating. Thus the memory load does 
not scale with the length of route but remains constant.

The ANN architecture (Fig. 4a) consists of an input layer and 
a novelty layer. The number of input units is equal to the dimen-
sionality of the input which in our case is the number of pixels in a 
view of the world, N = 90 × 17 = 1,530. The number of novelty 
units, M, is arbitrary and we typically used the same number of 
novelty units as inputs, i.e., M = N = 1,530. We found that using as 
few as 200 novelty units can still work well, but we did not explore 
this aspect of the problem in any detail. The network is fully con-
nected by feedforward connections wij with the activation of the 
i′th novelty unit being
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Fig. 4 (a) The two-layered network used with the Infomax learning rule. Circles 
represent units and arrows denote connections between the input units on the top 
and the novelty units on the bottom. There is no output from the network as such 
since the response of the network is a function of novelty unit activations. (b) 
Navigating using a trained ANN to assess scene familiarity. Three separate routes 
(thick grey lines) learned in an environment containing both small and large objects. 
For each of the three routes, that consisted of between 700 and 980 views taken 
every 1 cm, we show three recapitulations (thin black lines). During route reca-
pitulations the headings at each step were subject to normally distributed noise 
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where xj is the value of the j′th input pixel. Weights are initialized 
randomly from a uniform distribution in the range [−0.5, 0.5] and 
then normalized so that the mean of the weights feeding into each 
novelty unit is 0 and the standard deviation 1. The Infomax 
approach [27] decomposes each view into a fixed number of com-
ponents (determined by the number of hidden units in the net-
work) which remains constant, independent of the number of 
views experienced. It does this by adjusting the weights so as to 
maximize the information that the novelty units provide about the 
input, by following the gradient of the mutual information. Since 
two novelty units that are correlated carry the same information, 
adjusting weights to maximize information will tend to decorrelate 
the activities of the novelty units and the algorithm can thus be 
used to extract independent components from the training data 
[28]. The core update equation is
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where yi = tanh(hi) is the output of each novelty unit, and η = 0.01 
is the learning rate. This performs gradient ascent using the natural 
gradient [29] of the mutual information over the weights [28] 
which avoids the computationally expensive calculation of the 
inverse of the entire weight matrix.

Once trained, subsequent route navigation is achieved by the 
agent sampling views at different headings from a given position. 
Each view is fed into the ANN and the agent takes a 5 cm step in 
the direction associated with the most familiar view where the 
familiarity of a view, X, is given by the network output:
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The network response could be viewed as an output layer but as it 
is a function of the activations of the novelty units, we follow [26] 
and do not represent it with another layer. The Infomax familiarity 
measure is abstract and reflects whether an input is well described 
in terms of the learned components that the hidden units repre-
sent. While with a limited amount of data the algorithm is unlikely 

with a standard deviation of (15o). (c) Including learning walks prevents return 
paths from overshooting the goal. Without a learning walk the simulated ant over-
shoots and carries on in the direction it was heading as it approached the nest 
location. By including the views experienced during a learning walk the simulated 
ant, instead of overshooting, gets repeatedly drawn back to the location of the 
nest. Thick grey line: training path; thin black lines: recapitulations
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to converge to a particularly good set of independent components, 
it is enough that the components that are extracted provide a more 
suitable decomposition of the training data than of an arbitrary 
input. By decomposing the input in this way it is possible to  compress 
redundant data resulting in more efficient memory storage.

This process achieves robust route navigation, again displaying 
a corridor within which route navigation is easily achieved (Fig. 4b). 
The algorithm is able to learn multiple routes to a single goal and 
can be made more robust by including a number of training runs. 
Further, by including a set of views that face the goal from a num-
ber of different directions, inspired by the learning walk behavior 
of ants [30], the same algorithm and ANN memory are able to 
exhibit place search as well as route navigation (Fig. 4c).

6  Discussion and Future Directions

Our aim was to use artificial neural networks (ANNs) as a tool to 
investigate the connection between the sensory environment and 
behavior for the problem of visual navigation. It was hoped that 
through this machine learning approach we might explore the com-
plex sensory array and find regularities and affordances that biologi-
cal agents might be tuned to. Over a series of implementations we 
have shown how the visual scenes experienced during a single route 
traversal can be used to train ANNs to learn a compact representa-
tion of the visual information needed to recapitulate that route. 
Such recapitulation is driven by sampling the world in a range of 
directions and assessing the familiarity of the associated views as 
judged by the ANN; one then has to simply move in the most 
familiar direction. As we have shown, this familiarity- based naviga-
tion works robustly in a number of environments.

A more general outcome that emerged from the use of ANNs 
in this series of experiments was that they allowed us to objectively 
assess the opportunities for efficient use of vision in a complex task 
(visual navigation). Our first hope was that objective neural net-
work modelling would allow us to investigate what visual regulari-
ties are extracted by ANNs in complex natural worlds. In our first 
two approaches we were able to see which visual features emerge as 
useful descriptors of the world for navigation. We suggest this as a 
new method by which biologists might try to understand the visual 
preprocessing that is useful for a particular task.

A second major outcome has been a deeper understanding of 
how memory systems might be efficiently organized for visual navi-
gation. Our algorithms are existence proofs that route memories 
can be held within a single ANN, which is thus a “holistic” repre-
sentation of the route. This means that memory load does not scale 
with the length of the training route and, for instance, multiple or 
complex paths to a single goal can be stored together. From a 
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 biological perspective it is pleasing that recent research suggests 
that a particular brain region in insects (the mushroom body) 
may be well suited to computations similar to our algorithms 
(Barbara Webb, personal communication, June 10, 2014). 
Another property of these “holistic” networks is that at no point 
does the agent have a spatial memory in terms of knowing “where 
it is” but rather it has a spatial memory for “what it should do.” 
This has often been noted of insect navigators [15, 31].

Overall, we hope to have outlined in this chapter how neural 
networks, and machine learning techniques more generally, are not 
restricted to being used as specific models of brain areas, but can be 
used to provide a deeper understanding of animal behavior.
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Chapter 15

Jump Neural Network for Real-Time Prediction  
of Glucose Concentration

Chiara Zecchin, Andrea Facchinetti, Giovanni Sparacino, 
and Claudio Cobelli

Abstract

Prediction of the future value of a variable is of central importance in a wide variety of fields, including 
economy and finance, meteorology, informatics, and, last but not least important, medicine. For example, 
in the therapy of Type 1 Diabetes (T1D), in which, for patient safety, glucose concentration in the blood 
should be maintained in a defined normoglycemic range, the ability to forecast glucose concentration in 
the short-term (with a prediction horizon of around 30 min) might be sufficient to reduce the incidence 
of hypoglycemic and hyperglycemic events. Neural Network (NN) approaches are suitable for prediction 
purposes because of their ability to model nonlinear dynamics and handle in their inputs signals coming 
from different domains. In this chapter we illustrate the design of a jump NN glucose prediction algorithm 
that exploits past glucose concentration data, measured in real-time by a minimally invasive continuous 
glucose monitoring (CGM) sensor, and information on ingested carbohydrates, supplied by the patient 
himself or herself. The methodology is assessed by tuning the NN on data of ten T1D individuals and then 
testing it on a dataset of ten different subjects. Results with a prediction horizon of 30 min show that 
prediction of glucose concentration in T1D via NN is feasible and sufficiently accurate. The average time 
anticipation obtained is compatible with the generation of preventive hypoglycemic and hyperglycemic 
alerts and the improvement of artificial pancreas performance.

Key words Type 1 diabetes, Forecast, Continuous glucose monitoring, Nonlinear modeling, Time 
series modeling

1 Introduction

Prediction of the future value of a variable is of central importance 
and widely applicable within a variety of disciplines. For example, 
as reported in ref. 1, economic forecasting is used in financial man-
agement, for setting fiscal policies and budgeting, and for business 
planning. A variety of applications exist in both long- and short- 
term weather forecasting, for example in the generation of civil 
danger warnings, decision support in agriculture, planning of elec-
tricity demand, control and safety of air traffic. In computer  science, 
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forecasting the behavior of Internet networks is used to optimize 
resources allocation and detect security attacks.

In medicine, prediction methods are largely used for tuning 
therapies and for forecasting risks of development and progression 
of diseases, see for example ref. [2] for a review of advances in 
genetics for predicting the occurrence of some diseases. In subjects 
affected by chronic pathologies, highly risky events could be fore-
casted by exploiting short-time prediction methods, with 
20–30 min of anticipation, see [3] for an application in epilepsy for 
impending seizure detection. In Type 1 Diabetes (T1D) manage-
ment, which is the field of application considered in the present 
chapter, real-time short-term prediction of future glucose concen-
tration in the blood from its past history measured by minimally 
invasive subcutaneous continuous glucose monitoring (CGM) 
sensors [4, 5] could allow diabetic patients to administer treatment 
and adjust their therapy on the basis of future, instead of current, 
glucose concentration, permitting them to mitigate, and in some 
cases avoid, critical events, see [6, 7] for methodological review 
aspects, [8, 9] for clinical applications and [10, 11] for industrial 
challenges. In addition, CGM and short-term prediction are key 
inputs to the so-called artificial pancreas, a minimally invasive 
pump device which subcutaneously administers insulin according 
to a temporal profile determined in real-time by a sophisticated 
closed-loop control algorithm, see for example refs. [12, 13].

In this chapter we present, in detail, the recent glucose predic-
tion algorithm of ref. 14, which is based on a jump NN model that 
uses, as inputs, not only the information on glucose concentration 
history measured by the CGM sensor but also the quantity of 
ingested CHO provided by the patient in concomitance with the 
meal. Parameters of the NN are first tuned on data of ten T1D 
subjects, while the effectiveness of the prediction method is tested 
on ten different T1D subjects monitored for 2–3 consecutive days 
by a widely used commercial CGM sensor (Dexcom SEVEN® 
PLUS, Dexcom Inc., San Diego, CA).

2 The Diabetes Disease and Its Therapy

Diabetes mellitus is characterized by dysfunctions in insulin secre-
tion and action: in T1D the pancreas is unable to produce insulin, 
while in Type 2 diabetes derangements in insulin secretion and 
action occur. As a consequence, the glucose concentration in the 
blood, which in a healthy individual remains within the normal 
euglycemic range of 70–180 mg/dl, often exceeds these limits, 
with short- and long-term complications. Hypoglycemia (glycemia 
below 70 mg/dl) can progress from measurable cognition impair-
ment to aberrant behavior, seizure and coma [15]. Hyperglycemia 
(glycemia above 180 mg/dl), if left untreated, can become severe 
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and lead to serious complications requiring emergency care, such 
as diabetic coma. Moreover, prolonged hyperglycemia predisposes, 
in the long term, to invalidating pathologies, as neuropathy, 
nephropathy, retinopathy, and diabetic foot ulcers [16].

Conventional T1D therapy aims at maintaining euglycemia by 
adjusting diet, physical activity, and insulin injections. The therapy 
is normally tuned on the basis of 3–4 daily fingerstick self- 
monitoring blood glucose (SMBG) measurements, obtained by 
the patient through portable lancing devices [17]. The recent 
development of portable minimally invasive CGM sensors, able to 
measure glucose concentration every 5–10 min for up to 7–10 
days, allows the tracking of glucose dynamics much more effec-
tively than via SMBG. It is today largely accepted in clinical research 
that CGM sensors permit the improvement of diabetes manage-
ment [18–20], both by suggesting the refinement of the patient’s 
individual therapy on the basis of the retrospective (Holter-like) 
assessment of glycemic recordings and in real-time, by alerting the 
patient when hypoglycemic and hyperglycemic thresholds are 
exceeded. However, taking therapeutic decisions on the basis of 
the current glycemia does not allow the patient to avoid imminent 
critical events.

To help readers of this book to better understand this issue, in 
Fig. 1 the time-course of glucose concentration (black dots linearly 
interpolated) measured during the day of a T1D subject by a CGM 
sensor, together with information on timing and quantity of 
ingested carbohydrates (CHO, blue stems) and timing and quan-
tity of injected insulin bolus (green stems) are shown. Hypoglycemic 
and hyperglycemic thresholds are also reported (thin horizontal 
lines). At the end of the first night glucose concentration was in the 
euglycemic range, but fell below 70 mg/dl around time 07:30. 
The subject had breakfast around 08:00 but did not inject any 
insulin bolus in concomitance with his meal. During the morning 
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Fig. 1 Representative CGM signal (black dots linearly interpolated) measured by the Dexcom SEVEN PLUS 
device and information on insulin doses (green stems) and meals (blue stems) of a T1D subject
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glucose concentration reached hyperglycemic values and the 
 subject injected a correction bolus of insulin around time 10:00 
and reentered the euglycemic range around time 12:00. At time 
13:00 and 19:00 the subject ate and injected insulin to counterbal-
ance the effects of CHO. Notably, around time 17:00 the CGM 
signal fell in the hypoglycemic range and the subject promptly 
ingested 10 g of sugar to increase the glucose concentration and 
reenter the safe range. After dinner, around time 20:00, the subject 
experienced another hyperglycemia and reentered the safe range 
only after time 01:00. Some of (or even all of) these critical events 
could have been avoided, in theory, if the alerts were generated 
about 20 min before the crossing of the 70 mg/dl threshold, e.g., 
on the basis of a predicted profile of future glucose concentration. 
In view of the availability of CGM sensors from the beginning of 
the twenty-first century this possibility stimulated research and 
development of glucose prediction methods [4, 7]. However, 
forecasting glucose concentration in a certain prediction horizon 
(PH) is a challenging topic. Indeed, glycemia is influenced by 
many (often not measurable/quantifiable) factors (e.g., CHO 
ingestion, physical activity, administration of drugs including 
insulin, stress, and emotions) and interindividual and intraindi-
vidual variability is high. Furthermore, information relative to sev-
eral key variables that influence glucose dynamics is not directly/
easily usable. For instance, glucose concentration is measured by 
the CGM sensor and is returned as a time series, thus it is directly 
available and easy to embed in formal mathematical models. On 
the other hand, information on timing and CHO content of meals 
and on timing and dose of injected insulin is impulsive and should 
be adequately preprocessed, before being used, to generate signals 
more informative of meal and insulin effects on glucose concen-
tration. Finally, information on factors such as stress or emotions 
is hard to quantify and highly subjective. For these reasons, the 
majority of published glucose prediction methods rely solely on 
the use of the CGM signal as input.

3 Glucose Prediction: A Brief State of the Art

Popular algorithms, which exploit CGM information only, include 
autoregressive (AR) and AR with moving average (ARMA) mod-
els. Some examples are [21–24]. Some attempts to exploit infor-
mation on CHO and insulin therapy by ARX and ARMAX models 
have been recently proposed, see for example ref. [25–28]. 
However, it is natural to expect that glucose prediction performed 
exclusively on the basis of CGM data, possibly incorporating addi-
tional information in simple linear models, cannot be as effective as 
if additional input signals were used in nonlinear models.
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Neural networks (NN), thanks to their ability to learn the 
behavior of empirical nonlinear models and to utilize heteroge-
neous signals among their inputs, are valuable models for forecast-
ing glycemia using collateral information, in addition to the CGM 
signal. In the literature, only a few papers report investigations of 
the use of NN algorithms for glucose prediction. In ref. 29 the 
authors proposed a feed-forward NN whose inputs were previous 
CGM samples and the current time instant. In ref. 30 Pappada and 
colleagues developed a feed-forward NN incorporating, in addi-
tion to CGM data, other inputs such as SMBG readings, informa-
tion on insulin and CHO, information on hypoglycemic and 
hyperglycemic symptoms, lifestyle, activity, and emotions. In ref. 
31 Daskalaki and colleagues compared an ARX and a NN model 
exploiting, respectively, CGM and insulin and CGM, insulin and 
CHO information. In ref. 32 our research group proposed a model 
based on the parallel of a first order polynomial algorithm and a 
feed-forward NN, using information on CGM and announcement 
of future ingested CHO. In ref. 14 we demonstrated that a simpler 
architecture, without any announcement of future ingestion of 
CHO, gives results comparable to those of ref. 32.

4 A Jump Neural Network Methodology for Glucose Prediction

A jump NN is a feed-forward NN with inputs connected not only 
to the first hidden layer but also to the output layer. According to 
ref. 33, the jump NN structure is particularly suitable, and better 
than a simple feed-forward NN, for fitting and predicting time 
series characterized by the presence of both linear and nonlinear 
dynamics, as in the case of glucose signals, where we assume that 
each input is able to influence future blood glucose concentration 
with both linear and nonlinear effects. Indeed, hidden neurons, 
with their nonlinear activation functions, model the nonlinear rela-
tionship between inputs and targets, while the output neurons, 
with their linear activation functions, learn the linear relationship 
between inputs and targets.

To explain the adopted methodology, Fig. 2 shows the archi-
tecture of the proposed jump NN. Note that, in our implementa-
tion, data have a sampling period Ts of 5 min and the PH is 30 min, 
corresponding to N = 6 steps ahead prediction.

Inputs were selected through a multiple consecutive steps proce-
dure, using data drawn from the training set.

 1. First, a pool of possible candidate input signals was chosen, 
based on a priori physiological knowledge of the glucose insulin 
system and of diabetes. Going into details, the history of the 
glucose concentration signal, measured by the CGM sensor, 

4.1 Inputs Selection 
and Preprocessing
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was chosen since glucose concentration is a slow-varying signal, 
thus its future values are correlated, in the short term, with the 
past time-course of the signal. Moreover, information on quan-
tity and timing of ingested CHO, which is assumed to be pro-
vided by the patient himself/herself, was used. Ingestion of 
sugar is known to increase glucose concentration; however, 
while the ingestion of a meal can recall an impulsive process, 
CHO effects on glycemia are known to be smoother in both 
appearance and disappearance. For this reason, the physiologi-
cal model of oral glucose absorption proposed in ref. 34, com-
pleted with the population parameters obtained in ref. 35, was 
used to obtain the glucose rate of appearance (RaG) in the 
blood, a signal that mimics the velocity of glucose absorption in 
the blood stream after the ingestion of a CHO load.

 2. As second step, various signals, related to CGM history and to 
RaG were generated. The glucose concentration time derivative 
was computed from the CGM signal, using a Bayesian smoothing 
approach [36] to deal with ill-conditioning which tends to amplify 
measurement noise. RaG first order difference was computed, 
with time steps of 5, 15, and 30 min, and RaG cumulative sum in 
the preceding 30, 60, 90, and 120 min was also computed.

 3. Afterwards, the cross-correlation between target glucose con-
centration and the signals generated at step 2 was computed, 
for various time shifts. This step allows one to obtain two major 
results: the signals with the highest correlation with the target 
are selected, which are likely to be more useful to predict the 
target itself; time delays that should be applied to these signals 
are also selected.

Fig. 2 Block scheme of the proposed jump NN model for glucose prediction. z− k indicates the k-steps back-
ward shift operator
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 4. Finally, k-fold cross-validation was used to pick out the best 
subset of inputs, among those selected with the cross- 
correlation analysis. In this step, all the possible input combi-
nations are considered and, for each one, a NN is optimized. 
In particular, in k-fold cross-validation the training set is 
divided into k subsets, each network is trained on k − 1 subsets 
and tested on the remaining subset and the procedure is 
repeated k times, leaving out each time a different subset for 
testing the models. The performance of each NN is the aver-
age obtained in the k experiments.

The above four steps provided the data necessary to select four 
input signals. Two of them are related with the CGM signal and 
are the current value of glucose concentration, measured by the 
CGM sensor, indicated as y(n) in Fig. 2 and its current time deriva-
tive, which will be indicated as Δy(n) in the rest of the chapter. The 
other two inputs are relative to information on ingested CHO and 
are the current value of RaG and its average trend in the last 30 min, 
computed as

 

1
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1
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z Ra n
N

Ra n Ra n NN
G G G−( ) ( ) = ( ) − −( )( )−

 
(1)

with z− k indicating the k time steps backward shift operator, n cur-
rent time instant, and N equal to six steps.

Several preprocessing techniques are commonly applied before 
the data are used for training the NN to accelerate convergence 
and to ease the problem to be learned [37]. An essential operation 
is a rough scaling of the data between the lower and upper bounds 
of the neuron transfer function. We normalized inputs and output 
so that they had zero mean and standard deviation equal to 1. This 
step guarantees that, at the beginning of the training procedure, all 
the signals have, potentially, the same importance and they all 
belong to the approximately linear range of the tangent sigmoidal 
activation function. Data normalization also limits the extent to 
which larger numbers may dominate smaller ones and avoids pre-
mature saturation of hidden nodes, which would degrade the 
learning process.

Let us define: Nin number of input signals and Nhn number of hid-
den neurons. The jump NN predicts a signal that may be expressed, 
in a vector matrix form, as

 
ˆ |y n N n X n X n+( ) = × ( ) + × × ( )( )Ω Ψ Φ Γ

 
(2)

where X(n) indicates the column vector of size [Nin + 1] of input 
signals at time step n, plus an input equal to 1 associated with the 
weight accounting for the bias:

4.2 Mathematical 
Representation 
of the Jump NN Model
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Ω is the [Nin + 1] row vector of weights connecting every input 
directly with the output neuron, thus Ωi = ωi indicates the weight 
connecting the ith input to the output neuron. Ψ is the row vector 
of size Nhn of weights connecting every hidden neuron to the out-
put neuron, thus Ψk = ψk is the weight connecting the kth hidden 
neuron to the output neuron. Γ is the [Nhn × Nin] matrix of weights 
connecting every input to every hidden neuron, thus Γji = γji indi-
cates the weight connecting the ith input to the jth hidden neuron. 
Equation 2 can be expressed explicitly as
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The number of hidden neurons and hidden layers was chosen with 
k-fold cross-validation on the training set. Several candidate NNs 
with one hidden layer and with an increasing number on hidden 
neurons were evaluated. NNs with two hidden layers were also 
assessed, but they did not significantly outperform NN architec-
tures with one hidden layer only. Note that the selected model is 
usually a compromise between performance and structure simplicity. 
Indeed the NN with the lowest possible number of neurons that 
significantly outperforms simpler structures is chosen. In our case, 
the best and most parsimonious architecture was a NN with one 
hidden layer with five neurons. Thus, since the number of input 
signals is equal to 4 and there is 1 output, there are 31 free param-
eters to tune during training.

The NN weights were optimized on the training and validation set 
(see Subheading 5.1 for details) and then the architecture was 
tested on an independent test set. The NN was trained with the 
backpropagation Levenberg–Marquardt training algorithm, 
applied in batch mode, i.e., weights and biases are only updated 
after all the inputs and targets are presented to the NN, thus on the 
basis of the average error obtained on the entire training set. The 
minimized objective function J was the mean square error:
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with NTS the number of training time series and Mi the length of 
the ith training time series. The training procedure was arrested 
using early stopping [38]. Ordinarily, a NN learns in stages, 
 increasing the performance in the training set as the training ses-
sion progresses, towards a local minimum of the error surface. 

4.3 Structure 
Optimization

4.4 NN Training 
Procedure
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However, the NN might end up overfitting the training data and 
generalizing poorly. The onset of overfitting can be identified using 
cross- validation: the training data are split into an effective training 
set, used for computing the error and its gradient and updating the 
network weights, and a validation set, used for monitoring the error 
during training. The training session is stopped periodically and the 
error on the validation set is computed. The validation error nor-
mally decreases during the initial phase of training; however, when 
the network begins to overfit the data, the error on the validation 
set begins to rise. When the error increases for a predefined number 
of consecutive iterations the training is stopped and the weights at 
the minimum of the validation error are returned. In our imple-
mentation, we stopped the training after 100 consecutive iterations 
worsened NN performance on the validation set.

Remark: To avoid overfitting, a training procedure alternative to 
cross-validation is Bayesian regularization. This technique updates 
the weight and bias values according to Levenberg–Marquardt 
optimization, minimizing a combination of squared errors and 
squared weight values so that, at the end of training, the resulting 
network has good generalization without early stopping being 
required. In addition, any redundant weights in the network 
should assume values close or equal to zero at the end of the train-
ing and should, potentially, be eliminated from the NN without 
compromising its performance. In our implementation, this train-
ing procedure gave results comparable to those obtained with 
cross-validation; however, it was considerably more time- 
consuming, so we adopted the classical backpropagation with the 
cross-validation algorithm. A positive feature of Bayesian regular-
ization is that it does not require any validation set, thus all the 
data, other than those belonging to the test set, can be used for 
training. For this reason the method might be preferable to cross- 
validation when the available database is of small size.

5 Database and Assessment Criteria

The NN was optimized and tested on data of 20 T1D patients, 
monitored for 2 or 3 consecutive days in real-life conditions. Data 
were collected during the DIAdvisor™ project [39]. The glucose 
concentration was measured by the Dexcom SEVEN PLUS CGM 
sensor, which has a sampling time Ts of 5 min. Information on 
ingested CHO was extracted by picture of meals taken by the 
patients with a standard mobile phone with camera.

The database was divided into a training and validation set, 
constituted by ten time series and a test set, formed by the other 
ten time series. The training and validation set was further ran-
domly divided into the training set constituted by 70 % of the data, 

5.1 Database
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used for minimizing the prediction error and the validation set 
constituted by the remaining 30 % of data, used for stopping the 
training procedure.

The quality of prediction obtained with the proposed jump NN 
algorithm is quantitatively assessed by computing three metrics 
commonly used in the glucose prediction literature. The consid-
ered indexes, which measure different merits of the predicted glu-
cose profile, are:

 1. The Root Mean Square Error (RMSE), (mg/dl) between the 
predicted time-series and the original glucose time-series mea-
sured by the CGM sensor, calculated as

 
RMSE = +( ) − ( )
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with M being the length of the time series.
 2. The average Time Gain (TG), (min)

 TG PH delay= −  (7)

with the delay quantified as the temporal shift that minimizes 
the distance between ˆ |y n N n+( )  and y(n)
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with Ts being the sampling period of the signal.
 3. The Energy of Second Order Differences (ESOD) (i.e., the 

sum of the squared second order differences) of the predicted 
time series, normalized by the ESOD of the target time series 
[23].

 ESOD
ESOD
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( )
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y
 (9)
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The RMSE is a widely used metric in the CGM literature 
[22–25, 40]; however, it has some limitations: it does not 

5.2 Assessment 
Metrics
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penalize  spurious oscillations around the target and it is unable 
to penalize differently underestimation and overestimation of 
the target. TG is one of the most important indices from a prac-
tical perspective, since it quantifies the average anticipation with 
which events could be, in theory, detected and thus have a clini-
cal value. The closer the TG is to the PH, the better the predic-
tion, since the patient could decide therapeutic actions ahead in 
time and, likely, avoid critical events. Notably, the definition of 
the delay given in Eq. 8 is consistent with those of ref. 22, 41. 
ESODnorm reflects how (possibly spurious) oscillations are 
amplified in the predicted time series. Thus it roughly quantifies 
the risk of generating false hypo/hyper alerts. The closer to 1, 
the better the predicted time series.

6 Results

Figure 3 shows prediction in one typical subject (blue line), 
together with the target CGM signal (black) and meal information 
provided by the patient (blue stems). The thin horizontal lines rep-
resent hypoglycemic and hyperglycemic thresholds.

The predicted signal is plotted at the time instant to which it 
refers, i.e., the value plotted at a certain time is obtained N time 
steps earlier, using only data available until N time steps earlier. As 
we can note, the jump NN predicts the target accurately 
(RMSE = 17.6 mg/dl), with a satisfactory average anticipation 
(TG = 15 min) and with an acceptable amplification of measure-
ment noise (ESODnorm = 9.9). Results on the other test subjects are 
in line with those of the representative subject of Fig. 3 and are 
summarized in Table 1. RMSE, TG, and ESODnorm values are sat-
isfactory, suggesting that the jump NN is an appropriate architec-
ture for glucose concentration prediction and is able to learn the 
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relationship between the history of CGM and of CHO ingestion 
and future glucose concentration accurately. Moreover, the aver-
age TG is approximately 20 min, which is sufficient for taking 
effective therapeutic decisions ahead in time.

Another interesting index is the prediction time anticipation in 
correspondence of hypoglycemic and hyperglycemic thresholds. In 
Fig. 3, for example, the first hypoglycemic event is not predicted, 
while the second is anticipated by 5 min. Regarding hyperglyce-
mia, the first event is anticipated by 15 min and the second by 
20 min. In fact, in the dataset, the number of hypoglycemic events 
is limited (12 in the 10 time series used as the training set and 18 in 
the 10 time series used as the test set). As a consequence, the NN 
performance in forecasting these events cannot be solidly assessed. 
A preliminary visual analysis, restricted to the hypoglycemic events 
that the model is effectively able to predict, shows an anticipation 
around 20 min in crossing the 70 mg/dl threshold. However, 
some challenging events were not predicted. On the contrary, 
 several hyperglycemic events are present in the dataset (43 in the 
10 time series used as the training set and 58 in the 10 time series 
used as the test set). This allows the NN algorithm to accurately 
learn them. Indeed 94 % of the hyperglycemic events are correctly 
forecasted with an average anticipation of 23 min in crossing the 
180 mg/dl threshold. This result is highly encouraging and sug-
gests that the NN predictor, when trained on enough representa-
tive samples, can be used to anticipate critical events.

Table 1 
Results obtained on the ten test subjects (with PH = 30 min), average 
values and standard deviation

RMSE (mg/dl) TG (min) ESODnorm (−)

Subj 1 17.6 15 9.9

Subj 2 20.3 15 10.0

Subj 3 13.1 20 8.7

Subj 4 12.0 25 7.4

Subj 5 15.6 20 8.5

Subj 6 15.9 20 12.6

Subj 7 13.7 20 9.4

Subj 8 17.8 15 8.1

Subj 9 18.2 20 12.0

Subj 10 21.3 15 9.8

Mean ± sd 16.6 ± 3.1 18.5 ± 3.4 9.6 ± 1.6

The lower the RMSE, the closer to 30 min the TG, the closer to one ESODnorm, the 
better the quality of the predicted profiles
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7 Conclusions

Short-time prediction of glucose concentration can improve T1D 
therapy and management; however, it is challenging since glucose 
time course is affected by many exogenous disturbances (e.g., 
ingestion of CHO, injection of insulin, physical activity) and inter-
individual and intraindividual variability. The great majority of the 
tens of prediction methods proposed in the literature in the last 
decade are based on time series models and rarely exploit informa-
tion other than CGM. NN-based algorithms are able to learn non-
linear input–output relationships, and can easily use inputs 
belonging to different domains, as information on meals, insulin 
therapy and physical activity; thus they appear suitable candidate 
models for predicting future glycemia for both open and closed 
loop control applications.

This chapter describes a new method based on a jump NN, 
with inputs directly connected both to the first hidden layer and to 
the output neuron. Such a NN architecture is appropriate when 
inputs and output to be learned present both linear and nonlinear 
relationships. Information on timing and amount of CHO in the 
ingested meal was suitably preprocessed, before entering the NN, 
by exploiting a physiological model. The NN was optimized on 
data of ten T1D and tested on data of ten different T1D, moni-
tored with a minimally invasive CGM sensor. Results demonstrate 
that this approach is able to accurately predict glucose concentra-
tion, with an average temporal gain compatible with the genera-
tion of preventive hypoglycemic and hyperglycemic alerts.

Future work could include the investigation of other possible 
inputs for the NN, such as insulin information and physical activity 
related signals, whose correlation with changes in glucose dynam-
ics has recently been quantitatively investigated [42, 43]. Moreover, 
the NN training procedure could be customized to minimize an 
objective function that takes into account, apart from the adher-
ence to the target, also the time anticipation of prediction, possibly 
penalizing differently errors in hypoglycemia, euglycemia, and 
hyperglycemia.

To conclude, it is worthwhile noting that even if the presented 
NN is specifically designed for glucose prediction, the  methodology 
could easily be adapted to the prediction of any other time series 
whose dynamics are influenced both linearly and nonlinearly by 
exogenous measurable signals.
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    Chapter 16   

 Preparation of Ta-O-Based Tunnel Junctions to Obtain 
Artifi cial Synapses Based on Memristive Switching 

           Stefan     Niehörster     and     Andy     Thomas    

    Abstract 

   Magnetron sputtering and optical lithography are standard techniques to prepare magnetic tunnel 
 junctions with lateral dimensions in the micrometer range. Here we present the materials and techniques 
to deposit the layer stacks, defi ne the structures, and etch the devices. In the end, we obtain tunnel junc-
tion devices exhibiting memristive switching for potential use as artifi cial synapses.  

  Key words     Memristors  ,   Artifi cial synapses  ,   Magnetron sputtering  ,   Optical lithography  ,   Tunnel 
junctions  

1      Introduction 

 Memristors and memristive systems have attracted a lot of interest 
in recent years. The most interesting implementation of memris-
tive systems is neuromorphic devices. These aim to use biological 
mechanisms operating within the brain as a prototype to construct 
new computer architectures [ 1 ,  2 ]. 

 A memristor is a portmanteau of memory and resistor that 
Chua proposed in 1971 [ 3 ]. A straightforward way to envisage a 
memristor is as an adjustable resistor, e.g., a potentiometer. If a 
certain amount of fl ux (V × s) fl ows in one direction, the resistance 
increases. If the current fl ows in the other direction through the 
device, the resistance decreases. This means that the resistance of a 
memristor depends on its past states, which can be used to mimic 
the synaptic functionality in a brain. 

 In particular, it is possible to demonstrate the equivalents of 
long-term potentiation (LTP), long-term depression (LTD) as 
well as spike timing dependent plasticity (STDP) [ 4 – 6 ]. 
Consequently, the memristors can be used as electronic synapses 
in circuits, while the integrate-and-fi re functionality can easily 
be achieved via conventional electronics. 
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 In many cases, memristive systems consist of metal and insula-
tor thin fi lms (~1–10 nm) [ 7 ]. Tantalum oxide based systems are 
known to be stable over 10 10  switching cycles [ 8 – 10 ], but TiO 2  is 
often used as well [ 11 ,  12 ]. We realized the memristor as a metal/ 
insulator/metal trilayer, in which a thin tantalum oxide layer acts 
as a tunneling barrier. In the production process, the insulator 
grows on top of the lower metal electrode, while the upper metal 
electrode grows on top of the insulator. This asymmetry of the 
manufacturing process introduces oxygen vacancies in the crystal 
lattice at the bottom of the insulator. If we apply an electric voltage 
across the tunnel barrier, the electric fi eld acts on the oxygen vacan-
cies and they change their position slightly, i.e., the oxygen vacan-
cies will be shifted within the tunnel barrier. The resistance changes 
considerably, because the resistance of a tunnel barrier depends 
strongly on the properties (e.g., width and height) of the tunnel-
ing barrier. The oxygen vacancies remain in the tunnel contact on 
their new position, which explains the memory effect. If the applied 
voltage is reversed and the current fl ows in the opposite direction, 
the oxygen vacancies also move back and, consequently, change 
the resistance back to its initial value. 

 In the following sections, we describe the necessary techniques 
and procedures to prepare tunnel junction pillars. First, we list the 
required materials, i.e., the sputter targets, the substrates, and the 
chemicals for the lithography and etching processes. Then, we go 
into the details of the substrate preparation, the thin fi lm deposi-
tion, the optical lithography, including ion beam etching, and 
fi nally the production of the contact pads with insulation layer.  

2    Materials 

     1.    The substrates consist of 525 μm thick silicon wafers in <100> 
orientation with a 4″ diameter. The substrates are thermally 
oxidized to provide a 50 nm silicon dioxide fi lm. The front 
surface is polished, while the backside remains etched. The 
wafer was doped with Boron (holes) and had a resistivity of 
10–20 Ω cm. Wafers with the listed properties can be pur-
chased from, e.g., Semiconductor Wafer, Inc. We cut the wafer 
into pieces of 10 × 10 mm 2  for further processing.   

   2.    Films are deposited on the wafer pieces by magnetron sputter-
ing. We utilized a “CLAB600” from “Leybold Optics, Alzenau, 
Germany” with an additional oxidation chamber. The metal 
fi lms are prepared via dc- and the insulator fi lms are deposited 
via rf-sputtering.   

   3.    We used the following sputter targets:
    (a)    Tantalum 3″ (4N).   
  (b)    Palladium 4″ (3N5).   
  (c)    Gold 2″ (4N).       

Stefan Niehörster and Andy Thomas
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   4.    The lithography was performed in a clean room equipped with 
a spin-coater. We used the positive photoresist and the devel-
oper manufactured by “ALLRESIST GmbH, Strausberg, 
Germany,” namely, “AR-P 5350” (resist) and “AR300-35” 
(developer). The exposure was carried out by a Hg-short-arc 
lamp with an emission maximum of 436 nm or by the lithog-
raphy laser system “DWL66” from “Heidelberg Instruments 
Mikrotechnik GmbH, Heidelberg, Germany”, using a laser 
emission maximum of 405 nm.   

   5.    The etching of the junction pillars was completed in an argon 
ion-etching chamber with a rotatable sample holder. The sys-
tem was combined with a secondary-ion-mass-spectrometer 
(SIMS) to detect the depth of the etching process.      

3    Methods 

  Substrates with a size of 10 × 10 mm 2  are trimmed out of a 4″ 
 silicon wafer. The wafer is scratched at the edge with a diamond 
scraper and cut into pieces over an edge, e.g., fi ve sheets of paper. 
The substrate is affi xed by a clamp to the sample holder. The sub-
strate surface has to be contacted with silver paint to the sample 
holder ( see   Note 1 ). Before loading the sample into the load lock 
of the sputter machine, we cleaned the sample surface with a jet of 
nitrogen gas.  

       1.    The thin fi lms are deposited by magnetron sputtering. The 
base pressure inside the sputter chamber is less than 
2.0 × 10 −7  mbar, with a set point of 2.0 × 10 −7  mbar. The sputter 
pressure is approximately 1.3 × 10 −3  mbar and is regulated via 
the Argon fl ow (20 sccm) and the throttle position (21 %) in 
front of the turbo-pump. In our case, the tantalum fi lm is sput-
tered from a 3″ target with a power of 65 W and the palladium 
fi lm is sputtered from a 4″ target with a power of 115 W. The 
machine specifi c deposition rates are calibrated by X-ray refl ec-
tivity measurements (0.1–0.6 nm/s).   

   2.    We subsequently deposit a stack of 5 nm tantalum, 10 nm palla-
dium, and 2 nm tantalum on the silicon dioxide side of the wafer.   

   3.    The sample is next moved in-situ into the oxidation chamber. 
The base pressure inside this chamber is approximately 
2.5 × 10 −7  mbar, with a set point of 7.0 × 10 −6  mbar. The 
 pressure during the oxidation process is approximately 
2.0 × 10 −3  mbar and depends on the oxygen fl ow (13 sccm) and 
the throttle position (80 %) in front of the turbo-pump. The 
microwave power to ionize the oxygen is set to 275 W and the 
bias voltage to accelerate the oxygen ions towards the sample 
is −80 V. The sample is oxidized for 150 s to obtain the tanta-
lum oxide tunnel barrier.   

3.1  Substrate 
Preparation

3.2  Thin Film 
Deposition

Memristive Switching
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   4.    The sample (in-situ) is then moved back into the sputter cham-
ber and layers of 10 nm Ta, 5 nm Pd, 5 nm Ta, and 30 nm Au 
are deposited. Gold needs a higher sputter pressure of approxi-
mately 4.5 × 10 −3  mbar, which is realized by a smaller opening 
of the throttle (8 %). The sputter power for gold is 29 W, 
because of the smaller target size of 2″.      

   This is carried out as follows:

    1.    Place the sample in the middle of the spin-coater and tape it 
with double-sided sticky tape. Fill a one-way pipette with pho-
toresist and clean the sample with a jet of nitrogen gas. Drop 
the photoresist on the sample until the surface is fully covered. 
Rotate the sample at    4,000 rpm (or 6,000 rpm for the laser 
lithography) and subsequently bake it at 80 °C for approxi-
mately 30 min.   

   2.    Place a mask with an adequate layout on the sample and irradi-
ate both with the UV-light (Fig.  1 ). For positive resist cover 
the junction pillars. Alternatively, use the DWL-66 laser lithog-
raphy to create the desired layout. Our layout consists of 
squares with sizes of 7.5 × 7.5 μm 2 , 12.5 × 12.5 μm 2 , and 
22.5 × 22.5 μm 2 .    

   3.    Mix the photo developer with pure water at a ratio of 2 to 1. 
Stir the sample in the mixture for about 8 s until the vapor 
dissolves ( see   Note 2 ), then stop the developer process and 
clean it with pure water. Afterwards, dry the sample with 
nitrogen gas.      

3.3  Optical 
Lithography

  Fig. 1    ( a ) The complete mask layout. ( b )  The upper right edge  of the layout design. The  black parts  cover the 
sample (positive resist). The  triangles  in the frame are markers for easier positioning, in particular, if a second 
lithography step is necessary. The mask has to be placed upside down on the sample, so the characters are 
reversed to get a correct layout on the sample       

 

Stefan Niehörster and Andy Thomas



265

      1.    Clean dust specks from the sample with nitrogen gas and lock 
it in the etching chamber.   

   2.    The base pressure inside the etching chamber should be 
approximately 3.0–4.0 × 10 −8  mbar and the etching (sputter) 
pressure approximately 3.5 × 10 −5  mbar. The pressure is regu-
lated by the Argon fl ow (approximately 2.0 sccm). The cath-
ode current should be in the range 300–400 μA. The sample 
holder should rotate to achieve an equal etching rate over the 
entire sample. We have to etch through the tantalum oxide 
barrier into the palladium fi lm (Fig.  2 ) ( see   Note 3 ).    

   3.    After the etching procedure, it is possible to remove the 
remaining squares of photoresist through the use of an ultra-
sonic bath in acetone for approximately 5 min ( see   Note 4 ) and 
in ethanol for approximately 1 min. Only remove the photore-
sist, if no contact pads are needed and skip Subheading  3.5  as 
well as  3.6 .      

3.4  Ion Beam 
Etching

  Fig. 2    The main steps from UV-exposition to the fi nished sample       
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        1.    Before removing the photoresist, we mark one sample edge 
with a felt pen. Fill the spaces between the junction squares 
with an isolator such as silicon nitride or tantalum oxide via 
rf- sputtering. The insulator should have at least the same thick-
ness as the sum of the etched fi lms (here ≥60 nm).   

   2.    Now, remove the photoresist as well as the felt pen mark with 
acetone in an ultrasonic bath. In our case, the sample has to 
stay 5–10 min in the ultrasonic bath in a beaker fi lled with 
acetone because of the processed photoresist ( see   Note 4 ).   

   3.    The felt pen mark covered the surface and allows an easy 
removal of the insulator on top of it, therefore, providing 
access to the lower electrode.   

   4.    This procedure makes it easier to contact the elements without 
a short circuit and protects the sample from scratches and 
other damage or adverse environmental conditions.      

   It is possible to deposit contact pads on the elements, if the sizes of 
the junction pillars become very small. While it is easy to contact a 
junction pillar with lateral dimensions larger than 100 μm, it is very 
challenging to do this if the sizes approach 10 μm. In our case, we 
added contact pads with a size of 50 × 100 μm 2  ( see   Notes 5  and  6 ).

    1.    At fi rst, it may be necessary to spin coat the sample with pho-
toresist as described in    Subheading  3.3 ,  step 1 .   

   2.    The contact pads are prepared using a lift-off process. Therefore 
we need a mask with a layout matching the previously used 
junction mask, i.e., the whole sample is covered and the 
50 × 100 μm 2  holes are on top of the junction pillars. Place the 
mask on the sample and irradiate it with the UV-light.   

   3.    Sputter a 5 nm fi lm of tantalum and a 60 nm fi lm of gold, as is 
described in Subheading  3.2 ,  steps 1  and  4 .   

   4.    Place the sample in a beaker fi lled with acetone for the lift-off 
process and place it for 5–10 min in the ultrasonic bath (similar 
to Subheading  3.5 )    

4       Notes 

     1.    The sample is connected with silver paint to the sample holder. 
This is very important for the oxidation process, because it 
prevents charging of the sample.   

   2.    According to the age of the resist and the developer, the size of 
the sample and of the junction pillars, the developing time may 
vary about some seconds.   

   3.    The exact etching depth is not important. However, we have 
to meet two requirements. First, we must etch through the 

3.5  Insulator

3.6  Contact Pads
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barrier to prevent a short-circuit of the junctions via the top 
metal layers. Secondly, we must stop before the lower elec-
trode thickness falls below approximately 10 nm, otherwise, 
the resistance of the lower electrode becomes higher than the 
resistance of the tunneling barrier which may lead to artifacts 
in the measurements.   

   4.    The time in the ultrasonic bath is determined by the size of the 
junction pillars. Smaller junctions require longer removal, e.g., 
30 min for sizes below lateral sizes of 1 μm. The removal of the 
resist cap should be checked with an optical microscope or a 
scanning electron microscope for junction sizes below 0.5 μm.   

   5.    If contact pads are used, it is essential to increase the distance 
of the junction pillars in the design of the fi rst mask. Otherwise, 
the larger contact pads will overlap and short-circuit neighbor-
ing junctions.   

   6.    The contact pads should be placed off-center, with one edge close 
to the junction pillar. This prevents the junctions from damage, if 
we want to contact them by for example wire-bonding.         
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Chapter 17

Architecture and Biological Applications of Artificial 
Neural Networks: A Tuberculosis Perspective

Jerry A. Darsey, William O. Griffin, Sravanthi Joginipelli,  
and Venkata Kiran Melapu

Abstract

Advancement of science and technology has prompted researchers to develop new intelligent systems that 
can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the 
human brain to learn in a fashion that tolerates noise and error has attracted many researchers and pro-
vided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent 
systems can acclimatize to the environment or data and can maximize the chances of success or improve 
the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and 
their ability to learn from the data, neural networks can solve a variety of challenging computational prob-
lems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are 
used in detecting patterns, and trends that are too complex for humans, or other computer systems. 
Solutions to the toughest problems will not be found through one narrow specialization; therefore we 
need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many 
researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology 
have successfully applied artificial neural networks. This chapter helps the reader in understanding the 
basics of artificial neural networks, their applications, and methodology; it also outlines the network learn-
ing process and architecture. We present a brief outline of the application of neural networks to medical 
diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a sum-
mary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuber-
culosis, and predicting chronic vs. infiltrative forms of tuberculosis.

Key words Artificial neural networks, Intelligent systems, Bioinformatics, Drug discovery, Pattern 
recognition, Tuberculosis, Protein structure prediction, Gene identification

1 Introduction

Artificial neural networks (ANNs) are biologically inspired com-
puter programs designed to simulate the way in which the human 
brain processes information [1]. ANNs are inspired by the way in 
which a biological nervous system, such as the brain, processes the 
information. The information paradigm in ANNs gathers knowl-
edge from learning experience (through inspection of training 
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data) and makes intelligent predictions on the specified data set. 
An ANN is formed through the combination of a few to as many 
as hundreds of single units, artificial processing elements such as 
nodes which are connected with coefficients, or weights of process-
ing elements and is organized into layers. A simple ANN has input, 
hidden, and output layers, while more complex networks can have 
more than one hidden layer with one input and one output layer. 
ANNs have the ability to derive meaning from complicated and 
imprecise data and can extract patterns and detect trends that are 
too complex for the human brain or other computer techniques to 
recognize. Neural networks are different from conventional com-
puter techniques, as they encompass adaptive learning and real- 
time operation, whereas conventional computer techniques use 
algorithmic and programming approaches.

The average human brain has about 100 billion neurons or nerve 
cells, and a slightly greater number of neuroglial cells, which support 
and protect neurons. Neurons are considered to be the information 
transmission units of the brain, and each neuron is connected to up 
to 10,000 other neurons [2]. Neurons are the basic units of the 
nervous system, and have a cell body or soma, together with den-
drites (inputs) and axon (outputs), as shown in Fig. 1. Each neuron 
is connected to other neurons through a synapse; typically a synapse 
is filled with a neurotransmitter chemical and connects the axon of 
one neuron and the dendrite of a second neuron. Signals are trans-
mitted from one neuron to another through synaptic space; these 
signals can be either excitatory or inhibitory. Neurons are organized 
and extensively connected to form a complex network in the human 
brain, and act as messengers in sending and receiving impulses (sig-
nals). The complex network makes the human brain intelligent, with 
learning, memory, recognition, and prediction capabilities.

1.1 Human Brain

Fig. 1 Basic structure of neuron with cell body or Soma, dendrites as input nodes, 
and axon as output nodes. Branches from axon are connected to dendrites of 
other neuron in complex network of human brain
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Although the basic unit in the structure of an ANN is computa-
tionally similar to the structure of a neuron in the human brain, it 
is much simpler biologically than a neuron in the brain. ANNs 
incorporate two fundamental elements of biological neural net-
works; neurons are represented as nodes and synapses are repre-
sented as weighted interconnections [3]. Artificial neurons are 
organized into layers: the input layer, hidden layer(s), and an out-
put layer. Neural networks with one hidden layer are sufficient to 
make decisions and predictions on simple non-linear approxima-
tions, but networks with two or more hidden layers are used in 
more complex applications. A Neural network with one hidden 
layer is known as a simple perceptron, and with more than one hid-
den layer is called a multilayer perceptron [4]. As shown in Fig. 2, 
the input layer is made up of nodes, which contain an activated 
function. This layer communicates with one or more hidden layers, 
where the actual processing is done, through weighted connec-
tions. The final hidden layer then links to the output layer, which 
generates the network outcome or predictions.

x1, x2, and x3 …. are inputs and w1, w2, and w3 … are weighted 
connections expressing the importance of inputs to the outputs 
(Fig. 1). The network’s output can in principle be any value, but in 
many applications is limited to the binary set {0, 1} This output is 

1.2 Architecture 
of Artificial Neural 
Networks

Hidden Layer

Input layer

W1

X1

X2

X3

W3 W2

Output Layer

Fig. 2 Architecture of artificial neural network or simple perceptron with input, 
hidden, and output layers. x1, x2, and x3 of input layer corresponding to activation 
function and w1, w2, and w3 interconnections corresponding to weights
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determined by whether the weighted sum 
j

j jw xS  is less than or 
greater than a threshold value [5]:
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The working mechanism of ANNs
Artificial neural networks are considered as learning algorithms 

with nodes as activation functions and weights as edges or connec-
tions between the nodes. Based on the connection pattern or 
architecture of the network, ANNs can be either feed-forward net-
works or recurrent (feedback) networks (Fig. 3).

Feed-forward networks can be either single- or multilayer percep-
trons with unidirectional connections, and are generally static and 
memory-less systems [5, 6]. In feed-forward networks the flow of 
information is in one direction only, with no loops, thus leading to 
only one set of output values. As the response to input is indepen-
dent of the previous state, they are considered as memory-less  
systems [6].

Feedback networks are dynamic, and the output is dependent on 
the previous layer.

When a new input pattern is presented, the neuron outputs are 
computed. Because of the presence of feedback paths, the inputs to 
each neuron are then modified, which leads the network to enter a 
new state [6].

1.2.1 Feed-Forward 
Network

1.2.2 Feedback Network 
or Recurrent Network

Fig. 3 Architecture of neural networks based on the connection patterns
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The learning process in ANNs can be viewed as the process of 
updating network architecture and adjusting weighted patterns 
to efficiently achieve a specific task. A network learns from avail-
able training patterns, and the performance is improved over 
time by iteratively adjusting weight patterns in the network. The 
major advantage of neural networks when compared to tradi-
tional expert systems is that they learn from a given set of repre-
sentative examples of training data rather than by following a set 
of rules previously defined by human experts, as in traditional 
computer systems [6].

The learning process or learning architecture of ANNs can be 
designed from known, available information about the training 
data set. A learning paradigm can be defined by having a model 
from a known environment, and learning rules can be defined by 
figuring out the update process for connection weights [6]. 
Identifying a procedure to adjust weights by use of a learning rule 
and following a learning paradigm will define the learning process 
or learning algorithm of the network.

The major learning paradigms of ANNs are

 1. Supervised.
 2. Unsupervised.
 3. Hybrid.

In a supervised learning paradigm, a correct answer is provided 
for each input pattern and the weights are adjusted based on the 
degree to which network output agrees with that answer. In an 
unsupervised paradigm, as the answers are not provided, the sys-
tem itself recognizes a correlation and organizes the patterns into 
categories accordingly. The hybrid paradigm combines both super-
vised and unsupervised learning methods. In hybrid learning 
methods, some weights are provided with correct answers, while 
some are auto corrected.

The four basic learning rules for a learning paradigm of 
ANNs are

 1. Error-correction rules.
 2. Boltzmann learning rule.
 3. Hebbian rule.
 4. Competitive learning rules.

All these learning rules can be applied to supervised, unsupervised, 
and hybrid paradigms. In the error-correction rule learning pro-
cess, the error generated in each step is used to adjust the weights 
to efficiently achieve a task [6]. In the learning process the actual 
output y is different from the desired output d, so an expression 
related to the error (d−y) is used to adjust the weights to gradually 
reduce the error.

1.3 Learning 
Algorithm of Neural 
Networks

1.3.1 Error-
Correction Rule
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Boltzmann learning is used in symmetric recurrent networks, i.e., 
those in which wij = wji, and consists of binary function units such 
as +1 for on and −1 for off. Outputs in this rule are produced 
according to Boltzmann statistical mechanics. Boltzmann learning 
adjusts weights until the visible units satisfy a desired probabilistic 
distribution [6].

Hebbian rule is based on neurobiological experiments and is the 
oldest learning rule [6]. An important property of this rule is that 
learning is done locally; that is, change in weight depends only on 
the activities of two layers or neurons connected by it. Orientation 
selectivity occurs from a Hebbian training network.

The basis of competitive learning is the “winner-take-all” process 
observed in biological neural networks. All input units are con-
nected together and all units of output are also connected via 
inhibitory weights; however, the latter are fed back with excitatory 
weights. As a result of this learning process the pattern in the win-
ner unit (weight) becomes closer to the input pattern.

2 Biological Applications of ANNs

ANNs are extremely powerful systems, with massive parallelism. 
They can learn and generalize from training data; the amount of 
programming required to efficiently achieve the task is usually 
modest. They are noise and fault tolerant, so they can cope with 
situations in which more conventional systems have difficulty. The 
inherent ability of ANNs to learn and recognize highly nonlinear 
and complex relationships in data makes them ideally suited to a 
wide range of applications. ANNs are useful in inferring function 
or predicting function from a set of observations where the com-
plexity of data suggests that the use of conventional algorithms is 
unlikely to be successful. ANNs are used in regression analysis, 
function prediction, classification of patterns, character recogni-
tion, and image compression. Neural network applications are 
used in many disciplines such as medicine, bioinformatics, molecu-
lar biology, and pharmacology. ANNs are currently used in medi-
cine for medical diagnosis, biochemical analysis, image analysis, 
and drug discovery [7].

Medical diagnosis: Due to the ability of neural networks to learn 
and recognize patterns from data, ANNs are currently used in 
medical diagnosis of cancer, to predict the outcome of chemother-
apy in various stages of cancer research [7].

Biochemical analysis: ANNs have been used to analyze blood, urine 
samples, and body fluids. They can track the level of glucose in 
diabetes, and track the level of proteins in body fluids to detect 

1.4 Boltzmann 
Learning Rule

1.4.1 Hebbian Rule

1.4.2 Competitive 
Learning Rule
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abnormalities in disease conditions. They can identify drug resis-
tance in pathological conditions such as tuberculosis [7].

Image analysis: Medical image data-generated ultrasound, MRI, 
and X-rays can be analyzed with ANNs to detect disease condi-
tions. Electrocardiographic (ECG) data can be analyzed to identify 
possible cardiovascular disease [7].

Drug discovery: Neural networks are used to identify potential drug 
candidates by virtual screening of large number of molecules of poten-
tial value in the treatment of AIDS, cancer, and tuberculosis [7].

ANNs are used in molecular biology and bioinformatics, for 
recognition of transcription and translational signals, protein struc-
ture prediction, gene identification, and sequence classification [8].

Recognition of transcription and translational signals: Recognition 
of transcription and translation promoter regions and termination 
of transcription and translational signals are useful in understand-
ing defects in protein synthesis and defects in protein folding in 
inherited diseases such as Parkinson’s disease and multiple sclero-
sis. Kalate, Tambe, and Kulkarni used ANNs to predict mycobacte-
rial promoter sequences, and were able to achieve 97 % success in 
prediction using a multilayered neural network, trained with error 
back-propagation [8]. Scheila de Avila and Günther have used 
neural networks to predict prokaryotic promoter sequences and 
were able to achieve good results with high accuracy [9]. Zhang 
et al. successfully predicted promoter regions in Escherichia coli 
using a feed-forward neural network [10].

Protein structure prediction: Protein structure predication involves 
identification of secondary structure and tertiary structure of a 
protein, and identification of three classes of secondary structures: 
α-helix, β-sheets, and random coils. Researchers have successfully 
applied neural networks to the prediction of protein structure. 
Holley and Karplus have used neural networks to predict protein 
structure, and achieved a maximum overall predictive accuracy of 
63 % for helix, sheet, and coil. When filtering was used to include 
only the strongest 31 % of predictions, the predictive accuracy rose 
to 79 % [11].

Gene identification: Gene identification is simple in prokaryotes 
because the coding region in prokaryotes is a single strand of con-
tinuous reading frame, whereas in eukaryotes it consists of introns 
and exons. Therefore, an important task in identification of the 
gene-coding region in eukaryotes involves differentiation of introns, 
exons, and splice sites. The ANN approach has been applied to the 
recognition of coding region and gene identification; suitable gene 
identification tools and software have been developed by research-
ers. GRAIL and NetGene are gene  identification software tools 
developed using ANNs. GRAIL is a multi- agent neural network 
system for gene identification developed by Ying Xu et al. [12]. 

Artificial Neural Networks Applied to TB
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NetGene server is a service producing neural network predictions 
of splice sites in human, C. elegans, and A. thaliana DNA [13, 14]. 
NetGene server is available online at URL http://genome.cbs.dtu.
dk/services/NetGene2/

Sequence classification: A three-layered, feed-forward, back- 
propagation neural network was used by Wu et al. for full-scale 
protein sequence classification; using sequence encoding with sin-
gular value decomposition, they achieved close to 90 % sensitivity 
[15]. Blekas et al. have used ANNs for motif-based sequence clas-
sification; their experimental results on real datasets indicated that 
the ANN method was highly efficient and superior to other well- 
known protein classification methods [16].

We have successfully applied a neural network approach in our 
research on tuberculosis (TB), and Parkinson’s disease. ANNs were 
used for identification of TB+ and TB−, and for the prediction of 
chronic and infiltrative TB from a given dataset. Neural networks 
combined with molecular modeling studies on Geldanamycin and 
similar compounds have predicted potential drug candidates for 
treating Parkinson’s disease. Results generated from ANN applica-
tions on TB are shown in the results section of this chapter.

3 Methodology

It is believed that knowledge in the brain is gained by constant 
adaptation of synapses to different input signals, yielding better 
output signals; the results are constantly fed back as new inputs. In 
a similar fashion, ANNs try to mimic the adaptation of synapses by 
iteratively adjusting the weights associated with each node accord-
ing to the differences between desired output and actual or 
obtained output.

As mentioned in Subheading 1, the ANN can have three or 
more layers and the results generated in each layer are back propa-
gated to minimize the error. Figure 4 shows a sample of how the 
formulae coalesce into a neuron during training on a set of incom-
ing data, passing through a hidden layer of nodes, and predicting 
an output value [17]. In all but the input layer the nodes compute 
the sum of the product of the input values passed on by the previ-
ous layer and the weight of the connection. After processing by a 
squashing or activation function, the value is sent to nodes in the 
next layer. The simplest configuration has one hidden layer with 
multiple nodes, but so-called deep networks have multiple hidden 
layers, to find complex interrelationships of input values [18]. An 
ANN with one hidden layer can be used to approximate any func-
tion, as shown in the Cybenko theorem [19].

Selection of a training set is an important step in training 
ANNs. The dataset is divided into three portions: a control group, 
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a training set, and a test set. Each of these portions contains 
approximately one-third of the data, with the training set often the 
smallest and the test set the largest. Control data is used as a sup-
plier of feed information for correcting the ANN architecture for 
the learning approach. The training in an artificial neural network 
proceeds by passing values from the training set through the net-
work many times, and inspecting the network outcome. The con-
nection weights are adjusted as training proceeds as training seeks  
to minimize the error in the output. There are also parameters that 
govern an overall rate for learning and a momentum for the train-
ing which makes adjustments to how the weights are altered. A bias 
(or threshold) value regulates the prediction around a value, which 
is shown in Fig. 4.

The data which the neural network generalizes is typically pre- 
normalized to values between zero and one. It is also critical for 
the data to avoid the extremes of a sigmoidal curve; typical ANN 
practice uses values near zero and one, i.e., 0.05 and 0.95, to 
replace outputs of less than 0.05 and greater than 0.95, respec-
tively. This constraint limits the data which can be predicted or 
analyzed. One consequence is that data values may need to be 
altered, for example by taking the logarithm, if values within the 
dataset lie outside these limits. A Boolean data type (true or false) 
can also be predicted using these numeric values as well by round-
ing the network output to integer values.

The quality of an ANN prediction can be measured in its adapt-
ability, its ability to recognize patterns, and low generalization error. 
This greatly reduces the computational time for large datasets. 
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Fig. 4 The diagram of the node and transfer function of an artificial neural 
network
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All prediction networks, which include artificial neural networks, 
are susceptible to factors which can limit their success, including 
overtraining, there being too few examples in the data set to train 
effectively, unreliable or noisy data, or missing factors needed for 
the prediction. Overextended or convoluted predictions are avoided 
by limiting the number of hidden nodes and the number of cycles 
for training the neural networks. Furthermore, the order in which 
data are presented to the network is randomized each training cycle 
to minimize selection bias in the test set and training set.

The learning algorithm computes good predictions by adjust-
ing weights in a manner that keeps the network predictions simple 
and straightforward. Cross-validation is needed to check for over-
training and generalization errors [20]. The cross-validation is 
done with the leave n out technique, where n test cases are removed 
from the dataset in order to see if the neural network has learned 
from the data set. The number n can vary from 1 to as much as 
about 10 % of the total data available for training. Passing the 
value(s) withheld to the neural network, its prediction also improves 
over several learning cycles.

A partial least squares linear regression model applied to the 
data may help to validate the correlation found in the ANN model 
[21, 22]. Other tests available to researchers to confirm ANN are 
the runs test [22], which examines the number of series of con-
secutive values in the data for nonlinearity; Mallows augmented 
partial residuals plot [23, 24], a universal diagnostic tool which 
finds nonlinearities; Durbin-Watson test [25], which looks at the 
null hypothesis that there is no correlation; principal component 
analysis [26], a transformation procedure of the data into linear 
correlated parameters and scored components; and partial least 
squares analysis [26], a linear regression method which projects 
predicted and observable variables into a new space.

The program we used for prediction, developed at NASA’s 
Johnson Space center, is called NETS [27]. The data used in this 
study was acquired from patients at the Kyrgyzstan National 
Center for Tuberculosis Research [28]. The presence or absence 
of genetic factors and types of TB is displayed in the data set as 
well as a few physiological factors: blood type, Rh factor, sex, age 
range, and northern or southern dwelling Kyrgyz. There were 
149 patients in the control group and 146 in the test group. 
Although some of the occurrences of types of TB were rare 
within the test group, all patients were assessed in the 
ANN. Normally outliers in the prediction would be removed if 
warranted and the dataset examined again without the outliers. 
Since the distribution is bimodal, we were double blinded from 
examining results or patients, and the data set is from a small 
portion of the TB population from one country; the data were 
not corrected for outliers.
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4 Results

As an example of biomedical applications of ANNs, we present 
results of a study that we performed on prediction of active TB from 
genetic factors in TB patient data. The network was predictable for 
many of the types of TB where sufficient training examples were 
available in the data set. At a plateau in the data, the network achieved 
stable training over several cycles. We used the results early on in 
these areas to extract weight values. In an analysis of the resulting 
weights, weight values lower than the mean were removed and the 
factors with significant influence on the outcome are shown in the 
inset of Fig. 5. Promotion or inhibition of the TB is given as a 
weighted value of the factors in the positive or negative direction.

The network predicted TB correctly in 72 % of the patients 
after ~145,000 cycles as seen in Fig. 5. The results revealed certain 
genes that inhibited or promoted TB likelihood. The top half of 
the weight values over the mean are shown in the inset as genes 
which promoted or inhibited the prediction.

A second network which predicted both the presence and 
absence of TB plateau for both cases after ~85,000 cycles is shown 
in Fig. 6. The resulting weight values were extracted and the top 
half of the weight values over the mean are shown in the inset of the 
graph. The weight values mirror each other exactly as one would 
expect when predicting both causative and inhibitory factors.

The third network was trained to predict chronic and infiltra-
tive TB cases in the data set as seen in Fig. 7. The chronic type of 
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TB contained data for patients labeled: chronic, FKT, and empyema. 
The infiltrative type of TB contained the categories: infiltrative, 
positive test for mycobacterium TB, and drug-resistant TB. After 
~18,000 cycles, the plateau region gave 77 % predictability. The 
inset figure shows the weight values which promote or inhibit both 
kinds of TB.

5 Discussion and Conclusions

The most important aspect of a TB infection control program is to 
identify patients with active TB; they can be isolated, as active TB is 
contagious, and can be efficiently treated. Early diagnosis is the key 
to effectively treating and preventing infection. The ANN method 
can be applied to diagnose active TB. Drug resistance is the most 
alarming and growing threat to the effective treatment of 
TB. Identification of drug resistance takes from several days to a few 
weeks, delaying the ability to treat a patient in the early stages. 
Predictive models such as neural networks can be used to identify 
drug resistance in mycobacterium; this could reduce the time required 
to diagnose drug resistance by traditional culture methods.

Radiological and clinical information from suspected patients 
can be used to diagnose TB, and that will be superior to a physician’s 
opinion. A multilayered network approach could be used to diag-
nose TB, and to detect drug resistance. Computational methods and 
predictive models such as neural networks or hidden Markov models 
could reduce the time and cost associated with diagnosis and detec-
tion of lethal and infectious diseases [29]. The outcome of treatment 
by chemotherapy and radiotherapy for cancer and cardiovascular dis-
eases can be predicted with neural networks.

The factors which promote and inhibit TB susceptibility are 
tools for researchers interested in tracing the genetic pathways of 
TB infection. Doctors with this information could more accurately 
identify patients who may be infected but as the waxing and wan-
ing of the symptoms progress, they are unaware of their infection. 
The genetic factors which inhibit TB could be used to study resis-
tant populations and help find ways to find effective vaccines for 
TB. Identification is a key step in research, because as the myco-
bacterium tuberculosis develops more drug-resistant forms, the 
search for vaccines becomes more critical. The triggers for TB are 
unknown, and more research into those triggers would help iden-
tify more TB risk factors. Because genetic and physical factors are 
unalterable by the patients and environment, they can be attrib-
uted to the infection directly and experimented in a more con-
trolled manner than in a study of external factors.

The first two predictions are comparable in their scope by 
predicting in the control versus infected patients. Both give the 
same percent predictability at nearly 70 % of the withheld group. 

Artificial Neural Networks Applied to TB



282

 1. Agatonovic-Kustrin S, Beresford R (2000) 
Basic concepts of artificial neural network 
(ANN) modeling and its application in phar-
maceutical research. J Pharm Biomed Anal 
22(5):717–727, ISSN 0731-7085. http://
www.sciencedirect.com/science/article/pii/
S0731708599002721

 2. MacDonald M (2008) Your brain: the missing 
manual. Pogue, Sebastopol, CA

 3. Gonzalez AJ, Dankel DD (1993) The engi-
neering of knowledge-based systems. Prentice- 
Hall, Englewood Cliffs, NJ. ISBN 0-13- 
334293

 4. Zahedi Z (1993) Intelligent systems for busi-
ness: expert systems with neural networks. 
Wadsworth Inc., Belmont, CA. ISBN 0-534- 
18888-5

 5. Nielsen MA (2014) Neural networks and deep 
learning, Chapter 3, Improving the way neural 
networks learn. Determination Press. http://
neuralnetworksanddeeplearning.com/chap1.
html

 6. Jain AK, Mao JC, Mohiuddin KM (1996) 
Artificial neural networks: a tutorial. Computer 
29(3):31

 7. Dybowski R (2000) Neural computation in 
medicine: perspective and prospects. Artificial 
neural networks in medicine and biology. 
Proceedings of the ANNMAB-1 conference, 
Sweden, ISBN 978-1-85233-289-1

 8. Kalate RN, Tambe SS, Kulkarni BD (2003) 
Artificial neural networks for prediction of 
mycobacterial promoter sequences. Comput 
Biol Chem 27(6):555–564, ISSN 1476-9271

 9. de Avila S, Silva GJLG (2011) Rules extraction 
from neural networks applied to the prediction 
and recognition of prokaryotic promoters. 
Genet Mol Biol 34(2):353–360

 10. Zhang F, Kuo MD, Brunkhors A (2006) E. coli 
promoter prediction using feed-forward neural 
networks. Proceedings of the 28th IEEE, EMBS 
Annual International Conference, New york 
City, USA 2025–2027

 11. Holley HHL (1989) Protein secondary struc-
ture prediction with a neural network. Proc 
Natl Acad Sci U S A 86(1):152–156

 12. Xu Y, Mural RJ, Einstein et al (1996) GRAIL: 
a multi-agent neural network system for gene 
identification. Proc IEEE 81(10):1544–1552

 13. Hebsgaard PGK, Tolstrup N, Engelbrecht J 
et al (1996) Splice site prediction in Arabidopsis 
thaliana DNA by combining local and global 
sequence information. Nucleic Acids Res 
24(17):3439–3452

 14. Brunak S, Engelbrecht J, Knudsen (1991) 
Prediction of human mRNA donor and accep-
tor sites from the DNA sequence. J Mol Biol 
220:49–65

 15. Wu C, Shivakumar S, McLarty J (1995) 
Neural networks for full-scale protein 

The data in the second prediction (TB+/TB−) has an inset of 
selection factors which mirror the results obtained by both tests. 
The results show that the associations the ANN link to the pre-
dicted parameter are not random and corroborate the promotion 
and inhibition factors consistently.

The third ANN prediction found parameters which affect the 
chronic and infiltrative types of TB. In addition to genetic links, it 
found links in the AB blood type, and male sex for chronic 
TB. There are certain genetic parameters which oppositely reflect 
both cases, either inhibiting or promoting the cases of chronic and 
infiltrative TB (genes 1, 8, 13, 42, and 56 in inset of Fig. 7). These 
oppositely reflecting genes may hold keys which identify the type 
of TB a patient would be likely to contract.

Improvements can be made in how the data is used. The TB 
and non-TB patients group each had almost 150 patients per 
group. This sample size would be improved by removing outliers 
to the prediction, and with 150 cases in each group, this is a large 
enough study to prune outliers. The number of input factors could 
also be trimmed since there are some factors which have more 
influence than others.

References

Jerry A. Darsey et al.

http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html


283

sequence classification: sequence encoding 
with singular value decomposition. Machine 
Learning 21(1–2):177–193

 16. Blekas K, Likas A (2005) Motif-based protein 
sequence classification using neural networks. 
J Comput Biol 12:64–82

 17. Griffin WO, Razorilova S, Kitaev M et al 
(2010) An artificial neural network evaluation 
of tuberculosis using genetic and physiological 
patient data. AIP Conference Proceedings, 
Little Rock, 1229, p 49–53

 18. Bengio Y (2009) Learning deep architectures 
for AI. In: Foundations and trends in machine 
learning, Now Publishers Inc. 2(1):1–127

 19. Cybenko GV (1989) Approximation by super-
positions of a sigmoidal functions. Math 
Control Signal Syst 2:303–314

 20. Gasteiger J (1993) Neural networks for chemists: 
an introduction. VCH Publishers, New York, NY

 21. Lavine BK (2000) Chemometrics. Anal Chem 
72(12):91R–97R

 22. Goicoechea HC, Collado MS, Satuf ML et al 
(2002) Complementary use of partial least- 
squares and artificial neural networks for the 
non-linear spectrophotometric analysis of 

pharmaceutical samples. Anal Bioanal Chem 
374:460–465

 23. Centner V, de Noord OE, Massart DL (1998) 
Detection of nonlinearity in multivariate cali-
bration. Anal Chim Acta 376(2):153–163

 24. Mallows CL (1986) Augmented partial residu-
als. Technometrics 28(4):313–319

 25. Drapper NR, Smith H (1981) Applied regres-
sion analysis, 2nd edn. New York, NY, Wiley

 26. Brereton RG (2003) Chemometrics: data anal-
ysis for the laboratory and chemical plant. John 
Wiley & Sons Ltd., West Sussex

 27. Shelton RO (2000) A neural network develop-
ment tool: NETS, NASA’s Johnson Space center. 
Open Channel Foundation, Publishing software 
from academic and research institutions. http://
www.openchannelfoundation.org/projects/
NETS/ 

 28. Tarasenko OJ, Kitaev M, Alisherov A et al 
(2000) Polymorphisms of HLA-A and -B 
genes in the Kyrgyz population. Anthrop Sci 
4(108):293–304

 29. Rafei A, Pasha E, Jamshidi OR (2012) 
Tuberculosis surveillance using hidden Markov 
model. Iran J Public Health 41(10):87–96

Artificial Neural Networks Applied to TB





285

Hugh Cartwright (ed.), Artificial Neural Networks, Methods in Molecular Biology, vol. 1260,
DOI 10.1007/978-1-4939-2239-0_18, © Springer Science+Business Media New York 2015

Chapter 18

Neural Networks and Fuzzy Clustering Methods 
for Assessing the Efficacy of Microarray Based Intrinsic 
Gene Signatures in Breast Cancer Classification 
and the Character and Relations of Identified Subtypes

Sandhya Samarasinghe and Amphun Chaiboonchoe

Abstract

In the classification of breast cancer subtypes using microarray data, hierarchical clustering is commonly 
used. Although this form of clustering shows basic cluster patterns, more needs to be done to investigate 
the accuracy of clusters as well as to extract meaningful cluster characteristics and their relations to increase 
our confidence in their use in a clinical setting. In this study, an in-depth investigation of the efficacy of 
three reported gene subsets in distinguishing breast cancer subtypes was performed using four advanced 
computational intelligence methods—Self-Organizing Maps (SOM), Emergent Self-Organizing Maps 
(ESOM), Fuzzy Clustering by Local Approximation of Memberships (FLAME), and Fuzzy C-means 
(FCM)—each differing in the way they view data in terms of distance measures and fuzzy or crisp cluster-
ing. The gene subsets consisted of 71, 93, and 71 genes reported in the literature from three comprehen-
sive experimental studies for distinguishing Luminal (A and B), Basal, Normal breast-like, and HER2 
subtypes. Given the costly procedures involved in clinical studies, the proposed 93-gene set can be used for 
preliminary classification of breast cancer. Then, as a decision aid, SOM can be used to map the gene sig-
nature of a new patient to locate them with respect to all subtypes to get a comprehensive view of the 
classification. These can be followed by a deeper investigation in the light of the observations made in this 
study regarding overlapping subtypes. Results from the study could be used as the base for further refining 
the gene signatures from later experiments and from new experiments designed to separate overlapping 
clusters as well as to maximally separate all clusters.

Key words Breast cancer, Neural networks and fuzzy clustering, DNA microarray, Gene expression 
signatures, Subtype classification, Gene clustering

1 Introduction

Breast cancer, a cancer in the breast tissues, is the second most 
common cancer (after lung cancer) and the most common cancer 
in women. Breast cancer is comprised of two types depending on 
its original tissue: ductal carcinoma and lobular carcinoma. Breast 
cancer molecular subtypes can be deciphered by using their distinct 
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patterns of gene expression. There are at least five intrinsic  subtypes: 
luminal A (estrogen receptor [ER] and/or progesterone receptor 
[PR] positive, HER2-), luminal B (ER and/or PR+, HER2+), 
HER2 (ER and/or PR-, HER2+), basal-like (ER-, PR-, HER2-) 
and normal breast-like. Recent understanding on the biology of 
breast cancer can be found in a review by Carey [1].

Microarray technology provides an extensive source of gene 
expression data that promise to pave the way for better prediction 
and diagnosis of cancer and identification of key targets for drug 
development. It allows simultaneous measurement of expression of 
a large number of genes that is typically represented by an expres-
sion matrix in which the rows represent experiments or patients 
and columns represent genes. Microarray data have been widely 
used in breast cancer and recent reviews and details of microarray 
based research on breast cancer can be found in [2–5]. Currently, 
microarray research falls into two major themes:

●● Classification of breast cancer subtypes [6–8].
●● Development of prognostic gene signatures and clinical gene 

markers to predict disease recurrence, response to therapy, sur-
vival outcome and drug sensitivity [9–17].

In classification of breast cancer subtypes using microarray 
data, clustering is commonly used. This involves clustering gene 
expression patterns (profiles, signatures) representing patients. As 
unknown subtypes are typically sought, unsupervised clustering 
methods are used where the expression profiles are divided into 
highly similar groups without predefined group labels, based on a 
similarity/dissimilarity or distance measure. The main clustering 
method used so far in these studies is hierarchical clustering. 
Although this reveals basic patterns of clusters, more needs to be 
done to investigate the accuracy of clusters as well as to extract 
meaningful cluster characteristics and relations from them to 
increase confidence in the results for use in a clinical setting. To 
this end, it is important to understand the features of the clustering 
tools and how to select the appropriate tools in order to reveal 
biological knowledge embedded in gene expression profiles in rela-
tion to molecular subtypes.

Breast cancer is a complex and heterogeneous disease. Many 
studies have been conducted but the challenge still is to better 
understand the biology of breast cancer. Microarrays have been used 
to better understand molecular subtypes of breast cancer and this is 
an ongoing research area: microarray data on breast cancer is now 
available for public access and recent research has also been reviewed 
by several groups [18–21]. There are many studies on breast cancer 
gene signatures, including those that attempt to distinguish between 
subtypes or find a prognostic gene signature. Some details on breast 
cancer gene signatures from previous  studies are provided in Table 1, 
adapted from Weigelt, Peterse, and van’t Veer [22].

Sandhya Samarasinghe and Amphun Chaiboonchoe
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Table 1 
Microarray studies on prognostic gene-expression profiles in breast cancer (adapted from Weigelt, 
Peterse, and van’t Veer [22])

Microarray type
Informative 
genes Outcomes References

cDNA 496 “intrinsic” 
genes

Identified 4 subtypes 
:Luminal- like/ER+ 
gene, ERBB2+ 
overexpressed, Basal-
like, Normal breast-like

[6]

cDNA 456 “intrinsic” 
genes

“Luminal A” tumors have 
a better outcome than 
“luminal B” tumors. 
Worst outcome is for 
“basal-like” and 
“ERBB2+” tumors

[7]

cDNA 534 intrinsic 
genes

Tested results from [7] 
using independent 
datasets

[8]

Oligonucleotide 70 genes 
“70-gene 
Mamma 
Print”

“Identified a Good 
signature” related to 
low metastasis risk; a 
“poor signature” 
associated with a high 
metastasis risk. 
Sensitivity: 91 %, 
specificity: 73 %

[12]

Oligonucleotide 70 genes “Good signature” versus 
“poor signature.” 
Sensitivity: 93 %, 
specificity: 53 %

[36]

Oligonucleotide “metagenes” Accuracy: 90 % [37]

Oligonucleotide 76 genes “Good 76-gene 
signature” versus “poor 
76 gene-signature.” 
Sensitivity: 93 %, 
specificity: 48 %

[38]

Oligonucleotide 442 genes Expression of “serum-
activated” signature 
versus no expression. 
Sensitivity: 91 %, 
specificity: 29 %

[39, 40]

(continued)

Breast Cancer Classification
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We focus on breast cancer subtype classification in this chapter. 
As shown in Table 1, Perou et al. [6] is the first group to focus on 
distinguishing breast cancer subtypes, having carried out a series of 
microarray experiments in 2000, 2001, and 2003, with subsequent 
analysis based on hierarchical clustering. Their objective was to 
identify genes characteristic of subtypes. From a long list of differ-
entially expressed genes characterizing the subtypes, they were able 
to extract a small number of “intrinsic gene subsets” for each sub-
type. More recent studies tend to use the combined samples from 
these previous studies and have resulted in a further reduced num-
ber of informative genes [11]. A review of the current situation of 
breast cancer classification, in terms of classification efficacy, shows 
that the search is still on to identify the most crucial “intrinsic 
genes” that can be used at the clinical level to effectively classify 
breast cancer subtypes which, in turn, can be incorporated into 
cancer prognosis and prediction. As stated earlier, most of the pro-
posed intrinsic genes and subsets have been analyzed and identified 
using hierarchical clustering. Therefore, this study attempts to 
study the consistency, character, and relations of the subtypes based 
on the intrinsic gene subsets reported in literature, when viewed 
through the lens of different and more advanced clustering meth-
ods. The two main objectives in this study are as follows:

Objective 1: Study the effectiveness of the reported intrinsic gene 
subsets in representing the breast cancer subtypes.

Table 1
(continued)

Microarray type
Informative 
genes Outcomes References

The “combined test set” data  
from Sorlie et al. [7, 8] (cDNA 
microarrays), van’t Veer et al. [12] 
(custom Agilent oligo microarrays) and 
Sotiriou et al. [28] (cDNA microarrays)

306 genes Validated the breast cancer 
“intrinsic subtypes”  
by combining existing 
data sets

[27]

The “combined test set” data  
from Sorlie et al. [7, 8] (cDNA 
microarrays), Hu et al. [27]  
and Perreard et al. [41] [GEO: 
GSE2607] (Agilent Human A1, Agilent 
Human A2, and custom oligonucleotide)

50 genes 
subtype 
predictor 
“PAM50”

Incorporated “intrinsic” 
subtypes into risk model 
for breast cancer 
prognosis and 
prediction

[42]

Oligonucleotide Affymetrix U133a 
microarrays: Wang and colleagues 
[GEO:GSE2034], Miller and colleagues 
[GEO:GSE3494], and Pawitan and 
associates [GEO:GSE1456]

306 genes Identified relations 
between breast 
subtypes, pathway 
deregulation, and drug 
sensitivity.

[43]

Sandhya Samarasinghe and Amphun Chaiboonchoe
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Objective 2: Test the efficacy of the gene subsets in classifying subtypes 
and investigate the relationship/similarity between subtypes

In order to achieve these objectives, we study gene clustering 
and patient clustering. We used the original “intrinsic” genes from 
Sorlie et al. [7, 8] for gene clustering. We used four selected 
 clustering tools: Self-Organizing Maps (SOM) [23], Emergent 
Self- Organizing Maps (ESOM) [24], Fuzzy clustering by Local 
Approximations of MEmberships (FLAME) [25], and Fuzzy 
C-Means (FCM) [26]. In patient clustering, we compare the 
“intrinsic gene” sets from Sorlie et al. [8] and Hu et al. [27] using 
three clustering methods: SOM, SOM clustering aided by the 
Ward Method, and FCM.

2 Materials

There are three main datasets used in this study:
The first dataset was from Sorlie et al. [7]. Specifically, a 

71-gene subset selected from 456 intrinsic genes as shown in 
Fig. 1a: Group C—ERBB2+/HER2 (11 genes), Group D—Novel 
unknown (12 genes), Group E—Basal-like (19 genes), Group F—
Normal breast-like (14 genes), and Group G—Luminal (15 genes). 
These were derived from the raw data from a total of 85 cDNA 
microarray experiments on tumor and normal breast tissues (71 
ductal, five lobular, two ductal carcinoma in situ, three fibroade-
noma (benign tumor), and four normal breasts).

The dataset was retrieved from http://genome-www.stanford.
edu/breast_cancer/mopo_clinical/ or http://www.ncbi.nlm.nih.
gov/projects/geo/query/acc.cgi?acc=GSE3193.

The second dataset was from Sorlie et al. [8]. We used a 
93-gene subset derived from 534 intrinsic genes (see Fig. 1b): 
group C (ERBB2+/HER2 (11 genes)), group D (Luminal 
Subtype B (28 genes)), group E (Basal-like) (24 genes), group F 
(Normal breast-like) (5 genes), and group G (Luminal Subtype A) 
(25 genes). These were derived from a total of 122 samples from 
Norway/Stanford cohort which included the above mentioned 85 
samples from the previous (2001) study used to classify cancer sub-
classes by average linkage hierarchical clustering.

The dataset was retrieved from http://genome-www.stanford.
edu/breast_cancer/robustness/ (also available at http://www.
ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE4335).

In the above studies the raw data (cDNA) were processed and 
genes were selected with a criterion of at least fourfold expression 
from the median in at least three of the samples tested. Then 
differentially expressed genes were used to find the intrinsic genes 
by calculating the “within-pair variance” score and the “between-
subject variance.” The ratio between the two scores is called D and 
intrinsic genes are those with a small value of D. This resulted in 

2.1 Dataset

Breast Cancer Classification

http://genome-www.stanford.edu/breast_cancer/mopo_clinical/
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456 intrinsic genes from the first dataset and 534 intrinsic genes 
from the second dataset. The authors then analyzed these genes by 
hierarchical clustering, resulting in five distinct subtypes. Finally, a 
small number of novel genes representing each subtype were  
identified in these studies, as shown in the highlighted boxes in 
Fig. 1a and b for 456 and 534 genes, respectively.

The last dataset was retrieved from Hu et al. [27]. This had a 
71-gene subset derived from 306 intrinsic genes (see Fig. 1c): 
Group C—Luminal (21 genes), Group D—HER2 (11 genes), 
Group E—Interferon-regulated cluster containing STAT1 (12 
genes), Group F—Basal-like (14 genes), and Group G—
Proliferation cluster (13 genes). A total of 311 tumors and 4 nor-
mal breast cancer samples was created by combining three existing 
datasets of Sorlie et al. [7, 8], van’t Veer et al. [12], and Sotiriou 
et al. [28]. The gene subsets containing 71 of the 306 intrinsic 
genes are highlighted in boxes in Fig. 1c. The dataset was retrieved 
from the UNC Microarray Database (http://www.ncbi.nlm.nih.
gov/projects/geo/query/acc.cgi?acc=GSE1992 or https://
genome.unc.edu/pubsup/breastTumor/).

In our study reported in this chapter, we explored these small 
subsets of intrinsic genes separately, specifically, 71 and 93-gene 
subsets from Sorlie et al. [7, 8] and 71-gene subset from Hu et al. 
[27]. Some additional details of these subsets and the studies are 
given in Table 2.

Table 2 
Summary of data, intrinsic genes, and identified subtypes in studies from 2000 to 2006 [6–8, 27]

2000 (Perou et al.) 2001 (Sorlie et al.)
2003 (Sorlie 
et al.) 2006 (Hu et al.)

No. of 
samples

42 individuals (36 
ductal + 2 
lobular + 1 ductal 
carcinoma in 
situ + 1 
fibroadenoma + 3 
normal breast)

85 tissue samples 
representing 84 
individuals (71 
ductal + 5 lobular + 2 
ductal carcinoma in 
situ + 3 
fibroadenoma + 4 
normal breast)

122 individuals 
(including 84 
from 2001)

315 samples combined 
from Sorlie et al. [7, 8], 
van’t Veer et al. [12] 
and Sotiriou et al. [28]

Intrinsic 
genes

496 456 534 306

Subtypes 1. Luminal-like /
ER+ gene

2. HER2
3. Basal-like
4. Normal breast-like

1. Luminal
2. HER2
3. Basal-like
4. Normal breast-like
5. A novel unknown 

cluster

1. Luminal A
2. Luminal B
3. HER2
4. Basal-like
5. Normal 

breast-like

1. Luminal A
2. Luminal B
3. HER2
4. Basal-like
5. Normal breast-like and 

2 new clusters: 
Proliferation, 
Interferon-reg.

Breast Cancer Classification
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3 Neural Networks and Fuzzy Clustering Methods

Four methods were used in this study: Self-Organizing Maps 
(SOM), Emergent Self-Organizing Maps (ESOM), Fuzzy Linear 
Approximation of Membership (FLAME), and Fuzzy c means 
(FCM). A summary of these methods is given in the subsections 
that follow:

An artificial neural network (ANN) is a collection of intercon-
nected neurons that incrementally learn from their environment to 
capture essential linear or nonlinear trends in complex data, so that 
it provides reliable predictions for new situations containing even 
noisy and partial information [29]. There are various ANNs that 
can be constructed and used for various purposes. This research 
study uses Self-Organizing Feature Map (SOM). Self-organizing 
maps are unsupervised neural networks that preserve the exact 
topology of data space on a two-dimensional grid of neurons. The 
components of SOMs are neurons that are normally arranged in a 
two-dimensional hexagonal or rectangular grid, as shown in Fig. 2. 
The input layer represents the input variables x1, x2, …, xn for the 
case of n inputs and each neuron (circles in Fig. 2) is associated 
with an n-dimensional weight vector wi = [w1, w2, …, wn]. The 
competition among the neurons is the mechanism responsible for 
self-organization in the brain, a fact which is utilized in developing 
SOM networks. Through a training process involving such compe-
tition to iteratively modify weights, inputs (e.g., gene expression 
vectors) are mapped from high dimensions to this two-dimensional 
map space, where cluster structure as well as proximity of clusters 
to each other can be visualized.

Training starts with assigning to neurons random weight vectors 
with the same dimensions as the input vectors; Euclidean distance 
(or any other distance measure) is then used to calculate the distance 
between an input vector and each of the weight vectors, as shown in 
Eq. 1. The neuron with the weight vector closest to the input vector 
(i.e., with the smallest distance) is declared the winner.

 
EuclideanDistance = = − = −( )

=
∑d x w x wj j
i

n

i ij
1

2

 
(1)

The objective of learning in SOM networks is to accurately project 
the input data onto the map neurons. Over repeated exposure to 
inputs during learning, neurons learn to respond to inputs in such 
a way that neurons that are closer on the SOM respond to inputs 
that are closer in the actual data space. This feature, known as 
topology preservation, is achieved by moving not only the winner 
neuron but also its neighbor neurons towards the input in order to 
minimize the distance between these neurons and the input. In 

3.1 Self-Organizing 
Feature Map (SOM)
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this process, the winner moves by a larger amount than its neigh-
bors according to a Neighbor Strength (NS) function.

For each neuron j ∈ Nc, where Nc is the neighborhood sur-
rounding the winner neuron c, learning involves adjusting the new 
weight as follows:

 
w w t d t x wj j i j

new old oldNS ,= + ( ) ( ) − ε
 

(2)

where wj
new is new weight, wold is the previous weight, ɛ is learning 

rate, xi is the ith input vector, and NS is a neighborhood function 
defining the strength of weight adjustment of neighbors with respect 
to the winner at iteration t and can take the form of a linear or nonlin-
ear function of distance d from the winner. The learning rate ε(t) is 
user-defined and can take the form of a linear,  exponential, etc. func-
tion. Starting with a larger value, ε(t) decreases with iterations. NS(d,t) 
also can be linear, exponential, Gaussian, etc. and shrinks with itera-
tions so that an initially large neighborhood size gets reduced to just 
the winner, or the winner and its immediate neighbors at the end of 
training. Training stops when there is no acceptable difference in 
weight adjustment in successive iterations. In this study, we used the 
Neural Networks Toolbox (Matlab) for training the SOM.

SOM training results in a map where inputs that are closer in 
the data space are projected onto neurons that are closer on the 
SOM. Therefore, any large gaps between data in the data space are 
shown as large distances between corresponding neurons on the 
map, thereby revealing on the map potential clusters and cluster 
boundaries in the actual data. With an appropriate clustering tool, 
such as Ward Clustering, neurons that form clusters on the map 
can be grouped to form classes for classification purposes. An 
unknown input vector then will belong to the class that it is closest 
to, i.e., the class with the shortest distance between its mean vector 
and the input vector. This provides a crisp classification for the 
input vector—one input vector belongs to one class.

In a trained SOM, each neuron represents the center of gravity 
of a number of input vectors. SOM results can be visualized in vari-
ous ways. In one form, a U-matrix (Unified distance matrix) the 
average distance between a neuron and its neighbors is shown with 
colors on the map. This can show distinct subtypes or gene clusters 

x1 xnx2

Fig. 2 Self-organizing feature map
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depending on whether patient or gene clustering is done. Another 
visualization scheme shows the spread of values of each input vari-
able (e.g., expression of a gene across all patients or expression of 
all genes in a patient depending on whether genes or patients are 
clustered) in a separate map pane. In order to quantify clusters, 
trained SOM neurons (weight vectors) are subjected to a cluster-
ing algorithm. In this study, the Ward method, an efficient cluster-
ing method suitable for small datasets, was used to find clusters of 
genes and cancer subtypes on the SOM using an in-house devel-
oped algorithm implementing Ward clustering.

Ward clustering [30] is an agglomerative clustering method 
invented in 1963. For incrementally forming clusters, the method 
calculates the distance between data and cluster centers for all 
potential clusters by analyzing the variance amongst them. 
Specifically, it aims at minimizing the sum of square distance 
between all data points in a cluster and the centroid of the cluster 
formed as a result of joining two clusters. The two clusters that 
produce the least square distance are ultimately joined in each step 
of the process. The distance is calculated as:

 
d

n n
n n

x xward
r s

r s
r s=

×( )
+( )

− 2

 
(3)

where r and s symbolize two clusters and nr and ns are the number 
of data points in those clusters. ||xr – xs|| gives the magnitude of 
the distance between two cluster centers calculated using 
Euclidean norm. The Ward distance increases with the increase in 
the number of data points. The two clusters with minimum dward 
are joined at each step of this process. The ward index gives the 
likelihood of each cluster. The separation of clusters depends 
upon the value of the index. The higher the index, the more dis-
tinctive are the clusters.

 
Ward Index

NC NC
= ×

−
−

= ×−

− − −

1 11

1 2 1

d d
d d

d
d

t t

t t

t

t

∆
∆  

(4)

where ∆dt is the distance between the centers of two clusters to be 
merged and ∆dt−1 is the distance between the centers of the clusters 
merged previously and prior to that step. NC is the number of 
clusters remaining. The method is very effective when the dataset 
is not too large. Therefore, it is quite suitable for use on a trained 
SOM to cluster map neurons. In this case, it uses the neuron 
weights generated by the trained SOM as input vectors.

ESOM is an extension of SOM which allows a map to grow in size from 
the initial map. ESOM is arranged in a toroidal grid using a larger num-
ber of neurons than a typical SOM [31]. An ESOM-map can be visual-
ized in three forms: U-Matrix (distance-based), P-Matrix  (density-based) 

3.2 Emergent 
Self-Organizing  
Maps (ESOM)
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and U*-Matrix (distance and density based). The U-Matrix, which 
indicates the average distance of each neuron to its nearest neighbors is 
the same as the U-Matrix in SOM, so this study uses the P-Matrix in 
order to analyze density of gene expression data. The P-Matrix contains 
entries denoting density of neurons in the neighborhood of a neuron. 
A neuron with a large P is located in a dense data region while a small p 
indicates sparse data regions in the data space. For neuron n, the density 
P(n) in the data space X can be defined as:

 
P n p w n X( ) = ( )( ), ,

 
(5)

where p(x,X) denotes an empirical density estimation at point x 
(i.e., w(n) which is the weight vector of neuron n) in the data space 
X and ESOM uses Pareto Density Estimation (PDE) [31], an  
optimal information kernel density estimation.

Data can be analyzed by using publicly available ESOM soft-
ware (Databionics ESOM Tool) developed by Ultsch and Morchen 
[31]. This software is available to download from http://
databionic- esom.sourceforge.net/.

The Fuzzy clustering by Local Approximation of MEmbership 
(FLAME) algorithm starts by calculating similarities of gene 
expression patterns using Pearson correlation, and then creating a 
connected graph of all K-Nearest Neighbors (KNN) of each 
expression vector. For each expression pattern, density, which indi-
cates the number of neighbors within a specified distance, is calcu-
lated to classify it into one of three groups: (1) cluster supporting 
object (CSO) which has higher density than their neighbors, (2) 
outlier, which has lower density than its neighbors and below a 
predefined threshold, and (3) the rest. In the next step, the Local 
Approximation of fuzzy membership (initialised to random values) 
of the three groups is determined and each object in group 3 (rest) 
is updated by a linear combination of the fuzzy memberships of its 
nearest neighbors. The degree of membership of vector x in cluster 
i is pi(x) and is given by:

 
x p x p x p x p xM: , , , ,( ) = ( ) ( ) … ( )( )1 2  

(6)

where 0 1 1
1

≤ ≤p x p xi i
i

M

( ) ; ( ) =
=
∑  and M is the total number of clus-

ters: M = |Xcso| + 1, where Xcso is the set of cluster supporting objects 
with Local Maximum Density, and 1 represents the outlier cluster.

The p(x) is represented by a membership vector of each object 
x and is updated by the weighted summation of membership vec-
tors of all its nearest neighbors, as in Eq. 7.

 
p x w p yt

y x
xy

t+

∈ ( )
( ) ≈ ( )∑1

KNN  
(7)

3.3 Fuzzy Clustering 
by Local 
Approximation 
of MEmbership 
(FLAME)
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where pt(x) is a fuzzy membership vector of object x at iteration t 
and wxy are the coefficients reflecting  relative proximities of nearest 
neighbours such that the sum of the coefficients over the KNN(x) 
is equal to 1 and KNN is the k nearest neighbors of x.

Basically, each iteration process attempts to reduce the Local 
(Neighborhood) Approximation Error E [24] which is the differ-
ence between the approximation of membership vectors in the cur-
rent and previous iterations, defined by:

 
E p p x w p y

x y x
xy{ }( ) = ( ) − ( )

∀ ∈ ( )
∑ ∑

KNN

2

 
(8)

Finally, based on fuzzy memberships the clusters can be repre-
sented in two ways: one gene to one cluster or one gene to multi-
ple clusters. FLAME results are given as line plots showing three 
patterns: (1) each cluster which includes CSO and the rest, (2) all 
outliers, and (3) all CSOs. The most important is the type (1) 
which shows expression patterns for each cluster in a separate line 
plot. FLAME is integrated with Gene Expression Data Analysis 
Studio (GEDAS) (http://sourceforge.net/projects/gedas).

FCM is the most widely used fuzzy clustering algorithm; it was 
developed by Dunn in 1973 [32] and improved by Bezdek in 1981 
[33]. It is based on the minimization of the following objective 
function:

 
J J u d x c m

j

c

i
i

c

k x c
ki
m

k i
k i

= = −( ) ≤ < ∞
= = ∈
∑ ∑ ∑

1 1

1
,

,
 

(9)

where ci is the centroid of cluster i, d(xk − ci) is the distance between 
ith centroid (ci) and kth input vector xk, c is the total number of clus-
ters, m is a fuzziness parameter which can be any real number greater 
than 1, and uki  is the degree of membership of xk in cluster i.

FCM is a clustering method that allows data to belong to more 
than one cluster with a degree membership uij. The FCM algorithm 
starts with a predefined number of clusters where each datum has 
an equal degree of belonging to every cluster. Fuzzy partitioning is 
carried out through an iterative optimization of the objective func-
tion shown above, with updates of membership uij and cluster cen-
ters cj. The iteration stops when a termination criterion is met. FCM 
is integrated with Gene Expression Data Analysis Studio (GEDAS).

Each of the selected methods allows the user to adjust param-
eters. We set parameters for each method as follows: SOM based 
on correlation distance and batch learning was conducted on 
Matlab (http://www.mathworks.com/) Neural Networks toolbox 
followed by an in-house developed algorithm implementing Ward 
clustering to define clusters. ESOM based on correlation distance 

3.4 Fuzzy 
C-Means (FCM)
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used online (example-by-example) learning while growing map 
size to 50 × 82 in 20 batch runs; linear functions were used for 
both shrinking the neighborhood size and learning rate. FLAME 
used Pearson or Squared Pearson Correlation with 10K-Nearest 
Neighbors with no threshold. FCM used Pearson or Squared 
Pearson Correlation distance with fuzziness parameter (m) of 1.2. 
This fuzziness parameter was calculated by using an empirical 
equation from Dembele and Kastner [34]. They proposed that the 
value of m should be lower than or equal to 2 in order to get gene 
members with strong relationships to clusters. Ozkan and Turksen 
[35] also mention that level of fuzziness is essential and it can affect 
FCM membership values.

4 Results and Discussion

In this section, the results from clustering the small subsets of 71 
and 93 genes (extracted from the two intrinsic gene sets of 456 
and 534, respectively) using SOM, ESOM, FLAME, and FCM are 
presented, highlighting how these two small gene subsets support 
the identified cancer subtypes by assessing their clustering patterns 
when subjected to these clustering algorithms. As highlighted 
 earlier, the 71-gene subset from the 456 genes represented four 
subtypes: HER2 (refers to ERBB2+/HER2), Basal-like, Normal 
(i.e., Normal breast-like) and Luminal. The 93-gene subset from 
the 534 genes represented five subtypes: HER2, Basal-like, 
Normal, Luminal A, and Luminal B.

SOM was developed and the map was clustered using the Ward 
method to find optimum clusters. Results of clusters and corre-
sponding Ward index are shown in Fig. 3. Maximum Ward likeli-
hood index for both datasets as evidenced by the largest Ward 
likelihood index indicates that the optimum number of clusters in 
each case is three. Table 3 shows details of each SOM-based gene 
cluster in terms of the number of genes from the small gene subsets 
of 71 or 93 represented in each cluster against the number of genes 
in the original subtypes.

The fact that both gene sets resulted in three clusters indicates 
the strong likelihood that not all five subtypes are distinct. The 
members in each SOM cluster for the first dataset (Table 3a) rep-
resent two or more subtypes. Cluster 1 is divided between Luminal 
and Normal breast-like (hereafter referred to as either Normal-like 
or Normal), which implies that Luminal and Normal-like have 
some similarity in gene expression patterns. In contrast, the 
93-gene subset extracted from the 546 “intrinsic” genes shows 
clear separation of Luminal A into cluster 1 (Table 3b). However, 
Table 3b indicates a weak similarity between Basal-like and Normal- 
like in its cluster 2 which is predominantly Basal-like. Similarly, 
cluster 2 in Table 3a is predominantly Basal (13/19) with some 
Normal-like (3/14) cases and one of HER2 (1/11) subtype 

4.1 Gene Clustering 
Based on the 71 
and 93 Genes by SOM, 
ESOM, FCM, 
and FLAME
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 supporting not only the possible similarity between Basal-like and 
Normal-like but also showing the potential to overlap with the 
HER2 subtype. Cluster 3 in Table 3a is dominated by HER2 
(10/11) with a moderate presence of Basal-like (6/19) and weak 
presence of Luminal (1/5). Cluster 3 in Table 3b also has all HER2 
genes (11/11) but it also has all the Luminal B gene activity pat-
terns indicating a strong similarity between HER2 and Luminal 
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Fig. 3 Ward likelihood index for various number of clusters (a) for 71 genes from 456 “intrinsic” gene set (b) 
for 93 genes from 546 “intrinsic” gene set ((x-axis—number of clusters and y-axis—Ward likelihood index). 
The larger the likelihood index, more likely that number of clusters

Table 3 
Proportion of genes belonging to the original subtypes found in each SOM cluster (numerator is the 
number of genes belonging to a particular subtype found in an SOM cluster and the denominator is 
the total number of genes belonging to that subtype)

Number of genes in original subtype/number of genes in SOM cluster 1 2 3

(a) Clustering based on the 71-gene subset extracted from the 456 “intrinsic” genes

 HER2 (11 genes) 1/11 10/11

 Basal-like (19 genes) 13/19 6/19

 Normal (14 genes) 11/14 3/14

 Luminal (15 genes) 14/15 1/15

(b) Clustering based on the 93-gene subset extracted from the 534 “intrinsic” genes

 HER2 (11 genes) 11/11

 Basal-like (24 genes) 18/24 6/24

 Normal (5 genes) 4/5 1/5

 Luminal A (28 genes) 28/28

 Luminal B (25 genes) 25/25
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B. The rest in this cluster are from Basal-like and Normal-like 
whose similarity was already revealed in cluster 2 of Table 3a, b. 
Overall, Luminal A appears distinct from Luminal B and others, 
Basal and Normal-like show overlap, and HER 2 shares similarities 
with Basal-like and Luminal B.

ESOM results, given in Fig. 4, show information on the gene 
density for the two intrinsic gene sets. The red color represents 
dense areas while the lighter color represents sparse areas. The dots 
indicate neurons on the map. In this figure, the toroidal shape of 
the map has been converted to a rectangular shape for visualization 
purposes but one can visualize the toroid by bending the corners 
appropriately. This map also shows three dense areas (red to yellow 
areas in the corners and within) for both gene sets. A further clus-
tering step was attempted but clusters seemed unstable in multiple 
trials and therefore, the ESOM results are shown here mainly to 
present a visualization of the characteristics of data density, not for 
clustering purposes. However, we use the results to highlight 
where the genes for three subtypes tend to cluster by investigating 
the best match ESOM vector to each gene expression vector 
(Fig. 5) for the case of 93-gene subset from the 534 intrinsic genes. 
For example, Basal-like cluster has all its genes in the same location 
while HER2 has all but SMARCE1 in the same  location. Normal-
like cluster is close to the Basal-like and has all its genes in the same 
location except for KIAA0857 and MEN1.

The last two clustering methods (FLAME and FCM) provide 
cluster information which can be used to compare with the original 
clusters and with SOM clusters. In doing so, the focus is on inves-
tigating the efficacy of the gene subsets in distinguishing the sub-
types as found by the original authors by analyzing if each subset is 
clustered separately. We present in Table 4 the results of clustering 
tumor subtypes using the two sets of 71 and 93 genes by the three 
methods (SOM, FLAME, and FCM) and compare with the 
clusters from the original study. Recall that SOM produced three 
optimum clusters as shown in Table 3. FLAME and FCM used squared 
Pearson correlation. Squared Pearson captures the similarity between 
profiles in terms of trends irrespective of whether upregulated or 
downregulated. These can help identify co-regulated genes which 
may be either upregulated or downregulated in a related fashion.

FLAME finds the optimum number of clusters by itself and 
produced four clusters for the 71 genes, similar to the number of 
original subtypes, as shown in Table 4. FCM requires the number 
of clusters to be predefined so the same number of clusters as the 
original subtypes was given to FCM in order to compare their 
results. In Table 4, cluster results are presented according to the 
number label given by the computational method to each specific 
cluster followed by a number within brackets that indicates the 
number of genes in the original subset for each subtype found in 
the computed clusters. The question we ask is: Do the clusters 
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ESOM: 71 genes from 456 intrinsic genes
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Fig. 4 ESOM: P-Matrix (density-based) and 3D view of P-Matrix for the two datasets. White dots represent best 
match (closest) vector to each data point. Red indicates higher density and blue indicates smaller density of 
input vectors

SMARCE1                    

KIAA0857, MEN1

Basal-like

HER2

Normal-like

Fig. 5 Mapping of three cancer subtypes (found by original authors from the 93-gene subset) onto ESOM

 support the gene sets identified as representing the cancer subtypes? 
Results indicate that for the 71-gene set, FCM put all four subsets 
of genes (subtypes) into four distinct clusters. FLAME put all but 
Basal-like into distinct clusters. Even in the case of Basal-like, most 
(68.4 %) are in one cluster (Cluster 5) and the rest shared by 
Luminal (26.34 %) and Normal-like (5.26 %), further supporting 
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Table 4 
Clustering results from the three methods: SOM, FLAME, and FCM using 71 and 93 genes (number in 
brackets refers to number of genes from the original subtypes from Sorlie et al. [7, 8])

Subtype Subtype genes (original study) SOM FLAME FCM

71 genes extracted from 456 intrinsic genes Sorlie et al. [7]

 HER2 
(11)

ERBB2, ESTs T57034, KIAA0130, 
ERBB2, steroidogenic, GRB7, 
TGFB1, TNF, flotillin 2, 
FLJ10700, SWI/SNF

Cluster 2 (1) +  
cluster 3 
(10)

Cluster 3 (11) Cluster 3 (11)

 Basal- like 
(19)

SRY, UDP-N, ESTs W93120, CDH 
3, laminin, small inducible 
cytokine subfamily, ATDC, KRT 
17, KRT 5, troponin I, CHI3L2, 
SLPI, nuclear factor I/B, ESTs 
AI304356, transforming growth 
factor beta 2, calpain-like 
protease, dystrophin, fatty acid 
binding protein 7, GRO1

Cluster 2 (13) +  
cluster 3 (6)

Cluster 0 (5) +  
cluster 2 (1) +  
cluster 5 (13)

Cluster 0 (19)

 Normal 
(14)

CD36, CD36, glutathione peroxidase 
3, glycerol-3- phosphate 
dehydrogenase 1, lipoprotein 
lipase, ESTs T62068, four and a 
half LIM domains 1, retinol-
binding protein 4, amine oxidase, 
integrin, alpha 7, alcohol 
dehydrogenase 2 (class I), MY047 
protein, aquaporin 7, 30 kDa 
protein

Cluster 1 (11) +  
cluster 2 (3)

Cluster 2 (14) Cluster 5 (14)

 Luminal 
(15)

Putative G, acyl-Coenzyme A, 
ERS1, TFF3, GATA3, GATA3, 
XBPI, HNF3A, lymphoid nuclear 
protein, LIV1, ESTs AA029948, 
FLJ 11280, N-acetyltransferase, 
Myosin VI, Myosin VI

Cluster 1 (14) +  
cluster 3 (1)

Cluster 0 (15) Cluster 2 (15)

93 genes extracted from 534 intrinsic genes Sorlie et al. [8]

 HER2+ 
(11)

FLJ10700, FLOT2, SMARCE1, 
TLK1, TRAP100, GRB7, 
PPARBP, ERBB2, ERBB2, 
Homo sapiens mRNA,TBPL1

Cluster 3 (11) Cluster 2 (11) Cluster 0 (11)

 Basal- like 
(24)

CXCL1, CDH3, ANXA8, KRT5, 
TRIM29, KRT17, MFGE8, 
CX3CL1, FZD7, CHI3L2, 
B3GNT5, EXT2, FLJ10697, FLJ 
31360, FLJ 14761, SLPI, EST, 
TONDU, GABRP, ZDHHC5, 
FLJ 11796, SLC5A6,GABRP, 
FLJ 11796

Cluster 2 (18) +  
cluster 3 (6)

Cluster 1 (24) Cluster 1 
(8) + cluster 2 
(15) + cluster 
3 (1)

(continued)
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the evidence for some similarity between these three subtypes.  
As discussed before, SOM (i.e., SOM/Ward) produced only three 
clusters and its performance overall is weaker than that for FLAME 
and FCM. The SOM puts 93 % Luminal and 78 % Normal-like in 
one cluster, Normal, Basal-like and HER2 in one cluster, and 
HER2, Basal- like, and Luminal in another cluster, thereby splitting 
the original subtype genes as shown clearly in Table 3a. Closer 
inspection reveals that SOM cluster 3 is predominantly HER2 with 
91 % (10/11) HER2 genes and SOM cluster 2 is predominantly 
Basal- like with 68 % (13/19) Basal-like genes in it (Table 3a). Thus, 
although SOM clusters correspond with some subtypes, they also 
share genes from other subtypes; especially, in the case of Normal, 
Luminal, and Basal-like. The largest split was for Basal and FLAME 
also has difficulty demarcating the Basal-like subtype.

To complement results for the 93-gene subset in Table 4 and to 
clarify the results better, the same results are produced in summary 
form in Table 5 to shed more light on the efficacy of this 93-gene 
set extracted from the 534 intrinsic genes (note that these 534 
genes were found from an extension of the study that  produced the 
456 genes) in identifying the five subtypes. Specifically, Table 5 
indicates the percentage of the genes defining the original subtypes 
found in each cluster from SOM, FLAME, and FCM. Results in 
Table 5b show that FLAME produced four optimum clusters and 

Table 4
(continued)

Subtype Subtype genes (original study) SOM FLAME FCM

 Normal 
(5)

KIAA0857, MEN1, PIK3R1, 
AKR1C1, FACL2

Cluster 2 (4) +  
cluster 3 (1)

Cluster 1 (3) +  
outlier (2)

Cluster 2 (5)

 Luminal 
subtype 
A (28)

LRBA, Homo sapiens mRNA, LIV-1, 
HNF3A, XBP1, GATA3, ESR1, 
PTP4A2, RERG, ACADSB, 
GATA3, VAV3, KIAA1243, 
LOC51313, DKFZp, KIA0876, 
FLJ 10980, TLE3, MGC 22588, 
CEGP1, FBP1, MGC 27171, HSD 
17B4, Homo sapiens Mrna, Homo 
sapiens mRNA, NAT1, Homo 
sapiens, FLT1

Cluster 1 (28) Cluster 3 (28) Cluster 2 
(7) + cluster 3 
(1) + cluster 4 
(20)

 Luminal 
subtype 
B (25)

ABCD3, ADSL, BTG3, ATP5G1, 
D123, PRNPIP, EBNA1BP2, 
NSEP1, GGH, LC27, PRDX4, 
HSPC163, GARS, FLJ12442, 
TMSB10, KDELR2, KIAA1691, 
NRBF-2, CCNE1, CALU, 
LANP, POLR2F, SQLE, 
S100A10

Cluster 3 (25) Cluster 4 (25) Cluster 3 
(24) + cluster 
4 (1)
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all but Normal-like and Basal-like genes were put into distinct 
 clusters. Specifically, some (60 %) Normal-like genes were clustered 
with Basal-like and the rest of the Normal- like genes were consid-
ered as outliers (see Table 5b). Note though that the Normal-like 
subset now has only five genes and this may have affected the results. 
SOM (Table 5a) dedicated one cluster (cluster 1) to Luminal A; 
and another (cluster 2) to Basal-like and Normal-like genes but put 
roughly 25 % of genes in these subtypes in cluster 3 where all 
Luminal B and HER2 genes have also been placed. Thus cluster 3 
represents four subtypes with the majority (58 %) of the cluster 
being genes from Luminal B followed by HER2 (26 %), Basal-like 
(14 %) and only 2 % of Normal-like genes. Overall, FLAME shows 
more definite support for original subtypes than SOM with Lum A, 
Lum B, and HER2 in separate clusters and Basal and Normal-like 
sharing one cluster. This shows that the FLAME’s choice of four 
clusters as opposed to the original authors’ five subtypes is based on 

Table 5 
Percentage of genes from each subtype found in each cluster of (a) SOM/Ward, (b) FLAME, and (c) 
FCM based on the 93-gene subset

Cluster 0 
(%)

Cluster 1 
(%)

Cluster 2 
(%)

Cluster 3 
(%)

Cluster 4 
(%)

(a) SOM/Ward

 LumA (28) 100

 LumB (25) 100

 HER2 (11) 100

 Basal (24) 75 25

 Normal (5) 80 20

(b) FLAME

 LumA (28) 100

 LumB (25) 100

 HER2 (11) 100

 Basal (24) 100

 Normal (5) (outlier 40 %) 60

(c) FCM

 LumA (28) 25 3.5 71.5

 LumB (25) 96 4

 HER2 (11) 100

 Basal (24) 33.34 62.5 4.16

 Normal (5) 100
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the similarity between Basal-like and Normal-like subtypes that was 
persistently shown across all results in this study.

FCM was used with five clusters to match the original number 
of subtypes. It puts two gene subsets into distinct clusters (all 
HER2 genes in cluster 0 and almost all Luminal B genes in cluster 
3 and over 70 % of Luminal A genes in cluster 4 (Table 5c)). 
However, it puts all Normal-like genes with the majority of Basal- 
like genes in cluster 2 which also contain 25 % of Luminal A genes 
(Table 5c). This again indicates some overlap between Basal-like, 
Normal-like, and Luminal A subtypes. Interestingly, some 33 % of 
Basal-like genes have gone into a separate cluster (cluster 1). The 
FCM summary results in Table 5c show complete support for 
HER2 subtype and strong support for LumB subtype with most of 
the latter’s genes in cluster 3. All other subtypes are spread across 
one or more clusters (e.g., LumA and Basal-like). Overall results 
from both analyses (71 and 93 genes) show FLAME with strong 
support for the identified subtypes followed by FCM. Support 
from SOM is weak in both cases.

Similarity or distance measure used can affect the gene mem-
bership in each cluster. Therefore, selecting clustering tools with a 
priori knowledge of the expected characteristics of genes will 
enhance the confidence in and accuracy of results. To assess the 
influence of the distance measure used, we conducted another 
introspective study with only the 93-gene subset extracted from 
the 534 genes found by Sorlie et al. [8]. Specifically, FLAME and 
FCM are used here with Pearson or squared Pearson correlation as 
the distance measure and the results are shown in Table 6.

FLAME does not need a predefined number of clusters and 
identified only four clusters from both distance measures. FCM 
needs to predefine the cluster number, so two options are studied 
where five is given according to known subtypes from the original 
authors’ work and four is given in order to compare with FLAME 
clusters. Entries in this table indicate the cluster number (1–4 or 
0–3) followed by two numbers within brackets: the number of 
genes in the original authors’ subtype found in this cluster (numer-
ator) and the total number of genes in the cluster (denominator). 
Table 6 shows that the distance measure and the defined number 
of clusters (for FCM) have an effect on how genes are clustered. 
Pearson gives better cluster results for both FLAME and FCM 
(four clusters) than squared Pearson correlation.

Four clusters from FLAME and FCM based on Pearson cor-
relation are the most similar to the original group; an exception is 
that both FLAME and FCM define Basal-like gene expression pat-
terns similar to those for Normal-like subtype (cluster 1 for FLAME 
and cluster 2 for FCM), an observation previously made from our 
SOM, FLAME, and FCM results. In fact, 4- (as well as 5-) cluster 
FCM based on Pearson correlation indicated the similarity between 
these two subtypes (cluster 2 contains all five Normal-like and 
most or a large number of Basal-like genes). These agree with the 
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results from hierarchical clustering where Normal and Basal-like 
are close to each other with similar gene expression patterns 
(Fig. 1). FLAME identified that two genes, KIAA0857 and 
PIK3R1, were distinct from the others in the Normal-like cluster 
and classified them as outliers In fact, ESOM also put KIAA0857 
separately from the rest of the genes in the Normal-like cluster 
(Fig. 5). Both FLAME and FCM with four clusters clearly sepa-
rates Luminal A and Luminal B into distinct clusters; but if pressed 
for five clusters, FCM puts some Luminal A genes with Basal-like 
and one with Luminal B (see clusters 2 and 3 in Luminal A) and 
splits Basal-like genes even further than before. Whether it is four 
or five clusters, HER2 genes make a distinct cluster, indicating the 
efficacy of these genes in characterizing this subtype.

Comparing FCM 5 clusters based on Pearson correlation and 
Squared Pearson correlation, HER2 cluster is still intact, Luminal 
B separates into a distinct cluster (marginal improvement), and 
Basal-like cluster has become clearly more distinct separating very 
much into one cluster (a large improvement). Luminal A cluster 
has become very slightly more distinct, and Normal-like has slightly 
deteriorated. With FLAME, squared Pearson correlation has dete-
riorated the clustering results. Thus, overall, four clusters based on 
Pearson correlation seem to affirm the efficacy of the gene subsets 
in distinguishing breast cancer subtypes with FLAME producing 
more accurate clustering outcomes.

Another useful investigation that can shed light on the selected gene 
subsets is clustering patients. Therefore, we conducted an SOM and 
FCM cluster analysis of patients based on the 93-gene subset extracted 
from the 534 intrinsic genes [8] and the 71 subset of genes extracted 
from the 306 intrinsic genes [27] (see Table 2, last column). The lat-
ter set has been proposed from a combined dataset from three sources 
including the one that produced the above 534 intrinsic genes. The 
results from the previous section show that each clustering method 
produces one or more clusters that contain genes from one or more 
subtypes. Fuzzy clustering is a soft clustering approach that allows a 
measure of the strength of membership of an item in each cluster and 
we utilize this aspect of FCM more in this patient clustering.

Gene expression vectors, each containing expression results for all 
93 genes (from the 534 intrinsic genes) for each of the 79 patients 
were clustered using SOM and results are shown in Fig. 6. The first 
map Fig. 6a (left) indicates the number of patients (hits) repre-
sented by each neuron, and Fig. 6a (right) shows the average dis-
tance between neurons where lighter color indicates smaller 
distances and darker color indicates larger distances between neu-
rons. Such a distance map allows visualization of potential clusters. 
Dark regions indicating larger gaps appear at least in three places 
and these separate the samples into at least three groups.

4.2 Classification 
of Subtypes: 
Clustering Patients 
Using SOM and FCM

4.2.1 SOM Clustering 
of Patients
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Fig. 6 (a) Projection of all patients (subtypes) on to the trained SOM based on the 93-gene subset (left ), and 
U-matrix (right ). (b) SOM sample hits (patients) for each “intrinsic” subtype according to the 93-gene subset 
from the original study (79 patients in total)

In the last five panels (Fig. 6b), the actual expression pattern 
for patients from each original subtype is projected onto the trained 
map. A powerful feature of SOM is topology preservation where 
data (expression patterns; in this case patients) that are biologically 
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closer are organized closer in the map allowing one to see not only 
clusters but also biological similarity between different clusters 
(subtypes). The SOM panels for the five subtypes show that most 
patients of each subtype are organized in the same region; for 
example, Normal-like patients are located at the bottom left-hand 
corner of the Map. Moreover, Normal-like is located opposite to 
LumB; Basal-like is located opposite to Luminal A; and HER2 is 
closer to Normal-like and Basal-like in that these three subtypes 
together occupy a triangular region in the bottom right part of the 
map. LumA and LumB occupy the top left triangle on the map. 
This corresponds to classification of breast cancer molecular sub-
types based on the estrogen receptor (ER) status: ER-positive con-
sists of two main subtypes (Luminal A and B) and ER-negative 
consists of three subtypes (Her-2, Basal-like, and Normal-like).

Next, we investigated whether the 71-gene subset extracted 
from the 306 intrinsic gene set provides better accuracy in classifi-
cation of subtypes; results are shown in Fig. 7. There are 248 
patients in this dataset. SOM produced similar results to those with 
the previous dataset indicating similar relative positioning of sub-
types in the SOM panels. For example, Normal-like, Basal-like, 
and HER2 subtypes occupy the top left region of the map and 
LumA and LumB occupy the bottom left region. This reversal of 
space occupied by subsets is not an issue as relative position is what 
gives a map its meaning. In this case, different intrinsic genes do 
not vary the final SOM result.

In an attempt to find final clusters on SOM, Ward clustering of 
SOM neurons provided the Ward index vs. number of clusters rela-
tion for the 93 and 71 gene signatures as shown in Fig. 8. The opti-
mum number of clusters for these two signatures is four and two 
clusters, respectively. This indicates that the 93 gene signature has 
greater discriminating ability than the 71 gene signature that sees 
more similarity between the subtypes leading to only two optimum 
clusters. A summary of clustering results for the two gene sets are 
given in Table 7 which indicates that 93 gene signature distinguished 
the 28 LumA patients but put some Lum B patients with them in 
the same cluster. It also separated most (90 %) of Normal-like and 
Basal-like into separate clusters. It sees all HER2 patients together in 
a cluster but it is shared with 60 % of LumB patients and a small 
number of Basal-like and Normal-like patients. The 71-gene subset 
in contrast cannot distinguish between LumA and B; identifies all 64 
Basal-like patients in one cluster but it shares over 50 % of Normal-
like and HER2 patients. The rest of the Normal-like and HER2 
patients are clustered with LumA and B. Clearly, the 93 gene signa-
ture shows greater discriminating ability in this case.

In this section, we cluster the patients based on the 93 and 71 gene 
signatures using FCM in order to ascertain the efficacy of this clus-
tering method on the selected datasets. Results are shown in 

4.2.2 FCM Clustering 
of Patients
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Fig. 7 SOM sample hits (patients) for each “intrinsic” subtype according to the small subset of 71 genes from 
the 306 “intrinsic” genes (248 patients in total)

Table 8 where a and b sections are for the 93 gene signature and c 
and d parts are for the 71 gene signature. Table 8a, c show original 
samples (patient IDs), FCM clusters, and samples in each of these 
clusters. In Table 8b, d, FCM clusters are compared with the origi-
nal classification. For the 93-gene set, one FCM cluster has 100 % 
members belonging to Normal-like group while other clusters 
contain one or more subtypes. Cluster 1 has only LumA patients 
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but contain only 57 % of them. Similarly, with 71 gene signature, 
each cluster consists of two or more subtypes as shown in Table 8d. 
It appears that the 93 gene signature based on the original 534 
gene list enables more accurate clustering than the 71-gene subset 
from the 306 gene signature. To be able to see clearly how patients 
are grouped into “intrinsic” subtypes, we projected the FCM 
 sample cluster results from the 93 gene signature onto our SOM in 
Fig. 6 and results are shown in Fig. 9. It shows that Normal-like is 
distinct (cluster 5), Basal-like is almost distinct (cluster 4) with an 
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Fig. 8 Ward likelihood index for various number of clusters of map neurons (a) for the 93 subset extracted from 
the 546 “intrinsic” genes (b) for the 71-gene subset extracted from the 306 “intrinsic” genes (x-axis indicate 
the number of clusters and y-axis-Ward likelihood index). The larger the likelihood index, more likely that 
number of clusters

Table 7 
Members (patients) in each SOM cluster according to subtype based on: (a) 93-gene subset and (b) 
71-gene subset

Patient cluster 1 2 3 4

(a) 93-gene subset from the 546 “intrinsic” genes
HER2 (11 patients) 11
Basal-like (19 patients) 17/19 2/19
Normal (10 patients) 9/10 1/10
Luminal A (28 patients) 28/28
Luminal B (11 patients) 4/11 1/11 6/11

(b) 71-gene subset from the 306 “intrinsic” genes
HER2 (29 patients) 15/29 14/29
Basal-like (64 patients) 64/64
Normal (19 patients) 11/19 8/19
Luminal A (90 patients) 90/90
Luminal B (46 patients) 46/46
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Table 8 
FCM (with 1.2 degree of fuzziness) classification results for two selected datasets: (a) and (b) for 93 
genes from the 534 “intrinsic” genes; (c and d) for 71 genes from the 306 “intrinsic” genes

(a) Sample allocation from FCM (based on 93-gene subset from the 534 “intrinsic” genes)

Subtypes Sorlie et al. [8] FCM

LumA (28) Sample : 1–28 Cluster 1 Samples: 1:5,7:8,10:12,14,23:26,28

LumB (11) Sample : 29–39 Cluster 2 Samples: 6,9,13,15:22,27,29,60

HER2 (11) Sample : 40–50 Cluster 3 Samples : 30:36,37,39:50

Basal (19) Sample : 51–69 Cluster 4 Samples: 38,51:59,61:69

Normal (10) Sample : 70–79 Cluster 5 Samples: 70–79

(b) Percentage of patients found in each cluster according to subtype (based on 93 genes from 534 
“intrinsic” genes)

Cluster 1 (%) Cluster 2 (%) Cluster 3 (%) Cluster 4 (%) Cluster 5 (%)

LumA (28) 57.15 42.85

LumB (11) 9.09 81.82 9.09

HER2 (11) 100

Basal (19) 5.27 94.73

Normal (10) 100

(c) Sample allocation from FCM (based on 71 genes from 306 “intrinsic” genes)

Subtypes Hu et al. [27] FCM

LumA (90) Sample :  
1–46

Cluster 1 Samples: 1:2,7,10:11,13:17,24,26:27,31,42,45,122,138, 
144:145,147,149,160,162,213:219,221-241,243:249

LumB (46) Sample : 
46–136

Cluster 2 Samples: 3:6,8:9,12,18:23,25,28:30,32:41,43:44,46:47, 
49:50,53,57:58,60:62,70,72:76,78,85,102:105,109, 
112:113,126,134,136,242

Normal (29) Sample : 
137–155

Cluster 3 Samples: 48,51:52,54:56,59,63:69,71,77,79:84,86:101, 
106:108,110:111,114:121,123:125,127:133,135,13, 
139:140,142:143, 148,150:155

Basal (64) Sample : 
156–220

Cluster 4 Samples: 141,146,156:159,161,163:212,220

HER2 (19) Sample : 
221–249

(continued)
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odd Lum B patient showing in a distance, all HER2 patients in 
cluster 3 with the majority in the middle region of the cluster. The 
top region of this cluster contains all LumB patients. LumA is 
divided into Cluster 1 and Cluster 2 but overlaying cluster 1 and 2 
maps indicate that LumA occupies the top left corner of the map. 
What we see here is that Normal-like, Basal-like, and HER2 in that 
order occupy the lower diagonal region of the map. Lum A and 
Lum B are on the opposite side of the map.

Table 8
(continued)

(d) Percentage of patients found in each cluster according to subtype (based on 71 genes from 306 
“intrinsic” genes)

Cluster 1 (%) Cluster 2 (%) Cluster 3 (%) Cluster 4 (%)

LumA (90) 35 65

LumB (46)  1 33 66

Normal (29) 26 64 10

Basal (64) 14 86

HER2 (19) 97  3

Fig. 9 SOM sample hits for each FCM cluster according to the subset of 93 genes from 546 intrinsic genes
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We also tested the number of common genes among the 
 subsets from the three studies, Sorlie et al. [7, 8] (2001 and 2003) 
and Hu et al. [27] (2006) for three subtypes. As shown in Fig. 10, 
there were very few common genes—1, 3, and 3 genes respectively 
for Basal-like, HER2, and Luminal. The lack of agreement between 
the reported genes continues to pose challenges in identifying the 
minimum intrinsic gene subset for distinguishing breast cancer 
subtypes.

5 Summary and Conclusions

In this study, an in-depth investigation of the efficacy of three novel 
gene sets reported in the literature in distinguishing breast cancer 
subtypes was performed using three emergent advanced computa-
tional methods. Selecting computational methods to analyze 
experimental data is still a challenging task as there is a myriad of 
methods available. Using different methods and distance measures 
can produce apparently different results. A good understanding of 
the cluster structure of a dataset and what relations are used 
whether trends or magnitudes is essential in order to select the 
right tools and distance measurement. The three selected tools 
(SOM, FLAME, and FCM) were assessed based on the novel gene 
signatures proposed by Sorlie et al. [7, 8] and Hu et al. [27] to 
investigate the efficacy of 71 and 93 and 71 novel gene subsets, 
respectively, proposed by the authors. These small subsets were 
extracted by the respective authors from 456, 534, and 306 intrin-
sic genes found differentially expressed in their studies.

First, the two gene sets consisting of 71 and 93 genes charac-
terizing 4 and 5 cancer subtypes, respectively, were analyzed using 

Basal HER2 Luminal

2006 2006 2006

10 7 17

2               1                               1                                                                 1

1                                                 3                            3

12          4           18                     6           1          7                      7            5        19     

2001 2003    2001 2003    2001 2003

a b c

Fig. 10 Venn diagram of original gene clusters: (a) Basal-like, (b) HER2, and (c) Luminal using the small gene 
subsets from Sorlie et al. [7, 8] and Hu et al. [27]
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the four methods: SOM, ESOM, FLAME, and FCM. SOM and 
ESOM are visualization methods for high dimensional data pro-
jected onto a two-dimensional map and they gave an overview of 
how genes are organized in terms of distance and density. More 
consistent clusters were obtained from FCM and FLAME. FLAME 
and FCM with fuzzy characteristics showed that some genes have 
expression patterns that characterize two or more subtypes.

We found some similarities and differences in clustering the 
selected breast cancer genes with different clustering tools. For the 
93-gene subset from the 534 intrinsic genes, SOM gives three 
clusters: cluster 1 (LumA), cluster 2 (Basal and Normal-like), and 
cluster 3 (LumB, HER2, Basal, and Normal-like); FLAME pro-
duced four clusters: cluster 1 (HER2), cluster 2 (Basal and Normal- 
like), cluster 3 (LumA), cluster 4 (LumB); and FCM defined five 
clusters: cluster 1 (HER2), cluster 2 (Basal-like), cluster 3 (LumA, 
Basal, and Normal-like), cluster 4 (LumA, LumB, and Basal), clus-
ter 5 (LumA and LumB). Thus FLAME clusters genes in almost 
the same way as the original results but has difficulty in separating 
gene expression patterns from Basal-like and Normal-like subtypes. 
FCM has more than one subtype in each cluster except for the one 
representing HER2 subtype. SOM also has more than one subtype 
in each cluster except for the one representing LumA. For the 
71-gene subset from 456 intrinsic genes, FCM had perfect cluster-
ing with one subtype only in each cluster. Next best was FLAME 
with all but one cluster representing one subtype each. SOM had 
spread each subtype in two clusters. In summary, the 93-gene 
 subset from 534 “intrinsic” genes gave better subtype classification 
when compared with the 71-gene subset from 456 “intrinsic” 
genes based on SOM and FLAME but vice versa for FCM which 
gave perfect subtype classification for the 71 gene subset. However, 
this 71-gene set represented only four subtypes whereas the 
93-gene set represented five subtypes. Therefore, the 93-gene set 
can provide a further classification of Luminal into Luminal A and 
Luminal B.

Before patient clustering based on the Sorlie et al. [8] and Hu 
et al. [27] gene sets, we checked and found that there were only a 
few overlapping genes from the three different proposed subsets 
(Sorlie et al. [7, 8] and Hu et al. [27]) in representing the sub-
types. When using the 93-gene subset from the 546 “intrinsic” 
genes, we retrieved better patient classification results from both 
SOM and FCM compared with the 71-gene subset from the 306 
“intrinsic” genes [26]. In this regard, the main contribution is 
using SOM to show the relationship/similarity between subtypes 
through visualization. In this subtype classification, we first used 
SOM and investigated the spatial organization of original subtypes 
based on the 93 and 71-gene subsets. We found that both gene 
sets provide consistent results, revealing that each subtype occupies 
a distinct location on the map. For example, SOM sample hits 
(Figs. 6 and 7) show the opposite positioning of Basal-like and 
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Luminal A as well Normal-like and Luminal B; HER2 always 
appeared in a distinct central position but closer to Normal-like 
and Basal-like than either LumA or B. Furthermore, LumA and 
LumB together occupy the opposite diagonal area from that occu-
pied by the combined HER2, Basal-like, and Normal-like sub-
types. These and all clustering results indicated the similarity 
between the Normal-like and Basal-like subtypes.

We further clustered the SOM using the Ward method and 
found that the four optimum clusters produced by the 93-gene set 
are more similar to the original subtypes than the two clusters pro-
duced by the 71-gene set from the Hu et al. [27] study. Additionally, 
as a validation, we used FCM to cluster original gene expression 
profiles with 93 and 71 genes and projected the resulting patient 
clusters on to the SOM which showed that the 93-gene subset had 
more discriminating ability than the 71-gene set. Thus the pro-
posed 93-gene set demonstrated its strength in differentiating sub-
types to a reasonably high degree of accuracy. There is evidence 
that this subset can represent some subtypes such as HER2 well 
and do reasonably well for LumA and B, indicating that it has cap-
tured some essential genes. There still is overlap between some 
subtypes such as Normal-like and Basal-like.

Given the costly procedures involved in clinical studies, the 
proposed 93-gene set can be used for preliminary classification of 
breast cancer. The patient based SOM model can be used to map 
the gene signature of new patients to locate them on the SOM 
with respect to all subtypes to get a comprehensive view of the 
 classification. This can be followed by a deeper investigation in 
light of the observations made in this study regarding overlapping 
subtypes. We used gene signatures generated from three compre-
hensive studies conducted in 2001, 2003 and 2006 with one feed-
ing into the other. Our approach and results could be the base for 
further refining the gene signatures from later experiments and 
those potentially designed to separate as much as possible overlap-
ping clusters as well as to maximally separate all clusters.
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    Chapter 19   

 QSAR/QSPR as an Application of Artifi cial Neural Networks 

           Narelle     Montañez-Godínez    ,     Aracely     C.     Martínez-Olguín    ,     Omar     Deeb     , 
    Ramón     Garduño-Juárez    , and     Guillermo     Ramírez-Galicia   

    Abstract 

   Quantitative Structure–Activity Relationships (QSARs) and Quantitative Structure–Property Relationships 
(QSPRs) are mathematical models used to describe and predict a particular activity/property of com-
pounds. On the other hand, the Artifi cial Neural Network (ANN) is a tool that emulates the human brain 
to solve very complex problems. The exponential need for new compounds in the drug industry requires 
alternatives for experimental methods to decrease development time and costs. This is where chemical 
computational methods have a great relevance, especially QSAR/QSPR-ANN. This chapter shows the 
importance of QSAR/QSPR-ANN and provides examples of its use.  

  Key words     Artifi cial neural networks  ,   Quantitative structure–activity relationship  ,   Quantitative structure–
property relationship  ,   Principal component analysis  

1      Introduction 

 The fi rst Neural Network (NN) model goes back to 1943 when it 
was proposed by Warren McCulloch (1898–1969), a neurophysi-
ologist, and Walter Pitts (1923–1969), a mathematician. The fi rst 
attempt to use NN in computers took place in 1956 by a group of 
IBM researchers and neuroscientists from McGill University in 
Canada. Not only neurosciences have contributed to the develop-
ment of Artifi cial Neural Networks (ANN). For instance, the 
network unit known as a Perceptron was proposed in 1957 by 
Frank Rosenblatt (1928–1971), a psychologist, and is still in use 
due to its simplicity. 

 In addition, the development of computer science has fol-
lowed the way of the mathematician John von Neumann. In 1947, 
he designed a structure based on sequential processing of data and 
instructions. This structure rigorously follows a sequence defi ned 
by data stored in memory. Von Neumann’s architecture is based on 
the logic of procedures, normally used for partial solutions in some 
problems to link the specifi c problem with the result. Although the 
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future of traditional computers seems to be very encouraging, 
promising, and complementary to human skills, biological neurons 
have attracted the attention of many scientists interested in the 
functioning of the brain and its structures, because its operations 
offer a possible alternative to computational processors [ 1 ]. 

 Nowadays, ANN has reach maturity due to the efforts of many 
research groups around the world; they are applied in the solution 
of numerous complex real-world problems. ANN and artifi cial 
neural systems in general are multidisciplinary fi elds, making large 
contributions to different areas such as physics, mathematics, 
biology, engineering, and others [ 2 ]. Their best performance is in 
very complex problems that are too diffi cult for conventional 
technology—in other words, problems for which no algorithmic 
solution has been found. Some of the areas of application are the 
stock market, sales prediction, medical diagnosis, and object recog-
nition, among others. 

 The best example of biological neural networks is the brain, an 
organ made of billions of specialized cells called neurons, intercon-
nected by synapses. The synapses is the zone where two neurons 
are connected. Two further important parts of the cell are the 
dendrites, which function as the input channel to the cell, and 
the axons, which function as the output channel from it. A very 
simple representation of a cell is shown in Fig.  1 .  

 The neuron body evaluates the incoming impulses and com-
bines them through a network function that provides the strength of 
the neuron. As can be seen an artifi cial neuron behaves very much 
like the biological neuron but at a simplifi ed level. Just as the 
biological neuron cannot exists by itself, artifi cial neurons as inde-
pendent units are not useful for treating information; in order for 
them to work they must be grouped into larger structures, the ANN. 

 Artifi cial neurons are models that simulate the behavior of 
 biological neurons. Each artifi cial neuron is represented as a 

  Fig. 1    Components of a biological neuron       
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processing unit as illustrated in Fig.  2 . This illustration shows a 
processing unit made of a series of inputs  X   i  , that are equivalent to 
the dendrites that receive the input signals regulated by synaptic 
weights represented by  w   i   and a parameter  θ  that is interpreted as 
the minimal threshold that the neuron has to overcome to be 
activated. In the neuron body, the output  f ( y ) is processed as a 
function of the synaptic weights ( w  1 ,  w  2 ,…,  w   n  ) of each one of the 
input data ( x  1 ,  x  2 ,…,  x   n  ) and the threshold  θ ; mathematically: 
 f ( y ) = ∑    i  = 1   n    w   i   ⋅  x   i   +  θ . Finally, the output value goes through an acti-
vation function that transforms the domain value, possibly infi nite, 
into a determined value within a specifi c interval. A biological neu-
ron can be active (excited) or inactive (non-excited); that is, it has 
an activation state. In a similar fashion, an artifi cial neuron also has 
different activation states; some artifi cial neurons can adopt only 
two states, in the same way as biological neurons; however others 
can take any values within a given interval. In artifi cial neurons the 
activation values are determined by the activation functions, the 
most common of which are sigmoidal or logistic and the hyper-
bolic tangent. Both functions can receive input values within the 
range [+∞, −∞]; the difference between them is that the fi rst 
constrains the output values between [0, 1] and the second 
between [−1, +1]. However, there are many activation functions 
depending on the application.  

 The ANN has featured in the scientifi c fi eld of artifi cial intelli-
gence because the interaction of information among the processors 
depends on the behavior of the whole system. That is, it deals with 
understanding from a computerized view of intelligent behavior. 
ANN emulates the human brain using a simulation system that is a 
computer program; the structures are modulated with high- 
capacity parallel computing, known as emulation, or by building 
systems similar to biological neural networks, which can learn from 

  Fig. 2    Model of an artifi cial neuron according to McCulloch and Pitts (1943)       
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stimuli provided by their environment, whilst artifi cial neurons 
must be programmed by computer based on the fastest micropro-
cessor or Von Neumann’s microprocessor that is capable of reliably 
executing complex instructions. ANN can emulate the set of cog-
nitive and intellective skills performed by the human brain. These 
ANN are interconnected with a hierarchical organization that 
allows performing tasks such as sorting and optimization by the 
information of sequential instructions that have been stored in 
memory, manipulating data [ 3 ,  4 ]. 

 ANN is a nonparametric, nonlinear modeling technique that 
has attracted increasing attention in recent years [ 5 ]. Nonlinear 
multivariate maps apply a nonlinear transformation of the input 
variable space to project inputs onto the designated attribute values 
in output space. The power of modeling with layered, feed- forward 
artifi cial neural networks lies in the fl exibility of the model defi ned 
by the weights of connections between units within the network. 
Together, linear and nonlinear mapping functions may be modeled 
by appropriate confi guring of the network. Multilayer feed-for-
ward neural networks trained with a back-propagation learning 
algorithm have become increasingly accepted approaches. 

 An important feature of ANN is its dynamic adaptability or 
ability to change its behavior in different contexts and with distinct 
problems. This is because it relies upon techniques inspired in 
learning, generalization or self-organization using elementary pro-
cessing units. This general behavior determines its ability to test 
hypotheses, detect statistical patterns and regularities, as well as to 
adjust an implicit model which is implemented in the architecture 
of the network, which does not depend on the sum of the poten-
tials of neurons [ 4 ]. 

 The most common way to implement the models and algo-
rithms adjusted by ANN has been through simulations on conven-
tional computers. Moreover, this can be performed through 
architectures that are oriented to the execution of parallel processes 
completed on a set of processors connected with some regularity 
operating concurrently (neuro-computers), in this type of model, 
we can fi nd the classic models Delta + and Mark [ 4 ]. 

 Formally, an ANN can be explained with the concept of the 
graph, an object composed of a set of nodes (vertices) and connec-
tions (links) that can be led when all connections are assigned a 
path and not led when connections are directional. Heavy graphs 
are those in which all nodes are connected to each other, while 
dispersed graphs have few associations. The graphs can be com-
posed of different types of connections and nodes. 

 One way of representing graphs is with circles for the nodes, 
and lines or arrows for the connections ( see  Fig.  3 ). ANN normally 
keeps with certain properties and characteristics as the architecture 
of ANN and the modes of operation of the network [ 3 ].  
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 ANN is generally formed by a set of elementary processors that 
are called  artifi cial neurons ; these constitute simple devices of cal-
culation based on information from other neurons or input from 
the outside to provide a unique response (output). According to 
their location in the network three types of layers can be distin-
guished: Input Layer—neurons that directly receive the informa-
tion coming from an external source; Output Layer—neurons that 
present the processed data; Hidden-Layer—neurons that are nei-
ther in the input layer nor the output layer. These neurons are 
essentially hidden from view, and their number and organization 
can typically be treated as a black box to people who are interfacing 
with the system. 

 There are a number of different parameters that must be 
decided upon when designing a neural network. Among these 
parameters are: the number of layers, the number of neurons per 
layer, the number of training iterations, etc. Some of the more 
important parameters in terms of training and network capacity are 
the number of hidden neurons, the learning rate, and the momen-
tum parameter. 

 The input neurons are those that receive information from the 
outside or the environment, through sensors or parts of the sys-
tem. Meanwhile, the output neurons are those that send a signal 
directly out of the system when the information obtained has been 
analyzed or treated is marked by the incoming pulses; hidden neu-
rons receive stimuli and emit output information but only within 
the system, so they have no contact with the outside world, they 
carry out the basic processing [ 3 ,  4 ]. 

 The basic Perceptron concept is associated with a sensor, which 
might provide information on temperature, moisture, liquid levels, 
etc.; alternatively, input data may be fed in from a numerical data-
base. The Perceptron is essentially a device that, given the presence 
of input data, can generate a single, recognizable output signal. 
However, an improvement can be achieved if we add more input 
channels to this simple device; it will then be able to differentiate 

  Fig. 3    A representation of an ANN       
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the different input data and to deliver an outcome through analysis 
of that data. 

 The successful use of neural networks to solve tasks in different 
areas is due to the ease with which an ANN acquires information 
or knowledge of a problem, as well as its ability to store information 
already acquired for later use, and, of course, its effectiveness in 
solving problems from sub-solutions. However, diffi culties arise 
when we try to understand how a solution has been reached, 
because an ANN provides solutions to problems or outputs, 
without providing at the same time an explanation as to how that 
output was arrived at [ 6 ].  

2    Methodology 

 Extraction is an important technique in ANN, even though this 
has a cost in resources and effort. 

 In artifi cial intelligence, the term of  explanation  refers to an 
explicit structure which can be used internally within, for example, 
an ANN, to elucidate and understand information and then explain 
the results obtained to the user. The information can be external-
ized with object hierarchy, semantic networks, frames, and so on. 
This explanation also includes the steps of the reasoning process or 
intermediate steps of the process as the trace of activity rules or test 
structure. This can assist the user in checking the internal logic of 
the system, a particularly helpful step if the explanations are very 
coarse or limited. 

 In many systems, there are defi ciencies in rule extraction 
because it is very diffi cult to generate the explanatory structure of 
the process, even though the helpful capacity and quality of expla-
nation are important in use of a trained ANN. The quality of expla-
nation refers to how direct the task of extraction from ANN is. For 
example, Rule of trails may be used to capture an explanation, but 
it has been shown that this approach is often too rigid or infl exible, 
since these rules may contain references about internal calculations 
and repetitions [ 6 ]. 

  In most examples of the use of ANN in QSAR, the methodology 
uses quantum level calculations to optimize the molecular geome-
tries data set, using semi-empirical methods or Density Functional 
Theory methods to generate descriptors and the subsequent 
selection of them to generate a new source of descriptors. The 
principal software tools used are Gaussian [ 7 ], MOPAC [ 8 ], and 
Hyperchem [ 9 ]. Numerical analysis can be realized with MATLAB 
[ 10 ] for linear regressions, an ANN for non-(multi)linear regres-
sion and SPSS [ 11 ] for multilinear regressions. Furthermore, 
Dragon [ 12 ] software is used in the calculation of descriptors.   

2.1  Software
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3    QSAR/QSPR 

 For both fi nancial and social reasons, the drug industry would like 
to develop new drugs in much shorter times than is possible using 
a purely experimental (lab-based) approach. A large number of 
novel compounds are synthesized each year. The number of 
molecules that can be obtained by organic synthesis is so high that 
the probability of choosing randomly a molecule with the desired 
biological activity is practically nil. In this regard, medicinal chem-
istry techniques that allow discovery and optimization of new 
templates are used. However, a large fraction of these compounds 
are not tested for physicochemical properties or biological activi-
ties, which still remain unknown owing to unavailability of the 
compounds or possible risks of toxicity. A method able to predict, 
within a realistic error boundary, the biological activities of untested 
compounds is necessary to evaluate these molecular features in a 
rapid and inexpensive approach. 

 Among these methods, computer aided design has found its 
way to the rational design of new compounds; the most important 
practice is known as Quantitative Structure–Activity Relationship 
(QSAR). In recent years, numerous quantitative structure–activ-
ity/property relationship QSAR/QSPR models have been intro-
duced for calculating the biological activities from a variety of 
numerical descriptors of chemical structures. These relationships 
develop correlations between the descriptors of individual com-
pounds and their biological activity/chemical properties. This 
approach has proved especially productive when coupled with solid 
optimizing tools that help to narrow down the fi eld of potential 
molecules to just the most promising candidates, namely, Genetic 
Algorithms, Ant Colony Optimization, Support Vector Machines, 
and Artifi cial Neural Networks. 

 An inevitable diffi culty, when dealing with molecular descrip-
tors, is that of collinearity, which frequently exists between inde-
pendent variables. In the worst case, this creates a rigorous problem 
in certain types of mathematical treatment such as matrix inversion 
[ 13 ], though collinearity of molecular descriptors is not normally 
so complete that matrix inversion will fail. A better predictive 
model can be obtained by orthogonalization of the variables by 
means of principal component analysis (PCA) and the subsequent 
method is called principal component regression (PCR) [ 14 ]. 

 In order to decrease the dimensionality of the independent vari-
able space, a restricted number of principal components (PCs) are 
used. For this reason, the choice of signifi cant and informative PCs 
is an important task in PCA–based calibration methods [ 15 ,  16 ]. 

 Diverse methods have been proposed to select the important 
PCs for calibration purposes. The simplest and most frequent one 
is a top–down variable selection where the factors are ranked in the 
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order of decreasing eigenvalue. The factor with the highest eigen-
value is considered as the most important one; further factors are 
then progressively introduced into the calibration model until no 
signifi cant improvement of the calibration model is obtained. In 
another method, correlation ranking, the factors are ranked by their 
correlation coeffi cient with the property to be correlated (i.e., bio-
logical activity) and selected by the procedure of eigenvalue ranking. 

 QSAR is a mathematical model that attempts to relate the 
structure-derived features of a compound to its biological or physi-
cochemical activity and it is used to understand drug action as well 
as to design new compounds. Elaboration of QSAR models starts 
with the collection of a representative set of molecules with the 
desired biological activity, and a control group that does not pos-
sess the activity under study. This is followed by the selection of 
molecular descriptors obtained by a mathematical logic that trans-
forms the chemical and/or structural information about a mole-
cule into a set of numbers. In favorable cases, the molecular 
descriptors can then be related to the desired biological activity. In 
order to validate the descriptors, the full data set is divided into a 
training set, and a learning test set. In the learning process, there 
are many ways of building a model, among which we can mention 
Multiple Linear Regression (MLR), logistic regression, or machine 
learning methods. The optimal model is obtained from the model-
ing parameters and features. Finally, this model is validated to 
ensure that it will be useful ( see  Fig.  4 ) [ 17 ].  

 A QSAR model correlates, within congeneric molecules, many 
biological activities such as inhibition constants, affi nities of ligands 

Data 

Features

Training set

Learning

Model Validation

Testing set

  Fig. 4    General workfl ow of developing a QSAR model [ 17 ]       
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to their binding sites and rate constants, with either structural fea-
tures or with atomic group or molecular properties such as solubil-
ity, lipophilicity, electronic effects, ionization, and stereochemistry. 
The structural features were proposed by Free and Wilson [ 18 ] 
and the use of molecular properties was proposed by Hansch and 
Fujita [ 19 ], both published independently in 1964. QSAR has 
been important in the integration of ADMET (absorption, distri-
bution, metabolism, excretion, and toxicity) profi ling and predic-
tion, which is mostly dependent on a type of molecular descriptors 
as described by the Lipinski Rule of 5. This procedure is applied to 
improve our understanding of structure–activity links, to identify 
hazardous compounds at low cost, and to reduce the number of 
animals used for experimental toxicity testing. In the fi eld of QSAR 
and in the prediction of animal toxicity, various artifi cial intelli-
gence techniques have been proposed and developed such as ANN 
and statistical understanding of knowledge networks [ 20 – 22 ]. 

 There are different tools that have been used to predict the 
activity of molecules that can present some biological activity; MLR, 
nonlinear regression using ANN and molecular simulations from 
molecular recognition (Docking) are also used in QSAR [ 23 ]. 

 The calculation of chemical descriptors is an important tool for 
QSAR applications, because it makes possible prediction of toxic 
properties, harmful characteristics, and pharmacological biological 
properties that a group of molecules could present. Many chemical 
descriptors can be measured experimentally but this is cost and 
time expensive, and therefore development of QSAR tools is useful 
to replace or augment measurement. 
 Most QSAR/QSPR practice uses quantum-mechanical descriptors. 
QSAR analysis uses a variety of descriptors including:

 ●    Topological,  
 ●   Quantum chemical,  
 ●   Galvez topological charge index,  
 ●   2D-autocorrelation,  
 ●   Radial Distribution Functions (RDF),  
 ●   3D-MoRSE (Molecule Representation of Structures based 

on Electron diffraction),  
 ●   Weighted Holistic Invariant Molecular (WHIM),  
 ●   GEometry Topology and Atom-Weight AssemblY 

(GETAWAY), and so on [ 17 ,  24 ].    

  In the literature, we can fi nd work that reports applications in 
which only QSAR has been used, e.g., a QSAR model that describes 
the antispasmodic activity of molecules isolated from Mexican 
Medicinal Flora and some synthetic based on stilbenoid bioiso-
steres [ 25 ]. Equally, there are reports of applications that use only 

3.1  QSAR-ANN 
Application
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ANN, such as the unsupervised mapping of samples [ 26 ], the 
prediction of the maximum power of a low concentration photo-
voltaic module [ 27 ], or drug analysis [ 28 ]. 

 The importance of ANN-QSAR methods is their fl exibility to 
cover a range of applications. In addition they have the advantage 
of providing results with higher speed and lower costs than experi-
ments. Furthermore, the ability of ANN to discover more complex 
relationships has allowed this method to fi nd a wide application in 
QSAR studies [ 29 ,  30 ]. A principal component–artifi cial neural 
network (PC-ANN) method, which combines the PCA with ANN, 
is another PCA-based calibration method for nonlinear modeling 
between the PCs and biological activities [ 13 ]. Many of these 
QSAR studies have been performed in our group. 

 As an initial example, it is possible to predict toxicity using 
QSAR algorithms. In this example, 278 substituted benzenes were 
selected and the binding affi nities to human serum albumin (HSA) 
were modeled for 94 these compounds. HSA is the most abundant 
protein in plasma and has a high capacity to bind to several drugs. 
We have compared SR-PC-ANN (stepwise regression–principal 
components–artifi cial neural networks) and CR-PC-ANN (corre-
lation ranking–principal components–artifi cial neural networks) 
procedures, both combined with two PCA approaches, the indi-
vidual PCA approach, PCA(I), and the combined PCA approach, 
PCA(C). More accurate results were obtained with CR-PC-ANN 
and the PCA(I) approaches [ 31 ]. 

 As a second example, it is possible to describe and predict the 
antinociceptive activity of morphinans derivatives ( see  Fig.  5 ) using 
QSAR analysis. MRL and Leave-One-Out Cross-Validation 
(LOO-CV) were applied to the best QSAR models. Furthermore, 
in this instance 31 morphinan derivatives reported by the US Drug 

  Fig. 5    Different changes of morphine structure localized on the 31 morphinan 
studies [ 29 ]       
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Evaluation Committee were analyzed. The models calculated 
achieved good descriptive and predictive power. This was improved 
by using ANN; however it was unable to predict an external valida-
tion set of morphinan derivatives [ 29 ].  

 Third, it is feasible to study biological activity of 106 morphinan 
derivatives (reported by the US Drug Evaluation Committee) to 
describe μ-receptor-binding affi nity. Twenty one descriptors were 
selected to perform the MLR. ANN was then used to improve the 
results ( see  Fig.  6 ). The context of this work is that opiates often 
used for the control of pain can also have toxic side effects. There 
are different types of opioid receptors, including μ-receptor that 
shows the highest affi nity for morphine, so the affi nity in this site is 
an interesting topic of study [ 29 ,  32 ].  

 Fourth, a QSAR analysis has been conducted on analgesic 
activity (log IC) for 95 heterogeneous analgesic compounds using 
the PC-ANN modeling method, in which we applied the eigen-
value ranking factor selection procedure. This study demonstrates 
that the PC-ANN can be used to generate improved general mod-
els for heterogeneous data sets without splitting them into catego-
ries. The PC-ANN gives better regression models with good 
prediction ability using a relatively low number of principal com-
ponents. A 0.834 correlation coeffi cient was obtained using 
PC-ANN with six extracted principal components [ 33 ]. 

 Fifth, a QSAR analysis has been performed on three types of 
Carbonic Anhydrase (CA) I, II and Bovine IV isozyme inhibitory 
activities for 53 sulfonamides using multiple linear regression 
(MLR), principal component artifi cial neural network (PC-ANN), 
and correlation ranking–principal component regression (CR-PCR) 
analyses. It was observed that the interaction between the 
ligand and receptor varies from one type of CA isozyme to another. 
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The results obtained provide very good regression models with 
good prediction ability. Correlation ranking-principal component 
regression analysis provides models with better prediction capabil-
ity for the three types of the CA isozyme inhibitory activity, while 
PC-ANN analysis provides models with better prediction capabil-
ity for the hCAII isozyme activity. Generally, the models obtained 
for modeling the hCAII isozyme inhibitory activity are superior 
over those obtained for modeling the hCAI and bCAIV isozyme 
inhibitory activities. The QSAR model obtained for CAI indicated 
that the molecules with higher hydration energies were found 
to bind strongly to the receptor. In addition, it was found that 
higher molecular connectivity tends to block the drug binding to 
the receptor. 

 By contrast, for the binding of sulfonamides to CAII isozyme, 
it was found that the presence of such rings in the sulfonamides 
blocks their binding to the receptor. For the CAIV isozyme, the 
obtained QSAR model illustrates the extremely signifi cant role of 
softness, so that the more polarizable is the ligand, the stronger it 
binds to the receptor. It was found that higher molecular connec-
tivity tends to block the drug binding to the receptor for the three 
types of CA isozyme inhibitory activities. The results obtained 
show that linear and nonlinear regression analyses are useful tools 
to distinguish between the inhibitory activities of sulfonamides 
toward different CA isozyme types I, II, and IV [ 34 ]. 

 Sixth, a QSAR study was performed to understand the inhibi-
tory activity of a set of 192 vascular endothelial growth factor 
receptor-2 (VEGFR-2) compounds. QSAR models were devel-
oped using MLR and PLS as linear methods, while PC-ANN mod-
eling method with application of eigenvalue ranking factor selection 
procedure was used as a nonlinear method. The results obtained 
offer good regression models having good prediction ability. The 
results obtained by MLR and PLS are close, and better than those 
obtained by principal component- artificial neural network. 
The best model obtained had a correlation coeffi cient of 0.87. The 
strength and the predictive performance of the proposed models 
were verifi ed using both internal (cross-validation and Y-scrambling) 
and external statistical validations [ 35 ]. 

 Seventh, Counter propagation neural network (CPNN) is an 
attractive classifi cation tool (active and non-active) in QSAR stud-
ies. A major obstacle in classifi cation by CPNN is fi nding the best 
subset of variables. In this study, the performance of some different 
feature selection algorithms including F score-based ranking, 
eigenvalue ranking of PCs obtained from the data set, Non-Error- 
Rate (NER) ranking of both descriptors and PCs, and 3-way 
 handling of data, Parallel Factor Analysis (PARAFAC), were evalu-
ated in order to fi nd the best classifi cation model. The methods 
were applied for modeling protein-tyrosine kinase inhibition of 
105 fl avonoid derivatives using substituent electronic descriptors 
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(SED) as a novel source of electronic descriptors. The results 
showed that the best performance was achieved by F-score rank-
ing, while the NER ranking of principal components (PCs) showed 
very fl uctuating results; the worst performance belonged to 
PARAFAC- CPNN. Furthermore, comparison of results of these 
nonlinear algorithms with a linear discriminate analysis method 
revealed better predictions by the former [ 36 ].  

  Quantitative structure–property relationship studies have also been 
performed using PC-ANN in our group. 

 First, a QSAR analysis has been conducted on bioconcentration 
factor (BCF) for 227 different non-ionic organic compounds. The 
terms bioaccumulation and bioconcentration refer to the uptake 
and buildup of chemicals that can occur in living organisms. 
Experimental measurement of bioconcentration is time- consuming 
and expensive, and is not feasible for a large number of chemicals 
of potential regulatory concern. A highly effective tool depending 
on a quantitative structure–property relationship (QSPR) can be 
used to describe the tendency of chemical concentration organisms 
represented by the important ecotoxicological parameter, the loga-
rithm of Bio Concentration Factor (log BCF) with molecular 
descriptors for a large set of non-ionic organic compounds. QSPR 
models were developed using multiple linear regression, partial 
least squares, and neural networks analyses. Linear and nonlinear 
QSPR models to predict log BCF of the compounds were devel-
oped for relevant descriptors. The results obtained offer good 
regression models with good prediction ability. The descriptors 
used in these models depend on the volume, connectivity, molar 
refractivity, surface tension, and the presence of atoms accepting 
H-bonds [ 37 ]. 

 Second, a quantitative-structural property relationship analysis 
has been performed on the logarithm of gas/particle partitioning 
coeffi cient (logKp) for 70 different semi-volatile organic com-
pounds by using the PC-ANN modeling method, with application 
of an eigenvalue ranking factor selection procedure. The PC-ANN 
gives good regression models with good prediction ability using a 
relatively low number of PCs. The optimal models obtained by 
PC-ANN and partial least square (PLS) analyses are in close prox-
imity from the statistical point of view. The results obtained offer 
excellent regression models that hold good prediction ability com-
pared to other studies on the same data set of compounds. A coef-
fi cient of determination around 0.97 was obtained using PC-ANN 
and PLS analysis [ 38 ]. 

 Third, a quantitative structure–property relationship analysis 
has been performed on the logarithm of solubility (log 1/S) in 
water for 219 different pesticide compounds by using the PLS method 
as well as a PC-ANN method, with application of the eigenvalue 
ranking factor selection procedure. The PLS and PC-ANN give 

3.2  QSPR-ANN 
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good regression models with good prediction ability using a relatively 
low number of PCs. The optimal models obtained by PC-ANN are 
better than those obtained by PLS analyses from the statistical 
point of view. The results obtained offer excellent regression models 
that hold good prediction ability. The optimal PLS model has coef-
fi cients of determination of 0.7998 and 0.7944 for the training 
and test sets, respectively, while the PC-ANN model has coeffi -
cients of determination of 0.8435 and 0.8193 for training and test 
sets, respectively. The descriptors used in these models are consis-
tent with the experimental factors that are presumed to affect the 
solubility of pesticide compounds in water [ 39 ].   

4    Conclusions and Perspectives 

 Currently, QSAR analysis has not reached a level at which the pre-
dictive power is as good as the descriptive power, but when ANN 
is included in the models, the predictive power is improved, com-
pared to a model that uses only MLR. When using better comput-
ers and models, predictions will be closer to reality.     
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